
Chapter 3
Software Product Quality Models

Rudolf Ferenc, Péter Hegedűs and Tibor Gyimóthy

Summary. Both for software developers and managers it is crucial to have infor-
mation about different aspects of the quality of their systems. This chapter gives a
brief overview about the history of software product quality measurement, focusing
on software maintainability, and the existing approaches and high-level models for
characterizing software product quality. The most widely accepted and used prac-
tical maintainability models and the state-of-the-art works in the subject are intro-
duced. These models play a very important role in software evolution by allowing to
estimate future development costs, assess risks, or support management decisions.
Based on objective aspects, the implementations of the most popular software main-
tainability models are compared and evaluated. The evaluation includes the Quality
Index, SQALE, SQUALE, SIG, QUAMOCO, and Columbus Quality Model. The
chapter presents the result of comparing the features and stability of the tools and
the different models on a large number of open-source Java projects.

65
 Springer

. et al. (eds.), E ,
DOI 10.1007/978-3- - - _3, © 201
T Mens volving Software Systems

642 45398 4 -Verlag Berlin Heidelberg 4

66 Rudolf Ferenc, Péter Hegedűs and Tibor Gyimóthy

3.1 Introduction

The need for measuring the quality of software products is almost as old as soft-
ware engineering itself. Software product quality monitoring has become one of the
central issues of software development and evolution. Both for software developers
and managers it is crucial to have clues about different aspects of the quality of their
systems. The information is mainly used in making decisions during software evo-
lution (e. g., to start a refactoring phase or reimplement a system because of wear
out), backing up intuition, estimating future costs and assessing risks.

A large number of quality models, measures, and approaches have been intro-
duced in the past. These software quality assessment models belong to one of the
following types:

1. Software Process Quality Models – the idea behind these models is that they mea-
sure and improve the software development process. These models are based on
the assumption that better development processes lead to better quality software
products. These models make their estimation based on different process met-
rics (e. g., defect removal efficiency, percentage of management effort for a given
project size, average age of unresolved issues). Some of the well-known process
quality models are SPICE [259], ISO/IEC 9001 (Quality management systems –
Requirements) [427], and Capability Maturity Model Integration (CMMI) [184].

2. Software Product Quality Models – these models measure the software prod-
uct itself. They measure different kinds of source code metrics (e. g., Lines of
Code, McCabe’s cyclomatic complexity, coupling) and combine them somehow
to assess the quality of the product. Early quality models are McCall’s [574]
and Boehm’s [122] models followed by the standard ISO/IEC 9126 [422] and its
successor ISO/IEC 25000 (SQuaRE) [425]. Many practical product quality mod-
els have been derived from these standards since then (e. g., ColumbusQM [63],
SIG [387], SQALE [516], SQUALE [619], QUAMOCO [905]).

3. Hybrid Software Quality Models – these models combine the previous ap-
proaches: they calculate both product- and process-based metrics to assess the
quality of software, like in the work of Nagappan et al. [630]. Particularly, they
added line changes, code churn and other process metrics to software product
metrics and built a hybrid model for post-release failure prediction.

This book chapter deals only with the second type of models that assess the software
quality based on software product metrics.

Even though early product quality models have appeared in 1977, right after the
introduction of the first source code metrics, the explosion of new practical quality
models has started after 1991 with the appearance of the ISO/IEC 9126 software
product quality standard (see Figure 3.1). This standard defines six high-level prod-
uct quality characteristics: functionality, reliability, usability, efficiency, maintain-
ability and portability. The characteristics are affected by low-level quality proper-
ties, that can either be internal (measured by looking inside the product, e. g., by

3 Software Product Quality Models 67

analyzing the source code) or external (measured by execution of the product, e. g.,
by performing testing).

In the context of software evolution, which is the focus of this book, maintain-
ability is probably the most attractive, observed and evaluated quality characteristic
of all (discussed in more details later on in Section 3.2). The importance of main-
tainability lies in its very obvious and direct connection with the costs of altering the
behavior of the software [62]. Although, the quality of source code unquestionably
affects maintainability, the standard does not provide a common set of source code
measures as internal quality properties. The standard also does not specify the way
how the aggregation of quality attributes should be performed. Thus it offers a kind
of freedom to adapt the model to specific needs.

Many researchers took the advantage of this freedom and a number of practical
quality models have been proposed so far [1, 51, 63, 68, 387, 516, 619, 905]. Most
of the models discussed in this chapter share some basic common principles:

• They extract information from the source code, therefore they assess quality
properties related to software maintainability. However, we often refer to these
models as quality models as they define quality to be the maintainability of the
code.

• Each of them uses a hierarchical model (e. g., Figure 3.2) for estimating quality
with some kinds of metrics at the lowest level. In the case of each considered
source code metric, its distribution over the source code elements is taken. Ei-
ther the whole distribution, or a number (e. g., average), or a category (based on
threshold values) is used for representation.

• The number or category is aggregated “upwards” in the model by using some
kind of aggregation mechanism (weighting or linear combination, etc).

Many of these practical quality models have been implemented and integrated
into modern tools supporting software evolution. They allow a continuous insight
into the quality of the software product under development. Moreover, many other
direct applications of these models exists. Besides system level qualification some
of them provide a list of critical elements that programmers should fix in order to im-
prove the overall maintainability of the source code. As an example, Section 3.2.4.5
presents a drill-down approach demonstrating a sophisticated technique for deriving
maintainability values at source code element level. Another popular field of appli-
cation of these models is in the cost estimation of future development efforts [62].

This chapter is organized as follows. Section 3.2 gives a historical overview
of software product quality measurement starting from the first software metrics
through simple metrics-based prediction models and early theoretical quality mod-
els to the state-of-the-art practical quality models. In Section 3.3, an application of
practical quality models during software evolution is introduced. Section 3.4 col-
lects and describes some of the available tools implementing the modern practical
quality models. Then, in Section 3.5 we evaluate the introduced practical models
and their implementing tools. First, we compare the models behind the tools based
on a set of evaluation criteria, and afterwards we present our experiences of using

68 Rudolf Ferenc, Péter Hegedűs and Tibor Gyimóthy

the tools by analyzing different open-source Java projects. Finally, we conclude the
chapter in Section 3.6 and list some of the future research directions in the field.

3.2 Evolution of Software Product Quality Models

The need for measuring the quality of the software products has almost the same
age as software engineering itself. The measuring approaches have gone through a
rigorous evolution during the past 50 years. The history of software product quality
measurement is presented on the timeline in Figure 3.1.

Fig. 3.1: The history of software quality measurement

The first tools for assessing product quality were simple metrics like Lines Of
Code, McCabe complexity or Halstead’s metrics. They started to appear from the
mid 1960’s. The growing number of metrics has inspired the appearance of the
early theoretical quality models like McCall’s [574] or Boehm’s model [122] at the
end of the 1970’s. They all tried to capture high-level quality properties based on a
hierarchical model. In 1990’s all these theoretical models have been merged into the
robust ISO/IEC 9126 [422] software product quality standard that had a huge impact
on further quality models. The standard has been revised resulting in a new edition
in 2005, marked as ISO/IEC 25000 (Systems and software Quality Requirements
and Evaluation – SQuaRE) [425].

Another branch of quality assessment approach that started from the mid 1990’s
is the development of empirical prediction models using software metrics as predic-
tors. These approaches try to predict software quality by using different techniques
like regression [663], neural networks [952], or Naive-Bayes classifiers [869] based
on empirical studies. One well-known such model is the Maintainability Index.

To overcome the complexity and lack of application details of the ISO standards
as well as the hard interpretation and explicability of the empirical prediction mod-
els, a whole set of new practical quality models have been introduced in the past

3 Software Product Quality Models 69

few years (e. g., ColumbusQM [63], SIG [387], SQALE [516], SQUALE [619],
QUAMOCO [905]). Most of these models follow the structure of the ISO standards
but also define concrete source code metrics and algorithms for aggregating them
to higher levels of the hierarchical model. The problem of the hard interpretation
of the results has been addressed by utilizing so-called reference systems (bench-
marks) that serve as the basis of the qualification. As another possible solution the
concept of technical debt [146] has been introduced. This term was coined by Ward
Cunningham to describe the obligation that a software organization incurs when it
chooses a design or construction approach that is expedient in the short term but that
increases complexity and is more costly in the long term.

Although the models share a lot of properties, they also differ in many aspects.
It is a very interesting open question if these practical models can be unified and
merged into a common standard like it was done with the early theoretical models.
Our vision is that these practical models can be merged into a common standard in
the future to form a whole new direction of software quality assessment.

This section gives an overview of the evolution of software quality measurements
and approaches starting from the first software metrics through simple metrics-based
prediction models and early theoretical quality models to the state-of-the-art prac-
tical quality models. At the end of the section we also present some of the current
applications of the existing practical quality models.

3.2.1 Software Metrics

Although the first dedicated book on software metrics was not published until
1976 [326], according to the software metrics roadmap of Fenton and Neil [290],
the history of active software metrics dates back to the mid 1960’s when the Lines
of Code (LOC) metric was used as the basis for measuring programming produc-
tivity and effort. In the late 1960’s LOC was also used as the basis for measuring
program quality (normally measured indirectly as defects per KLOC). One of the
first prediction models was presented in 1971 by Akiyama [10] when he proposed a
regression-based model for module defect density prediction in terms of the module
size measured in KLOC.

Starting from the mid 1970’s an explosion of interest arose in the measures of
software complexity (pioneered by Halstead [361] and McCabe [573]) and mea-
sures of functional size (such as function points pioneered by Albrecht [5]), which
were intended to be independent of the programming language of choice. The Hal-
stead complexity and McCabe cyclomatic complexity became the main predictors
of different quality aspects and effort estimation. Early theoretical quality models
(McCall’s, Boehm’s, etc.) have started to appear also in the mid 1970’s and were
based on software metrics.

With the appearance of new programming paradigms such as object-orientation
a whole new set of metrics have been developed. The most well-known metric suite
for OO systems was introduced by Chidamber and Kemerer [180]. Since their ap-

70 Rudolf Ferenc, Péter Hegedűs and Tibor Gyimóthy

pearance, these OO metrics have been used to characterize, evaluate and improve
the design of large applications [495]. This variety of software metrics also inspired
works on new prediction models for software quality and effort estimation.

3.2.2 Early Theoretical Quality Models

The approaches for modeling software quality appeared right after the introduction
of the first software metrics. One of the earliest documented quality model [574]
was created by McCall et al. in 1977. McCall produced this model for the US Air
Force and he attempted to bridge the gap between users and developers by focusing
on a number of software quality factors that reflect both the users’ views and the de-
velopers’ priorities. The structure of McCall’s quality model consists of three major
perspectives (types of quality characteristics) for defining and identifying the qual-
ity of a software product, and each of these major perspectives consists of a number
of quality factors. Each of these quality factors have a set of quality criteria, and
each quality criterion could be reflected by one or more metrics. The perspectives
are:

1. Product revision
The product revision perspective identifies quality factors that influence the abil-
ity to change the software product, these factors are:

• Maintainability, the ability to find and fix a defect.
• Flexibility, the ability to make changes required as dictated by the business.
• Testability, the ability to validate the software requirements.

2. Product transition
The product transition perspective identifies quality factors that influence the
ability to adapt the software to new environments:

• Portability, the ability to transfer the software from one environment to an-
other.

• Reusability, the ease of using existing software components in a different con-
text.

• Interoperability, the extent, or ease, to which software components work to-
gether.

3. Product operations
The product operations perspective identifies quality factors that influence the
extent to which the software fulfills its specification:

• Correctness, the functionality matches the specification.
• Reliability, the extent to which the system fails.
• Efficiency, system resource (including CPU, disk, memory, network) usage.
• Integrity, protection from unauthorized access.
• Usability, ease of use.

3 Software Product Quality Models 71

In total, McCall identified 11 quality factors broken down by 3 perspectives, as listed
above.

In 1978, Boehm et al. [122] also defined a hierarchical model of software quality
characteristics, trying to qualitatively define software quality as a set of attributes
and metrics. It consists of high-level characteristics, intermediate-level characteris-
tics and lowest level (primitive) characteristics which contribute to the overall qual-
ity level. At the highest level of his model, Boehm defined three primary uses (or
basic software requirements), which are the following:

• As-is utility, the extent to which the as-is software can be used (i. e., ease of use,
reliability and efficiency).

• Maintainability, ease of identifying what needs to be changed as well as ease of
modification and retesting.

• Portability, ease of changing software to accommodate a new environment.

In the intermediate level, there are seven quality characteristics that represent the
qualities expected from a software system:

• Portability, the extent to which the software will work under different computer
configurations (i. e., operating systems, databases etc.).

• Reliability, the extent to which the software performs as required, i. e., the ab-
sence of defects.

• Efficiency, optimum use of system resources during correct execution.
• Usability, ease of use.
• Testability, ease of validation, that the software meets the requirements.
• Understandability, the extent to which the software is easily comprehended with

regard to purpose and structure.
• Flexibility, the ease of changing the software to meet revised requirements.

The primitive characteristics can be used to provide the foundation for defining qual-
ity characteristics; this use is one of the most important goals established by Boehm
when he constructed his quality model.

In 1995, Dromey [262] presented a product based quality model that recognizes
that quality evaluation differs for each product. He realized that a more dynamic
idea for modeling the evaluation process is needed to be general enough to be suc-
cessfully applied for different systems. Dromey was focusing on the relationship
between the quality attributes and the sub-attributes, as well as attempting to con-
nect software product properties with software quality attributes. Dromey’s quality
model is structured around a 5 step process:

1. Choose a set of high-level quality attributes necessary for the evaluation.
2. List components/modules in your system.
3. Identify quality-carrying properties for the components/modules (qualities of the

components that have the biggest impact on the product properties from the list).
4. Determine how each property affects the quality attributes.
5. Evaluate the model and identify weaknesses.

72 Rudolf Ferenc, Péter Hegedűs and Tibor Gyimóthy

The FURPS [344] model was originally presented by Robert Grady at Hewlett
Packard in 1992, then it has been extended by IBM Rational Software into FURPS+,
where the ‘+’ indicates such requirements as design constraints, implementation
requirements, interface requirements and physical requirements. Under the FURPS
model, the following characteristics are used:

• Functionality - it may include feature sets, capabilities, and security.
• Usability - it may include human factors, aesthetics, consistency in the user inter-

face, online and context sensitive help, wizards and agents, user documentation,
and training materials.

• Reliability - it may include frequency and severity of failure, recoverability, pre-
dictability, accuracy, and mean time between failures.

• Performance - it imposes conditions on functional requirements such as speed,
efficiency, availability, accuracy, throughput, response time, recovery time, and
resource usage.

• Supportability - it may include testability, extensibility, adaptability, maintain-
ability, compatibility, configurability, serviceability, installability, and localiz-
ability.

ISO/IEC 9126 [422] is an international standard for the evaluation of software
products. The standard is divided into four parts which address, respectively, the
following subjects: quality model; external metrics; internal metrics; and quality in
use metrics. ISO/IEC 9126 Part one, referred to as ISO/IEC 9126-1 is an exten-
sion of the work done by McCall, Boehm, Grady and others in defining a set of
software quality characteristics. The standard defines six high-level product quality
characteristics which are widely accepted both by industrial experts and academic
researchers. These characteristics are: functionality, reliability, usability, efficiency,
maintainability and portability. Table 3.1 shows the characteristics defined by the
standard together with their sub-characteristics.

In the context of software evolution, maintainability is one of the most observed
and evaluated quality characteristics (see Table 3.3). The importance of maintain-
ability lies in its direct connection with the costs of changing the software, either
by performing bug-fixes, refactoring it or adding new features. Although the source
code quality directly affects maintainability, the standard does not provide a com-
mon set of source code measures as internal quality properties. The standard also
does not specify how the aggregation of quality attributes should be performed.
These are not deficiencies of the standard, but it offers a kind of freedom to adapt
the model to specific needs.

The successor of the ISO/IEC 9126 standard family is the ISO/IEC 25000 (Sys-
tems and software Quality Requirements and Evaluation – SQuaRE) [425] family.
It introduces slight modifications to the previous standard which are mainly termi-
nology changes. Table 3.2 lists the quality characteristics and subcharacteristics of
the most recent standard.

Table 3.3 provides an overview of the described theoretical quality models. The
first four rows show some basic characteristics of the models based on the work of
Fahmy et al. [282]. The first row contains the number of levels of the hierarchical

3 Software Product Quality Models 73

Table 3.1: The ISO/IEC 9126 characteristics and subcharacteristics

Characteristics Subcharacteristics Characteristics Subcharacteristics
Functionality Suitability Maintainability Analyzability

Accuracy Changeability
Interoperability Stability
Security Testability
Functionality Compliance Maintainability Compliance

Reliability Maturity Efficiency Time Behavior
Fault Tolerance Resource Utilization
Recoverability Efficiency Compliance
Reliability Compliance

Usability Understandability Portability Adaptability
Learnability Installability
Operability Co-Existence
Attractiveness Replaceability
Usability Compliance Portability Compliance

Table 3.2: The ISO/IEC 25000 (SQuaRE) characteristics and subcharacteristics

Characteristics Subcharacteristics Characteristics Subcharacteristics
Functional suitability Functional Appropriateness Portability Adaptability

Functional Correctness Installability
Functional Completeness Replaceability

Security Confidentalility Usability Appropriateness
Integrity Recognisability
Non-repudiation Learnability
Accountability Operability
Authenticity User error protection

User interface aesthetics
Accessibility

Maintainability Modularity Reliability Availability
Reusability Fault tolerance
Analysability Recoverability
Modifiability Maturity
Testability

Performance efficiency Time-bahaviour Compatibility Co-existence
Resource utilisation Interoperability
Capability

model. Second row shows the relation types between the quality attributes in the
model. After that rows three and four highlight the main advantages and disadvan-
tages of the particular models. In the following rows the quality attributes of the
different models are presented. Only quality attributes at the highest level are con-
sidered. It can be seen that there are a lot of common properties among the models.
However, only Reliability appears at the highest level in each model. Maintain-
ability, Efficiency, Usability and Portability are also very common attributes, they

74 Rudolf Ferenc, Péter Hegedűs and Tibor Gyimóthy

Table 3.3: Comparison of theoretical quality models [13, 282]

Characteristics McCall Boehm Dromey FURPS ISO 9126 ISO 25000
Nr. of levels 2 3 2 2 3 3
Relationship Many-Many Many-Many One-Many One-Many One-Many One-Many
Main Evaluation Hardware Different Separation Evaluation Evaluation
advantage Criteria Factors Systems of FR & Criteria Criteria

Included NFR
Main Components Lack of Comprehen- Portability Generality Generality
disadvantage Overlapping Criteria siveness not

Considered
Quality
Attributes
Maintainability X X X X X
Flexibility X
Testability X X
Correctness X
Efficiency X X X X X
Reliability X X X X X X
Integrity X
Usability1 X X X X X X
Portability X X X X X
Reusability X X
Interoperability X
Understandability X
Modifiability X
Functionality X X X X
Performance X X
Supportability X
Security X
Compatibility X

1 Also referred to as Human Engineering in some models

appear in 5 out of the 6 models. Moreover, these properties are contained in each
model just not at the highest level everywhere (e. g., in FURPS Maintainability is
included in the Supportability characteristic). On the other hand, there are also at-
tributes that are specific to one model e. g., Supportability, Security, Compatibility,
etc. Further reading about these theoretical quality models can be found in the work
of Al-Qutaish [13].

3.2.3 Metrics-based Empirical Prediction Models

The first step towards applying quality models in practice was the development of
different empirical models. All these models apply software metrics as quality pre-
dictors.

3 Software Product Quality Models 75

One of the most widely known empirical maintainability prediction models is
the Maintainability Index (MI) [662] introduced in 1997 by the Carnegie Mellon
Software Engineering Institute (SEI). The formula has many derivatives, but the
original form is given in Equation 3.1. A common variation, shown in Equation 3.2,
adds the comment lines to the model.

MI = 171−5.2∗ lnV −0.23∗G−16.2∗ lnLOC (3.1)

MI = 171−5.2∗ log2 V−0.23∗G−16.2∗ log2 LOC+50∗sin(
√

2.46∗CM) (3.2)

The applied measures are the following:

• V - Halstead Volume.
• G - Cyclomatic Complexity.
• LOC - count of source Lines Of Code (SLOC).
• CM - percent of lines of Comments.

The CM percentage in the maintainability index formula has been interpreted in two
different ways. Liso [530] assumed CM to range between 0 and 100 and discussed
the appropriateness of the value 2.46 leading to strange peaks in sin(

√
2.46∗CM).

Thomas [831] has assumed CM to range between 0 and 1.
Later on, many variations of the formula have been introduced, e. g., one of its

derivatives is built into Microsoft Visual Studio as well. However, the effectiveness
and usefulness of the maintainability index is and has been a subject of debate [142,
289, 387, 483].

Therefore, a wide variety of new approaches has been introduced for improving
the MI. The applied methods are ranging from regression models to fuzzy aggre-
gation and Bayes classifiers (see Table 3.4). These empirical studies also differ in
which metrics have found to be the most effective maintainability predictors. Riaz et
al. presented a detailed comparative study [714] on existing empirical maintainabil-
ity prediction models. The work collects many important features of the different
empirical models, e. g., the definition of quality the authors used, the applied vali-
dation methodology, or the accuracy of the model. Table 3.4 contains a summary of
some well-known works in the field and their important properties.

76 Rudolf Ferenc, Péter Hegedűs and Tibor Gyimóthy

Ta
bl

e
3.

4:
A

su
m

m
ar

y
of

em
pi

ri
ca

lm
ai

nt
ai

na
bi

lit
y

pr
ed

ic
tio

n
m

od
el

s
[7

14
]

A
ut

ho
rs

Ye
ar

A
pp

ro
ac

h
M

ai
nt

ai
na

bi
lit

y
M

et
ri

cs
O

m
an

,
19

94
3

re
gr

es
si

on
ba

se
d

m
od

el
s:

Su
bj

ec
tiv

e
as

se
ss

m
en

t(
or

di
na

ls
ca

le
m

et
ri

c)
by

us
in

g
th

e
U

S
an

d
H

ag
em

ei
st

er
[6

63
]

1.
Si

ng
le

m
et

ri
c

m
od

el
ba

se
d

on
H

al
st

ea
d’

s
E

ff
or

t
A

ir
Fo

rc
e

O
pe

ra
tio

na
lT

es
ta

nd
E

va
lu

at
io

n
C

en
te

r’
s

so
ft

w
ar

e
2.

A
fo

ur
-m

et
ri

c
po

ly
no

m
ia

lm
od

el
m

ai
nt

ai
na

bi
lit

y
ev

al
ua

tio
n

in
st

ru
m

en
t,

w
hi

ch
pr

ov
id

es
a

ra
tin

g
3.

A
fiv

e-
m

et
ri

c
lin

ea
rr

eg
re

ss
io

n
m

od
el

as
w

el
la

s
ca

te
go

ri
ze

s
m

ai
nt

ai
na

bi
lit

y
as

lo
w

,m
ed

iu
m

or
hi

gh
C

ol
em

an
,A

sh
,

19
94

1.
H

PM
A

S
(H

ew
le

tt
Pa

ck
ar

d’
s

so
ft

w
ar

e
Sa

m
e

as
fir

st
bu

tt
he

y
ca

ll
it

H
PM

A
S

M
ai

nt
ai

na
bi

lit
y

In
de

x
L

ow
th

er
,a

nd
O

m
an

.[
19

6,
19

7]
19

95
M

ai
nt

ai
na

bi
lit

y
A

ss
es

sm
en

tS
ys

te
m

)
2.

Po
ly

no
m

ia
lm

ai
nt

ai
na

bi
lit

y
as

se
ss

m
en

tm
od

el
W

el
ke

r,
O

m
an

[9
12

]
19

97
1.

Im
pr

ov
ed

,t
hr

ee
-m

et
ri

c
M

Im
od

el
Sa

m
e

as
fir

st
bu

tt
he

y
ca

ll
it

H
PM

A
S

M
ai

nt
ai

na
bi

lit
y

In
de

x
2.

Im
pr

ov
ed

,f
ou

r-
m

et
ri

c
M

Im
od

el
G

en
er

o,
O

liv
as

,
20

01
Fu

zz
y

Pr
ot

ot
yp

ic
al

K
no

w
le

dg
e

D
is

co
ve

ry
us

ed
fo

r
E

xp
er

to
pi

ni
on

us
in

g
an

or
di

na
ls

ca
le

Pi
at

tin
i,

an
d

R
om

er
o,

F.
[3

19
]

pr
ed

ic
tio

n
ba

se
d

on
Fu

zz
y

D
ef

or
m

ab
le

Pr
ot

ot
yp

es
M

is
ra

[6
09

]
20

05
6

m
od

el
s

ba
se

d
on

m
ul

tiv
ar

ia
te

re
gr

es
si

on
an

al
ys

is
M

ai
nt

ai
na

bi
lit

y
In

de
x

(M
I)

V
an

K
ot

en
,G

ra
y

[8
69

]
20

06
1.

B
ay

es
ia

n
N

et
w

or
k

-N
ai

ve
-B

ay
es

C
la

ss
ifi

er
C

H
A

N
G

E
m

et
ri

c:
co

un
to

fL
O

C
ch

an
ge

d
du

ri
ng

2.
R

eg
re

ss
io

n
M

od
el

s
(R

eg
re

ss
io

n
Tr

ee
,M

ul
tip

le
a

3-
ye

ar
m

ai
nt

en
an

ce
pe

ri
od

lin
ea

rr
eg

re
ss

io
n

m
od

el
s)

Sh
ib

at
a,

R
in

sa
ka

,
20

07
3

N
on

-H
om

og
en

eo
us

Po
is

so
n

Pr
oc

es
s

ba
se

d
T

he
ir

ow
n

qu
eu

ei
ng

m
od

el
w

ith
an

in
fin

ite
nu

m
be

ro
fs

er
ve

rs
,

D
oh

i,
an

d
O

ka
m

ur
a

[7
74

]
So

ft
w

ar
e

R
el

ia
bi

lit
y

M
od

el
s

(N
H

PP
-b

as
ed

SR
M

s)
:

w
hi

ch
is

re
la

te
d

to
th

e
so

ft
w

ar
e

fa
ul

t-
de

te
ct

io
n/

co
rr

ec
tio

n
1.

E
xp

on
en

tia
lS

R
M

pr
ofi

le
s

2.
S-

Sh
ap

ed
SR

M
3.

R
ay

le
ig

h
SR

M
Z

ho
u,

an
d

L
eu

ng
[9

52
]

20
07

M
ul

tiv
ar

ia
te

L
in

ea
rR

eg
re

ss
io

n,
A

rt
ifi

ci
al

N
eu

ra
l

C
H

A
N

G
E

m
et

ri
c:

co
un

to
fL

O
C

ch
an

ge
d

du
ri

ng
N

et
w

or
k,

R
eg

re
ss

io
n

Tr
ee

,S
up

po
rt

V
ec

to
rR

eg
re

ss
io

n,
a

3-
ye

ar
m

ai
nt

en
an

ce
pe

ri
od

M
ul

tiv
ar

ia
te

A
da

pt
iv

e
R

eg
re

ss
io

n
Sp

lin
es

Z
ho

u,
an

d
X

u
[9

53
]

20
08

1.
U

ni
va

ri
at

e
L

in
ea

rR
eg

re
ss

io
n

A
na

ly
si

s
M

ai
nt

ai
na

bi
lit

y
In

de
x

(M
I)

2.
M

ul
tiv

ar
ia

te
L

in
ea

rR
eg

re
ss

io
n

M
od

el

3 Software Product Quality Models 77

3.2.4 State-of-the-art Practical Quality Models

The appearance of the widely accepted ISO/IEC 9126 and related standards [422]
has pushed forward the research in the field of quality models. Numerous papers,
ranging from highly theoretical to purely practical ones, are dealing with this impor-
tant research area. Some of the research has focused on developing a methodology
for adapting the ISO/IEC 9126 model in practice [119, 807]. They provide guide-
lines or a framework for constructing effective quality models.

This section focuses more on practical models that are directly applicable for
assessing the quality of software systems. Using the results of static source code
analysis is one of the most widespread solutions to calculate an external quality at-
tribute from internal quality attributes [71]. There are several case studies examining
if metrics are appropriate indicators for external quality attributes such as code fault
proneness [357, 660], maintainability [59] and attractiveness of the user interface
[584].

The majority of these practical models consider the maintainability aspect of
quality only, because it is the easiest characteristic to assess based on pure source
code analysis. Some of the models consider other quality attributes as well, like
usability (often requiring manual input for the qualification). Regarding the termi-
nology, we use quality model and maintainability model as synonyms throughout
this section.

3.2.4.1 Software QUALity Enhancement project (SQUALE)

The SQUALE model presented by Mordal et al. [619] introduces so-called prac-
tices to connect the ISO/IEC 9126 characteristics to metrics. A practice in a source
code element expresses a low-level rule and the reparation cost of violating this
rule. The reparation cost of a source code element is calculated by the sum of the
reparation costs of its rule violations. The practices can use multiple source code
measures like complexity, lines of code, coding rule violations, etc. (e. g., the com-
ment rate practice uses the measures cyclomatic complexity v(G) and source code
lines, SLOC). Based on the measures, a practice rating in the [0;3] interval can be
calculated, where 3 means the fully achieved goal, 0 means not achieved goal, 1 and
2 means partly achieved goal. In the case of the comment rate practice, the rating
can be determined according to the following rule:

Comment rate practice
if v(G)< 5 and SLOC < 30 then

rating = 3
else

rating = % comments per loc
1−10(−v(G)/15)

end if

78 Rudolf Ferenc, Péter Hegedűs and Tibor Gyimóthy

A criterion assesses one principle of software quality (e. g., safety, simplicity, or
modularity) and it aggregates a set of practices. A criterion mark is computed as the
weighted average of the composed practice marks. There are different weighting
profiles, e. g., hard, medium, soft.

A factor represents the highest quality assessment to provide an overview of
project health (e. g., functional capacity or reliability). A factor aggregates a set of
criteria and its mark is computed as the average of the composed criteria marks.

The model also defines a so-called improvement plan that gives the order in
which the elements should be improved. The plan is based on how to achieve the
biggest improvement in the rating with the lowest invested effort.

3.2.4.2 Software Quality Assessment based on Lifecycle Expectations
(SQALE)

The SQALE quality model introduced by Letouzey and Coq [516] is basically a re-
quirements model. Assessing software source code is therefore similar to measuring
the distance which separates it from its quality target.

The model consists of quality characteristics built on top of development activ-
ities following one another. The characteristics are taken from the ISO/IEC 9126
standard; however, they are grouped differently and their subcharacteristics are
changed entirely. Each subcharacteristic is measured by a number of different con-
trol points. The control points are base measures (indicators) that measure differ-
ent non-compliance aspects of the source code. e. g., an understandability (a sub-
characteristic of maintainability) indicator is the file comment ratio. If it is below
SQALE’s default threshold of 25%, a violation is counted.

Every rule violation has a remediation effort (which depends on the rule). The
model calculates an index for every characteristic which is the sum of all the re-
mediation efforts of its rule violations. The index represents the remediation effort
which would be necessary to correct the non-compliances detected in the compo-
nent, versus the model requirements. Since the remediation index represents a work
effort, the consolidation of the indices is a simple addition of uniform information.
In this way coding rule violation non-compliances, threshold violations for a met-
ric or the presence of an antipattern non-compliance can be compared using their
relative impact on the index.

Besides these remediation indices the model presents a five level rating for the
different components or the system as a whole. The ratings are A, B, C, D, E (A
being the best, E the worst) and can be calculated by summing the remediation
costs of the rule violations for a component divided by the average development
cost of reimplementing the same component (estimated from LOC). Based on preset
thresholds for this ratio a rating can be derived (e. g., if the ratio is less than 0.1%
then the rating is A).

3 Software Product Quality Models 79

3.2.4.3 Quamoco Quality Model

The Quamoco quality framework [905] is the result of a German national research
project carried out between 2009 and 2011. The Quamoco Consortium – consisting
of research institutions and companies – has developed a quality standard applicable
in practice that makes the performance and efficiency of software products made in
Germany assessable and accountable.

Quamoco is based on practical experiences learnt from existing quality models.
The high-level of detail of this approach for the qualified certification of software
projects also takes into account the diversity of different software products. This
means that Quamoco contains a basic standard of quality that is complemented
by domain-specific quality standards. The quality of software products can thus
be modeled flexibly. At the same time, Quamoco ensures that all identified quality
requirements are fully integrated.

The Quamoco approach uses the following definitions:

• Quality Model: A model with the objective to describe, assess and/or predict
quality.

• Quality Meta Model: A model of the constructs and rules needed to build specific
quality models.

• Quality Modeling Framework: A framework to define, evaluate and improve
quality. This usually includes a quality metamodel as well as a methodology
that describes how to instantiate the metamodel and use the model instances for
defining, assessing, predicting and improving quality.

The main concepts of the quality model are Factors. A factor expresses a property
of an entity. Entities are the things that are important for quality. Properties describe
the attributes of the entities. This concept of a factor is rather general. Thus, the
Quamoco model uses it on two levels of abstraction:

• Quality Aspects describe abstract quality goals defined for the whole product.
The quality model uses the “-ilities” of ISO/IEC 25000 as quality aspects. Typical
examples for such quality aspects are Maintainability, Analysability, and Modi-
fiability.

• Product Factors describe concrete, measurable properties of concrete entities. An
example for a factor is the Complexity of a method, which can be measured by
the cyclomatic complexity number, or by the nesting depth of the method.

To close the gap between abstract quality aspects and measurable product factors,
the product factors need to be set in relation to the quality aspects. This is done via
Impacts. An impact is either positive or negative and describes how the degree of
presence or absence of a product factor influences a quality aspect.

A third layer in the levels of abstraction are Measures, which describe how a
specific product factor can be quantified. To realize the connection to concrete tools
in a quality assessment, the approach further introduces Instruments. An instrument
describes a concrete implementation of a measure. For the example of the nesting

80 Rudolf Ferenc, Péter Hegedűs and Tibor Gyimóthy

depth, an instrument is the corresponding metric as implemented in the quality anal-
ysis framework ConQAT [234]. This way, different tools can be used for a single
measure.

In order to fully utilize the quality model, aggregation formulas need to be spec-
ified. They are called Evaluations and they are assigned to the factors in the quality
model.

3.2.4.4 SIG Maintainability Model

Kuipers and Visser introduced a maintainability model [483] as a replacement of the
Maintainability Index by Oman and Hagemeister [662]. Based on this work Heit-
lager et al. [387], members of the Software Improvement Group (SIG) company
proposed an extension of the ISO/IEC 9126 model that uses source code metrics at
low-level. Metric values are split into five categories, from poor (--) to excellent
(++). The evaluation in their model means summing the values for each attribute
(having the values between -2 and +2) and then aggregating the values for charac-
teristics using the mapping presented in Table 3.5. The model was recently adapted
to the ISO/IEC 25000 standard.

Table 3.5: The SIG quality characteristic mapping

Volume Complexity Duplications Unit size Unit tests
Analysability X X X X
Changeability X X

Stability X
Testability X X X

Correia and Visser [202] presented a benchmark that collects measurements of a
wide selection of systems. This benchmark enables systematic comparison of tech-
nical quality of (groups of) software products. Alves et al. presented a technique for
deriving metric thresholds from benchmark data [24]. This method is used to derive
more reasonable thresholds for the SIG model as well.

Correia and Visser [203] introduced a certification method that is based on the
SIG quality model. The method makes it possible to certify technical quality of soft-
ware systems. Each system can get a rating from one to five stars (-- corresponds
to one star, ++ to five stars). Baggen et al. [58] refined this certification process by
doing regular re-calibration of the thresholds based on the benchmark.

The SIG model uses binary relation between system properties and character-
istics. Correia et al. created a survey [201] to elicit weights for their model. The
survey was filled out by IT professionals, but the authors finally concluded that us-
ing weights does not improve their quality model because of the lack of consensus
among developers.

3 Software Product Quality Models 81

The validation of the model has been done through an empirical case study.
Luijten and Visser [543] showed that the metrics of the SIG quality model corre-
late with the time needed for resolving a defect in a software.

3.2.4.5 Columbus Quality Model

This subsection describes the Columbus Quality Model (ColumbusQM) in full tech-
nical details to give an insight for the reader about the complexity of a modern
maintainability model.

The Columbus approach [63] to compute ISO/IEC 9126 quality characteristics
uses a so-called benchmark (i. e., a source code metric repository database consist-
ing of source code metrics of open-source and industrial software systems) and it
is based on a directed acyclic graph (see Figure 3.2), whose nodes correspond to
quality properties that can either be internal or external. The nodes representing in-
ternal quality properties are called sensor nodes (white nodes in Figure 3.2) as they
measure internal quality directly. The other nodes are called aggregate nodes as they
acquire their measures through aggregation. The approach uses aggregate nodes de-
fined by the ISO/IEC 9126 standard (dark gray nodes in Figure 3.2) as well as newly
defined ones (light gray nodes in Figure 3.2).

Fig. 3.2: Java Attribute Dependency Graph of ColumbusQM

The edges of the graph represent dependencies between an internal and an ex-
ternal or two external properties. Internal properties are not dependent on any other
attribute, they “sense” internal quality directly. The aim is to evaluate all the external
quality properties (attributes) by performing an aggregation along the edges of the
graph. In the following we will refer to this graph as Attribute Dependency Graph
(ADG).

NLE

CodeComplexity

NUMPAR

NOA

Comprehensibility

NOI

McCC

CBO NIILLOC

Testability

WarningP1

CodeFaultProneness

Stability

WarningP2WarningP3

CC

Changeability

Effectiveness

Interconnectedness

Maintainability

Analyzability

82 Rudolf Ferenc, Péter Hegedűs and Tibor Gyimóthy

Let G= (S∪A,E) stand for the ADG, where S, A, and E denote the sensor nodes,
aggregate nodes, and edges, respectively, and S∩A = /0. We want to measure how
good or bad an attribute is. Goodness is the term that is used to express this measure
of an attribute. For the sake of simplicity we will write goodness of a node instead of
goodness of an attribute represented by a node. Goodness is measured on the [0,1]
interval for each node, where 0 and 1 mean the worst and best, respectively. The
goodness of each sensor node u is not known precisely, hence it is represented by a
random variable Xu with a probability density function gu : [0,1]→ R. gu is called
the goodness function of node u.

Constructing a goodness function. The currently presented way of construct-
ing goodness functions is specific to source code metrics. For other sensor types,
different approaches may be needed. The model makes use of the metric histogram
over the source code elements, as it characterizes the whole system from the aspect
of one metric. The aim is to give a measure for the goodness of a histogram. As the
notion of goodness is relative, it is expected to be measured by means of compari-
son with other histograms in the benchmark. Let us suppose that H1 and H2 are the
histograms of two systems for the same metric, and h1 (t) and h2 (t) are the corre-
sponding normalized histograms (i. e., density functions, see Figure 3.3). By using
Equation 3.3 we obtain a distance function (not in the mathematical sense) defined
on the set of probability functions. Fig. 3.3 helps understanding the meaning of the
formula: it computes the signed area between the two functions weighted by the
function ω (t).

D (h1,h2) =
∫

∞

−∞

(h1 (t)−h2 (t))ω (t)dt (3.3)

Fig. 3.3: Comparison of probability density functions

The weight-function plays a crucial role: it determines the notion of goodness,
i. e., where on the horizontal axis the differences matter more. If one wants to ex-
press that all metric values matter in the same amount, she would set ω (t) = c,
where c is a constant, and in that case D (h1,h2) will be zero (as h1 and h2 inte-

3 Software Product Quality Models 83

grate to 1). On the other hand, if one would like to express that higher metric values
are worse, one could set ω (t) = t. Non-linear functions for ω (t) are also possible.
As in case of most source code metrics, higher values are considered to be worse
(e. g., McCabe’s complexity), we use the ω (t) = t weight function for these metrics
(linearity is implicitly subsumed by the choice).

The choice leads to a very simple formula, given in Equation 3.4, where H
′
1

and H
′
2 are the random variables corresponding to the h1 and h2 density functions,

E
(

H
′
1

)
and E

(
H
′
2

)
are the expected values of these (the equality is based on the

definition of the expected value of a random variable). Lastly, H̃1 and H̃2 are the
averages of the histograms H1 and H2, respectively. The last approximation is based
on the Law of Large Numbers (the averages of a sample of a random variable con-
verge to the expected value of the same). By this comparison we get one goodness
value for the subject histogram (this value is relative to the other histogram).

D (h1,h2) =
∫

∞

−∞
(h1 (t)−h2 (t)) tdt =

∫
∞

−∞
h1 (t) tdt−

∫
∞

−∞
h2 (t) tdt

= E
(

H
′
1

)
−E

(
H
′
2

)
≈ H̃1− H̃2

(3.4)

In order to obtain a proper goodness function, this comparison needs to be re-
peated with histograms of many different systems independently. In each case we
get a goodness value which can basically be regarded as sample of a random variable
from the range [−∞,∞]. A linear transformation of the values changes the range to
the [0,1] interval. The transformed sample is considered to be the sample of the ran-
dom variable Xu. Interpolation of the empirical density function leads to the good-
ness function of the sensor node.

There is a theoretical beauty of the approach. Let us assume that one disposes
histograms of N different systems for one particular metric. Each histogram can be
considered to be sampled by different random variables Yi,(i = 1, . . . ,N). Further-
more, one would like to assess the goodness of another histogram corresponding
to the random variable X . The goodness is by definition described by the series of
random variables in Equation 3.5. The random variable for goodness (before the
transformation) is then described by random variable Z in Equation 3.6.

Z1 := E (Y1)−E (X) , . . . ,ZN := E (YN)−E (X) . (3.5)

Z :=
1
N

N

∑
i=1

Zi→Φν ,σ , if N→ ∞. (3.6)

According to the Central Limit Theorem [266] for independent (not necessarily
identically distributed) random variables, Z tends to a normal distribution which
is independent of the benchmark histograms. This is naturally a theoretical result,
and it states that when having a large number of systems in the benchmark, the
constructed goodness functions are (almost) independent of the particular systems
in the benchmark. Actually, Φν ,σ is a benchmark-independent goodness function

84 Rudolf Ferenc, Péter Hegedűs and Tibor Gyimóthy

(on [−∞,∞]) for X , just that it can be approximated by having a benchmark with a
sufficient number of systems.

To be able to perform the construction of goodness functions in practice, a source
code metric repository database has also been built that consists of source code
metrics of more than 100 open-source and industrial software systems.

Aggregation. After being able to construct goodness functions for sensor nodes,
there is a need for a way to aggregate them along the edges of the ADG. Recall
that the edges represent only dependencies, we have not yet assigned any weights
to them. Assigning a simple weight would lead to the classic approach. In models
that use a single weight or threshold in aggregation, the particular values are usually
backed up with various reasonings and cause debates among experts. The Colum-
bus model is able to handle this ambiguity. Many experts were asked in an online
survey (both industrial and academic people) for their opinion about the weights.
For every aggregate node, they were asked to assign scalars to incoming edges such
that the sum of these would be 1. The number assigned to an edge is considered to
be the amount of contribution of source goodness to target goodness. This way, for
each aggregate node v a multi-dimensional random variable Yv =

(
Y 1

v ,Y
2
v , . . . ,Y

n
v
)

exists (n is the number of incoming edges). The components are dependent random
variables, as

n

∑
i=1

Y i
v = 1, (3.7)

holds, that is, the range of Yv is the standard (n−1)-simplex in Rn. It is important
that one cannot simply decompose Yv to its components because of the existing
dependencies among them.

Having an aggregate node with a composed random variable Yv for aggregation
(fYv will denote its composed density function), and also having n source nodes
along the edges, with goodness functions g1,g2, . . .gn, the aggregated goodness for
the aggregated node is defined by gv(t) in Equation 3.8 where ∆ n−1 is the (n−1)-
standard simplex in Rn and Cn is the standard unit n-cube in Rn.

gv (t)=
∫

t=qr
q=
(
q1 , . . . ,qn

)
∈ ∆n−1

r=
(
r1 , . . . ,rn

)
∈Cn

fYv(q)g1(r1). . .gn(rn)drdq, (3.8)

It is the generalization of how aggregation is performed in classic approaches.
Classically, a linear combination of goodness values and weights is taken, and it is
assigned to the target node. When dealing with probabilities, one needs to take every
possible combination of goodness values and weights, and also the probabilities of
their outcome into account. In the formula, the components of the vector r traverse
the domains of source goodness functions independently, while vector q traverses
the simplex where each point represents a probable vote for the weights. For fixed
r and q vectors their scalar product (t = qr = ∑

n
i=1 riqi ∈ [0,1]) is the goodness of

the target node. To compute the probability for this particular goodness value, one
needs to multiply the probabilities of goodness values of source nodes (these are
independent) and also the composed probability of the vote (fYv (q)). This product
is integrated over all the possible r and q vectors (please note that t is not uniquely

3 Software Product Quality Models 85

decomposed to vectors r and q). gv (t) is indeed a probability distribution function
on [0,1] interval, i. e., its integral is equal to 1, because both fYv (q) and the goodness
functions integrate to 1 on ∆ n−1 and Cn respectively.

With this method it is now possible to compute goodness functions for every
aggregate node. The way the aggregation is performed is mathematically correct,
meaning that the goodness functions of aggregate nodes are really expressing the
probabilities of their goodness (by combining other goodness functions with weight
probabilities).

Although this approach provides goodness functions for every aggregate node,
managers are usually only interested in having one number that represents an exter-
nal quality attribute of the software. Goodness functions carry much more informa-
tion than that, but an average of the function may satisfy even the managers. The
resulting goodness function at every node has a meaning: it is the probability dis-
tribution which describes how good a system is from the aspect represented by the
node. Therefore, the approach leads to interpretable results. Provided that the good-
ness functions are computed for every node of the ADG, and that the dependencies
in the ADG are known, it is easy to see the root causes of the quality score.

Drill-down. Additionally to system level maintainability, ColumbusQM imple-
ments an algorithm [379] to drill down to lower levels in the source code and to get
a similar measure for the building blocks of the codebase (e. g., classes or methods).
For this, the model defines the relative maintainability index for the source code
elements, which measures the extent to which they affect the system level goodness
values. The approach is related to the aggregation and decomposition techniques
introduced by Posnett et al. [699] and Serebrenik et al. [769].

The basic idea is to calculate the system level goodness values by ColumbusQM,
leaving out the source code elements one by one. After a particular source code
element is left out, the system level goodness values will change slightly for each
node in the ADG. The difference between the original goodness value computed
for the system, and the goodness value computed without the particular source code
element, will be called the relative maintainability index of the source code element
itself. The relative maintainability index is a small number that is either positive
when it improves the overall rating or negative when it decreases the system level
maintainability. The absolute value of the index measures the extent of the influence
to the overall system level maintainability. A relative index can be computed for
each node of the ADG, meaning that source code elements can affect various quality
aspects in different ways and to different extents.

It is important to notice that this measure determines an ordering among the
source code elements of the system, i. e., they become comparable to each other.
And what is more, the system level maintainability being an absolute measure of
maintainability, the relative index values become absolute measures of all the source
code elements in the benchmark. Therefore, the ordering can be used by program-
mers to rank source code elements based on their criticality for improving the overall
maintainability.

86 Rudolf Ferenc, Péter Hegedűs and Tibor Gyimóthy

3.2.4.6 Other Approaches

The CAST (http://www.castsoftware.com) company has its own solution
for software quality analysis, the Application Intelligence Platform (AIP), that uses
an application quality benchmarking repository called Appmarq. Being a closed
source proprietary tool, we were unable to try it out and evaluate it in detail as we
did this with other solutions.

The Laboratory for Quality Software (LaQuSo – http://www.laquso.
com) is a joint initiative of Eindhoven University of Technology and Radboud Uni-
versity Nijmegen. Since the starting of LaQuSo one of its focus areas has been the
development of a product certification methodology. This has resulted in LSPCM
(LaQuSo Software Product Certification Model). LaQuSo offers product certifica-
tion as a service, which is a check that the artifact fulfills a well-defined set of
requirements. These requirements are defined by the customer or a third party;
LaQuSo as an independent evaluator will do the check. Serebrenik et al. [766] have
analyzed requirements of three off-shoring projects using LSPCM. Application of
LSPCM revealed severe flaws in one of the projects. The responsible project leader
confirmed later that the development significantly exceeded time and budget. In the
other projects no major flaws were detected by LSPCM and it was confirmed that
the implementation was delivered within time and budget.

VizzMaintenance (http://arisa.se/products.php) is an Eclipse plug-
in which brings detailed information about the maintainability of a software system.
It uses static analysis to calculate 17 well-known software quality metrics. It then
combines these values in a software quality model [928]. It supports the decisions
which classes should be refactored first to improve their maintainability.

Vanderose et al. introduce a Model-Centric Quality Assessment (MoCQA) frame-
work [593, 875, 877] which is a theoretical framework designed to help plan and
support a focused quality assessment all along the software lifecycle. They aim
at assessing other quality characteristics than maintainability, such as complete-
ness [876], that are arguably useful to assist the software maintenance process.

There are other works that deal with software design quality and quality from the
end user’s point of view. For example, Ozkaya et al. [674] emphasize the importance
of using quality models like ISO/IEC 9126 in practice right from the beginning
of the design phase. The approach presented in their paper is general enough for
evaluating design or end user quality, but not the product quality itself. Research
of Bansiya and Davis [68] focus on the software design phase. They adapted the
ISO/IEC 9126 model for supporting quality assessment of system design.

The work of Marinescu and Lanza [495] introduces a metrics-based approach for
detecting design problems. It allows the software engineer to define metrics-based
rules that “quantify” design principles, rules and heuristics related to the quality of a
design. The work introduces an important suite of detection strategies for the iden-
tification of different well-known design flaws found in the literature. Additionally,
the work presents a new type of quality model, called Factor-Strategy, allowing the
quality to be expressed explicitly in terms of compliance with principles, rules and
heuristics of good object-oriented design.

http://arisa.se/products.php
http://www.laquso.com
http://www.laquso.com
http://www.castsoftware.com

3 Software Product Quality Models 87

3.3 Application of Practical Quality Models in Software
Evolution

It might be difficult to see the role of the presented maintainability models in soft-
ware evolution at first glance. But whether one likes it or not, today, software indus-
try is a giant business driven by business needs and profit. Thus keeping the costs
of software evolution as low as possible is a central issue. As maintainability is in
direct connection with the changing of software systems, measuring and controlling
it is of vital importance for software evolution.

On the other hand, as applying techniques that improve the maintainability of
the code or avoiding structures that deteriorate systems has an additional cost with-
out having a short term financial benefit, they are often neglected by the business
stakeholders. Hence maintainability of the systems is often overshadowed by feature
developments whose business value is more evident at least in short terms. Although
the developers are usually aware of its long term benefits, they do not have strong
enough arguments to convince stakeholders for investing extra effort to improve
maintainability. By better understanding the relationship of maintainability and the
long term development costs, it would be possible to show the return on investment
of keeping maintainability of systems at a high-level. It would make the extra in-
vestment more appealing to the business stakeholders as well, thus reaching higher
quality software and cheaper evolution in general.

In this section we introduce a cost model that is based on source code main-
tainability and proves its direct connection with development costs. It is a possible
application of practical quality models during software evolution in modern indus-
trial environments.

3.3.1 A Cost Model Based on Software Maintainability

The approach [62] adopts the concept of entropy in thermodynamics, which is used
to measure the disorder of a system. According to the second law of thermodynam-
ics, the entropy of a closed system cannot be reduced; it can only remain unchanged
or increase. The only way to decrease entropy (disorder) of a system is to apply
external forces, i.e. to put energy into making order.

The notion of entropy is applied in a very similar way for software systems [432].
Maintainability of a source code is usually defined as a measure of the effort re-
quired to perform specific modifications in it. Assuming that the higher the disorder
is, the more effort is needed to perform the modifications, maintainability can be
interpreted as a measure of the disorder, i.e. entropy of the source code.

The approach lays on two basic assumptions:

1. Making changes in a source code does not decrease the disorder of it, pro-
vided that one does not work actively against this. In other words, when making

88 Rudolf Ferenc, Péter Hegedűs and Tibor Gyimóthy

changes to a software system without explicitly aiming to improve it, its main-
tainability will decrease, or at least it will remain unchanged.

2. The amount of changes applied to the source code is proportional to the effort in-
vested, and to the maintainability of the code. In other words, if one applies more
effort, the code will change faster. Additionally, a more maintainable code will
change faster, even if the applied effort is the same. Another interpretation is that
the effort aiming on code change is inversely proportional to the maintainability
at time t.

Before formalizing these assumptions, the following notions are introduced:

• S (t) - the size of the source code at time t, measured in lines of code.
• λ (t) - the change rate of the source code at time t, i.e. the probability of changing

any line independently (for the sake of simplicity we assume that it is the same
for all lines of code). S (t)λ (t) equals the number of lines changed at time t.

• k - a constant for the conversion between different units of measure. The ap-
proach deals with two scalar measures: maintainability and cost. Instead of fix
particular units of measure for each, a conversion constant k is introduced. In the
sequel, it can be assumed without the loss of generality, that cost is expressed by
any measure of effort, e.g. salary, person month, time, etc., while maintainability
may have any other scalar measure. In practice, after fixing the measures of unit
for each, k can be estimated from historical project data.

• C (t) - the cost invested into changing the system until time t, measured from an
initial time t = 0. Obviously, C (0) = 0.

• M (t) - maintainability (i.e. disorder) of the system at time t.

In the following, it is assumed that modifications do not explicitly aim on code
improvement, meaning that only new functionality is being added to the system
and no refactoring or other explicit improvements are done. In this case, the first
assumption above can be formalized as in Equation 3.9, meaning that the decrease
rate of maintainability is proportional to the number of lines changed at time t.
The constant factor q is called the erosion factor which represents the amount of
“damage” (decrease in maintainability) caused by changing one line of code.

dM (t)
dt

=−qS (t)λ (t) (q≥ 0) , (3.9)

The erosion factor depends on many internal and external factors like the experi-
ence and knowledge of the developers, maturity of development processes, quality
assurance processes used, tools and development environments, the programming
language, and the application domain. The q ≥ 0 assumption makes it impossible
for the code to improve by itself just by adding new functionality. The assumption
is in accordance with Lehman’s laws [511] of software evolution, which state that
the complexity of evolving software is increasing, while its quality is decreasing at
the same time.

3 Software Product Quality Models 89

Formalizing the second assumption leads to Equation 3.10. The numerator rep-
resents the amount of change introduced at time t. The formula states that the uti-
lization of the cost invested at time t for changing the code is inversely proportional
to maintainability.

dC (t)
dt

= k
S (t)λ (t)

M (t)
(3.10)

Solving the above system of ordinary differential equations, yields the following
result:

C (t1)−C (t0) =
∫ t1

t0
k
S (t)λ (t)

M (t)
dt =− k

q

∫ t1

t0

Ṁ (t)
M (t)

dt =

=− k
q
[lnM (t1)− lnM (t0)] =−

k
q

ln
M (t1)
M (t0)

. (3.11)

By expressing M (t) from the above equation, we get to the main result:

M (t1) = M (t0)e−
q
k (C (t1)−C (t0)), (3.12)

which suggests that the maintainability of a system decreases exponentially with
the invested cost to change the system. The erosion factor q determines the decrease
rate of maintainability. It is obvious that for a higher erosion factor the decrease rate
will be higher as well. It is crucial for software development companies to push the
erosion factor as low as possible, for instance by training the employees, improving
processes, utilizing sophisticated quality assurance technologies.

Although, the formula does not provide a way of having an absolute measure
for maintainability, one can easily define a relative maintainability for the system.
Indeed, by letting t0 = 0, and defining M (0) = 1, we get to the following function
for maintainability:

M (t) = e−
q
k C (t) (3.13)

For the interpretation, let us consider two artificial scenarios. Figure 3.4 shows the
case, when the invested effort is constant over the time. In this case, both the main-
tainability M (t) and the change rate λ (t) decrease exponentially.

In the other case, let us suppose that one intentionally wants to keep the change
rate of the system constant. Figure 3.5 shows how the maintainability M (t) and
the overall cost C (t) change over time. Now, the maintainability decreases linearly
until it reaches zero, while the cost is increasing faster than an exponential rate. The
cost will reach infinity in finite time, exactly when maintainability reaches zero,
meaning that any further change would require infinite amount of effort. This is,
of course, just a theoretical possibility, as no one disposes an infinite amount of
resources required to degrade the maintainability of a system to absolute zero.

The problem with applying the model to real-world software systems lies in the
erosion factor q. While the other model parameters (k and C (t)) can be computed
easily, the erosion factor, which measures the “damage” caused by changing one

90 Rudolf Ferenc, Péter Hegedűs and Tibor Gyimóthy

Fig. 3.4: Changes of Change rate (λ (t)) and Maintainability (M (t)) during evolu-
tion when the cost of the development (C (t)) is constant over time.

Fig. 3.5: Changes of Cost (C (t)) and Maintainability (M (t)) during evolution
when the Change rate (λ (t)) is constant over time.

line, is challenging. Contrarily, if there was an absolute measure of maintainability,
the constant, project-specific erosion factor q could easily be computed by express-
ing it from Equation 3.13. Furthermore, by having an absolute measure for q as
well, the erosion factors of different projects, organizations could be compared. The
analysis of the causes of the differences would make it possible to lower the erosion
factor, e. g., by improving the processes, and training people.

In addition, the overall cost of development could also be expressed explicitly
from the model, according to Equation 3.14. For computing future development

3 Software Product Quality Models 91

costs, it would just be required to have an estimate for the change rate λ (t) over a
time period.

C (t) =− k
q

ln
∣∣∣∣1− q

M (0)

∫ t

0
S (s)λ (s)ds

∣∣∣∣. (3.14)

The introduced practical quality models are good candidates for obtaining an
absolute measure of maintainability for software systems. Using the absolute main-
tainability calculated by one of these models would allow to obtain an absolute
erosion factor q, which can be used to estimate further development costs and to
compare the erosion factors of different projects and organizations.

3.4 Tools Supporting Software Quality Estimation

3.4.1 Software QUALity Enhancement project (SQUALE)

The implementation of the SQUALE model (see Section 3.2.4.1) is available as an
open-source tool (http://www.squale.org). The project officially started in
June 2008, funded by the French Government. The first official open-source version
was released in January 2009.

Fig. 3.6: SQUALE tool

The Software QUALity Enhancement project – SQUALE focused on two main
aspects. First, it works on enhanced quality models inspired by existing approaches

http://www.squale.org

92 Rudolf Ferenc, Péter Hegedűs and Tibor Gyimóthy

(GQM [874], McCall et al. [574]) and standards (ISO/IEC 9126 [422]), validated
and improved by researchers, dealing with both technical and economical aspects of
quality. Second, the development of an open-source application that helps assessing
software quality and improving it over time based on third party technologies (com-
mercial or open-source) that produce raw quality information (like metrics), using
the quality models to aggregate this raw information into high-level quality factors,
all this targeting different languages.

The tool provides a web-based interface for configuring the qualifications of new
applications. The qualification process is run as the part of a scheduled audit of the
source code. The quality results are presented in the same web application. Fig-
ure 3.6 shows the overview page of a quality audit result of SQUALE.

3.4.2 Software Quality Assessment based on Lifecycle Expectations
(SQALE)

According to the official site (http://www.sqale.org/tools), the follow-
ing tools implement the SQALE model (see Section 3.2.4.2):

• Insite SaaS by Metrixware (http://www.metrixware.com)
• Sonar by SonarSource (http://www.sonarsource.com)
• SQuORE by SQuORING (http://www.squoring.com)
• Mia-Quality by Mia-Software (http://www.mia-software.com)

The results of the tool evaluation in the following section refers to the Sonar
implementation of the model. Sonar is an open platform to manage code quality
(http://www.sonarsource.org). Using an extensive plug-in mechanism it
is fairly easy to extend the basic functionality of the framework (e. g., support anal-
ysis for new languages, add new metrics).

The Technical Debt Evaluation (SQALE) Sonar plug-in is a full implementation
of the SQALE methodology. This method contains both a Quality Model and an
Analysis Model. The Technical Debt Evaluation (SQALE) plug-in comes with a
number of features, including custom widgets, visualizations, rules and drill-downs.
Figure 3.7 shows the summary page of the tool.

3.4.3 QUAMOCO Quality Model

The QUAMOCO framework (see Section 3.2.4.3) is available as an open-source
Eclipse extension (https://quamoco.in.tum.de). The Quamoco Consor-
tium provides a toolchain [233] for the creation/editing of quality models and for
the automatic analysis of software products:

• Quality Model Editor: This editor enables the comfortable creation of quality
models.

https://quamoco.in.tum.de
http://www.sonarsource.org
http://www.mia-software.com
http://www.squoring.com
http://www.sonarsource.com
http://www.metrixware.com
http://www.sqale.org/tools

3 Software Product Quality Models 93

Fig. 3.7: Sonar SQALE Maintainability Model plug-in

• ConQAT-Integration: By integrating the quality model into the analysis frame-
work ConQAT [234], automatic quality assessments for the programming lan-
guages Java, C#, and C/C++ can be conducted.

Fig. 3.8: QUAMOCO quality report

The quality analysis with the prepared quality models can be started interactively
from Eclipse or run from command line allowing to be integrated into the build

94 Rudolf Ferenc, Péter Hegedűs and Tibor Gyimóthy

processes. The tool presents its results in Eclipse and also creates a detailed HTML
quality report (see Figure 3.8).

3.4.4 SIG Maintainability Model

The Software Improvement Group (http://www.sig.eu) offers software prod-
uct certification based on the implementation of their maintainability model (see
Section 3.2.4.4) as a commercial service. No official downloadable version of the
tool exists on their homepage.

However, the SIG Maintainability Model is implemented as a free and down-
loadable Sonar plug-in. The results of the tool evaluation in the following section
refers to this Sonar plug-in implementation of the model. The SIG plug-in provides
a high-level overview about the following ISO/IEC 9126 maintainability subchar-
acteristics: Analysability, Changeability, Stability and Testability. The values range
from -- (very bad) to ++ (very good). Figure 3.9 shows a screenshot about the
results of the plug-in.

Fig. 3.9: Sonar SIG Maintainability Model Plug-in

3.4.5 Columbus Quality Model

The Columbus Quality Model (see Section 3.2.4.5) is implemented by a propri-
etary tool called SourceAudit, member of the QualityGate product family. The
QualityGate source code quality assurance platform developed by FrontEndART
(http://www.frontendart.com) is based on research conducted at the De-
partment of Software Engineering of University of Szeged and on the ISO/IEC 9126
standard.

The tool is able to continuously monitor the maintainability of software prod-
ucts. It can be integrated into the common build processes or manage individual

http://www.frontendart.com
http://www.sig.eu

3 Software Product Quality Models 95

Fig. 3.10: QualityGate implementation of the Columbus Quality Model

qualifications with the help of a Jenkins continuous integration system1 based ad-
ministration page. The results of the qualification is presented in a sophisticated web
application but many types of different reports can also be generated. Figure 3.10
shows a screenshot of the tool containing a one year long period of quality analysis
results.

3.5 Comparing the Features of the Quality Models and Tools

To evaluate and compare the different models and their implementing tools, we
installed and ran them on several projects. As two of the tools were available as
Sonar plugins, we decided to perform a maintainability assessment on the open-
source projects presented in Sonar’s Nemo demo application.2 The benefit of it
was twofold: the data in Nemo already contained the quality analysis results of the
SQALE model commercial plug-in; and we could easily identify the exact source
code locations and versions from Sonar to be able to run the other tools on the same
source code.

As the SIG model is not part of Nemo, we also installed and configured our own
local version of Sonar. Besides the SQALE and SIG models we decided to include
the Sonar Quality Index plug-in3 in the evaluation as well. It is a Maintainability
Index style combination of different metrics and not a hierarchical quality model.
Nonetheless, we were interested in the relation of QI to other sophisticated models.

1 http://jenkins-ci.org/
2 http://nemo.sonarsource.org/
3 http://docs.codehaus.org/display/SONAR/Quality+Index+Plugin

http://docs.codehaus.org/display/SONAR/Quality+Index+Plugin
http://nemo.sonarsource.org/
http://jenkins-ci.org/

96 Rudolf Ferenc, Péter Hegedűs and Tibor Gyimóthy

Altogether 97 open-source Java projects have been analyzed with six tools. Al-
though Nemo contains almost 200 systems, 50 of them do not have any version
control information, therefore we could not locate their source. For around another
50 projects the version control information was changed since the Sonar analysis, so
we also left them out from the experiment. Except SQUALE, all the analyses have
been run in an automated way with default models and configurations. In the case
of SQUALE, we found no way of automating the qualification process, therefore all
the projects have been configured and analyzed manually through its web interface.
When a qualification analysis failed, we tried to manually fix the causing problem
and re-run the analysis. If a more complex error occurred – which we could not fix
easily – we marked the analysis as failed. The typical causes of errors are listed in
Section 3.5.2.

3.5.1 Comparing the Properties of Different Practical Models

The comparison of the models was done using the following evaluation criteria:

1. Interpretability – applying the model should provide information for high-level
quality characteristics which is meaningful, i. e., conclusions can be drawn.

2. Explicability – there should be a way to efficiently evaluate the root causes, i. e.,
a simple way to decompose information obtained for high-level characteristics to
attributes or even to properties.

3. Consistency – the information obtained for higher level characteristics should not
contradict lower level information.

4. Scalability – the model should provide valuable information even for large sys-
tems in reasonable time.

5. Extendibility – there should be an easy way to extend the model with new char-
acteristics and its attributes.

6. Reproducibility – applying the model on the same system twice should result in
the same information.

7. Comparability – information obtained for quality characteristics of two different
systems should be comparable and should correlate with the intuitive meaning of
the characteristics.

8. Aggregation type – the way of acquiring quality values for high-level character-
istics based on low-level values. The possible values are:

• Linear combination (LC) – a simple linear combination of the values.
• General function (GF) – combination of the values with an arbitrary (not nec-

essarily linear) function.
• Fixed threshold (FT) – the values are categorized based on fixed thresholds.
• Benchmark-based threshold (BT) – the values are categorized based on thresh-

olds derived from a benchmark.
• Benchmark based (B) – the aggregation is done in some sophisticated way

based on a repository of other systems (benchmark).

3 Software Product Quality Models 97

9. Input measures – what type of source code measures are considered in the model.
The possible values are:

• Metrics (M)
• Rule violations (R)
• Code clones (C)
• Unit tests (T)

10. Base model – which theoretical model serves as the base concept of the practical
model.

11. Rating – what kind of qualification or rating does the model provide for express-
ing the level of maintainability. The possible values are:

• Ordinal – discrete quality categories (like 1 to 5 stars, etc.)
• Scale – a continuous value from an interval (e. g., a real number between 0

and 10)

Table 3.6 presents the summary of the model evaluations against the crite-
ria above. We can note that the most popular base model is the one defined in
the ISO/IEC 9126 standard. Despite the fact that it already has a successor –
ISO/IEC 25000 – only one model supports it in some extent. Probably most of the
models will adapt to the new standard in the future.

Table 3.6: The properties of the different practical quality models

SQALE ColumbusQM SIG QI SQUALE QUAMOCO
Interpretable X X X X X X
Explicable X X –4 – X X
Consistent X X X X X X
Scalable N/A5 X X X X6 X
Extendible – X – – – X
Reproducible X X X X X X
Comparable X X X X X X
Aggregation type FT B BT LC FT+GF FT
Input measures M, R M, R, C M, C, T M, R, C, T M, R M, R
Base model ISO 9126 ISO 9126 ISO 9126 McCall, partly ISO 9126,

ISO 9126 ISO 25000
Rating Ordinal Scale Ordinal Scale Scale Scale

A, B, C, D, E [0..10] [-2..2] [0..10] [0..3] [1..6]

Regarding the rating of the models, the scale type appears to be in majority which
is able to express the maintainability in a more precise, continuous way. Another

4 Refers to the Sonar plug-in which does not allow to drill-down the qualifications
5 SQALE qualifications were already available in Sonar Nemo
6 We found performance issues with the default embedded database, but we have not tried with
other suggested database servers

98 Rudolf Ferenc, Péter Hegedűs and Tibor Gyimóthy

advantage of the scale type ratings is that it is easy to convert the rating of one model
to the rating of the other. On the contrary, ordinal ratings are harder to convert due
to the different number of rates.

One would expect that a model uses all the possible static source code infor-
mation: metrics, rule violations, code clones and unit tests as its input measures.
However, only the Quality Index seams to use all this information. Metrics are con-
sidered by all the examined models and rule violations are taken into account by all
models except SIG.

The models vary in the way they aggregate the source code measures. The most
common approach is to use a fixed threshold to categorize metric values. However, a
constant improvement is shown in this area by introducing complex aggregation for-
mulas and deriving dynamic thresholds based on a benchmark. The ColumbusQM
uses the benchmark in even a more sophisticated way to aggregate quality proper-
ties.

Almost all of our requirements are met by the examined models. Most of the
models failed to fulfill the Extendibility requirements as they provide no easy way
to extend the base model. Another requirement that two models could not met is
Explicability. The results of the models that do not fulfil this requirement is hard to
be traced back to the root causes in the source code.

3.5.2 Evaluating the Properties of the Different Tools

The evaluation of the tools was made according to the following aspects:

1. Supported languages – the languages supported by the tool (or it is language
independent).

2. Stability – the number of projects successfully analyzed from all projects (in
total 97 projects have been analyzed).

3. Input type – the input of the tool i. e., requires only sources or binaries too.
4. Type – the type of the application (e. g., a plug-in to an existing framework, a

web application).
5. Supported build processes – the type of common build frameworks into which

the qualification can be integrated.
6. OS platform – the supported OS platforms.
7. Proprietary – is the evaluated tool free or proprietary?
8. Presentation of the results – the way of the presentation of qualification results

(e. g., in a web application, HTML)

Table 3.7 presents the summary of the evaluation of the tools against the aspects
above. The stability line needs some further explanation. In case of SQALE all the
projects were successfully analyzed because it was already in the Sonar Nemo sys-
tem. The other tool that was able to parse all the systems is QualityGate SourceAu-
dit, because it is able to analyze projects without having to compile the code. In
the case of the two Sonar plugins, the SIG model and Quality Index, the cause of

3 Software Product Quality Models 99

Table 3.7: The properties of the different evaluated tools

SQALE QualityGate SIG
SourceAudit

Supported languages Lang. independent Lang. independent Lang. independent
Stability 100% (97/97) 100% (97/97) 77% (75/97)
Input type Sources, Sources only Sources,

binaries are optional binaries are optional
Type Sonar plug-in Web application and Sonar plug-in

web service
Supported build processes ant, maven, batch ant, maven, batch ant, maven, batch
OS platform Windows & Linux Windows & Linux Windows & Linux
Proprietary Yes Yes Yes (free Sonar plugin)
Presentation of the results Web application Web application, Web application

Excel, PDF reports

QI SQUALE QUAMOCO
Supported languages Java Java Java, C#, and C/C++
Stability 77% (75/97) 31% (30/97) 63% (61/97)
Input type Sources, Sources and binaries Sources and binaries

binaries are optional
Type Sonar plug-in Web application Eclipse plug-in
Supported build processes ant, maven, batch ant batch
OS platform Windows & Linux Windows & Linux Windows & Linux
Proprietary No No No
Presentation of the results Web application Web application, Eclipse GUI,

PDF reports HTML report

unsuccessful qualification was that some of the projects could not be compiled and
not the failure of the models. As we used the maven wrapper to upload the re-
sults into Sonar, it caused the failure of the qualification also. The other two tools,
QUAMOCO and SQUALE are also affected by the compilation errors as they re-
quire the binaries for the qualification. Additionally to the build errors, QUAMOCO
failed with a non-trivial parser error for about 10 projects. The most unstable tool
was SQUALE according to our experiences; however, it must be noted that we used
the program with default settings only.

To summarize, most tools were able to analyze the majority of the projects with
minimal invested effort. Therefore, they can be a great help both for managers and
developers in software evolution activities.

100 Rudolf Ferenc, Péter Hegedűs and Tibor Gyimóthy

3.6 Conclusions

For software developers and managers alike it is crucial to be able to measure differ-
ent aspects of the quality of their systems. The information can mainly be used for
making decisions, backing up intuition, estimating future costs and assessing risks
during software evolution.

There are three main approaches for measuring software quality: process-based,
product-based and hybrid. This chapter focused on the history, evolution, state-of-
the-art and supporting tools of the product based software quality assessment. The
introduction of the ISO/IEC 9126 standard as the joint model of the early theoretical
software product quality models caused an explosion in the number of new practi-
cal quality models. All these models adapt the standard and use a hierarchical model
for estimating quality with some kind of metrics at the lowest level. Section 3.2.4
gives an overview about the evolution of software quality measurements and ap-
proaches starting from the first software metrics through simple metrics-based pre-
diction models and early theoretical quality models to focus on the currently avail-
able state-of-the-art approaches for software product qualification.

Each of the tools implementing these models have been evaluated on almost 100
open-source Java systems. The tools and underlying quality models were compared
according to a set of predefined criteria. Most tools were able to analyze the majority
of the projects with minimal invested effort. Therefore, we conclude that they can
be a great help both for managers and developers in software evolution activities.
However, we note that the correctness of the models has not been evaluated. In
the end irrespective of how easy it is to use them or what features they have, we
expect that models that are more accurate will be more frequently used. However,
comparing the correctness of the existing models requires a huge effort that should
be addressed by the joint work of the community.

It is also a very interesting open question if the state-of-the-art practical models
can be unified and merged into a common standard, like it was done with the early
theoretical models. To be able to assess this possibility, a very deep analysis of
model results would be needed. It should be examined how well the results of the
current practical models correlate with each other. Our vision is that these practical
models can be merged into a common standard in the future which will lead to a
more exact and objective product quality assessment.

	Chapter 3 Software Product Quality Models
	3.1 Introduction
	3.2 Evolution of Software Product Quality Models
	3.2.1 Software Metrics
	3.2.2 Early Theoretical Quality Models
	3.2.3 Metrics-based Empirical Prediction Models
	3.2.4 State-of-the-art Practical Quality Models
	3.2.4.1 Software QUALity Enhancement project (SQUALE)
	3.2.4.2 Software Quality Assessment based on Lifecycle Expectations (SQALE)
	3.2.4.3 Quamoco Quality Model
	3.2.4.4 SIG Maintainability Model
	3.2.4.5 Columbus Quality Model
	3.2.4.6 Other Approaches

	3.3 Application of Practical Quality Models in Software Evolution
	3.3.1 A Cost Model Based on Software Maintainability

	3.4 Tools Supporting Software Quality Estimation
	3.4.1 Software QUALity Enhancement project (SQUALE)
	3.4.2 Software Quality Assessment based on Lifecycle Expectations (SQALE)
	3.4.3 QUAMOCO Quality Model
	3.4.4 SIG Maintainability Model
	3.4.5 Columbus Quality Model

	3.5 Comparing the Features of the Quality Models and Tools
	3.5.1 Comparing the Properties of Different Practical Models
	3.5.2 Evaluating the Properties of the Different Tools

	3.6 Conclusions

