
123

José Cordeiro
Slimane Hammoudi
Marten van Sinderen (Eds.)

7th International Conference, ICSOFT 2012
Rome, Italy, July 2012
Revised Selected Papers

Software and
Data Technologies

Communications in Computer and Information Science 411

Communications
in Computer and Information Science 411

Editorial Board

Simone Diniz Junqueira Barbosa
Pontifical Catholic University of Rio de Janeiro (PUC-Rio),
Rio de Janeiro, Brazil

Phoebe Chen
La Trobe University, Melbourne, Australia

Alfredo Cuzzocrea
ICAR-CNR and University of Calabria, Italy

Xiaoyong Du
Renmin University of China, Beijing, China

Joaquim Filipe
Polytechnic Institute of Setúbal, Portugal

Orhun Kara
TÜBİTAK BİLGEM and Middle East Technical University, Turkey

Igor Kotenko
St. Petersburg Institute for Informatics and Automation
of the Russian Academy of Sciences, Russia

Krishna M. Sivalingam
Indian Institute of Technology Madras, India

Dominik Ślęzak
University of Warsaw and Infobright, Poland

Takashi Washio
Osaka University, Japan

Xiaokang Yang
Shanghai Jiao Tong University, China

José Cordeiro Slimane Hammoudi
Marten van Sinderen (Eds.)

Software and
Data Technologies
7th International Conference, ICSOFT 2012
Rome, Italy, July 24-27, 2012
Revised Selected Papers

13

Volume Editors

José Cordeiro
INSTICC and IPS, Department of Systems and Informatics
Rua do Vale de Chaves, Estefanilha, 2910-761 Setúbal, Portugal
E-mail: jcordeir@est.ips.pt

Slimane Hammoudi
Université d’Angers
10 Boulevard Jeanneteau - CS 90717, 49107 Angers Cedex 2, France
E-mail: slimane.hammoudi@eseo.fr

Marten van Sinderen
University of Twente
Information Systems Group, Department of Computer Science
P.O.Box 217, 7500 AE Enschede, The Netherlands
E-mail: m.j.vansinderen@utwente.nl

ISSN 1865-0929 e-ISSN 1865-0937
ISBN 978-3-642-45403-5 e-ISBN 978-3-642-45404-2
DOI 10.1007/978-3-642-45404-2
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013956130

CR Subject Classification (1998): D.2, D.3, I.6, I.2.4, H.2.8

© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The present book includes extended and revised versions of a set of selected
papers from the 7thInternational Conference on Software Paradigm Trends -
ICSOFT 2012. The conference was held in Rome, Italy, and sponsored by the
Institute for Systems and Technologies of Information, Control and Communi-
cation (INSTICC).

The purpose of ICSOFT 2012 was to bring together researchers and prac-
titioners interested in information technology and software development. This
seventh edition had four tracks focusing on the four main paradigms that have
been intensively studied during the last decade for software and system de-
sign, namely: models, aspects, services, and context. These four paradigms will
drive the design and development of future software systems encompassing a
large number of research topics and applications: from programming issues to
the more abstract theoretical aspects of software engineering; from models and
services to the most complex management information systems; distributed sys-
tems, ubiquity, data interoperability; context understanding and many other
topics included in the scope of ICSOFT.

ICSOFT 2012 received 127 paper submissions from 41 countries. To evaluate
each submission, a double-blind paper evaluation method was used: each paper
was reviewed by at least two internationally known experts from the ICSOFT
ProgramCommittee. Only 14 papers were selected to be published and presented
as full papers, i.e., completed work (10 pages in proceedings / 30-minute oral
presentation). Additionally, 41 papers were accepted as short papers (6 pages
/ 20-minute oral presentation) - for a total of 55 oral presentations – and 15
papers as posters. The full-paper acceptance ratio was thus 11%, while the total
oral paper acceptance ratio was 43.3%.

The quality of the papers herewith presented stems directly from a successful
and solid conference, which would not have been possible but for the dedicated
effort of a complex organizing structure, from the steering and scientific commit-
tees to the INSTICC team responsible for handling all secretariat and logistical
details. A word of appreciation is also due to the conference keynote speakers and
to the many authors and attendants who gave us the honor of helping present
their ideas and hard work to the scientific community.

We hope that you will find these papers interesting and consider them a help-
ful reference in the future when addressing any of the research areas mentioned
above.

September 2013 José Cordeiro
Slimane Hammoudi

Marten van Sinderen

Organization

Conference Chair

José Cordeiro Polytechnic Institute of Setúbal / INSTICC,
Portugal

Program Co-chairs

Slimane Hammoudi ESEO, France
Marten van Sinderen University of Twente, The Netherlands

Organizing Committee

Helder Coelhas INSTICC, Portugal
Andreia Costa INSTICC, Portugal
Bruno Encarnação INSTICC, Portugal
Vitor Pedrosa INSTICC, Portugal
Cláudia Pinto INSTICC, Portugal
Susana Ribeiro INSTICC, Portugal
José Varela INSTICC, Portugal
Pedro Varela INSTICC, Portugal

Program Committee

Muhammad Abulaish, Saudi Arabia
Hamideh Afsarmanesh,

The Netherlands
Markus Aleksy, Germany
Rafa E. Al-Qutaish, UAE
Daniel Amyot, Canada
Kenneth Anderson, USA
Toshiaki Aoki, Japan
Keijiro Araki, Japan
Farhad Arbab, The Netherlands
Bernhard Bauer, Germany
Fevzi Belli, Germany
Alexandre Bergel, Chile
Jorge Bernardino, Portugal
Marcello Bonsangue, The Netherlands
Marko Boškovic, Canada

Mark Van Den Brand,
The Netherlands

Lisa Brownsword, USA
Manfred Broy, Germany
Dumitru Burdescu, Romania
Fergal Mc Caffery, Ireland
Olivier Camp, France
Gerardo Canfora, Italy
Mauro Caporuscio, Italy
Cinzia Cappiello, Italy
Jorge Cardoso, Portugal
Cagatay Catal, Turkey
Sergio de Cesare, UK
Krzysztof Cetnarowicz, Poland
Kung Chen, Taiwan
Shiping Chen, Australia

VIII Organization

Marta Cimitile, Italy
Peter Clarke, USA
Rem Collier, Ireland
Kendra Cooper, USA
Sergiu Dascalu, USA
Steven Demurjian, USA
Giovanni Denaro, Italy
Brian Donnellan, Ireland
Juan C. Dueñas, Spain
Philippe Dugerdil, Switzerland
Jürgen Ebert, Germany
Maria Jose Escalona, Spain
João Faria, Portugal
Cléver Ricardo Guareis de Farias,

Brazil
Rita Francese, Italy
Nikolaos Georgantas, France
Paola Giannini, Italy
J. Paul Gibson, France
Itana Gimenes, Brazil
Athula Ginige, Australia
Cesar Gonzalez-Perez, Spain
Slimane Hammoudi, France
Christian Heinlein, Germany
Markus Helfert, Ireland
Brian Henderson-Sellers, Australia
Jose Luis Arciniegas Herrera,

Colombia
Jose R. Hilera, Spain
Jang-eui Hong, Korea, Republic of
Milan Ignjatovic, Switzerland
Ilian Ilkov, The Netherlands
Ivan Ivanov, USA
Bharat Joshi, USA
Yong-Kee Jun, Korea, Republic of
Sanpawat Kantabutra, Thailand
Dimitris Karagiannis, Austria
Roger (Buzz) King, USA
Mieczyslaw Kokar, USA
Jun Kong, USA
Dimitri Konstantas, Switzerland
Walter Kosters, The Netherlands
Martin Kropp, Switzerland
Tei-wei Kuo, Taiwan
Konstantin Läufer, USA

Yu Lei, USA
Hareton Leung, China
Frank Leymann, Germany
Hua Liu, USA
David Lorenz, Israel
Ricardo J. Machado, Portugal
Leszek Maciaszek, Poland/Australia
Ahmad KamranMalik, Austria
Eda Marchetti, Italy
Katsuhisa Maruyama, Japan
Antonia Mas, Spain
Tommaso Mazza, Italy
Stephen Mellor, UK
Jose Ramon Gonzalez de Mendivil,

Spain
Marian Cristian Mihaescu, Romania
Dimitris Mitrakos, Greece
Valérie Monfort, Tunisia
Mattia Monga, Italy
Sandro Morasca, Italy
José Arturo Mora-Soto, Spain
Paolo Nesi, Italy
Rory O’Connor, Ireland
Pasi Ojala, Finland
Flavio Oquendo, France
Marcos Palacios, Spain
Vincenzo Pallotta, Switzerland
Patrizio Pelliccione, Italy
Massimiliano Di Penta, Italy
Pascal Poizat, France
Andreas Polze, Germany
Rosario Pugliese, Italy
Jolita Ralyte, Switzerland
Anders Ravn, Denmark
Arend Rensink, The Netherlands
Werner Retschitzegger, Austria
Claudio de la Riva, Spain
Colette Rolland, France
Gustavo Rossi, Argentina
Gunter Saake, Germany
Krzysztof Sacha, Poland
Francesca Saglietti, Germany
Sreedevi Sampath, USA
Maria-Isabel Sanchez-Segura, Spain
Luis Fernandez Sanz, Spain

Organization IX

Tony Shan, USA
Beijun Shen, China
Marten van Sinderen, The Netherlands
Harvey Siy, USA
Yeong-tae Song, USA
Cosmin Stoica Spahiu, Romania
Peter Stanchev, USA
Davide Tosi, Italy
Sergiy Vilkomir, USA
Gianluigi Viscusi, Italy
Florin Vrejoiu, Romania
Christiane Gresse von Wangenheim,

Brazil

Martijn Warnier, The Netherlands
Dietmar Wikarski, Germany
Jongwook Woo, USA
Qing Xie, USA
Bin Xu, China
Haiping Xu, USA
Tuba Yavuz-kahveci, USA
I-Ling Yen, USA
Hong Zhu, UK
Amal Zouaq, Canada
Elena Zucca, Italy

Auxiliary Reviewers

Narciso Albarracin, USA
Rodrigo Garcia-Carmona, Spain
Mark Johnson, USA
Michael McMahon, USA
Joseph Kaylor, USA
Dae S. Kim-Park, Spain
Bernardi Mario Luca, Italy

Sohei Okamoto, USA
Maria Saenz, USA
Alexander Serebrenik,

The Netherlands
Carine Souveyet, France
Tom Verhoeff, The Netherlands

Invited Speakers

Stephen Mellor Freeter, UK
Daniela Nicklas Carl von Ossietzky Universität Oldenburg,

Germany
Fabio Casati University of Trento, Italy
Jan Dietz Delft University of Technology,

The Netherlands

Table of Contents

Invited Paper

Data, Context, Situation: On the Usefulness of Semantic Layers
for Designing Context-Aware Systems . 3

Daniela Nicklas and Nils Koppaetzky

Papers

Fencing the Lamb: A Chart Parser for ModelCC . 21
Luis Quesada, Fernando Berzal, and Francisco J. Cortijo

Cross-Platform Application Development Using AXIOM as an Agile
Model-Driven Approach . 36

Xiaoping Jia and Chris Jones

Rapidly Implementing EMF Applications with EMF Components 52
Lorenzo Bettini

Generic Programming in Pharo . 66
Alexandre Bergel and Lorenzo Bettini

Peer-to-Peer Remote Service Discovery in Pervasive Computing 80
Stefan D. Bruda, Farzad Salehi, Yasir Malik, and Bessam Abdulrazak

Model Checking Combined Fragments of Sequence Diagrams 96
Hui Shen, Mark Robinson, and Jianwei Niu

A Large-Scale Elastic Environment for Scientific Computing 112
Paul Marshall, Henry Tufo, Kate Keahey, David LaBissoniere, and
Matthew Woitaszek

Improving Estimates by Hybriding CMMI and Requirement
Engineering Maturity Models – A LEGO Application 127

Luigi Buglione, Jean Carlo Rossa Hauck,
Christiane Gresse von Wangenheim, and Fergal Mc Caffery

Metamodel Independence in Domain Specific Modeling Languages 140
Jerónimo Irazábal and Claudia Pons

Service-Oriented Integration of Metamodels’ Behavioural Semantics 155
Henning Berg

Fine-Grained Role- and Attribute-Based Access Control for Web
Applications . 171

Seyed Hossein Ghotbi and Bernd Fischer

XII Table of Contents

An Approach to Context Modeling in Software Development 188
Bruno Antunes, Joel Cordeiro, and Paulo Gomes

Linear Software Models Are Theoretical Standards of Modularity 203
Iaakov Exman

Author Index . 219

Invited Paper

Data, Context, Situation: On the Usefulness of Semantic
Layers for Designing Context-Aware Systems

Daniela Nicklas and Nils Koppaetzky

Carl von Ossietzky Universität Oldenburg, Department of Computing Science
26111 Oldenburg, Germany
dnicklas@acm.org,

nils.koppaetzky@uni-oldenburg.de

Abstract. Context-aware applications adapt their behavior according to the cur-
rent situation of their user or their (often physical) environment. This adaptation
could be the change of the user interface, the performance of actions (like sending
messages or triggering actuators), or the change of used resources (like network
bandwidth or processing power). To determine relevant situations, many hetero-
geneous data sources could be used, ranging from sensor data over mined patterns
in files to explicit user input. Since most sensors are not perfect, context quality
has to be considered. And since many context-aware applications are mobile, the
set of data sources might change during runtime. All this issues make context
management and reasoning, and the development of correct adaptations within
context-aware applications a challenging task. This paper is based on a keynote
given at ICSOFT 2012 that introduces a layered model to separate different tasks
and concerns in designing data models for context-aware applications. It shows
how existing works map to this layered model, and how the model can help in
designing context aware applications that are better to maintain and safer to use.

Keywords: Context-aware applications, Situational awareness.

1 Introduction

Many applications adapt their behavior according to their situation: navigation systems
that change the proposed routing based on current traffic information, enhanced coffee
mugs detect spontaneous coffee breaks and inform the other colleagues, or, more seri-
ously, mobile context-aware business processes support workers in the field by up-to-
date environmental information, to name a few. The design of this class of applications
is difficult since the behavior depends on changing situations that have to be derived
from lower level context information (e.g., sensor data), or given by the user. A com-
monly used context definition by A. Dey [1] states that context is “any information that
can be used to characterize the situation of entities”. This shows the great variety of
context information.

In the domain of software engineering, other notions of context have emerged. Some
work takes the context of a software developer into account that occurs during program-
ming [2, 3]. Obviously, this is fundamentally different from the context of the developed
application’s user. However, tools and systems for programmers that adapt their behav-
ior according to the software developer’s context are again context-aware applications.

J. Cordeiro, S. Hammoudi, and M. van Sinderen (Eds.): ICSOFT 2012, CCIS 411, pp. 3–18, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

4 D. Nicklas and N. Koppaetzky

In this contribution, we highlight the challenges that arise when dealing with the
development of context-aware applications. This not only means that the context of the
application has to be considered during requirement analysis and design, but also that
the deployed application has to be aware of its context and adapts to it. Thus, it needs
means to detect relevant context parameters (e.g., a smart phone application that gets
the location of the user by a GPS sensor), needs to decide whether a relevant context
change has happened, which often requires additional knowledge (e.g., the user entered
the factory premises), and then performs the adaptation (e.g., switching from a private
account to a business account, or displaying relevant work tasks that could be only done
here).

Early work on software engineering for context aware applications already motivates
the need for new techniques and architectures when dealing with context-aware applica-
tions. A first challenge arises from the processing of sensor data. Due to the heterogeneity
of sensor technologies and sensor data protocols, this task should be decoupled from the
application logic. Within the context toolkit [4], so-called context widgets hide the gath-
ering of the sensor data and provide a first abstraction for the application. However, this
is only a first solution for the tasks of a context-aware application. When sensor data is
gathered and interpreted as a relevant context parameter, it has to be combined with other
knowledge to determine if a relevant context change had happened. The representation
of this knowledge is typically referred as the context model. While in early applications,
this model remained informal or part of the application logic itself, soon researchers
found that it should be modeled separately, in a formally defined way, to ease the cor-
rect definition of relevant context parameters, the development and the maintenance of
the resulting application [5]. From this on, a multitude of context modeling techniques
have been developed, since a good context information modeling formalism reduces the
complexity of context-aware applications and improves their maintainability and evolv-
ability. In addition, since gathering, evaluating and maintaining context information is
expensive, re-use and sharing of context information between context-aware applica-
tions should be considered from the beginning. The existence of well-designed context
information models eases the development and deployment of future applications [6].
This also helps in developing model-based middleware systems and frameworks for
context-aware applications, and context management platforms [7–10].

The remainder of this paper is structured as follows: we first introduce two applica-
tions that act as examples for complex context-aware applications throughout the paper
in Section 2. We illustrate common challenges in Section 3. In Section 4 we introduce
the layered system model and the anatomy of context-aware applications. Finally, we
show how the design of the sample applications can benefit from this system model in
Section 5 and conclude in Section 6.

2 Sample Applications

In this section, we introduce two sample applications that depend on live context in-
formation. One is a machine maintenance process within a smart factory that provides
condition based monitoring and maintenance, and the other is a flexible assistant system
that should make maritime offshore operations safer. We derive common challenges and
tasks for the design of such applications in Section 3.

Data, Context, Situation: On the Usefulness of Semantic Layers 5

2.1 Smart Factory Maintenance Process

In [11], a machine maintenance scenario with in a so-called smart factory is described.
Sensors monitor the state of all machine tools used in a company, and the maintenance
process should make sure that these tools are replaced before their attrition limits are
exceeded and they are worn out. If they are not replaced in time, machine failures can
occur, which can be very costly because they can cause a production breakdown. In
the machine maintenance process, sensors in machines measure the attrition of the in-
stalled tools. This context data about the tools is managed in a context model, and a
smart workflow is started to arrange the replacement of worn out tools based on context
events. As we can see in Figure 1, the introduction of this context model decouples the
application – here modeled and executed by a smart workflow – from the actual sensors
and their heterogeneity. It provides higher-level information and notifies the application
about relevant context changes.

mobile workers

w
or

ki
ng

pl
an

tool is
attrited

start tool
exchange

get tool
from stock

spatial world model
managed by a context provisioning system

mobile workers

sensors,
m

achine
states

ta
sk

s,
in

fo
rm

at
io

n

tool is
attrited

start tool
exchange

event
notifications

co
nt

ex
t

qu
er

ys

get tool
from stock

progress
report

a) Today's reality b) Vision of smart workflows

technical production processes technical production processes

workflow smart workflow

paper written
coordination

paper written
coordination

mobile workers

w
or

ki
ng

pl
an

tool is
attrited

start tool
exchange

get tool
from stock

spatial world model
managed by a context provisioning system

mobile workers

sensors,
m

achine
states

ta
sk

s,
in

fo
rm

at
io

n

tool is
attrited

start tool
exchange

event
notifications

co
nt

ex
t

qu
er

ys

get tool
from stock

progress
report

a) Today's reality b) Vision of smart workflows

technical production processes technical production processes

workflow smart workflow

paper written
coordination

paper written
coordination

Fig. 1. Smart workflows: Incorporate context information into workflow technology [11]

2.2 Safe Offshore Operations

The other sample application is an assistance system for offshore operations. Offshore
operations, like construction or maintenance of wind power plants, are due to their com-
plexity and their hard environmental conditions risky and prone to accidents. Within the
project Safe Offshore Operation (SOOP) [12] we develop tools and methods for risk
analysis, human behavior modeling, operation planning [13], training, situation recog-
nition, and sensor technology [14] to support crews and carriers during planning and
undertaking these operations. One goal of SOOP is to increase the safety of these oper-
ations by observing the status of safety relevant entities with a context aware assistant
system. It supports the crew by displaying an overview of the situation and triggering
warnings when critical situations occur.

Figure 2 shows the planned architecture of the assistance system. The relevant con-
text covers the state of people (e.g., location of crew members), the environment (e.g.,
wind and weather), machines (e.g., a heavy-lift crane) and the infrastructure itself

6 D. Nicklas and N. Koppaetzky

(e.g., communication network or sensor systems). These parameters are observed using
a sensor network on-board of the ship. Within the assistance system, a configurable sit-
uation recognition component determines whether a relevant context change happens
and communicates this as warnings and aggregations. To configure the situation recog-
nition, the relevant combinations of context parameters are represented in so-called
situation models. As we see later, the proposed semantic levels help in designing such
a system in a flexible and maintainable way.

Sensor Network

Offshore Operation Assistance System

Situation Recognition

People Environment Machines Infrastructure

Situation
models

Sensor Data

User Interface

Warnings, Aggregations

Fig. 2. Architecture of Offshore Operation Assistance System

One example for such an offshore operation is a cargo loading operation. When
lifting large or heavy loads, the crane operator is supported by a lift supervisor, who
observes the loading procedure from the cargo deck and communicates with the crane
operator. During the operation, the assistant system should warn, e.g., when a person is
to close to the lifted cargo or under it, or when the lift supervisor does not keep sufficient
distance to the cargo.

3 Challenges in Developing Context-Aware Applications

In this chapter, we present three major challenges that occur when dealing with complex
context-aware applications:

Representation of Context Information. As Dey stated, context can be anything that can
be used to characterize the situation of an entity [1]. Thus, the data types and charac-
teristics of potential context information may vary a lot. In particular, we have to deal
with the following types of context:

– Geographic context: spatial data of all kind. Since most context-aware applications
depend on their physical context as well, the context model typically needs to model
the physical environment. In the smart factory example, this would be the shop floor
layout and the location of installed machines, in the offshore operations example
the ship layout and maritime maps. Such context information comes from map

Data, Context, Situation: On the Usefulness of Semantic Layers 7

services or (spatial) databases and is typically obtained prior to the operation of the
application. However, some sensors (like laser scanners or camera-based systems)
are able to detect and obtain geographic context; using simultaneous localization
and map building (so-called SLAM) techniques [15], this information as a map or
add it to dynamic evolving map.

– Dynamic context: movement and change. This context type covers all kind of rapidly
changing parameters, like location of mobile objects, weather measurements, or com-
munication delays. For dynamic context, sensor data has to be processed, and de-
pending on the amount and the update rate of the incoming sensor data, specialized
infrastructures like data stream management systems might be a good design choice
for managing this context type.

– Information context: documents and virtual objects. Beside physical phenomena,
many context-aware applications also rely on information context that comes from
the ”digital world”. This could be documentation or tutorials for the machine main-
tenance task, relevant e-mail notifications, or any other non-physical information
object that might be relevant for the current situation.

– Technical context: the infrastructure. In addition to the aforementioned context
types, information about availability and state of the infrastructure itself might be
part of the context model. For the offshore operation assistance system, it is of
crucial importance whether the sensor network is still in operation, or if part of it
might be down due to communication problems or weather conditions. Mobile ap-
plications also might change the infrastructure they use when they are on the move:
they might discover new services (e.g., wireless connection, a projector, or some
load speakers) and connect to them. This re-configuration of applications typically
depends on some technical context model.

– User context: activities, plans, and preferences. Finally, the state of the user her-
self might be important for assessing the situation, and be thus part of the context
model. Depending on the application, this could include activity monitoring (is she
standing, running, sleeping?), the interpretation of plans (it seems that she is up
to walk towards this machine), and preferences (when a critical situation occurs,
this user prefers to be warned by vibration, not by sound). This type of context is
the most sensitive one: when dealing with user context within applications, it is of
utterly importance to design a thorough privacy concept.

Stemming from the different context types, we have to deal with both discrete values
and continuous values, with multi-dimensional data, multi-media data, spatio-temporal
data, and with heterogeneous data sources. Within the context model of Henricksen
and Indulska [16], these data sources are annotated of being ”sensed” (coming from
sensors), ”static” (modeled once), ”profiled” (given by the user) and ”derived” (derived
from other context data). When dealing with non-static context, the temporal charac-
teristics (i.e., the freshness of the data) has to be taken into account. Finally, since
sensors do not present fully accurate data, the information might highly differ in infor-
mation quality. To deal with this heterogeneous context information, a variation of con-
text modeling techniques have been developed, ranging from simple key-value-based
approaches over spatial models to full-fledged ontologies [6].

8 D. Nicklas and N. Koppaetzky

Context Reasoning and Situation Recognition. Some information can be directly sensed,
but often the context information needed to determine the situation has to be derived
from the observable facts. And for this, many different options may exist, as was il-
lustrated by Loke in his paper ”On representing situations for context-aware pervasive
computing: six ways to tell if you are in a meeting” [17]. This derivation process is of-
ten called context reasoning. Many techniques exist for context reasoning, some rely on
logical specifications, other on learning approaches. While there is no exact definition
on it, the process transforms so-called ”lower-level context” to ”higher-level context”.
Note that depending on the available data sources, they might be already able to directly
produce higher-level context. A good review on situation recognition techniques can be
found in [18].

Adaptation of Context Management. While simple context-aware applications can be
easily implemented with a fixed context management approach, complex context-aware
applications like our two motivating examples have to deal with an additional challenge:
the context management itself might depend on the situation and thus needs to be adapt-
able. This covers the selection of available data sources, of context parameters, and of
the situation recognition algorithms. In the smart factory example, the context obser-
vation of a repair process needs only to be turned on when a machine really needs to
be repaired, and might depend on the failure of the machine, the available resources,
and the worker’s personal context. Similar, during an offshore operation, many differ-
ent operations are carried out, and each of these operations has their relevant context
parameters and their specific situations that need to be observed.

4 The Anatomy of a Context-Aware Application

Based on the key challenges for the development of context-aware applications, we in-
troduce a generic architecture of such applications that can be mapped to many concrete
frameworks and solutions. We first explain the overall architecture depicted in Figure 3,
and discuss which type of context information could be shared between applications and
thus be managed in common components. We then map the architecture to the sample
applications and discuss its benefits in Section 5.

4.1 Architecture

In Figure 3, a generic architecture of a context-aware application is depicted. The top
layer, application, holds the actual application logic. If it is an end-user application,
this layer might be further decoupled to separate between application logic and user
interface. Some context-aware applications are hidden from the user; they just provide
context-aware services, e.g., as part of an operation system. On example would be a
mobile phone system that provides network connectivity depending on the context of
the user; the context could include technical context (which hotspots or networks are
available), user context (user tasks), and geographical context (where is the user now,
and where is she heading to? Maybe a free high-speed network will appear soon). Fi-
nally, some context-aware applications are not intended for one certain user, but just
provide general services to the world, like traffic management for smart cities.

Data, Context, Situation: On the Usefulness of Semantic Layers 9

Application-
specific layers

Standards for
aggregation
methods

Layers that are
easy to share
between
applications

Enable
domain-specific
standards

data (e.g., from sensors, content) used by the
system to determine context information

Data

any information that can be used to characterize
the situation of an entity

Context

in what cases does adaption happen Situation

how the application's behaviour changes Adaptation

what the user / other systems / the world see Application

Fig. 3. Anatomy of a context-aware application and ”sharability” of context information

On the second layer, adaptation covers the logic that determines how the application
behavior should change. While the application layer needs the necessary components
to implement the changed behavior, the logic for when and how the behavior should
change can be decoupled from the application itself. This makes it easier to change this
logic; this change is often necessary because of new requirements or a new environment
where the application should be deployed. Users might want to configure this logic
according to their preferences. And finally, since automatic adaptation of applications
might cause irritations on the users side, a context-aware application should be able to
explain why a certain change just happened (to support so-called intelligibility [19]).

The situation layer contains the situation recognition logic. For situation recogni-
tion, various context information has to be combined. This combination could be rather
simple, like a formula that checks for certain values or thresholds, or be coded in com-
plex patterns that include temporal characteristics of the context information. Situation
recognition techniques have been studied extensively in pervasive computing; while in
specification-based approaches, the knowledge about the combination of the context
information is specified in formal logic models, in learning-based approaches, a situ-
ation recognition model is first trained with hopefully typical context information and
then later used for situation recognition. For this, a wide variation of models has been
used, like Bayesian derivative models, Hidden Markov Models, Decision Trees, Neural
Networks, and Support Vector Machines [18].

The context layer represents the data model of the context information. According
the the widely used definition of Dey, this data model contains any information that can
be used to characterize the situation of an entity. Thus, the set of situations to which
the application should adapt determines which context information could be needed
and is therefore part of the context model. Due to the heterogeneity of context informa-
tion (as discussed in Section 3), the context model must be able to represent different
data structures (like optional attributes), data types (like spatio-temporal data), and data

10 D. Nicklas and N. Koppaetzky

source types (like sensed, static, or profiled). Thus, context modeling techniques like
object-oriented models, spatial models, and full-fledged ontology-based models were
developed, that are much more expressive than simple key-value based models [6].

Finally, the data layer contains the access to the raw data that might come from
sensors or other external data sources. The reason why this layer is decoupled from the
context layer is that for one certain context information (e.g., the location of a user),
many different data sources could been used (like a GPS sensor, a ultrasonic system,
user input, or an external location service). Often, the data from these sources needs
to be cleaned or transformed before it could be interpreted as context information. In
addition, the access to the data sources might be over different protocols and interfaces.

Depending on the complexity of the overall application, these layers might be more
or less decoupled. For very simple context-aware applications, these layers might be
even all merged into the application logic: if only one sensor is used that provides only
one context information, the situation is a simple threshold check, and the adaption is
simple, too. However, for more complex applications, components should be structured
along these layers, and each layer should provide a specified interface to the layer above.
And if more than one context-aware application will be developed that runs in the same
of in overlapping context, the deployed components could be run as shared services.

4.2 Sharing Context Information

To share context information, we have to take a closer look at the semantics of the
information that is presented at the various level. In [20], we already referred to Andrew
U. Frank’s five tiers of ontologies [21], which are used to discuss consistency constraints
in geographical information systems.

Ontology Tier 0: Physical Reality
reality :: world –> property –> spacePoint –> timePoint –> value

Ontology Tier 1: Observable Reality
observation :: world –> observationType –> location –> value

Ontology Tier 2: Object World
observation :: id –> time –> observationType –> value

Ontology Tier 3: Social Reality
getname :: object –> name
findObject :: name –> environment –> object

Ontology Tier 4: Cognitive Agents
rules used or deduction

Fig. 4. The five tiers of ontologies according to [21]

Figure 4 gives an overview on these tiers. Tier 0 is the ontology of the physical
reality. It contains the assumption that there is exactly one real world; hence, for every
property in the world and for a given point in time-space there is a single value. Note
that in context-aware applications, the relevant reality can also includes non-physical
entities, like services, web pages, or workflows.

Tier 1 includes observations of reality. This is the first tier that can be accessed in
computational systems. Here, a value can be derived at a location with a given obser-
vation type. The type determines the measurement scale of the value (e.g. nominal or

Data, Context, Situation: On the Usefulness of Semantic Layers 11

rational) and the measurement unit (e.g. meters or seconds). For spatial values, also a
coordinate systems must be given. Values normally have a limited accuracy due to ob-
servation errors. This tier corresponds to the data layer of the generic architecture of
context-aware applications (Figure 3).

In Tier 2, single observations are grouped together to individual objects that are de-
fined by uniform properties. Now, the value of an observation is the state of a whole
object, given by an identifier. Andrew U. Frank only considers physical objects in this
tier, i.e. ”things which exist in the physical world and can be observed by observation
methods”. They have a geometric boundary in the world, but it can change over time
(e.g. dunes or fluids). In object-oriented context models, this tier directly corresponds
to the aforementioned context layer. But even in simpler context models (like key-value
pairs), the grouping to objects might be done implicitly, since the might be only one
object of interest, or the grouping is done via naming conventions of they keys.

Until now, the ontology tiers cover data that can be seen as objective reality—you
can send out a team of geographers or students to model physical objects and they will
come to an agreement about their observations. In Tier 3, the socially constructed reality
is represented. Social reality includes all the objects and relations which are created by
social interactions. These are properties that are classified and named within the context
of administrative, legal or institutional rules. Object names belong to this tier since they
are assigned by culture; for many important things (but not all) there are functions to
determine the name and to find the object by name in a certain environment. Since
a context model in the context layer also would contain names for the objects, this
ontology tier also corresponds to the context layer.

Finally, in Tier 4 the rules are modeled that are used by cognitive agents (both human
and software) for deduction. This tier is normally built into database query languages,
applications or inference engines of knowledge based systems. This tier would corre-
spond to situation definition, the adaptation logic, and the application itself, thus to the
first three layers of the generic architecture of context-aware applications.

In this model, the higher the tier, the more the objective reality is interpreted for a
certain application. Thus, this model can be also used to determine, which components
could be shared between applications. The data layer is the most objective layer—it just
represents single observations of the real world (including the digital or virtual reality).
If no application-specific interpretation is made yet, such observations could be easily
shared between applications.

For the context layer—corresponding to Tier 2 and 3—sharing is still possible. How-
ever, it depends on how overlapping the context information of the applications really
is. If the applications all run on the same mobile device, many of them might need over-
lapping technical context (like network connectivity, energy level, or available external
services), user context, or geographical context. Thus, a shared context management
might help to reduce the applications complexity and resource usage of the device.

In general, Tier 4 ontologies are not sharable, since they highly depend on the ap-
plication and thus are the result of a application-specific interpretation. However, there
might be some generic situations that could be of interest of more than one applica-
tion. Thus, the design of an architecture for context-aware applications could contain a

12 D. Nicklas and N. Koppaetzky

library of generic situations which applications can directly use; most likely this set has
to be extendable to cover the situations which are more specific.

5 Benefits of the Layered Approach

In this chapter, we have a closer look at the sample applications and discuss how they
can benefit from this layered approach.

5.1 Smart Factory Maintenance

The smart factory maintenance application is one of a set of applications that were
developed in the Nexus project, which addressed context management for large scale,
highly complex, and highly dynamic context information [22]. Figure 5 shows an over-
view on the Nexus approach, with a mapping to the ontology tiers discussed in Sec-
tion 4, and the resulting layered architecture.

Nexus
Rallye

Smart
Factory ...

Federation
(Query Processing,

Value Added Services)
Area

Service
Register

Spatio-
temporal
Database

Context
Server

Context
Server

application
tier

federation
tier

service
tier

External
System

... Context
Server

sensor(s)
(networks)

Fig. 5. Nexus approach and federated architecture

On the left side of Figure 5, we see that the Nexus approach is to federate over sev-
eral context sources, to make the context information available for many context-aware
applications. The smart factory maintenance process—and other context-aware appli-
cations within a smart factory—can thus benefit from context modeling and context
processing effort that has been already carried out. The data model used at the fed-
eration layer directly corresponds to the context layer of our generic architecture; the
situation layer is implemented on top of that as value added services. Thus, applications
could decide whether they want to process their situation recognition within the feder-
ation layer or if they want to get the context information from the federation and do the
situation recognition within the application.

Data, Context, Situation: On the Usefulness of Semantic Layers 13

Fig. 6. Smart Factory machine maintenance scenario, modeled as context-aware workflow [23]

For the adaptation layer, the Smart Factory machine maintenance scenario uses busi-
ness process modeling. Figure 6shows an simplified version of this model using BMPN1.
Within this process, the workflow depends on the context; this dependency is realized
using so-called context queries (for synchronized communication) and registration and
notification of context events (for asynchronous communication). Using this technique,
the adaptation process can be partially modeled and reviewed by domain experts and
requires no specialized technical knowledge. Also, a workflow execution engine can be
used to directly execute these models.

Finally, the application layer itself—i.e., what the user sees—can be implemented
with so-called human tasks. For this, many workflow execution engines already provide
support, like dashboards and task lists. The allocation of the task can be again context-
aware, e.g., only workers who are close to the maintenance tasks, are informed about it
and can pick-up the task if they have time to perform it.

5.2 Safe Offshore Operations

For the assistance system for offshore operations, the key challenge is the adaptabil-
ity of the situation recognition to new operations and to new set of available sensors.
Thus, the layered architecture is here used to decouple a set of recognizable context
parameters from a se of recognizable situation models. Figure 7 shows on the right side

1 Object Management Group: Business Process Modeling Notation. Final Adopted Specification.
http://www.omg.org/cgi-bin/doc?dtc/2006-02-01

http://www.omg.org/cgi-bin/doc?dtc/2006-02-01

14 D. Nicklas and N. Koppaetzky

that the design of a new assistant system is going top down through the layers: first,
the assistance function is designed, i.e., which warnings and aggregated data should be
shown. From this, a set of relevant situations are defined. The definition of these sit-
uations is based on a set of pre-defined context variables (the context model). If these
context variables are not sufficient, the context model can be extended. For each con-
text variable, one or more context recognizers are available that transform raw data from
sensors into meaningful values for the context model. Again, if for a given set of sen-
sors no context recognizer is available to detect the necessary context variable, the set
of context recognizer can be extended. Using this structure, we are able to determine for
every configuration of sensors, if the situations needed for the applications are recog-
nizable. During operation, the data flow within this architecture is bottom-up, i.e., from
the sensors to the application (left side of the Figure).

Fig. 7. Generic Assistant System: Design and Operation

In the following, we give short examples for the layers of the assistant system and its
situation recognition [24].

Assistant system. The assistant system provides the user interface to display the overall
situation and warnings. If an operation shows abnormal situations or changes to a criti-
cal situation it should warn the crew, for we observe both, the normal flow of operations
as well as critical situations that should be avoided.

Situation description and definition. Analyzing the cargo loading operation described
in chapter 1, we find three situations that are safety relevant, such as:

– PersonToCloseToLiftedCargo: A person is to close to or under the lifted cargo.
– LiftSupervisorToFarFromCargo: The LiftSupervisor who has to follow the cargo

does not keep sufficient distance to it.
– LineOfSightInterrupted: The cargo interrupts the line of sight between CraneOp-

erator and LiftSupervisor.

Such situation descriptions have been identified by a predated risk analysis. They can be
defined using a specification-based approach by a set of values of real world parameters.

Data, Context, Situation: On the Usefulness of Semantic Layers 15

For the cargo loading operation, a critical situation would be ”a person is to close to the
lifted cargo”. It could be defined followed:

cargolifted = ”true”

distance(cargo, person) < safetydistance

Context Model of Cargo Operation. To define the situations as a condition over a fixed
set of measurable parameters of real world entities, we describe these entities, their
possible parameters, and their relations. Figure 8 illustrates the static context model. In
our example, all entities are physical entities and our sensors can gather information
referring to the physical character of the entities. The set of relevant parameters of a
physical entity are absolutPosition, relativePosition, geometry and size, with the relative
position referring to another physical entity (self-relation arrow).

Context Variables. The j context variables are relevant parameters of an entity in our
system that are measureable by sensors or derivable from prior knowledge. They are
used to define the situations described above.

Context Recognizers. The m context recognizers are programs to derive values of con-
text variables from raw sensor data, or from values of context variables that are al-
ready determined. As the value derivation of context variables can be very complex,
the context recognizer can vary from very simple implementations to those with high
complexity. Context recognizers are comparable to context widgets introduced in [4].

Sensors. The n sensors are used to perceive and observe the environment by measuring
data. In our case a sensor network using wireless ultra wide band technology is used to
determine the positions of entities.

Recognition and interpretation. The process of runtime recognition of situations with
the introduced system follows figure 7 bottom-up. It increases the degree of abstraction,
compression, and interpretation of data with every layer. Raw data, delivered from the
sensors is used to derive the context variables with the help of context recognizers. A
set of values of context variables is abstracted into situations, which are transmitted to
the assistant system and could trigger warnings. Hence a large number of raw sensor
data are mapped to few domain concepts during the recognition process.

To enable highly dynamic runtime situation recognition, we implement the situation
recognition within a data stream management system (DSMS), a system that allows
to manage and process continuous data streams from heterogeneous data sources (e.g.,
sensors). Similar to a data base management system, queries can be stated and mathe-
matical expressions applied to manage, filter, and process the data. However, in a DSMS
these queries are registered in the system and executed continuously. After registration
a declarative query is transformed into a so-called query plan. We use the open source
DSMS Odysseus [25], which supports query sharing. Thus, if some context recognizers
or situation models are already deployed in running in the system, and a new situa-
tion model is registered that shares some of the context recognition, this will result in
a shared query plan and thus in shared resources. As we can see, the layered architec-
ture can not only help in good structuring and separation of concerns within a software
system, but also to save resources like processing time and memory usage.

16 D. Nicklas and N. Koppaetzky

Fig. 8. Context model for the cargo loading operation described in chapter 1, modeled as a class
diagram with UML 2.0

6 Conclusion

In this paper, we discussed general characteristics of context-aware applications and
which challenges software developers have to face when designing such applications.
We presented a generic layered approach that has been implemented in several frame-
works and applications. Based on two sample scenarios that cover complex context-
aware applications, we show how their design can benefit from this layered approach.

References

1. Dey, A.K.: Understanding and using context. Personal and Ubiquitous Computing 5 (2001)
2. Antunes, B., Cordeiro, J., Gomes, P.: Context modeling and context transition detection

in software development. In: Proceedings of the 7th International Conference on Software
Paradigm Trends, ICSOFT 2012, Rome, Italy, July 24-27, pp. 477–484. SciTePress (2012)

3. Grambow, G., Oberhauser, R., Reichert, M.: Knowledge provisioning: A context-sensitive
process-oriented approach applied to software engineering environments. In: Proceedings of
the 7th International Conference on Software Paradigm Trends, ICSOFT 2012, Rome, Italy,
July 24-27, SciTePress (2012)

4. Salber, D., Dey, A.K., Abowd, G.D.: The context toolkit: aiding the development of context-
enabled applications. In: CHI 1999: Proc. of the SIGCHI Conf. on Human Factors in Com-
puting Systems. ACM Press (1999)

5. Henricksen, K., Indulska, J.: A software engineering framework for context-aware pervasive
computing. In: 2nd IEEE Intl. Conference on Pervasive Computing and Communications
(2004)

6. Bettini, C., Brdiczka, O., Henricksen, K., Indulska, J., Nicklas, D., Ranganathan, A., Riboni,
D.: A survey of context modelling and reasoning techniques. Pervasive and Mobile Comput-
ing 6, 161–180 (2010); Context Modelling, Reasoning and Management

Data, Context, Situation: On the Usefulness of Semantic Layers 17

7. Yau, S.S., Karim, F., Wang, Y., Wang, B., Gupta, S.K.: Reconfigurable context-sensitive
middleware for pervasive computing. IEEE Pervasive Computing 1, 33–40 (2002)

8. Capra, L., Emmerich, W., Mascolo, C.: CARISMA: context-aware reflective middleware
system for mobile applications. IEEE Transactions on Software Engineering 29, 929–945
(2003)

9. Hu, P., Indulska, J., Robinson, R.: An autonomic context management system for pervasive
computing. In: Sixth Annual IEEE International Conference on Pervasive Computing and
Communications, pp. 213–223. IEEE Computer Society, Los Alamitos (2008)

10. Wojciechowski, M., Wiedeler, M.: Model-based development of context-aware applications
using the MILEO-context server. In: 2012 IEEE International Conference on Pervasive Com-
puting and Communications Workshops (PERCOM Workshops), pp. 613–618 (2012)

11. Wieland, M., Nicklas, D., Leymann, F.: Managing technical processes using smart work-
flows. In: Mähönen, P., Pohl, K., Priol, T. (eds.) ServiceWave 2008. LNCS, vol. 5377,
pp. 287–298. Springer, Heidelberg (2008)

12. Sobeich, C., Boede, E., Luedtke, A., Hahn, A., Nicklas, D., Korte, H.: Project SOOP: safe
offshore operations. In: ISIS - 9th International Symposium “Information on Ships”, DGON
(Deutsche Gesellschaft fuer Ortung und Navigation) and German Society for Maritime Tech-
nology, STG (2012)

13. Droste, R., Läsche, C., Sobiech, C., Böde, E., Hahn, A.: Model-based risk assessment sup-
porting development of HSE plans for safe offshore operations. In: Stoelinga, M., Pinger, R.
(eds.) FMICS 2012. LNCS, vol. 7437, pp. 146–161. Springer, Heidelberg (2012)

14. Wehs, T., Janssen, M., Koch, C., Coelln, G.V.: System architecture for data communication
and localization under harsh environmental conditions in maritime automation. In: IEEE
10th International Conference on Industrial Informatics, University of Applied Sciences Em-
den/Leer, Germany (2012)

15. Dissanayake, M., Newman, P., Clark, S., Durrant-Whyte, H.F., Csorba, M.: A solution to
the simultaneous localization and map building (SLAM) problem. IEEE Transactions on
Robotics and Automation 17, 229–241 (2001)

16. Henricksen, K., Indulska, J.: Developing context-aware pervasive computing applications:
Models and approach. Pervasive and Mobile Computing 2, 37–64 (2006)

17. Loke, S.W.: On representing situations for context-aware pervasive computing: six ways to
tell if you are in a meeting. In: Proceedings of PerCom Workshops 2006, pp. 35–39. IEEE
Computer Society (2006)

18. Ye, J., Dobson, S., McKeever, S.: Situation identification techniques in pervasive computing:
A review. Pervasive and Mobile Computing 8, 36–66 (2012)

19. Fong, J., Indulska, J., Robinson, R.: A preference modelling approach to support intelligibil-
ity in pervasive applications. In: 2011 IEEE International Conference on Pervasive Comput-
ing and Communications Workshops, PERCOM Workshops, pp. 409–414. IEEE (2011)

20. Becker, C., Nicklas, D.: Where do spatial context-models end and where do ontologies start?
a proposal of a combined approach. In: Proceedings of the First International Workshop on
Advanced Context Modelling, Reasoning and Management, UbiComp 2004, Nottingham,
England, University of Southhampton (2004)

21. Frank, A.: Tiers of ontology and consistency constraints in geographical information sys-
tems. International Journal of Geographical Information Science 15, 667–678 (2001)

22. Grossmann, M., Bauer, M., Hoenle, N., Kaeppeler, U.P., Nicklas, D., Schwarz, T.: Efficiently
managing context information for large-scale scenarios. In: 3rd IEEE International Confer-
ence on Pervasive Computing and Communications, PerCom 2005, March 8-12, pp. 331–340.
IEEE Computer Society, Kauai Island (2005)

18 D. Nicklas and N. Koppaetzky

23. Wieland, M., Kopp, O., Nicklas, D., Leymann, F.: Towards context-aware workflows. In:
Proceedings of Workshop on Ubiquitous Mobile Information and Collaboration Systems,
Caise 2007 Workshop, vol. 2, pp. 577–591. Springer (2007)

24. Koppaetzky, N., Nicklas, D.: Towards a model-based approach for context-aware assistant
systems in offshore operations. In: 2013 IEEE International Conference on Pervasive Com-
puting and Communications Workshops, PERCOM Workshops. IEEE (accepted for publi-
cation, 2013)

25. Appelrath, H.J., Geesen, D., Grawunder, M., Michelsen, T., Nicklas, D.: Odysseus: a highly
customizable framework for creating efficient event stream management systems. In: Pro-
ceedings of the 6th ACM International Conference on Distributed Event-Based Systems,
DEBS 2012, pp. 367–368. ACM, New York (2012)

Papers

Fencing the Lamb: A Chart Parser for ModelCC

Luis Quesada, Fernando Berzal, and Francisco J. Cortijo

Department of Computer Science and Artificial Intelligence,
CITIC, University of Granada, Granada 18071, Spain
{lquesada,fberzal,cb}@decsai.ugr.es

Abstract. Traditional grammar-driven language specification techniques con-
strain language designers to specific kinds of grammars. In contrast, model-based
language specification techniques decouple language design from language pro-
cessing. They allow the occurrence of ambiguities and the declarative specifica-
tion of constraints for solving them. As a result, these techniques require general
parser generators, which should be able to parse context-free grammars, handle
ambiguities, and enforce constraints to disambiguate them as desired by the lan-
guage designer. In this paper, we describe Fence, a bottom-up chart parser with
lexical and syntactic ambiguity support. Fence accepts lexical analysis graphs
outputted by the Lamb (Lexical AMBiguity) lexer and efficiently resolves ambi-
guities by means of the declarative specification of constraints. Both Lamb and
Fence are part of the ModelCC model-based parser generator.

Keywords: Chart Parser, Context-free Grammars, Ambiguities, Constraints.

1 Introduction

Traditional language specification techniques [2] require the developer to provide a
textual specification of the language grammar.

In contrast, model-based language specification techniques [15,24,25,21] allow the
specification of languages by means of data models annotated with constraints.

Model-based language specification has direct applications in the following fields:
programming tools [1], domain-specific languages [9,10,18], model-driven software de-
velopment [26], data integration [27], text mining [29,4], natural language processing
[11], and the corpus-based induction of models [14].

Due to the nature of the aforementioned application fields, the specification of sep-
arate language elements may cause lexical and syntactic ambiguities. Lexical ambigui-
ties occur when an input string simultaneously corresponds to several token sequences
[19], which may also overlap. Syntactic ambiguities occur when a token sequence can
be parsed in several ways.

The formal grammars of languages specified using model-based techniques may con-
tain epsilon productions (such as E := ε), infinitely recursive production sets (such as
A := c, A := B, and B := A), and associativity, precedence, and custom constraints.
Therefore, a parser that supports such specification is needed.

Our proposed algorithm, Fence [23], is a bottom-up chart parser that accepts a lexical
analysis graph as input, performs an efficient syntactic analysis taking constraints into

J. Cordeiro, S. Hammoudi, and M. van Sinderen (Eds.): ICSOFT 2012, CCIS 411, pp. 21–35, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

22 L. Quesada, F. Berzal, and F.J. Cortijo

account, and produces a parse graph that represents all the possible parse trees. The
parsing process discards any sequence of tokens that does not provide a valid syntactic
sentence conforming to the language specification, which consists of a production set
and a set of constraints. Fence implicitly performs a context-sensitive lexical analysis,
as the parsing process determines which token sequences end up in the parse graph.
Fence supports every possible construction in a context-free language with constraints,
including epsilon productions and infinitely recursive production sets.

The combined use of the Lamb lexical analyzer [22] and Fence [23] allows the gen-
eration of processors for languages with ambiguities and constraints, and it renders
model-based language specification techniques feasible. Indeed, ModelCC [24,25,21]
is a model-based language specification tool that relies on Lamb and Fence to generate
language processors.

Section 2 explains model-based language specification techniques and lexical anal-
ysis algorithms with ambiguity support. Section 3 introduces Fence, our parser with
ambiguity and constraint support. Section 4 presents our conclusions and future work.

2 Background

Language processing tools traditionally divide the analysis into two separate phases;
namely, scanning (or lexical analysis), which is performed by lexers, and parsing (or
syntax analysis), which is performed by parsers. However, language processing tools
based on scannerless parsers also exist.

Subsection 2.1 introduces model-based language specification techniques and the
model-based parser generator ModelCC. Subsection 2.2 analyzes existing scanning al-
gorithms with ambiguity support. Subsection 2.3 describes existing parsing algorithms.

2.1 Model-Based Language Specification

In its most general sense, a model is anything used in any way to represent some-
thing else. In such sense, a grammar is a model of the language it defines. In Soft-
ware Engineering, data models are also common. Data models explicitly determine the
structure of data. Roughly speaking, they describe the elements they represent and the
relationships existing among them. From a formal point of view, it should be noted
that data models and grammar-based language specifications are not equivalent, even
though both of them can be used to represent data structures. A data model can ex-
press relationships a grammar-based language specification cannot. A data model does
not need to comply with the constraints a grammar-based language specification has to
comply with. Typically, describing a data model is generally easier than describing the
corresponding grammar-based language specification.

In practice, when we want to build a complex data structure from the contents of a
file, the implementation of the mandatory language processor needed to parse the file
requires the software engineer to build a grammar-based language specification for the
data as represented in the file and also to implement the conversion from the parse tree
returned by the parser to the desired data structure, which is an instance of the data
model that describes the data in the file.

Fencing the Lamb: A Chart Parser for ModelCC 23

Whenever the language specification has to be modified, the language designer has to
manually propagate changes throughout the entire language processor tool chain, from
the specification of the grammar defining the formal language (and its adaptation to spe-
cific parsing tools) to the corresponding data model. These updates are time-consuming,
tedious, and error-prone. By making such changes labor-intensive, the traditional lan-
guage processing approach hampers the maintainability and evolution of the language
used to represent the data [13].

Moreover, it is not uncommon for different applications to use the same language.
For example, the compiler, different code generators, and other tools within an IDE,
such as the editor or the debugger, typically need to grapple with the full syntax of
a programming language. Unfortunately, their maintenance typically requires keeping
several copies of the same language specification in sync.

The idea behind model-based language specification is that, starting from a single
abstract syntax model (ASM) that represents the core concepts in a language, language
designers can develop one or several concrete syntax models (CSMs). These CSMs
can suit the specific needs of the desired textual or graphical representation. The ASM-
CSM mapping can be performed, for instance, by annotating the abstract syntax model
with the constraints needed to transform the elements in the abstract syntax into their
concrete representation.

This way, the ASM representing the language can be modified as needed without
having to worry about the language processor and the peculiarities of the chosen parsing
technique, since the corresponding language processor will be automatically updated.

Finally, as the ASM is not bound to a particular parsing technique, evaluating alter-
native and/or complementary parsing techniques is possible without having to propa-
gate their constraints into the language model. Therefore, by using an annotated ASM,
model-based language specification completely decouples language specification from
language processing, which can be performed using whichever parsing techniques are
suitable for the formal language implicitly defined by the abstract model and its concrete
mapping.

A diagram summarizing the traditional language design process is shown in Figure 1,
whereas the corresponding diagram for the model-based approach is shown in Figure 2.
It should be noted that ASMs represent non-tree structures whenever language elements
can refer to other language elements, hence the use of the ‘abstract syntax graph’ term.

The ASM is built on top of basic language elements, which can be viewed as the
tokens in the model-driven specification of a language. ModelCC provides the necessary
mechanisms to combine those basic elements into more complex language constructs,
which correspond to the use of concatenation, selection, and repetition in the syntax-
driven specification of languages.

When the ASM represents a tree-like structure, a model-based parser generator is
equivalent to a traditional grammar-based parser generator in terms of expression power.
When the ASM represents non-tree structures, reference resolution techniques can be
employed to make model-based parser generators more powerful than grammar-based
ones, as we will see in the next Section.

In ModelCC, the constraints imposed over ASMs to define a particular ASM-CSM
mapping can be declared as metadata annotations on the model itself. Now supported by

24 L. Quesada, F. Berzal, and F.J. Cortijo

Context-Free
Grammar
e.g. BNF

Conceptual
Model

Attribute
Grammar

Abstract
Syntax
Tree

Concrete Syntax Model Abstract Syntax Model

instance
of

instance
of

Textual
Representation Parser

input output

Fig. 1. Traditional language processing

Context-Free
Grammar
e.g. BNF

Conceptual
Model

Textual
Representation Parser

Abstract
Syntax
Graph

Concrete Syntax Model Abstract Syntax Model

instance
of

instance
of

input output

Fig. 2. Model-based language processing

all the major programming platforms, metadata annotations are often used in reflective
programming and code generation. Table 1 summarizes the set of constraints supported
by ModelCC for establishing ASM-CSM mappings between ASMs and their concrete
representation in textual CSMs.

It should be noted that model-based language specification techniques allow lexi-
cal and syntactic ambiguities: each language element is defined as a separate and in-
dependent entity, even when their pattern specification or syntactic specification are
in conflict. Therefore, model-based language specification techniques require a lexical
analysis algorithm with ambiguity support and a corresponding parsing algorithm with
lexical and syntactic ambiguity support.

2.2 Lexical Analysis Algorithms with Ambiguity Support

Given a language specification describing the tokens listed in Figure 3, the string
“&5.2& /25.20/” can correspond to the four different lexical analysis alternatives shown
in Figure 4, depending on whether the sequences of digits separated by points are con-
sidered real numbers or integer numbers separated by points.

The productions shown in Figure 5 illustrate a scenario of lexical ambiguity sensi-
tivity. Sequences of digits separated by points should be considered either Real tokens
or Integer Point Integer token sequences depending on the surrounding tokens, which

Fencing the Lamb: A Chart Parser for ModelCC 25

Table 1. Summary of the basic metadata annotations supported by ModelCC

Constraints on... Annotation Function

Patterns
@Pattern Pattern definition of basic language elements.
@Value Field where the matched input will be stored.

Delimiters
@Prefix Element prefix(es).
@Suffix Element suffix(es).
@Separator Element separator(s).

Cardinality
@Optional Optional elements.
@Minimum Minimum element multiplicity.
@Maximum Maximum element multiplicity.

Evaluation
order

@Associativity Element associativity (e.g. left-to-right).
@Composition Eager or lazy policy for nested composites.
@Priority Element precedence.

References
@ID Identifier of a language element.
@Reference Reference to a language element.

may be either Ampersand tokens or Slash tokens. The desired result of analyzing the
input string “&5.2& /25.20/” is shown in Figure 6.

The further application of a parser supporting lexical ambiguities would produce the
only possible valid sentence, which, in turn, would be based on the only valid lexical
analysis for our example. The intended results are shown in Figure 8.

The Lamb lexical analyzer [22] captures all possible sequences of tokens within a
given input string and it generates a lexical analysis graph that describes them all, as
shown in Figure 7. In these graphs, each token is linked to its preceding and following
tokens. There may also be several starting tokens. Each path in these graphs describes
a possible sequence of tokens that can be found within the input string.

To the best of our knowledge, the only way to process lexical analysis graphs consists
of extracting the different paths from the graph and parse each of them. This process is
inefficient, as partial parsing trees that are shared among different token sequences have
to be created several times.

2.3 Syntactic Analysis Algorithms

Traditional efficient parsers for restricted context-free grammars, such as the LL [20],
LR [16], LALR [5,7], and SLR [6] parsers, do not consider ambiguities in syntactic
analysis, so they cannot be used to parse ambiguous languages. The efficiency of these
parsers is O(n), being n the token sequence length.

(-|\+)?[0-9]+ Integer
(-|\+)?[0-9]+\.[0-9]+ Real
\. Point
\/ Slash
\& Ampersand

Fig. 3. Specification of token types as regular expressions for a lexically-ambiguous language

26 L. Quesada, F. Berzal, and F.J. Cortijo

– Ampersand Integer Point Integer Ampersand Slash Integer Point
Integer Slash

– Ampersand Integer Point Integer Ampersand Slash Real Slash
– Ampersand Real Ampersand Slash Integer Point Integer Slash
– Ampersand Real Ampersand Slash Real Slash

Fig. 4. Different possible token sequences in the input string “&5.2& /25.20/” due to the lexically-
ambiguous language specification shown in Figure 3

E ::= A B
A ::= Ampersand Real Ampersand
B ::= Slash Integer Point Integer Slash

Fig. 5. Context-sensitive productions that resolve the ambiguities in Figure 4

Generalized LR (GLR) parsers [17] parse in linear to cubic time, depending on how
closely the grammar conforms to the underlying LR strategy. The time required to run
the algorithm is proportional to the degree of nondeterminism in the grammar. The
Universal parser [28] is a GLR parser used for natural language processing. However,
it fails for grammars with epsilon productions and infinitely recursive production sets.

Existing chart parsers for unrestricted context-free grammar parsing, as the CYK
parser [30,12] and the Earley parser [8], can consider syntactic ambiguities but not
lexical ambiguities. The efficiency of these general context-free grammar parsers is
O(n3), being n the token sequence length.

3 Fence

In this section, we introduce Fence, an efficient bottom-up chart parser that produces a
parse graph that contains as many root nodes as different parse trees exist for a given
ambiguous input string.

In contrast to the parsing techniques mentioned in the previous section, Fence is able to
process lexical analysis graphs and, therefore, it efficiently considers lexical ambiguities.

Fence also considers syntactic ambiguities, allows the specification of constraints,
and supports every possible context-free language construction, particularly epsilon
productions and infinitely recursive production sets.

The Fence parsing algorithm consists of three consecutive phases: the extended lexical
analysis graph construction phase, the chart parsing phase, and the constraint enforce-
ment phase.

Subsection 3.1 introduces the terminology used in this section. Subsection 3.2 de-
scribes the extended lexical analysis graph construction phase. Subsection 3.3 describes
the chart parsing phase. Subsection 3.4 describes the constraint enforcement phase.

3.1 Terminology

A context-free grammar is formally defined [3] as the tuple (N,Σ, P, S), where:

– N is the finite set of nonterminal symbols of the language, sometimes called syn-
tactic variables, none of which appear in the language strings.

Fencing the Lamb: A Chart Parser for ModelCC 27

Point
.

Integer
20

Slash
/

Real
5.2

Ampersand
&

Slash
/

Ampersand
&

Integer
25

Fig. 6. Desired lexical analysis of the lexically ambiguous “&5.2& /25.20/” input string

Point
.

Integer
20

Slash
/Real

5.2

Ampersand
&

Slash
/

Ampersand
&

Integer
5

Point
.

Real
25.20

Integer
25

Integer
2

Fig. 7. Lexical analysis graph, as produced by the Lamb lexer

Point
.

Integer
20

Slash
/

Real
5.2

Ampersand
&

Slash
/

Ampersand
&

Integer
25

E

BA

Fig. 8. Syntactic analysis graph, as produced by applying a parser that supports lexical ambigui-
ties to the lexical analysis graph shown in Figure 7. Squares represent nonterminal symbols found
during the parsing process.

Point
.

Integer
20

Slash
/

Ampersand
&

Slash
/

Ampersand
& Real

25.20

Integer
25

Point
.

Integer
5

Integer
2

Real
5.2

Fig. 9. Extended lexical analysis graph corresponding to the lexical analysis graph shown in Fig-
ure 7. Gray nodes represent cores.

Point
.

Integer
20

Slash
/

Real
5.2 Ampersand

&
Slash
/

Ampersand
& Integer

5
Point
.

Real
25.20

Integer
25

Integer
2

E

BA

Fig. 10. Parse graph corresponding to the extended lexical analysis graph shown in Figure 9.
Squares represent nonterminal symbols found during the parsing process. Dotted lines represent
the explicit parse graph node.

28 L. Quesada, F. Berzal, and F.J. Cortijo

– Σ is the finite set of terminal symbols of the language, also called tokens, which
constitute the language alphabet (i.e. they appear in the language strings). There-
fore, Σ is disjoint from N .

– P is a finite set of productions, each one of the form N → (Σ ∪ N)∗, where ∗
is the Kleene star operator, ∪ denotes set union, the part before the arrow is called
the left-hand side (LHS) of the production, and the part after the arrow is called the
right-hand side (RHS) of the production.

– S is a distinguished nonterminal symbol, S ∈ N : the grammar start symbol.

A dotted production is of the form N → (Σ∪N)∗.(Σ∪N)∗, where the dot indicates
that the RHS symbols before the dot have already been matched with a substring of the
input string.

A handle is a tuple (dottedproduction, [start, end]), where start and end iden-
tify the substring of the input string that matched the dotted production RHS symbols
before the dot. Each handle can be used during the parsing process to match a rule
RHS symbol with a node representing either a token or a nonterminal symbol (namely,
SHIFT actions in LR-like parsers) or perform a reduction (namely, REDUCE actions in
LR-like parsers).

A core is a set of handles.

3.2 Extended Lexical Analysis Graph Construction Phase

In order to efficiently perform the parsing process, Fence converts the input lexical anal-
ysis graph (LA graph) into an extended lexical analysis graph (ELA graph) that stores
information about partially applied productions (namely, handles) in data structures
(namely, cores).

In an ELA graph, tokens are not linked to their preceding and following tokens, but
to their preceding and following cores. Cores are, in turn, linked to their preceding and
following token sets. For example, the ELA graph corresponding to the LA graph in
Figure 7 is shown in Figure 9.

The conversion from the LA graph to the ELA graph is performed by completing the
LA graph with cores. A starting core is linked to the tokens with an empty preceding
token set. A last core is linked from the tokens with an empty following token set.
Finally, for each one of the other tokens in the LA graph, a preceding core is linked to
it. Links between tokens in the LA graph are converted into links from tokens to the
cores preceding each token of their following token set in the ELA graph.

3.3 Chart Parsing Phase

The Fence chart parsing phase processes the ELA graph and generates an implicit parse
graph (I-graph). Nodes in the I-graph are described as (start, end, symbol) tuples,
where start and end identify the substring of the input string, and symbol identifies
the production LHS. It should be noted that ambiguities, both lexical and syntactic, are
implicit in the I-graph nodes, as they contain no information about their contents. The
I-graph contains a set of starting nodes, each of which may represent several parse tree

Fencing the Lamb: A Chart Parser for ModelCC 29

roots. The parsing itself is performed by progressively applying productions and storing
handles in cores.

The grammar productions with an empty RHS (i.e. epsilon productions) are removed
from the grammar and their LHS symbol is stored in the epsilonSymbols set. This set
allows these parse symbols being skipped when found in a production, as if a reduction
using the epsilon production were applied.

procedure addHandle(Production p, int matched,
ImplicitNode first, ImplicitNode n,
Stack<[Handle,ImplicitNode]> agenda):

offset = 0
do:
next = matched+offset
nextSymbol = p.right[next].symbol
h = new Handle(p,next,first,first.startIndex)
if !n.core.contains(h):

n.core.add(h)
if n.symbol == nextSymbol:

if !alreadyGenerated.contains([h,n]):
agenda.push([h,n])
alreadyGenerated.add(]h,n])

offset++
while epsilonSymbols.contains(nextSymbol) && next<r.right.size

Fig. 11. Pseudocode of the ancillary addHandle procedure

agenda = {}
for each Production p in productionSet:

for each ImplicitNode n in nodeSet:
addHandle(p,0,n,n,agenda)

Fig. 12. Pseudocode of the chart parser initialization

The agenda is a stack of (handle, node) in which the node can match the symbol
after the dot in the dotted rule of the handle. It is initially empty.

The alreadyGenerated handle set contains all the agenda entries ever generated and
inhibits the generation of duplicate entries.

The parser is initialized by generating a handle for each production and adding them
to every core, as shown in Figure 12.

The addHandle procedure in Figure 11 is responsible for adding a handle to a core. It
also adds the corresponding agenda entries for that handle with the nodes that follow the
core and match the symbol after the dot in the dotted production of the handle. It should
be noted that the addHandle procedure considers epsilon productions: if a production
RHS symbol is in the epsilonSymbols set, both the possibilities of it being reduced or
not by that production are considered; that is, a new handle that skips that element is
added to the same core. It should also be noted that element are skipped iteratively, as
many consecutive RHS symbols of a production could be in the epsilonSymbols set.

30 L. Quesada, F. Berzal, and F.J. Cortijo

while !agenda.empty:
[h,n] = agenda.pop()
if h.dotposition == h.production.right.size-1:

// Production matched all its elements. i.e. Reduction
nn = new ImplicitNode(h.startIndex,n.endIndex,p.left.symbol)
h.first.core.following.add(nn)
nn.preceding.add(h.first.core)
for each Core c in n.following:

c.preceding.add(nn)
nn.following.add(c)

for each Handle hn in h.first.core.waitingFor(nn.symbol):
hadd = new Handle(hn.production,hn.next,hn.first,hn.startIndex)
agenda.push([hadd,n])

else:
// i.e. Shift
for each Core c in n.following:

for each ImplicitNode nnext in c.following:
addHandle(h.production,h.next+1,h.first,h.startIndex,agenda)

Fig. 13. Pseudocode of the Fence parsing phase

The parsing process consists in iteratively extracting entries consisting of handles
and nodes from the agenda and matching the next symbol of the RHS of the handle
production with the node. The handles whose productions are successfully matched are
added to the cores following the node and the agenda is updated with the entries that
contain any of the newly generated handles. In case all the symbols of a production
RHS match a sequence of nodes, a new node is generated by reducing them. The new
node start index is obtained from the handle, its end position is obtained from the last
node matched, and its symbol is the LHS symbol of the production. When a newly
generated node only has the starting core in its preceding core set and the final core in
its following core set, and its symbol corresponds to the initial symbol of the grammar,
it is added to the parse graph starting node set, which means that that node represents a
valid parse. The pseudocode for this process is shown in Figure 13.

The result of the chart parsing phase is an I-graph, which the constraint enforcement
phase accepts as input.

The Fence chart parsing phase order of efficiency is theoretically equivalent to existing
Earley chart parsers. That is, O(n3) in the general case, O(n2) for unambiguous gram-
mars, and O(n) for almost all LR(k) grammars, being n the length of the input string.

3.4 Constraint Enforcement Phase

The Fence constraint enforcement phase processes the I-graph and generates an explicit
parse graph (E-graph, or just parse graph) by enforcing the constraints defined for the
language. Nodes in the E-graph that represent tokens are still defined as (start, end,
symbol) tuples. Nodes in the E-graph that represent nonterminal symbols reference
the list of nodes that matched the production used to generate those nodes. It should
be noted that ambiguities, both lexical and syntactic, are explicit in the E-graph, as it
represents several parse trees corresponding to all the possible interpretations of the

Fencing the Lamb: A Chart Parser for ModelCC 31

procedure expand(ImplicitNode n, Set<ImplicitNode> history,
Map<ImplicitNode,Set<Node>> alreadyExpanded)
returns Set<Symbol>:

if alreadyExpanded.contains(n): // memoization
return alreadyExpanded.get(n)

else:
// the history set avoids infinite loop in recursive production sets
if !history.contains(n):
history.add(n);
// try to apply every production
for each Production p with LHS symbol == n.symbol:

for every ImplicitNode pn with startIndex == n.startIndex:
if pn != n && pn.endIndex<=n.endIndex:
if p.mayMatch(pn.symbol):
// apply production p to each expanded symbol of pn
pn.expandeds = expand(pn,history,alreadyExpanded)
for each Node nn in pn.expandeds:
out += apply(p,nn,0,{},alreadyExpanded,history)

alreadyExpanded.put(n,out)
return out

Fig. 14. Pseudocode of the expand procedure that obtains every possible derivation of a given
node in the parse graph

input string. The E-graph contains a set of starting nodes, each of which represents a
parse tree root. Constraint enforcement is performed by converting each implicit node
into every possible explicit node sequence that can be derived from the implicit node
and satisfies the specified constraints; that is, by expanding the each implicit node.

Only the nodes that conform valid parse trees are needed in the parse graph. In order
to generate only these nodes, each one of the implicit nodes in the starting node set of
the I-graph is recursively expanded using memoization. Each possible resulting explicit
node is the root of a parse tree in the E-graph.

Algorithm Description. The expansion of an implicit node is performed by finding
every possible reduction of a sequence of explicit nodes that generates that node. Each
one of these reductions produces an explicit node. Whenever an implicit node is found
and needed in order to make the reductions progress, it is expanded recursively. It should
be noted that this procedure is different from parsing itself in that the actual bounds of
the reductions for every node are known.

The expand procedure in Figure 14 expands an implicit node by applying every pos-
sible production that could generate it and produces a set of explicit nodes. The use
of the history set inhibits entering an infinite loop when processing infinitely recur-
sive production sets, as it avoids the expansion of a node as an indirect requirement of
expanding the same node.

The apply procedure in Figure 15 applies a production by matching the RHS symbol
given by the matched+1 index of it with the n node, expanding the nodes that follows
it, and recursively applying the next RHS symbols of the production.

32 L. Quesada, F. Berzal, and F.J. Cortijo

procedure apply(Production p, Node n, int matched, List<Node> content,
Map<ImplicitNode,Set<Node>> alreadyExpanded,
Set<ImplicitNode> history) returns Set<Node>:

if matched == p.right.size:
n = new Node(p.symbol,p,content)

if checkConstraints(n):
return {n}

else:
offset = 0
next = matched+offset
do:

if p.right[next].symbol == n.symbol:
for each ImplicitNode pn in n.followingNodes():
if pn is the next symbol to match in the production:
// keep applying production to each expanded symbol of pn
expandeds = expand(pn,history,alreadyExpanded)
for each Node nn in expandeds:

out += apply(p,nn,next+1,content+n,alreadyExpanded,history)
offset++
next = matched+offset

while epsilonSymbols.contains(nextSymbol) && next<r.right.size &&
p.right[next].symbol == n.symbol

return out

Fig. 15. Pseudocode of the ancillary apply procedure that applies a production

The checkConstraints procedure is the responsible for the enforcement of the con-
straints specified by the developer.

Supported Constraints. Fence supports associativity constraints, selection precedence
constraints, composition precedence constraints, and custom-designed constraints.

The fact that the constraint check is performed during the graph expansion improves
the parser performance, as the sooner constraints are applied, the more interpretations
are discarded. For example, in the case of a binary expression with left-to-right associa-
tive operators, the string “2+5+3+5+6+2+1+5+6+3” can be expanded in 10! possible
ways when not considering the associativity constraint, and in just 1 possible way when
considering it.

– Associativity constraints allow the specification of the associative property for
binary operators. The application of a production is inhibited when any of the
nodes that matches its RHS symbols has an associativity constraint and is followed
(for left-to-right associativity constraints), preceded (for right-to-left associativ-
ity constraints), or either followed or preceded (for non-associative associativity
constraints) by a node that was derived using the same production.

– Selection precedence constraints allow the resolution of syntactic ambiguities
caused by different explicit nodes (i.e. interpretations) resulting from a single
implicit node. For example, a Statement can be either an OutputStatement or a
FunctionCall. Both OutputStatement and FunctionCall can match the input string

Fencing the Lamb: A Chart Parser for ModelCC 33

“output(var);”, therefore OutputStatement can be set to precede FunctionCall,
which will inhibit that string from being considered a function call. The application
of a production is inhibited when it is preceded by a different production and both
of them match the same node sequence.

– Composition precedence constraints allow the resolution of syntactic ambiguities
when a node derived using a production cannot be derived using another produc-
tion. For example, one of the productions ConditionalStatement ::= “if” Expression
Sentence and ConditionalStatement ::= “if” Expression Sentence “else” Sentence
can be set to precede the other one in order to resolve the ambiguity in “if expr1 if
expr2 sent1 else sent2”, in which “else sent2” could be assigned to either the inside
or outside conditional sentence. The application of a production is inhibited when
it precedes any of the productions used to derive the nodes that matched its RHS
symbols.

– Custom-designed constraints allow the specification of any other constraints (e.g.
semantic constraints). In order to enforce custom-designed constraints, an evaluator
can be assigned to any production. Whenever a node is generated, the evaluator of
the production used to derive it gets executed and determines whether the node
satisfies the constraint or not. In the later case, its generation is inhibited. Custom-
designed constraints provide a very extensible framework which allows developers
to design complex syntactic or semantic constraints (e.g. probabilistic constraints,
corpus-based constraints) that effectively limit the possible interpretations of an
input string and, as a side effect, improve the performance of the parser, as pruned
partial interpretations are discarded as soon as they do not fulfill the constraints.

The result of the constraint enforcement step is an E-graph or parse graph, such as
the one shown in Figure 10.

The Fence constraint enforcement phase improves the performance of traditional
techniques phases in practice, as all constraints are applied at the earliest possible time,
thus discarding possibilities that would otherwise be processed later.

4 Conclusions and Future Work

We have presented Fence, an efficient bottom-up chart parsing algorithm with lexical
and syntactic ambiguity support. Its constraint-based ambiguity resolution mechanism
enables the use of model-based language specification in practice. In fact, the ModelCC
model-based language specification tool [24,25,21] generates Fence parsers.

Fence accepts a lexical analysis graph as input, performs syntactic analysis conform-
ing to a formal context-free grammar specification and a set of constraints, and produces
as output a compact representation of the set of parse trees accepted by the language.

Fence applies constraints while expanding the parse graph. Thus, it improves the
performance of traditional techniques in practice, as the sooner constraints are applied,
the less processing time and memory the parser will require.

In the future, we plan to apply ModelCC, Lamb, and Fence to natural language
processing.

34 L. Quesada, F. Berzal, and F.J. Cortijo

Acknowledgements. Work partially supported by research project TIN2012-36951,
“NOESIS: Network-Oriented Exploration, Simulation, and Induction System”, co-
funded by the Spanish Ministry of Economy and the European Regional Development
Fund (FEDER).

References

1. Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques, and Tools,
2nd edn. Addison Wesley (2006)

2. Aho, A.V., Ullman, J.D.: The Theory of Parsing, Translation, and Compiling, Volume I:
Parsing & Volume II: Compiling. Prentice Hall, Englewood Cliffs (1972)

3. Chomsky, N.: Three models for the description of language. IRE Transactions on Information
Theory 2, 113–123 (1956)

4. Crescenzi, V., Mecca, G.: Automatic information extraction from large websites. Journal of
the ACM 51, 731–779 (2004)

5. DeRemer, F.L.: Practical translators for LR(k) languages. Technical report, Cambridge, MA,
USA (1969)

6. DeRemer, F.L.: Simple LR(k) grammars. Communications of the ACM 14(7), 453–460
(1971)

7. DeRemer, F.L., Pennello, T.: Efficient computation of LALR(1) look-ahead sets. ACM Trans-
actions on Programming Languages and Systems 4(4), 615–649 (1982)

8. Earley, J.: An efficient context-free parsing algorithm. Communications of the ACM 26, 57–
61 (1983)

9. Fowler, M.: Domain-Specific Languages. Addison-Wesley (2010)
10. Hudak, P.: Building domain-specific embedded languages. ACM Computing Sur-

veys 28(4es), art. 196 (1996)
11. Jurafsky, D., Martin, J.H.: Speech and Language Processing: An Introduction to Natural

Language Processing, Computational Linguistics and Speech Recognition, 2nd edn. Prentice
Hall (2009)

12. Kasami, T., Torii, K.: A syntax-analysis procedure for unambiguous context-free grammars.
Journal of the ACM 16, 423–431 (1969)

13. Kats, L.C.L., Visser, E., Wachsmuth, G.: Pure and declarative syntax definition: paradise
lost and regained. In: Proceedings of the ACM International Conference on Object Oriented
Programming Systems Languages and Applications (OOPSLA 2010), pp. 918–932 (2010)

14. Klein, D.: Christopher d. manning. In: Proceedings of the 42nd Annual Meeting on Associ-
ation for Computational Linguistics (ACL 2004), pp. 478–485 (2004)

15. Kleppe, A.: Towards the generation of a text-based IDE from a language metamodel. In:
Akehurst, D.H., Vogel, R., Paige, R.F. (eds.) ECMDA-FA. LNCS, vol. 4530, pp. 114–129.
Springer, Heidelberg (2007)

16. Knuth, D.E.: On the translation of languages from left to right. Information and Control 8,
607–639 (1965)

17. Lang, B.: Deterministic techniques for efficient non-deterministic parsers. In: Loeckx, J. (ed.)
ICALP 1974. LNCS, vol. 14, pp. 255–269. Springer, Heidelberg (1974)

18. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific languages.
ACM Computing Surveys 37, 316–344 (2005)

19. Nawrocki, J.R.: Conflict detection and resolution in a lexical analyzer generator. Information
Processing Letters 38, 323–328 (1991)

20. Oettinger, A.: Automatic syntactic analysis and the pushdown store. In: Proc. of the Sym-
posia in Applied Math, vol. 12, pp. 104–129 (1961)

Fencing the Lamb: A Chart Parser for ModelCC 35

21. Quesada, L.: A model-driven parser generator with reference resolution support. In: Proceed-
ings of the 27th IEEE/ACM International Conference on Automated Software Engineering,
pp. 394–397 (2012)

22. Quesada, L., Berzal, F., Cortijo, F.J.: Lamb — a lexical analyzer with ambiguity support. In:
Proceedings of the 6th International Conference on Software and Data Technologies, vol. 1,
pp. 297–300 (2011)

23. Quesada, L., Berzal, F., Cortijo, F.J.: Fence — a context-free grammar parser with constraints
for model-driven language specification. In: Proceedings of the 7th International Conference
on Software Paradigm Trends, pp. 5–13 (2012)

24. Quesada, L., Berzal, F., Cubero, J.-C.: A language specification tool for model-based parsing.
In: Yin, H., Wang, W., Rayward-Smith, V. (eds.) IDEAL 2011. LNCS, vol. 6936, pp. 50–57.
Springer, Heidelberg (2011)

25. Quesada, L., Berzal, F., Cubero, J.-C.: A tool for model-based language specification. ArXiv
e-prints (2011), http://arxiv.org/abs/1111.3970

26. Schmidt, D.C.: Model-driven engineering. IEEE Computer 39, 25–31 (2006)
27. Tan, P.-N., Steinbach, M., Kumar, V.: Introduction to Data Mining. Addison Wesley (2006)
28. Tomita, M., Carbonell, J.G.: The universal parser architecture for knowledge-based machine

translation. In: Proceedings of the 10th International Joint Conference on Artificial Intelli-
gence, vol. 2, pp. 718–721 (1987)

29. Turmo, J., Ageno, A., Cataà, N.: Adaptive information extraction. ACM Computing Sur-
veys 38(2), art. 4 (2006)

30. Younger, D.H.: Recognition and parsing of context-free languages in time n3. Information
and Control 10, 189–208 (1967)

http://arxiv.org/abs/1111.3970

Cross-Platform Application Development
Using AXIOM as an Agile Model-Driven Approach

Xiaoping Jia and Chris Jones

School of Computing, DePaul University, 243 S. Wabash Ave., Chicago, IL, U.S.A.
{xjia,cjones}@cdm.depaul.edu

Abstract. The development and maintenance of cross-platform mobile applica-
tions is expensive. Two approaches for reducing this cost are model-driven en-
gineering (MDE) and Agile development. In this paper, we present AXIOM,
a model-driven approach for developing cross-platform mobile applications in
ways that also support Agile principles. Our approach uses a domain specific
language (DSL) for defining platform-independent models (PIM) of mobile ap-
plications. AXIOM defines a multi-phase, customizable transformation process
to convert platform-independent models into native applications for target mo-
bile platforms. Our approach could significantly reduce development time and
cost while increasing the quality of mobile applications. A prototype tool has
been developed to demonstrate the feasibility of the approach. The preliminary
findings are promising and show significant gains in development productivity.

1 Introduction

In recent years, there has been tremendous growth in the popularity of mobile applica-
tions targeting smart phones and tablets. With the ever-improving capabilities of these
devices, mobile applications are becoming increasingly sophisticated and complicated,
while also having to address challenging constraints and requirements, such as respon-
siveness, limited memory and low energy consumption. Furthermore, there are cur-
rently several competing mobile platforms on the market, including Google’s Android
and Apple’s iOS. For mobile application developers, it is highly desirable for their ap-
plications to run on all major mobile platforms. Although these competing platforms
are similar in capability, they differ significantly in programming languages and APIs,
making it expensive to port a mobile application to different platforms.

An appealing approach to cross-platform development is model-driven engineering
(MDE). In MDE, software systems are built by first defining platform-independent
models (PIMs), which capture the compositions and core functionalities of the system
in a way that is independent of implementation concerns. The PIMs are then trans-
formed into platform-specific models (PSMs), from which the native application code
for each platform can be generated. MDE shifts the development focus away from writ-
ing code [1] and toward the development of models, such as those in UML and its
profiles.

Despite its potential benefits and proven success in large-scale industrial applica-
tions [2], MDE faces significant challenges to its widespread adoption including: limi-
tations of UML [3, 4]; inadequate tool support; model transformation complexity; and

J. Cordeiro, S. Hammoudi, and M. van Sinderen (Eds.): ICSOFT 2012, CCIS 411, pp. 36–51, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Cross-Platform Application Development Using AXIOM 37

apparent incompatibility with popular Agile software development methodologies such
as eXtreme Programming (XP) and Scrum.

The Agile and MDE approaches to software development are each oriented toward
different kinds of software. For example, MDE often targets mature middleware plat-
forms with widely adopted common standards such as JEE, .NET, and SOA. In con-
trast, applications developed using Agile techniques often fit certain well-understood
patterns, such as being web-based and database-driven, and using an n-tier MVC ar-
chitecture. It would be beneficial if the strengths of these two approaches could be
combined and their shortcomings mitigated.

In this paper, we present a novel model-driven approach to cross-platform mobile
application development using a domain specific language (DSL), called AXIOM (Ag-
ile eXecutable and Incremental Object-oriented Modeling). Our approach defines a
framework for describing the PIMs, design decisions, and implementation details of
applications. We also provide tools to carry out the transformation of PIMs into na-
tive implementations across multiple platforms. A prototype tool has been developed to
demonstrate the feasibility of the approach. The prototype currently targets mobile ap-
plications in general with an emphasis on the Android and iOS platforms in particular.

2 Approaches to Platform-Independence

Platform-independence is not a new goal and the cost savings that can be realized
through such independence have long been recognized. The advent of high-level lan-
guages signified an early means of providing such platform-independence through the
use of greater abstractions. Languages such as C and C++ were only partially success-
ful in achieving platform-independence because of the decision to leave some runtime
aspects of the language, such as integral datatype sizing [5, 6], up to compiler providers.
This allowed the same source code to be compiled for many different target platforms,
but did not guarantee that all of the runtime semantics would be consistent across those
platforms.

Languages based on virtual machines (VMs), like Java [7], provide true platform-
independence by specifying a well defined, standardized runtime environment. Higher-
level languages are converted into VM instructions, which are then executed on the
target platform using the native instruction set. Because both the language and the VM
are governed by specifications the behavior of the application across different platforms
tends to be more consistent than when using languages without such comprehensive
specifications.

The combination of high-level languages with a standardized runtime environment
provides a powerful foundation on which platform-independent applications can be
built. This approach can be further refined through the use of domain-specific languages
(DSLs), which expose domain-specific concepts to developers, thus providing a high
level of abstraction and expressiveness within that domain. DSLs are available for spe-
cific domains like mobile and web development.

DSLs can be external, meaning that their syntax is not the same as the host language,
or internal, where they share the host language. This flexibility allows for DSLs that can
be transformed into higher-level languages, directly into VM instructions, or even into

38 X. Jia and C. Jones

native code for the target platform. DSLs based on languages like Ruby or Groovy are
internal and ultimately generate high-level language code based on the host language.
The benefit to this approach is that the DSL can take advantage of the power of its host
language, including its compiler and associated optimizations.

A second approach is to provide a DSL that ultimately produces native VM instruc-
tions. This provides a mechanism that allows for the power of a DSL along with potential
optimizations for a particular VM instruction set. However, the process of converting the
DSL code into VM instructions involves the same effort as writing a compiler, poten-
tially making it a more expensive approach than allowing the DSL to produce high-level
language code for which a compiler already exists.

A third approach is to use a DSL that produces native code for the target platform.
The same drawbacks exist for this approach that exist for the conversion to VM instruc-
tions. However, done well, the potential power and optimizations realized by converting
directly to the native instruction set can prove valuable. This approach may also be used
when few, if any, compilers exist for a target platform, such as might be the case with
specialized hardware or chipsets.

3 UML as a Basis for MDE and Agile Approaches

DSLs have also been used in the form of modeling notations, the best-known of which
is UML [8], which, along with OCL [9], seeks to provide a common language for de-
scribing software models. The Object Management Group’s (OMG) approach to model-
driven engineering, MDA [10], relies on UML models that are then consumed and
transformed into executable code.

Unfortunately, MDE has not seen the same industry adoption rates as Agile [11]
approaches like XP [12] and Scrum [13]. Some reasons for this may include:

– A lack of adequate tool support in creating, maintaining and understanding the
complex models derived from UML and related OMG standards. Visual models
make complex structures comprehensible, but are difficult and time consuming to
create and maintain without strong tool support.

– The difficulty in the interchange of visual models across different tools using the
XMI [14] standard for UML interchange. One study of some of the most commonly
used UML tools showed that the success rate of attempted model interchanges
amongst these tools was less than 5% [15].

– The lack of executability in UML models leads to long development cycles. UML
models are thus ill-suited for Agile development processes and are generally used
only for heavyweight processes.

– A lack of modeling resources comparable to the extensive frameworks and libraries
available to Agile approaches. Most models must be developed from scratch rather
than being built on known, proven, and previously adopted solutions.

There is evidence showing that Agile processes can deliver significantly improved
productivity of software development efforts of small to medium sizes in companies
with limited organizational complexity [16–18]. However, because MDE is often char-
acterized as architecture-centric and design-first, it is perceived as antithetical to Agile

Cross-Platform Application Development Using AXIOM 39

approaches that are often code-centric with architecture as an emergent property result-
ing from iterative refactoring.

Despite these differences, there are also critical similarities between Agile and MDD
practices. For instance, both practices focus on a single deliverable; code, in the case
of Agile approaches, models, in the case of MDE. Hybrid approaches such as Agile
Model Driven Development (AMDD) [19] and Continuous Model Driven Engineering
(CMDE) [20] have been developed, but these approaches either de-emphasize the use
of UML or abandon the idea of completely generative models altogether.

We propose an approach that emphasizes the similarities between MDE and Agile
approaches while de-emphasizing their differences.

4 AXIOM: DSL-Based MDE

We propose to leverage the power of a DSL based on the dynamic language, Groovy, to
provide a new approach to model-driven engineering called AXIOM [21, 22]. AXIOM
retains the key elements of MDE such being model-centric and using using transforma-
tions to convert the models into executable code, but differs in the specifics. Whereas
MDA relies on MOF [23] metamodels to facilitate the transformation of UML models
into executable code, AXIOM instead provides a modeling DSL written in a dynamic
language. AXIOM supports a limited subset of UML in the form of class diagrams and
state charts as a means if visualizing the DSL models. This allows it to maintain some
of the most powerful aspects of MDD such as model visualization, while also being
easily accessible to existing designers and developers who are familiar with UML and
its notation.

AXIOM defines a Groovy-based DSL specifically for modeling mobile applications.
The DSL provides an abstraction of the features and capabilities supported by the An-
droid and iOS platforms. The aim of the DSL is to provide an abstract way of accessing
the complete native API of each platform, and not just a limited subset of the API (of-
ten known as the lowest common denominator). By using a DSL, AXIOM also allows
platform-independent models to be executable. This shortens development time and al-
lows for the early detection and remediation of errors and anomalies. Because AXIOM
is Groovy-based, it has access to a rich set of modeling elements and frameworks that
UML alone does not provide.

AXIOM supports customizable model transformations and code generation. It per-
mits both kinds of MDE: completely generative, where all of the code comes from the
model, and partially generative, where nearly complete code is generated with some
parts to be completed manually. The model transformations can be customized through
the use of annotations on the model as well as developer-customizable code templates
for patterns and idioms. The aim is to allow the generated code to be optimized for
performance and other quality requirements through techniques supported by native
platforms including multi-threading, memory management, and application life-cycle
management.

It should be noted that while we emphasize the development of mobile applications
for our initial research and in this paper, AXIOM is by no means limited to such appli-
cations. As we will see, AXIOM’s basic DSL-centric approach is suited to a variety of
applications.

40 X. Jia and C. Jones

5 AXIOM Intent Models

Applications are first defined as platform-independent intent models using AXIOM’s
DSL. Intent models describe the core functions, user interfaces, and interactions of the
application in a way that is completely devoid of references to implementation-specific
aspects of any platform. The intent model is composed of two core perspectives: the
interaction perspective, visualized using UML state diagrams, and the domain perspec-
tive, visualized using UML class diagrams.

Consider a simple application that associates users with roles, perhaps as part of a
broader application security component. We want the ability to associate each user with
multiple roles, from which they will ultimately derive their application privileges. To
provide these capabilities we must be able to manage both user and role information as
well as manage the associations of users to roles. In the next few sections we examine
how AXIOM represents the key elements of this simple application.

5.1 Interaction Perspective

The interaction perspective describes the user interface and the application’s behavior
in response to user and system events. The basic state diagram representing the two
screens is shown at the top of Fig. 1. This state diagram is realized into a graphical
view of the interaction perspective represented by the associated wireframes shown in
the middle of Fig. 1. A partial AXIOM DSL that encodes the state diagram and the
associated graphical representation is shown at the bottom of Fig. 1.

The interaction perspective defines the composition of the two screens. The first
screen is a list view with several sections. The names ListView, Section, and Item
in the model (see A in Fig. 1) refer to the UI elements. The second screen is a view
containing several types of logical UI controls including labels, buttons, a text field,
and a selection. The logical UI controls in the intent model only define their intended
functions and not the actual widgets that implement these functions. The names View,
Panel, Label, Button, Text, and Selection in the model also refer to UI elements
(see B). Each view in the UI corresponds to a state in the interaction model. Transitions
are defined as the next attribute of the UI control that triggers the transition (see C , D ,
and E). Optional guard conditions and actions can also be defined on the transitions.

5.2 Domain Perspective

The domain perspective describes business entities. These are typically persistent and
are transferred and referenced among different parts of the application. Figure 2 shows
the domain perspective for our simple example including the class diagram and the
corresponding AXIOM DSL.

AXIOM’s domain perspective is defined using a notation based on the GORM [24]
framework. GORM provides for persistence and relationship management between per-
sistent objects. This makes it suitable for defining both standalone domain objects as
well as for incorporating persistence when required.

Cross-Platform Application Development Using AXIOM 41

Fig. 1. State diagram, UI and partial DSL of the interaction perspective

Fig. 2. Class diagram and partial DSL of the domain perspective

42 X. Jia and C. Jones

Each entity describes the properties and relationships of a domain object. This allows
for the precise definition of the entity’s properties. GORM supports both field and cross-
field validations on its properties although we have not yet incorporated that notation
into AXIOM.

Entities can also have relationships, indicated by the @Relation annotation (see
C and D in Fig. 2). Each relationship requires a role name, which defines additional

properties of the entity, as well as its cardinality and navigability. Cardinality is reflected
using single- or multi-valued properties defined using the hasOne and hasMany property
names respectively. Navigability is defined by the presence or absence of a property that
allows for navigation to the reciprocal entity in the relationship. In this example each
entity has a reference to the other associated with its hasMany property, indicating that
these entities support bi-directional navigability.

We assume that any class annotated by @Entity (see A and B) will be persisted
although the precise persistence mechanism is not encoded within the model. That de-
cision will be made during the structural transformation phase of the AXIOM’s trans-
formation process.

5.3 Intent Models and Transformations

Intent models are declarative and capture the intent of applications completely. They
are also executable for the purpose of demonstration and validation. However, intent
models must be informed by additional decisions in order to produce high quality and
finished applications:

Structural. These include architecture and design decisions such as choice of plat-
form, language, framework, API; the use of architecture and design patterns and
implementation idioms and related techniques. These decisions typically have a
significant impact on the code that is ultimately generated as well as on the or-
ganization of that code. This is particularly true when a multi-tier architecture is
desired or when specific non-functional requirements must be satisfied. Structural
transformations are discussed in more detail in Sect. 6.1.

Refining. These include decisions about various aspects of the application such as
styles and themes. This might also include intra-class decisions such as algorithm
selection. In general these decisions, while significant, do not have as great an im-
pact on the generated code as the structural decisions although they can certainly
affect how well the finished application meets its requirements. Refining transfor-
mations are discussed in more detail in Sect. 6.2.

Structural and refining decisions almost always affect the platform-specific model.
While structural decisions typically have a much broader impact on the finished appli-
cation than refining decisions, they both serve to narrow the range of possible imple-
mentations that meet the functional, non-functional and platform needs. All structural
and refining decisions are made during the transformation process.

Cross-Platform Application Development Using AXIOM 43

Fig. 3. AXIOM transformation process

6 AXIOM Transformation Process

A critical component of MDE is model transformation, which converts the abstract PIM
of an application into executable code. The structural and refining decisions are intro-
duced during AXIOM’s three-phase transformation process that includes: structural
transformation, refining transformation, and code generation as shown in Fig. 3.

All AXIOM models are represented as abstract model trees (AMTs) corresponding
to the logical structure and elements of the models. For example, each UI view and
logical UI control in the intent model is represented as a node in the AMT. The AMT
is similar to an AST, but allows for cross-node relationships and references. Each node
in the AMT supports attributes both in the form of simple name-value pairs as well as
more complex types such as collections and closures.

Each node on an AMT has a set of attributes defined as name-value pairs, which
makes it similar to an attribute grammar [25]. In addition to the simple types supported
by traditional attribute grammars, AXIOM AMTs also support complex types such as
collections and closures. This introduces the potential for AXIOM to perform model
analysis based on both inherited and synthesized attributes thereby supporting the iden-
tification of mismatched requirements. These attributes can also be used by the model
transformation process to further refine the generated code.

Each phase in an AXIOM model transformation reconfigures the AMT. Figure 4
illustrates the changes introduced by each phase of the transformation process.

44 X. Jia and C. Jones

Fig. 4. Transformation of AXIOM AMTs

6.1 Structural Transformations

The structural transformation phase applies architecture and design rules to the intent
model and may alter both the structure of the AMT as well as the attributes of its
nodes. This yields a new AMT that can be structurally different from the original intent
model. Structural decisions often impact the macro-organization of the components in
the application and their interactions. The structural transformations are rule-based and
generally reusable. The result of the structural transformation is a design model that
is functionally isomorphic to the original intent model, but that also defines the macro-
organization of the application driven by the platform-specific technology and API. The
design model can be mapped to a design of the application with the modules, classes
and their relations determined.

Common examples of structural decisions include target language and platform,
framework selection, and code distribution. For instance, in the simple example of users
and roles, we have seen that we can define simple entities. During the structural trans-
formation phase, we might determine that these entities will be persisted to a remote
database or conversely, we might decide that the data should be persisted to a local file
store. These choices will yield very different designs when the intent model is trans-
formed in support of an iOS-based mobile versus a JEE-based web application.

6.2 Refining Transformations

During the refining transformation phase, the structure of the design model AMT is pre-
served but the attributes of the nodes may be changed. This results in an output tree that is
not only functionally isomorphic to the original intent model, but that is also structurally
isomorphic to the design model. Refining transformations decorate the design model
with additional platform-specific elements to address intra-class, micro-organizational
decisions. The resulting implementation model maintains the macro-organization of the
design model, but includes all the necessary details needed to generate high quality, effi-
cient code. The decorations applied during the refining transformation phase are usually
not application specific, and are highly reusable.

Examples of refining transformations include algorithm selection, visual layout and
theme. In the case of our security example, these decisions might indicate whether or

Cross-Platform Application Development Using AXIOM 45

not we wish to use JPA, Hibernate or Spring JDBC for our persistence layer. Similarly,
we might opt to generate DAOs as a means of enforcing a separation of concerns within
the generated code.

By deferring these lower-level decisions until this phase of the transformation, we
are able to make selections that are appropriate for the desired overall characteristics of
the target runtime environment. For example, while it may be a functional requirement
that a list of items be sortable within the UI, we can refine the approach to emphasize
the characteristics of one sort algorithm over another depending on if we’re running on
a mobile platform or a JEE server. Such discrimination is critical given that we must
make different time-space tradeoffs based on the target platform.

6.3 Code Generation

During the code generation phase, the implementation model is converted into native
source code for the target platform. In our security example, this means that we will
generate the appropriate annotations and code for each persistable entity based on the
structural and refining decisions made earlier.

Code generation is based on a set of platform-specific templates that are application-
independent and reusable. The code generation is completely automated and highly
customizable.

7 Benefits

AXIOM has several notable benefits for software development. First, the DSL provides
higher levels of abstraction that enable the construction of the platform-independent
intent models while also permitting a high degree of expressiveness. Because the DSL
is written in Groovy, modelers gain instant access to existing Java-based frameworks
and libraries, which saves the effort that would otherwise be required to model them.
The DSL also grants the AXIOM intent models a degree of executability that facilitates
rapid development and verification, an approach that aligns perfectly with the princi-
ples of modern Agile approaches, which emphasize a rapid turnaround from concept to
completion.

Second, the fact that AXIOM is encoded in a textual model rather than a graphical
one ensures a degree of tool independence; all that is required is a text editor. Related
problems such as concurrent model development, model versioning, and model merging
can be addressed through existing source code control systems.

Third, even though the models look more like a programming language, AXIOM
supports a limited subset of UML models, thus retaining some of the visual expressive-
ness of UML.

Finally, the AXIOM transformation rules and templates can be used across entire fam-
ilies of applications and technologies rather than being specific to a particular application
domain as is often the case with many model compilers. In addition, while many model
compilers are “black box” in the sense that a change to the generated code often requires
a change to the compiler’s code, AXIOM attempts to take a “white box” approach by
externalizing the various transformation rules and templates. This approach allows for

46 X. Jia and C. Jones

the reuse of the templates and transformation rules across different applications rather
than binding them to only a single application.

AXIOM also has some limitations. First, AXIOM only honors a subset of the avail-
able UML diagrams, specifically class diagrams and state charts. Other UML diagrams
may provide additional benefits, but are currently unrecognized. Second, AXIOM can-
not easily make up for the limitations of a given platform, a challenge for any MDE
approach. Finally, AXIOM deviates from the standard OMG definition of MDA by us-
ing a DSL for its representation rather than a MOF-based metamodel.

8 The Prototype and Preliminary Results

A proof-of-concept prototype tool has been developed to demonstrate the feasibility
of AXIOM. The prototype targets two popular mobile platforms: Android and iOS.
AXIOM models can be transformed into native implementations in Java for Android
and Objective-C for iOS. The generated application source code is then compiled using
the native SDKs on the target platform to produce executable applications. The design
of the generated code follows the common MVC architecture.

Table 1. LOC of intent model vs. generated code

(n = 29) AXIOM iOS Android
AXIOM as % of ρL compared to
iOS Android iOS Android

Median 19.5 168.0 279.0 10.3 7.0 8.6 14.3

Average 27.2 222.1 328.5 11.5 7.7 8.2 12.1

Minimum 8.0 126.0 77.0 5.8 3.2 15.8 9.6

Maximum 98.0 539.0 646.0 31.9 15.2 5.5 6.6

Using the prototype tool, we conducted preliminary analyses to assess the effective-
ness of AXIOM. Using a small set of working examples (n = 29), we compared the
sizes of the AXIOM intent models and the generated source code on both iOS and
Android platforms. Our assumptions are that: a) developer productivity measured in
lines-of-code per person-hour (LOC/PH) is roughly constant regardless of languages
used; and b) the native applications produced by the prototype tool are comparable in
size and complexity to the same applications developed manually. An admittedly sub-
jective review of the code generated by AXIOM is that it is consistent with industry
best-practices such as separation of concerns and the corresponding creation of appro-
priate abstraction layers.

Under these assumptions the reduction in the size of the AXIOM intent models com-
pared to the size of the generated applications would translate into a significant reduc-
tion in development time, hence an increase in development productivity. Based on our
preliminary studies, shown in Table 1, the median size (in LOC) of the AXIOM intent
models is 7% of the size of the generated applications for Android and about 10% of
the size of the generated applications for iOS.

Cross-Platform Application Development Using AXIOM 47

Similarly, Kennedy’s relative power metric [26], ρL, also based on LOC, measures
the impact of AXIOM on developer productivity. Kennedy’s relative power metric is
given by:

ρL =
IN(P)
IA(P)

(1)

where IN and IA are the lines of native and AXIOM code respectively that are required
to implement application P.

These early results suggest a potentially significant increase in productivity when
compared with manually developed applications using standard development tools on
native mobile platforms.

9 Related Work

9.1 Model-Driven Engineering

There are different approaches to MDE. Some of these closely follow the MDA standard
while others amend either the MDA process or its deliverables.

AndroMDA [27] is an open-source, UML-based, template-driven MDA framework.
It accepts UML models in an XMI format and uses them for code generation. An-
droMDA is not a modeling environment and is thus limited by the quality of the XMI
output produced by other tools.

The Eclipse Foundation provides UML-based technologies that support MDD in
terms of both model construction and model transformation. These projects include
Generative Modeling Technologies (GMT) [28] and the ATL Transformation Language
(ATL) [29].

Executable UML (xUML) is an approach to software development that uses UML
models as the primary mechanism by which applications are built [30]. Like AXIOM,
xUML advocates the benefits of UML executability. One significant challenge of xUML
is that the process of writing a model compiler may require as much effort as producing
the original models. There are examples of publicly available xUML compilers such as
xUmlCompiler [31], but each compiler targets a specific set of technologies for its code
generation processes.

There have also been attempts to introduce more formalism into MDE. Examples
include Alloy [32], UML Specification Environment (USE) [33, 34], Z [35, 36] and its
object-oriented extensions like MooZ [37], Object-Z [38], OOZE [39], Z++ [40], and
ZEST [41].

The overall process of MDE has also been examined for ways to improve on its abil-
ity to deliver applications. Continuous Model Driven Engineering (CMDE) as defined
by eXtreme model-driven design (XMDD) [20] uses process modeling as its means of
eliciting the necessary requirements and behavior. Agile Model Driven Development
(AMDD) [19] shares the notations and tools commonly used in MDD but retains code
as the central focus of the development effort. AMDD has been executed in combi-
nation with the MIDAS framework [42, 43] as a means of implementing web-based
applications.

Each of these approaches takes a slightly different approach to MDE and thus has its
own challenges. Many of the approaches are deeply rooted in UML and thus suffer from

48 X. Jia and C. Jones

UML’s shortcomings including the lack of first-class support for UI design. Approaches
that rely on the creation of custom model compilers or transformations simply shift the
development burden from the application and its models to the transformation frame-
work. Most formal approaches were never designed for MDE and thus do not provide
true model executability. Approaches that change the overall MDD process either lose
model-centricity or are rooted in notations that deviate from mainstream UML.

AXIOM encourages the development of executable models using a DSL that sup-
ports interaction, UI and domain design while also retaining the widely adopted graph-
ical notation associated with UML class and state diagrams.

9.2 DSL-Based Development

One approach for cross-platform mobile application development is to use languages
and virtual machines that are common across different platforms, such as HTML and
JavaScript [44, 45]. While this approach is adequate for certain types of applications, it
has known shortcomings and limitations. Canappi [46] uses a DSL to define and gener-
ate cross-platform mobile applications as front-ends to web services. Unlike AXIOM,
it allows neither access to native APIs nor customizable code generation.

WebDSL and Mobl [47, 48] are two DSLs that target web and mobile applications
specifically. WebDSL is similar to Ruby’s Rails and Groovy’s Grails in that it allows for
the rapid development of applications using a custom DSL. However, neither Mobl nor
WebDSL addresses the model-driven aspect of the development process. Thus while
the DSL code may indeed be ultimately transformed into executable code, the models
themselves are not executable and are not considered major artifacts of the software
development process.

AXIOM is partly based on the ZOOM [49–51] project as well as on OMG’s MDA.
AXIOM retains some key parts of UML, such as state and class diagrams, but un-
like MDA, AXIOM defines a domain-specific modeling notation and a transformation
framework that is not based on MOF.

10 Future Work

Our research into the AXIOM approach is in its early stages yet, but the preliminary re-
sults are promising. We intend to continue refining the approach so that it can work with
even more complex models. One key area of work that remains is the further develop-
ment of the rule-based transformations and the associated templates. In particular these
transformations must be able to handle cases where given functionality is supported to
different extents on different platforms. Some of those challenges have already been
encountered and addressed in the user interface, but other such challenges remain such
as the implementation of persistence.

Another area that remains to be addressed is the introduction of non-functional re-
quirements into the models and the various decisions that advise the structural and
refining transformations. Such architectural concerns are central to the ability to model
and transform an application for a particular platform. For example, it would be desir-
able for the model transformations to choose algorithms that are appropriate for each
target platform’s memory and persistent storage characteristics.

Cross-Platform Application Development Using AXIOM 49

These enhanced models will be used to drive comparative experiments to determine
if the early benefits seen in the preliminary results continue to manifest as the scale
and complexity of the applications increases, particularly in the areas of developer pro-
ductivity, generated source code quality, and the runtime performance, efficiency and
defect densities of the executable application.

11 Conclusions

AXIOM is a model-driven approach for developing high quality, cross-platform appli-
cations. We have successfully demonstrated its feasibility in developing cross-platform
mobile applications for Android and iOS platforms. AXIOM uses a DSL to provide a
high level abstraction of mobile platforms. Applications are represented as intent mod-
els using the DSL and are then augmented with structural decisions and refined with
other platform-specific elements during a multi-phase transformation process to pro-
duce source code for native applications.

The potential benefits of AXIOM include significant cost savings in software de-
velopment owing to dramatic increases in productivity. AXIOM supports executable
models, which enable iterative and incremental development and allow early validation
of the applications. Product quality can be significantly improved due to the reduced
amount of hand-written code. The transformation process offers a high degree of con-
trol over code generation and enables transformation logic to be re-used across appli-
cations rather than building a single, monolithic model compiler for each individual
application. This improves developer productivity and overall application quality.

AXIOM’s approach to software development seeks to combine the best aspects of the
Agile and MDE development. By defining a dynamic modeling language based on an
existing dynamic language, AXIOM is immediately accessible to a large population of
the Agile development community. By continuing to emphasize the use of completely
generative models, AXIOM remains true to the intent of MDA, even though it differs
in the underlying approach.

Our preliminary findings in terms of the potential gains in productivity are promis-
ing. We intend to further enhance the prototype tool to provide more comprehensive
support of mobile platforms. This will enable us to conduct more extensive compara-
tive studies and experiments using AXIOM. We plan to collect and analyze data in a
number of different aspects, including developer productivity, the source code quality of
generated applications, and the performance, efficiency and defect density of generated
applications.

References

1. Selic, B.: The pragmatics of model-driven development. IEEE Software 20, 19–25 (2003)
2. Object Management Group: Success stories (2011),

http://www.omg.org/mda/product_success.htm/
3. France, R.B., Ghosh, S., Dinh-Trong, T., Solberg, A.: Model-driven development using UML

2.0: Promises and pitfalls. Computer 39, 59–66 (2006)
4. Henderson-Sellers, B.: UML - the good, the bad or the ugly? perspectives from a panel of

experts. Software and System Modeling 4, 4–13 (2005)

http://www.omg.org/mda/product_success.htm/

50 X. Jia and C. Jones

5. Kernighan, B., Ritchie, D.: The C Programming Language, 2nd edn. Prentice Hall (1988)
6. Ellis, M.A., Stroustrup, B.: The Annotated C++ Reference Manual. Addison Wesley (1990)
7. Gosling, J., Joy, B., et al.: The Java Language Specification, 2nd edn. Addison Wesley (2000)
8. Object Management Group: Unified Modeling Language (2010),

http://www.omg.org/spec/UML/2.3/
9. Object Management Group: UML 2.0 OCL (2003),

http://www.omg.org/docs/ad/linebreak03-01-07.pdf
10. Object Management Group: MDA guide (2003), http://www.omg.org/mda
11. Cockburn, A.: Agile software development. Addison-Wesley Longman Publishing Co., Inc.,

Boston (2002)
12. Beck, K.: Extreme Programming Explained. Addison-Wesley, New York (2000)
13. Schwaber, K., Beedle, M.: Agile Software Development with SCRUM. Pearson Technology

Group (2002)
14. Object Management Group: XML model interchange (XMI), version 2.11 (2007),

http://www.omg.org/spec/XMI/2.1.1/
15. Lundell, B., Lings, B., Persson, A., Mattsson, A.: UML model interchange in heterogeneous

tool environments: An analysis of adoptions of XMI 2. In: Wang, J., Whittle, J., Harel,
D., Reggio, G. (eds.) MoDELS 2006. LNCS, vol. 4199, pp. 619–630. Springer, Heidelberg
(2006)

16. Dyba, T., Dingsayr, T.: What do we know about agile software development? IEEE Software,
6–9 (September/October 2009)

17. Layman, L., Williams, L., Cunningham, L.: Exploring extreme programming in context: An
industrial case study. In: Agile Development Conference, pp. 32–41 (2004)

18. Lindvall, M., Basili, V., Boehm, B., Costa, P., Dangle, K., Shull, F., Tesoriero, R., Williams,
L., Zelkowitz, M.: Empirical findings in agile methods. In: XP/Agile Universe 2002,
Chicago, IL (2002)

19. Ambler, S.: Agile model driven development (AMDD): The key to scaling agile software
development (2009), http://www.agilemodeling.com/essays/amdd.htm/

20. Margaria, T., Steffen, B.: Agile it: Thinking in user-centric models. In: Margaria, T., Steffen,
B. (eds.) ISoLA. CCIS, vol. 17, pp. 490–502. Springer, Heidelberg (2008)

21. Jia, X., Jones, C.: Dynamic languages as modeling notations in model driven engineering.
In: ICSOFT 2011, Seville, Spain, pp. 220–225 (2011)

22. Jia, X., Jones, C.: Axiom: A model-driven approach to cross-platform application develop-
ment. In: ICSOFT 2012, Rome, Italy, pp. 24–33 (2012)

23. Object Management Group: OMG’s MetaObject Facility (2006),
http://www.omg.org/spec/MOF/2.0/PDF/

24. Rocher, G., Ledbrook, P., et al.: GORM - standalone GORM (2009),
http://www.grails.org/GORM+-+StandAlone+Gorm

25. Knuth, D.E.: Semantics of context-free languages. Mathematical Systems Theory 2, 127–
145 (1968)

26. Kennedy, K., Koelbel, C., et al.: Defining and measuring the productivity of programming
languages. The International Journal of High Performance Computing Applications 18(4),
441–448 (2004)

27. Bohlen, M., Brandon, C., et al.: AndroMDA (2003),
http://www.andromda.org/docs/index.html

28. The GMT Team: GMT Project (2005), http://www.eclipse.org/gmt/
29. The ATL Team: ATL Transformation Language (2005), http://eclipse.org/atl/
30. Mellor, S.J., Balcer, M.J.: Executable UML: A Foundation for Model-Driven Architectures.

Addison-Wesley Longman Publishing Co., Inc., Boston (2002); Foreword By-Ivar Jacoboson
31. xUML Compiler: xUML Compiler- Java Model compiler Based on “Executable UML” pro-

file (2009), http://code.google.com/p/xuml-compiler/

http://www.omg.org/spec/UML/2.3/
http://www.omg.org/docs/ad/linebreak03-01-07.pdf
http://www.omg.org/mda
http://www.omg.org/spec/XMI/2.1.1/
http://www.agilemodeling.com/essays/amdd.htm/
http://www.omg.org/spec/MOF/2.0/PDF/
http://www.grails.org/GORM+-+StandAlone+Gorm
http://www.andromda.org/docs/index.html
http://www.eclipse.org/gmt/
http://eclipse.org/atl/
http://code.google.com/p/xuml-compiler/

Cross-Platform Application Development Using AXIOM 51

32. Jackson, D.: Alloy: a lightweight object modelling notation. ACM Trans. Softw. Eng.
Methodol. 11, 256–290 (2002)

33. Gogolla, M., Büttner, F., et al.: USE: A UML-Based Specification Environment for Validat-
ing UML and OCL. Science of Computer Programming 69, 27–34 (2007)

34. Kuhlmann, M., Gogolla, M.: Modeling and Validating Mondex Scenarios Described in UML
and OCL with USE. Formal Aspects of Computing 20, 79–100 (2008)

35. Clarke, E.M., Wing, J.M., et al.: Formal methods: state of the art and future directions. ACM
Computing Surveys 28, 626–643 (1996)

36. Hamilton, D., Covington, R., et al.: Experiences in applying formal methods to the analysis
of software and system requirements. Workshop on Industrial-Strength Formal Specification
Techniques, p. 30 (1995)

37. Meira, S.R.L., Cavalcanti, A.L.C.: Modular Object-Oriented Z Specifications. In: Nicholls,
J. (ed.) Z User Workshop. Workshops in Computing, pp. 173–192. Springer, Oxford (1990)

38. Smith, G.: (Object-Z), http://itee.uq.edu.au/˜smith/objectz.html
39. Alencar, A.J., Goguen, J.A.: OOZE: An object oriented Z environment. In: America, P. (ed.)

ECOOP 1991. LNCS, vol. 512, pp. 180–199. Springer, Heidelberg (1991)
40. Lano, K.: Z++, an object-orientated extension to z. In: Proceedings of the Fifth Annual Z

User Meeting on Z User Workshop, pp. 151–172. Springer, London (1991)
41. Cusack, E., Rafsanjani, G.H.B.: Zest. In: Object Orientation in Z. Workshops in Computing,

pp. 113–126. Springer (1992)
42. Cáceres, P., Daz, F., et al.: Integrating an Agile Process in a Model Driven Architecture

(2004)
43. Cáceres, P., Marcos, E., et al.: A mda-based approach for web information system develop-

ment. In: Proceedings of Workshop in Software Model Engineering (2003)
44. Appcelerator, Inc.: Appcelerator (2011), http://www.appcelerator.com/
45. The JQuery Project: JQuery Mobile Framework (2011), http://www.jquerymobile.com/
46. Convergence Modelling LLC.: Canappi (2011), http://www.canappi.com/
47. Visser, E., et al.: WebDSL (2010), http://webdsl.org/home
48. Hammel, Z., Visser, E., et al.: mobl: the new language of the mobile web (2010),

http://www.mobl-lang.org/
49. Liu, H., Jia, X.: Model transformation using a simplified metamodel. Journal of Software

Engineering and Applications 3, 653–660 (2010)
50. Jia, X., et al.: Executable visual software modeling:the ZOOM approach. Software Quality

Journal 15 (2007)
51. Jia, X., Liu, H., et al.: A model transformation framework for model driven engineering. In:

MSVVEIS-2008, Barcelona, Spain (2008)

http://itee.uq.edu.au/~smith/objectz.html
http://www.appcelerator.com/
http://www.jquerymobile.com/
http://www.canappi.com/
http://webdsl.org/home
http://www.mobl-lang.org/

Rapidly Implementing EMF Applications
with EMF Components

Lorenzo Bettini�

Dipartimento di Informatica, Università di Torino, Italy
bettini@di.unito.it

Abstract. Most Eclipse projects which deal with modeling data are based on the
Eclipse Modeling Framework (EMF) which provides code generation facilities for
building tools and applications based on structured data models. However, from
the user interface point of view, the development of applications based on EMF
could be made simpler with more code reuse. For this reason, we propose EMF
Components, a lightweight framework that allows easy and quick development of
applications based on EMF. Besides providing a set of reusable components like
trees, tables and detail forms that manage the model with the introspective EMF
capabilities, EMF Components also comes with a DSL to make the configuration
and customization of all the components much faster.

1 Introduction

The Eclipse Modeling Framework (EMF) [1] simplifies the development of complex
software applications based on structured data models. Starting from the metamodel
specification (which can be described in XMI, UML or annotated Java) EMF produces
a set of Java classes for the model, along with a set of adapter classes for editing facil-
ities. However, we think that from the user interface point of view, the development of
applications based on EMF could be made simpler, with more code reuse, and without
having to deal with too many internal details. For this reason, we propose the EMF
Components framework.

EMF Components is a lightweight framework for easily and quickly developing
applications based on EMF. It can be configured to use all kinds of EMF persistence
implementations (e.g., XMI, Teneo, CDO). Our framework provides a set of reusable
components like trees, tables and detail forms that manage the model with the intro-
spective EMF capabilities. Using these components one can easily build more complex
widgets, editors and applications. All the components are customizable with injection
mechanisms (based on Google Guice [2], a Dependency Injection framework [3]).
The EMF Components framework is available as an open source project at
http://code.google.com/ a/eclipselabs.org/p/emf-components. The first version of EMF
Components was presented in [4]; this paper describes the new version, in particular,
it introduces the new DSL that has been recently implemented to make the configuration
and customization of all the components much faster.

� The paper was partly supported by RCP Vision, www.rcp-vision.com

J. Cordeiro, S. Hammoudi, and M. van Sinderen (Eds.): ICSOFT 2012, CCIS 411, pp. 52–65, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

www.rcp-vision.com

Rapidly Implementing EMF Applications with EMF Components 53

1 adapterFactory = new ComposedAdapterFactory(ComposedAdapterFactory.Descriptor.
Registry.INSTANCE);

adapterFactory.addAdapterFactory(new ResourceItemProviderAdapterFactory());
3 adapterFactory.addAdapterFactory(new MyModelItemProviderAdapterFactory());

adapterFactory.addAdapterFactory(new ReflectiveItemProviderAdapterFactory());
5 BasicCommandStack commandStack = new BasicCommandStack();

commandStack.addCommandStackListener(new CommandStackListener() {...});
7 editingDomain = new AdapterFactoryEditingDomain(adapterFactory, commandStack, ...);

Tree tree = new Tree(composite, SWT.MULTI);
9 TreeViewer viewer = new TreeViewer(tree);

viewer.setContentProvider(new AdapterFactoryContentProvider(adapterFactory));
11 viewer.setLabelProvider(new AdapterFactoryLabelProvider(adapterFactory));

viewer.setInput(editingDomain.getResourceSet());
13 new AdapterFactoryTreeEditor(viewer.getTree(), adapterFactory);

Listing 1.1. An example of typical recurrent use of EMF functionalities to setup a tree viewer

1.1 Motivations

EMF provides some mechanisms for generating user interface code, in particular, it can
also generate an editor (based on a tree viewer) for an EMF metamodel. Indeed, besides
the classes for the model, EMF can generate an additional plugin (called edit plugin)
with an editing framework, i.e., classes not directly dealing with UI functionalities,
but that can be used for generic editing features (based on EMF.Edit [5,1]); then, it
generates a plugin which directly deals with the UI part, in the shape of an editor and
some wizards, which rely on the generated editing framework for the metamodel.

The main problem for the programmer is that all these mechanisms have to be setup
and initialized correctly in order to achieve the desired functionalities; this initialization
requires many lines of code, which are recurrent, require some deeper knowledge, and
tend to fill the code with too many distracting details. For instance, in Listing 1.1 we
show the typical Java code which is very recurrent in applications that use EMF models
and UI functionalities to setup a tree viewer. Note that such code is full of many internal
details. As we will show in the next sections, our goal is to factor out this recurrent
code in such a way that UI components can be setup with only a few lines of code
(Listing 1.4, Section 2.1).

EMF standard generation mechanisms are based on specific Javadoc comments, i.e.,
@generated, for fields, methods and classes: future generations will overwrite all
the previously generated Java code elements unless the user removes that @gener-
ated from specific declarations (or replaces it with @generated NOT). An example
of customization of labeling in a class generated by EMF into the edit plugin (related
to the classic EMF Library example) is shown in Listing 1.2. We observe that even for
specifying the image for instances of Book we need to go into the generated Item-
Provider class, and specify the path of the image (note also other distracting de-
tails like overlayImage, ResourceLocator, etc.). If we need to customize the
images for all the EClasses of our model, we need to modify every generated Item-
Provider class. Instead, we would like to specify these customizations more directly,

54 Lorenzo Bettini

1 public class BookItemProvider extends ... {
/∗∗ @generated NOT ∗/

3 @Override public Object getImage(Object object) {
return overlayImage(object, getResourceLocator().getImage("mypath/

custom_book.png"));
5 }

7 /∗∗ @generated NOT ∗/
@Override public String getText(Object object) {

9 return "Book: " + " " + ((Book)object).getTitle();
}

Listing 1.2. An example of typical customization of EMF labeling

and possibly grouped in one place, which is easier to maintain. We will show our
customization strategies in Section 3. Another problem with this @generated and
@generated NOT mechanism is that it might easily get difficult to keep track of cus-
tom modifications to the generated code.

Moreover, the editor generated by EMF is not effectively designed to promote code
reuse: the generated editor is a monolithic class consisting of more than two thousand
lines of code, with many inner classes. Indeed, if one compares the editors generated for
two different metamodels, the differences are really minimal, thus the classes generated
by EMF for the UI components lead to a huge amount of duplicated code.

The paper is structured as follows: in Section 2 we describe some components of
our framework, with some examples. Section 3 describes how the components of our
framework can be customized. Section 4 introduces our new DSL for easily specifying
customizations in a compact form (the DSL will then generate automatically the corre-
sponding Java classes). Section 5 concludes the paper with related work and hints for
future directions.

2 EMF Components

Our main design choice in developing EMF Components was to split responsibilities
into small classes (following the Single Responsibility Principle [6]), so that customiz-
ing a single aspect of UI components does not require to subclass the components
themselves, but only to specialize the class that deals with that specific aspect. Cus-
tom implementations of specific aspects will be injected using dependency injection;
this way, all components relying on that aspect will be assured to use the custom ver-
sion. The Dependency Injection pattern [3] is used to “inject” actual implementation
classes into a class hierarchy in a consistent way. This is useful when classes delegate
specific functionalities to other classes: messages are simply forwarded to the objects
referenced in fields (which abstract the actual behavior). These fields will then be in-
stantiated through injection mechanisms so that we do not have the implementation
classes’ names hardcoded in the code of the classes that will use them, and we are sure
that, if we switch the implementation classes, we will do that consistently throughout
the code. Typically the same goal can be achieved manually by implementing factory

Rapidly Implementing EMF Applications with EMF Components 55

public class MyEmfComponentsModule extends EmfComponentsGenericModule {
2 public Class<? extends ResourceLoader> bindResourceLoader() {

return MyResourceLoader.class;
4 }

public Class<? extends ViewerMouseAdapter> bindViewerMouseAdapter() {
6 return ViewerMouseAdapter.class;

}
8 public Class<? extends PropertyDescriptionProvider>

bindPropertyDescriptionProvider() {
return PropertyDescriptionProvider.class;

10 }
}

Listing 1.3. A module with bindings

method and abstract factory patterns [7], but with dependency injection frameworks it
is easier to keep the desired consistency, and the programmer needs to write less code.

To this aim, we use Google Guice [2] which provides a framework for dependency
injection that makes all the injection mechanisms really easy to use, and relieves the
programmer from the most internal details of dependency injection. Guice relies on
Java annotations [8], in particular, @Inject, for specifying the fields that will be in-
jected, and on a module which configures the bindings for the actual implementation
classes; from the module we can build an injector which will be used to create the
actual instances of classes, where the fields will be actually injected according to the
bindings.

The user of EMF Components has to declare a subclass of EmfComponents-
GenericModule with custom bindings. Indeed, the programmer does not have to
perform all the initial setup operations: we provide a wizard that creates a new plu-
gin project with all these classes, and the programmer will only have to provide the
custom injection bindings. Furthermore, EMF Components relies on the enhancements
that Xtext [9,10]1 added to Guice’s Module API: Xtext provides an abstract base class,
which reflectively looks for certain methods in order to find declared bindings. The
most common kind of method that we rely on is of the shape bindXXX where XXX is
the name of the class for which we need to specify a binding. An example of custom
bindings relying on this reflective mechanisms is shown in Listing 1.3.

In the following we present the most important UI components provided by the EMF
Components framework; more components will be provided in the future.

2.1 Viewers

Eclipse JFace UI components often rely on viewers (e.g., tree viewers, table viewers,
etc.) which are not intended to be subclassed: indeed, they are parametrized over the
content provider, which takes care of providing the contents based on the input, and
other providers for the layout, for instance the label provider, which provides a textual
representation and an image for the elements to be shown by the viewer.

1 An Eclipse framework for the development of programming languages.

56 Lorenzo Bettini

1 public class MyView extends ViewPart {
@Inject ViewerInitializer initializer;

3

@Override public void createPartControl(Composite parent) {
5 ...

viewer = new TreeViewer(parent, ...);
7 // initialize with an EMF Resource

initializer.initialize(viewer, resource);
9 // or alternatively, if you have an EObject

initializer.initialize(viewer, eObject);
11 }

Listing 1.4. Initialization of a viewer with EMF Components

We provide a ViewerInitializer, with many overloaded methods, which can
be used to initialize the viewer with all the EMF mechanisms, but hiding the details
from the programmer. In Listing 1.4 we show an example of a view with a viewer. It
uses the injected ViewerInitializer to initialize the tree viewer (it can initialize
it based on an EMF Resource, or an EObject).

We invite the reader to compare the initialization code in Listing 1.4 with the one
which is typically used without using EMF Components, in Listing 1.1. All the initial-
ization details are carried on transparently by EMF Components classes. As we said,
there are several initialization methods available, and if the programmer needs it, he
can also specify all the providers for the viewers. In particular, if the programmer needs
access to the EMF EditingDomain, he can create it and pass it to the initialization;
but also in this case, we provide utility mechanisms for creating (and initializing) an
EditingDomain without having to worry about initializing the adapter factories for
the editing domain itself (see the manual initialization in Listing 1.1).

2.2 Composites

The smallest components that EMF Components provides as reusable units are Eclipse
Composites. We provide composites to be reused in views and editors based on sev-
eral viewers. Also in this case, the setup instructions for these components is minimal.

The problem with SWT Composites is that they do not expose a default constructor;
this is crucial for dependency injection to work. Thus, we provide factories to be used
to actually create these composites; the idea is that one passes to the factory the argu-
ments for the constructor, and, internally, the factory will also setup all the injection
mechanisms.

We will not describe here all the composites provided by the EMF Components
framework; we concentrate on the form composite FormDetailComposite which
shows the details of an EObject in a SWT form, and allows to edit such details. This
is something that was currently missing in the EMF framework itself: the EMF frame-
work only provides mechanisms to edit details of an EObject in the Eclipse standard
Properties view, which might be limited in its functionalities. The SWT form toolkit
instead provides richer UI features.

Rapidly Implementing EMF Applications with EMF Components 57

1 public class MyView extends ViewPart implements ISelectionChangedListener {
@Inject FormFactory factory;

3 Composite detail;
FormDetailComposite detailForm;

5

@Override
7 public void createPartControl(Composite parent) {

detail = new Composite(this, SWT.BORDER);
9 }

11 @Override
public void selectionChanged(SelectionChangedEvent event) {

13 EObject selectedObject = getFirstSelectedEObject(event.getSelection());
if (selectedObject != null) {

15 // relevant lines
detailForm = factory.createFormDetailComposite(detail, SWT.BORDER);

17 detailForm.init(selectedObject);
}

19 }
...

21 }

Listing 1.5. Using the FormDetailComposite

In Listing 1.5 we show a possible use of FormDetailComposite: we create
a view which reacts on selections from other elements of the workbench, and if the
selected element is an EObject it shows its details in the form. We highlighted the two
relevant lines in the Listing which show how easy is to create this composite and set
it up: we create an instance of the form using the injected factory and we initialize it
with selected object. All the other code in Listing 1.5 has to do with Eclipse and SWT,
not with EMF Components itself. Indeed, we showed the code in Listing 1.5 as an
example of use of EMF Components; however, this view class is already part of EMF
Components framework, and it can already be reused in applications (as in the Mail
example in Section 4).

In Figure 1 we show a reusable editor provided by EMF Components and the form
view implemented in Listing 1.5 (which shows the currently selected object fields for
editing). Note that the “dirty” state (the * in the tab) is handled by the EMF Components
framework automatically. Moreover, any change to the model in any view or editor
which is connected to the same resource will soon be reflected in all the components
using that resource: this takes place transparently, since the EMF Components widgets
rely on EMF Databinding [11], which connects the model and the user interface.

3 Customizations

If one has used the EMF standard generation mechanisms to generate the edit plugin,
and possibly customized some behavior in the edit plugin, all these customizations will
be honored by EMF Components UI widgets.

58 Lorenzo Bettini

Fig. 1. A tree editor and a form view

However, in EMF Components, we provide the customization mechanisms (based
on injection) which aim at making the customization of editing functionalities easier
than the standard EMF.Edit framework.

The Xtext framework (on which we rely to implement some internal mechanisms
of EMF Components) provides a mechanism, through the class PolymorphicDis-
patcher, for performing (overloaded) method dispatching according to the runtime
type of arguments, a mechanism known as dynamic overloading [12,13]2. This dis-
patching mechanism does not require a visitor structure [7] since it inspects the avail-
able methods in a class and selects the method using reflection. By relying on this, we
can provide a declarative way of specifying custom behaviors according to the class
of objects of an EMF model (though the internal details about the use of Polymor-
phicDispatcher are hidden to the programmer).

For instance, by implementing a derived ViewerLabelProvider (the label
provider of our framework), the programmer can specify the text and image for la-
bels of the objects of the model by simply defining several methods text and image,
respectively, using the classes of the model to be customized as parameters. An example
is shown in Listing 1.6 (applied to the classic EMF Library example). These methods
will be used internally by our label provider to implement the LabelProvider’s
methods getText and getImage. Compare this code, which allows to customize
in only one place the representation of the elements of a model, with the code in List-
ing 1.2, which refers to one single customization. With respect to Listing 1.2 we would
also like to observe the absence of inner details (especially for the images). Injecting
this customization in the framework is just a matter of defining the binding in the Guice
module, as shown in Listing 1.7.

2 While most compiled or statically-typed languages (such as Java) determine which implemen-
tation to call at compile-time.

Rapidly Implementing EMF Applications with EMF Components 59

1 public class CustomLabelProvider extends ViewerLabelProvider {
public String text(Book book) { return "Book: " + book.getTitle(); }

3 public String image(Book book) { return "book.png"; }
public String text(Borrower b) { return "Borrower: " + b.getFirstName(); }

5 // other customizations
}

Listing 1.6. An example of customization of labeling in EMF Components

public class MyCustomModule extends EmfComponentsGenericModule {
2 public Class<? extends ViewerLabelProvider> bindViewerLabelProvider() {

return CustomLabelProvider.class;
4 }

...
6 }

Listing 1.7. An example of bindings of customization of labeling

Another thing that the programmer might want to customize is the representation of
the EStructuralFeatures of the model, i.e., the descriptions of the fields of the
elements of the model. Again, we provide a declarative way to do this, through a Prop-
ertyDescriptionProvider, as illustrated in Listing 1.8; note that this time, the
name of the method for customizing the text of the feature must contain the name of the
EClass and the name of the specific feature of such EClass. For instance, text Per-
son firstName will be called to get the description of the feature firstName of a
Person.

public class CustomPropertyDescriptionProvider extends PropertyDescriptionProvider {
2 public String text Person firstName() { return "First name"; }

public String text Person lastName() { return "Surname"; }
4 }

Listing 1.8. An example of customization of EStructuralFeatures label representations in EMF
Components

Similarly, we might want to specify only a subset of features to be shown in the
UI components of a model; for this task, the EMF Components framework relies on
FeaturesProvider; the programmer can customize it and specify the features to
be shown for some of the classes of the model; the customization shown in Listing 1.9
should be self-explanatory3: for an object of class Library we want to show only its
features name and address, etc.

Note that the customizations are not limited to classes belonging to a single EMF
metamodel package: in one single place we can provide customization for every EMF
classes that we intend to use with EMF Components widgets.

All these classes are used internally by the EMF Framework to represent models in
the widgets; thus a custom injected implementation will be used consistently throughout

3 Due to lack of space, we do not show here the corresponding mechanism dealing with the
customization of EMF generated code; the interested reader can compare our solution with the
typical example of EMF: the Library example.

60 Lorenzo Bettini

import static org.eclipse.emf.examples.extlibrary.EXTLibraryPackage.Literals.∗;
2

public class CustomFeaturesProvider extends FeaturesProvider {
4 @Override protected void buildMap(EClassToEStructuralFeatureMap map) {

super.buildMap(map);
6 map.mapTo(LIBRARY,

LIBRARY NAME, ADDRESSABLE ADDRESS);
8 map.mapTo(PERSON,

PERSON FIRST NAME, PERSON LAST NAME,
ADDRESSABLE ADDRESS);

10 map.mapTo(WRITER,
PERSON FIRST NAME, PERSON LAST NAME,

WRITER BOOKS);
12 }

}

Listing 1.9. An example of customization of EStructuralFeatures to be represented in EMF
Components

the application for all the UI components created with the same injector. For instance,
the custom implementations shown in Listing 1.8 and 1.9 will be used when building
the forms (described in Section 2.2) and the column headers for table viewers (as shown
in Figure 2).

In Figure 2 we show the same components of Figure 1, after applying the customiza-
tions of Listing 1.8 and 1.9. The customizations of Listing 1.8 can be seen in the form
where the labels for the features firstName and lastName have been changed; the
customizations of Listing 1.9 can be seen again in the form: only the features first-
Name, lastName and books are represented (see the last mapping in Listing 1.9).
In Figure 2 we also show a tabular view (another example of use of EMF Components
framework which we did not illustrate in this paper); note that since the same cus-
tomized FeaturesProvider was used, the headers of the columns in the table for
the selected writer respect the customizations of Listing 1.8 and 1.9.

4 A DSL for Customization

To make EMF Components easier to use we recently developed a DSL with Xtext [9,10].
Xtext is a framework for the development of programming languages: it provides high-
level mechanisms that generate all the typical and recurrent artifacts necessary for a
fully-fledged IDE on top of Eclipse. With our DSL we can easily specify and customize
the components without writing Java classes and custom Guice module bindings (that
we illustrated in Section 3). From such a specification the DSL will then generate all
the Java classes to implement the customized aspects and also the Guice module with
the correct bindings.

This DSL relies on Xbase [14], a reusable expression language, completely
integrated with Java, and shipped with Xtext. From Xbase the DSL “inherits” a rich
Java-like syntax for expressions (notably, closures and type inference, so that the pro-
grammer is not requested to write types in declarations explicitly) and the complete

Rapidly Implementing EMF Applications with EMF Components 61

Fig. 2. A tree editor, a form view and a tabular view with customizations

Java type system. Xbase also provides some syntactic sugar, like extension methods
and a concise getter/setter syntax (e.g., foo(a, b) can be written as a.foo(b),
and a.getFirstName() as a.firstName). In particular, the expression parts of
the DSL will be handled directly by Xbase, relieving the programmer from the big bur-
den of having to reimplement repetitive type checks. Xbase also allows to debug Xbase
expressions, thus it is also possible to directly debug the code of our DSL from the
Eclipse JDT debugger.

With the EMF Components DSL one defines a module which will correspond to a
Guice module in the generated Java code; inside this module definition the programmer
can specify customizations for the aspects we described in Section 3; the DSL will then
generate the corresponding Java classes, and the corresponding custom bindings in the
generated Guice module. To give an idea of the compactness of this specification, we
note that the specification in Listing 1.10 corresponds to all the Java code manually
written in Listings from 1.6 to 1.9.

Most of all, the class names in Listing 1.10 actually refer to the corresponding Java
classes, and from the DSL editor one can directly navigate to their sources; further-
more, the editor provides syntax highlighting and code completion for all Java types.
Moreover, the feature names in propertyDescriptionProvider and featuresProvider
are bound to the corresponding EMF features; again, one can navigate to those features
and get code completion for the features of the corresponding EMF class (Figure 3).
This also means that the DSL checks that the features specified actually belong to the
corresponding EMF class (Figure 4). This additional static checking is not available
when writing Java code manually. For instance, in Listing 1.8 one could easily mispell
the method name, e.g., text Person fstName and get no static error (but at run-
time the GUI widgets will not have the desired behavior); similarly, in Listing 1.9 one
could map a feature to the wrong class (e.g., PERSON FIRST NAME to LIBRARY)

62 Lorenzo Bettini

1 module MyCustomModule {
labelProvider {

3 text {
Book b −> "Book: " + b.title

5 Borrower b −> {"Borrower: " + b.firstName}
}

7 image {
Book −> "book.png"

9 }
}

11 propertyDescriptionProvider {
text {

13 Person : firstName −> "First name"
Person : lastName −> "Surname"

15 }
}

17 featuresProvider {
features {

19 Library −> name, address
Person −> firstName, lastName, address

21 Writer −> firstName, lastName, books
}

23 }
}

Listing 1.10. An example of module definition in EMF Components DSL

without getting an immediate error. Instead, with the DSL, these checks are performed
statically, as shown in Figure 4.

As a final example, in Figure 5, we show an RCP application implemented with
EMF Components and its DSL. This is similar to the classic Mail RCP application ex-
ample which comes with Eclipse. It is not intended to be an actual email client, but it
concentrates on the user interface part.

We refer to http://code.google.com/a/eclipselabs.org/p/emf-components for the com-
plete source code of the example. Here, we only want to stress that for implementing
this user interface we had to write only about 15 lines of Java code for each view, and
an average of 15 lines of EMF Components code for the customization.

Since our DSL relies on Xbase, we can specify, for instance, the labelProvider with
a Java-like syntax, as shown in Listing 1.11. Thus, using the DSL instead of Java does
not prevent from writing involved customizations.

5 Related Work and Conclusions

Most of the projects that deal with customization in the context of EMF are based on the
generative approach. Indeed, EMF itself relies on JET (a template system) for code gen-
eration. Thus, the programmer could also provide custom templates to drive the gener-
ation of Java code performed by EMF. Other similar technologies (like EEF and EGF),

Rapidly Implementing EMF Applications with EMF Components 63

Fig. 3. Code completion for EMF features

Fig. 4. Validation in the DSL editor

Fig. 5. An RCP application implemented with EMF Components

which are available from Eclipse Modeling Framework Technology (EMFT) [15] are
also based on the generative approach. The EMF Components framework can be seen
as complementary to the generative approaches. Our framework is also orthogonal to

64 Lorenzo Bettini

...
2 labelProvider {

image {
4 Account −> "account.gif"

Folder −> {
6 switch (name) {

case "Inbox" : "inbox.gif"
8 case "Sent" : "sent.png"

case "Trash" : "trash.png"
10 default: "folder.gif"

}
12 }

}
14 ...

Listing 1.11. Customization of the label provider for accounts view

GUI builders, since EMF Components is more related to bridging the models to the
abstract editing parts, and not to the actual GUI framework.

Thus EMF Components does not generate code for the components and does not
require the programmer to modify that generated code: the programmer uses the pro-
vided components and injects the customized code. The only point where we use code
generation is in the DSL (Section 4); but also in this case we only generate the code for
the customization, not the code of the components themselves.

The work that is closest to our framework is the EMF Client Platform (ECP) [16], a
framework to build EMF-based client applications. The goal of ECP is to provide a very
quick mechanism to create an application based on a given EMF model. The main differ-
ence between our framework and ECP is that EMF Components aims at providing many
fine grain components to build an application based on EMF, while ECP already provides
an application ready to use. With this respect, our customizations, and our components,
are easier to reuse since they are smaller. With EMF Components the programmer has the
complete freedom on how to build the application, while ECP provides a more rigid tem-
plate. Furthermore, the customizations inside ECP do not rely on dependency injection
and the declarative style (based on polymorphic dispatching). We are currently investi-
gating about the reuse of our EMF Components inside ECP, and also about the possibility
of rewriting some parts of ECP itself by relying on EMF Components.

There are already existing technologies to persist EMF models on databases. The
most used ones are Teneo and CDO. Teneo EMF resources can already be used seam-
lessly with existing EMF editing and UI technologies, thus, Teneo resources can be
integrated in EMF Components transparently as well. Things are instead more compli-
cated for CDO resources. Indeed, CDO offers transactions capabilities, explicit locking,
change notification, and branching/merging over models, and for this reason setting up
a CDO resource requires more work. EMF Components internally recognizes CDO re-
source URIs and uses a dedicated resource loader which automatically creates a trans-
action (or a view, in case we use read-only widgets) and returns the associated CDO
resource. Thus, also CDO resources can be used transparently inside EMF Compo-
nents, relieving the programmer from all the internal details.

Rapidly Implementing EMF Applications with EMF Components 65

Simply by using a CDO URI format for a resource, all existing code implemented
using EMF Components can already be reused for models stored using CDO. Indeed
EMF Components was designed with test driven development [17] and agile program-
ming [6] in mind; thus, it must be easy to switch from a development/testing environ-
ment to a production one. With the mechanism described above to hide the details of
the actual storage of a model, it is straightforward to use, for instance, an in memory
model during development stage, and an actual CDO model for the production.

We are planning to integrate other EMF technologies in the EMF Components frame-
work, like queries, transactions and advanced validation mechanisms (though the
standard EMF validation mechanisms are already handled inside EMF Components).

Acknowledgements. The author is grateful to all the people from RCP Vision for their
help, support and contribution to the development of EMF Components.

References

1. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling Framework,
2nd edn. Addison-Wesley (2008)

2. Google: Google Guice (2012), http://code.google.com/p/google-guice
3. Fowler, M.: Inversion of Control Containers and the Dependency Injection pattern (2004),

http://www.martinfowler.com/articles/injection.html
4. Bettini, L.: EMF Components - Filling the Gap between Models and UI. In: ICSOFT, pp.

34–43. SciTePress (2012)
5. EMF.Edit: EMF.Edit (2004), http://help.eclipse.org/galileo/index.jsp?

topic=/org.eclipse.emf.doc/references/overview/EMF.Edit.html.
6. Martin, R.: Agile Software Development: Principles, Patterns, and Practices. Prentice Hall

(2003)
7. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable

Object-Oriented Software. Addison-Wesley (1995)
8. Sun Microsystems, Inc.: JSR 308: Annotations on java types (2007),

http://jcp.org/en/jsr/detail?id=308
9. Itemis: Xtext (2012), http://www.eclipse.org/Xtext

10. Eysholdt, M., Behrens, H.: Xtext: implement your language faster than the quick and dirty
way. In: SPLASH/OOPSLA Companion, pp. 307–309. ACM (2010)

11. Schindl, T.: EMF Databinding (2009),
http://www.eclipse.org/resources/resource.php?id=511

12. Castagna, G.: Object-Oriented Programming: A Unified Foundation. Progress in Theoretical
Computer Science. Birkhauser (1997)

13. Bettini, L., Capecchi, S., Venneri, B.: Featherweight Java with Dynamic and Static Over-
loading. Science of Computer Programming 74, 261–278 (2009)

14. Efftinge, S., Eysholdt, M., Köhnlein, J., Zarnekow, S., von Massow, R., Hasselbring, W.,
Hanus, M.: Xbase: implementing domain-specific languages for Java. In: GPCE, pp. 112–
121. ACM (2012)

15. Eclipse Modeling Framework Technology: Eclipse Modeling Framework Technology
(EMFT) (2012), http://www.eclipse.org/modeling/emft/

16. EMF Client Platform: EMF Client Platform (2012)
http://www.eclipse.org/emfclient.

17. Beck, K.: Test Driven Development: By Example. Addison-Wesley (2003)

http://code.google.com/p/google-guice
http://www.martinfowler.com/articles/injection.html
http://help.eclipse.org/galileo/index.jsp?topic=/org.eclipse.emf.doc/references/overview/EMF.Edit.html
http://help.eclipse.org/galileo/index.jsp?topic=/org.eclipse.emf.doc/references/overview/EMF.Edit.html
http://jcp.org/en/jsr/detail?id=308
http://www.eclipse.org/Xtext
http://www.eclipse.org/resources/resource.php?id=511
http://www.eclipse.org/modeling/emft/
http://www.eclipse.org/emfclient

Generic Programming in Pharo

Alexandre Bergel1,� and Lorenzo Bettini2

1 Pleiad Lab, Computer Science Department (DCC), University of Chile, Santiago, Chile
2 Dipartimento di Informatica, Università di Torino, Italy

abergel@dcc.uchile.cl, bettini@di.unito.it

Abstract. Dynamically typed object-oriented languages have been left out of
the scope of generic programming: in a dynamically typed setting, the need for
generic programming has been less prominent since no restriction applies over the
kind of elements a collection may contain. However, when creating an object, the
class name is hardcoded in the program, and this makes the object instantiation
process hard to abstract from.

In this paper, we describe our implementation of generic programming in
Pharo, a Smalltalk dialect, showing how programmers can benefit from generic
programming even in a dynamically typed language. Furthermore, we enhance
the expressiveness of generic programming with reverse generics, a mechanism
for automatically deriving new generic code starting from existing non-generic
one.

As a case study, we show how we used generics and reverse generics in Pharo
to reuse unit test cases and to identify a number of bugs and anomalies in the
stream class hierarchy.

1 Introduction

Generic programming [1, 2], a mechanism for abstracting specific types used in classes
and programs, has a widespread use in statically typed programming languages (e.g.,
Java [3], C++ [4], C#[5], Scala [6]). Generics in Java and C# were introduced to stati-
cally check code validity as a safer alternative to down-casts. Generics are also a useful
mechanism to promote code reuse [7]. In the context of C++ and its STL (Standard
Template Library) [1, 8], generic programming mainly deals with generic algorithms,
i.e., implementations of standard algorithms which are independent of the underlying
data structure representations; then, in the STL, generic programming is extended also
to standard data structures such as lists, stacks, etc.

On the contrary, in a dynamically typed language like Smalltalk, where types are
absent in declarations of linguistic entities (like methods, fields, local variables), the
need for generic programming has been less prominent since no restriction applies over
the kind of elements a collection may contain. However, there is still a crucial context
where types (i.e., class names) appear statically in a dynamically typed language: class
references. In particular, when creating an object, the class name is hardcoded in the
program, and this makes the object instantiation process hard to abstract from. There

� This author has been partially supported by Program U-INICIA 11/06 VID 2011, grant U-
INICIA 11/06, University of Chile, and by FONDECYT number 1120094.

J. Cordeiro, S. Hammoudi, and M. van Sinderen (Eds.): ICSOFT 2012, CCIS 411, pp. 66–79, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Generic Programming in Pharo 67

are some patterns to deal with this problem, such as Factory Method [9], Dependency
Injection [10], Virtual classes [11] and ad-hoc linguistic constructs [12]. However, these
mechanisms are effective when future extensions are foreseen: they provide little help
in a scenario of unanticipated code evolution in which the programming language does
provide dedicated evolutionary construct.

In [13] we first introduced Reverse generics, the dual generic programming mech-
anism that enables the definition of a generic class from a non generic one. We call
this mechanism generalization. It allows obtaining a brand new generic class from an
existing class by “removing” hardwired class references, and by replacing them with
parametrized types. For instance, G<T> = C>C’< generates the new generic class
G<T> starting from the class C by replacing each reference of a class C’ contained
in C with the type parameter T in G. It is the dual operation of the instantiation opera-
tion offered by generics. The generic class G can then be instantiated into G<U> for a
provided class U. Note that, the reverse generics mechanism satisfies the property C =
(C>T<) <T>.

An important point is that the original class C remains unmodified. For this reason,
reverse generics are useful under the basic assumptions that (i) the code to be reused
has to be left intact (it cannot be the subject of refactoring) and (ii) the host program-
ming language does not implicitly support for looking up classes dynamically (as this
is the case in most dynamically languages, except for NewSpeak that supports virtual
classes [11]). Thus, the main aim of reverse generics is to provide a generative approach,
where new generic code is (automatically) generated starting from existing one, and the
latter will not be modified at all; for this reason, reverse generics are not, and they do
not aim at, a refactoring technique (we also refer to Section 7).

In this paper we present our implementation of generics and reverse generics in the
Pharo Smalltalk programming language with. We adapted the reverse generics to cope
with the lack of static type information (in [13] reverse generics were studied in the con-
text of statically typed languages such as Java and C++). We also provide mechanisms
for structural and nominal requirements both for generics and reverse generics in Pharo:
these requirements on type parameters can be a safety net for a sound instantiation.

Although our implementation has been realized in a dialect of Smalltalk, nothing
prevents from using this mechanism in other dynamically typed languages, like, e.g.,
Ruby and Python. Even though similar mechanisms have been proposed in Groovy [14],
to the best of our knowledge, this is the first attempt to add a generic-like construct to
Smalltalk. (The Groovy case is discussed in the related work section).

We employed reverse generics to face a classical code reuse problem. Unit tests
in Pharo are inherited from Squeak, a Smalltalk dialect that served as a base for Pharo.
Those tests have been written in a rather disorganized and ad-hoc fashion. This situation
serves as the running example of this paper and was encountered when evolving the
Pharo runtime. This helped us identify a number of bugs and anomalies in the stream
class hierarchy.

The paper is structured as follows: in Section 2 we define our mechanism for generics
in Pharo and in Section 3 we describe the reverse generics model in Pharo; the imple-
mentation of both mechanisms is presented in Section 4. In Section 5 we use the de-
scribed mechanisms to a non trivial case study. In Section 6 we describe the integration

68 A. Bergel and L. Bettini

of our generic programming mechanism in the Pharo programming environment. Sec-
tion 7 summarizes the related work and Section 8 concludes the paper and gives some
perspectives on future work. This paper is the revised and extended version of [15].

2 Generics in Pharo

This section presents a mechanism for generic programming for the Pharo/Smalltalk
programming language1.

As popularized by mainstream statically typed programming languages, generic pro-
gramming provides a mechanism for defining template classes where some types are
variables/parameters and then for providing arguments for those type variables, thus in-
stantiating template classes into concrete and complete classes. In the following, we then
use the term template class to refer to a class where some types are parametrized; accord-
ingly, we refer to a concrete/complete class when all the arguments for parametrized types
are provided.

The presentation of the mechanism is driven by a test-reuse scenario. We will first
define a test called GCollectionTest. This test will be free from a particular class of
the collection framework. GCollectionTest will be instantiated twice, for two different
fixtures based on OrderedCollection and SortedCollection.

Consider the following code snippet containing a test that verifies elements addition.

”Creation of the class T”
GenericParameter subclass: #T

”Creation of the class GCollectionTest with a variable”
TestCase subclass: #GCollectionTest

instanceVariableNames: ’collection’

”Definition of the setUp method”
”It instantiates T and add 3 numbers in it”
GCollectionTest>> setUp

collection := T new.
collection add: 4; add: 5; add: 10.

”Definition of the test method testAddition”
”It adds an element in the collection defined in setUp”
GCollectionTest>> testAddition

| initialSize |
initialSize := collection size.
collection add: 20.
self assert: (collection includes: 20).
self assert: (collection size = (initialSize + 1)).

GCollectionTest is a standard unit test in the spirit of the xUnit framework (most of
the 115 classes that test the Pharo collection library follow a very similar structure). No
reference to a collection class is made by GCollectionTest. The method setUp refers to

1 http://www.pharo-project.org

http://www.pharo-project.org

Generic Programming in Pharo 69

the empty class T. GCollectionTest may be instantiated into OrderedCollectionTest and
SortedCollectionTest as follows:

”Instantiate GCollectionTest and replace
occurrences of T by OrderedCollection”

(GCollectionTest @ T-> OrderedCollection)
as: #OrderedCollectionTest

”Replace T by SortedCollection”
(GCollectionTest @ T -> SortedCollection)

as: #SortedCollectionTest

The generic class GCollectionTest has been instantiated twice, each time assigning
a different class to the parameter T. We adopted the convention of defining generic
parameter as subclasses of GenericParameter. This convention has a number of advan-
tages, as discussed in Section 4. Since GCollectionTest contains references to T, it is a
generic class. There is therefore no syntactic distinction between a class and a generic
class. GCollectionTest is a generic class only because T is a generic parameter and T is
referenced in setUp.

Pharo has been extended to support the (... @ ... -> ...) as: ... construct. These three
operators defines the life cycle of a generic in Pharo.

2.1 Requirements for Generic Parameters

In order for a generic class to be instantiated, a class needs to be provided for each
generic parameter. To prevent generic instantiation to be ill-founded, requirements for
a generic parameter may be declared. These requirements are enforced when a generic
class is instantiated. Requirements are formulated along nominal and structural defini-
tions of the base code.

Nominal Requirements. Static relationship between types may be verified when in-
stantiating a generic class. In the example above, T must be a subtype of Collection2.
This is specified by defining a method requirements that returns myself inheritsFrom:
Collection:

T>> requirements
ˆ(myself inheritsFrom: Collection)

In that case, instantiation of GCollectionTest raises an error if a class that is not a
subclass of Collection is provided as parameter.

Note that we introduced the myself pseudo variable. This variable will be bound to
the class provided as the generic parameter when being instantiated. The variable self,
which references the receiver object, cannot be used within requirements.

2 We use the following convention: a class is a type when considered at compile time, and it is
an object factory at runtime.

70 A. Bergel and L. Bettini

Structural Requirements. In addition to nominal requirements, a generic parameter
may be also structurally constrained. A constraint is satisfied based on the presence of
some particular methods. In the example above, a method check may return

myself includesSelectors: {#add: . #includes: . #size}

In that case, only a class that implements the method add:, includes:, and size can be
provided in place of T.

We express a requirement as a boolean expression. The keyword inheritsFrom: and
includesSelectors: are predicates. They may therefore be combined using boolean logic
operators. For instance, we can express all the above requirements as follows:

T>> requirements
ˆ(myself inheritsFrom: Collection)

and: [myself includesSelectors:
{#add: . #includes: . #size}]

Dynamically typed languages favor sophisticated debugging and testing sessions
over static source code verification. The lack of static type annotation makes any iso-
lated check on a generic not feasible. Completeness of T’s requirements cannot be ver-
ified by the compiler, thus, it is up to the programmers to provide a set of satisfactory
requirements when defining generic parameters. In practice, this has not been a source
of difficulties.

3 Reverse Generics in Pharo

This section presents the reverse generics mechanism in Pharo; we will use a scenario
that consists of reusing unit tests. Consider the following class WriteStreamTest taken
from an earlier version of Pharo:

ClassTestCase subclass: #WriteStreamTest

WriteStreamTest >> testIsEmpty
| stream |
stream := WriteStream on: String new.
self assert: stream isEmpty.
stream nextPut: $a.
self deny: stream isEmpty.
stream reset.
self deny: stream isEmpty.

The class WriteStreamTest is defined as a subclass of ClassTestCase, itself a subclass
of SUnit’s TestCase. WriteStreamTest defines the method testIsEmpty, which checks
that a new instance of WriteStream is empty (i.e., answers true when isEmpty is sent).
When the character $a is added into the stream, it is not empty anymore. And resetting
a stream moves the stream pointer at the beginning of the stream, without removing

Generic Programming in Pharo 71

its contents. WriteStreamTest has 5 other similar methods that verify the protocol of
WriteStream.

We consider that most of the important features of WriteStream are well tested.
However, WriteStream has 27 subclasses, which did not receive the same attention in
terms of testing. Only 3 of these 27 classes have dedicated tests (FileStream, Read-
WriteStream and MultiByteFileStream). Manually scrutinizing these 3 classes reveals
that the features tested are different than the one tested in WriteStreamTest3.

The remaining 24 subclasses of WriteStream are either not tested, or indirectly tested.
An example of an indirect testing: CompressedSourceStream is a subclass of
WriteStream for which the feature of WriteStream are not tested. CompressedSourceS-
tream is essentially used by the file system with FileDirectory, which is tested in
FileDirectoryTest.

The situation may be summarized as follows: WriteStream is properly tested and has
22 subclasses, but none of these subclasses have the features defined in WriteStream
tested for their particular class.

This situation has been addressed by refactoring the collection framework using
TraitTest [16]. We make a different assumption here: the base system must be pre-
served, which implies that a refactoring is not desirable. Refactoring may have some
implications on the overall behavior, especially in terms of robustness and efficiency. It
has been shown that inheritance is not that helpful in this situation [17, 18].

With our implementation of reverse generics in Pharo, a generic class GStreamTest
can be obtained from the class WriteStreamTest by turning all references of WriteStream
into a parameter that we name T.

Generic
named: #GStreamTest
for: WriteStream -> T @ WriteStreamTest

Following a Java-like syntax [13], the above code corresponds to the following re-
verse generic definition:

class GStreamTest<T> = WriteStreamTest>WriteStream<

The generic GStreamTest is defined as a copy of WriteStreamTest for which all ref-
erences to WriteStream have been replaced by the type T introduced in the previous
section (Section 2). GStreamTest may now be instantiated by replacing all references
of WriteStream with untested subclasses of WriteStream as illustrated in Section 2:

”Instantiate GStreamTest and replace occurrences of T
by ZipWriteStream”

(GStreamTest @ T-> ZipWriteStream)
as: #ZipWriteStreamTest

”Replace T by HtmlFileStream”
(GStreamTest @ T -> HtmlFileStream)

as: #HtmlFileStreamTest

3 According to our experience, this is a general pattern. Often programmers focus essentially on
testing added methods and variable when subclassing.

72 A. Bergel and L. Bettini

testIsEmpty
testNextPut
...

WriteStreamTest

testIsEmpty
testNextPut
...

GStreamTest

testIsEmpty
testNextPut
...

ZipWriteStreamTest
testIsEmpty
testNextPut
...

HtmlFileStreamTest

Generalization:
GStreamTest =

WriteStreamTest>WriteStream<

Generic
instantiation:

HtmlFileStreamTest =
GStreamTest<HtmlFileStream>

Generic
instantiation:

ZipWriteStreamTest =
GStreamTest<ZipWriteStream>

| stream |
stream := WriteStream
 on: String new.
self assert: stream isEmpty.
...

| stream |
stream := HtmlFileStream
 on: String new.
self assert: stream isEmpty.
...

| stream |
stream := ZipWriteStream
 on: String new.
self assert: stream isEmpty.
...

| stream |
stream := T
 on: String new.
self assert: stream isEmpty.
...

Fig. 1. Reusing WriteStreamTest.

Figure 1 summarizes the generalization and instantiation of the WriteStreamTest ex-
ample. Reverse generic targets class instantiation and sending messages to a class.

The above scenario could be solved by having a super abstract class in which the class
to be tested is returned by a method. This method could then be overridden in subclasses
(factory method design pattern [9]). However, this solution is not always the best ap-
proach: First, tests of the collection libraries cannot be optimally organized using single
inheritance [16]. Second, the code to be reused may not always be editable and modifi-
able. This is often a desired property to minimize ripple effects across packages versions.

3.1 Requirements when Generalizing

We have previously seen that requirements may be defined on generic parameters
(Section 2.1). These requirements equally apply when generalizing a class. Turning refer-
ences of WriteStream into a parameter T may be constrained with the following
requirements:

T>> requirements
ˆ(myself inheritsFrom: Stream)

and: [myself includesSelectors: {#isEmpty . #reset}]

Further requirements could be that the parameter T understands the class-side mes-
sage on:, and the instance-side message nextPut:. However, this will be redundant with
the requirement myself inheritsFrom: Stream, since Stream defines the method nextPut:
and on:.

Generic Programming in Pharo 73

create
AbstractFactory

Object

create
 ^ Point new

PointFactory

create
 super create.
 counter := counter + 1

counter
EnhPointFactory

create
 ^ Car new

GeneratedName 2

create
 super create.
 counter := counter + 1

counter
CarFactory

CarFactory =
GEnhFactory<Car>

create
 ^ T new

GeneratedName 1

create
 super create.
 counter := counter + 1

counter
GEnhFactory

GEnhFactory =
EnhPointFactory>Point<

Fig. 2. Copying superclasses, illustrated with a generic class factory

Requirements may also be set for class methods, e.g.,myself class includesSelector:
{#new: } makes the presence of the class method new: mandatory.

3.2 Capturing Inherited Methods

Instantiating a generic G, which is obtained from generalizing a class C, makes copies
of C with connections to different classes. This process may also copy superclasses of
C when methods defined in superclasses need to have new references of classes. This
situation is illustrated in Figure 2.

A different example is adopted in this figure. The class AbstractFactory has an ab-
stract method create. PointFactory is a subclass of it that creates instances of Point (not
represented on the figure). This class is subclassed into EnhPointFactory that overrides
create to count the number of instances that have been created.

Consider the generic

GEnhFactory<T> = EnhPointFactory>Point<.

This generic may be instantiated with a class Car to produce cars instead of points:

CarFactory = GEnhFactory<Car>.

The class Point is referenced by the superclass of EnhPointFactory. Generalizing and
instantiating EnhPointFactory has to turn the Point reference contained in PointFactory
into Car. This is realized in reverse generics by automatically copying also the super-
class into a new generic class with a generated name.

The class inheritance is copied until the point in the hierarchy where no superclass
references a generic parameter.

74 A. Bergel and L. Bettini

4 Implementation

The homogeneity of Pharo and in general of most of Smalltalk dialects greatly eases
the manipulation of a program structural elements such as classes and methods. In
Smalltalk, classes and methods are first-class entities. They can be manipulated as any
object. A compiled method is a set of bytecode instructions with an array of literals.
This array contains all references to classes being used by this compiled method [19].

Instantiating a generic is made by copying a class, assigning a different name, and
adjusting the array of literals with a different set of class bindings.

A number of design decisions were made:

– The Pharo syntax has not been modified. This has the great advantage of not im-
pacting the current development and source code management tools. This is possi-
ble since classes are first-class objects in Pharo.

– The Smalltalk meta-object protocol has not been extended. Again, this decision
was made to limit the impact on the development tools. As a consequence, there
is no distinction between a generic and a class, thus the generic mechanism can be
implemented as a simple library to load.

Indeed these design choices are based also on past experience in Smalltalk exten-
sions: the last significant change of the language was realized in 2004 [20], when traits
have been introduced in Squeak, the predecessor of Pharo. In the current version of
Pharo, the support of traits is fragile at best (bugs are remaining and many tools are not
traits aware). This experience gained with traits suggests that realizing a major change
in the programming language is challenging and extremely resource consuming.

Note that, by using our reverse generics, one can modify the original existing code
(i.e., the classes that are not generic), and then, automatically, spread the modifications
to the one obtained by reverse generics.

The implementation presented in this paper is freely available (under the MIT li-
cense) at http://www.squeaksource.com/ReverseGeneric.html.

5 Case Study: Application to the Pharo Stream Hierarchy

The situation described in Section 3 is an excerpt of the case study we realized. For each
of the 24 subclasses of WriteStream, we instantiated GStreamTest. This way, about 24
new unit tests were generated. The WriteStreamTest class defines 6 test methods. We
therefore generated 24 * 6 = 144 test methods. Each of the generated test is a subclass of
ClassTestCase, which itself defines 3 test methods. Running these 24 unit tests executes
144 + 27 * 3 = 225 test methods.

Running these 225 test methods results in: 225 runs, 192 passed, 21 failures, 12 er-
rors. Since the 6 tests in WriteStreamTest pass, this result essentially says that there
are some functionalities that are verified for WriteStream, but they are not verified
for some of its subclasses. An example of the culprit test methods for the failures are
CrLfFileStreamTest>> testNew and LimitedWriteStreamTest>> testSetToEnd. The fact
that these two tests fail uncovers some bugs in the classes CrLfFileStream and Limited-
WriteStream.

Generic Programming in Pharo 75

The body of CrLfFileStreamTest>> testNew is

self should: [CrLfFileStream new] raise: Error

meaning that a CrLfFileStream should not be instantiated with new. However, the class
can actually be instantiated with new, resulting in a meaningless and unusable object.

Another example of a bug was found in LimitedWriteStream.This class is used to limit
the amount of data to be written in a stream. The body of LimitedWriteStreamTest>>

testSetToEnd is:

LimitedWriteStreamTest>> testSetToEnd
| string stream |
string := ’hello’.
stream := LimitedWriteStream with: ”.
stream nextPutAll: string.
self assert: stream position = string size.
stream setToEnd.
self assert: stream position = string size.
self assert: stream contents = string

It essentially verifies the behavior of the stream index cursor. This test signals an
error in the expression stream nextPutAll: string. By inspecting what triggered the error,
we discovered that when a LimitedWriteStream is instantiated with with: ”, the object is
initialized with a nil value as the limit, resulting in a meaningless comparison (newEnd
> limit in the method LimitedWriteStream>> nextPutAll:).

Not all the test methods that fail and raise an error are due to some bugs in the stream
class hierarchy. We roughly estimate that only 11 test methods of these 33 methods have
uncovered tangible bugs. The remaining failures and errors are due to some differences
on how class should be initialized. For example, the test StandardFileStreamTest>> test-
SetToEnd raises an error because a StandardFileStream cannot be instantiated with the
message with: (it is instantiated with fileNamed:, which requires a file name as argument).
Although no bug have been located, this erroneous test method suggests that the method
write: should be canceled (i.e., raise an explicit error saying it should be not invoked).

This experiment has a number of contributions:

– it demonstrates the applicability of our generics and reverse generics to a non-trivial
scenario,

– it helped us identify a number of bugs and anomalies in the Pharo stream hierarchy.

6 Integration in the Programming Environment

When put in practice, our generic mechanism raises a number of concerns, including cre-
ation and instantiation of generics and navigation within generic code. In the previous
section we have presented the approach from a programmatic point of view. However,
comfortably programming with generics involves a support from the programming envi-
ronment. We have extended the Pharo programming environment to cover basic needs.

Figure 3 lists the actions that should be supported by the programming environment
to cover elementary programming scenarios, such as creating and instantiating generics
and running unit tests. Each thick gray line represents a navigation command actionable
via a key shortcut.

76 A. Bergel and L. Bettini

Test Class Generic
Generic

Test

user action
dependency

Fig. 3. Actions supported by the programming environment

A practitioner may jump from the definition of a class to the generics that have been
created from. From a generic, one can jump to the classes instantiated and originating.
Use of test case is prominent in Pharo and our extension of the Pharo programming
environment covers the need to turn a unit test into a generic test.

Since highly parametrized software can be hard to understand [9], we may think of
a programming methodology where a specific class is developed and tested in a non-
generic way, and then it is available to the users via its “reversed” generic version (in
this case, we really need the non generic version for testing purposes, so the code must
not be refactored). Thus, reverse generics can be used as a development methodology,
not only as a way to turn previous classes into generic: one can develop, debug and
test a class with all the types instantiated, and then expose to the “external world” the
generic version created through reverse generics.

7 Related Work

In dynamically typed languages, like Smalltalk, where types are not used in declara-
tions, the context where generics are useful is in object instantiation; thus, with this
respect, the generics presented in this paper are related to C++ templates, rather than
to Java generics. (Indeed, due to the type erasure model [21, 3], generic types can-
not be instantiated in Java; we refer to [22, 23, 13] for a broader comparison between
Java generics and C++ templates.) The generics needed in the context of Smalltalk
act at a meta-level, by generating new classes starting from existing ones, thus, they
have similarities with generative programming mechanisms [24] and C++ meta pro-
gramming [25]. This meta programming mechanism is evident also in our generics and
reverse generics implementation in Pharo: new code is generated starting from existing
one, without modifying the latter. This takes place in two steps: with reverse generics a
brand new generic version is obtained starting from existing code; then, by instantiating
generic classes, the generic code is adapted and reused in a new context.

In order for generic types to be used and type checked in a generic class, those
types must be constrained with some type requirements. Constraints on generic types
are often referred to as concepts [26, 8]. Java generics require explicit constraints, thus
a concept is defined using a Java interface or a base class, and a type satisfies a con-
cept if it implements that specific interface or it extends that specific base class. On the
contrary, the C++ compiler itself infers type constraints on templates and automatically

Generic Programming in Pharo 77

checks whether they are satisfied when such generic type is instantiated. In our imple-
mentation, generic parameters can be assigned constraints using nominal (similarly to
Java) and structural requirements (similarly to concepts), as illustrated in Section 2.1.

There are similarities among reverse generics and some refactoring approaches: how-
ever, the intent of reverse generics is not to perform reverse engineering or refactoring of
existing code, (see, e.g., [27–29]) but to extrapolate possible generic “template” code
from existing one, and reuse it for generating new code. Note that this programming
methodology will permit modifying the original existing code, and then, automatically,
spread the modifications to the one obtained by reverse generics.

A first attempt to automatically extract generic class definitions from an existing
library has been conveyed by Duggan [27], well before the introduction of generics
into Java. Besides the reverse engineering aspect, Duggan’s work diverges from reverse
generics regarding downcast insertion and parameter instantiation. Duggan makes use
of dynamic subtype constraint that inserts runtime downcasts. A parametrized type may
be instantiated, which requires some type-checking rules for the creation of an object:
the actual type arguments must satisfy the upper bounds of the formal type parameters
in the class type. Kiezun et al. propose a type-constraints-based algorithm for converting
non-generic libraries to add type parameters [29]. It handles the full Java language and
preserves backward compatibility.

A limitation of first-order parametric polymorphism is that it is not possible to ab-
stract over a type constructor. Therefore, one cannot pass a type constructor as a type
argument to another type constructor. Template template parameters4 [30] in C++ pro-
vide a means to abstract over type constructors. Moors, Piessens and Odersky [31]
extended the Scala language [32] with type construction polymorphism to allow type
constructors as type parameters. Therefore, it is possible not only to abstract over a
type, but also over a type constructor; for instance, a class can be parametrized over
Container[T]5, where Container is a type constructor which is itself abstracted and can
be instantiated with the actual collection, e.g., List or Stack, which are type construc-
tors themselves. The generics mechanism presented in this paper acts at the same level
of first-order parametric polymorphism, thus, it shares the same limitations. An inter-
esting extension would be to be able to switch to the higher level of type constructor
polymorphism, but this is an issue that still needs to be investigated.

The Dependency Injection pattern [10] is used to “inject” actual implementation
classes into a class hierarchy in a consistent way. This is useful when classes delegate
specific functionalities to other classes. The reverse generics mechanism is not related
to object composition and delegation, i.e., the typical context of the inversion of control
philosophy that dependency injection deals with. With reverse generics the programmer
does not have to design classes according the pattern of abstracting the actual behavior
and then delegate it to factory methods; on the contrary the reverse generics mechanism
allows generating new code (i.e., new classes) from existing one, without modifying the
original code.

Package Template [33] is a mechanism for reusing and adapting packages by re-
binding class references (including class renaming and merging). A version has been

4 The repetition of “template” is not a mistake.
5 Scala uses [] instead of <>.

78 A. Bergel and L. Bettini

proposed for Groovy [14]. The reverse generics mechanism is able to turn a non generic
class into a generic one, while Package Template is not designed for this purpose.

Traits [34] were introduced in language Squeak/Smalltalk to counter the problems
of class-based inheritance with respect to code reuse: they provide reuse by sharing
methods across classes. Instead, generic programming (and also our generics) provides
a mechanism to abstract from the type implementing specific behavior. Combining
our generic mechanism with traits looks promising in that respect, also for the meta-
programming features of traits themselves [35].

8 Conclusions

The mechanisms presented in this paper provide features both to write generic code in
a dynamically typed language and to extrapolate possible generic “template” code from
existing one, and reuse it for generating new code. In our approach, class generaliza-
tion and generic instantiation is based on class copying, similarly to C++ templates.
Although this implies some code duplication in the generated code, this is consistent
with the meta-level which is typical of generative programming mechanisms [24].

A limitation of the implementation presented in this paper is that the generic parame-
ters (like T in Section 2 and Section 3) are global subclasses, thus there can be only one
such generic parameter (together with its requirements). However, in this first prototype
implementation of generics and reverse generics in Pharo, this did not prevent us from
using these mechanisms effectively (like the case study of Section 5) and to study their
applicability. In future versions, we will deal with this issue, and remove the “globality”
of generic parameters.

At the best of our knowledge, no generic (and reverse generic) programming lan-
guage construct is available in Smalltalk, Ruby and Python that achieve the same capa-
bilities as we presented in this paper. It is subject of future work to further investigate
whether our proposal can be applied to other dynamically typed languages.

References

1. Musser, D.R., Stepanov, A.A.: Generic programming. In: Gianni, P. (ed.) ISSAC 1988.
LNCS, vol. 358, pp. 13–25. Springer, Heidelberg (1989)

2. Dos Reis, G., Järvi, J.: What is generic programming? In: Proc. of LCSD (2005)
3. Bracha, G., Odersky, M., Stoutamire, D., Wadler, P.: Making the future safe for the past:

adding genericity to the Java programming language. In: OOPSLA, pp. 183–200. ACM
(1998)

4. Stroustrup, B.: The C++ Programming Language, 3rd edn. Addison Wesley (1997)
5. Microsoft: Generics (C# Programming Guide) (2005),

http://msdn.microsoft.com/en-us/library/512aeb7t(VS.80).aspx
6. Oliveira, B.C., Gibbons, J.: Scala for generic programmers. In: WGP, pp. 25–36. ACM (2008)
7. Meyer, B.: Genericity versus Inheritance. In: OOPSLA, pp. 391–405. ACM (1986)
8. Austern, M.H.: Generic Programming and the STL: using and extending the C++ Standard

Template Library. Addison-Wesley (1998)
9. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable

Object-Oriented Software. Addison-Wesley (1995)

http://msdn.microsoft.com/en-us/library/512aeb7t(VS.80).aspx

Generic Programming in Pharo 79

10. Fowler, M.: Inversion of Control Containers and the Dependency Injection pattern (2004),
http://www.martinfowler.com/articles/injection.html

11. Bracha, G., von der Ahé, P., Bykov, V., Kashai, Y., Maddox, W., Miranda, E.: Modules as
Objects in Newspeak. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 405–428.
Springer, Heidelberg (2010)

12. Cohen, T., Gil, J.: Better Construction with Factories. JOT 6, 103–123 (2007)
13. Bergel, A., Bettini, L.: Reverse Generics: Parametrization after the Fact. In: Software and

Data Technologies. CCIS, vol. 50, pp. 107–123. Springer, Heidelberg (2011)
14. Axelsen, E.W., Krogdahl, S.: Groovy package templates: supporting reuse and runtime adap-

tion of class hierarchies. In: DLS, pp. 15–26. ACM (2009)
15. Bergel, A., Bettini, L.: Generics and Reverse Generics for Pharo. In: ICSOFT, pp. 363–372.

SciTePress (2012)
16. Ducasse, S., Pollet, D., Bergel, A., Cassou, D.: Reusing and Composing Tests with Traits. In:

Oriol, M., Meyer, B. (eds.) TOOLS EUROPE 2009. LNCS, vol. 33, pp. 252–271. Springer,
Heidelberg (1975)

17. Flatt, M., Felleisen, M.: Units: Cool Modules for HOT Languages. In: PLDI, pp. 236–248.
ACM (1998)

18. Bergel, A., Ducasse, S., Nierstrasz, O.: Classbox/J: Controlling the Scope of Change in Java.
In: OOPSLA, pp. 177–189. ACM (2005)

19. Goldberg, A., Robson, D.: Smalltalk 80: the Language and its Implementation. Addison-
Wesley (1983)

20. Lienhard, A.: Bootstrapping Traits. Master’s thesis, University of Bern (2004)
21. Odersky, M., Wadler, P.: Pizza into Java: Translating theory into practice. In: POPL, pp.

146–159. ACM (1997)
22. Ghosh, D.: Generics in Java and C++: a comparative model. ACM SIGPLAN Notices 39,

40–47 (2004)
23. Batov, V.: Java generics and C++ templates. C/C++ Users Journal 22, 16–21 (2004)
24. Eisenecker, U.W., Czarnecki, K.: Generative Programming: Methods, Tools, and Applica-

tions. Addison-Wesley (2000)
25. Abrahams, D., Gurtovoy, A.: C++ Template Metaprogramming: Concepts, Tools and Tech-

niques from Boost and Beyond. Addison-Wesley (2004)
26. Kapur, D., Musser, D.R., Stepanov, A.A.: Tecton: A Language for Manipulating Generic

Objects. In: Staunstrup, J. (ed.) Program Specification 1981. LNCS, vol. 134, pp. 402–414.
Springer, Heidelberg (1982)

27. Duggan, D.: Modular type-based reverse engineering of parameterized types in Java code.
In: OOPSLA, pp. 97–113. ACM (1999)

28. von Dincklage, D., Diwan, A.: Converting Java classes to use generics. In: OOPSLA, pp.
1–14. ACM (2004)

29. Kiezun, A., Ernst, M.D., Tip, F., Fuhrer, R.M.: Refactoring for Parameterizing Java Classes.
In: ICSE, pp. 437–446. IEEE (2007)

30. Weiss, R., Simonis, V.: Exploring template template parameters. In: Bjørner, D., Broy, M.,
Zamulin, A.V. (eds.) PSI 2001. LNCS, vol. 2244, pp. 500–510. Springer, Heidelberg (2001)

31. Moors, A., Piessens, F., Odersky, M.: Generics of a higher kind. In: OOPSLA, pp. 423–438.
ACM (2008)

32. Odersky, M., Spoon, L., Venners, B.: Programming in Scala. Artima (2008)
33. Sørensen, F., Axelsen, E.W., Krogdahl, S.: Reuse and combination with package templates.

In: MASPEGHI, pp. 1–5. ACM (2010)
34. Ducasse, S., Nierstrasz, O., Schärli, N., Wuyts, R., Black, A.P.: Traits: A Mechanism for

fine-grained Reuse. ACM TOPLAS 28, 331–388 (2006)
35. Reppy, J., Turon, A.: Metaprogramming with Traits. In: Ernst, E. (ed.) ECOOP 2007. LNCS,

vol. 4609, pp. 373–398. Springer, Heidelberg (2007)

http://www.martinfowler.com/articles/injection.html

Peer-to-Peer Remote Service Discovery
in Pervasive Computing�

Stefan D. Bruda1, Farzad Salehi1, Yasir Malik2, and Bessam Abdulrazak2

1 Bishop’s University, Sherbrooke, QC J1M 1Z7, Canada
2 Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
stefan@bruda.ca, salehi@cs.ubishops.ca,

{yasir.malik,bessam.abdulrazak}@usherbrooke.ca

Abstract. Service discovery is important in realizing the concept of pervasive
computing; consequently, service discovery protocols must be able to work in
the heterogeneous environment offered by this computing paradigm. Remote ser-
vice discovery in particular has not been properly achieved so far. In an attempt
to remedy this we propose a new architecture for enabling local service discov-
ery mechanisms to discover services remotely. We first base our architecture on
Universal Plug and Play (UPnP) as an example of local service discovery pro-
tocols, and Gnutella as an example of peer-to-peer distributed search protocols.
We introduce a module called service mirror builder to the UPnP protocol, and a
remote communication protocol over a Gnutella network. We then note that our
architecture is actually independent on any locally deployed discovery protocol
and thus supports full interoperability.

1 Introduction

Mark Weiser gave birth to the vision of “ubiquitous computing” or “pervasive comput-
ing” (as named throughout this paper). He defined it as follows: Ubiquitous computing
is the method of enhancing computer use by making many computers available through-
out the physical environment, but making them effectively invisible to the user [1]. Com-
puting anytime, anywhere, and in any device means a massive presence of computing
devices in the physical world. At the same time, people should be able to access infor-
mation and computation in a user-centric way i.e., user interaction with such a system
must be natural and comfortable.

Pervasive computing offers an environment saturated with sensors, actuators, cam-
eras, and other sorts of computing devices; all these devices should work together and
satisfy users’ needs with minimal user intervention. Service discovery protocols are one
tool that accomplished this. Many service discovery protocols have been designed. The
dominant protocols (at least for home appliances) include Microsoft Universal Plug
and Play or UPnP [2], Bluetooth Service Discovery Protocol [3], Apple’s Bonjour, and
Sun’s Jini technology [4].

Current service discovery protocols are designed for home or enterprise environ-
ments [5]; the pervasive computing environment is however far more heterogeneous

� This research was supported by the Natural Sciences and Engineering Research Council of
Canada. Part of this work was also supported by Bishop’s University.

J. Cordeiro, S. Hammoudi, and M. van Sinderen (Eds.): ICSOFT 2012, CCIS 411, pp. 80–95, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Peer-to-Peer Remote Service Discovery in Pervasive Computing 81

and sophisticated. Furthermore, most service discovery protocols are designed to work
only in a local area network (LAN) [6], which is justified for the many services that
are physically-oriented (such as video projectors or coffee machines). Still, many other
services are not physically-oriented and are accessed by users physically far away from
them (such as the digital data in someone’s home, or sensors, actuators, and cameras
present in a place for security or health care purposes). Computing anywhere is also
the very definition of the concept of pervasive computing. While it is not possible to
provide all services anywhere, remote access to any services (from anywhere) makes
sense. For this purpose service discovery protocols must be able to discover services
remotely in order to be able to work in a pervasive computing environment. A combi-
nation of existing technologies and services enables some level of remote access, but
seamless discovery and control of remote services is currently not possible [6–8].

The objective of this work is to enable local service discovery protocols (such as
UPnP) to discover remote services which are not available locally. We lay the basis of
such remote service discovery by proposing a suitable architecture. We use UPnP as an
example of service discovery protocols. In our architecture each local UPnP network is
enhanced by a function called service mirror builder. A service mirror builder presents
local services as remote services to other UPnP networks, and also builds mirrors of
remote services in its local network. The process of finding a remote service uses the
distributed peer-to-peer search protocol Gnutella (though other implementations are
also possible).

A service mirror builder is seen as an UPnP enabled device in the local UPnP net-
work. It is worth emphasizing that UPnP is just an example; the service mirror builder
can be generally defined as a service discovery enabled device with respect to any ser-
vice discovery protocol.

1.1 Motivation

Between other things pervasive computing means spatial heterogeneity: some places
offer all the needed services and others only have a few services to offer. Therefore a
combination of remote and local services is sometimes needed. The following scenarios
motivate our quest for remote service discovery.

One example of pervasive computing environment is a connected (smart) home,
which is a dwelling incorporating a communications network that connects key devices
(sensors and actuators, electrical appliances) and allows them to be remotely controlled,
monitored or accessed [7]. To realize a smart home we thus need to have a mechanism
to access its services remotely. In addition, most of us desire seamless storage, access
and consumption of digital content from and to any compatible digital device in a home
or smart home; ideally, users should be able to access their residential services from
anywhere using any type of terminal [8]. Overall use cases for remote service discovery
therefore include lighting, residential climate control, home theater, audio entertainment
systems, domestic security, domestic health care systems, etc.

Vendors need to connect to their devices for various purposes such as to update
their software or perform routine checks (remote support). Security and health care
companies in particular need to be in contact with their customers and their products
continuously. The information from sensors, actuators and cameras can be monitored

82 S.D. Bruda et al.

by such companies, which can then take action in case of any threat, but also control
devices to be more efficient and usable. The vendors can also advertise features and
offer upgrades to their devices (continuing close presence).

Massively Multiplayer Games (MMGs) are traditionally supported by a client-server
architecture, but such a centralized architecture lacks flexibility and can put communi-
cation and computation stress on the servers [9]. To overcome these problems inherent
to centralized solutions, peer-to-peer networks are emerging as a promising architecture
for MMGs [9]. Running MMGs with the help of remote service discovery and with-
out any centralized coordinator is arguably the best use cases to motivate our research
contribution.

2 Preliminaries

2.1 UPnP

The role of Universal Plug and Play (UPnP) [2] is the automatic discovery and config-
uration of any new devices that connect to a computer network. UPnP supports zero
configuration networking or Zeroconf, meaning that UPnP creates an IP network with-
out any need of manual configuration or configuration servers.

UPnP uses the Internet protocol suite. Special features include the following [2]:
media and device independence (any network media or device which supports IP can
be a basis for the establishment of UPnP), user Interface (UI) control (devices can
have a UI written by XML which is readable by a browser), and operating system and
programming language independence.

UPnP has three major components: device (contains one or more services), service
(performs actions and shows its state; consists of a state table, control server and event
server), and control point (a system that discovers and then controls services and de-
vices). The functioning of UPnP then involves six steps:

Addressing. Each device must have a Dynamic Host Configuration Protocol (DHCP)
client. When the device connects to the network for the first time it must search for
a DHCP server. If a DHCP server exists, then the device receives an IP address this
way. Otherwise the device must assign an IP address to itself (Auto-IP [10]).

Discovery. Discovery is the process of discovering the capabilities of the devices on
the network. It can take place in two ways.

First, when a new device gets an IP address and so is connected to the network,
the device must multicast discovery messages, advertising its embedded devices
and services. This process is called discovery-advertisement. Any interested control
point in the network can listen to these advertisements and then connect and control
the originating devices or only some of their services.

Secondly, when a new control point is established in the network. Such a new
control point multicasts a Simple Service Discovery Protocol (SSDP) message [11],
searching for available devices and services. All devices in the network must listen
to this kind of messages and respond to them whenever any of their services or
embedded devices matches the criteria from the SSDP messages. This process is
called discovery-search [2].

Peer-to-Peer Remote Service Discovery in Pervasive Computing 83

Description. Once discovery is complete and the control point knows about the ex-
istence of one device or service, it must also find out how to invoke that device
or service. The respective control point retrieves the device description from the
URL provided by the device in the discovery message. The UPnP description for
a device is expressed in XML and includes vendor-specific information, manufac-
turer information, a list of any embedded devices or services, as well as URLs for
control, eventing, and presentation [2].

Control. Now that the control point has a clear overview of the service and knows how
to control it, it can send an action request. The control point sends a control mes-
sage to the device according to the respective service control description. Control
messages are expressed in XML. In response, the service will return action specific
values or fault codes [2].

Eventing. Services keep control points informed by sending them event messages.
Event messages contain the last update of changed state variables in the service.
This process is called eventing [2].

Presentation. Some devices have URLs for presentation. Such an URL can be fetched
and then presented in a browser by the control point. According to the device capa-
bilities and URL presentation definition, a user can then see the status of the service
and even control it [2].

2.2 Gnutella

A distributed network architecture may be called peer-to-peer (P2P) whenever the par-
ticipants share a part of their own hardware resources (processing power, storage capac-
ity, network link capacity, printers, etc.) with each other in order to provide the service
and content offered by the network (e.g., file sharing or shared workspace for collab-
oration). Furthermore these resources are accessible by other peers directly, without
passing through intermediate entities. The participants in such a network are thus re-
source providers and at the same time resource requesters (the “servent” concept) [12].
Peer-to-peer file sharing is a particular example of peer-to-peer network. Each peer in
a peer-to-peer file sharing network is implemented by a client which uses some dis-
tributed search protocol to find other peers as well as the files that are being shared
by them. Different protocols for distributed search are being used by peer-to-peer file
sharing programs, the most prominent being BitTorrent [13] and Gnutella [14].

Because of the distributed nature of Gnutella and its independency from any central
servers, a Gnutella network is highly fault-tolerant. Indeed, a network can work con-
tinuously despite the fact that different servents go off-line and back on-line [14]. We
describe in what follows the Gnutella protocol [14–16]. The first time a servent wants
to join a Gnutella network, its client software must bootstrap [17] and thus find at least
one other servent (node, peer) in the network. The bootstrap can happen automatically
or manually, either out of band or using Gnutella Web caches (caches that include a pre-
existing list of addresses of possibly working hosts may be shipped with the Gnutella
client software or made available over the Web).

A node connected to a Gnutella network keeps in touch periodically with its (directly
connected) neighbours through ping messages. These messages are not only replied to
(by pong messages) but they are also propagated to the other interconnected servents.

84 S.D. Bruda et al.

When a servent receives a ping message, it sends it to the nodes to which it is connected.
Once the servent finds at least one active peer in the Gnutella network, it can create
an updated list of active servents by observing the ping and the corresponding pong
messages.

When a client wants to search for a file (or as we will see in Sect. 4 for a service),
it sends a query to all its directly connected neighbour servents (except the one which
delivered this query message), which forward the query to their neighbours, and so on.
This process repeats throughout the network. A query message is the primary mech-
anism for searching the distributed network. If a servent receives a query and finds a
match in its directory, it will respond to it with a query-hit message. A query-hit con-
tains enough information for the retrieval of the data matching the corresponding query.

To avoid flooding the network the query messages contain a TTL (Time To Live)
field. It is possible that one query reaches a servent more than one time. To avoid serving
a query more than once, each query is identified by a unique identification (muid).
Before processing a query a servent checks the query’s muid against a table of previous
muids; a hit causes the query to be dropped.

The query-hit can go back along the reverse path of the query to reach the servent
which requested it, or it can be sent directly to the requester.

3 Related Work

Along with summarizing previous work on remote service discovery we also anticipate
a bit and take the opportunity to compare the previous research with our solution (which
will actually be introduced later in Sect. 4).

3.1 Remote Access to UPnP Devices Using the Atom Publishing Protocol

The network topology of one architecture for remote service discovery in UPnP [6]
consists of at least two network segments: the home network and the remote network.
The architecture assumes that there is an IP tunnelling mechanism such as a Virtual Pri-
vate Network (VPN) between the two network segments. The architecture introduces a
new element called UPnP Device Aggregator which is acting as a proxy for the exist-
ing standard UPnP devices. Enhanced UPnP Devices or Control Points are then UPnP
devices or control points which are compatible with this remote service discovery ar-
chitecture. The UPnP Device Aggregator aggregates information about the services and
devices in the local network as an Atom feed, which can then be retrieved (using GET
commands) by the enhanced UPnP control points in the remote network. Additionally,
a UPnP Device Aggregator can receive information from remote Enhanced UPnP De-
vices and present them to the local control points. This information can be received by
the UPnP Device Aggregator via HTTP POST.

The main shortcoming of this architecture is the need for VPN. Indeed, VPN does not
scale well, requiring careful administration of IP addresses and subnetworks [8]. VPN
also limits the architecture to the domains within the VPN network (limiting hetero-
geneity). No such limiting factors are present in our architecture, which is substantially
more scalable. In addition, all remote service discovery requests are addressed to the

Peer-to-Peer Remote Service Discovery in Pervasive Computing 85

home network, so this architecture can be considered centralized or partially central-
ized: service coordinators (the UPnP Device Aggregators) register and cache services
[7]. By contrast, our architecture is fully distributed: no centralized coordinator is nec-
essary. We note that Gnutella has switched to a hybrid architecture using Ultrapeers [16]
for efficiency purposes, but even in this case we obtain a more distributed architecture.

3.2 Presence-Based Remote Service Discovery

An architecture for remote service discovery and control based on presence service (as
used in instant messaging and VOIP) was also proposed [8]. A presentity can be any-
thing that can have a presence state (be present or absent); presence information is sent
to a presence service, which is a network service that records and distributes presence
information. In the remote service discovery architecture based on presence service [8]
there are two new functions called service discovery gateway and service virtualizer.
The gateways register local services as presentities in a presence server. They can also
retrieve other presentities from the presence server and present them to the service virtu-
alizer. The service virtualizer uses this presence information to virtualize a local service
in the local network. That is, a service virtualizer presents a remote service as a local
one.

This architecture is partially centralized, as remote service providers and remote ser-
vice requesters must first find a presence server to register or request a service. Al-
though presence servers (as service coordinators) provide service visibility, the benefit
does not come without cost and complexity [7, 18]. By contrast, our architecture is fully
distributed.

3.3 Transparent UPnP Interaction between UPnP Gateways

Dynamic Overlay Topology Optimizing Content Search (DOTOCS) [19] enables flexi-
ble content searches among UPnP gateways. DOTOCS aims to establish an optimized
peer-to-peer overlay network among UPnP gateways. DOTOCS uses a communica-
tion protocol between UPnP local networks called transparent interaction solution and
described elsewhere [20]: The communication between two connected UPnP local net-
works across the Internet is accomplished using the Web service technology. A local
gateway encapsulates Simple Service Discovery Protocol (SSDP) messages into Sim-
ple Object Access Protocol (SOAP) messages and transmit them to another gateway
over the global network. A Web service at the destination UPnP gateway extracts the
SSDP message and replaces the original IP address (which is not valid in this local
network) with the IP address of the gateway itself. The gateway then multicasts this
discovery search message in the local UPnP network. If any device responds to that
message (meaning that the device has the service demanded by the SSDP message),
then the gateway encapsulates that message into another SOAP message and sends it
back to the first network. This way one local UPnP network can discover remote ser-
vices from a different UPnP network.

Scalability between local networks is manageable when this solution is used. How-
ever, each gateway multicasts in its local UPnP network any received discovery message
(regardless whether the demanded service in that discovery message is locally available

86 S.D. Bruda et al.

or not). This creates substantial traffic in the local network, most of it useless, which
reduces scalability. Our protocol does not multicast remote requests to the local net-
work (for indeed the service mirror builder has already discovered the locally available
services), so the local UPnP network will not be loaded with spurious messages. Scal-
ability therefore only depends on the Gnutella network (which is scalable to a high
degree).

3.4 Peer-to-Peer Caching of Classes of Services

Chakraborty et. al. [21] propose a distributed service discovery protocol based on the
concepts of peer-to-peer caching of service advertisements and group-based intelligent
forwarding of service requests. Services are described using the Web Ontology Lan-
guage (OWL). The semantic class/sub-class hierarchy of OWL is used to describe ser-
vice groups and then this semantic information is used to selectively forward service
requests. OWL-based service description also enables increased flexibility in service
matching.

While the hierarchical structure of service classes improves efficiency, the protocol
is mainly proactive rather than reactive: services need to advertise actively before be-
coming accessible to the remote devices. We believe that this can easily cause either
increased traffic (when the time delay between successive advertisements is low) or
increased response time (when the mentioned delays are large). This is all mitigated
by the class/sub-class mechanism, but cannot be eliminated altogether. By contrast our
architecture is completely reactive, thus minimizing network traffic.

4 A New Distributed Architecture for Remote Service Discovery

Recall that remote services are not present in the current physical location of the con-
troller but are available to the controller upon request. A control point may also reside in
a pervasive computing environment with heterogeneous protocols and networks. Even
if some otherwise available services in the local domain could not be accessed because
of heterogeneity in protocols (networks, ontologies, etc.), the controller may still be able
to remotely access services within its capabilities but far from its physical location. In
other words, sometimes service discovery protocols could not see all the available ser-
vices in their domain, but if they could just bridge to neighbour networks (with the same
protocols and ontologies) they could accomplish their tasks.

We propose a new architecture that accomplishes remote service discovery in a fully
distributed manner i.e., without the need of any centralized, coordinating entity. Our
architecture allows the discovery of services in local and remote domains, and offers
a solution for automatic discovery and control of remote services. We use UPnP as an
example in our architecture, but in fact we try not to depend on any particular service
discovery protocol.

Fig. 1 shows our architecture. There are 5 local networks in the figure, labelled
from 1 to 5. Each of these local networks offers local services, devices, and control
points. These devices, services, and control points are connected with each other lo-
cally through UPnP. In each local network there is one special function called service

Peer-to-Peer Remote Service Discovery in Pervasive Computing 87

U
PnP−

enabled device

Control
point

Control
point 1

U
PnP−

enabled device 1

Service

U
Pn

P−
en

ab
le

d
de

vi
ce

 2

Se
rv

ic
e

2
Se

rv
ic

e
1

Service Mirror Builder

Mirrored services

Service 4 Service 3

Local network 1

Control
point

Control
point

Control
point

Control
point

Control
point

Control
point

Control
point

U
Pn

P−
en

ab
le

d
de

vi
ce

U
PnP−

enabled device

U
PnP−enabled device

Service Mirror Builder

Mirrored services

Local network 5

Service Mirror Builder

Mirrored services

Local network 3

U
Pn

P−
en

ab
le

d
de

vi
ce

U
Pn

P−
en

ab
le

d
de

vi
ce

U
PnP−

enabled device
Service Mirror Builder

Mirrored services

Local network 4

U
Pn

P−
en

ab
le

d
de

vi
ce

Service Mirror Builder

Mirrored services

Local network 2

Control
point

Interconnect

client

client
Gnutella

client

client

client
Gnutella

Gnutella

Gnutella

Gnutella

Fig. 1. A distributed architecture for remote service discovery (doted lines connecting local net-
works show the Gnutella network overlay)

mirror builder. This special function performs the actual remote service discovery and
is seen by the local network as just another UPnP-enabled device.

In addition, each local network runs a Gnutella client software. These clients are spe-
cialized clients that share local services to the outside world and find services requested
by their service mirror builder. The local networks establish a Gnutella network be-
tween them. Dotted lines connecting local networks in the figure show the overlay of
the Gnutella network.

4.1 Changes to the Local Networks

Our architecture introduces a service mirror builder in every local network. The net-
work is an IP based network with all of these devices connected through UPnP (the
UPnP protocol with its six steps is described in Sect. 2). Addressing is accomplished
using the normal UPnP protocol.

Discovery-advertising and discovery-search are then performed in the local network
as prescribed by the local UPnP protocol. The service mirror builder must be aware of
all the available services in the local network, so it never ignores any multicast mes-
sage. It will also advertise its services (that are all remotely discovered as we will see
later) as they become available. During any kind of discovery-search process (that is,
whenever a control point becomes interested in a new service) the respective control

88 S.D. Bruda et al.

point multicasts a discovery message, thus searching for available services and devices
in the network. All the devices listen to these messages and respond whenever any of
their services match the criteria specified by the request. Additionally, the service mir-
ror builder listens to these messages as well. It checks whether the requested service is
in the list of available local services, case in which the message is ignored; otherwise,
the service mirror builder performs remote discovery for that service.

Refer to Fig. 1 for a closer look at one of the local networks (namely, local network
1). This network features four components: two UPnP-enabled devices (labelled Device
1 and Device 2), one control point (Control point 1) and one service mirror builder
(SMB for short). The service mirror builder typically resides on the smart environment
gateway (such as a connected home gateway). Suppose that Device 1 has not introduced
its service to other control points except the service mirror builder, and its control point
has discovered a mirror of a remote service (Service 3). Device 2 is a UPnP device
with 2 embedded services (Service 1 and Service 2) which are also not known to the
others. Then Device 2 must inform all the available control points in the network about
its services; it does so by multicasting a message and thus advertising Services 1 and
2 (discovery-advertisement). The multicast message will be received by the service
mirror builder and by Device 1. The control point of Device 1 is not interested in (or
not capable to control) either Service 1 or Service 2 and so it ignores this message.
However, the service mirror builder is aware of all the available services in the local
network, so it cannot ignore any multicast message. The service mirror builder uses
this information for remote service discovery, which will be discussed later. In local
network 1 the service mirror builder is interested in Service 1 and Service 2. It then
sends a message to device 1 to retrieve the description of the two services as per the
description UPnP step.

Suppose now that Device 1, Device 2, and the service mirror builder have all dis-
covered each other. Control point 1 then joins the network and obtains an IP address,
but has not discovered any services to control yet. In such a case the newly added con-
trol point multicasts a Simple Service Discovery Protocol (SSDP) discovery message,
thus searching for available services and devices in the network (discovery-search). The
devices in the network listen to these messages and respond whenever any of their ser-
vices match the criteria specified therein. The service mirror builder listens to all these
messages and proceeds to remote discovery for the respective service whenever the re-
quested service is not provided locally. In our example, Service 1 is matched with the
request of Control point 1. Therefore Device 2 unicasts a response message to Control
point 1. Now that Control point 1 has discovered the service, it asks for a description.
Once the description is received, Control point 1 can control Service 1 in Device 2.

Consider now that Control point 1 multicasts a discovery-search message requesting
a service which is not locally available (Service 4). The service mirror builder will
recognize that this service is not locally available, and so it sends a query for that service
to the local Gnutella client. The Gnutella client will then pass that query to the Gnutella
network (see Sect. 4.2). Once such a service is found, a mirror of that service is made
available in the local network. In local network 1 from Fig. 1 the mirrors of the remote
services are shown in the service mirror builder box (Services 3 and 4).

Peer-to-Peer Remote Service Discovery in Pervasive Computing 89

Point 1
Control

(local)
Gnutella
(local)

SMB Gnutella
network

Gnutella
(remote)

SMB
(remote)

DeviceDevice 2

Ask description

Discovery−advertisment

Ask description Ask description Ask description

Send descriptionSend description

Send description

Send descriptionDescription

Control, etc.

N
/A

Control, etc. Control, etc. Control, etc. etc.
Control,

Service 4Service 1

D
iscovery &

 ctrl of rem
ote serv. (Serv. 4)

Serv. 1 locally O
K

; drop m
sg.

D
iscovery &

 ctrl of Serv. 1

Service 4 is locally available

Serv. 4 not available; discover and m
irror

L
og Serv. 1

SSDP discovery message for Service 1

Query
Service 4 Query

Service 4 Query
Service 4

Query Service 4

Service 4 availableQuery−hit (direct path)remotely
Service 4

available

Respond to SSDP

Ask
description

Ask description

Send description

Respond to SSDP message for Service 4

SSDP discovery message for Service 4

Control, etc.

Fig. 2. A sequence diagram detailing the behaviour of our distributed architecture for remote
service discovery

After the discovery step (which makes the control points aware of the available ser-
vices), the control points must find out how to use these available services (description).
Advertising messages circulated during discovery contain URLs from which the control
points can retrieve the description of the respective devices. Once a control point has the
device or service description it can invoke actions on that service and get result values
in return. Invoking an action in UPnP is a particular instance of Remote Procedure Call
[2]. The major focus of this research contribution however is service discovery so we
will not discuss service control, eventing and presentation any further.

4.2 Remote Service Discovery

Two major characteristics of pervasive computing are distributedness and mobility. In
such an environment we want to connect nodes in a distributed manner and without
any dependency to a central server (such as the presence server used in Sect. 3.2). We
therefore connect the local networks using Gnutella, a strongly decentralized peer-to-
peer system [15].

Gnutella servents can share any type of resources [15]. In our design they are sharing
the services available in their local networks. The overlaying Gnutella network (dotted
lines in Fig. 1) is established according to the protocol.

Now that both the local networks and the Gnutella network are established, remote
service discovery can begin. Such an event happens whenever a control point requests
a service which is not locally available. The service mirror builder then activates and
tries to remotely discover it.

90 S.D. Bruda et al.

Each service mirror builder has a cached description of all of the available local ser-
vices (obtained during the local discovery phase as explained earlier). When a control
point requests a service, the service mirror builder checks in its local service directory
to see if the service is already available in the local network. If this is not the case, then
the service mirror builder proceeds to discover it remotely by sending a request for the
respective service to the Gnutella client. The Gnutella client in turn issues a query mes-
sage asking for the requested service to the Gnutella network according to the Gnutella
protocol. When receiving a query, a Gnutella client sends the included service request to
the local service mirror builder, which in turn will check the availability of the requested
service in its local network. Should the service be locally available, the service mirror
builder communicates this to the Gnutella client, which in turn responds with a query-
hit message to the original requester. Overall, the query is answered with a query-hit by
the nodes that offer the respective service. These nodes also send a service description
and other information back to the node that issued the query. This information is then
delivered to the service mirror builder of that node, which creates a mirror of the service
in the local network. The control points in the local network see the service just likes a
local one and can control it in the usual way.

Suppose that some control point (such as Control point 1) requests a service which
is not available in any of the participating local networks; in such a case the respec-
tive Gnutella client returns no hits. Whenever the service becomes available in the lo-
cal network, it will be made available through discovery-advertisement; similarly, the
Gnutella client will re-issue the corresponding query periodically until either (a) the
service becomes available in the local network, (b) the service is discovered remotely,
or (c) the control point that requested the service disappears. This mechanism extends
the discovery-search mechanism almost transparently (but with some delay).

The functioning of the whole protocol is summarized in Fig. 2.

4.3 Gnutella and UPnP Messages in the New Architecture

We show the possibility of using the Gnutella distributed search protocol to search for
services in remote networks (remote services). We do this by discussing the Gnutella
and UPnP message structure and the modifications that are needed in our architecture.

In our architecture all local network components communicate and work with each
other under UPnP protocol standards. All six steps in UPnP (addressing, discovery, de-
scription, control, eventing and presentation) are being done as per the UPnP protocol.

As far as the remote connections are concerned, all servents are working under the
Gnutella standards and specification. All Gnutella connect, Gnutella OK, ping and pong
messages are exactly according to the available Gnutella protocol. The only differences
happen in the Gnutella query and Gnutella query-hit messages (since the original mes-
sages are used for requesting for and responding with shared files). We show the struc-
ture of these messages in more detail along with recommendations for changing them to
work in the new architecture for the purpose of service discovery instead of file sharing.

All of the Gnutella protocol messages, including query and query-hit, include a
header with the byte structure described in Table 1(a) [22]. The payload type indi-
cates the type of the message. Other payload types can also be used as long as all the
participating servents support them [22]. Payload length shows the size of the payload.

Peer-to-Peer Remote Service Discovery in Pervasive Computing 91

Table 1. Gnutella message header (a) and query message structure (b)

(a) (b)
Bytes Description
0-15 Message ID/GUID (Globally Unique ID)
16 Payload Type

0x00 = Ping 0x01 = Pong
0x02 = Bye 0x40 = Push
0x80 = Query 0x81 = Query-Hit

17 TTL (Time To Live)
18 Hops
19-22 Payload Length

Bytes Description
0-1 Minimum speed
2 Search criteria
Rest Optional extension block

Table 2. Gnutella query-hit message structure

Bytes Description
0 Number of Hits
1-2 Port
3-6 IP Address
7-10 Speed
11- Result Set

Result set structure:
Bytes Description:
0-3 File Index
4-7 File Size
8- File Name (null-terminated)
x Extensions Block (null-terminated)

The whole Gnutella message should be no more than 4 kB in size. Immediately fol-
lowing the message header is a payload which can be one of the following messages:
ping, pong, query, query-hit and push [22]. This message header structure will remain
unchanged in our architecture.

The Query Message. Since queries are broadcast to many nodes, servents normally
send query messages that are smaller than 256 bytes; however, query messages can be
as large as 4 kB. A query message has the structure shown in Table 1(b) [22]. The rest
field of a query message is used for the original query which in our case is a query
for a remote service. The allowed extension types in the rest field can be specified us-
ing the Gnutella Generic Extension Protocol (GGEP), Hash/URN Gnutella Extensions
(HUGE), and XML [22]. The Gnutella Generic Extension Protocol (GGEP) allows ar-
bitrary extensions in a Gnutella message; a GGEP block is a framework for other ex-
tensions [22].

In a UPnP network service discovery is accomplished using Simple Service Discov-
ery Protocol (SSDP). All SSDP messages are sent using the HTTP protocol. The HTTP
and Gnutella protocols are both application layer protocols. The fundamental data in a
SSDP discovery search or discovery-advertisement message (in a UPnP network) con-
tains a few essential specifics about the device or one of its services (its type, universally
unique identifier, etc.) [11]. All this information can be readily encoded in a GGEP ex-
tension by the service mirror builders and then sent to the Gnutella network agent. Then
the Gnutella network agent can put this GGEP-formatted information in the Rest part
of a Gnutella query message and send it to the Gnutella network.

92 S.D. Bruda et al.

The Query-hit Message. The structure of a query-hit message is shown in Table 2 [22].
The result set is used for the response to the query; its structure is also shown in the
table.

The first three fields of the result set are defined specifically to hold information
about a requested file or file portion, as Gnutella is mainly used for file sharing. In our
case it is possible to redefine these fields; to prevent increased complexity and extra
work to define a new specification, we recommend that these fields be filled with some
default labels. In other words these fields of the result set are simply ignored.

GGEP, HUGE, and plain text metadata are all allowed in the extension block. We
recommend that the response messages from service mirror builders be formatted in a
GGEP extension and sent back to the network in the extensions field of the query-hit
message.

5 Protocol Independence and Performance Considerations

The use of particular protocols (UPnP and Gnutella) are in fact necessary only for illus-
tration purposes. The architecture described here can be in particular adapted in a trivial
manner to handle any local service discovery protocol.

Through the use of UPnP we have included in our discussion a comprehensive set of
features for the local service discovery protocol, but this is done without loss of gener-
ality: those protocols that lack some of the features can still function in our framework,
which is agnostic with respect to which of the described services are actually used. Con-
versely, to our knowledge no protocol provides more features than the ones discussed
here.

The peer-to-peer architecture is clearly immaterial to the discussion, as long as the
architecture is capable of maintaining an ad-hoc network, propagating requests for dis-
tributed search throughout the network, and handling responses to such requests (all
peer-to-peer protocols do). The implementer can in effect choose any other peer-to-peer
protocol.

The only somehow substantial changes that are necessary to switch protocols are re-
lated to the form of the messages passed along between the peer-to-peer servents. The
message structure outlined in Sect. 4.3 is specific to Gnutella; should another peer-to-
peer network be chosen, this structure will likely change. Further encapsulation might
be needed to pass along messages generated by different local service discovery proto-
col, though this is unlikely.

The performance of our architecture is the same as the performance of the underlying
Gnutella (or more generally peer-to-peer) network. All the advantages (and also disad-
vantages) of Gnutella are thus maintained. This is actually one reason for our choice
of peer-to-peer protocol. Indeed, Gnutella is one of the most studied such a protocol.
Many changes and refinements have been added to it throughout the years to make it
more efficient. Such refinements and techniques include Ultrapeers and Leaves, Dis-
tributed Hash Table, Query Routing Protocol (QRP), and so on. This all helps to reduce
the traffic in the Gnutella network and generally increase the efficiency of the proto-
col. These refinements can be trivially added to our architecture. Future refinements of

Peer-to-Peer Remote Service Discovery in Pervasive Computing 93

the protocol can also be readily integrated. It can be argued that Gnutella is not fully
distributed, since the bootstrapping process is centralized. However, such a central-
ized mechanism is used for empirical reasons (works well in most cases), but different
bootstrapping techniques exist, including random address probing and network layer
probing with anycast or multicast messages [23]. These techniques can be readily used
should a fully distributed architecture be necessary.

We already mentioned the advantages of our approach compared to the only other
peer-to-peer approach known to us [21]. Indeed, our approach is reactive and so we
believe that it minimizes the network traffic in the general case. True, a “sweet spot”
can probably be achieved in the ontology-based approach [21] by changing the time
delay between advertisements. Such a “sweet spot” has the potential of offering a better
performance; however, it is also likely that different circumstances may require different
values, making a global solution unlikely. By contrast Gnutella is designed to offer
consistent performance in many circumstances; indeed, optimization adjustments are
already implemented! We thus believe that overall our solution offers more consistent
performance, in addition to being able to benefit from any future improvement of the
Gnutella protocol (as mentioned above).

Classifying services based on an ontology [21] does reduce network traffic and has
the potential of improving the overall efficiency. We believe that such a technique is
orthogonal to the service discovery mechanism. We thus believe that the ontology-based
approach can be used equally effectively in out setting. Doing this however is a subject
of future research.

6 Conclusions

Service discovery plays an important role in pervasive computing. At the same time
pervasive computing creates many challenges for service discovery protocols, one of
them being remote service discovery. We introduced a new approach to remote service
discovery that is flexible, decentralized, and fully distributed.

The core part of the new architecture is the new function in a UPnP network called
service mirror builder and its cooperation with a specialized Gnutella client software
to discover remote services and then present these remote services as local ones. Con-
versely, a service mirror builder can also control local services to serve them as remote
services for other, remote service mirror builders. The service mirror builder communi-
cates with the specialized Gnutella client software (from the point of view of the local
network however the service mirror builder is just a UPnP-enabled device). We used
UPnP for illustration purposes, but the service mirror builder can be defined based on
any service discovery protocol (Bluetooth, Apple Bonjour, etc.). Our solution is in fact
general and not dependent on any particular service discovery protocol.

We propose Gnutella as a distributed search protocol for discovering remote services.
The very design of a Gnutella network as a decentralized and distributed protocol moves
this remote service discovery architecture one step ahead toward truly distributed com-
puting. Our architecture is also readily amenable to improvements in either the under-
lying peer-to-peer protocol or the ontology-based classification of services (or indeed
both). We therefore believe that our approach offers better compatibility with pervasive
computing.

94 S.D. Bruda et al.

References

1. Weiser, M.: Some computer science issues in ubiquitous computing. Communications of the
ACM 36, 75–84 (1993)

2. Understanding Universal Plug and Play (2000), White paper:
http://www.upnp.org/download/UPNP_understandingUPNP.doc

3. Bluetooth Special Interest Group (SIG): Specification of the Bluetooth System Version 1.1
(2001), http://www.tscm.com/BluetoothSpec.pdf

4. Sun Microsystems: Jini Technology Core Platform Specification Version 1.2 (2001),
http://www-csag.ucsd.edu/teaching/
cse291s03/Readings/core1 2.pdf

5. Zhu, F., Mutka, M., Ni, L.: Service discovery in pervasive computing environments. Perva-
sive Computing 4, 81–90 (2005)

6. Belimpasakis, P., Stirbu, V.: Remote access to universal plug and play (UPnP) devices utiliz-
ing the Atom publishing protocol. In: International Conference on Networking and Services,
p. 59. IEEE Computer Society (2007)

7. Feng, W.: Remote Service Provision for Connected Homes. PhD thesis, De Montfort Uni-
versity (2010)

8. Häber, A.: Remote Service Discovery and Control for Ubiquitous Service Environments in
Next-Generation Networks. PhD thesis, University of Agder (2010)

9. Buyukkaya, E., Abdallah, M., Cavagna, R.: VoroGame: A hybrid P2P architecture for mas-
sively multiplayer games. In: 6th IEEE Consumer Communications and Networking Confer-
ence (CCNC), pp. 1–5. IEEE (2009)

10. Cheshire, S., Aboba, B., Guttman, E.: Dynamic Configuration of IPv4 Link-Local Addresses.
Internet Engineering Task Force, RFC 3927 (2005)

11. UPnP forum: UPnP Device Architecture 1.1 (2008), http://www.upnp.org/specs/
arch/UPnP-arch-DeviceArchitecture-v1.1.pdf

12. Schollmeier, R.: A definition of peer-to-peer networking for the classification of peer-to-peer
architectures and applications. In: 1st International Conference on Peer-to-Peer Computing,
pp. 101–102 (2001)

13. Cohen, B.: The BitTorrent Protocol Specification (2008),
http://www.bittorrent.org/beps/bep_0003.html

14. Clip2 Distributed Search Services: The Gnutella Protocol Specification Version 0.4 (2003),
http://www.stanford.edu/class/cs244b/
gnutella protocol 0.4.pdf

15. Ilie, D.: Gnutella Network Traffic-Measurements and Characteristics. Master’s thesis,
Blekinge Tekniska Högskola (2006)

16. Oram, A.: Peer-to-Peer: Harnessing the Benefits of a Disruptive Technology. O’Reilly Media
(2001)

17. Gtk-Gnutella: Gnutella Bootstrapping (2011),
http://gtk-gnutella.sourceforge.net/en/?page=bootstrap

18. Engelstad, P., Zheng, Y., Tore, J.: Service discovery and name resolution architectures for
on-demand MANETs. In: 23rd International Conference on Distributed Computing Systems,
pp. 736–742. IEEE Computer Society (2003)

19. Kawamoto, E., Kadowaki, K., Koita, T., Sato, K.: Content sharing among UPnP gateways
on unstructured P2P network using dynamic overlay topology optimization. In: 6th IEEE
Consumer Communications and Networking Conference (CCNC), pp. 1–5. IEEE (2009)

http://www.upnp.org/download/UPNP_understandingUPNP.doc
http://www.tscm.com/BluetoothSpec.pdf
http://www-csag.ucsd.edu/teaching/cse291s03/Readings/core1_2.pdf
http://www-csag.ucsd.edu/teaching/cse291s03/Readings/core1_2.pdf
http://www.upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v1.1.pdf
http://www.upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v1.1.pdf
http://www.bittorrent.org/beps/bep_0003.html
http://www.stanford.edu/class/cs244b/gnutella_protocol_0.4.pdf
http://www.stanford.edu/class/cs244b/gnutella_protocol_0.4.pdf
http://gtk-gnutella.sourceforge.net/en/?page=bootstrap

Peer-to-Peer Remote Service Discovery in Pervasive Computing 95

20. Ogawa, M., Hayakawa, H., Koita, T., Sato, K.: Transparent UPnP interactions over global
network. In: Proceedings of SPIE, vol. 6794 pp. 67944P (2007)

21. Chakraborty, D., Joshi, A., Yesha, Y., Finin, T.: Toward distributed service discovery in per-
vasive computing environments. IEEE Transactions on Mobile Computing 5, 97–112 (2006)

22. Klingberg, T., Manfredi, R.: Gnutella 0.6. Network Working Group (2002)
23. Conrad, M., Hof, H.-J.: A generic, self-organizing, and distributed bootstrap service for

peer-to-peer networks. In: Hutchison, D., Katz, R.H. (eds.) IWSOS 2007. LNCS, vol. 4725,
pp. 59–72. Springer, Heidelberg (2007)

Model Checking Combined Fragments
of Sequence Diagrams

Hui Shen, Mark Robinson, and Jianwei Niu

Department of Computer Science,
University of Texas at San Antonio, San Antonio, Texas, U.S.A.

{hshen,mrobinso,niu}cs.utsa.edu

Abstract. Graphical representations of scenarios using the Combined Fragments
of UML Sequence Diagrams, serve as a well-accepted means for expressing an
aggregation of multiple traces encompassing complex and concurrent behaviors.
However, Combined Fragments increase the difficulty of analysis of scenarios.
This paper introduces an approach to formally verify all the Combined Frag-
ments, and nested Combined Fragments using model checking.

Keywords: Modeling, Model Checking, Sequence Diagram, Concurrency &
Communication.

1 Introduction

In software development process, models enable software engineers to detect errors dur-
ing early stage so as to improve the system quality. Scenario-based models have been
widely employed for the description of interactions among environmental actors (e.g.,
human beings) and the components (aka Lifeline) of the software systems through the
exchange of messages. UML Sequence Diagrams, which graphically depict scenarios,
serve as well-accepted and intuitive media among software engineers and tool builders.
UML 2 provides many major structural control constructs, including Combined Frag-
ments and Interaction Use, to allow multiple, complex scenarios to be aggregated in a
single Sequence Diagram. However, Combined Fragments introduce concurrent behav-
iors, making analysis of the Sequence Diagrams difficult for the following reasons.

Combined Fragments permit different types of control flow, such as interleaving and
branching, increasing a Sequence Diagram’s expressiveness. Further, the Combined
Fragments can also be nested to provide more complex control flows. These make it
difficult to predict what behavior are represented. For example, if a Combined Frag-
ment presenting branching behavior is nested within a Combined Fragment presenting
iteration behavior, different choices may be made in different iterations. The semantics
of Sequence Diagram with Combined Fragments is not formally defined compared to
their precise syntax descriptions [1], making it is hard to derive the traces from Se-
quence Diagrams. Thus, subtle errors from concurrency can easily be introduced to
Sequence Diagrams to evade discovery via manual inspection.

To address these problems, we introduce an automated technique to facilitate the ver-
ification of Sequence Diagrams by leveraging the analytical powers of model checking.

J. Cordeiro, S. Hammoudi, and M. van Sinderen (Eds.): ICSOFT 2012, CCIS 411, pp. 96–111, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Model Checking Combined Fragments of Sequence Diagrams 97

Working towards similar goals, many researchers have verified different scenario-based
models, including Sequence Diagram, Message Sequence Chart (MSC), and Live Se-
quence Chart (LSC). However, the previous work does not consider all the aspects of
Combined Fragments. Our approach supports all the features of Combined Fragments,
including all 12 Interaction Operators, nested Combined Fragments, both asynchronous
and synchronous Messages, and Interaction Constraints.

We devise an approach to codify the semantics of Sequence Diagrams and Combined
Fragments in the input language of NuSMV by deconstructing Sequence Diagrams and
Combined Fragments to obtain fine-grained syntactic constructs (see section 2 and 3).
We formally describe each Combined Fragment in terms of NuSMV [2] modules (see
section 4). The model checking mechanism can explore all possible traces specified in
the Sequence Diagram, verifying if the desired properties are satisfied. We have devel-
oped a tool suite to implement all of the techniques and have validated our technique
by analyzing and discovering violations in two design examples taken from an insur-
ance industry software application (see section 5). We have also created an Occurrence
Specification Trace Diagram generator that automatically produces Sequence Diagram
visualizations from NuSMV-produced counterexamples. This automation will increase
the accessibility of our approach by allowing software engineers to remain focused in
the realm of Sequence Diagrams.

2 UML 2 Sequence Diagram

In this section, we outline the syntax and semantics of a Sequence Diagram with Com-
bined Fragments provided by OMG [1]. As the first step of defining a Sequence Dia-
gram using NuSMV modules, we precisely define the semantics of Sequence Diagram
with Combined Fragments, forming the basis of expressing the semantics in term of
NuSMV models. We begin with the basic Sequence Diagram, then discuss the struc-
tured control constructs, including Combined Fragments and Interaction Use.

2.1 Basic Sequence Diagram

We refer to a Sequence Diagram without Combined Fragments as a basic Sequence Di-
agram (see figure 1a for an example with annotated syntactic constructs). A Lifeline is a
vertical line representing a participating object. A horizontal line between Lifelines is a
Message. A Message is the specification of an occurrence of a message type within the
Sequence Diagram, while a message type is the signature of the form 〈message name,
source Lifeline, target Lifeline〉. Within a Sequence Diagram, a message type can oc-
cur multiple times, which are associated with multiple Messages. Each Message is sent
from its source Lifeline to its target Lifeline and has two endpoints. Each endpoint is an
intersection with a Lifeline and is called an Occurrence Specification (OS), denoting
the specification of an occurrence of an event within a certain context, i.e., a Sequence
Diagram. Accordingly, multiple OSs within a Sequence Diagram can be associated with
an event. Each Message is defined by its sending OS and receiving OS. We associate
each OS with a location of a Lifeline. As each location is uniquely defined, each OS is
uniquely defined. Thus, each Message is uniquely defined by its sending OS and receiv-
ing OS. OSs can also be the beginning or end of an Execution Specification, indicating

98 H. Shen, M. Robinson, and J. Niu

(a) Basic Sequence Diagram (b) Sequence Diagram with Combined Fragment

Fig. 1. Sequence Diagram Syntax

the period during which a participant performs a behavior within a Lifeline, which is
represented as a thin rectangle on the Lifeline.

The semantics of a basic Sequence Diagram is defined by a set of traces. A trace is
a sequence of OSs expressing Message exchange among multiple Lifelines. We iden-
tify four orthogonal semantic aspects that must be considered for the basic Sequence
Diagram [3,1,4]

1. Each OS can execute only once, i.e., each OS is unique within a Sequence Diagram.
2. On each Lifeline, OSs execute in their graphical order from top to bottom.
3. For a single Message, the sending OS must take place before the receiving OS does.
4. In a Sequence Diagram, only one object can execute an OS at a time, i.e., OSs on

different Lifelines are interleaved.

Messages are of two types: asynchronous and synchronous. The source Lifeline can
continue to send or receive other Messages after an asynchronous Message is sent. If
a synchronous Message is sent, the source Lifeline blocks until it receives the target
Lifeline’s response [1].

2.2 Combined Fragment

Both Combined Fragments and Interaction Use are structured control constructs in-
troduced in UML 2. A Combined Fragment (CF) is a solid-outline rectangle, which
consists of an Interaction Operator and one or more Interaction Operands. Figure
1b shows example CFs with annotated syntactic constructs. A CF can enclose all, or part
of, Lifelines in a Sequence Diagram. The Interaction Operands are separated by dashed
horizontal lines. The Interaction Operator is shown in a pentagon in the upper left cor-
ner of the rectangle. OSs, CFs, and Interaction Operands are collectively called Inter-
action Fragments. An Interaction Operand may contain a boolean expression which is
called an Interaction Constraint or Constraint. An Interaction Constraint is shown in
a square bracket covering the Lifeline where the first OS will happen. BEU, HEU and
CEU are defined in Section 3. An Interaction Use construct allows one Sequence Di-
agram to refer to another Sequence Diagram. The referring Sequence Diagram copies
the contents of the referenced Sequence Diagram.

Model Checking Combined Fragments of Sequence Diagrams 99

We identify three independent semantic rules general to all CFs, in the sense that
these rules do not constrain each other.

1. OSs and CFs, are combined using Weak Sequencing (defined below). On a single
Lifeline, a CF’s preceding Interaction Fragment must complete the execution prior
to the CF’s execution, and the CF’s succeeding Interaction Fragment must execute
subsequently.

2. Within a CF, the order of the OSs and CFs within each Operand is maintained if the
Constraint of the Operand evaluates to True; otherwise, the Operand is excluded.

3. The CF does not execute when the Constraints of all the Operands evaluate to
False. Thus, the CF’s preceding Interaction Fragment and succeeding Interaction
Fragment are ordered by Weak Sequencing.

2.3 Interaction Operator

The semantics of each CF Operator determines the execution order of all the Operands.
Each Operator has its specific semantic implications regarding the execution of the
OSs enclosed by the CF on the covered Lifelines. The Operators are summarized as
follows: Alternatives: one of the Operands whose Interaction Constraints evaluate to
True is nondeterministically chosen to execute. Option: its sole Operand executes if
the Interaction Constraint is True. Break: its sole Operand executes if the Interaction
Constraint evaluates to True. Otherwise, the remainder of the enclosing Interaction
Fragment executes. Parallel: the OSs on a Lifeline within different Operands may be
interleaved, but the ordering imposed by each Operand must be maintained separately.
Critical Region: the OSs on a Lifeline within its sole Operand must not be interleaved
with any other OSs on the same Lifeline. Loop: its sole Operand will execute for at
least the minimum count (lower bound) and no more than the maximum count (upper
bound) as long as the Interaction Constraint is True. Assertion: the OSs on a Lifeline
within its sole Operand must occur immediately after the preceding OSs. Negative:
its Operand represents forbidden traces. Strict Sequencing: in any Operand except the
first one, OSs cannot execute until the previous Operand completes. Weak Sequencing:
on a Lifeline, the OSs within an Operand cannot execute until the OSs in the previous
Operand complete, the OSs from different Operands on different Lifelines may take
place in any order (cf. Strict Sequencing). Consider: any message types other than
what is specified within the CF is ignored. Ignore: the specified messages types are
ignored within the CF.

The semantics of the seq Sequence Diagram is defined by two sets of traces, one
containing a set of valid traces, denoted as V al(seq), and the other containing a set of
invalid traces, denoted as Inval(seq). The intersection of these two sets is empty, i.e.,
V al(seq) ∩ Inval(seq) = ∅.

3 Sequence Diagram Deconstruction

To facilitate codifying the semantics of Sequence Diagrams and nested CFs in NuSMV
models, we show how to deconstruct a Sequence Diagram and CFs to obtain fine-
grained syntactic constructs. Eichner et al. have defined the Maximal Independent Set

100 H. Shen, M. Robinson, and J. Niu

in [5] to deconstruct a Sequence Diagram into fragments, each of which covers multi-
ple Lifelines. Their proposed semantics defines that entering a CF has to be done syn-
chronously by all the Lifelines, i.e., each CF is connected with adjacent OSs and CFs
using Strict Sequencing. Recall that CFs can be nested within other CFs. OSs and CFs
directly enclosed in the same CF or Sequence Diagram are combined using Weak Se-
quencing, constraining their orders with respect to each individual Lifeline only [1]. To
express the semantics of Weak Sequencing, we further deconstruct a Sequence Diagram
into syntactic constructs on each Lifeline, which also helps us to define the semantics
of nested CFs.

We project every CF cfm onto each of its covered Lifelines li to obtain a composi-
tional execution unit (CEU), which is denoted by cfm ↑li . (The shaded rectangle on
Lifeline L1 in figure 1b shows an example).

Definition 1. A CEU is given by a three tuple 〈li, oper, setEU〉, where li is the Lifeline,
onto which we project the CF, oper is the Interaction Operator of the CF, and setEU is
the set of execution units, one for each Operand opn enclosed in the CF on Lifeline li.

Every Operand opn of CF cfm is projected onto each of its covered Lifelines li to
obtain an execution unit (EU) while projecting cfm onto li, denoted by opn ↑li . If
the projected Interaction Operand contains a nested CF, a hierarchical execution unit
(HEU) is obtained; otherwise a basic execution unit (BEU) is obtained, i.e., an EU is
a BEU if it does not contain any other EUs. (The lower shaded rectangle on Lifeline L2
in figure 1b shows an example of a BEU and the shaded rectangle on Lifeline L3 shows
an example of an HEU).

Definition 2. A BEU u is given by a pair, 〈Eu, cond〉, in which Eu is a finite set of OSs
on Lifeline li enclosed in Operand opn, which are ordered by the locations associated
with them, and cond is the Interaction Constraint of the Operand. cond is True when
there is no Interaction Constraint.

Definition 3. An HEU is given by 〈setCEU, setBEU, cond〉, where setCEU is the set of
CEUs directly enclosed in the HEU, i.e., the CEUs nested within any element of setCEU
are not considered. setBEU is the set of BEUs that are directly enclosed in the HEU.

Projecting a Sequence Diagram onto each enclosing Lifeline also obtains an EU
whose Constraint is True. The EU is an HEU if the Sequence Diagram contains CFs,
otherwise, it is a BEU. In an HEU, we also group the OSs between two adjacent CEUs
or prior to the first CEU or after the last CEU on the same level into BEUs, which
inherit the parent HEU’s Constraint, cond. (The upper shaded rectangle on Lifeline L2
in figure 1b shows an example). The constituent BEU(s) and CEU(s) within an HEU
execute sequentially, complying with their graphical order, as do the OSs in the BEU.

4 Verifying Sequence Diagrams via NuSMV

In this section, we develop techniques to translate Sequence Diagrams into the input
language of NuSMV. The NuSMV model preserves the structure of the Sequence Dia-
grams (e.g., Lifelines and CFs), which makes it easier to demonstrate that the semantics
of the original notation is maintained.

Model Checking Combined Fragments of Sequence Diagrams 101

4.1 NuSMV Overview

NuSMV is a model checking tool, which exhaustively explores all executions of a finite
model to determine if a temporal logic property holds. For a property that does not hold,
a counterexample is produced showing an error trace. A NuSMV model consists of one
main module and may include other modules with formal parameters. An instance of a
module can be created using the VAR declaration within main module or other module
to create a modular hierarchy. To access variables of instance modules, the instance
name with . (DOT) can be used to follow by the variable name. The composition of
multiple modules can be parallel or interleaving.

NuSMV variables must be of finite types, declared inside each module. The initial
states are defined by using an init statement of the form init(x) := EXP, which defines
the value or set of values x can assume initially. Transitions are defined by using the next
statements of the form next(x) := EXP, which defines the value or set of values that x can
assume in the following state. All the transitions in a module execute concurrently in
each step. Derived variables (i.e., macros) are defined by using DEFINE statements of
the form x := EXP and they are replaced by EXP in each state. The system’s invariant is
represented with the INVAR statement, which is a boolean expression satisfied by each
state.

4.2 Mapping Overview

We base the mapping of a Sequence Diagram to the input language of NuSMV on
syntactic deconstruction. A Sequence Diagram is represented as the main module. We
map the Lifelines into respective NuSMV modules, which are instantiated and declared
in the main module. Recall that a CF is projected onto each of its covered Lifelines to
obtain a CEU. Accordingly, its Operand on each of the covered Lifelines forms an EU.
Both CEUs and EUs are represented as NuSMV modules.

Each CEU is declared as a module instance, which we call a submodule in its Lifeline
module. To enforce that multiple CEUs at the same level on each Lifeline adhere to
their graphical order, we define a derived variable, flag final, for each CEU module, to
indicate whether the CEU completes its execution (the CF semantic rule 1). A CEU
is composed of one or more EUs, each of which is instantiated as a submodule inside
the CEU module. The execution order of multiple EUs (i.e., the transfer of control
among them) is determined by the Interaction Operator that composes them into the
CEU (the translation of each Operator is discussed later in this section). In the case
that a Sequence Diagram contains nested CFs (i.e., a CEU consisting of an EU that
encloses other CEUs), we map each enclosed CEU as a submodule of the containing
EU’s module. This procedure is recursively applied until all CEUs and EUs are mapped
accordingly.

The semantic rules for a basic Sequence Diagram defined in section 2.1 are codified
using NuSMV modules for Lifelines or EUs, and an INVAR statement. Within Lifeline
or EU modules, a directly enclosed OS is represented as a boolean variable, which ini-
tializes to False (note that a CEU module does not contain OS variables). Once an OS
occurs, its value is set to True and then to False in all the following states. This value
transition expresses the fact that an OS can occur only once in the Sequence Diagram

102 H. Shen, M. Robinson, and J. Niu

(the semantic rule 1). To record the execution history of OSs, we introduce an enumer-
ated variable, state, for each Lifeline and EU module, expressing that respective OSs
have taken place (the semantic rule 2). A CEU module contains one boolean variable,
cond, for each of its EUs to represent the Interaction Constraint of the EU.

To express the interleaving semantics among Lifelines, we introduce an INVAR
statement in the main module to assert that at most one OS on one of the Lifelines
can take place in each step (the semantic rule 4). A boolean variable chosen is used
for each Lifeline to restrict that: (1) a Lifeline is chosen only if it is enabled, i.e., there
is an OS that is ready to take place on the Lifeline, represented by the derived vari-
able enabled; (2) either only one Lifeline can be chosen to execute an OS in each step if
Lifelines are enabled (i.e., before all OSs on the Lifelines have occurred); or no Lifeline
can be chosen when all Lifelines are not enabled and all chosen variables remain False
thereafter. A sending OS is enabled to execute if and only if the OSs prior to it on the
same Lifeline have already occurred. A receiving OS is enabled to execute if and only
if the OSs prior to it on the same Lifeline and the sending OS of the same Message have
already occurred (the semantic rules 2 and 3). To execute the OSs enclosed in CFs, the
variable chosen for each Lifeline is passed to the CEU and EU modules on that Lifeline
as a parameter.

4.3 Basic Sequence Diagram with Asynchronous Messages

In this subsection, we illustrate our mapping strategy with an example basic Sequence
Diagram as shown in figure 1a. Figure 2 shows the NuSMV description of the example,
which contains a main module for the Sequence Diagram. We map the three Lifelines
to three modules, which are instantiated as submodules l L1, l L2, and l L3 in the main
module. We show the implementation of module L2 here. Module L2 takes modules
L1, L3 as parameters. Three OSs on Lifeline L2 are defined as boolean variables OS r1,
OS s2, and OS r3 in the VAR section. We define each OS as OS sx or OS rx, where
s and r denote they are sending or receiving OSs, and x is the corresponding Message
name. The enumerated variable state has four values, including an initial value sinit
and three values to record the execution of the three respective OSs. A derived variable
enabled for each OS represents the enabling condition of the OS by using the variable
state in the DEFINE section. For instance, r3 enabled for OS r3 is True if and only
if the sending OS of Message m3 and the preceding OS, OS s2, on Lifeline L2 have
occurred, i.e., state on Lifelines L2 and L3 set to s2 and s3 respectively. The Lifeline
L2 can be enabled if and only if one of r1, s2, and r3 is enabled. The variable flag final
checks whether the last OS, r3, on L2 takes place (i.e., state sets to r3). If so, all OSs
in module L2 have occurred. The ASSIGN section defines the transition relation of
module L2. For example, OS r3 is set to False initially. When it is chosen and enabled,
it is set to True. It is set to False in the subsequent states to represent that an OS can
execute exactly once. OS r1 and OS s2 take the same transition as OS r3. Variable state
is set to r1 in the same state where OS r1 occurs.

Model Checking Combined Fragments of Sequence Diagrams 103

MODULE main

VAR

l_L1 : L1(l_L2, l_L3);

l_L2 : L2(l_L1, l_L3);

l_L3 : L3(l_L1, l_L2);

INVAR

((l_L1.chosen -> l_L1.enabled)

&(l_L2.chosen -> l_L2.enabled)

&(l_L3.chosen -> l_L3.enabled)

&((l_L1.chosen&!l_L2.chosen&!l_L3.chosen)

|(!l_L1.chosen&l_L2.chosen&!l_L3.chosen)

|(!l_L1.chosen&!l_L2.chosen&l_L3.chosen)

|(!l_L1.enabled&!l_L2.enabled&!l_L3.enabled)))

MODULE L2(L1, L3)

VAR

OS_r1 : boolean;

OS_s2 : boolean;

OS_r3 : boolean;

state : {sinit, r1, s2, r3};

chosen : boolean;

DEFINE

r1_enabled := state=sinit&L1.state=s1;

s2_enabled := state=r1;

r3_enabled := state=s2&L3.state=s3;

enabled := r1_enabled|s2_enabled|r3_enabled;

flag_final := state=r3;

ASSIGN

init(state) := sinit;

next(state) := case

state=sinit & next(OS_r1) :r1;

state=r1 & next(OS_s2) :s2;

state=s2 & next(OS_r3) :r3;

1 :state;

esac;

...

init(OS_r3) := FALSE;

next(OS_r3) := case

chosen & r3_enabled :TRUE;

OS_r3 :FALSE;

1 :OS_r3;

esac;

Fig. 2. Basic Sequence Diagram to NuSMV

4.4 Basic Sequence Diagram with Synchronous Messages

Sequence Diagram with synchronous Messages restricts that the sending Lifeline blocks
until a reply Message is received. We introduce a boolean variable, isBlock, for each
Lifeline to capture this semantic aspect. All OSs on a Lifeline include isBlock as an
enabling condition, thus preventing the OSs from occurring while isBlock is True.

4.5 Combined Fragments

A CF enclosing multiple Lifelines is projected onto all the Lifelines to obtain a col-
lection of CEUs, one for each Lifeline. A CEU contains a collection of EUs, one for
each Operand on the same Lifeline. To preserve the structure of the Sequence Diagram
during translation, we map a CF to NuSMV submodules, one for each Lifeline module,
while the EUs are mapped to NuSMV sub-submodules of their parent CEU submodule
separately. We implement the Interaction Constraint for each Operand with a boolean
variable cond. We do not control the value of cond until the Operand is entered, rep-
resenting the fact that a condition may change during the execution of the Sequence
Diagram.

If cond evaluates to True, the Operand is entered, otherwise, the Operand is skipped
(the CF semantic rule 2). Afterwards, the value of cond stays the same. While there is no
Constraint in an Operand, cond is defined as constant True. An extra variable op eva for
each Operand indicates its respective execution status, including “not ready” (the OSs
that may happen prior to the Operand on the Lifeline have taken place) by enumeration
element -1, “ready but not enabled” (the Constraint evaluates to False) by enumera-
tion element 0, and “start” (Constraint evaluates to True) by enumeration element 1.

104 H. Shen, M. Robinson, and J. Niu

MODULE main
VAR
l_L1 : L1(l_L2, l_L3);
l_L2 : L2(l_L1, l_L3);
l_L3 : L3(l_L1, l_L2);

INVAR
((l_L1.chosen -> l_L1.enabled)
& (l_L2.chosen -> l_L2.enabled)
& (l_L3.chosen -> l_L3.enabled)
& ((l_L1.chosen & !l_L2.chosen & !l_L3.chosen)
| (!l_L1.chosen & l_L2.chosen & !l_L3.chosen)
| (!l_L1.chosen & !l_L2.chosen & l_L3.chosen)
| (!l_L1.enabled & !l_L2.enabled & !l_L3.enabled)))

INVAR
((l_L1.CF1.op1.chosen -> l_L1.CF1.op1.enabled)
& (l_L1.CF1.op2.chosen -> l_L1.CF1.op2.enabled)
& ((l_L1.CF1.op1.chosen & !l_L1.CF1.op2.chosen)
| (!l_L1.CF1.op1.chosen & l_L1.CF1.op2.chosen)
| (!l_L1.CF1.op1.enabled & !l_L1.CF1.op2.enabled)))

INVAR
((l_L2.CF1.op1.chosen -> l_L2.CF1.op1.enabled)
& (l_L2.CF1.op2.chosen -> l_L2.CF1.op2.enabled))
& ((l_L2.CF1.op1.chosen & !l_L2.CF1.op2.chosen)
| (!l_L2.CF1.op1.chosen & l_L2.CF1.op2.chosen)
| (!l_L2.CF1.op1.enabled & !l_L2.CF1.op2.enabled)))

INVAR
((l_L3.CF1.op1.chosen -> l_L3.CF1.op1.enabled)
& (l_L3.CF1.op2.chosen -> l_L3.CF1.op2.enabled))
& ((l_L3.CF1.op1.chosen & !l_L3.CF1.op2.chosen)
| (!l_L3.CF1.op1.chosen & l_L3.CF1.op2.chosen)
| (!l_L3.CF1.op1.enabled & !l_L3.CF1.op2.enabled)))

MODULE L2(L1, L3)
VAR
CF1 : par_L2(state, chosen, L1.CF1, L3.CF1);
...

DEFINE
r7_enabled := state=r1 & CF1.flag_final & L1.state=s7;
enabled := r1_enabled | r7_enabled | CF1.enabled;
...

MODULE par_L2(state, L2_chosen, par_L1, par_L3)
VAR
op1 : par_op1_L2(L2_chosen, par_L1.op1, par_L3.op1, op1_eva);
op2 : par_op2_L2(L2_chosen, par_L1.op2, par_L3.op2, par_L1.op2_eva,

state, op1.CF2.op1.isCritical);
cond1 : boolean;
op1_eva : -1..1;

DEFINE
enabled := op1.enabled | op2.enabled;
flag_final := op1.flag_final & op2.flag_final;

ASSIGN
init(op1_eva) := -1;
next(op1_eva) := case
op1_eva=-1 & next(state)=r1 & !next(cond1) :0;
op1_eva=-1 & next(state)=r1 & next(cond1) :1;
1 :op1_eva;

esac;
init(cond1) := {TRUE, FALSE};
next(cond1) := case
op1_eva=-1 :{TRUE, FALSE};
op1_eva!=-1 :cond1;
1 :cond1;

esac;

Fig. 3. NuSMV module for Parallel

Model Checking Combined Fragments of Sequence Diagrams 105

cond is evaluated when op eva evaluates to either 0 or 1. Both cond and op eva for
each Operand are instantiated and declared in the CEU module on the Lifeline where
the Interaction Constraint of the Operand is located. The value of op eva is passed to
other CEUs of the same CF as parameters, which is further passed to all the EUs of the
same Operand to coordinate multiple EUs. From the deconstruction of Sequence Dia-
grams and CFs (see section 3), we define the OSs as boolean variables in the respective
EUs that directly enclose them, instead of the CEUs; OSs that are not enclosed in any
CF are declared as boolean variables in their Lifeline module.

Concurrency. In a Parallel CF, the Operands are interleaved, which is captured using
a strategy similar to the implementation of interleaved Lifelines modules. We introduce
a boolean variable chosen for each EU module to indicate whether the EU is chosen to
execute. We add an INVAR statement for each CEU to assert that (1) either only one
EU module is chosen to execute or no EUs are enabled (i.e., all EUs have completed
execution or their Constraints evaluate to False), and (2) an EU module can be chosen
only if it is enabled (i.e., an OS within the EU is enabled to execute). All INVAR
statements are combined using logical conjunctions to form a global invariant in the
main module.

Figure 1b shows an example Sequence Diagram, in which a Parallel contains a Criti-
cal Region. The implementation of its main module and the modules of Lifeline L2 and
its CEU of the Parallel are shown in figure 3. In the module of Lifeline L2, the Parallel’s
CEU module is initialized as a module instance. Two EUs of the Parallel’s Operands
are initialized as two module instances within its CEU module.

In the Parallel, the Interaction Constraint of its Operand, op1, is located on L2. Thus,
cond1 for op1 is initialized and declared in the Parallel’s CEU module on L2. It is
set to the value of the evaluation step and remains that value in the following steps.
Variable op1 eva is initialized to -1, and then is set depending on the value of cond1
when entering the CEU, i.e., it is set to 1 if cond1 evaluates to True or 0 otherwise. In
each EU module of the Parallel, a variable chosen is used to denoted whether the EU is
chosen to execute.

Atomic Execution. A Critical Region has a sole Operand while each CEU module
having a single EU submodule. We use a boolean variable, isCritical, for each EU of
the Critical Region’s Operand, to restrict the OSs within the EU from interleaving with
other OSs on the same Lifeline. Variable isCritical is initialized to False in each EU
module of the Critical Region’s Operand. It is set to True if the EU starts to execute
OSs and stays True until the EU finishes execution. Once the EU completes, isCritical
is set to False. The negation of isCritical of an EU is considered as an enabling condition
for each variable of other OSs, which may interleave the EU, on the same Lifeline. See
figure 1b for an example. On Lifeline L3, the sending OS of Message m6 takes the
negation of isCritical for the EU on Lifeline L3 as an enabling condition.

Branching. Collectively, we call Alternatives, Option, and Break branching constructs.
In an Alternatives CF, each Operand must have an explicit or an implicit or an “else”
Constraint. An implicit Constraint always evaluates to True. The “else” Constraint

106 H. Shen, M. Robinson, and J. Niu

is the negation of the disjunction of all other Constraints in the enclosing Alternatives.
The chosen Operand’s Constraint must evaluate to True. If none of the Operands whose
Constraints evaluate to True, the Alternatives is excluded. For each Operand, a boolean
variable exe indicates the execution status of the applicable Operand, i.e., exe is set to
True if the Operand is chosen to execute. The variable exe for each Operand is initialized
and declared in the CEU module on the Lifeline where the Operand’s Constraint is
located. The Constraint under INVAR restricts that an Operand’s exe can be set to True
only if the Operand’s cond evaluates to True. It also restricts that at most one Operand
can be chosen to execute, i.e., at most one exe can be set to True at a time, or all Operand
Constraints evaluate to False. The use of exe guarantees that all the enclosed Lifelines
choose the same Operand’s EU module to execute to avoid inconsistent choices (e.g.,
Lifeline L1 chooses Operand 1’s EU whereas Lifeline L2 chooses Operand 2’s EU).
The cond of the chosen Operand stays True and those of the unchosen Operands are set
to False and stay False.

The NuSMV representation of Option and Break can be derived from the one of
Alternatives. The details of translation are described in [6].

Iteration. The Loop represents its sole Operand’s iterations, which are connected by
Weak Sequencing. To restrict the number of iterations, the Operand’s Constraint may
include a lower bound, minint, and an upper bound, maxint, i.e., a Loop iterates at least
the minint number of times and at most the maxint number of times. If the Constraint
evaluates to False after the minint number of iterations, the Loop will terminate.

Bounded Loop, whose maxint is given, can be translated to NuSMV modules. To
keep each OS and Constraint within different iterations of a Loop unique, one way to
implement an OS or a Constraint is defining an array to rename the OS or the Constraint
of each iteration. For each Lifeline, We use n to represent the current iteration number.
In this way, an OS within the Loop’s Operand, OS r1, and Constraint cond in iteration
n can be represented as OS r1[n] and cond[n] respectively. For example, if a Loop
iterates at most three iterations, OS r1 in different iterations are defined as OS r1[1],
OS r1[2] and OS r1[3]. The graphical order of the OSs within the same iteration is
maintained, and the OSs among iterations execute sequentially along a Lifeline, i.e.,
OSs in iteration n take place before OSs in iteration n+1.

We need to evaluate the Interaction Constraint of its sole Operand after minimum
number of iterations. If n ≤ minint, the Loop executes. If minint < n ≤ maxint,
the Loop executes only if cond[n] evaluates to True. Otherwise, the Loop terminates
and the values of the Constraint of remaining iterations (i.e., from cond[n + 1] to
cond[maxint]) set to False. The Loop no longer executes when its iteration reaches
maxint.

Assertion. An Assertion represents that, on each Lifeline, a set of traces of its Operand
are the only valid traces following the Assertion’s preceding OSs. The mapping strategy
of the Assertion is very similar to the one of the Critical Region. For each Lifeline, a
boolean variable inAssertion is initialized and declared in the EU module of the As-
sertion’s Operand, restricting the OSs within the EU from interleaving with other OSs
on the same Lifeline if the OSs prior to the CEU of the Assertion finish execution.

Model Checking Combined Fragments of Sequence Diagrams 107

The variable inAssertion is False initially, and is set to True when the OSs in the set of
pre(CEU) have executed. Function pre(CEU) returns the set of OSs which may happen
right before the CEU of the Assertion. If the EU of the Assertion’s Operand completes
execution, inAssertion is set to False and other OSs may execute. For each Lifeline, the
negation of inAssertion is used as an enabling condition for each variable of other OSs,
which may interleave the EU of the Assertion’s Operand.

Negation. We translate the Operand of a Negative into NuSMV modules, deriving all
possible invalid traces.

Fig. 4. Example for Weak Sequencing

Weak Sequencing and Strict Sequencing. The semantics of a Weak Sequencing en-
forces the total order among EUs of Operands on the same Lifeline. In any EU module
of an Operand (except the first one), the first OS takes the variable flag final of the EU
of the preceding Operand on the same Lifeline as an enabling condition, i.e., the EU
cannot execute before the preceding one completes. Figure 4 is an example of Weak
Sequencing. In the EU module of the second Operand on Lifeline L2, the first OS, r4,
takes flag final of the EU occurring immediately before this EU (i.e., the EU of the first
Operand) as an enabling condition.

The semantics of a Strict Sequencing enforces the total order between adjacent
Operands. An EU module of an Operand (other than the first one) within a Strict Se-
quencing takes variable flag final of every EU module within the preceding Operand
as enabling conditions of the first OS. It asserts that all EUs cannot execute until its
preceding Operand completes execution. We can alter the Interaction Operator of the
CF in figure 4 to strict to make it as an example of Strict Sequencing. Comparing to
the example of Weak Sequencing, OS r4 also takes the variable flag final of the EUs of
the first Operand on Lifelines L1 and L3 as enabling conditions additionally.

Ignore and Consider. Ignore and Consider make it possible to execute the Messages
not explicitly appear in the CF. To map an Ignore (Consider) into NuSMV modules,
we can explore all the traces of OSs in which Messages are ignored (not considered).
We assume the signature of any Message of ignored (considered) types is given, i.e.,
the Lifelines where the sending OS and receiving OS of a Message occur are known.

108 H. Shen, M. Robinson, and J. Niu

Fig. 5. Architecture of Tool Suite

The Messages of ignored types can occur and interleave with the OSs appearing in
the CF. In an Ignore, the OSs appearing in the CF are translated as usual. Each OS of
any ignored Message is mapped to a boolean variable in the EU module on the Lifeline
where it is located. An OS of the ignored Messages can be enabled if it has not executed
and the control is in the EU module. To record the status of each ignored Message’s OS,
an enumeration type variable os chosen is introduced, which is initially -1. It is set to 0
if the OS is chosen to execute and is set to and stays 1 in the following steps. In each
EU module of the Ignore, the OSs of ignored Messages and other OSs are interleaved,
which is captured by INVAR statements using the same strategy as the implementation
of Parallel.

A Consider specifies a list of message types which should be considered within the
CF. It is equivalent to ignore other message types, i.e., the message types not in the
list cannot appear in the CF, but they may occur. If a message type is considered but
does not appear in the CF, the Messages of the type cannot occur within the CF. For
example, if a Consider CF considers message type q, v, and w, but only Messages of
message type q and v appear in the CF. Thus, Messages of message type w cannot occur
within the CF. In a Consider, each OS of the considered Messages can be defined as a
boolean variable in the EU module on the Lifeline where it is located. If the OS does
not appear in the Consider, it is defined as a derived variable, whose value is False to
indicate the OS will never occur. For other known but not considered Messages, their
OSs are defined in the same way as the OSs of the ignored Messages.

We also provide the mapping of Interaction Use, Coregion, and General Ordering
to the NuSMV modules. Due to space limitation, please refer to [6] for the details of
translation.

Model Checking Combined Fragments of Sequence Diagrams 109

5 Tool Suite Implementation and Evaluation

As a proof-of-concept, we have developed a tool suite, implementing the techniques
described in this paper. Figure 5 is a data flow diagram, illustrating the architecture of
our tool suite.

The software engineer uses MagicDraw to create a Sequence Diagram, which can
be converted to a textual representation in terms of XML using our MagicDraw plu-
gin. The Sequence Diagram Translation tool takes the XML representation as input,
parses it into a syntax tree, and transforms it into a NuSMV model. NuSMV model
checker takes as input the generated NuSMV model and a temporal logic formula that
is specified by the software engineer. If there are no property violations, the software
engineer receives a positive response. If property violations exist, NuSMV generates a
counterexample which is then passed to our Occurrence Specification Trace Diagram
Generator (OSTDG) tool. The output from the OSTDG is an easy-to-read Sequence
Diagram visualization of the counterexample to help the software engineer locate the
property violation faster. Thus, the software engineer may transparently verify a Se-
quence Diagrams using NuSMV, staying solely within the notation realm of Sequence
Diagrams.

We evaluate our technique with a case study of ISIS (Insurance Services Information
System), a web application currently used by the specialty insurance industry. Our eval-
uation uses two Sequence Diagram examples from the design documentation of ISIS.
We check the example on a Linux machine with a 3.00GHz, 8 cores CPU and 32GB
of RAM. One example executed in 19 minutes 49 seconds with 3,825 reachable states
out of total 3.71e+012 states, while the other example executed in 18 minutes 14 sec-
onds with 192 reachable states out of total 4.95e+012 states. Please refer to [6] for more
details of the case study and our tool suite.

6 Related Work

Verification of scenario-based notation is well-accepted as an important and challenging
problem. To the best of our knowledge, our technique is the first to support all CFs and
the nested CFs. Lima et al. provide a tool to translate UML 2 Sequence Diagrams into
PROMELA-based models and verify using SPIN, with counterexample visualizations
[7]. Their translation does not support Critical Region, Strict Sequencing, Negative, As-
sertion, Consider, Ignore, synchronous Messages and Interaction Constraint. Van Am-
stel et al. present four complementary approaches for analyzing UML 1.5 Sequence
Diagrams, which do not support CFs [8]. They model check Sequence Diagrams using
SPIN. Alawneh et al. introduce a unified paradigm to verify and validate prominent
UML 2 diagrams, including Sequence Diagrams, using NuSMV [9]. Their approach
supports Alternatives and Parallel.

To model check MSCs, Alur et al. [10,11] formalize MSC using automata. They ex-
amine different cases of MSC verification of temporal properties and present techniques
for iteratively specifying requirements [12]. They focus on MSC Graph, which is an
aggregation of MSCs. We extend their work to encompass more complicated aggrega-
tions using CFs. Peled et al. perform intensive research on the verification of MSCs

110 H. Shen, M. Robinson, and J. Niu

[13,14], in particular, they present an extension of the High-Level MSC [15]. They
specify MSC properties in temporal logic and check for safety and liveness properties.
Leue et al. translate the MSC specification, especially branching and iteration of High-
Level MSC, into PROMELA to verify MSCs using the XSPIN tool [16]. As Sequence
Diagrams have similar expressive features, our technique can be extended to work with
their approach. Kugler et al. improve the technique of smart play-out, which is used to
model check LSCs to avoid violations over computations [17]. Walkinshaw and Bog-
danov [18] detail an inference technique to constrain a finite-state model with LTL.
These constraints reduce the number of traces required as input to a model checker for
discovery of safety counter examples. Our work can automatically model check each
Sequence Diagram of a system against LTL properties separately, which helps to alle-
viate the state explosion problem.

Micskei and Waeselynck survey comprehensively formal semantics proposed for Se-
quence Diagrams by 13 groups and present the different semantic options [3]. In these
groups, Knapp and Wuttke present an operational semantics for a translation of an In-
teraction into automata, which is used to model check UML state machines with SPIN
or UPPAAL [19]. Their approach does not support all CFs and the interpretation of
automata restricts the specification of Interaction Constraints. Haugen et al. present the
formal semantics of UML 2 Sequence Diagram through an approach named STAIRS
[20]. STAIRS provides a trace-based representation for a subset of CFs, focusing on the
refinement for Interactions. To relate state-based behaviors with scenario-based descrip-
tions, Bontemps et al. formally study the problem of scenario checking, synthesis, and
verification of the LSC [21]. Their work focuses on providing an algorithm and proving
the complexity for each problem. Uchitel et al. [22] synthesize a behavioral specifica-
tion in the form of a Finite Sequential Process, which can be checked using their labeled
transition system analyzer. With the semantic definition of Uchitel et al., Damas et al.
synthesize a labeled transition system model from both positive and negative scenarios,
expressed in MSC [23].

7 Conclusions

In this paper, we present an approach to transform Sequence Diagrams and all CFs
into NuSMV models. This enables software engineers to verify if a Sequence Diagram
satisfies desired properties and visualize counterexamples as Sequence Diagrams to
help user locate violations. We supplement our technique with a proof-of-concept tool
suite and perform an evaluation using a case study of an industry web application.

References

1. Object Management Group: Unified Modelling Language (Superstructure), v2.4.1 (2011),
Internet: http://www.omg.org

2. Cimatti, A., Clarke, E., Giunchiglia, F., Roveri, M.: NuSMV: a new symbolic model checker.
Int. Journal on Soft. Tools for Tech. Transfer 2, 410–425 (2000)

3. Micskei, Z., Waeselynck, H.: The many meanings of UML 2 Sequence Diagrams: a survey.
Software and Systems Modeling 10, 489–514 (2011)

http://www.omg.org

Model Checking Combined Fragments of Sequence Diagrams 111

4. Kugler, H., Harel, D., Pnueli, A., Lu, Y., Bontemps, Y.: Temporal logic for scenario-based
specifications. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp.
445–460. Springer, Heidelberg (2005)

5. Eichner, C., Fleischhack, H., Meyer, R., Schrimpf, U., Stehno, C.: Compositional semantics
for UML 2.0 Sequence Diagram using Petri Nets. In: Prinz, A., Reed, R., Reed, J. (eds.) SDL
2005. LNCS, vol. 3530, pp. 133–148. Springer, Heidelberg (2005)

6. Shen, H., Robinson, M., Niu, J.: A logical framework for Sequence Diagram with Combined
Fragments. Technical Report CS-TR-2011-015, UTSA (2011)

7. Lima, V., Talhi, C., Mouheb, D., Debbabi, M., Wang, L., Pourzandi, M.: Formal verification
and validation of UML 2.0 Sequence Diagrams using source and destination of messages.
Electron. Notes Theor. Comput. Sci. 254, 143–160 (2009)

8. van Amstel, M., Lange, C., Chaudron, M.: Four automated approaches to analyze the quality
of UML Sequence Diagrams. COMPSAC 2, 415–424 (2007)

9. Alawneh, L., Debbabi, M., Hassaine, F., Jarraya, Y., Soeanu, A.: A unified approach for
verification and validation of systems and software engineering models. In: ECBS 2006, pp.
409–418 (2006)

10. Alur, R., Yannakakis, M.: Model checking of Message Sequence Charts. In: Baeten, J.C.M.,
Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 114–129. Springer, Heidelberg (1999)

11. Alur, R., Etessami, K., Yannakakis, M.: Realizability and verification of MSC graphs. Theo-
retical Computer Science 331, 97–114 (2005)

12. Alur, R., Etessami, K., Yannakakis, M.: Inference of Message Sequence Charts. TSE 29,
623–633 (2003)

13. Muscholl, A., Peled, D., Su, Z.: Deciding properties of Message Sequence Charts. In: Nivat,
M. (ed.) FOSSACS 1998. LNCS, vol. 1378, pp. 226–242. Springer, Heidelberg (1998)

14. Gunter, E.L., Muscholl, A., Peled, D.: Compositional Message Sequence Charts. In: Mar-
garia, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 496–511. Springer, Heidelberg
(2001)

15. Peled, D.: Specification and verification of Message Sequence Charts. In: Bolognesi, T.,
Latella, D. (eds.) FORTE 2000. IFIP, vol. 55, pp. 139–154. Springer, Heidelberg (2000)

16. Leue, S., Ladkin, P.B.: Implementing and verifying MSC specifications using
PROMELA/XSPIN. In: SPIN 1996. DIMACS, vol. 32, pp. 65–89 (1996)

17. Kugler, H., Plock, C., Pnueli, A.: Controller synthesis from LSC requirements. In: Chechik,
M., Wirsing, M. (eds.) FASE 2009. LNCS, vol. 5503, pp. 79–93. Springer, Heidelberg (2009)

18. Walkinshaw, N., Bogdanov, K.: Inferring finite-state models with temporal constraints. In:
ASE, pp. 248–257 (2008)

19. Knapp, A., Wuttke, J.: Model checking of UML 2.0 interactions. In: Kühne, T. (ed.) MoD-
ELS 2006. LNCS, vol. 4364, pp. 42–51. Springer, Heidelberg (2007)

20. Haugen, O., Husa, K.E., Runde, R.K., Stolen, K.: STAIRS towards formal design with Se-
quence Diagrams. Soft. and Sys. Modeling 4, 355–357 (2005)

21. Bontemps, Y., Heymans, P., Schobbens, P.Y.: From Live Sequence Charts to state machines
and back: A guided tour. TSE 31, 999–1014 (2005)

22. Uchitel, S., Kramer, J., Magge, J.: Synthesis of behavioral models from scenarios. TSE 29,
99–115 (2003)

23. Damas, C., Lambeau, B., Dupont, P., van Lamsweerde, A.: Generating annotated behavior
models from end-user scenarios. TSE 31, 1056–1073 (2005)

A Large-Scale Elastic Environment
for Scientific Computing

Paul Marshall1, Henry Tufo1,2, Kate Keahey3,4, David LaBissoniere3,4,
and Matthew Woitaszek2

1Department of Computer Science, University of Colorado, Boulder, CO, U.S.A.
2CSS, National Center for Atmospheric Research, Boulder, CO, U.S.A.

3Computation Institute, University of Chicago, Chicago, IL, U.S.A.
4MCS, Argonne National Laboratory, Argonne, IL, U.S.A.

Abstract. The relatively recent introduction of infrastructure-as-a-service (IaaS)
clouds, such as Amazon Elastic Compute Cloud (EC2), provide users with the
ability to deploy custom software stacks in virtual machines (VMs) across differ-
ent cloud providers. Users can leverage IaaS clouds to create elastic environments
that outsource compute and storage as needed. Additionally, these environments
can adapt dynamically to demand, scaling up as demand increases and scaling
down as demand decreases. In this paper, we present a large-scale elastic en-
vironment that extends cluster resources managers (e.g. Torque) with IaaS re-
sources. Our solution integrates with an open-source elastic manager, the Elastic
Processing Unit (EPU), and includes the ability to periodically recontextualize
the environment with a light-weight REST-based recontextualization broker. We
deploy the Gluster file system to provide a shared file system for all nodes in
the environment. Though our implementation currently only supports Torque, we
also thoroughly discuss how our architecture can interface with different work-
flows, including Hadoop’s MapReduce workflows and Condor’s match-making
and high-throughput capabilities. For evaluation, we demonstrate the ability to
recontextualize 256-node environments within one second of the recontextualiza-
tion period, scale to over 475 nodes in less than 15 minutes, and support parallel
IO from distributed nodes.

Keywords: Cloud Computing, Elastic Computing, Infrastructure-as-a-Service.

1 Introduction

With the recent introduction of infrastructure-as-a-service (IaaS) clouds [4], users can
choose to outsource computation and storage when needed. IaaS clouds offer pay-
for-use virtual infrastructure resources, such as virtual machines (VMs), to users on-
demand. On-demand resource provisioning is an attractive paradigm for users working
toward deadlines or responding to emergencies. Users in the scientific community have
begun to adopt IaaS clouds for their workflows [20], [37], [18], [43]. Additionally, the
pay-for-use charging model means that a resource provider can choose to reduce his
initial purchase of capital equipment, selecting a resource that meets the needs of his
users the majority of the time, and opt to budget for future outsourcing costs, elastically

J. Cordeiro, S. Hammoudi, and M. van Sinderen (Eds.): ICSOFT 2012, CCIS 411, pp. 112–126, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

A Large-Scale Elastic Environment for Scientific Computing 113

extending the resource when demand of the local resource exceeds its capacity. In previ-
ous work we developed a cloud charging model for high-performance compute (HPC)
resources [44], allowing a resource provider to analyze the cost of cloud resources in
the context of physical HPC resource deployments. The virtual nature of IaaS clouds
allows users to customize the entire software stack, from the operating system (OS)
upward, often a key requirement for complex scientific workflows.

IaaS clouds provide the underlying building blocks for elastic computing environ-
ments. However, policies are needed to ensure the environment adjusts appropriately
to demand; tools to deploy and manage the environments are also needed. In [26] we
propose policies for elastic environments that balance user and administrator require-
ments; we evaluate them using workload traces and a discrete event simulator. In [25]
we developed a prototype elastic IaaS environment that extended a Torque [7] queue
with Nimbus [22], [30] and Amazon EC2 clouds [1]. However, the prototype was not
sufficiently scalable, scaling to 150 nodes in 60 minutes and it lacked the ability to
recontextualize, preventing the environment from executing parallel jobs, or leverage
multiple clouds.

In this paper, we include our previous work in [27] and expand upon it. We address
the limitations of our previous prototype and present a large-scale elastic environment
that is highly available, scalable, and adapts quickly to changing demand. We extend
an open-source elastic IaaS manager, the Elastic Processing Unit (EPU), to support
the Torque batch-queue scheduler, allowing existing scientific workflows to integrate
with IaaS resources for minimal software engineering cost. To support parallel jobs, we
develop a lightweight REST-based contextualization broker that recontextualizes the
cluster as nodes join and leave the environment. New to this extended version of the
paper, we deploy the Gluster file system [14], allowing all nodes to mount a shared
file system in wide-area deployments. We also thoroughly discuss how our architec-
ture can be adapted for other workflows, specifically Hadoop’s MapReduce workflows
and Condor’s match-making and high-throughput capabilities. For evaluation, we de-
ploy our solution using NSF FutureGrid [10] and Amazon EC2. Our solution leverages
multiple clouds simultaneously, recontextualizes 256 node clusters within one second
of the recontextualization period, scales to over 475 nodes in less than 15 minutes, and
supports parallel IO from distributed nodes.

2 Approach

In previous work [25] we discuss the specifics required to extend a physical cluster
with IaaS resources. Therefore, we only briefly discuss our previous prototype and its
limitations before presenting our large-scale architecture and implementation.

2.1 Initial Prototype

Our initial prototype [25] implemented a standalone service that created elastic IaaS
environments, providing valuable insight into the challenges faced by large-scale elas-
tic computing environments. The prototype elastic manager service monitored a Torque
queue and responded by launching or terminating cloud instances. The Nimbus con-
text broker [23] contextualized the cloud nodes with the head node, exchanging host

114 P. Marshall et al.

information and SSH keys. However, the prototype contained a number of design and
implementation limitations that prevented it from scaling appropriately, using multiple
cloud providers simultaneously, and recontextualizing the environment.

In particular, the prototype elastic manager service called Torque commands directly
to gather information about the queue and called the Java-based Nimbus cloud client
to launch instances (sometimes taking up to a few hundred seconds). This meant the
system could only launch approximately a dozen nodes every few hundred seconds.
Additionally, a single cluster image with preinstalled software was deployed for each
cloud provider, requiring that new images had to be configured for every new cloud
supported. The Nimbus context broker was used to facilitate the exchange of host in-
formation between nodes in a context, which does not allow additional nodes to join
the context after the initial launch, thereby preventing the system from running parallel
jobs. Lastly, the prototype elastic manager service was not highly available; it did not
contain any self-monitoring or self-repairing capabilities.

2.2 Large-Scale Elastic Computing Environments

In this section we build on our prototype architecture in [25] and present an updated
architecture for large-scale elastic computing environments. We address the challenges
discussed in the previous section, focusing primarily on improving scalability, leverag-
ing multiple clouds, and developing a solution for recontextualization.

Elastic Management. We extend an open-source elastic manager service, the Elastic
Processing Unit (EPU) [24], under development by the Ocean Observatories Initiative
[32]. The EPU aims to be a highly available and scalable service. It is publicly available
on GitHub [9] as an alpha release for initial testing. It contains the necessary framework
and functionality to create elastic computing environments. The EPU consists of three
major components that we leverage for our elastic environments: sensors to monitor
application demand, a decision engine that responds to sensor information, and a provi-
sioner that interfaces with various cloud providers to launch, terminate, and manage the
instances. The provisioner interfaces with IaaS clouds using their REST APIs. Unlike
the Java-based cloud client, these operations return quickly, typically within a second
or two. The decision engine loops continually, processing sensor information and ex-
ecuting a policy that elects to launch or terminate a specific number of instances. We
refer to each loop iteration as a policy evaluation iteration. We extend the OOI EPU
model to support a “push“ queue model where a central scheduler, such as a batch-
queue scheduler, monitors worker instances and dispatches jobs to workers instead of
using the EPU’s “pull“ queue model where works request work from a central queue.
In our model, the sensors both monitor demand and execute commands on behalf of the
decision engine.

Automating Deployment and Configuration. To support multiple cloud providers
seamlessly, the installation and configuration of worker nodes should be automated
using a system integration framework, such as Chef [19], instead of preinstalling and
preconfiguring VM images manually. With this approach, a base image that is likely

A Large-Scale Elastic Environment for Scientific Computing 115

available on any cloud (e.g. a Debian 5.0 image) can be used. When a new worker
boots the base image, the system integration framework downloads the cluster software,
installs it, and configures the worker to join the cluster head node automatically. This
can be a lengthy process if a lot of software needs to be installed, therefore, software
packages can either be cached on the node or they can be completely installed, allowing
nodes to boot quickly and be appropriately configured.

Contextualization. Creating a shared and trusted environment, or context, is a key re-
quirement for elastic computing environments. To support parallel jobs, all resources
in the environment need to exchange information and data. However, with elastic com-
puting environments, contextualization is a continual process since demand fluctuates
constantly with nodes joining and leaving the environment. For example, a typical clus-
ter requires that nodes exchange host information and SSH keys in order to run parallel
jobs. Existing contextualization solutions, such as the Nimbus context broker, provide
mechanisms to exchange host information between all nodes that are launched at the
same time. However, the Nimbus context broker does not allow additional nodes to join
the context at a later time.

We propose a recontextualization service that periodically exchanges information
between all nodes in the context. The recontextualization service maintains an ordered
list of nodes in the context. The list includes hostnames, IP addresses, SSH keys, and
a generic data field for all nodes. As nodes join or leave the context, the recontextual-
ization service updates the ordered list. Every node in the context periodically checks
in with the recontextualization service. If there are updates to the context, the recontex-
tualization service sends the updated section of the list to the node, which applies the
updates in order (e.g. adding the SSH keys of nodes that joined the context to the SSH
known hosts file).

3 Implementation

The earlier version of this work [27] discusses our implementation in more detail, how-
ever, we provide an overview in this section. In particular, we extend the EPU to support
the Torque batch-queue scheduler, we create a set of scripts to configure worker nodes,
we develop a recontextualization service that contextualizes all nodes in the context,
and finally, we include support for a reliable and simple data movement. An example
deployment, shown in Figure 1, consists of the main EPU components (a sensor, deci-
sion engine, and provisioner), our recontextualization service, and a deployment across
multiple IaaS clouds.

3.1 EPU Extensions

The EPU currently uses the Advanced Message Queuing Protocol (AMQP) [42] to com-
municate between its various components. We develop a custom EPU sensor to integrate
with Torque, allowing scientific workloads to use the elastic environment seamlessly.
We also develop a custom decision engine to respond to the information provided by
the Torque sensor. The Torque sensor, written in Python, monitors the queue and sends

116 P. Marshall et al.

information to the decision engine. The pbs python package [36], a Python wrapper
class for the Torque C library, is used to gather Torque information, including both
job and node information. The Torque sensor also executes commands sent to it by
the decision engine, such as adding the hostname of newly launched nodes to Torque’s
host file. At each policy evaluation iteration, the decision engine determines whether
or not to launch instances (instances that haven’t joined the cluster within 10 minutes
are marked as stalled and replaced), it instructs the Torque sensor to add any recently
launched instances, it instructs the sensor to mark any idle Torque workers as offline in
preparation to terminate them, and finally, it terminates any nodes that were previously
marked offline.

3.2 Automated Worker Deployment

After the EPU launches worker instances, software packages need to be installed, the
instances need to be configured as Torque worker nodes, and they need to join the
cluster. We use the Chef [19] systems integration framework to download, install, and
configure cluster and user software. We develop a set of Chef recipes to download,
compile, and install Torque, the pbs python package, and user software. This allows us
to use any base Linux image on any IaaS cloud as a worker image, greatly reducing the
time required to support additional clouds. When the base Linux node boots, a simple
Python agent, bundled in the image ahead of time, automatically retrieves the Chef
recipes from a GitHub repository and then executes them, installing and configuring
the node from scratch. To speed up the deployment and limit possible points of failure,
the recipes and software can be cached in the base image.

3.3 Recontextualization Broker

The recontextualization broker is a lightweight, REST-based recontextualization service
that securely exchanges host information between all nodes in a context. All compo-
nents of our recontextualization solution are written in Python and use representational
state transfer (REST) over HTTPS for communication; symmetric keys are used for
both user and context security. Our solution consists of three components: a client for
managing contexts, an agent that runs on all nodes in the context and applies updates as
it receives them, and a central broker service to facilitate the secure exchange of host in-
formation between agents. The information exchanged by nodes in the context includes
the short hostname, full hostname, IP address, SSH public host key, and a generic text
data field. A complete figure detailing the recontextualization process is included in our
previous work [27], however, the process essentially works as follows: Recontextual-
ization begins when a user creates a context with the client, which sends a request to
the broker service. The broker responds with the newly generated context ID, a uniform
resource identifier (URI) for the context and a unique context key and secret. When the
user launches a cloud instance, this information is passed to the instance via the IaaS
cloud’s userdata field. The agent starts when the instance boots and reads the instance’s
userdata field to get the context information. The agent then sends its node information
(hostname, etc.) to the broker. The broker maintains an ordered list of nodes that join or
leave a context. After the agent sends its information to the broker, it enters into a loop

A Large-Scale Elastic Environment for Scientific Computing 117

Fig. 1. Example elastic deployment with support for the Gluster file system

referred to as the recontextualization period, requesting updates from the broker and
applying them. The amount of time the agent sleeps between loop iterations determines
the frequency that the environment recontextualizes.

3.4 Gluster

In an earlier version of this work [27] we did not include a reliable or scalable data
movement solution. Our elastic environment instead relied on Torque’s ability to SCP
data to and from worker nodes or common file system technologies such as NFS, which
often failed in wide-area deployments. Therefore, we have updated our implementa-
tion to support the open source Gluster file system [14], shown in Figure 1. Gluster is
a distributed and scalable file system with support for automatic failover. Gluster dis-
tributes data and metadata, allowing the environment to seamlessly adapt to failures or
temporary outages. Furthermore, Gluster supports commodity hardware and software,
making it simple to to install, configure, and deploy in cloud environments. Lastly, in
addition to Gluster’s native GlusterFS communication, users can also access Gluster file
systems via NFS or SMB protocols.

To deploy Gluster, we developed a set of scripts to automatically download, config-
ure, and install Gluster on both servers and clients. For our initial implementation we
only deploy a single Gluster server on the cluster head node. The Gluster server ex-
ports a portion of the underlying head node file system, providing a single mount point
and shared file system for all clients. We leave deployment of larger Gluster pools as
well as evaluation of them for future work. We leverage the recontextualization broker
to automatically install Gluster on worker nodes. When worker nodes first boot, they
download Gluster, configure it, install it and then mount the Gluster server node in the
context, giving them access to the shared file system.

118 P. Marshall et al.

4 Evaluation

For evaluation, we examine the reactivity of the environment, its ability to recontextu-
alize quickly, and its scalability. We do not compare the performance of different cloud
providers or instance types, which are tied directly to the performance of the under-
lying hardware and software configuration of the particular cloud. Other studies have
examined the performance of virtual environments and IaaS clouds [16], [35], [15],
[13]. And in November 2011, Amazon EC2 ranked #42 on the Top500 [31]. Users with
applications that have strict performance requirements should select appropriate clouds
for their environments.

We use NSF FutureGrid and Amazon EC2 for our evaluation environment. On Fu-
tureGrid we use Hotel (fg-hotel), at the University of Chicago (UC), and Sierra (fg-
sierra), at the San Diego Supercomputer Center (SDSC). Both systems use Xen [6]
for virtualization. We deploy the recontextualization broker and cluster head node in
separate VMs on Hotel for all tests. The recontextualization broker runs inside a VM
with 8 2.93 GHz Xeon cores and 16 GB of RAM. The head node runs on a VM with
2 2.93GHz Xeon cores and 2 GB of RAM. The head node contains the Torque 2.5.9
server software, Maui 3.3.1 [17], [28], as well as the EPU provisioner and decision en-
gine. Worker nodes are deployed on both Hotel and Sierra and consist of 2 2.93 GHz
Xeon cores with 2 GB of RAM. On EC2 we use 64-bit EC2 east micro instances for
worker nodes, primarily due to cost (two cents per hour). Micro instances use Elastic
Block Storage (EBS) and contain up to 2 EC2 compute units with 613 MB of RAM.
Worker nodes use a base Linux image on each cloud and Chef installs and configures
the software. For all tests, the sensor queries Torque every 60 seconds to gather job
and worker information. The decision engine executes every 5 seconds, querying IaaS
clouds for changes in instance state and executing its policy. Recontextualization agents
send their information to the broker when they first launch and query the broker every
120 seconds for updates.

As a metric, we define the reactivity time to be the time from when the first job is
submitted until the time the last job begins running for a group of jobs submitted at the
same time. We also define the metric recontextualization time to be the time from when
a new node attempts to join a context by sending its information to the broker until the
time when all nodes in the context have received and applied the update for the new
node. In addition to these metrics, we examine the ability of the elastic environment to
leverage multiple clouds simultaneously and scale to hundreds of nodes, shown with a
series of traces. For the reactivity and recontextualization tests, the workloads consist of
a simple MPI application that sleeps for 60 minutes. For the recontextualization test, 60
minutes is more than enough time for the initial nodes to stabilize and wait for an addi-
tional node to launch and join the context. For the multi- cloud and scalability tests, the
workloads consist of individual “sleep“ jobs that sleep for 30 minutes, demonstrating
the ability of the environment to scale up and down as demand changes.

4.1 Understanding System Responsiveness

To understand system responsiveness we consider two metrics. First, we examine the
reactivity time. This includes the time to detect the change in demand, execute the

A Large-Scale Elastic Environment for Scientific Computing 119

Fig. 2. Reactivity time, showing three data points for each cluster size

policy, request instances from an IaaS provider, and wait for the instances to boot and
install software. To measure reactivity time, we configure the environment to launch
single-core EC2 east micro worker nodes. We perform a series of tests, beginning with
2 node clusters, increasing to 256 nodes, shown in Figure 2. We run each test 3 times
for each cluster size.

As we can see in Figure 2, small cluster sizes, from 2 nodes through 16, all have
relatively similar reactivity times. However, interestingly, 32 and 64 node clusters each
have one test with a reactivity time similar to smaller clusters while the other 2 tests
are much higher. The reason for this is related to the fact that our environment detects
and replaces stalled nodes after 10 minutes. In our evaluation we observed that EC2
micro instances would periodically fail (most often the instance failed to boot or access
the network). Because larger cluster sizes boot more instances, they are more likely to
encounter these failed instances, even when booting replacements.

The second area we explore is the recontextualization time where all nodes in the
context must query the broker for updates, receive the updates and apply them. To
measure the recontextualization time, we again configure the environment to use EC2
east micro instances (single core). Similar to the reactivity tests, we perform a series
of tests from 2 nodes through 256, running 3 tests for each cluster size. We submit a
simple MPI sleep job that requests the appropriate number of cores and allow the cluster
to boot, contextualize, and begin running the job. Once the cluster stabilizes, we submit
another single-core sleep job, causing an extra instance to launch and join the cluster.
We measure the time from when the new instance sent its information to the broker until
the time when all nodes in the environment receive and apply the update. We rely on
Amazon’s ability to synchronize the clocks of instances, which is done through NTP,
for our time-based measurements.

As we can see in Figure 3, all clusters fully recontextualize within 1 second of the
120-second recontextualization period. The tests that recontextualize before the 120
second period do so simply because all of the existing nodes in the environment check

120 P. Marshall et al.

Fig. 3. Recontextualization time, showing three data points for each cluster size

in with the broker shortly after the new node has sent its information to the broker.
The three 2- node cluster tests are perhaps the most interesting case. For one of the
tests, both nodes check in with the broker shortly after the new node joined the context
and contextualize in less than 20 seconds, whereas with another 2-node test, at least
one of the nodes waits almost the full 120 second period before it queries the broker
again. This is simply the result of the random timing of when nodes boot and install the
required software. As the number of nodes in a context increases, the likelihood that at
least one of the nodes will query the broker 120 seconds after the additional node joins
the context increases.

4.2 Multi-cloud and Scalable Elastic Environments

In addition to system responsiveness, we also examine the ability of the environment to
scale up and down as demand fluctuates. For our first test, we configure the environment
to launch workers on Hotel and then we submit 256 single-core jobs that sleep for 30
minutes (Figure 4). The environment scales up to over 100 VMs, however, it doesn’s
quite reach 128 VMs (or 256 cores), because Hotel’s underlying hardware is unable to
deploy 128 VMs within 30 minutes.

In our second test, we configure the environment to dispatch workers on both Hotel
and Sierra, shown in Figure 5. The workers from both clouds are configured to trust each
other and process the same jobs from the main queue. For evaluation, we submit 512
single-core jobs that sleep for 30 minutes. In this case we observe the limited scalability
of private clouds. Hotel and Sierra are not able to provide 512 cores, as both clouds
reach the maximum number of instances that they can deploy at the time, shown by the
horizontal line for VMs running on each cloud.

In our final test, we configure the EPU to deploy single-core EC2 east micro in-
stances, shown in Figure 6. We submit 512 single-core jobs that sleep for 30 minutes.
The environment scales to 476 instances in less than 15 minutes. Unfortunately, EC2 is
not able to reach 512 instances within the first 30 minutes of the evaluation. While the

A Large-Scale Elastic Environment for Scientific Computing 121

Fig. 4. Single-cloud trace running 256 single-core jobs

Fig. 5. Multi-cloud trace running 512 single-core jobs

environment scales quickly, it begins to trail off around 400 instances, only reaching
a total of 490 instances. The remaining 22 instances fail to boot completely on EC2,
thus suggesting that when using EC2 for hundreds of instances users should consider
overprovisioning the deployment by a small percentage.

4.3 Data Movement

In this section we provide a brief discussion of our initial experiences with Gluster,
which have been largely positive. To date we have deployed Gluster in both single-
cloud and multi-cloud environments using Hotel and Sierra on FutureGrid. We have
not experienced any failures with Gluster while transferring hundreds of gigabytes of

122 P. Marshall et al.

Fig. 6. Scalability test on EC2 running 512 single-core jobs

data between hundreds of clients, even between clouds. This is a huge improvement
over our experiences with NFS, which typically sufficed in single-cloud environments
but failed frequently in multi-cloud environments. As discussed in section 3.4, our de-
ployment consist of a single cluster head node that exports the Gluster file system to any
number of client nodes. The client nodes mount the file system on the Gluster server
and can then seamlessly read and write data. We have successfully used Gluster both to
transfer large datasets between nodes and to read and write data directly from parallel
scientific applications running on worker nodes. We leave a more thorough benchmark-
ing and analysis of Gluster for future work as well as a comparison to other file system
technologies.

5 Extending Elastic Environments for New Workflows

Our current architecture and implementation focuses on support for traditional batch-
queue clusters, such as Torque. However, much of our existing work can be used in its
current form to easily support different workflows, such as Hadoop’s MapReduce work-
flows and Condor’s match-making capabilities. The sensors and policies are the most
obvious components that need to be adapted. The sensors are responsible for interfac-
ing with specific job managers and gathering information about the workload. Policies
are responsible for responding to sensor information by launching additional workers,
terminating existing workers, or leaving the environment unchanged. In order for envi-
ronments to respond to demand more effectively, custom policies should be developed
for different workflows, applications, and instance requirements.

Condor [41], recently renamed HTCondor, is a job manager for high-throughput
computing workloads. Because Condor was originally developed for cycle-scavenging
and emphasized high-throughput workloads, it is often used for workloads that don’t
have strict performance or deadline requirements and it contains substantial support
for unreliable environments. HTCondor uses a match-making process to assign jobs

A Large-Scale Elastic Environment for Scientific Computing 123

to worker nodes where individual jobs specify attributes that they require and workers
advertise attributes that they contain. Condor contains built-in support to reschedule
failed jobs as well as mechanisms to checkpoint jobs and move them to different hosts.
To support HTCondor, a new sensor would need to be developed in order to interface
with Condor’s API. New policies that understand Condor’s match-making capabilities
are also needed; this would allow the policies to identify job requirements and provi-
sion resources that match those requirements. Additionally, the policies should recog-
nize Condor’s ability to checkpoint, transfer, and reschedule jobs and be able to adapt
accordingly. However, an HTCondor elastic environment could leverage many of the
same technologies as our Torque environment, including Gluster, the recontextualiza-
tion broker, and a central IaaS auto scaling and provisioning service.

Hadoop [3] is another widely-used and open source framework, primarily for MapRe-
duce workflows. Hadoop also includes a distributed file system (HDFS) that pools to-
gether the storage capacity of individual worker nodes in the system and distributes
data across the workers. Hadoop jobs are then dispatched to workers containing the
data required by the job. Similar to HTCondor, new sensors and policies would need
to be developed for Hadoop. As an example, Hadoop colocates tasks and data, there-
fore, when new workers are added to the cluster, large data sets may be distributed to
them. Simply terminating idle Hadoop workers may be more problematic than Torque
workers where data is stored at a central location. Therefore, it may be more beneficial
to scale Hadoop clusters conservatively and avoid terminating workers whenever pos-
sible. The recontextualization broker and the central IaaS auto scaling and provisioning
service, however, could all be used in their current states. Additionally, Gluster could
be used without requiring any adjustments to MapReduce workflows since it includes
built-in support for Hadoop.

6 Related Work

Prior to the introduction of IaaS clouds, several projects developed dynamic resource
managers that adjust resource deployments based on demand [38], [39], [29]. More re-
cently, applications have begun to add support for IaaS clouds. Specifically, Sun Grid
Engine [12], now Oracle Grid Engine contains support for Amazon EC2 resource pro-
visioning [34]. Evangelinos et al. [11] use Amazon EC2 to support interactive climate
modeling. In both cases these applications only include support for Amazon EC2, and
they both bundle support for EC2 directly into the application. Application-specific ap-
proaches, such as these, require that each individual application include support for all
cloud providers that users may need.

Amazon CloudWatch [2] is a cloud-specific approach for elastic resource provision-
ing. CloudWatch can scale environments based on demand; however, it only uses Ama-
zon EC2. OpenNebula [40], an IaaS toolkit, also provides a cloud-specific approach,
bundling support for Amazon EC2. Our solution is more general than cloud-specific and
application-specific approaches, allowing any application to share a single service and
code base for IaaS resource provisioning. Juve et al. [21] present a generic IaaS manage-
ment solution, Wrangler, that provisions IaaS resources across multiple clouds and de-
ploys applications on those resources. Wrangler, however, is not an elastic management

124 P. Marshall et al.

solution that adapts the environment based on changing demand; instead, Wrangler fo-
cuses on deploying relatively standalone environments for users. The University of Vic-
toria’s Cloud Scheduler [5] is perhaps the most similar to our solution. Cloud Scheduler
monitors a Condor queue and provisions resources across Nimbus clouds and Amazon
EC2. Currently, Cloud Scheduler does not contain a mechanism for recontextualizing
nodes, and instead it focuses on high throughput computing (HTC) jobs.

7 Future Work

In future work we will extend our solution to support Amazon’s Auto Scaling API,
allowing the environment to use auto scaling services that implement Amazon’s API.
We will also benchmark the IO performance of Gluster in a variety of configurations,
including both single-cloud and multi-cloud deployments. We will compare Gluster
to other file systems, including NFS, XtreemFS [45], and ceph [8]. To demonstrate
the end-to-end capabilities of the environment we will process large scientific datasets.
Furthermore, we will investigate efficient data movement solutions, which are a key
requirement since cloud providers may charge for data transfers, therefore, data move-
ment solutions should avoid sending excessive amounts of data or duplicate datasets to
cloud resources for both cost and performance reasons. Existing file system technolo-
gies do not include advanced policies that allow users to tailor data transfers. Such a
solution would likely need to be tightly integrated with compute scheduling, allowing
the environment to colocate compute processing with data.

8 Conclusions

We present a large-scale elastic computing architecture and extend an open source elas-
tic resource manager, the Elastic Processing Unit (EPU), to support the Torque batch-
queue scheduler. We also develop a lightweight REST-based recontextualization broker
that periodically and securely exchanges host information between all nodes in a con-
text, allowing the environment to support parallel jobs. To support reliable data move-
ment over wide-area deployments we leverage the Gluster file system. In addition to our
implementation, we thoroughly discuss how our architecture can support other work-
flows, including Condor and Hadoop. We evaluate our elastic environment by examin-
ing its ability to scale rapidly and recontextualize quickly as resources join and leave
the environment. The elastic environment is able to leverage multiple clouds, recon-
textualize 256 nodes within one second of the recontextualization period, and scale to
over 475 nodes within 15 minutes. Finally, we demonstrate that the elastic environment
supports parallel IO from distributed nodes, even over wide-area networks.

References

1. Amazon Web Services, http://aws.amazon.com/
2. Amazon Web Services CloudWatch, http://aws.amazon.com/cloudwatch/
3. Apache Hadoop, http://hadoop.apache.org

http://aws.amazon.com/
http://aws.amazon.com/cloudwatch/
http://hadoop.apache.org

A Large-Scale Elastic Environment for Scientific Computing 125

4. Armbrust, M., et al.: Above the Clouds: A Berkeley View of Cloud Computing. Technical
report, UC-Berkeley (2009)

5. Armstrong, P., et al.: Cloud Scheduler: A Resource Manager for Distributed Compute
Clouds. J. CoRR (2010)

6. Barham, P., et al.: Xen and the art of virtualization. In: 19th ACM Symposium on Operating
System Principles, pp. 164–177. ACM, New York (2003)

7. Bode, B., et al.: The Portable Batch Scheduler and the Maui Scheduler on Linux Clusters. In:
4th Annual Linux Showcase and Conference, p. 27. USENIX Association, Berkeley (2000)

8. Ceph, http://ceph.com
9. EPU, GitHub, https://github.com/ooici/epu

10. FutureGrid, https://portal.futuregrid.org
11. Evangelinos, C., Hill, C.: Cloud Computing for Parallel Scientific HPC Applications: Fea-

sibility of Running Coupled Atmosphere-Ocean Climate Models on Amazon’s EC2. In: 1st
Workshop on Cloud Computing and its Applications (2008)

12. Gentzsch, W.: Sun Grid Engine: Towards Creating A Compute Power Grid. In: 1st
IEEE/ACM International Symposium on Cluster Computing and the Grid, pp. 35–36. IEEE
Computer Society, Washington D.C. (2001)

13. Ghoshal, D., et al.: I/O Performance of Virtualized Cloud Environments. In: 2nd International
Workshop on Data Intensive Computing In The Clouds, pp. 71–80. ACM, New York (2011)

14. Gluster, http://www.gluster.org
15. He, Q., et al.: Case Study for Running HPC Applications in Public Clouds. In: 19th ACM

International Symposium on High Performance Distributed Computing, pp. 395–401. ACM,
New York (2010)

16. Huang, W., et al.: A Case for High Performance Computing with Virtual Machines. In: 20th
Annual International Conference on Supercomputing, pp. 125–134. ACM, New York (2006)

17. Jackson, D., et al.: Core Algorithms of the Maui Scheduler. J. Job Sch. Str. for Par.
Proc. 2221, 87–102 (2001)

18. Jackson, K., et al.: Seeking Supernovae in the Clouds: A Performance Study. In: 19th ACM
International Symposium on High Performance Distributed Computing, pp. 421–429. ACM,
New York (2010)

19. Jacob, A.: Infrastructure in the Cloud Era. In: International OReilly Conference Velocity
(2009)

20. Juve, G., et al.: Data Sharing Options for Scientific Workflows on Amazon EC2. In: Interna-
tional Conference for High Performance Computing, Networking, Storage and Analysis, pp.
1–9. IEEE Computer Society, Washington D.C. (2010)

21. Juve, G., Deelman, E.: Automating Application Deployment in Infrastructure Clouds. In:
IEEE International Conference on Cloud Computing Technology and Science, pp. 658–665
(2011)

22. Keahey, K., et al.: Virtual Workspaces: Achieving Quality of Service and Quality of Life in
the Grid. J. Sci. Pro. 13, 265–276 (2005)

23. Keahey, K., Freeman, T.: Contextualization: Providing One-Click Virtual Clusters. In:
eScience, pp. 301–308 (2008)

24. Keahey, K., et al.: Infrastructure Outsourcing in Multi-Cloud Environments. In: 2012 Work-
shop on Cloud Services, Federation, and the 8th Open Cirrus Summit, pp. 33–38. ACM, New
York (2012)

25. Marshall, P., Keahey, K., Freeman, T.: Elastic Site: Using Clouds to Elastically Extend Site
Resources. In: 10th IEEE/ACM International Symposium on Cluster, Cloud and Grid Com-
puting, pp. 43–52. IEEE Computer Society, Washington D.C. (2010)

26. Marshall, P., Tufo, H., Keahey, K.: Provisioning Policies for Elastic Computing Environ-
ments. In: 26th International Parallel and Distributed Processing Symposium Workshops and
PhD Forum, pp. 1085–1094. IEEE Computer Society, Washington D.C. (2012)

http://ceph.com
https://portal.futuregrid.org
http://www.gluster.org

126 P. Marshall et al.

27. Marshall, P., et al.: Architecting a Large-Scale Elastic Environment: Recontextualization and
Adaptive Cloud Services for Scientific Computing. In: 7th International Joint Conference on
Software Technologies (2012)

28. Maui, http://www.clusterresources.com/pages/products/
maui-cluster-scheduler.php

29. Murphy, M., et al.: Dynamic Provisioning of Virtual Organization Clusters. In: 9th IEEE
International Symposium on Cluster Computing and the Grid, pp. 364–371. IEEE Computer
Society, Washington D.C (2009)

30. Nimbus, http://www.nimbusproject.org
31. November 2011 Top500, http://top500.org/list/2011/11/100
32. OOI EPU, https://confluence.oceanobservatories.org/display/

syseng/CIAD+CEI+OV+Elastic+Computing
33. Opscode, Chef, http://www.opscode.com/chef/
34. Oracle Grid Engine, http://www.oracle.com/us/products/tools/

oracle-grid-engine-075549.html
35. Ostermann, S., et al.: A Performance Analysis of EC2 Cloud Computing Services for Scien-

tific Computing. In: Avresky, D.R., Diaz, M., Bode, A., Ciciani, B., Dekel, E. (eds.) Cloudc
omp 2009. LNICST, vol. 34, pp. 115–131. Springer, Heidelberg (2010)

36. PBS Python, https://subtrac.sara.nl/oss/pbs_python
37. Rehr, J., et al.: Scientific Computing in the Cloud. J. Com. in Sci. Eng. 12, 34–43 (2010)
38. Ruth, P., McGachey, P., Dongyan, X.: VioCluster: Virtualization for Dynamic Computational

Domains. In: IEEE Cluster Computing, pp. 1–10. IEEE Computer Society, Washington D.C.
(2005)

39. Ruth, P., et al.: Autonomic Live Adaptation of Virtual Computational Environments In a
Multi-Domain Infrastructure. In: IEEE International Conference on Autonomic Computing,
pp. 5–14. IEEE Computer Society, Washington D.C. (2006)

40. Sotomayor, B., et al.: Virtual Infrastructure Management in Private and Hybrid Clouds. J.
Int. Comp. 13, 14–22 (2009)

41. Tannenbaum, T., et al.: Condor: A Distributed Job Scheduler. B. C. Comp. w. Win. 307–350
(2002)

42. Vinoski, S.: Advanced Message Queuing Protocol. J. Int. Comp. 10, 87–89 (2006)
43. Wilkening, J., et al.: Using Clouds for Metagenomics: A Case Study. In: Cluster Computing

and Workshops, pp. 1–6. IEEE Computer Society, Washington D.C. (2009)
44. Woitaszek, M., Tufo, H.: Developing a Cloud Computing Charging Model for High-

Performance Computing Resources. In: 10th IEEE International Conference on Computer
and Information Technology, pp. 210–217. IEEE Computer Society, Washington D.C. (2010)

45. XtreemFS, http://www.xtreemfs.org

http://www.clusterresources.com/pages/products/maui-cluster-scheduler.php
http://www.clusterresources.com/pages/products/maui-cluster-scheduler.php
http://www.nimbusproject.org
http://top500.org/list/2011/11/100
https://confluence.oceanobservatories.org/display/syseng/CIAD+CEI+OV+Elastic+Computing
https://confluence.oceanobservatories.org/display/syseng/CIAD+CEI+OV+Elastic+Computing
http://www.opscode.com/chef/
http://www.oracle.com/us/products/tools/oracle-grid-engine-075549.html
http://www.oracle.com/us/products/tools/oracle-grid-engine-075549.html
https://subtrac.sara.nl/oss/pbs_python
http://www.xtreemfs.org

J. Cordeiro, S. Hammoudi, and M. van Sinderen (Eds.): ICSOFT 2012, CCIS 411, pp. 127–139, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Improving Estimates by Hybriding CMMI
and Requirement Engineering Maturity Models –

A LEGO Application

Luigi Buglione1,2, Jean Carlo Rossa Hauck3, Christiane Gresse von Wangenheim3,
and Fergal Mc Caffery4

1 Engineering.IT SpA - via R. Morandi 32, 00148 Rome, Italy
2 Ecole de Technologie Supérieure (ETS) – Montréal, Canada

3 Federal University of Santa Catarina (UFSC), Brazil
4 Regulated Software Research Group & LERO - Dundalk Institute of Technology, Ireland

luigi.buglione@eng.it, {jeanhauck,gresse}@gmail.com,

fergal.mccaffery@dkit.ie

Abstract. Even if the ‘measurement’ and ‘estimation’ issues are one of the
most relevant issues for the proper management of a project, its origin besides
in a good management of its requirements. In fact, estimation is highly
dependent on the quality of requirements elicitation and management.
Therefore, the management of requirements should be prioritized in any process
improvement program, because the less precise the requirements gathering,
analysis and sizing, the greater the error in terms of time and cost estimation.
Maturity and Capability Models (MCM) represent a good tool and base of
experience in order to assess the status of a set of processes, but an inner limit
of any model is its scope and approach for describing a certain issue and more
MCM are typically available on a certain topic, dealing with it in a different
way. Thus, integrating two or more models with a common area of focus can
offer more information and value for an organization, keeping the best
components from each model. LEGO (Living EnGineering prOcess) is an
approach projected for this purpose. This paper proposes a LEGO application
hybridizing a ‘horizontal’ model (a MM containing processes going through the
complete supply chain, from requirements right through to delivery, e.g. CMMI
or ISO 12207/15504) with a few specific ‘vertical’ models (MMs with focus on
a single perspective or process category, e.g. TMMi or TPI in the Test
Management domain, P3M3 and OPM3 in the Project Management domain) for
Requirement Engineering.

Keywords: Process Appraisals, Process Improvement, CMMI, ISO/IEC 15504,
LEGO, Requirement Management, Maturity & Capability Models (MCM).

1 Introduction

One of the latest neologisms from the last 5 years is ‘glocal’ [44], which refers to the
ability to “think globally and act locally”. Cultural differences among countries

128 L. Buglione et al.

should be taken into account more and more when designing processes, particularly as
very interesting ideas may arise from a comparison among different practices. For
instance, when comparing Western and Eastern worlds and behaviours, Western
people ‘act’, Eastern people ‘think’ (a bit more) before acting [17, 30, 9]. But
observing both perspectives and attitudes, it is possible to represent it as a sort of ‘yin-
yang’, complementing each other [42]. Thus, there is never a better idea, but different
shades to be considered when (re)designing a process and/or a technique.

Estimation is one of the core processes in any organization. According to the
Webster-Merriam dictionary, it is “1. a judgment or opinion about something; 2. the
act of judging the size, amount, cost, etc., of something : the act of estimating
something; 3. a guess about the size, amount, cost, etc., of something”. PMBOK
defines estimation as “a quantitative assessment of the likely amount or outcome.
Usually applied to project costs, resources, effort, and durations and is usually
preceded by a modifier (i.e., preliminary, conceptual, feasibility, order-of-magnitude,
definitive)” [36].

However, estimates often have a higher error rate than expected, by running a
RCA (Root-Cause Analysis) for detecting issues, it is possible to remove issuing
surrounding requirements. The top-10 of estimation “deadly sins" [31, 32] can be a
valid starting point for improving it, noting how much the missing (or the low quality)
of requirements and its related historical data as well their granularity level could
largely impact on the estimation process. Using again CMMI-DEV elements, Project
Planning (PP) process area – where estimation is run – in the ‘Related Process Areas’
includes also Requirement Management (RM) and Requirement Development (RD)
for the management of requirements; PP SP1.2 affirms that “The estimates should be
consistent with project requirements to determine the project’s effort, cost, and
schedule”. It’s the same when using the SPICE [25] language, dealing with MAN.3
(Project Management) for estimates and ENG.1 (Requirements Elicitation) plus
ENG.4 (Software Requirement Analysis) [7]. Thus, there is a huge need for any
organization to first reinforce the Requirement Management process (in a broader
sense, not strictly in the CMMI terms, because it’s a ML2 process area), starting from
elicitation and analyzing (RD – Requirements Development, ML3) throughout
requirements management. But what’s the problem? What does not currently exist or
it is not well structured in organizations?

The aim of this paper is to propose a LEGO (Living EnGineering prOcess)
application for the Requirements Engineering (RE) area, matching together different
RE processes using a four-step process, in order to obtain a comprehensive process to
be applied in an organization, which could enable better estimates to be achieved.

The paper is organized as follows: Section 2 proposes a series of specific
requirements management maturity models and frameworks, for extracting any
possible element of interest (EoI) for reinforcing a typical Requirements Engineering
(horizontal) process. Section 3 summarizes the LEGO approach, with its main
elements and four-step process. Section 4 shows the deployment of LEGO to the
Requirements Management process, joining the CMMI-DEV RD process area with
the EoI from the previously examined RE models/frameworks. Finally, Section 5
provides some conclusions and the next steps for this work.

 Improving Estimates by Hybriding CMMI 129

2 Requirement Engineering: Some Maturity and Capability
Models (MCM)

During the ‘90s the ‘maturity models mania’ started [12] and now many ‘something-
maturity-model(s)’ exist in many application areas and domains, and this is also the
case for (software) RE. Table 1 presents some Maturity Models in the RE arena that
can represent potential “vertical” models to be integrated into a consolidated and well
known “horizontal” model such as CMMI-DEV [11] or SPICE [25; 24]. The specific
processes to be involved would be respectively: RD (Req. Development) and RM
(Req. Management) for CMMI_DEV and ENG.1 (Req. Elicitation) and ENG.4
(Software Design) processes for SPICE. For each of the models we present: its
representation types, number of MLs, process architecture type and further
comments/notes.

Table 1. Some requirement engineering maturity models/frameworks

Model/ Framework Repr. Type ML (#) Architect-Type Comments/Notes

IBM RMM [19, 38] Staged 6 [0-5] Level-based ---

IAG RMM [20] Staged 6 [0-5] Matrix-based

6 dimensions (process, practices &

techniques, deliverables, technology,

organization, staff competency)

PRTM CRMM [18] Staged 4 [0-3] Level-based ---

BTH REPM [14, 15] Continuous Process-based

7 processes

Variable number of sub-process areas

per process

REAIMS Process MM

[40]
Staged 3 [1-3] Process-based

8 process areas and 66 practices (basic,

intermediate, advanced)

R-CMM [34] Staged 5 [1-5] Process-based

‘Processes’ = Practices (e.g. 20

‘processes’ at ML2) - Adaptation of

GQM for deriving practices

R-CMMi [39] Staged 5 [1-5] Process-based

‘Processes’ = Practices (e.g. 20

‘processes’ at ML2) - Adaptation of

GQM for deriving practices using the

CMMI process architecture

Some comments about those RE models that could be useful for the LEGO analysis:

 A general trend in RE is to propose staged models more than continuous ones 
suggesting a ‘standard’ way to progress maturity within an organization more than
focusing upon each single RE process. This provides interesting information should
be considered when re-modeling these models into a target model according to its
process architecture.

130 L. Buglione et al.

 No particular architectural elements have been introduced/modified against well-
known horizontal models, differently than in other application domain (e.g. see P3M3
[34] and OPM3 [35] in the Project Management)  there is evidence that many of
those models are still maturing and evolving (e.g. [4] and [39] have deployed only
details for ML2).Some possible tips about its progression could come from joining
organizational and/or support processes (e.g. communication, coaching, and
mentoring processes from the People CMM model [13] or from Stakeholders
Engagement practices [1]).
 Documentation should be provided to fully describe the requirements and project
scope  this is a point of contact with Quality Management Systems (QMS) such as
ISO 9001 or 20000-1, this is typically stressed less in CMMI constellations (see also
the results from Mutafeljia & Stromberg’s mapping [33]) but thus is not the in SPICE
related models (including a specific process on Documentation: SUP.7). Another
interesting related issue concerns the quest for reducing requirements volatility (e.g.
REAIMS) and defining a taxonomy of requirement attributes for properly managing
them by interest groups and/or techniques (e.g. REPM), for instance, making a clear
distinction between functional vs. non-functional product requirements from the
outset. This is a relevant issue in the FSM (Functional Size Measurement)
community, where there is often – at the practical and daily level – a misconception
about the roles and relevance of NFR (Non-Functional Requirements) against FUR
(Functional User Requirements) in the estimation process, where NFR are typically
underestimated because not properly elicited, evidenced and sized from the
requirement elicitation phase1. If something doesn’t appear to everybody’s view, it
doesn’t exist. If it doesn’t exist, it cannot be evaluated and sized and therefore the
‘nominal’ effort (and costs) will be lower than expected, creating the gap in the so-
called ‘cone of uncertainty’ in higher level SLC phases against a strong reduction of
such curve progressing along the project lifetime.

The allowed choices for the “Architectural Type” column are: Level-based (high-
level depth, generic description of needed actions per ML), e.g. [2]; Matrix-based
(mid-level depth, indication of a series of improvement drivers with a specific text per
each cell), e.g. [23]; Process-based (low-level depth, with a consistent process
architecture and repeatable elements per each defined process), e.g. [10].

3 Experiencing LEGO to Requirement Engineering

3.1 The LEGO Approach

Recently we proposed a common-sense approach, called LEGO (Living EnGineering
prOcess) [8] for stimulating organizations to improve their own processes, taking

1 Recently IFPUG released a new method called SNAP (Software Non-functional Assessment

Process) [21], sizing product NFRs moving from part of the elements composing the FPA
Value Adjustment Factor (VAF) that’s a complementary (but NFR-based) part of the original
counting rules by Dr. Albrecht. It takes elements from the evolution of ISO/IEC 9126-1:2001
quality model [26] that now is numbered as ISO/IEC 25010:2011 [27].

 Improving Estimates by Hybriding CMMI 131

pieces (such as the real LEGO bricks) from multiple, potential information sources to
be integrated to form a unique, reinforced picture for a particular process or set of
processes. The starting point – for this paper – is that any model/framework can
represent only a part of the observed reality, not all of its possible views, simply
because it needs to represent one single viewpoint at a time. Thus, through handling
similar elements from different sources, we can hopefully find more ‘fresh blood’ for
improving the organizational processes.

LEGO has four main elements, as shown in Figure 1:

1. a ‘Maturity & Capability Models’ (MCM) repository (www.gqs.ufsc.br/mcm),
from relevant processes or MMs (meaning also the other dimensions – not yet the
process dimension) can be identified;

2. knowledge about the process architecture of each model, for understanding how to
transform desired elements from a certain model into the target format, especially
when considering that the source models may have different architectures that need to
be integrated into a single model;

3. mapping(s) & comparisons between relevant models, in order to understand the
real differences or the deeper level of detail from ‘model A’ to import into ‘model
B’;

4. a process appraisal method (PAM) to be applied on the target BPM (Business
Process Model).

Fig. 1. The four elements of the LEGO approach

LEGO has also a related four-step process:

1. Identify your Informative/Business Goals: clearly identify your needs, moving
from the current BPM version and content.

2. Query the MCM Repository: browse the MCM repository, setting up the proper
filters in order to obtain the desired elements (processes; practices; etc.) to be inserted
in the target BPM. The MCM is a web-based repository that enables the storage,
discovery and retrieval of information on Maturity and Capability Models, providing
the ability to locate models through simple and advanced searches using different
attributes.

132 L. Buglione et al.

For doing this, as discussed in [16], a five-step knowledge engineering (KE)-based
process needs to be run, where the steps are: Knowledge identification; Knowledge
Specification; Knowledge Refinement; Knowledge Usage Knowledge Evolution2.

3. Include the selected Element(s) into the Target BPM: include the new
element(s) in the proper position in the target BPM (e.g. process group, maturity
level, etc.).

4. Adapt and Adopt the selected Element(s): according to the process architecture
of both process models (the target and the source one), the selected elements may
need to be adapted, tailoring such elements as needed.

Fig. 2. The MCM repository (www.gqs.ufsc.br/mcm)

3.2 Applying LEGO to Requirement Engineering

One of the main requirements for improving estimates is to reinforce the management
of requirements from an overall viewpoint, from their elicitation through to the day-
to-day management.

The focus of this work is exclusively on external models as opposed to actual
(living and active) organizational practices, so that any reader can easily access to the
original sources and fully understand the LEGO process, that could (eventually, if
interested) be replicated in his/her own organization through forward moving from
their existing organizational Business Process Model (BPM). Our aim is to show how
to hybridize ideas for obtaining a better and more comprehensive final result.

Thus, we list the preconditions, process and main results from the application of
the LEGO process to the Requirements Engineering (RE) domain, in order to propose
a better RE process that may be applied in an organization:

1. Identify your Informative/Business Goals: improve the estimation capability
and results by a refinement in the overall management of requirements (business,
technical);

2 A list of techniques to apply for each of the five steps is proposed in [16], table 2.

 Improving Estimates by Hybriding CMMI 133

2. Query the MCM Repository: in this paper we consider CMMI-DEV RE
processes (RD; RM) as the baseline for working upon, adding eventual practices from
the other RE models/frameworks listed in Table 1. After a detailed analysis, we
discarded the IBM RMM, proposing only a high-level staged path with no detailed
elements, and focus on the remaining ones. Table 2 proposes the list of potential
elements of interest (EoI) to consider for improving CMMI processes on RE.

3. Include the selected Element(s) into the Target BPM: looking at the analysis of
potential EoI in Table 2. The main improvements/suggestions seem to be mainly
associated with the RD process, rather than the RM process. Table 3 shows how our
suggestions were introduced in the current RD process, describing a new possible
improved process that may be mapped against your own QMS internal process(es)
covering that subject.

Table 2. RE Maturity & Capability Models (MCM): elements of interest

Model/
Framework Elements of Interest (EoI)

IAG RMM

• Technology: the introduction of workflow environments for easily sharing
information for keeping requirements could be useful  CMMI-DEV RD GP2.3
(Elaboration section in Part 1)
• Staff competency: suggested the introduction of Bloom’s levels as informative
notes for all GP 2.5, not only for those two PAs

PRTM
CRMM

• Level 1: link between product and customer requirements, using e.g. QFD (quality
function deployment)  it could be introduced also in CMMI-DEV RD SP 3.4, not
only in SP 2.1 (as currently done) for closing the analysis

BTH REPM

• RE.SI (Stakeholders and Req. Source Identification)  more specific practice to be
added about Requirement Elicitation to CMMI-DEV RD SG1
• RE.GA.a2 (Qualify and Quantify Quality Requirements)  currently missing a
more clear and direct link with CMMI-DEV PP SP 1.2
• DS.GA.a2 (Define Requirement Attributes)  currently less stressed (e.g. FUR vs
NFR for FSM/FPA – Function Point Analysis, as requested in CMMI-DEV PP, SP 1.4

REAIMS
Process MM

Basic practices:
• 3.1 Define a standard document structure: missing, could be added in CMMI-DEV
RD SG1, stressing the need for having an organizational ‘standard’ for comparing
different types of requirements, having impact also on planning (different roles,
productivities and schedules for different activities  PP SP 1.4). Again, it’d help also
PP SP 1.2 because it’d address better the
• 3.8 Make the document easy to change  criteria for writing better requirements,
could be stressed more in CMMI-DEV RD SG1 / RM SG1, SP 1.3
• 6.2 Use language simply and concisely  criteria for writing better requirements
could be added as a note for CMMI-DEV RD SP 1.2, sub-practice #1
Advanced practices:
• 9.8 Identify volatile requirements: suggested to introduce the concept of ‘volatility’
also in the RD process definition by an informative note (e.g. “…verifying the new
need will not be yet addressed by a formalized requirement…”, with a link to RM, SP
1.3),  see also R-CMMi P20 process, same issue

R-CMM

• ML2: P19: Agree and document technical and organizational attributes specific to
project  CMMI-DEV RD deals with customer and product requirements, not
addressing with further informative notes about which could be possible ‘constraints’
such as those ones from the analysis of organizational attributes  reinforce RD SP 1.1

R-CMMi
• ML2: P20: Institute Process to Maintain Stability within Project  always about the
need to minimize ‘volatility’, in terms of management  same comment than for
REAIMS practice 9.8

134 L. Buglione et al.

4. Adapt and Adopt the Selected Element(s): after adapting the original RD
process, as shown in the previous table, it should be mapped against the related QMS
internal process covering that subject. Since many organizations adopt an ISO
management system (e.g. ISO 9001:2008 [21]), a cross-check for validating potential
improvements from the design phase could be achieved through re-applying the
related mapping document to their own internal process (e.g. using the N/P/L/F –
Not/Partially/Largely/Fully achieved ordinal scale from CMMI or SPICE). In our
case, moving from CMMI-DEV, it could use Mutafeljia & Stromberg’s mapping
document [33] as a basis. One possible process flow for better expressing the way to
do such mapping is in Figure 3. In this paper our focus was limited to only the design
phase. However, a case study with the application of the hybrid-RD process will be
included in a future paper.

Table 3. CMMI-DEV RD: suggestions for improvements

CMMI-DEV v1.3 RD process Suggested Improvements

SG 1 Develop Customer Needs

• Introduce a new SP 1.0 about Stakeholders Identification and
Engagement. Rationale: reinforce current formulation, before
running SP 1.1. Nowadays, stakeholder engagement is the sub-
practice #1 within SP 1.1.

• Insert a note about possible standards (de jure/de facto) that could
be consulted/useful for a better application of RD process (e.g.. [1]).

SP 1.1 Elicit Needs

• Introduce a sub-practice about the definition of requirement
attributes, inserting a cross-link with PP SP 1.2 for the classification
of work products (by attribute) to be sized.

• Modify the current WP into: ‘results of requirement elicitation
activities by entity and attribute’ (see previous comment)

SP 1.2 Transform Stakeholders
needs

• Rephrase and make more general sub-practice #2: not only
functional vs. quality (non-functional) attributes, but possibly
establish all valuable, possible requirements taxonomies and
classifications for the organization (by other criteria)

SG 2 Develop Product
Requirements

• Introduce a note within the SG text about the need and relevance of
define a (standard) document structure (in terms of
‘documentability’) and suggest – as informative note – some
possible criteria to follow and appraise (e.g. readability, simple and
concise language for writing requirements, etc.).

SP 2.1 Establish Product and
Product components

• Sub-practice #3: refine the Example box, do no mention generic
quality attributes, but be more specific about requirement
classifications (e..g ISO/IEC 14143-1:1998 [24]  functional,
quality, technical)  cross-link with PP 1.2 about attributes for
sizing.

SP 2.2 Allocate Product
Components

• ---

SP 2.3 Identify Interface
Requirements

• ---

SG 3 Analyze and Validate
Requirements

• ---

SP 3.1 Establish Operational
Concepts and Scenarios

• ---

SP 3.2 Establish a Definition of
Required …

• ---

SP 3.3 Analyze Requirements • ---

 Improving Estimates by Hybriding CMMI 135

Table 3. (continued)

SP 3.4 Analyze Requirements to
Achieve Balance

• Introduce an informative note about the possible usage of QFD
matrices also here, not only for eliciting and determining
requirements in SP 2.1

SP 3.5 Validate Requirements • ---

GP 2.3 Provide Resources

• General: stress the need and opportunity from workflow
environments for an easier sharing of information among
stakeholders, whatever the (CMMI) process

• Specific (RD Elaboration): specific need because RD is the starting
process for gathering needs to be translated into solutions

GP 2.5 Train People

• General: introduce the application of the six Bloom’s cognitive
levels 5 for classifying knowledge (see also IEEE SWEBOK –
www.computer.org/swebok)

• Specific (RD Elaboration): add ‘stakeholder engagement’ [1] and
‘requirement sizing’ [24]

GP 2.8 Monitor and Control
the Process

• Specific (RD Elaboration): introduce at least one measure about the
effectiveness of RD SG1 goal (e.g. % of proposed vs validated
requirements)

Fig. 3. Process capability mapping method 45

4 Conclusions and Next Steps

Requirements are the first step for a project and if they are not clearly and
unambiguously defined this can increase the probability that project estimates will be
incorrect because the project/activity scope has not been clearly documented. Even, if
there are many existing requirements management models and frameworks, each

136 L. Buglione et al.

model represents only one possible view of the inner reality that would be captured
and reused: the ‘one size doesn’t fit all’ motto could be rephrased as ‘one model
doesn’t fit all’. Thus, at least 2 (or more) models/frameworks should be considered for
improving your own processes (whatever they are), in the areas/issues needed.

In order to cope with this need, we recently proposed LEGO (Living
EnGineering prOcess) as an open approach for improving the processes of a business
process model (BPM), based upon the comparative analysis of the process
architecture and elements of several concurrent models within a certain domain. Since
estimation is one of the key processes for determining the success of an organization,
we applied LEGO to Requirements Engineering, with the aim to improving the
CMMI-DEV RD (Req. Development) process by integrating it with other
requirements engineering maturity models. The final result was the design of a more
encompassing hybrid-RD process that could help organizations to improve their
estimates from the beginning of the value chain.

In the future, we will apply this hybrid-RD process to real case studies, proposing
it as the meta-model to be used for the performing the initial gap analysis against the
organizations’ BPM related processes as part of an improvement initiative.

Acknowledgements. This work has been supported by the CNPq (Conselho Nacional
de Desenvolvimento Científico e Tecnológico – www.cnpq.br), an entity of the
Brazilian government focused on scientific and technological development.

This research is also supported in part by the Science Foundation Ireland (SFI)
Stokes Lectureship Programme, grant number 07/SK/I1299, the SFI Principal
Investigator Programme, grant number 08/IN.1/I2030 (the funding of this project was
awarded by Science Foundation Ireland under a co-funding initiative by the Irish
Government and European Regional Development Fund), and supported in part by
Lero (http://www.lero.ie) grant 10/CE/I1855.

References

1. AccountAbility, AA1000 Stakeholder Engagement Standard 2011, Final Exposure Draft,
AA1000SES, http://goo.gl/VajaE

2. Ambler, S.: The Agile Maturity Model, Dr. Dobbs Journal (April 1, 2010),
http://goo.gl/nMNsH

3. Beecham, S., Hall, T., Rainer, A.: Defining a Requirement Process Improvement Model.
Software Quality Journal 13(3), 247–279 (2005)

4. Beecham, S., Hall, T., Rainer, A.: Defining a Requirements Process Improvement Model,
Technical Report 379, Hatfield, University of Hertfordshire (February 2003),
http://goo.gl/6DvjY

5. Bloom, B.S., Engelhart, M.D., Furst, E.J., Hill, W.H., Krathwohl, D.R.: Taxonomy of
educational objectives: the classification of educational goals. Handbook I: Cognitive
Domain New York, Longmans, Green (1956)

6. Boehm, B.: Software Engineering Economics. Prentice-Hall Inc., Englewood Cliffs (1981)
ISBN 0138221227

7. Buglione, L., Ebert, C.: Estimation, Encyclopedia of Software Engineering. Taylor &
Francis Publisher (April 2012) ISBN: 978-1-4200-5977-9

 Improving Estimates by Hybriding CMMI 137

8. Buglione, L., Gresse von Wangenheim, C., Hauck, J.C.R., McCaffery, F.: The LEGO
Maturity & Capability Model Approach. In: Proceedings of the 5th World Congress on
Software Quality

9. Chang, S.J.: When East and West Meet: An Essay of the Importance of Cultural
Understanding in Global Business Practice and Education. Journal of International
Business and Cultural Studies 2 (February 2010), http://goo.gl/OvkEw

10. CMMI Architecture Team, Introduction to the Architecture of CMMI Framework,
Technical Note, CMU/SEI-2007-TN-009 (July 2007), http://goo.gl/NCPUw

11. CMMI Product Team, CMMI-DEV (CMMI for Development) v1.3, Technical Report,
CMU/SEI-2010-TR-033, Software Engineering Institute (November 2010),
http://goo.gl/T3okw

12. Copeland, L.: The Maturity Maturity Model (M3). Guidelines for Improving the Maturity
Process, StickyMinds (September 2003), http://goo.gl/PHovg

13. Curtis, W., Miller, S., Hefley, W.: People Capability Maturity Model (P-CMM) Version
2.0 (CMU/SEI-2001-MM-001). Software Engineering Institute, Carnegie Mellon
University (2001), http://goo.gl/z5jzJ

14. Gorschek, T.: Requirement Engineering Process Maturity Model (Uni-REPM), version
0.9CR, Technical Report, BTH, Sweden (January 2011), http://goo.gl/WBxos

15. Gorschek, T., Tejle, K.: A Method for Assessing Requirements Engineering Process
Maturity in Software Projects, Master Thesis in Computer Science, BTH (Blekinge
Tekniska Högskola), Sweden (June 2002), http://goo.gl/Tr5Dt

16. Hauck, J.C.R., von Wangenheim, C.G., Mc Caffery, F., Buglione, L.: Proposing an
ISO/IEC 15504-2 compliant method for process capability/maturity models customization.
In: Caivano, D., Oivo, M., Baldassarre, M.T., Visaggio, G. (eds.) PROFES 2011. LNCS,
vol. 6759, pp. 44–58. Springer, Heidelberg (2011)

17. Hassan, A., Syuhada Jamaludin, N.: Approaches & Values in Two Gigantic Educational
Philosophies: East and West. Online Educational Research Journal 1(2), 1–15 (2010),
http://goo.gl/XQO9u

18. Hepner Brodie, C.: Are you hearing your customers’ voices? In: PRTM (2006),
http://goo.gl/wTz67

19. Heumann, J.: The Five Levels of Requirement Management Maturity, The Rationale Edge
(2003), http://goo.gl/a7Mvj

20. Consulting, I.A.G.: Requirement Maturity Attribute Table (2009),
http://goo.gl/gMgxp

21. IFPUG, Software Non-functional Assessment Process (SNAP) – Assessment Practice
Manual (APM) Release 2.0 (2012)

22. ISO IS 9001:2008, Quality management systems – Requirements, International
Organization for Standardization (December 2008)

23. ISO IS 9004:2009, Managing for the sustained success of an organization- A quality
management approach, International Organization for Standardization (October 2009)

24. ISO/IEC IS 14143-x, Information Technology – Software Measurement – Functional Size
Measurement, Parts 1-6 (2002-2011)

25. ISO/IEC IS 15504-x, Information technology – Process assessment, Parts 1-7,
International Organization for Standardization (2001-2007)

26. ISO/IEC 9126-1:2001 – Software Engineering – Product quality – Part 1: Quality Model
(2001)

27. ISO/IEC 25010:2011 - Systems and software engineering – Systems and software Quality
Requirements and Evaluation (SQuaRE) – System and software quality models

138 L. Buglione et al.

28. Kollinger, J.: 7 Signs You Have a Bad Project Estimate (and what to do about it),
Presentation (January 20, 2010), http://goo.gl/fp435

29. Koomen, T., Pol, M.: Test Process Improvement: a Practical Step-by-Step Guide to
Structured Testing. Addison-Wesley (1999) ISBN 0-201-59624-5

30. Luo, P.: Analysis of Cultural Differences between West and East in International Business
Negotiation. International Journal of Business and Management 3(11), 103–106 (2008),
http://goo.gl/HCzTA

31. McConnell, S.: 10 Deadly Sins of Software Estimation, Presentation (2002),
http://goo.gl/WjbGR

32. McConnell, Software Estimation: Demystifying the Black Art. Microsoft Press (2006)
ISBN 978-0735605350

33. Mutafelija, B., Stromberg, H.: Process Improvement with CMMI v1.2 and ISO Standards,
Auerbach (2008) ISBN 978-1420052831

34. OGC, P3M3: Portfolio, Programme & Project Management Maturity Model, Version 1.0,
Office of Government Commerce (February 2006),
http://www.ogc.gov.uk/documents/p3m3.pdf

35. PMI, Organizational Project Management Maturity Model (OPM3), 2nd edn. Knowledge
Foundation. Project Management Institute (2008)

36. PMI, The Guide to the Project Management Body of Knowledge, 4th edn., Project
Management Institute (2008), http://www.pmi.org

37. Schauder, J.: 8 Reasons why Estimates are too low (January 17, 2010), Schauderhaft
website, http://goo.gl/F3T2f

38. Sehlhorst, S.: CMMI Levels and Requirements Management Maturity Introduction,
TynerBlain (January 25, 2007), http://goo.gl/ARBLX

39. Solemon, B., Sahibuddin, S., Abd Ghani, A.A.: Re-defining the Requirements Engineering
Process Improvement Model. In: Proceedings of the 16th Asia-Pacific Software
Engineering Conference (APSEC 2009), Penang, Malaysia, pp. 87–92 (2009),
http://goo.gl/ZpqZE

40. Sommerville, I., Ransom, J.: An Empirical Study of Industrial Requirements Engineering
Process Assessment and Improvement. ACM Transactions on Software Engineering and
Methodology 14(1), 85–117 (2005), http://goo.gl/xKIih

41. Standish Group, CHAOS Summary 2009. The 10 Laws of CHAOS (2009),
http://goo.gl/ONXi4

42. Stawicki, J.: Principles of connecting East and West cultural differences in project
management. In: XXII IPMA World Congress, Rome, Italy (2008),
http://goo.gl/S8lTP

43. Stellman, A., Greene, J.: Applied Software Project Management, ch. 3: Estimation.
O’Reilly Publishing (2005) ISBN 978-0596009489

44. Swyngedouw, E.: Neither global nor local: ‘glocalization’ and the politics of scale. In:
Cox, K. (ed.) Spaces of Globalization, pp. 137–166. Guilford Press, New York (1997),
http://goo.gl/Lker1

45. Thiry, M., Zoucas, A., Tristão, L.: Mapping Process Capability Models to Support
Integrated Software Process Assessments. Clei Electronic Journal 13(1), Paper 4 (April
2010), http://www.clei.cl/cleiej/papers/v13i1p4.pdf

46. Van Veenendaal, Test Maturity Model Integration (TMMi) version 3.1, TMMi Foundation
(2010), http://www.tmmifoundation.org

 Improving Estimates by Hybriding CMMI 139

Appendix

List of Acronyms

BPM Business Process Model

CL Capability Level

CMMI Capability Maturity Model Integration

CMMI-DEV CMMI for Development

ENG.1 Requirement Elicitation

ENG.4 Sw Requirement Analysis

IEC Int. Electrotechnical Commission

ISO Int. Organization for Standardization

LEGO Living EnGineering prOcess

MAN.3 Quality Management process

MCM Maturity & Capability Model

ML Maturity Level

MM Maturity Model

NFR Non-Functional Requirement

OPM3 Organizational Project Management Maturity Model

P3M3 Portfolio, Programme, and Project Management Maturity Model

PAM Process Assessment Model

PMBOK Project Management Body of Knowledge

PMI Project Management Institute

PP Project Planning

PRM Process Reference Model

QMS Quality Management System

RCA Root-Cause Analysis

RD Requirement Development

RE Requirement Engineering

REAIMS Requirements Engineering adaptation and improvement for safety and dependability

REPM Requirements Engineering Process Model

RM Requirement Management

SEI Software Engineering Institute

SPICE Software Process Improvement Capability dEtermination (ISO/IEC 15504)

TMMi Test Maturity Model Integration

J. Cordeiro, S. Hammoudi, and M. van Sinderen (Eds.): ICSOFT 2012, CCIS 411, pp. 140–154, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Metamodel Independence in Domain Specific Modeling
Languages

Jerónimo Irazábal1,2 and Claudia Pons1,3

1 LIFIA, Facultad de Informática, Universidad Nacional de La Plata, Argentina
2 CONICET, Consejo Nacional de Investigaciones Científicas y Técnica, Argentina

3 UAI, Universidad Abierta Interamericana, Buenos Aires, Argentina
{jirazabal, cpons}@lifia.info.unlp.edu.ar

Abstract. Domain-specific modeling languages can simplify the development
of complex software systems by providing domain-specific abstractions for
modeling the system and its evolution in a precise but simple and concise way.
In this work we elaborate on the notion of domain specific model manipulation
language, that is to say a model manipulation language tailored to a specific
domain. In contrast to well-known model manipulation languages, such as EOL
or ATL, the language syntax and semantics are directly related to a specific
domain and/or kind of manipulation, making manipulation easier to write and
understand. Furthermore, we show how additional languages can be defined for
the same domain and we discuss about implementation alternatives achieving
complete platform-independence. We illustrate the proposal through a practical
example in the domain of workout plans.

Keywords: Model Driven Engineering, Model Transformation Language,
Domain Specific Language.

1 Introduction

Model Driven Engineering (MDE) [31]; [28]; [18] proposes a software development
process in which the key notions are models that allow engineers to precisely capture
relevant aspects of a system from a given perspective and at an appropriate level of
abstraction. Then, the automated development of a system from its corresponding
models is realized by manipulating them. Model manipulation consists of a number of
operations on the models, such as verifications, views, queries, transformations from
model to model, transformations from model to code, etc.

Models can be expressed using different languages. Unlike general-purpose
modeling languages (GPMLs), such us the UML, Domain-specific modeling
languages (DSMLs), such as the Business Process Modeling Notation (BPMN) [34],
can simplify the development of complex software systems by providing domain-
specific abstractions for modeling the system in a precise but simple and concise
way. DSMLs have a simpler syntax (few constructs focused to the particular domain)
but its semantics is much more complex (all the semantics of the particular domain is
embedded into the language).

 Metamodel Independence in Domain Specific Modeling Languages 141

In a model-driven process, software is built by constructing one or more models,
and successively manipulating them and transforming them into other models, until
reaching an executable program code. A model manipulation program is a set of
rules that together describe how a model can be checked (e.g. for consistency) and
how a model written in the source language is mapped to a model written in the target
language. Model manipulations are specified using a model manipulation language.
There are already several proposals for model manipulation specification,
implementation, and execution, which are being used by MDE practitioners [7]. The
term "model manipulation language" comprises all sorts of artificial languages used in
model manipulation development including general-purpose programming languages,
domain-specific languages (DSLs) [22], modeling and meta-modeling languages and
ontologies. Examples include languages such as the standard QVT [30]; ATL [1];
[10] and EOL [20].

These languages are specific for defining model manipulations but they are
independent of any modeling domain; so they contain complex constructs referring to
pattern matching mechanisms, control structures, etc. This can eventually
compromise the primary aims for which the DSML was built: domain focus and
conciseness. Consequently, an extra level of specialization should be achieved on
them; we can define a manipulation language specifically addressed to a given
domain, that is to say, a Domain Specific Model Manipulation Language (DSMML).
For example, we can create a language dedicated to the definition of transformations
between data-base models or a language addressed to the definition of transformations
between business process models.

In this context, when we would like to take advantage of a very specific
manipulation language we face the problem of implementing such a new language.
There exist powerful frameworks for the definition of domain specific languages,
such as Eclipse [12]; [14] and Microsoft DSL Tools [6]; [13].

In the present work we describe a proposal for defining domain specific model
manipulation languages and also we analyze a novel way to define their semantics.
Our proposal consists in using MDE tools themselves for the implementation of such
languages, which improves modularity and reuse. The article is organized as follows.
Section 2 presents the main features of our proposal to define domain specific
manipulation languages using MDE tools. Section 3 illustrates the use of the approach
to the definition of a new DSMML. Section 4 extends the example presenting an
additionalDSL for the same domain. Section 5 compares our approach with related
research and finally Section 6 presents the conclusions.

2 DSMML Semantics: Implementation Schema

Any language consists of two main elements: a syntactic notation (syntax) which is a
set of elements that can be used in the communication, together with their meaning
(semantics). The term “syntax” refers to the notation of the language. Syntactic issues
focus purely on the notational aspects of the language, completely disregarding any
meaning. On the other hand, the “semantics” assigns an unambiguous meaning to
each syntactically allowed phrase in the language. To be useful in the computer
engineering discipline, any language must come complete with rigid rules prescribing

142 J. Irazábal and C. Pons

the allowed form of a syntactically well formed program, and also with formal rules
pre scribing its semantics.

In programming language theory, semantics is the field concerned with the
rigorous mathematical study of the meaning of languages. The formal semantics of a
language is given by a mathematical structure that describes the possible
computations expressed by the language. There are many approaches to formal
semantics, among them the denotational semantics approach is one of the most
applied. According to this approach each phrase in the language is translated into a
denotation, i.e. a phrase in some other language. Denotational semantics loosely
corresponds to compilation, although the "target language" is usually a mathematical
formalism rather than another computer language. Formal semantics allows a clear
understanding of the meaning of languages but also enables the verification of
properties such as program correctness, termination, performance, equivalence
between programs, etc.

Technically, a semantic definition for a language consists of two parts a semantic
domain and a semantic mapping, denoted μ, from the syntax to the semantic domain.
In particular, our proposal consists in using a well known manipulation language as
the semantic domain for the definition of the new DSMML´s semantics. Then, the
semantic function μ is defined by a transformation written in a model-to-text
transformation language (such as MOFScript [25]). This M2T transformation takes a
program written in the DSMML as input, and generates a program written in a general
purpose manipulation language (such as EOL) as output. This schema is described in
Figure 1.

Fig. 1. Transformation scenario

The advantage of this technique is that the well-known manipulation language has
already a well-defined semantics and provides an execution environment. So, the
semantics of the new language becomes formally described and it is executable.
Additionally, the semantic definition is understandable and adaptable because it is
expressed in terms of a well-known high-level language.

3 Use Case

In this section we present a new DSMML using the proposed approach. This section
is organized as follows; first we introduce the domain, then we propose different

 Metamodel Independence in Domain Specific Modeling Languages 143

meta-models for a simplified version of the domain. Next, we present the new
DSMML trough some examples. And finally we describe the most relevant issues of
its implementation.

3.1 Workout Plan Domain

In websites related to running we frequently see tables such as the one showed in
Figure 2. Such tables describe workout plans to help people to reach their fitness
goals. The workout plan usually has a duration expressed in weeks and each day of
the week contains a list of exercises that must be done with specific requirements,
such as intensity and duration. Given that we are considering this domain just to
exemplify our approach, we will restrict its functionality by giving to the user the
possibility to specify only the time for each exercise, but without considering intensity
or complex exercises.

Fig. 2. A workout plan

As we said before, the DSMML is independent of the underlying meta-model.
That is to say, the language syntax will remain unchanged even if we use a different
but equivalent meta-model for the domain. In order to provide concrete evidence
about this feature, we will present two meta-models for this domain, which are
displayed in Figure 3 and Figure 4 respectively.

It is worth to mention that if we add or remove information from the meta-model,
the manipulation language may get affected by these changes. For example, if we add
the possibility to specify the intensity at which the exercises should be done, we might
change the language to support this new feature. This fact does not mean that the
language depends on the underlying meta-model; on the contrary the language just
depends on the available information while how that information was represented in
the meta-model is completely irrelevant.

Fig. 3. Workout Plan Meta-model, version 1

144 J. Irazábal and C. Pons

Fig. 4. Workout Plan Meta-model, version 2

3.2 WPML: A DSMML Fitting the Workout Plan Domain

In this section we introduce WPML (Workout Plan Manipulation Language). Given
the high level of abstraction of WPML we consider that the code is self-explanatory.
You can find detailed information about the language in [8]. The following WPML
code creates the model showed in Figure 2:

create plan "myplan.plan"

set title "My plan"
set weeks 4

add exercise Run
add exercise Gym

on weeks 1 and 2 {
 on days Monday and Wednesday and Friday {
 do Run as much as 50 minutes
 }
 on days Tuesday and Thursday {
 do Gym as much as 45 minutes
 }
 on days Sunday {
 do Run as much as 150% of Run on day
 Monday of week same week
 }
}
from week 3 to 4 {
 on all days {
 do Run as much as 120% of Run on day same day of week 1
 do Gym as much as 100% of Gym on day same day of week 1
 }
}

The code exhibited above generates a new model. Additionally, WPML allows us to
make changes to an existent model. Obviously, in a real situation if you have the
WPML code that generates the plan you would prefer to change the code, but this
may not always be the case, e.g. the model could be generated by a tool or another
language. So, for example, given the model presented above, suppose we would like
to increment the Running time by a 10% on the entire plan and also we would like to
establish Sunday as the recovering day (day without exercises) instead of Saturday.
The new plan is illustrated in Figure 5.

 Metamodel Independence in Domain Specific Modeling Languages 145

Fig. 5. Modified workout plan

The WPML code to make those changes on the original model could be:

use plan "myplan.plan"

on all weeks {
on all days {
 increase Run by 10%
 }
 swap Saturday and Sunday
}

3.3 WPML: Implementation

This section covers the key aspects in the implementation of WPML. The
organization of this section is as follows. First, the overall implementation schema is
showed; then the functions and operations that are defined in the specific domain are
implemented emphasizing their meta-model independence; finally, the WPML
compiler is partially presented and the compilation results for the WPML are
illustrated.

Fig. 6. DSMML implementation schema using a translational approach

Figure 6 shows an overview of the implementation schema where our domain
specific manipulation language is translated to a general purpose manipulation
language, in this case EOL. The EOL code generated from the WPML code imports a
file named “core.eol”. This file contains the implementation of all the functionality
provided by the specific manipulation language, such as setting the number of weeks
of the plan, adding exercises, setting the duration of each exercise per week, swapping
the schedule between two days, etc.

The following code is a fragment of the file “core.eol”; it uses the meta-model
showed in Figure 3:

146 J. Irazábal and C. Pons

operation Plan doExerciseOnDayOfWeek
(ex:String,amount:Integer,day:Integer,week:Integer) {
 if (amount = 0) {
 self.removeExerciseInDayOfWeek(ex,day,week);
 } else {
 self.getOrCreateRegister(ex,day,week).amount := amount;
 }
}

operation Plan increaseExerciseByPercentOnDayOfWeek
 (ex:String,percent:Integer, day:Integer,week:Integer) {
 var r : Register = self.getRegister(ex,day,week);
 if (r<>null) {
 r.amount = r.amount + r.amount * percent / 100;
 }
}

operation Plan swapDaysOnWeek
(day1:Integer,day2:Integer,week:Integer) {
 for (r:Register in self.registers){
 if (r.week = week) {
 if (r.day.value = day1) {
 r.setDay(day2);
 } else {
 if (r.day.value = day2) {
 r.setDay(day1);
 }
 }
 }
 }
 }

With the aim of showing more evidence about meta-model independence we have
also implemented the language using a different meta-model. Next we present a
fragment of the code contained in the file named “core.eol” adapted to the meta-
model showed in Figure 4.

operation Plan doExerciseOnDayOfWeek
 (ex:String,amount:Integer,day:Integer,week:Integer) {
 if (amount = 0) {
 self.removeExerciseInDayOfWeek(ex,day,week);
 } else {
 self.getOrCreateToDo(ex,day,week).amount := amount;
 }
 }

 operation Plan increaseExerciseByPercentOnDayOfWeek
 (ex:String,percent:Integer day:Integer,week:Integer) {
 var toDo : ToDo = self.getToDo(ex,day,week);

 if (toDo<>null) {
 toDo.amount = toDo.amount+toDo.amount*percent/100;

 Metamodel Independence in Domain Specific Modeling Languages 147

 }
 }

 operation Plan swapDaysOnWeek
 (d1:Integer,d2:Integer,w:Integer) {
 for (d:Day in self.getWeek(w).days) {
 if (d.day.value = d1) {
 d.setDay(d2);
 } else {
 if (d.day.value = d2) {
 d.setDay(d1);
 }
 }
 }
 }

Afterward, the compiler written with XTend [36] creates an EOL file from a WPML
file. This file imports the core.eol file and invokes its functions according to the
WPML code. The following code is a fragment of the compiler:

def compile(Manipulation m)
'''
import "../src/core.eol";
var p : Plan = getPlan();
«FOR c:m.metaChanges»
 «c.compileMetaChange»
«ENDFOR»
«FOR c:m.changes»
 «c.compileWeekChange»
«ENDFOR»
'''
…
def compileMetaChangeSetTitle(MetaChangeSetTitle c)
'''
 p.setTitle("«c.title»");
'''
…
def compileWeekChangeForAllWeeks(WeekChangeForAllWeeks c)
'''
for (w in Sequence{1..p.getWeeks()})
{
 «FOR dc:c.changes»
 «dc.compileDayChange»
 «ENDFOR»
}
'''
…
def compileDayChangeSwapDays(DayChangeSwapDays c)
'''
 p.swapDaysOnWeek(«c.day1.value»,«c.day2.value»,w);
'''

148 J. Irazábal and C. Pons

The EOL code that we show next was generated by the compiler with the WPML
code given before for the creation and manipulation of a plan respectively.

import "../src/core.eol";
var p : Plan = getPlan();

p.setTitle("My plan");
p.setWeeks(4);
p.addExercise("Run");
p.addExercise("Gym");

for (w in Sequence{ 1, 2 }) {
 for (d in Sequence{0,2,4}) {
 p.doExerciseOnDayOfWeek("Run",50,d,w);
 }
 for (d in Sequence{1,3}) {
 p.doExerciseOnDayOfWeek("Gym",45,d,w);
 }
 for (d in Sequence{6}) {
 p.doExerciseOnDayOfWeek("Run",
((p.getAmountOfExerciseOnDayOfWeek("Run",0,w))*150/100),d
,w);
 }
}
for (w in Sequence{3..4}) {
 for (d in Sequence{0..6}) {
 p.doExerciseOnDayOfWeek("Run",((p.getAmountOfExerciseOn
DayOfWeek("Run",d,1))*120/100),d,w);
 p.doExerciseOnDayOfWeek("Gym",((p.getAmountOfExerciseOn
DayOfWeek("Gym",d,1))*100/100),d,w);
 }
}

The EOL code showed next is generated by the compiler with the WPML code
showed before for the modification of a previously created plan.

import "../src/core.eol";
var p : Plan = getPlan();

for (w in Sequence{1..p.getWeeks()})
{
 for (d in Sequence{0..6}) {
 p.increaseExerciseByPercentOnDayOfWeek("Run",10,d,w);
 }
 p.swapDaysOnWeek(5,6,w);
}

4 Additional DSMML for the Workout Plan Domain

In this section we introduce a new language for the same domain, designed to define
constraints on workout plan models.

 Metamodel Independence in Domain Specific Modeling Languages 149

It's worth to mention that we can use OCL to define constraints on models.
However, given that OCL is a domain independent language, it cannot capture the
knowledge of the subjacent domain in a smooth way, thus making the task of writing
constraints harder and little intuitive. Additionally, OCL constraints are bounded to
the meta model structure.

A domain specific constraint language allows us to reduce the complexity of the
constraint expressions. Domain experts feel more comfortable using a specific
language with constructs reflecting well-known concepts, such as exercise in our
example, instead of the generic constructs provided by the OCL language.
Additionally, the DSL is metamodel independent.

This section is organized in two subsections, in the first one we introduce the new
DSL by examples and in the second we discuss about its implementation.

4.1 A DSL to Define Constraints on Workout Plan Models

As the knowledge of the domain is what gives sense to any DSL, we summarize a part
of the knowledge we have about the workout plan domain in the next paragraph:

The duration of a workout plan is given in weeks. Each week is composed by a
sequence of days. For each day, the plan establishes the point in time for each
exercise. We know about the chronological order of the activities, the different kinds
of exercises and the time required for their completion.

Based on that, we are able to create a language to define constraints on the
particular elements in the domain, such as a given day, or week or the entire plan. The
cons-traints could be as follows:
─ Duration of exercises
─ Sequence of exercises
─ Recover time
─ Relation between the different kind of exercises included in the plan

The following example specifies that the time of running shouldn’t be increased more
than a 10% per week:

use plan "myplan.plan"

on all weeks {
 ensures (minutes of Run on current week)
 lower or equal to
 110% of (minutes of Run on previous week)
}

Another constraint could be that whenever the person runs and does gym in the same
day, he/she should finish the gym session before start running

use plan "myplan.plan"

on all weeks {
 on all days {
 ensures (has done (Run and Gym) today)
 then
 (end of Gym today before start of Run today)
 }
}

150 J. Irazábal and C. Pons

It's important to remark that as the objective of this work is to present an
implementation approach to a set of DSLs for the same domain; our DSLs are
illustrative and help us to present the implementation approach of multiple DSLs on
the same domain. In the next subsection we discuss about how this new language
could be implemented using the proposed implementation schema.

4.2 Implementation of the Constraint Language

We have identified two alternatives that can be chosen to implement this additional
language. The first option and the easier to implement consists in checking the
constraints on an existent model. The second implementation alternative would be to
check the constraints every time a plan is modified. That is, check no constraint is
invalidated with the requested change. The schemas are illustrated in figures 7 and 8
respectively.

Fig. 7. Constraints checked after changes

Fig. 8. Constraints checked before changes

According to the implementation approach purposed in this work, the constraints
would be translated to a general transformation language such as EOL, ATL or in this
case OCL would be another alternative, especially when the constraints are checked
over an existent workout plan model, that is to say, when the changes were already
made to the source model.

Both implementation schemas are viable, but when all the changes in the model
can be undone without side effects, the first one is easier to implement.

5 Related Work

There are a number of features of our work that can be contrasted to previous works:

• The schema presented in this work is an evolution of the implementation
schemas presented in [16], where the first approach covered consists in writing a
transformation in a general transformation language (e.g. ATL) taking two models as

 Metamodel Independence in Domain Specific Modeling Languages 151

input, one with the model to be manipulated and the other with the statements to be
executed, and building a model as the result of applying those statements to the model
given as input; the other schema consists in a two step transformation scenario, the
first transformation (a model to text transformation) takes a model conforming the
new DSMML and translates it to a general transformation language (e.g. ATL). Then,
the generated transformation when executed on a model of the domain of interest
performs the desired changes to it. In our current work, the transformation is written
in a general transformation language (e.g. EOL) with the characteristic of being
parameterised code. This way, the statements written in the new DSMML are
translated (with a model to text transformation) to invocations to the previously
written transformations, setting the parameters according to the elements to be
manipulated. This way, the transformations are simpler and modularized.

• Abstraction and modularization of model transformations: Our approach can be
seen as a technique for abstraction and modularization in that each high level
manipulation (written in the DSMML) is associated with a lower level manipulation
(written in a more general purpose language), but the users do not need to be aware of
the details of the low level manipulations. In this sense, the works that propose
techniques to build complex transformations by composing smaller transformation
units are related to our proposal. In this category we can mention the composition
technique described in [19], the Model Bus approach [4], the modeling framework for
compound transformations defined in [25] and the module superimposition technique
[33], among others. In contrast to these works, our approach generates the composed
transformation specification in a simpler way, without introducing any explicit
composition machinery.

• Creating languages that abstract from other more abstract languages: This subject
has been intensely discussed in the literature on DSLs. For example, the MetaBorg [5]
is a transformation-based approach for the definition of embedded textual DSLs
implemented based on the Stratego framework. Similarly to our work, the MetaBorg
approach defines new concepts (comparable to our notion of an abstract language) by
mapping them to expansions in the host language (comparable to our notion of a
concrete language). Johannes shows how to develop DSLs as abstractions of other
DSLs by transferring translational approaches for textual DSLs into the domain of
modelling languages [17]. The underlying notion of an embedded DSL has been
discussed in [15]. The idea of forwarding has been introduced in [32]. An important
distinction between these works and our work is the application to the MDE field. The
AMMA framework [21] allows us to define the concrete syntax, abstract syntax, and
semantics of DSLs. In [11]; [3]; [9] the reader can analyze a number of scenarios
where the AMMA framework has been used to define the semantics of DSLs in terms
of other languages or in terms of abstract state machines (ASMs). Our proposal is
similar to the one of AMMA, but we present a novel alternative, where the language
semantics is realized as the interpretation of the DSMML into a general purpose
model manipulation language, by means of a transformation written in a M2T
transformation language.

• Concrete-syntax-based transformations: Contrary to traditional approaches to
model transformation, our approach, such as the one presented in [2], uses the
concrete syntax of a language for expressing transformation rules. The claim is that

152 J. Irazábal and C. Pons

this simplifies the development of model transformations, as transformation designers
do not need deep knowledge of the language's metamodel. In our approach, we use
the abstract DSMML with a similar purpose: users do not need to count with any
knowledge of the abstract syntax of the involved modeling languages; they just use
the simple syntax of the DSMML.

6 Conclusions

In this article we have explained the concept of domain specific model manipulation
language, that is to say model manipulation languages tailored to a specific domain.
In contrast to well-known model manipulation languages, such as EOL and ATL, the
language syntax and semantics are directly related to a specific domain and/or kind of
manipulation, making manipulation easer to write and understand.

In contrast to an approach where a general purpose model manipulation language is
used, our approach provides the following benefits: the complexity of model
manipulation programs gets reduced. A program is composed by few lines of high
expressive commands. Domain experts will feel more comfortable using a specific
language with constructs reflecting well-known concepts (such as, exercise and week
in our example); consequently it is predictable that they will be able to write more
understandable and reusable manipulation programs in a shorter time. Manipulation
developers do not need to know the intricate details of the model manipulation
languages, as these are encapsulated in the DSL constructs. This leads to a natural
separation into a language designer and a manipulation programmer role, with a
reduced learning effort for the later.

Also, we have proposed an implementation schema in which the transformation
that compiles the DSMML sentences consists of invocations to previous defined
operations written in a well known transformation language (e.g. EOL). This fact
provides several advantages: the language semantics is formally described; it is
executable; the semantics is understandable because it is written in a well-known
language; the semantics can be easily modified by adding new transformation rules or
even by radically changing the target language. Although this transformation may be
considered as a compiler, the amount of programming skills required to create it is
smaller than for creating a compiler to source code.

As an experimental example in this article we have reported the definition of a
DSMML in the domain of workout plans and we have described its implementation
using MDE tools. The experience was successful; showing the advantages of defining
DSMML for model transformations within the same language, that is to say,
transformations that locally change an existent model producing a new model that
conforms to the same metamodel.

Also we have shown the implementation approach is compatible with the addition
of new languages in the same domain. We’ve presented a new language to define
constraints on training plan models and we’ve discussed about different alternatives
for its implementation.

It is also important to take the benefits coming from the platform-independence of
the model manipulation language into account; on one hand the language is
independent of the underlying metamodel and on the other hand we are able to

 Metamodel Independence in Domain Specific Modeling Languages 153

transform and execute the manipulation programs onto different model manipulation
platforms, in the examples we have used EOL and ATL, but any other manipulation
language can be used.

References

1. ATLAS MegaModel Management (2006), http://www.eclipse.org/gmt/am3/
2. Baar, T., Whittle, J.: On the Usage of Concrete Syntax in Model Transformation Rules. In:

Virbitskaite, I., Voronkov, A. (eds.) PSI 2006. LNCS, vol. 4378, pp. 84–97. Springer,
Heidelberg (2007)

3. Barbero, M., Bézivin, J., Jouault, F.: Building a DSL for Interactive TV Applications with
AMMA. In: Proceedings of the TOOLS Europe 2007 Workshop on Model-Driven
Development Tool Implementers Forum, Zurich, Switzerland (2007)

4. Blanc, X., Gervais, M., Lamari, M., Sriplakich, P.: Towards an integrated transformation
environment (ITE) for model driven development (MDD). In: Proceedings of the 8th
World Multi-Conference on Systemics, Cybernetics and Informatics (SCI 2004), USA
(2004)

5. Bravenboer, M., Visser, E.: Concrete syntax for objects: Domain-specific language
embedding and assimilation without restrictions. In: OOPSLA 2004: Proceedings of the
19th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, pp. 365–383. ACM Press (2004)

6. Steve, C., Jones, G., Kent, S., Wills, A.C.: Domain-Specific Development with Visual
Studio DSL Tools. Addison-Wesley Professional (2007) ISBN 0321398203

7. Czarnecki, H.: Feature-based survey of model transformation approaches. IBM System
Journal 45(3) (2006)

8. DSMML (2011), http://www.lifia.info.unlp.edu.ar/eclipse/DSMML/
9. Di Ruscio, D., Jouault, F., Kurtev, I., Bézivin, J., Pierantonio, A.: Extending AMMA for

Supporting Dynamic Semantics Specifications of DSLs (2009), http://hal.
ccsd.cnrs.fr/docs/00/06/61/21/PDF/rr0602.pdf

10. Jouault, F., Kurtev, I.: Transforming Models with ATL. In: Bruel, J.-M. (ed.) MoDELS
2005. LNCS, vol. 3844, pp. 128–138. Springer, Heidelberg (2006)

11. Frédéric, J., Bézivin, J., Consel, C., Kurtev, I., Latry, F.: Building DSLs with AMMA/ATL, a
Case Study on SPL and CPL Telephony Languages. In: Proceedings of the First ECOOP
Workshop on Domain-Specific Program Development, Nantes, France (2006)

12. GME (2006), http://www.isis.vanderbilt.edu/Projects/gme
13. Greenfield, J., Short, K., Cook, S., Kent, S., Crupi, J.: Software Factories: Assembling

Applications with Patterns, Models, Frameworks, and Tools, 1st edn. Wiley (2004)
14. Gronback, R.C.: Eclipse Modeling Project: A Domain-Specific Language (DSL) Toolkit.

Addison-Wesley Professional (2009) ISBN: 0-321-53407-7
15. Hudak, P.: Modular domain specific languages and tools. In: ICSR 1998: Proceedings of

the 5th International Conference on Software Reuse, Victoria, B.C., Canada, pp. 134–142.
IEEE Computer Society Press (June 1998)

16. Irazábal, J., Pons, C., Neil, C.: Model transformation as a mechanism for the
implementation of domain specific transformation languages. SADIO Electronic Journal
of Informatics and Operations Research 9(1) (2010)

17. Johannes, J., Zschaler, S., Fernández, M.A., Castillo, A., Kolovos, D.S., Paige, R.F.:
Abstracting Complex Languages through Transformation and Composition. In: Schürr, A.,
Selic, B. (eds.) MODELS 2009. LNCS, vol. 5795, pp. 546–550. Springer, Heidelberg (2009)

154 J. Irazábal and C. Pons

18. Kleppe, A.G., Jos, W., Bast, W.: MDA Explained: The Model Driven Architecture:
Practice and Promise. Addison-Wesley Longman Publishing Co., Inc., Boston (2003)

19. Kleppe, A.: MCC: A Model Transformation Environment. In: Rensink, A., Warmer, J.
(eds.) ECMDA-FA 2006. LNCS, vol. 4066, pp. 173–187. Springer, Heidelberg (2006)

20. Kolovos, D.S., Paige, R.F., Polack, F.A.C.: The Epsilon Object Language (EOL). In:
Rensink, A., Warmer, J. (eds.) ECMDA-FA 2006. LNCS, vol. 4066, pp. 128–142.
Springer, Heidelberg (2006)

21. Kurtev, I., Bézivin, J., Jouault, F., Valduriez, P.: Model-based DSL frameworks. In:
Companion to the 21st ACM SIGPLAN Conference on Object-oriented Programming
Systems, Languages, and Applications, pp. 602–616. ACM Press (2006) ISBN 1-59593-
491-X

22. Marjan, M., Jan, H., Sloane Anthony, M.: When and how to develop domain specific
languages. ACM Computing Surveys 37(4), 316–344 (2005)

23. Meta Object Facility (MOF) 2.0 (2003), http://www.omg.org
24. OCL (2006), http://www.omg.org/spec/OCL/2.0
25. Oldevik, J.: Transformation Composition Modeling Framework. In: Kutvonen, L.,

Alonistioti, N. (eds.) DAIS 2005. LNCS, vol. 3543, pp. 108–114. Springer, Heidelberg
(2005)

26. Jon, O.: MOFScript User Guide (2006),
http://www.eclipse.org/gmt/mofscript/doc/
MOFScript-User-Guide.pdf

27. OMG (2011), http://www.omg.org
28. Claudia, P., Roxana, G., Gabriela, P.: Model Driven Software De velopment. Concepts and

practical application. EDUNLP and McGraw-Hill Education, Buenos Aires, Agentina
(2010)

29. Claudia, P., Jerónimo, I., Roxana, G., Gabriela, P.: On the semantics of domain specific
transformation languages: implementation issues. Software Engineering: Methods,
Modeling, and Teaching, ch. 13 (2011) ISBN: 9789588692326

30. QVT Adopted Specification 2.0. (2005), http://www.omg.org
31. Stahl, T., Völter, M.: Model-Driven Software Development. John Wiley & Sons, Ltd.,

Chichester (2006)
32. Van Wyk, E., de Moor, O., Backhouse, K., Kwiatkowski, P.: Forwarding in attribute

grammars for modular language design. In: Nigel Horspool, R. (ed.) CC 2002. LNCS,
vol. 2304, pp. 128–142. Springer, Heidelberg (2002)

33. Wagelaar, D.: Composition Techniques for Rule-based Model Transformation Languages.
In: Procs. of ICMT2008 – Conference on Model Transformation, Zurich, Switzerland
(2008)

34. Mathias, W.: Business Process Management: Concepts, Languages, Architectures, pp.
3–67. Springer (2008) ISBN 978-3-540-73521-2

35. XTend (2011), http://www.eclipse.org/Xtext/#xtend2
36. XText (2011), http://www.eclipse.org/Xtext/

Service-Oriented Integration of Metamodels’
Behavioural Semantics

Henning Berg

Department of Informatics, Faculty of Mathematics and Natural Sciences,
University of Oslo, Norway
hennb@ifi.uio.no

Abstract. Metamodel composition is a central operation in model-driven engi-
neering approaches. Composition of metamodels is not trivial. The essence of the
problem is that metamodels are not defined as reusable artefacts. Moreover, most
composition mechanisms focus on the structural aspects of metamodels without
considering how metamodels may be composed semantically. Hence, models of
different metamodels can not exchange data directly during execution at runtime.
In this paper we investigate a new approach for integrating metamodels and their
models by considering metamodels as reusable services at a conceptual level. In
particular, the behavioural semantics of metamodels can be coupled in a loosely
manner, without entanglement of semantically different concepts. This allows
creating complex metamodel architectures where separation of concerns is high.

Keywords: Metamodelling, Model Composition, Behavioural Semantics,
Aspect-orientation, Service-oriented Architecture, Domain-specific Language.

1 Introduction

Metamodels have an important role in Model-Driven Engineering (MDE) [1] where
they are used, e.g. as formalisations in language and tool design. In most MDE envi-
ronments, metamodels are realised as class models. Class models do not have other
structure than what can be realised using simple packages, inheritance, composition
and association relationships. This means that all metamodel concepts, regardless of
purpose, are reified in the same modelling space without the ability to differentiate one
type of concept from another. The lack of additional metamodel structure is not criti-
cal for metamodels consisting of a limited number of classes. However, as metamodels
become larger and more complex, as a consequence of increasing maturity in model-
driven approaches, several troubling issues emerge.

Model composition is a commonly used approach for elaborating a model or meta-
model with additional concepts, e.g. [2][3][4][5][6]. Model composition is also a pre-
requisite for generating holistic system code, combining system views, verifying system
views consistency and addressing software evolution. Model composition is performed
by combining a set of models in an asymmetric or symmetric manner. Composition of
metamodels is typically achieved using a variant of class merging or aspect-oriented
weaving. Regardless of method, the result is a composite metamodel containing all
classes from the source metamodels. There are some evident issues with many of the

J. Cordeiro, S. Hammoudi, and M. van Sinderen (Eds.): ICSOFT 2012, CCIS 411, pp. 155–170, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

156 H. Berg

current model composition approaches. First, classes reflecting concepts of different
concerns are all blended without inclusion of any additional metainformation describ-
ing from what source models the concepts in question originate, i.e. traceability is not
semantically backed up. Second, composition of models induces conflicts that have
to be resolved. E.g. class merging implies that the constituent classes do not contain
equally named properties of different types, etc. Third, composition of models requires
that the source models are altered intrusively. In particular, such alteration is required
to integrate the constituent models’ behavioural semantics. Fourth, integration of mod-
els requires explicit knowledge in metamodel design and insight into the specific en-
vironment used to realise the metamodels, e.g. Eclipse Modeling Framework (EMF)
[7], MetaEdit+ [8], Generic Modeling Environment (GME) [9], Kermeta [10] or sim-
ilar. Fifth, the resulting models become large which makes reuse more challenging.
The main problem combining proprietary metamodels is that these are not structured
as reusable artefacts. In particular, there are no apparent ways metamodels should be
composed. This gives a lot of flexibility since the metamodels can be combined in many
different ways. However, this also induces several problematic issues as motivated.

A metamodel typically contains concepts related to one particular problem domain.
By combining metamodels it is possible to increase expressiveness by extending the
set of concepts that can be used in the conformant models. Composing metamodels
belonging to different domains results in different concerns being tangled. This is not
practical as metamodels become difficult to grasp and reason about. Even more critical
is the inability to differentiate between concerns in associated tooling and editors. E.g.
a Domain-Specific Language (DSL) made on the basis of three combined metamodels
requires an associated concrete syntax where language constructs pertaining to three
different concerns are all mixed together. We believe that the ability to consider one
concern at the time is important to support increasingly more complex metamodels and
associated tooling.

In this paper, we present the novel idea of considering metamodels as services.
Specifically, we will discuss how the behavioural semantics of metamodels can be com-
bined in a service-oriented manner, and thereby support loosely coupled integration of
metamodels. Note that we do not consider every aspect of services in this paper, but use
the concept of service-orientation as inspiration for defining loosely coupled metamodel
components.

The paper is organised as follows. Section 2 explains the concept of metamodel
components and uses SoaML [11] to illuminate how metamodel components are con-
nected/composed. Section 3 delves into details on how metamodel components can be
realised, while Section 4 presents an example where two metamodel components are
used in concert to construct an e-commerce solution. Section 5 discusses related work,
and Section 6 conludes the paper.

2 Metamodels as Services

A metamodel formalises the structure and semantics of models. We consider both static
and behavioural semantics as parts of the metamodel. E.g. EMF allows defining be-
havioural semantics, referred to as model code, in methods of plain Java classes. Alter-
natively, Kermeta is a metalanguage that allows defining behavioural semantics within

Service-Oriented Integration of Metamodels’ Behavioural Semantics 157

the operations of the metamodel classes using an action language. Hence, the confor-
mant models are executable programs. We will not go into details on how the abstract
syntax and behavioural semantics are mapped, and consider the behavioural semantics
to be defined in operations within the metamodel classes.

A metamodel is constrained to a particular problem domain, and may conceptually
be thought of as a service that provides structure and semantics for expressing and solv-
ing problems in this domain; in particular, behavioural semantics for performing some
kind of processing. A system may be defined by using an arbitrary number of metamod-
els, each providing concepts for modelling of one particular system view. Metamodels
are typically not related. Thus, their conformant models/programs can not exchange
data at runtime in a generic manner. In this paper, we discuss how exchange of data
between models can be supported by treating metamodels as services that can be con-
nected. This allows models to send messages to each other during execution regardless
of the platform on which the models execute.

Service-Oriented Architectures (SOAs) is a software engineering branch that deals
with services and how they interact to realise a software system. A service is a reusable
set of functionalities that provides value to its clients, e.g. other services. SOA is a broad
field. In this paper, we will only use a small subset of the SOA terms and concepts to
describe our approach. Specifically, we will use a service-oriented approach for inte-
grating models at runtime. The intention is not to elaborate on all aspects of services
nor give a complete definition of such.

To integrate models at runtime we need some kind of framework. Specifically, we
need to formalise how the models should integrate. As mentioned, the behavioural se-
mantics of a model can be specified as a set of operations in the model’s metamodel.
Hence, by creating mappings between metamodels’ operations, we are able to formalise
how their conformant models can interact. A mapping is created by using two types of
interfaces: consumer and provider interfaces. A metamodel may be mapped to an arbi-
trary number of other metamodels through interfaces. The interfaces can be seen as an
extension of the metamodel. We define a metamodel component as an entity consisting
of three elements: a metamodel (abstract syntax and static/behavioural semantics), tools
like concrete syntax and editors (optional), and one or more service contracts. A service
contract is a SoaML concept for service specification; it specifies an agreement detailing
how participants of a service fulfill roles as described by interfaces. A realised service
contract is a pair of provider and consumer interfaces. SoaML is an Object Management
Group (OMG) standardised modelling language for describing services architectures.
It provides us with the modelling tool for describing metamodel architectures. That is,
two or more metamodel components that are connected through interfaces. Note that we
will not follow the SoaML specification strictly. Some additional terminology is used.
A visual representation of a metamodel component is given in Figure 1. A metamodel
component has a name and a platform descriptor identifying the platform on which the
component is defined. In this case, the generic descriptions: Metamodel Component and
Platform, respectively. Examples of platforms are EMF and Kermeta.

In SoaML, a service contract is modelled as a consumer and provider role linked by
a service channel. Each role is typed with an interface that defines the role’s behaviour.
In our case, the roles of a service contract are fulfilled by metamodel components.

158 H. Berg

Fig. 1. Overview of a metamodel component

A metamodel architecture is created by choreographing a set of components. That is,
each metamodel is bound to one or more roles of service contracts. Binding a meta-
model to a service contract role is achieved by mapping each of the interface’s oper-
ations to an operation found in any of the metamodel’s classes. A component whose
metamodel is bound to a provider role of a service contract is regarded as an aspect
component (provider component) from the perspective of this particular service con-
tract. Or more precisely, the component’s metamodel is an aspect model since it reflects
one particular aspect or concern that is utilised by a base component. The component
whose metamodel is bound to the consumer role of the same service contract is a base
component (consumer component). A metamodel component can take both an aspect
and base role simultaneously, and be composed with several components in parallel.
This is achieved by utilising several service contracts/interface pairs. Refer [4] for de-
tails on how the terms aspect and base are used to describe model compositions. Figure
2 gives an example where three metamodel components are composed yielding a meta-
model architecture.

As can be seen, all components are connected with each other. E.g. MCA is con-
nected to MCB through the two interfaces specified by the ProvideB1 service contract
of the MCB component. Consequently, models conforming to MetamodelA may in-
voke operations (operation instances) on models conforming to MetamodelB. The
same architecture given as a SoaML services architecture model is given in Figure 3.
The metamodel components are here participants that are related through service con-
tracts. SoaML also operates with service interfaces. A service interface is a revised
service contract, where the provider and consumer interfaces are elaborated with mes-
sage types. We will limit the use of this term to avoid confusion. Let us focus on the
ProvideB1 service contract and see how it is defined. The ProvideB1 service contract
specifies two roles, here named: baseModel and aspectModel, which are linked through
a service channel. The roles are associated with a consumer and provider interface,
respectively. Figure 4 gives the service contract as a SoaML model.

The definitions of RequiredInterface and ProvidedInterface are given in Figure 5. The
consumer interface specifies an operation named operation1(...), whereas the provider
interface consists of the two operations: operation1(...) and operation2(...). We ignore
types for now. Both the latter operations are mapped to operations of the B1 class. A
consumer interface may be empty if bi-directional messaging is not required.

Service-Oriented Integration of Metamodels’ Behavioural Semantics 159

Fig. 2. Example metamodel architecture (using a simplified notation)

Fig. 3. Services architecture consisting of three participating metamodel components

Fig. 4. The ProvideB1 service contract

160 H. Berg

Fig. 5. The ProvideB1 consumer and provider interfaces

Fig. 6. Excerpts of representatives for MetamodelA (top) and MetamodelB (bottom)

Fig. 7. Realised relationship between two metamodels’ classes

Let us see two metamodels that may be connected through these interfaces, and thus
fulfill the requirements of the ProvideB1 service contract. As may be expected, the
minimum requirement is a class in each of the metamodels that has the operation(s)
specified. Figure 6 shows two excerpts of compatible metamodels. The operations of
the provider interface are mapped to the operations of B1, whereas the operation in the
consumer interface is mapped to the operation in A3. The names of the class operations
do not have to be identical to those of the interface operations. Mapping of interface
operations to operations in a metamodel’s classes is performed by manual specification
as part of the service choreography.

Hence, each service contract specifies a service channel between classes of two meta-
models. The service channel represents a set of relationships between the classes that
realise operations of the interfaces. In this case, there is only one relationship between
classes of the two metamodels. That is, there are only two classes in the metamodels
that are related. The type of relationship between classes is either an association (non-
containment) or composition (containment) reference. According to the ProvideB1

service contract, there will be a bi-directional relationship between A3 and B1. This is
because the consumer interface is non-empty. The type of relationship is decided as part
of the service choreography.

Operations in the two interfaces associated by a service contract may additionally
relate in callback chains, e.g. where one operation in one of the interfaces is invoked as
a consequence of invoking an operation in the other interface (reflected in the operation
definition). Let us assume that the desirable relationship between A3 and B1 is an as-
sociation reference. Though the metamodels are not composed, we practically end up
with the scenario as illustrated in Figure 7.

Service-Oriented Integration of Metamodels’ Behavioural Semantics 161

Fig. 8. Modelling separate concerns in different perspectives

3 Realising Metamodel Components

3.1 Modelling Using Proxies

So far we have seen how metamodels’ operations can be related through interfaces (ser-
vice contracts). Thus, the metamodels are loosely coupled which allows creating and
processing of models using any kinds of proprietary tools and editors. Also important
is the ability to model A and B concerns independently of each other. E.g. it is still pos-
sible to use tools compatible with MetamodelA to create models of this metamodel.
Typically, this is difficult when metamodels are composed since the associated tools
need to be refactored. Figure 8 illustrates how a model of MetamodelA and a model
of MetamodelB can be modelled in separate perspectives (views). Notice that the A3

object in the left perspective relates two B1 proxy objects, as specified using square
brackets. The B1 object in the right perspective relates a proxy object representing the
A3 object.

A service contract specifies a connection or mapping between two metamodels’ op-
erations. As discussed, a service contract’s service channel represents a set of class
relationships. To realise such relationships it must be possible to navigate the operations
accessible through the relationships. This is achieved using proxies. When
modelling, it should be possible to refer the B1 concept from within a model con-
forming to MetamodelA (and vice versa), since MetamodelB is an aspect model
with respect to MetamodelA. However, the metamodels are not composed together.
To address this, a placeholder/proxy representing a B1 object can be used in models
of MetamodelA. The proxy is linked to an actual object of the B1 class at runtime
using XML-based messages. The object of the B1 class, as represented by the proxy,
is selected from a set of previously created models conforming to MetamodelB, as
found in a model repository. That is, all models created using a metamodel architecture
are stored in a model repository for later reference. Two B1 proxies are used in the m1

model of Figure 8. Each proxy represents a unique B1 object (as found in m2 and m3).
The proxies P3 and P4 represent the A3 object in m1.

Figure 9 shows how the B1 proxies are linked to the m2 and m3 models (and ob-
jects) of MetamodelB. The A3 proxies are linked to the m1 model in a similar manner
(not shown in the figure). The four proxies realise the ProvideB1 service contract at

162 H. Berg

Fig. 9. Linking proxies to models/objects

Fig. 10. The resulting model(s) as used at runtime

runtime. We will return to how the interface operations are mapped to class operations.
Figure 10 shows what is achieved at runtime when executing the models.

As can be seen, links are established between the A3 object and the B1 objects. The
links are dynamic since they only exist at runtime (realised using proxy runtime objects
linked by XML-based messages). Dynamic links are established and maintained by a
metamodel component runtime environment. The runtime environment acts as a super-
structure on top of a metamodelling environment, like EMF. It is out of scope to go into
details on how the proxies are managed by the runtime environment.

3.2 Service Choreography

Metamodel components are combined into architectures using service choreography.
Choreography of metamodel components comprises two steps: mapping operations of
service contracts’ associated interfaces to class operations and selecting relationship
types that the service channels represent. This includes choosing the relationship mul-
tiplicities (some constraints apply). Choreography can either be performed textually or
graphically. We will illustrate choreography using an XML-based format. Figure 11
gives an excerpt of the service choreography yielding the architecture of Figure 2.

Recall that a service contract is defined using a provider and consumer interface. A
service interface is a refined service contract that utilises both the provider and consumer
interface to specify a service port type on a component (aspect). The conjugate service
interface (defined using the same provider and consumer interfaces) specifies the type
of a request port (base). We will only focus on the ProvideB1 Interface here. The
interface is a refinement of theProvideB1 service contract. TheMCA andMCB com-
ponents are composed by filling out three pieces of information. First, the operations

Service-Oriented Integration of Metamodels’ Behavioural Semantics 163

<interface name="Provide A1 Interface">...</interface>
<interface name="Provide B1 Interface">

<provider component="MCB">
<operation name="operation1" type="..." classOperation="B1::operation1" />
<operation name="operation2" type="..." classOperation="B1::operation2" />

</provider>
<consumer component="MCA">
<operation name="operation1" type="..." classOperation="A3::operation1" />

</consumer>
<channel baseClass="A3" aspectClass="B1" type="non-containment"
bidirectional="true" multiplicityBase="1..1" multiplicityAspect="1..*" />

</interface>
<interface name="Provide B2 Interface">...</interface>

Fig. 11. Service choreography using a textual format

of the ProvidedInterface must be mapped to the operations of B1. Second, the operation
of the RequiredInterface has to be mapped to the operation in A3. Third, the type and
multiplicity of the relationship between the A3 and B1 classes need to be specified.

4 An E-Commerce Solution

In this section, we will illustrate metamodel components using a more pragmatic example
in the domain of website design. We will use two DSLs for modelling of two different
concerns: website structure and queries. Excerpts of the metamodels for the DSLs are
given in Figures 12 and 13. We will refer to the metamodels as Website and Query,
respectively.

As seen in Figure 12, a website comprises one or more pages that contain an ar-
bitrary number of elements. In particular, a page may contain forms realised within
a table structure. An example of a form is a list of products or similar, that can be
selected by the end user. The Form behavioural semantics includes an operation ad-
dObjects(...) which accepts a list of (deserialised) objects. The operation populates a
form constructed using a table element. The number of rows and columns in the table
is determined automatically by the number and type of objects used as argument. We
assume that the metamodels are defined in EMF, thus the behavioural semantics would
be written in Java.

A simple query language is given in Figure 13. It captures concepts for expressing
queries that can be used for acquisition of objects, e.g. from a database abstraction. A
query consists of one or more object identifiers. An object identifier is composed of a
set of property name-value pairs which is used to identify a custom set of objects. For
instance, an e-commerce solution for selling computer hardware may utilise a domain
model including the class Product with data fields for storing information such as prod-
uct name, manufacturer, version, description, price, etc. Different types of products have
unique values for the data fields. Querying for a given type of product would then be
performed by using object identifiers and property name-value pairs. Describing queries
that are issued to a database is a natural part of designing an e-commerce solution. How-
ever, designing the website and programming the queries represent two different con-
cerns. It is likely that different stakeholders would model these concerns. A graphical
designer could construct the website, while a programmer would define the backbone
business logic including database queries. We have identified two DSLs that allow mod-
elling these concerns. A possible approach would be to compose the metamodels of the

164 H. Berg

Fig. 12. Metamodel for the website design language

Fig. 13. Metamodel for the query language

DSLs to create a richer language that can be used to both model the website and express
database queries, e.g. the Form and Query classes could be merged. First, combining
Form and Query is awkward, since these classes are not semantic coherent. Second, the
composition process clearly results in entanglement of concepts for expressing different
concerns. A graphical concrete syntax for the composite language would yield a palette
of language constructs for the entire language, whereas a textual syntax would provide
the user with code completion suggestions for all the constructs. A graphical website
designer would not be interested in the language constructs for performing queries as
used by the programmer, and vice versa. One alternative is to manually program the
concrete syntax of the composite language to differentiate the two sets of language
constructs, yet the resulting model of a website and associated queries would still be
expressed in the same modelling space. Providing two sets of concrete syntax con-
cepts would require in-depth technical knowledge, which reduces the reuse value of the
languages/metamodels. Additionally, the website language would typically be imple-
mented with a graphical concrete syntax, whereas the query language is better designed
using a textual syntax. Combining different kinds of syntaxes is not a trivial task.

Service-Oriented Integration of Metamodels’ Behavioural Semantics 165

Fig. 14. The PerformQuery service contract

Fig. 15. The PerformQuery consumer and provider interfaces

Fig. 16. The e-commerce modelling solution services architecture

Let us see how metamodel components tackle the same scenario. The behavioural
semantics of Form in Figure 12 comprises the operations getObjects() and addOb-
jects(...). The semantics of Query in Figure 13 consists of the operation query(). The
operations could either be a natural part of the classes’ semantics or be defined explic-
itly in order to construct the metamodels as reusable components. The three operations
will reify the consumer and provider interfaces associated by a service contract named
PerformQuery.

The purpose of the example is to illustrate how models of the Website and Query
metamodels may communicate by defining the metamodels as components. The compo-
nents are named Website and Query as well. Only the Query component will feature
a service contract. The service contract of the Query component is given in Figure 14.
It specifies two roles, each typed with an interface. The interfaces are given in Figure 15.

As can be seen, the provider interface has one operation named query(), while the
consumer interface specifies the operations initiate() and addObjects(Object[] objects).
The names of the class operations that fulfill the service contract do not need to have
identical names as the interface operations, however, the class operations’ signatures
and return types are required to match those of the interface operations. Verification of

166 H. Berg

Fig. 17. Choreography and modelling of an e-commerce solution

operation mappings is out of scope of this paper1. We assume that each service contract
has a description that informally specifies the intended semantics of the associated inter-
faces’ operations. The services architecture describing the e-commerce modelling solu-
tion is given in Figure 16. The choreography and modelling process of the e-commerce
solution consists of three steps:

1. Service choreography
2. Modelling of each concern in distinct modelling perspectives
3. Linking the base model proxies with the aspect model proxies

Figure 17 shows the three steps of choreographing and modelling of the e-commerce
solution (with imagined tool support). The Form class of the Website metamodel and

1 Assuring that an operation does what its use requires is also out of scope of this paper.

Service-Oriented Integration of Metamodels’ Behavioural Semantics 167

the Query class of the Query metamodel realise the consumer and provider roles of
the PerformQuery service contract (implicitly referred to by the PerformQuery
Interface) (1). The initiate() operation of the consumer interface is mapped to getO-
bjects() in the Form class (Website metamodel), while the addObjects(...) operation is
mapped to the equally named operation in the same class. The query() operation of the
provider interface is mapped to query() in the Query class (Query metamodel). I.e. the
service contract is fulfilled.

The website and queries are modelled separately (2). The website model contains
two forms, thus two queries have to be programmed. The website model is named web-
site1, while the query models are named query1 and query2. All models are stored in the
model repository (when saved). Two proxies representing Query objects are used in the
website model. A proxy representing a Form object is used in each of the query models.
The proxies are linked to the respective models in properties panes/views (3) (only prop-
erties for the Query proxies are shown). Several proxies can be assigned to clones of
the same model. E.g. if both forms required the same type of query, they could both be
linked to, e.g. query1. At runtime, the operations specified in the interfaces are invoked
to exchange data between the models (website1, query1 and query2) using a serialised
XML-based message format. Population of a form is initiated when the behavioural se-
mantics of the website language invokes getObjects(). This invocation is resolved by the
component runtime environment and results in invocation of query() in the associated
query model. Consequently, a set of objects are acquired from the database and returned
to the website model via the addObjects(...) operation. addObjects(...) is specified as a
callback operation for query(). This means that the query() operation’s code invokes the
addObjects(...) operation on the associated Form proxy, which in turn invokes the ad-
dObjects(...) operation on the actual Form object. The models are linked dynamically.
That is, proxies are linked to model objects at runtime. Service choreography can to
some extent be pre-defined, where information concerning consumer components is
filled in according to a fixed scheme. I.e. the mappings of provider interface operations
to class operations are known at design-time. These mappings are immutable properties
of the provider components.

The example shows how two metamodels can be used together without using model
composition. Here, only one service contract was fulfilled. A metamodel component
can feature an arbitrary number of service contracts. This allows creating complex ar-
chitectures with many metamodels. In addition, it is possible to connect a metamodel
with other metamodels in several ways depending on what service contracts that are
fulfilled. Figure 18 gives an overview of the resulting website system. We assume that
the components are defined in different metamodelling environments.

5 Related Work

The work of [12] discusses how metamodel components can be realised using a graph
transformation-based formalisation of MOF. In essence, a metamodel component pro-
vides export and import interfaces. Each interface identifies a submodel. A submodel
of an export interface can be bound to the submodel of an import interface using graph
morphisms, and thereby combining the metamodels. The work resembles the approach

168 H. Berg

Fig. 18. Overview of the resulting website system

of this paper. The main difference is that our approach allows a higher degree of decou-
pling, since metamodels are connected as services.

An approach for enabling generic metamodelling is elaborated in [13]. The paper in-
vestigates how C++ concepts, model templates and mixin layers can be used to specify
generic behaviour and transformations, create model component and pattern libraries
and extend metamodels with new classes and semantics. A concept can be bound to
models that fulfill a set of requirements specified by the concept. The binding is per-
formed using pattern matching. Consequently, generic behaviour can be reused for in-
stances of the compatible models. Model templates allow defining reusable patterns and
components which can be instantiated with actual parameters. The parameters comprise
models and model elements. Finally, mixin layer templates facilitate extending meta-
models with new classes and semantics in a non-intrusive manner.

Package extension is a mechanism that allows merging equally named classes of
metamodels that reside in packages [14]. A package can be defined by extending other
packages. The paper also describes a package template concept. A package template
is a package that can be parameterised with string arguments. The arguments support
renaming of several package elements simultaneously.

An approach for loose integration of models, in the form of model sewing, is dis-
cussed in [15]. Model sewing is an operation that allows models to be both synchro-
nised and depend on each other without utilising model composition. The discussed
advantages are the ability to utilise existing GUI for the constituent models of a sewing
operation, and avoidance of entanglement of concepts from different models. The ap-
proach identifies the need of mediating entities that bind the models together. The work
resembles the approach of this paper. The main difference is that we utilise interfaces
and treat metamodels as components that are combined in a service-oriented manner.

Service-Oriented Integration of Metamodels’ Behavioural Semantics 169

6 Discussion and Conclusions

Metamodel components allow using metamodels in unison without composing these
explicitly together. This has apparent advantages. First, it is possible to model different
concerns separately, and still support exchange of data between the resulting models at
runtime by utilising model links that are maintained dynamically. This ensures a loosely
coupled integration. Second, models expressing different concerns can be validated and
tested independently one at the time. Specifically, the proxies can communicate with
mock-ups that represent models (simulation mode). Third, choreography of metamodel
components can be achieved by non-technical stakeholders since the metamodels do
not need to be altered in order to connect these. The service contracts formalise the
agreement between the metamodels. Fourth, a model or model fragment (clone) can be
acquired from a model repository and reused, which simplifies the modelling process.

Metamodel composition usually requires that classes are merged. However, it is not
always reasonable to merge two classes, particularly when the classes represent con-
cepts of different problem domains. Using the approach of this paper, an aspect model
class is instead used to type the relation between this class and a base model class (and
vice versa). This resembles class refinement as discussed in [16].

A consequence of composing the abstract syntax of metamodels is the need of com-
bining the concrete syntaxes as well. This is avoided by using components since each
component independently may provide its distinct textual or graphical concrete syn-
tax. Components also address evolution issues. Model conformance is a term that indi-
cates whether a model is compatible with a metamodel. Composing metamodels breaks
model conformance, which requires using model transformations to create a confor-
mant composite model from the basis of pre-existing models. Components address this
by defining a sand box/scope for each metamodel. Changing or revising the metamodel
of one component will only break conformance with the existing models of this meta-
model. Models of the other components’ metamodels in the services architecture will
still conform to their metamodels.

Two important aspects of service-oriented approaches are service repositories and
service discovery, which support service reuse and availability. These concepts may
be adapted for metamodel components. In particular, reusable generic metamodel pat-
terns can be stored in searchable, distributed repositories and used as language building
blocks by language engineers. A metamodel pattern may describe an aspect or require-
ment that is common for several metamodels/languages, e.g. a state machine or similar
[17]. Analysis and validation of services are important parts of service-oriented engi-
neering methodologies and required to ensure high quality architectures and systems.
This has not been addressed in the paper.

An interesting application of metamodel components is connecting metamodels and
languages (and their models) defined in different metamodelling environments. This
is possible since the behavioural semantics of each metamodel can be run separately,
yet integrated as specified in the service contracts. E.g. models defined in EMF could
integrate with models defined in Kermeta, or similar. This is one particular application
of metamodel components that justifies the high degree of separation provided by a
service-oriented metamodel integration.

170 H. Berg

We believe that combining metamodels in a service-oriented manner addresses many
of the limitations of model composition by increasing decoupling of models. This in
turn increases reusability and scalability of metamodels and models.

References

1. Kent, S.: Model Driven Engineering. In: Butler, M., Petre, L., Sere, K. (eds.) IFM 2002.
LNCS, vol. 2335, pp. 286–298. Springer, Heidelberg (2002)

2. Fabro, M.D.D., Bézivin, J., Valduriez, P.: Weaving Models with the Eclipse AMW plugin.
In: Eclipse Modeling Symposium (2006)

3. Kolovos, D.S., Paige, R.F., Polack, F.A.C.: Merging Models with the Epsilon Merging Lan-
guage (EML). In: Wang, J., Whittle, J., Harel, D., Reggio, G. (eds.) MoDELS 2006. LNCS,
vol. 4199, pp. 215–229. Springer, Heidelberg (2006)

4. Groher, I., Voelter, M.: XWeave: Models and Aspects in Concert. In: Proceedings of the
AOM Workshop 2007 (2007)

5. Morin, B., Perrouin, G., Lahire, P., Barais, O., Vanwormhoudt, G., Jézéquel, J.-M.: Weaving
Variability into Domain Metamodels. In: Schürr, A., Selic, B. (eds.) MODELS 2009. LNCS,
vol. 5795, pp. 690–705. Springer, Heidelberg (2009)

6. Morin, B., Klein, J., Barais, O.: A Generic Weaver for Supporting Product Lines. In: Pro-
ceedings of the Workshop on Early Aspects (EA 2008) (2008)

7. Eclipse Modeling Framework (EMF) (2012),
http://www.eclipse.org/modeling/emf

8. Tolvanen, J.-P., Kelly, S.: MetaEdit+: Defining and Using Integrated Domain-Specific Mod-
eling Languages. In: Proceedings of OOPSLA 2009 (2009)

9. Institute for Software Integrated Systems. Generic Modeling Environment (GME) (2012),
http://www.isis.vanderbilt.edu/projects/gme

10. Muller, P.-A., Fleurey, F., Jézéquel, J.-M.: Weaving Executability into Object-Oriented Meta-
Languages. In: Briand, L.C., Williams, C. (eds.) MoDELS 2005. LNCS, vol. 3713, pp. 264–
278. Springer, Heidelberg (2005)

11. Object Management Group (OMG). Service-Oriented Architecture Modeling Language
(SoaML) (2012), http://www.omg.org/spec/SoaML

12. Weisemöller, I., Schürr, A.: Formal Definition of MOF 2.0 Metamodel Components and
Composition. In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter, M. (eds.) MODELS
2008. LNCS, vol. 5301, pp. 386–400. Springer, Heidelberg (2008)

13. de Lara, J., Guerra, E.: Generic Meta-modelling with Concepts, Templates and Mixin Layers.
In: Petriu, D.C., Rouquette, N., Haugen, Ø. (eds.) MODELS 2010, Part I. LNCS, vol. 6394,
pp. 16–30. Springer, Heidelberg (2010)

14. Clark, T., Evans, A., Kent, S.: Aspect-Oriented Metamodelling. The Computer Journal 46(5)
(2003)

15. Reiter, T., Kapsammer, E., Retschitzegger, W., Schwinger, W.: Model Integration through
Mega Operations. In: Proceedings of the Workshop on Model-Driven Web Engineering
(MDWE 2005) (2005)

16. Emerson, M., Sztipanovits, J.: Techniques for Metamodel Composition. In: proceedings of
the 6th OOPSLA Domain-Specific Modeling Workshop (DSM 2006) (2006)

17. Cho, H., Gray, J.: Design Patterns for Metamodels. In: Proceedings of the 11th SPLASH
Domain-Specific Modeling Workshop (DSM 2011) (2011)

http://www.eclipse.org/modeling/emf
http://www.isis.vanderbilt.edu/projects/gme
http://www.omg.org/spec/SoaML

Fine-Grained Role- and Attribute-Based Access Control
for Web Applications

Seyed Hossein Ghotbi and Bernd Fischer

University of Southampton, U.K.
{shg08r,b.fischer}@ecs.soton.ac.uk

http://www.soton.ac.uk

Abstract. Web applications require an access control mechanism such as role-
based access control to enforce a set of policies over their shared data. An access
control model that is based on the desired security properties is thus a core secu-
rity aspect, and the development of such models and their mechanisms are a main
concern for secure systems development. Fine-grained access control models pro-
vide more customization possibilities and administrative power to the developers;
however, in Web applications the corresponding policies are typically hand-coded
without taking advantage of the data model, object types, or contextual infor-
mation. This paper presents and evaluates ΦRBAC, a declarative, fine-grained
role- and attribute-based access control model which is implemented by code
generation. The generator uses a translation into logical satisfiability problems
to check the ΦRBAC model for correctness and completeness, and against inde-
pendently defined coverage criteria. If the model passes these tests, the generator
then compiles it down to the existing tiers of WebDSL, a domain-specific Web
programming language. We describe the test and code generation phases, and
show the application of ΦRBAC to the development of a departmental Web site.

Keywords: Fine-grained Access Control, RBAC, Attribute Constraints, Access
Control Testing, Web Application Security, Language Design.

1 Introduction

Web applications, such as Facebook, are deployed on a set of servers and are easily
accessible via any Web browser through an Internet connection. As the number of users
of a Web application grows, its security and the privacy of the users’ data become major
concerns [5], and access to shared data needs to be controlled based on a set of specific
policies via one of the many types of access control such as discretionary, mandatory,
or role-based access control [24].

For reasons such as maintainability and cost effectiveness [4], role-based access con-
trol (RBAC) is the most widely used [14] access control mechanism. RBAC [8] uses the
notion of role as the central authorization element; other components of the system such
as subjects and permissions (describing the allowed operations on objects) are assigned
to one or more roles. Over the last two decades RBAC has been extended by different
types of attributes, such as temporal [2] or content-based [10] attributes, which allow
more secure and flexible policies [19]. For example, with time constraints such as in

J. Cordeiro, S. Hammoudi, and M. van Sinderen (Eds.): ICSOFT 2012, CCIS 411, pp. 171–187, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.soton.ac.uk

172 S.H. Ghotbi and B. Fischer

TRBAC [2] the developer can limit access by the users of the system to a certain period
of time such as office hours. This lowers the risk of system abuse outside office hours.

Web applications typically consist of elements that have different granularity levels
and are scattered throughout the application code, which makes access control more dif-
ficult. For example, a web page can contain smaller elements such as sections or even
individually controlled cells of a table. Currently, developers need to hand-code the ac-
cess control elements around the objects that require access control, using languages
such as Scala [17], XACML [1], or Ponder [6]. However, such approaches have three
main drawbacks that complicate development of fine-grained access control and can
easily lead to security holes. First, they lack the right abstraction level to define flexible
access control models that allow the specification of different policies for different indi-
vidual objects. Second, they lack a separation of concerns [31] between access control
and application [3]. If we can develop the access control components separately, we
can check for potential vulnerabilities separately and mechanically, instead of manually
analyzing the access control checks in the application code, which is an error-prone
and time consuming process. Third, they lack a code generation mechanism that can
automatically translate the specified abstract access control model into corresponding
access control checks and weave these into the application to enforce the model without
introducing coding errors.

Although testing the access control model is essential [23,20,21], testing the model
on its own is not enough. Any access control is defined to cover a set of objects in an
application. Therefore, the testing mechanism should also take the target application,
with the woven-in access control checks, into consideration. The testing phase should
thus first mechanically verify the correctness and completeness of access control model
itself and then validate the application code based on a set of test cases. These test cases
should cover a set of objects and policy scenarios for which a correct outcome gives the
developer sufficient confidence that the deployed access control model is appropriate
for the given application. For example, the system should produce more restrictive test
cases for a medical application than for an internet forum.

This paper describes ΦRBAC, a fine-grained RBAC with additional attribute-based
constraints for the domain of Web applications. It provides a novel mechanism for
declaratively defining RBAC policies and test objectives over a range of objects with
different granularity levels within a single model. This model can be formally ana-
lyzed and verified. ΦRBAC is implemented on top of WebDSL [30], a domain-specific
language for Web application development. ΦRBAC uses code generation techniques
weave access control checks around the objects within the application code written in
WebDSL. We describe the test and code generation phases, and show the application of
ΦRBAC to the development of a departmental Web site.

2 Background and Related Work

2.1 Role-Based Access Control with Additional Attributes

RBAC belongs to the grouping privileges class of access control models [24]. In this
class privileges are collected based on common aspects, and then authorizations are as-
signed to these collections. The fundamental advantage of using a grouping privileges

Fine-Grained Role- and Attribute-Based Access Control 173

model is that it factors out similarities, and so handles changes better, which leads to
an easier authorization management [11]. RBAC is used in many domains and there
are number of languages that support RBAC [14,1,6]. RBAC uses the notion of role
as the central authorization mechanism [8]. Intuitively, a role is an abstract representa-
tion of a group of subjects that are allowed to perform the same operations, on behalf
of users, on the same objects. For example, in an RBAC model we can define a role
supervisor and state that any user with this role can edit marks, while users with
the role student can only read them. The other main elements of RBAC are subjects,
objects, and permissions. A subject is the representation of an authorized user, an object
is any accessible shared data and a permission refers to the set of allowed operations on
objects. In the example above, the subject could actually be a session that belongs to
the user after authentication and the permissions describe the allowed operations on the
marks objects. Adding attributes (such as time, date, or location) to RBAC is beneficial
and well studied [10,19,2], because it leads to more flexibility in the model and solves a
set of the core RBAC shortcomings. Core RBAC has been standardized by the National
Institute of Standards and Technology (NIST) [25], but despite a recent study trying to
unify attribute-based access control models [19] there is no common ground yet.

Fine-Grained Access Control. In the existing literature, the notion of fine-grained ac-
cess control refers only to models that can control access to fine-granular objects but
where the policies themselves remain coarse-grained, and thus lack flexibility. For ex-
ample, a number of studies [27,33] discuss fine-granular access control in the context of
databases in terms of the table structure (i.e., columns, rows, etc.), while others [18,26]
discuss it in the context of XML and the hierarchical structure of XML documents. Our
notion is related to both objects and access control, so that the access control model it-
self becomes more flexible and can provide a more efficient development environment.

Typically, objects are scattered throughout the application code; therefore, if the
programmer writes the access control component by hand or uses access control ap-
proaches such as XACML, the access control checks will be scattered throughout the
application code as well [1]. This is not suitable from many points of views. From a
design point of view, it is hard to track the access rights for each object wherever it oc-
curs within the application, and to reason conclusively about its access control checks.
From an implementation point of view, coding and maintenance of the code will be
time-consuming and error-prone [32]. Finally, from a testing point of view it is hard for
the tester to figure out the usage coverage of hard-coded access control checks.

Testing Access Control Models. Access control as a software component needs to be
tested [28]. Testing needs to consider three aspects of an access control model, correct-
ness, completeness and sufficiency. First, an access control model needs to be correct so
that we can derive the required access control predicates for controlled objects. Since
RBAC has a standard and therefore its semantics is well defined and understood, the
correctness of any defined model should be checked based on the standard. Second, the
completeness check of an access control model is essential. A complete access control
model covers all possible outcomes of its defined policies with respect to the RBAC
structure. For example, if we have student and teacher as two roles in an access

174 S.H. Ghotbi and B. Fischer

control model and there is a static separation of duty between them, then the model only
needs to cover three cases to be complete: first, teacher is active but not student,
second, teacher is not active but student is and third, neither of them are ac-
tive. The sufficiency of an access control depends on its target application and should
therefore be defined by the developer. For example, a developer might define an access
control model in a way that gives too much power to a user (the so-called the super-
user problem [9]). In this case, the developer might check the application sufficiency
against a set of objectives and discover this issue before application deployment. We
will discuss the correctness, completeness and sufficiency checks of ΦRBAC in Section
3.2.

2.2 WebDSL

WebDSL [30] is a high-level domain-specific language (DSL) for creating dynamic
Web applications [13]. It provides developers with the notion of entities for defining
a data-model and enforcing data validation on those entities [12]. Listing 1.1 shows
an example. The properties of an object are specified by their name and their type.
Types can describe values, sets, and composite associations; in particular, the type of
a property can be another entity. For example, in the data model shown in Listing 1.1
the tutor property is of type Teacher, and marks is a property that holds a set of
Mark entities.

Listing 1.1. Student Entity in WebDSL

entity S t u d e n t {
s t u d e n t I D : : String (name)
c o u r s e s −> Set<Course>
t u t o r −> T eache r
marks <> Set<Mark> (inverse = Mark . s t u d e n t s)

}

The WebDSL compiler is implemented using SDF [15] for its syntax definition and
Stratego/XT [29] for its transformation rules. It consists of a number of smaller DSLs
(e.g., user interface, access control) that are structured around a core layer. It uses code
transformation techniques [16] to transform the WebDSL code to mainstream Web ap-
plication files (HTML, JavaScript, etc.). It uses these together with other provided lay-
out resources (image, CSS, etc.) to compile and package to a server-deployable WAR
file.

Even tough WebDSL increases the level of abstraction during development, it has
two main shortcomings that our work here addresses. First, it does not support fine-
grained attribute-based RBAC. WebDSL has a powerful data model, and even supports
the validation of input data, but its RBAC model is oriented towards the presentational
elements (i.e., pages and templates), rather than the data model, and remains coarse-
grained. Moreover, if the developer wants to add attributes to the RBAC model, she
needs to hardcode the policy within the application code. Second, it does not check the
correctness of the defined RBAC model elements nor their implementation within the
application code.

Fine-Grained Role- and Attribute-Based Access Control 175

3 ΦRBAC

ΦRBAC is an approach for declaratively defining and implementing a flexible, expres-
sive, and high-level RBAC mechanism on top of WebDSL. It generates access control
elements and then weaves them into the application code in order to enforce the access
control on fine-grained elements of the data model, instances of the data, and template
and page elements. Moreover, it provides a testing mechanism to check the correctness
of the model itself and with regard to its application. In this section we introduce the
language by means of an example.

3.1 Access Control Model

As Listing 1.2 shows, a ΦRBAC model consists of three main sections: basic RBAC
elements (lines 2-5), policy cases (lines 7-11) and coverage (lines 14-18).

Listing 1.2. ΦRBAC Example

1 PhiRBAC{
2 roles{ t e a c h e r (1 0) , admin (1) , manager (1) , a d v i s o r (1 0) , s t u d e n t (∗)}
3 hierarchy{ a d v i s o r −> t e a c h e r}
4 ssod{(t e a c h e r , admin , a d v i s o r , manager) <−> s t u d e n t}
5 dsod{(and (a d v i s o r , t e a c h e r) , admin) <−> manager}
6
7 objects{G (r o l e A s s i g n m e n t) , XML (a d d r e s s) , Pe rs on . password , P (marks)}
8 policies{ t e a c h e r , s t u d e n t , admin , a d v i s o r , Self . username == ” f a z ” ,
9 This . User . l o c a t i o n != ”New York ” , Sys . Time (>=9:00 ,<=17:00)}
10 cases{ (+ ,− ,− ,? ,+ ,? ,−) −> ([r , u] , [r] , [s] , [r , u]) ,
11 (− ,− ,+ ,? ,− ,+ ,+) −> ([r , u] , [r] , [s] , [i]) }
12
13 coverage {
14 objects{P (r o o t) , s t u d e n t . marks}
15 policies{admin , t e a c h e r}
16 cases { (+ , ?) −> ([r , 1 0 0] , [i]) , (− ,+) −> ([i] , [u ,(>80 ,<=100)])}
17 }
18}

Basic RBAC Elements. At the core of an ΦRBAC model are the basic RBAC elements.
The developer first defines roles and their cardinalities (cf. line 2), which specify the
maximum number of subjects that may acquire the respective roles at any given time.
The developer can also define an optional role hierarchy. In the example, the advisor
role is defined as a specialization of teacher (cf. line 3). In addition, the developer can
define optional separation of duty (SOD) constraints [25] (cf. lines 4 and 5). Static SOD
(SSOD) constraints affect the role assignment (e.g., the roles admin and student can
never be assigned to the same subject) while dynamic SOD (DSOD) constraints affect
the role activation. For example, the DSOD constraint in Listing 1.2 states that a subject
cannot activate the manager role together with either admin or both advisor and
teacher roles. We then use a matrix-structure to specify the actual access control
policy as well as the test case coverage. The matrix’ rows and columns labels are given
as the set of controlled objects and the different policy terms, while the entries of the
matrix are given line-by-line as policy cases. These show the relation between the policy
combinations and allowed operations on the respective objects.

176 S.H. Ghotbi and B. Fischer

Controlled Objects. ΦRBAC supports access control of objects with different types
and granularity levels. We can divide them into data model, page, and template ele-
ments. The application’s data structure is defined in a data model, which is then trans-
lated into a database type, such as tables in a relational database. The main benefit of
using the data model as a part of controlled objects is that we can define access control
on the data model elements without considering where or by whom they are used within
the application code. ΦRBAC thus allow the data model elements as part of its con-
trolled objects. It supports both coarse-grained elements such as the student entity
shown in Listing 1.2 or more fine-grained components such as speaker property of an
entity Seminar. It is important to note that ΦRBAC consequently supports relations,
such as inheritance, between data-model components as well. For example, the type of
the speaker property can be the Person entity. If this entity is access-controlled,
then ΦRBAC automatically adds all the access control predicates from the Person en-
tity to speaker’s predicate. However, the different properties and entities to be joined
may have conflicting access control predicates, which can make a controlled object
inaccessible. Such conflicts are checked during ΦRBAC’s testing phase.

Since we do not want to force the developer to use ΦRBAC and the existing WebDSL
access control to declare two different types of access control model, the coarse-grained
components (i.e., pages and templates) are also supported within our model as con-
trolled objects. Moreover, we support more fine-grained components of pages and tem-
plates. For page elements the developer can use G(GroupNames) to define a set of group
names and B(BlockNames) to define the block names which are used by an external CSS
style. In WebDSL we can use XML hierarchies within the template code, and the de-
veloper can use XML(NodeNames) to declare a set of XML node names as controlled
objects.

Policy Terms. A policy term is an atomic access control check which can be used as
building block in more complex policies. In ΦRBAC there are two types of policy terms.
First, the developer can use a subset of the roles that were defined. Second, user, data,
or system attributes can also be used as policy terms. In our example, the policy term
Self.username == "faz" defines an access control check based on the current
user (which is represented in ΦRBAC as Self) with the username property faz. The
policy term This.User.location != "New York" defines an access control
check based on a data attribute: for every object (represented by This) of the given type
User that is used in the application, the property location is checked against the
given value (i.e., New York). ΦRBAC allows the usual comparison operators, including
a range restriction. For example in 1.2 the last policy (cf. line 9), creates an access
control check for the system’s office hours. The actual policy is then defined case-by-
case, dependent on the logical status of the policy terms. The logical status is either
activated or true (represented as + in ΦRBAC), not activated or false (-) or don’t care
(?). Note that don’t care is not required but simplifies the specification of complex
policies.

Policy Cases. As shown in Listing 1.2 (see lines 10 and 11), the developer can specify
an arbitrary number of cases. Each case defines a logical combination of policy terms

Fine-Grained Role- and Attribute-Based Access Control 177

for creating an access control predicate. There are five different operations on the con-
trolled objects. The developer can use c to denote that users with the appropriate roles
(or satisfied attribute checks) are allowed to create an instance of the controlled ob-
jects or a set of objects that are embedded within the controlled objects. For example,
if the controlled object is an entity, this case controls the create operations of this entity
throughout the application; if the controlled object is a page, we look at the embedded
objects within the page, and see if there is any create operation related to them. The
developer can use r to allow read operations on the controlled object itself or its em-
bedded objects (i.e., properties as sub-elements). Similarly, to allow update or delete
operations on the controlled object itself or its embedded objects, u and d are used. s
(“secret”) can be used to hide the content of the object itself or its embedded objects.
For example, if the controlled object is User.username then its instance will be hid-
den to the user, regardless of any other specified operations (i.e., create, read, update,
delete). Finally, i (“ignore”) can be used for defining a policy that does not effect the
predicates on the controlled objects.

Note that all of these operations are guarded by the defined access control predicates.
For example, Listing 1.2 line 10 shows that outside the office hours, when the authorized
user with the username faz has the role teacher but not student or admin, then
she cannot see any Person’s password.

Coverage Cases. This part of the model (see lines 13-17 in Listing 1.2) helps the de-
veloper to define a set of independent cross checks on the ΦRBAC model and thus get
assurance about the functional coverage of access control predicates over the controlled
objects. In particular, we allow the developer to specify for each combination of policy
terms to which extend the occurrences of an object within the target application are
controlled. This can be seen as a summary that is independent of the actual access con-
trol mechanism. We allow the developer to define the coverage cases by hand because
only the developer knows about the context of the target application, its security goals,
and in what granularity level both defined ΦRBAC and the target application need to be
checked.

The developer defines a number of cases, which each check the relative coverage
of a set of controlled objects and their related operations for a combination of logical
states (similar to Section 3.1). For example, in Listing 1.2 the first case in line 16 states
a user with the activated role admin must have read access to all the controlled objects
defined in the root page. In other words, all predicates that are derived from the pol-
icy cases (see line 11 in Listing 1.2) and will be woven around the objects within the
root page, must be true for a user with the role admin activated. If we for example
assume that the controlled object user.password is defined in the root page; then
our first coverage case fails: based on the second defined policy case, a user with the ac-
tivated role admin cannot see the instances of user.password. The coverage cases
help the developer to check the defined ΦRBAC model, based on a different view, with
respect to the target application. For example, in Listing 1.2, the policy cases do not di-
rectly cover the controlled object student.marks. However, in the second coverage
case, we check its coverage range based on a case where the user has an activated role
teacher.

178 S.H. Ghotbi and B. Fischer

Fig. 1. An overview of the ΦRBAC generation pipeline

3.2 Code Generation from ΦRBAC Models

The ΦRBAC code generation process is divided into a testing and a transformation
phase (see Figure 1). The aim of the testing phase is to validate and verify the access
control model itself and its integration into the target application. As the ΦRBAC model
is defined separately from the application code, the aim of the transformation phase is
to first generate the access control elements (e.g., data model, access control predicates,
etc.) and then to weave them into the target application code.

Testing Phase. A number of studies [23,20,21] highlight the fact that developing an
access control mechanism is error-prone and the result therefore needs to be tested.
Unlike the prior approaches, we emphasize the fact that correctness and completeness
of the access control model on its own is not enough and the target application must
be considered as well, based on the defined access control model. The access control
predicates are derived from the access control model and need to be implemented (in
our case generated) and inserted around the desired objects. Even a partial failure of
doing so will result in application code that is compilable but has a number of security
holes that need to be handled after the application deployment phase. This leads to
high testing and maintenance costs after the deployment of the application. It is ideal
to give a full guarantee to the developer for the defined access control model and its
target Web application before deployment phase. The testing phase consists of three
consecutive white-box testing steps (see Figure 1). Failure of each step will terminate
the rest of the compilation and its related error messages will be given. In the first step,
the defined ΦRBAC model is verified using model checking. Second, the application
code is validated with respect to the defined ΦRBAC model. Third, the coverage is
checked against the defined objectives.

Model Verification. This step mechanically verifies the correctness and completeness
of an ΦRBAC model using SMT solver, Z3 [7]. Here, we first verify the correctness of

Fine-Grained Role- and Attribute-Based Access Control 179

the defined basic RBAC elements and of each individual case defined in the policy and
coverage cases with respect to the defined attributes. Second, we check the complete-
ness of the policy and coverage cases. Since Z3 takes a representation of the model in
first-order logic (FOL) and decides its satisfiability, our verification approach is to gen-
erate a number of FOL formulas from the given ΦRBAC model, and let Z3 check them
individually. We then mechanically analyze Z3’s output results to come to a conclusion
about the correctness and completeness of the original model.

The basic RBAC elements can already create conflicts in the model. For instance, if a
role supervisor inherits from a role teacher but there is also a (dynamic or static)
SOD relation between them, then this specification creates a conflict and consequently
an error in the model, because these two roles must be activated (due to the inheritance
relation) and deactivated (due to the SOD) at the same time. To check the correctness of
the basic RBAC elements, we first mechanically check if there are any undefined roles
in inheritence, SSOD, and DSOD relations. Second, we check for possible conflicts
between the hierarchy and SSOD (respectively DSOD) constraints by generating two
FOL formulas to check with Z3. If the result is unsatisfiable (UNSAT), then there is
an error in the defined basic RBAC structure. However if all the results are satisfiable
(SAT) then the structure of basic RBAC elements is correct and we consequently go
to the next step to check the correctness and completeness of the individually defined
policy and coverage cases.

The defined cases can cause three types of errors that need to be checked:

– Incorrect Case. The policy terms and the policy signs specified in each case can
be inconsistent with the other RBAC elements. For example, if there is a SSOD
relation between the teacher and student roles, a case should not define a
predicate in which both roles are active (i.e., have a “+” as policy sign), because
the case can then never apply. is an error in the model if each has + for their policy
sign. Similarly, we have an inconsistency if there is an inheritance relation between
a parent and a child role, and a case states the parent role is not active but the child
role is active.

– Overlap. If two cases overlap, then the respective access control predicatas can be
true at the same time; if the specified access rights are then different, the model
is inconsistent. An overlap between two cases can be detected by comparing the
corresponding pairs of policy signs: if the signs for at least one policy term are
complementary (i.e., one is active (“+”) while the other is not (“-”)), then there can
be no overlap.

– Incompleteness. If the defined policy or coverage cases do not fully cover all the
possible cases, then we have incompleteness.

The correctness of each case is checked in two steps. First, we need to check the de-
fined Time and Date attributes and their intervals (if any). For example, we have an er-
ror, if the policy terms Sys.Time(>=7:00,<=9:00) and Sys.Time(>=6:00,
<=6:30) are both activated in a single case, because this policy can never be true (i.e.,
the time can not be between 6 and 6:30am and between 7 to 9 am at the same time).
Such error are checked during compile time by a set of custom Stratego strategies. In
the second step we check the basic RBAC elements by generating a FOL formula from
these elements, using the truth values corresponding to the policy signs for each policy

180 S.H. Ghotbi and B. Fischer

term. Then, Z3 is called to check the satisfiability of the formula; a SAT result means
that we have a correct case, and UNSAT means that we have an error. For example, to
check the correctness of the RBAC elements defined in Listing 1.2 Line 11, in addi-
tion to the defined RBAC structure (Listing 1.2 lines 2-5), we derive a FOL formula
that states admin must be true and teacher and student must both be false. In
this case, Z3 gives us a SAT result, which means that there is no conflict in the defined
RBAC model.

For overlap checks, we pair any two cases and generate a FOL formula in which there
is a conjunction between these two cases and their sub-elements. Then we check each
pair for satisfiability; (UN)SAT means that the two cases are (not) overlapping. Then,
the overlapping check is repeated until all combinations are covered. For example for
a policy set {teacher, student}, if we have two cases (+,-) and (+,?), then their
FOL formula will be (teacher && not student) && (teacher), in which
the SMT solver will give a SAT message that results in an error message because these
two cases are overlapping. In case of incompleteness checks, we disjunctively link the
negation of all of the cases and conjunction with the policy signs of each negated case.
We then call Z3 to check the model for satisfiability. If the result is SAT, then there is
a missing case and Z3 gives a counterexample for it. Since this produces the missing
cases one-by-one, we need to respectively update and re-check the model, until Z3
finds no more missing cases. All steps mentioned above happen during compile-time.
Since the developer does not know about Z3 and its results, we need to interpret these
results for the user in terms of the ΦRBAC elements. During the last step, we parse the
model checking results (UNSAT, SAT) and by retrieving its representation elements in
the abstract syntax tree (AST) we give the error during the compilation based on the
ΦRBAC elements.

Web Application Validation. In our approach, the access control predicates are wo-
ven into the application code around the controlled objects. The controlled objects and
consequently their predicates may be nested within each other and can so create a set
of conflicts. For example, in Listing 3, we have two different controlled objects, in
which the instances of all users’ username are embedded within the sub-element of
the page UserList. We have P1 that protects UserList and P2 that protects the
instances of users’ username. Moreover, P1 indirectly protects P2 as P2 is nested
within P1. Let us assume that P1 and P2 can conflict, e.g., P1 is true for users with
the role teacher activated and P2 is true for users with the role admin activated
but in the access control model there is also an SSOD relation between role teacher
and admin. It is clear that users with the role admin activated can never access the
instances of users’ username, even though they have a right to do so. We call these
situations dead authorization code and the following steps are used for finding such
situations.

Listing 1.3. Nested controlled objects and their related predicates may create a set of conflicts

1 if (P1){ group (” U s e r L i s t ”) {
2 if (P2){ for (u : User){
3 output (u . username) / / c o u l d be u n r e a c h a b l e
4 }}
5 }

Fine-Grained Role- and Attribute-Based Access Control 181

– Sorting and Pairing. First, we sort all policy cases based on the controlled objects,
their related operations and predicates. Then, for each possible pair of objects, we
create a list that is the union of all related predicates for that pair.

– Potential Conflicts. We check for conflicts between the predicates of each pair with
respect to the defined RBAC structure. For this reason, for each pair, we transform
their predicates and the defined RBAC structure into a FOL formula and check its
satisfiability by using Z3; in case of UNSAT, we have a conflict.

– Conflict Detection. Now, we have a list of pairs in which the predicates create a
conflict. We finally check whether the paired objects are embedded within each
other in the application, and if so, we have found an error.

Coverage. The aim of this step is to check the required access control coverage based
on the defined policy and coverage cases, and to provide feedback to the developer
about the potential shortcomings of the defined ΦRBAC model. A coverage percentage
shows what percentage of an object’s occurrences in the application is protected directly
or indirectly by the derived access control predicates that are defined in the policy cases.
For each controlled object used in the coverage cases, the coverage percentage is cal-
culated. The following three steps sketch the calculation of the coverage percentage for
each controlled object:

– Sorting and Pairing. We sort both coverage and policy cases into two lists. We then
combine each coverage case with all the policy cases.

– Finding Related Cases and Partial Coverage. We then need to find all the related
policy cases for each coverage case based on the access control predicate. For this,
we transform each pair of cases into a FOL formula such that the policy case’s
predicate is used as it is but we transform the negation of the coverage predicates.
Then we call Z3 to check the satisfiability of the formula. If it is SAT, we omit
the paired cases from the coverage computation, as they are not related; however
in case of UNSAT, the predicates are related and we use the corresponding object
and operation to calculate the coverage of the object based on that particular related
predicate.

– Overall Coverage. We continually repeat the last step to find out all the direct and
indirect coverage of each (object,operation) pair based on the defined policy cases.
Then, we divide the total value of the computed coverage by the total number of
the occurrences for the object throughout the application.

If the computed coverage is outside the specified range we give an error that de-
scribes the ΦRBAC elements that fail the coverage check, and terminate the compila-
tion. The developer can then fix the coverage errors based on the defined ΦRBAC model
and/or the target application.

Transformation Phase. As Figure 1 shows, the transformation phase is divided into
generating the required elements and then weaving them throughout the Web applica-
tion code. These elements are related to the RBAC and access control predicates of the
system that are defined in the ΦRBAC model.

182 S.H. Ghotbi and B. Fischer

RBAC Generation. First, elements generated from the ΦRBAC model have to be added
to the Web application’s data model, in order to provide the data manipulation mecha-
nisms for roles and their associated activities, such as maintaining list of assigned roles
for each user. Second, these generated elements have to provide a role management
mechanism for the authenticated users of the application. This mechanism consists of
the role assignment and activation modules that are based on the overall RBAC struc-
ture defined within ΦRBAC model.

To extend the Web application’s data model, we need to find the entity that represents
the users of the system. In WebDSL, the developer uses the notion of principal to define
the users’ authentication credentials. For example, in Listing 1.4, the authentication is
based on the username and password properties of the Person entity which represents
the user of the system. We also use this entity type to represent that users have a given
role (Listing 1.5, line 4) and extend it to store a set of assigned roles for each user (line
12). In addition, the session element must be extended to hold the activated roles for
each user. In this we extend the data model of the application by generating the role
entity (lines 2-9), extending the Person entity (lines 10-13); and extending the Web
application session (lines 15-17).

Listing 1.4. WebDSL authentication credentials

principal is Pers on with credentials username , pas s word

Listing 1.5. Generated data model elements

1 / / G e n e r a t e d Role e n t i t y
2 entity Role {
3 name : : String (name)
4 u s e r s −> Set<Person>
5 i n h e r i t e n c y −> Set<Role> (optional)
6 s s od −> Set<Role> (optional)
7 dsod −> Set<Role> (optional)
8 c a r d i n a l i t y −> Int
9 }
10 / / E x tend ing ’ Person ’ e n t i t y f o r r o l e a s s i g n m e n t
11 extend entity Pers on{
12 a s s i g n e d R o l e s −> Set<Role> (inverse=Role . u s e r s)
13 }
14 / / E x tend ing s e s s i o n f o r a c t i v a t e d r o l e s
15 extend session securityContext{
16 a c t i v a t e d R o l e s −> Set<Role>
17 }

We already checked the correctness of the RBAC structure defined within the
ΦRBAC model (see 3.2) and as shown in the generated role entity, we store each role’s
characteristics (e.g., SSOD) for the RBAC management component. The SSOD rela-
tions between the roles is used in the role assignment component which during the
run-time of the system must not allow the administrator to assign conflicted roles to
any users of the system. The DSOD relation between roles is used in the role activa-
tion module of the system, to ensure that two roles in the DSOD relation cannot be
activated in any user’s session. The inheritance relation between roles is used for both
role assignment and role activation modules. These relations must be considered for
the overall structure of the defined RBAC; in particular, we need to consider more than
the directly defined relations for each role. For example, if a role advisor inherits

Fine-Grained Role- and Attribute-Based Access Control 183

from the role teacher, and teacher has an SSOD relation to manager, the roles
advisor and manager can never be assigned to one user, even if the defined model
did not explicitly state any SSOD relation between advisor and manager. In order
to get all direct and indirect relations of each role, we translate the RBAC structure into
a FOL formula, where we give a true value to the role whose relations, we want to
check and use the SMT solver to get a counterexample in which the related roles are
either true (due to inheritance relation) or false (due to SSOD or DSOD).

Predicate Generation. At this stage, we know that all specified cases are non-
overlapping and correct. Each case then represents a predicate that is used to protect the
controlled objects and their related operations. Before starting to generate the access
control predicates, we first sort the cases based on controlled objects and operations, by
joining their predicates where there is a same operation on the controlled object. For
example, in Listing 1.2, for the controlled object Person.password both defined
cases result in a secret operation. Therefore, the access control predicate that protects
the instances of Person.password is equal to: (teacher && not student
&& not admin) || (not teacher && not student && admin). These
sorted cases will be parsed into an AST which is used by the predicate generator to
generate a set of predicates that can be woven around the controlled objects in the Web
application’s AST.

Weaving Stage. Weaving is the last step in the ΦRBAC transformation phase. In this
step, we first get the result of the RBAC and predicate generators. For the RBAC gen-
erator, the result is an AST that represents a number of modules that hold the generated
data model and RBAC management component of the system. We weave these mod-
ules into the Web application’s AST and we add a navigator to the authentication code
to redirect the user to the role management component after successful authentication.
Any user has access to their role activation component, however the role assignment
component is protected, based on the access rights that are defined in ΦRBAC model
(as shown in Listing 1.2). We then repeatedly traverse the Web application’s AST, and
iteratively weave in the generated access control predicates around any occurences of
the controlled objects. In terms of predicates, the generated AST holds all the predicates
sorted based on operations on the controlled objects. We finally pass the updated AST
to the next step within the WebDSL compiler.

4 Case Study

The aim of this section is to show the benefits and limitations of the ΦRBAC modeling
language and its code generation mechanism, based on the evaluation of a case study.
The main objective of the evaluation is to check the efficacy of ΦRBAC during the
development phase of a target application with a reasonably large data model, based
on a rich set of policies. We chose a departmental Web site as a target application.
Moreover, the goal of the evaluation is to derive a set of findings that can be used to
improve any RBAC-based access control model, including ΦRBAC, that is intended to
be used in the Web application domain.

We implemented our case study using WebDSL for the Web elements and ΦRBAC
for the access control elements of the application. This case study is created and

184 S.H. Ghotbi and B. Fischer

deployed for a language research group to cover their internal (e.g., organization of
vivas) and external (e.g., publications) needs and to provide a fine-grained access con-
trol over the objects.

4.1 Web Application Description

In this case study, the Web application consists of three main elements, data model,
pages, and access control. We divided the data model elements into two categories;
users and activities. Users’ entities belong to different types of users in the system such
as academics or visitors. The second set of entities are related to the available activities
such as adding an interest. The access control data model is generated at compile time.
The size of the data model is quit large. We have nine different entities for the differ-
ent types of users (e.g., academic, student) and 13 entities that cover the objects
involved in activities (e.g., publications). Overall, we have 189 properties that are
associated with 22 entities. These are the fine-grained objects that are used throughout
the application code for a number of times. We divided the pages based on the different
types of users and activities, regardless of the operations used for the system objects.
Hence, there is only one page for each type of data and in that page all the available
operations exist, but each part of the page will be access-controlled based on the poli-
cies defined in the ΦRBAC model. The access control elements for this case study are
derived from the needs of the different types of users in a research group. For example,
an academic can be a supervisor of a PhD student; however, she cannot be
an examiner of a PhD student who she is supervising.

4.2 Evaluation and Findings

To evaluate the ΦRBAC model and mechanism, we looked at three aspects: modeling,
testing, and transformation phases. The errors in the model were divided into attribute,
RBAC, and the application errors, respectively. These errors were discovered before
the transformation phase and consequently application deployment. The transformation
strategies that were used in testing and transformation phase were tested, in a white-box
manner, during their development. The woven AST was inspected manually to make
sure all objects were correctly covered by the corresponding access control predicates,
and conversely, that no unguarded objects were accidently covered directly or indirectly
by any predicates.

The benefits are divided into development efficiency on one side, and correctness and
completeness of the model and target application, respectively, before its deployment
on the other side. During our case study, the ΦRBAC model was developed separately
from the application code. So, in case of errors the developer did not need to search
through the access control definitions scattered through the application code. Moreover,
the ΦRBAC is developed at the right abstraction level: the developer did not need to use
any specific object or agent-oriented terminology to define the access control compo-
nents and just used the access control concepts such as roles, as they are . ΦRBAC is
also a cost effective solution. In our case study the compilation time of our access con-
trol model was just 4.5 seconds on a machine with 4GB RAM and 2.3GHz CPU, to
cover instances of 189 unique objects throughout the application. The correctness and

Fine-Grained Role- and Attribute-Based Access Control 185

completeness checks on the ΦRBAC model give an insurance to the developer about the
access control of the system, so any security failure of the system during its run-time is
not related to its access control element but to the other security elements of the system
such as data encryption.

ΦRBAC’s weakness originat in the RBAC approach itself; in particular, RBAC does
not support an ownership notion. For instance, if in a research group we have a policy
that states that the supervisor can edit their students’ travel allowance, then any user with
the role supervisor can edit the travel allowance of any student in the group regardless
of who is the supervisor of those students. In order to overcome this flaw, the developer
needs to introduce a number of unnecessary roles such as supervisorOfStudentA
to enforce the mentioned policy. So ΦRBAC would be more efficient if the developer
could use the ownership notion as a policy term.

5 Conclusions and Future Work

This paper introduced ΦRBAC, a declarative and fine-grained role- and attribute-based
access control model for the Web application domain that enforces separation of concerns
between application and access control model at the right abstraction level. ΦRBAC is
defined and implemented as an extension to a domain-specific language, WebDSL, and
its compiler. Its architecture is divided into a testing phase and a subsequent transforma-
tion phase. The testing phase uses a fast mechanism to check the correctness and com-
pleteness of the model and the application via code transformation and model-checking
techniques. We showed how dead authorization code could occur in a fine-grained ac-
cess control model, and how we check for this before the generation phase. We evaluated
the approach and its mechanism based on an application example. The example demon-
strated the efficacy and benefits of ΦRBAC in terms of defining a fine-grained access
control model and checking correctness, completeness and sufficiency. Furthermore, it
showed the applicability of ΦRBAC model for large data models based on a rich set of
policies.

For future work we like to introduce the notion of ownership [22], as a policy term,
to improve the ΦRBAC model and its mechanism. Also, we plan to integrate other
well-known access control models, to achieve access control integration for Web ap-
plications that are constructed from mixed sources and require different access control
models for different parts of the application. Moreover, in terms of the ΦRBAC archi-
tecture, we like to explore the possibility of generating our access control predicates
on top of the database tier so that the application can retrieve access control settings
from the database at run-time and take advantage of the database tier’s security options.
Furthermore, we will introduce authorization management systems for defined access
control models within an application.

References

1. Abi Haidar, D., Cuppens-Boulahia, N., Cuppens, F., Debar, H.: An extended RBAC profile
of XACML. In: SWS 2006, pp. 13–22. ACM (2006)

186 S.H. Ghotbi and B. Fischer

2. Bertino, E., Bonatti, P., Ferrar, E.: TRBAC: A temporal role-based access control model.
ACM Trans. Inf. Syst. Secur. 2011, 191–233 (2001)

3. Chen, K., Huang, C.-M.: A practical aspect framework for enforcing fine-grained access
control in web applications. In: Deng, R.H., Bao, F., Pang, H., Zhou, J. (eds.) ISPEC 2005.
LNCS, vol. 3439, pp. 156–167. Springer, Heidelberg (2005)

4. Connor, A., Loomis, R.: Economic analysis of role-based access control. Technical report,
National Institute of Standards and Technology (2010)

5. Dalai, A.K., Jena, S.K.: Evaluation of web application security risks and secure design pat-
terns. In: CCS 2011, pp. 565–568. ACM (2011)

6. Damianou, N., Dulay, N., Lupu, E., Sloman, M.: The Ponder policy specification language.
In: Sloman, M., Lobo, J., Lupu, E.C. (eds.) POLICY 2001. LNCS, vol. 1995, pp. 18–38.
Springer, Heidelberg (2001)

7. de Moura, L.M., Bjørner, N.: Z3: An Efficient SMT Solver. In: Armando, A., Baumgartner,
P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 337–340. Springer, Heidel-
berg (2008)

8. Ferraiolo, D., Kuhn, R.: Role-Based Access Control. In: NIST-NCSC 1992, pp. 554–563
(1992)

9. Ferraiolo, D.F., Barkley, J.F., Kuhn, D.R.: A role-based access control model and reference
implementation within a corporate intranet. In: ISS 2009, pp. 34–64. ACM (1999)

10. Giuri, L., Iglio, P.: Role templates for content-based access control. In: Workshop RBAC
1997, pp. 153–159 (1997)

11. Gorodetski, V.I., Skormin, V.A., Popyack, L.J. (eds.): Information Assurance in Computer
Networks: Methods. In: Gorodetski, V.I., Skormin, V.A., Popyack, L.J. (eds.) MMM-ACNS
2001. LNCS, vol. 2052, Springer, Heidelberg (2001)

12. Groenewegen, D., Visser, E.: Integration of data validation and user interface concerns in a
DSL for web applications. In: van den Brand, M., Gašević, D., Gray, J. (eds.) SLE 2009.
LNCS, vol. 5969, pp. 164–173. Springer, Heidelberg (2010)

13. Groenewegen, D.M., Hemel, Z., Kats, L.C.L., Visser, E.: WebDSL: A domain-specific lan-
guage for dynamic web applications. In: OOPSLA 2008, pp. 779–780. ACM (2008)

14. Groenewegen, D.M., Visser, E.: Declarative access control for WebDSL: Combining lan-
guage integration and separation of concerns. In: ICWE 2008, pp. 175–188. IEEE (2008)

15. Heering, J., Hendriks, P.R.H., Klint, P., Rekers, J.: The syntax definition formalism SDF -
reference manual. SIGPLAN Notices 24(11), 43–75 (1989)

16. Hemel, Z., Kats, L.C.L., Groenewegen, D.M., Visser, E.: Code generation by model trans-
formation: a case study in transformation modularity. Software and System Modeling 9(3),
375–402 (2010)

17. Hortsmann, C.: Scala for the Impatient. Addison-Wesley Professional (2012)
18. Hsieh, G., Foster, K., Emamali, G., Patrick, G., Marvel, L.M.: Using XACML for embedded

and fine-grained access control policy. In: ARES 2009, pp. 462–468. IEEE (2009)
19. Jin, X., Krishnan, R., Sandhu, R.: A Unified Attribute-Based Access Control Model Cover-

ing DAC, MAC and RBAC. In: Cuppens-Boulahia, N., Cuppens, F., Garcia-Alfaro, J. (eds.)
DBSec 2012. LNCS, vol. 7371, pp. 41–55. Springer, Heidelberg (2012)

20. Martin, E., Xie, T., Yu, T.: Defining and measuring policy coverage in testing access control
policies. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006. LNCS, vol. 4307, pp. 139–158.
Springer, Heidelberg (2006)

21. Masood, A., Bhatti, R., Ghafoor, A., Mathur, A.P.: Scalable and effective test generation for
role-based access control systems. Software Eng. 35(5), 654–668 (2009)

22. McCollum, C., Messing, J., Notargiacomo, L.: Beyond the Pale of MAC and DAC Defining
new forms of access control. In: RSP 1990, pp. 190–200. IEEE (1990)

23. Montrieux, L., Wermelinger, M., Yu, Y.: Tool support for UML-based specification and ver-
ification of role-based access control properties. In: ESEC 2011, pp. 456–459. ACM (2011)

Fine-Grained Role- and Attribute-Based Access Control 187

24. Samarati, P., di Vimercati, S.D.C.: Access control: Policies, models, and mechanisms. In:
Focardi, R., Gorrieri, R. (eds.) FOSAD 2000. LNCS, vol. 2171, pp. 137–196. Springer,
Heidelberg (2001)

25. Sandhu, R., Ferraiolo, D., Kuhn, R.: The NIST Model for Role-Based Access Control: To-
wards a Unified Standard. In: Workshop on RBAC 2000, pp. 47–63. ACM (2000)

26. Steele, R., Min, K.: Healthpass: Fine-grained access control to portable personal health
records. In: AINA 2010, pp. 1012–1019. IEEE (2010)

27. Sujansky, W.V., Faus, S.A., Stone, E., Brennan, P.F.: A method to implement fine-grained ac-
cess control for personal health records through standard relational database queries. Journal
of Biomedical Informatics 5(suppl. 1), S46–S50 (2010)

28. Tondel, I., Jaatun, M., Jensen, J.: Learning from software security testing. In: ICSTW 2008,
pp. 286–294. IEEE (2008)

29. Visser, E.: Program transformation with Stratego/XT: Rules, strategies, tools, and systems in
Stratego/XT 0.9. In: Lengauer, C., Batory, D., Blum, A., Odersky, M. (eds.) Domain-Specific
Program Generation. LNCS, vol. 3016, pp. 216–238. Springer, Heidelberg (2004)

30. Visser, E.: WebDSL: A case study in domain-specific language engineering. In: Lämmel,
R., Visser, J., Saraiva, J. (eds.) GTTSE 2007. LNCS, vol. 5235, pp. 291–373. Springer,
Heidelberg (2008)

31. Win, B.D., Piessens, F., Joosen, W., De, B., Frank, W., Joosen, P.W., Verhanneman, T.: On
the importance of the separation-of-concerns principle in secure software engineering. In:
Workshop AEPSSD 2002 (2002)

32. Wurster, G., Van Oorschot, P.C.: The developer is the enemy. In: NSP 2008, pp. 89–97. ACM
Press (2009)

33. Zhu, H., Lu, K.: Fine-grained access control for database management systems. In: Cooper,
R., Kennedy, J. (eds.) BNCOD 2007. LNCS, vol. 4587, pp. 215–223. Springer, Heidelberg
(2007)

An Approach to Context Modeling
in Software Development

Bruno Antunes, Joel Cordeiro, and Paulo Gomes

Centre for Informatics and Systems of the University of Coimbra, Coimbra, Portugal
{bema,jfac,pgomes}@dei.uc.pt

Abstract. The contextual information associated to the work of a developer can
be used to identify the source code artifacts that are more relevant at a specific
point in time. This information is essential to reduce the effort spent by developers
when searching for needed source code artifacts. We propose a context model that
represents the focus of attention of the developer at each moment. This context
model adapts automatically to changes in the focus of attention of the developer
by detecting context transitions. We have developed a prototype that was sub-
mitted to an experiment with a group of developers. The results collected show
that the use of our context model to rank, elicit and filter relevant source code
elements for the developer is very promising.

Keywords: Context Modeling, Context Capture, Context Transitions, Software
Development, IDE.

1 Introduction

The interest in the many roles of context comes from different fields such as literature,
philosophy, linguistics and computer science, with each field proposing its own view
of context [1]. The term context typically refers to the set of circumstances and facts
that surround the center of interest, providing additional information and increasing
understanding. The context-aware computing concept was first introduced by Schilit
and Theimer [2], where they refer to context as “location of use, the collection of nearby
people and objects, as well as the changes to those objects over time”. In a similar way,
Brown et al. [3] define context as location, identities of the people around the user, the
time of day, season, temperature, etc. In a more generic definition, Dey and Abowd [4]
define context as “any information that can be used to characterize the situation of an
entity. An entity is a person, place, or object that is considered relevant to the interaction
between a user and an application, including the user and applications themselves”.

With the increasing dimension of software systems, software development projects
have grown in complexity and size, as well as in the number of features and technologies
involved. During their work, software developers need to cope with a large amount of
contextual information that is typically not captured and processed in order to enrich
their work environment. Especially, in the IDE, developers deal with dozens of different
artifacts at the same time. The software development process requires that developers
repeatedly switch between different artifacts, which often depends on searching for
these artifacts in the source code structure. The workspace of developers frequently

J. Cordeiro, S. Hammoudi, and M. van Sinderen (Eds.): ICSOFT 2012, CCIS 411, pp. 188–202, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

An Approach to Context Modeling in Software Development 189

comprises hundreds, if not thousands, of artifacts, which makes the task of searching
for relevant artifacts very time consuming, especially when repeated very often. The
contextual information associated to the work of a developer can be used to identify
the source code artifacts that are more relevant at a specific point in time. Although
the work of a developer is typically task oriented, it is too complex and dynamic to be
easily sliced into simple tasks. The developer often addresses more than one task in a
short period of time, or even at the same time, and the transitions between these tasks
are not explicit. This behaviour makes it difficult to identify the context of a task and
to know when the developer switches between tasks. We believe that more important
than identifying the context for each one of the tasks the developer has at hands, is to
understand what is the focus of attention of the developer at each moment and adapt as
it changes.

We propose a context model that represents the focus of attention of the developer
at each moment. This context model comprises a structural and a lexical dimensions.
The structural context focus on the source code elements and their structural relations,
while the lexical context focus on the terms used to represent these elements. This con-
text model adapts to changes in the focus of attention of the developer, automatically
detecting context transitions, either to a new context or a previous one. We have imple-
mented a prototype, named SDiC1 (Software Development in Context), in the form of a
plugin that integrates the context modeling and transition mechanisms in Eclipse2. The
prototype was submitted to an experiment with a group of developers, in order to collect
statistical information about the context modeling process and to manually validate the
context transition mechanism.

The remaining of the paper starts with an overview of related work. Then we intro-
duce the developer context model and section 4 explains how the context transition is
processed. The prototype developed is described in section 5. The experimentation and
results discussion is presented in section 6. Finally, section 7 concludes the paper with
some final remarks and future work.

2 Related Work

Kersten and Murphy [5] have been working on a model for representing tasks and
their context. The task context is derived from an interaction history that comprises
a sequence of interaction events, representing operations performed on a software pro-
gram’s artifact. They then use the information in a task context either to help focus the
information displayed in the IDE, or to automate the retrieval of relevant information
for completing a task. Although our structural context was inspired by their work, we
have expanded this model with a lexical dimension. Also, we do not attach the context
of the developer to tasks, we see the context model as a continuous and dynamic struc-
ture that adapts to the behaviour of the developer. Instead of requiring developers to
explicitly define where a task starts and ends, our approach automatically adapts to the
changes in the focus of attention of the developer, identifying which artifacts are more
relevant for the activities of the developer in each moment.

1 http://sdic.dei.uc.pt
2 http://eclipse.org

http://sdic.dei.uc.pt
http://eclipse.org

190 B. Antunes, J. Cordeiro, and P. Gomes

In the same line of task management and recovery, Parnin and Gorg [6] propose an
approach for capturing the context relevant for a task from a programmer’s interactions
with an IDE, which is then used to aid the programmer recovering the mental state asso-
ciated with a task and to facilitate the exploration of source code using recommendation
systems. Their work is essentially focused on methods, while our approach also covers
classes and interfaces, and they do not take into consideration the interest value of these
methods to the developer.

More recently, Piorkowski et al. [7] have implemented an algorithm that takes into
account a list of the last methods visited by the developer to produce a list of recommen-
dations, including methods previously visited and not previously visited by the devel-
oper. The recommendations are retrieved and ranked according to a spread-activation
algorithm based on a graph representing the source code structure and the words shared
between methods. The recency information was also taken into account, by applying
a greater activation to more recently accessed methods. Their approach is comparable
with that proposed by Parnin and Gorg [6], as they also focus the methods recently
visited by the developer.

Holmes and Murphy [8] proposes Strathcona, an Eclipse plugin that allows to search
for source code examples. The process consists of extracting the structural context of
the code on which a developer is working, when the developer requests for examples.
The search is based in different heuristics, such as inheritance relations and method
calls, by matching the structural context with the code in the repository. The contextual
information is explicitly provided by the developer when searching for source code
examples, while our context model is automatically built from the interactions of the
developer in the IDE.

Ye and Fischer in [9], propose a process called information delivery, which consists
in proactively suggesting useful software engineer’s needs for components. The process
is performed by running continuously as a background process in Emacs, extracting
reuse queries by monitoring development activities. They use the JavaDoc comments
as context to create a query for retrieving relevant components. With the idea that code
fragments using similar terms in the identifiers also use similar methods, Heinemann
and Hummel [10] proposes the use of the knowledge embodied in the identifiers as a
basis for recommendation of methods. They use the identifiers of a few source lines
preceding a method call as context. These approaches focus on the identifiers and com-
ments used in the source code to complement a query used to retrieve relevant artifacts.
They do not take into consideration the focus of attention of the developer or the relative
relevance of a specific artifact manipulated by the developer.

Warr and Robillard [11] developed a plugin for the Eclipse IDE to provide program
navigation, by suggesting potentially relevant elements for the current context. The con-
text is created by the user by dragging and dropping elements of interest into a view.
It retrieves and ranks all the elements in the project’s source code by taking into ac-
count their structural relations to any of the elements in the context. The contextual
information is provided by the developer through a set of elements of interest, while
our approach automatically identifies these elements of interest and how their interest
evolves over time.

An Approach to Context Modeling in Software Development 191

IDE

DEVELOPER
INTERACTIONS

STRUCTURAL
ELEMENTS

LEXICAL
ELEMENTS

CONTEXT MODEL

TERM
ANALYSIS

LEXICAL
CONTEXT

STRUCTURAL
CONTEXT

INTERATION
PROCESSING

RELATION
ANALYSIS

STRUCTURAL
RELATIONS

Fig. 1. Abstract representation of the process used to build the context model

3 Context Modeling

The context model we have defined aims to represent the context of the developer in
relation to the source code elements that are more relevant to the work of the developer
at each moment. The model is built from the interactions of the developer with the
source code elements and evolves over time, as the focus of attention of the developer
changes. It comprises a structural and a lexical dimensions, representing both the source
code elements and the terms used to represent these elements. The process of building
the context model from the developer interactions is illustrated in figure 1 and will be
described in more detail on the following sections.

3.1 Structural Context

The structural context focuses on the structural elements and structural relations that are
more relevant for the developer in a specific moment. The relevance of these elements
and relations is derived from the interactions of the developer with the source code
and is represented as an interest value. The structural context was inspired by the work
of Kersten and Murphy [5], which have used a similar model to represent the context
associated to a task. Next, we describe the structural context in more detail, including
the structural elements and structural relations.

Structural Elements. The structural elements represent the source code elements with
which the developer is interacting, including classes, interfaces and methods. Associ-
ated to each element is an interest value that is derived from the analysis of the interac-
tions of the developer with that element. The impact of each interaction in the interest of
an element has been defined based on our experience and some empirical tests, reflect-
ing how that interaction contributes to increase or decrease the relevance of the element
in the context of the developer. When an element is opened, or accessed for the first
time, it is added to the structural context and its interest is increased by 0.4. When the
element gains focus or is edited, its interest is increased by 0.2 and 0.1, respectively.
The more the developer accesses or edits an element, the more relevant it becomes in
the context model. When an element is closed, its interest is decreased by −0.4.

As time passes, the interest of the elements must be decayed, so that the relevance of
an element in the context of the developer decreases if it is not used over time. The decay

192 B. Antunes, J. Cordeiro, and P. Gomes

may be processed in different ways, for instance, as applied in previous works [5,6], the
interest of an element can be decreased proportionally to the number of interactions of
the developer over time. We opted to use an approach based on time, so that the interest
of the elements is decreased as time passes. This way, the interest of an element is not
affected by the interactions of the developer with other elements, it is based only on the
interactions that affected that element and the time passed since its last interaction. The
decay is processed every five minutes and applies a variation of −0.1 to the interest of
every structural element in the context model. These parameters were defined according
to our own experience and observations during the implementation of the approach. In
order to prevent loosing context when the developer is distracted, or away for some
reason, the decay is executed only if the developer has been active in the IDE since the
last decay. When the interest of an element reaches zero, that element is finally removed
from the structural context.

Consider SE the set of structural elements stored in the workspace of the developer.
Let I(se) be the interest associated to an element se, then the structural elements repre-
sented in the context model would be the subset of structural elements in the workspace
with a positive interest (CSE ⊆ SE), as defined in equation 1.

CSE = {se1, se2, . . . , sen | I(sei) > 0} (1)

Consider E an event that affects an element se, including interactions and decays,
and EΔ the variation applied to the interest of the element se affected by the event E.
Then, the interest of an element is computed using equation 2, where I ′(se) denotes the
interest associated to the structural element se, before normalization, andEΔ

i represents
the ith event of the n events that affected element se.

I ′(se) =
n∑

i=1

EΔ
i (2)

As the developer interacts with the source code elements, their interest grows without
restriction. This could lead to a situation in which an element could obtain a dispropor-
tionate interest in relation to the remaining elements. This would make it difficult to
compare the relative relevance of such an element in relation to the relevance of other
elements. Taking this into account, the final interest of an element is always normalized
to the interval [0, 1]. The normalized interest I(se) is computed using an inverted expo-
nential function, as shown in equation 3, assuring that the interest of an element has an
exponential growth, becoming very close to 1 for values over 5.

I(se) = 1−
(

1

eI′(se)

)
(3)

As shown in figure 2, the structural elementsContextModel,ContextElement,
setInterest and getInterestwere added to the structural context because they
were manipulated by the developer at some point in time. The relevance of these elements
to the developer is given by their interest values, which evolved according to the different
interactions of the developer with that elements over time.

An Approach to Context Modeling in Software Development 193

ContextElement

setInterest

getInterest

ContextModel
ContextElement
setInterest
getInterest

0.8
0.6
0.4
0.2

STRUCTURAL ELEMENTS INTEREST

STRUCTURAL CONTEXT

ContextModel

attributeOf
methodOf

0.7
0.4

STRUCTURAL RELATIONS INTEREST

model
context
element
set
interest
get

0.8
0.7
0.6
0.4
0.3
0.2

LEXICAL ELEMENTS INTEREST

LEXICAL CONTEXT

INTERACTION TIMELINE

TIME

INTERACTION INTERACTED
ELEMENT

Fig. 2. Example of how the context model is derived from a set of interactions in the interaction
timeline

Structural Relations. The structural relations represent the relevance of the rela-
tions that exist between the source code element that are being manipulated by the
developer. These relations represent the structural relations that exist in the Java pro-
gramming language, but are common to most of the object oriented programming
languages, and can be categorized in three groups: inheritance (extensionOf and
implementationOf), composition (attributeOf and methodOf) and
behaviour (calledBy, usedBy, parameterOf and returnOf). The relevance
of the structural relations can be used to measure the relevance of source code elements
that are not being used by the developer, but are structurally related with the elements
that are in the context model.

Because the structural relations are not directly affected by the interactions of the de-
veloper, their relevance is derived from the structural elements that exist in the structural
context. When two, or more, structural elements are bound by one of these relations,
that relation is added to the structural context. Associated with each relation is an in-
terest value that represents the relevance of that relation in the context of the developer.
The interest of a relation is computed as an average of the interest of all structural el-
ements that are bound by that relation. This way, the relevance of a structural relation
reflects the relevance of the structural elements that brought it to the structural context.
The structural relations and their interest are updated whenever the structural context
changes. When no more structural elements are bound by a relation, it is removed from
the structural context.

Consider SR the set of relations defined before. Let I(sr) be the interest associated
to relation sr, then the structural relations represented in the context model would be
the subset of structural relations with a positive interest (CSR ⊆ SR), as defined in
equation 4.

194 B. Antunes, J. Cordeiro, and P. Gomes

CSR = {sr1, sr2, . . . , srn | I(sri) > 0} (4)

The interest of a structural relation is computed using equation 5, where sesri repre-
sents the ith structural element of the n structural elements bound by relation sr.

I(sr) =

n∑
i=1

I(sesri)

n
(5)

The structural relations represented in figure 2, attributeOf and methodOf,
were added to the structural context because there are structural elements bound by
these relations. The structural element ContextElement is an attribute of the struc-
tural element ContextModel, while setInterest and getInterest are meth-
ods of ContextElement. The interest associated with these relations represents the
average interest of the elements that are bound by them.

3.2 Lexical Context

The lexical context focus on the terms that are more relevant in the context of the devel-
oper. It comprises a list of terms that are extracted from the names of the source code
elements that are manipulated by the developer. The name of source code elements in
the Java programming language typically follow the CamelCase3 naming convention,
resulting in one or more terms joined without spaces and with the first letter of each
element capitalized. We use this characteristic to extract the different terms associated
with a structural element. The lexical context comprises all the terms extracted from
the structural elements in the structural context. Similarly to the elements and relations
in the structural context, the relevance of each term is given by an interest value. The
interest of a term is computed as an average of the interest of the structural elements
from which the term was extracted. The more relevant is a structural element, the more
relevant become the terms used to reference that element. The relevance of these terms
can be used to identify source code elements that are lexically related with the source
code elements that are currently relevant for the developer. When the structural elements
change, the lexical context is updated accordingly.

Consider LE the set of all lexical elements used to reference the source code el-
ements in the workspace of the developer. Let I(le) be the interest associated to the
lexical element le, then the lexical elements represented in the context model would be
the subset of lexical elements in the workspace with a positive interest (CLE ⊆ LE),
as defined in equation 6.

CLE = {le1, le2, . . . , len | I(lei) > 0} (6)

The interest of a lexical element is computed using equation 7, where selei represents
the ith structural element of the n structural elements from which the lexical element le
was extracted.

3 http://en.wikipedia.org/wiki/CamelCase

http://en.wikipedia.org/wiki/CamelCase

An Approach to Context Modeling in Software Development 195

I(le) =

n∑
i=1

I(selei)

n
(7)

The terms in the lexical context of figure 2, model, context, element, set,
interest and get, were extracted from the elements in the structural context. Their
interest represents the average DOI of the structural elements referenced by them.

Because terms are not explicitly related as the source code elements, the terms used
in the names of all the source code elements that exist in the workspace of the de-
veloper are analyzed in order to identify terms that are related by co-occurrence. The
co-occurrence relation is created when two terms are found in the name of a source
code element. In a linguistic sense, co-occurrence can be interpreted as an indicator
of semantic proximity [12]. We use co-occurrence as a measure of proximity between
two terms, assuming that if the terms are used together to represent the same entity, that
means they are related. These relations are then used to understand how the source code
elements are related with each other from a lexical point of view. We also identify terms
that are very frequent, such as get, set, etc. These very frequent terms co-occur with
a variety of other terms and end up connecting almost every term in a distance of three
relations. To avoid this, we chose to ignore all the terms that would fall in the top 30%
of all term occurrences.

4 Context Transitions

As the focus of attention of the developer changes, the notion of what is relevant to the
work of the developer also changes and the context model must be adapted accordingly.
The context model described was designed to represent the focus of attention of the
developer at each moment, but does not provide, by itself, the mechanisms needed to
adapt as the focus of attention changes, which sometimes happens very fast. Because
the developer commonly addresses more than one task in a short period of time, or
even at the same time, the focus of attention is dispersed through different parts of the
source code structure. This means that, in fact, more than one context model exist in
parallel, and they must be activated and deactivated as the focus of attention changes.
This issue has been addressed with a mechanism to deal with context transitions, as
the focus of attention of the developer changes. This way we may have several context
models, that are stored in a context model pool, with only one context model active at
each moment. The system automatically detects the changes in the focus of attention of
the developer and decides whether a new context should be created or an existing one
should be activated.

4.1 Transition Detection

To detect changes in the focus of attention of the developer, we use the way source code
elements added to the context model are related with those that are already in the con-
text model. When the attention of the developer shifts to a different part of the source
code structure, it is expected to see, in a short period of time, a reasonable number of
interactions with source code elements that have no relation with those in the current

196 B. Antunes, J. Cordeiro, and P. Gomes

getInterest

DatabaseManagerContextElement

INTERACTION TIMELINE

getConnection

ContextElement

SOFT TRANSITIVE
ELEMENT

HARD TRANSITIVE
ELEMENT

TRANSITION
WINDOW

TIME

INTERACTION INTERACTED
ELEMENT

Fig. 3. Example of how the context transition window is applied to the interaction timeline

context model. We assume that in such a situation, the system must adapt to the change
that is occurring in the behaviour of the developer and make a transition to a new con-
text, or an existing one. To detect these situations we have defined a mechanism based
on a transition window and a set of transitive elements (see figure 3). The transition
window is a fixed time window that represents the time span within which a certain
number of elements, having no relation with the current context, will start a context
transition. We call these elements of transitive elements, and they can be either hard or
soft transitive. The hard transitive elements are those that have no close relation with
the elements in the current context, whereas the soft transitive elements are those that
have some kind of relation with only hard transitive, or other soft transitive, elements.
The time window moves along the interaction timeline as time passes. The hard or soft
transitive elements that reach the limit of the time window are no longer marked as
transitive elements. When the number of hard transitive elements reaches a threshold
of 3, or the number of soft transitive elements reach a threshold of 6, within a context
transition window of 3 minutes, a context transition is initiated.

As illustrated in figure 3, the transition window is located at the head of the interac-
tion timeline. There are three elements that were accessed within the transition window,
one is a hard transitive element, one is a soft transitive element and the other is an
element that was already in the context model. The DatabaseManager class is con-
sidered a hard transitive element because it has no relation with any of the previously
manipulated elements, while the getConnection element is considered a soft transi-
tive element because it is a method of the DatabaseManager class but is not related
with the remaining elements in the context model. The ContextElement method is
not considered a transitive element because it was manipulated before and was already
in the context model.

4.2 Transition Processing

When a context transition is detected, the system must remove the transitive elements
from the current context, deactivate it and decide if a new context should be created or
an existing one should be activated. To activate an existing context, one must assure that

An Approach to Context Modeling in Software Development 197

the developer is changing the focus of attention to a part of the source code structure
that originated the existing context. The system decides if an existing context should be
activated by comparing its elements with the transitive elements, those that were used
to detect the context transition in the first place.

For an existing context to be activated it has to contain all the transitive elements.
A context model that contains all the transitive elements assures that the new focus
of attention of the developer will be properly represented. Also, such a context model
increases the odds that the remaining elements in that context model are also relevant,
because they are very likely to be related with the transitive elements. In case that the
activated context model does not correctly represent the new focus of attention of the
developer, the context transition process will be there to detect this situation and process
a new context transition, if necessary. When there are no other context models, or when
the condition for activating an existing context model is not satisfied, a new context is
created. The transitive elements are added to this new context and then it is activated.

5 Prototype

We have implemented a prototype in the form of a plugin, that integrates the context
modeling and context transition mechanisms in the Eclipse IDE. The activity of the
developer is monitored in the background in order to build the context model and detect
context transitions.

The prototype provides an interface where all the information related with the context
modeling and context transition processes can be consulted (see figure 4). The interface
shows a list of all the context models that have been created (see 1 in figure 4). When one
of these context models is selected, all the information related with the selected context
model is presented, including information about the structural and lexical contexts. A
list of events (Added, Removed, Activated and Deactivated) associated with
the context model is presented (see 2 in figure 4). Concerning the structural context,
we can see the structural elements (see 3 in figure 4) and structural relations (see 4 in
figure 4) that exist in the selected context model, as well as a visual representation of
their current interest value. The hard and soft transitive elements are shown in gray,
with the soft transitive elements having a lighter grey than the others. When one of the
elements or relations is selected, a list of the events (Added, Removed, Interest
Incremented and Interest Decremented) that affected that element are pre-
sented (see 5 in figure 4) and a chart representing the evolution of its interest over time
is shown (see 6 in figure 4). Concerning the lexical context model, we can see the terms
that exist in the current context model. Similarly to the structural context interface,
when a term is selected, the list of events that affected the term is presented and a chart
representing the evolution of its interest over time is shown.

6 Experimentation

We have created an experiment to validate our approach in the field, with developers
using the prototype during their work. The experiment was conducted with a group of
21 developers, from both industry and academia. The developers used the prototype

198 B. Antunes, J. Cordeiro, and P. Gomes

Fig. 4. A screenshot of the prototype, showing information relative to the structural context

during different time periods, with an average of 38 days per developer, using Eclipse
to develop source code in the Java programming language. The objective of the ex-
perimentation was to collect statistical data about the context modeling and transition
mechanisms, as well as to manually validate the context transitions processed by the
system.

Concerning the context modeling mechanism, we have collected statistical data about
new elements added to the context model and how they were related with the elements
that were already in the context model. This information would allow us to better un-
derstand how the source code elements manipulated by developers are related with each
other and how this could be used to improve the context modeling and transition pro-
cesses. We have analyzed a total of 48, 044 elements added to the context model. To
evaluate how these elements were related with existing elements, we have verified if
they were related within a distance of 3 relations with the top 15 elements with higher
interest of both the structural and the lexical contexts. About 88% of the elements were
structurally related with at least one structural element, with an average distance of 2.3
relations, and about 86% were lexically related with at least one lexical element, with
an average distance of 2.0 relations. These numbers show that most of the source code
elements needed by developers were related with at least one of the elements manipu-
lated before, within a distance of about two relations. Based on this, we believe that
the use of our context model to rank, elicit and filter relevant source code elements
for the developer is very promising. Assuming that a source code element needed by
the developer is likely to be related with the elements being manipulated, we can use
the proximity between this artifact and the context model to assess its relevance to the
developer.

An Approach to Context Modeling in Software Development 199

Table 1. The average number of structural and lexical elements in the context model

Average Structural Elements 11.69

Average Structural Related Elements 4.64

Average Structural Unrelated Elements 5.05

Average Lexical Elements 14.26

Average Lexical Related Elements 22.60

Average Lexical Unrelated Elements 3.82

Table 2. The percentage of times each relation appeared in the relations between added and
existing context elements

Relation Percentage

extensionOf 8.57%

implementationOf 1.38%

attributeOf 36.62%

methodOf 90.73%

parameterOf 10.37%

returnOf 3.07%

calledBy 49.75%

usedBy 31.19%

In table 1 we present the average number of structural and lexical elements, as well
as the average number of elements related and unrelated with the added element. The
lexical related elements have an higher average due to the fact that the name of a source
code element typically comprises more than one term, and each match between one of
these terms and the terms in the lexical context was considered. The results show that
the source code elements added to the context model were structurally related with a
an average of about 40% of the elements that were already in the context model. The
results of the lexical elements are even more expressive. This reinforces the idea that
the source code elements manipulated by developers are highly correlated. We have also
analyzed the types of relations that are more common between the added elements and
the existing elements. The percentage of times each relation appeared is shown in table
2. The composition and behavior relations are by far the most common, as expected.

With respect to the context transition process, we have collected statistical informa-
tion about 109 context transitions, presented in table 3. All the context transitions led to
the creation of a new context. We could conclude that a transition to a previous context
is something very uncommon, but the problem may also reside in the rules we have de-
fined for switching to an existing context. At first, the similarity between the two sets of
elements was computed using the Jaccard index [13], also known as the Jaccard similar-
ity coefficient, which is a statistical measure used for comparing the similarity between
sample sets. When the similarity between the two sets was greater than a threshold of
0.5, the existing context would be activated. After some time, we verified that the con-
text transitions to existing context models were not happening and realized that using
the Jaccard metric would not be adequate for our purpose. The two sets being compared

200 B. Antunes, J. Cordeiro, and P. Gomes

Table 3. The statistical information collected about the context transition process

Context Transition Percentage

New Context 100%

Existing Context 0%

Hard Transition 73%

Soft Transition 27%

were very often disproportionate, because the number of transitive elements tends to be
small compared to the number of elements in a context model. Hence, the threshold was
never reached and none of the existing contexts would be activated.

Being aware of this problem, we have refined the conditions to activate an existing
context, focusing only in the transition elements. Because the transition elements are
more relevant for the context transition process than the others, we may assume that if
an existing context contains all the transition elements, then this context model is a good
candidate to be activated. Despite this change, there were no context transitions to an
existing context. This way, we tend to believe that the transitions to an existing context
are rare, but the process must be better studied in order to draw stronger conclusions.
With respect to the transitive elements, we could conclude that context transitions are
more often caused by reaching the hard transitive elements threshold, than by reaching
the soft transitive elements threshold. This was expected, because the hard transitive el-
ements are more relevant to the process and therefore have a lower threshold. But, it also
shows that the soft transitive elements have their role in detecting context transitions.

Finally, we asked the developers to evaluate how each context transition detected by
the system could be identified as change in their focus of attention. They were presented
with the structural elements that were in the context model before the transition and the
elements that were used to detect the transition (both hard and soft transitive). They
were asked to rate how the context transition would be related with a change in their
focus of attention in a scale from 1 (Poorly Related) to 5 (Highly Related). The average
score for the 55 context transitions evaluated was 3.00, with a confidence interval of
±0.33, for a confidence level of 95%. The average score obtained is not conclusive,
but is encouraging, at least. One of the problems we have faced is that developers have
some difficulties understanding the concepts of context transition and focus of attention,
which can have lead to misjudgment in the evaluation process.

7 Conclusions

We have presented an approach to context modeling and context transition detection in
software development. The context model combines a structural and a lexical dimen-
sions, to represent the source code elements, structural relations and terms that are more
relevant for the developer in a specific moment in time. The context transition detec-
tion mechanism allows the context model to automatically adapt to the changes in the
focus of attention of the developer. We have implemented a prototype that integrates
our approach in Eclipse. This prototype was submitted to an experiment with a group
of developers to collect statistical information about the context modelling process and

An Approach to Context Modeling in Software Development 201

to manually validate the context transition mechanism. The statistical information col-
lected shows that the source code elements manipulated by the developer are highly
correlated, leading us to believe that the use of a context model to assess the relevancy
of a source code element to the developer is very promising. The human evaluation of
the context transition mechanism was not conclusive, but the results are nevertheless
encouraging, considering the fact that developers have some difficulties in understand-
ing the concept of context transition. An early version of our context model was already
applied to support the context-based search of source code in the IDE [14], showing
that the use of context contribute positively to the ranking of search results. A similar
version of this context model was also applied to the recommendation of relevant source
code in the IDE [15].

With respect to future work, there are a set of processes and parameters of special
interest that could be studied in more detail. For instance, the decay applied to the inter-
est of a structural element in the context model follows a linear function of time. But,
the interest of an element be decayed differently, for instance using a logarithmic func-
tion of time. Additionally, it would be interesting to understand if different decay rates
should be applied to different source code elements. For instance, the interest of a class
could decay at a different rate of the interest of a method. The context transition de-
tection is another point that requires further research. The parameters that regulate this
process were defined based on our own experience and observations, and the results
obtained through the developers evaluation of context transitions were not conclusive.
Also, our context transition mechanism is entirely based on the structural relations be-
tween source code elements. But, it would be interesting to evaluate what is the role of
lexical relations in this process.

Acknowledgements. Bruno Antunes is supported by a FCT scholarship grant SFRH/
BD/43336/2008, co-funded by ESF (European Social Fund).

References

1. Mostefaoui, G.K., Pasquier-Rocha, J., Brezillon, P.: Context-Aware Computing: A Guide for
the Pervasive Computing Community. In: Proc. of the IEEE/ACS International Conference
on Pervasive Services (ICPS 2004), pp. 39–48. IEEE Computer Society, Washington, DC
(2004)

2. Schilit, B., Theimer, M.: Disseminating Active Map Information to Mobile Hosts. IEEE
Network 8(5), 22–32 (1994)

3. Brown, P.J., Bovey, J.D., Chen, X.: Context-Aware Applications: From the Laboratory to the
Marketplace. IEEE Personal Communications 4, 58–64 (1997)

4. Dey, A.K., Abowd, G.D.: Towards a Better Understanding of Context and Context-
Awareness. In: Proc. of the CHI Workshop on the What, Who, Where, When, and How
of Context-Awareness, The Hague, The Netherlands (2000)

5. Kersten, M., Murphy, G.C.: Using Task Context to Improve Programmer Productivity. In:
Proc. of the 14th ACM SIGSOFT International Symposium on Foundations of Software
Engineering (SIGSOFT 2006/FSE-14), pp. 1–11. ACM, New York (2006)

6. Parnin, C., Gorg, C.: Building Usage Contexts During Program Comprehension. In: Proc.
of the 14th IEEE International Conference on Program Comprehension (ICPC 2006), pp.
13–22. IEEE Computer Society, Washington, DC (2006)

202 B. Antunes, J. Cordeiro, and P. Gomes

7. Piorkowski, D., Fleming, S., Scaffidi, C., Bogart, C., Burnett, M., John, B., Bellamy, R.,
Swart, C.: Reactive Information Foraging: An Empirical Investigation of Theory-Based Rec-
ommender Systems for Programmers. In: Proc. of the ACM Annual Conference on Human
Factors in Computing Systems (CHI 2012), pp. 1471–1480. ACM, New York (2012)

8. Holmes, R., Murphy, G.C.: Using Structural Context to Recommend Source Code Examples.
In: Proc. of the 27th International Conference on Software Engineering (ICSE 2005), pp.
117–125. ACM, New York (2005)

9. Ye, Y., Fischer, G.: Supporting Reuse by Delivering Task-Relevant and Personalized Infor-
mation. In: Proc. of the 24th International Conference on Software Engineering (ICSE 2002),
pp. 513–523. ACM, New York (2002)

10. Heinemann, L., Hummel, B.: Recommending API Methods Based on Identifier Contexts. In:
Proc. of the 3rd International Workshop on Search-Driven Development: Users, Infrastruc-
ture, Tools, and Evaluation (SUITE 2011), pp. 1–4. ACM, New York (2011)

11. Warr, F.W., Robillard, M.P.: Suade: Topology-Based Searches for Software Investigation.
In: Proc. of the 29th International Conference on Software Engineering (ICSE 2007), pp.
780–783. IEEE Computer Society, Washington, DC (2007)

12. Harris, Z.: Distributional Structure. Word 10(23), 146–162 (1954)
13. Jaccard, P.: Étude comparative de la distribution florale dans une portion des Alpes et des

Jura. Bulletin del la Société Vaudoise des Sciences Naturelles 37, 547–579 (1901)
14. Antunes, B., Cordeiro, J., Gomes, P.: Context-Based Search in Software Development. In:

Proc. of the 7th Conference on Prestigious Applications of Intelligent Systems (PAIS 2012)
of the 20th European Conference on Artificial Intelligence (ECAI 2012), pp. 937–942. IOS
Press (2012)

15. Antunes, B., Cordeiro, J., Gomes, P.: An Approach to Context-Based Recommendation in
Software Development. In: Proc. of the 6th ACM Conference on Recommender Systems
(RecSys 2012), pp. 171–178. ACM Press, New York (2012)

J. Cordeiro, S. Hammoudi, and M. van Sinderen (Eds.): ICSOFT 2012, CCIS 411, pp. 203–217, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Linear Software Models Are Theoretical Standards
of Modularity

Iaakov Exman

Software Engineering Department, The Jerusalem College of Engineering, Jerusalem, Israel
iaakov@jce.ac.il

Abstract. Modularity is essential to obtain well-composed software systems
from COTS (Commercial Off-The-Shelf) components. But COTS components
do not necessarily match the modules of the designed software system. A clear-
cut procedure is needed for the choice of the necessary and sufficient
components providing the required functionalities. Linear Software Models are
rigorous theoretical standards of modularity. These models are proposed as
formal criteria for well-composed software systems. The paper lays down
theoretical foundations – upon linear independence and reducible matrix
concepts – providing precise meanings to familiar software concepts, such as
coupling and the single responsibility theorem. The theory uses a Modularity
Matrix – linking linearly independent software structors to composable software
functionals. The theory has been tested by applying it to small canonical
systems and to large software systems found in the literature.

Keywords: Modularity, Theoretical Standards, Software Composition, Linear
Software Models, Well composed Systems, Modularity Matrix.

1 Introduction

Significant progress since Parnas’ classical paper [13] – which posed the modularity
issue in the software context and treated it by informal reasoning – paved the way for
run-time system composition/update from COTS software components. Yet there
remain fundamental obstacles to make this vision concrete.

Modularity’s wisdom of low dependency among modules has been informally
stated in innumerable ways: recommendations such as single responsibility, source-
code dependency metrics, design patterns and tools. But recommendations, metrics,
patterns and tools never crystallized into a systematic theoretical approach.

This is exactly the problem dealt with by this paper: to provide a solid and generic
basis to treat software composition in a rigorous and consistent way, enabling
theoretical models against which to check real systems. To this end, Linear Software
Models are proposed upon well-established linear algebra techniques.

1.1 The Software Composition Problem

The software composition problem, analysed by this paper, is how to build a
well designed modular software system from available COTS components that were
not designed specifically for a particular system.

204 I. Exman

Components are deployment units needed to actually run software systems. They
are loaded to the computer memory as indivisible wholes. Typical examples are a
C++ dll (dynamically linked library), a jar (Java archive) or a C# assembly.

On the one hand, the software engineer, by using best practices, designs a modular
software system in terms of desirable architectural units. Architectural units describe
the structure and behaviour of a particular software system.

On the other hand, components are assumed to be mainly purchased as COTS
(Commercial Off-The-Shelf) components from several manufacturers, and less
frequently to be produced in-house. It is realistic to expect variability among COTS
from distinct sources.

1.2 Linear Software Models: Structors and Functionals

This paper describes Linear Software Models as a theory of software composition. In
this theory, the architecture of a software system is expressed by two kinds of entities:
structors and functionals.

Structors – a new term reminding vectors – are structural architectural units. Structors
generalize the notion of structural unit to cover diversity of types (structs, classes,
interfaces, aspects) and hierarchical collections (sets of classes, as design patterns).
Structors refer to types, not instances. Structors are loadable within components.

Functionals are architectural system units from a behavioral point of view. These are
potential functions that can be, but are not necessarily invoked. Typically these are
Java or C# methods, related functions (e.g. a set of trigonometric functions) or roles –
supplying the functionality of a design pattern, cf. Riehle [14]. Note: we use
Functional as a noun, similarly to the mathematical concept with this name in the
calculus of variations, and to the grammatical use of Potential in physics.

Structors contain a finite set of functionals and are represented by finite vectors.
Modules are architectural units in a higher hierarchical level of a system. Modules

are composed of grouped structors and their corresponding functionals.
Both components and systems contain structors. But the respective logics are

different. Structors contained in a COTS component are fixed by the core technology
of the component manufacturer and such structors must be assumed indivisible.

Structors within a system are determined by the system purpose. Not all structors
of a component may be required by a system. Similarly, not all functionals within
structors are needed by a system, and some of them may never be invoked. The
numbers of structors or functionals provided by a component are not constrained.
Analysis starts with a list of structors and a list of functionals that must be in a
system. If two structors provide distinct functionals, both are needed. If they provide
the same functionals, one of them is redundant. For partial overlap, either one may be
complemented by a third structor. But which one is preferable? Within a Linear
Software Model the answer is clear: choose a linearly independent set of structors.

Linear models are usually formulated in terms of matrices. The Modularity Matrix
is a Boolean matrix with columns standing for structors and rows for functionals. A
matrix element is 1-valued for a functional-structor link and 0-valued for no link.

 Linear Software Models Are Theoretical Standards of Modularity 205

1.3 Modularity Matrix: An Introductory Example

A simple useful system is here described in terms of a Linear Software Model to
illustrate concepts found along the paper. It refers to OFB (Output Feed-Back)
encryption of a long message (Fig. 1) before network transmission – e.g. Kaufman, et
al. [9]. A message is cut into N blocks of fixed length and each one is treated
separately.

A random Initial Vector is generated. Each block of the message is pre-processed.
A corresponding vector is also pre-processed to the size of a block, and then
encrypted. The encrypted output vector is fed back into the encryption function,
through the vector pre-processing. Feedback is done N times, obtaining one vector for
each message block. The kth encrypted vector is then Xored with the kth message
block.

Fig. 1. OFB encryption of long message. This is a functional calling dependency graph for a
generic kth message block. Functionals are displayed as (blue) rounded rectangles. Some of the
input/output dataflow is shown in regular rectangles.

Table 1. OFB functionals

Functional Description
1 Random number generator from a distribution
2 Encryption function e.g. RSA encryption
3 Xor a logical function
4 Vector-Pre-Process Fetch(vector,size)
5 Message-Pre-Process fetch & pad message

The OFB software system has five functionals (Table 1) and the following four

structors: S1) Rand - offers random distributions; S2) Crypto structor - offers
encryption protocols; S3) Logical - provides logical functions, say AND, OR, XOR;
S4) Proc - a processor structor provides pre-processing functions.

The resulting OFB modularity matrix (Table 2) has 2 identical lowest rows. The
matrix reflects that the pre-processing functionals are not independent. Both
functionals are provided by the same structor, thus they are not distinguishable.

206 I. Exman

Table 2. OFB rectangular Modularity Matrix with linear dependencies

 S1=Rand S2=Crypto S3=Logical S4=Proc
Rand Num Gen F1 1 0 0 0
Encryption Func F2 0 1 0 1

XOR F3 0 0 1 1
Vector-Pre-Proc F4 0 0 0 1
Msg-Pre-Proc F5 0 0 0 1

An interesting feature of OFB encryption is that one can prepare all encrypted

vectors in advance, before there are any message blocks to be sent. Therefore, one can
rearrange the functional calling graph, enabling totally separate execution.

Two modules naturally appear, one dealing with vectors and the other with
message blocks – see Fig. 2. In each module, the processing structor, besides pre-
processing, invokes the respective processing functional.

Fig. 2. OFB functionals modularized. Rearranged functional calling graph of Fig. 1. The upper
dashed lines module pre-processes vectors, encrypts and saves them. The lower module fetches
message blocks, pre-processes them and Xors each block with its saved vector.

Table 3. OFB strictly linear model – Modularity Matrix

 S1=
Rand

S2=
Crypt

S4=Vec
Proc

S3=
Logical

S5=Msg
Proc

Rand Num Gen F1 1 0 0 0 0
Encryption Func F2 0 1 1 0 0
Vector-Pre-Proc F3 0 0 1 0 0

XOR F4 0 0 0 1 1
Msg-Pre-Proc F5 0 0 0 0 1

Independent pre-processing functionals which are able to run in parallel in distinct

machines need independent structors. So, one has a VectorProc structor and a separate
MsgProc structor. These structors are aware – by means of associations – of the
respective processing functionals which they are able to invoke.

Row and column swap operations lead to a block-diagonal matrix (Table 3). The
diagonal blocks in this matrix match the modules in Fig. 2.

The system matrix in Table 3 strictly obeys a Linear Software Model. This means
that all its modules have linearly independent rows and columns. Thus, each of its

 Linear Software Models Are Theoretical Standards of Modularity 207

functionals is distinguishable. For instance, according to the matrix in Table 3
functional F2 is provided by structors {S2, S4}.

The independent execution of VectorProc and MsgProc, in time and space,
clarifies the sense of an independent software structor. It must be: a)
Loadable/Runnable – in a virtual or real machine; b) Separable – i.e. able to run in
separate machines.

The remaining of the paper is organized starting from the basic theory (section 2),
through concrete case studies (section 3), to a discussion (section 4).

2 Linear Software Models of Composition

The aim of this section is to describe the new theoretical approach – the Linear
Software Models of Composition.

Linear Software Models are the simplest theoretical models of software
composition. Systems obeying such a model are composed just by addition of
independent modules.

2.1 Modularity Matrices’ Linear Independence

A Linear Software Model contains a list of software structors and another of software
functionals. Its Modularity Matrix is defined as:

By definition, software structors are elementary artifacts, which the software engineer
decides to look at them as indivisible into smaller structors. Say, the OFB crypto
structor (section 1.3) is not split into – prime factorization or modulo arithmetic –
although decomposition is obviously possible. The same holds true for functionals.

Besides being indivisible, only structors with unique roles, as the OFB
VectorProcessor and MsgProcessor needed for parallelism, are in the Matrix. Multiple
structor copies, say by fault tolerance reasons, are not included in the Matrix.

Independent structors must be represented by distinct vectors. But, sets of differing
vectors may still be dependent. The generic criterion for independent structors in any
system subsets is linear independence:

Definition 2 – Independent Structor
A software structor is independent of other structors in the system, if it provides a
non-empty proper sub-set of functionals of the system, given by the 1-valued links
in the respective column, and is linearly independent of other columns in the
Modularity Matrix.

Definition 1 – Modularity-Matrix
A fully expanded Modularity-Matrix is a Boolean matrix asserting links (1-valued
elements) between software functionals (rows) and software structors (columns).
The absence of a link is marked by a 0-valued element.

208 I. Exman

We now look at the links from the functional point of view. In order to be able to
distinguish a functional, its set of links in the functional row must be unequivocal.
Again linear independence is the relevant criterion:

For instance, for OFB (Table 3) the XOR functional composition set is {S3, S5}.

2.2 Well-Composed Modularity Matrices Are Square

A well-composed modularity matrix has additive properties, i.e. it has composable
functionals from independent structors. Then:

A proof sketch is (detailed proofs will be given in a longer paper): Assume a matrix
without empty rows/columns. First, structors are used as a basis for functional
vectors. Then, functionals are a basis for structor vectors. By linear independence, in
each case vector numbers cannot be greater than the basis. As both cases must be
simultaneously true, follows the equality NS=NF. The matrix is square.

The theorem assumptions are very intuitive. An analogy is the symptom sets to
diagnose illnesses. Say, high temperature, a very common symptom, is not enough to
identify a disease. Diseases with the same symptom sets are indistinguishable. To
unequivocally diagnose an illness one needs independent sets of symptoms.

This theorem does not force a one-to-one functional/structor match. It is obeyed
by matrices with NVAL 1-valued elements greater than NS and NF (see e.g. Table 4).

Table 4. Abstract square Modularity Matrix with NVAL=6, while NS=NF=3

 S1 S2 S3
F1 1 0 1
F2 0 1 1
F3 1 1 0

Algebraically, there are simple criteria for well-composed matrices: non-zero

matrix determinant or matrix rank equal to the number of rows/columns.

Theorem 1 – Well-Composed Modularity-Matrix
If in a Modularity-Matrix all its functionals are composable with independent
structors, the Modularity-Matrix number of structors Ns is equal to its number of
functionals NF. The matrix is Square.

Such a matrix is called a Well-Composed Modularity-Matrix.

Definition 3 – Composable Functional
A software functional is independently composable or just composable in terms of
structors, if it corresponds to a non-empty proper sub-set of system structors,
given by the 1-valued links in the respective row, and is linearly independent of
other rows in the Modularity-Matrix.

This set is the composition set of the functional.

 Linear Software Models Are Theoretical Standards of Modularity 209

2.3 Reducible Modularity Matrices

When a Modularity Matrix has disjoint dependency sets, structors and their
functionals can be grouped into modules, such that vector sets in different modules
are linearly independent. This reduces the matrix to block-diagonal (fig. 3), i.e. with
smaller squares of any size along the diagonal, see e.g. Rowland, Weisstein, [16]. All
off-block elements are zero.

Fig. 3. Schematic Block-Diagonal Matrix

A “union-set” is the union of composition sets for a set of functionals. Then:

A proof sketch is: apply row and column exchanges to bring the disjoint union-set to
the upper-left matrix corner. As the whole Modularity Matrix is Well-composed, the
disjoint union-set is itself square (by Theorem 1) and its diagonal is along the whole
Matrix diagonal. The residual 1-valued elements are thus also square bounded, along
the whole Matrix diagonal. This reasoning is extensible to any number of blocks.

The previous theorems naturally lead us to define linear software system models
of composition. The two theorems are combined in the Linear-Reducible model, in
the strict sense.

We identify modules with disjoint diagonal blocks of structors/functionals,
corresponding to the intuitive notion of modular software systems. One can express
modularity quantitatively by the diagonality of a Modularity-Matrix M, telling how
close its 1-valued elements are to the main diagonal. It is the difference between the
Trace, the diagonal elements' sum, and offdiag, a new term dealing with off-diagonal
elements:

(1)

Definition 4 – Linear Reducible Model
The Linear-Reducible model of software system composition, in the strict sense,
is characterized by a well-composed and reducible Modularity Matrix having at
least two disjoint blocks.

Theorem 2 – Modularity Matrix Reducibility
Any well-composed Modularity Matrix in which the union-set for a given set of
functionals is disjoint to the other functional union-sets is reducible, i.e. it can be
put in block-diagonal form.

210 I. Exman

Offdiag sums over 1-valued
difference of the element’s co

The overall matrix offdiag i

The next operations may u
defined by the matrix comp

a) Block collapse – transfo

b) Block expansion – resto

To assure that these operat
<Trace, offdiag> diagonali
the white-box, hidden rows/

The modularity hierarch

2.4 The Single Respons

The last theoretical piece of
single responsibility princi
block-diagonal matrix:

This theorem is easily ver
providing each functiona
interpretation of the famil
grouped in a single module

Definition 5 – Number o
The number of modules o
blocks from the modulari

Theorem 3 – Single Res
In a strictly block-diagon
single module. Similarly,

d Mjk off-diagonal elements, times the absolute value of
olumn k and row j indices. For each row j and column k:

is:

unfold a whole hierarchy of block levels, where a leve
ponents explicit in that level:

orms a block into a single element black-box.

ores a collapsed black-box back into a white-box.

tions preserve diagonality, black-boxes are labeled by
ity value, of the original white-box. To be able to rest
/columns should be stored elsewhere.

hy is thus given by:

sibility Theorem

f the Linear Models is a linear algebraic formulation of
ple (see e.g. Martin, [11]). It is valid after one obtain

rified. It means that a single module is responsible

al exclusively by its structors. This is a plausi
liar principle, since related structors and functionals
.

of modules at a level
of a software system at a hierarchy level is the number o
ity matrix partition into disjoint union-sets at that level.

ponsibility
nal modularity matrix each structor column intersects a
each functional row intersects a single module.

f the

(2)

(3)

el is

the
tore

f the
ns a

for
ible
are

of

a

 Linear Software Models Are Theoretical Standards of Modularity 211

3 Case Studies

The goal of this section is to demonstrate the power of Linear Software models,
showing by case studies a range of concrete software systems obeying such a model.

We have chosen representative software systems of disparate purposes and sizes to
illustrate the Linear Models. It turns out that all systems are well-composed. Small
systems are strictly Linear-Reducible – i.e. obey a model with a linearly independent
and reducible matrix – and larger systems are bordered Linear-Reducible. In each
case, a modularity matrix is obtained, block-diagonalized and analysed in terms of
Linearity.

3.1 Small Systems Are Strictly Linear Reducible

Small systems and intermediate reusable building blocks strictly obey the Linear-
Reducible Software model. These are Parnas’ KWIC index and the Observer pattern.
KWIC was thoroughly analysed by Parnas to be a canonical example. The Observer
pattern was deliberately designed to be reused.

Parnas' KWIC Index. The 1972 Parnas paper [13] described two KWIC index
modularizations. The system outputs an alphabetical listing of all circular shifts of all
input lines. Functionals were extracted from Parnas’ own system description.
Structors are explicit in the paper – where they are called modules.

The Modularity Matrix of Parnas’ 1st modularization is in Table 5 (0-valued
elements are omitted for clarity; blocks have a darker background). It is almost block-
diagonal, but two features are problematic:

a) the Master Control column vector is not a proper subset of the functionals;

b) non-zero outliers break block-diagonality.

Table 5. Parnas' 1st modularization – Modularity Matrix

Structors  Input Circular Shifter Master Control Alpha-betizer Output
Functionals 1 2 3 4 5

Input = ordered set of lines 1 1 1
Does circular shift on a line 2 1 1

Line= store line in word order 3 1 1 1 1
Sort lines in alphabetical order 4 1 1
Outputs circular shifted lines 5 1 1

The matrix clearly hints to couplings to be resolved: the notably higher

RowOffdiag=4 of the 3rd row, contains all outliers, besides the master control ones.
The solution is: a- to delete the master control, as quoting Parnas, it “does little more
than sequencing”, it is not a real structor; b- to add a new Line-Storage structor, as
Parnas informally argued, to decouple the 3rd row "Line" functional from the Input,
Circular-shifter and Alphabetizer. The 2nd Parnas’ modularization fits the strictly
diagonal 5-module matrix in Table 6.

212 I. Exman

Table 6. Parnas' 2nd modularization – Modularity Matrix

Structors  Input Circular Shifter Line Storage Alpha-betizer Output
Functionals 1 2 3 4 5

Input = ordered set of lines 1 1
Does circular shift on a line 2 1

Line= store line in word order 3 1
Sort lines in alphabetical order 4 1
Outputs circular shifted lines 5 1

We use decouple in a precise new meaning, viz. linearly independent composition.
The matrices in Tables 5 and 6 are not equivalent, having different non-zero

element numbers. Which one is more modular? The 1st matrix diagonality has a value
–5. The 2nd diagonality equals the Trace and is 5. Thus, the 2nd is more modular.

We arrived at the same Parnas conclusions, by formal Modularity Matrix
arguments. This system strictly obeys the Linear-Reducible Model.

Observer Design Pattern. The Observer Design Pattern abstracts one-to-many
interactions among objects, such that when a "subject" – changes, all the "observers"
– are notified and updated.

The Observer Modularity Matrix is based upon the Design Patterns’ GoF book
[6]. Its sample code refers to an analog and a digital clock, the "concrete observers",
changing according to an internal clock – the "concrete subject".

The system structors are:

• generic Observer pattern entities, directly taken from the pattern list of
“Participants”: abstract subject, abstract observer, concrete subject and concrete
observer.

• specific application structors – a subject resource, a GUI for each external clock
and an initiator which constructs the clocks.
The Observer functionals were extracted from the complete set of functions that may
be invoked in the sample code. These functions were trimmed by elimination of linear
dependencies. Keep-observers-list attaches/detaches observers.

State is not maintained in the same way in the subject and in the observers. The
unique subject sets the state ("ticks") by means of a Keep-Global-state functional,
while observers, are updated at unrelated times by Keep-Local-state.

Table 7. Observer linear reducible – Modularity Matrix

Structors  subject
Concrete
subject

subject
resource

concrete
observer

Observer
Gui

analog
Gui

digital
Init

Functionals 1 2 3 4 5 6 7 8
Keep observer list 1 1
Notify observers 2 1 1
Keep-global-state 3 1 1
Keep-local-state 4 1
Update observers 5 1 1

Draw-analog 6 1
Draw-digital 7 1
Constructor 8 1

 Linear Software Models Are Theoretical Standards of Modularity 213

Row/column reordering of a quite arbitrary initial matrix causes modules to
emerge in a strictly Linear-Reducible matrix. (Table 7). The modules are a subject
and an observer, the generic module roles [14] for this design pattern, each one with
the respective abstract/concrete structors and the specific clock modules.

In Table 7, subject and observer modules emerged from basic structors.
Alternatively one can deal with black-box collapsed modules (as defined in sub-
section 2.3) in a higher hierarchical level matrix shown in Table 8.

Table 8. Observer higher level Modularity-Matrix

Structors  Subject Observer Clock Appl.
Functionals 1 2 3

Keep-global-state & Notify observers 1 <3.2>
Keep-local-state & Update observers 2 <2,1>

construct, draw clocks 3 <3,0>

The Observer analysis illustrates that, despite arbitrary initial order, automatic

reordering brings about a matrix accurately reflecting the pattern functionality.
The Observer pattern is a prototypical example. It would be desirable to have all

reusable building blocks as the Observer, strictly obeying the Linear-Reducible
Model, to allow linearly independent composition into larger software systems.

3.2 Larger Software Systems Are Bordered Linear Reducible

We have shown the Linear Model applicability to real systems, viz. larger projects
from the literature. The novel result: these systems are bordered Linear-Reducible.

NEESgrid Modularity Matrix. The NEESgrid “Network Earthquake Engineering
Simulation” project enables network access to participate in earthquake tele-operation
experiments. The system was designed by the NCSA at University of Illinois.
Modularity Matrix functionals were extracted from a report by Finholt, et al. [5] with
exactly 10 upper-level structors.

Table 9. NEESgrid initial Modularity Matrix

Structors  chef
Data
Rp

Data
Vu

Data
Str

Data
Dis

Telepre
Data
Ac

Hyb
Exp

Sim
Rep

Grid
Infr

Functionals 1 2 3 4 5 6 7 8 9 10

Collect_Data 1 1 1 1

Search_Data 2 1

Manage_Data 3 1 1

HybridExper 4 1

Data_View 5 1

Sync_Collab 6 1 1

Async_Collab 7 1

Other_Collab 8 1 1 1 1

SimulCodes 9 1

HighPerfComp 10 1

214 I. Exman

An initial modularity matrix (Table 9) was obtained by straightforward linearity
considerations: eliminating empty and identical rows; an empty column, “Electronic
Lab Notebook”, was deleted. A column was assigned to a next-level structor Data-
Discovery (DataDis) as it neatly fits the SearchData functional. The scattered non-
zero elements are typical of initial matrices in this kind of analysis.

Pure algebraic row/column reorder, without semantic concerns, brings about the
almost block-diagonal Matrix (in Table 10). Its modules – diagonal blocks – are:

• Data manipulation – collect, search, manage, view – the upper-left block;

• Collaboration tools – synchronous, async, other – the middle block;

• Infrastructure – grid, codes – the lower-right block.

Table 10. NEESgrid Bordered Linear-Reducible Modularity Matrix

Structors 
Data
Str

Data
Dis

Data
Rp

Data
Vu

Data
Ac

Telepre chef
Grid
Infr

Sim
Rep

Hybr
Exp

Functionals 4 5 2 3 7 6 1 10 9 8

Collect_Data 1 1 1 1

Search_Data 2 1

Manage_Data 3 1 1

Data_View 5 1

Other_Collab 8 1 1 1 1

Sync_Collab 6 1 1

Async_Collab 7 1

HighPerfComp 10 1

SimulCodes 9 1

HybridExper 4 1

Module interpretation is hinted by functional names – Data and Collab.
Outliers appear in the rows with maximal value RowOffDiag=6, Collect_Data and

Other_Collab. The latter prefix "Other" hints at mixed functionals to be decoupled.
This case study shows that: a- algebraic reordering, without prior semantic

knowledge, obtains plausible modules; b- outliers are amenable to interpretation, in
particular matching project notes (e.g. the row 8, column 10 outlier, marked "not
within the project scope” in project documents).

The significant result, common to large case studies, is that there are few outliers,
and all of them are in columns/rows adjacent to the Linear Model blocks. This is
what we call bordered Linear-Reducible.

4 Discussion: Theoretical Standards of Modularity

4.1 Main Contribution: Linear Software Models

This paper’s main contribution is the Linear Software Models, as theoretical
standards against which to compare real software systems. The models stand upon

 Linear Software Models Are Theoretical Standards of Modularity 215

well-established linear algebra, as a broad basis for a solid theory of composition –
beyond current principles and practices.

The analysis starts from lists of structors and functionals required by the software
system architecture. In the case studies, structors and functionals were identified from
the literature, apparently being a subjective informal process. In practical applications
the lists are objectively constrained by the structors actually available within COTS
components that may be purchased from manufacturers,

Given the lists of structors and functionals required by a system and those available
in COTS components, one can assert, from the Modularity Matrix properties of the
system, which structors are independent and which functionals are independently
composable. This solves the practical and well-defined component matching problem.
One can then infer which design improvements are desirable.

This view is very different from design models, such as UML, whose purpose is
not to serve as theoretical standards. Design models freely evolve with design and
system development. Design models have indefinite modifiability to adapt to any
system, in response to tests of system compliance to design.

4.2 Related Work

Matrices have been used to deal with modularity. A prominent example is DSM
(Design Structure Matrix) proposed by Steward [20], developed by Eppinger and
collaborators e.g. [18],[19] and part of the “Design Rules” approach by Baldwin and
Clark – see e.g. [1] and also Cai et al. [3], [17]. DSM and other matrices, such as
Kusiak and Huang’s [10] hardware modularity matrix, are meant to be evolving
design models.

Linearity, not found in DSM, is the outstanding feature of our standard models.
Essential distinctions of Linear Software Models from DSM are:

• Theoretical Standards vs. Design Models – our models’ goal is to serve as
theoretical standards for software composition, as opposed to DSM design models
which emphasize design process and manufacturing.
• Functionals vs. Structures-only – our modularity matrices display structor to
functional links, while both DSM matrix dimensions are labeled by the same
structures.

Baldwin and Clark explicitly state in footnote 2, page 63 of their book [1]: “it is
difficult to base modularity on functions… hence their definition of modularity is
based on relationships among structures, not functions”. See Ulrich [21] for a
different view.

Usually, modularity matrices are much more compact than DSM. For instance,
Parnas’ KWIC DSM in [3] has 20 rows/columns instead of just 5 in our Modularity
Matrix.

Although diagonality has seldom been calculated within modularity, formulas have
appeared in other contexts. Clemins in [4] used for speaker identification, the
Frobenius norm – the sum of the squares – of all off-diagonal elements to measure
diagonality. Our offdiag definition is better suited to modularity, as it directly reflects
distance to the diagonal, while the Frobenius norm just sums Boolean elements.

216 I. Exman

An indirect coupling metric is “similarity coefficients”, cf. Hwang, Oh, [7],
comparing matrix row pairs, over all columns. The similarity for each column is: both
1 elements, both 0, or different. These coefficients ignore distances from the diagonal.

The Modularity Matrix has a superficial similarity to a traceability table. But their
purposes are definitely different. Traceability tables are used to trace code and tests to
requirements, while our functionals' essence is to verify linear independence.

The module detection literature is plentiful. Tools to improve legacy code use
clustering to partition graphs, by Mitchell, Mancoridis, [12], metrics to increase
cohesion, by Kang, Bieman, 1999 [8] and slicing of FDGs – Functional Dependence
Graphs by Rodrigues, Barbosa, [15], tools to detect modularity violations by Wong, et
al., [22]. Despite the quantitative flavor, they clearly differ from our Linear Models.

4.3 Future Work

A mathematical characterization of modularity matrix outliers deserves further
investigation. This relates to the broader issue of determining block sizes, after
exclusion of outliers, and module refactoring.

A practical issue is to systematically obtain a broad class of basic patterns strictly
obeying the Linear-Reducible Model, like the Observer, as advocated for software
building blocks.

Efficiency issues concerning modularity matrix generation and reordering (cf.
Borndorfer, et al. [2]) for large scale systems will be investigated.

This work has found that small software systems are strictly Linear-Reducible, and
some large software systems are bordered Linear-Reducible. This poses a variety of
open questions.

The larger systems shown to be bordered Linear-Reducible were developed before
the proposal of the Linear Model. It is conceivable, but still unclear, that in view of
this model they could be modified in a natural way to comply with the strict Linear-
Reducible model. Similarly, future large scale systems developed with awareness of
linearity, may show that strictly Linear-Reducibility rather than limited to certain
systems, is indeed applicable to a wide variety of software systems.

4.4 Conclusions

Software has been perceived as essentially different from other engineering fields,
due to software’s intrinsic variability, reflected in the soft prefix. This versatility is
often seen as an advantage to be preserved, even though software composition has
largely resisted theoretical formalization.

We have found that Linear Software Models can be formulated, without giving up
variability. Thus, software systems of disparate size, function and purpose, may have
Linearity in common.

References

1. Baldwin, C.Y., Clark, K.B.: Design Rules. The Power of Modularity, vol. I. MIT Press,
Cambridge (2000)

2. Borndorfer, R., Ferreira, C.E., Martin, A.: Decomposing Matrices into Blocks. SIAM J.
Optimization 9(1), 236–269 (1998)

 Linear Software Models Are Theoretical Standards of Modularity 217

3. Cai, Y., Sullivan, K.J.: Modularity Analysis of Logical Design Models. In: Proc. 21st
IEEE/ACM Int. Conf. On Automated Software Eng., ASE 2006, pp. 91–102. Tokyo, Japan
(2006)

4. Clemins, P.J., Ewalt, H.E., Johnson, M.T.: Time-Aligned SVD Analysis for Speaker
Identification. In: Proc. ICASSP02 IEEE Int. Conf. Acoustics Speech and Signal Proc.,
vol. 4, pp. IV-4160 (2002)

5. Finholt, T.A., Horn, D., Thome, S.: NEESgrid Requirements Traceability Matrix,
Technical Report NEESgrid-2003-13, School of Information, University of Michigan,
USA (2004)

6. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, Boston (1995)

7. Hwang, H., Oh, Y.H.: Another similarity coefficient for the p-median model in group
technology. Int. J. Manufacturing Tech. & Management 5, 38–245 (2003)

8. Kang, B.-K., Bieman, J.M.: A Quantitative Framework for Software Restructuring. J.
Softw. Maint. Research & Practice 11(4), 245–284 (1999)

9. Kaufman, C., Perlman, R., Speciner, M.: Network Security – Private Communication in a
Public World. Prentice-Hall, Englewood Cliffs (1997)

10. Kusiak, A., Huang, C.-C.: Design of Modular Digital Circuits for Testability. IEEE Trans.
Components, Packaging and Manufacturing Technology – Part C 20(1), 48–57 (1997)

11. Martin, R.C.: Agile Software Development: Principles, Patterns and Practices. Prentice
Hall, Upper Saddle River (2003)

12. Mitchell, B.S., Mancoridis, S.: On the Automatic Modularization of Software Systems
Using the Bunch Tool. IEEE Trans. Software Engineering 32(3), 193–208 (2006)

13. Parnas, D.L.: On the Criteria to be Used in Decomposing Systems into Modules. Comm.
ACM 15, 1053–1058 (1972)

14. Riehle, D.: Describing and Composing Patterns Using Role Diagrams. In: Mutzel, K.-U.,
Frei., H.-P. (eds.) Proc. Ubilab Conf., Universitatsverlag Konstanz, pp. 137–152 (1996)

15. Rodrigues, N.F., Barbosa, L.S.: Component Identification through program slicing.
Electronic Notes in Theoretical Computer Science 160, 291–304 (2006); Proc. Int.
Workshop Formal Aspects of Component Software (FACS 2005) (2005)

16. Rowland, T., Weisstein, E.W.: Block Diagonal Matrix. from MathWorld (2006),
http://mathworld.wolfram.com/BlockDiagonalMatrix.html

17. Sethi, K., Cai, Y., Wong, S., Garcia, A., Sant’Anna, C.: From Retrospect to Prospect:
Assessing Modularity and Stability from Software Architecture. In: Proc. European Conf.
on Software Architecture, WICSA/ECSA, pp. 269–272 (2009)

18. Sosa, M.E., Agrawal, A., Eppinger, S.D., Rowles, C.M.: A Network Approach to Define
Modularity of Product Components. In: Proc. IDETC/CIE ASME International Design
Engineering Technical Conf. & Computers and Information in Engineering Conf., Long
Beach, CA, USA, pp. 1–12 (2005)

19. Sosa, M.E., Eppinger, S.D., Rowles, C.M.: A Network Approach to Define Modularity of
Components in Complex Products. ASME Journal of Mechanical Design 129, 1118 (2007)

20. Steward, D.: The Design Structure System: A Method for Managing the Design of
Complex Systems. IEEE Trans. Eng. Manag., EM-29(3), 71–74 (1981)

21. Ulrich, K.T.: The Role of Product Architecture in the Manufacturing Firm. Res. Policy 24,
419–440 (1995)

22. Wong, S., Cai, Y., Kim, M., Dalton, M.: Detecting Software Modularity Viola-tions. In:
Proc. 33rd Int. Conf. Software Engineering, pp. 411–420 (2011)

Author Index

Abdulrazak, Bessam 80
Antunes, Bruno 188

Berg, Henning 155
Bergel, Alexandre 66
Berzal, Fernando 21
Bettini, Lorenzo 52, 66
Bruda, Stefan D. 80
Buglione, Luigi 127

Cordeiro, Joel 188
Cortijo, Francisco J. 21

Exman, Iaakov 203

Fischer, Bernd 171

Ghotbi, Seyed Hossein 171
Gomes, Paulo 188

Hauck, Jean Carlo Rossa 127

Irazábal, Jerónimo 140

Jia, Xiaoping 36
Jones, Chris 36

Keahey, Kate 112
Koppaetzky, Nils 3

LaBissoniere, David 112

Malik, Yasir 80
Marshall, Paul 112
Mc Caffery, Fergal 127

Nicklas, Daniela 3
Niu, Jianwei 96

Pons, Claudia 140

Quesada, Luis 21

Robinson, Mark 96

Salehi, Farzad 80
Shen, Hui 96

Tufo, Henry 112

von Wangenheim, Christiane Gresse
127

Woitaszek, Matthew 112

	Preface
	Organization
	Table of Contents
	Invited Paper
	Data, Context, Situation: On the Usefulness of Semantic Layers for Designing Context-Aware Systems
	1 Introduction
	2 Sample Applications
	2.1 Smart FactoryMaintenance Process
	2.2 Safe Offshore Operations

	3 Challenges in Developing Context-Aware Applications
	4 The Anatomy of a Context-Aware Application
	4.1 Architecture
	4.2 Sharing Context Information

	5 Benefits of the Layered Approach
	5.1 Smart FactoryMaintenance
	5.2 Safe Offshore Operations

	6 Conclusion
	References

	Papers
	Fencing the Lamb: A Chart Parser for ModelCC
	1 Introduction
	2 Background
	2.1 Model-Based Language Specification
	2.2 Lexical Analysis Algorithms with Ambiguity Support
	2.3 Syntactic Analysis Algorithms

	3 Fence
	3.1 Terminology
	3.2 Extended Lexical Analysis Graph Construction Phase
	3.3 Chart Parsing Phase
	3.4 Constraint Enforcement Phase

	4 Conclusions and Future Work
	References

	Cross-Platform Application Development Using AXIOM as an Agile Model-Driven Approach
	1 Introduction
	2 Approaches to Platform-Independence
	3 UML as a Basis for MDE and Agile Approaches
	4 AXIOM: DSL-Based MDE
	5 AXIOM Intent Models
	5.1 Interaction Perspective
	5.2 Domain Perspective
	5.3 Intent Models and Transformations

	6 AXIOM Transformation Process
	6.1 Structural Transformations
	6.2 Refining Transformations
	6.3 Code Generation

	7 Benefits
	8 The Prototype and Preliminary Results
	9 Related Work
	9.1 Model-Driven Engineering
	9.2 DSL-Based Development

	10 Future Work
	11 Conclusions
	References

	Rapidly Implementing EMF Applications with EMF Components
	1 Introduction
	1.1 Motivations

	2 EMFComponents
	2.1 Viewers
	2.2 Composites

	3 Customizations
	4 A DSL for Customization
	5 Related Work and Conclusions
	References

	Generic Programming in Pharo
	1 Introduction
	2 Generics in Pharo
	2.1 Requirements for Generic Parameters

	3 Reverse Generics in Pharo
	3.1 Requirements when Generalizing
	3.2 Capturing Inherited Methods

	4 Implementation
	5 Case Study: Application to the Pharo Stream Hierarchy
	6 Integration in the Programming Environment
	7 Related Work
	8 Conclusions
	References

	Peer-to-Peer Remote Service Discovery in Pervasive Computing
	1 Introduction
	1.1 Motivation

	2 Preliminaries
	2.1 UPnP
	2.2 Gnutella

	3 Related Work
	3.1 Remote Access to UPnP Devices Using the Atom Publishing Protocol
	3.2 Presence-Based Remote Service Discovery
	3.3 Transparent UPnP Interaction between UPnP Gateways
	3.4 Peer-to-Peer Caching of Classes of Services

	4 A New Distributed Architecture for Remote Service Discovery
	4.1 Changes to the Local Networks
	4.2 Remote Service Discovery
	4.3 Gnutella and UPnP Messages in the New Architecture

	5 Protocol Independence and Performance Considerations
	6 Conclusions
	References

	Model Checking Combined Fragments of Sequence Diagrams
	1 Introduction
	2 UML 2 Sequence Diagram
	2.1 Basic Sequence Diagram
	2.2 Combined Fragment
	2.3 Interaction Operator

	3 Sequence Diagram Deconstruction
	4 Verifying Sequence Diagrams via NuSMV
	4.1 NuSMV Overview
	4.2 Mapping Overview
	4.3 Basic Sequence Diagram with Asynchronous Messages
	4.4 Basic Sequence Diagram with Synchronous Messages
	4.5 Combined Fragments

	5 Tool Suite Implementation and Evaluation
	6 Related Work
	7 Conclusions
	References

	A Large-Scale Elastic Environment for Scientific Computing
	1 Introduction
	2 Approach
	2.1 Initial Prototype
	2.2 Large-Scale Elastic Computing Environments

	3 Implementation
	3.1 EPU Extensions
	3.2 AutomatedWorker Deployment
	3.3 Recontextualization Broker
	3.4 Gluster

	4 Evaluation
	4.1 Understanding System Responsiveness
	4.2 Multi-cloud and Scalable Elastic Environments
	4.3 DataMovement

	5 Extending Elastic Environments for New Workflows
	6 Related Work
	7 Future Work
	8 Conclusions
	References

	Improving Estimates by Hybriding CMMI and Requirement Engineering Maturity Models – A LEGO Application
	1 Introduction
	2 Requirement Engineering: Some Maturity and Capability Models (MCM)
	3 Experiencing LEGO to Requirement Engineering
	3.1 The LEGO Approach
	3.2 Applying LEGO to Requirement Engineering

	4 Conclusions and Next Steps
	References

	Metamodel Independence in Domain Specific Modeling Languages
	1 Introduction
	2 DSMML Semantics: Implementation Schema
	3 Use Case
	3.1 Workout Plan Domain
	3.2 WPML: A DSMML Fitting the Workout Plan Domain
	3.3 WPML: Implementation

	4 Additional DSMML for the Workout Plan Domain
	4.1 A DSL to Define Constraints on Workout Plan Models
	4.2 Implementation of the Constraint Language

	5 Related Work
	6 Conclusions
	References

	Service-Oriented Integration of Metamodels’ Behavioural Semantics
	1 Introduction
	2 Metamodels as Services
	3 Realising Metamodel Components
	3.1 Modelling Using Proxies
	3.2 Service Choreography

	4 An E-Commerce Solution
	5 Related Work
	6 Discussion and Conclusions
	References

	Fine-Grained Role- and Attribute-Based Access Control forWeb Applications
	1 Introduction
	2 Background and RelatedWork
	2.1 Role-Based Access Control with Additional Attributes
	2.2 WebDSL

	3 ΦRBAC
	3.1 Access Control Model
	3.2 Code Generation from ΦRBAC Models

	4 Case Study
	4.1 Web Application Description
	4.2 Evaluation and Findings

	5 Conclusions and Future Work
	References

	An Approach to Context Modeling in Software Development
	1 Introduction
	2 Related Work
	3 Context Modeling
	3.1 Structural Context
	3.2 Lexical Context

	4 Context Transitions
	4.1 Transition Detection
	4.2 Transition Processing

	5 Prototype
	6 Experimentation
	7 Conclusions
	References

	Linear Software Models Are Theoretical Standards of Modularity
	1 Introduction
	1.1 The Software Composition Problem
	1.2 Linear Software Models: Structors and Functionals
	1.3 Modularity Matrix: An Introductory Example

	2 Linear Software Models of Composition
	2.1 Modularity Matrices’ Linear Independence
	2.2 Well-Composed Modularity Matrices Are Square
	2.3 Reducible Modularity Matrices
	2.4 The Single Respons sibility Theorem

	3 Case Studies
	3.1 Small Systems Are Strictly Linear Reducible
	3.2 Larger Software Systems Are Bordered Linear Reducible

	4 Discussion: Theoretical Standards of Modularity
	4.1 Main Contribution: Linear Software Models
	4.2 Related Work
	4.3 Future Work
	4.4 Conclusions

	References

	Author Index

