
Chapter 1
An Overview of Requirements Evolution

Neil Ernst, Alexander Borgida, Ivan J. Jureta and John Mylopoulos

Summary. Changing requirements are widely regarded as one of the most signif-
icant risks for software systems development. However, in today’s business land-
scape, these changing requirements also represent opportunities to exploit new and
evolving business conditions. In consonance with other agile methods, we advocate
requirements engineering techniques that embrace and accommodate requirements
change. This agile approach to requirements must nonetheless be systematic and
incorporate some degree of planning, especially with respect to accommodating
quality attributes such as safety and security. This chapter examines the nature of
requirements evolution, and the two main problems that it entails. The first is to
correctly understand what is changing in the requirements, that is, the elicitation
problem. The other is to act on that new information using models and other rep-
resentations of the requirements, influencing the architecture and implementation
of the software system. This chapter first motivates the importance of considering
changing requirements in evolving software systems. It then surveys historical and
existing approaches to requirements evolution with respect to the elicitation and tak-
ing action problems. Finally, the chapter describes a framework for supporting re-
quirements evolution, defining the Requirements Evolution Problem as finding new
specifications to satisfy changed requirements and domain assumptions. To motivate
this, we discuss a real-life case study of the payment card industry.1

1 Portions of this chapter are adapted from [276].
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1.1 Introduction

Most software systems are now expected to run in changing environments. Soft-
ware developed using an agile methodology often focuses on releasing versions that
are only partially completed, at least with respect to the full set of customer re-
quirements. Software must operate in a context where the world is only partially
understood and where the implementation is only partially completed. What drives
the implementation in this scenario is the requirements, whether represented as user
stories, use cases or formal specifications.

Focusing on software evolution only makes sense if one understands what the ob-
jectives are for that software. These objectives are themselves frequently changing.
Indeed, as we discuss in this chapter, expecting a system’s requirements to be con-
stant and unchanging is a recipe for disaster. The ‘big design up front’ approach is
no longer defensible, particularly in a business environment that emphasizes speed
and resilience to change [436]. And yet, focusing on implementation issues to the
exclusion of system objectives and business needs is equally unsatisfactory.

How does our view of the importance of the system’s requirements fit with the
historical literature on software evolution? Requirements have long been seen as im-
portant, as we shall describe below, in Section 1.2. In 2005, a paper on “challenges
in software evolution” [598] highlighted the need to research the “. . . evolution of
higher-level artifacts such as analysis and design models, software architectures, re-
quirement specifications, and so on.” More recently, Mens [591] listed several key
challenges for software evolution including “How to ensure that the resulting sys-
tem has the desired quality and functionality?” This question is the motivation for
our work in requirements evolution, as we firmly believe that understanding the
evolution of non-functional requirements, in particular, will help answer this.

There are three major objections to making requirements more prominent in the
study of software evolution. For one, the tangible is easier to study. In many cases,
particularly short-term or small-scope projects, requirements are either not used ex-
plicitly or stale the moment they are ‘finished’. However, this is seldom true of
high-value software products, and where it is, typically is symptomatic of a larger
software process or organizational pathology. Secondly, in terms of quantity, many
change tasks involve low-level corrective maintenance concerns, rather than high-
level evolutionary ones. While the numbers of corrective change tasks might be
greater, our position is that evolutionary requirements changes are more complex
and more costly, and therefore more important, than coping with bug fixes. Finally,
requirements and associated changes to the requirements are seen as part of the
problem domain and therefore untouchable, much like understanding the organi-
zational objectives might be. We believe that revisiting the problem domain and
re-transitioning from problem to solution is of paramount importance in software
development.

It is our view that requirements artifacts should drive implementation decisions.
In other words, requirements must be tangible, and requirements must be relevant.
While they often take the form of work item lists, as is the case in most industrial
tools, it is preferable that they be well-structured graphs that represent all aspects of



1 An Overview of Requirements Evolution 5

the requirements problem, capturing stakeholder objectives, domain assumptions,
and implementation options. Such models allow for lightweight reasoning (e.g.,
[277]) where the key challenge is ‘requirements repair’: re-evaluating available so-
lutions to solve the changed requirements, adding (minimal) new implementations
where necessary [627]. We will explain this with reference to the Requirements
Evolution Problem, which defines how software should respond to changes in its
constituent parts: elements in the specification (the implementation), the system re-
quirements (in the form of goals) and domain knowledge and constraints. We ar-
gue this is distinct from the Self-Adaptation Problem (cf. Chapter 7.6), which is
concerned with building systems that are self-adaptive, and do not require outside
intervention. The Requirements Evolution Problem explicitly supports this guided
intervention. This distinction is crucial; while adaptivity is important, at some point
systems will need to be managed, such as when they lack implementation to support
a particular change—in operating environment, requirements, or capabilities.

In this chapter, we focus on requirements evolution. We begin by introducing the
context for considering requirements in the broader field of software evolution. We
then turn to the history of research into requirements evolution, including empirical
studies. Next, we look at current approaches, focusing first on how industry, and
industry tools, have dealt with requirements evolution. We then survey the state of
the art in requirements evolution research. To conclude this chapter, we elaborate on
one approach to managing changing requirements, with examples drawn from the
payment card industry.

The Requirements Problem

As a reference framework, we introduce an ontology for requirements. This work is
based on [450] and [449], both of which derive from the fundamental requirements
problem of Zave and Jackson [945]. In modern requirements engineering, it is often
the case that one distinguishes different kinds of sentences encountered in stating a
“requirements problem”, according to the “ontology” of the requirements modeling
language. In Zave and Jackson’s original formulation, the requirements problem is

Definition 1.1. Requirements Problem: Given requirements R (optative state-
ments of desire), a space of possible solution specifications SP, domain world
knowledge WD, find a subset S of SP, and software solution finding knowledge WS
such that WD,WS,S ` R.

Domain world knowledge reflects properties of the external world the software oper-
ates in, e.g., constraints such as room capacity. Solution finding knowledge reflects
how our requirements problem is constructed, so refinement relationships are ele-
ments of WS, that is, the expression “ψ refines φ” (φ ,ψ ∈ R) is part of WS. The
Requirements Evolution Problem extends this requirements problem definition to
introduce change over one increment of time.
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Definition 1.2. Requirements Evolution Problem: Given (i) requirements R, do-
main knowledge WD, and (ii) some chosen existing specification S0 (i.e., such that
WD,WS,S0 ` R), as well as (iii) modified requirements problem (δ (R),δ (WD),δ (S))
that include modified requirements, domain knowledge and possible tasks, produce
a subset of possible specifications Ŝ to the changed requirements problem (i.e.,
δ (WD), Ŝ ` δ (R)) which satisfy some desired property Π , relating Ŝ to S0 and pos-
sibly other aspects of the changes.

As an example, consider Figure 1.1. Here we represent a simplified version of a
system for managing payments at soccer stadiums (taken from [277]), which must
comply with the Payment Card Industry Data Security Standard (PCI-DSS). Pay-
ment card issuers, including Visa and Mastercard, developed the PCI-DSS for se-
curing cardholder data. It takes effect whenever a merchant processes or stores card-
holder data. We represent this as a set of high-level requirements (ovals) refined by
increasingly more concrete requirements, eventually operationalized by tasks (dia-
mond shapes).

In our proposed solution, S0, the existing approach, consists of tasks “Buy
Strongbox”, “Use Verifone POS”, and “Virtualize server instances”, shown in grey
shading. In order to be PCI compliant, the requirements evolve to add requirement
“Use Secure Hash on Credit Cards” (double-lined oval). This conflicts with our
solution (shown as line with crosses), as Verifone terminals do not support this (hy-
pothetically). Instead, we must evolve our implementation to include the task “Use
Moneris POS” terminals, i.e., add that to Ŝ (and retract “Use Verifone POS”), which
does not conflict, since it does support secure hashes.

In what follows we use this framework to characterize the challenge of man-
aging evolving requirements. In particular, while software evolution tends to focus
on managing largely changes in S, in the field of requirements we are faced with
changes in any or all of S,W,R. Furthermore, since these three components are re-
lated (W ∪S ` R), changes in one impact the validity of the inferential relation. For
example, changes in requirements R, e.g., from R0 to R1, will force a re-evaluation
of whether W ∪S still classically entails the satisfaction of R1.

1.2 Historical Overview of Requirements Evolution

In this section, we survey past treatments of evolving requirements. We begin by
exploring how software evolution research dealt with changing requirements. The
importance of evolving requirements is directly connected to the wider issue of
evolving software systems. While the majority of the literature focused on issues
with maintaining and evolving software, a minority tries to understand how changes
in requirements impact software maintenance.

The study of software evolution began when IBM researchers Belady and Lehman
used their experiences with OS/360 to formulate several theories of software evo-
lution, which they labeled the ‘laws’ of software evolution. This work was sum-
marized in [510]. These papers characterize the nature of software evolution as an
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Fig. 1.1: An example of a Requirements Evolution Problem. Shaded grey nodes
represent the original solution; the double outlined requirement represents a new
requirement. Dashed lines represent alternative refinements, double-crossed arrows
conflicts, and regular arrows refinement.

inevitable part of the software lifecycle. ‘Inevitability’ implies that programs must
continually be maintained in order to accommodate discrepancies with their con-
tinuously evolving operational environment. One law states that software quality
will decline unless regular maintenance activity occurs, and another implies that a
system’s complexity increases over time. While their work largely focused on im-
plementation artifacts, it clearly acknowledged requirements as a driving force for
the corrective action necessary to reconcile actual with anticipated behavior: “Com-
puting requirements may be redefined to serve new uses [91, p. 239].”

Early in the history of software development it became clear that building soft-
ware systems was nothing like engineering physical artifacts. An obvious difference
was that software systems were malleable. Reports suggested a great deal of effort
was being spent on maintenance tasks. Basili, writing in 1984, lists 40% [76], and
the U.S. National Institute of Standards and Technology report in 2002 claimed
industry data show that 70% of errors are introduced during requirements and ar-
chitecture design, with a rework cost that is 300 or more times the cost of discover-
ing and correcting the errors earlier [797]. Swanson [812] focused on post-release
maintenance issues, and looked beyond low-level error fixing (which he termed cor-
rective maintenance) to address the issues that Lehman and Belady raised. His work
identified “changes in data and processing environments” as a major cause of adap-
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tive maintenance activity. Swanson’s paper marks one of the first times researchers
realized that it was not possible to ‘get it right the first time’. In some projects, an-
ticipating everything was essential (safety-critical systems, for example); Swanson’s
insight was that in other projects this was not cost-effective (although it remained
desirable).

Development processes still reflected the engineering mindset of the time, with
heavy emphasis on up-front analysis and design. US military standards reflected
this, since the idea of interchangeable parts was particularly important for military
logistics, and the military had experienced enormous software cost overruns. These
pressures were eventually realized as the US government’s MIL-STD–498, criti-
cized for insisting on a waterfall approach to software development. Afterwards
came the slightly more flexible software process standards IEEE/ISO–12207, and
IEEE–830, perhaps the best known standard for software requirements to date. But
David Parnas’s paper on the “Star Wars” missile defence scheme [679] illustrated
the problems with this standard’s philosophy, many of which come down to an in-
ability to anticipate future requirements and capabilities, e.g. that “the character-
istics of weapons and sensors are not yet known and are likely to remain fluid for
many years after deployment” [679, p. 1329]. This demonstrated the massive impact
unanticipated change can have on software systems, a central concern of this chap-
ter. Indeed, the US military no longer insists that software be developed according
to any particular standard [577, p. 42].

In response to the problems with the waterfall approach, iterative models, such as
Boehm’s ‘spiral’ model of development [121] called for iterations over system de-
sign, so that requirements were assessed at multiple points. However, such process-
oriented models can do little to address unanticipated changes if they do not insist
on releasing the product to stakeholders. As Fred Brooks notes, “Where a new sys-
tem concept or new technology is used, one has to build a system to throw away,
for even the best planning is not so omniscient as to get it right the first time. Hence
plan to throw one away; you will, anyhow [144].” The point of Brooks’s quote is
to emphasize how little one can anticipate the real concerns in designing software
systems, particularly novel (for its time) systems like OS/360. Instead, development
should be iterative and incremental, where iterative means “re-do” (read ‘improve’)
and increment means “add onto”, as defined in [498].

1.2.1 From Software Evolution to Requirements Evolution

This section focuses on that part of software evolution that is concerned with chang-
ing requirements or assumptions (i.e., the components of the requirements problem
which are in R or W). Historically, some researchers have turned to focus in detail
on this relationship between requirements and evolution of software. Not all main-
tenance activities can be said to result in ‘software evolution’: for instance, when
designers are correcting a fault in the implementation (S) to bring it (back) into line
with the original requirements (which Swanson called ‘corrective maintenance’).
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Chapin [169, p. 17] concludes that evolution only occurs when maintenance im-
pacts business rules or changes properties visible to the customer.

Harker et al. [363] extended Swanson’s work to focus on change drivers with
respect to system requirements (summarized in Table 1.1), because “changing re-
quirements, rather than stable ones, are the norm in systems development [363, p.
266].” He characterized changes according to their origins. At this point, require-
ments engineering as a distinct research discipline was but a few years old, and
an understanding was emerging that the importance of requirements permeated the
entire development process, rather than being a strictly ‘up-front’ endeavour.

Table 1.1: Types of requirements change [363]

Type of requirement Origins

Stable Enduring Technical core of business

Changing Mutable Environmental Turbulence
Emergent Stakeholder Engagement in Requirements Elicitation

Consequential System Use and User Development
Adaptive Situated Action and Task Variation
Migration Constraints of Planned Organisational Development

As an aside, it is interesting to ponder whether there is in fact such a thing as an
enduring requirement, as defined by Harker et al. A useful analogy can be derived
from Stuart Brand’s book on architectural change in buildings [138]. He introduces
the notion of shearing layers for buildings, which distinguish change frequency. For
example, the base layer is Site, which changes very little (absent major disasters);
Skin describes the building facade, which changes every few decades, and at the
fastest layer, Stuff, the contents of a building, which changes every few days or
weeks. The implication for requirements is that good design ought to identify which
requirements are more change-prone than others, and structure a solution based on
that assumption. There probably are enduring requirements, but only in the sense
that changing them fundamentally alters the nature of the system. For example,
if we have the requirement for a credit card processing software to connect to the
customer’s bank, such a requirement is sufficiently abstract as to defy most changes.
On the other hand, we can easily foresee a requirement “Connect to other bank
using SSL” changing, such as when someone manages to break the security model.
We posit that the enduring/changing distinction originates in the abstractness of the
requirement, rather than any particular characteristic.

The above taxonomy was expanded by the EVE project [487]. Lam and Loomes
emphasized that requirements evolution is inevitable and must be managed by pay-
ing attention to three areas: monitoring the operating environment; analysing the
impact of the system on stakeholders, or on itself; and conducting risk management
exercises. They proposed a process model for systematizing this analysis.

Changes to requirements have long been identified as a concern for software de-
velopment, as in Basili [76]. Somerville and Sawyer’s requirements textbook [787]
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explicitly mentions ‘volatile’ requirements as a risk, and cautions that processes
should define a way to deal with them. Their categorization closely follows that of
Harker et al.

Several historical research projects in the area of information systems model-
ing have touched on evolution. CIM [149] labeled model instances with the time
period during which the information was valid. Furthermore, CIM “should make
incremental introduction and integration of new requirements easy and natural in
the sense that new requirements should require as few changes in an existing model
as possible [149, p.401].” Little guidance was given on how to do this, however.
In a similar vein, RML [350], ERAE [264] and Telos [628] gave validity intervals
for model instances using logic augmented with time arguments. These modeling
languages were oriented to a one-off requirements model that can then be used to
design the system (rather than allowing on-the-fly updates and inconsistencies dur-
ing run-time). In other words, these methodologies assume complete knowledge of
the system, e.g., the precise periods for which a concept is applicable.

Research has also considered the issue of maintaining consistency in require-
ments models. Models can be inconsistent when different users define different
models, as in viewpoints research. The importance of permitting inconsistency in
order to derive a more useful requirements model was first characterized by East-
erbrook and Nuseibeh [269]. We return to the use of formal logic for managing
evolving requirements in Section 1.4. Zowghi and Gervasi explain that “Increasing
the completeness of a requirements specification can decrease its consistency and
hence affect the correctness of the final product. Conversely, improving the consis-
tency of the requirements can reduce the completeness, thereby again diminishing
correctness [955].” With respect to changes in R, then, there seems to be a tradeoff
between making R as detailed as possible and making R as consistent as possible.
In early requirements analysis where we suspect W will change (for example, in
mobile applications) incompleteness should be acceptable if it supports flexibility -
we would rather have high-level consistency with incomplete requirements.

Finally, one could consider the elaboration (i.e., increasing the completeness) of
the initial requirements model, from high-level objectives to lower-level technical
requirements, as ‘evolving’ requirements (as in [35]); we focus on requirements
models for which the elicitation necessary for a first release is assumed to be com-
pleted, and then changes, rather than the process of requirements elicitation at an
intermediate point in time.

1.2.2 Empirical Studies of Requirements Evolution

The focus of this section is on research projects which conducted empirical stud-
ies using industrial Requirements Evolution Problems. Many industrial case studies
focus on source code evolution, and little attention is paid to the requirements them-
selves (which presumably are driving many of the changes to source code). This
is typically because requirements are often not available explicitly, unlike source
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code. This is particularly true in the case of open-source software. Nonetheless, the
following studies do show that, when available, the problem of requirements change
is important and not particularly well understood.

The SCR (Software Cost Reduction) project at the U.S. Naval Research Lab-
oratory was based on a project to effectively deliver software requirements for a
fighter jet, the A–7E. In a retrospective report on the project [23], which includes up-
dates since the initial release in 1972, Chapter 9 of the report lists some anticipated
changes. Of interest is that these changes, while anticipated, are not very detailed,
and some invariants are assumed (which we would term domain assumptions, such
as “weapon delivery cannot be accurate if location data is not accurate”). This early
work identified the criticality of understanding how R could and did change, and
that such changes needed to be anticipated.

Chung et al. [187] looked at the problem of (non-functional) requirements evo-
lution at Barclays, a large bank. After introducing a modeling notation, they con-
sidered the change of adding more detailed reporting on accounts to customers. The
paper showed how this change can be managed using their modeling notation, lead-
ing to new system designs. In our parlance, they considered changes in all of R,W,S.
In particular, the paper focused on tracking the impact of a change on other non-
functional properties of the system, such as accuracy and timeliness (i.e., quality
attribute requirements in R). Their notation allows analysts to model priorities and
perform semi-automated analysis of the updated model. With respect to our prop-
erty Π , this study used the degree to which a solution Ŝ satisfied quality attributes as
the property over which to evaluate solution optimality. The paper concludes with
some principles for accommodating change.

In [36], Anton and Potts looked at the evolution of the features offered by a
customer-centric telephony provider. The paper traced, using historical documents,
which features were available and how this changed over time. In particular, the
paper focused on the consequences of introducing certain features, with the objec-
tive of reducing the effort of providing a new service to customers. This survey was
end-user oriented as it focused on how features appeared to users of telephone ser-
vices, not other businesses or the internal feature requirements. Changes in W are
related to subsequent changes in S (features are properly parts of the solution), but
there is little or no role for explicit members of R, except as reverse-engineered.
One can reverse engineer changes in R by inference: if S changes as new features
are added, and the authors show it was in response to some initiating change from
the domain knowledge W (such as customer usage), then we can infer a change in
R (since W ∪S ` R).

The Congruence Evaluation System experience report of Nanda and Madhavji
[632], while not conducted on industrial data, did shed some useful light on the Re-
quirements Evolution Problem. This was an academic-built proof of concept that
ultimately failed. In their analysis, Nanda and Madhavji explicitly note that changes
in W , which they term “environmental evolution” was a major factor. They particu-
larly note how difficult it was to communicate these changes into direct impacts on
the requirements, as they were typically not monitored explicitly.
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Anderson and colleagues conducted a series of case studies of changing require-
ments [31, 32], focusing explicitly on changes in R. Their experiences led to the
development of a taxonomy for requirements evolution. The case studies focused
on smart cards and air traffic control, and spurred the development of the Require-
ments Maturity Index, in order to measure how frequently a particular requirement
changed. However, the index did not provide for different measures of requirements
value or importance, i.e., there was no explicit notion of comparison with respect to
Π .

Tun et al. [860] used automated extraction techniques to obtain problem struc-
tures from a large-scale open source project (the Vim text editor). They concede that
requirements may not be easily extracted, but contend that these problem structures
shed some useful light on how one might implement new requirements. These prob-
lem structures are essentially triples of W,S,R, with particular focus on looking at S
in order to attempt to derive the other two. The challenge with all studies of purely
source code (i.e., S) is that one must to some extent speculate about whether changes
are coming from the domain knowledge W or from the requirements changing.

There is relevant work in the Mining Software Repositories community on ex-
traction of requirements from project corpora, most recently the work of Hindle et
al. at Microsoft [404]. They correlated project specifications to source code com-
mits and were able to identify related changes. In this context, Hindle et al. used the
project specification as the representation of R and the code commits as insight into
the implementation S. The chief problem with open-source project is that require-
ments are rarely made explicit. Instead, they occur as user stories or prototyped
features. In [279] we looked at techniques for extracting a set R from these issue
trackers. See also Chapter 5 later in this book, on repository mining.

Many studies of changing requirements have focused on software product lines.
We do not discuss them here, since Chapter 9 goes into them extensively. Herrmann
et al [392] used an industrial case study to identify the need for “delta requirements”,
requirements which must be added subsequent to software delivery, and then took
an existing methodology and extended it to incorporate modeling techniques for
delta requirements. The advantage of defining delta requirements is that it permits
baselining one’s core functionality (similarly to product lines), and then extending
these as necessary.

Ideally, of course, one would minimize changes before they occur, rather than
needing to manage changes afterwards. The issue of changing requirements in the
highly formal requirements environment of spacecraft design was considered in
[636], with the aim of minimizing the number of downstream changes required,
as each change is potentially very costly to re-implement. The authors proposed
a technique, semantic decoupling, for modeling requirements R to minimize the
dependencies between abstraction levels. In semantic decoupling, one tries to min-
imize the dependencies between related software modules (S), so that changes in R
will not be as wide-ranging. This of course requires a reasonably complete definition
of a traceability matrix in order to identify the relationships (which does typically
exist in the domains they study).
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This sampling of academic case studies of changing requirements in industrial
settings has provided some clear examples of the importance of requirements evolu-
tion. In domains as varied as spacecraft, smart cards, and phone features, changing
requirements are clearly a major concern for business, and the source of much cost
and effort.

1.3 A Survey of Industry Approaches

It is useful to consider the treatment of changing requirements in industry settings,
as a way to understand the current practices, and how these might inform research
proposals. Industrial tools have a strong focus on interoperability with office soft-
ware like Microsoft Word, because a common use-case for these tools is generating
documentation. Furthermore, these tools are not the whole story, as many industry
consultants (e.g., [504, 922]) focus as much on managing change through methodol-
ogy as through tools. This means creating a change process which might incorporate
reviews, change tracking, prioritization meetings, and so on.

1.3.1 Standards and Industry

IEEE Standard 830 [421], which describes a standard for “Software Requirements
Specification” (SRS), is the culmination of the strict specification approach, what
some have derisively called “Big Requirements Up Front”. It lays out in great detail
the standard way for describing “what” must be built. Section 4.5 of the standard
addresses evolution, which it recommends managing using notation (marking re-
quirements as “incomplete”) and processes for updating the requirements. As with
most standards, this is reasonable in mature organizations, but prone to problems if
these key ideas are not followed. Furthermore, completeness and stability are often
orthogonal concerns. The standard acknowledges that evolutionary revisions may
be inevitable.

1.3.2 Requirements Management Tools

Commercial tools have generally done a poor job supporting change. IBM DOORS2

and IBM Requisite Pro are document-centric tools whose main interface consists of
hierarchical lists of requirements (e.g., “R4.2.4 the system shall . . . ”). Traceability
is a big feature of such tools, and requirements can be linked (to one another and to
other artifacts, such as UML diagrams). Multiple users are supported, and changes

2 http://www-01.ibm.com/software/awdtools/doors/

http://www-01.ibm.com/software/awdtools/doors/
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prompt notification that the requirement has changed. Version control is important:
each requirement is an object, and the history of that object is stored, e.g., “mod-
ified attribute text” on DATE by USER. In DOORS, one can create requirements
baselines which are similar to feature models. One can extend the baseline to create
new products or changes to existing projects. It is not clear what the methodology
for defining a baseline is.

The tool focus of Blueprint Requirements Center3 is agile, with strong support
for simulation and prototyping. Workbenching requirements scenarios is important
in Blueprint. Workbenching or simulation helps analysts understand all the potential
variations, as well as giving something concrete to the business user before costly
implementation. Blueprint also focuses on short-cycle development, allowing re-
quirements to be broken into sprint-specific stories or features. What both Blueprint
and the IBM suite miss, however, is a way to combine requirements management
with workbenching integrated into a framework for evaluating change impacts.

1.3.3 Task Managers

An increasingly popular strategy in industry is to forego IEEE specification con-
formance in favour of lightweight task management tools. This might be described
as the agile approach to requirements: treating requirements as tasks that must be
carried out. Jira, from Atlassian Software4, is a commonly-used tool in large-scale
projects. Jira allows one to manage what is essentially a complex to-do list, includ-
ing effort estimation, assignment, and some type of workflow management (e.g.,
open issue, assign issue, close issue). Similar tools include Bugzilla, Trac, and
IBM’s Rational Team Concert. More recently, Kanban [30] has made popular vi-
sual work-in-progress displays, the most basic of which are whiteboards with life-
cycle phases as swimlanes. These tools are well-suited to the deliberate reduction
of documentation and adaptive product management that agile methodologies such
as Scrum or XP recommend. Leffingwell [503] gives a more structured approach
to agile requirements engineering, managing changes using time-boxed iterations
(e.g., 2 week cycles) at the boundaries of which the team re-prioritizes the user sto-
ries to work on for the next cycle. In this fashion, changes in the domain knowledge
W and new requirements R can be accommodated on a shorter time-frame than a
model with change requests. This constant iteration only works well with a robust
set of tests to verify the requirements were correctly implemented, e.g., using unit
and system tests, but as important is some automated acceptance tests using, e.g.,
Behavior-Driven Development (BDD).

3 http://www.blueprintsys.com/products/
4 http://www.atlassian.com/software/jira/

http://www.atlassian.com/software/jira/
http://www.blueprintsys.com/products/
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1.3.4 Summary

Particularly for smaller organizations, requirements are not treated at a high level,
often existing as an Excel spreadsheet or maintained implicitly [46]. Furthermore,
the transition to agile software development has made one of its chief priorities the
reduction of unnecessary documentation (“working software over comprehensive
documentation”5). It is an open and important research question whether omitting
at least some form of explicit requirements model is sustainable in the long-term.

The tools we have described work well for managing low-level tasks, such as
fixing specific bugs. However, connecting the design and roadmapping component
of product management with the specifics of task management is more difficult.
While some might use tools like Confluence or other wikis for this knowledge-
management task, spreadsheets are still very popular for tracking lists of possible
features. What is missing is a higher-level view of “why” changes are being made,
and what impact those changes might have on satisfying the requirements. A tool
which can preserve the overall requirements model throughout the lifecycle is nec-
essary. That is not to say such an approach could not be integrated into a tool like
IBM DOORS. Indeed, there is a lot of work on integrating requirements tools, task
managers, code repositories and so on using product lifecycle management (PLM)
or application lifecycle management (ALM). The emerging standard for Open Ser-
vices for Collaboration (OSLC)6 is one initiative that looks to overcome the tradi-
tional silos.

1.4 Recent Research

We now survey some of the latest research in requirements evolution. In many
cases, research has focused most on eliciting requirements and potential changes,
and less on how such models/representations would be used to adapt software post-
implementation. Interest in the notion of requirements at run-time has greatly in-
creased recently, however, and we touch on this below. There are overlaps with
work on adaptive software (see Chapter 7.6 later in this book) and model-driven
evolution (Chapter 2). To conclude, we introduce two summary tables showing how
the individual work addresses elements of the Requirements Problem, as well as an
explanation of where gaps exist between research and practice.

5 http://agilemanifesto.org/
6 http://open-services.net/

http://open-services.net/
http://agilemanifesto.org/
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1.4.1 Problem Frames Approach

We mentioned the empirical study of Tun et al. [860] earlier. This work builds on
the seminal problem frames approach of Michael Jackson [431] to extract problem
frames from existing software systems in order to recover the original requirements.
A problem frame captures a particular set of elements involved in the Zave and
Jackson approach to the requirements problem: W,S ` R. For example, the text edi-
tor Vim has a feature “Spell Completion”. From the requirement description, Tun et
al. reconstruct the problem diagram using problem frame syntax: the requirement is
on the right, “complete word automatically”, linked with shared phenomena includ-
ing “keyboard user” and “buffer”, and finally, to the machine element implement-
ing “Spell Completion” (the feature). Matching related problem diagrams can show
feature interaction problems, in this case, where two features both use the shared
phenomena of “buffer”. These feature interactions are difficult to manage and can
be a large source of problems.

Another project by Tun et al.[859] uses problem frames to identify common
problematic design patterns, and to then transform that feature using a catalog. The
idea is to support evolution of features using well-known patterns to avoid feature in-
teraction problems. For example, if I know that my buffer is shared by two features,
I can apply a pattern like “Blackboard” to solve the potential problems. Similarly,
Yu et al. [942] use problem frames in the context of security requirements. Their
tool, OpenArgue, supports argumentation about requirements satisfaction that can
be updated as more information arrives. As with the requirements evolution prob-
lem we defined, this approach seeks to reason about what the implications of this
new information are.

1.4.2 Extensions of the NFR Framework

The NFR model, introduced in [186], represented a qualitative approach to modeling
system requirements as refinements of high level objectives, called goals. This has
been extended to reason about partial goal satisfaction in a number of ways. To
begin, Giorgini et al. [327] and Sebastiani et al. [760] formalized a variant of the
NFR framework’s qualitative approach, the idea being that qualitative reasoning
is better suited to up-front problem exploration. Their tools (e.g., GR-Tool7) can
reason over qualitative models and generate satisfying alternatives. One can leverage
this approach to incrementally explore evolving requirements problems.

What was not well understood was how to turn these into specifications. From
the evolution point of view, work on alternatives and variability in goal modeling
(e.g., [520], [497]) allows these qualitative models to capture context-driven vari-
ability, a point also made in Ali et al. [18], who make the case that requirements
variability necessitates the monitoring of the operating contexts. This monitoring

7 http://troposproject.org/tools/grtool/

http://troposproject.org/tools/grtool/
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information is then used to inform a designer about possible revision options. In all
these cases the main contribution to requirements evolution is in eliciting alternative
solutions and extending the system specification with annotations for monitoring for
violations of these models. Dalpiaz et al. [215] also introduced qualitative require-
ments variability, but in the area of dynamic reconfiguration. This proposal goes
from modeling and elicitation to system specification over time, i.e., not just for the
initial design but also once the system has been released.

1.4.3 Run-time Adaptive Requirements

Work in the area of adaptive requirements focuses on understanding how to build
requirements-based systems that are responsive at run-time to system changes. In
particular, the notion of “requirements at runtime”, explored in a series of workshops
at the Requirements Engineering conference (requirements-engineering.
org), introduced the notion of using requirements models to drive system changes.
See also the chapter on adaptive software later in this book (Chapter 7.6). One thing
that is necessary for run-time evolution is the ability to understand what is chang-
ing. Qureshi et al. [705] define a set of ontological concepts for managing run-time
adaptation to the changes in the requirements problem. The main achievement is the
addition of context to requirements problems, in order to suggest variations when
contexts change. Another approach is to loosen the formal representation: In the
RELAX framework [920], a language is designed to specifically manage “the ex-
plicit expression of environmental uncertainty in requirements”. When something
changes in W (the world), for example, a new device appears on a mobile ad-hoc
network, the RELAX language can define service levels which satisfy higher level
requirements (e.g., “connect to AS MANY devices as possible” as opposed to “con-
nect to ALL devices”). In similar fashion, Epifani et al. [275] use a formal model and
a Bayesian estimator to adapt numeric parameters in the specification at run-time.
This allows them to set an initial model of the system and then fine-tune various
parameters as more information is collected. This is a little like learning the true
system requirements, rather than specifying them all at once.

1.4.4 KAOS-based Approaches

A major contribution to the RE literature is the KAOS goal modeling framework,
first introduced in [217]. The original focus was on a methodology and tool for
goal-based decomposition of requirements problems. The original work has been
extended in a number of ways. One direction has considered the importance of al-
ternatives in system design. From an evolution perspective, variability and alterna-
tives support resiliency in two ways when change is encountered. First, the upfront
analysis supports enumeration of possible scenarios that need to be handled (for
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example, the obstacles encountered in [872]). Second, variants can be managed as
a form of product line, and called upon if and when things change (see Chapter 9
for more on product lines and requirements). Later work [515] introduced proba-
bilistic techniques for monitoring the partial satisfaction of goals in KAOS models.
As designers explore the solution space, numeric measures are used to evaluate the
value of a given configuration. Not covered in detail in the paper is how this model
would be adjusted at run-time and used to evolve the specification S, but some of the
KAOS concepts, and in particular its formalism, have found their way into problem
frames work. In [871], van Lamsweerde discusses how one might compare alterna-
tive models of requirements and systems to be designed therefrom.

1.4.5 Paraconsistent and Default Logics

Several requirements modeling approaches rely on formal logic explicitly (KAOS
also uses a formal temporal logic, but it is not the focus of the KAOS-based ap-
proaches described above). Here we review two approaches.

Default logic approaches, appearing in [956] and [325], rely on David Poole’s
Theorist system [691] to define what must be (typically the World knowledge) and
what might change, represented by initial defaults. The connection to the require-
ments model is two-fold: the selection of the order in which requirements are consid-
ered for revision, and the ability to ‘downgrade’ requirements to default (preferred)
status rather than ‘mandatory’ status. Default logic is non-monotonic in that asserted
(TOLD) facts can later be contradicted and no longer concluded; for example, the
sentence “requirement R is refined by task T” can be over-ruled if new informa-
tion is discovered that says, for example, that “requirement R has no refinements”.
In classical logic, as long as the original sentence remains in the theory, it can be
deduced.

Closely aligned with this perspective is the REFORM framework of Ghose [325],
which identifies three main properties for a system managing evolution:

1. distinguish between what are called essential and tentative requirements;
2. make explicit the rationale for satisfying a requirement (refinements);
3. make explicit the tradeoffs for discarding a requirement when the requirements

model changes.

Ghose [325] also defines some useful principles for handling changes to the re-
quirements:

1. make minimal changes to the solution when the problem changes;
2. make it possible to ignore the change if the change would be more costly than

ignoring it;
3. support deferred commitment so that choosing a solution is not premature.
4. maintain discarded requirements to support requirements re-use.



1 An Overview of Requirements Evolution 19

They go on to implement these ideas in a proof-of concept system for manag-
ing requirements. One issue to consider in such non-monotonic systems for require-
ments is that reasoning from events to explanations is abductive, and therefore in the
NP-hard class of problems. Abductive reasoning is to reason ‘backward’, using ob-
servations and a background theory to derive explanations, as opposed to deductive
reasoning, which uses a background theory and an explanation to derive possible
observations.

Another approach to managing change is to support paraconsistent reasoning,
that is, reasoning in the presence of contradictory evidence without trivially con-
cluding everything, as in classical logic. This is vital in handling evolving require-
ments since one common occurrence is that a fact previously asserted as true is then
found to be false. For example, stakeholders might indicate initially that requirement
Rx must be satisfied, but at a later time, perhaps the stakeholders realized they did
not need the requirement. In a formal model we would have {Rx, ¬Rx}, a classical
inconsistency.

In the RE domain, tolerating inconsistency is essential, for reasons listed by Nu-
seibeh et al. [648]:

1. to facilitate distributed collaborative working;
2. to prevent premature commitment to design decisions;
3. to ensure that all stakeholder views are taken into account;
4. to focus attention on problem areas [of the specification] .

Hunter and Nuseibeh [413] use Quasi-Classical Logic (QCL), an approach to
reasoning in the presence of inconsistency which labels the formulas involved. This
also permits one to identify the sources of the inconsistency and then, using their
principle of “inconsistency implies action”, choose to act on that information, by, for
example, removing the last asserted fact, perhaps using principles such as Ghose’s,
above. An example from the London Ambulance case has a scenario where, based
on the information gathered, one can derive both “dispatch Ambulance 1” and “do
not dispatch Ambulance 1”. Two useful capabilities emerge from labeled QCL: one
can continue to derive inferences not related to this inconsistency, for example, that
Ambulance 2 needs a safety check; and secondly, to understand the chain of reason-
ing that led to the inconsistency, and resolve it according to meta-level rules.

Our work [278] used paraconsistent reasoning to manage evolving requirements
problems. We defined a special consequence relation |∼ which used a form of max-
imally consistent subset reasoning to draw credulous conclusions about whether a
given high-level requirement could be satisfied, or alternately, which specification
to implement in order to satisfy those requirements.

Paraconsistent reasoning (whether using defaults, QCL, or other approaches such
as multi-valued logics) supports evolving requirements by mitigating the challenge
of conflicting and possibly inconsistent specifications, whether in the World, Re-
quirements, or Specification. While there is a computational complexity concern,
practically speaking this is less of an issue as processing speeds have increased.
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1.4.6 Traceability Approaches

Traceability refers to the linkages between (in our case) requirements and down-
stream artifacts such as code, models and tests. The importance of traceability
with respect to software evolution is to support the identification and impact of
the changes to the requirements. A number of current approaches use traceability to
manage requirements evolution.

In the work of Charrada and Glinz [171], outdated requirements are identified
based on changes in the source which are believed to impact requirements. Such
changes might, for example, include the addition of a new class or method body,
which is likely a new feature being added. This addresses the issue of requirements
drifting from the actual state of the source code. This approach relies on machine
learning techniques to identify statistically likely candidates, which in general falls
into the area of mining software repositories. The basic notion is to gather a large
body of data, including source code, requirements documents (if any), tests, emails,
etc. Machine learning techniques such as Latent Dirichlet Allocation (see Chapter 5)
can then be used to extract interesting labels for that data, including which quality
requirements are affected, as in Hindle’s work [404]. There is some promise in these
approaches, but the major stumbling block is to gather useful data in large enough
volumes (typically in the millions of records) that the statistical techniques will be
sufficiently accurate. As one might imagine, identifying requirements in source code
is tricky without a good set of requirements documents to go from.

Should sufficient data not be available, one is forced to leverage human knowl-
edge to a greater extent. Herrmann et al. [392] use the information about the pre-
vious incarnation of the system to derive “delta requirements”, which specify only
those changes to the requirements necessary to implement the system (we might
think of this as the set represented by δR \R). The challenge with this approach is
to correctly characterize the existing system’s initial requirements.

Welsh and Sawyer [913] use traceability to identify changes that affect dynam-
ically adaptive systems (DAS). They include five possible changes to a DAS that
might need to be accommodated:

• environmental change (a change to WD)
• broken assumption (an incorrect fact in WD)
• new technology (new elements in S)
• consequential change (changes to the inferences drawn from W ∪S)
• user requirements change (changes to R)

Traceability techniques should somehow identify which type of change is occur-
ring and what implications that change has for the other elements of the system.
Welsh and Sawyer extend the i* strategic rationale framework [938] to annotate the
models with possible changes and impacts. The primary contribution is to support
elicitation and modelling.
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1.4.7 Feature Models

Feature models are covered in greater detail in Chapter 9. Techniques for dealing
with changes to feature models, including the product lines which are typically de-
rived from the feature models, overlap with the management of requirements evo-
lution. Requirements researchers typically consider feature models to focus on the
user-oriented aspects of a system, i.e., be designed with marketable units in mind.
Requirements as we define them, however, would also consider non-functional prop-
erties of the system (which are not necessarily user-oriented, such as maintainabil-
ity) and features which may not be relevant to product lines.

That being said, the techniques for managing evolution in feature models are
relevant to requirements evolution as well.

1.4.8 Summary

Table 1.2 is a summary of the focus of the approaches discussed, based on whether
the approach emphasizes changes in domain knowledge WD, specification/imple-
mentation S, requirements R, or some property Π that can be used to compare ap-
proaches. The most glaring omission are techniques for quantifying the difference
between various solutions (that is, defining properties Π ), although this work has
been the subject of work in search-based software engineering (Chapter 4). Apply-
ing optimization techniques like genetic algorithms to the Requirements Evolution
Problem seems a fruitful area of research.

We said at the beginning of this chapter that managing evolving requirements
could be broken down into elicitation and modeling and turning those representa-
tions into software. Most of the approaches we discussed focus on the modeling
and analysis aspects of the problem. There is unfortunately little work on taking
the frameworks and applying them to industrial requirements problems. Part of the
challenge is that a lot of industries simply do not manage requirements in a manner
which would permit, for example, delta requirements to be generated. Another is
that academic tools for the most part ignore the vastly different scale of industrial
challenges (Daimler, for example, has DOORS models with hundreds of thousands
of objects).

An emerging trend in requirements evolution is the linkage to dynamic, self-
adaptive systems (cf. Chapter 7.6). Researchers are increasingly looking beyond the
traditional staged lifecycle model where requirements are used to derive a specifi-
cation and then ignored. Instead, requirements, and other models, are believed to be
useful beyond the initial release of the software. Most of the research to date has
identified challenges and future work that must be dealt with before we can realize
the vision of “requirements at run-time”. For example, Welsh and Sawyer [913],
Ghose [325], and several others focus on understanding the nature of the problem
using classification techniques.
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Table 1.2: Research approaches compared with respect to the Requirements Evolu-
tion Problem components. (•: covered; ◦: partial coverage; –: not covered, na: tool
mentioned but not available.)
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Problem Frames
Tun et al. [859] • • • – – –
Tun et al. [860] ◦ • • – a •
Yu et al. [942] ◦ • • – b ◦

NFR extensions

Sebastiani et al. [760] • ◦ • • c ◦
Lapouchnian et al. [497] • – • • – ◦

Ali et al. [18] • – • • – –
Dalpiaz et al. [215] • – • • – •

Adaptive Requirements
Qureshi et al. [705] ◦ ◦ • ◦ – –
Whittle et al. [920] • • • • – •
Epifani et al. [275] • • • • – •

KAOS-based
van Lamsweerde and Letier [872] • – • ◦ d •
Letier and van Lamsweerde [515] • ◦ • • d •

van Lamsweerde [871] ◦ – • • d ◦

Paraconsistent

Zowghi and Offen [956] ◦ – • • na –
Ghose [325] ◦ – • ◦ – –

Hunter and Nuseibeh [413] • ◦ ◦ – na ◦
Ernst et al. [278] • – • ◦ e •

Traceabiity

Charrada and Glinz [171] ◦ • • ◦ – ◦
Hindle et al. [404] ◦ • • – – •

Herrmann et al. [392] ◦ ◦ • • - •
Welsh and Sawyer [913] • ◦ • • f •

a http://mcs.open.ac.uk/yy66/vim-analysis.html
b http://sead1.open.ac.uk/pf
c http://troposproject.org/tools/grtool/
d http://www.objectiver.com/index.php?id=25
e http://github.com/neilernst/Techne-TMS
f http://is.gd/7wP7Sj

http://is.gd/7wP7Sj
http://github.com/neilernst/Techne-TMS
http://www.objectiver.com/index.php?id=25
http://troposproject.org/tools/grtool/
http://sead1.open.ac.uk/pf
http://mcs.open.ac.uk/yy66/vim-analysis.html


1 An Overview of Requirements Evolution 23

One of the seminal papers in characterizing evolutionary systems is that of Berry
et al. [100]. In it, the authors argue that for dynamically adaptive systems require-
ments engineering is continuous. Systems must understand what objectives are
paramount at a given point in time, what constraints exist, and how to act to achieve
their objectives. They therefore argue for four levels of adaptivity:

Level 1 Humans model the domain, W and possible inputs to a system S.
Level 2 The given system S monitors W for its inputs and then determines the

response. This is the domain of self-adaptive software research, such as Epifani
et al. [275] or Whittle et al. [920].

Level 3 Humans identify adaptation elements for the set of systems. This is what
variability modeling for goal models does, for example Dalpiaz et al. [215].

Level 4 Humans elicit mechanisms for self-adaptation in general.

Berry et al.’s classification allows us to understand the general trajectory for re-
search into requirements evolution. It moves beyond level 1, which is interested in
inputs and outputs for a specific system, increasingly focusing instead on adapting
and evolving the software in situ, based on a set of observations and a formalism for
responding to the inputs. Unknown unknowns, the inputs not modeled for reasons
of either cost or ignorance, will still bring us back to level 1.

While this is encouraging in terms of software that will be more resilient, one
question that is commonly left unanswered in research is the issue of responsive-
ness. Particularly in formal analysis, we can quickly run up against fundamental
complexity results that render complete optimal solutions infeasible, since expo-
nential algorithms seem to be the only alternative. While the performance of such
algorithms has improved with advances in inference engines, processing speed and
parallelization, it is very much an open question as to how much analysis is possi-
ble, particularly in the ‘online’ scenario. Hence, a number of researchers focus on
incremental or partial approaches to analysis. It is important to keep in mind how
well the proposed evolved design will work under realistic scenarios.

Table 1.3 presents a matrix of where research is needed in requirements evolu-
tion. These are common RE research themes (see Nuseibeh and Easterbrook [647],
Cheng and Atlee [178] or van Lamsweerde [870] for an overview of requirements
engineering research in general) but in this case specifically to do with evolving re-
quirements. We rank the challenges according to industry adoption and interest, ex-
isting research interest, and finally, challenges and obstacles to further research. One
particularly important area, emerging from industry, is a general need for more ap-
plied and empirical studies of requirements evolution, in particular in agile projects
using lightweight tools. Adaptivity is another emerging research area; in this table,
the research area most under-served is understanding how Requirements Evolution
Problems can be elicited and analyzed, i.e., what future capabilities will a system
require, and how to monitor and understand the possible changes that might occur.
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Table 1.3: Research opportunities in requirements evolution (H - High, M - Moder-
ate, L - Low)

Research area
(Evolution and...)

Industry adoption Research interest Challenges

Elicitation M numerous ap-
proaches

L Most approaches focus
on stable systems.

Longitudinal case stud-
ies required.

Analysis L conducted by busi-
ness personnel

L most work focuses on
adaptation - what to do
next.

Understanding system
context.

Modeling L models mostly infor-
mal

M numerous studies of
formalization of change,
e.g. [277]

Scalability; ease of use
by industry.

Management M most tools support
some form of impact
analysis, but at a simple
level.

H Numerous frame-
works and techniques.

Study mainly on green-
field systems. Little em-
pirical validation.

Traceability H widely seen as im-
portant.

H see traceability work-
shops e.g. [693]

Trace recovery; scalabil-
ity

Empirical research n/a M - increasing amount
of empirical validation in
research papers

Reality is messy; Indus-
try reluctance to share
data

1.5 A Framework for Requirements Evolution

This section considers strategies for managing Requirements Evolution Problems
(REP) at the next stage in the software lifecycle: implementation. In our work, we
represent requirements as goals G according to goal-oriented requirements engi-
neering [870]. Recall the definition of the Requirements Evolution Problem needed
to relate changes in requirements R, domain knowledge WD, and solutions S to the
existing solution (or find such a solution, if there isn’t one). In any event we sup-
ported solution comparison by the use of a desired property Π , relating Ŝ to S0 and
possibly other aspects of the changes. Π , in other words, allows us to define a partial
order over potential Ŝ.

We will store instances of these elements (i.e., a specific goal instance such as
“system will allow user registration”) in a knowledge base called REKB. The REKB
can answer questions about the items stored in it. In [277] we discuss this in more
detail, but the essential operations (ASK questions in knowledge base parlance)
include:

ARE-GOALS-ACHIEVED-FROM Answers True if a given set of tasks in
REKB can satisfy a given set of goals. This is the “forward reasoning” prob-
lem of Giorgini et al. [327].

MINIMAL-GOAL-ACHIEVEMENT REKB discovers Σ , the set of sets S of tasks
which minimally satisfy desired goals. This is the (abductive) backward reason-
ing problem of Sebastiani et al. [760].
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GET-MIN-CHANGE-TASK-ENTAILING This operation produces solutions to
the Requirements Evolution Problem. Given an initial solution S and a set of
desired goals, find a set of minimal sets of tasks which are not dominated for
some criterion of minimality and satisfy the new requirements problem. The key
issue is to define what the minimality criterion might be for a new solution, which
we discuss below.

We concentrate on those changes which are unanticipated. By ‘unanticipated’ we
mean that there exists no mechanism in the implementation specification S to ac-
commodate these changes. This clearly positions the Requirements Evolution Prob-
lem as quite distinct from the Self Adaptation Problem (SAP). With respect to the
aspects of G, W, and S, the SAP is to accommodate changes in W,G by creating
a suitably adaptive Ŝ ab initio. In other words, unlike the Requirements Evolution
Problem, self-adaptation approaches do not modify requirements themselves, but
rather choose predefined tasks in S to accommodate the changes. This is what RE-
LAX [920] is doing: using a fuzzy logic to define criteria for satisfying requirements
that may be accomplished by different tasks/monitors.

It is also becoming clear that with a suitably flexible framework and a wide pool
of services, an adaptive specification can be used to select services that satisfy our
changed goals or domain assumptions. Since these services can be quite heteroge-
neous, there is a continuum between adapting and evolving. The essential distinction
is the extent to which the changes are anticipated in the implementation.

There are two key concerns in the Requirements Evolution Problem:

1. What do we do when new information contradicts earlier information? This is
the problem of requirements problem revision.

2. What solutions (sets of tasks) should we pick when the REKB has changed and
been revised? This is the problem of minimal solution selection.

We discuss these below, after introducing our motivating case study.

1.5.1 The Payment Card Industry Example

As we discussed in Section 1.1, the Payment Card Industry Security Standards
Council is an industry consortium of payment card issuers, including Visa and Mas-
tercard. This body has responsibility for developing industry standards for securing
cardholder data. The data security standard (DSS) takes effect whenever a merchant
processes or stores cardholder data. The standard is updated every three years, and
there are three versions extant, which we have modeled for our case study. Among
the high level PCI-DSS requirements are goals of protecting cardholder data, secur-
ing one’s network, and using access control measures.

We modeled a scenario where a football stadium was upgrading its payment card
infrastructure. The stadium model captured had 44 nodes and 30 relations; the PCI-
DSS had 246 goals, 297 tasks/tests, and 261 implications (connections between
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goals and tasks). Our case study captured three general circumstances of change:
expansion, contraction, and revision, which we focus on here.

Most of the changes to the PCI-DSS, particularly those smaller in scope, are to
clarify previous requirements or to amend erroneous or irrelevant requirements. This
is exactly why requirements evolution is a problem: as the standard is implemented,
it becomes clear which parts are unsuited to the real-world problems of payment
card security. Often, unfortunately, this evolution occurs because a hacker discov-
ered an unanticipated hole in the security. In some sense, the standard is always
one step behind these attacks. The following examples show how the standard was
revised:

1. Version 1.2 of the standard required organizations to change security keys (that
is, electronic keys) annually. However, in some cases it became clear that this
was either too onerous, or too infrequent. Version 2.0 of the standard therefore
revised this requirement to ask that organizations change keys according to best
practices. Note the ambiguity in this last phrase.

2. Similarly, previous versions of the standard asked organizations to use cryptogra-
phy. However, cryptography means many things, so this was updated to demand
the use of strong cryptography. Consider the situation in which we (as stakehold-
ers) had decided to use a 56-bit encryption protocol (which is easily broken). We
now have to update this to a newer protocol, such as Triple-DES. This switch
may conflict with our choice of technology from before, and requires us to drop
support for a particular task (which would otherwise lead to an inconsistency).

3. In previous iterations of the standard, secure coding guidelines had to be fol-
lowed, but only for web applications such as web pages. In the latest version,
this has been revised to demand these guidelines apply to all applications. Again,
this might require our IT system to change coding practices, implement testing
frameworks, or hire consultants to be consistent with this revision.

We then applied the methodology described below to find solutions to these revi-
sions in a reasonable amount of time. This is what might occur if, for example, an or-
ganization needed to understand what testing to carry out to ensure compliance: the
tasks the REKB identified using GET-MIN-CHANGE-TASK-ENTAILING would
correspond to the validation tests identified in the PCI-DSS standard. More infor-
mation on the case study is available in [277].

1.5.2 Methodological Guidance for Solving Unanticipated
Changes

Since the focus of the Requirements Evolution Problem is changing systems, it be-
hooves us to outline the process by which these changes occur, as well as the impact
the changes have on the requirements problem. Figure 1.2 outlines these steps in
graphical form.



1 An Overview of Requirements Evolution 27

Fig. 1.2: A methodology for Requirements Evolution Problems

Step 1. Elicit requirements from stakeholders and map the speech acts into do-
main assumptions W , goals in R, and solution tasks in S. Define domain assump-
tions that are relevant to the context of the particular company. For instance, if
one is working with a payment processor (like Verifone) for a 1,200 terminal soc-
cer stadium, one will want to add the details of the Verifone-specific constraints.
At the same time, identify relevant problem modules. In the case study this is the
set of applicable standards and regulations: the PCI-DSS, Sarbanes-Oxley, etc.
For example, requirements 1 and 1.1 of the PCI DSS could be represented as the
goal G1: “Install and maintain a firewall configuration to protect cardholder
data” and goal G1.1: “Establish firewall and router configuration standards”,
along with the domain assumption W1 : G1.1→ G1.

Step 2. ‘TELL’ this requirements problem to the REKB, introducing the goals
and tasks as atoms and asserting the domain assumptions.

Step 3. Identify existing implemented tasks and add to the REKB, marking them
as “implemented”. Rather than defining future tasks to be performed, we need
to check whether the requirements problem can already be satisfied. In the first
iteration, this is clearly unlikely, but in future iterations it may be possible.

Step 4. These previously implemented tasks will be the initial input for the ARE-
GOALS-ACHIEVED-FROM operator. This step is essential to prevent over-
analysis: if we have a set of tasks that already solve the (new) problem, just use
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those. This is where the difference between adaptation (existing implementation
solves the new problem) and evolution begins.

Step 5. If no candidate solutions were discovered in Step 4, then we must analyze
the REKB using MINIMAL-GOAL-ACHIEVEMENT. That operation returns Σ

sets of S. In the case of the PCI-DSS, this means finding (zero or more sets of)
some set of tests which will satisfy the goals captured in the standard, and in
particular, the goal “comply with the PCI DSS”.

Step 6. If the model is not satisfiable, repeat the elicitation steps to revise the
REKB. This is the process of refining our REKB in order to solve the Require-
ments Problem.

Step 7. Once we have Σ , which is a set of ‘candidate solutions’, decide on a mem-
ber of Σ using decision criteria (Π ). There are several possibilities, including one,
maximize the number of preferred goals contained. Two, minimize a distance
function between existing tasks and new tasks. Here we would make use of the
previously implemented tasks for earlier versions of the system implementation.

Step 8. Implement the initial solution to the Requirements Problem as RP1.
Step 9. Monitor the implementation, domain, and goals for changes. This can be
done using e.g., awareness requirements [788].

Step 10. Something has changed (i.e. in W or G) and the system (S) can no longer
satisfy our goals. We must re-evaluate the Requirements Problem to find a solu-
tion that will. We update the REKB with new information and repeat from Step
2.

The diamond with exclamation mark reflects the key distinction between a
Requirements Evolution Problem and a Self-Adaptation Problem. If the detected
change (step 9) was anticipated, then we can look to the current version of the
REKB. Assuming the design was properly instantiated, this ought to provide a new
solution from within the initial REKB. However, as in Berry et al. [100], if there is
no solution in the initial REKB, we must intervene as humans and revise the REKB
accordingly.

This is a high-level methodology: variants are possible, of course. For one, we
could select more than one solution in Step 7 in order to maximize flexibility. Step
7 might also be expanded to reflect software product line development.

1.5.3 Revising Requirements

We mentioned that one of the key concerns in the Requirements Evolution Problem
is how to manage new information which contradicts existing information. Steps 6
and 10 of the Requirements Evolution Problem methodology is predicated on revis-
ing the REKB when new information is found (assuming the REKB and its revision
are consistent). We can draw on the research into belief revision in knowledge rep-
resentation with a few caveats. Most importantly, it has long been argued that the
context of revision is important. For example, the difference between bringing a
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knowledge base up to date when the world changes (update) and revising a knowl-
edge base with new information about a static world was outlined in Katsuno and
Mendelsohn [453]. This is an important distinction in RE as well.

According to one seminal approach to belief revision, the AGM postulates [16],
there are three key principles:

1. the use of “epistemic entrenchment” to partially order the formulae, in order to
decide which to give up when revising the belief set;

2. the principle that the “new information” ϕ ought to be retained in the revised
belief set;

3. information should be discarded only if necessary (minimal mutilation or infor-
mation economy), because obtaining it is expensive.

The problem with these principles for the REKB is that a) we are dealing with three
distinct sorts of well-formed formulas (wffs) (namely, goals R, specifications S and
domain assumptions WD) and b) our central concern is solving the requirements
problem. This last point distinguishes the REKB version of revision: the concern of
classical revision is the state of an agent’s beliefs (e.g., that it is raining rather than
sunny); the concern of requirements revision is how best to incorporate the new in-
formation in order to solve the modified requirements problem. In this formulation,
the new information may in fact be rejected, whereas in AGM revision, this is never
the case.

For example, consider the case where we are told that the stakeholders have a
new goal: to support VISA’s touchless card readers8. The AGM postulates would
have us accept this new fact on the principle that recent information is dominant
over older information. In the Requirements Evolution Problem, before accepting
new information we must understand its implications with respect to solving the re-
quirements problem. Consider the case where our soccer stadium already supports
the goal of “accept touchless payment cards”. If the designers are told a new cus-
tomer goal is to “require signatures on payments”, we can see there is a conflict,
which implies the REKB must be revised (absent paraconsistent reasoning). The
AGM postulates would say that the new goal is paramount, and that the old goal
be rejected (or a workaround devised). In a design situation, however, this new goal
may be illogical, and should itself be rejected. In this situation the best we can do
is ask for preferences between these conflicting goals. We reject it not because it
imperils the current solution, but because it conflicts with other goals in the sense
that we cannot solve them simultaneously.

This leads to a new definition of revision in the REKB formulation of the re-
quirements problem. When domain assumptions change, since these are invariant
by definition, we apply standard belief revision operators to those wffs. For exam-
ple, if previously we had believed that “50% of the clientele possess touchless credit
cards”, and after monitoring sales for a few months, our statistics inform us that the
figure is closer to “90%”, it seems intuitive to accept the new information. In this
case, our domain assumptions are ordered using an epistemic entrenchment relation.

8 A touchless card reader is referred to as PayPass or PayWave, and does not require a swipe or
insertion for low-value transactions.
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For goals and specifications, we have broad freedom to reject changes. Our moti-
vation for deciding on the particular revision to accept is with respect to the require-
ments problem. We prefer a new state of the REKB that brings us better solutions.
The definition of ‘better’ solution will be defined with respect to the distance func-
tion we use in GET-MIN-CHANGE-TASK-ENTAILING, i.e. Π . This means that
even if stakeholders inform us of new tasks that have been implemented, or new
goals they desire, we may reject these revisions if they do not lead to a better so-
lution. This might be the case if, as with the previous example, stakeholders tell us
that they have upgraded the payment terminals to accept touchless payments. It may
be that this is now possible, but still does not satisfy other goals in our REKB. This
ability to reject the most current revision, unlike classical belief revision, means that
revising requirements problems is properly aligned with our definition of the REKB
as a support mechanism for design decisions.

1.5.4 Selecting Non-Dominated Solutions

The second challenge in requirements evolution was deciding what solutions to se-
lect when the REKB has changed and been revised. Recall the GET-MIN-CHANGE-
TASK-ENTAILING operator takes a set of goals and a set S0 of tasks, the old
implementation, and returns a set of sets of tasks Σ which are equally desirable
(non-dominated) solutions to the requirements problem with respect to a distance
function. The important consideration in choosing new solutions is the choice of a
distance function (i.e., Π above), so let us examine some possible choices.

Requirements re-use is important, so we do not want to completely ignore previ-
ous implementations in selecting a new solution. That suggests there are properties
of a new solution with respect to the old one that might be useful heuristics for the
decision. We defined several properties Π in [277], together with illustrative exam-
ples based on a case where: S0 = {a,b,c,d,e}was the initial solution (the set of tasks
that were implemented); and S1 = { f ,g,h},S2 = {a,c,d, f} and S3 = {a,b,c,d, f}
are minimal sets of tasks identified as solutions to the new requirements:

1. The standard solutions: this option ignores the fact that the new problem was ob-
tained by evolution, and looks for solutions in the standard way. In the example,
one might return all the possible new solutions {S1,S2,S3}, or just the minimum
size one, S1.

2. Minimal change effort solutions: These approaches look for solutions Ŝ that min-
imize the extra effort Ŝ− S0 required to implement the new “machine” (specifi-
cation). In our view of solutions as sets of tasks, Ŝ−S0 may be taken as “set sub-
traction”, in which case one might look for (i) the smallest difference cardinality
| Ŝ−S0 | (S2 or S3 each requires only one new task to be added/implemented on
top of what is in S0); or (ii) smallest difference cardinality and least size | Ŝ | (S2
in this case).

3. Maximal familiarity solutions: These approaches look for solutions Ŝ that maxi-
mize the set of tasks used in the current solution, Ŝ∩ S0. One might prefer such
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an approach because it preserves most of the structure of the current solution,
and hence maximizes familiarity to users and maintainers alike. In the above
example, S3 would be the choice here.

4. Solution reuse over history of changes: Since the software has probably un-
dergone a series of changes, each resulting in newly implemented task sets
S1

0,S
2
0, ...,S

n
0, one can try to maximize reuse of these (and thereby even further

minimize current extra effort) by using
⋃

j S j
0 instead of S0 in the earlier propos-

als.

The above list makes it clear that there is unlikely to be a single optimal an-
swer, and that once again the best to expect is to support the analyst in exploring
alternatives.

1.5.5 Summary

This framework supports the iterative ‘exploration’ of one’s requirements, domain
knowledge, and solution. As analysts, one can ASK questions of the REKB and
understand how complete or accurate the solution will be. Furthermore, using GET-
MIN-CHANGE-TASK-ENTAILING, iterating and incrementing the solution itself,
particularly in response to change, happens continuously, as new information is
added to the REKB. It focuses on requirements as first-class citizens of software
evolution and tries to reconcile the satisfaction of those requirements by a suitable
software specification, respecting domain knowledge.

In addition to the methodology, we also need to track and version our artifacts
using metaphors from version control (e.g., diff, checkin, etc.). We would also like
our REKB to be scalable to models of reasonable size: in a related paper [277], we
showed incremental reasoning was possible ‘online’, i.e., in less than 10 seconds.

Related work includes:

• The ‘cone of uncertainty’, which captures the idea that before the project begins
uncertainty about exactly what the requirements are is quite broad. The cone nar-
rows as the project progresses and we have more information about the relevant
requirements.

• Levels of knowledge, including ‘known knowns’, ‘known unknowns’ (changes
we anticipate), ‘unknown knowns’, or tacit knowledge, and ‘unknown unknowns’,
possible changes we are not aware of. These illustrate the major challenge in
requirements evolution. However, being aware of these levels of knowledge is
already a major achievement in most projects.

• The Architecture Tradeoff Analysis Method (ATAM), which incorporates analy-
sis of sensitivity points and trade-offs against non-functional quality attributes of
the software. This is a scenario exploration technique designed to test a possible
design against changes.

• The V-model (and all other related testing approaches) which insists that require-
ments are reviewed early by the test team in order to ensure testability.
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1.6 Conclusions

In this chapter, we have made the point that focusing solely on implementation arti-
facts is insufficient. It is the requirements which are providing the guidance for max-
imizing stakeholder value, and so understanding, modeling, and reasoning about
evolving requirements is extremely important. We discussed how research in soft-
ware evolution led to research in requirements evolution, and showcased some of
the industrial and academic approaches to managing requirements evolution. The
previous section on the REKB defined our approach to the requirements evolution
problem: that of incremental exploration of the problem space using the REKB as a
form of workbench. Since we expect our system to be subject to change pressures,
and constantly evolving, supporting exploration allows both an initial problem ex-
ploration, as well as a revision when something previously established changes.

The vision for managing the Requirements Evolution Problem is growing closer
to the vision of adaptive software systems (Chapter 7.6). In both cases, we would
like to support rapid and assured changes to a software system, and in the adaptive
case, without human intervention. To date, the primary difference is in which arti-
facts are in focus. For requirements at run-time, the requirements model is viewed
as the driver of system understanding. At runtime we need to monitor how the sys-
tem is doing with respect to its requirements. This is best done by comparing the
execution (trace) to a runtime version of requirements, rather than a runtime model
of the implementation. The implementation is responsible for the actual system.
However, in answering questions about how the system is performing, e.g. with
respect to quality attributes or high-level goals, one can only answer these ques-
tions (directly anyway) by understanding the state of execution of requirements.
Requirements evolution is a complex problem, but supporting incremental and iter-
ative analysis of the requirements model will help us in making software in general
more adaptable and efficient.
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