Chapter 9
Evolution of Software Product Lines

Goetz Botterweck and Andreas Pleuss

Summary. A Software Product Line (SPL) aims to support the development of a
family of similar software products from a common set of shared assets. SPLs rep-
resent a long-term investment and have a considerable life-span. In order to real-
ize a return-on-investment, companies dealing with SPLs often plan their product
portfolios and software engineering activities strategically over many months or
years ahead. Compared to single system engineering, SPL evolution exhibits higher
complexity due to the variability and the interdependencies between products. This
chapter provides an overview on concepts and challenges in SPL evolution and sum-
marizes the state of the art. For this we first describe the general process for SPL
evolution and general modeling concepts to specify SPL evolution. On this base, we
provide an overview on the state-of-the-art in each of the main process tasks which
are migration towards SPLs, analysis of (existing) SPL evolution, planning of future
SPL evolution, and implementation of SPL evolution.

We thank Howell Jordan for comments on an early version of the text. This work was supported,
in part, by Science Foundation Ireland grant 10/CE/I1855 to Lero - the Irish Software Engineering
Research Centre (www.lero.ie).

T. Mens et al. (eds.), Evolving Software Systems, 265
DOI 10.1007/978-3-642-45398-4 9, © Springer-Verlag Berlin Heidelberg 2014

http://www.lero.ie

266 Goetz Botterweck and Andreas Pleuss

9.1 Introduction

A Software Product Line (SPL) aims to support the development of a family of
similar software products from a common set of shared assets [193, 688, 910].
By applying SPL practices, organizations are able to achieve significant improve-
ment in time-to-market, engineering and maintenance costs, portfolio size, and qual-
ity [193]. SPLs have been commercially applied in many industry domains [784]
including embedded systems, web and mobile applications.

SPLs represent a long-term investment and have a considerable life-span. More-
over, SPLs scale to a considerable size and are often embedded in larger structures,
i. e. they consist of subsystems and are part of a larger supersystem. Hence, changes
on an SPL can have a complex impact not only on the whole product family but
also on related systems. When a change is introduced, inconsistencies are unavoid-
able until the change has been propagated through the system and related systems.
Since usually multiple parties are involved and there are multiple changes, this can
easily lead to further inconsistencies. All this needs to be taken into account when
considering potential changes.

Because of the long term perspective, size, and complexity, organizations dealing
with SPLs need to address evolution in a systematic fashion. In this chapter, we give
an overview of such systematic approaches to SPL evolution. Our goal is to provide
the reader with an introduction and given an overview of the field, which allows to
identify more specialized literature that provides more details of a particular aspect.

As a background, Section 9.2 summarizes the main ideas of SPLs and Section 9.3
covers basic concepts for SPL evolution. Then, Section 9.4 gives an overview of ap-
proaches to SPL evolution. More concretely, we cover modeling of SPL evolution,
processes for SPL evolution, migration towards SPLs, as well as the analysis, plan-
ning and implementation of SPL evolution. Section 9.5 concludes the chapter with
an overview of remaining research challenges and final thoughts.

9.2 Software Product Lines

An SPL aims to support the development of a whole family of software products
through systematic reuse of shared assets [193, 688, 910]. By an asset we refer to
any artifact that is part of the software production process, such as an architecture,
a software component, a domain model, a requirements document, a formal specifi-
cation, documentation, a plan, a test case, or a process description [193].

As an example for an SPL consider online shop software: while different on-
line shops usually differ from each other — e. g. in the supported payment methods,
shipping options or article types — their underlying concepts are very common and
can be implemented from reusable assets. Hence, a company offering a spectrum of
online shop applications can use SPL techniques to achieve systematic reuse by (1)
first identifying and creating the required reusable assets and (2) deriving the indi-

9 Evolution of Software Product Lines 267

vidual products (i. e. different online shop implementations) from the assets created
in the first step in a systematic way.

Variability Implementation

5 ——————————\
=5 J \o!
[[. n =T}
PL Variabili
E_E & S - =l 6‘%9 SPL Assets
oy} Requirements Model Q
= SPL g
Architect
£ d
= r
9] Product P °. e Product
7}) —| Configura- S
= Requirements . Derivation
@ tion
(i Product
c .
ksl Engineer
© Product
§ 5 . Product
o4 Configuration
Q
<
y -
Legend |[Artefact (Process) — Data flow—»
Q y

Fig. 9.1: Software Product Line Engineering (SPLE) framework

SPL engineering (SPLE) provides concepts on how to develop SPLs. A basic
SPLE framework is shown in Figure 9.1: SPLE approaches often distinguish be-
tween domain engineering and application engineering'. Domain engineering deals
with creating (and maintaining) the whole SPL. First, requirements for the SPL are
elicited and the scope of the SPL is defined, i. e. a definition which potential prod-
ucts are to be supported. The variability between potential products is captured in a
variability model. It defines the available variants, e. g. different payment methods
and shipping options in an online shop, and the allowed combinations. To allow the
creation of products the variants identified in the variability model need to be imple-
mented by reusable SPL assets. A mapping is then specified to define which variant
from the variability model is implemented by which assets.

Figure 9.2 shows example domain engineering models from an fictitious SPL for
online shop software (e-shop). The left-hand side shows the variability model. There
are several variability modeling approaches that could all be applied here, e. g. fea-
ture models [757], decision models [755] or the orthogonal variability model [688].
In this chapter we use feature models as a basis for the discussion. Other approaches
are conceptually similar [208] and could be applied in a similar fashion.

A feature is a “distinguishable characteristic of a concept (e. g. component, sys-
tem, etc.) that is relevant to some stakeholder of the concept” [207]. The example
model shows features of an e-shop such as support for a Catalog, a Search function,
and different ArticleTypes.

! Some approaches use different terms, like core asset development and product development, but
provide essentially a similar distinction.

268 Goetz Botterweck and Andreas Pleuss

Variability Implementation

Catalog
1
i

QualityOf

o -
Shipping |,
/
! ServiceSelection
/ Carrier QualityOf |[* Shipping 1
’ Selectlon Service Cost Calcu- | g Carrier
\ ,," Selection

Search

Selection lations

Advanced
1 Search

Domain Engineering

! cata I@

Legend: |:| feature O optional ® mandatory @ or < xor

E asset ----- mapping

Fig. 9.2: Example domain engineering models: A feature model (left) and associated
reusable implementation assets (right).

A feature model specifies all features supported by the SPL and the dependencies
between them. Features are structured in a tree hierarchy. Additional constraints
express further restrictions on which features can be selected or eliminated when
specifying a concrete product. Mandatory features must always be selected if their
parent is selected while optional features are facultative depending on the choices
of the user. Features can also be grouped into or-groups (if the parent is selected at
least one child must be selected) or xor-groups (if the parent is selected exactly one
child must be selected). Selecting a child feature mandates that its parent is selected
as well.

The feature model shown in Figure 9.2 specifies that each e-shop must support
a Catalog (mandatory feature) which may include a Search function (optional) and
must include an ArticleType feature (mandatory) from which at least one child has to
be selected (or-group).

In addition, cross-tree constraints can be defined between arbitrary features in the
model like requires (selecting a features requires to select another one) or excludes
(two features mutually exclude each other). In the example, a requires constraint
defines that PhysicalGoods always requires ShippingOptions to be selected.

The features in a feature model have to be implemented by reusable assets, rep-
resented by software components on the right-hand side of Figure 9.2. Additional
mappings specify which features are implemented by which assets. In practice,
these mappings are not always one-to-one but more complex. Moreover, features
are usually mapped to different types of assets which in combination specify the
complete implementation, including the product line architecture (PLA [130]), code
fragments, test cases, and documentation.

During application engineering (see Figure 9.1), concrete products are developed
based on the assets provided by the SPL. A product is defined by a product config-

9 Evolution of Software Product Lines 269

Variability Implementation

Catalog

QualityOf Shippin,
Service Cost Calcu-
Selection lations

o
c
=
]
o
e
7
=
i
£
]
£
]
(=]

1 Advanced
] Search

Legend: «selected X eliminated

Fig. 9.3: Example product definition during application engineering: A product con-
figuration (left) and the resulting product implementation (right).

uration, which resolves the variability by selecting from the given variants while
considering the defined constraints. In the case of a feature model, this is done by
selecting or eliminating features. Based on the product configuration and the feature
mappings it is then possible to derive the resulting product (product derivation).

Figure 9.3 shows an example for one particular product configuration created
during application engineering. Here, a concrete product of the example SPL is
defined by selected and eliminated features (left-hand side of Figure 9.3). The sam-
ple product configuration defines an e-shop that supports AdvancedSearch, Physical-
Goods, and ShippingOptions with QualityOfServiceSelection while BasicSearch, Elec-
tronicGoods and CarrierSelection have been eliminated from the product. The corre-
sponding implementation for this product (right-side of Figure 9.3) is then derived
based on the mappings defined during domain engineering. For instance, the com-
ponent implementing AdvancedSearch is included into the product implementation
while the component Search, which implements BasicSearch, is eliminated.

Often, SPL concepts are combined with techniques from model-driven software
development [795]. In a model-driven SPL, the product derivation is realized by
model transformations that, ideally, generate the complete product together with all
documentation, test cases, etc., in a fully automated way [349, 901]. However, a
more extensive use of modeling frameworks, as required for automation, can also
lead to a higher maintenance effort [238]. For instance, changes in a metamodel
might require all existing model instances to be migrated (co-evolution, see Chap-
ter 2).

270 Goetz Botterweck and Andreas Pleuss

9.3 Characteristics of SPL Evolution

SPL evolution faces several challenges caused by the characteristics of SPLs:

o Long life-span. On the one hand, an SPL is a long-term investment that pays off
the more, the more products are derived from the SPL. On the other hand, an SPL.
must evolve to reflect new and changed requirements for its products. Hence, an
SPL will often evolve to a greater extent and over a longer period of time than
the single products.

e Large size and complexity. As an SPL represents a whole family of products, it
is of larger size and complexity than its individual products. Usually, multiple
teams are involved in its creation and maintenance. Hence, knowledge can be
more distributed and evolution of different the parts of an SPL can happen at
different speeds.

e More interdependencies. Due to the systematic reuse in an SPL, there are more
interdependencies between software assets. For instance, changes on the SPL
level (e.g. a bug fix in a reusable asset) can affect many individual products
created based on the SPL, and new requirements on individual product level can
require changes with the whole SPL (e. g. substituting a reusable asset).

= = SPLs
Requirements L]
c
Kel Variability LI
© . L
% | Implementation L]
Q e
o .
a T
gc:b o = i Products
o Requirements
o s
Variability Legend
Implementation Derived
Common Variable Product-
specific

Fig. 9.4: SPL levels and assets subject to evolution.

The additional complexity in an SPL is partly caused by the different abstrac-
tion layers that have to be considered together (see Figure 9.4). In an SPL, one has
to distinguish between the SPL (upper part in Figure 9.4) and its products (lower
part). In addition, there can also be multiple SPLs to manage complex product
portfolios [753], for instance, (i) to modularize development of very large systems
into multiple SPLs with a shared architecture (program of product lines [230]),
(ii) to handle very large variability by specifying main variability decisions on a
top-level SPL while lower level SPLs specialize this further (hierarchical product

9 Evolution of Software Product Lines 271

lines [130]), or (iii) to support reuse across multiple domains by multiple SPLs that
share some assets (product populations [873]). Such very large systems are some-
times developed not only by the organization’s internal developers but by a whole
developer community, including external developers and third-party contributors,
leading to so-called software ecosystems (see Chapter 10).

SPLs and products, as any other software, can be defined by assets on different
levels of abstraction, from requirements to the final implementation. As indicated in
Figure 9.4, different abstraction levels need to be considered both in the SPL and its
products: on SPL level there are the requirements and implementation for the whole
SPL. In addition, variability between the products is defined. On product level there
are the product requirements that influence the product-specific variability resolu-
tion (i. e. the product configuration) and the corresponding implementation.

To analyze the impact of evolutionary changes, the assets in an SPL can be further
classified into three categories:

e Common assets are defined on the SPL level. They are part of all products and are
hence directly derived from the SPL (derived assets are represented by shaded
areas in Figure 9.4). For instance, in the example from Figure 9.2, the feature
Catalog is defined as mandatory child feature of each e-shop. Hence, the feature
Catalog, the associated requirements, and the corresponding asset Catalog are by
definition part of every product.

e Variable assets are defined on the SPL level as well. They are part of some prod-
ucts depending on each product’s configuration. Hence, on product level, there
must be a variability decision about each variable asset (e. g. selecting or elimi-
nating a feature) which is driven by the requirements for the particular product.
The assets within the product’s implementation are then derived according to
this decision (i.e. including or excluding variable assets into the product). For
instance, the Search feature is optional in the e-shop example, so it has to be de-
cided on product level (based on the product’s requirements) whether to include
it or not.

e Product-specific assets are used to add functionality to individual products, e. g.
some customer-specific functionality not supported by the reusable assets in the
SPL. Hence, product-specific assets and their corresponding requirements reside
on product level only and there is no variability configuration for them. An exam-
ple in the e-shop might be a customized search function optimized for a specific
article type. Usage of product-specific assets should ideally be minimized within
an SPL approach as it diminishes reuse and increases maintenance effort. How-
ever, depending on the market and the business model it is not always possible to
reject product-specific requirements.

Considering Figure 9.4, evolution can occur on three different levels (see [753,
809]). On the level of the ser of SPLs, new SPLs can be added or deprecated ones
can be deleted. In addition, SPLs can be merged, for instance, due to an acquisition
or if SPLs become similar over time [753]. SPLs can also be split, e. g. when parts
of the SPL are likely to evolve in a different direction in the future [809].

272 Goetz Botterweck and Andreas Pleuss

On the level of the set of products, new products can be added (by product
derivation) and old deprecated ones can be deleted. Basically, adding new products
should not require any changes to the SPL or other products. However in practice,
as pointed out in [407], new feature combinations in a product configuration can
sometimes lead to unforeseen effects in the implementation (e. g. feature interac-
tions [133]) which then require implementation changes.

On the level of single assets, assets can be added, deleted, or modified. Changes
have to be propagated towards lower levels of abstraction (e. g. from requirements
to implementation). Changes on common assets are performed on the SPL level and
affect all derived products. Changes on variable assets that are performed on the SPL
level affect all products where the respective variants are selected. On the product
level, variable assets are added or removed by changing the product configuration.
Changes on product-specific assets affect only individual products.

modify modify - product-local

commonality C\ variability ‘/’ ¥ change ¢
S ..1“..

make > Product-

make

Commonality | ariable Variability specific ST
‘make | make
common generic
Legend —— impact on all products — — - impact on multiple products - impact on individual products

Fig. 9.5: Types of changes on assets (based on [753]).

A specific type of change in SPLs is “moving” assets between the categories
common, variable, and product-specific. Figure 9.5 shows the different types of
changes and their impact (based on [753]). For instance, common functionality can
be made variable if it should be excluded from some products. Usually this requires
changing the implementation (to make it variable) which then affects all products.
Making a variable asset common influences at least those products that did not con-
tain the asset before. Making a variable asset specific or a product-specific asset
generic influences only the specific product.

Of course, changes on SPL level take only effect on an existing product if the
product is re-derived, e. g. to release a new version of the product that includes the
changes made on SPL level. It depends on the company strategy and the impor-
tance of a change (e. g. important bug-fixes) if and when changes on SPL level are
propagated to existing products.

To summarize this section, we can say that evolving an SPL can be particularly
complex as one has to consider (1) both the SPL and its products and (2) the vari-
ability of the assets.

9 Evolution of Software Product Lines 273

9.4 Approaches to SPL Evolution

In this section we will give an overview of the state-of-the-art in SPL evolution. To
give the reader some orientation, Figure 9.6 shows a graphical summary of the areas
that we will cover.

Legend

Serz] Artifact _ Data

concepts flow
(Concepts, Artifacts, and
Processes related to) Section in this
SPL Engineering chapter

—~. (Concepts, Artifacts, and
) Processes related to)
Software Evolution

Processes for
SPL Evolution

Modeling SPL
Evolution

Business Goals and
External Triggers for —

Evolution
- o6 |
() Analysis >) \ Evolution ‘Im/plemen\
[Analysis —| Planning |} > c)
Results — Plan \tatlon/

\\W/
o

| Migration |—» SPL

_
| i ﬁ\

Domain
(%)
o
-

§2 I
Product g Product
g.
L T
Y vl
Experiences
~ and

Feedback

Fig. 9.6: Overview of activities and aspects in the evolution of SPLs.

First, we will address general concepts, i.e. process models for SPL evolution
(Section 9.4.1) and modeling techniques for SPL evolution (Section 9.4.2). We will
then roughly follow a process of evolution, as follows: An SPL is often initiated
through the migration of existing products into an SPL (Section 9.4.3). A second
step in initiating SPL evolution is the analysis of past evolution (Section 9.4.4),
which leads to an overview of which changes happened in previous evolution steps.
Subsequently, SPL evolution is performed by iterations of planning future evolution
(Section 9.4.5), and implementing it (Section 9.4.6). In each iteration, the evolution
plan is updated and the change relative to the earlier version implemented to reach

274 Goetz Botterweck and Andreas Pleuss

the next evolution step of the SPL. Experiences and feedback are then used as input
to the planning of the next iteration.

9.4.1 Process Models for SPL Evolution

In the context of SPL evolution, the literature provides various suggestions for pro-
cesses and methods. These range from evolution-oriented extensions of general
SPLE frameworks [85] to methods that address a particular aspect of SPL evolu-
tion, e. g. the mining of legacy assets [655].

9.4.1.1 Process framework for SPL evolution

We will now introduce a process framework for SPL evolution, which is based on
the generic framework for SPLE (Figure 9.1) introduced earlier in Section 9.2. We
extend and refine that to cover the specific aspects of SPL evolution (see Figure 9.7).

Just like in the basic SPLE framework, we vertically distinguish activities for
the creation of the product (domain engineering) and the derivation of products
(application engineering). Horizontally, we distinguish various types of artifacts,
for instance, requirements, features (as a common type of variability specification),
and implementation. On a higher level, i.e. method engineering, we deal with the
set-up and configuration of a process and organizational structures (the method) in
the other two layers.

To handle evolution, this framework includes activities taking care of adaptation
and change. This begins with the initial setup through method configuration @ ac-
cording to the particular context. Here we have to take into account specific method
requirements given by the context, which influence the process structures on do-
main engineering and application engineering level. For instance, in domains that
deal with co-design by various disciplines (e. g. mechanics, electronics, software)
we might have to execute and synchronize multiple parallel design activities. Sim-
ilarly, in domains with regulated software we might have to include special review
activities into the process. These variations are not shown in Figure 9.7, but give
examples of why an adaptation of the process might be necessary.

Once this setup has been completed, the activities of domain engineering and ap-
plication engineering are performed. As their main objectives these activities aim to
create the SPL (in domain engineering) and derive products from it (in application
engineering). However, as side results they also initiate change and evolution: The
activities of product configuration and product derivation yield information on mis-
matches and suggested changes, e. g. when the current SPL is not able to cover all
product-specific requirements. In some cases the engineers might decide to imple-
ment product-specific assets to overcome these gaps between the current capabilities
of the SPL and product-specific requirements.

9 Evolution of Software Product Lines 275

Business Goals
and External
Triggers for
Evolution
2 1
Method g Method Method
- a > .
Evolution T=° Requirements Configuration
=
&

Process and nisational Struc

——{ SPLEvolution

Promotion to
SPL Assets

SPLEvolution | |
Plan

Product
Evolution

Product
Evolution {—
Plan

Product Method
Usage and Usage and
Evaluation Evaluation
.

Mismatches Experiences EpErEES
and Suggested with Product / N
Changes SPL with Method

J J J

Fig. 9.7: Process framework for SPL evolution.

276 Goetz Botterweck and Andreas Pleuss

Eventually, application engineering yields product implementations. Then, prod-
uct usage and evaluation @ results in experiences with the product and the SPL
respectively. These experiences combined with mismatches and suggested changes
provide input to product evolution ® as well as SPL evolution @. The latter often
includes the promotion of product-specific assets to SPL assets ©. The execution
of domain engineering and application engineering, i. e. method usage and evalua-
tion @ yields experiences with the method and can trigger method evolution @, e. g.
adaptation of the process and organizational structure. For instance, it might be de-
cided that to improve product quality additional testing activities will be introduced
on application engineering level.

9.4.1.2 Evolution strategies

The process framework in Figure 9.7 shows multiple ways how SPLs evolve: evo-
lution can take place on different levels and be caused by different triggers.

Concerning the level of evolution, there is SPL Evolution (@ in Figure 9.7) and
product evolution ©. A specific case is when product-specific assets are promoted to
SPL level ®. (Note that this also complies with the discussion in Section 9.3 where
making a product-specific asset generic corresponds to promotion to SPL level.)

Concerning triggers for evolution, there are business goals and external trig-
gers M for evolution, mismatches and suggested changes W resulting from product
derivation, and experiences with the product/SPL 8 (leaving aside method evolution
here).

Deelstra et al. [230] and Schmid et al. [754] describe several SPL evolution
strategies that commonly occur in practice. They can easily be related to our process
framework by classifying them according to the level of evolution and the triggers.
Figure 9.8 shows a taxonomy of evolution strategies where these strategies (or sit-
uations) are classified according to its trigger and the level of evolution on which it
takes place. We describe each situation in the following.

Trigger (see Fig. 7) Strategy / Situation Level of Evolution
Business goals and external [Proactive evolution

triggers for evolution SPL Evolution

Mismatches and
suggested changes

Experiences with product / Product Evolution

Legend - triggered by —— level of

—&

Fig. 9.8: Categorization of SPL evolution strategies with respect to trigger and level
of evolution (from Figure 9.7).

9 Evolution of Software Product Lines 277

Proactive evolution refers to proactively planning future requirements and adding
them on the SPL level. This is a pure domain engineering activity where evolution
planning is based on business goals and external triggers for evolution (such as
market changes).

There are three common ways how to deal with mismatches and suggested
changes that arise during product derivation:

Reactive evolution refers to integrating new requirements that arise during prod-
uct derivation directly into the SPL, e. g. as variable assets. This means that reactive
evolution is performed on SPL level. The advantages are the immediate possibility
for reuse in future products and the avoidance of product-specific implementations
or multiple branches. Highly automated approaches, like model-driven SPLs, of-
ten aim for this strategy to avoid product-specific implementations so that complete
products can be derived automatically from the SPL. The disadvantages are required
frequent changes on SPL level and the potential need to co-evolve already existing
products. Also, creating product-specific functionality as a reusable asset can result
in extra effort.

In the branch-and-unite approach, product-specific requirements are initially
handled on product level, e. g. by creating a new product-specific branch. Later on,
the product-specific branches can then be reunified with the SPL after releasing the
product (promotion to SPL assets). In this way, the frequency of changes to the
overall SPL can be reduced and emphasis can be put on the concrete product first.
On the other hand the merge can become complex. A related concept is the grow-
and-prune model which states that in large systems quick reaction to changes often
requires copying and specialization (grow) and later on needs to be cleaned up by
merging and refactoring (prune) [284].

The bulk situation occurs when an organization ends up with too many branches
by evolving on product level only. This can lead to quality and maintenance prob-
lems and major effort is required to reintegrate the branches into the SPL.

Beside the strategies above that mainly deal with changing requirements, there
are also other maintenance activities caused by experiences with the product and
the SPL, like refactorings and correction of bugs that occur over time. The level of
evolution then depends on whether the assets to be changed reside on SPL level or
are product-specific.

9.4.1.3 Other process models

All SPLE frameworks described in the literature (e. g. [193, 688]) cover the main
SPLE activities (process and organizational structure in the center of Figure 9.7).
Some approaches extend this to address evolution on various levels (activities
around process and organizational structure).

For instance, Bayer et al. [85] present PuLSE, a generic framework for SPLE,
including the PuLSE-EM module, which covers evolution and maintenance. Based
on information provided as a result of other PuLSE modules, PuLSE-EM accumu-
lates knowledge and history information (e. g. a product configuration history and

278 Goetz Botterweck and Andreas Pleuss

PLA history) and restarts other modules (for scoping, domain engineering, and ap-
plication engineering) with adaptations.

Similarly, the ConIPF method suggested by Hotz et al. [407] considers “mis-
matches” arising during product configuration and realization on the application
engineering level and feeds them back into domain engineering where they are as-
sessed and required changes are identified. These required changes are processed by
an “evolution and development” activity, which leads to evolved and new assets as
well as updates in configuration models.

There are several other SPLE methods that describe process structures for SPL
evolution, e. g. [9, 176, 339, 809]. Further approaches which are more focused on
the migration of existing groups of products towards SPLE are discussed later in
Section 9.4.3.

9.4.2 Modeling Evolution and Change

A prerequisite to handle evolution in a systematic way is the ability to explicitly
specify evolutionary changes. This is required during analysis of the evolution his-
tory of an SPL (to capture and specify observed changes), during planning of future
evolution (to specify potential future changes and reason about them), and during
implementation of evolution (to specify the changes to be realized).

On a lower abstraction level, like source code files, changes can be handled with
the same tools as for single product development, like source code versioning sys-
tems. However, the higher the abstraction level (e. g. to view the evolution of an SPL
as a whole), the more SPL specifics, like variability, need to be taken into account.

In earlier work in [134, 135, 686] we suggested feature models as a suitable
means of abstraction to describe the overall evolution of an SPL, as features repre-
sent an SPL in a way that is meaningful to different stakeholders. Hence, evolution
of an SPL is represented as a sequence of feature models over time. We will now
first introduce an example and then discuss concepts for modeling evolution and
change on this base.

Figure 9.9 shows a small example from the e-shop domain. It shows the four ver-
sions of the SPL’s feature model at four different points in time, including historic
evolution (2012) and planned future evolution steps (2014 and 2015). In this exam-
ple, the version in 2012 supports only a Catalog and ShippingOptions with optional
support for CarrierSelection. The version in 2013 (today) has been extended by sup-
port for Search which is available either as BasicSearch or, with extra costs, as an
AdvancedSearch that supports a more intelligent search algorithm. The planned ver-
sion for 2014 will distinguish between ElectronicGoods (which can be either shipped
or downloaded directly) and PhysicalGoods that need to be shipped. Hence, Shipping-
Options has become an optional feature and a cross-tree constraint has been added.
In this version, AdvancedSearch will not be supported as it requires additional time
to integrate it with the changes on Catalog. For 2015 it is planned to support an

9 Evolution of Software Product Lines 279

Catalog

Shipping
Carrier

Basic Advanced
Search Search

Shipping
Options
Carrier
Selection

EShop

Shipping Shipping

| Catalog | | Options et Options
/ \‘ l 3 FT
| Q 4 \
Search Article Carrier ‘] A Article TS \l
Type Selection | Type Selection | |
g |
‘ <<requires>>/

<<requires>;/

Physical | _ .7~ Basic Advanced
Goods Search Search

Electronic
Goods

Electronic

Basic
Goods

Search

Physical | _ -~ 4
Goods

Services

Fig. 9.9: Evolution of an SPL as a sequence of feature models

additional article type Services and to support AdvancedSearch again for all article
types.

The remainder of this section describes how to model the changes between differ-
ent versions of an artifact using the example of feature models above. Analogous to
other areas like metamodel evolution (Chapter 2), there are two basic ways to spec-
ify such changes: 1) by modeling the differences between them (Section 9.4.2.1)
or 2) by describing the performed modifications in terms of change operators (Sec-
tion 9.4.2.2). Finally, Section 9.4.2.3 provides a more detailed example using a com-
bined approach.

9.4.2.1 Difference Models

Approaches which are specifying the differences between versions work similar to
approaches for program differencing [470] or common source code versioning sys-
tems that determine differences between versions of text-based files based on heuris-
tics on the level of lines or characters. On the level of models, a difference model can

280 Goetz Botterweck and Andreas Pleuss

be used that contains the changes between two versions in terms of added, removed,
and modified elements.

Figure 9.10 shows an example for the evolution step from 2013 to 2014 in our
e-shop example: the xor-group and its child feature AdvancedSearch has been re-
moved. The features ArticleType, ElectronicGoods, and PhysicalGoods and their rela-
tionships and constraints have been added. In addition, ShippingOptions has been
modified to become an optional feature. Context elements (represented by light
color in Figure 9.10) are used to specify the locations in the model, e.g. where

to add new elements.
[]
. Shipping
Catalog pstitare

N

“ Legend:
|
I
[}

n Added Element
=

Removed Element

Search

Advance Electroni
Search Goods

Fig. 9.10: Difference model for the evolution step from 2013 to 2014.

s u Modified Element

l:l Context Element

Several approaches have applied such concepts in context of SPLs: Acher et
al. [5] provide a formal approach to identify the syntactic and the semantic differ-
ence between two feature models. Schifer et al. [749] define a concept of difference
models (called delta models) and apply it e. g. to specify multiple products in terms
of differences to a core product. Hendrickson et al. [390] use difference models
(called change sets) and relationships between them to specify the architecture of
different products by combinations of change sets.

At this point, an important observation can be made: Specifying changes is not
only relevant in context of evolution but also in context of variability, e. g. to specify
the differences between multiple product variants in an SPL. In context of SPLE the
latter is called variability in space while evolution can be considered as variability
in time. Hence, it is not only possible to apply change modeling concepts to describe
variability in an SPL (like Schéfer et al. and Hendrickson et al. mentioned above)
but also to apply variability modeling concepts to specify evolution. An approach
that makes use of this idea is EvoPL described later in Section 9.4.2.3.

9.4.2.2 Change Operators

The second basic concept to specify changes are change operators. A change op-
erator describes an operation performed on a model to achieve a change. There are
three atomic change operators add, delete, and modify that have the same semantics

9 Evolution of Software Product Lines 281

as the elements in difference models. However, the main difference is the possibil-
ity of more complex operators that allow to express richer semantics about a change
like “split feature f into fi; and f>”.

Semantically rich operators are usually defined for a specific modeling concept
(e. g. feature models or metamodels, see Chapter 2) and can also be optimized for a
specific purpose. For instance, in context of SPL refactoring Alves et al. [25] define
a set of change operators on feature models that do not change the feature model’s
semantics (e. g. “convert or to optional” or “push up node’). Seidl et al. [761] define
change operators in context of implementing SPL evolution which are discussed
later in Section 9.4.6.

9.4.2.3 Combined Approach

An approach that combines concepts of difference models and change operators to
model long-term evolution of an SPL is EvoPL [686]. It also leverages the idea of
considering evolution as variability in time introduced above.

EvoPL focuses on feature models as main artifact to manage SPL evolution. The
approach is intended to be used for both, analyzing past evolution (see Section 9.4.4)
and planning future evolution (see Section 9.4.5).

In EvoPL, each feature model version is composed of model fragments. Fig-
ure 9.11a shows the fragments for the evolution in Figure 9.9. A fragment clusters
related feature model elements that are added or removed only together during the
same evolution step. The purpose of fragments is to raise the level of abstraction
by representing multiple related elements. Each fragment has a unique name and
is stored together with a context element (the parent feature) specifying its location
within the overall feature model. In this way, each feature model at a certain point
in time can be described as a composition of fragments.

Changes within fragments, e. g. changing a feature from mandatory to optional
or adding a cross-tree constraint, are specified by change operators (called evoOper-
ators, see [686] for details) associated with the fragments. For instance, Shipping-
Options are changed from mandatory to optional in 2014 which is defined by a
change operator <ShippingOptions optional> that is applied to the versions for 2014
and 2015.

The overall evolution is then specified using the concept of “variability in time”:
The fragments and evoOperators themselves are stored in a specific kind of fea-
ture model (called EvoFM) that specifies their hierarchy and other dependencies
between them. Each evolution step can then be represented by a “configuration” of
the EvoFM, i.e. a selection of fragments and evoOperators that together make up
a feature model. The evolution of a feature model can, hence, be represented by a
sequence of EvoFM configurations.

We visualize this by a representation that we call evolution plan (Figure 9.11b).
The horizontal dimension represents the time line; each column represents an evo-
lution step. The vertical dimension represents the EvoFM; each row represents an
EvoFM element, i.e. a fragment or an evoOperator (the latter denoted in angle

282 Goetz Botterweck and Andreas Pleuss

)
.
.
. @
.
‘\
e
N
0
Shipping
Options

O
Carrier
Selection

Advanced Electronic

] = S
1 Physical | _ -~ ¢
: ! Search Goods Goods . g
............... "".o--- e s sese-
Advanced 4| Services |¢ Article Type
Search @\ g b

(a) Clustering into fragments

Time
Fragment 2012 2013 2014 ‘ 2015
EShop
Search
Advanced Search
Article Type
Services
<ShippingOptions optional>

(b) Evolution plan

Fig. 9.11: Fragments and resulting evolution Plan

brackets). Each cell in the plan represents a configuration decision, i.e. whether
the fragment or evoOperator is selected (i. e. applied) in that version or not.

For instance, the evolution plan in Figure 9.11b represents the evolution steps
from Figure 9.9: In 2012, only the fragment EShop is selected (applied). In 2013, the
fragments EShop, Search and AdvancedSearch are applied. In 2014, AdvancedSearch
is no longer applied while ArticleType and the change operator <ShippingOptions
optional> are applied. In 2015 all fragments and change operators are applied.

Figure 9.12 shows the overall workflow with EvoPL: A model transformation
enables to automatically extract an evolution plan from a given sequence of fea-
ture models. The evolution plan is then used to plan future evolution by adding
new evoConfigurations (and, if necessary, new fragments and evoOperators). Please
note that fragments are never modified (as evoOperators are used instead) except
for splitting fragments which can become necessary if in a future evolution step a
subset of a fragment should be removed. Once planning of future versions has been
finished, another model transformation supports automated composition of the re-
sulting feature models. Due to the incremental nature of the model transformations
it is possible at any time to update the evolution plan to include changes on feature
model level and, in turn, to re-generate feature models after the evolution plan has
been modified.

9 Evolution of Software Product Lines 283

Legend: ﬁ
manual

1,234 12345
eI Plan & . ﬂ, automated
Refine d | =

Extract/
Update Generate

FM 1 FM 2 FM 3 FM 4 FM 5

NS

0o

Fig. 9.12: Workflow and transformations on feature model level with EvoPL

An advantage of the evolution plan representation is its degree of abstraction.
As demonstrated in [686], abstraction into fragments can significantly reduce com-
plexity when dealing with large evolving feature models while the evolution plan
provides a comprehensive overview of the different versions. Another advantage of
the approach is its support for order-independent planning. Changes are not spec-
ified relative to the previous version (or a common baseline) but by selecting or
eliminating fragments and change operators. This enables incremental planning of
multiple versions in parallel or specifying a later version before its predecessors
have been fully defined.

9.4.3 Migration to SPLE

In practice, the introduction of SPLE often arises when after some success in a
market segment a company finds itself with a family of products. Hence, when
discussing the adoption of SPLE, besides starting SPLE from scratch we have to
consider approaches which evolve SPLs from legacy products and focus on migra-
tion and mining of existing assets. We can distinguish four types of SPLE adoption
[228, 754]:

e [ndependent - A new SPL is created independently of any existing products.

e Leveraged - A new SPL is set up based on an existing one.

e Project-integrating - With an existing product base as background, a set of
projects (developing new products) is selected to contribute to an SPL.

e Reengineering - From existing legacy products, assets are extracted and reengi-
neered to contribute to a new SPL.

In addition, we can distinguish between revolutionary (“big bang”) and evo-
lutionary (incremental) models [130, 754]. This is somewhat orthogonal to the

284 Goetz Botterweck and Andreas Pleuss

four adoption types, however, adoption types that take existing systems into ac-
count (project-integrating, reengineering) are most amenable for an evolutionary
approach.

In the literature there are numerous approaches to SPL migration, e. g. [86, 140,
228,284,472, 778]. In the remainder of this section we will describe various aspects
and activities of such migration approaches, i.e. initiation of a migration project
(Section 9.4.3.1), scoping (Section 9.4.3.1), variability analysis (Section 9.4.3.3),
refactoring (Section 9.4.3.4), extraction of assets (Section 9.4.3.5), and assessment
(Section 9.4.3.6). While conceptually such aspects can be interpreted as a logical
sequence of activities, in practice they are often performed in an iterative fashion
(see, e. g. [86]). For instance, an initial analysis of variability among existing prod-
ucts might lead to a preliminary selection, which is followed by a more detailed
variability analysis.

9.4.3.1 Initiation of the migration project

At the beginning of a migration project the relevant base information needs to be
collected. This might include, e. g. information on product capabilities, evolution so
far, existing software architectures, documents about scope and existing assets, and
preliminary estimates of required changes (interface vs. deeper changes) [93, 785].
Relevant information can be extracted from artifacts or gathered by interviewing
product experts, maintainers, and users [785].

Then, based on a first assessment an approach for the mining of assets can be
drafted. It needs to be decided on which abstraction levels (e. g. features, compo-
nents) the mining will happen and whether further processing (e. g. refactoring) is
necessary.

A migration project must also consider business and organizational aspects. First,
the advantages and potential drawbacks of the various options (current situation
vs. introducing SPLE) need to be considered, e. g. with an estimation of costs and
productivity benefits. Second, various organizational structures are possible. For in-
stance, SPLE can be performed in product teams or in a separate dedicated SPL
team [112].

9.4.3.2 Scoping and assessment of migration options

Similarly to general SPLE approaches [444, 785], in SPL migration the scope of
the overall effort needs to be defined, i. e. deciding about which features to include
in the SPL and which are out of scope. Since this might require additional input
(e. g. a prioritization of features) the scoping might have to be performed after or in
combination with other activities (e. g. after an initial variability analysis).

In scoping we can take a problem-oriented perspective (“What does the customer
value most?”), but we also need to consider solution-oriented aspects (“What can we
implement most easily?”) [778].

9 Evolution of Software Product Lines 285

9.4.3.3 Variability analysis

The migration of existing products into an SPL often starts with an analysis of their
commonalities and variabilities. This can be performed on various abstraction lev-
els, e. g. (1) on the level of requirements, customer visible functionality and features
or (2) on the level of implementation artifacts.

On higher abstraction levels we can apply techniques for commonality and vari-
ability analysis [688], e. g. an application-requirements matrix (table of products vs.
requirements), priority-based techniques (requirements are rated by different stake-
holders) or checklist-based analysis (collecting and analyzing requirements with the
help of various checklists).

On more concrete levels, we can analyze implementation artifacts to extract vari-
ability models. When reverse engineering higher level variability models, we might
have to apply heuristics and involve experts to (re-) construct their structure [773]
(cf. Section 9.4.4.2).

Just like in general SPLE approaches, in a migration project we have to anticipate
future changes. This includes product and feature planning, the anticipation of future
features [778] and the analysis of consequences for the PLA and implementation
assets.

9.4.3.4 Refactoring

Before the actual extraction of SPL assets is performed, it is often necessary to
refactor existing artifacts [472], e. g. to remove accidental differences and increase
commonalities. This can occur on various abstraction levels, e. g. when refactoring
code [532, 857] or when restructuring the software architectures of existing products
to prepare them for merging them into a shared PLA [228].

We have to distinguish such preparative and transformative refactoring (prepar-
ing assets for a migration, transforming them into SPL assets) from refactoring of
the SPL after it has been established, e. g. on the conceptual and feature-model level
[25, 128] or of PLAs [204].

Related techniques are feature-oriented restructurings, which are not predomi-
nantly aimed fowards an SPL, but rather use feature-orientation as guiding concepts,
e. g. with the help of regression tests [583] or when aiming to untangle and separate
concerns on the implementation level [624].

9.4.3.5 Extraction of assets

One of the key artifacts when establishing SPL practices is a PLA. While in other
scenarios it might be appropriate to design a PLA from scratch, we have to take
a different approach when migrating existing products into an SPL. Here, tech-
niques for architecture and component recovery can be applied, e. g. Option Anal-
ysis for Reengineering (OAR) [94] and Mining Architectures for Product Lines

286 Goetz Botterweck and Andreas Pleuss

(MAP) [655, 796]. In many cases, the approach will be to extract product-specific ar-
chitectures [228] and then analyze and merge them, e. g. using techniques for model
merging [174, 735].

In that course, mechanisms for variability realization [810] have to be selected
and, based on earlier variability analysis, variation points have to be chosen.

Alongside the extraction of a PLA, the corresponding core asset implementations
need to be extracted and refined [93, 94]. Here, we have to address the mapping of
variability models onto implementation artifacts (feature location) [255], the iden-
tification of similar implementation artifacts (clone detection) [475, 587] and the
analysis of feature implementations with respect to dependencies as well as inter-
actions (dependency analysis, feature interaction) [42]. Dependencies that are de-
tected on the implementation level need to be propagated up to higher abstraction
levels (PLA, variability/feature model).

During a migration to SPLE, often SPLE activities and reverse engineering activ-
ities are performed side by side. For instance, Bayer et al. [86] suggest to integrate
the reverse engineering of existing assets and the creation of SPL models via a
“blackboard”, i. e. a shared workspace allowing reengineering and SPL activities to
exchange and incrementally enrich information.

9.4.3.6 Assessment

After the SPL infrastructure has been established, the created artifacts, in particular
the PLA, should be evaluated [130]. Here, architecture evaluation methods [257]
and analysis of selected product instances [130] can be applied. Of particular in-
terest in the context of this chapter is the assessment of the PLA with respect to
is evolvability/maintainability. Since the context (requirements, business goals) and
the PLA will change over time, reevaluations should be performed [785].

The result of such a migration project provides input for subsequent activities.
For instance, migration can provide a first draft of an evolution plan for the near
future, based on features that do not exist yet but are anticipated.

9.4.4 Analyzing Evolution

This section discusses the analysis of the current status and the evolution history
of an SPL as a basis for planning (Section 9.4.5) or to predict future evolution.
We first briefly discuss repository mining techniques, then analysis approaches on
the feature and architectural levels, and finally prediction of maintenance effort and
evolution via simulation.

9 Evolution of Software Product Lines 287

9.4.4.1 Mining software repositories

Approaches for Mining of Software Repositories (MSR) [216, 451] (cf. Chapter 5)
process various data sources, e. g. source code repositories, bug databases, and mail-
ing lists. Often different input sources are combined to gain better results. Ap-
proaches aim to uncover relationships and trends, e. g. using data mining techniques.
Examples of extracted information are the growth of a system, change relationships
between assets, or the reuse degree of components. Kagdi et al. [451] categorize
MSR approaches into two types. Some approaches answer market-based questions,
i.e. “If A occurs then what else occurs on a regular basis?” (resulting, e. g. in as-
sociation rules). Other approaches answer prevalence questions, €. g. the number of
functions reused or if a particular function was changed. Orthogonal to that, Kagdi
et al. distinguish between approaches measuring changes to properties, i.e. cal-
culating metrics for each version and then comparing over different versions, and
approaches focusing on changes to artifacts. There is a large spectrum across levels
of abstraction (e. g. features, architecture, source code) and granularity addressed
by such approaches. SPL-specific issues, like variability or distinction between SPL
and products, have received little attention to date.

9.4.4.2 Analyzing features

When analyzing the evolution of an SPL, feature-oriented analyses are of obvious
interest. Various work on feature location [255] aims to establish traceability be-
tween features and assets that implement them (see Section 9.4.3.5). In an existing
(model-driven) SPL, such traceability might already exist explicitly. However, in
less structured SPLs, e. g. with many product-specific implementation parts, feature
location can be essential for refactoring and migration (see Section 9.4.3).

Other approaches aim to reverse engineer the feature model, starting, e.g., from
a set of unstructured features [773], the architecture [4], or even informal product
descriptions [219]. One can expect that an automatically extracted feature model
differs from one that is manually crafted by a human software architect; however
there is not sufficient empirical data on this yet. To close this gap, Hsi and Pots [409]
suggest to extract features from an application’s user interface and to link them to
code assets, e. g. via the operations called by user interface actions.

9.4.4.3 Architecture assessment

Most existing SPL-specific approaches for analysis of evolution address the assess-
ment of the PLA. This can be useful both during creation of an SPL (see Sec-
tion 9.4.3.6) as well as on existing SPLs. Maccari [549] applies the Architecture
Trade-off Analysis Method (ATAM) [257] to assess the suitability of the PLA for
future requirements.

288 Goetz Botterweck and Andreas Pleuss

Johnsson and Bosch [445] aim to quantify SPL aging. They measure average
costs per maintenance task as well as the relative distribution of effort among adding
components, adding functionality to components, and changes to existing function-
ality. They argue this can be used to detect architecture erosion and the related in-
crease in maintenance effort. This can in turn be used to decide on the reorganization
or retirement of SPLs.

9.4.4.4 Prediction based on simulation

Heider et al. [381] propose to simulate SPL evolution to predict the long-term de-
velopment of maintenance effort and model complexity. The analysis is performed
on a problem space model (i. e. decision or feature model), a solution space model,
and dependencies within and between them. The simulation modifies the models
with random operations based on probabilities defined in profiles. For instance, the
“evolution profile” describes the type of evolution to be performed, like “contin-
uous evolution”, “refactoring”, or “product placement” (i.e. changing mostly the
problem space while keeping the solution space mostly unchanged). The evolution
profile can be created based on existing evolution history.

9.4.5 Planning Evolution

This section deals with planning of evolution, i. e. how to decide about changes to
the SPL to be implemented in the upcoming versions.

Usually important planning decisions on the evolution of complex software sys-
tems require careful consideration. Ad-hoc planning would bear the risk of deficien-
cies like insufficient anticipation of future requirements, lack of resources to realize
new requirements, or loss of knowledge about previous decisions [736]. In single
system engineering there are several research strands — like rationale management
and release planning — that aim to reduce this risk by supporting systematic planning
and decision-making. These concepts can be applied to SPLE.

An important prerequisite for deciding on future changes is to gain knowledge on
the impact of a potential change. However, for an SPL this can be much more com-
plex than in single system engineering due to the complexity of interdependencies
between artifacts (see Section 9.3).

In this section we first discuss change impact analysis in SPLs and then present
approach for decision-making in SPL evolution.

9 Evolution of Software Product Lines 289

9.4.5.1 Change Impact Analysis

When deciding about a change we have to predict the required effort and potential
pitfalls for its realization. This is supported by approaches for impact analysis [124,
173].

An important aspect of impact analysis is traceability, i. e. storing links between
all logically related assets in the software development process to understand what
other assets might be affected if an asset changes. An example are traces between a
requirement and its implementation assets. In context of SPLs, the mapping between
features and implementation assets (if fully specified) can be considered as a kind of
trace link. However, traceability approaches consider additional types of links and
often add some extra information to each link (like a rationale description).

For instance, Anquetil et al. [34] propose a traceability framework for SPLs.
They propose four general categories of trace links: Refinement traceability relates
artifacts from different level of abstraction like an element in the design model and
its implementation. Similarity traceability relates artifacts at the same level of ab-
straction such as similar requirements that have some logical relationships or similar
elements from different architectural views. Variability traceability relates artifacts
as relevant for variability management like the mapping between a feature and its
implementation. Versioning traceability relates successive versions of an artifact. As
pointed out by Heider et al. [386], traceability needs to cover not only all assets on
SPL level but also on product level. Other traceability approaches for SPLs can be
found e. g. in [8, 442, 616].

Defining (and maintaining) trace links requires much effort, so there is a need
for tool support. There are two ways how to acquire trace links in a tool-supported
way: 1) ex-post by statically analyzing existing artifacts or 2) during development
when artifacts are created. Heider et al. present EvoKing [383], an IDE for SPLs
which supports both strategies. EvoKing supports monitoring evolution by keeping
track of all assets and their relationships within an SPL. To provide some degree of
abstraction, users can define the types of assets and relationships and how the tool
interprets events like creating or modifying an asset of a certain type. Trace links are
established according to user-defined rules. For instance, whenever a product con-
figuration is created, a trace link is established to the underlying variability model.
These rules can also be applied to existing artifacts. However, heuristics or statis-
tical analysis to acquire trace links automatically have not been applied yet. Other
approaches that aim to provide automated extraction of traceability links for SPLs
are e. g. [442, 747].

Beside traceability approaches, there are only few other approaches for impact
analysis in context of SPLs. Heider et al. [385] present an approach using regression
testing to analyze the impact of changes on SPL level on products. Whenever the
SPL is changed, the tool first analyses whether the existing product configurations
need to be changed as well, e. g. whether configuration decisions need to be modified
due to changes on the variability model. In a second step, the tool re-derives all
products and compares them with their previous version and reports the differences.

290 Goetz Botterweck and Andreas Pleuss

In this way it provides instant feedback to developers about the consequences of a
change on the SPL.

9.4.5.2 Decision making in SPL evolution

Planning evolution means to make decisions that may have essential impact on the
future success. Concepts like the QOC approach (Questions, Options and Crite-
ria) [550] provide general support for systematic decision-making. The first step in
QOC is to define the issue on which to decide (question). Second, available solu-
tion options are identified and specified. In addition, criteria are defined by which
the available options can be rated. Examples for criteria are the expected develop-
ment effort (e. g. estimated by an impact analysis as above), market value, strategic
benefit or risk. Each solution option is rated according to these criteria. Finally, an
option is selected on this base. This allows systematic decision making and captures
the reasons behind a decision.

Approaches in the area of release planning [736] apply such concepts to decide
about new requirements (or features). For instance, when a set of new candidate
requirements is given (e. g. due to customer requests and market analysis) they sup-
port to prioritize them and to select those to be implemented in the next release(s).
Similar to QOC, criteria have to be defined by which the requirements can be rated.
Usually ratings are performed by multiple stakeholders including e. g. prime cus-
tomers. Criteria and stakeholders can be prioritized by assigning weights. More-
over, constraints can be defined to specify preconditions such as available resources
(e. g. person months until next release) and dependencies between the candidate re-
quirements (e. g. two requirements exclude each other). After each requirement has
been rated according to the criteria, approaches like EVOLVE [643] automatically
propose a candidate release plan that conforms to the defined constraints.

Similar concepts have been applied to SPLs for scoping (see Section 9.4.3.2),
i.e. selecting which features from an existing set of related to include in an SPL.
The PuLSE-Eco approach by DeBaud and Schmid [229] proposes to refine business
goals into “benefit functions” (e. g. effort saved by making a feature reusable) which
are decomposed into basic “characterization functions” (e. g. implementation effort
in person months) by which each potential feature is judged. In this way the benefit
of each feature is calculated as a base for the decision which features to include into
an SPL.

Besides deciding about new features or requirements, which is similar to single
system engineering, SPL evolution also needs SPL-specific decisions like 1) de-
ciding about whether changes should become product-specific or be performed on
SPL level and 2) about the variability of features on SPL level. In the following we
describe an approach for each of these issues.

Heider et al. [382] address decision making about whether new requirements
that arise on product level should be promoted to SPL level. Their tool EvoKing
(see Section 9.4.5.1) provides SPL engineers an overview on new requirements that
have arisen on product level. SPL engineers can then decide about each requirement

9 Evolution of Software Product Lines 291

to either lift it to SPL level or to assign it to developers on product level other-
wise. In [380] the authors describe how this decision is supported by a Win-Win
model negotiation approach. Win-Win [120] is a general approach similar like QOC
but with a focus on brainstorming and negotiation: Different stakeholders define
their objectives as win conditions. Win conditions where all stakeholders agree on
are stored as agreements. Otherwise conflicts, risks or uncertainties are defined as
issues. Stakeholders then brainstorm for options to resolve these issues and to ex-
plore trade-offs with the goal to find an option that can be turned into an agreement.
In context of new SPL requirements, the win conditions are the new requirements
proposed by SPL engineers and product engineers. Issues raise, for instance, when
there are inconsistencies between the requirements on these two levels or between
requirements of different products.

Thurimella and Briigge [843] address decision-making about the variability in
SPLs. They apply similar concepts like in QOC. To decide about variability, the
possible solution options are identified (e. g. whether a feature is mandatory or op-
tional) and rated by criteria. The same principle is also applied to product configu-
ration decisions where available variants can be considered as options.

Basically, concepts like QOC or Win-Win can be applied to any particular evolu-
tion decision [842]. Besides the concrete approach used, any additional tacit knowl-
edge underlying a decision (e. g. why an option was finally selected) should be ex-
plicitly documented by a rationale description to preserve the knowledge for future
decision-making [824]. For instance, the EvoPL approach from Section 9.4.2.3 has
been extended by support for decision-making by modeling high level goals, crite-
ria, rationale, and the relationships between them [758].

As discussed in [759], it should be considered that planning information — such
as goals, criteria, and rationale — evolves itself (e.g. changing business goals). It
is useful to handle this evolution in a structured way as well (e. g. traceability of
previous versions of a goal description) to preserve the information and understand
previous decisions.

9.4.6 Implementing Evolution

Existing work on the implementation of SPL evolution aims to support realizing
changes in a systematic way. It can be classified according to the abstraction layers
in Figure 9.4. On the SPL level, changes to requirements lead to changes in the vari-
ability model. Several works aim to support changes to variability models and the
associated mappings while preventing inconsistencies (Section 9.4.6.1). Other work
focuses on realizing changes on the implementation level, e. g. by structuring the
implementation according to features (Section 9.4.6.2). When an SPL has changed,
this has to be propagated to existing products (Section 9.4.6.3).

292 Goetz Botterweck and Andreas Pleuss

9.4.6.1 Evolution of the variability model and its mappings to assets

Changes to requirements often lead to changes in the variability model, e. g. adding
or removing features or splitting a feature to make some part of it variable. Also,
the variability model has to be maintained itself, e. g. by restructuring to improve
readability. Changes to the variability model can be (tool-) supported by change
operators (cf. Section 9.4.2) to systematize changes and to update the mappings to
implementation assets.

Thiim et al. [837] provide a tool that analyses changes performed on a feature
model and classifies them into one of the four categories: (1) refactoring, not chang-
ing the set of valid products, (2) generalization, only adding products, (3) special-
ization, reducing the set of products, or (4) arbitrary changes otherwise:

Refactoring, as used by Thiim et al. [§37], refers to changes of the feature model
that do not change its semantics in terms of valid product configurations. The source
and target feature model are then referred to as “equivalent” [803]. Such changes
include, for instance, restructuring of the feature model, and changes that do not
influence product configurations (e. g. renaming a feature).

Generalization refers to changes that only add products (i. e. valid configurations)
to the SPL. All existing products remain valid and can still be derived from the SPL.
Simple examples for such changes are adding a new optional variant or changing
a feature from mandatory to optional. A catalog of feature model operations that
preserve the set of products is presented in [25]. In contrast to [837], the authors call
these types of changes “refactorings” or “refinements”. Based on a formal notation
for refinements introduced by Borba et al. [129], Neves et al. [642] specify sev-
eral complex change operations for common behavior-preserving changes of SPLs
which include not only the feature model itself but also the mappings and the asso-
ciated assets. For instance, a new mandatory feature can be safely added to a feature
model only if it represents functionality that is already part of all products (e. g. to
convert it into an optional feature later on).

Specialization is mainly used during staged configuration [209], i. e. configura-
tion performed in multiple steps, e. g. by various stakeholders. Variability is reduced
in each step until it is completely resolved and exactly one product remains.

A tool that aims to support arbitrary changes is Feature Mapper [762]. It focuses
on the co-evolution of feature models, implementation assets, and the mappings be-
tween them. On the level of feature models it supports several change operators,
like “add feature”, “split feature”, “remove feature”, or “remove feature and owned
asset”. On the level of assets (also represented as a model) changes depend on the
concrete type of model. The authors provide some examples for UML models (e. g.
“replace method with method object”) and for models representing Java code (e. g.
“extract method”). The authors classify three types of changes (focusing on con-
sistency of feature mappings): (1) changes that only have effects within one model
(like changing an optional feature to mandatory or renaming an asset); (2) changes
that affect a model and the mapping (like “split feature” or “extract method”); and
(3) changes that affect the model, the mapping, and the mapped model (like “remove

9 Evolution of Software Product Lines 293

feature and owned assets”). In the second and third case, the tool automatically up-
dates the mappings to keep them consistent.

Beside the work on feature models, there are also approaches addressing other
types of variability models, e. g. decision models and their associated assets [385].

The change operators and tools described above cover only a subset of possible
changes to an SPL. Other changes that require manual implementation (like adding
new functionality to an SPL) cannot be specified just in terms of predefined opera-
tors. However, tool support should indicate potential inconsistencies after a change.
In general, this can be achieved by analyzing mappings between assets (similarly to
Feature Mapper as described above) or additional traceability links between depen-
dent assets (see Section 9.4.5.1).

Finally, after performing changes, the consistency should be checked between the
different abstraction levels in the SPL as shown by Vierhauser et al. [8§92]. Guo et al.
[355] show how to check the consistency of large feature models so that only those
parts which are affected by an evolutionary change need to be checked again. In the
context of formal validation of SPLs, Cordy et al. [199] provide a model-checking
approach that supports evolution. They define a method to identify specific types of
features and show that for such features, when added to an evolving SPL, only a
subset of the products need to be model-checked again.

9.4.6.2 Evolution of assets

Work supporting changes on lower levels of abstraction mainly addresses mecha-
nisms to increase modularity and maintainability of assets. Garg et al. [313] provide
specific tool support to specify changes or multiple variants for SPL architectures.
The presented tool Ménage represents visual architecture models in terms of com-
ponents and connectors based on XADL 2.0. Variability and different versions are
visually highlighted.

Other work addresses evolution on the code level. Here, one challenge is to mod-
ularize code so that changes on higher abstraction levels, e.g. new features, can
be implemented with as few side effects as possible. For this, techniques similar to
those for implementing variability in code can be used. For instance, aspect-oriented
development can be used to implement cross-cutting features [902]. Loghran et al.
[541] propose supporting evolution by a combination of aspect-oriented techniques
and frames, which are hierarchically ordered code templates. They provide code ex-
amples showing how these “framed aspects” can be used to support reuse and the
easier integration of new features.

Some work addresses evolution at runtime [339] (cf. Chapter 7.6). For this, soft-
ware reconfiguration patterns are used that allow the configuration in component-
based systems to be updated during runtime. The authors describe multiple recon-
figuration patterns based on existing architectural patterns, e. g. “master/slave re-
configuration” or “centralized control reconfiguration”, and discuss how to perform
evolutionary changes based on them.

294 Goetz Botterweck and Andreas Pleuss

After changing the implementation, the SPL has to be tested. Here, the testing
strategy should take variability into account to avoid that all possible feature com-
binations and all existing products have to be tested again [256].

9.4.6.3 Propagating changes from the SPL to products

Heider et al. [384] provide tool support to propagate changes from the SPL to indi-
vidual products. In theory, model-driven SPLs allow products to be regenerated after
the SPL has changed. However, as Heider et al. point out, in practice product con-
figuration can be a complex and time-consuming process which requires decisions
by multiple stakeholders. Hence, configuration of different products and evolution
of the SPL is often performed in parallel. After a variability model has changed,
product configurations must be updated by considering the dependencies in the vari-
ability model, between the assets, and between variants and assets. Hence, updating
the product configuration can be challenging. The authors address this with a tool
that supports automated updates of products, resolves conflicts, and assists users in
manually resolving conflicts based on trace data when automated update fails.

9.5 Conclusions

In this chapter, we provided an overview of basic concepts and state-of-the-art in
SPL evolution, as well as a short introduction to our own work in feature-oriented
software evolution. Many challenges remain.

We need to improve support for handling changes, this includes understanding
consequences of potential changes (taking all dependencies into account, across
abstraction layers) and better support for the propagation of changes, for instance
techniques that tolerate inconsistencies and resolve them, while propagating the
changes.

With increasing scale and complexity it becomes infeasible to adapt the whole
system (i. e. the whole SPL) to change in a short time frame. Hence, when an or-
ganization aims to react to market events or urgent customer requests, we require
strategies and techniques to support fast adaptation, e. g. with product-specific ex-
tensions, which are later propagated into the SPL. Here, we have to consider an
oscillation between adaptation/extensions and creating a consolidated shared infras-
tructure (“grow-and-prune model”, [284]).

Tracing concepts in the problem space to the solution space, from high abstrac-
tion levels to details of the software design and lines of code, is a fundamental
problem in software engineering. Such mappings are often not one-to-one and am-
biguous. For instance, in SPLE and SPL evolution we have to map features to their
implementations, a problem addressed by feature location. Here, (1) a feature is po-
tentially implemented by multiple classes, a class potentially contributes to multiple

9 Evolution of Software Product Lines 295

features and (2) it is not a clear-cut decision whether a class is part of a feature’s
implementation.

Finally, we have to deal with evolution for PLE “in-the-large”, for instance in
hierarchical SPLs or a systems-of-systems context, which requires propagation of
changes up or down the systems hierarchy. When dealing with evolution of large
SPLs in all its aspects (migration, analysis, planning, implementation, etc.) we need
to consider the potential hierarchical structure of such systems. For instance, Gall
et al. [308] report that the characteristics of the evolution of a particular subsystem
deviated substantially from that of the main system, an effect that can be masked
when we would only consider the system as a whole.

As a final thought, we concur with Dhungana et al. [241] who argue that SPLE
should treat evolution as a normal case and not as the exception. Hence, improved
concepts and techniques are required that are able to handle evolution of large
software-intensive systems while taking the particular characteristics of SPLs into
account. We believe that there lies great potential in a smart combination of auto-
mated and interactive techniques, which combine the best of both worlds—efficiency
through automated mechanisms and guidance towards creative solutions through the
capabilities of the human engineer.

	Chapter 9 Evolution of Software Product Lines
	9.1 Introduction
	9.2 Software Product Lines
	9.3 Characteristics of SPL Evolution
	9.4 Approaches to SPL Evolution
	9.4.1 Process Models for SPL Evolution
	9.4.1.1 Process framework for SPL evolution
	9.4.1.2 Evolution strategies
	9.4.1.3 Other process models

	9.4.2 Modeling Evolution and Change
	9.4.2.1 Difference Models
	9.4.2.2 Change Operators
	9.4.2.3 Combined Approach

	9.4.3 Migration to SPLE
	9.4.3.1 Initiation of the migration project
	9.4.3.2 Scoping and assessment of migration options
	9.4.3.3 Variability analysis
	9.4.3.4 Refactoring
	9.4.3.5 Extraction of assets
	9.4.3.6 Assessment

	9.4.4 Analyzing Evolution
	9.4.4.1 Mining software repositories
	9.4.4.2 Analyzing features
	9.4.4.3 Architecture assessment
	9.4.4.4 Prediction based on simulation

	9.4.5 Planning Evolution
	9.4.5.1 Change Impact Analysis
	9.4.5.2 Decision making in SPL evolution

	9.4.6 Implementing Evolution
	9.4.6.1 Evolution of the variability model and its mappings to assets
	9.4.6.2 Evolution of assets
	9.4.6.3 Propagating changes from the SPL to products

	9.5 Conclusions

