Chapter 5
Mining Unstructured Software Repositories

Stephen W. Thomas, Ahmed E. Hassan and Dorothea Blostein

Summary. Mining software repositories, which is the process of analyzing the data
related to software development practices, is an emerging field of research which
aims to improve software evolutionary tasks. The data in many software reposito-
ries is unstructured (for example, the natural language text in bug reports), making
it particularly difficult to mine and analyze. In this chapter, we survey tools and
techniques for mining unstructured software repositories, with a focus on informa-
tion retrieval models. In addition, we discuss several software engineering tasks that
can be enhanced by leveraging unstructured data, including bug prediction, clone
detection, bug triage, feature location, code search engines, traceability link recov-
ery, evolution and trend analysis, bug localization, and more. Finally, we provide a
hands-on tutorial for using an IR model on an unstructured repository to perform a
software engineering task.
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5.1 Introduction

Researchers in software engineering have attempted to improve software develop-
ment by mining and analyzing software repositories, such as source code changes,
email archives, bug databases, and execution logs [329, 371]. Research shows that
interesting and practical results can be obtained from mining these repositories, al-
lowing developers and managers to better understand their systems and ultimately
increase the quality of their products in a cost effective manner [847]. Particular
success has been experienced with structured repositories, such as source code, ex-
ecution traces, and change logs.

Software repositories also contain unstructured data, such as the natural language
text in bug reports, mailing list archives, requirements documents, and source code
comments and identifier names. In fact, some researchers estimate that between 80%
and 85% of the data in software repositories is unstructured [118, 351].

Unstructured data presents many challenges because the data is often unlabeled,
vague, and noisy [371]. For example, the Eclipse bug database contains the follow-
ing bug report titles:

e “NPE caused by no spashscreen handler service available” (#112600)
e “Provide unittests for link creation constraints’ (#118800)
e “Jaxws unit tests fail in standalone build” (#300951)

This data is unlabeled and vague because it contains no explicit links to the source
code entity to which it refers, or even to a topic or task from some pre-defined on-
tology. Phrases such as “link creation constraints,” with no additional information
or pointers, are ambiguous at best. The data is noisy due to misspellings and typo-
graphical errors (“spashscreen’), unconventional acronyms (“NPE”), and multiple
phrases used for the same concept (“unittests”, “unit tests”). The sheer size of a typ-
ical unstructured repository (for example, Eclipse receives an average of 115 new
bug reports per day), coupled with its lack of structure, makes manual analysis ex-
tremely challenging and in many cases impossible. Thus, there is a real need for
automated or semi-automated support for analyzing unstructured data.

Over the last decade, researchers in software engineering have developed many
tools and techniques for handling unstructured data, often borrowing from the natu-
ral language processing and information retrieval communities. In fact, this problem
has led to the creation of many new academic workshops and conferences, includ-
ing NaturaLLiSE (International Workshop on Natural Language Analysis in Software
Engineering), TEFSE (International Workshop on Traceability in Emerging Forms
of Software Engineering), and MUD (Mining Unstructured Data). In addition, pre-
mier venues such as ICSE (International Conference on Software Engineering), FSE
(Foundations of Software Engineering), ICSM (International Conference on Soft-
ware Maintenance), and MSR (Working Conference on Mining Software Reposito-
ries), have shown increasing interest in techniques for mining unstructured software
repositories.

In this chapter, we examine how to best use unstructured software repositories to
improve software evolution. We first introduce and describe common unstructured
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software repositories in Section 5.2. Next, we present common tools and techniques
for handling unstructured data in Section 5.3. We then explore the state-of-the-art in
software engineering research for combining the tools and unstructured data to per-
form some meaningful software engineering tasks in Section 5.4. To make our pre-
sentation concrete, we present a hands-on tutorial for using an advanced IR model
to perform the task of bug localization in Section 5.5. We offer concluding remarks
in Section 5.6.

5.2 Unstructured Software Repositories

The term “unstructured data” is difficult to define and its usage varies in the litera-
ture [105, 557]. For the purposes of this chapter, we adopt the definition given by
Manning [557]:
“Unstructured data is data which does not have clear, semantically overt,
easy-for-a-computer structure. It is the opposite of structured data, the
canonical example of which is a relational database, of the sort companies
usually use to maintain product inventories and personnel records.”

Unstructured data usually refers to natural language text, since such text has no
explicit data model. Most natural language text indeed has latent structure, such as
parts-of-speech, named entities, relationships between words, and word sense, that
can be inferred by humans or advanced machine learning algorithms. However, in
its raw, unparsed form, the text is simply a collection of characters with no structure
and no meaning to a data mining algorithm.

Structured data, on the other hand, has a data model and a known form. Exam-
ples of structured data in software repository include: source code parse trees, call
graphs, inheritance graphs; execution logs and traces; bug report metadata (e.g., au-
thor, severity, date); source control database commit metadata (e.g., author, date, list
of changed files); and mailing list and chat log metadata (e.g., author, date, recipient
list).

We now describe in some detail the most popular types of unstructured software
repositories. These repositories contain a vast array of information about different
facets of software development, from human communication to source code evolu-
tion.

5.2.1 Source Code

Source code is the executable specification of a software system’s behavior [514].
The source code repository consists of a number of documents or files written in one
or more programming languages. Source code documents are generally grouped into
logical entities called packages or modules.
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While source code contains structured data (e.g., syntax, program semantics, con-
trol flow), it also contains rich unstructured data, collectively known as its linguistic
data:

e Comments in the form of developer messages and descriptions and Javadoc-type
comments.

o Identifier names, including class names, method names, and local and global
variable names.

e String literals found in print commands and functions.

This unstructured portion of source code, even without the aid of the structured
portion, has been shown to help determine the high-level functionality of the source
code [482].

5.2.2 Bug Databases

A bug database (or bug-tracking system) maintains information about the cre-
ation and resolution of bugs, feature enhancements, and other software maintenance
tasks [770]. Typically, when developers or users experience a bug in a software sys-
tem, they make a note of the bug in the bug database in the form of a bug report (or
issue), which includes such information as what task they were performing when
the bug occurred, how to reproduce the bug, and how critical the bug is to the func-
tionality of the system. Then, one or more maintainers of the system investigate the
bug report, and if they resolve the issue, they close the bug report. All of these tasks
are captured in the bug database. Popular bug database systems include Bugzilla!
and Trac?, although many exist [770].
The main unstructured data of interest in a bug report is:

e fitle (or short description): a short message summarizing the contents of the bug
report, written by the creator of the bug report;

e description (or long description): a longer message describing the details about
the bug;

e comments: short messages left by other users and developers about the bug

5.2.3 Mailing Lists and Chat Logs

Mailing lists (or discussion archives), along with the chat logs (or chat archives)
are archives of the textual communication between developers, managers, and other
project stakeholders [775]. The mailing list is usually comprised of a set of time-
stamped email messages, which contain a header (containing the sender, receiver(s),
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and time stamp), a message body (containing the unstructured textual content of the
email), and a set of attachments (additional documents sent with the email). The
chat logs contain the record of the instant-messaging conversations between project
stakeholders, and typically contain a series of time-stamped, author-stamped text
message bodies [103, 776, 777]. The main unstructured data of interest here are the
message bodies.

5.2.4 Revision Control System

A revision control system maintains and records the history of changes (or edits) to a
repository of documents. Developers typically use revision control systems to main-
tain the edits to source code. Most revision control systems (including CVS [95],
Subversion (SVN) [685]), and Git [110]) allow developers to enter a commit mes-
sage when they commit a change into the repository, describing the change at a high
level. These unstructured commit messages are of interest to researchers because
taken at an aggregate level, they describe how the source code is evolving over time.

5.2.5 Requirements and Design Documents

Requirements documents, usually written in conjunction with (or with approval
from) the customer, are documents that list the required behavior of the software
system [514]. The requirements can be categorized as either functional, which spec-
ify the “what” of the behavior of the program, or non-functional, which describe the
qualities of the software (e.g., reliability or accessibility). Most often, requirements
documents take the form of natural language text.

Design documents are documents that describe the overall design of the software
system, including architectural descriptions, important algorithms, and use cases.
Design documents can take the form of diagrams, such as UML diagrams [303], or
natural language text.

5.2.6 Software System Repositories

A software system repository is a collection of (usually open source) software sys-
tems. These collections often contain hundreds or thousands of systems whose
source code can easily be searched and downloaded for use by interested third par-
ties. Popular repositories include SourceForge® and Google Code*. Each software
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Fig. 5.1: The process of mining unstructured software repositories. First, the un-
structured data is preprocessed using one or more NLP techniques. (See Figure 5.2
for an example.) Then, various IR models are built. Finally, the software engineering
(SE) task can be performed.

system in the repository may contain any of the above unstructured repositories:
source code, bug databases, mailing lists, revision control databases, requirements
documents, or design documents.

5.3 Tools and Techniques for Mining Unstructured Data

To help combat the difficulties inherent to unstructured software repositories, re-
searchers have used and developed many tools and techniques. No matter the soft-
ware repository in question, the typical technique follows the process depicted in
Figure 5.1. First, the data is preprocessed using one or more Natural Language Pro-
cessing (NLP) techniques. Next, an information retrieval (IR) model or other text
mining technique is applied to the preprocessed data, allowing the software engi-
neering task to be performed. In this section, we outline techniques for preprocess-
ing data, and introduce common IR models.

5.3.1 NLP Techniques for Data Preprocessing

Preprocessing unstructured data plays an important role in the analysis process. Left
unprocessed, the noise inherent to the data will confuse and distract IR models and
other text mining techniques. As such, researchers typically use NLP techniques to
perform one or more preprocessing steps before applying IR models to the data. We
describe general preprocessing steps that can be applied to any source of unstruc-
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Fig. 5.2: An illustration of common NLP preprocessing steps. All steps are optional,
and other steps exist.

tured data, and then outline more specific preprocessing steps for source code and
email.

5.3.1.1 General Preprocessing Steps

Several general preprocessing steps can be taken in an effort to reduce noise and
improve the resulting text models built on the input corpus. These steps are depicted
in Figure 5.2.

e Tokenization. The original stream of text is turned into tokens. During this step,
punctuation and numeric characters are removed.

o Identifier splitting. Identifier names (if present) are split into multiple parts
based on common naming conventions, such as camel case (oneTwo), un-
derscores (one_two), dot separators (one.two), and capitalization changes
(ONETwo). We note that identifier splitting is an active area of research, with
new approaches being proposed based on speech recognition [551], automatic
expansion [501], mining source code [274], and more.

e Stop word removal. Common English-language stop words (e.g., “the”, “it”,
“on”) are removed. In addition to common words, custom stop words such as
domain-specific jargon, can be removed.

e Stemming. Word stemming is applied to find the morphological root of each
word (e.g., “changing” and “changes” both become “chang”), typically using the
Porter algorithm [692], although other algorithms exist.

e Pruning. The vocabulary of the resulting corpus is pruned by removing words
that occur in, for example, over 80% or under 2% of the documents [554].

5.3.1.2 Source Code Preprocessing

If the input data is source code, the characters related to the syntax of the program-
ming language (e.g., “&&”, “—>") are often removed, and programming language
keywords (e.g., “1£”, “while”) are removed. These steps result in a dataset con-

taining only the comments, identifiers, and string literals. Some research also takes
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steps to remove certain comments, such as copyright comments or unused snippets
of code. The main idea behind these steps is to capture the semantics of the de-
velopers’ intentions, which are thought to be encoded within the identifier names,
comments, and string literals in the source code [695].

5.3.1.3 Email Preprocessing

Preprocessing email is an ongoing research challenge [103, 775], due to the complex
nature of emails. The most common preprocessing steps include:

e Detecting and removing noise: header information in replies or forwards; previ-
ous email messages; and signature lines [825].

e Isolating source code snippets or stack traces [53, 102], so that they can either be
removed or treated specially. We discuss this step in more detail in Section 5.4.7.

5.3.1.4 Tools

Many researchers create their own preprocessing tools, based on commonly avail-
able toolkits such as the NLTK module in Python [111] and TXL [198] for parsing
source code. The authors of this chapter have released their own tool, called lscps,
that implements many of the steps described above.

5.3.2 Information Retrieval

“Information retrieval (IR) is finding material (usually documents) of an unstruc-
tured nature (usually text) that satisfies an information need from within large col-
lections (usually stored on computers).”

— Manning [557, p. 1]

IR is used to find specific documents of interest in a large collection of docu-
ments. Usually, a user enters a query (i.e., a text snippet) into the IR system, and
the system returns a list of documents related to the query. For example, when a
user enters the query “software engineering” into the Google IR system, it searches
every web page ever indexed and returns those that are somehow related to software
engineering.

IR models—the internal workings of IR systems—come in many forms, from
basic keyword-matching models to statistical models that take into account the lo-
cation of the text in the document, the size of the document, the uniqueness of the
matched term, and even whether the query and document contain shared topics of
interest [948]. Here, we briefly describe three popular IR models: the Vector Space

5 github.com/doofuslarge/lscp
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Model, Latent Semantic Indexing, and latent Dirichlet allocation. A full treatment of
each of these models is beyond the scope of this chapter. Instead, we aim to capture
the most essential aspects of the models.

5.3.2.1 The Vector Space Model

The Vector Space Model (VSM) is a simple algebraic model based on the term-
document matrix A of a corpus [741]. A is an m X n matrix, where m is the num-
ber of unique terms, or words, across n documents. The i”ﬂ j”’ entry of A is the
weight of term w; in document d; (according to some weighting function, such as
term-frequency). VSM represents documents by their column vector in A: a vector
containing the weights of the words present in the document, and Os otherwise. The
similarity between two documents (or between a query and a document) is calcu-
lated by comparing the similarity of the two column vectors of A. Example vector
similarity measures include Euclidean distance, cosine distance, Hellinger distance,
or KL divergence. In VSM, two documents will only be deemed similar if they con-
tain at least one shared term; the more shared terms they have, and the higher the
weight of those shared terms, the higher the similarity score will be.

VSM improves over its predecessor, the Boolean model, in two important ways.
First, VSM allows the use of term weighting schemes, such as tf-idf (term frequency,
inverse document frequency) weighting. Weighting schemes help to downplay the
influence of common terms in the query and provide a boost to documents that
match rare terms in the query. Another improvement is that the relevance between
the query and a document is based on vector similarity measures, which is more
flexible than the strict Boolean model [741].

Tools. Popular tools implementing VSM include Apache Lucene® and gensim’.

5.3.2.2 Latent Semantic Indexing

Latent Semantic Indexing (LSI) (or Latent Semantic Analysis (LSA)) is an informa-
tion retrieval model that extends VSM by reducing the dimensionality of the term-
document matrix by means of Singular Value Decomposition (SVD) [232]. During
the dimensionality reduction phase, terms that are related (i.e., by co-occurrence)
are grouped together into topics. This noise-reduction technique has been shown
to provide increased performance over VSM for dealing with polysemy and syn-
onymy [57], tWwo common issues in natural language.

SVD is a factorization of the original term-document matrix A that reduces its
dimensionality by isolating its singular values [740]. Since A is likely to be sparse,
SVD is a critical step of the LSI approach. SVD decomposes A into three matrices:

6 lucene. apache.org
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A=TSD", where T is an m by r = rank(A) term-topic matrix, S is the r by r singular
value matrix, and D is the n by r document-topic matrix.

LSI augments the reduction step of SVD by choosing a reduction factor, K, which
is typically much smaller than the r, the rank of the original term-document matrix.
Instead of reducing the input matrix to » dimensions, LSI reduces the input matrix
to K dimensions. There is no perfect choice for K, as it is highly data- and task-
dependent. In the literature, typical values range between 50-300.

Asin VSM, terms and documents are represented by row and column vectors, re-
spectively, in the term-document matrix. Thus, two terms (or two documents) can be
compared by some distance measure between their vectors (e.g., cosine similarity)
and queries can by formulated and evaluated against the matrix. However, because
of the reduced dimensionality of the term-document matrix after SVD, these mea-
sures are well equipped to deal with noise in the data.

Tools. For LSI, popular implementations include gensim and R’s LSA package.

5.3.2.3 Latent Dirichlet Allocation

Latent Dirichlet allocation (LDA) is a popular probabilistic topic model [117] which
takes a different approach to representing documents than previous models. The
main idea behind LDA is that it models each document as a multi-membership mix-
ture of K corpus-wide topics, and each topic as a multi-membership mixture of the
terms in the corpus vocabulary. This means that there is a set of topics that describe
the entire corpus. Each document is composed of one or more than one of these.
Each term in the vocabulary can be contained in more than one of these topics.
Hence, LDA is able to discover a set of ideas or themes that well describe the entire
corpus [116].

LDA is based on a fully generative model that describes how documents are cre-
ated. Informally stated, this generative model makes the assumption that the corpus
contains a set of K corpus-wide topics, and that each document is comprised of var-
ious combinations of these topics. Each term in each document comes from one of
the topics in the document. This generative model is formulated as follows:

e Choose a topic vector 6; ~ Dirichlet() for document d.
e For each of the N terms w; in d:

— Choose a topic z; ~ Multinomial(6,).
— Choose a term w; from p(w;i|z, B).

Here, p(wj|zx, B) is a multinomial probability function, ¢ is a smoothing parameter
for document-topic distributions, and B is a smoothing parameter for topic-term
distributions.

Like any generative model, the task of LDA is that of inference: given the terms
in the documents, which topics did they come from, and what are the topics them-
selves? LDA performs inference with latent variable models (or hidden variable
models), which are machine learning techniques devised for just this purpose: to
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final File file;
if (useFilebialog) {
getFileDialog().setvisible(true);
if (getrilepialog(Q).getFile() != null) {
file = new File(getFileDpialog().getDirectory(), getFilebialog().getFile());
} else {
file = null;

}
} else {
if (getFilechooser().showopenDialog(getVview() .getComponent()) == JFileChooser.APPROVE_OPTION){
file = getFilechooser().getSelectedrile(Q);
} else {
file = null;
¥

}
if (file 1= nul1) {
worker worker;
if (file.getName().toLowercCase().endswith(".svg") ||
file.getName() .toLowercase() .endswith(".svgz")) {
prototype = ((Figure) groupPrototype.clone());
worker = new Worker<brawing>() {

protected void done(Drawing drawing) {
CompositeFigure parent;
if (createdFigure == null) {
parent = (CompositeFigure) prototype;
for (Figure f : drawing.getchildren()) {
parent.basicAdd(f);

Fig. 5.3: Four example topics (their labels and top words) from JHotDraw 7.5.1. We
also show a snippet of the file SVGCreateFromFileTool. java, with terms
colored corresponding to the topic from which they came. In this example, no terms
come from the “Undoable Edit* or “Bezier Path* topics.

associate observed variables (here, terms) with latent variables (here, topics). A rich
literature exists on latent variable models [e.g., 74, 113]; for the purposes of this
chapter, we omit the details necessary for computing the posterior distributions as-
sociated with such models.

Figure 5.3 shows example topics discovered by LDA from version 7.5.1 of the
source code of JHotDraw®, a framework for creating simple drawing applications.
For each example topic, the figure shows an automatically-generated two-word topic
label and the top (i.e., highest probable) words for the topic. The topics span a range
of concepts, from opening files to drawing Bezier paths.

Tools. Implementations of LDA include MALLET ([575], gensim, R’s LDA and
topicmodels packages, lucene-lda, lda-c, and Stanford’s topic modeling toolbox’,
amongst others.

8 www. jhotdraw.org
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5.4 The State of The Art

Many software engineering tasks can be addressed or enhanced by incorporating
unstructured data. These tasks include concept and feature location, traceability
linking, calculating source code metrics, statistical debugging, studying software
evolution and trends, searching software repositories, managing bug databases and
requirements documents. In this section, we describe how these tasks can be per-
formed using IR models, while also pointing the interested reader to further reading
material.

5.4.1 Concept/Feature Location and AOP

The task of concept location (or feature location) is to identify the parts (e.g., docu-
ments or methods) of the source code that implement a given feature of the software
system [707]. This is useful for developers wishing to debug or enhance a given
feature. For example, if the so-called file printing feature contained a bug, then a
concept location technique would attempt to find those parts of the source code that
implement file printing, i.e., parts of the source code that are executed when the
system prints a file.

Concept location is a straightforward application of IR models on source code.
The general method is to preprocess the source code as outlined in Section 5.3.1,
build an IR model on the preprocessed source code, accept a developer query such
as “file printing”, and use the IR model to return a list of related source code doc-
uments. Table 5.1 summarizes various approaches and studies that have been per-
formed in this area. Many IR models have been considered, including VSM, LSI,
LDA, and combinations thereof. While most researchers report some success with
their concept location methods, there is not yet a consensus as to which IR model
performs best under all circumstances.

Related to concept location is aspect-oriented programming (AOP), which aims
to provide developers with the machinery to easily implement aspects of function-
ality whose implementation spans over many source code documents. Recently, a
theory has been proposed that says software concerns are equivalent to the latent
topics found by statistical topic models, in particular LDA [67]. In particular, as-
pects are exactly those topics that have a relatively high scatter metric value. After
testing this theory on a large set of open-source systems, researchers find that this
theory holds true most of the time [67].

5.4.2 Traceability Recovery and Bug Localization

An often-asked question during software development is: “Which source code doc-
ument(s) implement requirement X?” Traceability recovery aims to automatically
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uncover links between pairs of software artifacts, such as source code documents
and requirements documents. This allows a project stakeholder to trace a require-
ment to its implementation, for example to ensure that it has been implemented
correctly, or at all. Traceability recovery between pairs of source code documents
is also important for developers wishing to learn which source code documents are
somehow related to the current source code file being worked on. Bug localization
is a special case of traceability recovery in which developers seek traceability links
between bug reports and source code, to help locate which source code files might
be related to the bug report.

Typically, an IR model is first applied to the preprocessed source code, as well as
the documentation or other textual repository. Next, a similarity score is calculated
between each pair of documents (e.g., source code document and documentation
documents). A developer then specifies a desired value for the similarity thresh-
old, and any pair of documents with similarity greater than the threshold would be
presented.

Table 5.1 outlines related research in this area. LSI has been the IR model of
choice for many years, likely due to its success in other domains. Recently, however,
multiple IR models have been empirically compared, as outlined in Table 5.1. From
this research, we find that LDA is usually reported to achieve better results than LSI,
but not in every case. Additional research is required to further determine exactly
when, and why, one IR model outperforms another.

5.4.3 Source Code Metrics

Bug prediction (or defect prediction or fault prediction) tries to automatically predict
which entities (e.g., documents or methods) of the source code are likely to contain
bugs. This task is often accomplished by first collecting metrics on the source code,
then training a statistical model to the metrics of documents that have known bugs,
and finally using the trained model to predict whether new documents will contain
bugs.

Often, the state-of-the-art in bug prediction is advanced by the introduction of
new metrics. An impressive suite of metrics has thus far been introduced, counting
somewhere in the hundreds. For example, the coupling metric measures how inter-
dependent two entities are to each other, while the cohesion metric measure how
related the elements of an entity are to each other. Highly coupled entities make
maintenance difficult and bug-prone, and thus should be avoided. Highly cohesive
entities, on the other hand, are thought to follow better design principles.

The majority of metrics are measured directly on the code (e.g., code complex-
ity, number of methods per class) or on the code change process (methods that are
frequently changed together, number of methods per change). Recently, researchers
have used IR models to introduce semantic or conceptual metrics, which are mostly
based on the linguistic data in the source code. Table 5.1 lists research that uses IR
models to measure metrics on the linguistic data. Overall, we find that LSI-metrics
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have been used with success, although more recent work reports that LDA-based
metrics can achieve better results.

5.4.4 Software Evolution and Trend Analysis

Analyzing and characterizing how a software system changes over time, or the soft-
ware evolution [506] of a system, has been of interest to researchers for many years.
Both how and why a software system changes can help yield insights into the pro-
cesses used by a specific software system as well as software development as a
whole.

To this end, LDA has been applied to several versions of the source code of a sys-
tem to identify the trends in the topics over time [525, 834, 835]. Trends in source
code histories can be measured by changes in the probability of seeing a topic at
specific version. When documents pertaining to a particular topic are first added
to the system, for example, the topics will experience a spike in overall probabil-
ity. Researchers have evaluated the effectiveness of such an approach, and found
that spikes or drops in a topic’s popularity indeed coincided with developer activity
mentioned in the release notes and other system documentation, providing evidence
that LDA provides a good summary of the software history [832].

LDA has also been applied to the commit log messages in order to see which
topics are being worked on by developers at any given time [401, 402]. LDA is
applied to all the commit logs in a 30 day period, and then successive periods are
linked together using a topic similarity score (i.e., two topics are linked if they share
8 out of their top 10 terms).

LDA has also been used to analyze the Common Vulnerabilities and Expo-
sures (CVE) database, which archives vulnerability reports from many different
sources [641]. Here, the goal is to find the trends of each vulnerability, in order to
see which are increasing and which are decreasing. Research has found that using
LDA achieves just as good results as manual analysis on the same dataset.

Finally, LDA has recently been used to analyze the topics and trends present
in Stack Overflow!?, a popular question and answer forum [75]. Doing so allows
researchers to quantify how the popularity of certain topics and technologies (e.g.:
Git vs. SVN; C++ vs. Java; iPhone vs. Android) is changing over time, bringing new
insights for vendors, tool developers, open source projects, practitioners, and other
researchers.

10 yww.stackoverflow.com


http://www.stackoverflow.com

5 Mining Unstructured Software Repositories 153

5.4.5 Bug Database Management

As bug databases grow in size, both in terms of the number of bug reports and
the number of users and developers, better tools and techniques are needed to help
manage their work flow and content.

For example, a semi-automatic bug triaging system would be quite useful for
determining which developer should address a given bug report. Researchers have
proposed such a technique, based on building an LSI index on the the titles and
summaries of the bug reports [7, 41]. After the index is built, various classifiers are
used to map each bug report to a developer, trained on previous bug reports and
related developers. Research reports that in the best case, this technique can achieve
45% classification accuracy.

Other research has tried to determine how easy to read and how focused a bug
report is, in an effort to measure the overall quality of a bug database. Here, re-
searchers measured the cohesion of the content of a bug report, by applying LSI to
the entire set of bug reports and then calculating a similarity measure on each com-
ment within a single bug report [253, 524]. The researchers compared their metrics
to human-generated analysis of the comments and find a high correlation, indicating
that their automated method can be used instead of costly human judgements.

Many techniques exist to help find duplicate bug reports, and hence reduce the
efforts of developers wading through new bug reports. For example, Runeson et
al. [737] use VSM to detect duplicates, calling any highly-similar bug reports into
question. Developer can then browse the list to determine if any reports are actu-
ally duplicates. The authors preprocess the bug reports with many NLP techniques,
including synonym expansion and spell correction. Subsequent research also in-
corporates execution information when calculating the similarity between two bug
reports [907]. Other research takes a different approach and trains a discriminative
model, using Support Vector Machines, to determine the probability of two bug re-
ports being duplicates of each other [801]. Results are mixed.

Finally, recent work has proposed ways to automatically summarize bug reports,
based on extracting key technical terms and phrases [540, 709]. Bug summaries are
argued to save developers time, although no user studies have been performed.

5.4.6 Organizing and Searching Software Repositories

To deal with the size and complexity of large-scale software repositories, several
IR-based tools have been proposed, in particular tools for organizing and searching
such repositories.

MUDABIue is an LSI-based tool for organizing large collections of open-source
software systems into related groups, called software categories [454]. MUDABIue
applies LSI to the identifier names found in each software system and computes
the pairwise similarity between whole systems. Studies show that MUDABIue can
achieve recall and precision scores above 80%, relative to manually created tags of
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the systems, which are too costly to scale to the size of typical software repositories.
LACT, an LDA-based tool similar to MUDABIue, has recently been shown to be
comparable to MUDABIue in precision and recall [844].

Sourcerer is an LDA-based, internet-scale repository crawler for analyzing and
searching a large set of software systems. Sourcerer applies LDA and the Author-
Topic model to extract the concepts in source code and the developer contributions
in source code, respectively. Sourcerer is shown to be useful for analyzing systems
and searching for desired functionality in other systems [528, 529].

S3 is an LSI-based technique for searching, selecting, and synthesizing exist-
ing systems [694]. The technique is intended for developers wishing to find code
snippets from an online repository matching their current development needs. The
technique builds a dictionary of available API calls and related keywords, based on
online documentation. Then, developers can search this dictionary to find related
code snippets. LSI is used in conjunction with Apache Lucene to provide the search
capability.

5.4.7 Other Software Engineering Tasks

LSI has been used to detect high-level clones of source code methods by computing
the semantic similarity between pairs of methods [563]. Related work has used ICA
for the same purpose, arguing that since ICA can identify more distinct signals (i.e.,
topics) than LSI, then the conceptual space used to analyze the closeness of two
methods will be of higher effectiveness [345].

Aside from establishing traceability links from requirements to source code (de-
scribed previously in Section 5.4.2), researchers have proposed many techniques
to help manage and use the natural language text in requirements documents.
These techniques include generating UML models from requirements [231], detect-
ing conflicts in aspect-oriented requirements [744], identifying aspects in require-
ments [742], and assessing the quality of requirements[672].

IR methods require many parameter values to be configured before using. Var-
ious methods have been proposed to (semi-)automatically tune the parameters for
software engineering datasets [80, 346].

Researchers are beginning to consider how discussion forums and question and
answer websites might help developers. For example, new tools include finding
relevant answers in formats [343], finding experts for a particular question [519],
analyzing the topics and trends in Stack Overflow [75], and semi-automatically ex-
tracting FAQs about the source code [389].

Methods that incorporate email are receiving more attention from researchers.
For example, lightweight IR methods have been used to link emails to their dis-
cussed source code entities [55]. In similar work, more heavy-weight classification
techniques are used to extract source code from emails, which can be a useful first
step for the aforementioned linking methods [54]. This technique was later revised
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to use island grammars [53]. Finally, spell checkers [104] and clone detection tech-
niques [102] have been used to locate and extract source code in emails.

Statistical debugging is the task of identifying a problematic piece of code, given
a log of the execution of the code. Researchers have proposed Delta LDA, a variant
of LDA, to perform statistical debugging [33]. Delta LDA is able to model two types
of topics: usage topics and bug topics. Bug topics are those topics that are only found
in the logs of failed executions. Hence, Delta LDA is able to identify the pieces of
code that likely caused the bugs.

LSI has been used as a tool for root cause analysis (RCA), i.e., identifying the
root cause of a software failure [132]. The tool builds and executes a set of test sce-
narios that exercise the system’s methods in various sequences. Then, the tool uses
LSI to build a method-to-test co-occurrence matrix, which has the effect of clus-
tering tests that execute similar functionalities, helping to characterize the different
manifestations of a fault.

Other tasks considered include automatically generating comments in source
code [794], web service discovery [931], test case prioritization [833], execution
log reduction [946], and analyzing code search engine logs [60, 61].

5.5 A Practical Guide: IR-based Bug Localization

In this section, we present a simple, yet complete tutorial on using IR models on
unstructured data to perform bug localization, the task of identifying those source
code files that are related to a given bug report. To make the tutorial concrete, we
will use the source code and bug reports of the Eclipse IDE'!, specifically the JDT
submodule.

To make the tutorial easily digestible, we will make the following simplifying
assumptions:

e Only a single version of the source code will be analyzed, in our case, the snap-
shot of the code from July 1, 2009. Methods exist to analyze all previous versions
of the code [832], but require some extra steps.

e Only basic source code representations will be considered. More advanced rep-
resentations exist [836], such as associating a source code document with all the
bug reports with which it has been previously associated.

e For simplicity, we will assume that we have access to all the source code and
bug reports on the local hard drive. In reality, large projects may have their docu-
ments controlled by content management servers on the cloud, or via some other
mechanism. In these cases, the steps below still apply, but extra care must be
taken when accessing the data.

The basic steps to perform bug localization include (a) collecting the data, (b)
preprocessing the data, (c) building the IR model on the source code, (d) and query-

1 yww . eclipse.org
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Listing 5.1: An example Eclipse bug report (#282770) in XML.

<bug>

_<bug_id>282770</bug_1id>
_<creation_ts>2009-07-07_23:48:32</creation_ts>
_<short_desc>
_.Dead_,code_detection_should_have_specific_@SuppressWarnings
_</short_desc>

_<long_desc>

. As_far_as_I_can_tell there_is_no_option_to_selectively, turn_off
_.dead_code_detection warnings,_using_the_@SuppressWarnings
_.annotation.__The_feature_either_has_to_be_disabled_...
_</long_desc>

</bug>

ing the IR model with a particular bug report and viewing the results. We now ex-
pand on each step in more detail.

5.5.1 Collect data

Let’s assume that that source code of Eclipse JDT is available in a single directory,
src, with no subdirectories. The source code documents are stored in their native
programming language, Java. There are 2,559 source code documents, spanning
dozens of packages, with a total of almost 500K source lines of code.

We also assume that the bug reports are available in a single directory, bugs,
with no subdirectories. Each bug report is represented in XML. (See Listing 5.1
for an example.) The Eclipse JDT project has thousands of bug reports, but in this
tutorial we will focus on only one, shown in Listing 5.1.

5.5.2 Preprocess the source code

Several decisions must be made during the phase of preprocessing the source code.
Which parts of the source code do we want to include when building the IR model?
Should we tokenize identifier names? Should we apply morphological stemming?
Should we remove stopwords? Should we remove very common and very uncom-
mon words?

The correct answers are still an active research area, and may depend on the
particular project. In this tutorial, we’ll assume that identifiers, comments, and string
literals are desired; we will tokenize identifier names; we will stem; and finally, we
will remove stopwords.
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Listing 5.2: Using lcsp to preprocess the source code in the src directory.

#!/usr/bin/perl

use lscp;

my S$preprocessor = lscp->nhew;
Spreprocessor—->setOption("isCode", 1);
Spreprocessor—->setOption("doIdentifiers", 1);
Spreprocessor—>setOption("doStringLiterals", 1);
Spreprocessor—->setOption ("doComments", 0);
Spreprocessor—>setOption ("doTokenize", 1);
Spreprocessor—->setOption ("doStemming", 1);
Spreprocessor—>setOption ("doStopwordsKeywords"™, 1);
Spreprocessor—->setOption ("doStopwordsEnglish", 1);
Spreprocessor—>setOption ("inPath", "src");
Spreprocessor—->setOption ("outPath", "src-pre");

Spreprocessor—>preprocess () ;

To do so, we can use any of the tools mentioned in 5.3.1, such as lcsp or
TXL [198], or write our own code parser and preprocessor. In this chapter, we’ll
use lesp, and preprocess the source code with the Perl script shown in Listing 5.2.
The script specifies the preprocessing options desired, gives the path to the source
code (in our case, src), and specifies where the resulting files should be placed
(here, src—-pre). After running the Perl script shown Listing 5.2, we’ll have one
document in src—pre for each of the documents in src.

5.5.3 Preprocess the bug reports

As with source code, several decisions need to be made when preprocessing a bug
report. Should we include its short description only, long description only, or both?
If stack traces are present, should we remove them? Should we tokenize, stem, and
stop the words?

As with preprocessing source code, the best answers to these design decisions
are yet unknown. In this tutorial, we’ll include both the short and long description;
leave stack traces if present; and tokenize, stem, and stop the words. Note that it is
usually a good idea to perform the same preprocessing steps on the queries as we
did on the documents, as we have done here, so that the IR model is dealing with a
similar vocabulary.

To do the preprocessing, we again have a number of tools at our disposal. Here,
we’ll again use Iscp and write a simple Perl script similar to that shown in List-
ing 5.2. The only differences will be setting the options isCode to 0, inPath
to bugs, outPath to bugs—-pre, and removing the doStringLiterals and
doComments options, as the no longer apply. We leave the doIdentifiers
option, in case the bug report contains snippets of code that contain identifiers.
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Before inputting the bug reports into Iscp, we must first use a simple XML parser
to parse the bug report and strip out the text content from the two elements we desire,
<short_desc> and <long_desc>.

5.5.4 Build the IR model on the source code

In this tutorial, we’ll build an LDA model, one of the more advanced IR models. To
build the LDA model, we’ll use the lucene-lda tool'2, which is a tool to build and
query LDA indices from text documents using the Apache Lucene framework.

We use the command prompt to issue the following command, assuming we’re
in the lucene-tool’s base directory:

$ ./bin/indexDirectory —--inDir src-pre --outIndexDir \
out-lucene --outLDADir out-lda --K 64

We pass the src—pre directory as the input directory, and specify two output
directories, out—lucene and out-1da, where the Lucene index and LDA output
will be stored, respectively. We also specify the number of topics for the LDA model
to be 64 in this case, although choosing the optimal number of topics is still an active
area of research. We’ll use the tool’s default behavior for the o and B smoothing
parameters of LDA, which will use heuristics to optmize these values based on the
data.

The tool will read all the files in the input directory and run LDA using the
MALLET toolsuite. MALLET will create files to represent the topic-term matrix
(i.e., which terms are in which topics) and the document-topic matrix (i.e., which
topics are in which source code documents). The lucene-1da tool will use these files,
along with the Lucene API, to build an index that can be efficiently stored and
queried, which will be placed in the out—1ucene directory.

5.5.5 Query the LDA model with a bug report

Now that the index is built, it is ready to be queried. Although we have the ability to
query the index with any terms or phrases we desire, in the task of bug localization,
the terms come from a particular bug report. Since we’ve already preprocessed all of
the bug reports, we can choose any one and use it as a query to our pre-built index:

$ ./bin/queryWithLDA --inIndexDir out-lucene —-intLDADir \
out-lda --query bugs-pre/#282770 --resultFile results.dat

12 github.com/doofuslarge/lucene-1da
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Listing 5.3: Results of querying the LDA model with Eclipse bug report #282770.
Each row shows the similarity score between the bug report and a source code doc-
ument in the index.

.75, compiler.impl.CompilerOptions.java

.00, internal.compiler.batch.Main. java

.57, internal.formatter.DefaultCodeFormatterOptions. java

.61, jdt.ui.PreferenceConstants. java

.04, internal.compiler.ast.BinaryExpression.java

.93, core.NamingConventions.java

.85, internal.ui.preferences.ProblemSeveritiesConfigBlock.java
.74, internal.formatter.DefaultCodeFormatter.java

.59, internal.ui.text.java.SmartSemicolonAutoEditStrategy.java

NN WWR WUV

Here, we specify the names of the directories holding the Lucene index and sup-
porting LDA information, the name of the query (in this case, the preprocessed
version of the bug report shown in Listing 5.1), and the file that should contain the
results of the query.

The tool reads in the query and the Lucene index, and uses the Lucene API for
execute the query. Lucene efficiently computes a similarity score between the query
and each document, in this case based on their shared topics. Thus, the tool infers
which topics are in the query, computes the conditional probability between the
query and each document, and sorts the results.

After running the query, the tool creates the results.dat file, which con-
tains the similarity score between the query and each document in the index. List-
ing 5.3 shows the top 10 results for the this particular query, ordered by the similarity
score. These top files have the most similarity with the query, and thus should hope-
fully be relevant for fixing the given bug report. Indeed, as we know from another
study [836], the file internal.compiler.batch.Main. java was changed
in order to fix bug report #282770. We see this file as appearing second in the list in
Listing 5.3.

The above result highlights the promising ability of IR models to help with the
bug localization problem. Out of the 2,559 source code documents that may be rel-
evant to this bug report, the IR model was able to pinpoint the most relevant file on
its second try.

IR models are not always this accurate. Similar to issuing a web search and not
being able to find what you’re looking for, IR-based bug localization sometimes
can’t pinpoint the most relevant file. However, research research has found that IR
models can pinpoint the most relevant file to a bug report within the top 20 results
up to 89% of the time [836], a result that is sure to aid developers quickly wade
through their thousands of source code files.
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5.6 Conclusions

Over the past decade, researchers and practitioners have started to realize the ben-
efits of mining their software repositories: using readily-available data about their
software projects to improve and enhance performance on many software evolution
tasks. In this chapter, we surveyed tools and techniques for mining the unstructured
data contained in software repositories.

Unstructured data brings many challenges, such as noise and ambiguity. How-
ever, as we demonstrated throughout this chapter, many software evolution tasks can
be enhanced by taking advantage of the rich information contained in unstructured
data, including concept and feature location, bug localization, traceability linking,
computing source code metrics to assess source code quality, and many more.

We focused our survey on natural language processing (NLP) techniques and in-
formation retrieval (IR) models, which were originally developed in other domains
to explicitly handle unstructured data, and have been adopted by the software engi-
neering community. NLP techniques, such as tokenization, identifier splitting, stop
word removal, and morphological stemming, can significantly reduce the noise in
the data. IR models, such as the Vector Space Model, Latent Semantic Indexing,
and latent Dirichlet allocation, are fast and simple to compute and bring useful and
practical results to software development teams. Together, NLP and IR models are
an effective approach for researchers and practitioners to mine unstructured software
repositories.

Research in the area of mining unstructured software repositories has become
increasingly active over the past years, and for good reason. We expect to see con-
tinued advances in all major areas in the field: better NLP techniques for preprocess-
ing source code, bug reports, and emails; better tailoring of existing IR models to
unstructured software repositories; and novel applications of IR models in to solve
software engineering tasks.
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Table 5.1: Applications of IR models. A (C) indicates that the work compares the
results of multiple IR models. Continued in Table 5.2.

Application Summary

Concept loc. First to use LSI for concept location. LSI provides better context than
Markus et al. existing concept location methods, such as regular expressions and de-
[564, 565] pendency graphs. Using LSI for concept location in object-oriented (OO)

code is useful, contrary to previous beliefs.

Concept loc. (C)  Tests two IR techniques, VSM and LSI, against NLP techniques. NLP
Cleary et al. [192] techniques do not offer much improvement over the two IR techniques.

Concept loc. Considers the effects of various preprocessing steps, using LSI. Both
van der Spek et al. splitting and stopping improve results, and term weighting plays an im-
[791] portant role, but no weighting scheme was consistently best.

Concept loc. Uses ICA, a model similar to LSI, to locate concepts in source code. The

Grant et al. [347]  viability of ICA is demonstrated through a case study on a small system.

Concept loc. Uses LDA to locate concepts in source code. Demonstrates how to group
Compare Models related source code documents based on the documents’ topics. Also
Linstead et al. uses a variant of LDA, the Author-Topic model [731], to extract the
[526, 527] relationship between developers (authors) and source code topics. The
technique allows the automated answer of “who has worked on what”.

Concept loc. Applies LDA to source code, using a weighting scheme for each key-
Maskeri et al. word in the system, based on where the keyword is found (e.g., class
[571] name vs. method name). The technique is able to extract business topics,

implementation topics, and cross-cutting topics from source code.

Concept loc. Combines LSI with various other models, such as Formal Concept Anal-
Poshyvanyk, Rev- ysis, dynamic analysis, and web mining algorithms (HITS and PageR-
elle et al. [696, ank). All results indicate that combinations of models outperform indi-
697,712, 713] vidual models.

Traceability Uses LSI to recover traceability links between source code and require-
Marcus et al. ments documents. Compared to VSM, LSI performs at least as well in
[566] all case studies.

Traceability Integrates LSI traceability into ADAMS, a software artifact management
De Lucia et al system. Also proposes a technique for semi-automatically finding an op-
[222-224] timal similarity threshold between documents. Finally, performs a hu-

man case study to evaluate the effectiveness of LSI traceability recovery.
LSI is certainly a helpful step for developers, but that its main drawback
is the inevitable trade off between precision and recall.

Traceability (C)  Evaluates various IR techniques for generating traceability links between
Hayes et al. [376] various high- and low-level requirements. While not perfect, IR tech-
niques provide value to the analyst.

Traceability Evaluates different thresholding techniques for LSI traceability recov-
Lormans et al. ering. Different linking strategies result in different results; no linking
[537-539] strategy is optimal under all scenarios. Uses LSI for constructing re-

quirement views. For example, one requirement view might display only
requirements that have been implemented.

Traceability Proposes a new technique, incremental LSI, to maintain traceability links
Jian et al. [440] as a software system evolves over time. Compared to standard LSI, in-
cremental LSI reduces runtime while still producing high quality links.
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Table 5.2: Continued from Table 5.1. Applications of IR models.

Application Summary

Traceability Develops an LSI-based tool to support auditors in locating documenta-
de Boer et al. tion of interest.

[220]

Traceability Introduces a tool, ReORe, to help decide whether code should be updated

Antoniol et al.
[39]

or rewritten. ReORe uses static (LSI), manual, and dynamic analysis to
create links between requirements and source code.

Traceability
McMillan et al.
[580]

Combines LSI and Evolving Inter-operation Graphs to recover traceabil-
ity links. The combination modestly improves traceability results in most
cases.

Traceability (C)
Lukins et al. [544,
545]

Compares LSI and LDA for bug localization. After two case studies on
Eclipse and Mozilla, the authors find that LDA often outperforms LSI.

Traceability (C)
Nguyen et al
[644]

Introduces BugScout, an IR model for bug localization, which explicitly
considers past bug reports as well as identifiers and comments. BugScout
can improve performance by up to 20% over traditional LDA.

Traceability (C)
Rao et al. [708]

Compares several IR models for bug localization, including VSM, LSI,
and LDA, and various combinations. Simpler IR models (such as VSM)
often outperform more sophisticated models.

Traceability (C)
Copabianco et al.
[165]

Compares VSM, LSI, Jenson-Shannon, and B-Spline for recovering
traceability links between source code, test cases, and UML diagrams. B-
Spline outperforms VSM and LSI and is comparable to Jenson-Shannon.

Traceability (C)
Oliveto et al.
[661]

Compares Jenson-Shannon, VSM, LSI, and LDA for traceability. LDA
provides unique insights compared to the other three techniques.

Traceability (C)
Asuncion et
[49]

al.

Introduces TRASE, an LDA-based tool for prospectively, rather than
retrospectively, recovering traceability links. LDA outperforms LSI in
terms of precision and recall.

Fault detection
Marcus et al.
[567]

Introduces C3, an LSI-based class cohesion metric. Highly cohesive
classes correlate negatively with program faults.

Fault detection
Gall et al. [307]

Presents natural-language metrics based on design and requirements
documents. The authors argue that tracking such metrics can help de-
tect problematic or suspect design decisions.

Fault detection
Ujhazi et al. [864]

Defines two new conceptual metrics that measure the coupling and cohe-
sion of methods, both based on LSI. The new metrics provide statistically
significant improvements compared to previous metrics.

Fault detection
Liu et al. [533]

Introduces MWE, an LDA-based class cohesion metric, based on the
average weight and entropy of a topic across the methods of a class.
MWE captures novel variation in models that predict software faults.

Fault detection
Gethers et al.
[322]

Introduces a new coupling metric, RTC, based on a variant of LDA called
Relational Topic Models. RTC provides value because it is statistically
different from existing metrics.

Fault detection
Chen et al. [175]

Proposes new LDA-based metrics including: NT, the number of topics
in a file and NBT, the number of buggy topics in a file. These metrics
can well explain defects, while also being simple to understand.
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