Service-Oriented Integration of Metamodels’
Behavioural Semantics

Henning Berg

Department of Informatics, Faculty of Mathematics and Natural Sciences,
University of Oslo, Norway
hennb@ifi.uio.no

Abstract. Metamodel composition is a central operation in model-driven engi-
neering approaches. Composition of metamodels is not trivial. The essence of the
problem is that metamodels are not defined as reusable artefacts. Moreover, most
composition mechanisms focus on the structural aspects of metamodels without
considering how metamodels may be composed semantically. Hence, models of
different metamodels can not exchange data directly during execution at runtime.
In this paper we investigate a new approach for integrating metamodels and their
models by considering metamodels as reusable services at a conceptual level. In
particular, the behavioural semantics of metamodels can be coupled in a loosely
manner, without entanglement of semantically different concepts. This allows
creating complex metamodel architectures where separation of concerns is high.

Keywords: Metamodelling, Model Composition, Behavioural Semantics,
Aspect-orientation, Service-oriented Architecture, Domain-specific Language.

1 Introduction

Metamodels have an important role in Model-Driven Engineering (MDE) [1] where
they are used, e.g. as formalisations in language and tool design. In most MDE envi-
ronments, metamodels are realised as class models. Class models do not have other
structure than what can be realised using simple packages, inheritance, composition
and association relationships. This means that all metamodel concepts, regardless of
purpose, are reified in the same modelling space without the ability to differentiate one
type of concept from another. The lack of additional metamodel structure is not criti-
cal for metamodels consisting of a limited number of classes. However, as metamodels
become larger and more complex, as a consequence of increasing maturity in model-
driven approaches, several troubling issues emerge.

Model composition is a commonly used approach for elaborating a model or meta-
model with additional concepts, e.g. [2][3][4][S][6]. Model composition is also a pre-
requisite for generating holistic system code, combining system views, verifying system
views consistency and addressing software evolution. Model composition is performed
by combining a set of models in an asymmetric or symmetric manner. Composition of
metamodels is typically achieved using a variant of class merging or aspect-oriented
weaving. Regardless of method, the result is a composite metamodel containing all
classes from the source metamodels. There are some evident issues with many of the

J. Cordeiro, S. Hammoudi, and M. van Sinderen (Eds.): ICSOFT 2012, CCIS 411, pp. 155-[70] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

156 H. Berg

current model composition approaches. First, classes reflecting concepts of different
concerns are all blended without inclusion of any additional metainformation describ-
ing from what source models the concepts in question originate, i.e. traceability is not
semantically backed up. Second, composition of models induces conflicts that have
to be resolved. E.g. class merging implies that the constituent classes do not contain
equally named properties of different types, etc. Third, composition of models requires
that the source models are altered intrusively. In particular, such alteration is required
to integrate the constituent models’ behavioural semantics. Fourth, integration of mod-
els requires explicit knowledge in metamodel design and insight into the specific en-
vironment used to realise the metamodels, e.g. Eclipse Modeling Framework (EMF)
[7], MetaEdit+ 8], Generic Modeling Environment (GME) [9]], Kermeta [10] or sim-
ilar. Fifth, the resulting models become large which makes reuse more challenging.
The main problem combining proprietary metamodels is that these are not structured
as reusable artefacts. In particular, there are no apparent ways metamodels should be
composed. This gives a lot of flexibility since the metamodels can be combined in many
different ways. However, this also induces several problematic issues as motivated.

A metamodel typically contains concepts related to one particular problem domain.
By combining metamodels it is possible to increase expressiveness by extending the
set of concepts that can be used in the conformant models. Composing metamodels
belonging to different domains results in different concerns being tangled. This is not
practical as metamodels become difficult to grasp and reason about. Even more critical
is the inability to differentiate between concerns in associated tooling and editors. E.g.
a Domain-Specific Language (DSL) made on the basis of three combined metamodels
requires an associated concrete syntax where language constructs pertaining to three
different concerns are all mixed together. We believe that the ability to consider one
concern at the time is important to support increasingly more complex metamodels and
associated tooling.

In this paper, we present the novel idea of considering metamodels as services.
Specifically, we will discuss how the behavioural semantics of metamodels can be com-
bined in a service-oriented manner, and thereby support loosely coupled integration of
metamodels. Note that we do not consider every aspect of services in this paper, but use
the concept of service-orientation as inspiration for defining loosely coupled metamodel
components.

The paper is organised as follows. Section 2 explains the concept of metamodel
components and uses SoaML [11] to illuminate how metamodel components are con-
nected/composed. Section 3 delves into details on how metamodel components can be
realised, while Section 4 presents an example where two metamodel components are
used in concert to construct an e-commerce solution. Section 5 discusses related work,
and Section 6 conludes the paper.

2 Metamodels as Services

A metamodel formalises the structure and semantics of models. We consider both static
and behavioural semantics as parts of the metamodel. E.g. EMF allows defining be-
havioural semantics, referred to as model code, in methods of plain Java classes. Alter-
natively, Kermeta is a metalanguage that allows defining behavioural semantics within

Service-Oriented Integration of Metamodels’ Behavioural Semantics 157

the operations of the metamodel classes using an action language. Hence, the confor-
mant models are executable programs. We will not go into details on how the abstract
syntax and behavioural semantics are mapped, and consider the behavioural semantics
to be defined in operations within the metamodel classes.

A metamodel is constrained to a particular problem domain, and may conceptually
be thought of as a service that provides structure and semantics for expressing and solv-
ing problems in this domain; in particular, behavioural semantics for performing some
kind of processing. A system may be defined by using an arbitrary number of metamod-
els, each providing concepts for modelling of one particular system view. Metamodels
are typically not related. Thus, their conformant models/programs can not exchange
data at runtime in a generic manner. In this paper, we discuss how exchange of data
between models can be supported by treating metamodels as services that can be con-
nected. This allows models to send messages to each other during execution regardless
of the platform on which the models execute.

Service-Oriented Architectures (SOAs) is a software engineering branch that deals
with services and how they interact to realise a software system. A service is a reusable
set of functionalities that provides value to its clients, e.g. other services. SOA is a broad
field. In this paper, we will only use a small subset of the SOA terms and concepts to
describe our approach. Specifically, we will use a service-oriented approach for inte-
grating models at runtime. The intention is not to elaborate on all aspects of services
nor give a complete definition of such.

To integrate models at runtime we need some kind of framework. Specifically, we
need to formalise how the models should integrate. As mentioned, the behavioural se-
mantics of a model can be specified as a set of operations in the model’s metamodel.
Hence, by creating mappings between metamodels’ operations, we are able to formalise
how their conformant models can interact. A mapping is created by using two types of
interfaces: consumer and provider interfaces. A metamodel may be mapped to an arbi-
trary number of other metamodels through interfaces. The interfaces can be seen as an
extension of the metamodel. We define a metamodel component as an entity consisting
of three elements: a metamodel (abstract syntax and static/behavioural semantics), tools
like concrete syntax and editors (optional), and one or more service contracts. A service
contract is a SoaML concept for service specification; it specifies an agreement detailing
how participants of a service fulfill roles as described by interfaces. A realised service
contract is a pair of provider and consumer interfaces. SoaML is an Object Management
Group (OMG) standardised modelling language for describing services architectures.
It provides us with the modelling tool for describing metamodel architectures. That is,
two or more metamodel components that are connected through interfaces. Note that we
will not follow the SoaML specification strictly. Some additional terminology is used.
A visual representation of a metamodel component is given in Figure [l A metamodel
component has a name and a platform descriptor identifying the platform on which the
component is defined. In this case, the generic descriptions: Metamodel Component and
Platform, respectively. Examples of platforms are EMF and Kermeta.

In SoaML, a service contract is modelled as a consumer and provider role linked by
a service channel. Each role is typed with an interface that defines the role’s behaviour.
In our case, the roles of a service contract are fulfilled by metamodel components.

158 H. Berg

Metamodel Component : Platform

Metamodel
(abstract syntax, static/behavioural semantics)

Tool; Tool, Tool,
(optional) (optional) (optional)
Service Service Service
Contract; Contract; Contract,
(mandatory) (optional) (optional)

Fig. 1. Overview of a metamodel component

A metamodel architecture is created by choreographing a set of components. That is,
each metamodel is bound to one or more roles of service contracts. Binding a meta-
model to a service contract role is achieved by mapping each of the interface’s oper-
ations to an operation found in any of the metamodel’s classes. A component whose
metamodel is bound to a provider role of a service contract is regarded as an aspect
component (provider component) from the perspective of this particular service con-
tract. Or more precisely, the component’s metamodel is an aspect model since it reflects
one particular aspect or concern that is utilised by a base component. The component
whose metamodel is bound to the consumer role of the same service contract is a base
component (consumer component). A metamodel component can take both an aspect
and base role simultaneously, and be composed with several components in parallel.
This is achieved by utilising several service contracts/interface pairs. Refer [4] for de-
tails on how the terms aspect and base are used to describe model compositions. Figure
2l gives an example where three metamodel components are composed yielding a meta-
model architecture.

As can be seen, all components are connected with each other. E.g. MCA is con-
nected to MCJB through the two interfaces specified by the Provide B service contract
of the MCB component. Consequently, models conforming to Metamodel A may in-
voke operations (operation instances) on models conforming to Metamodel B. The
same architecture given as a SoaML services architecture model is given in Figure
The metamodel components are here participants that are related through service con-
tracts. SoaML also operates with service interfaces. A service interface is a revised
service contract, where the provider and consumer interfaces are elaborated with mes-
sage types. We will limit the use of this term to avoid confusion. Let us focus on the
Provide B service contract and see how it is defined. The Provide BB1 service contract
specifies two roles, here named: baseModel and aspectModel, which are linked through
a service channel. The roles are associated with a consumer and provider interface,
respectively. Figure[d] gives the service contract as a SoaML model.

The definitions of Requiredinterface and Providedinterface are given in Figure[3l The
consumer interface specifies an operation named operationy(...), whereas the provider
interface consists of the two operations: operation;(...) and operationy(...). We ignore
types for now. Both the latter operations are mapped to operations of the B; class. A
consumer interface may be empty if bi-directional messaging is not required.

Service-Oriented Integration of Metamodels’ Behavioural Semantics

Metamodel Component A (MCA)

Base
Metamodel A

I
|
|
\

/
/
/

/

/ mca : MCA
/
/ \

AN

Interface \|/ Base

—(O—

Metamodel Component B (MCB)

Aspect ‘

Metamodel B

Base \l./ Interface

Metamodel Component C (MCC)

‘ Metamodel C

Provide
G

Fig. 2. Example metamodel architecture (using a simplified notation)

consumer

\

i \
provider N
\
\
\ aj : Provide A;
\
\ N
\ AY
\ N
N \
N consumer N
N \
~

_ Provide By

service channel

- «ServicesArchitecture»
Composite Metamodel Architecture
P

provider

———==C by :ProvideB;)»---— mcb : MCB
/
/

/
VA
b, : Provide B, /
/
7
7
7

7

N\
\

,7 provider

consumer 4
3

. ~7 " «ServiceContract» T

\
\
baseModel : Requiredinterface |—| aspectModel : ProvidedInterface !

Fig. 4. The Provide By service contract

Coi nerete | | | Provide B; Mi olidel | | |
Interface
Provide Provide Provide Provide Provide
A, A, o By B, Bs
Provide A; 6 Aspect Aspect Provide B,

A\
\
\

\
\
|

159

160 H. Berg

«Interface, Consumer» «Interface, Provider»
Requiredinterface Providedinterface

By::operation(...) : ...

<opposite B;>::operationy(...) : ... B,::operation(... :

Fig. 5. The Provide B consumer and provider interfaces

als a3
AL L HA2 0.1 A3
| -—>

@ operation1(...) : ...

b3s b2
H B3 0..% H B1 0..1 H B2
< e ——

& operation1(...) : ...
@ operation2(...) : ...

Fig. 6. Excerpts of representatives for Metamodel A (top) and Metamodel B (bottom)

H A3 a3 bis B B1
—
@ operation1(...):...| 1 1.* | & operation1(...): ...

@ operation2(...) : ...

Fig.7. Realised relationship between two metamodels’ classes

Let us see two metamodels that may be connected through these interfaces, and thus
fulfill the requirements of the Provide By service contract. As may be expected, the
minimum requirement is a class in each of the metamodels that has the operation(s)
specified. Figure [6] shows two excerpts of compatible metamodels. The operations of
the provider interface are mapped to the operations of By, whereas the operation in the
consumer interface is mapped to the operation in A3. The names of the class operations
do not have to be identical to those of the interface operations. Mapping of interface
operations to operations in a metamodel’s classes is performed by manual specification
as part of the service choreography.

Hence, each service contract specifies a service channel between classes of two meta-
models. The service channel represents a set of relationships between the classes that
realise operations of the interfaces. In this case, there is only one relationship between
classes of the two metamodels. That is, there are only two classes in the metamodels
that are related. The type of relationship between classes is either an association (non-
containment) or composition (containment) reference. According to the Provide By
service contract, there will be a bi-directional relationship between As and B;. This is
because the consumer interface is non-empty. The type of relationship is decided as part
of the service choreography.

Operations in the two interfaces associated by a service contract may additionally
relate in callback chains, e.g. where one operation in one of the interfaces is invoked as
a consequence of invoking an operation in the other interface (reflected in the operation
definition). Let us assume that the desirable relationship between As and B; is an as-
sociation reference. Though the metamodels are not composed, we practically end up
with the scenario as illustrated in Figure[7l

Service-Oriented Integration of Metamodels’ Behavioural Semantics 161

Metamodel A Perspective Metamodel B Perspective Metamodel B Perspective

\

Model name: m; Model name: m, Model name: m3

Fig. 8. Modelling separate concerns in different perspectives

3 Realising Metamodel Components

3.1 Modelling Using Proxies

So far we have seen how metamodels’ operations can be related through interfaces (ser-
vice contracts). Thus, the metamodels are loosely coupled which allows creating and
processing of models using any kinds of proprietary tools and editors. Also important
is the ability to model A and B concerns independently of each other. E.g. it is still pos-
sible to use tools compatible with Metamodel A to create models of this metamodel.
Typically, this is difficult when metamodels are composed since the associated tools
need to be refactored. Figure Blillustrates how a model of Metamodel A and a model
of Metamodel B can be modelled in separate perspectives (views). Notice that the Ag
object in the left perspective relates two By proxy objects, as specified using square
brackets. The B; object in the right perspective relates a proxy object representing the
A3 object.

A service contract specifies a connection or mapping between two metamodels’ op-
erations. As discussed, a service contract’s service channel represents a set of class
relationships. To realise such relationships it must be possible to navigate the operations
accessible through the relationships. This is achieved using proxies. When
modelling, it should be possible to refer the B; concept from within a model con-
forming to Metamodel A (and vice versa), since Metamodel B is an aspect model
with respect to Metamodel A. However, the metamodels are not composed together.
To address this, a placeholder/proxy representing a B; object can be used in models
of Metamodel A. The proxy is linked to an actual object of the B; class at runtime
using XML-based messages. The object of the B; class, as represented by the proxy,
is selected from a set of previously created models conforming to Metamodel B, as
found in a model repository. That is, all models created using a metamodel architecture
are stored in a model repository for later reference. Two B; proxies are used in the m;
model of Figure [l Each proxy represents a unique B; object (as found in mg and mg).
The proxies Ps and P4 represent the Az object in m;.

Figure [9] shows how the B; proxies are linked to the my and m3 models (and ob-
jects) of Metamodel B. The Az proxies are linked to the m; model in a similar manner
(not shown in the figure). The four proxies realise the Provide B; service contract at

162 H. Berg

Model Repository Metamodel A Perspective P proxy Properties

Class: By
Model: m; [b;]

,,,,,,,,,,,,,,

2

,,,,,,,,,,,,,,

P, proxy Properties

| _ms:Metamodel B_ | Class: B,
A K PalBd Model: m3 [b]

\
\

: Py[B4]

B[]

Model name: m;

Fig. 9. Linking proxies to models/objects

| +— dynamic link id: by

id: by

Fig. 10. The resulting model(s) as used at runtime

runtime. We will return to how the interface operations are mapped to class operations.
Figure[[0]shows what is achieved at runtime when executing the models.

As can be seen, links are established between the Az object and the B; objects. The
links are dynamic since they only exist at runtime (realised using proxy runtime objects
linked by XML-based messages). Dynamic links are established and maintained by a
metamodel component runtime environment. The runtime environment acts as a super-
structure on top of a metamodelling environment, like EMF. It is out of scope to go into
details on how the proxies are managed by the runtime environment.

3.2 Service Choreography

Metamodel components are combined into architectures using service choreography.
Choreography of metamodel components comprises two steps: mapping operations of
service contracts’ associated interfaces to class operations and selecting relationship
types that the service channels represent. This includes choosing the relationship mul-
tiplicities (some constraints apply). Choreography can either be performed textually or
graphically. We will illustrate choreography using an XML-based format. Figure [T
gives an excerpt of the service choreography yielding the architecture of Figure 2l
Recall that a service contract is defined using a provider and consumer interface. A
service interface is a refined service contract that utilises both the provider and consumer
interface to specify a service port type on a component (aspect). The conjugate service
interface (defined using the same provider and consumer interfaces) specifies the type
of a request port (base). We will only focus on the Provide B; Znter face here. The
interface is a refinement of the Provide BB1 service contract. The MC.A and MCB com-
ponents are composed by filling out three pieces of information. First, the operations

Service-Oriented Integration of Metamodels’ Behavioural Semantics 163

<interface name="Provide Al Interface">...</interface>
<interface name="Provide Bl Interface">
<provider component="MCB">
<operation name="operationl" type="..." classOperation="Bl::operationl" />
<operation name="operation2" type="..." classOperation="Bl::operation2" />
</provider>
<consumer component="MCA">
<operation name="operationl" type="..." classOperation="A3::operationl" />
</consumer>
<channel baseClass="A3" aspectClass="Bl" type="non-containment"
bidirectional="true" multiplicityBase="1..1" multiplicityAspect="1..%" />
</interface>
<interface name="Provide B2 Interface">...</interface>

Fig. 11. Service choreography using a textual format

of the ProvidedInterface must be mapped to the operations of B;. Second, the operation
of the Requiredinterface has to be mapped to the operation in As. Third, the type and
multiplicity of the relationship between the A3 and B; classes need to be specified.

4 An E-Commerce Solution

In this section, we will illustrate metamodel components using a more pragmatic example
in the domain of website design. We will use two DSLs for modelling of two different
concerns: website structure and queries. Excerpts of the metamodels for the DSLs are
given in Figures [[2] and [[31 We will refer to the metamodels as Website and Query,
respectively.

As seen in Figure a website comprises one or more pages that contain an ar-
bitrary number of elements. In particular, a page may contain forms realised within
a table structure. An example of a form is a list of products or similar, that can be
selected by the end user. The Form behavioural semantics includes an operation ad-
dObjects(...) which accepts a list of (deserialised) objects. The operation populates a
form constructed using a table element. The number of rows and columns in the table
is determined automatically by the number and type of objects used as argument. We
assume that the metamodels are defined in EMF, thus the behavioural semantics would
be written in Java.

A simple query language is given in Figure [[3] It captures concepts for expressing
queries that can be used for acquisition of objects, e.g. from a database abstraction. A
query consists of one or more object identifiers. An object identifier is composed of a
set of property name-value pairs which is used to identify a custom set of objects. For
instance, an e-commerce solution for selling computer hardware may utilise a domain
model including the class Product with data fields for storing information such as prod-
uct name, manufacturer, version, description, price, etc. Different types of products have
unique values for the data fields. Querying for a given type of product would then be
performed by using object identifiers and property name-value pairs. Describing queries
that are issued to a database is a natural part of designing an e-commerce solution. How-
ever, designing the website and programming the queries represent two different con-
cerns. It is likely that different stakeholders would model these concerns. A graphical
designer could construct the website, while a programmer would define the backbone
business logic including database queries. We have identified two DSLs that allow mod-
elling these concerns. A possible approach would be to compose the metamodels of the

164 H. Berg

pages elements
1.*% 0..*%

H Website H Page H Element

> o title : EString [® > = id : EString

o ¢ss : EString

‘ table ‘
H Picture E Header H Paragraph H Table 0.1 H Form
= url : EString o text : EString o text : EString = name : EString
& getObjects()
& addObjects(Object)

@ setSize(Elnt)

entries 0..*
H Entry
o row : EInt
= column : EInt
o content : EString

Fig. 12. Metamodel for the website design language

resource uri
H Query 1 E Resource 1 H URI
= uri : EString
@ query()
objectIdentifiers | 1..* type | 1
H Property [ObjectIdentifier H Type
= name : EString o className : EString
= value : EString | 0..* éé
properties
operator 1 value 1 E Database H Service
H Operator H Value
H LessThan H Equals E GreaterThan

Fig. 13. Metamodel for the query language

DSLs to create a richer language that can be used to both model the website and express
database queries, e.g. the Form and Query classes could be merged. First, combining
Form and Query is awkward, since these classes are not semantic coherent. Second, the
composition process clearly results in entanglement of concepts for expressing different
concerns. A graphical concrete syntax for the composite language would yield a palette
of language constructs for the entire language, whereas a textual syntax would provide
the user with code completion suggestions for all the constructs. A graphical website
designer would not be interested in the language constructs for performing queries as
used by the programmer, and vice versa. One alternative is to manually program the
concrete syntax of the composite language to differentiate the two sets of language
constructs, yet the resulting model of a website and associated queries would still be
expressed in the same modelling space. Providing two sets of concrete syntax con-
cepts would require in-depth technical knowledge, which reduces the reuse value of the
languages/metamodels. Additionally, the website language would typically be imple-
mented with a graphical concrete syntax, whereas the query language is better designed
using a textual syntax. Combining different kinds of syntaxes is not a trivial task.

Service-Oriented Integration of Metamodels’ Behavioural Semantics 165

. . ; |
I\ gt : QueryTaker |—| qp : QueryProvider |

Fig. 14. The Per form Query service contract

«Interface, Consumer» «Interface, Provider»
QueryTaker QueryProvider
<opposite Query>::initiate() Query::query()

<opposite Query>::addObjects(Object[] objects)

Fig. 15. The Per form Query consumer and provider interfaces

-7 «ServicesArchitecture» =<

— E-commerce Solution Architecture AR
L/ 77 ~
P ~
v N
’ AN
/ \
. i __ . _ o - \
| structure : Website |> query: Perform Query -I queries : Query |
/
\\ /
N /
N Pl

Fig. 16. The e-commerce modelling solution services architecture

Let us see how metamodel components tackle the same scenario. The behavioural
semantics of Form in Figure comprises the operations getObjects() and addOb-
jects(...). The semantics of Query in Figure [[3] consists of the operation query(). The
operations could either be a natural part of the classes’ semantics or be defined explic-
itly in order to construct the metamodels as reusable components. The three operations
will reify the consumer and provider interfaces associated by a service contract named
Per form Query.

The purpose of the example is to illustrate how models of the Website and Query
metamodels may communicate by defining the metamodels as components. The compo-
nents are named Website and Query as well. Only the Query component will feature
a service contract. The service contract of the Query component is given in Figure [[4
It specifies two roles, each typed with an interface. The interfaces are given in Figure[T3l

As can be seen, the provider interface has one operation named query(), while the
consumer interface specifies the operations initiate() and addObjects(Object[] objects).
The names of the class operations that fulfill the service contract do not need to have
identical names as the interface operations, however, the class operations’ signatures
and return types are required to match those of the interface operations. Verification of

166 H. Berg

1. <interface name="Perform Query Interface">

</provider>

</operation>
</consumer>

</interface>

<provider component="Query">
<operation name="query" type="void" classOperation="Query::query" callback="addObjects" />

<consumer component="Website">
<operation name="initiate" type="void" classOperation="Form::getObjects" />

<operation name="addObjects" type="void" classOperation="Form::addObjects">

<parameter type="ArrayOfObject" />

<channel baseClass="Form" aspectClass="Query" type="non-containment" bidirectional="true"
multiplicityBase="1..1" multiplicityAspect="1..1" />

Website Perspective

Model Repository

Model name: website;

Products page
%

Campaign page

Product list form

Query proxy #1
[Query]

Campaign product list form

Query proxy #2
[Query]

Query Perspective

Query Perspective

Query | Proxy[Form] {
Objectldentifier
[”Product”] {
Property: ...
Property: ...
}

:

Model name: query;

Query | Proxy[Form] {
Objectldentifier
[”Campaign”] {
Property: ...
Property: ...
}

)

Model name: query;

Query proxy #1 Properties

Class: Query
Model: query; [q1]

Query proxy #2 Properties

Class: Query
Model: query; [g5]

Fig. 17. Choreography and modelling of an e-commerce solution

operation mappings is out of scope of this papelﬁl. We assume that each service contract
has a description that informally specifies the intended semantics of the associated inter-
faces’ operations. The services architecture describing the e-commerce modelling solu-
tion is given in Figure[I€l The choreography and modelling process of the e-commerce
solution consists of three steps:

1. Service choreography
2. Modelling of each concern in distinct modelling perspectives
3. Linking the base model proxies with the aspect model proxies

Figure[T7]shows the three steps of choreographing and modelling of the e-commerce
solution (with imagined tool support). The Form class of the Website metamodel and

! Assuring that an operation does what its use requires is also out of scope of this paper.

Service-Oriented Integration of Metamodels’ Behavioural Semantics 167

the Query class of the Query metamodel realise the consumer and provider roles of
the Per form Query service contract (implicitly referred to by the Per form Query
Inter face) (1). The initiate() operation of the consumer interface is mapped to getO-
bjects() in the Form class (Website metamodel), while the addObjects(...) operation is
mapped to the equally named operation in the same class. The query() operation of the
provider interface is mapped to query() in the Query class (Query metamodel). Le. the
service contract is fulfilled.

The website and queries are modelled separately (2). The website model contains
two forms, thus two queries have to be programmed. The website model is named web-
site, while the query models are named query; and querys. All models are stored in the
model repository (when saved). Two proxies representing Query objects are used in the
website model. A proxy representing a Form object is used in each of the query models.
The proxies are linked to the respective models in properties panes/views (3) (only prop-
erties for the Query proxies are shown). Several proxies can be assigned to clones of
the same model. E.g. if both forms required the same type of query, they could both be
linked to, e.g. query;. At runtime, the operations specified in the interfaces are invoked
to exchange data between the models (website;, query; and querys) using a serialised
XML-based message format. Population of a form is initiated when the behavioural se-
mantics of the website language invokes getObjects(). This invocation is resolved by the
component runtime environment and results in invocation of query() in the associated
query model. Consequently, a set of objects are acquired from the database and returned
to the website model via the addObjects(...) operation. addObjects(...) is specified as a
callback operation for query(). This means that the query() operation’s code invokes the
addObjects(...) operation on the associated Form proxy, which in turn invokes the ad-
dObjects(...) operation on the actual Form object. The models are linked dynamically.
That is, proxies are linked to model objects at runtime. Service choreography can to
some extent be pre-defined, where information concerning consumer components is
filled in according to a fixed scheme. I.e. the mappings of provider interface operations
to class operations are known at design-time. These mappings are immutable properties
of the provider components.

The example shows how two metamodels can be used together without using model
composition. Here, only one service contract was fulfilled. A metamodel component
can feature an arbitrary number of service contracts. This allows creating complex ar-
chitectures with many metamodels. In addition, it is possible to connect a metamodel
with other metamodels in several ways depending on what service contracts that are
fulfilled. Figure [I8] gives an overview of the resulting website system. We assume that
the components are defined in different metamodelling environments.

5 Related Work

The work of [[12] discusses how metamodel components can be realised using a graph
transformation-based formalisation of MOF. In essence, a metamodel component pro-
vides export and import interfaces. Each interface identifies a submodel. A submodel
of an export interface can be bound to the submodel of an import interface using graph
morphisms, and thereby combining the metamodels. The work resembles the approach

168 H. Berg

Website : EMF Query : Kermeta
Website Base Query
Aspect
Tool, Tool, Tool, —<O— Tool, Tool, Tool,,
K K K Perform R R
Service Service Service Query Perform Service Service
uel
Contract; Contract; Contract,, Interface Query Contract; Contract,,
A A A
| «conformsTo» | «conformsTo»
Model: website; Model: query; Model: query,
messaging

‘ Metamodel Component Runtime Environment ‘ >

Metamodel Component Runtime Environment ‘

‘ Ecore Modeling Framework (EMF) ‘ ‘ Kermeta ‘

‘ Computer ‘

Fig. 18. Overview of the resulting website system

of this paper. The main difference is that our approach allows a higher degree of decou-
pling, since metamodels are connected as services.

An approach for enabling generic metamodelling is elaborated in [13]]. The paper in-
vestigates how C++ concepts, model templates and mixin layers can be used to specify
generic behaviour and transformations, create model component and pattern libraries
and extend metamodels with new classes and semantics. A concept can be bound to
models that fulfill a set of requirements specified by the concept. The binding is per-
formed using pattern matching. Consequently, generic behaviour can be reused for in-
stances of the compatible models. Model templates allow defining reusable patterns and
components which can be instantiated with actual parameters. The parameters comprise
models and model elements. Finally, mixin layer templates facilitate extending meta-
models with new classes and semantics in a non-intrusive manner.

Package extension is a mechanism that allows merging equally named classes of
metamodels that reside in packages [14]. A package can be defined by extending other
packages. The paper also describes a package template concept. A package template
is a package that can be parameterised with string arguments. The arguments support
renaming of several package elements simultaneously.

An approach for loose integration of models, in the form of model sewing, is dis-
cussed in [[15]. Model sewing is an operation that allows models to be both synchro-
nised and depend on each other without utilising model composition. The discussed
advantages are the ability to utilise existing GUI for the constituent models of a sewing
operation, and avoidance of entanglement of concepts from different models. The ap-
proach identifies the need of mediating entities that bind the models together. The work
resembles the approach of this paper. The main difference is that we utilise interfaces
and treat metamodels as components that are combined in a service-oriented manner.

Service-Oriented Integration of Metamodels’ Behavioural Semantics 169

6 Discussion and Conclusions

Metamodel components allow using metamodels in unison without composing these
explicitly together. This has apparent advantages. First, it is possible to model different
concerns separately, and still support exchange of data between the resulting models at
runtime by utilising model links that are maintained dynamically. This ensures a loosely
coupled integration. Second, models expressing different concerns can be validated and
tested independently one at the time. Specifically, the proxies can communicate with
mock-ups that represent models (simulation mode). Third, choreography of metamodel
components can be achieved by non-technical stakeholders since the metamodels do
not need to be altered in order to connect these. The service contracts formalise the
agreement between the metamodels. Fourth, a model or model fragment (clone) can be
acquired from a model repository and reused, which simplifies the modelling process.

Metamodel composition usually requires that classes are merged. However, it is not
always reasonable to merge two classes, particularly when the classes represent con-
cepts of different problem domains. Using the approach of this paper, an aspect model
class is instead used to type the relation between this class and a base model class (and
vice versa). This resembles class refinement as discussed in [16]].

A consequence of composing the abstract syntax of metamodels is the need of com-
bining the concrete syntaxes as well. This is avoided by using components since each
component independently may provide its distinct textual or graphical concrete syn-
tax. Components also address evolution issues. Model conformance is a term that indi-
cates whether a model is compatible with a metamodel. Composing metamodels breaks
model conformance, which requires using model transformations to create a confor-
mant composite model from the basis of pre-existing models. Components address this
by defining a sand box/scope for each metamodel. Changing or revising the metamodel
of one component will only break conformance with the existing models of this meta-
model. Models of the other components’ metamodels in the services architecture will
still conform to their metamodels.

Two important aspects of service-oriented approaches are service repositories and
service discovery, which support service reuse and availability. These concepts may
be adapted for metamodel components. In particular, reusable generic metamodel pat-
terns can be stored in searchable, distributed repositories and used as language building
blocks by language engineers. A metamodel pattern may describe an aspect or require-
ment that is common for several metamodels/languages, e.g. a state machine or similar
[17]. Analysis and validation of services are important parts of service-oriented engi-
neering methodologies and required to ensure high quality architectures and systems.
This has not been addressed in the paper.

An interesting application of metamodel components is connecting metamodels and
languages (and their models) defined in different metamodelling environments. This
is possible since the behavioural semantics of each metamodel can be run separately,
yet integrated as specified in the service contracts. E.g. models defined in EMF could
integrate with models defined in Kermeta, or similar. This is one particular application
of metamodel components that justifies the high degree of separation provided by a
service-oriented metamodel integration.

170 H. Berg

We believe that combining metamodels in a service-oriented manner addresses many
of the limitations of model composition by increasing decoupling of models. This in
turn increases reusability and scalability of metamodels and models.

References

1. Kent, S.: Model Driven Engineering. In: Butler, M., Petre, L., Sere, K. (eds.) IFM 2002.
LNCS, vol. 2335, pp. 286-298. Springer, Heidelberg (2002)

2. Fabro, M.D.D., Bézivin, J., Valduriez, P.: Weaving Models with the Eclipse AMW plugin.
In: Eclipse Modeling Symposium (2006)

3. Kolovos, D.S., Paige, R.F., Polack, F.A.C.: Merging Models with the Epsilon Merging Lan-
guage (EML). In: Wang, J., Whittle, J., Harel, D., Reggio, G. (eds.) MoDELS 2006. LNCS,
vol. 4199, pp. 215-229. Springer, Heidelberg (2006)

4. Groher, I., Voelter, M.: XWeave: Models and Aspects in Concert. In: Proceedings of the
AOM Workshop 2007 (2007)

5. Morin, B., Perrouin, G., Lahire, P., Barais, O., Vanwormhoudt, G., Jézéquel, J.-M.: Weaving
Variability into Domain Metamodels. In: Schiirr, A., Selic, B. (eds.) MODELS 2009. LNCS,
vol. 5795, pp. 690-705. Springer, Heidelberg (2009)

6. Morin, B., Klein, J., Barais, O.: A Generic Weaver for Supporting Product Lines. In: Pro-
ceedings of the Workshop on Early Aspects (EA 2008) (2008)

7. Eclipse Modeling Framework (EMF) (2012),
http://www.eclipse.org/modeling/emf

8. Tolvanen, J.-P., Kelly, S.: MetaEdit+: Defining and Using Integrated Domain-Specific Mod-
eling Languages. In: Proceedings of OOPSLA 2009 (2009)

9. Institute for Software Integrated Systems. Generic Modeling Environment (GME) (2012),
http://www.isis.vanderbilt.edu/projects/gme

10. Muller, P.-A., Fleurey, F., Jézéquel, J.-M.: Weaving Executability into Object-Oriented Meta-
Languages. In: Briand, L.C., Williams, C. (eds.) MoDELS 2005. LNCS, vol. 3713, pp. 264—
278. Springer, Heidelberg (2005)

11. Object Management Group (OMG). Service-Oriented Architecture Modeling Language
(SoaML) (2012), http://www.omg.org/spec/SoaML

12. Weisemoller, 1., Schiirr, A.: Formal Definition of MOF 2.0 Metamodel Components and
Composition. In: Czarnecki, K., Ober, 1., Bruel, J.-M., Uhl, A., Vélter, M. (eds.) MODELS
2008. LNCS, vol. 5301, pp. 386—400. Springer, Heidelberg (2008)

13. de Lara, J., Guerra, E.: Generic Meta-modelling with Concepts, Templates and Mixin Layers.
In: Petriu, D.C., Rouquette, N., Haugen, @. (eds.) MODELS 2010, Part I. LNCS, vol. 6394,
pp. 16-30. Springer, Heidelberg (2010)

14. Clark, T., Evans, A., Kent, S.: Aspect-Oriented Metamodelling. The Computer Journal 46(5)
(2003)

15. Reiter, T., Kapsammer, E., Retschitzegger, W., Schwinger, W.: Model Integration through
Mega Operations. In: Proceedings of the Workshop on Model-Driven Web Engineering
(MDWE 2005) (2005)

16. Emerson, M., Sztipanovits, J.: Techniques for Metamodel Composition. In: proceedings of
the 6th OOPSLA Domain-Specific Modeling Workshop (DSM 2006) (2006)

17. Cho, H., Gray, J.: Design Patterns for Metamodels. In: Proceedings of the 11th SPLASH
Domain-Specific Modeling Workshop (DSM 2011) (2011)

http://www.eclipse.org/modeling/emf
http://www.isis.vanderbilt.edu/projects/gme
http://www.omg.org/spec/SoaML

	Service-Oriented Integration of Metamodels’ Behavioural Semantics
	1 Introduction
	2 Metamodels as Services
	3 Realising Metamodel Components
	3.1 Modelling Using Proxies
	3.2 Service Choreography

	4 An E-Commerce Solution
	5 Related Work
	6 Discussion and Conclusions
	References

