Chapter 10

Studying Evolving Software Ecosystems
based on Ecological Models

Tom Mens, Maélick Claes, Philippe Grosjean and Alexander Serebrenik

Summary. Research on software evolution is very active, but evolutionary prin-
ciples, models and theories that properly explain why and how software systems
evolve over time are still lacking. Similarly, more empirical research is needed to
understand how different software projects co-exist and co-evolve, and how contrib-
utors collaborate within their encompassing software ecosystem.

In this chapter, we explore the differences and analogies between natural ecosys-
tems and biological evolution on the one hand, and software ecosystems and soft-
ware evolution on the other hand. The aim is to learn from research in ecology to
advance the understanding of evolving software ecosystems. Ultimately, we wish
to use such knowledge to derive diagnostic tools aiming to predict survival of soft-
ware projects within their ecosystem, to analyse and optimise the fitness of software
projects in their environment, and to help software project communities in managing
their projects better.

This work has been partially supported by FR.S-EN.R.S. research grant BSS-2012/V 6/5/015
and ARC research project AUWB-12/17-UMONS-3, “Ecological Studies of Open Source Soft-
ware Ecosystems” financed by the Ministere de la Communauté frangaise - Direction générale de
I’Enseignement non obligatoire et de la Recherche scientifique, Belgium.

T. Mens et al. (eds.), Evolving Software Systems, 297
DOI 10.1007/978-3-642-45398-4 10, © Springer-Verlag Berlin Heidelberg 2014

298 Tom Mens, Maélick Claes, Philippe Grosjean and Alexander Serebrenik

10.1 Introduction

Mathematics and computer science have been very helpful to advance research in
biology, even so much that it has spawned a research field of its own: bioinfor-
matics [512]. In the other direction, inspiration from biology has lead to numerous
new achievements and improvements in computer science, such as neural networks
[377], genetic algorithms [338, 611], optimization and artificial intelligence algo-
rithms inspired by ant colonies and swarms of bees [126]. As explained in Chap-
ter 4, some of these techniques have found their use in the context of search-based
software engineering.

More specifically, ecology has been a fruitful source of inspiration for software
engineering research. Huberman and Hogg considered a distributed computing sys-
tem of concurrent agents as a computational ecosystem, analogous to biological
ecosystems [411]. They studied the dynamics and chaotic behavior of such com-
putational systems and showed how reward mechanisms may stabilize the system,
thereby optimizing its performance. Calzolari et al. adapted the ecological predator-
prey model to empirically study and predict the relation between software defects
(prey) and programmers (predators) [155]. Lawrance et al. leveraged predator-prey
relationships to apply information foraging theory to software maintenance, by con-
sidering developers as predators and the information they seek as prey [500]. Posnett
et al. studied the risk of using aggregation techniques in empirical software engi-
neering through its relation to the notions of ecological inference and ecological
fallacy from sociology and epidemiology [699]. More recently, they also compared
the developer-artifact contribution network to a predator-prey relationship, leading
to a conceptually unified view of measuring focus and ownership [698].

In this chapter, we explore similar analogies with software ecosystems and soft-
ware evolution. Several researchers have advocated biological evolution and ecolog-
ical principles as a source of inspiration for software evolution [79, 638, 811, 940]
but, until now, this has remained mostly at the level of the intention. Although re-
search on software ecosystems is emerging, the application of ideas transposed from
ecosystems in nature seems to be underexploited. The transfer of knowledge has es-
sentially limited itself to a reuse of terms.

Despite the fact that natural ecosystems have been studied for many decades, and
that many evolutionary theories and ecological models have been proposed and ex-
perimentally validated, little research exists that tries to adopt or adapt such theories
to the domain of evolving software ecosystems. Although it is true that biological
species, systems and ecosystems are quite different from what we can find in soft-
ware, we share the belief of [240] that ecological models and biological evolution-
ary theories can be adapted to study how software ecosystems and their constituent
projects evolve. Even if biological and software ecosystems do not evolve at the
same pace, life on earth got a much longer history and thus, had more opportunities
to explore and find optimized pathways through natural selection.

The evolutionary processes that can be observed in nature may therefore be very
inspiring for software engineers and researchers. It allows them to gain an increased
understanding in how software projects compete or collaborate in their surrounding

10 Studying Evolving Software Ecosystems based on Ecological Models 299

environment, and how this differs from biological environments. This insight will
hopefully lead to guidelines and tool support to help the software project commu-
nities in predicting and improving survival of their projects. This will allow them
to stay ahead of the competition, produce higher quality products and increase their
fitness, resilience and stability over time in a rapidly changing environment.

The remainder of this chapter is structured as follows. Section 10.2 starts by
exploring and comparing the notions of ecosystem and ecological principles that
exist in biology and software engineering. Section 10.3 compares the notions of
biological evolution and software evolution. Section 10.4 presents our emerging
research to study the evolution of open source software ecosystem based on insights
from the dynamics of natural ecosystems. Finally, Section 10.5 concludes.

10.2 Ecosystem terminology

The term ecosystem exists both in ecology and software. We present the characteris-
tics and examples for both types of ecosystems in Section 10.2.1 and Section 10.2.2,
respectively. In Section 10.2.3 we go beyond a simple reuse of terminology by draw-
ing analogies between both types of ecosystem, despite the fact that the domain and
discipline in which they are used and studied is completely different. In particular,
we explain how ecological principles can be adapted and applied in the context of
software ecosystems.

10.2.1 Natural ecosystems and ecology

According to [481], ecology is the scientific study of the interactions that deter-
mine the distribution and abundance of organisms. Typically, the dynamics of these
interactions are studied in the context of an ecosystem. The term ecosystem was
originally coined in 1930 by Roy Clapham, to denote the physical and biological
components of an environment considered in relation to each other as a unit [927]. In
other words, an ecosystem combines all living organisms (plants, animals, microor-
ganisms) and physical components (light, water, soil, rocks, minerals) that interact
with one another.

More generally, the ecosystem dynamics are traditionally represented in a trophic
web (more commonly known as the so-called food web or food chain). This trophic
web forms an interaction network that relates predator to prey or organism to re-
source [47, 682, 926]. Such a network usefully captures the relationship between
consumers and the ecosystem’s resources (such as food, nutrients and space), and
the effect of this relationship on the population of different species in an ecosystem.
A trophic web is organized in trophic levels corresponding to families of function-
ally consistent species. Consumer-resource relationships typically take place be-
tween different levels of the trophic web.

300 Tom Mens, Maélick Claes, Philippe Grosjean and Alexander Serebrenik

An ecosystem is the result of a delicate and dynamic balance between its inter-
acting components. Trophic webs can be constrained from the bottom up, limited
by the resources available to primary producers, or from the top down, driven by
predation by top consumers. Ecosystems with “wasp-waist” control combine both
mechanisms with partial effects in both directions acting simultaneously. Several
marine ecosystems exhibit such a wasp-waist structure, where a single species, or
at most several species, entirely dominate the population [64, 206, 412]. A typ-
ical example of the top-down control dynamics in an ecosystem is the so-called
predator-prey model, representing a biological interaction in which some organisms
(the predators) hunt for, and feed on, other organisms (their prey). The dynamics
of such interaction can be described using linear or nonlinear models consisting of
parametric differential equations [720].

Since an ecosystem’s resources are finite, they need to be recycled or reused
whenever possible. To achieve this, energy needs to be put into ecosystems con-
stantly, typically in the form of light to drive the necessary biochemical processes
that enable recycling of resources. An ecosystem has a static equilibrium if there
are no exchanges between the components constituting it. Natural ecosystems typi-
cally have a dynamic equilibrium since there are always major exchanges between
its components. For example, there may be important exchanges between the var-
ious levels in the trophic web, and an equilibrium is reached by fluxes in opposite
directions whose total sum is zero.

The capacity of a biological ecosystem to maintain an equilibrium over longer
periods of time is called its stability. Systems that can attain the most stable equi-
librium survive the longest [826]. Often, this stability is put into peril by human in-
terference, e. g. through the use of some of the resources required by the ecosystem.
Examples of such disturbances for the ecosystem of coral reefs are, for example,
climate change, water pollution and overfishing. Sustainability refers to the ability
to maintain the ecosystem despite of humans deriving their needs from its natural
resources.

The resistance of an ecosystem characterizes its ability to withstand environ-
mental changes without (too much) disturbances of its biological communities. If
the disturbances become too important, ecosystems may get out of balance (e.g. a
meteorite impact that made all dinosaurs extinct). The ability of an ecosystem to
reorganize itself and return to an equilibrium close to the initial one is called its re-
silience [405]. Because of the disturbance, the new equilibrium that is reached may
be different from the original one (some types of organisms may have disappeared,
and others may have taken up their place), so the ecosystem will have evolved.

Ecologists emphasize the importance of biodiversity [570, 576, 671], and gen-
erally acknowledge that the stability and resilience of an ecosystem is favored by
a higher diversity. If the ecosystem has a large species diversity of producers and
consumers that respond in different ways to disturbances, it is more likely that the
ecosystem will be able to heal itself after a disturbance, since some species can com-
pensate for others that disappear. Relating diversity to the aforementioned predator-
prey relationship, Williams and Martinez considered two symmetric perspectives,
from a prey’s perspective and from a predator’s perspective [570]. Other types of

10 Studying Evolving Software Ecosystems based on Ecological Models 301

diversity have been studied by ecologists such as genetic diversity, functional diver-
sity, spatio-temporal diversity, etc.

An ecological niche of a species determines the environmental conditions nec-
essary for the species to maintain its population in response to the distribution of
physical conditions, resources and predators in the ecosystem. Among others, it
characterizes the subregions of the ecosystem’s habitat that are usable or accessible
to the species (e.g., land animals will not live under water).

Example 10.1 (coral reefs). Coral reefs are among the most biologically diverse
ecosystems on earth [925]. Competition for resources such as food, space and sun-
light are the primary factors determining the biodiversity and population of organ-
isms on a reef. The single most important species of the ecosystem are the scler-
actinian coral polyps. They secrete hard skeletons that form the coral reef structure
required for the other species to thrive: sea anemones (soft coral polyps), sponges,
crustaceans, mollusks, sea urchins, fish, sea turtles, algae, sea grasses, and many
more. These species have established a dynamic equilibrium with a delicate bal-
ance between predators and prey. Fluctuations in the population of one species can
drastically alter the population of other species. External forces that may disturb
the equilibrium of the coral reef ecosystem are for example hurricanes, but other
human-inflicted changes may play an even more important role. Overfishing, for
example, may lead to an increased growth of algae and sea grasses, resulting in an
increase of the population of sea urchins that may destroy the corals.

10.2.2 Software ecosystems

Software systems are among the most complex artefacts ever created by humans.
Collaborative software development has become increasingly popular over the last
two decades. It represents a successful model of software development where com-
munities of developers collaborate on a voluntary basis, while users and developers
of the software can submit bug reports and requests for changes.

To reflect this increase in complexity and scale, the term software ecosystem has
been coined by Messerschmitt and Szyperski [603] to refer to such systems. It has
now become a very active area of research, as can be seen in a recent systematic
literature review [556]. Unfortunately, in contrast to natural ecosystems, there is
no common definition of software ecosystem. It can be defined and interpreted in
different ways, depending on the point of view.

10.2.2.1 Business-centric viewpoint

One of the first occurrences of the term software ecosystem can be found in [131]
where it is used to refer to the way in which software suppliers, vendors, competi-
tors, users, and third-party developers interact in software product lines. This view
emphasizes the business perspective of a software system. A similar view, including

302 Tom Mens, Maélick Claes, Philippe Grosjean and Alexander Serebrenik

the socio-economic environment and regulatory framework is adopted by Jansen et
al. [433, 434], who define a software ecosystem as a “a set of actors functioning
as a unit and interacting with a shared market for software and services, together
with the relationships among them.” This view is schematically presented in Figure
10.1. An entire book is devoted to this perspective of software ecosystems [435].
A typical, but not exclusive, characteristic of these types of software ecosystems is
the competitive aspect. The different projects in the ecosystem are in competition,
either because they target the same end-users or offer the same type of service.

A flow of products|

or services
Customer
Mutual
> N—
v contribution
Software Supply Network level

Vendor,
Organisational levej

Software Ecosystem level
tandardisation Related
Organisation Ecosystem

Fig. 10.1: Actors in a software ecosystem. Figure reproduced from [893] with per-
mission from Edward Elgar publishers

Outsourcer

Software
Vendor

Open Source
Community

Research
Community

Since, as illustrated above, business-centric software ecosystems often constitute
a core strategic asset for its contributors and supporting companies, it is crucial to
gain more insight in how ecosystems evolve and can be maintained successfully
over time.

10.2.2.2 Development-centric viewpoint

An alternative, more fine-grained definition of software ecosystem is provided in the
seminal work of Messerschmitt [603] to refer to “a collection of software products
that have some given degree of symbiotic relationships.” A similar definition is given
by Lungu [546, 547], who defines a software ecosystem as “a collection of software
projects which are developed and evolve together in the same environment.” This
environment refers to the development environment, i.e. the software and hardware
tools used during the development process.

We extend these definitions to take into account the collaborative and social as-
pects as well, by explicitly considering the communities involved (e.g. user and
developer communities) as being part of the software ecosystem. Like software

10 Studying Evolving Software Ecosystems based on Ecological Models 303

projects, the communities involved evolve over time (users and developers come
and go). In addition, there is a high degree of interaction, even some kind of sym-
biosis, between the software projects and the communities of the ecosystems. This
viewpoint is adopted by [321, 333, 335, 594, 684, 723, 886] that focus both on the
technical aspects of the software produced and the social aspects of the communities
producing and using this software.

It is especially in ecosystems where the community works towards a common
goal that the collaborative nature wins over the competitive nature. Typically, soft-
ware ecosystems consist of a relatively closed core software system that provides
the basic functionality and that is developed by a more or less stable core team of
developers, surrounded by a large collection of contributions provided by peripheral
developers or even end-users [631, 689, 723].

We can provide numerous examples of software ecosystems, and many of them
can be interpreted from both the business-centric and the development-centric view-
point.

Mobile app stores, commercial or free application repositories for mobile op-

erating systems (such as iOS, Android and Windows 8), form a business-centric
ecosystem. While these operating systems are provided by Apple, Google and Mi-
crosoft, respectively, the SDKs and APIs allow third-party developers to build mo-
bile applications on top of these operating systems. The mobile app ecosystems con-
sist of the users, developers, managers of the mobile OS and the third-party mobile
applications built on top of them. The official mobile app stores allow for applica-
tions to be sold to end-users, with a shared profit. For Android, there is also a free
and open source software repository of applications, called F-Droid.
The empirical study of the evolution of mobile applications is an emerging area
of research. For example, Battacharya et al. [78] carried out an empirical study on
the evolution of bug-related issues in 24 widely-used open source Android apps,
while Basole et al. [77] studied the emergence and growth of mobile app stores in
the mobile service ecosystem. McDonnell et al. [578] studied the rapid evolution of
APIs and their adoption by client apps in the Android ecosystem.

IDEs for programming languages such as Java (e. g. Eclipse and NetBeans) or
Smalltalk (e. g. Squeak and Pharo [721]) can be seen from a business-centric view-
point. For example, the non-profit Eclipse Foundation is involved in the strategic
direction, marketing and promotion of Eclipse and contains representatives of dif-
ferent companies such as IBM (the founder of Eclipse), Google, OBEO, Oracle,
SAP, Talend. Eclipse is supported by numerous software vendors, and each of these
vendors may provide different plugins with similar functionality, that are in direct
competition with one another.

From a development-centric viewpoint, the Eclipse ecosystem is the universe of
Eclipse plugins [191] together with the developers of these plugins. Studying the
evolution of plugins is an active area of research [151-153, 915, 916]. All differ-
ent Eclipse plugins rely on a common underlying architecture, platform and set of
libraries without which they are unable to function correctly. The community of
plugin developers therefore shares the common goal of improving a complete inte-

304 Tom Mens, Maélick Claes, Philippe Grosjean and Alexander Serebrenik

grated software development environment. NetBeans, the main open source com-
petitor for Eclipse, has a similar modular architecture with a common core.

Linux distributions form an ecosystem comprising several hundreds of actively
competing Linux distributions, that are all based on a common core (the kernel of
the Linux operating system [428] and a set of GNU libraries and utilities). The dis-
tributions vary in the system they target (e. g. desktop computers, laptops, tablets,
smartphones, embedded systems) and the applications that are bundled with the dis-
tribution. Some distributions are commercially driven (e. g. Fedora Red Hat, SUSE,
Ubuntu, and Mandriva), while others are entirely community-driven (e. g. Debian
and Gentoo). An excerpt of the evolution of Linux distributions is shown in Fig-
ure 10.2. While the family of all Linux distributions is an ecosystem, each of the
distributions that belong to this family can also be considered as an ecosystem of
their own, composed of the packages (together with the necessary building and con-
figuration files) contained in the distribution. Gonzalez et al. [341] have taken a
closer look at the evolution of the Red Hat and Debian distributions.

Forges. Open Source Software (OSS) repositories, commonly known as forges,
can be considered as business-centric, since there is no control on the governance of
the projects hosted in the forge. Examples of such forges are SourceForge, GitHub,
Bitbucket, Launchpad and Savannah. There are also many forges that are dedicated
to particular programming languages, such as the CCAN archive network for the C
programming language, the CPAN archive network for PERL, RubyGems for the
Ruby language, the Python Packaging Index for Python programs, and so on. Be-
cause of the lack of control, within and across these forges there are often different
projects with similar functionality between which the users can freely choose.
Capiluppi and Beecher [161] performed an interesting empirical study in which they
studied the type of software forge (they refer to them as FLOSS repositories) and
their mode of governance on the projects they host. They compared SourceForge
(which they consider to be an open repository) with Debian (which they consider
to be a controlled repository). They concluded that Debian hosted larger, more ac-
tive and more complex structures. As a side-effect, more effort is needed to main-
tain these projects. Chapter 6 of this book explains how socio-technical information
recorded in OSS forges (but also in microblogs and software forums) can be lever-
aged for different types of development and evolution activities, using a variety of
information discovery and retrieval techniques.

Social networks, such as Facebook, LinkedIn, MySpace and Google+ can also
be regarded as business-centric software ecosystems. They allow application devel-
opers to develop and integrate third-party applications, through a well-defined API.
This provides significant added value to both the social network and the application
providers.

GNU (which is a recursive acronym for GNU’s not UNIX) aims to provide a
full free operating system based on the GNU General Public License (GPL) and the
principles of UNIX. It is composed of GNU projects which are often ecosystems
themselves. Examples of such sub-ecosystems are R and GNOME. Unlike most other
software ecosystems, R is targeted towards end-user programming [321] since, the

305

10 Studying Evolving Software Ecosystems based on Ecological Models

€10¢ 2¢10e T10C 0T0C €00¢ 200¢ T00C

600¢

800¢ L002 900¢ S00C 002

000¢

6661 8661 L66T 9661 S66T 66T €661 66T

BALIPUBI

aaeIpue /

SOWed \
asudiaugeH pay 1eH pay
0999\
- ZUIGoN\
elopad 210D elopao
Xe|s
—/ 2UBMDORIST _
aremebniy T SIS
Xnuri a|qelauinA uweg \
T XNuI fews uweqg
WA xiddouy
Bl[e
9AIT ®||Izauo|d
uepew.reH obasiy owaep S002SO
ueigaqg
nungny
nungnx
asuasmaNb
nungxn|4
Asead Ase3 993 mungn
SO E:_Eo_;o
lypog _ \ OuBiow 90010 Buleys 9pod 3 1R = s
nmunan BupfeLIan0 102104 MOy 3P0 BAUEISINS BUISEGRY
TR TIE R B sodoionap ‘souenyul
pnojIor -—
‘ZCJQZI
m:ﬁMcoc np 45U8917 UoneIUBWNI0Q 8314 NND Y} Japun paysiiand
oIpMS Munan pIBjasTIsumNy - 01poy “q ‘IsiAbpun v
UIN ("0 62T UOISIBA
mungnp3 auljawiLL uonNqLIsIa XNUINND
Xnuiig|os

€702 [41v4 TT0C 0T0C €002 200¢ T00C

600C

8002 1002 e[oor4 §00¢2 002

866T 1661 966T S66T V66T €66T 66T

0002 666T

on

based

distribution timeline (simplified version

Linux

10.2
//futurist.se/gldt/)

Fig.

http

306 Tom Mens, Maélick Claes, Philippe Grosjean and Alexander Serebrenik

majority of its contributors are statisticians and scientists rather than professional
software engineers.

Archive networks. The GNU R community shares the goal of creating a statisti-
cal computing environment. It achieves this through the Comprenhensive R Archive
Network (CRAN), a developer-centric ecosystem in which each community mem-
ber can contribute packages implementing specific statistical analysis functions and
visualization tools. Similarly, the TEX community has its CTAN archive network
containing all kinds of material around TgX. There exists similar archives for other
languages such as CEAN for Erlang, RubyGems for Ruby and PyPI for Python.

Graphical dekstop environments. GNOME and KDE are two full desktop en-
vironments for Linux and BSD operating systems. Both are based on a specific
graphic toolkit (respectively GTK+ and Qt4). The developer communities share the
common goal of delivering a complete user-friendly desktop environment. GNOME
has been the topic of study for many researchers [320, 524, 640, 886].

Apache is an ecosystem with a community of developers based around the
Apache Software Foundation and the Apache License. One of its most famous
projects is the Apache HTTP server. Apache is a decentralized community that uses
a consensus-like development process. The aim is to provide stable, open and qual-
ity software developed by technical experts. Mockus et al. compared the Apache
development process with the one of Mozilla [613]. Bavota et al. [81] studied the
evolution of the dependencies between projects constituting the Apache ecosystem.
Weiss et al. [911] studied the emails exchanged by the contributors of the Apache
projects for discovering simple migration patterns between projects and from the
outside to a project. Gala-Pérez et al. observed that the ratio of email messages in
public mailing lists to versioning system commits has remained relatively constant
along the history of Apache, and therefore advocate this ratio as a way to measure
healthiness of an ecosystem’s evolution [306].

10.2.2.3 Collaborative and socio-technical aspects of software ecosystems

From the two aforementioned definitions of software ecosystems we have seen that
projects belonging to a software ecosystem can vary in a continuum ranging from
highly competitive (if the business-centric viewpoint prevails) to highly collabora-
tive (if the sense of community is very strong and there is strong incentive to work
together towards a common goal). Many ecosystems fall somewhere in between,
with some degree of collaboration and some degree of competition. It is clear that
the competitiveness will have an important influence on the way the ecosystem will
evolve over time.

Example 10.2 (The R ecosystem). Let us have a look at the collaboration and com-
petition in the previously mentioned R ecosystem. It only minimally complies to the
business-centric view because of its open nature: all packages in the CRAN archive
network are required to comply to an open source license. Because of this there is
much less competition in the sense of having many different packages with similar

10 Studying Evolving Software Ecosystems based on Ecological Models 307

functions. When packages do contain similar functions (this tends to be more com-
mon for “basic” functionalities), it is mainly because some contributor needed more
advanced features for that function in its own package than what was available in
existing packages. In many cases, that contributor will write his own function in-
side his own package instead of proposing to contribute changes to the existing one.
Thus, there is little collaboration, but a more fragmented implementation of features
across packages that are developed rather separately from each other. Formally ver-
ifying the above claims is outside the scope of the current chapter, as it requires an
extensive empirical study of R packages.

Technical aspects are essential for software ecosystems. They need to rely on a
sophisticated software and hardware infrastructure and tools needed for their proper
functioning, distribution, development, maintenance and evolution. Typical sup-
port that is provided are SDKs, APIs, download repositories, package management,
dependency management and installation tools, version control systems, tools for
change tracking, bug tracking and defect management, mailing lists, websites and
other communication fora.

Social aspects and communication between the members of the software devel-
opment team are at least as important as the technical aspects for the success of
any software project [90, 236, 265, 868]. This is especially true for OSS projects
where it is, in most cases, easier to become involved in the development team. This
implies that the team structure needs to be more flexible in order to accommodate
the easy integration of newcomers and to deal with the frequent departure of de-
velopers. Chapter 6 of this book proposes a number of techniques to recommend
“compatible” developers to a project.

Fitzgerald [295] coined the term OSS 2.0 to reflect the new generation of OSS
ecosystems that significantly “evolved” over the last decade or so from its single-
project antecedents. Empirical results and insights obtained for individual OSS
projects do not necessarily apply to projects that are part of a bigger, highly collab-
orative ecosystem of interacting parts. Nakakoji et al. [631] distinguished between
different types of OSS community members: developers, bug fixers, bug reporters,
readers and passive users. They further subdivided developers into peripheral de-
velopers, active developers, core members and project leaders. They proposed a
so-called onion model for the OSS community structure, suggesting that there are
very few project leaders, a bit more core members, even more active developers, and
so on, and that promotion and migration of contributions tends to follow the layers
of this model. Jergensen contested this onion model in an OSS 2.0 setting [439], by
showing that contributor migrations do not tend to follow this model in many cases.
Many other empirical studies have studied the activity patterns of, and differences
between, core developers and peripheral developers [162, 250, 689, 723, 828, 941].
A detailed discussion of these is, however, beyond the scope of this chapter. We
refer the interested reader to [336].

Still related to developer communication, Abreu and Premraj [2] studied the cor-
relation with software quality. They observed a statistically significant correlation
between communication frequency and number of injected bugs in the software.

308 Tom Mens, Maélick Claes, Philippe Grosjean and Alexander Serebrenik

Through mining the source code repository and mailing lists of the well-known
Apache and Mozilla OSS projects, Mockus et al. [613] investigated the roles and
responsibilities of developers, and observed a set of implicit conventions among
developers that implies an intensive communication. Madey et al. [305, 868] anal-
ysed the social networks involved in OSS development and observed power laws at
many scales. Bird et al. [108] analysed social networks emerging from mailing lists
discussions and observed a Pareto distribution. Mailers tend to form a small-world
network at several points of view; for instance, few mailers received messages from
an important number of persons while most of mailers received messages from few
senders. A strong correlation between mailing and coding activities was found and
evidence was provided that the role of developers in mailing lists is more important
than the other mailers.

10.2.3 Comparing natural and software ecosystems

The premise of this chapter is to learn from ecology and natural ecosystems, that
have evolved over millions of years, and use this knowledge to improve our un-
derstanding of software ecosystems. Existing research on natural ecosystems has
already provided many useful insights on the underlying mechanisms and how we
could better manage and preserve these ecosystems. Our hope is to learn from this
research, and to apply some of its insights to obtain better strategies for manag-
ing, developing and maintaining software ecosystems, and to come up with pro-
cesses that increase the fitness of projects and contributors belonging to the software
ecosystem.

-
natural ecosystem software ecosystem

— - N e - 2 e - a
living species projects contributors

-

habitat: soil, rocks, air, environment: software and hardware
\ water, light, ... /) tools and platforms, social media, ...

Fig. 10.3: Natural versus software ecosystems

When comparing biological evolution with software evolution, despite their ob-
vious differences, we can also draw many analogies. This analogy is illustrated in
Figure 10.3. If we take the development-centric viewpoint of a software ecosystem,

10 Studying Evolving Software Ecosystems based on Ecological Models 309

we can consider the software projects as being the equivalent of the “living species”
of a natural ecosystem, and the physical habitat is replaced by the socio-technical
environment in which these projects co-exist and evolve. The projects require soft-
ware and hardware resources for developing, installing and executing the software
products belonging to the ecosystem. All software projects interact with each other
and with the user and developer communities and available resources. The software
ecosystem can also be interpreted in an alternative way, by considering the con-
tributors to the software projects as the equivalent of the “living species” and the
software products then become part of the software and hardware environment of
these species. This view may be particularly suited if we wish to study the social as-
pects of a software ecosystem. In practice, both of the above views are complemen-
tary and need to be combined in order to fully understand how software ecosystems
evolve.

Example 10.3 (Coral reefs). In a coral reef ecosystem, the scleractinian coral polyps
are responsible for creating the coral reef structure required for the other species to
thrive. We find a similar idea in most business-centric software ecosystems, where
there is typically a core set of projects (or core architecture), developed by a core
group of developers, based on which the other projects are created.

Like natural ecosystems, a desirable property of software ecosystems is to be
sustainable, in that their user and developer communities can use, maintain and
improve the ecosystem’s projects over longer periods of time. Just like the habi-
tat of a natural ecosystem, the environment of a software ecosystem may undergo
important changes, whether they be planned or unexpected. The resilience of a soft-
ware ecosystem then refers to its ability to return to a stable equilibrium after mi-
nor or major disturbances. Examples of such disturbances are the appearance of a
new competitor products, a loss of interest by the user or developer community, a
change of technology (e. g. switch from the use of a centralized version repository to
a distributed version repository), the introduction of new communication channels
(mailing lists, StackOverflow—-cf. Chapter 5 and Chapter 6, respectively) and other
ways of collaboration.

Biological species evolve through mutation and crossover of genes between indi-
viduals of the same or different species. An analogy of such gene transfer in software
projects could be the reuse of code from one project to another, or the migration of
software developers from one software project to another.

Natural ecosystems require energy (e. g. air, water and sunlight) to thrive. The
same is true for software ecosystems, but the type of energy required is quite dif-
ferent. If we consider the software projects as the species of a software ecosystem,
the energy required to maintain and evolve them is the time and effort invested by
the users and developers contributing to the software ecosystem, through commits
in the version repository, bug and change requests, mails in the mailing lists, com-
munication in forums and websites, and so on.

The notion of biodiversity also exists in software ecosystems, at different levels
(as illustrated, in part, in Figure 10.3). First of all, there is a diversity of contributors
involved in software development. The role of contributors may range from more

310 Tom Mens, Maélick Claes, Philippe Grosjean and Alexander Serebrenik

passive (e. g. users) to more active (e. g. developers, translators, Ul specialists, etc.).
Zooming in on the developers, we can distinguish between core developers, active
developers and peripheral developers at a more fine-grained level [631, 723, 828].
For the software projects that are part of the ecosystem we observe a similar diver-
sity. Some projects will be more user-oriented (i. e. they can be installed and used by
end-users) while others will offer the core functionality that is needed by others in
order to function properly. Sometimes there may be different projects with a similar
functionality. This may be beneficial for the biodiversity since the disappearance of
such projects will not be detrimental to the ecosystem since the other project could
take its place. Another example of diversity is conditional compilation, which al-
lows for a software product to create different variants adapted to specific platforms
or user needs. Software product lines encourage controlled diversity across different
software products with some shared common features (see Chapter 9).

It is likely that the mechanisms controlling the ecosystem dynamics (top-down,
bottom-up or wasp-waist) can be adapted to software ecosystems as well. If a soft-
ware ecosystem is mainly driven by its core developers or by limited hardware re-
sources it might follow a bottom-up control process. If it is mainly driven by change
and bug requests from the end users, it might rather have a top-down control. In
many cases, the type of control is probably a mix between both, in the sense that
some projects of the ecosystem (typically the core projects) will be driven or initi-
ated by the developers, while others will be driven by the end-users’ change requests
and desire for new or modified functionality. A better understanding of the type of
dynamics that control a software ecosystem may ultimately lead to better manage-
ment strategies for maintaining the ecosystem over time.

The notion of ecological niche of a species also has a counterpart in software
ecosystems: if we consider contributors (e. g. developers) to be the equivalent of a
species, their ecological niche is determined by environmental factors such as the
operating system they are using, their preferred programming language, the APIs
they are using, their domain of interest, and so on. These characteristics will con-
strain the ecological niche of a developer to a subset of the total set of projects she
could potentially contribute to.

10.3 Evolution

10.3.1 Biological evolution

A biological species corresponds to a group of organisms capable of interbreeding
and producing fertile offspring. Biological evolution is characterized by the fact
that a species is composed of many individuals whose genetic code differs. Those
individuals can reproduce, leading to mutations and crossing in the genetic code.
The evolutionary driving force is variation and natural selection. A central idea
in the evolutionary theory of natural selection is the notion of fitness. It describes

10 Studying Evolving Software Ecosystems based on Ecological Models 311

the ability of a species to both survive and reproduce, and is equal to the average
contribution to the gene pool of the next generation that is made by an average
individual of the specified genotype or phenotype [673].

Different theories have been proposed by biologists to explain the evolution of
biological species, and the field still evolves today. The Darwinian evolution model
is generally considered as the major mechanism driving biological speciation (i.e.
one species differentiating into two) in life on earth [218]. The field of phylogenet-
ics studies, among others, the biological evolution history of a set of species [764].
In the Darwinian model, the evolution history can be represented by phylogenetic
trees [294]. Such a tree describes the evolutionary relationships among species as-
suming that they share a common ancestor and that evolution takes place in a tree
like manner.

There are other, less well-known evolutionary models, such as reticulate evo-
lution [523, 779]. These models cannot be represented using a tree structure, but
require some graph-like or network-like structure instead [414]. Reticulate evolu-
tion refers to the dependence between two evolutionary lineages. This is radically
different from pure Darwinism where there cannot exist such transfer of informa-
tion between two different species. When reticulation occurs, two or more evolu-
tionary lineages are combined at some level of biological organization. Because life
is organized hierarchically, reticulation can occur at different levels: chromosomes,
genomes and species. At the species level, events such as hybrid speciation (by
which two lineages recombine to create a new one) and horizontal gene transfer (by
which genes are transferred across species) are the main causes of reticulate evo-
lution. A group of animals where reticulate evolution is suspected to be of major
importance is the scleractinian corals [§91].

Apart from Darwinism and reticulation, other evolutionary theories have been
proposed, such as Lamarckism [488]. Lamarck considered that the evolution is based
on uses and needs rather than on natural selection. While this theory has been su-
perseded by Darwinism in biology, this does not necessarily mean that we should
exclude it as a possibly useful theory for modeling the evolution of software ecosys-
tems. Indeed, software is developed with the aim to fill a need and its survival fitness
is partially constrained by its likelihood to be used.

A fairly recent evolutionary theory is the so-called hologenome theory of evo-
lution, originating from studies on coral reefs [732]. In this theory, the object of
natural selection is not the individual organism, but the organism together with its
associated microbial communities. This theory may perhaps be more closely related
to what one observes in software ecosystems, where one should not consider the
object of evolution (the software project) in isolation, but rather together with its
associated community of contributors (e.g., users and developers).

The biological phenomenon of co-evolution [862] arises if the genetic composi-
tion of one species changes in response to a genetic change in another one. This can
occur, for example, when two or more species interact and influence each other, or
live in symbiosis (e.g., host-parasite, plant-pollinator).

The notion of ecological refuge is also very relevant in the context of ecosystem
evolution [101]. The conditions in a refuge are such that the species are protected

312 Tom Mens, Maélick Claes, Philippe Grosjean and Alexander Serebrenik

from certain threats such as predation. A key characteristic of refuges is that they
are a reservoir of diversity since they provide a means to sustain species that are
not the fittest at some point in time. Refuges are important in an evolution context,
since species in refuges may become dominant species in the future in response to
environmental changes.

10.3.2 Comparing biological evolution with software evolution

To be able to apply the aforementioned and other biological evolutionary models to
study the evolution of software ecosystems, these models will need to be adapted
because there are notable differences between software projects and living species.

While biological species evolve due to changes and variations in the genetic code
of its individuals, it is difficult to consider a software project as a collection of indi-
viduals. Of course, we could view the different instances of a software system that
are deployed on particular machines as individuals of the biological species. The
major difference is that there is strictly no variation in the code of the various soft-
ware project instances installed (to draw the parallel with differences in the genetic
code of living organisms), while even small genetic differences between biological
individuals is a major driving force of biological evolution. It is worth noting, how-
ever, that the equivalent of phenotypic changes in living organisms is represented at
a varying degree in software: configuration files, installable plugins or packages can
modulate how a particular instance operates in a given context.

Another type of software where one can observe a sufficient level of variation
necessary for being able to apply biological evolutionary theories are so-called soft-
ware product families. These are addressed in Chapter 9 of this book. Each member
of a product family is a variant that has similarities and differences with the other
product family members, and the family as a whole evolves over time.

The main driver for evolution of biological species is the creation of offspring
through biological reproduction. This is not true for the elements that constitute a
software ecosystem: software projects cannot “reproduce” themselves to produce
new generations (read: versions or releases) of offspring.! Note that one could also
consider project forking or branching as some kind of reproduction. A similar ar-
gument as above holds for the members of the ecosystem’s communities: new gen-
erations of developers and users are not produced through interbreeding of existing
members, but rather through the intake of new members from outside the ecosystem.

The rate at which software projects evolve is several orders of magnitude higher
than the evolution of biological species. Hence, one has to determine the relative
temporal scale at which comparison is possible between biological mutations and
changes in software projects.

! This argument does not necessarily hold for self-adaptive systems, which are capable of dy-
namically changing their runtime behavior. For more information on this specific type of software
system we refer to Chapter 7.6 of this book.

10 Studying Evolving Software Ecosystems based on Ecological Models 313

We can only collect very partial records of the evolution of natural ecosystems,
restricted to limited sampling in time and space. Models in ecology are thus always
applied with a large degree of uncertainty. On the contrary, more exhaustive histori-
cal records exist for many open source software ecosystems, from their onset, thanks
to version control systems” where every change is recorded and documented.

Scientific research on biology is primarily observational and passive. One can
observe how natural ecosystems have evolved in a self-organised way over long
period of times, and develop theories that explain this evolution. Given the long
time scales involved it is hard to carry out “in vivo” experimental research to study
how actual ecosystems and the species populating it evolve by modifying certain
parameters in the ecosystem. For software ecosystems, it is really possible to carry
out applied, in vivo research, since the software environment involves human beings
(developers and users). This makes it possible, in principle, to interact with them in
order to find out how and why a software project has evolved over time, and making
it easier to alter the way in which the ecosystem will evolve in the future.

10.3.3 Transposing biological models to the software realm

Given these many differences, the question arises whether ideas from biological
evolution can be easily adapted to gain a better understanding of software evolu-
tion. Nehaniv [638] discussed the differences between software systems and bio-
logical species from an evolutionary point of view. Svetinovic [811] suggested that
a comparison between software evolution and biological evolution is a fertile field
of study. Yu and Ramaswamy [940] suggested that software systems share similar
evolvability properties with biological systems, implying that studying the evolu-
tion of these biological systems can help us understand and improve development
of software systems. None of the aforementioned papers, however, have empirically
studied this potential.

Some researchers have gone a step further in adapting biological models or mech-
anisms in the context of software evolution. For example, Hutchins [416] used ge-
netic algorithms to understand evolutionary software development processes. Each
branch of a software project is compared to an individual of a biological species and
merging of branches is similar to the crossover operation (reproduction of two indi-
viduals). Software evolution is then described as a form of human-guided search for
a program meeting requirements. Jaafar et al. [429] used phylogenetic trees to show
the evolutionary history of object-oriented programs. They suggest to use such trees
to facilitate the detection of code decay and fault-proneness.

Baudry [79] studied the relevance of the notion of ecological refuge in the context
of evolving OSS projects. More in particular, they analyzed the potential of largely
inactive projects as alternatives for biodiversity and evolution: some of these “un-
successful” projects may survive and increase diversity by seeding future, successful

2 While some data can still be incomplete in software repositories, it remains far more complete
than for biological species where historical data like fossils are very sparse and incomplete.

314 Tom Mens, Maélick Claes, Philippe Grosjean and Alexander Serebrenik

projects. They empirically analyzed this by studying project forks for 48 projects in
the GitHub forge, and found 3 occurrences of the refuge effect. Similar to national
parks, that serve to protect endangered species, software forges may therefore serve
to protect unsuccessful projects and reuse or revive them in the future.

Calzolari et al. [155] explored the use of the biological predator-prey model in
the context of software evolution. This model has been used in biology to describe
the dynamics of an ecological systems using linear or nonlinear models consist-
ing of two parametric differential equations [720]. The basic idea is that software
defects (requiring corrective actions) can be seen as the equivalent of biological
prey, whereas the programmers act as predators (removing the defects by correcting
them). Empirical evidence of the usefulness of this model was given by analyz-
ing the evolution of two industrial software systems and accurately predicting their
dynamics using the proposed model. Some adaptations of the original biological
model were needed since, unlike species, software defects cannot reproduce them-
selves, implying the elimination of the reproduction term in the dynamic model.

Posnett et al. [698] explored a similar idea, by considering software modules as
predators that feed upon the limited cognitive resources of developers (their prey).
They combined this with the notion of biodiversity [570] to measure how focused
the activities on a module are, as well as how focused the activities of a developer
are. They found empirical evidence that more focused developers introduce fewer
defects. Conversely, increased module activity focus leads to a larger number of
defects.

To transpose other theories of evolution and speciation of living species to soft-
ware ecosystems we might require a mix of different evolutionary mechanisms, with
probably a domination of reticulate-like mechanisms over pure Darwinian differen-
tiation. For example, we could transpose the notion of fitness to reflect the ability
of projects to survive and maintain themselves within the ecosystem of which they
are part. We could also transpose the notion of biological speciation to software
ecosystems to represent the mechanism of software project forking.

Example 10.4 (Evolution of Linux distributions). One illustration of this phenomenon
is the different GNU/Linux distributions that have forked from a few main distribu-
tions (Fig. 10.2). The distribution timeline of Linux distributions does not represent
a tree structure but forms a directed acyclic graph with some connections between
different branches of the tree, indicating the exchange or sharing of ideas, code, and
developers (corresponding to horizontal gene transfer across species). This may ul-
timately lead to project merging, if the level of sharing becomes sufficiently high.
Such project merging fits the phenomenon of reticulation that occurs when two or
more evolutionary lineages are combined at some level of biological organization.
The following examples illustrate these phenomena: (i) Maemo (Nokia’s mobile
OS based on Debian) and Moblin (an Intel Atom optimized GNU/Linux distribu-
tion) merged to form Meego; (ii) Crunchbang was first based on Ubuntu, but since
2010 it has been based on Debian rather than Ubuntu.

The biological phenomenon of co-evolution can also be useful to explain and
model certain aspects of software ecosystem evolution. The term co-evolution has

10 Studying Evolving Software Ecosystems based on Ecological Models 315

been borrowed by software engineering researchers on numerous occasions and
for various purposes, but only at a very shallow level. A typical usage is to re-
flect the need for different types of software artefacts (e.g., design models and
code) to be kept synchronised while they are changing from one version to the
next [188, 239, 285]. Chapter 2 of this book discusses the need to co-evolve soft-
ware models and their metamodels. In the context of open source, Ye et al. [937]
explored the co-evolution between software systems and their developer communi-
ties. Yu [939] has studied the co-evolution between 12 kernel modules of Linux in
597 different releases and found that co-evolution arises when one module changes
in response to a change in another component. Jaafar et al. [429] studied the fault-
proneness of co-evolved classes in object-oriented programs. Fluri et al. [297] an-
alyzed the co-evolution between source code and comments. Zaidman et al. [943]
explored the co-evolution between production code and test code.

In the context of software ecosystems, we propose to study the co-evolution be-
tween different projects belonging to the same ecosystem. Two software projects
fulfilling a similar purpose inside the same ecosystem (e. g. two games in a mobile
app store, or two drawing tools or text editors in an OSS forge) can be seen as being
in a state of competition. This can lead to co-evolution in the sense that a new feature
in one of the projects may disavantage the other one and may force its developers
to adapt the project if they want it to maintain its fitness for purpose. Similarly, if
two software projects are complementary and useless if used separately, developers
of both projects will need to collaborate when evolving their software. The latter
scenario can be viewed as a kind of symbiosis.

10.4 Exploratory case study

In this section, we report on techniques used to study natural ecosystems and their
adaptation and application to software ecosystems. We do this through a case study
on the well-known GNOME ecosystem that will be presented in subsection 10.4.1.
In subsection 10.4.2, we explore to which extent the characteristics of GNOME,
an example of a software ecosystem, differ from the characteristics of a biological
vegetation ecosystem. In subsection 10.4.3, we study the immigration of new de-
velopers in GNOME and the local migration of developers across GNOME projects,
motivated by the fact that the success and sustainability of a software ecosystem
depends on its ability to attract and retain developers.

10.4.1 The GNOME OSS ecosystem

In order to assess to which extent biological models, techniques and tools for ecosys-
tems and evolution are applicable to software ecosystems, we need to carry out em-
pirical studies. These studies will allow us to determine what are the main common-

316 Tom Mens, Maélick Claes, Philippe Grosjean and Alexander Serebrenik

alities and differences in the characteristics and dynamics of biological and software
ecosystems.

To carry out such empirical studies, we need access to ecosystems that are suf-
ficiently large (in terms of number of projects), active (in terms of number of con-
tributors) and long-lived (in terms of number of years of activity). To avoid confi-
dentiality issues and to facilitate reproducibility and replication of results by other
researchers, we also require the analyzed data to be freely accessible. These re-
quirements naturally lead us to OSS ecosystems. OSS is generally established as
an important software development practice, and all major software vendors rely, to
some extent, on OSS. In some cases, the OSS products they rely on are even critical
to the company’s success.

Lehman’s laws of software evolution [505, 511] have inspired many researchers
and have significantly influenced research on OSS project evolution [291, 330].
Many of these studies focus on understanding and predicting the evolution of in-
dividual software projects and their developer communities. Much less empirical
research exists on the evolutionary study of long-lived OSS ecosystems containing
hundreds or even thousands of projects and contributors.

As an exploratory case study, we analyse the GNOME OSS ecosystem, since it
has been the subject of a lot of research in the past [320, 331, 336, 536, 640, 886].
The historical data of all GNOME projects is accessible through their Git version
control repositories. We have shared our extracted data set with the research commu-
nity [332]. According to git .gnome.org, GNOME has been under development
since January 1997, and currently contains more than 1400 projects (more than half
of which are archived) to which over 5000 contributors have contributed over the
entire lifetime of GNOME. Table 10.1 provides some basic historical metrics for the
GNOME ecosystem, obtained over a period of 15 years. Figure 10.4 gives an idea of
the size distribution of GNOME’s projects.

Table 10.1: Basic historical metrics for GNOME from January 1997 to December
2012. A file touch corresponds to the addition, removal or modification of a partic-
ular file in a particular commit.

Metric Value
number of projects 1,418
number of projects with coding activity 1,353
number of commits 1,303,649
number of commits containing code files 685,007
number of file touches 12,394,786
number of code file touches 6,183,282
number of contributors having made at least 1 commit 5,885
number of coders (authors having made code file touches) 4,321
considered lifetime 5844 days (16 years)

Jan 1997 — Dec 2012
number of considered 6-month activity periods 32

10 Studying Evolving Software Ecosystems based on Ecological Models 317

1e+05 -

O
O 1e+03 -
-

1e+01 -

i
10 1000
Files

Fig. 10.4: Size (on log-log scale) in number of lines of code (LOC) and number of
files of GNOME projects. Extracted using CLOC from the latest version of each git
repository of January 8, 2013. Total size: 2,2251,913 LOC and 104,594 files.

In previous work [886], we have observed that the contributors to the GNOME
ecosystem can be classified in different, partially overlapping, subcommunities ac-
cording to their types of activity. The principal activity type of a contributor (approx-
imated by the number of file touches of a particular type in her commits) determines
to a large extent her work pattern and part of her ecological niche.

The current case study focuses solely on the coding activity. Our results will
therefore be restricted to coders, code files, commits containing code file touches,
and projects containing such commits. Coders are GNOME authors having an ac-
count and code commit activity in at least one of GNOME’s Git repositories. Code
files are files in a commit that are considered to contain source code, based on their
file extension (e.g. . java for Java files, . c and . h for C files, . cpp for C++ files,
. py for Python files, . p1 for Perl files, and so on). Of all thirteen activity types we
defined for GNOME in [886], we observed that coding was the most important activ-
ity of the frequent GNOME contributors. Figure 10.5 gives information on the usage

318 Tom Mens, Maélick Claes, Philippe Grosjean and Alexander Serebrenik

of programming languages across all GNOME repositories. It was extracted using
the CLOC code lines counting tool (cloc.sourceforge.net). We see that C
and C++ are by far the most frequently used programming languages in GNOME,
followed at a distance by Python and C#, and then followed by Perl.

C L]
1e+07-
C/C++ Header
oCH++ 0
Cte oPython
|
' ' S opih”
8 Wisual Basic
i Lisp o2
1e+05- L .IDL
Jace
Suby
bjective C
TolTk Assembly b
¢ e
@ASP.Net
Ob?ective C++ oHaskell
100 1000 10000
Files

Fig. 10.5: Language usage in GNOME. Extracted using CLOC from the latest ver-
sion of each repository of January 8 2013.

A challenge during data extraction is that coders may use different accounts. To
avoid counting such coders as separate identities, we used identity matching. Mul-
tiple techniques have been proposed for this [108, 334, 476, 722]. We merged the
different identities belonging to the same person using a semi-automatic approach.
First we applied an automatic algorithm detailed in [886] and then we manually
post-checked the results to remove false positives.

We chose 6-month activity periods, since GNOME has a 6-month release policy
(two releases per year in March and in September). The first considered period starts
on 1 January 1997 and the last one starts on 1 July 2012. For each period, we only
consider commits containing at least one code file touch. Similarly, we only consider
a coder to be active in a GNOME project during a period if she made at least one code
commit using one of her accounts during that period. Her number of code commits
for that period is the sum of the number of code commits of all her accounts for
all GNOME projects during the period. The number of code file touches of a coder
during a period is the sum of the number of code file touches in each of her project
commits during the period. As we can observe from the boxplots in Figure 10.6, the
majority of coders contribute to a single or very few projects (median value of 1,
mean value of 4.866) and have a limited number of code commits (median value of
4, mean value of 156.4). The distributions are strongly skewed with a long tail.

10 Studying Evolving Software Ecosystems based on Ecological Models 319

1000 10000
I

100
I

10
L

T T
projects commits

Fig. 10.6: Boxplots showing the distribution of projects and commits per coder. (The
white triangle shows the mean value.)

10.4.2 Comparing GNOME with a natural ecosystem

In Section 10.2.3 we presented different ways to compare natural ecosystems to
software ecosystems. There is, however, another useful analogy that we can draw.
When studying natural ecosystems, such as a vegetation community of different
species of plants in a forest [880], one can take samples of individual plants at
different arbitrarily chosen locations (so-called sampling stations), and use this to
get an idea of the coverage of the location by each species and the variation of this
coverage across the ecosystem, for example in order to assess the biodiversity. For
software systems, one can adopt a similar approach: randomly select a number of
software projects belonging to the ecosystem, and count the coverage (in number of
commits, or any other measure of activity) of each contributor to the ecosystem. In
this analogy, contributors correspond to the equivalent of a plant species, and their
number of commits to the project correspond to the coverage. One can then use the
same portfolio of techniques as those used for studying natural ecosystems.

One such technique is hierarchical clustering. For the considered GNOME life-
time, we computed a matrix with projects (i. e. locations) as columns, coders (i. e.
species) as rows and the number of code commits per coder as cell values. We have
found in the boxplots of Figure 10.6 that more than half of the coders (54.5% to
be more precise) were not involved in more than one project. Thus in the remain-
der of this section, we will ignore these “singleton” coders, since we would like to
group together projects based on the similarities of their community and “singleton”
coders do not provide useful information on such similarities or dissimilarities. We
removed the columns containing only zeroes (i. e. projects without coding activity)
and the rows with less than two non-zero cells (i. e. coders that were active in zero or
only one project). This gives a matrix containing a total of 1352 projects and 1966
coders.

320 Tom Mens, Maélick Claes, Philippe Grosjean and Alexander Serebrenik

After applying a hierarchical clustering on this matrix, in contrast to the results
for a natural ecosystem, we observe a large number of small clusters, implying that
coders are much more restricted to a few projects than plants are on sampling sta-
tions, resulting into most items connected much higher in the clustering dendro-
gram.

Height
Height
gprocview

gtk theme.engine.clearlooks

0.80
L
gnome.test.specs

achtung —/

bonobo.draw ——

Fig. 10.7: Comparison of hierarchical clustering applied on: [left figure] a vegetation
dataset at 24 randomly chosen locations on 44 plant species; and [right figure] a
GNOME dataset of 24 projects chosen randomly from the fourth quartile and 44
randomly chosen coders chosen randomly from the fourth quartile.

On the left of Figure 10.7, the aforementioned vegetation community [880] mea-
sured at 24 randomly chosen locations is hierarchically clustered.> The Bray-Curtis
distance was used as a basis for the clustering process [139]. On the right of Fig-
ure 10.7 the same hierarchical clustering technique is applied to a sampling of
GNOME software ecosystem and its code contributors for 24 projects chosen ran-
domly from the last quartile (i. e. projects with at least 283 commits) and 44 coders
chosen from the last quartile. The values of 24 projects and 44 coders were cho-
sen so that the clustering contains the same amount of species and locations as the
vegetation ecosystem data.

From this comparison, we observe that a vegetation ecosystem seems to behave
quite differently from a software ecosystem. The survival strategy of plants is to be
as ubiquitous as possible at all locations of the ecosystem (through direct competi-
tion for sunlight and other nutrients with the other plants in its direct surroundings).
In contrast, the survival strategy of code contributors appears to be by specialising
themselves in very few projects of the software ecosystem. As such, there is much
less competition with the other coders, and the dynamics of the ecosystem are based
primarily on collaboration, as opposed to competition with other coders.

3 We applied a hierarchical clustering with single linkage using the R function hclust.

10 Studying Evolving Software Ecosystems based on Ecological Models 321

After ignoring all coders that are involved in a single project, and carrying out a
hierarchical clustering on all GNOME projects, we observed an interesting pattern:
the majority of GNOME projects related to the programming languages Perl and
Python, respectively, were clustered together. The fragments of the cluster dendo-
gram illustrating this phenomenon are shown in Figure 10.8. Hence, the program-
ming language used in projects appears to be both a barrier limiting expansion of
developers across projects, and a subdomain inside which developers tend to interact
more closely. This allows us to confirm and further refine the notion of ecological
niche for GNOME code contributors.

‘?hb mntroﬁ &5

i e ———
ot N
R ———1

ue _p|
pert Gnome2 Ggorl” “_H:'_,J—'

e, ——
peﬂfgghgaam é% 3

[EE 2 anvas
ad g
) peanxtﬁus epe pen
’ i perl.Cairo
perl.Glib.Object.Introspection

ieﬂ.GnomeZ —
peﬁegnorne —_—

?‘rl .ExtUtils. PkgConfig

ﬁg .Gnome2. WrP a———
ey -
perl r§e£ SVQ i

gnome tk':“’;ntn'.)s
"pe ggtreamer In

perl. nome2 B%]EABplet _—

perl. dhomes Dia perl.Gtk2.Traylcon
e A —
:’é'%mil_i
pygio
bonobo.pytho
=k e
gnome.python.desktop QT Py

gnome. pythonextrgs
P

ygda ———————

mhonarc
libgl
dia.newcar?\?as
rpm
PY nOFgB

web
blogs web —

jhmenu

nauurgg%ﬁ .
Fig. 10.8: Zoom on two interesting clusters (representing the communities of Perl
coders and Python coders, respectively) in the dendograms obtained through hi-
erarchical clustering of GNOME project and coder data. Those clusters contains a
majority of Perl and Python projects. This shows that those projects’ communities
are very similar and tied.

322 Tom Mens, Maélick Claes, Philippe Grosjean and Alexander Serebrenik

Another technique frequently used for studying natural ecosystems is principal
component analysis (PCA). Figure 10.9 again compares the vegetation community
measured at 24 randomly selected locations to the coder’s commits measured at 24
randomly selected Gnome projects. The PCA is carried out on correlation matri-
ces in both cases. Figure 10.9 shows how the total variance decreases among the
first 10 principal axes. On the left, we observe that the vegetation data can easily
be reduced down to the first three axes while loosing less that 20% of the total
variance. This means the dataset is highly structured with essentially three degrees
of freedom in the distribution of the vegetation. On the right, we do not observe
an important decrease of variance of the 10 principal axes for the Gnome dataset.
The variance is therefore more homogeneously distributed, meaning there are rather
different groups of coders working on each of the 24 projects. This confirms our pre-
vious findings that, in contrast to the vegetation ecosystem, GNOME has a relatively
well-balanced community.

Variances
Variances
1

Il DDDD:::: NIRREN

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10

Fig. 10.9: Comparison of the variance of the first 10 principal components of PCA
applied on the biological vegetation dataset (left) and the GNOME dataset (right).

To summarize, the results we obtained for GNOME are quite different from what
one typically observes in natural ecosystems, where there is a high degree of com-
petition between the species. This usually leads to well-differentiated subcommu-
nities with identifiable key species that largely structure the whole dataset, leading
to well-separated clusters in the dendrogram and to most of the variance caught by
the few first principal components in the principal component analysis. It remains to
be seen if this major difference with natural ecosystems is found in other software
ecosystems as well. If this turns out to be the case, the traditional biological evolu-
tionary theories (such as Darwinian evolution) are probably not applicable to OSS
evolution, because of the much lower level of competition observed, while compe-
tition is an essential driver of biological evolution. Future studies on other software
ecosystems will allow us to shed more light on this issue.

10 Studying Evolving Software Ecosystems based on Ecological Models 323

10.4.3 Migration of GNOME developers

The process of intake (also known as immigration) and retention of developers to
OSS projects has been the subject of study by many researchers. Von Krogh et al.
[903] have studied how one can join a project, get write access to a source code
repository and then how the newcomer specialisation is related to contribution bar-
riers. Canfora et al [160] have designed an approach to identify which contributor
could be assigned as a mentor to a newcomer. Zhou and Mockus [950, 951] have
shown that the social environment impacts both rate at which people joins a project
and the chance that a new developer becomes a long-term one.

The reason for this interest is that the success and sustainability of a project de-
pends on its ability to attract and retain developers. There is a crucial difference
with natural ecosystems, where populations of individuals can create new genera-
tions through reproduction. In OSS projects, the only way to increase or renew the
population is to attract new contributors from the outside. If a software ecosystem
is not interesting enough, it will not attract new developers, or worse it may even
loose its developers to other systems.

New developers are interested in joining OSS projects for variety of reasons, such
as personal interest in, need for the software, increasing their personal reputation,
out of altruism or because they are being paid for it [114, 292, 369, 400, 637].

Little empirical studies exist, however, on the migration of software developers
across projects. Weiss et al. [911] studied the emails exchanged by the contributors
of the Apache projects for discovering simple migration patterns between projects
and from the outside to a project. They observed that many developers joining a
project come from another project. These developers tend to migrate together with
their workmates. Based on three case studies (Apache web server, Postgres and
Python), Bird et al. [109] found three factors that influence immigration, i. e., intake
of new developers: their technical commitment, skill level and social status. Among
others, they found evidence that demonstration of skill level by submitting patches
to known bugs will increase the likelihood of becoming an official developer of the
project.

Jergensen et al. [439] studied how GNOME developers start using social mediums
and move progressively to socio-technical and technical mediums. They tried to
see if migrating from one project to another could result in bigger centrality of the
developer in the newly joined project.

Due to the little studies of developer migration at the level of software ecosys-
tems, we started to study the effect of the intake, retention and loss of developers at
the level of individual projects of the GNOME ecosystem. For each 6-month activity
period we counted the number of joiners and leavers. We distinguished between lo-
cal joiners to a project (resp. local leavers) and global joiners (resp. global leavers).
Local joiners are incoming coders in the considered project that were not active in
this project during the preceding 6-month period, but that were involved in some
activity in other GNOME projects instead. Global joiners are incoming coders in the
considered project that were not active in any of the GNOME projects during the
preceding period. A similar definition holds for the local and global leavers.

324 Tom Mens, Maélick Claes, Philippe Grosjean and Alexander Serebrenik

The formal definition of these metrics is given in Equation 10.1. Let p be a
GNOME project, ¢ a 6-month activity period, — 1 the previous period, ¢ a coder,
Gnome the set of GNOME’s code projects, and isDev(c,t, p) a predicate which is
true if and only if ¢ made a code commit in p during #:

localLeavers(p,t) =

{clisDev(c,t — 1, p) A —isDev(c,t,p) A3pa (p2 € Gnome AisDev(c,t,p2))}
globalLeavers(p,t) =

{c|isDev(c,t — 1,p) AVpa (p2 € Gnome = —isDev(c,t,p2))}
localJoiners(p,t) =

{c|isDev(c,t, p) A—isDev(c,t — 1, p) Adpa (p2 € Gnome NisDev(c,t — 1,p2))}
globalJjoiners(p,t) =

{cl|isDev(c,t,p) N¥p2 (p2 € Gnome = —isDev(c,t —1,p2))}

(10.1)

1997 1999 2001 2008 2005 2007 2009 2011 2013 1997 1989 2001 2003 2005 2007 2009 2011 2013 1997 1999 2001 2003 2005 2007 2009 2011 2013

Evolution GTK+ GIMP

Fig. 10.10: Historical evolution (timeline on x-axis) of the number of local (solid)
and global (dashed) joiners (y-axis) for three GNOME projects.

We did not find any general trend, the patterns of intake and loss of coders are
highly project-specific. Figure 10.10 illustrates the evolution of the number of local
and global joiners for some of the more important GNOME projects (the figures for
leavers are very similar). For some projects (e.g. evolution) we do not observe
a big difference between the number of local and global joiners, respectively. These
projects seem to attract new developers both from within and outside of GNOME.
Other projects, like GIMP (a popular image manipulation program that can be used
and installed separately from other Gnome applications), attract most of its incom-
ing developers from outside GNOME. A third category of projects attracts most of its
incoming developers from other GNOME projects. This is the case for GTK+ which
can be considered as belonging to the core of GNOME. This observation seems to
suggests that libraries, toolkits and auxiliary projects attract more inside develop-
ers, while projects that are well-known to the outside world (such as GIMP) attract
outside developers.

However, it is also important to measure if the projects that attract developers
from the outside of the ecosystem tend to keep those developers inside the project
or also “diffuse” them to other projects of GNOME. In order to give an idea of this

10 Studying Evolving Software Ecosystems based on Ecological Models 325

on the three previously mentioned projects we defined a metrics we called the col-
laboration factor of a project. It represents the percentage of coders contributing to
the project and who are also contributing to another project of GNOME. The collab-
oration factors for Evolution, GIMP and GTK+ are respectively 65.1%, 85% and
94.7%. This leads us to think that while GIMP attracts a lot of people from the
outside of GNOME it seems that its community is not integrated into the GNOME
community as well as other projects like GNOME. At the opposite, the GTK+ com-
munity appears to be more integrated in the GNOME community, which is probably
not surprising since GTK+ is the core user interface library which is used by all
GNOME end-user programs. It is worthwhile to study this phenomenon in more de-
tail to find empirical evidence of this. One might consider, e. g., concentration of
project participants’ contributions to projects within the ecosystem which can be
measured using inequality indices (cf. [768, 881, 888]). Presence of many develop-
ers with highly concentrated contributions would suggest low integration within the
community.

10.5 Conclusions

This chapter presented an in-depth analysis of the analogy between natural and OSS
ecosystems, from the evolutionary point of view. While there are many similarities
between both types of ecosystems a lot of differences can be observed.

From a technical viewpoint, many techniques and models that have been pro-
posed and used in ecology may provide new insights for the study of evolving soft-
ware ecosystems. Some examples of techniques are the use of phylogenetic trees
and cluster dendograms. Some ecological models, such as the dynamic predator-
prey model have already been adapted with success in a software evolution setting
[155, 500].

Some other models, even after adaptation, appear to give different results when
applied to OSS ecosystems. For example, for the GNOME ecosystem there appears
to be a much higher degree of collaboration than what is found in many natural
ecosystems, and a lower degree of competition. For such collaborative ecosystems,
the more recent hologenome theory of evolution that has been proposed to explain
the evolution of coral reef ecosystems [732] may perhaps be closer to how soft-
ware ecosystems evolve, since it considers the evolving organism together with its
associated communities, just like a software project co-evolves by the grace of its
associated user and developer communities.

Because the traditional biological evolutionary theories are essentially driven by
competition between species in a shared resource pool, they are not always readily
applicable to explain the dynamics of highly collaborative OSS ecosystems. Other,
more business-driven proprietary software ecosystems, such as the app stores for
mobile devices, are likely to have a higher degree of competition since all apps
struggle for a larger market share in order to increase their profits. The developers of
commercial software ecosystems are also remunerated, while contributors to OSS

326 Tom Mens, Maélick Claes, Philippe Grosjean and Alexander Serebrenik

ecosystems often work on a voluntary basis and usually have no direct financial
benefits from their involvement.

The main challenge is that historical data of commercial software ecosystems
is much harder to obtain, making it difficult to study evolutionary theories on such
ecosystems. OSS ecosystems like GitHub and SourceForge do not have this limi-
tation and probably fall somewhere between both extremes, with some amount of
competition but also a certain degree of collaboration.

Seen from a complex systems viewpoint, OSS ecosystems seem to be closer to
their biological counterpart than business software ecosystems [435]. Commercial
ecosystems are typically governed by a decision maker that decides how the ecosys-
tem should evolve, while OSS ecosystems often have a much more flexible deci-
sional structure. Like in biological ecosystems, decisions are taken at the level of
individual species (read: projects), with an emergent overall effect on the software
ecosystem as a whole.

In the current state of software ecosystems research, it is still too early to make
any general conclusions, and much more empirical results are required to understand
how one can benefit the most from existing research on natural ecosystems.

	Chapter 10 Studying Evolving Software Ecosystems based on Ecological Models
	10.1 Introduction
	10.2 Ecosystem terminology
	10.2.1 Natural ecosystems and ecology
	10.2.2 Software ecosystems
	10.2.2.1 Business-centric viewpoint
	10.2.2.2 Development-centric viewpoint
	10.2.2.3 Collaborative and socio-technical aspects of software ecosystems

	10.2.3 Comparing natural and software ecosystems

	10.3 Evolution
	10.3.1 Biological evolution
	10.3.2 Comparing biological evolution with software evolution
	10.3.3 Transposing biological models to the software realm

	10.4 Exploratory case study
	10.4.1 The GNOME OSS ecosystem
	10.4.2 Comparing GNOME with a natural ecosystem
	10.4.3 Migration of GNOME developers

	10.5 Conclusions

