
Chapter 7
Evolution of Web Systems

Holger M. Kienle and Damiano Distante

Summary. The World Wide Web has led to a new kind of software, web systems,
which are based on web technologies. Just like software in other domains, web
systems have evolution challenges. This chapter discusses evolution of web systems
on three dimensions: architecture, (conceptual) design, and technology. For each of
these dimensions we introduce the state-of-the-art in the techniques and tools that
are currently available. In order to place current evolution techniques into context,
we also provide a survey of the different kinds of web systems as they have emerged,
tracing the most important achievements of web systems evolution research from
static web sites over dynamic web applications and web services to Ajax-based
Rich Internet Applications.

Parts of this Chapter have been taken and adapted from other publications of the first author [469]
[460] [467] and the second author [98] [97] [315] [316] [96].

201
 Springer

. et al. (eds.), E ,
DOI 10.1007/978-3- - - _7, © 2014
T Mens volving Software Systems

642 45398 4 -Verlag Berlin Heidelberg

202 Holger M. Kienle and Damiano Distante

7.1 Introduction

The emergence of the World Wide Web (WWW), or the web for short, has led to a
new kind of software that is based on web technologies: web sites, web applications,
web services, and possibly others. In the following, if we do not make a distinction
among these, we speak of them as web systems. We have chosen this term to convey
that software that is based on the web platform can be of significant complexity, em-
ploying a wide range of technologies—starting from complex client-side code based
on HTML5, Flash and JavaScript, to server-side code involving high-performance,
cloud-based web servers and database back-ends. Web systems also have to deal
with demanding non-functional requirements, which are cross-cutting the client and
server side, such as scalability and security.

Research on the evolution of web systems is a relatively young research branch
within the research on the evolution of software systems. Early research into web
systems evolution started towards the end of the last millennium. The first Interna-
tional Workshop on Web Site Evolution (WSE), held in October 1999, evolved into
the annual Web Systems Evolution workshop and symposia series sponsored by the
IEEE. Since that time, this research branch has become more prominent, reflecting
the web’s increasing significance, and has broadened its scope, reflecting the web’s
increasing diversity.

Even though web systems have their own characteristics and idiosyncracies
(cf. Section 7.1.2), almost all of the evolution techniques that have been proposed
for software systems in general (e.g., refactoring [596] and clone detection [592,
Chapter 2]) can be suitably adopted and applied to web systems (e.g., refactoring
of PHP code [856] and detection of cloned web pages [243]). In addition, dedicated
techniques have been developed to account for the specific characteristics of web
systems (e.g., testing for browser-safeness, discussed in Section 7.4, and refactoring
of web design models, discussed in Section 7.3.2). In this chapter we concentrate on
techniques and tools that target web systems evolution that are meant to change one
or more of the following aspects of a web system: its architecture, its (conceptual)
design, and its technology.

7.1.1 Reengineering

One of the most involved methods to realize software evolution is reengineering,
which conceptually can be defined as the composition of reverse engineering fol-
lowed by forward engineering. The system to evolve is first reverse engineered to
obtain higher-levels of meaning/abstractions from it, such as a model of its current
design. Based on the information obtained in the reverse engineering step and the
evolution objectives, a forward engineering step produces a new version of the sys-
tem with a new architecture, design, and/or technology. The approaches discussed
in Section 7.3 are mostly reengineering techniques.

7 Evolution of Web Systems 203

Reengineering activities are performed with certain goals in mind, of which
prominent ones are: (1) to “come to a new software system that is more evolv-
able [. . .] than the original one” [592, Chapter 1], or (2) to “improve the quality of
the software” [781]. Regarding the first goal, making a system more evolvable often
means adapting it so that it remains usable in reaction to changes in the real world
(i.e., changing requirements or assumptions, cf. Chapter 1) in which the software
operates (e.g., a new execution context, or interfacing it to another system). Regard-
ing the second goal, quality improvements of a system can refer to internal quality,
external quality, or quality in use (cf. ISO/IEC 9126 [12]).

7.1.2 Evolution Challenges and Drivers

Just like software in other domains, web systems have evolution challenges—
perhaps even more so compared to other domains because standards, technologies,
and platforms in the web domain are changing rapidly.1 Web systems development
is often equated with rapid development cycles coupled with ad-hoc development
techniques, potentially resulting in systems of lower quality and reliability. An em-
pirical study that tracked six web applications over five years for anomalies and
failures found that “only 40% of the randomly selected web applications exhibit
no anomalies/failures” and comes to the conclusion that “the common idea of re-
searchers and practitioners is correct, i.e., process, tools and in general methodolo-
gies for web development and testing should be improved” [719].

Web systems have distinct characteristics from other domains, say desktop ap-
plications, that present unique evolution challenges. One of these challenges is their
architecture: a web system is split between a client side and a server side, with pos-
sibly complex interactions between the two.2 Another one is the use of the web
browser as client platform. A web system needs to support several different web
browsers consistently, whereas each of these browsers is evolving at a rapid pace.
Also, the scope and complexity of standards that affect browsers is increasing with
each iteration.

A related issue for modern web systems is the challenge to accommodate a wide
range of devices. Previously, web development could assume a “classical” desktop
browser as its target and design for this target in terms of technologies, user inter-
face, user interactions, etc. With the emergence of smartphones and other mobile
devices, web systems should be equally appealing across all of them, regardless of

1 A graphical illustration of the evolution of browser versions and (web) technologies can be ac-
cessed at http://evolutionofweb.appspot.com/?hl=en.
2 Conceptually, web systems adhere to the client-server model. This model is useful to understand
the high-level architecture and the split in functionality between the web browser (client) and the
back-end (server). However, it should be noted that the concrete architecture of a web system can
differ in the sense that it may utilize multiple servers, such as for load balancing or for realizing a
three-tier architecture that separates functionality into web browser, application server and database
server. Also, a web system may be composed (or “mashed-up”) of several services (accessible via
web APIs) and each service may be hosted on a different server.

http://evolutionofweb.appspot.com/?hl=en

204 Holger M. Kienle and Damiano Distante

the devices’ form factors. Approaches such as responsive web design address this
challenge [562].

Lastly, modern web systems provide diverse content, often multimedia, along
with sophisticated functionality for navigating and manipulating that content by the
user. Access and manipulation of content are governed by complex business rules
and processes. Due to the nature of web applications, both content manipulation and
business rules are tightly interwoven.

To summarize, evolution challenges that are often pronounced in the web domain
are:

• rapid churn of standards, technologies and platforms;
• rapid change of requirements and (domain) assumptions;
• ad-hoc development practices, which lack well-defined processes;
• complex interactions between client and server side that is difficult to compre-

hend, analyze and trace;
• use of multiple (web) technologies with complex interactions among them;
• support of multiple browsers and assurance of browser-safeness; and
• support for multiple devices with a wide spectrum of form and performance fac-

tors, including processing speed and connection bandwidth.

The evolution of web systems is caused by different drivers. While this chapter
has a strong focus on tools and techniques in the context of changing web tech-
nologies (i.e., technological evolution), one should keep in mind that there are other
drivers as well that are interacting with technological aspects and that also have
a strong impact on the web’s evolution. Examples of such drivers are consumers’
satisfactions and demands, market competition among web-based business models3

and e-commerce platforms, and laws and regulations (e.g., in the public administra-
tion domains). Depending on the web system’s domain, the key drivers can differ,
but regardless of the domains, technology serves as an enabling factor for evolution.
In the following, we briefly reflect on important drivers and how they interact with
technology.

Originally, the web’s purpose was centered on the dissemination of (scientific)
information and consequently the early web mostly had brochure-ware sites (cf.
Section 7.2.1). Over the years, the web has seen an increasing commercialization
driven by online shops with novel business models as well as traditional “bricks
and mortar” businesses that started utilizing the web as a new sales channel (“bricks
and clicks”) [702]. As a result, the web presence of a company can represent an
important (intangible) asset that may significantly affect its revenue and goodwill.

The concept of web applications along with improved technological capabilities
(e.g., HTTPS, CSS, JavaScript, and plug-ins such as Flash) enabled organizations
to establish and innovate on virtual stores and to offer increasingly sophisticated e-
commerce capabilities. In this evolution, technology and business models are cross-
fertilizing each other. User-generated content (UGC) is an example of a concept
that was enabled by an interplay of both technology and business drivers. Blogs are

3 While business models are typically associated with commercial gain, they can be defined as
describing how an organization captures value, which can be economic, social and cultural.

7 Evolution of Web Systems 205

an early example of UGC on the web, which was also commercially exploited by
companies such as Open Diary (launched in 1998) and Blogger (launched in 1999);
later examples of UGC are Wikipedia, YouTube and Facebook.

UGC enjoys high popularity with users, which has prompted many web systems
to develop business models that entice users to provide diverse content, including
personal information. UGC is also often highly interactive and real-time. By neces-
sity, UGC is stored on the server, not the client. In effect, such web systems are
now described as hosted services accessible through a cloud-based web application
(cf. Section 7.2.5). These kinds of applications are often tightly coupled with ser-
vice models on different levels: software (SaaS), platform (PaaS) and infrastructure
(IaaS). Hosted services can utilize convenient payment functionality, ranging from
more traditional credit-card services over online payments systems (e.g., PayPal and
Google Wallet), to micro-payments (e.g., Flattr). As a result, desktop applications
are increasingly replaced by, or alternatively offered as, hosted applications on a
subscription bases (e.g., Microsoft’s Office Web Apps and Adobe Creative Cloud).

The above developments, among others, have driven technological innovations
in the areas of server architectures, browser features, caching, virtualization, (agile)
software engineering methodologies, programming/scripting languages and their
efficient compilation/interpretation, web-development platforms and frameworks
(e.g., Ruby on Rails), and API design.

Both the web’s reach and commercialization have contributed to the fact that le-
gal issues are now an important concern [463] [466]. Legal issues are a driver in
the sense that it restricts features and innovation in business models and technology.
For example, copyright law has been at the center of many disputes around innova-
tions [513]; examples on the web are deep and inline linking to other sites, framing
of other sites, reverse engineering of client-side code, time-shifting (MP3.com) and
space-shifting (Cablevision) of content [743], and UGC. Web systems that process
personal data or UGC have to accommodate privacy, data protection and security
concerns, which are partially governed by consumer protection and commercial
laws.

7.1.3 Chapter’s Organization

The remainder of the chapter is organized as follows. Section 7.2 presents tech-
niques, tools, and challenges of web systems evolution research. The presentation
is structured along a historical account of how the web has evolved in terms of the
emergence of novel kinds of web systems: static web sites, dynamic web applica-
tions, web services, Ajax-based Rich Internet Applications, web systems leveraging
cloud computing, and HTML5-based web systems (cf. Sections 7.2.1–7.2.6, respec-
tively). For each kind of web system, where applicable, we highlight the most im-
portant research achievements in terms of state-of-the-art techniques and tools as
they were proposed at the time.

206 Holger M. Kienle and Damiano Distante

In Section 7.3 we then focus on architecture, design and technology evolution
of web systems. These three dimensions represent major challenges of web systems
evolution research. Prominent challenges of architecture evolution are the migration
of a web system towards SOA (cf. Section 7.3.1.1) or MDD (cf. Section 7.3.1.2);
challenges of design evolution are the refactoring of a web system’s design to meet
new requirements (cf. Section 7.3.2.1) and to improve upon a certain quality, such as
usability (cf. Section 7.3.2.2); a challenge of technology evolution is the migration
towards a new platform and/or technology such as Ajax (cf. Section 7.3.3).

Section 7.4 provides a concise overview of the research topics of web systems
evolution, including the topics covered in Sections 7.2 and 7.3. This section also
describes evolution research topics that are unique for the web domain. Section 7.5
identifies research venues and journals as well as outstanding dissertations for fur-
ther reading, and Section 7.6 concludes the chapter with parting thoughts.

7.2 Kinds of Web Systems and their Evolution

This section describes the different kinds of web systems that have been targeted
by web systems evolution research: static web sites, web applications, web services,
Ajax-based Rich Internet Applications, and cloud computing. These web systems—
and the accompanying major research topics and challenges—are introduced in the
following subsections as they have emerged over the history of the web. This struc-
turing should allow readers that are not familiar with the overall research to better
place and assess individual publications and research achievements. This section
also highlights that each evolutionary step of the web itself had a corresponding
impact on evolution research.

To better understand and classify approaches for web systems evolution, one can
distinguish between different views—client, server/deployment or developer—that
an approach supports [469]. These views address the user perspective of an approach
or tool in the sense of what kinds of information are presented to web developers
and maintainers.

Client view: The view of the web system that a user sees (typically using a web
browser). For this view, information can be obtained by automatically crawling4

the web system, which is accomplished without requiring direct access to a web
system’s sources: The web system has to be treated as a black box, only its output
in terms of served web pages can be observed and analyzed.

Server/deployment view: The view of the web system that a web server sees
(accessing the local file system). This view provides access to the web sys-
tem’s sources (such as, HTML pages, Common Gateway Interface (CGI) scripts,
JavaServer Pages (JSP), PHP: Hypertext Preprocessor (PHP) scripts, and config-
uration files).

4 Extracting facts from a web system based on the client view is called crawling or spidering.

7 Evolution of Web Systems 207

Developer view: The view of the web system that a developer sees (using a web
development tool such as Dreamweaver, or an IDE such as Eclipse, and a web
server or an application server such as Apache or Apache Tomcat, respectively).
This view is, by necessity, dependent on the tool’s abstractions and features.

The three views introduced above are all of potential interest for web systems evo-
lution. For example, the developer view shows the high-level web design such as
information about templates; the server view is the one the web server uses and thus
important for server maintenance and security; finally, the client view is the one that
the end user sees and thus is important to assess external quality factors of the web
system, such as navigability, learnability, accessibility, and usability. For effective
web systems evolution an approach should ideally support all three views and track
dependencies among them.

7.2.1 Static Web Sites

The first technological wave of the web consisted of static web sites that were pri-
marily coded in HTML (so-called brochure-ware web sites [850]). A seminal paper
raised awareness and popularized the notion that the web was predisposed to be-
come “the next maintenance mountain” [141]. As a starting point for further evo-
lution research, it was recognized that features of web sites could be conceptually
mapped to software and, hence, that there was a need for web site evolution research
in areas such as development process, version management, testing, and (structural)
decay.

One key focus of research at the time was on metrics and (link) structure of web
sites. Metrics for web sites typically analyze the properties of the HTML code. Ac-
tual metrics are often inspired by software and/or hypertext metrics. The evolution
of a web site can then be tracked by analyzing historical snapshots and their as-
sociated metrics [141] [909]. The link structure of a web site is similar to the call
structure of a program written in a procedural programming language. The nodes
of the graph represent web pages and directed arcs between nodes represent a hy-
pertext link between them. Different node types can be used to distinguish between
HTML pages, image files, ‘mailto:” URIs, etc.

The graph can be constructed by crawling the web site, starting from its home
page.5 One such tool adapted a customizable reverse engineering tool, Rigi [465],
with functionalities for the web-domain. It allowed interactive exploration of the
link structure of a crawled web site and to apply automated graph layout algorithms
(cf. Figure 7.1) [569]. Based on such graph structures static properties can be veri-
fied, such as unreachable pages (i.e., pages that are available at the server side, but
not accessible via navigation from the site’s home page) and the shortest path to

5 Typically there is the assumption that all pages are reachable from the home page. However, there
are also analyses to detect unreachable pages (see below).

208 Holger M. Kienle and Damiano Distante

Fig. 7.1: Link structure of a web site consisting of 651 nodes rendered with the Rigi
tool [569].

each page from the homepage [717]. The latter can be useful, for instance, for a
rudimentary usability assessment.

7.2.2 Web Applications

Over the years, new web sites emerged (or existing web sites evolved) to support
dynamic behavior both on the client-side (e.g., via JavaScript) and the server-side
(e.g., via CGI and PHP).6 This new breed of web sites were termed web appli-
cations. In order to accommodate the increasing sophistication of web applications
over the years—which is also a reflection of the Web 2.0 (Chapter 6)—, the research

6 Scripting languages have always played a prominent role in realizing web systems. On the server
side, before dedicated scripting languages such as PHP and JSP became available, Perl was a
popular approach for ad-hoc composition of web sites. (In 1999, Perl has been called “the duct
tape of the Internet” [359].) Since around 2010 the ability of server-side JavaScript has gained
momentum (e.g., the Node.js library). Its proponents want to close the conceptual gap between
client and server technologies.

7 Evolution of Web Systems 209

literature has also taken up the term Rich Internet Applications (RIAs) to distinguish
these technically complex web applications from the more primitive ones.7

RIAs are web applications that are characterized by a user experience that is
highly interactive and responsive so that they can rival the experience that desktop
applications can offer. In this respect, the “rich” in RIA refers to the complexity
of the underlying data that the user can manipulate as well as the user interface it-
self. The client side of RIAs is typically realized with a combination of JavaScript,
CSS and HTML. While web sites use little JavaScript that is often self-contained
and hand-coded, web applications often use a substantial amount of JavaScript that
builds on top of existing libraries and frameworks (e.g., jQuery and Dojo). Com-
pared to early web applications that can be characterized as thin client, RIAs are
realizing more of the web system’s functionality on the client side (i.e., fat client).
Furthermore, links are often encoded with client-side scripting and their targets have
no obvious semantic meaning [602]. As a consequence, such web applications can-
not be simply crawled and understood based on a static link structure anymore.

Static web sites, which have HTML-encoded links, are straightforward to crawl
(and because of this many tools could afford to implement a custom solution for
this functionality). However, with the introduction of more and more dynamic web
applications with scripted links these crawlers became very limited because the nav-
igation model that they are producing reflects an increasingly smaller subset of a
web system’s whole navigation space. A web application is often based on events
that trigger JavaScript code that manipulates part of the current page’s Document
Object Model (DOM), in effect causing a state change in the web application. At
the extreme, a single-page, Ajax-based web application may not even offer a single
static link, resulting in an empty navigation model for a traditional crawler. Another
problem that makes it difficult or impossible to construct a complete model is the
”hidden” web caused by interactive query forms that access a server-side database.

Since many analyses for web systems evolution are based on the client view an
accurate crawler is highly desirable. Unfortunately, crawling techniques did consis-
tently lag behind the latest web systems and handling the dynamic features was ad-
dressed only inadequately for many years. The Crawljax tool, introduced in 2008,
offered a solution to this problem [602]. It automatically constructs a state-flow
graph of the target web system where different states are based on comparing the
states’ DOM trees. State transitions are performed by a robot that simulates actions
on “clickable” elements (i.e., DOM elements with attached listeners). However, the
tool’s authors caution that “there is no feasible way to automatically obtain a list
of all clickable elements” [602]. State changes are determined by an edit distance
between the source and target DOMs. The edit distance uses a similarity threshold
that can be varied by the tool user, where one possible setting corresponds to match-
ing for identical trees. Besides the edit distance’s threshold other settings can be
used to control the crawling behavior such as maximum number of states and ignor-
ing of certain links based on regular expressions. ReAJAX is another example of a
sophisticated crawler based on a similar approach than Crawljax (cf. Section 7.2.4).

7 However, it should be noted that RIA is not clearly defined and different authors attach different
meanings to it.

210 Holger M. Kienle and Damiano Distante

In response to the advent of web applications, new approaches were developed
to capture the increasingly dynamic behavior of web sites and their increasing het-
erogeneity in terms of the employed standards and technologies. This research met
a need because development tools lacked in functionality for web site evolution: In
2001, a study of two popular web development tools at the time (FrontPage and
Dreamweaver) showed that they had rather limited support for understanding and
reverse engineering of web sites and that support was mostly restricted to static fea-
tures [850]. Maintenance activities that were supported by these tools at the time are,
for example, validation of HTML and XML documents, reports of usage-violations
of ALT and META tags, link checking, metrics that summarize characteristics of
web pages, and page download-time estimates.

In order to provide suitable information to reverse engineers who have to under-
stand ASP-based sites, Hassan and Holt extract information from HTML, VBScript,
COM source code, and COM binaries [374]. During the extraction process, each file
in the local directory tree that contains the web site is traversed, and the correspond-
ing file’s extractor (depending on the file type) is invoked. All extractors’ output is
first consolidated into a single model and then visualized as a graph structure. This
graph structure provides an architectural view of the web system that can be used as
a starting point for evolution (cf. Figure 7.2). There are also approaches that com-
bine static and dynamic analysis. For example, one proposed method leverages an
extension of UML to show the architecture of the web application as class diagrams
and its dynamic behavior with sequence and collaboration diagrams [242].

Fig. 7.2: Architectural view of a web system’s components: Blue boxes are DLL
files, gray boxes are ASP files, blue ovals are COM objects, green tubes are
databases [372].

7 Evolution of Web Systems 211

To improve evolvability, restructuring of server-side code has been proposed. For
instance, Xu and Dean automatically transform legacy JSP to take advantage of an
added JSP feature—the so-called custom tag libraries—to improve future maintain-
ability by more clearly separating presentation from business logic [933]. Research
has also tackled the migration away from static, HTML-only sites towards dynamic
ones. For example, Estiévenart et al. have a tool-supported method to populate a
database with content extracted from HTML pages [281]. This database can then
be used to build and serve pages dynamically. Ricca and Tonella have realized a
conceptually similar approach [718].

Web applications, and especially RIAs, are often developed with sophisticated
frameworks and tools that provide higher-level concepts, which then need to be re-
alized with a generator that produces code that can be executed by the web server.
An unusual example is the Google Web Toolkit: it allows coding in Java with ded-
icated APIs and widgets and this code is then compiled to optimized JavaScript.
Dedicated functionality for web site evolution can be added to tools if their archi-
tecture is plug-in based. Such an approach has the advantage that the user can work
within the developer view. The REGoLive tool adds reverse engineering capabilities
to the Adobe GoLive web authoring tool [354]. For example, REGoLive provides a
graph-based structure of a web site, showing artifacts—including web pages, CSS
files and JSPs as well as tool-specific entities such as templates and so-called smart
objects—and their dependencies.

RIAs typically make extensive use of JavaScript on the client side and the
resulting code base can be significant.8 For instance, Google’s GMail has more
than 400,000 lines of hand-written JavaScript [430]. Thus, JavaScript is an im-
portant consideration for web systems evolution. It is a dynamic, weakly-typed
language that offers an interesting combination of language features, mixing im-
perative, object-based and functional programming with concepts such as mutable
objects, prototype-based delegation, closures, and (anonymous) functions objects.
In JavaScript pretty much everything can be manipulated at run-time (introspection
and intercession), there is no information hiding and there is “eval” functionality that
allows to execute an arbitrary string as JavaScript code. As a result, JavaScript fea-
tures make it difficult for static analyses to produce meaningful results, and dynamic
analyses are a more promising approach for analyzing the behavior of JavaScript.

JavaScript has no explicit concept of classes and as a result various idioms are
used to mimic this concept. If multiple idioms are used in a single code base main-
tainability becomes more difficult. Gama et al. studied 70 systems and found five
different idioms in practice [310]. Based on these idioms they developed an auto-
mated code transformation that normalizes a code base to a common idiom. The
authors observe that “there seems to be remarkably little other work on JavaScript
style improvement” but one would expect that research interest in this area will pick
up in the future. Another transformation example is an approach and tool for extract-
ing a subset of client-side JavaScript code that encapsulates a certain behavior [560].
With this dynamic analysis a certain (usage) scenario such as using a UI widget is

8 RIAs can be also realized without JavaScript if they are based on proprietary technology (e.g.,
Adobe Flex or Microsoft Silverlight).

212 Holger M. Kienle and Damiano Distante

first interactively executed and tracked. Based on this run a dependency graph is
constructed that contains HTML, CSS, and JavaScript nodes along with their struc-
tural, data and control flow dependencies. This enables to extract a self-contained
subset of the code that is able to reproduce the usage scenario. This approach can be
also used for dead code removal (e.g., to speed up page load time) if the scenario is
able to capture all expected behaviors of the web application.

7.2.3 Web Services

Around the time that web applications established themselves, the concept of web
services started to become more prominent. The move towards web services was
mostly driven from a business perspective that envisioned cost savings and increased
flexibility [849] [20]. Web services are closely related to Service Oriented Architec-
ture (SOA) in the sense that web services are an enabling technology for realizing a
system that adheres to the service-oriented architectural style [830] [592, Chapter 7].
From this perspective, migration towards web services can be seen as architecture
evolution and is discussed in more detail in Section 7.3.1.

Evolution of a web service entails significant challenges: distributed compo-
nents with multiple owners, distributed execution where multiple workflows are exe-
cuted concurrently, and machine-generated description files (e.g., WSDL, XSD and
BPEL) [918] and messages (e.g., SOAP messages). Understanding a Web Service
Description Language (WSDL) specification can be complex because it contains a
number of concepts (i.e., types, messages, port types, bindings and services) that
can be highly interrelated via referencing. Since WSDL provides a high-level de-
scription of the important aspects of a web service, it plays an important role when
a service—or a system that uses the service—is evolved.

Examples of analyses based on WSDL files are clone detection of services and
enabling of automated service discovery [568] [348]. To obtain meaningful results,
the WSDL files are first suitably restructured (so-called contextualization) by in-
lining referenced information. This allows to apply established algorithms such as
topic models [348] and near-miss clone detection [568] to find similar operations.
These similarities can be used as input for maintenance activities, but also for web
service discovery (i.e., finding an alternative service).

Fokaefs et al. [298] present an empirical study on the evolution of web services
by applying a differencing technique to WSDLs. The WSDL files are first suitably
stripped to form another valid XML representation that reflects the client’s per-
spective of the service. Pairwise differencing of the XMLs are then performed by
the VTracker tool, which is based on a tree-edit distance algorithm that calculates
the minimum edit distance between two XML trees given a context-sensitive cost
function for different edit operations. The evolution of the successive WSDLs can
be studied with the percentage distribution of change, delete and insert operations.
Among other cases, the authors have tracked the evolution of 18 WSDL versions of
Amazon’s Elastic Cloud. The analysis showed that the service underwent rapid ex-

7 Evolution of Web Systems 213

pansion (additions are dominating) while the existing interface was kept relatively
stable (deletions and radical changes are avoided). The authors could also find cor-
relations between WSDL changes and business announcements.

SOAMiner is a static analysis tool for searching and indexing a collection of
service description files, including WSDL [918]. It is based on Apache Solr, which
provides a faceted search infrastructure. Examples of search facets are file types and
XML tag names. A user study found that “faceted search capability proved to be
very efficient in some cases” and that this approach can be more effective compared
to text-based searching because the latter requires more domain knowledge.

The authors of SOAMiner also present a dynamic analysis tool. The feature se-
quence viewer (FSV) visualizes sequence diagrams of messages passed between
web services [918]. The sequences are extracted from trace data and a simple heuris-
tic is used to determine messages that are relevant for a certain scenario. De Pauw
et al. have also realized an approach based on trace data that relies on message con-
tent and timestamps [225]. Their analysis is able to find identifying keys such as
order numbers, which are used by the web services to correlate messages and to re-
alize possibly asynchronous workflows. This enables to find “semantic correlation”
between different kinds of messages (e.g., an order number that is first used in a
message to order an item and then, in a subsequent message, to confirm its ship-
ment). In effect, sequence diagrams, which only show the control flow (such as the
FSV tool, see above), are augmented with dependencies that show correlations of
message content.

As described above, a standard approach for a web service is to utilize WSDL
and SOAP, which specify the service’s contract and API in terms of permissible
invocations and required data types. This flavor of web service is also referred to
as WS-* web service [683]. Alternatively, the API of a web service can be also
realized with Representational State Transfer (REST) [293]. The basic approach is
to design the data model as a network of data items, or so-called resources, and to
define URIs to access, navigate and manipulate these resources with HTTP request
methods (i.e., GET, PUT, POST and DELETE). Typical data encodings for such
RESTful web services are JSON or XML, but plain text is also conceivable. Alarcón
and Wilde propose the Resource Linking Language (ReLL) to model RESTful web
services [15]. They have developed a crawler, called RESTler, that can extract a
resource network from a RESTful web service based on the service’s ReLL model.
The obtained resources in combination with the ReLL models can then be used for
composing new, mashed-up services.

According to Pautasso and Wilde, “it is not possible to simply say that one va-
riety is better than the other, but since RESTful web services gained momentum,
it has become clear that they do provide certain advantages in terms of simplicity,
loose coupling, interoperability, scalability and serendipitous reuse that are not pro-
vided to the same degree by WS-*” [683]. Thus, support for migrations from WS-*
to RESTful web services, and vice versa, is desirable. Strauch and Schreier present
RESTify, a semi-automated approach to transform a WSDL-based web service to
a RESTful design [798]. The approach supports, for instance, the identification of
resources from a WSDL description, and the definition of resource access by defin-

214 Holger M. Kienle and Damiano Distante

ing a mapping from a WSDL operation to URI request sequences. Research has
strongly focused on REST as migration and reengineering target (e.g., [534] [816]
[798]), neglecting the opposite direction.

7.2.4 Ajax-based Web Systems

Another major evolution of the web is marked by the possibility of a web application
to initiate an asynchronous connection to obtain data and presentation information
(i.e., Ajax programming [314]). RIAs that employ Ajax frameworks and technolo-
gies result in highly sophisticated web applications whose functionality rivals and
surpasses native desktop applications. Compared to traditional web sites and web
applications in which contents and functionalities are distributed among several
pages that the user navigates, an Ajax-based RIA might consist of one single web
page whose content and user functionalities change dynamically in consequence of
the user actions, without any page reloads. More frequently, however, Ajax-based
RIAs are a combination of traditional web applications and enriched user-interface
features, which are made possible by Ajax technology. JavaScript is used as the
main coding language to implement features, both on the client and, increasingly,
on the server side.

Of course, for this new stage, yet again novel approaches are needed for effec-
tive web systems evolution. ReAJAX is a reverse engineering tool for single-page
Ajax RIAs [561]. Similar to Crawljax (cf. Section 7.2.2) the web system is dynami-
cally executed to construct a state model based on the pages’ DOM representations.
However, with ReAJAX the model extraction can be customized by abstracting the
DOM representation with a function that maps DOM elements to higher-level val-
ues that strives to capture the state of the application based on its GUI elements. For
instance, for a certain application it may make sense to abstract an HTML table with
three distinct values that represent an empty table, a table with one row, or a table
with more than one row. State transitions represent a change in the abstracted DOM
rather than the actual DOM and hence can represent meaningful states in the appli-
cation’s logic. The state model is constructed by manual or automatic execution of
a set of execution scenarios. The quality of the resulting state model varies depend-
ing on the coverage of the scenarios and the suitability of the DOM abstractions.
CReRIA is another example of a reverse engineering tool that is based on dynamic
analysis and creates a state model [26] [27].

Research has also tackled the migration from legacy web systems towards RIAs
and/or Ajax-enabling them (“ajaxification”). In 2007 Mesbah and van Deursen ob-
served that “today we have a new challenge of migrating classic web applications
to single-page web applications” [601]. This kind of migration can be seen as tech-
nological evolution as discussed in Section 7.3.3.

7 Evolution of Web Systems 215

7.2.5 Web Systems Leveraging Cloud Computing

Arguably, cloud computing marks another major step in the web’s evolution. How-
ever, it should be stressed that cloud computing is an independent principle that
applies to software systems in general. The “running [of] applications within a net-
work server or downloading the software from the network each time the software is
used” is one of its prominent characteristics [817]. Cloud computing can be defined
as “a model for enabling convenient, on-demand network access to a shared pool
of configurable computing resources (e.g., networks, servers, storage, applications,
and services) that can be rapidly provisioned and released with minimal manage-
ment effort or service provider interaction” [585]. Importantly, the access to these
resources needs neither be realized with a browser-based user interface nor with
web-based technologies.

Tupamäki and Mikkonen point out that there can be mismatches between web
principles and cloud computing (e.g., single-server design) [861]. Still, existing web
systems are among the most promising candidates to evolve towards the cloud—or
often have already properties that are now associated with mainstream cloud com-
puting. Ajax-based RIAs typically provide an application/service along with storing
the corresponding user-data on the server-side (e.g., webmail such as Yahoo! Mail
and GMail, and storage such as Dropbox and Microsoft’s SkyDrive)—properties
that are labeled as Software-as-a-Service (SaaS) by cloud computing.9 The under-
lying service level, Platform-as-a-Service (PaaS), can be seen as web-based mid-
dleware to realize SaaS. For example, Windows Azure and Google App Engine
provide a platform of different services, which can be realized to build SaaS-based
web systems based on an integrated set of diverse APIs. Thus, similar to SOA and
web services, different (heterogeneous) PaaS and Infrastructure-as-a-Service (IaaS)
based services can be orchestrated to realize a higher-level service.

Every advent of a new technology poses the challenge of how to best utilize
it in the context of an existing (legacy) system. Established techniques for transi-
tioning to a new technology include wrapping, migration, and reengineering (cf.
Section 7.3). In this context the potential mismatch between the principles and ar-
chitectures of web application frameworks and cloud computing platforms present a
significant challenge [861]. Kienle et al. observed in 2010 that “surprisingly, there is
still comparably little discussion of [web] system evolution towards the cloud such
as when and how systems should be migrated to the cloud and techniques to accom-
plish such a migration in an effective manner” [462]. This observation still holds
true as of this writing.

9 HTML5 enables clients to utilize local storage; thus, the location of (personal) data may partially
move from the server to the client. However, leveraging this capability may not be in the interest
of the service provider.

216 Holger M. Kienle and Damiano Distante

7.2.6 HTML5-based Web Systems

The HTML5 standard is still at a draft stage and far from being finalized, but it is
already well on its way to become a ubiquitous platform for building all kinds of
(web) systems. Thus, it can be expected that HTML5 will play a significant role in
web systems evolution.

It appears at this point that there are two major competing approaches: HTML5-
based web systems, which are vendor-agnostic and represent the open web, and
native web systems, which are vendor-specific [608]. Examples of the latter are
apps running on Apple’s iPhone and iPad or Google’s Android devices. While these
apps can utilize web-based protocols and principles (e.g., HTML and REST) and
while their look-and-feel can be similar to browser-based systems, they are built
with vendor-specific platforms and native graphics libraries, and are typically dis-
tributed in binary form. It remains to be seen if both approaches will coexist or if
one will extinguish the other. In the following we focus on open web systems only,
because in many respects native apps are close to traditional desktop software.

HTML5 significantly expands the scope of previous HTML standards with the
aim to enable web systems to come even closer to native desktop applications (with-
out having to rely on browser plug-ins) [608]. Specifically, web systems can utilize
local storage and built-in audio/video support, temporarily function without net-
work connection, draw on a 2D canvas for procedural, interactive graphics, and
render hardware-accelerated (3D) graphics. HTML5’s capabilities may cause de-
velopment to the move away from native, vendor-specific apps, meaning in effect
that “browser technology will dominate over operating systems” [50]. This would
further strengthen the trend towards truly web-based software.

In the past, web systems evolution research did address the migration from web
applications to early mobile devices because this was rightly perceived as “the next
big thing” [410]. If the trend towards HTML5-enabled mobile applications holds
true, then research should tackle the migration from mobile applications written for
native platforms to HTML5 technologies.

7.3 Dimensions of Evolution

As the previous section illustrates, research in web systems evolution has come
up with a rich set of approaches and techniques, typically with accompanying tool
support. In the following, we structure the discussion along three dimensions of
evolution: architecture (cf. Section 7.3.1), (conceptual) design (cf. Section 7.3.2)
and technology (cf. Section 7.3.3). Each of these have in common that an existing
web system is migrated or reengineered, and, in any case, updated towards a new
system. Depending on the dimensions, the new system differs in its architecture,
design, or technology compared to the old one. However, it should be stressed that
these dimensions are not orthogonal to each other, meaning that evolution in one
dimension can imply or require evolution in the other ones as well.

7 Evolution of Web Systems 217

7.3.1 Architecture Evolution

Evolving the architecture of a system means a fundamental change on how func-
tionality is distributed into components and how these components communicate
among each other. For instance, a monolithic system may be “split” into (loosely
coupled) components for user interface, application/business logic, and data persis-
tence, by using a client-server three-tier architecture with the client side running
the user interface component [157]. Also, such a three-tiered client-server system
may be further evolved to move part of the business logic onto the client. Such an
architecture evolutions often also impacts the system’s technology. In the previous
example, the client-server architecture may be realized with web-based middleware
technology (such as Java Business Integration or IBM Integration Bus), the business
logic to be moved onto the client side may be implemented by using a client-side
scripting language (such as JavaScript), and data persistence may be realized using
some data persistence framework (such as Hibernate).

7.3.1.1 Towards Service Oriented Architecture

As mentioned before (cf. Section 7.2.3) web services are a popular approach—but
not the only one—to realize a system that adheres to SOA. Since our focus is on
web systems evolution, we restrict our discussion mostly to web services. However,
there are generic approaches for migrating systems to SOA (e.g., SMART [518]
and Heckel et al. [592, Chapter 7]) that can be instantiated to suit the context of web
systems migration: the existing system is then any kind of web system and the SOA-
enabled target system is based on web services. Generally, the purpose of migrating
towards web services is the identification of existing (higher-level) functionality,
isolating and extracting them from the existing system and making them accessible
via web service interfaces.

One design principle for SOA—and, by extension, for web services as well—is
composability where each (basic) service provides a well-defined and self-contained
(business) need. An application is then realized by service composition. Web ser-
vices are realized with WSDL (to specify their interfaces) and Simple Object Access
Protocol (SOAP) (for messaging). A more lightweight approach for web services
based on so-called web APIs eschews WSDL/SOAP in favor of HTTP-encoded re-
quest messages and JSON for data exchange. The latter approach is often used in
combination with REST (cf. Section 7.2.3) and Ajax (cf. Section 7.2.4).

In 2008, Hainaut et al. observed that migration to SOA “appears as one of the next
challenges” [592, Chapter 6, page 109]. Indeed, migrating existing code towards
web services is a common evolution scenario, and Almonaies et al. present a sur-
vey of approaches [21]. Arguably, a web site may already offer “services” through
HTTP response/request pairs that are initiated through user interactions. Jiang and
Stroulia analyze these interactions with pattern mining to semi-automatically iden-
tify service candidates [441]. Almonaies et al. present a semi-automatic approach to
migrate a monolithic PHP-based web application towards web services [20]. Poten-

218 Holger M. Kienle and Damiano Distante

tial business services are first identified and separated, then PHP code is restructured
to expose functionality as services (based upon the Service Component Architecture
(SCA) specification, which is available as a PHP implementation) and to allow com-
munication between services (based upon SCA’s Service Data Objects).

A migration does not necessarily start with “web-enabled” code, it may as well be
an EJB application that is rearchitected towards a system composed of a set of web
services [531]. Another scenario is the wrapping of COBOL mainframe programs
so that their functionality is exposed as web services [782]. Compared to a full-
fledged reengineering approach, “the complexity of the wrapping techniques is low,
since there is no deep analysis of the legacy system” [21].

7.3.1.2 Towards Model-Driven Engineering

The emergence of the web as a prominent platform to develop and deploy systems
and services—i.e., in other words cloud computing’s SaaS, PaaS and IaaS (cf. Sec-
tion 7.2.5)—and the increasing complexity of these systems has led to the need
of tools and methodologies that streamline their design, development, and mainte-
nance. Model-Driven Engineering (MDE) advocates the systematic use of models
and model transformations throughout the life cycle of a software system, from
requirement specification, to design, implementation (usually envisioned as auto-
matic code generation), and maintenance [756]. By promoting automation of tasks
and reuse of artifacts, MDE aims to increase productivity and to reduce development
time and costs. One of the better known MDE initiatives is the Model-Driven Archi-
tecture (MDA) software development framework defined by the OMG [650]. MDA
proposes a particular approach for realizing MDE by leveraging OMG standards
(e.g., UML and MOF).

The engineering of web systems is a specific application domain in which the
principles of MDE have been successfully applied, originating the rich and lively
research area of Model-Driven Web Engineering (MDWE). By decoupling the func-
tional description of applications (models at various levels of abstraction) from their
implementation (code for a given platform) and by enabling the modification of the
first and re-generation of the last out of the first, MDWE methods ease the evolution
and adaptation of web systems to continuous changing requirements and emerging
technologies. In this process, model evolution plays an important role (cf. Chapter 2)

The list of web engineering methods which natively adopt a model-driven ap-
proach to the development of web applications or which have been extended towards
MDE includes: UWA [252], WebML [750] and its extension towards RIAs [304],
UWE [480] and OOHDM [752], and OOWS [299]. Valderas and Pelechano present
a comparative study of these and other MDWE methods which analyzes the tech-
niques they propose for specifying functional, data and navigational requirements
as well as the mechanisms provided for automatically translating these requirements
into conceptual models [866]. According to their survey, only the WebML model ex-
plicitly addresses evolution concerns in a dedicated “Maintenance and Evolution”
phase.

7 Evolution of Web Systems 219

The reverse engineering of an existing web application with one of the above
listed methods opens the door to reaping the benefits of MDE. An approach that
enables recovering user–centered conceptual models from an existing web applica-
tion according to the UWA methodology [865] is RE-UWA [98]. The approach is
able to recover the content, navigation, and presentation models of the application,
as observed from a user’s perspective. These models can provide effective support
for maintainer when deciding on some change/improvement to be applied to the ap-
plication, with respect to its external, user-perceived, quality. The recovered mod-
els, eventually evolved according to new requirements, can be used then as input
for a UWA model-driven forward engineering process, which is supported by ded-
icated tools [97]. Similarly, an approach that abstracts WebML hypertext models
[137] from existing web applications is proposed by Rodriguez-Echeverria [724].
The approach can be used as the initial step towards modernizing the existing ap-
plication into a RIA-based one using the WebML model-driven web engineering
method [304].

7.3.2 Design Evolution

Often the intent of evolution is improving some external and user-perceivable qual-
ity characteristics of a system, rather than properties related to its internal realiza-
tion. When this intent applies, the evolution process is usually first accomplished
(conceptually) at the design level with the help of a (web) design model (cf. Sec-
tion 7.3.1.2), to move then to the implementation level where it may be realized by
selecting suitable technologies or algorithms.

In this section we present two approaches for web application design evolution: a
redesign approach and a refactoring approach. The intent of the former is to modify
the behavior of the web system while the latter preserves it.

7.3.2.1 Meeting New Requirements

When evolution is driven by the need to modify the behavior of the application
(e.g., to implement new business rules and meet new or evolved requirements [592,
Chapter 1]) or by the opportunity to improve aspects influencing the external quality
characteristics of the application (e.g., its usability), evolution should be carried out
at the design level. To this aim, it is desirable to rely on approaches that enable
(1) to recover the current design model of a web application, and (2) to modify the
recovered design model in order to effect the evolution’s goals. RE-UWA is such
an approach for the domain of web systems design evolution (already discussed in
Section 7.3.1 in the context of MDE) [96].

The RE-UWA design evolution approach is based on a three-step process:

Reverse Engineering: A semi-automatic reverse engineering phase is used to an-
alyze the HTML pages of the system’s front-end with the goal to abstract its “as-

220 Holger M. Kienle and Damiano Distante

Fig. 7.3: The RE-UWA web application design evolution approach.

is” design. This phase applies clustering and clone detection techniques on the
HTML pages of the application and is supported by the Eclipse IDE environment.

Design Evolution: This phase leverages the recovered models from the previous
phase. The (new) requirements—which identify shortcomings and opportunities
for improvements in the current design—are then used to construct the desired
“to-be” design. This phase is supported by a set of modeling tools, which are
build on top of the Eclipse Graphical Editing Framework (GEF) and the Eclipse
Graphical Modeling Framework (GMF).

Forward Engineering: In this phase, the “to-be” design model is used to produce
the “to-be” version of the web system. The UWA fast prototyping tools [97] can
be also used to quickly implement a prototype of the new application and to
verify/validate the new design.

Thus, the whole approach leverages the UWA design methodology to guide both the
reverse and forward engineering design processes, and the UWA design models as
the formalism to represent the “as-is” and “to-be” designs of the web system. Fig-
ure 7.3 summarizes the whole approach with the involved activities and supporting
tools and techniques.

Client side HTML pages
of the application

Reverse
Engineering

Design
Evolution

Design "As-Is"
(UWA Information,

Navigation and Publishing
models)

Design "To-Be"
(UWA Information,

Navigation and Publishing
models)

Forward
Engineering

Prototype of the new
version of the

application

Design Evolution
Process

Methods &
Techniques

Clustering and clone
detection techniques

+
UWA Design
Methodology

I/O Artifacts

RE-UWA tool based
on

Eclipse IDE

Tool Support

UWA Design
Methodology

UWA modeling tool
based on Eclipse

GEF and GMF

UWA Model Driven
Engineering
Methodology

(MOF metamodels
+ M2M & M2C

transformations)

UWA application
fast-prototyping
tools based on
Eclipse GEF and

GMF

7 Evolution of Web Systems 221

7.3.2.2 Improving Usability

The design of a web application can also be evolved to improve quality in use char-
acteristics such as usability while preserving its behavior and business rules. To this
aim, refactoring techniques can be applied to the design models of the application
[316].

Refactoring is a technique that applies step-by-step transformations to a soft-
ware system to improve its quality while preserving its behavior [596]. Originally
introduced by Opdyke and Johnson in the early 90’s [664] and mainly focused on
restructuring a class hierarchy of some object-oriented design, refactoring became
popular a few years later with Fowler’s book [301], which broadened the perspec-
tive to a wider spectrum of code-centric refactorings and motivated its application
for improving internal quality characteristics of software such as maintainability
and evolvability. Since then, refactoring has further broadened both in scope and
intent, as refactoring techniques have been applied to UML models [804], databases
[29], and HTML documents [368]. In all cases the basic philosophy of refactoring
has been kept (i.e., each refactoring is a small behavior-preserving transformation),
but, as the scope, also the intent of refactoring has expanded to target external and
quality in use characteristics of software, such as learnability and effectiveness.

Garrido et al. present catalogs of refactorings for the navigation and presentation
models of a web application aimed at improving its usability [315] [316]. Each of
the refactorings included in the catalog is characterized by a scope (i.e., the software
artifact to which it applies), an intent (i.e., one or more usability factors it aims
to improve), and a bad smell (i.e., the symptoms that may suggest applying the
refactoring). The usability improvement approach that results from the application
of the refactorings in the catalog is agnostic with respect to the method and the
technologies adopted to develop the application, as all refactorings are described
by showing how they affect the corresponding web page. Table 7.1 summarizes a
subset of the refactorings included in the aforementioned catalogs.

7.3.3 Technology Evolution

Technology evolution of a system can be triggered by the retirement of a technology
because the vendor supports it no longer, or by the realization that the employed
technology no longer matches the system’s requirements. In the former case, the
vendor may provide a migration tool. For instance, a helper tool supported the mi-
gration from IBM’s Net.Data legacy technology to JSP [499]. The latter case can
mean, for instance, that internal qualities (e.g., maintainability), external qualities
(e.g., performance), or both are increasingly difficult or impossible to meet because
new requirements and old technology are at a mismatch.

For web systems, each new wave of the web (as described in Section 7.2) has
triggered a technological evolution. However, web systems, especially early ones

222 Holger M. Kienle and Damiano Distante

Table 7.1: A subset of refactorings for usability improvement in web applications
proposed by Garrido et al. [315] [316].

Refactoring Intent Scope
Convert images to text
In web pages, replace any images that contain text with the text
they contain, along with the markup and CSS rules that mimic
the styling.

Accessibility Code

Add link
Shorten the navigation path between two nodes.

Navigability Navigation
model

Turn on autocomplete
Save users from wasting time in retyping repetitive content. This
is especially helpful to physically impaired users.

Effectiveness,
accessibility

Code

Replace unsafe GET with POST
Avoid unsafe operations, such as confirming a subscription or
placing an order without explicit user request and consent, by
performing them only via POST.

Credibility Code

Allow category changes
Add widgets that let users navigate to an item’s related subcat-
egories in a separate hierarchy of a hierarchical content organi-
zation.

Customization Presentation
model

Provide breadcrumbs
Help users keep track of their navigation path up to the current
page.

Learnability Presentation
model

with limited functionality, were not necessarily migrated in the strict sense but rather
rebuilt from the ground up with new technology.

Another technological evolution is driven by mobile devices. They do not only
bring new form factors and input devices, but also new technical challenges to keep
web systems responsive. Web systems are typically developed with the expectation
of a PC and a wired base connection, but smartphones and tablets can be less pow-
erful than PCs and latency is more pronounced for wireless connections. Also, the
performance when executing JavaScript on mobile devices is much reduced com-
pared to PCs [944]. As a result, to make web systems responsive and fast for mobile
devices, different techniques and algorithms are needed. For example, basic rules for
achieving this are reducing of HTTP requests by concatenating files, avoiding redi-
rects, limiting the number of connections, and replacing images with CSS3-based
renderings. To accommodate mobile devices, the web system’s APIs for the client
can be changed and extended to handle device profiles and to allow the client to
control limits on data [572].

Towards Ajax

From a technical point of view the introduction of asynchronous connections in the
browser is a minor functional addition whose full potential was not recognized until

7 Evolution of Web Systems 223

Ajax programming was proposed (cf. Section 7.2.4). However, as Ajax-based RIAs
have demonstrated, Ajax can have a huge impact on the user experience. Conse-
quently, if a web system is migrated towards Ajax it is often done with the goal
to improve the system’s usability (i.e., a design evolution, cf. Section 7.3.2.2) by
taking advantage of Ajax’s unique capabilities. Similarly, the prior technical shift
towards more dynamic web systems and RIAs was intertwined with the evolution
for usability improvements.

Chu and Dean have developed a transformation for “ajaxification” of JSP-based
web applications [185]. They are handling the use of a user interface (UI) compo-
nent to navigate a list of items where only a subset of list items is displayed for each
page. A typical example would be the list of search results of a search engine with
controls for “previous”/“next” as well as direct links to all result pages. The basic
idea goes as follows. The user has to identify and annotate the sections of the JSP
code that is responsible for rendering the list (e.g., a loop with a database query and
markup code for a table row). The marked code is then sliced to produce an exe-
cutable subset of the marked JSP code. The slicing criteria can be controlled with
suitable annotations. As a result, the sliced code provides, when called, the render-
ing data that is sent in response to an Ajax request. Also based on manual markup,
the JSP source is transformed to make an Ajax call that pulls in the list items. To
make the list item’s rendering data match with the needed HTML/DOM structure of
the hosting page, the transformation has to make suitable adaptations. The approach
has been tried out on four applications and for all of them the visual rendering is
preserved.

Mesbah and van Deursen propose Retjax, an approach and tool for migrating
multi-page RIAs to Ajax-based, single-page web systems [601]. The goal is to find
UI components that can be transformed to leverage Ajax. Multi-page RIAs have
to build a whole new page whenever information in a UI component changes. A
single-page approach, in contrast, would refresh only the UI component, which is
embedded within the page. To identify the UI components, first a model of the exist-
ing web application is constructed. Retjax uses HTML Parser for this purpose, but
this step could employ other advanced crawling and reverse engineering techniques.
Based on the model, the navigation paths that users can follow when exercising the
web application are followed; the depth of the followed links can be set. When a
new page is encountered then all of the target pages are retrieved and only these
are clustered based on schema similarity. The schema of each page is obtained by
converting the HTML into a well-formed XHTML (with the JTidy tool) and auto-
matically extracting a DTD from it (with the DTDGenerator tool). The clustering is
performed with the edit distance between the pages’ DTDs using the Levenshtein
method [517]. The similarity threshold can be set. On the clustered navigation paths
a differencing algorithms determines the HTML structural changes between page
source and targets. The result is a set of candidate components where each one is
examined for promising UI elements (e.g., button or tab) that can be converted to
Ajax. The authors propose to describe the candidates with the help of a generic
Ajax-based representation model (which could take inspiration from static UI mod-

224 Holger M. Kienle and Damiano Distante

els such as Mozilla’s XUL) that can then be used to drive the transformation from
the generic model to a platform-specific representation.

7.4 Research Topics

Sections 7.2 and 7.3 have covered a large part of the research landscape of web
systems evolution. In Table 7.2, the references of research contributions that are
given in bold face have already been discussed in previous sections.

Table 7.2: Examples of “classical” research topics and selected research contribu-
tions.

Research topic Examples of web-related research F M A T V
architecture recovery of web sites [569] • •

of web applications [373] [374] • •
clone detection in web sites [243] •

in web applications [815] [494] •
in web services (WSDL) [568] • •

clustering of web pages via keyword extraction [853] •
of web applications [601] [244] •

dead/unreachable code removal of JavaScript code [560] •
fact extraction HTML [569] [909] •

crawling of RIAs (with Ajax) (Crawljax) [602] •
crawling of single-page Ajax [561] •
crawling of RESTful web services [15] •
J2EE web projects (in WebSphere) [464] •

metrics based on HTML code [909] [141] • •
based on WSDL differencing [298] •

migration from static sites to dynamic web applications [718] •
from ASP to NSP [375] •
from EJB to web services[531] •
from web application to single-page Ajax [601] •
to Ajax [185] •
to web services [20] •
involving MDE [98] [97] [724] • • • •

refactoring of web applications design models [315] [316] [154] • •
restructuring of multilingual web sites [852] •

of JSP code for renovation [933] •
of web transactions [848] • • • •

sequence diagrams for web applications [38] • •
for web services [918] [225] • •

slicing of web applications [851] •
testing of web applications [717] •

of web services [783] [780] •
wrapping of web applications with WSDL [441] •

of COBOL with web services [782] •
Legend: F: fact extraction, M: modeling, A: analysis, T: transformation, V: visualization.

7 Evolution of Web Systems 225

Many of these topics have their roots in the more general and traditional areas
of software evolution and maintenance research. To illustrate this point, Table 7.2
provides some examples of “classical” research topics (first column) along with
research that has addressed—and suitably adapted—these topics for the web’s do-
main (second column). The table also identifies if a research’s main contribution lies
in the areas of fact extraction (F), modeling (M), analysis (A), transformation (T),
or visualization (V). For understanding a certain research contribution, it is often
beneficial to know the functionalities that its techniques cover and how these func-
tionalities are relating to each other. Reverse engineering approaches are primarily
concerned with fact extraction (F) and analysis (A), whereas forward engineering
primarily deals with modeling (M) and transformations (T). Both can also employ
visualizations (V) to present (intermediary) results. Examples of analyses in reverse
engineering are clustering, clone detection, and architecture recovery; examples of
transformations in forward engineering are restructuring, refactoring, dead code re-
moval, wrapping and migratwion.

Besides the “classical” research topics covered in Table 7.2, there are also re-
search topics that are unique—or much more pronounced—for web systems evolu-
tion. Important topics that exemplify this point—content analysis, accessibility, and
browser-safeness—are discussed in the following.

Originally, metrics-based evolution research has exclusively focused on the code
and structure of a web system, but it was then realized that evolution can be also
tracked by analyzing the (textual) content of a web system with appropriate met-
rics. An early example of such research is textual analysis of multilingual sites to
find matching pairs of pages for different languages [852]. More recently, the evo-
lution of Wikipedia in terms of number of edits and unique contributors has been
analyzed [263], and another evolution study looked at legal statements of web sites,
analyzing their length and readability [468]. The latter was measured with estab-
lished readability metrics, namely SMOG and Flesch Reading Ease Score (FRES)
[468]. Content analysis is an example of how web system evolution research has
continuously broadened its focus.

An interesting example of a research area that has much broader and more promi-
nent focus in web systems evolution than classical evolution research is accessibil-
ity, which is concerned with “how people with [varying degrees of] disabilities can
perceive, understand, navigate, and interact with the web, and that they can con-
tribute to the web” [410]. In fact, accessibility has been a constant throughout the
history of web evolution research [467]. In 1999, Eichmann cautioned that for the
development of many web systems “little attention is paid to issues of comprehen-
sion, navigation or accessibility” [271]. Cesarano et al. tackle the problem of usabil-
ity of web pages for blind users [168]. They point out that web pages are designed
for viewing on a two-dimensional screen while screen-reader tools for the blinds are
reading the content in a linear, one-dimensional fashion. Consequently, the reading
order should be redefined for blinds. Di Lucca et al. present refactoring heuristics
for the automatic reordering of the items on a web page based on structural analysis
and on summarization, with the purpose to reduce the “reaching time” (i.e. the time
needed to reach the most relevant content of the web page) [245].

226 Holger M. Kienle and Damiano Distante

In contrast, Berry provides a detailed classification of characteristics of hear-
ing impaired individuals and their respective accessibility issues [99]. These issues
became more and more acute in the last years with the popularity of services that ex-
ploit the Internet as a medium to transmit voice and multimedia such as Skype and
YouTube. Berry also points out that accessibility requirements of sight-impaired
individuals can contradict the ones of hearing-impaired individuals. While acces-
sibility research is often focused on seeing and hearing impaired, Boldyreff points
out that “web accessibility encompasses a variety of concerns ranging from soci-
etal, political, and economic to individual, physical, and intellectual through to the
purely technical. Thus, there are many perspectives from which web accessibility
can be understood” [125].

An example of a research area that is unique to web site evolution is browser-
safeness, meaning the requirement that a web system should look and behave the
same across different web browsers. This problem is almost as old as the web and it
is increasingly challenging to satisfy because of the large number of browsers and
browser versions. While browsers try to adhere to (ambiguous) web standards, they
are also trying to accommodate legacy web systems that are (partially) violating
these standards. Also, JavaScript engines of different browsers differ in more or less
subtle ways (e.g., as exposed by the test262 suite [182]).

The state-of-the-practice to address this problem are tools that take screenshots
of the web system running in different browsers so that they can be inspected manu-
ally for differences. The WebDiff tool identifies cross-browser issues by taking pairs
of screenshots of a web page in combination with analyzing the respective DOMs
[183]. Variable elements in the DOM that are changing when pages are reloaded
(e.g., advertisements) are filtered out, and then a structural comparison of the DOMs
is performed. The DOM is also used to guide a visual analysis that does a graphical
matching of DOM elements. The tool reports each mismatch so that it can be fur-
ther inspected by the tool user. The CrossT tool offers a complementary approach
that can be applied to a whole web application [600]. CrossT crawls the web system
in the same manner using different browsers (i.e., Internet Explorer, Firefox and
Chrome are supported), constructing for each a navigation model based on a finite
state machine. A state corresponds to a “screen” as observed by the user, transitions
are actions executed on the screen such as clicking a button. The constructed models
are compared pairwise for discrepancies. Differences are detected in the navigation
model as a set of traces that exist in one model but not in the other, and for two
state pairs by comparing the underlying DOMs of the states’ screens. When com-
paring DOMs the algorithm has to account for different DOM representations in the
browsers.

7 Evolution of Web Systems 227

7.5 Sources for Further Reading

Web systems evolution has been an active research area for over 15 years and con-
sequently there are many resources available for studying. Thus, this chapter, by
necessity, only represents a (biased) selection of this growing field, but constitutes a
good starting point for the reader to explore further. In this vain, this section identi-
fies the field’s key research venues and journals as well as outstanding dissertations.

The annual WSE symposium has targeted this research area since 1999 and has
featured the most influential research trends as they have emerged and changed
through the years. In fact, many of the references in this chapter are WSE publi-
cations. Special issues for WSE 2002, 2006 and 2010 have been published with
Wiley’s JSEP [461].

Research on web systems evolution can also be found in venues for software
maintenance (ICSM, CSMR), reverse engineering (WCRE), program comprehen-
sion (IWPC/ICPC), and software engineering (ICSE). Publications in the afore-
mentioned venues are typically dealing with techniques and tools for web systems
comprehension, analysis and migration. The communities on web, hypertext, multi-
media and documentation/communication are also conducting research on web sys-
tems evolution, albeit at a context that is typically broader than what is covered in
this chapter. Examples of interesting venues are the ACM Special Interest Group on
the Design of Communication (SIGDOC) conference, the ACM Web Science Con-
ference (WebSci), the International Conference on Web Information Systems En-
gineering (WISE), the International Conference on Web Engineering (ICWE), and
the International World Wide Web Conference (WWW). In terms of dedicated jour-
nals, there are the ACM’s Transaction on the Web (TWEB), Rinton Press’ Journal of
Web Engineering (JWE), Inderscience’s International Journal of Web Engineering
and Technology (IJWET), and Emerald’s International Journal of Web Information
Systems (IJWIS).

Last but not least, there is a growing number of Ph.D. theses that target web
systems evolution, testifying that the research community has recognized the rel-
evance of this subfield of software evolution. To name some outstanding disserta-
tions: “Analysis, Testing, and Re-structuring of Web Applications” by Ricca [715],
“Reengineering Legacy Applications and Web Transactions: An extended version
of the UWA Transaction Design Model” by Distante [251], “Analysis and Testing
of Ajax-based Single-page Web Applications” by Mesbah [599], and “Reverse En-
gineering and Testing of Rich Internet Applications” by Amalfitano [27].

228 Holger M. Kienle and Damiano Distante

7.6 Conclusions

This chapter described the key research topics and achievements in the domain of
web systems evolution. It can be expected that web systems evolution research will
continue to be of great relevance due to the fact that more and more software func-
tionality is made available via web-based infrastructure. The impact of HTML5 is
already felt in this respect and should further intensify the move towards open web
systems. Web technologies are highly dynamic by nature, making them predisposed
as a platform for building highly-dynamic systems (cf. Chapter 7.6), incorporating
features such as customization/personalization, resource discovery, late binding, and
run-time composition of services. Thus, future evolution research should provide
techniques and tools for reasoning about dynamic properties.

Other evolution drivers that may have a strong influence on future research are the
Internet of Things (IoT) and the Web 3.0. IoT would expand the web’s reach signifi-
cantly, incorporating devices of any scale. Web 3.0 would make large-scale semantic
reasoning feasible. In a sense, the web will increasingly blend the ecosystems of cy-
berspace and biological space (cf. Chapter 10). Both IoT and Web 3.0 would open up
many new research avenues, but also demand a much more inter/multi-disciplinary
approach to research, which does not only address technical concerns, but also oth-
ers, such as society, law/regulation, economics and environmental sustainability.

	Chapter 7 Evolution of Web Systems
	7.1 Introduction
	7.1.1 Reengineering
	7.1.2 Evolution Challenges and Drivers
	7.1.3 Chapter’s Organization

	7.2 Kinds of Web Systems and their Evolution
	7.2.1 Static Web Sites
	7.2.2 Web Applications
	7.2.3 Web Services
	7.2.4 Ajax-based Web Systems
	7.2.5 Web Systems Leveraging Cloud Computing
	7.2.6 HTML5-based Web Systems

	7.3 Dimensions of Evolution
	7.3.1 Architecture Evolution
	7.3.1.1 Towards Service Oriented Architecture
	7.3.1.2 Towards Model-Driven Engineering

	7.3.2 Design Evolution
	7.3.2.1 Meeting New Requirements
	7.3.2.2 Improving Usability

	7.3.3 Technology Evolution

	7.4 Research Topics
	7.5 Sources for Further Reading
	7.6 Conclusions

