Chapter 4

Search Based Software Maintenance:
Methods and Tools

Gabriele Bavota, Massimiliano Di Penta and Rocco Oliveto

Summary. Software evolution is an effort-prone activity, and requires developers
to make complex and difficult decisions. This entails the development of automated
approaches to support various software evolution-related tasks, for example aimed
at suggesting refactoring or remodularization actions. Finding a solution to these
problems is intrinsically NP-hard, and exhaustive approaches are not viable due to
the size and complexity of many software projects. Therefore, during recent years,
several software-evolution problems have been formulated as optimization prob-
lems, and resolved with meta-heuristics.

This chapter overviews how search-based optimization techniques can support
software engineers in a number of software evolution tasks. For each task, we illus-
trate how the problem can be encoded as a search-based optimization problem, and
how meta-heuristics can be used to solve it. Where possible, we refer to some tools
that can be used to deal with such tasks.
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4.1 Introduction

Software evolution activities require developers to take complex decisions, often
making choices among several possible solutions. For example, let us consider a
scenario where, because of maintenance and evolution tasks, the system architecture
is deteriorated, resulting in lowly-cohesive and strongly-coupled modules. To miti-
gate such a problem, developers can reorganize the system decomposition. However,
even for a relatively small system, the number of possible choices to improve the
architecture can be very high, and such a number exponentially increases with the
system size. Similar considerations apply to other evolution-related activities, such
as selecting and performing a refactoring, or fixing a bug. In general, as other activ-
ities like testing, software evolution requires software engineers to solve problems
for which finding a solution is NP-hard [312].

For such reasons, the use of search-based optimization techniques can be a very
promising and effective way to deal with many software evolution activities. All that
is required is to provide:

e a problem representation, i.e., to encode the activity through an appropriate data
structure allowing the heuristics to (i) evaluate the quality of a possible problem
solution, and (ii) produce new solutions;

e a way to quantitatively evaluate the quality of a given solution, often referred as
fitness or objective function; and

e a set of operators to produce new solutions starting from existing ones.

The idea of solving software engineering problems using search-based optimiza-
tion techniques has been named “Search-Based Software Engineering” [190]. The
potentials and challenges of applying search-based optimization techniques to vari-
ous kinds of software engineering problems have been largely discussed by Harman
[365]. Also, Harman has outlined how SBSE can support various software mainte-
nance [364] and program comprehension [366] tasks. Among others, there are two
aspects that make the application of SBSE to software evolution special. First, many
evolution decisions imply balancing across conflicting objectives. To this aim, it can
be desirable to use multi-objective optimization, which instead of producing solu-
tions (near) optimizing a single objective, produce a set of solutions—that, as will
be explained in Section 4.2—are “Pareto-optimal” i.e., there is no solution among
the found ones that is better than others with respect to all objectives. Second,
many software evolution activities are highly human intensive, i.e., (i) automatic
approaches must be able to account for developers’ rationale, and (ii) it is hardly
possible to find a completely automatic way to evaluate the quality of a solution. To
this aim, it is necessary to find ways to encode rationale in the meta-heuristic fitness
functions, as well as to use “interactive” optimization techniques [818] for which
the fitness function is (partially) evaluated by humans.

This chapter describes the main achievements of SBSE techniques in the field of
software maintenance and evolution. Specifically, we describe work related to:
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o (Re)modularization approaches, i.e., approaches aimed at identifying and cre-
ating modules that achieve certain properties, such as high cohesion and low
coupling, or aimed at reducing the application footprint.

e Software analysis and transformation approaches, aimed at automatically mod-
ifying source code for various specific purposes, for example to improve main-
tainability or fixing bugs.

e Refactoring approaches, aimed at automatically suggesting and applying refac-
toring activities, e.g., those proposed by Fowler [301]. This is a special case of
code transformation, which does not alter the semantic of the source code, but
improves its maintainability. Given the amount of work in this area, we discuss it
in a separate section rather than together with other transformation approaches.

It is important to note that this chapter is not a systematic literature review on
search-based software maintenance and evolution. There are also other pieces of
work related to the use of optimization techniques in the area of software evolu-
tion. Due to space limitation, it is not possible to describe all of them. We chose
to describe the aforementioned dimension because these are the one that have been
investigated the most in past and recent years, also according to the SEBASE repos-
itory!, which collects a large set of references for SBSE papers.

Instead, the chapter describes the available SBSE techniques to be used for var-
ious kinds of problems, explaining how the problem needs to be represented, how
solutions can be evaluated through a fitness function, which are the operators to be
used, and the meta-heuristics that work better. Also, wherever possible, the chapter
points out available tools for each specific problem. In summary, the chapter aims to
be a guideline for practitioners interested to apply SBSE techniques in the context of
software evolution, as well as for PhD students interested to work on such a research
topics, and for instructors that need to introduce such techniques in the context of
software engineering or software evolution courses, especially in graduate curricula.

The chapter is organized as follows. Section 4.2 provides basic background no-
tions about the optimization techniques used to solve software evolution problems.
Section 4.3, Section 4.4, and Section 4.5 describe search-based approaches for soft-
ware modularization, source code transformation, and refactoring, respectively. Sec-
tion 4.6 concludes the chapter.

4.2 An Overview of Search-Based Optimization Techniques

This section provides some background on search-based optimization techniques
that have been used to solve the various software maintenance problems described
in this chapter. Further details can be found in the books by Goldberg [337] and by
Michalewicz and Fogel [607].

For the techniques described below, the problem is encoded in a representation
(named chromosome), an instance (solution) of which (named genotype) represents

! http://crestweb.cs.ucl.ac.uk/resources/sbse_repository/
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an instance of the real world problem to be solved (referred to as phenotype). The
quality of a solution (i.e., of a genotype) is evaluated by means of a fitness function.

2 Pseudo-code of iterated Hill Climbing (from [607]).

1: t<0
2: initialize best
3: while t < MAX do

4: local — FALSE

5: select a current point v, at random

6: evaluate v,

7 while not local do

8: select all new points in the neighborhood of v,
9: select the point v, from the new points with the best value of evaluation function eval
10: if eval(vy) is better than eval(v.) then

11: Ve — Wy

12: else

13: local — TRUE

14: end if

15: end while

16: te—t+1

17: if v, is better than best then

18: best < v,

19: end if

20: end while

4.2.1 Hill Climbing

Hill Climbing (HC)—see Algorithm 2—is a “local” search method, where the
search proceeds from a randomly chosen point (solution) v, in the search space (line
5) by considering the neighbors of the point. Different families of HC exist based
on how neighbors are explored. For example, stochastic HC identifies a neighbor
by randomly mutating genes of the individual, i.e., by producing a slightly differ-
ent solution. An iterated HC, as the one shown in Algorithm 2, iterates across all
possible neighbors of a given solution (line 9). Once a fitter neighbor (v,) is found
(lines 10-11), this becomes the current point in the search space and the process is
repeated. If no fitter neighbor is found (line 13), then the search terminates and a
maximum has been found (by definition). To avoid local maxima, the HC algorithm
is restarted multiple () times from a random point (lines 7-20).

Multiple ascent HC is a variant of the standard HC algorithm designed to es-
cape from local optima. In particular, when a local optimum is reached, a set of
random changes are performed in order to move away from that point and continue
to explore the solution space. This procedure is repeated n times, depending on a
parameter called number of descents, while the number of random changes applied
is set through the descent depth parameter.
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3 Pseudo-code of Simulated Annealing (from [607]).

1: t <0
2: T — Tyax
3: randomly select a current point v,
4: while halting-criterion not met do
5: while termination-condition not met do
6: select a new point v, in the neighborhood of v,
7: if eval(v.) < eval(v,) then
8: Ve — Wy
9: else i) evalie)
10: if random[0,1) <e— 7 then
11: Ve — Wy
12: end if
13: end if

14: end while
15: T —g(T,t)
16: t—t+1
17: end while

4.2.2 Simulated Annealing

Simulated Annealing (SA) [604], like HC, is a local search method. As it can be
seen from Algorithm 3, the algorithm is pretty similar to HC. However, one can
move from a solution v, to a neighbor v, if (i) vc has a better fitness value than
v, (lines 7-8) or (ii) one can move from v, to a less fit solution v, (lines 10-11) if
p < m, where p is a random number in the range [0...1] and m = A5/ The
parameter 7' (temperature) regulates the likelihood to move to a less fit solution and
it decreases (“cools™) over time according to a function g(7,#) (line 15). A typical
cooling mechanism is given by T = Tyax - €' (Tax is the starting temperature (line
2), r is the cooling factor, t the number of iterations), and A fitness is the difference
between the fitness values of the two neighbor individuals being compared. The
effect of cooling in SA is that the probability of following an unfavorable move is
reduced. This (initially) allows the search to move away from local optima in which
the search might be trapped. As the simulation “cools”, the search becomes more
and more equivalent to a simple hill climb.
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4 Pseudo-code of Particle Swarm Optimization.

I: fori=1—ndo

2: initialize the particle’s position x;

3 set the particle’s best known position p; < x;
4 initialize the particle’s velocity v;
5: if eval(p;) < eval(g) then
6: g pi
7: end if

8: end for

9: while termination-condition not met do
10: fori=1—ndo

11: update particle’s velocity v;
12: Xj—xi+v;

13: if eval(x;) < eval(p;) then
14: Di < X;

15: if eval(p;) < eval(g) then
16: 8§ Di

17: end if

18: end if

19: end for

20: end while

4.2.3 Particle Swarm Optimization

Particle Swarm Optimization (PSO) was introduced by Kennedy and Ebhart in 1995
[456]. The basic concept of the algorithm is to create a swarm of particles which
move in the space around them (the problem space) searching for their goal, the
place which best suits their needs given by a fitness function. A nature analogy with
birds is the following: a bird flock flies in its environment looking for the best place
to rest. The best place can be a combination of characteristics like space for all the
flock, food access, water access or any other relevant characteristics.

PSO is described in the pseudocode of Algorithm 4. First, an initial population
(named swarm) of n random solutions (named particles) is created. Every particle
in the swarm is described by its position and velocity. A particle position represents
a possible solution to the optimization problem, and velocity represents the search
distances and directions that guide particle flying. At each particle is assigned an
initial position x; (line 2), which is also the best known position p; known so far
(line 3), and an initial velocity v; (line 4). Then, each particle flies in the problem
space with a velocity that is regularly adjusted according to the composite flying
experience of the particle and some, or all, the other particles (line 12). Given the
new velocity, the position is updated accordingly (line 12). The fitness of each parti-
cle (that depends on the position x;) is evaluated and, if needed, the best position p;
is updated (lines 13-14). Similarly, the overall best position among all particles g is
updated (lines 15-16). The process of updating particles’ velocity and position (lines
9-20) is repeated until a termination criterion (e.g., maximum number of iterations)
is met.
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5 Pseudo-code of a Genetic Algorithm (from [607]).

I: t <0

2: initialize a population P(¢) of n individuals

3: evaluate P(r)

4: while termination-condition not met do

S5: t—t+1

6: select a subset P’'(t — 1) of individuals from P(z — 1) to reproduce
7: apply crossover to P'(r — 1) and introduce offspring in P(r)

8: mutate individuals in P(t)

9: evaluate P(t)
10: end while

4.2.4 Genetic Algorithms

Genetic Algorithms (GAs) [337] belong to the family of evolutionary algorithms
that, inspired by the theory of natural evolution, simulate the evolution of species
emphasizing the law of survival of the strongest to solve, or approximately solve,
optimization problems. Thus, these algorithms create consecutive populations of in-
dividuals, considered as feasible solutions for a given problem (phenotype) to search
for a solution which gives the best approximation of the optimum for the problem
under investigation. To this end, a fitness function is used to evaluate the goodness
(i.e., fitness) of the solutions represented by the individuals, and genetic operators
based on selection and reproduction are employed to create new populations (i.e.,
generations).

As shown in Algorithm 5, the elementary evolutionary process of these algo-
rithms is composed of the following steps:

1. a random initial population P(0) is generated (line 1) and a fitness function is
used to assign a fitness value to each individual (line 2);

2. givent the current generation (line 3), some individuals of a population P'(f — 1)
are selected to form the parents (line 6) and new individuals are created by ap-
plying genetic operators (i.e., crossover and mutation). The crossover operator
(line 7) combines two individuals (i.e., parents) to form one or two new indi-
viduals (i.e., offspring), while the mutation operator (line 8) is used to randomly
modify an individual. Then, to determine the individual that will survive among
the offspring and their parents a survivor selection is applied according to the
individuals’ fitness values (line 9);

3. step 2 is repeated until stopping criteria hold.

When designing a GA, the crossover and mutation operators play a crucial role.
Different crossover operators can be used. Among the most used, there are:

e One-point crossover. A point in the chromosome of the two parents is selected,
and all the genes beyond that point in either chromosome are swapped between
the two parents.
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e Two-point crossover. Two points in the chromosome of the two parents are se-
lected, and everything between the two points is swapped between the parents,
generating the offspring.

e Uniform crossover. A fixed mixing ratio between two parents is used. Unlike one-
and two-point crossover, the uniform crossover enables the parent chromosomes
to contribute the gene level rather than the segment level.

As for the mutation, the selection of the operator depends on the representation
of the solution. For integer and float genes, a widely-used operator is the uniform
mutation. Using such an operator, the value of a chosen gene is replaced with a
uniform random value selected between the user-specified upper and lower bounds
for that gene. If the solution is represented by a binary string a common mutation
operator is the bit flip, where the bit of the chosen gene is inverted (i.e., if the value
is 1, it is changed to 0 and vice versa).

It is worth noting that during each generation these operators are applied with
a certain probability, named crossover rate and mutation rate. In addition, at each
generation parents have to be selected for crossover and mutation. Thus, also the se-
lection operator plays an important role. The most used selectors are roulette wheel,
in which each individual’s probability of selection is directly proportional to its rel-
ative fitness, and tournament selection, where small subsets of the population are
selected randomly (a tournament) and the most fit member of the subset is selected
for the next generation.

Finally, the stopping criterion for the evolutionary process is usually based on
a maximum number of generations. This stopping criterion can be combined with
other criteria to reduce the computation time. For example, the search process can
be stopped when there is no improvement in the fitness value for a given number of
generations.

A variant of GAs is Genetic Programming (GP) [477], where the aim is to gener-
ate programs (that can be also prediction models, or expressions, etc.) having certain
properties. The representation is often (but not necessary) a program Abstract Syn-
tax Tree (AST) and the fitness is evaluated by executing the program.

4.2.5 Multi-Objective Optimization

An optimization problem can have one objective, but also more than one objective
(multi-objective optimization). In a multi-objective optimization problem, a solution
is described in terms of a decision vector (xi,xp,...,x,) in the decision space X.
Then the fitness function f : X — Y evaluates the quality of a specific solution by
assigning it an objective vector (yj,y2,...,yx) in the objective space Y, where k is
the number of objectives.

Comparing solutions in multi-objective optimization is not as trivial as in the
case of single-objective optimization problems. Specifically, in multi-objective op-
timization problems it is necessary to exploit the concept of Pareto dominance: an
objective vector y; is said to dominate another objective vector y, (y; > y) if no
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Fig. 4.1: Pareto dominance: A and B are non-dominating solutions, while C is dom-
inated by both A and B.

component of y; is smaller than the corresponding component of y, and at least one
component is greater. The Pareto dominance allows to say that a solution x; is better
than another solution x, i.e., x; dominates x, (x; > xp), if f(x;) dominates f(x,).
For example, in Figure 4.1, point C is dominated by A and B since f;(A) > f1(C),
f(A) > £2(C), fi(B) > f1(C), and f2(B) > f2(C). Instead, A and B represent non-
dominating solutions: if we consider A, there is at least another solution (B in our
case) such that fi(B) > fi(A). Similarly, if we consider B, there is at least another
solution (A) such that f>(A) > f>(B). It is worth noting that using such a definition
it is possible to define a set of optimal solutions, i.e., solutions not dominated by
any other solution. Such solutions may be mapped to different objective vectors. In
other words, there may exist several optimal objective vectors representing different
trade-offs between the objectives. This set of optimal solutions is generally denoted
as the Pareto set X* C X, while the fitness values achieved by such solutions repre-
sent the Pareto front Y* C Y.

In principle, a multi-objective optimization problem can be reduced to a single-
objective optimization problem. For instance, the different objectives can be ag-
gregated into a single one. However, the analysis of the Pareto front can help the
decision maker in (i) selecting the most suitable solution, i.e., the solution that pro-
vides the best compromise in a particular scenario; and (ii) analyzing the trade-off
provided by each solution.

The concept of Pareto dominance is also used to rank solutions and to apply se-
lection strategies based on non-domination ranks. Generally, such algorithms are
elitist: the best solutions—i.e., the non-dominated solutions—are either kept in the
population itself or are stored separately to be reused. In the first case, they partici-
pate to the reproduction process. However, the number of non-dominated solutions
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might greatly increase with the number of objectives, which limits the number of
places reserved for new individuals. Therefore, such algorithms generally use a spe-
cific operator to preserve diversity. The elitist Non-dominated Sorting Genetic Al-
gorithm (NSGA-II) [227] is certainly one of the most popular algorithms belonging
to this category.

A naive multi-objective optimization algorithm would require &'(M N) compar-
isons to identify each solution of the first nondominated front in a population of size
N and with M objectives, and a total of ¢(M N?) comparisons to build first non-
dominated front. This is because each solution needs to be compared with all other
solutions. Since the above step has to be repeated for all possible fronts—which can
be at most N, if each front is composed of one solution—the overall complexity for
building all fronts is &'(M N3).

NSGA-II uses a faster algorithm for nondominated sorting, which has a com-
plexity &(M N?):

1. for each solution p in the population, the algorithm finds the set of solutions
Sp dominated by p and the number of solutions 7, that dominate p. The set of
solutions with n,, = 0 are placed in the set first front Fj.

2. Vp € Iy, solutions g € S, are visited and, if n, — 1 = 0, then solution ¢ is placed
in the second front F,. This step is repeated Vp € Fj to generate F3, etc.

To compare solutions, NSGA-II uses the “crowded comparison operator”. That
is, given two solutions x; and xp, x; is preferred over x; if it belongs to a different
(better) front. Otherwise, if x; and x; belong to the same front, the solution located
in the less crowded region of the front is preferred.

Then, NSGA-II produces the generation 7 4 1 from generation ¢ as follows:

1. generating the child population Q, from the parent population F; using the binary
tournament selection and the crossover and mutation operators defined for the
specific problem;

2. creating a set of 2N solutions R, = F;|J O;

3. sorting R; using the nondomination mechanism above described, and forming
the new population P4 by selecting the N best solutions using the crowded
comparison operator.

4.3 Search-based Software Modularization

Software (re)modularization is probably one of the software evolution tasks where
SBSE techniques have been applied most. Given a set of artifacts—for example
classes or source code files—the aim of software modularization is to identify
groups of artifacts that, according to given criteria, are cohesive enough and ex-
hibit low coupling with other groups. During software evolution, this can be useful
to support system restructuring, but also—without restructuring the system—to sup-
port program comprehension by highlighting groups of cohesive components.



4 Search Based Software Maintenance: Methods and Tools 113

4.3.1 The Bunch approach for software modularization

Bunch [610] is a software modularization tool that relies on search-based optimiza-
tion techniques.

Problem definition. Generally speaking, software modularization can be seen
as a graph partitioning problem, whose solution is known to be NP-hard [312].
In the past, various authors have tackled this problem with clustering techniques
[559, 701, 923]. In the following, we illustrate the problem as it has been formalized
and solved—using search-based optimization techniques—by Mitchell and Man-
coridis in their Bunch tool. Bunch operates on a system representation called Module
Dependency Graph (MDG), a graph G = (V, E) where nodes V are system artifacts
and edges E are relations between such artifacts (e.g., function or method calls).
The goal of modularization is to partition G into n clusters Pig = {G|,G2,...,Gy}.
Each cluster G; is composed of a set of (non-overlapping) artifacts from V, i.e.,
GNG;j=0Vi,j €l...n.

Solution representation. To find solutions of the modularization problem using
search-based heuristics, the problem needs to be encoded in a chromosome. Given
a software system composed of n software components (e.g., classes), the chromo-
some is represented as a n-sized integer array, where the value 0 < v < n of the i""
element indicates the cluster to which the i component is assigned. A solution with
the same value (whatever it is) for all elements means that all software components
are placed in the same cluster, while a solution with all possible values (from 1 to n)
means that each cluster is composed of one component only.

Fitness function. Starting from the MDG (weighted or unweighted), the output
of a software module clustering algorithm is represented by a partition of this graph.
A good partition of an MDG should be composed of clusters of nodes having (i)
high dependencies among nodes belonging to the same cluster (i.e., high cohesion),
and (ii) few dependencies among nodes belonging to different clusters (i.e., low
coupling). To capture these two desirable properties of the system decompositions
(and thus, to evaluate the modularizations generated by Bunch), Mancoridis et al.
[555] define the Modularization Quality (M Q) metric as in Equation 4.1, where & is
the number of modules, A; is the Intra-Connectivity (i.e., cohesion) of the i cluster
and E; ; is the Inter-Connectivity (i.e., coupling) between the i"" and the ;' clusters.

MO — (% 1:1Ai)—(@ b1 Eij) if k> 1
Aq if k=1

A.1)

The Intra-Connectivity of a cluster i is given by Equation 4.2, where y; is the
number of intra-cluster edges, N; is the number of nodes of cluster 7, and conse-
quently N? is the maximum number of such intra edges.

Mi

N 4.2)
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The Inter-Connectivity between two clusters i and j is given by Equation 4.3,
where §g; ; is the the number of edges between i and j, while N; and N; are the
number of nodes in i and j respectively.

&ij

_ 4.3
TNN, 43)

Figure 4.2 shows an example of MDG and of its representation. For the MDG
in Figure 4.2-a, the MQ is equal to 1/2-(2/3%+1/2%) — (1/((2-1)/2)) - (2/(2-3-
2)) = 0.07. Moving Component C2 to Module 2 (Figure 4.2-b), the MQ becomes
1/2-(1/22+3/3%) = (1/((2-1)/2)) - 1/(2-3-2) = 0.2. Hence, as expected, the
modularization quality increases.

@ : G

Module 1 Module 2 Module 1 Module 2

Ll ]e]e] i ]e]e]z]

C1 C2 C3 C4 C5 C1 C2 C3 C4 C5

(a) MQ=0.5 (b) MQ=1.5

Fig. 4.2: Module Dependency Graph (MDG) used by Bunch [610], its chromosome
representation, and resulting M Q value.

Supported search-based techniques and change operators. Bunch allows to
solve the software modularization problem using different search-based optimiza-
tion heuristics, namely HC, SA, and GAs. In principle Bunch also allows to solve the
problem exhaustively, however—as reported by Mitchell and Mancoridis [610]—
the number of possible partitions exponentially increases with the number of nodes.

The HC approach works as follows. It starts with a randomly generated modu-
larization i.e., a chromosome filled with random numbers varying between 1 and
n. Then, neighbor solutions are created by moving one artifact from a cluster to
another, i.e., by randomly changing the value in a gene. After that, the fitness
function—i.e., the MQ—of the new produced solution is evaluated, and if its fit-
ness is better than the previous one, then the solution is accepted and the evolution
continues.

The above approach has two weaknesses. The first one is that HC algorithms can
converge to local optima; the second one is that the algorithm may tend to create iso-
lated clusters, i.e., clusters composed of one artifact only. The local optima problem
is mitigated through multiple restarts of the HC, using initial solutions belonging to
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a population of randomly generated ones, and specifically from a subset of it hav-
ing the highest M Q. An alternative is to use SA instead of HC. Since SA does not
always proceed towards (locally) better solutions, this can mitigate the local optima
problem.

Also, the problem can be solved using GAs, which evolve multiple solutions—
i.e., a population of individuals—rather than single one. The GAs-based approach
of Bunch [610]—named Gadget—has been described by Doval et al. [260]. A GA
evolves the population using a selection operator, which selects individuals to repro-
duce based on the fitness function, a one-point crossover operator, and a mutation
operator which is the same used for HC.

The problem of isolated clusters is dealt by assigning such isolated clusters to
another, randomly chosen, cluster.

Empirical evaluation. There are different ways to evaluate the quality of solu-
tions obtained using a modularization technique. When a reference (ideal) solution
is available for a given system, it can be compared with the solution produced by
the modularization technique. Such a comparison can be made using the MoJoFM
eFfectiveness Measure (MoJoFM) [914], defined in Equation 4.4, where mno(A, B)
is the minimum number of Move or Join operations one needs to perform in order
to transform the partition A into B, and max(mno(¥ A, B) is the maximum possible
distance of any partition A from the gold standard partition B.

MaJoFM(A,B)100< mno(A, B) 5 ><100> 4.4)

max(mno(VA, B

When no reference solution is available, one can qualitatively evaluate a mod-
ularization solution (e.g., by relying on experts), and also evaluate the stability of
the technique being used. A clustering technique is stable if it produces similar re-
sults over multiple runs. From a qualitative point of view, Mitchell and Mancoridis
[610] applied Bunch on a 50 KLOC C++ program that implements a file system
service. Bunch created two main clusters, related to two different file systems be-
ing accessed, and this was confirmed by the system expert. Also, Bunch created a
hierarchical decomposition, which allowed experts to review the proposed modular-
ization at different levels of granularity. To evaluate the clustering stability, Mitchell
and Mancoridis [610] used (i) the EdgeSim similarity measurement, that normal-
izes the number of intra and inter cluster edges that are in agreement between two
different modularizations, and (ii) the MeCl similarity that determines the distance
between two modularizations. A study performed on the Java Swing library reported
an average EdgeSim of 93.1% and an average MeCl of 96.5%.

4.3.2 Multi-Objective Modularization

The modularization approach described in Section 4.3.1 produces solutions that are
(near) optimal with respect to a single objective, i.e., the MQ. To this extent, MQ
achieves a compromise between having a good cohesion and low coupling.
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The alternative to single-objective optimization is to use multi-objective opti-
mization where—as explained in Section 4.2.5—the found solutions are Pareto-
optimal, i.e., each solution is better than another with respect to a particular ob-
jective, while it may not be better with respect to other objectives.

Fitness function. Praditwong et al. [701] have proposed an approach for multi-
objective optimization, where the considered objectives are the following:

e maximizing the number of intra-module edges: that is, a high number of intra-
module edges denotes a high cohesion;

e minimizing the number of inter-module edges: that is, a low number of inter
module edges denotes a low coupling;

e maximizing the number of clusters, which generally favors high cohesion;

e minimizing the number of isolated clusters: such objective is an alternative to the
repairing solution described in Section 4.3.1 to handle isolated clusters;

e maximizing MQ which, as explained in Section 4.3.1 favors solutions achieving
a compromise between cohesion and coupling.

Supported search-based techniques and change operators. Praditwong et al.
[701] have implemented the multi-objective modularization using the same opera-
tors of Mitchell et al. [260], however using a NSGA-II [226] multi-objective GA
instead of a simple GA.

Empirical evaluation. Praditwong et al. [701] have evaluated their multi-
objective approach to modularize 17 MDG extracted from various C programs (e.g.,
Unix utilities such as bison, ispell, lynx, ncurses, and rcs), and compared it with the
single-objective, hill-climbing based approach of Mitchell and Mancoridis [610].
Other than exhibiting the advantages outlined above, i.e., the capability of the soft-
ware engineer to select solutions that are particularly good for specific objectives
than for others, the multi-objective GA was also able to outperform single-objective
modularization for each specific modularization objective (e.g., MQ increase be-
tween 15% and 50% for 10 out of 17 programs, and decrease within 5% for the
other 7). In summary, besides the usual advantages of multi-objectives, it can be
preferred to the single-objective alternative also for what concerns the quality of the
obtained solutions [701]. However, the drawback is that multi-objective optimiza-
tion is more expensive from a computational point-of-view. That is, the number of
evaluations required is two orders of magnitude higher.

4.3.3 Achieving different software modularization goals

The above described approaches deal with software modularization from a structural
point of view, and with the aim of obtaining cohesive and decoupled clusters. The
existing literature also reports approaches where search-based remodularization was
used for different purposes.

Di Penta et al. [247] and Antoniol et al. [37] deal with remodularizing software
libraries with the aim of minimizing the footprint of an application in the program
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memory. This is particularly useful when porting applications towards devices with
a limited memory. Years ago, this was particularly true for many mobile devices;
nowadays most mobile devices (tablets and smartphones) have enough memory.
However, memory occupation is still a concern for some specific devices such as
embedded systems or active sensors.

To deal with the software miniaturization problems, Di Penta et al. and Antoniol
et al. [37] start from a graph highlighting dependencies between applications and
libraries, and between objects composing libraries. Given this graph, the goal to be
achieved is to minimize the footprint of applications, considering the set of libraries
they should be linked to. Since libraries can be partitioned in different ways such
that the overall size of the libraries used by each application is minimized, this is
still a modularization problem that can be solved using search-based optimization
techniques. The miniaturization problem is then solved by using a GA similar to the
one used by Doval et al. [260] for remodularization purposes. However, instead of
using the M Q as fitness function, a mono-objective one (to be minimized) consisting
of a weighted sum of the four factors keeping into account: (i) the total number (or
size) of objects linked to each application, (ii) the number of inter-library dependen-
cies (to avoid linking a library every time another is linked), (iii) the difference with
the initial libraries (to avoid scrambling the libraries completely), and (iv) feedbacks
provided by experts/original developers.

Di Penta et al. [247] and Antoniol et al. [37] applied their approach on various
C programs, such as Grass, QT, MySQL, and Samba. The application footprint size
was reduced of over 60% for MySQL and Samba, and between 5% and 25% for
Grass and QT

A different miniaturization approach has been proposed by Ali et al. [17]. In their
work, they aim at determining the set of features to be included in an application
when porting it towards a mobile device with the aim of (i) maximizing customers’
satisfaction and (ii) keeping the devices’ battery consumption low. For each fea-
ture, they also measure the estimated battery consumption, using a framework by
Binder and Hulaas [107], based on bytecode analysis. Finally, they use a NSGA-
II [226] multi-objective optimization to determine the set of features to include in
the ported application. Ali et al. [17] experimented their approach to miniaturize an
email client (Pooka) and an instant messenger (SIP). The minuaturization was ex-
perimented by considering some user requirements collected through a survey, and
some hypothetical constraints in terms of user satisfaction and consumption. Com-
pared with a manual minuaturization, the proposed approach allowed to save about
77% of the effort.
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4.3.4 Putting the developer in the loop: interactive software
modularization

The approaches for software modularization described above have the advantage of
being completely automatic, i.e., they produce a possible modularization without
requiring manual intervention.

While automatic re-modularization approaches proved to be very effective in in-
creasing cohesiveness and reducing coupling of software modules, they do not take
into account developers’ knowledge when deciding to group together (or not) cer-
tain components. For example, a developer may decide to place a function in a given
module even if, in its current implementation, the function does not communicate a
lot with other functions in the same module. This is because the developer may be
aware that, in future releases, such a function will strongly interact with the rest of
the module. Similarly, a developer may decide that two functions must be placed in
two different modules even if they communicate. This is because the two functions
have different responsibilities and are used to manage semantically different parts
of the system.

To deal with this problem, different authors have proposed methods to incorpo-
rate developers’ feedback in search-based remodularization algorithms.

Hall et al. [360] proposed a supervised remodularization approach, named SUMO
(Supervised Remodularization), that integrates existing modularization approches—
such as Bunch [610]—with corrections provided by the software engineer. The idea
of the approach is the following:

1. First, a solution of the modularization problem is created using automatic modu-
larization (Bunch, for example).

2. After that, the user provides corrections through a user interface. Such correc-
tions consist of two sets of relations, Rel™, defined as pairs of artifacts that should
belong to the same cluster (i.e., go together), and Rel ™, defined as pairs of arti-
facts that should not go together.

3. After that, a constraint satisfaction approach is used to modify the initially pro-
duced clusters with the aim of satisfying constraints expressed by sets of relations
Rel™ and Rel™. Steps 2 and 3 are repeated until the software engineer finds no
further corrections.

Bavota et al. [82] proposed the use of Interactive GA [818] (IGA) to solve the
modularization problem, considering it as both single-objective and multi-objective
optimization problem. The problem is encoded as done in Gadget [260]. The single-
objective GA uses as fitness function the MQ metric, while the multi-objective GA
considers the five different objectives of the approach by Praditawong et al. [701]
described in Section 4.3.2.

The basic idea of the IGA is to periodically add a constraint to the GA such that
some specific components shall be put in a given cluster among those created so far.
Thus, the IGA evolves exactly as the non-interactive GA. Every nGens generations,
the best individual is selected and shown to the software engineer. After that, the
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software engineer analyzes the proposed solutions and provides feedback, indicating
that certain components must be placed in a specific cluster.

In principle, the IGA can ask feedback for every pair of components. However,
this would be too much work for the software engineer. To limit the amount of
feedback, the Algorithm 6—takes the best solution produced by the GA, randomly
selects two components (from the same cluster or from different clusters), and then
asks the software engineer whether, in the new solutions to be generated, such com-
ponents must be placed in the same cluster (i.e., stay together) or whether they
should be kept separated. In total, every nGens generations the software engineer is
asked to provide feedback about a number nFeedback of component pairs from the
best solution (in terms of M Q) contained in the current population.

6 Pseudocode of the Interactive GA for software modularization.

1: fori=1...nInteractions do
2: Evolve GA for nGens generations

3: Select the solution having the highest MQ
4: for j=1...nFeedback do
5: Randomly select two components ¢; and c;
6: Ask the developer whether ¢; and ¢; must go together or kept separate
7: end for
8: Repair the solution to meet the feedback
9: Create a new GA population using the repaired solution as starting point
10: end for

11: Continue (non-interactive) GA evolution until it converges or it reaches maxGens

After feedback is provided, the solution is repaired by enforcing the constraints,
e.g., by randomly moving one of ¢; and ¢; away if the constraint tells that they
shall be kept separated. After all nFeedback have been provided, a new population
is created by randomly mutating such a repaired solution. Then, the GA starts again.

During the GA evolution, to ensure constraints specified by the software engi-
neers are satisfied, a penalty factor is added to the fitness function (as proposed by
Coello Coello [195]), to penalize solutions violating the constraints imposed by the
developers. Given CS = csy,...cs,, the set of feedback collected by the users, the
fitness F (s) for a solution s is computed by Equation 4.5, where k > 0 is an integer
constant weighting the importance of the feedback penalty, and vcs; ¢ is equal to one
if solution s violates cs;, zero otherwise. After ninteractions have been performed,
the GA continues its evolution in a non-interactive way until it reaches stability or
the maximum number of generations.

 MOQ(s)
PO =TT vesry

A variant of the interactive GA described above specifically aims at avoiding
isolated clusters, by asking the developers where the isolated component must be
placed. For non-isolated clusters, the developer is asked to specify for each pair of
components whether they must stay together or not.

(4.5)
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Finally, the multi-objective variants of IGA are quite similar to the single-
objective ones. Also in this case, two variants have been proposed, one—referred to
as R-IMGA (Random Interactive Modularization Genetic Algorithm)—where feed-
back is provided on randomly selected pairs of components, and one—referred to
as IC-IMGA (Isolated Clusters Interactive Modularization Genetic Algorithm)—
where feedback is provided on components belonging to isolated (or smallest) clus-
ters.

In summary, interactive approaches to software modularization help software en-
gineers to incorporate their rationale in automatic modularization approaches. The
challenge of such approaches, however, is to limit the amount of feedback the soft-
ware engineers have to provide. On the one hand, a limited amount of feedback
can result in a modularization that is scarcely usable. On the other hand, too much
feedback may become expensive and make the semi-automatic approach no longer
worthwhile.
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Fig. 4.3: MGA vs IC-IMGA in reconstructing the RegisterManagement package of
SMOS [82].

In the evaluation reported in the paper by Bavota et al. [82], the authors com-
pare the different variants of IGAs with their non-interactive counterparts in the
context of software re-modularization. The experimentation has been carried out
on two software systems, namely GESA and SMOS, by comparing the ability of
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GAs and IGAs to reach a fair trade-off between the optimization of some quality
metrics (that is the main objective of GAs applied to software re-modularization)
and the closeness of the proposed partitions to an authoritative one (and thus, their
meaningfulness). The achieved results show that the IGAs are able to propose re-
modularizations (i) more meaningful from a developer’s point-of-view, and (ii) not
worse, and often even better in terms of modularization quality, with respect to those
proposed by the non-interactive GAs.

To understand in a practical way what is the difference between the performances
of interactive and non-interactive GAs, Figure 4.3 shows an example extracted from
the re-modularization of the SMOS software system. The figure is organized in three
parts. The first part (left side) shows how the subsystem RegisterManagement
appears in the original package decomposition (i.e., which classes it contains)
made by the SMOS’s developers. This subsystem groups together all the classes
in charge to manage information related to the scholar register (e.g., the students’
delay, justifications for their absences and so on). The second part (middle) re-
ports the decomposition of the classes contained in RegisterManagement pro-
posed by the MGA (Modularization Genetic Algorithm). Note that some classes
not belonging to the RegisterManagement were mixed to the original set of
classes. These classes are reported in light gray. Finally, the third part (right side)
shows the decomposition of the classes contained in RegisterManagement pro-
posed by the IC-IMGA. Also in this case, classes not belonging to the original
RegisterManagement package are reported in light gray. As we can notice, the
original package decomposition groups 31 classes in the RegisterManagement
package. When applying MGA, these 31 classes are spread into 27 packages, 13 of
which are singleton packages. As for the remaining 14 they usually contain some
classes of the RegisterManagement package mixed with other classes com-
ing from different packages (light gray in Figure 4.3). The solution provided by
IC-IMGA is quite different. In fact, IC-IMGA spreads the 31 classes in only 5 pack-
ages. Moreover, it groups together in one package 26 out of the 31 classes originally
belonging to the RegisterManagement package. It is striking how much the
partition proposed by IC-IMGA is closer to the original one resulting in a higher
MoJoFM achieved by IC-IMGA with respect to MGA and thus, a more meaningful
partitioning from a developer’s point of view.

4.4 Software Analysis and Transformation Approaches

In this section we describe how to instantiate a search-based approach to automat-
ically modify source code (and models) for various specific purposes, for example
improving maintainability or fixing bugs.
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if (e1) s1; else s2; if (le1) s2; else s1;

if (true) s1; else s2; s1;

Xx=2;x=Xx-1;y=10; x=x+1; x=2;y=10;

for (s1; e2; s2) s3; s1; while (e2) s3; s2;
Original Code Transformed Code

Fig. 4.4: Example of program transformation [283].

4.4.1 Program transformation

Program transformation can be described as the act of changing one program to
another. Such a transformation is achieved by converting each construct in some
programming language into a different form, in the same language or, possibly, in a
different language. Further details about software transformation—and in particular
model transformation—can be found in a paper by Mens and Van Gorp [597].

Program transformation has been recognized as an important activity to facili-
tate the evolution of software systems. The hypothesis is that the original source
code can be progressively transformed into alternative forms. The output of the pro-
cess is a program possibly easier to be understood and maintained, or without bugs
(according to a given test suite).

Figure 4.4 reports an example of transformation for an original program to an-
other program. In this case the program semantics is preserved and the transforma-
tion aims at improving the comprehensibility of the program. Such a transformation
is achieved by applying a set of transformation axioms. The choice of the axioms to
be applied is guided by the final goal of program transformation, that is making the
code more comprehensible.

Problem definition. The program transformation problem can be considered
as an optimization problem, where an optimal sequence of transformation axioms
(transformation tactic) is required in order to make an input program easier to com-
prehend [283]. Transformations can be applied at different points—e.g., nodes of
the Control Flow Graph (CFG)—of the program. The set of transformation rules
and their corresponding application point is therefore large. In addition, many rules
may need to be applied to achieve an effective overall program transformation tac-
tic, and each will have to be applied in the correct order to achieve the desired result.
All these considerations suggest that the problem is hard to solve and it represents
a rich soil for search-based approaches. Specifically, search-based approaches can
be used to identify a sub-optimal sequence of transformations in a search space that
contains all the possible allowable transformation rules.

Solution representation. A solution is represented by a sequence of transfor-
mations that have to be applied on an input program. Fatiregun et al. [283] use a
very simple representation, where each solution has a fixed sequence length of 20
possible transformations. Thus, each solution contains the identifier of the specific
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transformation in the considered catalogue. The FermaT? [908] transformation tool
is used to apply the transformation encoded in each solution. FermaT has a number
of built-in transformations that could be applied directly to any point within the pro-
gram. Examples of such transformations are: @merge-right, that merges a se-
lected statement into the statement that follows it, or @remove—-redundant-vars,
that will remove any redundant variables in the source program.

Fitness function. A program is transformed in order to achieve a specific goal,
e.g., reduce its complexity. In this case, the fitness function could be based on ex-
isting metrics for measuring software complexity, such as Lines of Code (LoC) or
cyclomatic complexity. Fatiregun et al. [283] measure the fitness of a potential so-
lution as the difference in the lines of code between the source program and the new
transformed program created by that particular sequence of transformations. Specif-
ically, they first compute the LOC of the original program. Then, they apply on the
original program the sequence of transformations identified by the search-based ap-
proach obtaining a new version of the program. Using such a fitness function, an
optimum solution would be the sequence of transformations that results in an equiv-
alent program with the fewest possible number of statements.

Supported search-based techniques and change operators. The search-based
techniques used to support program transformation are HC and GA [283]. In the
HC implementation the neighbor has been defined as the mutation of a single gene
from the original sequence leaving the rest unchanged. As for GA, a single point
crossover has been used. Note that the solution proposed by Fatiregun et al. makes
the implementation of crossover and mutation operators quite simple. Specifically,
for the crossover a random point is chosen and genes are then swapped, creating
two new children. As for the mutation, a single gene is chosen and it is changed
arbitrarily.

Empirical evaluation. The effectiveness (measured in terms of size reduction)
of search-based approaches for program transformation has been only preliminary
evaluated on small synthetic program transformation problems [283]. Specifically,
the transformations achieved with both GA and HC were compared with those re-
turned by a purely random search of the search space. The comparison was based
on two different aspects: the most desirable sequence of transformations that the
algorithm finds and the number of fitness evaluations that it takes to arrive at that
solution. Results indicated that GA outperforms both the random search and the HC
as the source program size increases. In addition, the random search outperforms
HC in some specific case. Unfortunately, until now only a preliminary analysis of
the benefits provided by search-based approaches for program transformation has
been performed. Studies with users are highly desirable to evaluate to what extent
the achieved transformation are meaningful for developers.

2 http://www.cse.dmu.ac.uk/ mward/fermat.html
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4.4.2 Automatic Software Repair

Repairing defects in software systems is usually costly and time-consuming, due to
the amount of software defects in a software system. Because of this very often—
due to the lack of available resources—software projects are released with both
known and unknown defects [521]. As example, in 2005, a Mozilla’s developer
claimed that, “everyday, almost 300 bugs appear [...] far too much for only the
Mozilla programmers to handle” [41]. These considerations have prompted re-
searchers in the definition of methods for automatic repair of defects. Specifically,
Le Goues et al. [502] have formulated such a problem as an optimization problem
and have proposed Genetic Program Repair (GenProg), a technique that uses exist-
ing test cases to automatically generate repairs for bugs in software systems.

Problem definition. The basic idea is inspired by the definition of a repair, that
is a patch consisting of one or more code changes that, when applied to a program,
cause it to pass a set of test cases [502]. Thus, given a buggy source code component
and a test suite (where there is at least one test case that did not pass due to the
presence of the bug), GP is used to automatically mutate the buggy code aiming at
pass all the tests in a given test suite.

Solution representation. In GenProg each solution is represented by an abstract
syntax tree that includes all the statements (i.e., assignments, function calls, condi-
tionals, blocks, and looping constructs) in the program. In addition, to each solution
is associated a weighted path computed by executing all the test cases in the given
test suite. Specifically, a statement in the AST is weighted with 1 if the statement
is covered by a test case that does not pass, 0 otherwise. The weighted path is used
to localize buggy statements to be mutated (i.e., statements covered by test cases
that do not pass). In addition, the weighted path is used to avoid mutating correct
statements (i.e., statements covered by test cases that pass). The conjecture is that
a program that contains an error in one area of source code likely implements the
correct behavior elsewhere [273].

Fitness function. The fitness function is used to evaluate the goodness of a pro-
gram variant obtained by GP. A variant that does not compile has fitness zero. The
other variants are evaluated taking into account whether or not the variant passes test
cases. Specifically, the fitness function for a generic variant v is a weighted sum:

F(v) = Whros,pyy - |[{t € POStess = v passed t}| + Wi, - [{t € Negiest 1 v passed t}|
(4.6)
where Pos;ey is the set of positive test cases that encode functionality that cannot
be sacrificed and Neg,. is the set of negative test cases that encode the fault to be
repaired. The weights Wpy,,,, and Wy,,,,., have been empirically determined using
a trial and error process. Specifically, the best results have been achieved setting
ngsrm =1and WN@grsst =10.

Selection and genetic operators. As for the selection operator, in GenProg two
different operators have been implemented, i.e., roulette wheel and tournament se-
lection. The results achieved in a case study indicated that the two operators pro-
vided almost the same performances. Regarding the crossover operator, in GenProg
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a single point crossover is implemented. It is worth noting that only statements along
the weighted paths are crossed over. Finally, the mutation operator is used to mutate
a given variant. With such an operator is possible to:

o Insert new statement. Another statement is inserted after the statement selected
for mutation. To reduce the complexity, GenProg uses only statements from the
program itself to repair errors and does not invent new code. Thus, the new state-
ment is randomly selected from anywhere in the program (not just along the
weighted path). In addition, the statement’s weight does not influence the proba-
bility that it is selected as a candidate repair.

o Swap two statements. The selected statement is swapped with another statement
randomly selected, following the same approach used for inserting a new state-
ment.

e Delete a statement. The selected statement is transformed into an empty block
statement. This means that a deleted statement may therefore be modified in a
later mutation operation.

In all cases, the weight of the mutated statement does not change.

Refinement of the solution. The output of GP is a variant of the original pro-
gram that passes all the test cases. However, due to the randomness of GP, the ob-
tained solution contains more changes than what necessary to repair the program.
This increases the complexity of the original program by negatively affecting its
comprehensibility. For this reason, a refinement step is required to remove unneces-
sary changes. Specifically, in GenProg a minimization process is performed to find
a subset of the initial repair edits from which no further elements can be dropped
without causing the program to fail a test case (a 1-minimal subset). To deal with
the complexity of finding a 1-minimal subset, delta debugging [947] is used. The
minimized set of changes is the final repair, that can be inspected for correctness.

Empirical evaluation. GenProg has been used to repair 16 programs for a total
of over 1.25 million lines of code [502]. The considered programs contain eight
different kinds of defects, i.e., infinite loop, segmentation fault, remote heap buffer
overflow to inject code, remote heap buffer overflow to overwrite variables, non-
overflow denial of service, local stack buffer overflow, integer overflow, and format
string vulnerability. In order to fix such defects, 120K lines of module or program
code need to be modified. The results achieved indicated that GenProg was able to
fix all these defects in 357 seconds. In addition, GenProg was able to provide repairs
that do not appear to introduce new vulnerabilities, nor do they leave the program
susceptible to variants of the original exploit.

4.4.3 Model transformation

Similar to program transformation, model transformation aims to derive a target
model from a source model by following some rules or principles. Defining trans-
formations for domain-specific or complex languages is a time consuming and dif-
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Fig. 4.5: Solution representation for search-based model transformation [459].

ficult task, that requires knowledge of the underlying meta-models and knowledge
of the semantic equivalence between the meta-models’ concepts’. In addition, for
an expert it is much easier to show transformation examples than to express com-
plete and consistent transformation rules. This has pushed researchers to define a
new approach for model transformation, namely Model Transformation by Exam-
ples MTBE).

Problem definition. Using MTBE it is possible to exploit knowledge from pre-
viously solved transformation cases (examples) to transform new models by using
combinations of known solutions to a given problem. This means that the target
model can be obtained through an optimization process that exploits the available
examples. The high number of examples as well as the high number of sequences
of application of such transformations make MTBE very expensive to be performed
manually. For this reason, a search-based approach, called MOdel Transformation as
Optimization by Examples (MOTOE) has been proposed to identify a sub-optimal
solution automatically [459]. Specifically, the approach takes as inputs a set of trans-
formation examples and a source model to be transformed, and then it generates as
output a target model. The target model is obtained by applying a subset of trans-
formation fragments (code snippets) in the set of examples that best matches the
constructs of the source model (using a similarity function).

Solution representation. In MOTOE [459] is represented by a n-dimensional
vector, where n is the number of constructs in the model. This means that each
construct in the model is represented by an element of such a vector. Each con-
struct is then transformed according to a finite set of m code snippets extracted from

3 The interested reader can find details on the evolution between models and meta-models in Chap-
ter 2
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the transformation examples (for instance change an inheritance relationship to an
association). Each code snippet has a unique value ranging from 1 to m. Thus, a
particular solution is defined by a vector, where the i element contains the snippet
id (i.e., the transformation id) that has to be used to transform the i construct in
the model. In the example depicted in Figure 4.5 there is a class diagram with 7
constructs, i.e., 4 classes and 3 relationships. The solution is represented by a vector
with 7 elements that contains the transformation to be applied to each construct. For
instance, the transformation 28 is applied to the class Command.

Fitness function. The fitness function quantifies the quality of a transformation
solution. In MOTOE, the transformation is basically a 1-to-1 assignment of snippets
from the set of examples to the constructs of the source model. Thus, the authors
proposed a fitness function that is represented by the sum of the quality of each
transformation:

f=

-

a;- (ici +ec;) 4.7)

i=1

In order to estimate the quality of each transformation, the authors analyze three
different aspects (captured by a; - (ic; + ec;) in the formula above):

e Adequacy (a;) of the assigned snippet to the i construct. Adequacy is 1 if the
snippet associated to i’ construct contains at least one construct of the same type,
and value 0 otherwise. Adequacy aims at penalizing the assignment of irrelevant
snippets.

e [Internal coherence (ic;) of the individual construct transformation. The intern co-
herence measures the similarity, in terms of properties, between the i’ construct
to transform and the construct of the same type in the assigned snippet.

e External coherence (ec;) with the other construct transformations. Since a snippet
assigned to the i" construct contains more constructs than the one that is adequate
with the i construct, the external coherence factor evaluates to which extent
these constructs match the constructs that are linked to " construct in the source
model.

The fitness function depends on the number of constructs in the model. To make the
values comparable across models with different numbers of constructs, a normalized
version of the fitness function can be used [459]. Since the quality of each transfor-
mation varies between 0 and 2 (ic; and ec; can be both equal to 1), the normalized
fitness function is form = %

Supported search-based techniques and change operators. The search-based
techniques used to support model transformation in MOTOE are PSO and a hybrid
heuristic search that combines PSO with SA [459]. In the hybrid approach, the SA
algorithm starts with an initial solution generated by a quick run of PSO. In both the
heuristic the change operator assigns new snippet ids to one or more constructors.
Thus, it creates a new transformation solution vector starting from the previous one.

Empirical evaluation. The performance of MOTOE has been evaluated when
transforming 12 class diagrams provided by a software industry [459]. The size
of the these diagrams varied from 28 to 92 constructs, with an average of 58. Al-
together, the 12 examples defined 257 mapping blocks. Such diagrams have been
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used to build an example base. Then a 12-fold cross validation procedure was used
to evaluate the quality of transformations produced by MOTOE, i.e., one class
diagram is transformed by using the remaining 11 transformation examples. The
achieved transformations have been compared—construct by construct—with the
known transformations in order to measure they correctness (automatic correctness).
In addition, a manual analysis of the achieved transformation was performed to iden-
tify alternative but still valid transformations (manual correctness). The achieved
results indicated that when using only PSO the automatic correctness measure had
an average value of 73.3%, while the manual correctness measure had an average
value of 93.2%. Instead, when using the hybrid search, correctness is even higher,
i.e., 93.4% and 94.8% for the automatic and manual correctness, respectively. This
means that the proposed transformations were almost as correct as the ones given
by experts.

4.5 Search-based Software Refactoring

Refactoring has been defined as “the process of changing a software system in such
a way that it does not alter the external behavior of the code yet improves its inter-
nal structure” [301, 664]. Different refactoring operations* might improve different
quality aspects of a system. Typical advantages of refactoring include improved
readability and reduced complexity of source code, a more expressive internal ar-
chitecture and better software extensibility [301]. For these reasons, refactoring is
advocated as a good programming practice to be continuously performed during
software development and maintenance [88, 301, 458, 596].

Despite its advantages, to perform refactoring in non-trivial software systems
might be very challenging. First, the identification of refactoring opportunities in
large systems is very difficult, due to the fact that the design flaws are not always
easy to identify [301]. Second, when a design problem has been identified, it is not
always easy to apply the correct refactoring operation to solve it. For example, split-
ting a non-cohesive class into different classes with strongly related responsibilities
(i.e., Extract Class refactoring) requires the analysis of all the methods of the orig-
inal class to identify groups of methods implementing similar responsibilities and
that should be clustered together in new classes to be extracted. This task becomes
even more difficult when the size of the class to split increases. Moreover, even
when the refactoring solution has been defined, the software engineer must apply it
without changing the external behavior of the system.

All these observations highlight the need for (semi)automatic approaches sup-
porting the software engineer in (i) identifying refactoring opportunities (i.e., design
flaws) and (ii) designing and applying a refactoring solution. To this aim, several dif-
ferent approaches have been proposed in the literature to automate (at least in part)
software refactoring [83, 84, 618, 649, 659, 765, 858]. Among them, of interest for

4 A complete refactoring catalog can be found at http://refactoring.com/catalog/.
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this chapter are those formulating the task of refactoring as a search problem in the
space of alternative designs, generated by applying a set of refactoring operations.
This idea has been firstly presented by O’Keeffe and Cinnéide [656] that propose
to treat object-oriented design as a combinatorial optimization problem, where the
goal is the maximization of a set of design metrics capturing design quality (e.g.,
cohesion and coupling). In short, the idea is to represent a software system in an eas-
ily manipulable way (solution representation), in order to apply a set of refactoring
operations to it (change operators). This can be done by selecting, during the popu-
lation evolution, the solutions (i.e., refactored version of the system) maximizing a
set of metrics capturing different aspects of design quality (fitness function).

Starting from the work by O’Keeffe and Cinnéide, search-based refactoring ap-
proaches have been applied to improve several different quality aspects of source
code maintainability [659, 765], testability [649], and security [323]. Moreover,
search-based refactoring techniques have also been proposed with the aim of in-
troducing design patterns [438], and improving the alignment of code to high-level
documentation [615].

The main advantages of search based refactoring techniques as compared to non
search based ones are:

e Higher flexibility. They are suited to support a wide range of refactoring oper-
ations, also allowing to apply several of them in combination with the aim of
maximizing the gain in terms of the defined fitness function.

o Wider exploration of the solution space. Generally, refactoring approaches are
based on heuristics suggesting when a refactoring should be applied. For exam-
ple, if a method has more dependencies toward a class other than the one it is
implemented in, it can be a good candidate for move method refactoring. On the
one side, while these heuristics can help in solving very specific design problems,
they do not allow a wide exploration of the solution space (i.e., the alternative
designs). On the other side, search-based algorithms explore several alternative
designs by applying many thousands of refactorings in different orders, with the
aim of finding a (sub)optimal solution for the defined fitness function.

We will mainly focus our discussion of search-based software refactoring on the
CODe-Imp (Combinatorial Optimisation Design-Improvement) tool [614], used for
the first time by O’Keeffe and O’Cinnéide [656] to test the conjecture that the main-
tainability of object-oriented programs can be improved by automatically refactor-
ing them to adhere more closely to a pre-defined quality model. Then, we will briefly
overview other applications of search-based refactoring presented in literature.

4.5.1 The CODe-Imp tool

CODe-Imp [614] is a tool designed to support search-based refactoring and used by
several works in this field [323, 615, 649, 658, 659]. In its current implementation,
the tool can be applied to software systems written in Java.
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Solution Representation. In CODe-Imp the solution representation is the pro-
gram itself and, in particular, its AST. Having such a representation allows to:

1. Easily evaluate the fitness of a refactoring solution. In fact, through the program
AST it is possible to easily extract information exploited by almost all the fitness
functions used in the search-based refactoring field, such as the number of meth-
ods in a class, the list of attributes, methods, and constructors accessed/called by
a particular method, and so on. Thus, the evaluation of a generated solution—
i.e., an AST representing a refactored version of the original program—is quite
straightforward.

2. Determine which refactorings can legally be applied by the change operator. By
“legally” we mean refactorings that do not alter the external behavior of a soft-
ware system.

3. Easily apply the selected refactorings to a program. Once the search-based algo-
rithm has found the list of refactorings to apply on the object system, it is impor-
tant that these refactorings can be mapped and applied to the system source code.
The mapping with source code is performed through its AST representation.

Change Operators. In the context of search-based refactoring, the change oper-
ator is a transformation of the solution representation that corresponds to a refactor-
ing that can be carried out on the source code [659]. The current implementation of
CODe-Imp supports the 14 design-level refactorings reported in Table 4.1.

Table 4.1 shows how each refactoring operation supported in CODe-Imp also
has its complement (i.e., a refactoring operation undoing it). For example, a Push
Down Method refactoring can be undone by applying a Pull Up Method refactor-
ing, as well as a Replace Inheritance with Delegation can be undone by the inverse
refactoring operation, i.e., Replace Delegation with Inheritance. This choice is not
random, but it is driven by the fact that some search techniques (e.g., SA) must be
able to freely move in the solution space. Thus, it must be possible to undo each
performed refactoring operation.

Also, before applying a refactoring operation, a set of pre- and post-conditions
is verified, to allow the preservation of the system’s external behavior. For example,
before performing a Push Down Method refactoring it is important to verify that the
subclasses involved in this refactoring do not override the method inherited from
their superclass. Only refactoring operations satisfying the set of defined pre- and
post-conditions are considered as legal change operators in the search algorithm.
CODe-Imp adopts a conservative static program analysis to verify pre- and post-
conditions.

Note that, the set of change operators reported in Table 4.1 is the one adopted in
all work involving the CODe-Imp despite the different final goals of the presented
refactoring process, like maintainability [657—659], testability [649], and security
[323].

Fitness Function. In search-based refactoring the employed fitness functions are
composed of a set of metrics capturing different aspects of source code design qual-
ity. The set of adopted metrics strongly depends on the objective of the refactoring
process. For example, given a hypothetic search-based approach designed to support
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Table 4.1: Refactoring operations supported by CODe-Imp [614].

Refactoring Operation

Description

Push Down Method

Pull Up Method

Decrease/Increase Method Visibility

Push Down Field

Pull Up Field

Decrease/Increase Field Visibility

Extract Hierarchy

Collapse Hierarchy

Make Superclass Abstract

Make Superclass Concrete

Replace Inheritance with Delegation

Replace Delegation with Inheritance

Moves a method from a superclass to the subclasses
using it

Moves a method from some subclasses to their super-
class

Changes the visibility of a method by one level (e.g.,
from private to protected)

Moves a field from a superclass to the subclasses us-
ing it

Moves a field from some subclasses to their superclass

Changes the visibility of a field by one level (e.g.,
from private to protected)

Adds a new subclass to a non-leaf class C in an inher-
itance hierarchy. A subset of the subclasses of C will

inherit from the new class.

Removes a non-leaf class from an inheritance hierar-
chy.

Declares a constructorless class explicitly abstract.

Removes the explicit abstract declaration of an ab-
stract class without abstract methods.

Replaces an inheritance relationship between two
classes with a delegation relationship

Replaces a delegation relationship between two
classes with an inheritance relationship

Extract Class refactoring—i.e., the decomposition of a complex low-cohesive class
in smaller more cohesive classes—it would be necessary to verify that the extracted
classes are (i) strongly cohesive, and (ii) lowly coupled between them. These two
characteristics would indicate a good decomposition of the refactored class. Thus,
in such a case cohesion and metrics should be part of the defined fitness function.
In the studies conducted with CODe-Imp, several different fitness functions have
been used and tuned to reach different final goals in source code design. O’Keeffe
and O Cinnéide [657] try to maximize the understandability of source code by
adopting as fitness function an implementation of the Understandability function
from the Quality Model for Object-Oriented Design (QMOOD) defined by Bansiya
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and Davis [69]°. QMOOD relates design properties such as encapsulation, mod-
ularity, coupling, and cohesion to high-level quality attributes such as reusability,
flexibility, and understandability using empirical and anecdotal information [69].
In the work by O’Keeffe and O Cinnéide [659] the employed Understandability
function is defined by Equation 4.8 where software characteristics having a positive
coefficient (e.g., Encapsulation) positively impact source code understandability,
while those having a negative coefficient (e.g., Abstraction) negatively impact code
understandability. A detailed description of these metrics can be found in [657].

Understandability = —0.33 x (Abstraction + Encapsulation — Coupling
+Cohesion + Polymorphism — Complexity — DesignSize) (4.8)

O’Keeffe and O Cinnéide [659] perform a broader experimentation using, be-
sides the Understandability function, also QMOOD’s Flexibility and Reusability
functions as evaluation functions. The definition of the Flexibility function is given
in Equation 4.9 while the Reusability function is defined in Equation 4.10.

Flexibility = 0.25 X Encapsulation — 0.25 x Coupling
40.5 x Composition+ 0.5 x Polymorphism 4.9)

Reusability = —0.25 x Coupling + 0.25 x Cohesion
+0.5 X Messaging 4+ 0.5 x DesignSize 4.10)

It is worth noting that there are very interesting differences across the three above
presented fitness functions. For example, in the flexibility fitness function the Poly-
morphism is considered a good factor (i.e., a design quality increasing the flexibil-
ity) and thus is multiplied by a positive coefficient (0.5). On the contrary, in the
understandability one the Polymorphism plays a negative role (-0.33 as coefficient),
decreasing the fitness function. Also, the Design Size represents a positive factor
for the reusability of a software system (+0.5 of coefficient) while it is considered a
negative factor for the code understandability (-0.33). These observations highlight
that the fitness function is strongly dependent on the goal of the refactoring process.

As further support to this claim, the fitness function used in [649] and aimed at
increasing program testability is, as expected, totally different from those described
above: it is represented by just one metric, the Low-level design Similarity-based
Class Cohesion (LSCC) defined by Al Dallal and Briand [11].

Finally, a customized fitness function has been used in CODe-Imp to improve the
security of software systems [323]. In this case, the fitness function has been defined
as a combination of 16 quality metrics, including cohesion and coupling metrics,

5 The interested reader can find quality models useful to define alternative fitness functions in
Chapter 3
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design size metrics, encapsulation metrics, composition metrics, extensibility and
inheritance metrics [323].

Supported search-based techniques and change operators. In CODe-Imp
a variety of local and meta-heuristic search techniques are implemented [658].
O’Keeffe and O’Cinnéide [658] evaluate the performances of four search tech-
niques, namely HC, Multiple ascent HC, SA, and GAs in maximizing the QMOOD
understandability previously described. As for GAs, the solution representation pre-
viously described (i.e., based on the AST) is considered as the phenotype, while
the sequence of refactorings performed to reach that solution is considered as the
genotype. The mutation operator simply add one random refactoring to a genotype,
while the crossover operator consists of “cut and splice” crossover of two genotypes,
resulting in a change in length of the children strings [658].

Empirical Evaluation. The results of the study performed by O’Keeffe and
O’Cinnéide [658] indicated that HC and its variant produce the best results. A simi-
lar study has also been performed in [659], where the authors compared HC, Multi-
ple ascent HC, and SA in maximizing all three QMOOD functions described above
(i.e., Understandability, Flexibility and Reusability). Also this study highlighted the
superiority of HC and its variants against the other techniques, with a quality gain
in the values of the fitness function of about 7% for Flexibility, 10% for Reusability,
and 20% for Understandability as compared to the original design. For this reason
the current version of CODe-Imp just supports the HC algorithm and some of its
variants.

4.5.2 Other search-based refactoring approaches

Seng et al. [765] proposed a refactoring approach based on GA aimed at improving
the class structure of a system. The phenotype consists of a high-level abstraction of
the source code and of several model refactorings simulating the actual source code
refactorings. The source code model represents classes, methods, attributes, param-
eters, and local variables together with their interactions, e.g., a method that invokes
another method. The goal of this abstraction is simply to avoid the complexity of the
source code, allowing (i) an easier application of the refactoring operations and (ii)
a simpler verification of the refactoring pre- and post- conditions needed to preserve
the system external behavior. The refactorings supported are Move Method, Pull Up
Attribute, Push Down Attribute, Pull Up Method, Push Down Method. Note that
also in this case each refactoring operation can be undone by another refactoring
operation, allowing a complete exploration of the search space.

Concerning the genotype, it consists of an ordered list of executed model refac-
torings needed to convert the initial source code model into a phenotype. As for the
mutation operator, it is very similar to that discussed for the work of O’Keeffe and
O’Cinnéide [658], and simply extends a current genome with an additional model
refactoring. As for the crossover operator, it combines two genomes by selecting
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the first n model refactorings from parent one and adding the model refactorings of
parent two to the genome; n is randomly chosen [765].

Given the goal of the refactoring process proposed by Seng et al. [765]—i.e.,
to improve the class structure of a system—the fitness function is defined, as ex-
pected, as a set of quality metrics all capturing class quality aspects, and in partic-
ular by two coupling metrics (Response for class and the Information-flow-based-
coupling), three cohesion metrics (Tight class cohesion, Information-flow-based-
cohesion, and the Lack of cohesion of methods), and a complexity metric (a variant
of the Weighted method count).

The evaluation reported in [765] shows that the above described approach ex-
ecuted on an open source software system is able to improve the value of several
quality metrics measuring class cohesion and coupling. In particular, the improve-
ments in terms of cohesion go from 31% up to 81%, while the reduction of coupling
is between 3% and 87%. Moreover, since the approach is fully automated and does
not require any developer interaction, the authors manually inspected the proposed
refactoring operations to verify their meaningfulness. They found all of them justi-
fiable.

Jensen and Cheng [438] use GP to identify a set of refactoring operations aimed
at improving software design by also promoting the introduction of design patterns.
As for the previously discussed approaches their solution representation is a high-
level representation of the refactored software design and the set of steps (i.e., refac-
torings) needed to transform the original design into the refactored design.

The change operators defined in the approach by Jensen and Cheng have been
conceived for creating instances of design patterns in the source code. An example
of these operators is the Abstraction, that constructs a new interface containing all
public methods of an existing class, thus enabling other classes to take a more ab-
stract view of the original class and any future classes to implement the interface
[438].

As for the fitness function, it awards individuals in the generated population ex-
hibiting (i) a good design quality as indicated by the QMOOD metrics [69] pre-
viously described in Section 4.5.1, (ii) a high number of design patterns retrieved
through a Prolog query executed on the solution representation, and (iii) a low num-
ber of refactorings needed to obtain them. The evaluation reported by Jensen and
Cheng [438] shows as the proposed approach, applied on a Web-based system, is
able to introduce on average 12 new design pattern instances.
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4.6 Conclusions

This chapter described how search-based optimization techniques can support soft-
ware evolution tasks. Table 4.2 summarizes the works we discussed, reporting for
each of them (i) the maintenance activity it is related to, (ii) the objectives it aims at
maximizing/minimizing, (iii) the exploited search-based techniques, (iv) a reference
to the work. We have identified three main kinds of activities for which search-based
techniques can be particularly useful. The first area concerns the identification of
modules in software projects, with the aim of keeping an evolving system main-
tainable, of restructuring existing systems, or even of restructuring applications for
particular objectives such as the porting towards limited-resource devices. The sec-
ond area concerns source code (or model) analysis transformation, aimed at achiev-
ing different tasks, e.g., finding a patch for a bug. The third area concerns software
refactoring, where on the one hand different kinds of refactoring actions are possible
[301] on different artifacts belonging to a software system and, on the other hand,
there could be different refactoring objectives, such as improving maintainability,
testability, or security.

In summary, software engineers might have different possible alternatives to
solve software evolution problems, and very often choosing the most suitable one
can be effort prone and even not feasible given the size and complexity of the system
under analysis, and in general given the number of possible choices for the software
engineers. Therefore, it turns out that finding a solution for many software evolu-
tion problems is NP-hard [312] and, even if an automatic search-based approach is
not able to identify a unique, exact solution, at least it can provide software engi-
neers with a limited set of recommendations, hence reducing information overload
[623]. All software engineers need to do in order to solve a software evolution prob-
lem using search-based optimization techniques is to (i) encode the problem using
a proper representation, (ii) identify a way (fitness function) to quantitatively eval-
uate how good is a solution for the problem, (iii) define operators to create new
solutions from existing ones (e.g., Genetic Algorithms (GAs) selection, crossover,
and mutation operators, or hill climbing neighbor operator), and (iv) finally, apply a
search-based optimization techniques, such as GAs, hill climbing, simulated anneal-
ing, or others. In some cases, there might not be a single fitness function; instead,
the problem might be multi-objective and hence sets of Pareto-optimal solutions are
expected rather than single solutions (near) optimizing a given fitness function.

Despite the noticeable achievements, software engineers need to be aware of
a number of issues that might limit the effectiveness of automatic techniques—
including search-based optimization techniques—when being applied to software
evolution problems. First, software development—and therefore software evolution—
is still an extremely human-centric activity, in which many decisions concerning de-
sign or implementation are really triggered by personal experience, that is unlikely
to be encoded in heuristics of automated tools. Automatically-generated solutions
to software evolution problems tend very often to be meaningless and difficult to be
applied in practice. For this reason, researchers should focus their effort in devel-
oping optimization algorithms—for example Interactive GAs [818]—where human
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Table 4.2: Search-based approaches discussed in this chapter.

Activity Objectives Techniques Reference
Maximize Modularization Qual-
ity (MQ) [555] HC, SA, GA [610]
Multi-objective for maximizing
Software Modularization cohesion, minimizing coupling NSGA-II [701]
and number of isolated clusters
Maximize MQ and User Con-
straints
Minimize the footprint of an ap-
plication
Select features to include in an
application when porting it to-
Software Miniaturization wards a mobile device maximiz- GA [17]
ing customers’ satisfaction and
minimizing battery consumption
Program Transformation Minimize code complexity HC, GA [283]
Derive a target model from a
source model by following some
Model transformation rules or principles maiming ade- PSO, PSO+SA [459]
quacy, internal coherence, and ex-
ternal coherence
Maximize the tests passed in a
given test suite
Maximize understandability of

Software Modularization

Software Modularization Interactive GA [82, 360]

Software Miniaturization GA [247]

Automatic Software Repair GP [502]

Refactoring GA, HC [657]
source code

Maximize understandability, flex-

Refactoring ibility, and reusability of source HC, SA, GA [659]
code

Refactoring Maximize program testability HC [649]

Refactoring Maximize software security HC, SA [323]
Maximize class cohesion, min-

Refactoring imize class coupling, minimize GA [765]
class complexity

RE e Maximize the presence of design GP (438]

patterns

evaluations (partially) drive the production of problem solutions. For example, in
Section 4.3.4 we have described how such techniques can be applied in the context
of software modularization. This, however, requires to deal with difficulties occur-
ring when involving humans in the optimization process: human decisions may be
inconsistent and, in general, the process tend to be fairly expensive in terms of re-
quired effort. To limit such effort, either the feedback can be asked periodically (see
Section 4.3.4), or it could be possible to develop approaches that, after a while, are
able to learn from feedback using machine learning techniques [535].

Second, especially when the search space of solutions is particularly large,
search-based optimization techniques might require time to converge. This may be
considered acceptable for tasks having a batch nature. If, instead, one wants to in-



4 Search Based Software Maintenance: Methods and Tools 137

tegrate such heuristics in IDEs—e.g., to continuously provide suggestions to devel-
opers [158]—then performance becomes an issue. In such a case, it is necessary
to carefully consider the most appropriate heuristic to be used or, whenever possi-
ble, to exploit parallelization (which is often possible when using GAs). Last but
not least, it is worthwhile to point out that such performance optimization can be
particularly desirable when, rather than traditional off-line evolution, one expects
automatic run-time system reconfiguration, e.g., in a service-oriented architecture
[159] or in scenarios of dynamic evolution such as those described in Chapter 7.6
of this book.
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