
Evolving  
Software 
Systems

Tom Mens
Alexander Serebrenik
Anthony Cleve 
Editors



Evolving Software Systems





Editors
Tom Mens • Alexander Serebrenik • Anthony Cleve

Evolving 
Software 
Systems



 

ISBN 978-3-642-45397-7 ISBN 978-3-642-45398-4 (eBook)
DOI 10.1007/978-3-642-45398-
Springer Heidelberg New York Dordrecht London 

Springer is part of Springer Science+Business Media (www.springer.com) 

Editors

 

Printed on acid-free paper 

Library of Congress Control Number: 2013956637

University of Namur

Tom Mens

University of Mons
Mons, Belgium

Alexander Serebrenik

Eindhoven University of Technology
Eindhoven, The Netherlands

Anthony Cleve

Namur, Belgium

4

 
© Springer-Verlag Berlin Heidelberg 201  
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of 
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, 
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or 
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar 
methodology now known or hereafter developed. Exempted from this legal reservation are brief 
excerpts in connection with reviews or scholarly analysis or material supplied specifically for the 
purpose of being entered and executed on a computer system, for exclusive use by the purchaser of

ion or parts thereof is permitted only under the provisions of the 
Copyright Law of the Publisher’s location, in its current version, and permission for use must always 
be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright 
Clearance Center. Violations are liable to prosecution under the respective Copyright Law. 
The use of general descriptive names, registered names, trademarks, service marks, etc. in this 
publication does not imply, even in the absence of a specific statement, that such names are exempt 
from the relevant protective laws and regulations and therefore free for general use. 
While the advice and information in this book are believed to be true and accurate at the date of 
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for 
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with 
respect to the material contained herein. 

the work. Duplication of this publicat

Department of Mathematics and Computer ScienceComputer Science Department 

PReCISE Research Center

The cover figure is modified from: 
GNU/Linux distro timeline Authors: A. Lundqvist, D. Rodic - futurist.se/gldt 
Published under the GNU Free Documentation License 

4

http:\\www.springer.com


This book is dedicated to Manny Lehman
(1925-2010) and David Notkin (1955-2013),
for the important contributions they made to
the field of software evolution.





Foreword

There are three things in life that are immensely gratifying when you are an aca-
demic with a number of books on your publication list. One of them is arriving in
someone’s office and browsing through the bookshelf to spot a copy of your book.
Although that copy of the book is technically owned by the host you are visiting, it
still feels very much like you are holding a copy of your book. A second is arriving
in Schloss Dagstuhl after a long and arduous journey to see all of your books on
display. For those of you who never attended a Dagstuhl seminar: the centre holds a
library filled to the brim with computer science literature. For each registered guest
they verify whether he or she authored a book, instantly ordering a copy when lack-
ing one. Finally, a third is when you are at a conference and during one of the coffee
breaks a shy PhD student finally has the nerve to step up to you, explaining how a
part of the book really helped during the early stages of her PhD. In an academic
world where citations and h-indices are used as superficial indicators of impact,
influencing a PhD student is the one thing that truly matters.

Looking back, it was sometime in summer 2006 when the plans for a book on
the state-of-the-art in software evolution with chapters contributed by experts in the
field became real. Originally, the book was targeted towards practitioners, teachers
and—last but not least—PhD students. In 2008, Springer released the book under
the title “Software Evolution” and we actively reached out towards our intended
audience. Over the years, we received a considerable amount of feedback from both
teachers and PhD students who praised us with the material covered in the book and
how they used it in graduate level academic teaching and research. As time went by
it became clear that the book was steadily loosing appeal because the material was
slowly becoming outdated. Indeed, the software engineering research discipline is
moving rapidly, justifying a new book in order to stay abreast of the state-of-the-
art. This is why, in summer 2012, Tom Mens decided to edit the book “Evolving
Software Systems” that you are currently holding in your hands (or perhaps reading
on some screen), with Alexander Serebrenik and Anthony Cleve as co-editors, and
covering new relevant software evolution topics.

Having reviewed an early draft of this book, it became apparent how fast the
field of software evolution itself is evolving. Some topics have vanished from the

vii



viii Foreword

radar: the migration towards aspects and the modernization of databases to name
but a few. Some topics remain popular but heavily shifted because they have been
adopted into practice: models (with a new emphasis on domain-specific modeling);
refactoring (with attention towards both small-scale and large-scale refactoring);
clone detection (with a recent interest in model-based cloning) and mining software
repositories (where infrastructures such as Git, Jira and Stack Overflow are shaping
the kind of information available for mining). Some topics belong to the core of
the field, resurfacing in one way or another: empirical research, metrics, run-time
evolution, architecture. Some topics are emerging: software development as a so-
cial activity, software ecosystems, the semantic web. Finally, some topics are on the
verge of breaking through, hence not yet covered in the book: exploiting cloud com-
puting for heavy-duty analysis, migrating existing programs towards multiprocessor
system-on-chip, frequent release cycles as witnessed in continuous deployment and
mobile app development. So while the field of software evolution itself is evolving
rapidly, the community needs books like these to keep pace with all what’s happen-
ing.

Like it or not: we live in interesting times !

Antwerp, August 2013 Serge Demeyer



Preface

In 2008 the predecessor of this book, entitled “Software Evolution” [592] was pub-
lished by Springer, presenting the research results of a number of researchers work-
ing on different aspects of software evolution. Since then, the software evolution
research has explored new domains such as the study of socio-technical aspects and
collaboration between different individuals contributing to a software system, the
use of search-based techniques and metaheuristics, the mining of unstructured soft-
ware repositories, techniques to cope with the evolution of software requirements,
and dealing with the dynamic adaptation of software systems at runtime. Moreover,
while the research covered in the book pertained largely to evolution of individual
software projects, more and more attention is currently being paid to the evolution
of collections of inter-related and inter-dependent software projects, be it under the
form of web systems, software product families, software ecosystems or systems
of systems. We therefore felt that it was time to “release” a new book that com-
plements its predecessor by addressing a new series of highly relevant and active
research topics in the field of software evolution. As can be seen in Table 1, both
books together aim to cover most of the active topics in software evolution research
today. We are very grateful to the authors of contributed chapters for sharing this
feeling and having accepted to join us in this endeavour.

Where does software evolution fit in a computing curriculum?

The Computer Science Curricula body of knowledge aims to provide international
guidelines for computing curricula in undergraduate programs. The CS2013 version
[446] has been created by a joint task force of the ACM and the IEEE Computer So-
ciety, and constitutes a major revision of the CS2008 and CS2001 versions. This
body of knowledge is organized into 19 knowledge areas, software engineering be-
ing one of the essential ones (it accounts for 8.8% of the total core hours, namely 27
out of 307 hours).

ix



x Preface

Table 1: Comparison of, and partial overlap between, the software evolution topics
addressed in chapters of [592] (second column) and this book (third column), re-
spectively. Chapters written in boldface have the indicated topic as their principal
theme.

Topic addressed Software Evolution
2008 [592]

Evolving Software
Systems 2014

software cloning, code duplication Ch. 2 [475]
defect, failure and bug prediction Ch. 4 [954]
re-engineering, restructuring and refactoring Ch. 5 [237], Ch. 1 [590],

Ch. 2 [475], Ch. 8 [617]
database evolution Ch. 6 [358]
migration, legacy systems Ch. 6 [358], Ch. 7 [378]
service-oriented architectures Ch. 7 [378]
testing Ch. 8 [617]
aspect-oriented software development Ch. 9 [589], Ch. 10 [70]
software architecture evolution Ch. 10 [70], Ch. 7 [378]
reverse engineering, program understanding, pro-
gram comprehension

Ch. 1 [590], Ch. 8 [617]

incremental change, impact analysis, change prop-
agation

Ch. 1 [590]

evolution process Ch. 1 [590]
software visualisation Ch. 3 [216]
component-based software development Ch. 10 [70]
open source software Ch. 11 [291] Chapter 10
software repository mining Ch. 3 [216], Ch. 4 [954],

Ch. 11 [291]
Chapter 5

software transformation, model transformation,
graph transformation

Ch. 6 [358], Ch. 7 [378],
Ch. 10 [70]

Chapter 2

model evolution, metamodel evolution Ch. 1 [590] Chapter 2
software measurement, software quality Ch. 4 [954] Chapter 3
software requirements Chapter 1
search-based software engineering Chapter 4
socio-technical networks, Web 2.0 Chapter 6
web-based systems Chapter 7
dynamic adaptation, runtime evolution Chapter 7.6
software product line engineering Chapter 9
software ecosystems, biological evolution Chapter 10

Within the software engineering knowledge area, 10 themes have been identified
as being the most important to be taught, and software evolution is one of these
themes. In particular, the CS2013 body of knowledge recommends the following
learning outcomes for this theme:

• Identify the principal issues associated with software evolution and explain their
impact on the software life cycle.

• Discuss the challenges of evolving systems in a changing environment.
• Discuss the advantages and disadvantages of software reuse.
• Estimate the impact of a change request to an existing product of medium size.
• Identify weaknesses in a given design, and remove them through refactoring.



Preface xi

• Outline the process of regression testing and its role in release management.

To achieve these outcomes, it is suggested that at least the following topics be
taught: software development in the context of large, pre-existing code bases (in-
cluding software change, concerns and concern location, refactoring), software evo-
lution, software reuse, software reengineering, and software maintainability charac-
teristics.

What is this book about?

This book goes well beyond what is expected to be part of an undergraduate software
evolution course. Instead, the book is a coherent collection of chapters written by
renowned researchers in the field of software evolution, each chapter presenting the
state of the art in a particular topic, as well as the current research, available tool
support and remaining challenges. All chapters have been peer reviewed by at least
five experts in the field.

We did not aim to cover all research topics in software evolution. Given the
wealth of information in the field that would be an impossible task. Moreover, a
number of important and actively studied software evolution topics have been pro-
foundly covered by the predecessor of this book [592]. Therefore, we have primarily
focused on new domains currently being explored most actively by software evolu-
tion researchers.

This book is divided into four parts. Part I, Evolving Software Artefacts, focuses
on specific types of artefacts that are used during software evolution. Chapter 1
focuses on the evolution of software requirements, and its impact on the architec-
ture and implementation of a software system. Chapter 2 focuses on the coupled
evolution of software models and their metamodels. Chapter 3 explores the use of
maintainability models for assessing the quality of evolving software.

Part II of the book focuses on techniques used by software evolution researchers.
Chapter 4 explores the use of search-based techniques and metaheuristics to address
untractable software evolution activities. Chapter 5 explores how to mine unstruc-
tured data stored in repositories containing historical information that may be rel-
evant to understand the evolution of a software system. Chapter 6 discusses how
socio-technical information, available thanks to Web 2.0 technology, can be lever-
aged to help developers in performing evolution activities.

Part III focuses on how specific types of software systems, or collections of soft-
ware systems, evolve. Chapter 7 looks at the evolution of web systems. Chapter 7.6
explores the runtime evolution of adaptive software systems. Chapter 9 overviews
the product line evolution of families of software products. Chapter 10 focuses on
the evolution of software ecosystems and how we can learn from the evolution from
natural, biological ecosystems.

ing and future directions in software evolution research. It also contains a list of
acronyms used in the different chapters, a glossary of important terms used in each

A large appendix complements this work. It starts by outlining the emerg-



xii Preface

chapter, pointers to additional resources that may be useful to the reader (books,
journals, standards and major scientific events in the domain of software evolution),
and datasets.

Who Should Read this Book?

This book is intended for all those interested in software engineering, and more
particularly, software maintenance and evolution. Researchers as well as software
practitioners will find in the contributed chapters an overview of the most recent
research results covering a broad spectrum of software evolution topics.

While this book has not been written as a classical textbook, we believe that it
can be used in teaching advanced (graduate or postgraduate) software engineering
courses on e.g., software evolution, requirements engineering, model-driven soft-
ware development or social informatics. This is exactly what we, book editors, in-
tend to do in our own advanced software engineering and evolution lectures as well.

For researchers, the book and its contributed chapters can be used as a starting
point for exploring the addressed topics in more depth, by gaining an understand-
ing in the remaining research challenges and by diving into the wealth of literature
referenced in each chapter. For ease of reference, and to avoid duplication, all bibli-
ographic references are bundled together at the end of the book rather than on a per
chapter basis, with back references to the chapters where the references have been
cited. There is also an index of terms that makes it easy to find back the particular
sections or chapters in which specific topics have been addressed.

Practitioners might be interested in numerous tools discussed in the forthcom-
ing chapters. Such tools as Software QUALity Enhancement (SQUALE, Chapter 3)
have been successfully applied in the industry, some others are still waiting to be
discovered and used by practitioners. We hope that our book can help practitioners
in this endeavour.

Happy reading!

Mons, Eindhoven, Namur, Tom Mens
November Alexander Serebrenik
2013 Anthony Cleve



List of Contributors

Gabriele Bavota
Department of Engineering, University of Sannio, Benevento, Italy
e-mail: gbavota@unisannio.it

Dorothea Blostein
School of Computing, Queen’s University, Kingston, Ontario, Canada
e-mail: blostein@cs.queensu.ca

Alexander Borgida
Department of Computer Science, Rutgers University, New Jersey, USA
e-mail: borgida@cs.rutgers.edu

Goetz Botterweck
Lero – The Irish Software Engineering Research Centre, University of Limerick,
Ireland
e-mail: goetz.botterweck@lero.ie

Maëlick Claes
Department of Computer Science, University of Mons, Belgium
e-mail: maelick.claes@umons.ac.be

Anthony Cleve
PReCISE Research Center, University of Namur, Belgium
e-mail: anthony.cleve@unamur.be

Massimiliano Di Penta
Department of Engineering, University of Sannio, Benevento, Italy
e-mail: dipenta@unisannio.it

Damiano Distante
Unitelma Sapienza University, Rome, Italy
e-mail: damiano.distante@unitelma.it

xiii

damiano.distante@unitelma.it
dipenta@unisannio.it
anthony.cleve@unamur.be
maelick.claes@umons.ac.be
goetz.botterweck@lero.ie
borgida@cs.rutgers.edu
blostein@cs.queensu.ca
gbavota@unisannio.it


xiv List of Contributors

Neil A. Ernst
Department of Computer Science, University of British Columbia, Canada
e-mail: nernst@cs.ubc.ca

Rudolf Ferenc
Software Engineering Department, University of Szeged, Hungary
e-mail: ferenc@inf.u-szeged.hu

Philippe Grosjean
Department of Biology, University of Mons, Belgium
e-mail: philippe.grosjean@umons.ac.be

Tibor Gyimóthy
Software Engineering Department, University of Szeged, Hungary
e-mail: gyimothy@inf.u-szeged.hu

Ahmed E. Hassan
School of Computing, Queen’s University, Kingston, Ontario, Canada
e-mail: ahmed@cs.queensu.ca

Péter Hegedűs
MTA-SZTE Research Group on Artificial Intelligence, Hungary
e-mail: hpeter@inf.u-szeged.hu

Markus Herrmannsdörfer
Technische Universität München, Germany
e-mail: markus.herrmannsdoerfer@tum.de

Ivan J. Jureta
FNRS & Louvain School of Management, University of Namur, Belgium
e-mail: ivan.jureta@unamur.be

Holger M. Kienle
Freier Informatiker, Germany
e-mail: hkienle@acm.org

David Lo
School of Information Systems, Singapore Management University, Singapore
e-mail: davidlo@smu.edu.sg

Tom Mens
Department of Computer Science, University of Mons, Belgium
e-mail: tom.mens@umons.ac.be

Hausi A. Müller
Department of Computer Science, University of Victoria, British Columbia, Canada
e-mail: hausi@cs.uvic.ca

John Mylopoulos
Dipartimento di Ingegneria e Scienza dell’Informazione, University of Trento, Italy
e-mail: jm@disi.unitn.it

jm@disi.unitn.it
hausi@cs.uvic.ca
tom.mens@umons.ac.be
davidlo@smu.edu.sg
hkienle@acm.org
ivan.jureta@unamur.be
markus.herrmannsdoerfer@tum.de
hpeter@inf.u-szeged.hu
ahmed@cs.queensu.ca
gyimothy@inf.u-szeged.hu
philippe.grosjean@umons.ac.be
ferenc@inf.u-szeged.hu
nernst@cs.ubc.ca


List of Contributors xv

Rocco Oliveto
Dipartimento Bioscienze et Territorio, University of Molise, Italy
e-mail: rocco.oliveto@unimol.it

Andreas Pleuss
Lero – The Irish Software Engineering Research Centre, University of Limerick,
Ireland
e-mail: andreas.pleuss@lero.ie

Alexander Serebrenik
Software Engineering and Technology Group, Eindhoven University of Technology,
The Netherlands
e-mail: a.serebrenik@tue.nl

Stephen W. Thomas
School of Computing, Queen’s University, Kingston, Ontario, Canada
e-mail: sthomas@cs.queensu.ca

Yuan Tian
School of Information Systems, Singapore Management University, Singapore
e-mail: yuan.tian.2012@phdis.smu.edu.sg

Norha M. Villegas
Department of Information and Communications Technologies, Icesi University,
Colombia
e-mail: nvillega@icesi.edu.co

Guido Wachsmuth
Software Engineering Research Group, Delft University of Technology, The
Netherlands
e-mail: g.h.wachsmuth@tudelft.nl

g.h.wachsmuth@tudelft.nl
nvillega@icesi.edu.co
yuan.tian.2012@phdis.smu.edu.sg
sthomas@cs.queensu.ca
a.serebrenik@tue.nl
andreas.pleuss@lero.ie
rocco.oliveto@unimol.it




Contents

Part I Evolving Software Artefacts

1 An Overview of Requirements Evolution . . . . . . . . . . . . . . . . . . . . . . . . 3
Neil Ernst, Alexander Borgida, Ivan J. Jureta and John Mylopoulos
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Historical Overview of Requirements Evolution . . . . . . . . . . . . . . . . 6

1.2.1 From Software Evolution to Requirements Evolution . . . . 8
1.2.2 Empirical Studies of Requirements Evolution . . . . . . . . . . 10

1.3 A Survey of Industry Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3.1 Standards and Industry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3.2 Requirements Management Tools . . . . . . . . . . . . . . . . . . . . 13
1.3.3 Task Managers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4 Recent Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.4.1 Problem Frames Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.4.2 Extensions of the NFR Framework . . . . . . . . . . . . . . . . . . . 16
1.4.3 Run-time Adaptive Requirements . . . . . . . . . . . . . . . . . . . . 17
1.4.4 KAOS-based Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.4.5 Paraconsistent and Default Logics . . . . . . . . . . . . . . . . . . . . 18
1.4.6 Traceability Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.4.7 Feature Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.4.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.5 A Framework for Requirements Evolution . . . . . . . . . . . . . . . . . . . . 24
1.5.1 The Payment Card Industry Example . . . . . . . . . . . . . . . . . 25
1.5.2 Methodological Guidance for Solving Unanticipated

Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.5.3 Revising Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.5.4 Selecting Non-Dominated Solutions . . . . . . . . . . . . . . . . . . 30
1.5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

xvii



xviii Contents

2 Coupled Evolution of Software Metamodels and Models . . . . . . . . . . . 33
Markus Herrmannsdörfer and Guido Wachsmuth
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.1.1 Metamodels and Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.1.2 Metamodel Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.1.3 Model Migration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.2 Analysis: Classification of Coupled Evolution . . . . . . . . . . . . . . . . . 38
2.2.1 Metamodel Aspect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.2.2 Granularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.2.3 Language Preservation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.2.4 Model Preservation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.2.5 Reversibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.2.6 Automatability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.3 Empirical Results: Metamodel Evolution in Practice . . . . . . . . . . . . 42
2.3.1 Evolution of the Unified Modeling Language . . . . . . . . . . 43
2.3.2 Evolution of Automotive Metamodels . . . . . . . . . . . . . . . . 44
2.3.3 Evolution of the Graphical Modeling Framework . . . . . . . 45
2.3.4 Discussion of the Empirical Results . . . . . . . . . . . . . . . . . . 46

2.4 State-of-the-Art: Approaches and their Classification . . . . . . . . . . . 48
2.4.1 Classification Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.4.2 Manual Specification Approaches . . . . . . . . . . . . . . . . . . . . 51
2.4.3 Metamodel Matching Approaches . . . . . . . . . . . . . . . . . . . . 53
2.4.4 Operator-based Approaches . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.4.5 Discussion of State-of-the-Art . . . . . . . . . . . . . . . . . . . . . . . 55

2.5 Tool support: Available Tools and their Comparison . . . . . . . . . . . . 56
2.5.1 COPE / Edapt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.5.2 Epsilon Flock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.5.3 Comparison of Migration and Transformation Tools . . . . 58
2.5.4 Comparison of Model Migration Tools . . . . . . . . . . . . . . . . 60
2.5.5 Discussion of Tool Support . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3 Software Product Quality Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Rudolf Ferenc, Péter Hegedűs and Tibor Gyimóthy
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.2 Evolution of Software Product Quality Models . . . . . . . . . . . . . . . . . 68

3.2.1 Software Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.2.2 Early Theoretical Quality Models . . . . . . . . . . . . . . . . . . . . 70
3.2.3 Metrics-based Empirical Prediction Models . . . . . . . . . . . . 74
3.2.4 State-of-the-art Practical Quality Models . . . . . . . . . . . . . . 77

3.3 Application of Practical Quality Models in Software Evolution . . . 87
3.3.1 A Cost Model Based on Software Maintainability . . . . . . 87

3.4 Tools Supporting Software Quality Estimation . . . . . . . . . . . . . . . . . 91
3.4.1 Software QUALity Enhancement project (SQUALE) . . . . 91



Contents xix

3.4.2 Software Quality Assessment based on Lifecycle
Expectations (SQALE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.4.3 QUAMOCO Quality Model . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.4.4 SIG Maintainability Model . . . . . . . . . . . . . . . . . . . . . . . . . 94
3.4.5 Columbus Quality Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.5 Comparing the Features of the Quality Models and Tools . . . . . . . . 95
3.5.1 Comparing the Properties of Different Practical Models . 96
3.5.2 Evaluating the Properties of the Different Tools . . . . . . . . 98

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Part II Techniques

4 Search Based Software Maintenance: Methods and Tools . . . . . . . . . . 103
Gabriele Bavota, Massimiliano Di Penta and Rocco Oliveto
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.2 An Overview of Search-Based Optimization Techniques . . . . . . . . . 105

4.2.1 Hill Climbing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.2.2 Simulated Annealing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.2.3 Particle Swarm Optimization . . . . . . . . . . . . . . . . . . . . . . . . 108
4.2.4 Genetic Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.2.5 Multi-Objective Optimization . . . . . . . . . . . . . . . . . . . . . . . 110

4.3 Search-based Software Modularization . . . . . . . . . . . . . . . . . . . . . . . 112
4.3.1 The Bunch approach for software modularization . . . . . . . 113
4.3.2 Multi-Objective Modularization . . . . . . . . . . . . . . . . . . . . . 115
4.3.3 Achieving different software modularization goals . . . . . . 116
4.3.4 Putting the developer in the loop: interactive software

modularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
4.4 Software Analysis and Transformation Approaches . . . . . . . . . . . . . 121

4.4.1 Program transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
4.4.2 Automatic Software Repair . . . . . . . . . . . . . . . . . . . . . . . . . 124
4.4.3 Model transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.5 Search-based Software Refactoring . . . . . . . . . . . . . . . . . . . . . . . . . . 128
4.5.1 The CODe-Imp tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
4.5.2 Other search-based refactoring approaches . . . . . . . . . . . . 133

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5 Mining Unstructured Software Repositories . . . . . . . . . . . . . . . . . . . . . 139
Stephen W. Thomas, Ahmed E. Hassan and Dorothea Blostein
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
5.2 Unstructured Software Repositories . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.2.1 Source Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
5.2.2 Bug Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
5.2.3 Mailing Lists and Chat Logs . . . . . . . . . . . . . . . . . . . . . . . . 142
5.2.4 Revision Control System . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
5.2.5 Requirements and Design Documents . . . . . . . . . . . . . . . . 143
5.2.6 Software System Repositories . . . . . . . . . . . . . . . . . . . . . . . 143



xx Contents

5.3 Tools and Techniques for Mining Unstructured Data . . . . . . . . . . . . 144
5.3.1 NLP Techniques for Data Preprocessing . . . . . . . . . . . . . . 144
5.3.2 Information Retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.4 The State of The Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
5.4.1 Concept/Feature Location and AOP . . . . . . . . . . . . . . . . . . 150
5.4.2 Traceability Recovery and Bug Localization . . . . . . . . . . . 150
5.4.3 Source Code Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
5.4.4 Software Evolution and Trend Analysis . . . . . . . . . . . . . . . 152
5.4.5 Bug Database Management . . . . . . . . . . . . . . . . . . . . . . . . . 153
5.4.6 Organizing and Searching Software Repositories . . . . . . . 153
5.4.7 Other Software Engineering Tasks . . . . . . . . . . . . . . . . . . . 154

5.5 A Practical Guide: IR-based Bug Localization . . . . . . . . . . . . . . . . . 155
5.5.1 Collect data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
5.5.2 Preprocess the source code . . . . . . . . . . . . . . . . . . . . . . . . . . 156
5.5.3 Preprocess the bug reports . . . . . . . . . . . . . . . . . . . . . . . . . . 157
5.5.4 Build the IR model on the source code . . . . . . . . . . . . . . . . 158
5.5.5 Query the LDA model with a bug report . . . . . . . . . . . . . . 158

5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

6 Leveraging Web 2.0 for software evolution . . . . . . . . . . . . . . . . . . . . . . 163
Yuan Tian and David Lo
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
6.2 Web 2.0 Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

6.2.1 Software Forums, Mailing Lists and Q&A Sites . . . . . . . . 166
6.2.2 Software Blogs & Microblogs . . . . . . . . . . . . . . . . . . . . . . . 168
6.2.3 Software Forges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
6.2.4 Other Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

6.3 Empirical Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
6.3.1 Software Forums, Mailing Lists and Q&A Sites . . . . . . . . 171
6.3.2 Software Blogs & Microblogs . . . . . . . . . . . . . . . . . . . . . . . 172
6.3.3 Software Forges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

6.4 Supporting Information Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
6.4.1 Searching for Answers in Software Forums . . . . . . . . . . . . 174
6.4.2 Searching for Similar Applications in Software Forges . . 177
6.4.3 Other studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

6.5 Supporting Information Discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
6.5.1 Visual Analytics Tool for Software Microblogs . . . . . . . . . 182
6.5.2 Categorizing Software Microblogs . . . . . . . . . . . . . . . . . . . 184
6.5.3 Other studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

6.6 Supporting Project Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
6.6.1 Recommendation of Developers . . . . . . . . . . . . . . . . . . . . . 189
6.6.2 Prediction of Project Success . . . . . . . . . . . . . . . . . . . . . . . . 192
6.6.3 Other studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

6.7 Open Problems and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
6.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197



Contents xxi

Part III Evolution of specific types of software systems

7 Evolution of Web Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
Holger M. Kienle and Damiano Distante
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

7.1.1 Reengineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
7.1.2 Evolution Challenges and Drivers . . . . . . . . . . . . . . . . . . . . 203
7.1.3 Chapter’s Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

7.2 Kinds of Web Systems and their Evolution . . . . . . . . . . . . . . . . . . . . 206
7.2.1 Static Web Sites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
7.2.2 Web Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
7.2.3 Web Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
7.2.4 Ajax-based Web Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
7.2.5 Web Systems Leveraging Cloud Computing . . . . . . . . . . . 215
7.2.6 HTML5-based Web Systems . . . . . . . . . . . . . . . . . . . . . . . . 216

7.3 Dimensions of Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
7.3.1 Architecture Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
7.3.2 Design Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
7.3.3 Technology Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

7.4 Research Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
7.5 Sources for Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
7.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

8 Runtime Evolution of Highly Dynamic Software . . . . . . . . . . . . . . . . . 229
Hausi Müller and Norha Villegas
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
8.2 A Case Study: Dynamic Context Monitoring . . . . . . . . . . . . . . . . . . 231
8.3 Assessing the Need for Runtime Evolution . . . . . . . . . . . . . . . . . . . . 232
8.4 Dimensions of Runtime Software Evolution . . . . . . . . . . . . . . . . . . . 235
8.5 Control in Runtime Software Evolution . . . . . . . . . . . . . . . . . . . . . . . 238

8.5.1 Feedback Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
8.5.2 Feedforward Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
8.5.3 Adaptive Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

8.6 Self-Adaptive Software Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
8.6.1 Self-Managing Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
8.6.2 The Autonomic Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
8.6.3 The Autonomic Computing Reference Architecture . . . . . 247
8.6.4 Self-Management Properties . . . . . . . . . . . . . . . . . . . . . . . . 249

8.7 Self-Adaptation Enablers for Runtime Evolution . . . . . . . . . . . . . . . 253
8.7.1 Requirements at Runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
8.7.2 Models at Runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
8.7.3 Runtime Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
8.7.4 Runtime Validation and Verification . . . . . . . . . . . . . . . . . . 256

8.8 Realizing Runtime Evolution in SMARTERCONTEXT . . . . . . . . . . . 257
8.8.1 Applying the MAPE-K Loop Reference Model . . . . . . . . . 258



xxii Contents

8.8.2 Applying Requirements and Models at Runtime . . . . . . . . 260
8.9 Open Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
8.10 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

9 Evolution of Software Product Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
Goetz Botterweck and Andreas Pleuss
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
9.2 Software Product Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
9.3 Characteristics of SPL Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
9.4 Approaches to SPL Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

9.4.1 Process Models for SPL Evolution . . . . . . . . . . . . . . . . . . . 274
9.4.2 Modeling Evolution and Change . . . . . . . . . . . . . . . . . . . . . 278
9.4.3 Migration to SPLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
9.4.4 Analyzing Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
9.4.5 Planning Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
9.4.6 Implementing Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

9.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294

10 Studying Evolving Software Ecosystems based on Ecological Models 297
Tom Mens, Maëlick Claes, Philippe Grosjean and Alexander Serebrenik
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
10.2 Ecosystem terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

10.2.1 Natural ecosystems and ecology . . . . . . . . . . . . . . . . . . . . . 299
10.2.2 Software ecosystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
10.2.3 Comparing natural and software ecosystems . . . . . . . . . . . 308

10.3 Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
10.3.1 Biological evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
10.3.2 Comparing biological evolution with software evolution . 312
10.3.3 Transposing biological models to the software realm . . . . 313

10.4 Exploratory case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
10.4.1 The GNOME OSS ecosystem . . . . . . . . . . . . . . . . . . . . . . . . 315
10.4.2 Comparing GNOME with a natural ecosystem . . . . . . . . . . 319
10.4.3 Migration of GNOME developers . . . . . . . . . . . . . . . . . . . . . 323

10.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325

Appendices

A Emerging trends in software evolution . . . . . . . . . . . . . . . . . . . . . . . . . . 329
Alexander Serebrenik, Tom Mens

B List of acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333

C Glossary of Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337



Contents xxiii

D Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343

E Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399



Part I
Evolving Software Artefacts



Chapter 1
An Overview of Requirements Evolution

Neil Ernst, Alexander Borgida, Ivan J. Jureta and John Mylopoulos

Summary. Changing requirements are widely regarded as one of the most signif-
icant risks for software systems development. However, in today’s business land-
scape, these changing requirements also represent opportunities to exploit new and
evolving business conditions. In consonance with other agile methods, we advocate
requirements engineering techniques that embrace and accommodate requirements
change. This agile approach to requirements must nonetheless be systematic and
incorporate some degree of planning, especially with respect to accommodating
quality attributes such as safety and security. This chapter examines the nature of
requirements evolution, and the two main problems that it entails. The first is to
correctly understand what is changing in the requirements, that is, the elicitation
problem. The other is to act on that new information using models and other rep-
resentations of the requirements, influencing the architecture and implementation
of the software system. This chapter first motivates the importance of considering
changing requirements in evolving software systems. It then surveys historical and
existing approaches to requirements evolution with respect to the elicitation and tak-
ing action problems. Finally, the chapter describes a framework for supporting re-
quirements evolution, defining the Requirements Evolution Problem as finding new
specifications to satisfy changed requirements and domain assumptions. To motivate
this, we discuss a real-life case study of the payment card industry.1

1 Portions of this chapter are adapted from [276].

3
 Springer

. et al. (eds.), E ,
DOI 10.1007/978-3- - - _1, ©  2014
T Mens volving Software Systems

642 45398 4 -Verlag Berlin Heidelberg



4 Neil Ernst, Alexander Borgida, Ivan J. Jureta and John Mylopoulos

1.1 Introduction

Most software systems are now expected to run in changing environments. Soft-
ware developed using an agile methodology often focuses on releasing versions that
are only partially completed, at least with respect to the full set of customer re-
quirements. Software must operate in a context where the world is only partially
understood and where the implementation is only partially completed. What drives
the implementation in this scenario is the requirements, whether represented as user
stories, use cases or formal specifications.

Focusing on software evolution only makes sense if one understands what the ob-
jectives are for that software. These objectives are themselves frequently changing.
Indeed, as we discuss in this chapter, expecting a system’s requirements to be con-
stant and unchanging is a recipe for disaster. The ‘big design up front’ approach is
no longer defensible, particularly in a business environment that emphasizes speed
and resilience to change [436]. And yet, focusing on implementation issues to the
exclusion of system objectives and business needs is equally unsatisfactory.

How does our view of the importance of the system’s requirements fit with the
historical literature on software evolution? Requirements have long been seen as im-
portant, as we shall describe below, in Section 1.2. In 2005, a paper on “challenges
in software evolution” [598] highlighted the need to research the “. . . evolution of
higher-level artifacts such as analysis and design models, software architectures, re-
quirement specifications, and so on.” More recently, Mens [591] listed several key
challenges for software evolution including “How to ensure that the resulting sys-
tem has the desired quality and functionality?” This question is the motivation for
our work in requirements evolution, as we firmly believe that understanding the
evolution of non-functional requirements, in particular, will help answer this.

There are three major objections to making requirements more prominent in the
study of software evolution. For one, the tangible is easier to study. In many cases,
particularly short-term or small-scope projects, requirements are either not used ex-
plicitly or stale the moment they are ‘finished’. However, this is seldom true of
high-value software products, and where it is, typically is symptomatic of a larger
software process or organizational pathology. Secondly, in terms of quantity, many
change tasks involve low-level corrective maintenance concerns, rather than high-
level evolutionary ones. While the numbers of corrective change tasks might be
greater, our position is that evolutionary requirements changes are more complex
and more costly, and therefore more important, than coping with bug fixes. Finally,
requirements and associated changes to the requirements are seen as part of the
problem domain and therefore untouchable, much like understanding the organi-
zational objectives might be. We believe that revisiting the problem domain and
re-transitioning from problem to solution is of paramount importance in software
development.

It is our view that requirements artifacts should drive implementation decisions.
In other words, requirements must be tangible, and requirements must be relevant.
While they often take the form of work item lists, as is the case in most industrial
tools, it is preferable that they be well-structured graphs that represent all aspects of



1 An Overview of Requirements Evolution 5

the requirements problem, capturing stakeholder objectives, domain assumptions,
and implementation options. Such models allow for lightweight reasoning (e.g.,
[277]) where the key challenge is ‘requirements repair’: re-evaluating available so-
lutions to solve the changed requirements, adding (minimal) new implementations
where necessary [627]. We will explain this with reference to the Requirements
Evolution Problem, which defines how software should respond to changes in its
constituent parts: elements in the specification (the implementation), the system re-
quirements (in the form of goals) and domain knowledge and constraints. We ar-
gue this is distinct from the Self-Adaptation Problem (cf. Chapter 7.6), which is
concerned with building systems that are self-adaptive, and do not require outside
intervention. The Requirements Evolution Problem explicitly supports this guided
intervention. This distinction is crucial; while adaptivity is important, at some point
systems will need to be managed, such as when they lack implementation to support
a particular change—in operating environment, requirements, or capabilities.

In this chapter, we focus on requirements evolution. We begin by introducing the
context for considering requirements in the broader field of software evolution. We
then turn to the history of research into requirements evolution, including empirical
studies. Next, we look at current approaches, focusing first on how industry, and
industry tools, have dealt with requirements evolution. We then survey the state of
the art in requirements evolution research. To conclude this chapter, we elaborate on
one approach to managing changing requirements, with examples drawn from the
payment card industry.

The Requirements Problem

As a reference framework, we introduce an ontology for requirements. This work is
based on [450] and [449], both of which derive from the fundamental requirements
problem of Zave and Jackson [945]. In modern requirements engineering, it is often
the case that one distinguishes different kinds of sentences encountered in stating a
“requirements problem”, according to the “ontology” of the requirements modeling
language. In Zave and Jackson’s original formulation, the requirements problem is

Definition 1.1. Requirements Problem: Given requirements R (optative state-
ments of desire), a space of possible solution specifications SP, domain world
knowledge WD, find a subset S of SP, and software solution finding knowledge WS
such that WD,WS,S ` R.

Domain world knowledge reflects properties of the external world the software oper-
ates in, e.g., constraints such as room capacity. Solution finding knowledge reflects
how our requirements problem is constructed, so refinement relationships are ele-
ments of WS, that is, the expression “ψ refines φ” (φ ,ψ ∈ R) is part of WS. The
Requirements Evolution Problem extends this requirements problem definition to
introduce change over one increment of time.



6 Neil Ernst, Alexander Borgida, Ivan J. Jureta and John Mylopoulos

Definition 1.2. Requirements Evolution Problem: Given (i) requirements R, do-
main knowledge WD, and (ii) some chosen existing specification S0 (i.e., such that
WD,WS,S0 ` R), as well as (iii) modified requirements problem (δ (R),δ (WD),δ (S))
that include modified requirements, domain knowledge and possible tasks, produce
a subset of possible specifications Ŝ to the changed requirements problem (i.e.,
δ (WD), Ŝ ` δ (R)) which satisfy some desired property Π , relating Ŝ to S0 and pos-
sibly other aspects of the changes.

As an example, consider Figure 1.1. Here we represent a simplified version of a
system for managing payments at soccer stadiums (taken from [277]), which must
comply with the Payment Card Industry Data Security Standard (PCI-DSS). Pay-
ment card issuers, including Visa and Mastercard, developed the PCI-DSS for se-
curing cardholder data. It takes effect whenever a merchant processes or stores card-
holder data. We represent this as a set of high-level requirements (ovals) refined by
increasingly more concrete requirements, eventually operationalized by tasks (dia-
mond shapes).

In our proposed solution, S0, the existing approach, consists of tasks “Buy
Strongbox”, “Use Verifone POS”, and “Virtualize server instances”, shown in grey
shading. In order to be PCI compliant, the requirements evolve to add requirement
“Use Secure Hash on Credit Cards” (double-lined oval). This conflicts with our
solution (shown as line with crosses), as Verifone terminals do not support this (hy-
pothetically). Instead, we must evolve our implementation to include the task “Use
Moneris POS” terminals, i.e., add that to Ŝ (and retract “Use Verifone POS”), which
does not conflict, since it does support secure hashes.

In what follows we use this framework to characterize the challenge of man-
aging evolving requirements. In particular, while software evolution tends to focus
on managing largely changes in S, in the field of requirements we are faced with
changes in any or all of S,W,R. Furthermore, since these three components are re-
lated (W ∪S ` R), changes in one impact the validity of the inferential relation. For
example, changes in requirements R, e.g., from R0 to R1, will force a re-evaluation
of whether W ∪S still classically entails the satisfaction of R1.

1.2 Historical Overview of Requirements Evolution

In this section, we survey past treatments of evolving requirements. We begin by
exploring how software evolution research dealt with changing requirements. The
importance of evolving requirements is directly connected to the wider issue of
evolving software systems. While the majority of the literature focused on issues
with maintaining and evolving software, a minority tries to understand how changes
in requirements impact software maintenance.

The study of software evolution began when IBM researchers Belady and Lehman
used their experiences with OS/360 to formulate several theories of software evo-
lution, which they labeled the ‘laws’ of software evolution. This work was sum-
marized in [510]. These papers characterize the nature of software evolution as an



1 An Overview of Requirements Evolution 7

Fig. 1.1: An example of a Requirements Evolution Problem. Shaded grey nodes
represent the original solution; the double outlined requirement represents a new
requirement. Dashed lines represent alternative refinements, double-crossed arrows
conflicts, and regular arrows refinement.

inevitable part of the software lifecycle. ‘Inevitability’ implies that programs must
continually be maintained in order to accommodate discrepancies with their con-
tinuously evolving operational environment. One law states that software quality
will decline unless regular maintenance activity occurs, and another implies that a
system’s complexity increases over time. While their work largely focused on im-
plementation artifacts, it clearly acknowledged requirements as a driving force for
the corrective action necessary to reconcile actual with anticipated behavior: “Com-
puting requirements may be redefined to serve new uses [91, p. 239].”

Early in the history of software development it became clear that building soft-
ware systems was nothing like engineering physical artifacts. An obvious difference
was that software systems were malleable. Reports suggested a great deal of effort
was being spent on maintenance tasks. Basili, writing in 1984, lists 40% [76], and
the U.S. National Institute of Standards and Technology report in 2002 claimed
industry data show that 70% of errors are introduced during requirements and ar-
chitecture design, with a rework cost that is 300 or more times the cost of discover-
ing and correcting the errors earlier [797]. Swanson [812] focused on post-release
maintenance issues, and looked beyond low-level error fixing (which he termed cor-
rective maintenance) to address the issues that Lehman and Belady raised. His work
identified “changes in data and processing environments” as a major cause of adap-

Increase 
revenues

Accept credit 
card

Avoid financial 
losses and 
penalties

Be PCI 
compliant

No money for 
new servers

 Implement only one 
primary function per 

server

Virtualize 
server 

instances

Use Verifone 
POS

Use multiple 
servers

Use Moneris 
POS

Accept payment

Accept cash

Buy 
strongbox

Use Secure Hash 
on CC #



8 Neil Ernst, Alexander Borgida, Ivan J. Jureta and John Mylopoulos

tive maintenance activity. Swanson’s paper marks one of the first times researchers
realized that it was not possible to ‘get it right the first time’. In some projects, an-
ticipating everything was essential (safety-critical systems, for example); Swanson’s
insight was that in other projects this was not cost-effective (although it remained
desirable).

Development processes still reflected the engineering mindset of the time, with
heavy emphasis on up-front analysis and design. US military standards reflected
this, since the idea of interchangeable parts was particularly important for military
logistics, and the military had experienced enormous software cost overruns. These
pressures were eventually realized as the US government’s MIL-STD–498, criti-
cized for insisting on a waterfall approach to software development. Afterwards
came the slightly more flexible software process standards IEEE/ISO–12207, and
IEEE–830, perhaps the best known standard for software requirements to date. But
David Parnas’s paper on the “Star Wars” missile defence scheme [679] illustrated
the problems with this standard’s philosophy, many of which come down to an in-
ability to anticipate future requirements and capabilities, e.g. that “the character-
istics of weapons and sensors are not yet known and are likely to remain fluid for
many years after deployment” [679, p. 1329]. This demonstrated the massive impact
unanticipated change can have on software systems, a central concern of this chap-
ter. Indeed, the US military no longer insists that software be developed according
to any particular standard [577, p. 42].

In response to the problems with the waterfall approach, iterative models, such as
Boehm’s ‘spiral’ model of development [121] called for iterations over system de-
sign, so that requirements were assessed at multiple points. However, such process-
oriented models can do little to address unanticipated changes if they do not insist
on releasing the product to stakeholders. As Fred Brooks notes, “Where a new sys-
tem concept or new technology is used, one has to build a system to throw away,
for even the best planning is not so omniscient as to get it right the first time. Hence
plan to throw one away; you will, anyhow [144].” The point of Brooks’s quote is
to emphasize how little one can anticipate the real concerns in designing software
systems, particularly novel (for its time) systems like OS/360. Instead, development
should be iterative and incremental, where iterative means “re-do” (read ‘improve’)
and increment means “add onto”, as defined in [498].

1.2.1 From Software Evolution to Requirements Evolution

This section focuses on that part of software evolution that is concerned with chang-
ing requirements or assumptions (i.e., the components of the requirements problem
which are in R or W). Historically, some researchers have turned to focus in detail
on this relationship between requirements and evolution of software. Not all main-
tenance activities can be said to result in ‘software evolution’: for instance, when
designers are correcting a fault in the implementation (S) to bring it (back) into line
with the original requirements (which Swanson called ‘corrective maintenance’).



1 An Overview of Requirements Evolution 9

Chapin [169, p. 17] concludes that evolution only occurs when maintenance im-
pacts business rules or changes properties visible to the customer.

Harker et al. [363] extended Swanson’s work to focus on change drivers with
respect to system requirements (summarized in Table 1.1), because “changing re-
quirements, rather than stable ones, are the norm in systems development [363, p.
266].” He characterized changes according to their origins. At this point, require-
ments engineering as a distinct research discipline was but a few years old, and
an understanding was emerging that the importance of requirements permeated the
entire development process, rather than being a strictly ‘up-front’ endeavour.

Table 1.1: Types of requirements change [363]

Type of requirement Origins

Stable Enduring Technical core of business

Changing Mutable Environmental Turbulence
Emergent Stakeholder Engagement in Requirements Elicitation

Consequential System Use and User Development
Adaptive Situated Action and Task Variation
Migration Constraints of Planned Organisational Development

As an aside, it is interesting to ponder whether there is in fact such a thing as an
enduring requirement, as defined by Harker et al. A useful analogy can be derived
from Stuart Brand’s book on architectural change in buildings [138]. He introduces
the notion of shearing layers for buildings, which distinguish change frequency. For
example, the base layer is Site, which changes very little (absent major disasters);
Skin describes the building facade, which changes every few decades, and at the
fastest layer, Stuff, the contents of a building, which changes every few days or
weeks. The implication for requirements is that good design ought to identify which
requirements are more change-prone than others, and structure a solution based on
that assumption. There probably are enduring requirements, but only in the sense
that changing them fundamentally alters the nature of the system. For example,
if we have the requirement for a credit card processing software to connect to the
customer’s bank, such a requirement is sufficiently abstract as to defy most changes.
On the other hand, we can easily foresee a requirement “Connect to other bank
using SSL” changing, such as when someone manages to break the security model.
We posit that the enduring/changing distinction originates in the abstractness of the
requirement, rather than any particular characteristic.

The above taxonomy was expanded by the EVE project [487]. Lam and Loomes
emphasized that requirements evolution is inevitable and must be managed by pay-
ing attention to three areas: monitoring the operating environment; analysing the
impact of the system on stakeholders, or on itself; and conducting risk management
exercises. They proposed a process model for systematizing this analysis.

Changes to requirements have long been identified as a concern for software de-
velopment, as in Basili [76]. Somerville and Sawyer’s requirements textbook [787]



10 Neil Ernst, Alexander Borgida, Ivan J. Jureta and John Mylopoulos

explicitly mentions ‘volatile’ requirements as a risk, and cautions that processes
should define a way to deal with them. Their categorization closely follows that of
Harker et al.

Several historical research projects in the area of information systems model-
ing have touched on evolution. CIM [149] labeled model instances with the time
period during which the information was valid. Furthermore, CIM “should make
incremental introduction and integration of new requirements easy and natural in
the sense that new requirements should require as few changes in an existing model
as possible [149, p.401].” Little guidance was given on how to do this, however.
In a similar vein, RML [350], ERAE [264] and Telos [628] gave validity intervals
for model instances using logic augmented with time arguments. These modeling
languages were oriented to a one-off requirements model that can then be used to
design the system (rather than allowing on-the-fly updates and inconsistencies dur-
ing run-time). In other words, these methodologies assume complete knowledge of
the system, e.g., the precise periods for which a concept is applicable.

Research has also considered the issue of maintaining consistency in require-
ments models. Models can be inconsistent when different users define different
models, as in viewpoints research. The importance of permitting inconsistency in
order to derive a more useful requirements model was first characterized by East-
erbrook and Nuseibeh [269]. We return to the use of formal logic for managing
evolving requirements in Section 1.4. Zowghi and Gervasi explain that “Increasing
the completeness of a requirements specification can decrease its consistency and
hence affect the correctness of the final product. Conversely, improving the consis-
tency of the requirements can reduce the completeness, thereby again diminishing
correctness [955].” With respect to changes in R, then, there seems to be a tradeoff
between making R as detailed as possible and making R as consistent as possible.
In early requirements analysis where we suspect W will change (for example, in
mobile applications) incompleteness should be acceptable if it supports flexibility -
we would rather have high-level consistency with incomplete requirements.

Finally, one could consider the elaboration (i.e., increasing the completeness) of
the initial requirements model, from high-level objectives to lower-level technical
requirements, as ‘evolving’ requirements (as in [35]); we focus on requirements
models for which the elicitation necessary for a first release is assumed to be com-
pleted, and then changes, rather than the process of requirements elicitation at an
intermediate point in time.

1.2.2 Empirical Studies of Requirements Evolution

The focus of this section is on research projects which conducted empirical stud-
ies using industrial Requirements Evolution Problems. Many industrial case studies
focus on source code evolution, and little attention is paid to the requirements them-
selves (which presumably are driving many of the changes to source code). This
is typically because requirements are often not available explicitly, unlike source



1 An Overview of Requirements Evolution 11

code. This is particularly true in the case of open-source software. Nonetheless, the
following studies do show that, when available, the problem of requirements change
is important and not particularly well understood.

The SCR (Software Cost Reduction) project at the U.S. Naval Research Lab-
oratory was based on a project to effectively deliver software requirements for a
fighter jet, the A–7E. In a retrospective report on the project [23], which includes up-
dates since the initial release in 1972, Chapter 9 of the report lists some anticipated
changes. Of interest is that these changes, while anticipated, are not very detailed,
and some invariants are assumed (which we would term domain assumptions, such
as “weapon delivery cannot be accurate if location data is not accurate”). This early
work identified the criticality of understanding how R could and did change, and
that such changes needed to be anticipated.

Chung et al. [187] looked at the problem of (non-functional) requirements evo-
lution at Barclays, a large bank. After introducing a modeling notation, they con-
sidered the change of adding more detailed reporting on accounts to customers. The
paper showed how this change can be managed using their modeling notation, lead-
ing to new system designs. In our parlance, they considered changes in all of R,W,S.
In particular, the paper focused on tracking the impact of a change on other non-
functional properties of the system, such as accuracy and timeliness (i.e., quality
attribute requirements in R). Their notation allows analysts to model priorities and
perform semi-automated analysis of the updated model. With respect to our prop-
erty Π , this study used the degree to which a solution Ŝ satisfied quality attributes as
the property over which to evaluate solution optimality. The paper concludes with
some principles for accommodating change.

In [36], Anton and Potts looked at the evolution of the features offered by a
customer-centric telephony provider. The paper traced, using historical documents,
which features were available and how this changed over time. In particular, the
paper focused on the consequences of introducing certain features, with the objec-
tive of reducing the effort of providing a new service to customers. This survey was
end-user oriented as it focused on how features appeared to users of telephone ser-
vices, not other businesses or the internal feature requirements. Changes in W are
related to subsequent changes in S (features are properly parts of the solution), but
there is little or no role for explicit members of R, except as reverse-engineered.
One can reverse engineer changes in R by inference: if S changes as new features
are added, and the authors show it was in response to some initiating change from
the domain knowledge W (such as customer usage), then we can infer a change in
R (since W ∪S ` R).

The Congruence Evaluation System experience report of Nanda and Madhavji
[632], while not conducted on industrial data, did shed some useful light on the Re-
quirements Evolution Problem. This was an academic-built proof of concept that
ultimately failed. In their analysis, Nanda and Madhavji explicitly note that changes
in W , which they term “environmental evolution” was a major factor. They particu-
larly note how difficult it was to communicate these changes into direct impacts on
the requirements, as they were typically not monitored explicitly.



12 Neil Ernst, Alexander Borgida, Ivan J. Jureta and John Mylopoulos

Anderson and colleagues conducted a series of case studies of changing require-
ments [31, 32], focusing explicitly on changes in R. Their experiences led to the
development of a taxonomy for requirements evolution. The case studies focused
on smart cards and air traffic control, and spurred the development of the Require-
ments Maturity Index, in order to measure how frequently a particular requirement
changed. However, the index did not provide for different measures of requirements
value or importance, i.e., there was no explicit notion of comparison with respect to
Π .

Tun et al. [860] used automated extraction techniques to obtain problem struc-
tures from a large-scale open source project (the Vim text editor). They concede that
requirements may not be easily extracted, but contend that these problem structures
shed some useful light on how one might implement new requirements. These prob-
lem structures are essentially triples of W,S,R, with particular focus on looking at S
in order to attempt to derive the other two. The challenge with all studies of purely
source code (i.e., S) is that one must to some extent speculate about whether changes
are coming from the domain knowledge W or from the requirements changing.

There is relevant work in the Mining Software Repositories community on ex-
traction of requirements from project corpora, most recently the work of Hindle et
al. at Microsoft [404]. They correlated project specifications to source code com-
mits and were able to identify related changes. In this context, Hindle et al. used the
project specification as the representation of R and the code commits as insight into
the implementation S. The chief problem with open-source project is that require-
ments are rarely made explicit. Instead, they occur as user stories or prototyped
features. In [279] we looked at techniques for extracting a set R from these issue
trackers. See also Chapter 5 later in this book, on repository mining.

Many studies of changing requirements have focused on software product lines.
We do not discuss them here, since Chapter 9 goes into them extensively. Herrmann
et al [392] used an industrial case study to identify the need for “delta requirements”,
requirements which must be added subsequent to software delivery, and then took
an existing methodology and extended it to incorporate modeling techniques for
delta requirements. The advantage of defining delta requirements is that it permits
baselining one’s core functionality (similarly to product lines), and then extending
these as necessary.

Ideally, of course, one would minimize changes before they occur, rather than
needing to manage changes afterwards. The issue of changing requirements in the
highly formal requirements environment of spacecraft design was considered in
[636], with the aim of minimizing the number of downstream changes required,
as each change is potentially very costly to re-implement. The authors proposed
a technique, semantic decoupling, for modeling requirements R to minimize the
dependencies between abstraction levels. In semantic decoupling, one tries to min-
imize the dependencies between related software modules (S), so that changes in R
will not be as wide-ranging. This of course requires a reasonably complete definition
of a traceability matrix in order to identify the relationships (which does typically
exist in the domains they study).



1 An Overview of Requirements Evolution 13

This sampling of academic case studies of changing requirements in industrial
settings has provided some clear examples of the importance of requirements evolu-
tion. In domains as varied as spacecraft, smart cards, and phone features, changing
requirements are clearly a major concern for business, and the source of much cost
and effort.

1.3 A Survey of Industry Approaches

It is useful to consider the treatment of changing requirements in industry settings,
as a way to understand the current practices, and how these might inform research
proposals. Industrial tools have a strong focus on interoperability with office soft-
ware like Microsoft Word, because a common use-case for these tools is generating
documentation. Furthermore, these tools are not the whole story, as many industry
consultants (e.g., [504, 922]) focus as much on managing change through methodol-
ogy as through tools. This means creating a change process which might incorporate
reviews, change tracking, prioritization meetings, and so on.

1.3.1 Standards and Industry

IEEE Standard 830 [421], which describes a standard for “Software Requirements
Specification” (SRS), is the culmination of the strict specification approach, what
some have derisively called “Big Requirements Up Front”. It lays out in great detail
the standard way for describing “what” must be built. Section 4.5 of the standard
addresses evolution, which it recommends managing using notation (marking re-
quirements as “incomplete”) and processes for updating the requirements. As with
most standards, this is reasonable in mature organizations, but prone to problems if
these key ideas are not followed. Furthermore, completeness and stability are often
orthogonal concerns. The standard acknowledges that evolutionary revisions may
be inevitable.

1.3.2 Requirements Management Tools

Commercial tools have generally done a poor job supporting change. IBM DOORS2

and IBM Requisite Pro are document-centric tools whose main interface consists of
hierarchical lists of requirements (e.g., “R4.2.4 the system shall . . . ”). Traceability
is a big feature of such tools, and requirements can be linked (to one another and to
other artifacts, such as UML diagrams). Multiple users are supported, and changes

2 http://www-01.ibm.com/software/awdtools/doors/

http://www-01.ibm.com/software/awdtools/doors/


14 Neil Ernst, Alexander Borgida, Ivan J. Jureta and John Mylopoulos

prompt notification that the requirement has changed. Version control is important:
each requirement is an object, and the history of that object is stored, e.g., “mod-
ified attribute text” on DATE by USER. In DOORS, one can create requirements
baselines which are similar to feature models. One can extend the baseline to create
new products or changes to existing projects. It is not clear what the methodology
for defining a baseline is.

The tool focus of Blueprint Requirements Center3 is agile, with strong support
for simulation and prototyping. Workbenching requirements scenarios is important
in Blueprint. Workbenching or simulation helps analysts understand all the potential
variations, as well as giving something concrete to the business user before costly
implementation. Blueprint also focuses on short-cycle development, allowing re-
quirements to be broken into sprint-specific stories or features. What both Blueprint
and the IBM suite miss, however, is a way to combine requirements management
with workbenching integrated into a framework for evaluating change impacts.

1.3.3 Task Managers

An increasingly popular strategy in industry is to forego IEEE specification con-
formance in favour of lightweight task management tools. This might be described
as the agile approach to requirements: treating requirements as tasks that must be
carried out. Jira, from Atlassian Software4, is a commonly-used tool in large-scale
projects. Jira allows one to manage what is essentially a complex to-do list, includ-
ing effort estimation, assignment, and some type of workflow management (e.g.,
open issue, assign issue, close issue). Similar tools include Bugzilla, Trac, and
IBM’s Rational Team Concert. More recently, Kanban [30] has made popular vi-
sual work-in-progress displays, the most basic of which are whiteboards with life-
cycle phases as swimlanes. These tools are well-suited to the deliberate reduction
of documentation and adaptive product management that agile methodologies such
as Scrum or XP recommend. Leffingwell [503] gives a more structured approach
to agile requirements engineering, managing changes using time-boxed iterations
(e.g., 2 week cycles) at the boundaries of which the team re-prioritizes the user sto-
ries to work on for the next cycle. In this fashion, changes in the domain knowledge
W and new requirements R can be accommodated on a shorter time-frame than a
model with change requests. This constant iteration only works well with a robust
set of tests to verify the requirements were correctly implemented, e.g., using unit
and system tests, but as important is some automated acceptance tests using, e.g.,
Behavior-Driven Development (BDD).

3 http://www.blueprintsys.com/products/
4 http://www.atlassian.com/software/jira/

http://www.atlassian.com/software/jira/
http://www.blueprintsys.com/products/


1 An Overview of Requirements Evolution 15

1.3.4 Summary

Particularly for smaller organizations, requirements are not treated at a high level,
often existing as an Excel spreadsheet or maintained implicitly [46]. Furthermore,
the transition to agile software development has made one of its chief priorities the
reduction of unnecessary documentation (“working software over comprehensive
documentation”5). It is an open and important research question whether omitting
at least some form of explicit requirements model is sustainable in the long-term.

The tools we have described work well for managing low-level tasks, such as
fixing specific bugs. However, connecting the design and roadmapping component
of product management with the specifics of task management is more difficult.
While some might use tools like Confluence or other wikis for this knowledge-
management task, spreadsheets are still very popular for tracking lists of possible
features. What is missing is a higher-level view of “why” changes are being made,
and what impact those changes might have on satisfying the requirements. A tool
which can preserve the overall requirements model throughout the lifecycle is nec-
essary. That is not to say such an approach could not be integrated into a tool like
IBM DOORS. Indeed, there is a lot of work on integrating requirements tools, task
managers, code repositories and so on using product lifecycle management (PLM)
or application lifecycle management (ALM). The emerging standard for Open Ser-
vices for Collaboration (OSLC)6 is one initiative that looks to overcome the tradi-
tional silos.

1.4 Recent Research

We now survey some of the latest research in requirements evolution. In many
cases, research has focused most on eliciting requirements and potential changes,
and less on how such models/representations would be used to adapt software post-
implementation. Interest in the notion of requirements at run-time has greatly in-
creased recently, however, and we touch on this below. There are overlaps with
work on adaptive software (see Chapter 7.6 later in this book) and model-driven
evolution (Chapter 2). To conclude, we introduce two summary tables showing how
the individual work addresses elements of the Requirements Problem, as well as an
explanation of where gaps exist between research and practice.

5 http://agilemanifesto.org/
6 http://open-services.net/

http://open-services.net/
http://agilemanifesto.org/


16 Neil Ernst, Alexander Borgida, Ivan J. Jureta and John Mylopoulos

1.4.1 Problem Frames Approach

We mentioned the empirical study of Tun et al. [860] earlier. This work builds on
the seminal problem frames approach of Michael Jackson [431] to extract problem
frames from existing software systems in order to recover the original requirements.
A problem frame captures a particular set of elements involved in the Zave and
Jackson approach to the requirements problem: W,S ` R. For example, the text edi-
tor Vim has a feature “Spell Completion”. From the requirement description, Tun et
al. reconstruct the problem diagram using problem frame syntax: the requirement is
on the right, “complete word automatically”, linked with shared phenomena includ-
ing “keyboard user” and “buffer”, and finally, to the machine element implement-
ing “Spell Completion” (the feature). Matching related problem diagrams can show
feature interaction problems, in this case, where two features both use the shared
phenomena of “buffer”. These feature interactions are difficult to manage and can
be a large source of problems.

Another project by Tun et al.[859] uses problem frames to identify common
problematic design patterns, and to then transform that feature using a catalog. The
idea is to support evolution of features using well-known patterns to avoid feature in-
teraction problems. For example, if I know that my buffer is shared by two features,
I can apply a pattern like “Blackboard” to solve the potential problems. Similarly,
Yu et al. [942] use problem frames in the context of security requirements. Their
tool, OpenArgue, supports argumentation about requirements satisfaction that can
be updated as more information arrives. As with the requirements evolution prob-
lem we defined, this approach seeks to reason about what the implications of this
new information are.

1.4.2 Extensions of the NFR Framework

The NFR model, introduced in [186], represented a qualitative approach to modeling
system requirements as refinements of high level objectives, called goals. This has
been extended to reason about partial goal satisfaction in a number of ways. To
begin, Giorgini et al. [327] and Sebastiani et al. [760] formalized a variant of the
NFR framework’s qualitative approach, the idea being that qualitative reasoning
is better suited to up-front problem exploration. Their tools (e.g., GR-Tool7) can
reason over qualitative models and generate satisfying alternatives. One can leverage
this approach to incrementally explore evolving requirements problems.

What was not well understood was how to turn these into specifications. From
the evolution point of view, work on alternatives and variability in goal modeling
(e.g., [520], [497]) allows these qualitative models to capture context-driven vari-
ability, a point also made in Ali et al. [18], who make the case that requirements
variability necessitates the monitoring of the operating contexts. This monitoring

7 http://troposproject.org/tools/grtool/

http://troposproject.org/tools/grtool/


1 An Overview of Requirements Evolution 17

information is then used to inform a designer about possible revision options. In all
these cases the main contribution to requirements evolution is in eliciting alternative
solutions and extending the system specification with annotations for monitoring for
violations of these models. Dalpiaz et al. [215] also introduced qualitative require-
ments variability, but in the area of dynamic reconfiguration. This proposal goes
from modeling and elicitation to system specification over time, i.e., not just for the
initial design but also once the system has been released.

1.4.3 Run-time Adaptive Requirements

Work in the area of adaptive requirements focuses on understanding how to build
requirements-based systems that are responsive at run-time to system changes. In
particular, the notion of “requirements at runtime”, explored in a series of workshops
at the Requirements Engineering conference (requirements-engineering.
org), introduced the notion of using requirements models to drive system changes.
See also the chapter on adaptive software later in this book (Chapter 7.6). One thing
that is necessary for run-time evolution is the ability to understand what is chang-
ing. Qureshi et al. [705] define a set of ontological concepts for managing run-time
adaptation to the changes in the requirements problem. The main achievement is the
addition of context to requirements problems, in order to suggest variations when
contexts change. Another approach is to loosen the formal representation: In the
RELAX framework [920], a language is designed to specifically manage “the ex-
plicit expression of environmental uncertainty in requirements”. When something
changes in W (the world), for example, a new device appears on a mobile ad-hoc
network, the RELAX language can define service levels which satisfy higher level
requirements (e.g., “connect to AS MANY devices as possible” as opposed to “con-
nect to ALL devices”). In similar fashion, Epifani et al. [275] use a formal model and
a Bayesian estimator to adapt numeric parameters in the specification at run-time.
This allows them to set an initial model of the system and then fine-tune various
parameters as more information is collected. This is a little like learning the true
system requirements, rather than specifying them all at once.

1.4.4 KAOS-based Approaches

A major contribution to the RE literature is the KAOS goal modeling framework,
first introduced in [217]. The original focus was on a methodology and tool for
goal-based decomposition of requirements problems. The original work has been
extended in a number of ways. One direction has considered the importance of al-
ternatives in system design. From an evolution perspective, variability and alterna-
tives support resiliency in two ways when change is encountered. First, the upfront
analysis supports enumeration of possible scenarios that need to be handled (for

requirements-engineering.org
requirements-engineering.org


18 Neil Ernst, Alexander Borgida, Ivan J. Jureta and John Mylopoulos

example, the obstacles encountered in [872]). Second, variants can be managed as
a form of product line, and called upon if and when things change (see Chapter 9
for more on product lines and requirements). Later work [515] introduced proba-
bilistic techniques for monitoring the partial satisfaction of goals in KAOS models.
As designers explore the solution space, numeric measures are used to evaluate the
value of a given configuration. Not covered in detail in the paper is how this model
would be adjusted at run-time and used to evolve the specification S, but some of the
KAOS concepts, and in particular its formalism, have found their way into problem
frames work. In [871], van Lamsweerde discusses how one might compare alterna-
tive models of requirements and systems to be designed therefrom.

1.4.5 Paraconsistent and Default Logics

Several requirements modeling approaches rely on formal logic explicitly (KAOS
also uses a formal temporal logic, but it is not the focus of the KAOS-based ap-
proaches described above). Here we review two approaches.

Default logic approaches, appearing in [956] and [325], rely on David Poole’s
Theorist system [691] to define what must be (typically the World knowledge) and
what might change, represented by initial defaults. The connection to the require-
ments model is two-fold: the selection of the order in which requirements are consid-
ered for revision, and the ability to ‘downgrade’ requirements to default (preferred)
status rather than ‘mandatory’ status. Default logic is non-monotonic in that asserted
(TOLD) facts can later be contradicted and no longer concluded; for example, the
sentence “requirement R is refined by task T” can be over-ruled if new informa-
tion is discovered that says, for example, that “requirement R has no refinements”.
In classical logic, as long as the original sentence remains in the theory, it can be
deduced.

Closely aligned with this perspective is the REFORM framework of Ghose [325],
which identifies three main properties for a system managing evolution:

1. distinguish between what are called essential and tentative requirements;
2. make explicit the rationale for satisfying a requirement (refinements);
3. make explicit the tradeoffs for discarding a requirement when the requirements

model changes.

Ghose [325] also defines some useful principles for handling changes to the re-
quirements:

1. make minimal changes to the solution when the problem changes;
2. make it possible to ignore the change if the change would be more costly than

ignoring it;
3. support deferred commitment so that choosing a solution is not premature.
4. maintain discarded requirements to support requirements re-use.



1 An Overview of Requirements Evolution 19

They go on to implement these ideas in a proof-of concept system for manag-
ing requirements. One issue to consider in such non-monotonic systems for require-
ments is that reasoning from events to explanations is abductive, and therefore in the
NP-hard class of problems. Abductive reasoning is to reason ‘backward’, using ob-
servations and a background theory to derive explanations, as opposed to deductive
reasoning, which uses a background theory and an explanation to derive possible
observations.

Another approach to managing change is to support paraconsistent reasoning,
that is, reasoning in the presence of contradictory evidence without trivially con-
cluding everything, as in classical logic. This is vital in handling evolving require-
ments since one common occurrence is that a fact previously asserted as true is then
found to be false. For example, stakeholders might indicate initially that requirement
Rx must be satisfied, but at a later time, perhaps the stakeholders realized they did
not need the requirement. In a formal model we would have {Rx, ¬Rx}, a classical
inconsistency.

In the RE domain, tolerating inconsistency is essential, for reasons listed by Nu-
seibeh et al. [648]:

1. to facilitate distributed collaborative working;
2. to prevent premature commitment to design decisions;
3. to ensure that all stakeholder views are taken into account;
4. to focus attention on problem areas [of the specification] .

Hunter and Nuseibeh [413] use Quasi-Classical Logic (QCL), an approach to
reasoning in the presence of inconsistency which labels the formulas involved. This
also permits one to identify the sources of the inconsistency and then, using their
principle of “inconsistency implies action”, choose to act on that information, by, for
example, removing the last asserted fact, perhaps using principles such as Ghose’s,
above. An example from the London Ambulance case has a scenario where, based
on the information gathered, one can derive both “dispatch Ambulance 1” and “do
not dispatch Ambulance 1”. Two useful capabilities emerge from labeled QCL: one
can continue to derive inferences not related to this inconsistency, for example, that
Ambulance 2 needs a safety check; and secondly, to understand the chain of reason-
ing that led to the inconsistency, and resolve it according to meta-level rules.

Our work [278] used paraconsistent reasoning to manage evolving requirements
problems. We defined a special consequence relation |∼ which used a form of max-
imally consistent subset reasoning to draw credulous conclusions about whether a
given high-level requirement could be satisfied, or alternately, which specification
to implement in order to satisfy those requirements.

Paraconsistent reasoning (whether using defaults, QCL, or other approaches such
as multi-valued logics) supports evolving requirements by mitigating the challenge
of conflicting and possibly inconsistent specifications, whether in the World, Re-
quirements, or Specification. While there is a computational complexity concern,
practically speaking this is less of an issue as processing speeds have increased.



20 Neil Ernst, Alexander Borgida, Ivan J. Jureta and John Mylopoulos

1.4.6 Traceability Approaches

Traceability refers to the linkages between (in our case) requirements and down-
stream artifacts such as code, models and tests. The importance of traceability
with respect to software evolution is to support the identification and impact of
the changes to the requirements. A number of current approaches use traceability to
manage requirements evolution.

In the work of Charrada and Glinz [171], outdated requirements are identified
based on changes in the source which are believed to impact requirements. Such
changes might, for example, include the addition of a new class or method body,
which is likely a new feature being added. This addresses the issue of requirements
drifting from the actual state of the source code. This approach relies on machine
learning techniques to identify statistically likely candidates, which in general falls
into the area of mining software repositories. The basic notion is to gather a large
body of data, including source code, requirements documents (if any), tests, emails,
etc. Machine learning techniques such as Latent Dirichlet Allocation (see Chapter 5)
can then be used to extract interesting labels for that data, including which quality
requirements are affected, as in Hindle’s work [404]. There is some promise in these
approaches, but the major stumbling block is to gather useful data in large enough
volumes (typically in the millions of records) that the statistical techniques will be
sufficiently accurate. As one might imagine, identifying requirements in source code
is tricky without a good set of requirements documents to go from.

Should sufficient data not be available, one is forced to leverage human knowl-
edge to a greater extent. Herrmann et al. [392] use the information about the pre-
vious incarnation of the system to derive “delta requirements”, which specify only
those changes to the requirements necessary to implement the system (we might
think of this as the set represented by δR \R). The challenge with this approach is
to correctly characterize the existing system’s initial requirements.

Welsh and Sawyer [913] use traceability to identify changes that affect dynam-
ically adaptive systems (DAS). They include five possible changes to a DAS that
might need to be accommodated:

• environmental change (a change to WD)
• broken assumption (an incorrect fact in WD)
• new technology (new elements in S)
• consequential change (changes to the inferences drawn from W ∪S)
• user requirements change (changes to R)

Traceability techniques should somehow identify which type of change is occur-
ring and what implications that change has for the other elements of the system.
Welsh and Sawyer extend the i* strategic rationale framework [938] to annotate the
models with possible changes and impacts. The primary contribution is to support
elicitation and modelling.



1 An Overview of Requirements Evolution 21

1.4.7 Feature Models

Feature models are covered in greater detail in Chapter 9. Techniques for dealing
with changes to feature models, including the product lines which are typically de-
rived from the feature models, overlap with the management of requirements evo-
lution. Requirements researchers typically consider feature models to focus on the
user-oriented aspects of a system, i.e., be designed with marketable units in mind.
Requirements as we define them, however, would also consider non-functional prop-
erties of the system (which are not necessarily user-oriented, such as maintainabil-
ity) and features which may not be relevant to product lines.

That being said, the techniques for managing evolution in feature models are
relevant to requirements evolution as well.

1.4.8 Summary

Table 1.2 is a summary of the focus of the approaches discussed, based on whether
the approach emphasizes changes in domain knowledge WD, specification/imple-
mentation S, requirements R, or some property Π that can be used to compare ap-
proaches. The most glaring omission are techniques for quantifying the difference
between various solutions (that is, defining properties Π ), although this work has
been the subject of work in search-based software engineering (Chapter 4). Apply-
ing optimization techniques like genetic algorithms to the Requirements Evolution
Problem seems a fruitful area of research.

We said at the beginning of this chapter that managing evolving requirements
could be broken down into elicitation and modeling and turning those representa-
tions into software. Most of the approaches we discussed focus on the modeling
and analysis aspects of the problem. There is unfortunately little work on taking
the frameworks and applying them to industrial requirements problems. Part of the
challenge is that a lot of industries simply do not manage requirements in a manner
which would permit, for example, delta requirements to be generated. Another is
that academic tools for the most part ignore the vastly different scale of industrial
challenges (Daimler, for example, has DOORS models with hundreds of thousands
of objects).

An emerging trend in requirements evolution is the linkage to dynamic, self-
adaptive systems (cf. Chapter 7.6). Researchers are increasingly looking beyond the
traditional staged lifecycle model where requirements are used to derive a specifi-
cation and then ignored. Instead, requirements, and other models, are believed to be
useful beyond the initial release of the software. Most of the research to date has
identified challenges and future work that must be dealt with before we can realize
the vision of “requirements at run-time”. For example, Welsh and Sawyer [913],
Ghose [325], and several others focus on understanding the nature of the problem
using classification techniques.



22 Neil Ernst, Alexander Borgida, Ivan J. Jureta and John Mylopoulos

Table 1.2: Research approaches compared with respect to the Requirements Evolu-
tion Problem components. (•: covered; ◦: partial coverage; –: not covered, na: tool
mentioned but not available.)

Approach Paper D
om

ai
n

ch
an

ge
s

δ
W

Sp
ec

ifi
ca

tio
n

ch
an

ge
s

δ
S

R
eq

ui
re

m
en

ts
ch

an
ge

s
δ

R
So

lu
tio

n
co

m
pa

ri
so

n
Π

To
ol

su
pp

or
t

E
m

pi
ri

ca
le

vi
de

nc
e

Problem Frames
Tun et al. [859] • • • – – –
Tun et al. [860] ◦ • • – a •
Yu et al. [942] ◦ • • – b ◦

NFR extensions

Sebastiani et al. [760] • ◦ • • c ◦
Lapouchnian et al. [497] • – • • – ◦

Ali et al. [18] • – • • – –
Dalpiaz et al. [215] • – • • – •

Adaptive Requirements
Qureshi et al. [705] ◦ ◦ • ◦ – –
Whittle et al. [920] • • • • – •
Epifani et al. [275] • • • • – •

KAOS-based
van Lamsweerde and Letier [872] • – • ◦ d •
Letier and van Lamsweerde [515] • ◦ • • d •

van Lamsweerde [871] ◦ – • • d ◦

Paraconsistent

Zowghi and Offen [956] ◦ – • • na –
Ghose [325] ◦ – • ◦ – –

Hunter and Nuseibeh [413] • ◦ ◦ – na ◦
Ernst et al. [278] • – • ◦ e •

Traceabiity

Charrada and Glinz [171] ◦ • • ◦ – ◦
Hindle et al. [404] ◦ • • – – •

Herrmann et al. [392] ◦ ◦ • • - •
Welsh and Sawyer [913] • ◦ • • f •

a http://mcs.open.ac.uk/yy66/vim-analysis.html
b http://sead1.open.ac.uk/pf
c http://troposproject.org/tools/grtool/
d http://www.objectiver.com/index.php?id=25
e http://github.com/neilernst/Techne-TMS
f http://is.gd/7wP7Sj

http://is.gd/7wP7Sj
http://github.com/neilernst/Techne-TMS
http://www.objectiver.com/index.php?id=25
http://troposproject.org/tools/grtool/
http://sead1.open.ac.uk/pf
http://mcs.open.ac.uk/yy66/vim-analysis.html


1 An Overview of Requirements Evolution 23

One of the seminal papers in characterizing evolutionary systems is that of Berry
et al. [100]. In it, the authors argue that for dynamically adaptive systems require-
ments engineering is continuous. Systems must understand what objectives are
paramount at a given point in time, what constraints exist, and how to act to achieve
their objectives. They therefore argue for four levels of adaptivity:

Level 1 Humans model the domain, W and possible inputs to a system S.
Level 2 The given system S monitors W for its inputs and then determines the

response. This is the domain of self-adaptive software research, such as Epifani
et al. [275] or Whittle et al. [920].

Level 3 Humans identify adaptation elements for the set of systems. This is what
variability modeling for goal models does, for example Dalpiaz et al. [215].

Level 4 Humans elicit mechanisms for self-adaptation in general.

Berry et al.’s classification allows us to understand the general trajectory for re-
search into requirements evolution. It moves beyond level 1, which is interested in
inputs and outputs for a specific system, increasingly focusing instead on adapting
and evolving the software in situ, based on a set of observations and a formalism for
responding to the inputs. Unknown unknowns, the inputs not modeled for reasons
of either cost or ignorance, will still bring us back to level 1.

While this is encouraging in terms of software that will be more resilient, one
question that is commonly left unanswered in research is the issue of responsive-
ness. Particularly in formal analysis, we can quickly run up against fundamental
complexity results that render complete optimal solutions infeasible, since expo-
nential algorithms seem to be the only alternative. While the performance of such
algorithms has improved with advances in inference engines, processing speed and
parallelization, it is very much an open question as to how much analysis is possi-
ble, particularly in the ‘online’ scenario. Hence, a number of researchers focus on
incremental or partial approaches to analysis. It is important to keep in mind how
well the proposed evolved design will work under realistic scenarios.

Table 1.3 presents a matrix of where research is needed in requirements evolu-
tion. These are common RE research themes (see Nuseibeh and Easterbrook [647],
Cheng and Atlee [178] or van Lamsweerde [870] for an overview of requirements
engineering research in general) but in this case specifically to do with evolving re-
quirements. We rank the challenges according to industry adoption and interest, ex-
isting research interest, and finally, challenges and obstacles to further research. One
particularly important area, emerging from industry, is a general need for more ap-
plied and empirical studies of requirements evolution, in particular in agile projects
using lightweight tools. Adaptivity is another emerging research area; in this table,
the research area most under-served is understanding how Requirements Evolution
Problems can be elicited and analyzed, i.e., what future capabilities will a system
require, and how to monitor and understand the possible changes that might occur.



24 Neil Ernst, Alexander Borgida, Ivan J. Jureta and John Mylopoulos

Table 1.3: Research opportunities in requirements evolution (H - High, M - Moder-
ate, L - Low)

Research area
(Evolution and...)

Industry adoption Research interest Challenges

Elicitation M numerous ap-
proaches

L Most approaches focus
on stable systems.

Longitudinal case stud-
ies required.

Analysis L conducted by busi-
ness personnel

L most work focuses on
adaptation - what to do
next.

Understanding system
context.

Modeling L models mostly infor-
mal

M numerous studies of
formalization of change,
e.g. [277]

Scalability; ease of use
by industry.

Management M most tools support
some form of impact
analysis, but at a simple
level.

H Numerous frame-
works and techniques.

Study mainly on green-
field systems. Little em-
pirical validation.

Traceability H widely seen as im-
portant.

H see traceability work-
shops e.g. [693]

Trace recovery; scalabil-
ity

Empirical research n/a M - increasing amount
of empirical validation in
research papers

Reality is messy; Indus-
try reluctance to share
data

1.5 A Framework for Requirements Evolution

This section considers strategies for managing Requirements Evolution Problems
(REP) at the next stage in the software lifecycle: implementation. In our work, we
represent requirements as goals G according to goal-oriented requirements engi-
neering [870]. Recall the definition of the Requirements Evolution Problem needed
to relate changes in requirements R, domain knowledge WD, and solutions S to the
existing solution (or find such a solution, if there isn’t one). In any event we sup-
ported solution comparison by the use of a desired property Π , relating Ŝ to S0 and
possibly other aspects of the changes. Π , in other words, allows us to define a partial
order over potential Ŝ.

We will store instances of these elements (i.e., a specific goal instance such as
“system will allow user registration”) in a knowledge base called REKB. The REKB
can answer questions about the items stored in it. In [277] we discuss this in more
detail, but the essential operations (ASK questions in knowledge base parlance)
include:

ARE-GOALS-ACHIEVED-FROM Answers True if a given set of tasks in
REKB can satisfy a given set of goals. This is the “forward reasoning” prob-
lem of Giorgini et al. [327].

MINIMAL-GOAL-ACHIEVEMENT REKB discovers Σ , the set of sets S of tasks
which minimally satisfy desired goals. This is the (abductive) backward reason-
ing problem of Sebastiani et al. [760].



1 An Overview of Requirements Evolution 25

GET-MIN-CHANGE-TASK-ENTAILING This operation produces solutions to
the Requirements Evolution Problem. Given an initial solution S and a set of
desired goals, find a set of minimal sets of tasks which are not dominated for
some criterion of minimality and satisfy the new requirements problem. The key
issue is to define what the minimality criterion might be for a new solution, which
we discuss below.

We concentrate on those changes which are unanticipated. By ‘unanticipated’ we
mean that there exists no mechanism in the implementation specification S to ac-
commodate these changes. This clearly positions the Requirements Evolution Prob-
lem as quite distinct from the Self Adaptation Problem (SAP). With respect to the
aspects of G, W, and S, the SAP is to accommodate changes in W,G by creating
a suitably adaptive Ŝ ab initio. In other words, unlike the Requirements Evolution
Problem, self-adaptation approaches do not modify requirements themselves, but
rather choose predefined tasks in S to accommodate the changes. This is what RE-
LAX [920] is doing: using a fuzzy logic to define criteria for satisfying requirements
that may be accomplished by different tasks/monitors.

It is also becoming clear that with a suitably flexible framework and a wide pool
of services, an adaptive specification can be used to select services that satisfy our
changed goals or domain assumptions. Since these services can be quite heteroge-
neous, there is a continuum between adapting and evolving. The essential distinction
is the extent to which the changes are anticipated in the implementation.

There are two key concerns in the Requirements Evolution Problem:

1. What do we do when new information contradicts earlier information? This is
the problem of requirements problem revision.

2. What solutions (sets of tasks) should we pick when the REKB has changed and
been revised? This is the problem of minimal solution selection.

We discuss these below, after introducing our motivating case study.

1.5.1 The Payment Card Industry Example

As we discussed in Section 1.1, the Payment Card Industry Security Standards
Council is an industry consortium of payment card issuers, including Visa and Mas-
tercard. This body has responsibility for developing industry standards for securing
cardholder data. The data security standard (DSS) takes effect whenever a merchant
processes or stores cardholder data. The standard is updated every three years, and
there are three versions extant, which we have modeled for our case study. Among
the high level PCI-DSS requirements are goals of protecting cardholder data, secur-
ing one’s network, and using access control measures.

We modeled a scenario where a football stadium was upgrading its payment card
infrastructure. The stadium model captured had 44 nodes and 30 relations; the PCI-
DSS had 246 goals, 297 tasks/tests, and 261 implications (connections between



26 Neil Ernst, Alexander Borgida, Ivan J. Jureta and John Mylopoulos

goals and tasks). Our case study captured three general circumstances of change:
expansion, contraction, and revision, which we focus on here.

Most of the changes to the PCI-DSS, particularly those smaller in scope, are to
clarify previous requirements or to amend erroneous or irrelevant requirements. This
is exactly why requirements evolution is a problem: as the standard is implemented,
it becomes clear which parts are unsuited to the real-world problems of payment
card security. Often, unfortunately, this evolution occurs because a hacker discov-
ered an unanticipated hole in the security. In some sense, the standard is always
one step behind these attacks. The following examples show how the standard was
revised:

1. Version 1.2 of the standard required organizations to change security keys (that
is, electronic keys) annually. However, in some cases it became clear that this
was either too onerous, or too infrequent. Version 2.0 of the standard therefore
revised this requirement to ask that organizations change keys according to best
practices. Note the ambiguity in this last phrase.

2. Similarly, previous versions of the standard asked organizations to use cryptogra-
phy. However, cryptography means many things, so this was updated to demand
the use of strong cryptography. Consider the situation in which we (as stakehold-
ers) had decided to use a 56-bit encryption protocol (which is easily broken). We
now have to update this to a newer protocol, such as Triple-DES. This switch
may conflict with our choice of technology from before, and requires us to drop
support for a particular task (which would otherwise lead to an inconsistency).

3. In previous iterations of the standard, secure coding guidelines had to be fol-
lowed, but only for web applications such as web pages. In the latest version,
this has been revised to demand these guidelines apply to all applications. Again,
this might require our IT system to change coding practices, implement testing
frameworks, or hire consultants to be consistent with this revision.

We then applied the methodology described below to find solutions to these revi-
sions in a reasonable amount of time. This is what might occur if, for example, an or-
ganization needed to understand what testing to carry out to ensure compliance: the
tasks the REKB identified using GET-MIN-CHANGE-TASK-ENTAILING would
correspond to the validation tests identified in the PCI-DSS standard. More infor-
mation on the case study is available in [277].

1.5.2 Methodological Guidance for Solving Unanticipated
Changes

Since the focus of the Requirements Evolution Problem is changing systems, it be-
hooves us to outline the process by which these changes occur, as well as the impact
the changes have on the requirements problem. Figure 1.2 outlines these steps in
graphical form.



1 An Overview of Requirements Evolution 27

Fig. 1.2: A methodology for Requirements Evolution Problems

Step 1. Elicit requirements from stakeholders and map the speech acts into do-
main assumptions W , goals in R, and solution tasks in S. Define domain assump-
tions that are relevant to the context of the particular company. For instance, if
one is working with a payment processor (like Verifone) for a 1,200 terminal soc-
cer stadium, one will want to add the details of the Verifone-specific constraints.
At the same time, identify relevant problem modules. In the case study this is the
set of applicable standards and regulations: the PCI-DSS, Sarbanes-Oxley, etc.
For example, requirements 1 and 1.1 of the PCI DSS could be represented as the
goal G1: “Install and maintain a firewall configuration to protect cardholder
data” and goal G1.1: “Establish firewall and router configuration standards”,
along with the domain assumption W1 : G1.1→ G1.

Step 2. ‘TELL’ this requirements problem to the REKB, introducing the goals
and tasks as atoms and asserting the domain assumptions.

Step 3. Identify existing implemented tasks and add to the REKB, marking them
as “implemented”. Rather than defining future tasks to be performed, we need
to check whether the requirements problem can already be satisfied. In the first
iteration, this is clearly unlikely, but in future iterations it may be possible.

Step 4. These previously implemented tasks will be the initial input for the ARE-
GOALS-ACHIEVED-FROM operator. This step is essential to prevent over-
analysis: if we have a set of tasks that already solve the (new) problem, just use

ASK: Are Goals 
Achievable?

Requirements
& World

Discovery

Goals

Tasks
Domain 

assumptions
Software 

Implementation

Mark 
Implemented 

Tasks

Select Optimal 
Solution 

(using Distance Metrics)

4

Monitor REKB 
and Update

9

TELL operations

No
Solns

Possible
SolnsRevise

!

Self-
adaptive

Human-
guided

Revise

6

1

10

7
2

3

ASK: Minimal 
Goal Achievement

5

8

REKB

Were$Changes$Anticipated?



28 Neil Ernst, Alexander Borgida, Ivan J. Jureta and John Mylopoulos

those. This is where the difference between adaptation (existing implementation
solves the new problem) and evolution begins.

Step 5. If no candidate solutions were discovered in Step 4, then we must analyze
the REKB using MINIMAL-GOAL-ACHIEVEMENT. That operation returns Σ

sets of S. In the case of the PCI-DSS, this means finding (zero or more sets of)
some set of tests which will satisfy the goals captured in the standard, and in
particular, the goal “comply with the PCI DSS”.

Step 6. If the model is not satisfiable, repeat the elicitation steps to revise the
REKB. This is the process of refining our REKB in order to solve the Require-
ments Problem.

Step 7. Once we have Σ , which is a set of ‘candidate solutions’, decide on a mem-
ber of Σ using decision criteria (Π ). There are several possibilities, including one,
maximize the number of preferred goals contained. Two, minimize a distance
function between existing tasks and new tasks. Here we would make use of the
previously implemented tasks for earlier versions of the system implementation.

Step 8. Implement the initial solution to the Requirements Problem as RP1.
Step 9. Monitor the implementation, domain, and goals for changes. This can be
done using e.g., awareness requirements [788].

Step 10. Something has changed (i.e. in W or G) and the system (S) can no longer
satisfy our goals. We must re-evaluate the Requirements Problem to find a solu-
tion that will. We update the REKB with new information and repeat from Step
2.

The diamond with exclamation mark reflects the key distinction between a
Requirements Evolution Problem and a Self-Adaptation Problem. If the detected
change (step 9) was anticipated, then we can look to the current version of the
REKB. Assuming the design was properly instantiated, this ought to provide a new
solution from within the initial REKB. However, as in Berry et al. [100], if there is
no solution in the initial REKB, we must intervene as humans and revise the REKB
accordingly.

This is a high-level methodology: variants are possible, of course. For one, we
could select more than one solution in Step 7 in order to maximize flexibility. Step
7 might also be expanded to reflect software product line development.

1.5.3 Revising Requirements

We mentioned that one of the key concerns in the Requirements Evolution Problem
is how to manage new information which contradicts existing information. Steps 6
and 10 of the Requirements Evolution Problem methodology is predicated on revis-
ing the REKB when new information is found (assuming the REKB and its revision
are consistent). We can draw on the research into belief revision in knowledge rep-
resentation with a few caveats. Most importantly, it has long been argued that the
context of revision is important. For example, the difference between bringing a



1 An Overview of Requirements Evolution 29

knowledge base up to date when the world changes (update) and revising a knowl-
edge base with new information about a static world was outlined in Katsuno and
Mendelsohn [453]. This is an important distinction in RE as well.

According to one seminal approach to belief revision, the AGM postulates [16],
there are three key principles:

1. the use of “epistemic entrenchment” to partially order the formulae, in order to
decide which to give up when revising the belief set;

2. the principle that the “new information” ϕ ought to be retained in the revised
belief set;

3. information should be discarded only if necessary (minimal mutilation or infor-
mation economy), because obtaining it is expensive.

The problem with these principles for the REKB is that a) we are dealing with three
distinct sorts of well-formed formulas (wffs) (namely, goals R, specifications S and
domain assumptions WD) and b) our central concern is solving the requirements
problem. This last point distinguishes the REKB version of revision: the concern of
classical revision is the state of an agent’s beliefs (e.g., that it is raining rather than
sunny); the concern of requirements revision is how best to incorporate the new in-
formation in order to solve the modified requirements problem. In this formulation,
the new information may in fact be rejected, whereas in AGM revision, this is never
the case.

For example, consider the case where we are told that the stakeholders have a
new goal: to support VISA’s touchless card readers8. The AGM postulates would
have us accept this new fact on the principle that recent information is dominant
over older information. In the Requirements Evolution Problem, before accepting
new information we must understand its implications with respect to solving the re-
quirements problem. Consider the case where our soccer stadium already supports
the goal of “accept touchless payment cards”. If the designers are told a new cus-
tomer goal is to “require signatures on payments”, we can see there is a conflict,
which implies the REKB must be revised (absent paraconsistent reasoning). The
AGM postulates would say that the new goal is paramount, and that the old goal
be rejected (or a workaround devised). In a design situation, however, this new goal
may be illogical, and should itself be rejected. In this situation the best we can do
is ask for preferences between these conflicting goals. We reject it not because it
imperils the current solution, but because it conflicts with other goals in the sense
that we cannot solve them simultaneously.

This leads to a new definition of revision in the REKB formulation of the re-
quirements problem. When domain assumptions change, since these are invariant
by definition, we apply standard belief revision operators to those wffs. For exam-
ple, if previously we had believed that “50% of the clientele possess touchless credit
cards”, and after monitoring sales for a few months, our statistics inform us that the
figure is closer to “90%”, it seems intuitive to accept the new information. In this
case, our domain assumptions are ordered using an epistemic entrenchment relation.

8 A touchless card reader is referred to as PayPass or PayWave, and does not require a swipe or
insertion for low-value transactions.



30 Neil Ernst, Alexander Borgida, Ivan J. Jureta and John Mylopoulos

For goals and specifications, we have broad freedom to reject changes. Our moti-
vation for deciding on the particular revision to accept is with respect to the require-
ments problem. We prefer a new state of the REKB that brings us better solutions.
The definition of ‘better’ solution will be defined with respect to the distance func-
tion we use in GET-MIN-CHANGE-TASK-ENTAILING, i.e. Π . This means that
even if stakeholders inform us of new tasks that have been implemented, or new
goals they desire, we may reject these revisions if they do not lead to a better so-
lution. This might be the case if, as with the previous example, stakeholders tell us
that they have upgraded the payment terminals to accept touchless payments. It may
be that this is now possible, but still does not satisfy other goals in our REKB. This
ability to reject the most current revision, unlike classical belief revision, means that
revising requirements problems is properly aligned with our definition of the REKB
as a support mechanism for design decisions.

1.5.4 Selecting Non-Dominated Solutions

The second challenge in requirements evolution was deciding what solutions to se-
lect when the REKB has changed and been revised. Recall the GET-MIN-CHANGE-
TASK-ENTAILING operator takes a set of goals and a set S0 of tasks, the old
implementation, and returns a set of sets of tasks Σ which are equally desirable
(non-dominated) solutions to the requirements problem with respect to a distance
function. The important consideration in choosing new solutions is the choice of a
distance function (i.e., Π above), so let us examine some possible choices.

Requirements re-use is important, so we do not want to completely ignore previ-
ous implementations in selecting a new solution. That suggests there are properties
of a new solution with respect to the old one that might be useful heuristics for the
decision. We defined several properties Π in [277], together with illustrative exam-
ples based on a case where: S0 = {a,b,c,d,e}was the initial solution (the set of tasks
that were implemented); and S1 = { f ,g,h},S2 = {a,c,d, f} and S3 = {a,b,c,d, f}
are minimal sets of tasks identified as solutions to the new requirements:

1. The standard solutions: this option ignores the fact that the new problem was ob-
tained by evolution, and looks for solutions in the standard way. In the example,
one might return all the possible new solutions {S1,S2,S3}, or just the minimum
size one, S1.

2. Minimal change effort solutions: These approaches look for solutions Ŝ that min-
imize the extra effort Ŝ− S0 required to implement the new “machine” (specifi-
cation). In our view of solutions as sets of tasks, Ŝ−S0 may be taken as “set sub-
traction”, in which case one might look for (i) the smallest difference cardinality
| Ŝ−S0 | (S2 or S3 each requires only one new task to be added/implemented on
top of what is in S0); or (ii) smallest difference cardinality and least size | Ŝ | (S2
in this case).

3. Maximal familiarity solutions: These approaches look for solutions Ŝ that maxi-
mize the set of tasks used in the current solution, Ŝ∩ S0. One might prefer such



1 An Overview of Requirements Evolution 31

an approach because it preserves most of the structure of the current solution,
and hence maximizes familiarity to users and maintainers alike. In the above
example, S3 would be the choice here.

4. Solution reuse over history of changes: Since the software has probably un-
dergone a series of changes, each resulting in newly implemented task sets
S1

0,S
2
0, ...,S

n
0, one can try to maximize reuse of these (and thereby even further

minimize current extra effort) by using
⋃

j S j
0 instead of S0 in the earlier propos-

als.

The above list makes it clear that there is unlikely to be a single optimal an-
swer, and that once again the best to expect is to support the analyst in exploring
alternatives.

1.5.5 Summary

This framework supports the iterative ‘exploration’ of one’s requirements, domain
knowledge, and solution. As analysts, one can ASK questions of the REKB and
understand how complete or accurate the solution will be. Furthermore, using GET-
MIN-CHANGE-TASK-ENTAILING, iterating and incrementing the solution itself,
particularly in response to change, happens continuously, as new information is
added to the REKB. It focuses on requirements as first-class citizens of software
evolution and tries to reconcile the satisfaction of those requirements by a suitable
software specification, respecting domain knowledge.

In addition to the methodology, we also need to track and version our artifacts
using metaphors from version control (e.g., diff, checkin, etc.). We would also like
our REKB to be scalable to models of reasonable size: in a related paper [277], we
showed incremental reasoning was possible ‘online’, i.e., in less than 10 seconds.

Related work includes:

• The ‘cone of uncertainty’, which captures the idea that before the project begins
uncertainty about exactly what the requirements are is quite broad. The cone nar-
rows as the project progresses and we have more information about the relevant
requirements.

• Levels of knowledge, including ‘known knowns’, ‘known unknowns’ (changes
we anticipate), ‘unknown knowns’, or tacit knowledge, and ‘unknown unknowns’,
possible changes we are not aware of. These illustrate the major challenge in
requirements evolution. However, being aware of these levels of knowledge is
already a major achievement in most projects.

• The Architecture Tradeoff Analysis Method (ATAM), which incorporates analy-
sis of sensitivity points and trade-offs against non-functional quality attributes of
the software. This is a scenario exploration technique designed to test a possible
design against changes.

• The V-model (and all other related testing approaches) which insists that require-
ments are reviewed early by the test team in order to ensure testability.



32 Neil Ernst, Alexander Borgida, Ivan J. Jureta and John Mylopoulos

1.6 Conclusions

In this chapter, we have made the point that focusing solely on implementation arti-
facts is insufficient. It is the requirements which are providing the guidance for max-
imizing stakeholder value, and so understanding, modeling, and reasoning about
evolving requirements is extremely important. We discussed how research in soft-
ware evolution led to research in requirements evolution, and showcased some of
the industrial and academic approaches to managing requirements evolution. The
previous section on the REKB defined our approach to the requirements evolution
problem: that of incremental exploration of the problem space using the REKB as a
form of workbench. Since we expect our system to be subject to change pressures,
and constantly evolving, supporting exploration allows both an initial problem ex-
ploration, as well as a revision when something previously established changes.

The vision for managing the Requirements Evolution Problem is growing closer
to the vision of adaptive software systems (Chapter 7.6). In both cases, we would
like to support rapid and assured changes to a software system, and in the adaptive
case, without human intervention. To date, the primary difference is in which arti-
facts are in focus. For requirements at run-time, the requirements model is viewed
as the driver of system understanding. At runtime we need to monitor how the sys-
tem is doing with respect to its requirements. This is best done by comparing the
execution (trace) to a runtime version of requirements, rather than a runtime model
of the implementation. The implementation is responsible for the actual system.
However, in answering questions about how the system is performing, e.g. with
respect to quality attributes or high-level goals, one can only answer these ques-
tions (directly anyway) by understanding the state of execution of requirements.
Requirements evolution is a complex problem, but supporting incremental and iter-
ative analysis of the requirements model will help us in making software in general
more adaptable and efficient.



Chapter 2
Coupled Evolution of Software Metamodels and
Models

Markus Herrmannsdörfer and Guido Wachsmuth

Summary. In model-driven software engineering, software models are the primary
engineering artifacts which are built using dedicated modeling languages. In re-
sponse, modeling languages are receiving increased adoption to improve software
engineering in industry, and thus their maintenance is gaining importance. Like soft-
ware, modeling languages and thus their metamodels are subject to evolution due
to changing requirements. When a metamodel evolves, models may no longer con-
form to it. To be able to use these models with the new modeling language, they
need to be migrated. Metamodel evolution and the corresponding model migration
are coupled. In this chapter, we introduce the problem, classify it, and discuss how
it can be addressed. To get a feeling about the extent of the problem in practice,
we give an overview of the empirical results that are available in the literature. We
then present different approaches to the problem and classify them according to a
number of features. Finally, we give an overview of the available tools and compare
them to each other, before we conclude the chapter with directions for future work.

The following people influenced the presented work on the coupled evolution of metamodels and
models: Sebastian Benz, Elmar Jürgens, Maximilian Kögel, Daniel Ratiu, Louis M. Rose, Sander
Vermolen, and James Williams. We owe our gratitude to the following institutions for supporting
this line of research: BMW, the German Federal Ministry of Education and Research (BMBF),
NWO/JACQUARD, and Oracle.

33
 Springer

. et al. (eds.), E ,
DOI 10.1007/978-3- - - _2, ©  2014
T Mens volving Software Systems

642 45398 4 -Verlag Berlin Heidelberg



34 Markus Herrmannsdörfer and Guido Wachsmuth

2.1 Introduction

In software engineering, various artificial languages are employed. This includes
general-purpose programming languages such as Java [342], domain-specific lan-
guages such as HTML [929], general-purpose modeling languages such as the
UML [652], domain-specific modeling languages such as BPMN [653], data for-
mats such as SVG [930], and ontologies such as the Web Service Modeling On-
tology [725]. Software language has been established as the overall term for such
languages [471].

Software languages evolve [286]. A software language, as any other software ar-
tifact, is designed, developed, tested, and maintained. Requirements, purpose, and
scope of software languages change, and they have to be adapted to these changes.
This applies particularly to domain-specific languages [302] that are specialized
to a specific problem domain, as their specialization causes them to be vulner-
able with respect to changes of the domain. But general-purpose languages like
Java or the UML evolve, too. Typically, their evolution is quite slow and driven by
heavy-weighted community processes. For example, the last formally released ver-
sion 2.4.1 of UML dates back to August 2011, while the upcoming version 2.5, a
minor revision to the 2.4.1 version, is in its finalization phase since October 2012.

Software language evolution implies a threat of language erosion [285]. Typi-
cally, language processors and tools no longer comply with a changing language.
But we do not want to build language processors and tools from scratch every time
a language changes. Thus, appropriate co-evolution strategies are required. In a sim-
ilar way, language utterances like programs or models might become inconsistent
with a changing language. But these utterances are valuable assets for software de-
velopers, making their co-evolution a serious issue.

Software language engineering [471] evolves as a discipline to the application
of a systematic approach to the design, development, maintenance, and evolution of
languages. It concerns various technical spaces [485]. Software language evolution
affects all these spaces: Grammars evolve [492], metamodels evolve [285], XML
schemas evolve [491], database schemas evolve [605], ontologies evolve [296], and
APIs evolve [249], too. In this chapter, we focus on the evolution of metamodels.

2.1.1 Metamodels and Models

In model-driven software engineering, software models are the primary engineer-
ing artifacts. From these software models, other artifacts like e. g. the code imple-
menting the software are generated. Software models are expressed by means of
modeling languages. This includes general-purpose languages like the UML as well
as domain-specific modeling languages [205, 471]. In modelware [106], the tech-
nical space of modeling languages, technologies are organized around metamodels.
A metamodel is an intensional definition of a modeling language. It specifies the
abstract syntax of the language. Models expressed in a modeling language need to



2 Coupled Evolution of Software Metamodels and Models 35

µ0: Place

Net

Transition0..*
src      

0..*
snk

0..*

snk      

0..*

src

0..*places      1
net      

0..*transitions      1
net

ι0:
n:Net

p1:Place

p4:Placep2:Place p5:Placet1:Transition

t3:Transitiont2:Transition

p3:Place t4:Transition

p6:Place

net

snk snk

snk

snk

snksrc

src srcsnksnk

src

src

src snk

src src

src snk

Fig. 2.1: Metamodel µ0 for Petri net models (top) and compliant instance model ι0
in concrete syntax (mid) and abstract syntax (bottom).

conform to the metamodel of this language, that is, they need to obey the syntactic
rules defined by the metamodel. The extension of a metamodel is the set of models
which conform to it.

With its MetaObject Facility (MOF) [654], the OMG provides two standard
description means for metamodels: Essential MOF (EMOF) as a minimal specifi-
cation and Complete MOF (CMOF) as an extension to the former one. EMOF is
rooted in the UML and reuses its basic concepts like packages, classes, properties,
and associations. Additionally, CMOF offers sophisticated features like property
redefinition, union sets, and package merge.

Example 2.1 (Petri net metamodel and compliant instance). The class diagram in
Figure 2.1 shows an EMOF compliant metamodel µ0 for Petri net models. A Petri
Net consists of places and transitions. Connections between places and tran-
sitions are modeled as two associations from Place.src to Transition.snk and
from Transition.src to Place.snk. Figure 2.1 also shows an example Petri net
model ι0 in a common graphical concrete syntax and a corresponding object dia-
gram which captures its abstract syntax. The abstract syntax model complies with
metamodel µ0. Every object instantiates a concrete class in µ0. Similarly, every link
instantiates an association while obeying cardinalities.



36 Markus Herrmannsdörfer and Guido Wachsmuth

2.1.2 Metamodel Evolution

Modeling languages evolve frequently to meet the requirements of their users. In
this chapter, we are particularly interested in changes, where the abstract syntax
of a language, thus its metamodel, evolves. This happens whenever new features
are added to a language, obsolete features are removed, or the internal structure of
models is changed.

Example 2.2 (Petri net metamodel evolution). Figure 2.2 shows evolved versions
of the original metamodel µ0 from Figure 2.1. Changed metamodel elements are
formatted in bold text with a gray background. Since a Petri net without any places
and transitions is of no avail, we restrict Net to comprise at least one place and
one transition. This results in a new metamodel µ1. In a next step, we make arcs
between places and transitions explicit. This step might be useful if we want to
annotate metaclasses with a means for graphical or textual description in order to
assist automatic tool generation. The extraction of PTArc and TPArc yields µ2. As
PTArc and TPArc both represent arcs, we state this in µ3 with a generalisation Arc.
In an extended Petri net formalism, arcs might be annotated with weights. We can
easily reproduce this extension by introducing a new attribute weight in µ4. Until
now, we cover only static aspects of Petri nets. To model dynamic aspects, places
need to be marked with tokens as captured in µ5.

2.1.3 Model Migration

When the metamodel of a modeling language evolves, existing models might no
longer conform to this metamodel. Model migration is needed to keep models con-
form to their metamodel. Just as models need to conform to their metamodel, a
model migration needs to conform to its corresponding metamodel evolution. Model
migration co-evolves models with their evolving metamodel [285], resulting in a
coupled evolution of metamodels and models. Formally, a coupled evolution can be
defined as a triple (µ,µ ′,m) of the original metamodel µ , the evolved metamodel
µ ′, and migration m, a partial function from the extension of µ to the extension of
µ ′.

Example 2.3 (Petri net model migration). Reconsider the evolution of the Petri net
metamodel from the previous example. In the first step, Petri net models without any
places or transitions no longer conform to µ1. This was actually intended and such
models will not be migrated. All other models (including ι0 from Figure 2.1) still
conform to µ1. In the second step, links between places and transitions no longer
conform to µ2. All models can be migrated by replacing such links with a link
between the place and a newly created instance of either PTArc or TPArc and a link
between the transition and the new object. For example, ι0 does no longer comply
with µ2 and needs to be migrated. Figure 2.3 shows the resulting compliant model
ι2. In the third step, all models (including ι2) still conform to µ3. In the fourth step,



2 Coupled Evolution of Software Metamodels and Models 37

µ1: Place

Net

Transition0..*
src      

0..*
snk

0..*

snk      

0..*

src

1..*places      1
1..*transitions      1

net      net

µ2:

Net

1
src      

1
snk

1

snk      

1

src

1..*places      1 1..*transitions      1
net      net

0..*
snk      

0..*
src

0..*
snk

0..*
src      

TransitionPlace PTArc

TPArc

µ3:

Place

Net

Transition1
src      

1
snk

snk      src

1..*places      

1

transitions      

1
net      net

PTArc

TPArc

0..*
snk      

0..*
src

snksrc      

1..*

Arc

11 0..*0..*

µ4:

Place

Net

Transition1
src      

1
snk

1

snk      

1

src

1..*places      

1

transitions      

1

PTArc

TPArc

0..*
snk      

0..*
src

0..*
snk

0..*
src      

net

1..*

weight: Integer

Arc

net

µ5:

Place

Net

Transition1
src      

1
snk

1

snk      

1

src

1..*places      

1

transitions      

1

PTArc

TPArc

0..*
snk      

0..*
src

0..*
snk

0..*
src      

net

1..*

weight: Integer

Arc

net

Token0..*
tokens      

1 place      

Fig. 2.2: Steps in the evolution of a metamodel for Petri net models.



38 Markus Herrmannsdörfer and Guido Wachsmuth

ι2:

n:Net

p1:Place

p4:Placep2:Place p5:Place

t1:Transition

t3:Transition

a1:PTArc

a8:TPArca3:PTArc a7:PTArc

a2:TPArc a6:TPArc

t2:Transition

a4:TPArc

p3:Place

a5:PTArc a9:PTArc t4:Transition

a10:TPArc

p6:Place

snksrc

snksrc

snksrc

snksrc snksrc

snksrc

srcsnk

src snk

snk src

snksrc

snksrc

snksrc

snksrc

snksrc snksrc

snksrc

srcsnk

src snk

snk src

net

ι4:

n:Net

p1:Place

p4:Placep2:Place p5:Place

t1:Transition

t3:Transition

weight = 1

a1:PTArc

weight = 1

a8:TPArc

weight = 1

a3:PTArc

weight = 1

a7:PTArc

weight = 1

a2:TPArc

weight = 1

a6:TPArc

t2:Transition

weight = 1

a4:TPArc

p3:Place

weight = 1

a5:PTArc

weight = 1

a9:PTArc

t4:Transition

weight = 1

a10:TPArc

p6:Place

net

snk

src

snksrc

snksrc

snksrc snksrc

snksrc

srcsnk

src snk

snk src

snksrc

snksrc

snk

src

snksrc

snksrc snksrc

snksrc

srcsnk

src snk

snk src

Fig. 2.3: Steps in the migration of a Petri net model.

models lack weights for arcs. For migration, we can add a default weight of 1 to all
Arc objects. Figure 2.3 shows a model ι4, the result of migrating ι2 accordingly. In
the last step, models lack tokens for places. For migration, we associate zero tokens
to each place.

2.2 Analysis: Classification of Coupled Evolution

Coupled evolution of metamodels and models can be classified according to meta-
model aspect, granularity, language preservation, model preservation, reversibility,
and automatability. We stick to a simplified, unified version of the terminology
from [394, 399, 904].



2 Coupled Evolution of Software Metamodels and Models 39

2.2.1 Metamodel Aspect

A metamodel can not only specify the structure of models, but can also define con-
straints on models or an API to access models. Furthermore, it can provide docu-
mentation of metamodel elements. We can classify evolution according to its effect
on these different aspects, distinguishing structural evolution, constraints evolution,
API evolution, and documentation evolution. For example, the evolution of the Petri
net metamodel in Example 2.2 is purely structural.

2.2.2 Granularity

Metamodel evolution can be of different granularity. Composite evolution can be
decomposed into smaller evolution steps, while primitive evolution is atomic and
can not be decomposed. We further distinguish two kinds of primitive evolution.
Structural primitive evolution modifies the structure of a metamodel, i. e. creates or
deletes a metamodel element. Non-structural primitive evolution modifies an exist-
ing metamodel element, i. e. changes a feature of a metamodel element.

Example 2.4 (Granularity of Petri net metamodel evolution). In the evolution of the
Petri net metamodel (ref. Example 2.2), all steps except the fourth are compos-
ite, since they can be decomposed into smaller evolution steps. For example, the
first step can be decomposed into two non-structural primitive evolution steps, each
changing the cardinality of a relation. The fourth step adds a single new attribute to
the metamodel. Thus, it can be classified as structural primitive.

2.2.3 Language Preservation

A metamodel is an intensional definition of a language. Its extension is a set of
conforming models. When a metamodel evolves, this has an impact on its extension
and thus on the expressiveness of the language it defines. We distinguish different
classes of coupled evolution according to this impact [904]: Coupled evolution is a
refactoring if its migration is a bijective mapping between extensions of the original
and the evolved metamodel. Coupled evolution is a construction if its migration is
an injective mapping from the extension of the original metamodel to the extension
of the evolved metamodel. Coupled evolution is a destruction if its migration is a
potentially partial, surjective mapping from the extension of the original metamodel
to the extension of the evolved metamodel.

Notably, this classification is typically only applicable to smaller evolution steps.
Composite evolution is often neither a pure refactoring nor a construction nor a
destruction, but a mixture of refactoring, construction, and destruction steps.



40 Markus Herrmannsdörfer and Guido Wachsmuth

Example 2.5 (Language preservation in Petri net metamodel evolution). We revisit
the coupled evolution of the Petri net metamodel (ref. Example 2.2) and Petri net
models (ref. Example 2.3). The first evolution step is a destruction, since the migra-
tion is a partial, surjective mapping, keeping only Petri net models with places and
transitions. The second evolution step is a refactoring, since the migration is a bijec-
tive mapping between models with direct links between places and transitions, and
models with PTArc or TPArc objects in-between. The third evolution step is also a
refactoring, since no migration is needed (identity is a bijective mapping). The last
two evolution steps are constructions, since both the introduction of default weights
and the introduction of empty token sets are injective mappings. The overall evo-
lution is neither a refactoring nor a construction nor a destruction, since the overall
migration is partial but not surjective.

2.2.4 Model Preservation

Model preservation properties indicate when migration is needed. Coupled evolu-
tion is model-preserving1 if all models conforming to an original metamodel also
conform to the evolved metamodel. Thus, model-preserving evolution does not re-
quire migration. Coupled evolution is model-migrating2 if models conforming to an
original metamodel might need to be migrated in order to conform to the evolved
metamodel. A migration is safe if the migration preserves distinguishability, that is
different models (conforming to the original metamodel) are migrated to different
models (conforming to the evolved metamodel). In contrast, an unsafe migration
might either migrate only some models or yield the same model when migrating
two different models.

In contrast to the classification according to language preservation, this classi-
fication is complete with unsafe migration as its default. Both classifications are
related. Refactorings and constructions are by definition either model-preserving or
safely model-migrating, since their migration is either a bijective or injective map-
ping. Destructions are unsafely model-migrating.

Example 2.6 (Model preservation in Petri net metamodel evolution). Again, we re-
visit the coupled evolution of the Petri net metamodel (see Example 2.2) and Petri
net models (see Example 2.3). The first evolution step is unsafely model-migrating,
since Petri net models without places or transitions are not migrated. The third evo-
lution step is model-preserving, since no migration is required. The second, fourth,
and fifth evolution steps are safely model-migrating, since the introduction of ad-
ditional objects, weights, and empty token sets keeps models distinguishable. The
overall evolution is unsafely model-migrating, since some models are not migrated.

1 In [89, 352], such evolution is called a non-breaking change.
2 In [89, 352], such evolution is called a breaking, resolvable change.



2 Coupled Evolution of Software Metamodels and Models 41

2.2.5 Reversibility

Reversibility properties indicate whether a coupled evolution can be undone. Cou-
pled evolution is reversible if and only if the sequential composition with another
coupled evolution step is a refactoring. Coupled evolution is safely reversible if and
only if either itself or a sequential composition with another coupled evolution step
is model-preserving. All other evolutions are irreversible.

The definition points out relations to the classification according to language
and model preservation. Distinguishability ensures reversibility. Thus, any safely
model-migrating evolution, including refactorings and constructions, is also safely
reversible. Destructions are irreversible.

Example 2.7 (Reversibility in Petri net metamodel evolution). Once more we revisit
the coupled evolution of the Petri net metamodel (see Example 2.2) and Petri net
models (see Example 2.3). The first evolution step is irreversible, since Petri net
models without places or transitions are not migrated. All other steps are safely
reversible: The second evolution step can be undone by reverting µ2 to µ1 and mi-
grating links with PTArc or TPArc objects to direct links. The third evolution step
is model-preserving itself. The fourth evolution step can be undone by reverting µ4
to µ3 and removing weights in the corresponding migration. Similarly, the fifth step
can be undone. The overall evolution is irreversible, since Petri net models without
places or transitions are not migrated.

For the last two steps, safe reversibility is not so obvious, since the inverse mi-
gration is unsafe. For example, the fourth step requires the addition of weights, as
we did in the migration from ι2 to ι4. We can obtain ι2 back from ι4 by removing
the weights. Since added information is removed again, the composition is model-
preserving. But this is not the case the other way around. When µ4 would evolve into
µ3, ι4 could be migrated to ι2. However, any other model with the same places, tran-
sitions and arcs, but different weights, would also be migrated to ι2. This migration
would be unsafe, since we cannot restore the original weights.

2.2.6 Automatability

When a metamodel evolves, automatability of the corresponding model migration is
crucial. In the worst case, the evolution requires a model-specific migration, making
automation impossible. Instead, software engineers have to revisit their models and
migrate each of them individually.

Example 2.8 (Model-specific Petri net model migration). We reconsider the last mi-
gration step from Example 2.3, which migrated models conformant to µ4 by adding
an empty set of tokens to each place. However, imagine a Petri net model which
models resource dependencies in a software system. Models conformant to µ4 can
only model dependencies, but not the actual resources. With µ5, resources can be
modeled as tokens. After migration, models perfectly conform to µ5, stating the



42 Markus Herrmannsdörfer and Guido Wachsmuth

absence of resources. This is typically inaccurate with respect to the system under
study. Instead, software engineers should migrate each model individually, model-
ing the resources of systems under study accordingly.

In contrast to model-specific migration, language-specific migration depends
only on the evolving metamodel, but not on particular models. This enables partial
automation. Language engineers can develop a migration transformation and ship
this with the evolved metamodel. Language users can then migrate their existing
models by applying the migration transformation to them.

Example 2.9 (Language-specific Petri net model migration). In the migration of
Petri net models as discussed in Example 2.3, the creation of objects in links be-
tween places and transitions, the introduction of a default weight for arcs, and the
introduction of an empty token set for places is model-independent. These migration
steps can be specified as a transformation from models conformant to µ0 into models
conformant to µ5. The transformation specification will be language-specific, since
it relies on the metamodels µ0 and µ5. We will discuss such a manually specified
migration in Example 2.12 in Section 2.4.2.

Language-independent migrations free language engineers from specifying mi-
grations manually. Instead, they specify only the metamodel evolution, either explic-
itly or implicitly. The corresponding migration specification is automatically derived
from the metamodel evolution.

Example 2.10 (Language-independent Petri net model migration). In the previous
example, we discussed a language-specific specification of the migration of Petri net
models as discussed in Example 2.3. However, each step in the evolution of the Petri
net metamodel from Example 2.2 is an instance of a recurring evolution pattern:
In the first step, the cardinality of an association is restricted. In the second step,
associations are turned into association classes. In the third step, a common super
class is extracted. In the last two steps, new properties with default values are added.
Each of these patterns is coupled with a generic, corresponding migration pattern.
These migration patterns are language-independent. The concrete evolution of the
Petri net metamodel instantiates the evolution patterns, and by this the migration
patterns to a concrete migration for Petri net models. We will discuss such a coupling
of evolution and migration steps in Example 2.14 in Section 2.4.4.

2.3 Empirical Results: Metamodel Evolution in Practice

Software language evolution in general and metamodel evolution in particular are
not only interesting theoretical problems, but highly relevant for language develop-
ers as well as for language users. To illustrate this relevance, we summarise three
different case studies in this section. These case studies investigated metamodel
evolution in different real-world modeling languages. The first study addresses the



2 Coupled Evolution of Software Metamodels and Models 43

evolution of the general-purpose modeling language UML, which is standardized by
the OMG. The second study covers the evolution of two proprietary domain-specific
modeling languages used in the automotive industry. The third study examines the
evolution of modeling languages in GMF, an open-source project for the generation
of graphical editors in Eclipse.

2.3.1 Evolution of the Unified Modeling Language

The Unified Modeling Language (UML) is a general-purpose modeling language
managed by the OMG. It is widely used to model software-intensive systems. UML
provides a metamodel which captures important concepts in object-oriented soft-
ware modeling. It also provides different diagram types to visualize partial views on
UML models.

Since the adoption of UML 1.1 by the OMG in 1997, UML has evolved signifi-
cantly. The minor revisions UML 1.3 and 1.4 fixed shortcomings and bugs. Minor
revision UML 1.5 integrated action semantics into UML 1.4. In the major revision
UML 2.0 in 2005, the specification was split into a core infrastructure [651] cap-
turing the architectural foundations and a superstructure [652] specifying user-level
constructs. Some changes made in this revision were not model-preserving. thus
requiring model migration.

Street et al. [799] analyzed the metamodel evolution of UML from version 1.4
to 2.0. They focused particularly on changes at the user-level, examined them and
analyzed their impact on migrating legacy UML 1.4 models to UML 2.0. They clas-
sified changes into constructions, refactorings, and destructions. As can be seen in
Figure 2.4, most of the changes were constructions which allow to improve exist-
ing models. Required migrations for refactorings and destructions could be mostly
automated.

Fig. 2.4: Classification of UML metamodel changes with respect to language preser-
vation

Particularly interesting is the evolution of activity diagrams. While their seman-
tics was based on state machines in UML 1.4, it is based on Petri nets since UML
2.0. A significant number of changes were needed to achieve this switch. Addition-

0% 20% 40% 60% 80% 100%

Languagefpreservation

Languagefpreservation

Construction 20f(57.1%)

Destruction 3f(8.6%)

Refactoring 12f(34.3%)



44 Markus Herrmannsdörfer and Guido Wachsmuth

ally, several new features were added to enhance control flow modeling. In [729],
Rose et al. provide a specification for the automatic migration of UML 1.4 activity
diagrams to UML 2.0. We discuss the corresponding coupled evolution approach in
Section 2.4.2 and its realization in the Epsilon Flock tool in Section 2.5.2.

2.3.2 Evolution of Automotive Metamodels

To better understand the nature of coupled evolutions of metamodels and models in
practice, we presented a study on the evolution of two industrial metamodels from
the automotive domain in earlier work [394]:

• Flexible User Interface Development (FLUID) for the specification of auto-
motive user interfaces, and

• Test Automation Framework - Generator (TAF-Gen) for the generation of
test cases for these user interfaces.

During the evolution of both metamodels, the impact on existing models was not
taken into account.

The study investigated whether reuse of migration knowledge can significantly
reduce migration effort. Its main goal was to determine substantiated requirements
for tool support that is adequate for model migration in practice. The study analyzed
the evolution of both metamodels based on revisions in a version control system3.
First, all revisions of the metamodels were extracted from the version control sys-
tem. Next, subsequent metamodel revisions were compared using a model differ-
encing tool resulting in a set of changes for each evolution step. For each meta-
model change, a corresponding model migration was defined. Finally, each meta-
model change and its corresponding model migration was classified according to
the classification presented in Section 2.2.6.

The result of the study for both metamodel evolutions is shown in Figure 2.5 as
a bar chart. The figure shows the fraction and the accumulated numbers of meta-
model changes that fall into each class. Half of the metamodel changes require
migration, but no change needs model-specific migration. Of the model-migrating
changes, over 75% can be covered by a language-independent migration. Moreover,
the language-specific migrations in the study always resulted from a group of meta-
model changes which could not be treated separately in terms of migration. As a
consequence, these coupled evolutions could not be composed of reusable migra-
tion migration patterns.

The results show that in practice model migration is required for a significant
number of metamodel changes. They also indicate that the migration of all mod-
els usually can be completely automated by a model transformation. Moreover, the
study showed that even more effort can be saved by reusing recurring migration pat-
terns. However, it also occurs in practice that some migrations are too complex to
be captured by such patterns.

3 More information about approaches to mine software repositories can be found in Chapter 5.



2 Coupled Evolution of Software Metamodels and Models 45

Fig. 2.5: Classification of FLUID and TAF-Gen metamodel changes with respect to
migration automatability

2.3.3 Evolution of the Graphical Modeling Framework

In [398], we performed a follow-up study to investigate couplings of metamodel
evolution and model migration in more detail. We studied the two year evolution of
modeling languages provided by the Graphical Modeling Framework (GMF), an
open source project for developing graphical editors in Eclipse. These modeling lan-
guages allow to define the graphical syntax of a language in a platform-independent
model, from which GMF generates a platform-specific model by executing a model-
to-model transformation. GMF then transforms the platform-specific model into
code for a graphical editor by means of a model-to-text transformation.

The goal of this study was to identify the reasons for metamodel evolution, to
understand the impact of metamodel evolution on related language artifacts, and
to detect patterns of metamodel evolution steps and corresponding model migra-
tions. Like in the previous study, all revisions of the languages’ metamodels were
extracted from a version control system. Additionally, corresponding changes of re-
lated artifacts were taken into account as well, in order to analyze the impact of
metamodel evolution on other artifacts. Each commit was classified manually ac-
cording to standard maintenance categories based on the commit message and re-
lated change requests [424]: perfective, adaptive, preventive, and corrective. Next,
metamodel evolutions within a commit were split into evolution steps, and their
migration was classified according to the classification presented in Section 2.2.
Finally, the correctness of the migration was validated by comparing it to the hand-
written migrator provided by GMF.

The study yielded several interesting insights into metamodel evolution in prac-
tice. First, it shows that metamodel evolution is similar to the evolution of object-
oriented code. The classification according to standard maintenance categories as
illustrated in Figure 2.6 shows that these categories apply to metamodel evolution as
well. The classification according to metamodel aspects as shown in Figure 2.7 indi-
cates user requests and technological change as the main reasons for metamodel evo-

0) 20) 40) 60) 80) 100)

FLUID

TAF-Gen

Overall

FLUID TAF-Gen Overall

Model-preserving 119 t53.4)m 63 t47.0)m 182 t51.0)m

Language-independent migration 70 t31.4)m 64 t47.8)m 134 t37.5)m

Language-specific migration 34 t15.2)m 7 t5.2)m 41 t11.5)m

Model-specific migration 0 t0.0)m 0 t0.0)m 0 t0.0)m



46 Markus Herrmannsdörfer and Guido Wachsmuth

lution. Furthermore, the splitting of metamodel evolution steps into small changes
revealed patterns that turned out to be similar to object-oriented refactorings [301].

Fig. 2.6: Classification of GMF metamodel commits along standard maintenance
categories [424].

Second, a large majority of these changes are either primitive structural changes,
such as the addition of an attribute, or primitive non-structural changes, such as a re-
naming. Also, most of these changes are either constructions or refactorings, and all
corresponding migrations are fully automatable. This is illustrated by the classifica-
tions in Figure 2.7. Third, the same figure shows, that metamodel evolution applies
to other aspects than abstract syntax definition, such as static constraints, APIs, and
documentation, which are also provided by a language’s metamodel. Finally, Fig-
ure 2.8 shows that not only models but also other artifacts such as model-to-model
and model-to-text transformations need to be migrated in order to stay conforming
with evolving metamodels.

2.3.4 Discussion of the Empirical Results

The empirical results from the different studies have several commonalities. First,
the number of constructions is quite high and the number of destructions is rather
low. This holds for all case studies, even for the GMF case study, since there many
of the refactorings are metamodel changes that do not change the syntax of the
modeling language. This means that there is a tendency to add new constructs to a
metamodel and not to remove existing constructs from it. Second, a metamodel evo-
lution can be divided into many small changes where the changes can be regarded
separately from each other in terms of migration. These metamodel changes are only
getting bigger in case of language-specific migrations where several changes have
to be treated together. However, all the case studies indicate that such language-
specific migrations are rather rare in practice, but nevertheless occurring. Third, the
migrations that occur in practice can be automated to a high degree. In all three case
studies, the migration could be implemented as a model transformation to automati-
cally migrate models. Moreover, the model transformation can be mostly built from

0% 20% 40% 60% 80% 100%

MaintenanceCcategories

MaintenanceCcategories

Perfective 45C(34.6%)

Adaptive 33C(25.4%)

Preventive 36C(27.7%)

Corrective 16C(12.3%)



2 Coupled Evolution of Software Metamodels and Models 47

Fig. 2.7: Classification of changes in GMF metamodels with respect to granularity,
language preservation, migration automatibility, and metamodel aspect.

Fig. 2.8: Impact of GMF metamodel commits on related artifacts.

0% 20% 40% 60% 80% 100%

Granularity

Granularity

Structuraloprimitive 379o(51.8%)

Non-structuraloprimitive 279o(38.2%)

Composite 73o(10.0%)

0% 20% 40% 60% 80% 100%

LanguageRpreservation

LanguageRpreservation

Construction 197R(27.0%)

Destruction 99R(13.5%)

Refactoring 435R(59.5%)

0% 20% 40% 60% 80% 100%

MigrationLautomatability

MigrationLautomatability

Model-preserving 630L(86.2%)

Language-indep. 95L(13.0%)

Language-specific 6L(0.8%)

Model-specific 0L(0.0%)

0u 20u 40u 60u 80u 100u

MetamodelAaspect

MetamodelAaspect

Syntax 361A(49.4u)

Constraint 31A(4.2u)

API 303A(41.5u)

Documentation 36A(4.9u)

124 

34 (27.4%) 

73 (58.9%) 

13 (10.5%) 

0 20 40 60 80 100 120 140

Metamodel commits

Model-to-model transformation

Model-to-text transformation

Model migration



48 Markus Herrmannsdörfer and Guido Wachsmuth

recurring migration patterns, providing further automation. These empirical results
are the basis for many of the approaches that have been developed to tackle the
problem of model migration.

2.4 State-of-the-Art: Approaches and their Classification

Over the last decade, coupled evolution of metamodels and models has attracted
much attention from the scientific community. According to Rose et al. [730], we
can distinguish three categories of approaches: manual specification approaches,
metamodel matching approaches, and operator-based approaches. Table 2.1 lists
the different approaches and groups them according to these three categories. The
table also marks the characteristic features for each category with asterisks. In this
section, we will first present the table’s underlying classification scheme, before we
discuss each category and its approaches.

Table 2.1: Classification of different approaches to the coupled evolution of meta-
models and models (The asterisks denote the characteristic features of the approach
categories).

feature evolution spec. migration specification eval.

style source coupling language target exec.

pr
el

im
in

ar
y

re
gu

la
r

co
m

pa
ri

so
n

im
pe

ra
tiv

e

de
cl

ar
at

iv
e

us
er

-d
efi

ne
d

re
co

rd
ed detec.

fix
ed

ov
er

w
ri

ta
bl

e
ex

te
nd

ab
le

cu
st

om T
L

G
PL

in
-p

la
ce

ou
t-

of
-p

la
ce

on
lin

e
of

fli
ne

approach notation si
m

pl
e

co
m

pl
ex

manual specification ∗ ∗
Sprinkle GME • • • • • • •
MCL GME • • • • • •
Flock Ecore • • • • •

metamodel matching ∗ ∗ ∗
Gruschko Ecore • • • •1 • •
Geest MS DSL • • • •2 • • •
Cicchetti Ecore • • • •3 • •
AML Ecore • • • •3 • • •

operator-based ∗
Hößler MOF • • • • •
Wachsmuth MOF • • • •4 • •
COPE Ecore • • • •5 • • •
1 ETL 2 C# 3 ATL 4 QVT 5 Groovy



2 Coupled Evolution of Software Metamodels and Models 49

2.4.1 Classification Scheme

To be able to compare existing approaches, a scheme is required according to which
all approaches can be classified and compared. Table 2.1 includes a classifica-
tion scheme for metamodel-model co-evolution approaches. However, classification
schemes are best represented as feature models, as they allow to define the features
of the different approaches as well as how they can be composed. Figure 2.9 shows
the corresponding feature model using the FODA notation [452]. An introduction to
the FODA notation can be found in Section 9.2. We now explain the various features
of this model.

Fig. 2.9: Feature model for the classification of approaches

2.4.1.1 Metamodel Evolution Specification

The evolution of a metamodel is implicitly specified by the original and the evolved
version of the metamodel. However, many approaches are based on explicit evolu-
tion specifications. There are two styles of such specifications: Imperative specifi-
cations describe the evolution by a sequence of applications of change operators.
In contrast, declarative specifications model the evolution by a set of differences
between the original and evolved version of the metamodel.

Explicit evolution specifications can have different sources. One prominent sour-
ce is the automated detection of the evolution based on the original and evolved
version of the metamodel. Two kinds of detections can be distinguished: First, detec-
tions which are only able to detect simple changes like additions and deletions. For
some approaches, this includes the detection of moves as well. Second, detections
which can also detect more complex changes, for example folding and unfolding
of abstractions. As an alternative to detection, the evolution can be recorded while

approach

evolution specification

style source

im
pe

ra
tiv

e

de
cl

ar
at

iv
e

us
er

-d
ef

in
ed

re
co

rd
ed

detected

si
m

pl
e

co
m

pl
ex

migration specification

coupling language target execution

fix
ed

ov
er

w
rit

ab
le

ex
te

nd
ab

le

cu
st

om

TL G
PL

in
-p

la
ce

ou
t-o

f-p
la

ce

on
lin

e

of
fli

ne

evaluation

pr
el

im
in

ar
y

re
gu

la
r

co
m

pa
ris

on

mandatory optional alternative
legend

or



50 Markus Herrmannsdörfer and Guido Wachsmuth

the user edits the metamodel, or user-defined where the user specifies the evolution
manually.

2.4.1.2 Model Migration Specification

In contrast to evolution, the model migration always needs to be specified explicitly.
The dependency of migration on evolution is reflected by coupling evolution spec-
ifications with migration specifications. There are three kinds of couplings: With a
fixed coupling, the migration is completely defined by the evolution. Only the de-
veloper of a coupled evolution tool can add new couplings. With an overwritable
coupling, the user can overwrite migrations for single evolution steps with custom
migration specifications. With an extendable coupling, the user can define com-
pletely new, reusable couplings between evolution and migration specifications.

Approaches with overwritable coupling need to provide a language to specify the
custom migration. Such a language might be custom defined as a domain-specific
migration language. Alternatively, an existing model transformation language (TL)
can be reused. Another way is to add migration support to a general-purpose pro-
gramming language (GPL) in form of an API or an internal domain-specific lan-
guage (DSL).

Depending how the target model is derived from the original model, migration
might be performed either in-place or out-of-place. In the first case, the target of
the migration is the original model itself which is modified during migration. In the
second case, the target is a new migrated model which is created during migration.
The original model is preserved.

Furthermore, the execution of the migration might be offline where applications
cannot use some of the models during the migration, or online where applications
can still use all models and where the access of a model by an application triggers
its migration lazily.

2.4.1.3 Approach Evaluation

Evaluation is crucial for the validation of approaches and thus an important quality
of an approach. Approaches might provide no evaluation at all. They might pro-
vide only evaluation of preliminary nature, for example by toy examples. Often,
the need for further evaluation is stated explicitly in corresponding publications.
Other approaches include regular evaluation on industrial or open-source systems
of medium to large scale. Some authors provide a comparison of their approach
with existing approaches.



2 Coupled Evolution of Software Metamodels and Models 51

2.4.2 Manual Specification Approaches

Manual specification approaches provide custom model transformation languages
with specific model migration constructs which reduce the effort for building a mi-
gration specification.

Model transformation is a well-established research area in model-driven soft-
ware engineering. In general, we can distinguish endogenous transformations be-
tween models expressed in the same language and exogenous transformations be-
tween models expressed using different languages [597]. Neither kind of transfor-
mation is well-suited for model migration. Endogenous transformations require the
same metamodel for source and target models, which is not the case in the presence
of metamodel evolution. Exogenous transformations can handle different source and
target metamodels, but require complete mapping specifications, which leads to a
lot of identity rules. Manual specification approaches overcome these difficulties by
providing constructs particularly intended for model migration.

Example 2.11 (Migrating transformation specification for Petri Net metamodel evo-
lution). Let us illustrate this using the evolution of Petri net metamodels from Exam-
ple 2.2. The migration from µ1 to µ2 can be specified in the exogenous, out-of-place
model transformation language ATL [448] as follows:

module migrate_mu1_to_mu2;
create OUT : mu2 from IN : mu1;

rule Nets {
from o : mu1!Net
to m : mu2!Net (

places <- o.places, transitions <- o.transitions
)

}

rule Places {
from o : mu1!Place
to m : mu2!Place

}

rule Transitions {
from o : mu1!Transition
to m : mu2!Transition (

src <- o.src->collect(p | thisModule.PTArcs(p,o)),
snk <- o.snk->collect(p | thisModule.TPArcs(o,p))

)
}

lazy rule PTArcs {
from place : mu1!Place, destination : mu1!Transition
to arc : mu2!PTArc (

src <- place, snk <- destination, net <- destination.net
)

}



52 Markus Herrmannsdörfer and Guido Wachsmuth

lazy rule TPArcs {
from transition : mu1!Transition, destination : mu1!Place
to arc : mu2!TPArc (

src <- transition, snk <- destination, net <- transition.net
)

}

Note that the first two rules constitute just an identity transformation without migra-
tion and thus could be easily spared. The last three rules replace links from Places

to Transitions by PTArcs and links from Transitions to Places by TPArcs.

Sprinkle et al. [792, 793] introduce a visual language to declaratively specify the
differences between two versions of a GME-based metamodel. The Model Change
Language (MCL) [65, 633] is another visual migration language targeting GME.
With both languages, the user not only specifies the metamodel differences, but
defines a model migration based on them. This overwrites the default copying be-
havior. The migration is performed out-of-place and offline. MCL permits a number
of idioms that—according to the authors’ experience—cover most common migra-
tion cases. Migration algorithms not covered by MCL can be specified imperatively
using a C++ API. Sprinkle’s approach is evaluated by an experience report that
demonstrates the modeling of a complex migration taken from the application of
the Embedded Systems Modeling Language (ESML) [148] in the avionics industry.

Flock is a textual migration language for EMF-based models [729]. Here, only
the model migration is specified. Differences between metamodel versions are not
made explicit. Instead, Flock automatically copies only those model elements which
conform to the evolved metamodel. The user then iteratively redefines the migration
specification to migrate non-conforming elements. Using the Petri net example from
[904], Flock has been compared to migration specifications in model transformation
languages ATL and Ecore2Ecore as well as to an operator-based approach with
COPE which is introduced later.

Example 2.12 (Manual migration specification for Petri Net metamodel evolution).
Let us reconsider the migration of Petri net models as discussed in Example 2.3.
Migration from µ1 to µ2 can be specified in Flock as follows:

migrate Transition {
for (source in original.src) {

var arc = new Migrated!PTArc;
arc.src = source.equivalent();
arc.snk = migrated;

}

for (sink in original.snk) {
var arc = new Migrated!TPArc;
arc.src = migrated;
arc.snk = sink.equivalent();
arc.net = migrated.net;

}
}



2 Coupled Evolution of Software Metamodels and Models 53

The migration considers instances of Transition. For each src, it creates a PTArc
and connects it to the src and to the migrated transition. Similarly, it creates a
TPArc for each snk and connects it to the snk and to the migrated transition.

2.4.3 Metamodel Matching Approaches

Metamodel matching approaches automatically detect the differences between two
metamodel versions. These are stored in a declarative difference model from which
a migration specification is automatically generated.

Gruschko et al. [89, 352] support the automatic detection of simple changes in
Ecore metamodels. They propose automatic migration steps for resolvable chan-
ges and envision to support the user in overwriting the migration specification for
unresolvable changes. The approach is only prototypically implemented and has not
been evaluated.

Geest et al. [318] apply a similar approach in the context of Microsoft DSL
Tools. The difference model is obtained by a possibly human-aided comparison of
the metamodel versions. Only simple changes can be detected and the generated
migration specification can be overwritten. The approach has been evaluated on
evolving metamodels from the Web Service Software Factory (WSSF)4.

Cichetti et al. [188] also detect complex metamodel changes. Here, the differ-
ence model consists of simple changes which are interpreted in terms of complex
changes. The migration specification consists of a set of model transformations to
be executed consecutively. Since this is prevented by interdependent changes, they
characterize dependencies between complex changes [189].

The Atlas Matching Language (AML) allows the user to parameterize the de-
tection of complex changes [311]. Therefore, the user combines existing or user-
defined heuristics to a thus extendable matching algorithm. From a difference model
obtained by such an algorithm, an ATL [448] transformation specifying the migra-
tion is automatically generated. The approach was evaluated on the Petri net exam-
ple from [904], and on the Java metamodel from NetBeans.

Example 2.13 (Metamodel matching in Petri Net metamodel evolution). We revisit
the evolution of Petri net metamodels from Example 2.2. Metamodel matching for
µ0 and µ1 is performed as follows:

1. Each class is matched with its counterpart in the evolved metamodel.
2. No changes are detected on classes.
3. Relations are matched with their counterpart in the evolved metamodel.
4. Changes in the lower bounds of Net.places and Net.transitions are de-

tected.
5. ChangedReference entries are created and added to the difference model.

4 WSSF community: http://codeplex.com/servicefactory

http://codeplex.com/servicefactory


54 Markus Herrmannsdörfer and Guido Wachsmuth

The changes in the difference model are classified as unresolvable, since strength-
ened lower bounds require manual migration. Thus, no migration is generated.

Metamodel matching for µ1 and µ2 yields the following changes in the difference
model:

1. AddedClass entries for PTArc and TPArc.
2. ChangedReference entries for Place.src, Place.snk, Transition.src,

and Transition.snk.
3. AddedReference entries for PTArc.src, PTArc.snk, TPArc.src,

and TPArc.snk.

These changes are classified as breaking, resolvable changes, which corresponds to
model-preserving according to the classification in Section 2.2. This classification
depends on detecting a pattern of an added class, a changed reference which now
points to the added class, and an added reference between added class and original
target. This pattern can be detected twice, for PTArc and TPArc. It corresponds to
a conversion of an association into a class with two associations, which is a well-
known object-oriented refactoring [301]. The generated model migration in the form
of an ATL transformation is similar to the one shown in Example 2.11. It transforms
links of the original association into an object of the added class and corresponding
links of the changed and added reference.

2.4.4 Operator-based Approaches

Operator-based approaches specify coupled evolution as a sequence of coupled op-
erators, which encapsulate common metamodel evolution steps and their corre-
sponding model migration.

Hößler et al. [406] formalize a fixed suite of reusable coupled operators. The
completely theoretical approach is based on a generic instance model supporting
versioning and was neither implemented nor evaluated.

Wachsmuth [904] presents an operator suite for the MOF metamodeling formal-
ism. Based on ideas from grammar evolution [490], operators are classified accord-
ing to language and model preservation properties. For migration, the evolution
specification is translated into a QVT Relations model transformation.

COPE [395] adds tool support for the evolution of Ecore-based metamodels
to EMF. It provides an extensive suite of coupled operators [399], which can be
extended with user-defined reusable operators. In addition to user-defined evolu-
tion specifications, COPE supports recording of operator applications. The opera-
tors are specified in a DSL embedded into a general-purpose language. COPE is
the only model migration approach performing in-place migration, since in-place
transformation is not very common for exogenous transformations. Its evaluation
by reverse engineering the evolution of the Palladio Component Model [395] and
the evolution of GMF (see Section 2.3.3) proved the applicability of operator-based
approaches in model-driven software engineering.



2 Coupled Evolution of Software Metamodels and Models 55

Example 2.14 (Applying coupled operators to model Petri Net metamodel evolu-
tion). The coupled evolution of the Petri net metamodel (ref. Example 2.2) and Petri
net models (ref. Example 2.3) can be modelled as a sequence of applications of
coupled operators from [399]. First, we specialize two references in µ0:
specialize composite reference Net.places: Place {1..*}
specialize composite reference Net.transitions: Transition {1..*}

This yields µ1, where we replace two associations with classes:
association Place.snk: Transition to class PTArc
association Transition.snk: Place to class TPArc

This results in µ2, where we extract a common super class:
extract abstract class Arc from PTArc, TPArc

This gives us µ3, where we introduce weights for arcs:
create attribute Arc.weight: int {1} = 1

This leaves us with µ4, where we add tokens to places:
create class Token
create composite reference Place.tokens: Token {0..*} = []
create opposite reference Place.tokens Token.place {1}

This finally results in µ5.

2.4.5 Discussion of State-of-the-Art

Out of the 10 compared approaches, 7 target either MOF, which is a well-recognized
standard in model-driven software engineering, or its implementations. Approaches
targeting the same modeling framework can be easily compared with each other,
leading to evaluations by comparison. 6 out of 10 approaches use declarative evo-
lution specifications, since they either define new or use existing declarative model
transformation languages. There is only one recording approach which is proba-
bly more complex to implement, i. e. most of the compared approaches focus on
specifying the model migration after the metamodel evolution took place. To be
able to specify language-specific model migrations, 7 out of 10 approaches allow
at least to overwrite the migration specification, but only two of them can be ex-
tended by reusable couplings. 7 out of the 10 compared approaches reuse or refine
existing model transformation languages: Manual specification approaches tailor
model transformation languages to migration (3), metamodel matching approaches
synthesize transformation specifications (3), and Wachsmuth’s operator-based ap-
proach specifies operators in QVT. Only one approach performs in-place migration,
since exogenous transformation languages that are required for metamodel evolu-
tion do not support in-place migration. No approach can perform migration online—
probably since models are design-time artifacts, thus being stored and not in use
most of the time. Finally, half of the 10 compared approaches are evaluated, 4 out
of these 5 at least regularly on industrial or open-source systems.



56 Markus Herrmannsdörfer and Guido Wachsmuth

2.5 Tool support: Available Tools and their Comparison

Tool support is crucial to bring scientific approaches into practice. Tools also allow
to compare different approaches with each other using common case studies. There-
fore, a number of tools have been built for the approaches discussed in Section 2.4.
Unfortunately, only two tools can still be obtained from the internet at the time of
writing this chapter: Edapt which is the successor of COPE, and Epsilon Flock. In
this section, we present these two tools and summarize results from two case stud-
ies, in which formerly available tools were compared with general-purpose model
transformation tools as well as with each other.

2.5.1 COPE / Edapt

Edapt5 is the official Eclipse tool for migrating EMF models in response to the
adaptation of their metamodel. Like its predecessor COPE, it records the meta-
model evolution as a sequence of coupled operators in a history model [393]. Each
coupled operator performs an in-place transformation of both the metamodel and
the model. Edapt provides two kinds of coupled operators—reusable and custom
coupled operators [393].

Reusable coupled operators enable reuse of migration specifications across meta-
models by making transformations for metamodel evolution and model migration
independent of the specific metamodel through parameters. Currently, Edapt comes
with a library of over 60 available reusable coupled operators, which proved to be
useful in a number of real-life case studies [399]. Custom coupled operators allow
to attach a custom migration to a recorded metamodel adaptation. The custom mi-
grations are implemented in Java based on the API provided by Edapt to navigate
and modify models. In the Example 2.14, all the history can be covered by reusable
coupled operators. Figure 2.10 shows the corresponding history model in Edapt’s
user interface.

Edapt’s user interface—depicted in Figure 2.10—is directly integrated into the
existing EMF metamodel editor. The user interface provides access to the history
model in which Edapt records the sequence of coupled operators. The user can
adapt the metamodel by applying reusable coupled operators through the oper-
ation browser. When a reusable coupled operator is executed, its application is
recorded in the history model. A custom coupled operator is performed by first
modifying the metamodel in the editor, and then attaching a custom migration to
the recorded metamodel changes. Figure 2.10 shows the reusable coupled opera-
tors that need to be executed to evolve the Petri net metamodel. For instance, the
operator Association to Class is used to replace the links between Places and
Transitions by instances of PTArc and TPArc, respectively.

5 http://www.eclipse.org/edapt

http://www.eclipse.org/edapt


2 Coupled Evolution of Software Metamodels and Models 57

Fig. 2.10: Instantiations of reusable coupled operators in a history model in Edapt.

2.5.2 Epsilon Flock

Epsilon Flock6 (subsequently referred to as Flock) is a tool supporting manual
specification of migrations. It provides a textual transformation language tailored to
model migration. In particular, Flock automatically copies all model elements which
are not affected by metamodel evolution from original to migrated models. Flock
is built on top of Epsilon [473], an extensible platform providing inter-operable
languages and tools for model-driven development.

Fig. 2.11: Manual migration specification in Epsilon Flock.

Flock employs a so-called conservative copying algorithm during model migra-
tion [729]. This algorithm copies a model element only from the original to the
migrated model if there is a class in the evolved metamodel having the same name
as the class of the model element. For each copied model element, the algorithm

6 http://www.eclipse.org/epsilon/doc/flock/

http://www.eclipse.org/epsilon/doc/flock/


58 Markus Herrmannsdörfer and Guido Wachsmuth

iterates over all its feature values, copying again only those which have a conform-
ing feature in the evolved metamodel. This conforming feature needs to have the
same name and the original value needs to conform to it. In our running example,
instances of class Net and Place are automatically copied from original to migrated
model.

To migrate model elements or feature values that no longer conform to the
evolved metamodel, Flock allows to overwrite the conservative copying algorithm.
Therefore, Flock provides two kinds of rules: a rule to migrate instances of a type,
and a rule to delete instances of a type. The migration we discussed in Example 2.12
uses only rules of the first kind to migrate instances of Transition. In the migration
rules, instances can be retyped and feature values can be migrated. In Example 2.12,
the values of the new features src and snk need to be set during migration. Fig-
ure 2.11 shows the same migration in the Flock editor, integrated into the Eclipse
IDE.

2.5.3 Comparison of Migration and Transformation Tools

The Transformation Tool Contest is a workshop series where participants submit
solutions for transformation cases. In 2010, one of the three cases was about migra-
tion. In this section, we only give a brief overview of the procedure and the results,
but more details can be found in [727]. The goal of the migration case was to answer
three research questions:

1. What are the pros and cons of the different transformation tools considering mo-
del migration?

2. Which classes of transformation tools are particularly well-suited for realizing a
model migration?

3. How do graph transformation tools compare to model transformation and migra-
tion tools in a model migration scenario?

The case required to specify the migration of activity diagrams from UML 1.4 to
UML 2.2 (see Section 2.3.1). Besides the migration itself, the case defined a num-
ber of extensions, covering a different migration semantics, migration of concrete
syntax and different model serializations. The study subjects were nine tools: two
model migration tools (Flock, COPE), four model transformation tools (ATL/Java,
PETE, UML-RSDS, MOLA), and three graph transformation tools (GrGen.NET,
Fujaba, GreTL). Participants submitted solutions to the case consisting of an instal-
lation on a remote virtual machine, an accompanying description, and a full listing
of the solution. Using the artifacts provided, the solutions were reviewed by model
and graph transformation experts and by the other participants. At the workshop,
the participants presented their solutions and had to face the judgment from an op-
ponent. Finally, the solutions were evaluated by all participants using an evaluation
sheet according to the criteria in Table 2.2.



2 Coupled Evolution of Software Metamodels and Models 59

Table 2.2: Criteria for evaluation by participants at the Transformation Tool Contest
2010.

Name Description

Correctness Does the transformation produce a model equivalent to the migrated UML 2.2
model included in the case resources? Furthermore, does the transformation
specification lend itself to reasoning about the correctness of the migration
process?
-5 (probably does not work at all), 0 (cannot judge), 5 (works for one model),
10 (works for more than one model)

Conciseness How much code is required to specify the transformation? Sprinkle et al. [793]
proposed that the amount of effort required to codify migration should be
directly proportional to the number of changes between original and evolved
metamodel.
-6 (very verbose), -3 (quite verbose), 0 (cannot judge), 3 (quite concise), 6
(very concise)

Understandability How easy is it to read and understand the transformation?
-3 (no idea how it works), 0 (some idea how it works), 3 (fully understand how
it works)

Appropriateness How suitable is the tool for the specific application defined by the case?
-6 (totally inappropriate), -3 (inappropriate), 0 (neutral), 3 (somewhat appro-
priate), 6 (perfect fit)

Tool Maturity How mature is the tool?
-4 (prototype), 0 (average), 4 (good)

Extensions To what extent have the extensions defined by the case been solved?
3 points for each completed extension (for a theoretical maximum of 9 points)

Table 2.3: Per-criterion and overall rank and score for each solution, determined by
the participants of Transformation Tool Contest 2010.

Criterion (weight) Fl
oc

k

C
O

PE

G
rG

en
.N

E
T

Fu
ja

ba

M
O

L
A

PE
T

E

AT
L

/J
av

a

G
R

eT
L

U
M

L
-R

SD
S

Correctness (5) 7 2 2 2 6 1 5 8 9
3.5 5.0 5.0 5.0 3.9 5.5 4.2 2.2 0.9

Conciseness (3) 1 2 2 4 5 7 6 8 9
3.6 2.5 2.5 0.3 0.0 -0.9 -0.8 -1 -1.6

Understandability (3) 1 2 3 5 4 8 6 7 9
2.7 2.2 1.4 1.0 1.3 0.3 0.8 0.7 -0.5

Appropriateness (3) 1 2 3 5 4 7 8 6 9
4.8 4.6 2.2 1.0 2.0 0.6 0.5 1.3 0.3

Extensions (3) 1 4 4 2 8 7 3 4 9
5.4 3.0 3.0 4.7 0.3 2.4 4.5 3.0 0.0

Tool Maturity (4) 3 5 2 1 4 6 8 7 9
1.6 0.7 2.2 3.6 1.3 0.0 -2.3 -0.9 -3.3

Overall ranking 1 2 3 4 5 6 7 8 9
21.6 18 16.5 15.6 9.2 7.9 7.1 7.3 -4.2



60 Markus Herrmannsdörfer and Guido Wachsmuth

Table 2.3 shows the ranking and scores for each solution and each criterion as
well as the overall ranking and score of each solution. For example, PETE was
ranked first for correctness, seventh for appropriateness, and overall sixth. Flock
was ranked first and COPE second in front of the model and graph transformation
tools. Flock was ranked better than COPE for conciseness, understandability and
appropriateness, since the migration is specified directly between source and tar-
get metamodel and not as a sequence of operators. However, COPE was ranked
significantly better than Flock for correctness, since the migration is recorded to-
gether with the evolution, thereby not losing the intention behind the evolution. The
statistical analysis on 12 tool evaluations revealed that tools tailored for migration
perform significantly better on the criteria conciseness, understandability and ap-
propriateness (the point biserial correlation shows strong impact, and the unpaired
t-test confirms significance). A striking similarity between the solutions with the
highest three overall rankings (Flock, COPE and GrGen.NET) is that they rely on
a retype operation for changing the type of an input element into a different type
of the output element. However, the statistical analysis identified no significant dif-
ferences between imperative and declarative tools. Moreover, in-place execution of
migrations performs better on the criteria conciseness and appropriateness (the point
biserial correlation shows weak impact). Finally, the statistical analysis identified no
significant differences between graph and model transformation tools.

2.5.4 Comparison of Model Migration Tools

The authors of the three migration tools AML, COPE and Flock together performed
a comparison of their migration tools. The comparison was done by applying a
number of model migration tools to two common migration scenarios. Again, we
only give a brief overview of the results, but details can be found in [728]. The goal
of the comparison was to answer two research questions:

1. What are the strengths and weaknesses of the different model migration tools?
2. What is the most appropriate model migration tool for a certain situation?

The study objects were two migration scenarios: the small, artificial Petri net
evolution known from the literature and discussed in Section 2.1, and a real-life evo-
lution from the GMF open-source project as discussed in Section 2.3.3. The study
subjects were four tools from different categories of approaches: two manual spec-
ification tools (Ecore2Ecore [415], Flock), one metamodel matching tool (AML),
and one operator-based tool (COPE). Each tool was assigned to a person different
from its author and the evaluation criteria were identified. Table 2.4 shows the re-
sulting evaluation criteria. The study participants had to familiarize themselves with
the tools using the small example, before the tools were applied to the larger ex-
ample and experiences were recorded with the application. The study participants
compiled the experiences by criterion and synthesized a guide for selecting a tool.



2 Coupled Evolution of Software Metamodels and Models 61

Table 2.4: Summary of criteria and results for the comparison of model migration
tools.

Name Description A
M

L
C

O
PE

E
co

re
2E

co
re

Fl
oc

k

Construction Ways in which tool supports developing migration strategies o o - +
Change Ways in which tool supports change to migration strategies + + o +
Extensibility Extent to which user-defined extensions are supported + + - -
Reuse Mechanisms for reusing migration patterns and logic + + - o
Conciseness Size of migration strategies produced with tool - + - +
Clarity Understandability of migration strategies produced with tool - + - +
Expressiveness Extent to which migration problems can be codified with tool - + o +
Interoperability Technical dependencies and procedural assumptions of tool o - o +
Performance Time taken to execute migration + - + o

Table 2.4 also shows the resulting assessment of the different tools according to
the evaluation criteria. + means that the tool was strong in the criterion, - that it
was weak, and o that it was neither strong nor weak. Each tool has its strengths
and weaknesses. Consequently, there is no tool that can be recommended for all
situations. Table 2.5 summarizes the recommendations and guidelines in choosing
a migration tool that were synthesized from the presented results.

Table 2.5: Summary of model migration tool selection advice.

Recommended Tools

Requirement AML COPE Ecore2Ecore Flock

Frequent, incremental co-evolution •
Reverse-engineering • • •
Modeling technology diversity •
Quicker migration for larger models • •
Minimal dependencies •
Minimal hand-written code • •
Minimal guidance from user •
Support for language-specific migrations • •

COPE is ideal for dealing with frequent, incremental co-evolution and requires
hand-written code only to express language-specific migrations. However, COPE
is not a perfect match when performance of the migration is important and when
reverse engineering a migration. In contrast, the other three tools are perfect for re-
verse engineering the migration after the metamodel evolution has been performed.
Generating the migration, ATL requires minimal hand-written code and minimal
guidance from the user, but does not support language-specific migrations. The low-



62 Markus Herrmannsdörfer and Guido Wachsmuth

level Ecore2Ecore is optimized towards high performance and depends only on
few other libraries and tools, but is not very expressive and user-friendly. Based on
a transformation language and framework, Flock supports language-specific migra-
tions and many modeling technologies, but requires some effort and guidance to
manually specify the migration.

2.5.5 Discussion of Tool Support

Even though quite a number of prototypical tools have been built for the approaches,
only two tools are still available today. There is Flock for a manual specification
approach and Edapt for an operator-based approach. These two tools have been
compared to the metamodel matching tool AML which is no longer available today.
In any case, AML’s implementation used in the comparison was not mature enough
to really compete with the other tools. Thus, building a tool following a metamodel
matching approach and showing that it really works in practice, is still an open issue.
For the other two tools, the comparison revealed that Flock is better suited for re-
verse engineering the model migration after the metamodel evolution, while Edapt
is better suited for forward engineering the model migration together with the meta-
model evolution. These two model migration tools have been also compared to a
number of general-purpose model and graph transformation tools. This comparison
showed that model and graph transformation tools can be used to specify the migra-
tion, but are significantly less suited than special-purpose model migration tools.

2.6 Conclusions

In model-driven software engineering, software models are the primary engineering
artifacts. These models are expressed by means of modeling languages. Like soft-
ware, modeling languages and thus their metamodels are subject to evolution due
to changing requirements. When a metamodel is adapted to the new requirements,
existing models may no longer conform to it and need to be migrated. This chapter
discussed the problem of coupled evolution of metamodels and models and how it
can be addressed.

First, the problem was classified according to a number of dimensions: the im-
pact on the modeling language, the impact on existing models, the reversibility of
the coupled evolution, as well as the potential for automating the migration. If the
coupled evolution is reversible, then at least no information is lost in the model.
However, reversibility does not ensure that the meaning of the model is preserved.
Even though there are some definitions of meaning preservation [396, 397, 792],
further work is needed to be able to prove that a migration preserves the meaning of
all models. An important part of this work is to provide explicit semantics specifi-
cations for modeling languages.



2 Coupled Evolution of Software Metamodels and Models 63

Second, the chapter gave an overview of the available empirical results for the
coupled evolution of metamodels and models. In practice, model migration can be
automated to a large extent, and modeling language evolution turned out to be quite
similar to general software evolution. However, additional studies are necessary to
further substantiate the results of these empirical studies. With the increasing adop-
tion of model-based software development in practice, more and more metamodel
histories should be available for analysis.

Third, the existing approaches addressing the problem of coupled evolution were
presented and classified according to a feature model. There are three main cate-
gories of approaches: manual specification of the migration, operator-based speci-
fication of the coupled evolution, as well as the generation of the migration from a
metamodel matching. While the first two categories have been extensively studied,
there is not yet a mature approach for the third category. However, there are some
promising directions that generate operator sequences from a metamodel match-
ing [493, 890].

Fourth, the chapter presented the available model migration tools and a compar-
ison with each other as well as to general-purpose model transformation tools. Un-
fortunately, from the many proposed approaches, there are only a few tools available
that can still be obtained from the internet. The comparison of the model migration
showed that the different categories of approaches favor different usage scenarios:
Manual specification and metamodel matching approaches favor reverse engineer-
ing of the model migration, while operator-based approaches favor the forward engi-
neering of the coupled evolution. Moreover, special-purpose model migration tools
outrank general-purpose model transformation tools when focusing on model mi-
gration scenarios.

Finally, not only the models need to be migrated, when the metamodel changes,
but also other artifacts, like concrete syntax definitions or transformation specifi-
cations. There are already a number of results for the migration of graphical syn-
tax defined with GMF [248] or the migration of model transformations [588, 726].
However, more work is necessary to unify these approaches with the approaches for
model migration.



Chapter 3
Software Product Quality Models

Rudolf Ferenc, Péter Hegedűs and Tibor Gyimóthy

Summary. Both for software developers and managers it is crucial to have infor-
mation about different aspects of the quality of their systems. This chapter gives a
brief overview about the history of software product quality measurement, focusing
on software maintainability, and the existing approaches and high-level models for
characterizing software product quality. The most widely accepted and used prac-
tical maintainability models and the state-of-the-art works in the subject are intro-
duced. These models play a very important role in software evolution by allowing to
estimate future development costs, assess risks, or support management decisions.
Based on objective aspects, the implementations of the most popular software main-
tainability models are compared and evaluated. The evaluation includes the Quality
Index, SQALE, SQUALE, SIG, QUAMOCO, and Columbus Quality Model. The
chapter presents the result of comparing the features and stability of the tools and
the different models on a large number of open-source Java projects.

65
 Springer

. et al. (eds.), E ,
DOI 10.1007/978-3- - - _3, ©  2014
T Mens volving Software Systems

642 45398 4 -Verlag Berlin Heidelberg



66 Rudolf Ferenc, Péter Hegedűs and Tibor Gyimóthy

3.1 Introduction

The need for measuring the quality of software products is almost as old as soft-
ware engineering itself. Software product quality monitoring has become one of the
central issues of software development and evolution. Both for software developers
and managers it is crucial to have clues about different aspects of the quality of their
systems. The information is mainly used in making decisions during software evo-
lution (e. g., to start a refactoring phase or reimplement a system because of wear
out), backing up intuition, estimating future costs and assessing risks.

A large number of quality models, measures, and approaches have been intro-
duced in the past. These software quality assessment models belong to one of the
following types:

1. Software Process Quality Models – the idea behind these models is that they mea-
sure and improve the software development process. These models are based on
the assumption that better development processes lead to better quality software
products. These models make their estimation based on different process met-
rics (e. g., defect removal efficiency, percentage of management effort for a given
project size, average age of unresolved issues). Some of the well-known process
quality models are SPICE [259], ISO/IEC 9001 (Quality management systems –
Requirements) [427], and Capability Maturity Model Integration (CMMI) [184].

2. Software Product Quality Models – these models measure the software prod-
uct itself. They measure different kinds of source code metrics (e. g., Lines of
Code, McCabe’s cyclomatic complexity, coupling) and combine them somehow
to assess the quality of the product. Early quality models are McCall’s [574]
and Boehm’s [122] models followed by the standard ISO/IEC 9126 [422] and its
successor ISO/IEC 25000 (SQuaRE) [425]. Many practical product quality mod-
els have been derived from these standards since then (e. g., ColumbusQM [63],
SIG [387], SQALE [516], SQUALE [619], QUAMOCO [905]).

3. Hybrid Software Quality Models – these models combine the previous ap-
proaches: they calculate both product- and process-based metrics to assess the
quality of software, like in the work of Nagappan et al. [630]. Particularly, they
added line changes, code churn and other process metrics to software product
metrics and built a hybrid model for post-release failure prediction.

This book chapter deals only with the second type of models that assess the software
quality based on software product metrics.

Even though early product quality models have appeared in 1977, right after the
introduction of the first source code metrics, the explosion of new practical quality
models has started after 1991 with the appearance of the ISO/IEC 9126 software
product quality standard (see Figure 3.1). This standard defines six high-level prod-
uct quality characteristics: functionality, reliability, usability, efficiency, maintain-
ability and portability. The characteristics are affected by low-level quality proper-
ties, that can either be internal (measured by looking inside the product, e. g., by



3 Software Product Quality Models 67

analyzing the source code) or external (measured by execution of the product, e. g.,
by performing testing).

In the context of software evolution, which is the focus of this book, maintain-
ability is probably the most attractive, observed and evaluated quality characteristic
of all (discussed in more details later on in Section 3.2). The importance of main-
tainability lies in its very obvious and direct connection with the costs of altering the
behavior of the software [62]. Although, the quality of source code unquestionably
affects maintainability, the standard does not provide a common set of source code
measures as internal quality properties. The standard also does not specify the way
how the aggregation of quality attributes should be performed. Thus it offers a kind
of freedom to adapt the model to specific needs.

Many researchers took the advantage of this freedom and a number of practical
quality models have been proposed so far [1, 51, 63, 68, 387, 516, 619, 905]. Most
of the models discussed in this chapter share some basic common principles:

• They extract information from the source code, therefore they assess quality
properties related to software maintainability. However, we often refer to these
models as quality models as they define quality to be the maintainability of the
code.

• Each of them uses a hierarchical model (e. g., Figure 3.2) for estimating quality
with some kinds of metrics at the lowest level. In the case of each considered
source code metric, its distribution over the source code elements is taken. Ei-
ther the whole distribution, or a number (e. g., average), or a category (based on
threshold values) is used for representation.

• The number or category is aggregated “upwards” in the model by using some
kind of aggregation mechanism (weighting or linear combination, etc).

Many of these practical quality models have been implemented and integrated
into modern tools supporting software evolution. They allow a continuous insight
into the quality of the software product under development. Moreover, many other
direct applications of these models exists. Besides system level qualification some
of them provide a list of critical elements that programmers should fix in order to im-
prove the overall maintainability of the source code. As an example, Section 3.2.4.5
presents a drill-down approach demonstrating a sophisticated technique for deriving
maintainability values at source code element level. Another popular field of appli-
cation of these models is in the cost estimation of future development efforts [62].

This chapter is organized as follows. Section 3.2 gives a historical overview
of software product quality measurement starting from the first software metrics
through simple metrics-based prediction models and early theoretical quality mod-
els to the state-of-the-art practical quality models. In Section 3.3, an application of
practical quality models during software evolution is introduced. Section 3.4 col-
lects and describes some of the available tools implementing the modern practical
quality models. Then, in Section 3.5 we evaluate the introduced practical models
and their implementing tools. First, we compare the models behind the tools based
on a set of evaluation criteria, and afterwards we present our experiences of using



68 Rudolf Ferenc, Péter Hegedűs and Tibor Gyimóthy

the tools by analyzing different open-source Java projects. Finally, we conclude the
chapter in Section 3.6 and list some of the future research directions in the field.

3.2 Evolution of Software Product Quality Models

The need for measuring the quality of the software products has almost the same
age as software engineering itself. The measuring approaches have gone through a
rigorous evolution during the past 50 years. The history of software product quality
measurement is presented on the timeline in Figure 3.1.

Fig. 3.1: The history of software quality measurement

The first tools for assessing product quality were simple metrics like Lines Of
Code, McCabe complexity or Halstead’s metrics. They started to appear from the
mid 1960’s. The growing number of metrics has inspired the appearance of the
early theoretical quality models like McCall’s [574] or Boehm’s model [122] at the
end of the 1970’s. They all tried to capture high-level quality properties based on a
hierarchical model. In 1990’s all these theoretical models have been merged into the
robust ISO/IEC 9126 [422] software product quality standard that had a huge impact
on further quality models. The standard has been revised resulting in a new edition
in 2005, marked as ISO/IEC 25000 (Systems and software Quality Requirements
and Evaluation – SQuaRE) [425].

Another branch of quality assessment approach that started from the mid 1990’s
is the development of empirical prediction models using software metrics as predic-
tors. These approaches try to predict software quality by using different techniques
like regression [663], neural networks [952], or Naive-Bayes classifiers [869] based
on empirical studies. One well-known such model is the Maintainability Index.

To overcome the complexity and lack of application details of the ISO standards
as well as the hard interpretation and explicability of the empirical prediction mod-
els, a whole set of new practical quality models have been introduced in the past



3 Software Product Quality Models 69

few years (e. g., ColumbusQM [63], SIG [387], SQALE [516], SQUALE [619],
QUAMOCO [905]). Most of these models follow the structure of the ISO standards
but also define concrete source code metrics and algorithms for aggregating them
to higher levels of the hierarchical model. The problem of the hard interpretation
of the results has been addressed by utilizing so-called reference systems (bench-
marks) that serve as the basis of the qualification. As another possible solution the
concept of technical debt [146] has been introduced. This term was coined by Ward
Cunningham to describe the obligation that a software organization incurs when it
chooses a design or construction approach that is expedient in the short term but that
increases complexity and is more costly in the long term.

Although the models share a lot of properties, they also differ in many aspects.
It is a very interesting open question if these practical models can be unified and
merged into a common standard like it was done with the early theoretical models.
Our vision is that these practical models can be merged into a common standard in
the future to form a whole new direction of software quality assessment.

This section gives an overview of the evolution of software quality measurements
and approaches starting from the first software metrics through simple metrics-based
prediction models and early theoretical quality models to the state-of-the-art prac-
tical quality models. At the end of the section we also present some of the current
applications of the existing practical quality models.

3.2.1 Software Metrics

Although the first dedicated book on software metrics was not published until
1976 [326], according to the software metrics roadmap of Fenton and Neil [290],
the history of active software metrics dates back to the mid 1960’s when the Lines
of Code (LOC) metric was used as the basis for measuring programming produc-
tivity and effort. In the late 1960’s LOC was also used as the basis for measuring
program quality (normally measured indirectly as defects per KLOC). One of the
first prediction models was presented in 1971 by Akiyama [10] when he proposed a
regression-based model for module defect density prediction in terms of the module
size measured in KLOC.

Starting from the mid 1970’s an explosion of interest arose in the measures of
software complexity (pioneered by Halstead [361] and McCabe [573]) and mea-
sures of functional size (such as function points pioneered by Albrecht [5]), which
were intended to be independent of the programming language of choice. The Hal-
stead complexity and McCabe cyclomatic complexity became the main predictors
of different quality aspects and effort estimation. Early theoretical quality models
(McCall’s, Boehm’s, etc.) have started to appear also in the mid 1970’s and were
based on software metrics.

With the appearance of new programming paradigms such as object-orientation
a whole new set of metrics have been developed. The most well-known metric suite
for OO systems was introduced by Chidamber and Kemerer [180]. Since their ap-



70 Rudolf Ferenc, Péter Hegedűs and Tibor Gyimóthy

pearance, these OO metrics have been used to characterize, evaluate and improve
the design of large applications [495]. This variety of software metrics also inspired
works on new prediction models for software quality and effort estimation.

3.2.2 Early Theoretical Quality Models

The approaches for modeling software quality appeared right after the introduction
of the first software metrics. One of the earliest documented quality model [574]
was created by McCall et al. in 1977. McCall produced this model for the US Air
Force and he attempted to bridge the gap between users and developers by focusing
on a number of software quality factors that reflect both the users’ views and the de-
velopers’ priorities. The structure of McCall’s quality model consists of three major
perspectives (types of quality characteristics) for defining and identifying the qual-
ity of a software product, and each of these major perspectives consists of a number
of quality factors. Each of these quality factors have a set of quality criteria, and
each quality criterion could be reflected by one or more metrics. The perspectives
are:

1. Product revision
The product revision perspective identifies quality factors that influence the abil-
ity to change the software product, these factors are:

• Maintainability, the ability to find and fix a defect.
• Flexibility, the ability to make changes required as dictated by the business.
• Testability, the ability to validate the software requirements.

2. Product transition
The product transition perspective identifies quality factors that influence the
ability to adapt the software to new environments:

• Portability, the ability to transfer the software from one environment to an-
other.

• Reusability, the ease of using existing software components in a different con-
text.

• Interoperability, the extent, or ease, to which software components work to-
gether.

3. Product operations
The product operations perspective identifies quality factors that influence the
extent to which the software fulfills its specification:

• Correctness, the functionality matches the specification.
• Reliability, the extent to which the system fails.
• Efficiency, system resource (including CPU, disk, memory, network) usage.
• Integrity, protection from unauthorized access.
• Usability, ease of use.



3 Software Product Quality Models 71

In total, McCall identified 11 quality factors broken down by 3 perspectives, as listed
above.

In 1978, Boehm et al. [122] also defined a hierarchical model of software quality
characteristics, trying to qualitatively define software quality as a set of attributes
and metrics. It consists of high-level characteristics, intermediate-level characteris-
tics and lowest level (primitive) characteristics which contribute to the overall qual-
ity level. At the highest level of his model, Boehm defined three primary uses (or
basic software requirements), which are the following:

• As-is utility, the extent to which the as-is software can be used (i. e., ease of use,
reliability and efficiency).

• Maintainability, ease of identifying what needs to be changed as well as ease of
modification and retesting.

• Portability, ease of changing software to accommodate a new environment.

In the intermediate level, there are seven quality characteristics that represent the
qualities expected from a software system:

• Portability, the extent to which the software will work under different computer
configurations (i. e., operating systems, databases etc.).

• Reliability, the extent to which the software performs as required, i. e., the ab-
sence of defects.

• Efficiency, optimum use of system resources during correct execution.
• Usability, ease of use.
• Testability, ease of validation, that the software meets the requirements.
• Understandability, the extent to which the software is easily comprehended with

regard to purpose and structure.
• Flexibility, the ease of changing the software to meet revised requirements.

The primitive characteristics can be used to provide the foundation for defining qual-
ity characteristics; this use is one of the most important goals established by Boehm
when he constructed his quality model.

In 1995, Dromey [262] presented a product based quality model that recognizes
that quality evaluation differs for each product. He realized that a more dynamic
idea for modeling the evaluation process is needed to be general enough to be suc-
cessfully applied for different systems. Dromey was focusing on the relationship
between the quality attributes and the sub-attributes, as well as attempting to con-
nect software product properties with software quality attributes. Dromey’s quality
model is structured around a 5 step process:

1. Choose a set of high-level quality attributes necessary for the evaluation.
2. List components/modules in your system.
3. Identify quality-carrying properties for the components/modules (qualities of the

components that have the biggest impact on the product properties from the list).
4. Determine how each property affects the quality attributes.
5. Evaluate the model and identify weaknesses.



72 Rudolf Ferenc, Péter Hegedűs and Tibor Gyimóthy

The FURPS [344] model was originally presented by Robert Grady at Hewlett
Packard in 1992, then it has been extended by IBM Rational Software into FURPS+,
where the ‘+’ indicates such requirements as design constraints, implementation
requirements, interface requirements and physical requirements. Under the FURPS
model, the following characteristics are used:

• Functionality - it may include feature sets, capabilities, and security.
• Usability - it may include human factors, aesthetics, consistency in the user inter-

face, online and context sensitive help, wizards and agents, user documentation,
and training materials.

• Reliability - it may include frequency and severity of failure, recoverability, pre-
dictability, accuracy, and mean time between failures.

• Performance - it imposes conditions on functional requirements such as speed,
efficiency, availability, accuracy, throughput, response time, recovery time, and
resource usage.

• Supportability - it may include testability, extensibility, adaptability, maintain-
ability, compatibility, configurability, serviceability, installability, and localiz-
ability.

ISO/IEC 9126 [422] is an international standard for the evaluation of software
products. The standard is divided into four parts which address, respectively, the
following subjects: quality model; external metrics; internal metrics; and quality in
use metrics. ISO/IEC 9126 Part one, referred to as ISO/IEC 9126-1 is an exten-
sion of the work done by McCall, Boehm, Grady and others in defining a set of
software quality characteristics. The standard defines six high-level product quality
characteristics which are widely accepted both by industrial experts and academic
researchers. These characteristics are: functionality, reliability, usability, efficiency,
maintainability and portability. Table 3.1 shows the characteristics defined by the
standard together with their sub-characteristics.

In the context of software evolution, maintainability is one of the most observed
and evaluated quality characteristics (see Table 3.3). The importance of maintain-
ability lies in its direct connection with the costs of changing the software, either
by performing bug-fixes, refactoring it or adding new features. Although the source
code quality directly affects maintainability, the standard does not provide a com-
mon set of source code measures as internal quality properties. The standard also
does not specify how the aggregation of quality attributes should be performed.
These are not deficiencies of the standard, but it offers a kind of freedom to adapt
the model to specific needs.

The successor of the ISO/IEC 9126 standard family is the ISO/IEC 25000 (Sys-
tems and software Quality Requirements and Evaluation – SQuaRE) [425] family.
It introduces slight modifications to the previous standard which are mainly termi-
nology changes. Table 3.2 lists the quality characteristics and subcharacteristics of
the most recent standard.

Table 3.3 provides an overview of the described theoretical quality models. The
first four rows show some basic characteristics of the models based on the work of
Fahmy et al. [282]. The first row contains the number of levels of the hierarchical



3 Software Product Quality Models 73

Table 3.1: The ISO/IEC 9126 characteristics and subcharacteristics

Characteristics Subcharacteristics Characteristics Subcharacteristics
Functionality Suitability Maintainability Analyzability

Accuracy Changeability
Interoperability Stability
Security Testability
Functionality Compliance Maintainability Compliance

Reliability Maturity Efficiency Time Behavior
Fault Tolerance Resource Utilization
Recoverability Efficiency Compliance
Reliability Compliance

Usability Understandability Portability Adaptability
Learnability Installability
Operability Co-Existence
Attractiveness Replaceability
Usability Compliance Portability Compliance

Table 3.2: The ISO/IEC 25000 (SQuaRE) characteristics and subcharacteristics

Characteristics Subcharacteristics Characteristics Subcharacteristics
Functional suitability Functional Appropriateness Portability Adaptability

Functional Correctness Installability
Functional Completeness Replaceability

Security Confidentalility Usability Appropriateness
Integrity Recognisability
Non-repudiation Learnability
Accountability Operability
Authenticity User error protection

User interface aesthetics
Accessibility

Maintainability Modularity Reliability Availability
Reusability Fault tolerance
Analysability Recoverability
Modifiability Maturity
Testability

Performance efficiency Time-bahaviour Compatibility Co-existence
Resource utilisation Interoperability
Capability

model. Second row shows the relation types between the quality attributes in the
model. After that rows three and four highlight the main advantages and disadvan-
tages of the particular models. In the following rows the quality attributes of the
different models are presented. Only quality attributes at the highest level are con-
sidered. It can be seen that there are a lot of common properties among the models.
However, only Reliability appears at the highest level in each model. Maintain-
ability, Efficiency, Usability and Portability are also very common attributes, they



74 Rudolf Ferenc, Péter Hegedűs and Tibor Gyimóthy

Table 3.3: Comparison of theoretical quality models [13, 282]

Characteristics McCall Boehm Dromey FURPS ISO 9126 ISO 25000
Nr. of levels 2 3 2 2 3 3
Relationship Many-Many Many-Many One-Many One-Many One-Many One-Many
Main Evaluation Hardware Different Separation Evaluation Evaluation
advantage Criteria Factors Systems of FR & Criteria Criteria

Included NFR
Main Components Lack of Comprehen- Portability Generality Generality
disadvantage Overlapping Criteria siveness not

Considered
Quality
Attributes
Maintainability X X X X X
Flexibility X
Testability X X
Correctness X
Efficiency X X X X X
Reliability X X X X X X
Integrity X
Usability1 X X X X X X
Portability X X X X X
Reusability X X
Interoperability X
Understandability X
Modifiability X
Functionality X X X X
Performance X X
Supportability X
Security X
Compatibility X

1 Also referred to as Human Engineering in some models

appear in 5 out of the 6 models. Moreover, these properties are contained in each
model just not at the highest level everywhere (e. g., in FURPS Maintainability is
included in the Supportability characteristic). On the other hand, there are also at-
tributes that are specific to one model e. g., Supportability, Security, Compatibility,
etc. Further reading about these theoretical quality models can be found in the work
of Al-Qutaish [13].

3.2.3 Metrics-based Empirical Prediction Models

The first step towards applying quality models in practice was the development of
different empirical models. All these models apply software metrics as quality pre-
dictors.



3 Software Product Quality Models 75

One of the most widely known empirical maintainability prediction models is
the Maintainability Index (MI) [662] introduced in 1997 by the Carnegie Mellon
Software Engineering Institute (SEI). The formula has many derivatives, but the
original form is given in Equation 3.1. A common variation, shown in Equation 3.2,
adds the comment lines to the model.

MI = 171−5.2∗ lnV −0.23∗G−16.2∗ lnLOC (3.1)

MI = 171−5.2∗ log2 V−0.23∗G−16.2∗ log2 LOC+50∗sin(
√

2.46∗CM) (3.2)

The applied measures are the following:

• V - Halstead Volume.
• G - Cyclomatic Complexity.
• LOC - count of source Lines Of Code (SLOC).
• CM - percent of lines of Comments.

The CM percentage in the maintainability index formula has been interpreted in two
different ways. Liso [530] assumed CM to range between 0 and 100 and discussed
the appropriateness of the value 2.46 leading to strange peaks in sin(

√
2.46∗CM).

Thomas [831] has assumed CM to range between 0 and 1.
Later on, many variations of the formula have been introduced, e. g., one of its

derivatives is built into Microsoft Visual Studio as well. However, the effectiveness
and usefulness of the maintainability index is and has been a subject of debate [142,
289, 387, 483].

Therefore, a wide variety of new approaches has been introduced for improving
the MI. The applied methods are ranging from regression models to fuzzy aggre-
gation and Bayes classifiers (see Table 3.4). These empirical studies also differ in
which metrics have found to be the most effective maintainability predictors. Riaz et
al. presented a detailed comparative study [714] on existing empirical maintainabil-
ity prediction models. The work collects many important features of the different
empirical models, e. g., the definition of quality the authors used, the applied vali-
dation methodology, or the accuracy of the model. Table 3.4 contains a summary of
some well-known works in the field and their important properties.



76 Rudolf Ferenc, Péter Hegedűs and Tibor Gyimóthy

Ta
bl

e
3.

4:
A

su
m

m
ar

y
of

em
pi

ri
ca

lm
ai

nt
ai

na
bi

lit
y

pr
ed

ic
tio

n
m

od
el

s
[7

14
]

A
ut

ho
rs

Ye
ar

A
pp

ro
ac

h
M

ai
nt

ai
na

bi
lit

y
M

et
ri

cs
O

m
an

,
19

94
3

re
gr

es
si

on
ba

se
d

m
od

el
s:

Su
bj

ec
tiv

e
as

se
ss

m
en

t(
or

di
na

ls
ca

le
m

et
ri

c)
by

us
in

g
th

e
U

S
an

d
H

ag
em

ei
st

er
[6

63
]

1.
Si

ng
le

m
et

ri
c

m
od

el
ba

se
d

on
H

al
st

ea
d’

s
E

ff
or

t
A

ir
Fo

rc
e

O
pe

ra
tio

na
lT

es
ta

nd
E

va
lu

at
io

n
C

en
te

r’
s

so
ft

w
ar

e
2.

A
fo

ur
-m

et
ri

c
po

ly
no

m
ia

lm
od

el
m

ai
nt

ai
na

bi
lit

y
ev

al
ua

tio
n

in
st

ru
m

en
t,

w
hi

ch
pr

ov
id

es
a

ra
tin

g
3.

A
fiv

e-
m

et
ri

c
lin

ea
rr

eg
re

ss
io

n
m

od
el

as
w

el
la

s
ca

te
go

ri
ze

s
m

ai
nt

ai
na

bi
lit

y
as

lo
w

,m
ed

iu
m

or
hi

gh
C

ol
em

an
,A

sh
,

19
94

1.
H

PM
A

S
(H

ew
le

tt
Pa

ck
ar

d’
s

so
ft

w
ar

e
Sa

m
e

as
fir

st
bu

tt
he

y
ca

ll
it

H
PM

A
S

M
ai

nt
ai

na
bi

lit
y

In
de

x
L

ow
th

er
,a

nd
O

m
an

.[
19

6,
19

7]
19

95
M

ai
nt

ai
na

bi
lit

y
A

ss
es

sm
en

tS
ys

te
m

)
2.

Po
ly

no
m

ia
lm

ai
nt

ai
na

bi
lit

y
as

se
ss

m
en

tm
od

el
W

el
ke

r,
O

m
an

[9
12

]
19

97
1.

Im
pr

ov
ed

,t
hr

ee
-m

et
ri

c
M

Im
od

el
Sa

m
e

as
fir

st
bu

tt
he

y
ca

ll
it

H
PM

A
S

M
ai

nt
ai

na
bi

lit
y

In
de

x
2.

Im
pr

ov
ed

,f
ou

r-
m

et
ri

c
M

Im
od

el
G

en
er

o,
O

liv
as

,
20

01
Fu

zz
y

Pr
ot

ot
yp

ic
al

K
no

w
le

dg
e

D
is

co
ve

ry
us

ed
fo

r
E

xp
er

to
pi

ni
on

us
in

g
an

or
di

na
ls

ca
le

Pi
at

tin
i,

an
d

R
om

er
o,

F.
[3

19
]

pr
ed

ic
tio

n
ba

se
d

on
Fu

zz
y

D
ef

or
m

ab
le

Pr
ot

ot
yp

es
M

is
ra

[6
09

]
20

05
6

m
od

el
s

ba
se

d
on

m
ul

tiv
ar

ia
te

re
gr

es
si

on
an

al
ys

is
M

ai
nt

ai
na

bi
lit

y
In

de
x

(M
I)

V
an

K
ot

en
,G

ra
y

[8
69

]
20

06
1.

B
ay

es
ia

n
N

et
w

or
k

-N
ai

ve
-B

ay
es

C
la

ss
ifi

er
C

H
A

N
G

E
m

et
ri

c:
co

un
to

fL
O

C
ch

an
ge

d
du

ri
ng

2.
R

eg
re

ss
io

n
M

od
el

s
(R

eg
re

ss
io

n
Tr

ee
,M

ul
tip

le
a

3-
ye

ar
m

ai
nt

en
an

ce
pe

ri
od

lin
ea

rr
eg

re
ss

io
n

m
od

el
s)

Sh
ib

at
a,

R
in

sa
ka

,
20

07
3

N
on

-H
om

og
en

eo
us

Po
is

so
n

Pr
oc

es
s

ba
se

d
T

he
ir

ow
n

qu
eu

ei
ng

m
od

el
w

ith
an

in
fin

ite
nu

m
be

ro
fs

er
ve

rs
,

D
oh

i,
an

d
O

ka
m

ur
a

[7
74

]
So

ft
w

ar
e

R
el

ia
bi

lit
y

M
od

el
s

(N
H

PP
-b

as
ed

SR
M

s)
:

w
hi

ch
is

re
la

te
d

to
th

e
so

ft
w

ar
e

fa
ul

t-
de

te
ct

io
n/

co
rr

ec
tio

n
1.

E
xp

on
en

tia
lS

R
M

pr
ofi

le
s

2.
S-

Sh
ap

ed
SR

M
3.

R
ay

le
ig

h
SR

M
Z

ho
u,

an
d

L
eu

ng
[9

52
]

20
07

M
ul

tiv
ar

ia
te

L
in

ea
rR

eg
re

ss
io

n,
A

rt
ifi

ci
al

N
eu

ra
l

C
H

A
N

G
E

m
et

ri
c:

co
un

to
fL

O
C

ch
an

ge
d

du
ri

ng
N

et
w

or
k,

R
eg

re
ss

io
n

Tr
ee

,S
up

po
rt

V
ec

to
rR

eg
re

ss
io

n,
a

3-
ye

ar
m

ai
nt

en
an

ce
pe

ri
od

M
ul

tiv
ar

ia
te

A
da

pt
iv

e
R

eg
re

ss
io

n
Sp

lin
es

Z
ho

u,
an

d
X

u
[9

53
]

20
08

1.
U

ni
va

ri
at

e
L

in
ea

rR
eg

re
ss

io
n

A
na

ly
si

s
M

ai
nt

ai
na

bi
lit

y
In

de
x

(M
I)

2.
M

ul
tiv

ar
ia

te
L

in
ea

rR
eg

re
ss

io
n

M
od

el



3 Software Product Quality Models 77

3.2.4 State-of-the-art Practical Quality Models

The appearance of the widely accepted ISO/IEC 9126 and related standards [422]
has pushed forward the research in the field of quality models. Numerous papers,
ranging from highly theoretical to purely practical ones, are dealing with this impor-
tant research area. Some of the research has focused on developing a methodology
for adapting the ISO/IEC 9126 model in practice [119, 807]. They provide guide-
lines or a framework for constructing effective quality models.

This section focuses more on practical models that are directly applicable for
assessing the quality of software systems. Using the results of static source code
analysis is one of the most widespread solutions to calculate an external quality at-
tribute from internal quality attributes [71]. There are several case studies examining
if metrics are appropriate indicators for external quality attributes such as code fault
proneness [357, 660], maintainability [59] and attractiveness of the user interface
[584].

The majority of these practical models consider the maintainability aspect of
quality only, because it is the easiest characteristic to assess based on pure source
code analysis. Some of the models consider other quality attributes as well, like
usability (often requiring manual input for the qualification). Regarding the termi-
nology, we use quality model and maintainability model as synonyms throughout
this section.

3.2.4.1 Software QUALity Enhancement project (SQUALE)

The SQUALE model presented by Mordal et al. [619] introduces so-called prac-
tices to connect the ISO/IEC 9126 characteristics to metrics. A practice in a source
code element expresses a low-level rule and the reparation cost of violating this
rule. The reparation cost of a source code element is calculated by the sum of the
reparation costs of its rule violations. The practices can use multiple source code
measures like complexity, lines of code, coding rule violations, etc. (e. g., the com-
ment rate practice uses the measures cyclomatic complexity v(G) and source code
lines, SLOC). Based on the measures, a practice rating in the [0;3] interval can be
calculated, where 3 means the fully achieved goal, 0 means not achieved goal, 1 and
2 means partly achieved goal. In the case of the comment rate practice, the rating
can be determined according to the following rule:

Comment rate practice
if v(G)< 5 and SLOC < 30 then

rating = 3
else

rating = % comments per loc
1−10(−v(G)/15)

end if



78 Rudolf Ferenc, Péter Hegedűs and Tibor Gyimóthy

A criterion assesses one principle of software quality (e. g., safety, simplicity, or
modularity) and it aggregates a set of practices. A criterion mark is computed as the
weighted average of the composed practice marks. There are different weighting
profiles, e. g., hard, medium, soft.

A factor represents the highest quality assessment to provide an overview of
project health (e. g., functional capacity or reliability). A factor aggregates a set of
criteria and its mark is computed as the average of the composed criteria marks.

The model also defines a so-called improvement plan that gives the order in
which the elements should be improved. The plan is based on how to achieve the
biggest improvement in the rating with the lowest invested effort.

3.2.4.2 Software Quality Assessment based on Lifecycle Expectations
(SQALE)

The SQALE quality model introduced by Letouzey and Coq [516] is basically a re-
quirements model. Assessing software source code is therefore similar to measuring
the distance which separates it from its quality target.

The model consists of quality characteristics built on top of development activ-
ities following one another. The characteristics are taken from the ISO/IEC 9126
standard; however, they are grouped differently and their subcharacteristics are
changed entirely. Each subcharacteristic is measured by a number of different con-
trol points. The control points are base measures (indicators) that measure differ-
ent non-compliance aspects of the source code. e. g., an understandability (a sub-
characteristic of maintainability) indicator is the file comment ratio. If it is below
SQALE’s default threshold of 25%, a violation is counted.

Every rule violation has a remediation effort (which depends on the rule). The
model calculates an index for every characteristic which is the sum of all the re-
mediation efforts of its rule violations. The index represents the remediation effort
which would be necessary to correct the non-compliances detected in the compo-
nent, versus the model requirements. Since the remediation index represents a work
effort, the consolidation of the indices is a simple addition of uniform information.
In this way coding rule violation non-compliances, threshold violations for a met-
ric or the presence of an antipattern non-compliance can be compared using their
relative impact on the index.

Besides these remediation indices the model presents a five level rating for the
different components or the system as a whole. The ratings are A, B, C, D, E (A
being the best, E the worst) and can be calculated by summing the remediation
costs of the rule violations for a component divided by the average development
cost of reimplementing the same component (estimated from LOC). Based on preset
thresholds for this ratio a rating can be derived (e. g., if the ratio is less than 0.1%
then the rating is A).



3 Software Product Quality Models 79

3.2.4.3 Quamoco Quality Model

The Quamoco quality framework [905] is the result of a German national research
project carried out between 2009 and 2011. The Quamoco Consortium – consisting
of research institutions and companies – has developed a quality standard applicable
in practice that makes the performance and efficiency of software products made in
Germany assessable and accountable.

Quamoco is based on practical experiences learnt from existing quality models.
The high-level of detail of this approach for the qualified certification of software
projects also takes into account the diversity of different software products. This
means that Quamoco contains a basic standard of quality that is complemented
by domain-specific quality standards. The quality of software products can thus
be modeled flexibly. At the same time, Quamoco ensures that all identified quality
requirements are fully integrated.

The Quamoco approach uses the following definitions:

• Quality Model: A model with the objective to describe, assess and/or predict
quality.

• Quality Meta Model: A model of the constructs and rules needed to build specific
quality models.

• Quality Modeling Framework: A framework to define, evaluate and improve
quality. This usually includes a quality metamodel as well as a methodology
that describes how to instantiate the metamodel and use the model instances for
defining, assessing, predicting and improving quality.

The main concepts of the quality model are Factors. A factor expresses a property
of an entity. Entities are the things that are important for quality. Properties describe
the attributes of the entities. This concept of a factor is rather general. Thus, the
Quamoco model uses it on two levels of abstraction:

• Quality Aspects describe abstract quality goals defined for the whole product.
The quality model uses the “-ilities” of ISO/IEC 25000 as quality aspects. Typical
examples for such quality aspects are Maintainability, Analysability, and Modi-
fiability.

• Product Factors describe concrete, measurable properties of concrete entities. An
example for a factor is the Complexity of a method, which can be measured by
the cyclomatic complexity number, or by the nesting depth of the method.

To close the gap between abstract quality aspects and measurable product factors,
the product factors need to be set in relation to the quality aspects. This is done via
Impacts. An impact is either positive or negative and describes how the degree of
presence or absence of a product factor influences a quality aspect.

A third layer in the levels of abstraction are Measures, which describe how a
specific product factor can be quantified. To realize the connection to concrete tools
in a quality assessment, the approach further introduces Instruments. An instrument
describes a concrete implementation of a measure. For the example of the nesting



80 Rudolf Ferenc, Péter Hegedűs and Tibor Gyimóthy

depth, an instrument is the corresponding metric as implemented in the quality anal-
ysis framework ConQAT [234]. This way, different tools can be used for a single
measure.

In order to fully utilize the quality model, aggregation formulas need to be spec-
ified. They are called Evaluations and they are assigned to the factors in the quality
model.

3.2.4.4 SIG Maintainability Model

Kuipers and Visser introduced a maintainability model [483] as a replacement of the
Maintainability Index by Oman and Hagemeister [662]. Based on this work Heit-
lager et al. [387], members of the Software Improvement Group (SIG) company
proposed an extension of the ISO/IEC 9126 model that uses source code metrics at
low-level. Metric values are split into five categories, from poor (--) to excellent
(++). The evaluation in their model means summing the values for each attribute
(having the values between -2 and +2) and then aggregating the values for charac-
teristics using the mapping presented in Table 3.5. The model was recently adapted
to the ISO/IEC 25000 standard.

Table 3.5: The SIG quality characteristic mapping

Volume Complexity Duplications Unit size Unit tests
Analysability X X X X
Changeability X X

Stability X
Testability X X X

Correia and Visser [202] presented a benchmark that collects measurements of a
wide selection of systems. This benchmark enables systematic comparison of tech-
nical quality of (groups of) software products. Alves et al. presented a technique for
deriving metric thresholds from benchmark data [24]. This method is used to derive
more reasonable thresholds for the SIG model as well.

Correia and Visser [203] introduced a certification method that is based on the
SIG quality model. The method makes it possible to certify technical quality of soft-
ware systems. Each system can get a rating from one to five stars (-- corresponds
to one star, ++ to five stars). Baggen et al. [58] refined this certification process by
doing regular re-calibration of the thresholds based on the benchmark.

The SIG model uses binary relation between system properties and character-
istics. Correia et al. created a survey [201] to elicit weights for their model. The
survey was filled out by IT professionals, but the authors finally concluded that us-
ing weights does not improve their quality model because of the lack of consensus
among developers.



3 Software Product Quality Models 81

The validation of the model has been done through an empirical case study.
Luijten and Visser [543] showed that the metrics of the SIG quality model corre-
late with the time needed for resolving a defect in a software.

3.2.4.5 Columbus Quality Model

This subsection describes the Columbus Quality Model (ColumbusQM) in full tech-
nical details to give an insight for the reader about the complexity of a modern
maintainability model.

The Columbus approach [63] to compute ISO/IEC 9126 quality characteristics
uses a so-called benchmark (i. e., a source code metric repository database consist-
ing of source code metrics of open-source and industrial software systems) and it
is based on a directed acyclic graph (see Figure 3.2), whose nodes correspond to
quality properties that can either be internal or external. The nodes representing in-
ternal quality properties are called sensor nodes (white nodes in Figure 3.2) as they
measure internal quality directly. The other nodes are called aggregate nodes as they
acquire their measures through aggregation. The approach uses aggregate nodes de-
fined by the ISO/IEC 9126 standard (dark gray nodes in Figure 3.2) as well as newly
defined ones (light gray nodes in Figure 3.2).

Fig. 3.2: Java Attribute Dependency Graph of ColumbusQM

The edges of the graph represent dependencies between an internal and an ex-
ternal or two external properties. Internal properties are not dependent on any other
attribute, they “sense” internal quality directly. The aim is to evaluate all the external
quality properties (attributes) by performing an aggregation along the edges of the
graph. In the following we will refer to this graph as Attribute Dependency Graph
(ADG).

NLE

CodeComplexity

NUMPAR

NOA

Comprehensibility

NOI

McCC

CBO NIILLOC

Testability

WarningP1

CodeFaultProneness

Stability

WarningP2WarningP3

CC

Changeability

Effectiveness

Interconnectedness

Maintainability

Analyzability



82 Rudolf Ferenc, Péter Hegedűs and Tibor Gyimóthy

Let G= (S∪A,E) stand for the ADG, where S, A, and E denote the sensor nodes,
aggregate nodes, and edges, respectively, and S∩A = /0. We want to measure how
good or bad an attribute is. Goodness is the term that is used to express this measure
of an attribute. For the sake of simplicity we will write goodness of a node instead of
goodness of an attribute represented by a node. Goodness is measured on the [0,1]
interval for each node, where 0 and 1 mean the worst and best, respectively. The
goodness of each sensor node u is not known precisely, hence it is represented by a
random variable Xu with a probability density function gu : [0,1]→ R. gu is called
the goodness function of node u.

Constructing a goodness function. The currently presented way of construct-
ing goodness functions is specific to source code metrics. For other sensor types,
different approaches may be needed. The model makes use of the metric histogram
over the source code elements, as it characterizes the whole system from the aspect
of one metric. The aim is to give a measure for the goodness of a histogram. As the
notion of goodness is relative, it is expected to be measured by means of compari-
son with other histograms in the benchmark. Let us suppose that H1 and H2 are the
histograms of two systems for the same metric, and h1 (t) and h2 (t) are the corre-
sponding normalized histograms (i. e., density functions, see Figure 3.3). By using
Equation 3.3 we obtain a distance function (not in the mathematical sense) defined
on the set of probability functions. Fig. 3.3 helps understanding the meaning of the
formula: it computes the signed area between the two functions weighted by the
function ω (t).

D (h1,h2) =
∫

∞

−∞

(h1 (t)−h2 (t))ω (t)dt (3.3)

Fig. 3.3: Comparison of probability density functions

The weight-function plays a crucial role: it determines the notion of goodness,
i. e., where on the horizontal axis the differences matter more. If one wants to ex-
press that all metric values matter in the same amount, she would set ω (t) = c,
where c is a constant, and in that case D (h1,h2) will be zero (as h1 and h2 inte-



3 Software Product Quality Models 83

grate to 1). On the other hand, if one would like to express that higher metric values
are worse, one could set ω (t) = t. Non-linear functions for ω (t) are also possible.
As in case of most source code metrics, higher values are considered to be worse
(e. g., McCabe’s complexity), we use the ω (t) = t weight function for these metrics
(linearity is implicitly subsumed by the choice).

The choice leads to a very simple formula, given in Equation 3.4, where H
′
1

and H
′
2 are the random variables corresponding to the h1 and h2 density functions,

E
(

H
′
1

)
and E

(
H
′
2

)
are the expected values of these (the equality is based on the

definition of the expected value of a random variable). Lastly, H̃1 and H̃2 are the
averages of the histograms H1 and H2, respectively. The last approximation is based
on the Law of Large Numbers (the averages of a sample of a random variable con-
verge to the expected value of the same). By this comparison we get one goodness
value for the subject histogram (this value is relative to the other histogram).

D (h1,h2) =
∫

∞

−∞
(h1 (t)−h2 (t)) tdt =

∫
∞

−∞
h1 (t) tdt−

∫
∞

−∞
h2 (t) tdt

= E
(

H
′
1

)
−E

(
H
′
2

)
≈ H̃1− H̃2

(3.4)

In order to obtain a proper goodness function, this comparison needs to be re-
peated with histograms of many different systems independently. In each case we
get a goodness value which can basically be regarded as sample of a random variable
from the range [−∞,∞]. A linear transformation of the values changes the range to
the [0,1] interval. The transformed sample is considered to be the sample of the ran-
dom variable Xu. Interpolation of the empirical density function leads to the good-
ness function of the sensor node.

There is a theoretical beauty of the approach. Let us assume that one disposes
histograms of N different systems for one particular metric. Each histogram can be
considered to be sampled by different random variables Yi,(i = 1, . . . ,N). Further-
more, one would like to assess the goodness of another histogram corresponding
to the random variable X . The goodness is by definition described by the series of
random variables in Equation 3.5. The random variable for goodness (before the
transformation) is then described by random variable Z in Equation 3.6.

Z1 := E (Y1)−E (X) , . . . ,ZN := E (YN)−E (X) . (3.5)

Z :=
1
N

N

∑
i=1

Zi→Φν ,σ , if N→ ∞. (3.6)

According to the Central Limit Theorem [266] for independent (not necessarily
identically distributed) random variables, Z tends to a normal distribution which
is independent of the benchmark histograms. This is naturally a theoretical result,
and it states that when having a large number of systems in the benchmark, the
constructed goodness functions are (almost) independent of the particular systems
in the benchmark. Actually, Φν ,σ is a benchmark-independent goodness function



84 Rudolf Ferenc, Péter Hegedűs and Tibor Gyimóthy

(on [−∞,∞]) for X , just that it can be approximated by having a benchmark with a
sufficient number of systems.

To be able to perform the construction of goodness functions in practice, a source
code metric repository database has also been built that consists of source code
metrics of more than 100 open-source and industrial software systems.

Aggregation. After being able to construct goodness functions for sensor nodes,
there is a need for a way to aggregate them along the edges of the ADG. Recall
that the edges represent only dependencies, we have not yet assigned any weights
to them. Assigning a simple weight would lead to the classic approach. In models
that use a single weight or threshold in aggregation, the particular values are usually
backed up with various reasonings and cause debates among experts. The Colum-
bus model is able to handle this ambiguity. Many experts were asked in an online
survey (both industrial and academic people) for their opinion about the weights.
For every aggregate node, they were asked to assign scalars to incoming edges such
that the sum of these would be 1. The number assigned to an edge is considered to
be the amount of contribution of source goodness to target goodness. This way, for
each aggregate node v a multi-dimensional random variable Yv =

(
Y 1

v ,Y
2
v , . . . ,Y

n
v
)

exists (n is the number of incoming edges). The components are dependent random
variables, as

n

∑
i=1

Y i
v = 1, (3.7)

holds, that is, the range of Yv is the standard (n−1)-simplex in Rn. It is important
that one cannot simply decompose Yv to its components because of the existing
dependencies among them.

Having an aggregate node with a composed random variable Yv for aggregation
(fYv will denote its composed density function), and also having n source nodes
along the edges, with goodness functions g1,g2, . . .gn, the aggregated goodness for
the aggregated node is defined by gv(t) in Equation 3.8 where ∆ n−1 is the (n−1)-
standard simplex in Rn and Cn is the standard unit n-cube in Rn.

gv (t)=
∫

t=qr
q=
(
q1 , . . . ,qn

)
∈ ∆n−1

r=
(
r1 , . . . ,rn

)
∈Cn

fYv(q)g1(r1). . .gn(rn)drdq, (3.8)

It is the generalization of how aggregation is performed in classic approaches.
Classically, a linear combination of goodness values and weights is taken, and it is
assigned to the target node. When dealing with probabilities, one needs to take every
possible combination of goodness values and weights, and also the probabilities of
their outcome into account. In the formula, the components of the vector r traverse
the domains of source goodness functions independently, while vector q traverses
the simplex where each point represents a probable vote for the weights. For fixed
r and q vectors their scalar product (t = qr = ∑

n
i=1 riqi ∈ [0,1]) is the goodness of

the target node. To compute the probability for this particular goodness value, one
needs to multiply the probabilities of goodness values of source nodes (these are
independent) and also the composed probability of the vote (fYv (q)). This product
is integrated over all the possible r and q vectors (please note that t is not uniquely



3 Software Product Quality Models 85

decomposed to vectors r and q). gv (t) is indeed a probability distribution function
on [0,1] interval, i. e., its integral is equal to 1, because both fYv (q) and the goodness
functions integrate to 1 on ∆ n−1 and Cn respectively.

With this method it is now possible to compute goodness functions for every
aggregate node. The way the aggregation is performed is mathematically correct,
meaning that the goodness functions of aggregate nodes are really expressing the
probabilities of their goodness (by combining other goodness functions with weight
probabilities).

Although this approach provides goodness functions for every aggregate node,
managers are usually only interested in having one number that represents an exter-
nal quality attribute of the software. Goodness functions carry much more informa-
tion than that, but an average of the function may satisfy even the managers. The
resulting goodness function at every node has a meaning: it is the probability dis-
tribution which describes how good a system is from the aspect represented by the
node. Therefore, the approach leads to interpretable results. Provided that the good-
ness functions are computed for every node of the ADG, and that the dependencies
in the ADG are known, it is easy to see the root causes of the quality score.

Drill-down. Additionally to system level maintainability, ColumbusQM imple-
ments an algorithm [379] to drill down to lower levels in the source code and to get
a similar measure for the building blocks of the codebase (e. g., classes or methods).
For this, the model defines the relative maintainability index for the source code
elements, which measures the extent to which they affect the system level goodness
values. The approach is related to the aggregation and decomposition techniques
introduced by Posnett et al. [699] and Serebrenik et al. [769].

The basic idea is to calculate the system level goodness values by ColumbusQM,
leaving out the source code elements one by one. After a particular source code
element is left out, the system level goodness values will change slightly for each
node in the ADG. The difference between the original goodness value computed
for the system, and the goodness value computed without the particular source code
element, will be called the relative maintainability index of the source code element
itself. The relative maintainability index is a small number that is either positive
when it improves the overall rating or negative when it decreases the system level
maintainability. The absolute value of the index measures the extent of the influence
to the overall system level maintainability. A relative index can be computed for
each node of the ADG, meaning that source code elements can affect various quality
aspects in different ways and to different extents.

It is important to notice that this measure determines an ordering among the
source code elements of the system, i. e., they become comparable to each other.
And what is more, the system level maintainability being an absolute measure of
maintainability, the relative index values become absolute measures of all the source
code elements in the benchmark. Therefore, the ordering can be used by program-
mers to rank source code elements based on their criticality for improving the overall
maintainability.



86 Rudolf Ferenc, Péter Hegedűs and Tibor Gyimóthy

3.2.4.6 Other Approaches

The CAST (http://www.castsoftware.com) company has its own solution
for software quality analysis, the Application Intelligence Platform (AIP), that uses
an application quality benchmarking repository called Appmarq. Being a closed
source proprietary tool, we were unable to try it out and evaluate it in detail as we
did this with other solutions.

The Laboratory for Quality Software (LaQuSo – http://www.laquso.
com) is a joint initiative of Eindhoven University of Technology and Radboud Uni-
versity Nijmegen. Since the starting of LaQuSo one of its focus areas has been the
development of a product certification methodology. This has resulted in LSPCM
(LaQuSo Software Product Certification Model). LaQuSo offers product certifica-
tion as a service, which is a check that the artifact fulfills a well-defined set of
requirements. These requirements are defined by the customer or a third party;
LaQuSo as an independent evaluator will do the check. Serebrenik et al. [766] have
analyzed requirements of three off-shoring projects using LSPCM. Application of
LSPCM revealed severe flaws in one of the projects. The responsible project leader
confirmed later that the development significantly exceeded time and budget. In the
other projects no major flaws were detected by LSPCM and it was confirmed that
the implementation was delivered within time and budget.

VizzMaintenance (http://arisa.se/products.php) is an Eclipse plug-
in which brings detailed information about the maintainability of a software system.
It uses static analysis to calculate 17 well-known software quality metrics. It then
combines these values in a software quality model [928]. It supports the decisions
which classes should be refactored first to improve their maintainability.

Vanderose et al. introduce a Model-Centric Quality Assessment (MoCQA) frame-
work [593, 875, 877] which is a theoretical framework designed to help plan and
support a focused quality assessment all along the software lifecycle. They aim
at assessing other quality characteristics than maintainability, such as complete-
ness [876], that are arguably useful to assist the software maintenance process.

There are other works that deal with software design quality and quality from the
end user’s point of view. For example, Ozkaya et al. [674] emphasize the importance
of using quality models like ISO/IEC 9126 in practice right from the beginning
of the design phase. The approach presented in their paper is general enough for
evaluating design or end user quality, but not the product quality itself. Research
of Bansiya and Davis [68] focus on the software design phase. They adapted the
ISO/IEC 9126 model for supporting quality assessment of system design.

The work of Marinescu and Lanza [495] introduces a metrics-based approach for
detecting design problems. It allows the software engineer to define metrics-based
rules that “quantify” design principles, rules and heuristics related to the quality of a
design. The work introduces an important suite of detection strategies for the iden-
tification of different well-known design flaws found in the literature. Additionally,
the work presents a new type of quality model, called Factor-Strategy, allowing the
quality to be expressed explicitly in terms of compliance with principles, rules and
heuristics of good object-oriented design.

http://arisa.se/products.php
http://www.laquso.com
http://www.laquso.com
http://www.castsoftware.com


3 Software Product Quality Models 87

3.3 Application of Practical Quality Models in Software
Evolution

It might be difficult to see the role of the presented maintainability models in soft-
ware evolution at first glance. But whether one likes it or not, today, software indus-
try is a giant business driven by business needs and profit. Thus keeping the costs
of software evolution as low as possible is a central issue. As maintainability is in
direct connection with the changing of software systems, measuring and controlling
it is of vital importance for software evolution.

On the other hand, as applying techniques that improve the maintainability of
the code or avoiding structures that deteriorate systems has an additional cost with-
out having a short term financial benefit, they are often neglected by the business
stakeholders. Hence maintainability of the systems is often overshadowed by feature
developments whose business value is more evident at least in short terms. Although
the developers are usually aware of its long term benefits, they do not have strong
enough arguments to convince stakeholders for investing extra effort to improve
maintainability. By better understanding the relationship of maintainability and the
long term development costs, it would be possible to show the return on investment
of keeping maintainability of systems at a high-level. It would make the extra in-
vestment more appealing to the business stakeholders as well, thus reaching higher
quality software and cheaper evolution in general.

In this section we introduce a cost model that is based on source code main-
tainability and proves its direct connection with development costs. It is a possible
application of practical quality models during software evolution in modern indus-
trial environments.

3.3.1 A Cost Model Based on Software Maintainability

The approach [62] adopts the concept of entropy in thermodynamics, which is used
to measure the disorder of a system. According to the second law of thermodynam-
ics, the entropy of a closed system cannot be reduced; it can only remain unchanged
or increase. The only way to decrease entropy (disorder) of a system is to apply
external forces, i.e. to put energy into making order.

The notion of entropy is applied in a very similar way for software systems [432].
Maintainability of a source code is usually defined as a measure of the effort re-
quired to perform specific modifications in it. Assuming that the higher the disorder
is, the more effort is needed to perform the modifications, maintainability can be
interpreted as a measure of the disorder, i.e. entropy of the source code.

The approach lays on two basic assumptions:

1. Making changes in a source code does not decrease the disorder of it, pro-
vided that one does not work actively against this. In other words, when making



88 Rudolf Ferenc, Péter Hegedűs and Tibor Gyimóthy

changes to a software system without explicitly aiming to improve it, its main-
tainability will decrease, or at least it will remain unchanged.

2. The amount of changes applied to the source code is proportional to the effort in-
vested, and to the maintainability of the code. In other words, if one applies more
effort, the code will change faster. Additionally, a more maintainable code will
change faster, even if the applied effort is the same. Another interpretation is that
the effort aiming on code change is inversely proportional to the maintainability
at time t.

Before formalizing these assumptions, the following notions are introduced:

• S (t) - the size of the source code at time t, measured in lines of code.
• λ (t) - the change rate of the source code at time t, i.e. the probability of changing

any line independently (for the sake of simplicity we assume that it is the same
for all lines of code). S (t)λ (t) equals the number of lines changed at time t.

• k - a constant for the conversion between different units of measure. The ap-
proach deals with two scalar measures: maintainability and cost. Instead of fix
particular units of measure for each, a conversion constant k is introduced. In the
sequel, it can be assumed without the loss of generality, that cost is expressed by
any measure of effort, e.g. salary, person month, time, etc., while maintainability
may have any other scalar measure. In practice, after fixing the measures of unit
for each, k can be estimated from historical project data.

• C (t) - the cost invested into changing the system until time t, measured from an
initial time t = 0. Obviously, C (0) = 0.

• M (t) - maintainability (i.e. disorder) of the system at time t.

In the following, it is assumed that modifications do not explicitly aim on code
improvement, meaning that only new functionality is being added to the system
and no refactoring or other explicit improvements are done. In this case, the first
assumption above can be formalized as in Equation 3.9, meaning that the decrease
rate of maintainability is proportional to the number of lines changed at time t.
The constant factor q is called the erosion factor which represents the amount of
“damage” (decrease in maintainability) caused by changing one line of code.

dM (t)
dt

=−qS (t)λ (t) (q≥ 0) , (3.9)

The erosion factor depends on many internal and external factors like the experi-
ence and knowledge of the developers, maturity of development processes, quality
assurance processes used, tools and development environments, the programming
language, and the application domain. The q ≥ 0 assumption makes it impossible
for the code to improve by itself just by adding new functionality. The assumption
is in accordance with Lehman’s laws [511] of software evolution, which state that
the complexity of evolving software is increasing, while its quality is decreasing at
the same time.



3 Software Product Quality Models 89

Formalizing the second assumption leads to Equation 3.10. The numerator rep-
resents the amount of change introduced at time t. The formula states that the uti-
lization of the cost invested at time t for changing the code is inversely proportional
to maintainability.

dC (t)
dt

= k
S (t)λ (t)

M (t)
(3.10)

Solving the above system of ordinary differential equations, yields the following
result:

C (t1)−C (t0) =
∫ t1

t0
k
S (t)λ (t)

M (t)
dt =− k

q

∫ t1

t0

Ṁ (t)
M (t)

dt =

=− k
q
[lnM (t1)− lnM (t0)] =−

k
q

ln
M (t1)
M (t0)

. (3.11)

By expressing M (t) from the above equation, we get to the main result:

M (t1) = M (t0)e−
q
k (C (t1)−C (t0)), (3.12)

which suggests that the maintainability of a system decreases exponentially with
the invested cost to change the system. The erosion factor q determines the decrease
rate of maintainability. It is obvious that for a higher erosion factor the decrease rate
will be higher as well. It is crucial for software development companies to push the
erosion factor as low as possible, for instance by training the employees, improving
processes, utilizing sophisticated quality assurance technologies.

Although, the formula does not provide a way of having an absolute measure
for maintainability, one can easily define a relative maintainability for the system.
Indeed, by letting t0 = 0, and defining M (0) = 1, we get to the following function
for maintainability:

M (t) = e−
q
k C (t) (3.13)

For the interpretation, let us consider two artificial scenarios. Figure 3.4 shows the
case, when the invested effort is constant over the time. In this case, both the main-
tainability M (t) and the change rate λ (t) decrease exponentially.

In the other case, let us suppose that one intentionally wants to keep the change
rate of the system constant. Figure 3.5 shows how the maintainability M (t) and
the overall cost C (t) change over time. Now, the maintainability decreases linearly
until it reaches zero, while the cost is increasing faster than an exponential rate. The
cost will reach infinity in finite time, exactly when maintainability reaches zero,
meaning that any further change would require infinite amount of effort. This is,
of course, just a theoretical possibility, as no one disposes an infinite amount of
resources required to degrade the maintainability of a system to absolute zero.

The problem with applying the model to real-world software systems lies in the
erosion factor q. While the other model parameters (k and C (t)) can be computed
easily, the erosion factor, which measures the “damage” caused by changing one



90 Rudolf Ferenc, Péter Hegedűs and Tibor Gyimóthy

Fig. 3.4: Changes of Change rate (λ (t)) and Maintainability (M (t)) during evolu-
tion when the cost of the development (C (t)) is constant over time.

Fig. 3.5: Changes of Cost (C (t)) and Maintainability (M (t)) during evolution
when the Change rate (λ (t)) is constant over time.

line, is challenging. Contrarily, if there was an absolute measure of maintainability,
the constant, project-specific erosion factor q could easily be computed by express-
ing it from Equation 3.13. Furthermore, by having an absolute measure for q as
well, the erosion factors of different projects, organizations could be compared. The
analysis of the causes of the differences would make it possible to lower the erosion
factor, e. g., by improving the processes, and training people.

In addition, the overall cost of development could also be expressed explicitly
from the model, according to Equation 3.14. For computing future development



3 Software Product Quality Models 91

costs, it would just be required to have an estimate for the change rate λ (t) over a
time period.

C (t) =− k
q

ln
∣∣∣∣1− q

M (0)

∫ t

0
S (s)λ (s)ds

∣∣∣∣. (3.14)

The introduced practical quality models are good candidates for obtaining an
absolute measure of maintainability for software systems. Using the absolute main-
tainability calculated by one of these models would allow to obtain an absolute
erosion factor q, which can be used to estimate further development costs and to
compare the erosion factors of different projects and organizations.

3.4 Tools Supporting Software Quality Estimation

3.4.1 Software QUALity Enhancement project (SQUALE)

The implementation of the SQUALE model (see Section 3.2.4.1) is available as an
open-source tool (http://www.squale.org). The project officially started in
June 2008, funded by the French Government. The first official open-source version
was released in January 2009.

Fig. 3.6: SQUALE tool

The Software QUALity Enhancement project – SQUALE focused on two main
aspects. First, it works on enhanced quality models inspired by existing approaches

http://www.squale.org


92 Rudolf Ferenc, Péter Hegedűs and Tibor Gyimóthy

(GQM [874], McCall et al. [574]) and standards (ISO/IEC 9126 [422]), validated
and improved by researchers, dealing with both technical and economical aspects of
quality. Second, the development of an open-source application that helps assessing
software quality and improving it over time based on third party technologies (com-
mercial or open-source) that produce raw quality information (like metrics), using
the quality models to aggregate this raw information into high-level quality factors,
all this targeting different languages.

The tool provides a web-based interface for configuring the qualifications of new
applications. The qualification process is run as the part of a scheduled audit of the
source code. The quality results are presented in the same web application. Fig-
ure 3.6 shows the overview page of a quality audit result of SQUALE.

3.4.2 Software Quality Assessment based on Lifecycle Expectations
(SQALE)

According to the official site (http://www.sqale.org/tools), the follow-
ing tools implement the SQALE model (see Section 3.2.4.2):

• Insite SaaS by Metrixware (http://www.metrixware.com)
• Sonar by SonarSource (http://www.sonarsource.com)
• SQuORE by SQuORING (http://www.squoring.com)
• Mia-Quality by Mia-Software (http://www.mia-software.com)

The results of the tool evaluation in the following section refers to the Sonar
implementation of the model. Sonar is an open platform to manage code quality
(http://www.sonarsource.org). Using an extensive plug-in mechanism it
is fairly easy to extend the basic functionality of the framework (e. g., support anal-
ysis for new languages, add new metrics).

The Technical Debt Evaluation (SQALE) Sonar plug-in is a full implementation
of the SQALE methodology. This method contains both a Quality Model and an
Analysis Model. The Technical Debt Evaluation (SQALE) plug-in comes with a
number of features, including custom widgets, visualizations, rules and drill-downs.
Figure 3.7 shows the summary page of the tool.

3.4.3 QUAMOCO Quality Model

The QUAMOCO framework (see Section 3.2.4.3) is available as an open-source
Eclipse extension (https://quamoco.in.tum.de). The Quamoco Consor-
tium provides a toolchain [233] for the creation/editing of quality models and for
the automatic analysis of software products:

• Quality Model Editor: This editor enables the comfortable creation of quality
models.

https://quamoco.in.tum.de
http://www.sonarsource.org
http://www.mia-software.com
http://www.squoring.com
http://www.sonarsource.com
http://www.metrixware.com
http://www.sqale.org/tools


3 Software Product Quality Models 93

Fig. 3.7: Sonar SQALE Maintainability Model plug-in

• ConQAT-Integration: By integrating the quality model into the analysis frame-
work ConQAT [234], automatic quality assessments for the programming lan-
guages Java, C#, and C/C++ can be conducted.

Fig. 3.8: QUAMOCO quality report

The quality analysis with the prepared quality models can be started interactively
from Eclipse or run from command line allowing to be integrated into the build



94 Rudolf Ferenc, Péter Hegedűs and Tibor Gyimóthy

processes. The tool presents its results in Eclipse and also creates a detailed HTML
quality report (see Figure 3.8).

3.4.4 SIG Maintainability Model

The Software Improvement Group (http://www.sig.eu) offers software prod-
uct certification based on the implementation of their maintainability model (see
Section 3.2.4.4) as a commercial service. No official downloadable version of the
tool exists on their homepage.

However, the SIG Maintainability Model is implemented as a free and down-
loadable Sonar plug-in. The results of the tool evaluation in the following section
refers to this Sonar plug-in implementation of the model. The SIG plug-in provides
a high-level overview about the following ISO/IEC 9126 maintainability subchar-
acteristics: Analysability, Changeability, Stability and Testability. The values range
from -- (very bad) to ++ (very good). Figure 3.9 shows a screenshot about the
results of the plug-in.

Fig. 3.9: Sonar SIG Maintainability Model Plug-in

3.4.5 Columbus Quality Model

The Columbus Quality Model (see Section 3.2.4.5) is implemented by a propri-
etary tool called SourceAudit, member of the QualityGate product family. The
QualityGate source code quality assurance platform developed by FrontEndART
(http://www.frontendart.com) is based on research conducted at the De-
partment of Software Engineering of University of Szeged and on the ISO/IEC 9126
standard.

The tool is able to continuously monitor the maintainability of software prod-
ucts. It can be integrated into the common build processes or manage individual

http://www.frontendart.com
http://www.sig.eu


3 Software Product Quality Models 95

Fig. 3.10: QualityGate implementation of the Columbus Quality Model

qualifications with the help of a Jenkins continuous integration system1 based ad-
ministration page. The results of the qualification is presented in a sophisticated web
application but many types of different reports can also be generated. Figure 3.10
shows a screenshot of the tool containing a one year long period of quality analysis
results.

3.5 Comparing the Features of the Quality Models and Tools

To evaluate and compare the different models and their implementing tools, we
installed and ran them on several projects. As two of the tools were available as
Sonar plugins, we decided to perform a maintainability assessment on the open-
source projects presented in Sonar’s Nemo demo application.2 The benefit of it
was twofold: the data in Nemo already contained the quality analysis results of the
SQALE model commercial plug-in; and we could easily identify the exact source
code locations and versions from Sonar to be able to run the other tools on the same
source code.

As the SIG model is not part of Nemo, we also installed and configured our own
local version of Sonar. Besides the SQALE and SIG models we decided to include
the Sonar Quality Index plug-in3 in the evaluation as well. It is a Maintainability
Index style combination of different metrics and not a hierarchical quality model.
Nonetheless, we were interested in the relation of QI to other sophisticated models.

1 http://jenkins-ci.org/
2 http://nemo.sonarsource.org/
3 http://docs.codehaus.org/display/SONAR/Quality+Index+Plugin

http://docs.codehaus.org/display/SONAR/Quality+Index+Plugin
http://nemo.sonarsource.org/
http://jenkins-ci.org/


96 Rudolf Ferenc, Péter Hegedűs and Tibor Gyimóthy

Altogether 97 open-source Java projects have been analyzed with six tools. Al-
though Nemo contains almost 200 systems, 50 of them do not have any version
control information, therefore we could not locate their source. For around another
50 projects the version control information was changed since the Sonar analysis, so
we also left them out from the experiment. Except SQUALE, all the analyses have
been run in an automated way with default models and configurations. In the case
of SQUALE, we found no way of automating the qualification process, therefore all
the projects have been configured and analyzed manually through its web interface.
When a qualification analysis failed, we tried to manually fix the causing problem
and re-run the analysis. If a more complex error occurred – which we could not fix
easily – we marked the analysis as failed. The typical causes of errors are listed in
Section 3.5.2.

3.5.1 Comparing the Properties of Different Practical Models

The comparison of the models was done using the following evaluation criteria:

1. Interpretability – applying the model should provide information for high-level
quality characteristics which is meaningful, i. e., conclusions can be drawn.

2. Explicability – there should be a way to efficiently evaluate the root causes, i. e.,
a simple way to decompose information obtained for high-level characteristics to
attributes or even to properties.

3. Consistency – the information obtained for higher level characteristics should not
contradict lower level information.

4. Scalability – the model should provide valuable information even for large sys-
tems in reasonable time.

5. Extendibility – there should be an easy way to extend the model with new char-
acteristics and its attributes.

6. Reproducibility – applying the model on the same system twice should result in
the same information.

7. Comparability – information obtained for quality characteristics of two different
systems should be comparable and should correlate with the intuitive meaning of
the characteristics.

8. Aggregation type – the way of acquiring quality values for high-level character-
istics based on low-level values. The possible values are:

• Linear combination (LC) – a simple linear combination of the values.
• General function (GF) – combination of the values with an arbitrary (not nec-

essarily linear) function.
• Fixed threshold (FT) – the values are categorized based on fixed thresholds.
• Benchmark-based threshold (BT) – the values are categorized based on thresh-

olds derived from a benchmark.
• Benchmark based (B) – the aggregation is done in some sophisticated way

based on a repository of other systems (benchmark).



3 Software Product Quality Models 97

9. Input measures – what type of source code measures are considered in the model.
The possible values are:

• Metrics (M)
• Rule violations (R)
• Code clones (C)
• Unit tests (T)

10. Base model – which theoretical model serves as the base concept of the practical
model.

11. Rating – what kind of qualification or rating does the model provide for express-
ing the level of maintainability. The possible values are:

• Ordinal – discrete quality categories (like 1 to 5 stars, etc.)
• Scale – a continuous value from an interval (e. g., a real number between 0

and 10)

Table 3.6 presents the summary of the model evaluations against the crite-
ria above. We can note that the most popular base model is the one defined in
the ISO/IEC 9126 standard. Despite the fact that it already has a successor –
ISO/IEC 25000 – only one model supports it in some extent. Probably most of the
models will adapt to the new standard in the future.

Table 3.6: The properties of the different practical quality models

SQALE ColumbusQM SIG QI SQUALE QUAMOCO
Interpretable X X X X X X
Explicable X X –4 – X X
Consistent X X X X X X
Scalable N/A5 X X X X6 X
Extendible – X – – – X
Reproducible X X X X X X
Comparable X X X X X X
Aggregation type FT B BT LC FT+GF FT
Input measures M, R M, R, C M, C, T M, R, C, T M, R M, R
Base model ISO 9126 ISO 9126 ISO 9126 McCall, partly ISO 9126,

ISO 9126 ISO 25000
Rating Ordinal Scale Ordinal Scale Scale Scale

A, B, C, D, E [0..10] [-2..2] [0..10] [0..3] [1..6]

Regarding the rating of the models, the scale type appears to be in majority which
is able to express the maintainability in a more precise, continuous way. Another

4 Refers to the Sonar plug-in which does not allow to drill-down the qualifications
5 SQALE qualifications were already available in Sonar Nemo
6 We found performance issues with the default embedded database, but we have not tried with
other suggested database servers



98 Rudolf Ferenc, Péter Hegedűs and Tibor Gyimóthy

advantage of the scale type ratings is that it is easy to convert the rating of one model
to the rating of the other. On the contrary, ordinal ratings are harder to convert due
to the different number of rates.

One would expect that a model uses all the possible static source code infor-
mation: metrics, rule violations, code clones and unit tests as its input measures.
However, only the Quality Index seams to use all this information. Metrics are con-
sidered by all the examined models and rule violations are taken into account by all
models except SIG.

The models vary in the way they aggregate the source code measures. The most
common approach is to use a fixed threshold to categorize metric values. However, a
constant improvement is shown in this area by introducing complex aggregation for-
mulas and deriving dynamic thresholds based on a benchmark. The ColumbusQM
uses the benchmark in even a more sophisticated way to aggregate quality proper-
ties.

Almost all of our requirements are met by the examined models. Most of the
models failed to fulfill the Extendibility requirements as they provide no easy way
to extend the base model. Another requirement that two models could not met is
Explicability. The results of the models that do not fulfil this requirement is hard to
be traced back to the root causes in the source code.

3.5.2 Evaluating the Properties of the Different Tools

The evaluation of the tools was made according to the following aspects:

1. Supported languages – the languages supported by the tool (or it is language
independent).

2. Stability – the number of projects successfully analyzed from all projects (in
total 97 projects have been analyzed).

3. Input type – the input of the tool i. e., requires only sources or binaries too.
4. Type – the type of the application (e. g., a plug-in to an existing framework, a

web application).
5. Supported build processes – the type of common build frameworks into which

the qualification can be integrated.
6. OS platform – the supported OS platforms.
7. Proprietary – is the evaluated tool free or proprietary?
8. Presentation of the results – the way of the presentation of qualification results

(e. g., in a web application, HTML)

Table 3.7 presents the summary of the evaluation of the tools against the aspects
above. The stability line needs some further explanation. In case of SQALE all the
projects were successfully analyzed because it was already in the Sonar Nemo sys-
tem. The other tool that was able to parse all the systems is QualityGate SourceAu-
dit, because it is able to analyze projects without having to compile the code. In
the case of the two Sonar plugins, the SIG model and Quality Index, the cause of



3 Software Product Quality Models 99

Table 3.7: The properties of the different evaluated tools

SQALE QualityGate SIG
SourceAudit

Supported languages Lang. independent Lang. independent Lang. independent
Stability 100% (97/97) 100% (97/97) 77% (75/97)
Input type Sources, Sources only Sources,

binaries are optional binaries are optional
Type Sonar plug-in Web application and Sonar plug-in

web service
Supported build processes ant, maven, batch ant, maven, batch ant, maven, batch
OS platform Windows & Linux Windows & Linux Windows & Linux
Proprietary Yes Yes Yes (free Sonar plugin)
Presentation of the results Web application Web application, Web application

Excel, PDF reports

QI SQUALE QUAMOCO
Supported languages Java Java Java, C#, and C/C++
Stability 77% (75/97) 31% (30/97) 63% (61/97)
Input type Sources, Sources and binaries Sources and binaries

binaries are optional
Type Sonar plug-in Web application Eclipse plug-in
Supported build processes ant, maven, batch ant batch
OS platform Windows & Linux Windows & Linux Windows & Linux
Proprietary No No No
Presentation of the results Web application Web application, Eclipse GUI,

PDF reports HTML report

unsuccessful qualification was that some of the projects could not be compiled and
not the failure of the models. As we used the maven wrapper to upload the re-
sults into Sonar, it caused the failure of the qualification also. The other two tools,
QUAMOCO and SQUALE are also affected by the compilation errors as they re-
quire the binaries for the qualification. Additionally to the build errors, QUAMOCO
failed with a non-trivial parser error for about 10 projects. The most unstable tool
was SQUALE according to our experiences; however, it must be noted that we used
the program with default settings only.

To summarize, most tools were able to analyze the majority of the projects with
minimal invested effort. Therefore, they can be a great help both for managers and
developers in software evolution activities.



100 Rudolf Ferenc, Péter Hegedűs and Tibor Gyimóthy

3.6 Conclusions

For software developers and managers alike it is crucial to be able to measure differ-
ent aspects of the quality of their systems. The information can mainly be used for
making decisions, backing up intuition, estimating future costs and assessing risks
during software evolution.

There are three main approaches for measuring software quality: process-based,
product-based and hybrid. This chapter focused on the history, evolution, state-of-
the-art and supporting tools of the product based software quality assessment. The
introduction of the ISO/IEC 9126 standard as the joint model of the early theoretical
software product quality models caused an explosion in the number of new practi-
cal quality models. All these models adapt the standard and use a hierarchical model
for estimating quality with some kind of metrics at the lowest level. Section 3.2.4
gives an overview about the evolution of software quality measurements and ap-
proaches starting from the first software metrics through simple metrics-based pre-
diction models and early theoretical quality models to focus on the currently avail-
able state-of-the-art approaches for software product qualification.

Each of the tools implementing these models have been evaluated on almost 100
open-source Java systems. The tools and underlying quality models were compared
according to a set of predefined criteria. Most tools were able to analyze the majority
of the projects with minimal invested effort. Therefore, we conclude that they can
be a great help both for managers and developers in software evolution activities.
However, we note that the correctness of the models has not been evaluated. In
the end irrespective of how easy it is to use them or what features they have, we
expect that models that are more accurate will be more frequently used. However,
comparing the correctness of the existing models requires a huge effort that should
be addressed by the joint work of the community.

It is also a very interesting open question if the state-of-the-art practical models
can be unified and merged into a common standard, like it was done with the early
theoretical models. To be able to assess this possibility, a very deep analysis of
model results would be needed. It should be examined how well the results of the
current practical models correlate with each other. Our vision is that these practical
models can be merged into a common standard in the future which will lead to a
more exact and objective product quality assessment.



Part II
Techniques



Chapter 4
Search Based Software Maintenance:
Methods and Tools

Gabriele Bavota, Massimiliano Di Penta and Rocco Oliveto

Summary. Software evolution is an effort-prone activity, and requires developers
to make complex and difficult decisions. This entails the development of automated
approaches to support various software evolution-related tasks, for example aimed
at suggesting refactoring or remodularization actions. Finding a solution to these
problems is intrinsically NP-hard, and exhaustive approaches are not viable due to
the size and complexity of many software projects. Therefore, during recent years,
several software-evolution problems have been formulated as optimization prob-
lems, and resolved with meta-heuristics.

This chapter overviews how search-based optimization techniques can support
software engineers in a number of software evolution tasks. For each task, we illus-
trate how the problem can be encoded as a search-based optimization problem, and
how meta-heuristics can be used to solve it. Where possible, we refer to some tools
that can be used to deal with such tasks.

103
 Springer

. et al. (eds.), E ,
DOI 10.1007/978-3- - - _4, ©  2014
T Mens volving Software Systems

642 45398 4 -Verlag Berlin Heidelberg



104 Gabriele Bavota, Massimiliano Di Penta and Rocco Oliveto

4.1 Introduction

Software evolution activities require developers to take complex decisions, often
making choices among several possible solutions. For example, let us consider a
scenario where, because of maintenance and evolution tasks, the system architecture
is deteriorated, resulting in lowly-cohesive and strongly-coupled modules. To miti-
gate such a problem, developers can reorganize the system decomposition. However,
even for a relatively small system, the number of possible choices to improve the
architecture can be very high, and such a number exponentially increases with the
system size. Similar considerations apply to other evolution-related activities, such
as selecting and performing a refactoring, or fixing a bug. In general, as other activ-
ities like testing, software evolution requires software engineers to solve problems
for which finding a solution is NP-hard [312].

For such reasons, the use of search-based optimization techniques can be a very
promising and effective way to deal with many software evolution activities. All that
is required is to provide:

• a problem representation, i.e., to encode the activity through an appropriate data
structure allowing the heuristics to (i) evaluate the quality of a possible problem
solution, and (ii) produce new solutions;

• a way to quantitatively evaluate the quality of a given solution, often referred as
fitness or objective function; and

• a set of operators to produce new solutions starting from existing ones.

The idea of solving software engineering problems using search-based optimiza-
tion techniques has been named “Search-Based Software Engineering” [190]. The
potentials and challenges of applying search-based optimization techniques to vari-
ous kinds of software engineering problems have been largely discussed by Harman
[365]. Also, Harman has outlined how SBSE can support various software mainte-
nance [364] and program comprehension [366] tasks. Among others, there are two
aspects that make the application of SBSE to software evolution special. First, many
evolution decisions imply balancing across conflicting objectives. To this aim, it can
be desirable to use multi-objective optimization, which instead of producing solu-
tions (near) optimizing a single objective, produce a set of solutions—that, as will
be explained in Section 4.2—are “Pareto-optimal” i.e., there is no solution among
the found ones that is better than others with respect to all objectives. Second,
many software evolution activities are highly human intensive, i.e., (i) automatic
approaches must be able to account for developers’ rationale, and (ii) it is hardly
possible to find a completely automatic way to evaluate the quality of a solution. To
this aim, it is necessary to find ways to encode rationale in the meta-heuristic fitness
functions, as well as to use “interactive” optimization techniques [818] for which
the fitness function is (partially) evaluated by humans.

This chapter describes the main achievements of SBSE techniques in the field of
software maintenance and evolution. Specifically, we describe work related to:



4 Search Based Software Maintenance: Methods and Tools 105

• (Re)modularization approaches, i.e., approaches aimed at identifying and cre-
ating modules that achieve certain properties, such as high cohesion and low
coupling, or aimed at reducing the application footprint.

• Software analysis and transformation approaches, aimed at automatically mod-
ifying source code for various specific purposes, for example to improve main-
tainability or fixing bugs.

• Refactoring approaches, aimed at automatically suggesting and applying refac-
toring activities, e.g., those proposed by Fowler [301]. This is a special case of
code transformation, which does not alter the semantic of the source code, but
improves its maintainability. Given the amount of work in this area, we discuss it
in a separate section rather than together with other transformation approaches.

It is important to note that this chapter is not a systematic literature review on
search-based software maintenance and evolution. There are also other pieces of
work related to the use of optimization techniques in the area of software evolu-
tion. Due to space limitation, it is not possible to describe all of them. We chose
to describe the aforementioned dimension because these are the one that have been
investigated the most in past and recent years, also according to the SEBASE repos-
itory1, which collects a large set of references for SBSE papers.

Instead, the chapter describes the available SBSE techniques to be used for var-
ious kinds of problems, explaining how the problem needs to be represented, how
solutions can be evaluated through a fitness function, which are the operators to be
used, and the meta-heuristics that work better. Also, wherever possible, the chapter
points out available tools for each specific problem. In summary, the chapter aims to
be a guideline for practitioners interested to apply SBSE techniques in the context of
software evolution, as well as for PhD students interested to work on such a research
topics, and for instructors that need to introduce such techniques in the context of
software engineering or software evolution courses, especially in graduate curricula.

The chapter is organized as follows. Section 4.2 provides basic background no-
tions about the optimization techniques used to solve software evolution problems.
Section 4.3, Section 4.4, and Section 4.5 describe search-based approaches for soft-
ware modularization, source code transformation, and refactoring, respectively. Sec-
tion 4.6 concludes the chapter.

4.2 An Overview of Search-Based Optimization Techniques

This section provides some background on search-based optimization techniques
that have been used to solve the various software maintenance problems described
in this chapter. Further details can be found in the books by Goldberg [337] and by
Michalewicz and Fogel [607].

For the techniques described below, the problem is encoded in a representation
(named chromosome), an instance (solution) of which (named genotype) represents

1 http://crestweb.cs.ucl.ac.uk/resources/sbse repository/

http://crestweb.cs.ucl.ac.uk/resources/sbse repository


106 Gabriele Bavota, Massimiliano Di Penta and Rocco Oliveto

an instance of the real world problem to be solved (referred to as phenotype). The
quality of a solution (i.e., of a genotype) is evaluated by means of a fitness function.

2 Pseudo-code of iterated Hill Climbing (from [607]).
1: t← 0
2: initialize best
3: while t < MAX do
4: local ← FALSE
5: select a current point vc at random
6: evaluate vc
7: while not local do
8: select all new points in the neighborhood of vc
9: select the point vn from the new points with the best value of evaluation function eval

10: if eval(vn) is better than eval(vc) then
11: vc← vn
12: else
13: local← T RUE
14: end if
15: end while
16: t← t +1
17: if vc is better than best then
18: best← vc
19: end if
20: end while

4.2.1 Hill Climbing

Hill Climbing (HC)—see Algorithm 2—is a “local” search method, where the
search proceeds from a randomly chosen point (solution) vc in the search space (line
5) by considering the neighbors of the point. Different families of HC exist based
on how neighbors are explored. For example, stochastic HC identifies a neighbor
by randomly mutating genes of the individual, i.e., by producing a slightly differ-
ent solution. An iterated HC, as the one shown in Algorithm 2, iterates across all
possible neighbors of a given solution (line 9). Once a fitter neighbor (vn) is found
(lines 10-11), this becomes the current point in the search space and the process is
repeated. If no fitter neighbor is found (line 13), then the search terminates and a
maximum has been found (by definition). To avoid local maxima, the HC algorithm
is restarted multiple (t) times from a random point (lines 7-20).

Multiple ascent HC is a variant of the standard HC algorithm designed to es-
cape from local optima. In particular, when a local optimum is reached, a set of
random changes are performed in order to move away from that point and continue
to explore the solution space. This procedure is repeated n times, depending on a
parameter called number of descents, while the number of random changes applied
is set through the descent depth parameter.



4 Search Based Software Maintenance: Methods and Tools 107

3 Pseudo-code of Simulated Annealing (from [607]).
1: t← 0
2: T ← Tmax
3: randomly select a current point vc
4: while halting-criterion not met do
5: while termination-condition not met do
6: select a new point vn in the neighborhood of vc
7: if eval(vc)< eval(vn) then
8: vc← vn
9: else

10: if random[0,1)< e
eval(vn)−eval(vc)

T then
11: vc← vn
12: end if
13: end if
14: end while
15: T ← g(T, t)
16: t← t +1
17: end while

4.2.2 Simulated Annealing

Simulated Annealing (SA) [604], like HC, is a local search method. As it can be
seen from Algorithm 3, the algorithm is pretty similar to HC. However, one can
move from a solution vc to a neighbor vn if (i) vc has a better fitness value than
vn (lines 7-8) or (ii) one can move from vn to a less fit solution vc (lines 10-11) if
p < m, where p is a random number in the range [0 . . .1] and m = e∆ f itness/T . The
parameter T (temperature) regulates the likelihood to move to a less fit solution and
it decreases (“cools”) over time according to a function g(T, t) (line 15). A typical
cooling mechanism is given by T = Tmax ·e−t·r (Tmax is the starting temperature (line
2), r is the cooling factor, t the number of iterations), and ∆ f itness is the difference
between the fitness values of the two neighbor individuals being compared. The
effect of cooling in SA is that the probability of following an unfavorable move is
reduced. This (initially) allows the search to move away from local optima in which
the search might be trapped. As the simulation “cools”, the search becomes more
and more equivalent to a simple hill climb.



108 Gabriele Bavota, Massimiliano Di Penta and Rocco Oliveto

4 Pseudo-code of Particle Swarm Optimization.
1: for i = 1→ n do
2: initialize the particle’s position xi
3: set the particle’s best known position pi← xi
4: initialize the particle’s velocity vi
5: if eval(pi)< eval(g) then
6: g← pi
7: end if
8: end for
9: while termination-condition not met do

10: for i = 1→ n do
11: update particle’s velocity vi
12: xi← xi + vi
13: if eval(xi)< eval(pi) then
14: pi← xi
15: if eval(pi)< eval(g) then
16: g← pi
17: end if
18: end if
19: end for
20: end while

4.2.3 Particle Swarm Optimization

Particle Swarm Optimization (PSO) was introduced by Kennedy and Ebhart in 1995
[456]. The basic concept of the algorithm is to create a swarm of particles which
move in the space around them (the problem space) searching for their goal, the
place which best suits their needs given by a fitness function. A nature analogy with
birds is the following: a bird flock flies in its environment looking for the best place
to rest. The best place can be a combination of characteristics like space for all the
flock, food access, water access or any other relevant characteristics.

PSO is described in the pseudocode of Algorithm 4. First, an initial population
(named swarm) of n random solutions (named particles) is created. Every particle
in the swarm is described by its position and velocity. A particle position represents
a possible solution to the optimization problem, and velocity represents the search
distances and directions that guide particle flying. At each particle is assigned an
initial position xi (line 2), which is also the best known position pi known so far
(line 3), and an initial velocity vi (line 4). Then, each particle flies in the problem
space with a velocity that is regularly adjusted according to the composite flying
experience of the particle and some, or all, the other particles (line 12). Given the
new velocity, the position is updated accordingly (line 12). The fitness of each parti-
cle (that depends on the position xi) is evaluated and, if needed, the best position pi
is updated (lines 13-14). Similarly, the overall best position among all particles g is
updated (lines 15-16). The process of updating particles’ velocity and position (lines
9-20) is repeated until a termination criterion (e.g., maximum number of iterations)
is met.



4 Search Based Software Maintenance: Methods and Tools 109

5 Pseudo-code of a Genetic Algorithm (from [607]).
1: t← 0
2: initialize a population P(t) of n individuals
3: evaluate P(t)
4: while termination-condition not met do
5: t← t +1
6: select a subset P′(t−1) of individuals from P(t−1) to reproduce
7: apply crossover to P′(t−1) and introduce offspring in P(t)
8: mutate individuals in P(t)
9: evaluate P(t)

10: end while

4.2.4 Genetic Algorithms

Genetic Algorithms (GAs) [337] belong to the family of evolutionary algorithms
that, inspired by the theory of natural evolution, simulate the evolution of species
emphasizing the law of survival of the strongest to solve, or approximately solve,
optimization problems. Thus, these algorithms create consecutive populations of in-
dividuals, considered as feasible solutions for a given problem (phenotype) to search
for a solution which gives the best approximation of the optimum for the problem
under investigation. To this end, a fitness function is used to evaluate the goodness
(i.e., fitness) of the solutions represented by the individuals, and genetic operators
based on selection and reproduction are employed to create new populations (i.e.,
generations).

As shown in Algorithm 5, the elementary evolutionary process of these algo-
rithms is composed of the following steps:

1. a random initial population P(0) is generated (line 1) and a fitness function is
used to assign a fitness value to each individual (line 2);

2. given t the current generation (line 3), some individuals of a population P′(t−1)
are selected to form the parents (line 6) and new individuals are created by ap-
plying genetic operators (i.e., crossover and mutation). The crossover operator
(line 7) combines two individuals (i.e., parents) to form one or two new indi-
viduals (i.e., offspring), while the mutation operator (line 8) is used to randomly
modify an individual. Then, to determine the individual that will survive among
the offspring and their parents a survivor selection is applied according to the
individuals’ fitness values (line 9);

3. step 2 is repeated until stopping criteria hold.

When designing a GA, the crossover and mutation operators play a crucial role.
Different crossover operators can be used. Among the most used, there are:

• One-point crossover. A point in the chromosome of the two parents is selected,
and all the genes beyond that point in either chromosome are swapped between
the two parents.



110 Gabriele Bavota, Massimiliano Di Penta and Rocco Oliveto

• Two-point crossover. Two points in the chromosome of the two parents are se-
lected, and everything between the two points is swapped between the parents,
generating the offspring.

• Uniform crossover. A fixed mixing ratio between two parents is used. Unlike one-
and two-point crossover, the uniform crossover enables the parent chromosomes
to contribute the gene level rather than the segment level.

As for the mutation, the selection of the operator depends on the representation
of the solution. For integer and float genes, a widely-used operator is the uniform
mutation. Using such an operator, the value of a chosen gene is replaced with a
uniform random value selected between the user-specified upper and lower bounds
for that gene. If the solution is represented by a binary string a common mutation
operator is the bit flip, where the bit of the chosen gene is inverted (i.e., if the value
is 1, it is changed to 0 and vice versa).

It is worth noting that during each generation these operators are applied with
a certain probability, named crossover rate and mutation rate. In addition, at each
generation parents have to be selected for crossover and mutation. Thus, also the se-
lection operator plays an important role. The most used selectors are roulette wheel,
in which each individual’s probability of selection is directly proportional to its rel-
ative fitness, and tournament selection, where small subsets of the population are
selected randomly (a tournament) and the most fit member of the subset is selected
for the next generation.

Finally, the stopping criterion for the evolutionary process is usually based on
a maximum number of generations. This stopping criterion can be combined with
other criteria to reduce the computation time. For example, the search process can
be stopped when there is no improvement in the fitness value for a given number of
generations.

A variant of GAs is Genetic Programming (GP) [477], where the aim is to gener-
ate programs (that can be also prediction models, or expressions, etc.) having certain
properties. The representation is often (but not necessary) a program Abstract Syn-
tax Tree (AST) and the fitness is evaluated by executing the program.

4.2.5 Multi-Objective Optimization

An optimization problem can have one objective, but also more than one objective
(multi-objective optimization). In a multi-objective optimization problem, a solution
is described in terms of a decision vector (x1,x2, ...,xn) in the decision space X .
Then the fitness function f : X → Y evaluates the quality of a specific solution by
assigning it an objective vector (y1,y2, ...,yk) in the objective space Y , where k is
the number of objectives.

Comparing solutions in multi-objective optimization is not as trivial as in the
case of single-objective optimization problems. Specifically, in multi-objective op-
timization problems it is necessary to exploit the concept of Pareto dominance: an
objective vector y1 is said to dominate another objective vector y2 (y1 � y2) if no



4 Search Based Software Maintenance: Methods and Tools 111

A

B

C

f1

f2

f2(A)

f2(B)

f2(C)

f1(A) f1(B)f1(C)

Fig. 4.1: Pareto dominance: A and B are non-dominating solutions, while C is dom-
inated by both A and B.

component of y1 is smaller than the corresponding component of y2 and at least one
component is greater. The Pareto dominance allows to say that a solution x1 is better
than another solution x2, i.e., x1 dominates x2 (x1 � x2), if f (x1) dominates f (x2).
For example, in Figure 4.1, point C is dominated by A and B since f1(A) > f1(C),
f2(A)> f2(C), f1(B)> f1(C), and f2(B)> f2(C). Instead, A and B represent non-
dominating solutions: if we consider A, there is at least another solution (B in our
case) such that f1(B) > f1(A). Similarly, if we consider B, there is at least another
solution (A) such that f2(A)> f2(B). It is worth noting that using such a definition
it is possible to define a set of optimal solutions, i.e., solutions not dominated by
any other solution. Such solutions may be mapped to different objective vectors. In
other words, there may exist several optimal objective vectors representing different
trade-offs between the objectives. This set of optimal solutions is generally denoted
as the Pareto set X∗ ⊆ X , while the fitness values achieved by such solutions repre-
sent the Pareto front Y ∗ ⊆ Y .

In principle, a multi-objective optimization problem can be reduced to a single-
objective optimization problem. For instance, the different objectives can be ag-
gregated into a single one. However, the analysis of the Pareto front can help the
decision maker in (i) selecting the most suitable solution, i.e., the solution that pro-
vides the best compromise in a particular scenario; and (ii) analyzing the trade-off
provided by each solution.

The concept of Pareto dominance is also used to rank solutions and to apply se-
lection strategies based on non-domination ranks. Generally, such algorithms are
elitist: the best solutions—i.e., the non-dominated solutions—are either kept in the
population itself or are stored separately to be reused. In the first case, they partici-
pate to the reproduction process. However, the number of non-dominated solutions



112 Gabriele Bavota, Massimiliano Di Penta and Rocco Oliveto

might greatly increase with the number of objectives, which limits the number of
places reserved for new individuals. Therefore, such algorithms generally use a spe-
cific operator to preserve diversity. The elitist Non-dominated Sorting Genetic Al-
gorithm (NSGA-II) [227] is certainly one of the most popular algorithms belonging
to this category.

A naive multi-objective optimization algorithm would require O(M N) compar-
isons to identify each solution of the first nondominated front in a population of size
N and with M objectives, and a total of O(M N2) comparisons to build first non-
dominated front. This is because each solution needs to be compared with all other
solutions. Since the above step has to be repeated for all possible fronts—which can
be at most N, if each front is composed of one solution—the overall complexity for
building all fronts is O(M N3).

NSGA-II uses a faster algorithm for nondominated sorting, which has a com-
plexity O(M N2):

1. for each solution p in the population, the algorithm finds the set of solutions
Sp dominated by p and the number of solutions np that dominate p. The set of
solutions with np = 0 are placed in the set first front F1.

2. ∀p ∈ F1, solutions q ∈ Sp are visited and, if nq−1 = 0, then solution q is placed
in the second front F2. This step is repeated ∀p ∈ F1 to generate F3, etc.

To compare solutions, NSGA-II uses the “crowded comparison operator”. That
is, given two solutions x1 and x2, x1 is preferred over x2 if it belongs to a different
(better) front. Otherwise, if x1 and x2 belong to the same front, the solution located
in the less crowded region of the front is preferred.

Then, NSGA-II produces the generation t +1 from generation t as follows:

1. generating the child population Qt from the parent population Pt using the binary
tournament selection and the crossover and mutation operators defined for the
specific problem;

2. creating a set of 2N solutions Rt ≡ Pt
⋃

Qt ;
3. sorting Rt using the nondomination mechanism above described, and forming

the new population Pt+1 by selecting the N best solutions using the crowded
comparison operator.

4.3 Search-based Software Modularization

Software (re)modularization is probably one of the software evolution tasks where
SBSE techniques have been applied most. Given a set of artifacts—for example
classes or source code files—the aim of software modularization is to identify
groups of artifacts that, according to given criteria, are cohesive enough and ex-
hibit low coupling with other groups. During software evolution, this can be useful
to support system restructuring, but also—without restructuring the system—to sup-
port program comprehension by highlighting groups of cohesive components.



4 Search Based Software Maintenance: Methods and Tools 113

4.3.1 The Bunch approach for software modularization

Bunch [610] is a software modularization tool that relies on search-based optimiza-
tion techniques.

Problem definition. Generally speaking, software modularization can be seen
as a graph partitioning problem, whose solution is known to be NP-hard [312].
In the past, various authors have tackled this problem with clustering techniques
[559, 701, 923]. In the following, we illustrate the problem as it has been formalized
and solved—using search-based optimization techniques—by Mitchell and Man-
coridis in their Bunch tool. Bunch operates on a system representation called Module
Dependency Graph (MDG), a graph G = (V,E) where nodes V are system artifacts
and edges E are relations between such artifacts (e.g., function or method calls).
The goal of modularization is to partition G into n clusters PiG = {G1,G2, . . . ,Gn}.
Each cluster Gi is composed of a set of (non-overlapping) artifacts from V , i.e.,
Gi∩G j = /0 ∀i, j ∈ 1 . . .n.

Solution representation. To find solutions of the modularization problem using
search-based heuristics, the problem needs to be encoded in a chromosome. Given
a software system composed of n software components (e.g., classes), the chromo-
some is represented as a n-sized integer array, where the value 0 < v ≤ n of the ith

element indicates the cluster to which the ith component is assigned. A solution with
the same value (whatever it is) for all elements means that all software components
are placed in the same cluster, while a solution with all possible values (from 1 to n)
means that each cluster is composed of one component only.

Fitness function. Starting from the MDG (weighted or unweighted), the output
of a software module clustering algorithm is represented by a partition of this graph.
A good partition of an MDG should be composed of clusters of nodes having (i)
high dependencies among nodes belonging to the same cluster (i.e., high cohesion),
and (ii) few dependencies among nodes belonging to different clusters (i.e., low
coupling). To capture these two desirable properties of the system decompositions
(and thus, to evaluate the modularizations generated by Bunch), Mancoridis et al.
[555] define the Modularization Quality (MQ) metric as in Equation 4.1, where k is
the number of modules, Ai is the Intra-Connectivity (i.e., cohesion) of the ith cluster
and Ei, j is the Inter-Connectivity (i.e., coupling) between the ith and the jth clusters.

MQ =

{
( 1

k ∑
k
i=1 Ai)− ( 1

k(k−1)
2

∑
k
i, j=1 Ei, j) if k > 1

A1 if k = 1
(4.1)

The Intra-Connectivity of a cluster i is given by Equation 4.2, where µi is the
number of intra-cluster edges, Ni is the number of nodes of cluster i, and conse-
quently N2

i is the maximum number of such intra edges.

µi

N2
i

(4.2)



114 Gabriele Bavota, Massimiliano Di Penta and Rocco Oliveto

The Inter-Connectivity between two clusters i and j is given by Equation 4.3,
where εi, j is the the number of edges between i and j, while Ni and N j are the
number of nodes in i and j respectively.

εi, j

2 ·Ni ·N j
(4.3)

Figure 4.2 shows an example of MDG and of its representation. For the MDG
in Figure 4.2-a, the MQ is equal to 1/2 · (2/32 +1/22)− (1/((2 ·1)/2)) · (2/(2 ·3 ·
2)) = 0.07. Moving Component C2 to Module 2 (Figure 4.2-b), the MQ becomes
1/2 · (1/22 + 3/32)− (1/((2 · 1)/2)) · 1/(2 · 3 · 2) = 0.2. Hence, as expected, the
modularization quality increases.

Fig. 4.2: Module Dependency Graph (MDG) used by Bunch [610], its chromosome
representation, and resulting MQ value.

Supported search-based techniques and change operators. Bunch allows to
solve the software modularization problem using different search-based optimiza-
tion heuristics, namely HC, SA, and GAs. In principle Bunch also allows to solve the
problem exhaustively, however—as reported by Mitchell and Mancoridis [610]—
the number of possible partitions exponentially increases with the number of nodes.

The HC approach works as follows. It starts with a randomly generated modu-
larization i.e., a chromosome filled with random numbers varying between 1 and
n. Then, neighbor solutions are created by moving one artifact from a cluster to
another, i.e., by randomly changing the value in a gene. After that, the fitness
function—i.e., the MQ—of the new produced solution is evaluated, and if its fit-
ness is better than the previous one, then the solution is accepted and the evolution
continues.

The above approach has two weaknesses. The first one is that HC algorithms can
converge to local optima; the second one is that the algorithm may tend to create iso-
lated clusters, i.e., clusters composed of one artifact only. The local optima problem
is mitigated through multiple restarts of the HC, using initial solutions belonging to

C1 C2

C3

C4

C5

Module 1 Module 2

1 1 1 2 2

C1 C2 C3 C4 C5

(a) MQ=0.5

C1 C2

C3

C4

C5

Module 1 Module 2

1 1 2 2 2

C1 C2 C3 C4 C5

(b) MQ=1.5



4 Search Based Software Maintenance: Methods and Tools 115

a population of randomly generated ones, and specifically from a subset of it hav-
ing the highest MQ. An alternative is to use SA instead of HC. Since SA does not
always proceed towards (locally) better solutions, this can mitigate the local optima
problem.

Also, the problem can be solved using GAs, which evolve multiple solutions—
i.e., a population of individuals—rather than single one. The GAs-based approach
of Bunch [610]—named Gadget—has been described by Doval et al. [260]. A GA
evolves the population using a selection operator, which selects individuals to repro-
duce based on the fitness function, a one-point crossover operator, and a mutation
operator which is the same used for HC.

The problem of isolated clusters is dealt by assigning such isolated clusters to
another, randomly chosen, cluster.

Empirical evaluation. There are different ways to evaluate the quality of solu-
tions obtained using a modularization technique. When a reference (ideal) solution
is available for a given system, it can be compared with the solution produced by
the modularization technique. Such a comparison can be made using the MoJoFM
eFfectiveness Measure (MoJoFM) [914], defined in Equation 4.4, where mno(A,B)
is the minimum number of Move or Join operations one needs to perform in order
to transform the partition A into B, and max(mno(∀ A,B) is the maximum possible
distance of any partition A from the gold standard partition B.

MoJoFM(A,B) = 100−
(

mno(A,B)
max(mno(∀A,B))

×100
)

(4.4)

When no reference solution is available, one can qualitatively evaluate a mod-
ularization solution (e.g., by relying on experts), and also evaluate the stability of
the technique being used. A clustering technique is stable if it produces similar re-
sults over multiple runs. From a qualitative point of view, Mitchell and Mancoridis
[610] applied Bunch on a 50 KLOC C++ program that implements a file system
service. Bunch created two main clusters, related to two different file systems be-
ing accessed, and this was confirmed by the system expert. Also, Bunch created a
hierarchical decomposition, which allowed experts to review the proposed modular-
ization at different levels of granularity. To evaluate the clustering stability, Mitchell
and Mancoridis [610] used (i) the EdgeSim similarity measurement, that normal-
izes the number of intra and inter cluster edges that are in agreement between two
different modularizations, and (ii) the MeCl similarity that determines the distance
between two modularizations. A study performed on the Java Swing library reported
an average EdgeSim of 93.1% and an average MeCl of 96.5%.

4.3.2 Multi-Objective Modularization

The modularization approach described in Section 4.3.1 produces solutions that are
(near) optimal with respect to a single objective, i.e., the MQ. To this extent, MQ
achieves a compromise between having a good cohesion and low coupling.



116 Gabriele Bavota, Massimiliano Di Penta and Rocco Oliveto

The alternative to single-objective optimization is to use multi-objective opti-
mization where—as explained in Section 4.2.5—the found solutions are Pareto-
optimal, i.e., each solution is better than another with respect to a particular ob-
jective, while it may not be better with respect to other objectives.

Fitness function. Praditwong et al. [701] have proposed an approach for multi-
objective optimization, where the considered objectives are the following:

• maximizing the number of intra-module edges: that is, a high number of intra-
module edges denotes a high cohesion;

• minimizing the number of inter-module edges: that is, a low number of inter
module edges denotes a low coupling;

• maximizing the number of clusters, which generally favors high cohesion;
• minimizing the number of isolated clusters: such objective is an alternative to the

repairing solution described in Section 4.3.1 to handle isolated clusters;
• maximizing MQ which, as explained in Section 4.3.1 favors solutions achieving

a compromise between cohesion and coupling.

Supported search-based techniques and change operators. Praditwong et al.
[701] have implemented the multi-objective modularization using the same opera-
tors of Mitchell et al. [260], however using a NSGA-II [226] multi-objective GA
instead of a simple GA.

Empirical evaluation. Praditwong et al. [701] have evaluated their multi-
objective approach to modularize 17 MDG extracted from various C programs (e.g.,
Unix utilities such as bison, ispell, lynx, ncurses, and rcs), and compared it with the
single-objective, hill-climbing based approach of Mitchell and Mancoridis [610].
Other than exhibiting the advantages outlined above, i.e., the capability of the soft-
ware engineer to select solutions that are particularly good for specific objectives
than for others, the multi-objective GA was also able to outperform single-objective
modularization for each specific modularization objective (e.g., MQ increase be-
tween 15% and 50% for 10 out of 17 programs, and decrease within 5% for the
other 7). In summary, besides the usual advantages of multi-objectives, it can be
preferred to the single-objective alternative also for what concerns the quality of the
obtained solutions [701]. However, the drawback is that multi-objective optimiza-
tion is more expensive from a computational point-of-view. That is, the number of
evaluations required is two orders of magnitude higher.

4.3.3 Achieving different software modularization goals

The above described approaches deal with software modularization from a structural
point of view, and with the aim of obtaining cohesive and decoupled clusters. The
existing literature also reports approaches where search-based remodularization was
used for different purposes.

Di Penta et al. [247] and Antoniol et al. [37] deal with remodularizing software
libraries with the aim of minimizing the footprint of an application in the program



4 Search Based Software Maintenance: Methods and Tools 117

memory. This is particularly useful when porting applications towards devices with
a limited memory. Years ago, this was particularly true for many mobile devices;
nowadays most mobile devices (tablets and smartphones) have enough memory.
However, memory occupation is still a concern for some specific devices such as
embedded systems or active sensors.

To deal with the software miniaturization problems, Di Penta et al. and Antoniol
et al. [37] start from a graph highlighting dependencies between applications and
libraries, and between objects composing libraries. Given this graph, the goal to be
achieved is to minimize the footprint of applications, considering the set of libraries
they should be linked to. Since libraries can be partitioned in different ways such
that the overall size of the libraries used by each application is minimized, this is
still a modularization problem that can be solved using search-based optimization
techniques. The miniaturization problem is then solved by using a GA similar to the
one used by Doval et al. [260] for remodularization purposes. However, instead of
using the MQ as fitness function, a mono-objective one (to be minimized) consisting
of a weighted sum of the four factors keeping into account: (i) the total number (or
size) of objects linked to each application, (ii) the number of inter-library dependen-
cies (to avoid linking a library every time another is linked), (iii) the difference with
the initial libraries (to avoid scrambling the libraries completely), and (iv) feedbacks
provided by experts/original developers.

Di Penta et al. [247] and Antoniol et al. [37] applied their approach on various
C programs, such as Grass, QT, MySQL, and Samba. The application footprint size
was reduced of over 60% for MySQL and Samba, and between 5% and 25% for
Grass and QT

A different miniaturization approach has been proposed by Ali et al. [17]. In their
work, they aim at determining the set of features to be included in an application
when porting it towards a mobile device with the aim of (i) maximizing customers’
satisfaction and (ii) keeping the devices’ battery consumption low. For each fea-
ture, they also measure the estimated battery consumption, using a framework by
Binder and Hulaas [107], based on bytecode analysis. Finally, they use a NSGA-
II [226] multi-objective optimization to determine the set of features to include in
the ported application. Ali et al. [17] experimented their approach to miniaturize an
email client (Pooka) and an instant messenger (SIP). The minuaturization was ex-
perimented by considering some user requirements collected through a survey, and
some hypothetical constraints in terms of user satisfaction and consumption. Com-
pared with a manual minuaturization, the proposed approach allowed to save about
77% of the effort.



118 Gabriele Bavota, Massimiliano Di Penta and Rocco Oliveto

4.3.4 Putting the developer in the loop: interactive software
modularization

The approaches for software modularization described above have the advantage of
being completely automatic, i.e., they produce a possible modularization without
requiring manual intervention.

While automatic re-modularization approaches proved to be very effective in in-
creasing cohesiveness and reducing coupling of software modules, they do not take
into account developers’ knowledge when deciding to group together (or not) cer-
tain components. For example, a developer may decide to place a function in a given
module even if, in its current implementation, the function does not communicate a
lot with other functions in the same module. This is because the developer may be
aware that, in future releases, such a function will strongly interact with the rest of
the module. Similarly, a developer may decide that two functions must be placed in
two different modules even if they communicate. This is because the two functions
have different responsibilities and are used to manage semantically different parts
of the system.

To deal with this problem, different authors have proposed methods to incorpo-
rate developers’ feedback in search-based remodularization algorithms.

Hall et al. [360] proposed a supervised remodularization approach, named SUMO
(Supervised Remodularization), that integrates existing modularization approches—
such as Bunch [610]—with corrections provided by the software engineer. The idea
of the approach is the following:

1. First, a solution of the modularization problem is created using automatic modu-
larization (Bunch, for example).

2. After that, the user provides corrections through a user interface. Such correc-
tions consist of two sets of relations, Rel+, defined as pairs of artifacts that should
belong to the same cluster (i.e., go together), and Rel−, defined as pairs of arti-
facts that should not go together.

3. After that, a constraint satisfaction approach is used to modify the initially pro-
duced clusters with the aim of satisfying constraints expressed by sets of relations
Rel+ and Rel−. Steps 2 and 3 are repeated until the software engineer finds no
further corrections.

Bavota et al. [82] proposed the use of Interactive GA [818] (IGA) to solve the
modularization problem, considering it as both single-objective and multi-objective
optimization problem. The problem is encoded as done in Gadget [260]. The single-
objective GA uses as fitness function the MQ metric, while the multi-objective GA
considers the five different objectives of the approach by Praditawong et al. [701]
described in Section 4.3.2.

The basic idea of the IGA is to periodically add a constraint to the GA such that
some specific components shall be put in a given cluster among those created so far.
Thus, the IGA evolves exactly as the non-interactive GA. Every nGens generations,
the best individual is selected and shown to the software engineer. After that, the



4 Search Based Software Maintenance: Methods and Tools 119

software engineer analyzes the proposed solutions and provides feedback, indicating
that certain components must be placed in a specific cluster.

In principle, the IGA can ask feedback for every pair of components. However,
this would be too much work for the software engineer. To limit the amount of
feedback, the Algorithm 6—takes the best solution produced by the GA, randomly
selects two components (from the same cluster or from different clusters), and then
asks the software engineer whether, in the new solutions to be generated, such com-
ponents must be placed in the same cluster (i.e., stay together) or whether they
should be kept separated. In total, every nGens generations the software engineer is
asked to provide feedback about a number nFeedback of component pairs from the
best solution (in terms of MQ) contained in the current population.

6 Pseudocode of the Interactive GA for software modularization.
1: for i = 1 . . . nInteractions do
2: Evolve GA for nGens generations
3: Select the solution having the highest MQ
4: for j = 1 . . . nFeedback do
5: Randomly select two components ci and c j
6: Ask the developer whether ci and c j must go together or kept separate
7: end for
8: Repair the solution to meet the feedback
9: Create a new GA population using the repaired solution as starting point

10: end for
11: Continue (non-interactive) GA evolution until it converges or it reaches maxGens

After feedback is provided, the solution is repaired by enforcing the constraints,
e.g., by randomly moving one of ci and c j away if the constraint tells that they
shall be kept separated. After all nFeedback have been provided, a new population
is created by randomly mutating such a repaired solution. Then, the GA starts again.

During the GA evolution, to ensure constraints specified by the software engi-
neers are satisfied, a penalty factor is added to the fitness function (as proposed by
Coello Coello [195]), to penalize solutions violating the constraints imposed by the
developers. Given CS ≡ cs1, . . .csm the set of feedback collected by the users, the
fitness F(s) for a solution s is computed by Equation 4.5, where k > 0 is an integer
constant weighting the importance of the feedback penalty, and vcsi,s is equal to one
if solution s violates csi, zero otherwise. After nInteractions have been performed,
the GA continues its evolution in a non-interactive way until it reaches stability or
the maximum number of generations.

F(s) =
MQ(s)

1+ k ·∑m
i=1 vcsi,s

(4.5)

A variant of the interactive GA described above specifically aims at avoiding
isolated clusters, by asking the developers where the isolated component must be
placed. For non-isolated clusters, the developer is asked to specify for each pair of
components whether they must stay together or not.



120 Gabriele Bavota, Massimiliano Di Penta and Rocco Oliveto

Finally, the multi-objective variants of IGA are quite similar to the single-
objective ones. Also in this case, two variants have been proposed, one—referred to
as R-IMGA (Random Interactive Modularization Genetic Algorithm)—where feed-
back is provided on randomly selected pairs of components, and one—referred to
as IC-IMGA (Isolated Clusters Interactive Modularization Genetic Algorithm)—
where feedback is provided on components belonging to isolated (or smallest) clus-
ters.

In summary, interactive approaches to software modularization help software en-
gineers to incorporate their rationale in automatic modularization approaches. The
challenge of such approaches, however, is to limit the amount of feedback the soft-
ware engineers have to provide. On the one hand, a limited amount of feedback
can result in a modularization that is scarcely usable. On the other hand, too much
feedback may become expensive and make the semi-automatic approach no longer
worthwhile.

Fig. 4.3: MGA vs IC-IMGA in reconstructing the RegisterManagement package of
SMOS [82].

In the evaluation reported in the paper by Bavota et al. [82], the authors com-
pare the different variants of IGAs with their non-interactive counterparts in the
context of software re-modularization. The experimentation has been carried out
on two software systems, namely GESA and SMOS, by comparing the ability of

Original Package MGA partition IC-IMGA partition

RegisterManagement

Absence
Delay
Justify
ManagerRegister
Note
RegisterLine
ServletComputeStatistics
ServletDeleteJustify
ServletDeleteNote
ServletInsertAbsenceAta
ServletInsertDelayAta
ServletInsertJustify
ServletInsertNewNote
ServletLoadClassForTeacher
ServletShowClassroomManagement
ServletShowJustifyDetails
ServletShowJustifyList
ServletShowJustifyListForTeacher
ServletShowJustifyListParent
ServletShowJustifyListStudent
ServletShowNoteDetails
ServletShowNoteList
ServletShowNoteListForTeacher
ServletShowNoteListParent
ServletShowNoteListStudent
ServletShowRegister
ServletShowRegisterForTeacher
ServletShowRegisterParent
ServletShowRegisterStudent
ServletUpdateJustify
ServletUpdateRegister

P2
Absence
ServletDeleteJustify
MailUtility

P1
Delay
ManagerAddress
ServletInsertAddress

P3
Justify
ServletShowUserListP4

ManagerRegister
ServletShowRegister P5

Note
ServletDeleteNoteP6

ServletInsertAbsenceAta
ServletRemoveStudentClassroom
ServletShowAddressDetails
ConnectionException P7

ServletInsertDelayAta
ClassroomP8

ServletInsertJustify
ServletShowNoteListStudent P9

ServletInsertNewNote
ServletShowTeacjhingDetailsP10

ServletShowNoteDetails
ServletShowUserDetails P11

ServletShowNoteList
EntityNotFoundException
ServletShowStudentByClassP12

ServletShowNoteDetails
ServletShowUserDetails P13

ServletShowRegisterParent
ServletShowReportsP14

ServletLoadClassForTeacher
ServletShowRegisterStudent
ServletLoadTeachingList

Plus 13 more packages with one
class of RegisterManagement

each. (Total 27)

P1
Absence
Delay
Justify
ManagerRegister
Note
RegisterLine
ServletComputeStatistics
ServletDeleteNote
ServletInsertAbsenceAta
ServletInsertDelayAta
ServletInsertJustify
ServletInsertNewNote
ServletShowJustifyDetails
ServletShowJustifyList
ServletShowJustifyListForTeacher
ServletShowJustifyListParent
ServletShowNoteDetails
ServletShowNoteList
ServletShowNoteListParent
ServletShowNoteListStudent
ServletShowRegister
ServletShowRegisterForTeacher
ServletShowRegisterParent
ServletShowRegisterStudent
ServletUpdateJustify
ServletUpdateRegister

P2
ServletDeleteJustify
ServletLoadClassForTeacher
ServletUpdateTeachingP3

ServletShowClassroomManagement
ServletInsertClassroom

Plus 2 more packages with one
class of RegisterManagement

each. (Total 5)



4 Search Based Software Maintenance: Methods and Tools 121

GAs and IGAs to reach a fair trade-off between the optimization of some quality
metrics (that is the main objective of GAs applied to software re-modularization)
and the closeness of the proposed partitions to an authoritative one (and thus, their
meaningfulness). The achieved results show that the IGAs are able to propose re-
modularizations (i) more meaningful from a developer’s point-of-view, and (ii) not
worse, and often even better in terms of modularization quality, with respect to those
proposed by the non-interactive GAs.

To understand in a practical way what is the difference between the performances
of interactive and non-interactive GAs, Figure 4.3 shows an example extracted from
the re-modularization of the SMOS software system. The figure is organized in three
parts. The first part (left side) shows how the subsystem RegisterManagement
appears in the original package decomposition (i.e., which classes it contains)
made by the SMOS’s developers. This subsystem groups together all the classes
in charge to manage information related to the scholar register (e.g., the students’
delay, justifications for their absences and so on). The second part (middle) re-
ports the decomposition of the classes contained in RegisterManagement pro-
posed by the MGA (Modularization Genetic Algorithm). Note that some classes
not belonging to the RegisterManagement were mixed to the original set of
classes. These classes are reported in light gray. Finally, the third part (right side)
shows the decomposition of the classes contained in RegisterManagement pro-
posed by the IC-IMGA. Also in this case, classes not belonging to the original
RegisterManagement package are reported in light gray. As we can notice, the
original package decomposition groups 31 classes in the RegisterManagement
package. When applying MGA, these 31 classes are spread into 27 packages, 13 of
which are singleton packages. As for the remaining 14 they usually contain some
classes of the RegisterManagement package mixed with other classes com-
ing from different packages (light gray in Figure 4.3). The solution provided by
IC-IMGA is quite different. In fact, IC-IMGA spreads the 31 classes in only 5 pack-
ages. Moreover, it groups together in one package 26 out of the 31 classes originally
belonging to the RegisterManagement package. It is striking how much the
partition proposed by IC-IMGA is closer to the original one resulting in a higher
MoJoFM achieved by IC-IMGA with respect to MGA and thus, a more meaningful
partitioning from a developer’s point of view.

4.4 Software Analysis and Transformation Approaches

In this section we describe how to instantiate a search-based approach to automat-
ically modify source code (and models) for various specific purposes, for example
improving maintainability or fixing bugs.



122 Gabriele Bavota, Massimiliano Di Penta and Rocco Oliveto

Fig. 4.4: Example of program transformation [283].

4.4.1 Program transformation

Program transformation can be described as the act of changing one program to
another. Such a transformation is achieved by converting each construct in some
programming language into a different form, in the same language or, possibly, in a
different language. Further details about software transformation—and in particular
model transformation—can be found in a paper by Mens and Van Gorp [597].

Program transformation has been recognized as an important activity to facili-
tate the evolution of software systems. The hypothesis is that the original source
code can be progressively transformed into alternative forms. The output of the pro-
cess is a program possibly easier to be understood and maintained, or without bugs
(according to a given test suite).

Figure 4.4 reports an example of transformation for an original program to an-
other program. In this case the program semantics is preserved and the transforma-
tion aims at improving the comprehensibility of the program. Such a transformation
is achieved by applying a set of transformation axioms. The choice of the axioms to
be applied is guided by the final goal of program transformation, that is making the
code more comprehensible.

Problem definition. The program transformation problem can be considered
as an optimization problem, where an optimal sequence of transformation axioms
(transformation tactic) is required in order to make an input program easier to com-
prehend [283]. Transformations can be applied at different points—e.g., nodes of
the Control Flow Graph (CFG)—of the program. The set of transformation rules
and their corresponding application point is therefore large. In addition, many rules
may need to be applied to achieve an effective overall program transformation tac-
tic, and each will have to be applied in the correct order to achieve the desired result.
All these considerations suggest that the problem is hard to solve and it represents
a rich soil for search-based approaches. Specifically, search-based approaches can
be used to identify a sub-optimal sequence of transformations in a search space that
contains all the possible allowable transformation rules.

Solution representation. A solution is represented by a sequence of transfor-
mations that have to be applied on an input program. Fatiregun et al. [283] use a
very simple representation, where each solution has a fixed sequence length of 20
possible transformations. Thus, each solution contains the identifier of the specific

if (e1) s1; else s2;
if (true) s1; else s2;
x = 2; x = x - 1; y = 10; x = x + 1;
for (s1; e2; s2) s3;

Original Code

if (!e1) s2; else s1;
s1;
x = 2; y = 10;
s1; while (e2) s3; s2;

Transformed Code



4 Search Based Software Maintenance: Methods and Tools 123

transformation in the considered catalogue. The FermaT2 [908] transformation tool
is used to apply the transformation encoded in each solution. FermaT has a number
of built-in transformations that could be applied directly to any point within the pro-
gram. Examples of such transformations are: @merge-right, that merges a se-
lected statement into the statement that follows it, or@remove-redundant-vars,
that will remove any redundant variables in the source program.

Fitness function. A program is transformed in order to achieve a specific goal,
e.g., reduce its complexity. In this case, the fitness function could be based on ex-
isting metrics for measuring software complexity, such as Lines of Code (LoC) or
cyclomatic complexity. Fatiregun et al. [283] measure the fitness of a potential so-
lution as the difference in the lines of code between the source program and the new
transformed program created by that particular sequence of transformations. Specif-
ically, they first compute the LOC of the original program. Then, they apply on the
original program the sequence of transformations identified by the search-based ap-
proach obtaining a new version of the program. Using such a fitness function, an
optimum solution would be the sequence of transformations that results in an equiv-
alent program with the fewest possible number of statements.

Supported search-based techniques and change operators. The search-based
techniques used to support program transformation are HC and GA [283]. In the
HC implementation the neighbor has been defined as the mutation of a single gene
from the original sequence leaving the rest unchanged. As for GA, a single point
crossover has been used. Note that the solution proposed by Fatiregun et al. makes
the implementation of crossover and mutation operators quite simple. Specifically,
for the crossover a random point is chosen and genes are then swapped, creating
two new children. As for the mutation, a single gene is chosen and it is changed
arbitrarily.

Empirical evaluation. The effectiveness (measured in terms of size reduction)
of search-based approaches for program transformation has been only preliminary
evaluated on small synthetic program transformation problems [283]. Specifically,
the transformations achieved with both GA and HC were compared with those re-
turned by a purely random search of the search space. The comparison was based
on two different aspects: the most desirable sequence of transformations that the
algorithm finds and the number of fitness evaluations that it takes to arrive at that
solution. Results indicated that GA outperforms both the random search and the HC
as the source program size increases. In addition, the random search outperforms
HC in some specific case. Unfortunately, until now only a preliminary analysis of
the benefits provided by search-based approaches for program transformation has
been performed. Studies with users are highly desirable to evaluate to what extent
the achieved transformation are meaningful for developers.

2 http://www.cse.dmu.ac.uk/ mward/fermat.html

http://www.cse.dmu.ac.uk/ mward/fermat.html


124 Gabriele Bavota, Massimiliano Di Penta and Rocco Oliveto

4.4.2 Automatic Software Repair

Repairing defects in software systems is usually costly and time-consuming, due to
the amount of software defects in a software system. Because of this very often—
due to the lack of available resources—software projects are released with both
known and unknown defects [521]. As example, in 2005, a Mozilla’s developer
claimed that, “everyday, almost 300 bugs appear [...] far too much for only the
Mozilla programmers to handle” [41]. These considerations have prompted re-
searchers in the definition of methods for automatic repair of defects. Specifically,
Le Goues et al. [502] have formulated such a problem as an optimization problem
and have proposed Genetic Program Repair (GenProg), a technique that uses exist-
ing test cases to automatically generate repairs for bugs in software systems.

Problem definition. The basic idea is inspired by the definition of a repair, that
is a patch consisting of one or more code changes that, when applied to a program,
cause it to pass a set of test cases [502]. Thus, given a buggy source code component
and a test suite (where there is at least one test case that did not pass due to the
presence of the bug), GP is used to automatically mutate the buggy code aiming at
pass all the tests in a given test suite.

Solution representation. In GenProg each solution is represented by an abstract
syntax tree that includes all the statements (i.e., assignments, function calls, condi-
tionals, blocks, and looping constructs) in the program. In addition, to each solution
is associated a weighted path computed by executing all the test cases in the given
test suite. Specifically, a statement in the AST is weighted with 1 if the statement
is covered by a test case that does not pass, 0 otherwise. The weighted path is used
to localize buggy statements to be mutated (i.e., statements covered by test cases
that do not pass). In addition, the weighted path is used to avoid mutating correct
statements (i.e., statements covered by test cases that pass). The conjecture is that
a program that contains an error in one area of source code likely implements the
correct behavior elsewhere [273].

Fitness function. The fitness function is used to evaluate the goodness of a pro-
gram variant obtained by GP. A variant that does not compile has fitness zero. The
other variants are evaluated taking into account whether or not the variant passes test
cases. Specifically, the fitness function for a generic variant v is a weighted sum:

f (v) =WPostest · |{t ∈ Postest : v passed t}|+WNegtest · |{t ∈ Negtest : v passed t}|
(4.6)

where Postest is the set of positive test cases that encode functionality that cannot
be sacrificed and Negtest is the set of negative test cases that encode the fault to be
repaired. The weights WPostest and WNegtest have been empirically determined using
a trial and error process. Specifically, the best results have been achieved setting
WPostest = 1 and WNegtest = 10.

Selection and genetic operators. As for the selection operator, in GenProg two
different operators have been implemented, i.e., roulette wheel and tournament se-
lection. The results achieved in a case study indicated that the two operators pro-
vided almost the same performances. Regarding the crossover operator, in GenProg



4 Search Based Software Maintenance: Methods and Tools 125

a single point crossover is implemented. It is worth noting that only statements along
the weighted paths are crossed over. Finally, the mutation operator is used to mutate
a given variant. With such an operator is possible to:

• Insert new statement. Another statement is inserted after the statement selected
for mutation. To reduce the complexity, GenProg uses only statements from the
program itself to repair errors and does not invent new code. Thus, the new state-
ment is randomly selected from anywhere in the program (not just along the
weighted path). In addition, the statement’s weight does not influence the proba-
bility that it is selected as a candidate repair.

• Swap two statements. The selected statement is swapped with another statement
randomly selected, following the same approach used for inserting a new state-
ment.

• Delete a statement. The selected statement is transformed into an empty block
statement. This means that a deleted statement may therefore be modified in a
later mutation operation.

In all cases, the weight of the mutated statement does not change.
Refinement of the solution. The output of GP is a variant of the original pro-

gram that passes all the test cases. However, due to the randomness of GP, the ob-
tained solution contains more changes than what necessary to repair the program.
This increases the complexity of the original program by negatively affecting its
comprehensibility. For this reason, a refinement step is required to remove unneces-
sary changes. Specifically, in GenProg a minimization process is performed to find
a subset of the initial repair edits from which no further elements can be dropped
without causing the program to fail a test case (a 1-minimal subset). To deal with
the complexity of finding a 1-minimal subset, delta debugging [947] is used. The
minimized set of changes is the final repair, that can be inspected for correctness.

Empirical evaluation. GenProg has been used to repair 16 programs for a total
of over 1.25 million lines of code [502]. The considered programs contain eight
different kinds of defects, i.e., infinite loop, segmentation fault, remote heap buffer
overflow to inject code, remote heap buffer overflow to overwrite variables, non-
overflow denial of service, local stack buffer overflow, integer overflow, and format
string vulnerability. In order to fix such defects, 120K lines of module or program
code need to be modified. The results achieved indicated that GenProg was able to
fix all these defects in 357 seconds. In addition, GenProg was able to provide repairs
that do not appear to introduce new vulnerabilities, nor do they leave the program
susceptible to variants of the original exploit.

4.4.3 Model transformation

Similar to program transformation, model transformation aims to derive a target
model from a source model by following some rules or principles. Defining trans-
formations for domain-specific or complex languages is a time consuming and dif-



126 Gabriele Bavota, Massimiliano Di Penta and Rocco Oliveto

Fig. 4.5: Solution representation for search-based model transformation [459].

ficult task, that requires knowledge of the underlying meta-models and knowledge
of the semantic equivalence between the meta-models’ concepts3. In addition, for
an expert it is much easier to show transformation examples than to express com-
plete and consistent transformation rules. This has pushed researchers to define a
new approach for model transformation, namely Model Transformation by Exam-
ples (MTBE).

Problem definition. Using MTBE it is possible to exploit knowledge from pre-
viously solved transformation cases (examples) to transform new models by using
combinations of known solutions to a given problem. This means that the target
model can be obtained through an optimization process that exploits the available
examples. The high number of examples as well as the high number of sequences
of application of such transformations make MTBE very expensive to be performed
manually. For this reason, a search-based approach, called MOdel Transformation as
Optimization by Examples (MOTOE) has been proposed to identify a sub-optimal
solution automatically [459]. Specifically, the approach takes as inputs a set of trans-
formation examples and a source model to be transformed, and then it generates as
output a target model. The target model is obtained by applying a subset of trans-
formation fragments (code snippets) in the set of examples that best matches the
constructs of the source model (using a similarity function).

Solution representation. In MOTOE [459] is represented by a n-dimensional
vector, where n is the number of constructs in the model. This means that each
construct in the model is represented by an element of such a vector. Each con-
struct is then transformed according to a finite set of m code snippets extracted from

3 The interested reader can find details on the evolution between models and meta-models in Chap-
ter 2

7654321

emissionDate
deliveryAddress

Command

amount
issueDate
deliveryDate

Bill
balance
holder

Client

description
picture
price

Item

pays
1

1..n

1..n

payable_by

1

2

3

4

5

6

7

54291321328



4 Search Based Software Maintenance: Methods and Tools 127

the transformation examples (for instance change an inheritance relationship to an
association). Each code snippet has a unique value ranging from 1 to m. Thus, a
particular solution is defined by a vector, where the ith element contains the snippet
id (i.e., the transformation id) that has to be used to transform the ith construct in
the model. In the example depicted in Figure 4.5 there is a class diagram with 7
constructs, i.e., 4 classes and 3 relationships. The solution is represented by a vector
with 7 elements that contains the transformation to be applied to each construct. For
instance, the transformation 28 is applied to the class Command.

Fitness function. The fitness function quantifies the quality of a transformation
solution. In MOTOE, the transformation is basically a 1-to-1 assignment of snippets
from the set of examples to the constructs of the source model. Thus, the authors
proposed a fitness function that is represented by the sum of the quality of each
transformation:

f =
n

∑
i=1

ai · (ici + eci) (4.7)

In order to estimate the quality of each transformation, the authors analyze three
different aspects (captured by ai · (ici + eci) in the formula above):

• Adequacy (ai) of the assigned snippet to the ith construct. Adequacy is 1 if the
snippet associated to ith construct contains at least one construct of the same type,
and value 0 otherwise. Adequacy aims at penalizing the assignment of irrelevant
snippets.

• Internal coherence (ici) of the individual construct transformation. The intern co-
herence measures the similarity, in terms of properties, between the ith construct
to transform and the construct of the same type in the assigned snippet.

• External coherence (eci) with the other construct transformations. Since a snippet
assigned to the ith construct contains more constructs than the one that is adequate
with the ith construct, the external coherence factor evaluates to which extent
these constructs match the constructs that are linked to ith construct in the source
model.

The fitness function depends on the number of constructs in the model. To make the
values comparable across models with different numbers of constructs, a normalized
version of the fitness function can be used [459]. Since the quality of each transfor-
mation varies between 0 and 2 (ici and eci can be both equal to 1), the normalized
fitness function is fnorm = f

2·n .
Supported search-based techniques and change operators. The search-based

techniques used to support model transformation in MOTOE are PSO and a hybrid
heuristic search that combines PSO with SA [459]. In the hybrid approach, the SA
algorithm starts with an initial solution generated by a quick run of PSO. In both the
heuristic the change operator assigns new snippet ids to one or more constructors.
Thus, it creates a new transformation solution vector starting from the previous one.

Empirical evaluation. The performance of MOTOE has been evaluated when
transforming 12 class diagrams provided by a software industry [459]. The size
of the these diagrams varied from 28 to 92 constructs, with an average of 58. Al-
together, the 12 examples defined 257 mapping blocks. Such diagrams have been



128 Gabriele Bavota, Massimiliano Di Penta and Rocco Oliveto

used to build an example base. Then a 12-fold cross validation procedure was used
to evaluate the quality of transformations produced by MOTOE, i.e., one class
diagram is transformed by using the remaining 11 transformation examples. The
achieved transformations have been compared—construct by construct—with the
known transformations in order to measure they correctness (automatic correctness).
In addition, a manual analysis of the achieved transformation was performed to iden-
tify alternative but still valid transformations (manual correctness). The achieved
results indicated that when using only PSO the automatic correctness measure had
an average value of 73.3%, while the manual correctness measure had an average
value of 93.2%. Instead, when using the hybrid search, correctness is even higher,
i.e., 93.4% and 94.8% for the automatic and manual correctness, respectively. This
means that the proposed transformations were almost as correct as the ones given
by experts.

4.5 Search-based Software Refactoring

Refactoring has been defined as “the process of changing a software system in such
a way that it does not alter the external behavior of the code yet improves its inter-
nal structure” [301, 664]. Different refactoring operations4 might improve different
quality aspects of a system. Typical advantages of refactoring include improved
readability and reduced complexity of source code, a more expressive internal ar-
chitecture and better software extensibility [301]. For these reasons, refactoring is
advocated as a good programming practice to be continuously performed during
software development and maintenance [88, 301, 458, 596].

Despite its advantages, to perform refactoring in non-trivial software systems
might be very challenging. First, the identification of refactoring opportunities in
large systems is very difficult, due to the fact that the design flaws are not always
easy to identify [301]. Second, when a design problem has been identified, it is not
always easy to apply the correct refactoring operation to solve it. For example, split-
ting a non-cohesive class into different classes with strongly related responsibilities
(i.e., Extract Class refactoring) requires the analysis of all the methods of the orig-
inal class to identify groups of methods implementing similar responsibilities and
that should be clustered together in new classes to be extracted. This task becomes
even more difficult when the size of the class to split increases. Moreover, even
when the refactoring solution has been defined, the software engineer must apply it
without changing the external behavior of the system.

All these observations highlight the need for (semi)automatic approaches sup-
porting the software engineer in (i) identifying refactoring opportunities (i.e., design
flaws) and (ii) designing and applying a refactoring solution. To this aim, several dif-
ferent approaches have been proposed in the literature to automate (at least in part)
software refactoring [83, 84, 618, 649, 659, 765, 858]. Among them, of interest for

4 A complete refactoring catalog can be found at http://refactoring.com/catalog/.

http://refactoring.com/catalog/


4 Search Based Software Maintenance: Methods and Tools 129

this chapter are those formulating the task of refactoring as a search problem in the
space of alternative designs, generated by applying a set of refactoring operations.
This idea has been firstly presented by O’Keeffe and Cinnéide [656] that propose
to treat object-oriented design as a combinatorial optimization problem, where the
goal is the maximization of a set of design metrics capturing design quality (e.g.,
cohesion and coupling). In short, the idea is to represent a software system in an eas-
ily manipulable way (solution representation), in order to apply a set of refactoring
operations to it (change operators). This can be done by selecting, during the popu-
lation evolution, the solutions (i.e., refactored version of the system) maximizing a
set of metrics capturing different aspects of design quality (fitness function).

Starting from the work by O’Keeffe and Cinnéide, search-based refactoring ap-
proaches have been applied to improve several different quality aspects of source
code maintainability [659, 765], testability [649], and security [323]. Moreover,
search-based refactoring techniques have also been proposed with the aim of in-
troducing design patterns [438], and improving the alignment of code to high-level
documentation [615].

The main advantages of search based refactoring techniques as compared to non
search based ones are:

• Higher flexibility. They are suited to support a wide range of refactoring oper-
ations, also allowing to apply several of them in combination with the aim of
maximizing the gain in terms of the defined fitness function.

• Wider exploration of the solution space. Generally, refactoring approaches are
based on heuristics suggesting when a refactoring should be applied. For exam-
ple, if a method has more dependencies toward a class other than the one it is
implemented in, it can be a good candidate for move method refactoring. On the
one side, while these heuristics can help in solving very specific design problems,
they do not allow a wide exploration of the solution space (i.e., the alternative
designs). On the other side, search-based algorithms explore several alternative
designs by applying many thousands of refactorings in different orders, with the
aim of finding a (sub)optimal solution for the defined fitness function.

We will mainly focus our discussion of search-based software refactoring on the
CODe-Imp (Combinatorial Optimisation Design-Improvement) tool [614], used for
the first time by O’Keeffe and O’Cinnéide [656] to test the conjecture that the main-
tainability of object-oriented programs can be improved by automatically refactor-
ing them to adhere more closely to a pre-defined quality model. Then, we will briefly
overview other applications of search-based refactoring presented in literature.

4.5.1 The CODe-Imp tool

CODe-Imp [614] is a tool designed to support search-based refactoring and used by
several works in this field [323, 615, 649, 658, 659]. In its current implementation,
the tool can be applied to software systems written in Java.



130 Gabriele Bavota, Massimiliano Di Penta and Rocco Oliveto

Solution Representation. In CODe-Imp the solution representation is the pro-
gram itself and, in particular, its AST. Having such a representation allows to:

1. Easily evaluate the fitness of a refactoring solution. In fact, through the program
AST it is possible to easily extract information exploited by almost all the fitness
functions used in the search-based refactoring field, such as the number of meth-
ods in a class, the list of attributes, methods, and constructors accessed/called by
a particular method, and so on. Thus, the evaluation of a generated solution—
i.e., an AST representing a refactored version of the original program—is quite
straightforward.

2. Determine which refactorings can legally be applied by the change operator. By
“legally” we mean refactorings that do not alter the external behavior of a soft-
ware system.

3. Easily apply the selected refactorings to a program. Once the search-based algo-
rithm has found the list of refactorings to apply on the object system, it is impor-
tant that these refactorings can be mapped and applied to the system source code.
The mapping with source code is performed through its AST representation.

Change Operators. In the context of search-based refactoring, the change oper-
ator is a transformation of the solution representation that corresponds to a refactor-
ing that can be carried out on the source code [659]. The current implementation of
CODe-Imp supports the 14 design-level refactorings reported in Table 4.1.

Table 4.1 shows how each refactoring operation supported in CODe-Imp also
has its complement (i.e., a refactoring operation undoing it). For example, a Push
Down Method refactoring can be undone by applying a Pull Up Method refactor-
ing, as well as a Replace Inheritance with Delegation can be undone by the inverse
refactoring operation, i.e., Replace Delegation with Inheritance. This choice is not
random, but it is driven by the fact that some search techniques (e.g., SA) must be
able to freely move in the solution space. Thus, it must be possible to undo each
performed refactoring operation.

Also, before applying a refactoring operation, a set of pre- and post-conditions
is verified, to allow the preservation of the system’s external behavior. For example,
before performing a Push Down Method refactoring it is important to verify that the
subclasses involved in this refactoring do not override the method inherited from
their superclass. Only refactoring operations satisfying the set of defined pre- and
post-conditions are considered as legal change operators in the search algorithm.
CODe-Imp adopts a conservative static program analysis to verify pre- and post-
conditions.

Note that, the set of change operators reported in Table 4.1 is the one adopted in
all work involving the CODe-Imp despite the different final goals of the presented
refactoring process, like maintainability [657–659], testability [649], and security
[323].

Fitness Function. In search-based refactoring the employed fitness functions are
composed of a set of metrics capturing different aspects of source code design qual-
ity. The set of adopted metrics strongly depends on the objective of the refactoring
process. For example, given a hypothetic search-based approach designed to support



4 Search Based Software Maintenance: Methods and Tools 131

Table 4.1: Refactoring operations supported by CODe-Imp [614].

Refactoring Operation Description

Push Down Method
Moves a method from a superclass to the subclasses
using it

Pull Up Method
Moves a method from some subclasses to their super-
class

Decrease/Increase Method Visibility
Changes the visibility of a method by one level (e.g.,
from private to protected)

Push Down Field
Moves a field from a superclass to the subclasses us-
ing it

Pull Up Field Moves a field from some subclasses to their superclass

Decrease/Increase Field Visibility
Changes the visibility of a field by one level (e.g.,
from private to protected)

Extract Hierarchy
Adds a new subclass to a non-leaf class C in an inher-
itance hierarchy. A subset of the subclasses of C will
inherit from the new class.

Collapse Hierarchy
Removes a non-leaf class from an inheritance hierar-
chy.

Make Superclass Abstract Declares a constructorless class explicitly abstract.

Make Superclass Concrete
Removes the explicit abstract declaration of an ab-
stract class without abstract methods.

Replace Inheritance with Delegation
Replaces an inheritance relationship between two
classes with a delegation relationship

Replace Delegation with Inheritance
Replaces a delegation relationship between two
classes with an inheritance relationship

Extract Class refactoring—i.e., the decomposition of a complex low-cohesive class
in smaller more cohesive classes—it would be necessary to verify that the extracted
classes are (i) strongly cohesive, and (ii) lowly coupled between them. These two
characteristics would indicate a good decomposition of the refactored class. Thus,
in such a case cohesion and metrics should be part of the defined fitness function.

In the studies conducted with CODe-Imp, several different fitness functions have
been used and tuned to reach different final goals in source code design. O’Keeffe
and Ó Cinnéide [657] try to maximize the understandability of source code by
adopting as fitness function an implementation of the Understandability function
from the Quality Model for Object-Oriented Design (QMOOD) defined by Bansiya



132 Gabriele Bavota, Massimiliano Di Penta and Rocco Oliveto

and Davis [69]5. QMOOD relates design properties such as encapsulation, mod-
ularity, coupling, and cohesion to high-level quality attributes such as reusability,
flexibility, and understandability using empirical and anecdotal information [69].
In the work by O’Keeffe and Ó Cinnéide [659] the employed Understandability
function is defined by Equation 4.8 where software characteristics having a positive
coefficient (e.g., Encapsulation) positively impact source code understandability,
while those having a negative coefficient (e.g., Abstraction) negatively impact code
understandability. A detailed description of these metrics can be found in [657].

Understandability =−0.33× (Abstraction+Encapsulation−Coupling

+Cohesion+Polymorphism−Complexity−DesignSize) (4.8)

O’Keeffe and Ó Cinnéide [659] perform a broader experimentation using, be-
sides the Understandability function, also QMOOD’s Flexibility and Reusability
functions as evaluation functions. The definition of the Flexibility function is given
in Equation 4.9 while the Reusability function is defined in Equation 4.10.

Flexibility = 0.25×Encapsulation−0.25×Coupling

+0.5×Composition+0.5×Polymorphism (4.9)

Reusability =−0.25×Coupling+0.25×Cohesion

+0.5×Messaging+0.5×DesignSize (4.10)

It is worth noting that there are very interesting differences across the three above
presented fitness functions. For example, in the flexibility fitness function the Poly-
morphism is considered a good factor (i.e., a design quality increasing the flexibil-
ity) and thus is multiplied by a positive coefficient (0.5). On the contrary, in the
understandability one the Polymorphism plays a negative role (-0.33 as coefficient),
decreasing the fitness function. Also, the Design Size represents a positive factor
for the reusability of a software system (+0.5 of coefficient) while it is considered a
negative factor for the code understandability (-0.33). These observations highlight
that the fitness function is strongly dependent on the goal of the refactoring process.

As further support to this claim, the fitness function used in [649] and aimed at
increasing program testability is, as expected, totally different from those described
above: it is represented by just one metric, the Low-level design Similarity-based
Class Cohesion (LSCC) defined by Al Dallal and Briand [11].

Finally, a customized fitness function has been used in CODe-Imp to improve the
security of software systems [323]. In this case, the fitness function has been defined
as a combination of 16 quality metrics, including cohesion and coupling metrics,

5 The interested reader can find quality models useful to define alternative fitness functions in
Chapter 3



4 Search Based Software Maintenance: Methods and Tools 133

design size metrics, encapsulation metrics, composition metrics, extensibility and
inheritance metrics [323].

Supported search-based techniques and change operators. In CODe-Imp
a variety of local and meta-heuristic search techniques are implemented [658].
O’Keeffe and O’Cinnéide [658] evaluate the performances of four search tech-
niques, namely HC, Multiple ascent HC, SA, and GAs in maximizing the QMOOD
understandability previously described. As for GAs, the solution representation pre-
viously described (i.e., based on the AST) is considered as the phenotype, while
the sequence of refactorings performed to reach that solution is considered as the
genotype. The mutation operator simply add one random refactoring to a genotype,
while the crossover operator consists of “cut and splice” crossover of two genotypes,
resulting in a change in length of the children strings [658].

Empirical Evaluation. The results of the study performed by O’Keeffe and
O’Cinnéide [658] indicated that HC and its variant produce the best results. A simi-
lar study has also been performed in [659], where the authors compared HC, Multi-
ple ascent HC, and SA in maximizing all three QMOOD functions described above
(i.e., Understandability, Flexibility and Reusability). Also this study highlighted the
superiority of HC and its variants against the other techniques, with a quality gain
in the values of the fitness function of about 7% for Flexibility, 10% for Reusability,
and 20% for Understandability as compared to the original design. For this reason
the current version of CODe-Imp just supports the HC algorithm and some of its
variants.

4.5.2 Other search-based refactoring approaches

Seng et al. [765] proposed a refactoring approach based on GA aimed at improving
the class structure of a system. The phenotype consists of a high-level abstraction of
the source code and of several model refactorings simulating the actual source code
refactorings. The source code model represents classes, methods, attributes, param-
eters, and local variables together with their interactions, e.g., a method that invokes
another method. The goal of this abstraction is simply to avoid the complexity of the
source code, allowing (i) an easier application of the refactoring operations and (ii)
a simpler verification of the refactoring pre- and post- conditions needed to preserve
the system external behavior. The refactorings supported are Move Method, Pull Up
Attribute, Push Down Attribute, Pull Up Method, Push Down Method. Note that
also in this case each refactoring operation can be undone by another refactoring
operation, allowing a complete exploration of the search space.

Concerning the genotype, it consists of an ordered list of executed model refac-
torings needed to convert the initial source code model into a phenotype. As for the
mutation operator, it is very similar to that discussed for the work of O’Keeffe and
O’Cinnéide [658], and simply extends a current genome with an additional model
refactoring. As for the crossover operator, it combines two genomes by selecting



134 Gabriele Bavota, Massimiliano Di Penta and Rocco Oliveto

the first n model refactorings from parent one and adding the model refactorings of
parent two to the genome; n is randomly chosen [765].

Given the goal of the refactoring process proposed by Seng et al. [765]—i.e.,
to improve the class structure of a system—the fitness function is defined, as ex-
pected, as a set of quality metrics all capturing class quality aspects, and in partic-
ular by two coupling metrics (Response for class and the Information-flow-based-
coupling), three cohesion metrics (Tight class cohesion, Information-flow-based-
cohesion, and the Lack of cohesion of methods), and a complexity metric (a variant
of the Weighted method count).

The evaluation reported in [765] shows that the above described approach ex-
ecuted on an open source software system is able to improve the value of several
quality metrics measuring class cohesion and coupling. In particular, the improve-
ments in terms of cohesion go from 31% up to 81%, while the reduction of coupling
is between 3% and 87%. Moreover, since the approach is fully automated and does
not require any developer interaction, the authors manually inspected the proposed
refactoring operations to verify their meaningfulness. They found all of them justi-
fiable.

Jensen and Cheng [438] use GP to identify a set of refactoring operations aimed
at improving software design by also promoting the introduction of design patterns.
As for the previously discussed approaches their solution representation is a high-
level representation of the refactored software design and the set of steps (i.e., refac-
torings) needed to transform the original design into the refactored design.

The change operators defined in the approach by Jensen and Cheng have been
conceived for creating instances of design patterns in the source code. An example
of these operators is the Abstraction, that constructs a new interface containing all
public methods of an existing class, thus enabling other classes to take a more ab-
stract view of the original class and any future classes to implement the interface
[438].

As for the fitness function, it awards individuals in the generated population ex-
hibiting (i) a good design quality as indicated by the QMOOD metrics [69] pre-
viously described in Section 4.5.1, (ii) a high number of design patterns retrieved
through a Prolog query executed on the solution representation, and (iii) a low num-
ber of refactorings needed to obtain them. The evaluation reported by Jensen and
Cheng [438] shows as the proposed approach, applied on a Web-based system, is
able to introduce on average 12 new design pattern instances.



4 Search Based Software Maintenance: Methods and Tools 135

4.6 Conclusions

This chapter described how search-based optimization techniques can support soft-
ware evolution tasks. Table 4.2 summarizes the works we discussed, reporting for
each of them (i) the maintenance activity it is related to, (ii) the objectives it aims at
maximizing/minimizing, (iii) the exploited search-based techniques, (iv) a reference
to the work. We have identified three main kinds of activities for which search-based
techniques can be particularly useful. The first area concerns the identification of
modules in software projects, with the aim of keeping an evolving system main-
tainable, of restructuring existing systems, or even of restructuring applications for
particular objectives such as the porting towards limited-resource devices. The sec-
ond area concerns source code (or model) analysis transformation, aimed at achiev-
ing different tasks, e.g., finding a patch for a bug. The third area concerns software
refactoring, where on the one hand different kinds of refactoring actions are possible
[301] on different artifacts belonging to a software system and, on the other hand,
there could be different refactoring objectives, such as improving maintainability,
testability, or security.

In summary, software engineers might have different possible alternatives to
solve software evolution problems, and very often choosing the most suitable one
can be effort prone and even not feasible given the size and complexity of the system
under analysis, and in general given the number of possible choices for the software
engineers. Therefore, it turns out that finding a solution for many software evolu-
tion problems is NP-hard [312] and, even if an automatic search-based approach is
not able to identify a unique, exact solution, at least it can provide software engi-
neers with a limited set of recommendations, hence reducing information overload
[623]. All software engineers need to do in order to solve a software evolution prob-
lem using search-based optimization techniques is to (i) encode the problem using
a proper representation, (ii) identify a way (fitness function) to quantitatively eval-
uate how good is a solution for the problem, (iii) define operators to create new
solutions from existing ones (e.g., Genetic Algorithms (GAs) selection, crossover,
and mutation operators, or hill climbing neighbor operator), and (iv) finally, apply a
search-based optimization techniques, such as GAs, hill climbing, simulated anneal-
ing, or others. In some cases, there might not be a single fitness function; instead,
the problem might be multi-objective and hence sets of Pareto-optimal solutions are
expected rather than single solutions (near) optimizing a given fitness function.

Despite the noticeable achievements, software engineers need to be aware of
a number of issues that might limit the effectiveness of automatic techniques—
including search-based optimization techniques—when being applied to software
evolution problems. First, software development—and therefore software evolution—
is still an extremely human-centric activity, in which many decisions concerning de-
sign or implementation are really triggered by personal experience, that is unlikely
to be encoded in heuristics of automated tools. Automatically-generated solutions
to software evolution problems tend very often to be meaningless and difficult to be
applied in practice. For this reason, researchers should focus their effort in devel-
oping optimization algorithms—for example Interactive GAs [818]—where human



136 Gabriele Bavota, Massimiliano Di Penta and Rocco Oliveto

Table 4.2: Search-based approaches discussed in this chapter.

Activity Objectives Techniques Reference

Software Modularization
Maximize Modularization Qual-
ity (MQ) [555] HC, SA, GA [610]

Software Modularization
Multi-objective for maximizing
cohesion, minimizing coupling
and number of isolated clusters

NSGA-II [701]

Software Modularization
Maximize MQ and User Con-
straints Interactive GA [82, 360]

Software Miniaturization Minimize the footprint of an ap-
plication GA [247]

Software Miniaturization

Select features to include in an
application when porting it to-
wards a mobile device maximiz-
ing customers’ satisfaction and
minimizing battery consumption

GA [17]

Program Transformation Minimize code complexity HC, GA [283]

Model transformation

Derive a target model from a
source model by following some
rules or principles maiming ade-
quacy, internal coherence, and ex-
ternal coherence

PSO, PSO+SA [459]

Automatic Software Repair Maximize the tests passed in a
given test suite GP [502]

Refactoring
Maximize understandability of
source code GA, HC [657]

Refactoring
Maximize understandability, flex-
ibility, and reusability of source
code

HC, SA, GA [659]

Refactoring Maximize program testability HC [649]
Refactoring Maximize software security HC, SA [323]

Refactoring
Maximize class cohesion, min-
imize class coupling, minimize
class complexity

GA [765]

Refactoring Maximize the presence of design
patterns GP [438]

evaluations (partially) drive the production of problem solutions. For example, in
Section 4.3.4 we have described how such techniques can be applied in the context
of software modularization. This, however, requires to deal with difficulties occur-
ring when involving humans in the optimization process: human decisions may be
inconsistent and, in general, the process tend to be fairly expensive in terms of re-
quired effort. To limit such effort, either the feedback can be asked periodically (see
Section 4.3.4), or it could be possible to develop approaches that, after a while, are
able to learn from feedback using machine learning techniques [535].

Second, especially when the search space of solutions is particularly large,
search-based optimization techniques might require time to converge. This may be
considered acceptable for tasks having a batch nature. If, instead, one wants to in-



4 Search Based Software Maintenance: Methods and Tools 137

tegrate such heuristics in IDEs—e.g., to continuously provide suggestions to devel-
opers [158]—then performance becomes an issue. In such a case, it is necessary
to carefully consider the most appropriate heuristic to be used or, whenever possi-
ble, to exploit parallelization (which is often possible when using GAs). Last but
not least, it is worthwhile to point out that such performance optimization can be
particularly desirable when, rather than traditional off-line evolution, one expects
automatic run-time system reconfiguration, e.g., in a service-oriented architecture
[159] or in scenarios of dynamic evolution such as those described in Chapter 7.6
of this book.



Chapter 5
Mining Unstructured Software Repositories

Stephen W. Thomas, Ahmed E. Hassan and Dorothea Blostein

Summary. Mining software repositories, which is the process of analyzing the data
related to software development practices, is an emerging field of research which
aims to improve software evolutionary tasks. The data in many software reposito-
ries is unstructured (for example, the natural language text in bug reports), making
it particularly difficult to mine and analyze. In this chapter, we survey tools and
techniques for mining unstructured software repositories, with a focus on informa-
tion retrieval models. In addition, we discuss several software engineering tasks that
can be enhanced by leveraging unstructured data, including bug prediction, clone
detection, bug triage, feature location, code search engines, traceability link recov-
ery, evolution and trend analysis, bug localization, and more. Finally, we provide a
hands-on tutorial for using an IR model on an unstructured repository to perform a
software engineering task.

139
 Springer

. et al. (eds.), E ,
DOI 10.1007/978-3- - - _5, ©  2014
T Mens volving Software Systems

642 45398 4 -Verlag Berlin Heidelberg



140 Stephen W. Thomas, Ahmed E. Hassan and Dorothea Blostein

5.1 Introduction

Researchers in software engineering have attempted to improve software develop-
ment by mining and analyzing software repositories, such as source code changes,
email archives, bug databases, and execution logs [329, 371]. Research shows that
interesting and practical results can be obtained from mining these repositories, al-
lowing developers and managers to better understand their systems and ultimately
increase the quality of their products in a cost effective manner [847]. Particular
success has been experienced with structured repositories, such as source code, ex-
ecution traces, and change logs.

Software repositories also contain unstructured data, such as the natural language
text in bug reports, mailing list archives, requirements documents, and source code
comments and identifier names. In fact, some researchers estimate that between 80%
and 85% of the data in software repositories is unstructured [118, 351].

Unstructured data presents many challenges because the data is often unlabeled,
vague, and noisy [371]. For example, the Eclipse bug database contains the follow-
ing bug report titles:

• “NPE caused by no spashscreen handler service available” (#112600)
• “Provide unittests for link creation constraints” (#118800)
• “jaxws unit tests fail in standalone build” (#300951)

This data is unlabeled and vague because it contains no explicit links to the source
code entity to which it refers, or even to a topic or task from some pre-defined on-
tology. Phrases such as “link creation constraints,” with no additional information
or pointers, are ambiguous at best. The data is noisy due to misspellings and typo-
graphical errors (“spashscreen”), unconventional acronyms (“NPE”), and multiple
phrases used for the same concept (“unittests”, “unit tests”). The sheer size of a typ-
ical unstructured repository (for example, Eclipse receives an average of 115 new
bug reports per day), coupled with its lack of structure, makes manual analysis ex-
tremely challenging and in many cases impossible. Thus, there is a real need for
automated or semi-automated support for analyzing unstructured data.

Over the last decade, researchers in software engineering have developed many
tools and techniques for handling unstructured data, often borrowing from the natu-
ral language processing and information retrieval communities. In fact, this problem
has led to the creation of many new academic workshops and conferences, includ-
ing NaturaLiSE (International Workshop on Natural Language Analysis in Software
Engineering), TEFSE (International Workshop on Traceability in Emerging Forms
of Software Engineering), and MUD (Mining Unstructured Data). In addition, pre-
mier venues such as ICSE (International Conference on Software Engineering), FSE
(Foundations of Software Engineering), ICSM (International Conference on Soft-
ware Maintenance), and MSR (Working Conference on Mining Software Reposito-
ries), have shown increasing interest in techniques for mining unstructured software
repositories.

In this chapter, we examine how to best use unstructured software repositories to
improve software evolution. We first introduce and describe common unstructured



5 Mining Unstructured Software Repositories 141

software repositories in Section 5.2. Next, we present common tools and techniques
for handling unstructured data in Section 5.3. We then explore the state-of-the-art in
software engineering research for combining the tools and unstructured data to per-
form some meaningful software engineering tasks in Section 5.4. To make our pre-
sentation concrete, we present a hands-on tutorial for using an advanced IR model
to perform the task of bug localization in Section 5.5. We offer concluding remarks
in Section 5.6.

5.2 Unstructured Software Repositories

The term “unstructured data” is difficult to define and its usage varies in the litera-
ture [105, 557]. For the purposes of this chapter, we adopt the definition given by
Manning [557]:

“Unstructured data is data which does not have clear, semantically overt,
easy-for-a-computer structure. It is the opposite of structured data, the
canonical example of which is a relational database, of the sort companies
usually use to maintain product inventories and personnel records.”

Unstructured data usually refers to natural language text, since such text has no
explicit data model. Most natural language text indeed has latent structure, such as
parts-of-speech, named entities, relationships between words, and word sense, that
can be inferred by humans or advanced machine learning algorithms. However, in
its raw, unparsed form, the text is simply a collection of characters with no structure
and no meaning to a data mining algorithm.

Structured data, on the other hand, has a data model and a known form. Exam-
ples of structured data in software repository include: source code parse trees, call
graphs, inheritance graphs; execution logs and traces; bug report metadata (e.g., au-
thor, severity, date); source control database commit metadata (e.g., author, date, list
of changed files); and mailing list and chat log metadata (e.g., author, date, recipient
list).

We now describe in some detail the most popular types of unstructured software
repositories. These repositories contain a vast array of information about different
facets of software development, from human communication to source code evolu-
tion.

5.2.1 Source Code

Source code is the executable specification of a software system’s behavior [514].
The source code repository consists of a number of documents or files written in one
or more programming languages. Source code documents are generally grouped into
logical entities called packages or modules.



142 Stephen W. Thomas, Ahmed E. Hassan and Dorothea Blostein

While source code contains structured data (e.g., syntax, program semantics, con-
trol flow), it also contains rich unstructured data, collectively known as its linguistic
data:

• Comments in the form of developer messages and descriptions and Javadoc-type
comments.

• Identifier names, including class names, method names, and local and global
variable names.

• String literals found in print commands and functions.

This unstructured portion of source code, even without the aid of the structured
portion, has been shown to help determine the high-level functionality of the source
code [482].

5.2.2 Bug Databases

A bug database (or bug-tracking system) maintains information about the cre-
ation and resolution of bugs, feature enhancements, and other software maintenance
tasks [770]. Typically, when developers or users experience a bug in a software sys-
tem, they make a note of the bug in the bug database in the form of a bug report (or
issue), which includes such information as what task they were performing when
the bug occurred, how to reproduce the bug, and how critical the bug is to the func-
tionality of the system. Then, one or more maintainers of the system investigate the
bug report, and if they resolve the issue, they close the bug report. All of these tasks
are captured in the bug database. Popular bug database systems include Bugzilla1

and Trac2, although many exist [770].
The main unstructured data of interest in a bug report is:

• title (or short description): a short message summarizing the contents of the bug
report, written by the creator of the bug report;

• description (or long description): a longer message describing the details about
the bug;

• comments: short messages left by other users and developers about the bug

5.2.3 Mailing Lists and Chat Logs

Mailing lists (or discussion archives), along with the chat logs (or chat archives)
are archives of the textual communication between developers, managers, and other
project stakeholders [775]. The mailing list is usually comprised of a set of time-
stamped email messages, which contain a header (containing the sender, receiver(s),

1 www.bugzilla.org
2 trac.edgewall.org

trac.edgewall.org
www.bugzilla.org


5 Mining Unstructured Software Repositories 143

and time stamp), a message body (containing the unstructured textual content of the
email), and a set of attachments (additional documents sent with the email). The
chat logs contain the record of the instant-messaging conversations between project
stakeholders, and typically contain a series of time-stamped, author-stamped text
message bodies [103, 776, 777]. The main unstructured data of interest here are the
message bodies.

5.2.4 Revision Control System

A revision control system maintains and records the history of changes (or edits) to a
repository of documents. Developers typically use revision control systems to main-
tain the edits to source code. Most revision control systems (including CVS [95],
Subversion (SVN) [685]), and Git [110]) allow developers to enter a commit mes-
sage when they commit a change into the repository, describing the change at a high
level. These unstructured commit messages are of interest to researchers because
taken at an aggregate level, they describe how the source code is evolving over time.

5.2.5 Requirements and Design Documents

Requirements documents, usually written in conjunction with (or with approval
from) the customer, are documents that list the required behavior of the software
system [514]. The requirements can be categorized as either functional, which spec-
ify the “what” of the behavior of the program, or non-functional, which describe the
qualities of the software (e.g., reliability or accessibility). Most often, requirements
documents take the form of natural language text.

Design documents are documents that describe the overall design of the software
system, including architectural descriptions, important algorithms, and use cases.
Design documents can take the form of diagrams, such as UML diagrams [303], or
natural language text.

5.2.6 Software System Repositories

A software system repository is a collection of (usually open source) software sys-
tems. These collections often contain hundreds or thousands of systems whose
source code can easily be searched and downloaded for use by interested third par-
ties. Popular repositories include SourceForge3 and Google Code4. Each software

3 sourceforge.net
4 code.google.com

code.google.com
sourceforge.net


144 Stephen W. Thomas, Ahmed E. Hassan and Dorothea Blostein

Fig. 5.1: The process of mining unstructured software repositories. First, the un-
structured data is preprocessed using one or more NLP techniques. (See Figure 5.2
for an example.) Then, various IR models are built. Finally, the software engineering
(SE) task can be performed.

system in the repository may contain any of the above unstructured repositories:
source code, bug databases, mailing lists, revision control databases, requirements
documents, or design documents.

5.3 Tools and Techniques for Mining Unstructured Data

To help combat the difficulties inherent to unstructured software repositories, re-
searchers have used and developed many tools and techniques. No matter the soft-
ware repository in question, the typical technique follows the process depicted in
Figure 5.1. First, the data is preprocessed using one or more Natural Language Pro-
cessing (NLP) techniques. Next, an information retrieval (IR) model or other text
mining technique is applied to the preprocessed data, allowing the software engi-
neering task to be performed. In this section, we outline techniques for preprocess-
ing data, and introduce common IR models.

5.3.1 NLP Techniques for Data Preprocessing

Preprocessing unstructured data plays an important role in the analysis process. Left
unprocessed, the noise inherent to the data will confuse and distract IR models and
other text mining techniques. As such, researchers typically use NLP techniques to
perform one or more preprocessing steps before applying IR models to the data. We
describe general preprocessing steps that can be applied to any source of unstruc-

Unstructured 

data 

te
rm

s
 

docs 

d
o
c
s
 

topics 

Term-document 

matrix 

Params 

to
p

ic
s
 

terms TM 

Topic Models (LSI, LDA) 

Tokenize 

NLP-based 

preprocessing 

Split 

Stop 

Stem 
... 

IR Models 

SE Task 

(VSM) 



5 Mining Unstructured Software Repositories 145

Fig. 5.2: An illustration of common NLP preprocessing steps. All steps are optional,
and other steps exist.

tured data, and then outline more specific preprocessing steps for source code and
email.

5.3.1.1 General Preprocessing Steps

Several general preprocessing steps can be taken in an effort to reduce noise and
improve the resulting text models built on the input corpus. These steps are depicted
in Figure 5.2.

• Tokenization. The original stream of text is turned into tokens. During this step,
punctuation and numeric characters are removed.

• Identifier splitting. Identifier names (if present) are split into multiple parts
based on common naming conventions, such as camel case (oneTwo), un-
derscores (one two), dot separators (one.two), and capitalization changes
(ONETwo). We note that identifier splitting is an active area of research, with
new approaches being proposed based on speech recognition [551], automatic
expansion [501], mining source code [274], and more.

• Stop word removal. Common English-language stop words (e.g., “the”, “it”,
“on”) are removed. In addition to common words, custom stop words such as
domain-specific jargon, can be removed.

• Stemming. Word stemming is applied to find the morphological root of each
word (e.g., “changing” and “changes” both become “chang”), typically using the
Porter algorithm [692], although other algorithms exist.

• Pruning. The vocabulary of the resulting corpus is pruned by removing words
that occur in, for example, over 80% or under 2% of the documents [554].

5.3.1.2 Source Code Preprocessing

If the input data is source code, the characters related to the syntax of the program-
ming language (e.g., “&&”, “->”) are often removed, and programming language
keywords (e.g., “if”, “while”) are removed. These steps result in a dataset con-
taining only the comments, identifiers, and string literals. Some research also takes

Original text 

Drop 20 bytes off 

each imgRequest 

object 

{“drop”, “bytes”, 

“off”, “each”, 

“img”, “request”, 

“object”} 

After tokenization  
and splitting 

{“drop”, “bytes”, 

“img”, “request”, 

“object”} 

After stopping 

{“drop”, “byte”, 

“img”, “request”, 

“object”} 

After stemming 



146 Stephen W. Thomas, Ahmed E. Hassan and Dorothea Blostein

steps to remove certain comments, such as copyright comments or unused snippets
of code. The main idea behind these steps is to capture the semantics of the de-
velopers’ intentions, which are thought to be encoded within the identifier names,
comments, and string literals in the source code [695].

5.3.1.3 Email Preprocessing

Preprocessing email is an ongoing research challenge [103, 775], due to the complex
nature of emails. The most common preprocessing steps include:

• Detecting and removing noise: header information in replies or forwards; previ-
ous email messages; and signature lines [825].

• Isolating source code snippets or stack traces [53, 102], so that they can either be
removed or treated specially. We discuss this step in more detail in Section 5.4.7.

5.3.1.4 Tools

Many researchers create their own preprocessing tools, based on commonly avail-
able toolkits such as the NLTK module in Python [111] and TXL [198] for parsing
source code. The authors of this chapter have released their own tool, called lscp5,
that implements many of the steps described above.

5.3.2 Information Retrieval

“Information retrieval (IR) is finding material (usually documents) of an unstruc-
tured nature (usually text) that satisfies an information need from within large col-
lections (usually stored on computers).”

— Manning [557, p. 1]

IR is used to find specific documents of interest in a large collection of docu-
ments. Usually, a user enters a query (i.e., a text snippet) into the IR system, and
the system returns a list of documents related to the query. For example, when a
user enters the query “software engineering” into the Google IR system, it searches
every web page ever indexed and returns those that are somehow related to software
engineering.

IR models—the internal workings of IR systems—come in many forms, from
basic keyword-matching models to statistical models that take into account the lo-
cation of the text in the document, the size of the document, the uniqueness of the
matched term, and even whether the query and document contain shared topics of
interest [948]. Here, we briefly describe three popular IR models: the Vector Space

5 github.com/doofuslarge/lscp

github.com/doofuslarge/lscp


5 Mining Unstructured Software Repositories 147

Model, Latent Semantic Indexing, and latent Dirichlet allocation. A full treatment of
each of these models is beyond the scope of this chapter. Instead, we aim to capture
the most essential aspects of the models.

5.3.2.1 The Vector Space Model

The Vector Space Model (VSM) is a simple algebraic model based on the term-
document matrix A of a corpus [741]. A is an m× n matrix, where m is the num-
ber of unique terms, or words, across n documents. The ith, jth entry of A is the
weight of term wi in document d j (according to some weighting function, such as
term-frequency). VSM represents documents by their column vector in A: a vector
containing the weights of the words present in the document, and 0s otherwise. The
similarity between two documents (or between a query and a document) is calcu-
lated by comparing the similarity of the two column vectors of A. Example vector
similarity measures include Euclidean distance, cosine distance, Hellinger distance,
or KL divergence. In VSM, two documents will only be deemed similar if they con-
tain at least one shared term; the more shared terms they have, and the higher the
weight of those shared terms, the higher the similarity score will be.

VSM improves over its predecessor, the Boolean model, in two important ways.
First, VSM allows the use of term weighting schemes, such as tf-idf (term frequency,
inverse document frequency) weighting. Weighting schemes help to downplay the
influence of common terms in the query and provide a boost to documents that
match rare terms in the query. Another improvement is that the relevance between
the query and a document is based on vector similarity measures, which is more
flexible than the strict Boolean model [741].

Tools. Popular tools implementing VSM include Apache Lucene6 and gensim7.

5.3.2.2 Latent Semantic Indexing

Latent Semantic Indexing (LSI) (or Latent Semantic Analysis (LSA)) is an informa-
tion retrieval model that extends VSM by reducing the dimensionality of the term-
document matrix by means of Singular Value Decomposition (SVD) [232]. During
the dimensionality reduction phase, terms that are related (i.e., by co-occurrence)
are grouped together into topics. This noise-reduction technique has been shown
to provide increased performance over VSM for dealing with polysemy and syn-
onymy [57], two common issues in natural language.

SVD is a factorization of the original term-document matrix A that reduces its
dimensionality by isolating its singular values [740]. Since A is likely to be sparse,
SVD is a critical step of the LSI approach. SVD decomposes A into three matrices:

6 lucene.apache.org
7 radimrehurek.com/gensim

radimrehurek.com/gensim
lucene.apache.org


148 Stephen W. Thomas, Ahmed E. Hassan and Dorothea Blostein

A= T SDT , where T is an m by r = rank(A) term-topic matrix, S is the r by r singular
value matrix, and D is the n by r document-topic matrix.

LSI augments the reduction step of SVD by choosing a reduction factor, K, which
is typically much smaller than the r, the rank of the original term-document matrix.
Instead of reducing the input matrix to r dimensions, LSI reduces the input matrix
to K dimensions. There is no perfect choice for K, as it is highly data- and task-
dependent. In the literature, typical values range between 50–300.

As in VSM, terms and documents are represented by row and column vectors, re-
spectively, in the term-document matrix. Thus, two terms (or two documents) can be
compared by some distance measure between their vectors (e.g., cosine similarity)
and queries can by formulated and evaluated against the matrix. However, because
of the reduced dimensionality of the term-document matrix after SVD, these mea-
sures are well equipped to deal with noise in the data.

Tools. For LSI, popular implementations include gensim and R’s LSA package.

5.3.2.3 Latent Dirichlet Allocation

Latent Dirichlet allocation (LDA) is a popular probabilistic topic model [117] which
takes a different approach to representing documents than previous models. The
main idea behind LDA is that it models each document as a multi-membership mix-
ture of K corpus-wide topics, and each topic as a multi-membership mixture of the
terms in the corpus vocabulary. This means that there is a set of topics that describe
the entire corpus. Each document is composed of one or more than one of these.
Each term in the vocabulary can be contained in more than one of these topics.
Hence, LDA is able to discover a set of ideas or themes that well describe the entire
corpus [116].

LDA is based on a fully generative model that describes how documents are cre-
ated. Informally stated, this generative model makes the assumption that the corpus
contains a set of K corpus-wide topics, and that each document is comprised of var-
ious combinations of these topics. Each term in each document comes from one of
the topics in the document. This generative model is formulated as follows:

• Choose a topic vector θd ∼ Dirichlet(α) for document d.
• For each of the N terms wi in d:

– Choose a topic zk ∼Multinomial(θd).
– Choose a term wi from p(wi|zk,β ).

Here, p(wi|zk,β ) is a multinomial probability function, α is a smoothing parameter
for document-topic distributions, and β is a smoothing parameter for topic-term
distributions.

Like any generative model, the task of LDA is that of inference: given the terms
in the documents, which topics did they come from, and what are the topics them-
selves? LDA performs inference with latent variable models (or hidden variable
models), which are machine learning techniques devised for just this purpose: to



5 Mining Unstructured Software Repositories 149

Fig. 5.3: Four example topics (their labels and top words) from JHotDraw 7.5.1. We
also show a snippet of the file SVGCreateFromFileTool.java, with terms
colored corresponding to the topic from which they came. In this example, no terms
come from the “Undoable Edit“ or “Bezier Path“ topics.

associate observed variables (here, terms) with latent variables (here, topics). A rich
literature exists on latent variable models [e.g., 74, 113]; for the purposes of this
chapter, we omit the details necessary for computing the posterior distributions as-
sociated with such models.

Figure 5.3 shows example topics discovered by LDA from version 7.5.1 of the
source code of JHotDraw8, a framework for creating simple drawing applications.
For each example topic, the figure shows an automatically-generated two-word topic
label and the top (i.e., highest probable) words for the topic. The topics span a range
of concepts, from opening files to drawing Bezier paths.

Tools. Implementations of LDA include MALLET [575], gensim, R’s LDA and
topicmodels packages, lucene-lda, lda-c, and Stanford’s topic modeling toolbox9,
amongst others.

8 www.jhotdraw.org
9 nlp.stanford.edu/software/tmt

“File Chooser” 
file  

uri  

chooser 

save  

select 

directory  

open  

 

“Tool Creation” 
figure  

tool  

create  

view  

draw  

area   

prototype  

“Undoable Edit” 
edit  

action  

undo  

change  

undoable 

event  

override 

“Bezier Path” 
path  

bezier  

node  

mask 

point  

geom  

pointd 

... 
final File file; 
if (useFileDialog) { 
    getFileDialog().setVisible(true); 
    if (getFileDialog().getFile() != null) { 
        file = new File(getFileDialog().getDirectory(), getFileDialog().getFile()); 
    } else { 
        file = null; 
    } 
} else { 
    if (getFileChooser().showOpenDialog(getView().getComponent()) == JFileChooser.APPROVE_OPTION){ 
        file = getFileChooser().getSelectedFile(); 
    } else { 
        file = null; 
    } 
} 
if (file != null) { 
    Worker worker; 
    if (file.getName().toLowerCase().endsWith(".svg") || 
            file.getName().toLowerCase().endsWith(".svgz")) { 
        prototype = ((Figure) groupPrototype.clone()); 
        worker = new Worker<Drawing>() { 
... 
protected void done(Drawing drawing) { 
    CompositeFigure parent; 
    if (createdFigure == null) { 
        parent = (CompositeFigure) prototype; 
        for (Figure f : drawing.getChildren()) { 
            parent.basicAdd(f); 
         } 
... 

nlp.stanford.edu/software/tmt
www.jhotdraw.org


150 Stephen W. Thomas, Ahmed E. Hassan and Dorothea Blostein

5.4 The State of The Art

Many software engineering tasks can be addressed or enhanced by incorporating
unstructured data. These tasks include concept and feature location, traceability
linking, calculating source code metrics, statistical debugging, studying software
evolution and trends, searching software repositories, managing bug databases and
requirements documents. In this section, we describe how these tasks can be per-
formed using IR models, while also pointing the interested reader to further reading
material.

5.4.1 Concept/Feature Location and AOP

The task of concept location (or feature location) is to identify the parts (e.g., docu-
ments or methods) of the source code that implement a given feature of the software
system [707]. This is useful for developers wishing to debug or enhance a given
feature. For example, if the so-called file printing feature contained a bug, then a
concept location technique would attempt to find those parts of the source code that
implement file printing, i.e., parts of the source code that are executed when the
system prints a file.

Concept location is a straightforward application of IR models on source code.
The general method is to preprocess the source code as outlined in Section 5.3.1,
build an IR model on the preprocessed source code, accept a developer query such
as “file printing”, and use the IR model to return a list of related source code doc-
uments. Table 5.1 summarizes various approaches and studies that have been per-
formed in this area. Many IR models have been considered, including VSM, LSI,
LDA, and combinations thereof. While most researchers report some success with
their concept location methods, there is not yet a consensus as to which IR model
performs best under all circumstances.

Related to concept location is aspect-oriented programming (AOP), which aims
to provide developers with the machinery to easily implement aspects of function-
ality whose implementation spans over many source code documents. Recently, a
theory has been proposed that says software concerns are equivalent to the latent
topics found by statistical topic models, in particular LDA [67]. In particular, as-
pects are exactly those topics that have a relatively high scatter metric value. After
testing this theory on a large set of open-source systems, researchers find that this
theory holds true most of the time [67].

5.4.2 Traceability Recovery and Bug Localization

An often-asked question during software development is: “Which source code doc-
ument(s) implement requirement X?” Traceability recovery aims to automatically



5 Mining Unstructured Software Repositories 151

uncover links between pairs of software artifacts, such as source code documents
and requirements documents. This allows a project stakeholder to trace a require-
ment to its implementation, for example to ensure that it has been implemented
correctly, or at all. Traceability recovery between pairs of source code documents
is also important for developers wishing to learn which source code documents are
somehow related to the current source code file being worked on. Bug localization
is a special case of traceability recovery in which developers seek traceability links
between bug reports and source code, to help locate which source code files might
be related to the bug report.

Typically, an IR model is first applied to the preprocessed source code, as well as
the documentation or other textual repository. Next, a similarity score is calculated
between each pair of documents (e.g., source code document and documentation
documents). A developer then specifies a desired value for the similarity thresh-
old, and any pair of documents with similarity greater than the threshold would be
presented.

Table 5.1 outlines related research in this area. LSI has been the IR model of
choice for many years, likely due to its success in other domains. Recently, however,
multiple IR models have been empirically compared, as outlined in Table 5.1. From
this research, we find that LDA is usually reported to achieve better results than LSI,
but not in every case. Additional research is required to further determine exactly
when, and why, one IR model outperforms another.

5.4.3 Source Code Metrics

Bug prediction (or defect prediction or fault prediction) tries to automatically predict
which entities (e.g., documents or methods) of the source code are likely to contain
bugs. This task is often accomplished by first collecting metrics on the source code,
then training a statistical model to the metrics of documents that have known bugs,
and finally using the trained model to predict whether new documents will contain
bugs.

Often, the state-of-the-art in bug prediction is advanced by the introduction of
new metrics. An impressive suite of metrics has thus far been introduced, counting
somewhere in the hundreds. For example, the coupling metric measures how inter-
dependent two entities are to each other, while the cohesion metric measure how
related the elements of an entity are to each other. Highly coupled entities make
maintenance difficult and bug-prone, and thus should be avoided. Highly cohesive
entities, on the other hand, are thought to follow better design principles.

The majority of metrics are measured directly on the code (e.g., code complex-
ity, number of methods per class) or on the code change process (methods that are
frequently changed together, number of methods per change). Recently, researchers
have used IR models to introduce semantic or conceptual metrics, which are mostly
based on the linguistic data in the source code. Table 5.1 lists research that uses IR
models to measure metrics on the linguistic data. Overall, we find that LSI-metrics



152 Stephen W. Thomas, Ahmed E. Hassan and Dorothea Blostein

have been used with success, although more recent work reports that LDA-based
metrics can achieve better results.

5.4.4 Software Evolution and Trend Analysis

Analyzing and characterizing how a software system changes over time, or the soft-
ware evolution [506] of a system, has been of interest to researchers for many years.
Both how and why a software system changes can help yield insights into the pro-
cesses used by a specific software system as well as software development as a
whole.

To this end, LDA has been applied to several versions of the source code of a sys-
tem to identify the trends in the topics over time [525, 834, 835]. Trends in source
code histories can be measured by changes in the probability of seeing a topic at
specific version. When documents pertaining to a particular topic are first added
to the system, for example, the topics will experience a spike in overall probabil-
ity. Researchers have evaluated the effectiveness of such an approach, and found
that spikes or drops in a topic’s popularity indeed coincided with developer activity
mentioned in the release notes and other system documentation, providing evidence
that LDA provides a good summary of the software history [832].

LDA has also been applied to the commit log messages in order to see which
topics are being worked on by developers at any given time [401, 402]. LDA is
applied to all the commit logs in a 30 day period, and then successive periods are
linked together using a topic similarity score (i.e., two topics are linked if they share
8 out of their top 10 terms).

LDA has also been used to analyze the Common Vulnerabilities and Expo-
sures (CVE) database, which archives vulnerability reports from many different
sources [641]. Here, the goal is to find the trends of each vulnerability, in order to
see which are increasing and which are decreasing. Research has found that using
LDA achieves just as good results as manual analysis on the same dataset.

Finally, LDA has recently been used to analyze the topics and trends present
in Stack Overflow10, a popular question and answer forum [75]. Doing so allows
researchers to quantify how the popularity of certain topics and technologies (e.g.:
Git vs. SVN; C++ vs. Java; iPhone vs. Android) is changing over time, bringing new
insights for vendors, tool developers, open source projects, practitioners, and other
researchers.

10 www.stackoverflow.com

www.stackoverflow.com


5 Mining Unstructured Software Repositories 153

5.4.5 Bug Database Management

As bug databases grow in size, both in terms of the number of bug reports and
the number of users and developers, better tools and techniques are needed to help
manage their work flow and content.

For example, a semi-automatic bug triaging system would be quite useful for
determining which developer should address a given bug report. Researchers have
proposed such a technique, based on building an LSI index on the the titles and
summaries of the bug reports [7, 41]. After the index is built, various classifiers are
used to map each bug report to a developer, trained on previous bug reports and
related developers. Research reports that in the best case, this technique can achieve
45% classification accuracy.

Other research has tried to determine how easy to read and how focused a bug
report is, in an effort to measure the overall quality of a bug database. Here, re-
searchers measured the cohesion of the content of a bug report, by applying LSI to
the entire set of bug reports and then calculating a similarity measure on each com-
ment within a single bug report [253, 524]. The researchers compared their metrics
to human-generated analysis of the comments and find a high correlation, indicating
that their automated method can be used instead of costly human judgements.

Many techniques exist to help find duplicate bug reports, and hence reduce the
efforts of developers wading through new bug reports. For example, Runeson et
al. [737] use VSM to detect duplicates, calling any highly-similar bug reports into
question. Developer can then browse the list to determine if any reports are actu-
ally duplicates. The authors preprocess the bug reports with many NLP techniques,
including synonym expansion and spell correction. Subsequent research also in-
corporates execution information when calculating the similarity between two bug
reports [907]. Other research takes a different approach and trains a discriminative
model, using Support Vector Machines, to determine the probability of two bug re-
ports being duplicates of each other [801]. Results are mixed.

Finally, recent work has proposed ways to automatically summarize bug reports,
based on extracting key technical terms and phrases [540, 709]. Bug summaries are
argued to save developers time, although no user studies have been performed.

5.4.6 Organizing and Searching Software Repositories

To deal with the size and complexity of large-scale software repositories, several
IR-based tools have been proposed, in particular tools for organizing and searching
such repositories.

MUDABlue is an LSI-based tool for organizing large collections of open-source
software systems into related groups, called software categories [454]. MUDABlue
applies LSI to the identifier names found in each software system and computes
the pairwise similarity between whole systems. Studies show that MUDABlue can
achieve recall and precision scores above 80%, relative to manually created tags of



154 Stephen W. Thomas, Ahmed E. Hassan and Dorothea Blostein

the systems, which are too costly to scale to the size of typical software repositories.
LACT, an LDA-based tool similar to MUDABlue, has recently been shown to be
comparable to MUDABlue in precision and recall [844].

Sourcerer is an LDA-based, internet-scale repository crawler for analyzing and
searching a large set of software systems. Sourcerer applies LDA and the Author-
Topic model to extract the concepts in source code and the developer contributions
in source code, respectively. Sourcerer is shown to be useful for analyzing systems
and searching for desired functionality in other systems [528, 529].

S3 is an LSI-based technique for searching, selecting, and synthesizing exist-
ing systems [694]. The technique is intended for developers wishing to find code
snippets from an online repository matching their current development needs. The
technique builds a dictionary of available API calls and related keywords, based on
online documentation. Then, developers can search this dictionary to find related
code snippets. LSI is used in conjunction with Apache Lucene to provide the search
capability.

5.4.7 Other Software Engineering Tasks

LSI has been used to detect high-level clones of source code methods by computing
the semantic similarity between pairs of methods [563]. Related work has used ICA
for the same purpose, arguing that since ICA can identify more distinct signals (i.e.,
topics) than LSI, then the conceptual space used to analyze the closeness of two
methods will be of higher effectiveness [345].

Aside from establishing traceability links from requirements to source code (de-
scribed previously in Section 5.4.2), researchers have proposed many techniques
to help manage and use the natural language text in requirements documents.
These techniques include generating UML models from requirements [231], detect-
ing conflicts in aspect-oriented requirements [744], identifying aspects in require-
ments [742], and assessing the quality of requirements[672].

IR methods require many parameter values to be configured before using. Var-
ious methods have been proposed to (semi-)automatically tune the parameters for
software engineering datasets [80, 346].

Researchers are beginning to consider how discussion forums and question and
answer websites might help developers. For example, new tools include finding
relevant answers in formats [343], finding experts for a particular question [519],
analyzing the topics and trends in Stack Overflow [75], and semi-automatically ex-
tracting FAQs about the source code [389].

Methods that incorporate email are receiving more attention from researchers.
For example, lightweight IR methods have been used to link emails to their dis-
cussed source code entities [55]. In similar work, more heavy-weight classification
techniques are used to extract source code from emails, which can be a useful first
step for the aforementioned linking methods [54]. This technique was later revised



5 Mining Unstructured Software Repositories 155

to use island grammars [53]. Finally, spell checkers [104] and clone detection tech-
niques [102] have been used to locate and extract source code in emails.

Statistical debugging is the task of identifying a problematic piece of code, given
a log of the execution of the code. Researchers have proposed Delta LDA, a variant
of LDA, to perform statistical debugging [33]. Delta LDA is able to model two types
of topics: usage topics and bug topics. Bug topics are those topics that are only found
in the logs of failed executions. Hence, Delta LDA is able to identify the pieces of
code that likely caused the bugs.

LSI has been used as a tool for root cause analysis (RCA), i.e., identifying the
root cause of a software failure [132]. The tool builds and executes a set of test sce-
narios that exercise the system’s methods in various sequences. Then, the tool uses
LSI to build a method-to-test co-occurrence matrix, which has the effect of clus-
tering tests that execute similar functionalities, helping to characterize the different
manifestations of a fault.

Other tasks considered include automatically generating comments in source
code [794], web service discovery [931], test case prioritization [833], execution
log reduction [946], and analyzing code search engine logs [60, 61].

5.5 A Practical Guide: IR-based Bug Localization

In this section, we present a simple, yet complete tutorial on using IR models on
unstructured data to perform bug localization, the task of identifying those source
code files that are related to a given bug report. To make the tutorial concrete, we
will use the source code and bug reports of the Eclipse IDE11, specifically the JDT
submodule.

To make the tutorial easily digestible, we will make the following simplifying
assumptions:

• Only a single version of the source code will be analyzed, in our case, the snap-
shot of the code from July 1, 2009. Methods exist to analyze all previous versions
of the code [832], but require some extra steps.

• Only basic source code representations will be considered. More advanced rep-
resentations exist [836], such as associating a source code document with all the
bug reports with which it has been previously associated.

• For simplicity, we will assume that we have access to all the source code and
bug reports on the local hard drive. In reality, large projects may have their docu-
ments controlled by content management servers on the cloud, or via some other
mechanism. In these cases, the steps below still apply, but extra care must be
taken when accessing the data.

The basic steps to perform bug localization include (a) collecting the data, (b)
preprocessing the data, (c) building the IR model on the source code, (d) and query-

11 www.eclipse.org

www.eclipse.org


156 Stephen W. Thomas, Ahmed E. Hassan and Dorothea Blostein

Listing 5.1: An example Eclipse bug report (#282770) in XML.
<bug>
<bug_id>282770</bug_id>
<creation_ts>2009-07-07 23:48:32</creation_ts>
<short_desc>
Dead code detection should have specific @SuppressWarnings

</short_desc>
<long_desc>
As far as I can tell there is no option to selectively turn off
dead code detection warnings using the @SuppressWarnings
annotation. The feature either has to be disabled ...

</long_desc>
</bug>

ing the IR model with a particular bug report and viewing the results. We now ex-
pand on each step in more detail.

5.5.1 Collect data

Let’s assume that that source code of Eclipse JDT is available in a single directory,
src, with no subdirectories. The source code documents are stored in their native
programming language, Java. There are 2,559 source code documents, spanning
dozens of packages, with a total of almost 500K source lines of code.

We also assume that the bug reports are available in a single directory, bugs,
with no subdirectories. Each bug report is represented in XML. (See Listing 5.1
for an example.) The Eclipse JDT project has thousands of bug reports, but in this
tutorial we will focus on only one, shown in Listing 5.1.

5.5.2 Preprocess the source code

Several decisions must be made during the phase of preprocessing the source code.
Which parts of the source code do we want to include when building the IR model?
Should we tokenize identifier names? Should we apply morphological stemming?
Should we remove stopwords? Should we remove very common and very uncom-
mon words?

The correct answers are still an active research area, and may depend on the
particular project. In this tutorial, we’ll assume that identifiers, comments, and string
literals are desired; we will tokenize identifier names; we will stem; and finally, we
will remove stopwords.



5 Mining Unstructured Software Repositories 157

Listing 5.2: Using lcsp to preprocess the source code in the src directory.
#!/usr/bin/perl
use lscp;
my $preprocessor = lscp->new;
$preprocessor->setOption("isCode", 1);
$preprocessor->setOption("doIdentifiers", 1);
$preprocessor->setOption("doStringLiterals", 1);
$preprocessor->setOption("doComments", 0);
$preprocessor->setOption("doTokenize", 1);
$preprocessor->setOption("doStemming", 1);
$preprocessor->setOption("doStopwordsKeywords", 1);
$preprocessor->setOption("doStopwordsEnglish", 1);
$preprocessor->setOption("inPath", "src");
$preprocessor->setOption("outPath", "src-pre");

$preprocessor->preprocess();

To do so, we can use any of the tools mentioned in 5.3.1, such as lcsp or
TXL [198], or write our own code parser and preprocessor. In this chapter, we’ll
use lcsp, and preprocess the source code with the Perl script shown in Listing 5.2.
The script specifies the preprocessing options desired, gives the path to the source
code (in our case, src), and specifies where the resulting files should be placed
(here, src-pre). After running the Perl script shown Listing 5.2, we’ll have one
document in src-pre for each of the documents in src.

5.5.3 Preprocess the bug reports

As with source code, several decisions need to be made when preprocessing a bug
report. Should we include its short description only, long description only, or both?
If stack traces are present, should we remove them? Should we tokenize, stem, and
stop the words?

As with preprocessing source code, the best answers to these design decisions
are yet unknown. In this tutorial, we’ll include both the short and long description;
leave stack traces if present; and tokenize, stem, and stop the words. Note that it is
usually a good idea to perform the same preprocessing steps on the queries as we
did on the documents, as we have done here, so that the IR model is dealing with a
similar vocabulary.

To do the preprocessing, we again have a number of tools at our disposal. Here,
we’ll again use lscp and write a simple Perl script similar to that shown in List-
ing 5.2. The only differences will be setting the options isCode to 0, inPath
to bugs, outPath to bugs-pre, and removing the doStringLiterals and
doComments options, as the no longer apply. We leave the doIdentifiers
option, in case the bug report contains snippets of code that contain identifiers.



158 Stephen W. Thomas, Ahmed E. Hassan and Dorothea Blostein

Before inputting the bug reports into lscp, we must first use a simple XML parser
to parse the bug report and strip out the text content from the two elements we desire,
<short desc> and <long desc>.

5.5.4 Build the IR model on the source code

In this tutorial, we’ll build an LDA model, one of the more advanced IR models. To
build the LDA model, we’ll use the lucene-lda tool12, which is a tool to build and
query LDA indices from text documents using the Apache Lucene framework.

We use the command prompt to issue the following command, assuming we’re
in the lucene-tool’s base directory:

$ ./bin/indexDirectory --inDir src-pre --outIndexDir \
out-lucene --outLDADir out-lda --K 64

We pass the src-pre directory as the input directory, and specify two output
directories, out-lucene and out-lda, where the Lucene index and LDA output
will be stored, respectively. We also specify the number of topics for the LDA model
to be 64 in this case, although choosing the optimal number of topics is still an active
area of research. We’ll use the tool’s default behavior for the α and β smoothing
parameters of LDA, which will use heuristics to optmize these values based on the
data.

The tool will read all the files in the input directory and run LDA using the
MALLET toolsuite. MALLET will create files to represent the topic-term matrix
(i.e., which terms are in which topics) and the document-topic matrix (i.e., which
topics are in which source code documents). The lucene-lda tool will use these files,
along with the Lucene API, to build an index that can be efficiently stored and
queried, which will be placed in the out-lucene directory.

5.5.5 Query the LDA model with a bug report

Now that the index is built, it is ready to be queried. Although we have the ability to
query the index with any terms or phrases we desire, in the task of bug localization,
the terms come from a particular bug report. Since we’ve already preprocessed all of
the bug reports, we can choose any one and use it as a query to our pre-built index:

$ ./bin/queryWithLDA --inIndexDir out-lucene --intLDADir \
out-lda --query bugs-pre/#282770 --resultFile results.dat

12 github.com/doofuslarge/lucene-lda

github.com/doofuslarge/lucene-lda


5 Mining Unstructured Software Repositories 159

Listing 5.3: Results of querying the LDA model with Eclipse bug report #282770.
Each row shows the similarity score between the bug report and a source code doc-
ument in the index.
6 . 7 5 , compiler .impl .CompilerOptions .java
5 . 0 0 , internal .compiler .batch .Main .java
4 . 5 7 , internal .formatter .DefaultCodeFormatterOptions .java
3 . 6 1 , jdt .ui .PreferenceConstants .java
3 . 0 4 , internal .compiler .ast .BinaryExpression .java
2 . 9 3 , core .NamingConventions .java
2 . 8 5 , internal .ui .preferences .ProblemSeveritiesConfigBlock .java
2 . 7 4 , internal .formatter .DefaultCodeFormatter .java
2 . 5 9 , internal .ui .text .java .SmartSemicolonAutoEditStrategy .java
. . .

Here, we specify the names of the directories holding the Lucene index and sup-
porting LDA information, the name of the query (in this case, the preprocessed
version of the bug report shown in Listing 5.1), and the file that should contain the
results of the query.

The tool reads in the query and the Lucene index, and uses the Lucene API for
execute the query. Lucene efficiently computes a similarity score between the query
and each document, in this case based on their shared topics. Thus, the tool infers
which topics are in the query, computes the conditional probability between the
query and each document, and sorts the results.

After running the query, the tool creates the results.dat file, which con-
tains the similarity score between the query and each document in the index. List-
ing 5.3 shows the top 10 results for the this particular query, ordered by the similarity
score. These top files have the most similarity with the query, and thus should hope-
fully be relevant for fixing the given bug report. Indeed, as we know from another
study [836], the file internal.compiler.batch.Main.java was changed
in order to fix bug report #282770. We see this file as appearing second in the list in
Listing 5.3.

The above result highlights the promising ability of IR models to help with the
bug localization problem. Out of the 2,559 source code documents that may be rel-
evant to this bug report, the IR model was able to pinpoint the most relevant file on
its second try.

IR models are not always this accurate. Similar to issuing a web search and not
being able to find what you’re looking for, IR-based bug localization sometimes
can’t pinpoint the most relevant file. However, research research has found that IR
models can pinpoint the most relevant file to a bug report within the top 20 results
up to 89% of the time [836], a result that is sure to aid developers quickly wade
through their thousands of source code files.



160 Stephen W. Thomas, Ahmed E. Hassan and Dorothea Blostein

5.6 Conclusions

Over the past decade, researchers and practitioners have started to realize the ben-
efits of mining their software repositories: using readily-available data about their
software projects to improve and enhance performance on many software evolution
tasks. In this chapter, we surveyed tools and techniques for mining the unstructured
data contained in software repositories.

Unstructured data brings many challenges, such as noise and ambiguity. How-
ever, as we demonstrated throughout this chapter, many software evolution tasks can
be enhanced by taking advantage of the rich information contained in unstructured
data, including concept and feature location, bug localization, traceability linking,
computing source code metrics to assess source code quality, and many more.

We focused our survey on natural language processing (NLP) techniques and in-
formation retrieval (IR) models, which were originally developed in other domains
to explicitly handle unstructured data, and have been adopted by the software engi-
neering community. NLP techniques, such as tokenization, identifier splitting, stop
word removal, and morphological stemming, can significantly reduce the noise in
the data. IR models, such as the Vector Space Model, Latent Semantic Indexing,
and latent Dirichlet allocation, are fast and simple to compute and bring useful and
practical results to software development teams. Together, NLP and IR models are
an effective approach for researchers and practitioners to mine unstructured software
repositories.

Research in the area of mining unstructured software repositories has become
increasingly active over the past years, and for good reason. We expect to see con-
tinued advances in all major areas in the field: better NLP techniques for preprocess-
ing source code, bug reports, and emails; better tailoring of existing IR models to
unstructured software repositories; and novel applications of IR models in to solve
software engineering tasks.



5 Mining Unstructured Software Repositories 161

Table 5.1: Applications of IR models. A (C) indicates that the work compares the
results of multiple IR models. Continued in Table 5.2.

Application Summary

Concept loc.
Markus et al.
[564, 565]

First to use LSI for concept location. LSI provides better context than
existing concept location methods, such as regular expressions and de-
pendency graphs. Using LSI for concept location in object-oriented (OO)
code is useful, contrary to previous beliefs.

Concept loc. (C)
Cleary et al. [192]

Tests two IR techniques, VSM and LSI, against NLP techniques. NLP
techniques do not offer much improvement over the two IR techniques.

Concept loc.
van der Spek et al.
[791]

Considers the effects of various preprocessing steps, using LSI. Both
splitting and stopping improve results, and term weighting plays an im-
portant role, but no weighting scheme was consistently best.

Concept loc.
Grant et al. [347]

Uses ICA, a model similar to LSI, to locate concepts in source code. The
viability of ICA is demonstrated through a case study on a small system.

Concept loc.
Compare Models
Linstead et al.
[526, 527]

Uses LDA to locate concepts in source code. Demonstrates how to group
related source code documents based on the documents’ topics. Also
uses a variant of LDA, the Author-Topic model [731], to extract the
relationship between developers (authors) and source code topics. The
technique allows the automated answer of “who has worked on what”.

Concept loc.
Maskeri et al.
[571]

Applies LDA to source code, using a weighting scheme for each key-
word in the system, based on where the keyword is found (e.g., class
name vs. method name). The technique is able to extract business topics,
implementation topics, and cross-cutting topics from source code.

Concept loc.
Poshyvanyk, Rev-
elle et al. [696,
697, 712, 713]

Combines LSI with various other models, such as Formal Concept Anal-
ysis, dynamic analysis, and web mining algorithms (HITS and PageR-
ank). All results indicate that combinations of models outperform indi-
vidual models.

Traceability
Marcus et al.
[566]

Uses LSI to recover traceability links between source code and require-
ments documents. Compared to VSM, LSI performs at least as well in
all case studies.

Traceability
De Lucia et al
[222–224]

Integrates LSI traceability into ADAMS, a software artifact management
system. Also proposes a technique for semi-automatically finding an op-
timal similarity threshold between documents. Finally, performs a hu-
man case study to evaluate the effectiveness of LSI traceability recovery.
LSI is certainly a helpful step for developers, but that its main drawback
is the inevitable trade off between precision and recall.

Traceability (C)
Hayes et al. [376]

Evaluates various IR techniques for generating traceability links between
various high- and low-level requirements. While not perfect, IR tech-
niques provide value to the analyst.

Traceability
Lormans et al.
[537–539]

Evaluates different thresholding techniques for LSI traceability recov-
ering. Different linking strategies result in different results; no linking
strategy is optimal under all scenarios. Uses LSI for constructing re-
quirement views. For example, one requirement view might display only
requirements that have been implemented.

Traceability
Jian et al. [440]

Proposes a new technique, incremental LSI, to maintain traceability links
as a software system evolves over time. Compared to standard LSI, in-
cremental LSI reduces runtime while still producing high quality links.



162 Stephen W. Thomas, Ahmed E. Hassan and Dorothea Blostein

Table 5.2: Continued from Table 5.1. Applications of IR models.

Application Summary

Traceability
de Boer et al.
[220]

Develops an LSI-based tool to support auditors in locating documenta-
tion of interest.

Traceability
Antoniol et al.
[39]

Introduces a tool, ReORe, to help decide whether code should be updated
or rewritten. ReORe uses static (LSI), manual, and dynamic analysis to
create links between requirements and source code.

Traceability
McMillan et al.
[580]

Combines LSI and Evolving Inter-operation Graphs to recover traceabil-
ity links. The combination modestly improves traceability results in most
cases.

Traceability (C)
Lukins et al. [544,
545]

Compares LSI and LDA for bug localization. After two case studies on
Eclipse and Mozilla, the authors find that LDA often outperforms LSI.

Traceability (C)
Nguyen et al.
[644]

Introduces BugScout, an IR model for bug localization, which explicitly
considers past bug reports as well as identifiers and comments. BugScout
can improve performance by up to 20% over traditional LDA.

Traceability (C)
Rao et al. [708]

Compares several IR models for bug localization, including VSM, LSI,
and LDA, and various combinations. Simpler IR models (such as VSM)
often outperform more sophisticated models.

Traceability (C)
Copabianco et al.
[165]

Compares VSM, LSI, Jenson-Shannon, and B-Spline for recovering
traceability links between source code, test cases, and UML diagrams. B-
Spline outperforms VSM and LSI and is comparable to Jenson-Shannon.

Traceability (C)
Oliveto et al.
[661]

Compares Jenson-Shannon, VSM, LSI, and LDA for traceability. LDA
provides unique insights compared to the other three techniques.

Traceability (C)
Asuncion et al.
[49]

Introduces TRASE, an LDA-based tool for prospectively, rather than
retrospectively, recovering traceability links. LDA outperforms LSI in
terms of precision and recall.

Fault detection
Marcus et al.
[567]

Introduces C3, an LSI-based class cohesion metric. Highly cohesive
classes correlate negatively with program faults.

Fault detection
Gall et al. [307]

Presents natural-language metrics based on design and requirements
documents. The authors argue that tracking such metrics can help de-
tect problematic or suspect design decisions.

Fault detection
Ujhazi et al. [864]

Defines two new conceptual metrics that measure the coupling and cohe-
sion of methods, both based on LSI. The new metrics provide statistically
significant improvements compared to previous metrics.

Fault detection
Liu et al. [533]

Introduces MWE, an LDA-based class cohesion metric, based on the
average weight and entropy of a topic across the methods of a class.
MWE captures novel variation in models that predict software faults.

Fault detection
Gethers et al.
[322]

Introduces a new coupling metric, RTC, based on a variant of LDA called
Relational Topic Models. RTC provides value because it is statistically
different from existing metrics.

Fault detection
Chen et al. [175]

Proposes new LDA-based metrics including: NT, the number of topics
in a file and NBT, the number of buggy topics in a file. These metrics
can well explain defects, while also being simple to understand.



Chapter 6
Leveraging Web 2.0 for software evolution

Yuan Tian and David Lo

Summary. In this era of Web 2.0, much information is available on the Internet.
Software forums, mailing lists, and question-and-answer sites contain lots of techni-
cal information. Blogs contain developers’ opinions, ideas, and descriptions of their
day-to-day activities. Microblogs contain recent and popular software news. Soft-
ware forges contain records of socio-technical interactions of developers. All these
resources could potentially be leveraged to help developers in performing software
evolution activities. In this chapter, we first present information that is available
from these Web 2.0 resources. We then introduce empirical studies that investigate
how developers contribute information to and use these resources. Next, we elab-
orate on recent technologies and tools that could mine pieces of information from
these resources to aid developers in performing their software evolution activities.
We especially present tools that support information search, information discov-
ery, and project management activities by analyzing software forums, mailing lists,
question-and-answer sites, microblogs, and software forges. We also briefly high-
light open problems and potential future work in this new and promising research
area of leveraging Web 2.0 to improve software evolution activities.

Much of the content of this chapter is a summary of, and is based on, the following articles having
either one or both of the chapter authors as co-authors: [3, 343, 703, 805, 806, 841, 845]. We would
like to thank the other co-authors of these articles: Swapna Gottipati, Jing Jiang, Ferdian Thung,
Lingxiao Jiang, Didi Surian, Nian Liu, Hanghang Tong, Ee-Peng Lim, Christos Faloutsos, Hong
Cheng, Achananuparp Palakorn, and Philips Kokoh Prasetyo.

163
 Springer

. et al. (eds.), E ,
DOI 10.1007/978-3- - - _6, ©  2014
T Mens volving Software Systems

642 45398 4 -Verlag Berlin Heidelberg



164 Yuan Tian and David Lo

6.1 Introduction

Web 2.0 has revolutionized the use of web sites [667]. Prior to Web 2.0, most web
sites were simply static pages that did not support much user interactions. With Web
2.0, users can post new content dynamically, update a long list of friends in real time,
collaborate with one another, and more. This has changed the paradigm of how users
use the Web. Web 2.0 sites include but are not limited to blogs, microblogging sites,
social networking sites, and sharing and collaboration sites. Currently, most web
users spend a substantial amount of time in Web 2.0 sites and the adoption of Web
2.0 sites is growing [235]. Much knowledge is shared in these Web 2.0 sites.

Web 2.0 also affects software developers. Currently, developers share a lot of
information in Web 2.0 sites. These resources could be leveraged to help develop-
ers perform their tasks better. It is common for developers to consult information
sharing sites like software forums, e.g., CNET1, Oracle OTN forum2, SoftwareTip-
sandTricks3, and DZone4. Developers often encounter the same problems, and solu-
tions found by one developer are disseminated to others via these sites. Developers
of open source projects such as GNOME5 use mailing lists as discussion forums to
support communication and cooperation in project communities. Besides software
forums and mailing lists, developers often turn to question-and-answer sites, such as
StackOverflow6, to seek help from other expert developers about software-related
problems that they face. Blogging services are also popular among software devel-
opers. Developers use blogs to record knowledge including their ideas and experi-
ence gained during software evolution tasks. This knowledge could be discovered
by other developers through web search. In the recent few years, with the advent of
social media, developers have yet another means to share and receive information.
Much information is shared via microblogging sites such as Twitter [863] and Sina
Weibo 7. Information shared in microblogging sites is often recent and informal.
The unique nature of information in these sites makes them interesting resources
that augment other Web 2.0 resources. Developers also use many collaboration sites
to jointly work together to complete various software projects. These collaboration
sites, also referred to as software forges, can host tens of thousands of projects or
even more. Examples of these collaboration sites (or software forges) are GitHub8

and SourceForge9.
Web 2.0 can be leveraged to assist developers find information that help them in

software evolution tasks. Developers often want to find answers to various develop-

1 forums.cnet.com
2 forums.sun.com/index.jspa
3 www.softwaretipsandtricks.com/forum
4 java.dzone.com
5 www.gnome.org
6 stackoverflow.com
7 www.weibo.com
8 github.com
9 sourceforge.net

sourceforge.net
github.com
www.weibo.com
stackoverflow.com
www.gnome.org
java.dzone.com
www.softwaretipsandtricks.com/forum
forums.sun.com/index.jspa
forums.cnet.com


6 Leveraging Web 2.0 for software evolution 165

ment questions. Software forums often contain such answers. However, it can take
much time for developers to sift the mass of contents shared there to find desired
answers. Developers also often want to reuse programs satisfying some properties.
Information stored in Web 2.0 resources can be leveraged for this task. For the above
mentioned tasks, automation is needed to bring relevant pieces of information to de-
velopers.

Developers can also leverage Web 2.0 to discover new and interesting knowledge.
For example, developers often want to be notified of new patches to security loop
holes, new useful libraries, new releases of some libraries, new programming tips,
and many other pieces of information. Today, developers often need to manually
search for such new information by leveraging search engines or reading slightly
outdated information from magazines or books. The more recent these pieces of in-
formation are, the more useful they are to developers, e.g., developers could quickly
patch new security loop holes before they get exploited. For these purposes, mi-
croblogging sites are promising sources of information as information shared there
is often recent and informal, providing timely and honest feedback on many recent
issues that various developers find interesting.

Developers often work together in various open source projects hosted in many
software forges.10 Based on projects that developers have worked on, we can build
various support tools that improve the management of projects in these software
forges [805, 806]. These project management support tools can help to better allo-
cate resources (i.e., developers) to tasks (i.e., projects) [805] or predict bad situations
(e.g., project failures) such that appropriate mitigation actions can be taken [806]. In
practice, often such project management tasks are done manually and thus support
tools could reduce the amount of manual effort needed.

In this chapter, we first present information available in various Web 2.0 re-
sources in Section 6.2. We then describe how developers use these Web 2.0 re-
sources in Section 6.3. Next, we review recently proposed automated techniques
that leverage Web 2.0 resources for information search, information discovery, and
project management. We start by summarizing past studies that leverage Web 2.0 for
information search including studies on answering software development questions
and searching for similar projects [343, 841] in Section 6.4. We then summarize
past studies that leverage Web 2.0 sites for information discovery, e.g., [3, 703], in
Section 6.5. We also present past studies that leverage Web 2.0 to support project
management, e.g., [805, 806], in Section 6.6. We describe open problems and future
work in Section 6.7. Finally, we conclude in Section 6.8.

10 Please refer to Chapter 10 of this book



166 Yuan Tian and David Lo

6.2 Web 2.0 Resources

There are various Web 2.0 resources that software developers often use to learn and
exchange information and knowledge. In this section, we highlight several of these
resources.

6.2.1 Software Forums, Mailing Lists and Q&A Sites

Developers often ask and discuss questions in software forums. Other more experi-
enced developers that face the same problems can reply with some answers. These
exchanges of information are documented and thus other developers facing similar
problems in the future can also benefit. There are many software forums available
online. Some forums are specialized such as Oracle OTN forum and DZone. Some
others are general purpose such as CNET and SoftwareTipsandTricks. Figure 6.1
shows the Oracle OTN Forum where many people discuss Java programming.

A software forum is often organized into categories. For example, Figure 6.1
shows that inside Oracle OTN forum, questions and answers are categorized into:
Java Essentials, Java API, etc. Inside Java Essentials, there are more sub-categories:
New to Java, Java Programming, and Training / Learning / Certification. Within each
sub-category, there are many threads. Within each thread, there are many posts. At
times a thread can contain even hundreds of posts. The posts contain questions, an-
swers, or other pieces of information (e.g., positive feedbacks, negative feedbacks,
junk, etc).

Fig. 6.1: Oracle OTN Forum



6 Leveraging Web 2.0 for software evolution 167

Developers of open source projects use mailing lists to communicate and col-
laborate with one another. A mailing list works as a public forum for developers
or users who have subscribed to the list. Anyone in the list can post messages to
other people in the list by sending emails to a public account. Contents of these
messages are usually related with changes made by developers or problems faced
by developers or users during software development or product usage. For example,
from GNOME website developers and users can get information about each mailing
list and decide whether to subscribe to one or more lists.11 These lists are created
for various purpose: some are created for messages related to particular modules
(e.g., “anjuta-devel-list” is for messages related to Anjuta IDE), some are created
for messages related to special events (e.g., “asia-summit-list” is for messages re-
lated to GNOME.Asia Summit organization), some are created not for developers
but for end users (e.g., “anjuta-list” is for messages from users of Anjuta IDE), etc.

Developers also can seek answers for questions from question-and-answer sites.
In general question-and-answer sites like Yahoo! Answers, people can ask ques-
tions about various domains including news, education, computer & internet, etc.
StackExchange12 is a fast-growing network which contains 104 domain specific
question-and-answer sites focusing on diverse topics from software programming
to mathematics and IT security. Among the 104 question-and-answer sites, Stack-
Overflow is the biggest and most famous one. It has more than 5 millions questions
(most of them are related to software development) and more than 2 millions users
since it was launched in 2008.

Fig. 6.2: Question-and-Answer Threads in Stack Overflow

11 mail.gnome.org/mailman/listinfo
12 stackexchange.com

stackexchange.com
mail.gnome.org/mailman/listinfo


168 Yuan Tian and David Lo

Figure 6.2 shows question-and-answer threads extracted from StackOverflow.
Each question in StackOverflow has a short title that briefly summarizes the ques-
tion. A user who asks the question can assign several tags like “java” according to
the topics of the question. These tags are used to help users to search for similar
questions and their answers. A user who views a question can vote up the question
if he/she thinks the question is useful or vote down it if he/she thinks the question is
unclear. The sum of votes, the number of people who has viewed the question, and
the total number of provided answers are recorded for each question.

6.2.2 Software Blogs & Microblogs

Blogging is one of the typical features of the Web 2.0 era. Similar with home pages,
blogs are created for individuals. They record personal thinking, experience and
stories in a diary-like format. Different from home pages, blogs’ contents change
more often and blogs support discussions by allowing others to post comments.
In addition, the RSS (Really Simple Syndication) technology allows people to not
only link to a page containing a blog but also to subscribe to it. People who have
subscribed to a blog will be informed if the blog’s content has been modified.

Developers are using blogs to share their ideas, knowledge, and experiences on
software development. Usually people find others’ blogs through web search. For
instance, a developer has encountered a problem but lacks experience to solve the
problem; he or she might go to Google Search and seek for solutions using some
keywords. Some of the top returned search results may link to other developers’
blogs where the ways to solve the same or similar problem are presented. By this
means, blogs provide knowledge for the whole community of software developers.

In the recent years, microblogging services are getting popular. Millions of peo-
ple communicate with one another by broadcasting short messages which are made
public to all. Different from traditional blogging services and other social media,
microblogs are usually short and often contain information of very recent news and
events; microblogs are also informal in nature and microbloggers are often unafraid
to express their honest opinions about various topics. Software developers also make
use of this new social media trend. Thus, one could potentially discover various in-
formation from microblogs, e.g., new features of a library, new methodologies to
develop software systems, new conferences, new security loop holes, etc. The in-
formal and timely nature of microblogs suit software development well. In software
development, many new “events”, e.g., releases of new libraries, etc., occur from
time to time. Developers could learn from the wisdom of the masses that are avail-
able in the millions of microblogs about various software relevant topics. Further-
more, a number of studies have shown the important role of informal communica-
tion [108, 343, 675]. Microblogging is yet another kind of informal communication.
Microbloggers can express honest opinions about various libraries, programming
languages, etc. through their microblogs that are available for all to see.



6 Leveraging Web 2.0 for software evolution 169

Fig. 6.3: Microblogs in Twitter

Figure 6.3 shows some sample microblogs (a.k.a. tweets) from Twitter, which
is arguably the largest microblogging site. Microbloggers can post short contents
(at most 140 characters in Twitter) that would then be broadcasted to those that
subscribe to it. These microblogs are also publicly available for all to see. A mi-
croblogger can subscribe to (i.e., follow in Twitter) other microbloggers and get
notified whenever new microblogs are generated. A microblogger can also forward
microblogs to (i.e., retweet in Twitter) others, as well as reply to others’ microblogs.
Microblogs can be tagged with particular keywords (i.e., hashtags in Twitter). For
instance, the microblogs in Figure 6.3 are all tagged with hashtag #csharp.

Developers can include various contents in their microblogs. For example, from
Figure 6.3, the first microblogger shares a tip on visitor pattern. The second mi-
croblogger asks a question, while the third microblogger broadcasts a personal mes-
sage on what he is currently doing.

6.2.3 Software Forges

With the advent of Web 2.0, developers can choose to work on various projects with
many collaborators across the globe. Software forges provide additional support for
this. A software forge, e.g., Google Code, SourceForge, GitHub, etc., hosts hundreds
or even hundreds of thousands of projects. Developers can view these projects, be
aware of development activities happening in them, download and use the projects,



170 Yuan Tian and David Lo

and also contribute code, test cases, bug reports, etc. to the projects. Figure 6.4
shows some projects that are hosted in SourceForge.

Fig. 6.4: Projects in SourceForge

Software forges often provide APIs for others to query activities that happen
within them. With these APIs, much information can be gathered. We can track how
developers work with others across time. We can track the number of downloads.
We can also track new projects and new collaborations that are created over time.
Chapter 10 of this book describes the evolution of projects in software forges.

6.2.4 Other Resources

There are also other Web 2.0 resources like LinkedIn13, Facebook14, Wikipedia15,
Academic.edu16, Foursquare17, Google Talk18, and many more. Many of these re-
sources often contain information about subgroups devoted to specific topics in-
cluding software evolution. For example LinkedIn and Facebook contain profiles
of many software developers. Wikipedia defines many software evolution related
terms. Academic.edu shares research studies including those related to software
evolution. Foursquare provides geospatial locations of people including those of

13 www.linkedin.com
14 www.facebook.com
15 www.wikipedia.org
16 academia.edu
17 foursquare.com
18 support.google.com/talk/?hl=en

support.google.com/talk/?hl=en
foursquare.com
academia.edu
www.wikipedia.org
www.facebook.com
www.linkedin.com


6 Leveraging Web 2.0 for software evolution 171

software developers. These resources also provide a wealth of information that can
potentially be leveraged to improve software evolution activities.

6.3 Empirical Studies

In this section, we review several empirical studies that investigate how Web 2.0 re-
sources have been used by software developers. We categorize these studies accord-
ing to resources that they target, namely: software forums, mailing lists & question-
and-answer sites, software blogs & microblogs, and software forges.

6.3.1 Software Forums, Mailing Lists and Q&A Sites

Rupakheti and Hou analyzed 150 discussion threads from Java Swing forum [738].
They found that API problems recur in software forums. This phenomenon was
leveraged to design an API critic which advises how an API should be used. They
manually categorized the threads into unclear threads, other threads (not related to
layout and composition), application specific requirement threads, and threads that
would benefit from the automated API critic.

Bird et al. constructed a social network from a mailing list [108]. Each node in
the network is an individual and there is an edge between a to b if b replied to a
message that is generated by a. They analyzed more than 100,000 messages from
Apache HTTP Server’s developer mailing list. They found that the out-degree (i.e.,
the number of people that replies to a person) and in-degree (i.e., the number of
people to whom a person has replied to) follow power-law distributions. They also
found that the level of activity in a mailing list is strongly related to the level of
activity in the source code.

Sowe et al. investigated knowledge sharing interactions among knowledge provi-
ders and knowledge seekers in the mailing lists of the Debian project [789]. A
knowledge provider is an expert that helps other participants in the project. A knowl-
edge seeker refers to any participant who asks questions related to software devel-
opment or software usage. They collected messages and replies generated by 3735
developers and 5970 users. They found that knowledge providers and knowledge
seekers interact and share knowledge a lot. Developers generate more replies than
messages while users generated more messages than replies.

Treude et al. analyzed how developers use question-and-answer sites like Stack-
Overflow [854]. The authors collected 15 days of question-and-answer threads and
manually analyzed a smaller set of 385 questions that are randomly sampled from
the collected threads. They divided these questions into different groups and found
that questions that ask for instructions are the most popular questions. They also
found that questions that ask for code review, the questions made by novices, and
abstract questions are answered more frequently than other types of questions.



172 Yuan Tian and David Lo

Nasehi et al. compared high quality and low quality answers on StackOverflow to
learn important attributes of good code examples [634]. An answer is of high qual-
ity if it has been accepted by the asker or it has a relatively high voting score. The
authors sampled 163 question-and-answer threads. Each of them has at least one an-
swer that contains a code example and receives 4 or more points. They summarized
that high quality answers usually contain concise code example, use the context of
the question, highlight important elements, give step-by-step solutions, and provide
links to extra resources.

6.3.2 Software Blogs & Microblogs

Pagano and Maalej investigated how software developers use blogging services [675].
They collected blog posts generated by 11,00 developers from four open source
project communities, namely Eclipse, GNOME, PostgreSQL, and Python. The au-
thors matched the bloggers’ identities to source code committers. They found that
blogggers who are also committers post more frequently than single bloggers who
never commit changes to the source code. They reported that commits are fre-
quently, short, and precise while blog posts are less frequent, longer (14 times longer
than commit), and contain less source code. They also found that developers are
more likely to post blogs after corrective engineering or management tasks than
after forward engineering or re-engineering tasks.

Parnin and Treude studied blog posts that are related to API documentations [680].
In their work, they collected developers’ blog posts by performing Google searches
for all methods’ names in the jQuery API. They then manually categorized the top-
10 returned search results and found that blog posts cover 87.9% of the API meth-
ods. They also found that tutorials and experience reports are the most common
types of blog posts. A tutorial often describes problems to be solved and shows so-
lutions in detailed steps. An experience report describes the experience gained from
handling a problem. Different from the findings reported by Pagano and Maalej that
only 1.8% of blog posts contain source code, this work found that 90% of the blog
posts mentioning API methods contain code snippets. The authors concluded that
these API related blog posts are used to: describe a philosophy of a design approach
or a problem, support a niche community, and store information for bloggers’ future
personal use.

Parnin et al. investigated the motivation and challenges of blogging developer
knowledge [681]. They extracted 55 blogs by performing Google searches using
keywords related to three technology areas: IDE plugin development, mobile devel-
opment, and web development.19 They sent a survey to each of the authors of the
55 blogs and collected 30 responses in the end. They found that developers blog be-
cause it can help them educate employees, gain personal reputation, document their
experiments, and get feedback that can be used to improve their code or product.

19 They choose Eclipse and Visual Studio plugins, Android and iPhone development, and Django
and jQuery development as representatives.



6 Leveraging Web 2.0 for software evolution 173

They also summarized that the biggest challenges for developers to use blogging
services are time and the lack of a reward system. For instance, it takes much time
for authors to write a high quality blog; it is also time consuming to manage all blog
posts, such as porting blogs between systems and filter spam comments.

Bougie et al. conducted an empirical work to understand how developers use
Twitter to support communication in their community and what they talk about
on Twitter [136]. They sampled 68 developers from three project communities:
Linux, Eclipse, and MXUnit. By analyzing 600 microblogs generated by these 68
microbloggers and comparing them with microblogs generated by normal Twitter
users, they found that microblogs generated by sampled developers contain more
conversations and information sharing. They categorized these 600 microblogs into
four categories: software engineering-related, gadgets and technological topics, cur-
rent events outside technical topics, and daily chatter.

We and a few others extended the work by Bougie et al.’s [845]. We analyzed
300 microblogs (a.k.a. tweets) that are tagged with software related hashtags (i.e.,
#csharp, #java, #javascript, #dotnet, #jquery, #azure, #scrum, #testing, and #open-
source). Compared with Bougie et al’s sampling method that extracts all microblogs
generated by a special group of developers, these 300 microbloggs are more rele-
vant to software development. We manually analyzed the contents of the 300 mi-
croblogs and categorized them into ten categories: commercials, news, tools&code,
q&a, events, personal, opinions, tips, jobs, and miscellaneous. We found that jobs,
news, and q&a are the top 3 most popular categories. We also calculated the percent-
ages of microblogs that are retweeted for each category and found that the most dif-
fused microblogs are from events and commercials categories. Some examples are:
“. . . vote for Superdesk in Ashoka Changemakers Global Innovation Contest. . . .”
(events), “. . . GlobalStorage for #dotnetnuke 6 #azure, . . . is 15% OFF . . .” (com-
mercials). Personal microblogs also get retweeted. The least diffused categories,
aside from miscellaneous, are: tools&code, jobs, and q&a. Although these tweets
are many in number, they are not widely diffused in the Twitter network.

6.3.3 Software Forges

Madey et al. analyzed open source projects that are hosted in SourceForge [552].
They analyzed 39,000 projects which are developed by more than 33,000 develop-
ers. They created a collaboration social network where developers are nodes and
collaborations among developers (i.e., two or more developers work on the same
project) are edges. A modified spanning tree algorithm was used to extract clusters
(i.e., groups) of connected developers. Based on this collaboration social network
they found that power-law relationships exist for project sizes (i.e., number of de-
velopers in a project), project memberships (i.e., number of projects that a developer
joins), and cluster sizes (i.e., number of developers in a cluster).

Xu et al. investigated social network properties of projects and developers in
SourceForge [932]. They found that the networks exhibit small world phenomena



174 Yuan Tian and David Lo

and are scale free. Small world phenomenon refers to a situation where each node
in a network is connected to other nodes in the network by a small number of in-
termediary nodes. Scale free network refers to a situation where degree distribution
of nodes follows a power-law distribution. For scale free networks, preferential at-
tachment (i.e., probability of a new node to link to an existing node is proportional
to the degree of the existing node) exists.

Ricca and Marchetto investigated 37 randomly selected projects in Google Code
and SourceForge [716]. They investigated “heroes” in these projects; heroes refer
to important developers that have critical knowledge on particular parts of a soft-
ware system. They found that heroes are a common phenomenon in open source
projects. They also reported that heroes are faster than non-heroes in completing
change requests.

Dabbish et al. investigated a different software forge namely GitHub [210]. Dif-
ferent from SourceForge, GitHub is more transparent, i.e., other developers can
track and follow the activities of other developers or changes made to a project.
They interviewed a set of GitHub users to investigate the value of transparency.
They found that transparency is beneficial for various reasons including: developer
recruitment, identification of user needs, management of incoming code contribu-
tions, and identification of new technical knowledge.

6.4 Supporting Information Search

In this section, we describe several studies that leverage Web 2.0 to support infor-
mation search. We first describe two of our previous studies that consider two in-
formation search scenarios, namely searching for answers in software forums [343],
and searching for similar applications in software forges [841]. We then highlight
other studies.

6.4.1 Searching for Answers in Software Forums

Motivation. A thread in a software forum can contain a large number of posts. Our
empirical study on 10 software forums found that a thread can contain up to 10,000
posts [343]. Scanning for relevant posts in these threads can be a painstaking pro-
cess. Likely many posts are irrelevant to a user query. Some posts answer irrelevant
questions. Some other posts are relevant but do not provide an answer to the problem
that a developer has in mind. Furthermore, even after an exhaustive investigation,
there might be no post that answers relevant questions or a correct answer might not
have been provided in the forum.

To aid in searching for relevant answers, developers typically make use of gen-
eral purpose search engines (e.g., Google, Bing, etc.) or customized search engines
available in software forums. General purpose search engines return many web-



6 Leveraging Web 2.0 for software evolution 175

pages. Often many of them are not relevant to answer the questions that developers
have in mind, e.g., searching for Java might return the island Java in Indonesia or the
Java programming language. Customized search engines are likely to return more
relevant results however the number of returned results can still be too many. For
example, consider searching the Oracle forum with the following question: “How to
get values from an arraylist?”. Figure 6.5 shows the returned results. There are 286
threads returned and some threads contain as many as 30 posts. Developers would
then need to manually investigate and filter returned results to finally recover posts
that answer the question. This could be very time consuming. Thus, we need a more
advanced solution to help find relevant posts from software forums.

Fig. 6.5: Search results (268 of them) from Oracle forum for query: “ How to get values from
arraylist?”

Approach. Our proposed approach first labels posts in software forums with prede-
fined tags; it then uses these tags to return relevant answers from threads in software
forums. It utilizes two main components: tag inference engine and semantic search
engine. Our tag inference engine automatically classifies posts in software forums
with one of the following categories: answers, clarifying questions, clarifying an-
swers20, positive feedback, negative feedback, and junk (e.g., “today is Friday”).
With the inferred tags, developers could focus on the answers that can be hidden
deep inside long threads rather than investigating all the posts. With the inferred
tags, questions with correct answers (identified based on the corresponding posi-
tive feedback) can also be identified. Our semantic search engine enhances standard
search engine by making use of the inferred semantic tags to return more relevant
answers.

To build a tag inference engine that classifies posts into the seven categories, we
follow these steps:

1. We represent each post as a feature vector. To do this, we extract the text in the
post and record the author of the post. The textual content of the post is then sub-
jected to the following pre-processing steps: stopword removal (i.e., removal of

20 Answers to clarifying questions.



176 Yuan Tian and David Lo

non-descriptive words) and stemming (i.e., reduction of a word to its root form).
For example, the words “reads” and “reading” are reduced to “read”. The resul-
tant words are then weighted based on their term frequency (i.e., the number of
times the words appear in the post). These together with the author information
are used as features (a.k.a. a feature vector) that represent a post.

2. Given a set of posts and their labels, we train a machine learning model that dis-
criminates posts belonging to each of the 7 categories using Hidden Markov Sup-
port Vector Machine SV MHM) [443]. We take the representative feature vectors
that characterize the training set of posts to train this machine learning model.
SV MHM classifies a post not only based on its content and author but also the
previous few posts. This is particularly effective as the category of a post is often
dependent on the category of the previous few posts, e.g., if the previous post is
a question, the next post is likely to be an answer or a clarifying question rather
than a feedback.

The learned categories could be used to help conventional search engines. A
conventional search engine takes in a set of documents (i.e., forum posts in our
settings), pre-processes each document into a bag of words, and indexes each doc-
ument. When a user enters a query, the index is used for fast retrieval of relevant
documents in the document corpus. We enrich conventional search engines by lever-
aging the semantic information available from the inferred tags. To create this se-
mantic search engine, we embed our tag inference engine to infer tags of the posts
in the document corpus. These tags are then used to filter irrelevant posts, e.g., junk.
Only documents that are potentially relevant would be returned.
Experiments. Three different forums are analyzed in our experiments: SoftwareTip-
sandTricks21, DZone22, and Oracle23. We infer the labels of 6068 posts from the
forums manually - 4020, 680, and 1368 posts are from SoftwareTipsandTricks,
DZone, and Oracle, respectively. Approximately half of the posts are used for train-
ing (i.e., 2000, 300, 620 posts from SoftwareTipsandTricks, DZone, and Oracle,
respectively) and the remaining posts are used for testing. We build a search engine
corpus using the same sets of posts and consider a set of 17 software queries.24 We
compare our semantic search engine with a standard information retrieval toolkit 25.
We consolidate results returned by the standard information retrieval toolkit and
our semantic search engine. The consolidated results are then given to five human
evaluators who would give a rating of 2, for correct answers, 1, for partially correct
answers, and 0, for irrelevant answers.

We first evaluate the accuracy of our tag inference engine in terms of precision,
recall, and F-measure (i.e., the harmonic mean of precision and recall) [557]. We use
the manually inferred tags as the ground truth. The results are tabulated in Table 6.1.
We can achieve an F-measure of 64-72%. Next, we evaluate the usefulness of our

21 www.softwaretipsandtricks.com
22 forums.dzone.com
23 forums.sun.com/index.jspa
24 E.g., “How to read files in Java?”, please refer to [343] for detail.
25 www.lemurproject.org

www.lemurproject.org
forums.sun.com/index.jspa
forums.dzone.com
www.softwaretipsandtricks.com


6 Leveraging Web 2.0 for software evolution 177

semantic search engine that leverages inferred tags. We compare our approach with
a conventional search engine in terms of mean average precision (MAP) over a set
of 17 queries [557]. The mean average precision a the set of queries is the mean
of the average precision per query; the average precision of a query is computed
by averaging the precision at the top-k positions, for different values of k. With
our semantic search engine we can accomplish an MAP score of 71%, while the
conventional search engine can only achieve an MAP score of 18%.

Table 6.1: Precision, Recall, and F-measure Results of Our Proposed Tag Inference Engine

Dataset Precision Recall F-measure
SoftwareTipsandTricks 73% 71% 72%
DZone 68% 61% 64%
Oracle 71% 67% 69%

6.4.2 Searching for Similar Applications in Software Forges

Motivation. Web search engines allow users to search for similar webpages (or doc-
uments in the Web). Similarly, developers might want to find similar applications
(i.e., applications that serve similar purposes). Finding similar applications could
help various software engineering tasks including rapid prototyping, program un-
derstanding, plagiarism identification, etc. There have been a number of approaches
that could retrieve applications that are similar to a target application [455, 581].
McMillan et al. proposed JavaClan [581] which has been shown to outperform
MUDABlue [455]. JavaClan leverages similarities of API calls to identify similar
applications. API calls within applications are treated as semantic anchors which
are used to identify similar applications to a target application. However, the accu-
racy of these approaches can still be improved. In their user study, JavaClan only
achieved a mean confidence score of around 2.5 out of 4.

Recently, many developers tag various resources with labels. This phenomenon
is referred to as collaborative tagging. Many software forges allow users to tag var-
ious applications based on their perceived functionalities. In this study, we leverage
collaborative tagging to find similar applications. Our goal is to improve the accu-
racy of the state-of-the-art approach.
Approach. Our approach, shown in Figure 6.6, consists of several steps including:
data gathering, importance weighting, and similar application retrieval. We describe
these steps as follows:

1. Data Gathering. We download a large number of applications as the base corpus
to detect similar applications. In this study we invoke the API that comes with



178 Yuan Tian and David Lo

Data 

Gathering

Importance 

Weighting

Similar 

Application 

Retrieval

User Query

Similar 

Applications

Fig. 6.6: Similar Application Retrieval: Block Diagram

Fig. 6.7: Example Tags from SourceForge

SourceForge26 to collect tags from a large number of applications hosted there.
An example of tags given to an application in SourceForge is shown in Figure 6.7.
In this study, we treat each tag as a distinct entity and we ignore the semantic
relationships between tags.

2. Importance Weighting. Not all tags are equally important. Some tags are very
general and are used to label a large number of applications. These tags are not
very useful for the retrieval of similar applications as otherwise all applications

26 sourceforge.net/apps/trac/sourceforge/wiki/API

sourceforge.net/apps/trac/sourceforge/wiki/API


6 Leveraging Web 2.0 for software evolution 179

would be considered similar. On the other hand, tags that are only used by a few
applications are more important for retrieval as they can help to differentiate one
application from the others.
Based on the above rationale, we assign importance weights to tags based on
applications tagged by them. If a tag is used by many different applications,
it is assigned a low weight. On the other hand, if a tag is used by only a few
applications, it is assigned a high weight. We use the concept of inverse document
frequency first proposed in the information retrieval community [557] to assign
weights to tags. Formally, the weight of a tag T is given by Equation 6.1 where
Applications(T ) refers to the size of the application set tagged by T .

weight(T ) =
1

Applications(T )
(6.1)

3. Similar Application Retrieval. Each application is represented as a vector of its
tags’ weights. The similarity between two applications can then be measured
based on the similarities of their representative vectors. Various similarity mea-
sures can be used. We use cosine similarity which is a standard similarity metrics
in information retrieval [557]. The cosine similarity of two applications A and B
is given by Equation 6.2 where A.Tags and B.Tags refer to the tags for applica-
tion A and B respectively. From the numerator of the above formula, the cosine
similarity of A and B is higher if they share many common tags that have high
importance weights. The denominator of the formula normalizes cosine similar-
ity to the range of zero to one. If an application is tagged with many tags, the
chance for it to coincidentally share tags with other applications is higher. To
address this, the denominator considers the number and weights of the tags that
are given to each application.

CosSim(A,B) =
ΣT∈(A.Tags

⋂
B.Tags).weight(T )2√

ΣT∈A.Tags.weight(T )2×
√

ΣT∈B.Tags.weight(T )2
(6.2)

Given a target application A, our system returns the top-n applications in our
corpus that are most similar to A based on their cosine similarities.

Experiments. To investigate the effectiveness of our approach, in our data gather-
ing step we collect 164,535 applications (i.e., projects) from SourceForge. These
applications form our corpus to recommend similar applications. We use the fol-
lowing 20 queries: bcel, bigzip, certforge, chiselgroup, classgen, color-studio, con-
fab, drawswf, genesys-mw, javum, jazilla, jsresources, opensymphony, psychopath,
qform, redpos, sqlshell, tyrex, xflows, and yapoolman. Each of the above queries is
an application. The 20 queries were also used in evaluating JavaClan which is the
state-of-the-art approach to recommend similar applications [581].

We compare our approach with JavaClan. We use our approach and JavaClan to
recommend 10 applications. We then perform a user study to evaluate the quality
of the recommendations. We ask users to rate each recommendation using a 5-point



180 Yuan Tian and David Lo

Likert scale [19]: 1. strongly disagree (i.e., the query and recommended applications
are very dissimilar), 2. disagree, 3. neither agree or disagree, 4. agree, and 5. strongly
agree (i.e., the query and recommended applications are very similar). Based on
user ratings, we use the following three metrics to measure the effectiveness of our
approach and JavaClan (the last two metrics have been used to evaluate JavaClan):

1. Success Rate. We deem a top-10 recommendation to be successful if at least one
of the recommendations is given a rating 3 or above. The success rate is given by
the proportion of top-10 recommendations that are successful for the queries.

2. Confidence. The confidence of a participant to a recommendation is reflected by
his/her rating. We measure the average confidence which is the average of the
ratings given by the participants for the top-10 recommendations.

3. Precision. The precision of a top-10 recommendation is the proportion of recom-
mendations in the top-10 recommendation that are given ratings 4 or 5. We mea-
sure the average precision across the top-10 recommendations for the queries.

Table 6.2 shows the success rate, average confidence, and average precision of
our proposed approach and JavaClan. In terms of success rate, our approach outper-
forms JavaClan: the success rate is increased by 23.08%. Our approach also achieves
a higher average confidence than JavaClan. A Mann-Whitney U test, which is a non-
parametric test to check the significance of a difference in means, shows that the dif-
ference in average confidence is significant (with a p-value of 0.001). Furthermore,
out of the 20 queries, in terms of average confidence per query, our approach out-
performs JavaClan in 13 queries and is equally as effective as JavaClan in 5 queries.
Furthermore, our approach achieves a higher average precision score than JavaClan.
We have also performed a A Mann-Whitney U test. The result shows that the dif-
ference in mean is not significant (with a p-value of 0.488). Furthermore, out of the
20 queries, in terms of precision per query, our approach outperforms JavaClan in 7
queries and is equally effective as JavaClan in 8 queries.

Table 6.2: Effectiveness of Our Proposed Approach and JavaClan: Success Rate,
Confidence, and Precision

Approach Success Rate Avg. Confidence Avg. Precision
Proposed Approach 80% 2.02 0.115
JavaClan 65% 1.715 0.095

6.4.3 Other studies

Aside from our studies, there are a number of other studies that also leverage Web
2.0 resources to help various software evolution activities. We highlight some of
these studies in brief in the following paragraphs.



6 Leveraging Web 2.0 for software evolution 181

Thummalapenta and Xie proposed Parseweb which helps developers to reuse
open source code [839]. Parseweb accepts as input a source object type and a des-
tination object type. It then generates a sequence of method invocations that can
convert the source object type to the destination object type. To realize its function,
Parseweb interacts with a software forge namely Google Code and leverages the
search utility available in it.

Thummalapenta and Xie proposed a technique named SpotWeb that detects
hotspots and coldspots in a framework or API [838]. Hotspots refer to parts of the
framework or API that are frequently used. Coldspots refer to parts of the framework
or API that are rarely used. Their proposed technique works on top of Google Code
search. It works by analyzing framework code and the framework usages among the
projects in Google Code software forge. Experiments were conducted on a number
of frameworks with promising results.

McMillan et al. proposed Portfolio which is a search engine that finds functions
in a large code base containing numerous projects [582]. Their proposed search
engine takes in user inputs in the form of free form natural language descriptions
and returns relevant functions in the code base. Two information retrieval solutions
are used to realize the proposed approach namely page rank and spreading activa-
tion network. Their search engine analyzes a software forge containing hundreds of
projects from FreeBSD.

McMillan et al. proposed a tool named Exemplar (EXEcutable exaMPLes ARchi-
ve) which takes high-level concepts or descriptions and returns applications that re-
alize these concepts [579]. The proposed approach ranked applications in a large
application pool by considering several sources of information. These include tex-
tual description of the application, list of API methods that the application calls, and
dataflow relations among the API method calls. Examplar had been evaluated on a
set of 8,000 projects containing more than 400,000 files that are hosted in Source-
Forge with promising results.

Ponzanelli et al. proposed a technique that leverages crowd knowledge to recom-
mend code snippets to developers [690]. Their tool named Seahawk is integrated to
the Eclipse IDE and recommends code snippets based on the context that a devel-
oper is working on. To achieve this, Seahawk generates a query from the current
context in the IDE, mines information from StackOverflow question-and-answer
site, and recommends a list of code snippets to developers.

6.5 Supporting Information Discovery

In this section, we describe studies that develop tools that facilitate developers in
discovering new information from Web 2.0 resources. We first highlight our visual
analytics tool that supports developers in navigating through the mass of software-
related microblogs in Twitter [3]. We also present our analytics tool that can auto-
matically categorize microblogs to support information discovery [703]. We then
highlight other studies.



182 Yuan Tian and David Lo

6.5.1 Visual Analytics Tool for Software Microblogs

Motivation. Although microblogging is becoming a popular means to disseminate
information, it is challenging to manually discover interesting software related in-
formation from microblogs. The first challenge comes from the sheer size of mi-
croblogs that are produced daily. Storing all microblogs is not an option. Second,
many microbloggers do not microblog about software related topics. Indeed only
a minority of microbloggers are software developers. Thus there is a need to filter
many unrelated microblogs to recover those that are relevant to software develop-
ment. Third, the large number of microblogs might make it hard for developers to
“see” trends in the data. Motivated by these challenges, there is a need to develop an
approach that can harvest and aggregate thousands or even millions of microblogs.
It should also allow developers to perform visual analytics such that various kinds
of trends and nuggets of knowledge can be discovered from the mass of microblogs.
In this study, we propose such an approach.
Approach. We propose a visual analytics platform that filters and aggregates soft-
ware related microblogs from Twitter. Our proposed platform identifies topical and
longitudinal trends. Topical trends capture relative popularity of similar topics, e.g.,
relative popularity of various libraries. Longitudinal trends capture the popularity of
a topic at various time points, e.g., the number of times people microblog about PHP
at various time points. These trends can provide insight to developers, e.g., devel-
opers can discover popular programming languages to learn, or discover interesting
events (e.g., notification of important security holes, etc.) in the past 24 hours.

Fig. 6.8: Proposed Approach: Visual Analytics Platform

Our platform, illustrated in Figure 6.8, has 3 blocks: User Base Creator, Mi-
croblog Processor, and User Interface. User Base Creator recovers microbloggers
that are likely to microblog about software related topics. Microblog Processor
downloads and pre-processes microblogs from Twitter. It also identifies topical and
longitudinal trends from the microblogs. User Interface presents the trends to end
users as a web interface which allows users to analyze the trends and the underlying
microblogs.

1. User Base Creator first processes a set of seed users which are well-known mi-
crobloggers that often microblog about software topics. We take the list of seed
users available in [43]. In Twitter, a user can follow other users and receive up-



6 Leveraging Web 2.0 for software evolution 183

dates on microblogs made by the other users. Using these follow links, we expand
the seed users to include microbloggers that follow at least n seed users (by de-
fault we set the value n to 5). We consider this user base as those that are likely
to microblog about software related topics.

2. Microblog Processor uses Twitter REST API to continually download microblogs.
We then perform standard text pre-processing including tokenization, stopword
removal, and stemming. Some technical jargons, e.g., C#, C++, etc. are manually
identified. These jargons are not stemmed. Since the identification of jargons is
done manually, we focus on jargons corresponding to topics whose trends we
would like to visualize. There are jargons that we do not identify and they are
treated as regular words and are stemmed. We then index the resultant set of
microblogs using Apache Solr.27

Next, we perform trend analysis and compute both topical and longitudinal
trends. To compute topical trend, we manually select a set of 100 software-related
topics, e.g., JavaScript, Scrum, etc., from relevant Wikipedia pages and popular
StackOverflow’s tags. We then compute for each topic the number of microblogs
mentioning the topic at a specific time period. Topics that are more frequently
mentioned are more popular than others. To compute the longitudinal trend of a
particular topic or keyword, we compute the number of tweets containing it at
various points in time. We thus could compute the popularity of various topics
and the popularity of a topic at various time points.

3. User Interface presents the resultant topical and longitudinal trends. To present
topical trends, we display various topics using fonts of various sizes. The size
of the font depends on the popularity (i.e., frequency) of the corresponding topic
in the microblogs. To present longitudinal trends, for each topic, we plot a line
graph that shows the popularity of the topic at various time points.

Experiments. Our dataset consists of approximately 58,000 microbloggers, 76 mil-
lion microblogs, and 18 million follow links.

With topical trend analysis, popular topics of interest can be highlighted to users.
Figure 6.9 shows our topical trend user interface. It shows the relative popularity
of various topics. From the interface, users can find out that JavaScript, Ruby, and
Java are the most popular programming language topics in the microblogs that we
collected in a 24-hour period ending on the 25th of November 2011. For framework,
libraries, and systems, Apple, COM, and JQuery are the most popular topics.

With longitudinal trend analysis, the popularity of a topic across different time
points can be captured and shown to users. Figure 6.10 shows our longitudinal trend
user interface for “JavaScript”. We can notice that the number of microblogs related
to JavaScript varies over time. We also notice a number of peaks. The highest peak is
for the 10th of October 2011. At this date, Google released a new programming lan-
guage called Dart [829]. Programs written in Dart can be compiled into JavaScript.
We also notice that the number of microblogs related to JavaScript changes period-
ically - people tend to microblog more about JavaScript on some days than other

27 lucene.apache.org/solr

lucene.apache.org/solr


184 Yuan Tian and David Lo

days. Figure 6.11 shows another longitudinal trend for “Scrum”. We note that, sim-
ilar to the popularity of JavaScript, the popularity of Scrum is also periodic. We do
not notice much anomaly in the Scrum longitudinal trend though. In the future, it
is interesting to develop approaches that can automatically highlight anomalies and
recover important events.

Fig. 6.9: Topical Trend User Interface

Fig. 6.10: Longitudinal Trend User Interface for “JavaScript”

6.5.2 Categorizing Software Microblogs

To leverage microblogging in software evolution tasks, we need to first understand
how microblogging is currently used in software related contexts. One way to do
this is to categorize software related microblogs. We present our machine learning
approach that automatically assigns category labels to microblogs.
Motivation. By subscribing to and reading microblogs written by other developers,
a developer can discover much information, e.g., a new programming trick, a new



6 Leveraging Web 2.0 for software evolution 185

Fig. 6.11: Longitudinal Trend User Interface for “Scrum”

API, etc. Unfortunately, most of the microblogs are not informative [629]. Even if
they are informative, they might not be relevant to engineering software systems.
Our manual investigation on a few hundreds microblogs tagged with software re-
lated hashtags (see Section 6.3.2) shows that most of the microblogs belong to the
category: jobs. They are job advertisements and are not relevant to engineering soft-
ware systems. Thus, many interesting microblogs relevant to engineering software
systems are buried in the mass of other irrelevant microblogs. In this work, we build
a machine learning solution that can automatically differentiate relevant and irrele-
vant microblogs.
Approach. The framework of our proposed approach is shown in Figure 6.12. It
works in two phases: training and deployment. In the training phase, the goal is to
build a machine learning model (i.e., a discriminative model) that can discriminate
relevant and irrelevant microblogs. In the deployment phase, this model is used to
classify an unknown microblog as relevant or irrelevant. Our framework consists
of 3 main blocks: webpage crawler, text processor, and classifier. A microblog can
contain a URL; for such microblogs the webpage crawler block downloads the con-
tent of the webpage pointed by the URL. Our text processor block converts textual
content in the microblogs and downloaded webpages’ titles into word tokens after
standard information retrieval pre-processing steps. These word tokens become fea-
tures for our classifier which constructs a discriminative model. The model is then
used to predict if a microblog is relevant or not.

We elaborate the webpage crawler, text processor, and classifier blocks as fol-
lows:

1. Webpage Crawler. A microblog in Twitter contains a maximum of 140 charac-
ters. To express longer contents, microbloggers often include a URL to a web-
page, containing expanded content, in the microblog. Services like bit.ly are of-
ten used to shorten the URL. Information contained in the webpages pointed by
these URLs can help to classify the relevance of the microblog. Thus, we want
to download these external webpages. Our webpage crawler block performs this
step by first checking if a microblog contains a URL. It uses a regular expres-
sion to detect this. It then expands any shortened URL into the original URL by
checking the HTTP header. Finally, it downloads the webpages. It then extracts
the titles of these webpages as they provide succinct yet very informative con-



186 Yuan Tian and David Lo

Training 

Data

Text Processor

Classifier

Test Data

Webpage Crawler

Discriminative 

Model
Prediction

Training Phase Deployment Phase

Fig. 6.12: Proposed Approach: Microblog Relevancy Categorization

tents. The body of a webpage is often long and contain extraneous information
(e.g., advertisements, navigation links, etc.).

2. Text Processor. This block processes the text contents of the microblogs and
webpage titles. It first removes stop words based on Natural Language Toolkit
(NLTK)’s stopword list.28 Next, it reduces each word to its root form (i.e., stem-
ming) by using Porter stemmer [692]. Finally, each pre-processed word is treated
as a feature and we combine these words to form a feature set that characterize a
given microblog.

3. Classifier. This block takes in the feature sets, produced by the text processor
block, of a set of microblogs whose relevancy label is known (i.e., relevant or
irrelevant). It then constructs a discriminative model that differentiates relevant
from irrelevant microblogs. We make use of support vector machine (SVM) [612]
to construct the discriminative model. SVM has been widely used in past studies
on software mining [489, 802]. SVM views a microblog as a point in a multi-
dimensional space where each feature is a dimension. It then creates a hyper-
plane that best separates feature sets of the relevant microblogs with those of the
irrelevant microblogs. This hyperplane is the discriminative model which is used
in the deployment phase to assign relevancy labels to other microblogs.

Experiments. We use a dataset consisting of 300 microblogs which are tagged with
either one of the following 9 hashtags: #csharp, #java, #javascript, #.net, #jquery,
#azure, #scrum, #testing, and #opensource. Although the dataset does not cover all
kinds of microblogs and hashtags, it is a good starting point to test the effectiveness
of our proposed approach. These microblogs have been grouped into 10 categories

28 nltk.org

nltk.org


6 Leveraging Web 2.0 for software evolution 187

listed in Table 6.3 (see [845]). Here, to create the ground truth data to evaluate
the effectiveness of our approach, we manually re-categorize these 300 microblogs
into 2 classes: relevant and irrelevant. The distribution of relevant and irrelevant
microblogs across the 10 categories is shown in Table 6.4.

Table 6.3: Microblog Categories

Category Details
1. Commercials Advertisements about a commercial product or a company
2. News Objective reports
3. Tools & Code Sharing of code and/or links to open source tools
4. Q&A Questions or links to questions in Q&A sites
5. Events Notification of particular events or gatherings
6. Personal Personal messages, e.g., ramblings about programming, etc.
7. Opinions Subjective expressions of likes or dislikes
8. Tips Advice about a particular problem, e.g., how to do a particular

programming task, etc.
9. Jobs Job advertisements

10. Misc. Other kinds of microblogs. This includes microblogs whose con-
tents are unclear.

Table 6.4: Relevance Per Microblog Category

Category Proportion of Relevant Microblogs
Tools & Code 100%
Tips 100%
Q&A 86.4%
Events 45.5%
Opinions 42.9%
Commercials 40%
News 29.5%
Personal 0%
Jobs 0%
Misc. 0%

Using the above data, we perform a 10-fold cross validation, and measure the
precision, recall and F-measure of our proposed approach. In 10-fold cross valida-
tion, 90% of the data is used for training and only 10% is used for testing. We would
like to investigate the sensitivity of our approach on the amount of training data.The
experiment shows that we can predict the relevancy of a microblog with 74.67%
accuracy, 76% precision, 67.38% recall, and 71.43% F-Measure.

Next, we investigate the effectiveness of our approach for each of the ten mi-
croblog categories. The result is shown in Table 6.5. It shows that we can more ac-
curately predict relevancy labels of jobs, personal, Q & A, tools & code, opinions,
and misc categories. Our approach needs to be further improved for tips category



188 Yuan Tian and David Lo

(low precision), and events category (low precision and recall). For the events cate-
gory, the microblogs are more ambiguous and it is harder to predict if a microblog
is relevant or not. In the future, we plan to use other approaches including sentiment
analysis [677] to improve the accuracy of our proposed approach.

Table 6.5: Effectiveness Per Microblog Category

Category Accuracy Precision Recall F-Measure
Jobs 100% 0% 0% 0%
Personal 93.8% 0% 0% 0%
Q&A 79.6% 84.2% 91.4% 87.7%
Tools & Code 79.5% 79.5% 100% 88.6%
Opinions 76.2% 55.6% 83.3% 66.7%
Misc. 72% 0% 0% 0%
Tips 48.5% 48.5% 100% 65.3%
Commercials 60% 50% 50% 50%
News 54.5% 61.5% 34.8% 44.4%
Events 45.5% 20% 33.3% 25%

For the above results, we make use of 10-fold cross validation. Then we would
like to investigate the sensitivity of our approach on the amount of training data. For
this, we perform k-fold cross validation, where k is less than 10. We vary k from 2 to
9 and show the resulting accuracy, precision, recall, and F-measure for these values
of k in Table 6.6. We notice that the F-measure scores do not vary much, this shows
that our framework is effective enough on different amount of training data.

Table 6.6: Results using Different Amount of Training Data

k Accuracy Precision Recall F-Measure
9 75.43% 75.19% 70.92% 72.99%
8 74.29% 74.62% 68.79% 71.59%
7 73.98% 74.05% 68.79% 71.32%
6 74.33% 73.88% 70.21% 72%
5 73.67% 74.22% 67.38% 70.63%
4 75% 75.78% 68.79% 72.12%
3 74.67% 74.44% 70.21% 72.26%
2 75% 75.78% 68.79% 72.11%

6.5.3 Other studies

There are a number of other studies that leverage Web 2.0 resources for information
discovery. We highlight a few of them in brief in the following paragraphs.



6 Leveraging Web 2.0 for software evolution 189

Hens et al. extracted frequently asked questions (FAQs) from mailing lists and
software forums [389]. They employed a text mining approach that utilizes text
pre-processing techniques and Latent Dirichlet Allocation (LDA) which is a topic
modeling technique. After a topic model was learned from the mailing lists and
software forums, several processing phases were employed to identify question and
answer pairs that are associated with a topic, discard topics that are unfocused, and
process the remaining question and answer pairs to improve their readability. They
had investigated their proposed approach on mailing lists of 50 popular projects
listed in ohloh.net.

Lungu et al. proposed a visualization tool named Small Project Observatory that
analyzes projects in a software forge [548]. With their visualization tool, developers
can investigate the evolution of project size (in terms of the number of classes), the
level of activity (in terms of the number of commits) occurring within a repository
over time, the dependencies among projects, the collaborations among developers,
and many more. They have deployed their visualization tool on a software forge
owned by Soops b.v, which is a Dutch software company, with promising results.

Sarma et al. proposed Tesseract which is a visualization tool that enables one to
explore socio-technical relationships in a software project [746]. Tesseract simul-
taneously shows various pieces of information to users including: developers, their
communications, code, and bugs. Tesseract also supports interactive explorations -
it allows users to change various settings, filter information, highlight information,
and link information in various ways. Tesseract had been evaluated on the GNOME
project via a user study and the result is promising.

6.6 Supporting Project Management

In this section, we highlight how Web 2.0 resources could be leveraged to aid project
management activities. Project management activities (e.g., planning, organizing,
and managing resources) need to be performed repeatedly as software evolves over
time. We first highlight studies that leverage software forges for the recommendation
of developers to a project [805] and prediction of project success [806]. We also
describe other related studies.

6.6.1 Recommendation of Developers

Motivation. It is a challenge to find compatible developers as not everyone works
equally well with everyone else. Often there are hundreds or even thousands of de-
velopers. It is hard for a manager to know everyone well enough to make good rec-
ommendations. Past studies only recommend developers from a single project to fix
a particular bug report [819]. Thus there is a need for a tool that can help recommend



190 Yuan Tian and David Lo

developers based on their past socio-technical behaviors and skills. In this work we
focus on recommending developers from a software forges (i.e., SourceForge).
Approach. Our approach consists of 2 main steps: Developer-Project-Property
(DPP) graph construction, and compatibility scores computation. In the first step,
we represent the past history of developer interactions as a special Developer-
Project-Property (DPP) graph. In the second step, given a developer we compute
compatibility scores of the developer with other developers in the DPP graph. We
propose a new compatibility metric based on random walk with restart (RWR). We
elaborate the above two steps in the following paragraphs.

Given a set of developers, their past projects, and the project properties, we con-
struct a DPP graph. There are three node types in a DPP graph: developers, projects,
and project properties. We consider two project properties: project categories and
project programming languages. There are two types of edges in a DPP graph:
one type links developers and projects that the developers have participated in be-
fore, another links projects and their properties. A developer can work on multiple
projects. A project can have multiple properties: it can be associated with multi-
ple categories and/or multiple programming languages. For forges where only one
programming language is supported, other properties aside from programming lan-
guage can be considered, e.g., tags [855], libraries used, etc.. Figure 6.13 gives an
example of a DPP graph which is a tripartite graph.

D1

D2

D3

D4

P1

P2

P3

P4

C1

C2

L1

L2

L3

Developers Projects Properties

Categories

Programming 

Languages

Fig. 6.13: Example Developer-Project-Property (DPP) Graph

After a DPP graph is constructed, we can compute compatibility scores between
each pair of developers. A more compatible pair of developers should be assigned
a higher score than a less compatible pair. Intuitively, a good compatibility metric
should satisfy the following:



6 Leveraging Web 2.0 for software evolution 191

1. A pair of developers that have worked together in many joint projects are more
likely to be compatible than another pair that have not worked together before.

2. A project is characterized by its properties: categories and programming lan-
guages. Intuitively, developers that have worked on similar projects (i.e., differ-
ent projects of the same/similar properties) are more likely to be more compatible
than those that have worked on completely unrelated projects.

3. Developers might not have worked together before. However, they might have a
common collaborator. Developers with many common collaborators developing
similar projects are more likely to be more compatible than “complete strangers”.
The same is true for collaborators of collaborators, albeit with lower impact on
compatibility.

The above describes three qualitative criteria for a good compatibility metric. We
find that computing node similarity using random walk with restart (RWR), which
was first proposed for web search engines in 1998 [676], fits the three criteria. Given
a developer node d in the DPP, by performing many random walks with restart start-
ing from developer node d, many nodes are visited. Some nodes are visited more
often than other nodes. RWR assigns scores to these other nodes based on the prob-
ability that these nodes are visited during RWR starting from node d. After RWR,
developers with higher scores are more likely to have worked with developer d on
many common projects, or they have worked on projects with similar properties,
or they share many common collaborators or collaborators of collaborators. Given
the target developer d, we sort the other developers based on their RWR scores, and
return the top-k most compatible developers.
Experiments. To evaluate the effectiveness of our proposed developer recommenda-
tion approach, we analyze projects in SourceForge. We make use of the curated data
collected by Van Antwerp et al. [40].29 We analyze the curated data collected from
May 2008 until May 2010. Each month, Antwerp et al. release a snapshot of the cu-
rated data in the form of SQL tables. From these snapshots, we extract information
about developers, projects that these developers work on, and project categories as
well as programming languages. To recommend developers, we need sufficient in-
formation of developers’ past activities. Thus, we only include developers that have
worked on at least p projects. SourceForge contains many trivial projects; to filter
these projects, we only include projects that have at least n developers. In this study,
we set the value of p and n to be 7 and 3 respectively.

A good recommendation eventually leads to a collaboration. To evaluate our ap-
proach, we take multiple consecutive monthly snapshots of SourceForge. We con-
sider new collaborations created between these consecutive snapshots. We then ap-
ply our approach and investigate if we can accurately predict these new collabo-
rations. We consider a recommendation is successful if at least one of the recom-
mended developer collaborates in the next snapshot. The accuracy of our approach
is defined as the proportion of recommendations that are successful. If many new
collaborations do not follow our recommendations then the accuracy would be low.
This measure is also often referred to as recall-rate@k and has been used in many

29 www3.nd.edu/˜oss/Data/data.html

www3.nd.edu/~oss/Data/data.html


192 Yuan Tian and David Lo

past studies [645, 737, 800]. This is a lower bound of the accuracy of our proposed
approach. In practice, our approach would actively recommend developers and more
collaborations could have been created.

Given a target developer d, our approach would recommend k developers with the
highest RWR scores. Using k equals to 20, for the new collaborations created from
May 2008 to May 2010, we find that our recommendation success rate is 83.33%.
We also vary the value k and investigate the behavior of our approach. We find that
the success rate (or accuracy) varies from 78.79% to 83.33% when k is varied from
5 to 20. Thus there is only a minimal change in accuracy (i.e., 4.54% reduction)
when we drop k from 20 to 5. This shows that our top few recommendations are
accurate. The runtime of our approach is 0.03 seconds for training (i.e., creating
DPP and pre-computing internal data structures) and less than a second for query
(i.e., running RWR with the pre-computed internal data structures). This shows that
our approach is efficient and could be used to support interactive query.

6.6.2 Prediction of Project Success

Motivation. Project success is the eventual goal of software development efforts, be
it open source or industrial. There are many projects that are successful - they get
released, distributed, and used by many users. These projects bring much benefit
in one form or another to the developers. However, many other projects are unsuc-
cessful, they do not get completed, not used by many (if any at all), and bring little
benefit to the developers despite their hard work. Investigating failed and success-
ful projects could shed light on factors that affect project outcome. These factors
can in turn be used to build an automated machine learning solution to predict the
likelihood of a project to fail or be successful. Predicting project outcome is impor-
tant for various reasons including planning, mitigation of risks, and management of
resources.

With the adoption of Web 2.0, much data is available to be analyzed. We can
collect information on various successful and failed projects. We can trace various
projects that developers have worked on before. In this work, we leverage socio-
technical information to differentiate successful and failed projects. Our goal is to
find relevant socio-technical patterns and use them to predict project outcome.
Approach. Figure 6.14 illustrates the framework of our proposed approach. It has
two phases: training and deployment. In the training phase, our framework pro-
cesses a set of projects along with developers that work in them. The goal of the
training phase is to build a discriminative model that can differentiate successful
and failed projects. This model is then passed to the deployment phase to predict the
outcomes of other projects. It has several processing blocks: socio-technical infor-
mation extraction, discriminative graph mining, discriminative model construction,
and outcome prediction. The following elaborates each of these processing blocks:



6 Leveraging Web 2.0 for software evolution 193

Training 

Data

Test 

Data

Socio-Technical 

Information 

Extraction

Socio-Technical 

Information 

Extraction

Discriminative 

Graph Mining

Outcome 

Prediction

Discriminative 

Model 

Construction

Predicted 

Outcome

Training Phase

Deployment Phase

Fig. 6.14: Overall Framework

1. The socio-technical information extraction block processes each of the projects
and for each of them extracts socio-technical information in the form of a rich
(i.e., multi-labeled) graphs. The nodes in the graph are developers that work on
the project. The edges in the graph correspond to the relationships among the
various developers. Multiple labels are attached to the nodes and edges to capture
the socio-technical information about the developers and their relationships. For
each node, we attach the following pieces of information:

a. Past Successful Projects. This is the number of successful projects that a de-
veloper has participated before he joins the current project.

b. Past Failed Projects. This is the number of failed projects that a developer has
participated before he joins the current project.

c. Length of Membership. This is the period of time that has passed since a
developer has joined the software forges before he joins the current project.

For each edge that links two developers, we attach the following pieces of infor-
mation:

a. Past Successful Collaborations. This is the number of successful projects that
the two developers have worked together before.

b. Past Failed Collaborations. This is the number of failed projects that the two
developers have worked together before.

c. Length of Collaboration History. This is the period of time that has passed
since the two developers collaborated for the first time to the time they collab-
orate in the current project.

2. The discriminative graph mining block takes as input the graphs capturing the
socio-technical information of the successful and failed projects. The goal of the
block is to extract subgraphs that appear often in the socio-technical graphs of
the successful projects but rarely in the graphs of the failed projects (or vice
versa). These discriminative graphs highlight peculiar socio-technical patterns



194 Yuan Tian and David Lo

that differentiate successful from failed projects. We propose a new discrimina-
tive subgraph mining algorithm that analyzes rich graph where each node and
edge have multiple labels. We can assign a score S(g) to evaluate the discrimina-
tiveness of a subgraph g. The goal of a discriminative graph mining algorithm is
then to return top-k subgraphs g that have the highest S(g) scores. Variosus mea-
sures of discriminativeness have been proposed in the literature. In this work, we
make use of information gain [612]. Our algorithm extends the work by Cheng et
al. [179] that works on a set of simple graphs (i.e., graphs where nodes and edges
have one label each) by a translation-and-reverse-translation based approach:

a. We translate the set of rich graphs to their equivalent simple graph represen-
tations.

b. We mine discriminative subgraphs from the simple graphs using the algorithm
proposed by Cheng et al. [179].

c. We reverse translate the resultant discriminative simple subgraphs back to
their corresponding rich graphs.

3. The discriminative model construction block takes as input the set of discrimina-
tive subgraphs. Each of the subgraphs form a binary feature. A socio-technical
graph is then represented by a vector of binary features. Each binary feature is as-
signed a score of 1 if a discriminative subgraph appears in it. The score would be
0 otherwise. Using this representation the successful and failed projects become
points in a multi-dimensional space. We use support vector machine (SVM) to
create a discriminative model which is a hyperplane that best separates the two
sets of points.

4. The outcome prediction block takes as input the discriminative model learned in
the training phase and vector representations of projects whose outcomes are to
be predicted. These vector representations are generated by first extracting socio-
technical graphs. Each of these graphs are then compared with the discriminative
subgraph patterns extracted during the training phase. Each of the patterns form
a binary feature that collectively characterize each of the socio-technical graphs.
These features are then input to the discriminative model and a prediction would
be outputted.

Experiments. We analyze successful and failed projects in SourceForge. We use the
monthly database dumps created by Antwerp et al. [40] from February 2005 to May
2010. Projects that have been downloaded more than 100,000 times are deemed to
be successful. On the other hand, those that have been downloaded less than 100
times are considered to have failed. Other definitions of success and failure can also
be considered; we only investigate one definition in this work. We extract 224 suc-
cessful projects and 3,826 failed projects. Using this dataset, we want to investigate
if socio-technical information of participating developers (which could be gathered
even when a project is at its inception) could be used to predict project success using
our proposed approach. In the experiments, we first analyze the efficiency, followed
by the effectiveness of our approach.



6 Leveraging Web 2.0 for software evolution 195

We find that our translation and reverse translation processes can complete in a
short amount of time. The translation process only takes less than 15 seconds to
translate the successful and failed projects. After translation the sizes of the graphs
grow, however their growth is linear to the number of node labels and edge labels.
The average sizes of the translated graphs are 31.54 nodes and 287.25 edges (for
successful graphs) and 23.93 nodes and 204.68 edges (for failed graphs). The most
expensive operation in our framework is to run the algorithm of Cheng et al. [179]
which completes within 4 hours. We mine the top-20 most discriminative rich sub-
graph patterns.

To measure the effectiveness of our approach we use two measures: accuracy
and area under the ROC curve (AUC) [362]. The ROC curve (Receiver Operating
Characteristic) plots the false positive rate (x-axis) against the true positive rate (y-
axis) at various settings. AUC is more suitable to be used than accuracy for skewed
datasets. For our problem, we have a skewed dataset as there are more failed projects
than successful projects. The maximum AUC score is 1.0. Using ten-fold cross val-
idation, our proposed approach can achieve an accuracy of 94.99% and an AUC of
0.86.

6.6.3 Other studies

There are a number of other studies that leverage Web 2.0 resources for software
project management to reduce the amount of wasted effort, to better manage re-
sources (i.e., developer time and effort), and to coordinate activities. We highlight a
few of them in brief in the following paragraphs.

Guzzi et al. combined microblogging with IDE interactions to support devel-
opers in their activities [356]. Guzzi et al. noted that developers often need to go
through program understanding phase many times. This is a time consuming activ-
ity. To address this problem Guzzi et al. proposed a tool named James that integrates
microblogging with interaction information that is automatically collected from an
IDE. Developers can then share their program understanding experience to their col-
leagues using James. Thus with James, wasted effort can be reduced and developer
resources can be better spent on more useful activities.

Ibrahim et al. investigated factors that encourage developers to contribute to a
mailing list discussion [418]. There are numerous threads in a mailing list and de-
velopers can easily miss relevant threads to which he/she can contribute ideas and
expertise. To address this problem, Ibrahim et al. proposed a personalized tool that
recommends threads that a developer is likely to contribute to based on the devel-
oper past behaviors. The proposed tool combines two machine learning algorithms
namely: Naive Bayes and Decision Tree. The proposed tool has been evaluated on
mailing lists of three open source projects, Apache, PostgreSQL and Python, with
promising results.

Carter and Dewan proposed a tool that is integrated with Google Talk [167].
This tool could highlight remote team members in a distributed development team



196 Yuan Tian and David Lo

who are having difficulty in their tasks, and thus foster more collaborations among
developers. Expert developers or project managers could be aware of team members
that require help. The proposed tool logs developer interactions with a development
environment. A classification algorithm was then employed to infer a developer
status based on his/her interaction log. A user study was conducted to evaluate the
effectiveness of the proposed approach with promising results.

6.7 Open Problems and Future Work

In the previous sections, we have highlighted a number of studies that analyze how
developers use Web 2.0 resources and how automated tools can leverage these re-
sources for information search, information discovery and project management. Al-
beit the many existing work in this area, we believe much more work can be done to
better leverage Web 2.0 resources for software evolution. We highlight some of the
open problems and potential future work in this section.

There are many Web 2.0 resources that have not been tapped to improve soft-
ware evolution. In Section 6.2 we highlighted resources such as directories of de-
velopers in LinkedIn, public profiles of developers in Facebook, definitions of soft-
ware engineering terms in Wikipedia and geolocation coordinates of developers in
Foursquare. To the best of our knowledge, there have not been any study that uti-
lize these resources to help software evolution. Furthermore, various web systems
evolve (see Chapter 7); thus, many additional functionalities and services are in-
troduced to existing Web 2.0 resources regularly. Many innovative applications can
potentially be built leveraging these resources and additional functionalities. For ex-
ample, one can imagine a tool that enables one to search for a potential employee
by leveraging information in LinkedIn and Facebook and correlating the informa-
tion with the kinds of software evolution tasks that the future employee is sup-
posed to perform. One could also better enhance many information retrieval based
tools, e.g., [800, 846, 906, 949], by leveraging domain specific knowledge stored
in Wikipedia. One can also imagine an application that tries to recommend more
interactions among developers that live in a nearby area by leveraging geolocation
coordinates in Foursquare. Thus there is plenty of room for future work.

Combining many different sources of information and leveraging them to im-
prove software evolution activities is another interesting direction for future work.
Most studies so far only focus on one or two Web 2.0 resources. Each Web 2.0
resources provides an incomplete picture of an entity (e.g., a developer). By com-
bining these Web 2.0 resources, one can get a bigger picture of an entity and use
this bigger picture to support various software evolution activities, e.g., recommend
a fix/a developer to a bug in a corrective software evolution activities by leverag-
ing information in multiple software forums, question-and-answer sites, software
forges, etc.

Another interesting avenue for future work is to improve the effectiveness and ef-
ficiency of machine learning solutions that analyze and leverage Web 2.0 resources.



6 Leveraging Web 2.0 for software evolution 197

As highlighted in previous sections, the accuracy of existing techniques is not per-
fect yet. Often the accuracy (measured either in terms of precision, recall, accuracy,
or ROC) is lower than 80%. Thus there is much room for improvement. Many new
advances in machine learning research can be leveraged to improve the accuracy of
these existing techniques. One can also design a new machine learning solution that
is aware of the domain specific constraints and characteristics of software engineer-
ing data and thus could perform better than off-the-shelf or standard solutions. It
is also interesting to investigate how search-based algorithms (described in Chap-
ter 4) and information retrieval techniques (mentioned in Chapter 5) can be utilized
to improve the accuracy of existing techniques that leverage Web 2.0 resources.

6.8 Conclusions

Web 2.0 provides rich sources of information that can be leveraged to improve soft-
ware evolution activities. There are many Web 2.0 resources including software
forums, mailing lists, question-and-answer sites, blogs, microblogs, and software
forges. A number of empirical studies have investigated how developers contribute
information to and use these resources. Automated tools can also be built to leverage
these resources for information search, information discovery, and project manage-
ment which are crucial activities during software evolution. For information search,
we have highlighted some examples how Web 2.0 resources can be leveraged: tags
in software forums can be used to build a semantic search engine, tags can also
be used to recover similar applications, code fragments of interest can be extracted
from Web 2.0 sites, etc.. For information discovery, we have also highlighted some
examples how Web 2.0 resources can be leveraged: users can find interesting events
by navigating through the mass of software microblogs using a visual analytics so-
lution, users can be notified of relevant microblogs using a classification-based so-
lution, frequently asked questions can be extracted from Web 2.0 sites, etc.. For
supporting project management activities, Web 2.0 resources can also be leveraged
in several ways: appropriate developers can be recommended to a project based on
their socio-technical information stored in software forges, potentially unsuccess-
ful projects can be highlighted early using developer socio-technical information
stored in software forges, better collaboration among developers can be achieved
by integrating microblogging with IDEs, etc.. Much more future work can be done
to better leverage Web 2.0 and even Web 3.0 resources in various ways to improve
many software evolution activities.



Part III
Evolution of specific types of software

systems



Chapter 7
Evolution of Web Systems

Holger M. Kienle and Damiano Distante

Summary. The World Wide Web has led to a new kind of software, web systems,
which are based on web technologies. Just like software in other domains, web
systems have evolution challenges. This chapter discusses evolution of web systems
on three dimensions: architecture, (conceptual) design, and technology. For each of
these dimensions we introduce the state-of-the-art in the techniques and tools that
are currently available. In order to place current evolution techniques into context,
we also provide a survey of the different kinds of web systems as they have emerged,
tracing the most important achievements of web systems evolution research from
static web sites over dynamic web applications and web services to Ajax-based
Rich Internet Applications.

Parts of this Chapter have been taken and adapted from other publications of the first author [469]
[460] [467] and the second author [98] [97] [315] [316] [96].

201
 Springer

. et al. (eds.), E ,
DOI 10.1007/978-3- - - _7, ©  2014
T Mens volving Software Systems

642 45398 4 -Verlag Berlin Heidelberg



202 Holger M. Kienle and Damiano Distante

7.1 Introduction

The emergence of the World Wide Web (WWW), or the web for short, has led to a
new kind of software that is based on web technologies: web sites, web applications,
web services, and possibly others. In the following, if we do not make a distinction
among these, we speak of them as web systems. We have chosen this term to convey
that software that is based on the web platform can be of significant complexity, em-
ploying a wide range of technologies—starting from complex client-side code based
on HTML5, Flash and JavaScript, to server-side code involving high-performance,
cloud-based web servers and database back-ends. Web systems also have to deal
with demanding non-functional requirements, which are cross-cutting the client and
server side, such as scalability and security.

Research on the evolution of web systems is a relatively young research branch
within the research on the evolution of software systems. Early research into web
systems evolution started towards the end of the last millennium. The first Interna-
tional Workshop on Web Site Evolution (WSE), held in October 1999, evolved into
the annual Web Systems Evolution workshop and symposia series sponsored by the
IEEE. Since that time, this research branch has become more prominent, reflecting
the web’s increasing significance, and has broadened its scope, reflecting the web’s
increasing diversity.

Even though web systems have their own characteristics and idiosyncracies
(cf. Section 7.1.2), almost all of the evolution techniques that have been proposed
for software systems in general (e.g., refactoring [596] and clone detection [592,
Chapter 2]) can be suitably adopted and applied to web systems (e.g., refactoring
of PHP code [856] and detection of cloned web pages [243]). In addition, dedicated
techniques have been developed to account for the specific characteristics of web
systems (e.g., testing for browser-safeness, discussed in Section 7.4, and refactoring
of web design models, discussed in Section 7.3.2). In this chapter we concentrate on
techniques and tools that target web systems evolution that are meant to change one
or more of the following aspects of a web system: its architecture, its (conceptual)
design, and its technology.

7.1.1 Reengineering

One of the most involved methods to realize software evolution is reengineering,
which conceptually can be defined as the composition of reverse engineering fol-
lowed by forward engineering. The system to evolve is first reverse engineered to
obtain higher-levels of meaning/abstractions from it, such as a model of its current
design. Based on the information obtained in the reverse engineering step and the
evolution objectives, a forward engineering step produces a new version of the sys-
tem with a new architecture, design, and/or technology. The approaches discussed
in Section 7.3 are mostly reengineering techniques.



7 Evolution of Web Systems 203

Reengineering activities are performed with certain goals in mind, of which
prominent ones are: (1) to “come to a new software system that is more evolv-
able [. . . ] than the original one” [592, Chapter 1], or (2) to “improve the quality of
the software” [781]. Regarding the first goal, making a system more evolvable often
means adapting it so that it remains usable in reaction to changes in the real world
(i.e., changing requirements or assumptions, cf. Chapter 1) in which the software
operates (e.g., a new execution context, or interfacing it to another system). Regard-
ing the second goal, quality improvements of a system can refer to internal quality,
external quality, or quality in use (cf. ISO/IEC 9126 [12]).

7.1.2 Evolution Challenges and Drivers

Just like software in other domains, web systems have evolution challenges—
perhaps even more so compared to other domains because standards, technologies,
and platforms in the web domain are changing rapidly.1 Web systems development
is often equated with rapid development cycles coupled with ad-hoc development
techniques, potentially resulting in systems of lower quality and reliability. An em-
pirical study that tracked six web applications over five years for anomalies and
failures found that “only 40% of the randomly selected web applications exhibit
no anomalies/failures” and comes to the conclusion that “the common idea of re-
searchers and practitioners is correct, i.e., process, tools and in general methodolo-
gies for web development and testing should be improved” [719].

Web systems have distinct characteristics from other domains, say desktop ap-
plications, that present unique evolution challenges. One of these challenges is their
architecture: a web system is split between a client side and a server side, with pos-
sibly complex interactions between the two.2 Another one is the use of the web
browser as client platform. A web system needs to support several different web
browsers consistently, whereas each of these browsers is evolving at a rapid pace.
Also, the scope and complexity of standards that affect browsers is increasing with
each iteration.

A related issue for modern web systems is the challenge to accommodate a wide
range of devices. Previously, web development could assume a “classical” desktop
browser as its target and design for this target in terms of technologies, user inter-
face, user interactions, etc. With the emergence of smartphones and other mobile
devices, web systems should be equally appealing across all of them, regardless of

1 A graphical illustration of the evolution of browser versions and (web) technologies can be ac-
cessed at http://evolutionofweb.appspot.com/?hl=en.
2 Conceptually, web systems adhere to the client-server model. This model is useful to understand
the high-level architecture and the split in functionality between the web browser (client) and the
back-end (server). However, it should be noted that the concrete architecture of a web system can
differ in the sense that it may utilize multiple servers, such as for load balancing or for realizing a
three-tier architecture that separates functionality into web browser, application server and database
server. Also, a web system may be composed (or “mashed-up”) of several services (accessible via
web APIs) and each service may be hosted on a different server.

http://evolutionofweb.appspot.com/?hl=en


204 Holger M. Kienle and Damiano Distante

the devices’ form factors. Approaches such as responsive web design address this
challenge [562].

Lastly, modern web systems provide diverse content, often multimedia, along
with sophisticated functionality for navigating and manipulating that content by the
user. Access and manipulation of content are governed by complex business rules
and processes. Due to the nature of web applications, both content manipulation and
business rules are tightly interwoven.

To summarize, evolution challenges that are often pronounced in the web domain
are:

• rapid churn of standards, technologies and platforms;
• rapid change of requirements and (domain) assumptions;
• ad-hoc development practices, which lack well-defined processes;
• complex interactions between client and server side that is difficult to compre-

hend, analyze and trace;
• use of multiple (web) technologies with complex interactions among them;
• support of multiple browsers and assurance of browser-safeness; and
• support for multiple devices with a wide spectrum of form and performance fac-

tors, including processing speed and connection bandwidth.

The evolution of web systems is caused by different drivers. While this chapter
has a strong focus on tools and techniques in the context of changing web tech-
nologies (i.e., technological evolution), one should keep in mind that there are other
drivers as well that are interacting with technological aspects and that also have
a strong impact on the web’s evolution. Examples of such drivers are consumers’
satisfactions and demands, market competition among web-based business models3

and e-commerce platforms, and laws and regulations (e.g., in the public administra-
tion domains). Depending on the web system’s domain, the key drivers can differ,
but regardless of the domains, technology serves as an enabling factor for evolution.
In the following, we briefly reflect on important drivers and how they interact with
technology.

Originally, the web’s purpose was centered on the dissemination of (scientific)
information and consequently the early web mostly had brochure-ware sites (cf.
Section 7.2.1). Over the years, the web has seen an increasing commercialization
driven by online shops with novel business models as well as traditional “bricks
and mortar” businesses that started utilizing the web as a new sales channel (“bricks
and clicks”) [702]. As a result, the web presence of a company can represent an
important (intangible) asset that may significantly affect its revenue and goodwill.

The concept of web applications along with improved technological capabilities
(e.g., HTTPS, CSS, JavaScript, and plug-ins such as Flash) enabled organizations
to establish and innovate on virtual stores and to offer increasingly sophisticated e-
commerce capabilities. In this evolution, technology and business models are cross-
fertilizing each other. User-generated content (UGC) is an example of a concept
that was enabled by an interplay of both technology and business drivers. Blogs are

3 While business models are typically associated with commercial gain, they can be defined as
describing how an organization captures value, which can be economic, social and cultural.



7 Evolution of Web Systems 205

an early example of UGC on the web, which was also commercially exploited by
companies such as Open Diary (launched in 1998) and Blogger (launched in 1999);
later examples of UGC are Wikipedia, YouTube and Facebook.

UGC enjoys high popularity with users, which has prompted many web systems
to develop business models that entice users to provide diverse content, including
personal information. UGC is also often highly interactive and real-time. By neces-
sity, UGC is stored on the server, not the client. In effect, such web systems are
now described as hosted services accessible through a cloud-based web application
(cf. Section 7.2.5). These kinds of applications are often tightly coupled with ser-
vice models on different levels: software (SaaS), platform (PaaS) and infrastructure
(IaaS). Hosted services can utilize convenient payment functionality, ranging from
more traditional credit-card services over online payments systems (e.g., PayPal and
Google Wallet), to micro-payments (e.g., Flattr). As a result, desktop applications
are increasingly replaced by, or alternatively offered as, hosted applications on a
subscription bases (e.g., Microsoft’s Office Web Apps and Adobe Creative Cloud).

The above developments, among others, have driven technological innovations
in the areas of server architectures, browser features, caching, virtualization, (agile)
software engineering methodologies, programming/scripting languages and their
efficient compilation/interpretation, web-development platforms and frameworks
(e.g., Ruby on Rails), and API design.

Both the web’s reach and commercialization have contributed to the fact that le-
gal issues are now an important concern [463] [466]. Legal issues are a driver in
the sense that it restricts features and innovation in business models and technology.
For example, copyright law has been at the center of many disputes around innova-
tions [513]; examples on the web are deep and inline linking to other sites, framing
of other sites, reverse engineering of client-side code, time-shifting (MP3.com) and
space-shifting (Cablevision) of content [743], and UGC. Web systems that process
personal data or UGC have to accommodate privacy, data protection and security
concerns, which are partially governed by consumer protection and commercial
laws.

7.1.3 Chapter’s Organization

The remainder of the chapter is organized as follows. Section 7.2 presents tech-
niques, tools, and challenges of web systems evolution research. The presentation
is structured along a historical account of how the web has evolved in terms of the
emergence of novel kinds of web systems: static web sites, dynamic web applica-
tions, web services, Ajax-based Rich Internet Applications, web systems leveraging
cloud computing, and HTML5-based web systems (cf. Sections 7.2.1–7.2.6, respec-
tively). For each kind of web system, where applicable, we highlight the most im-
portant research achievements in terms of state-of-the-art techniques and tools as
they were proposed at the time.



206 Holger M. Kienle and Damiano Distante

In Section 7.3 we then focus on architecture, design and technology evolution
of web systems. These three dimensions represent major challenges of web systems
evolution research. Prominent challenges of architecture evolution are the migration
of a web system towards SOA (cf. Section 7.3.1.1) or MDD (cf. Section 7.3.1.2);
challenges of design evolution are the refactoring of a web system’s design to meet
new requirements (cf. Section 7.3.2.1) and to improve upon a certain quality, such as
usability (cf. Section 7.3.2.2); a challenge of technology evolution is the migration
towards a new platform and/or technology such as Ajax (cf. Section 7.3.3).

Section 7.4 provides a concise overview of the research topics of web systems
evolution, including the topics covered in Sections 7.2 and 7.3. This section also
describes evolution research topics that are unique for the web domain. Section 7.5
identifies research venues and journals as well as outstanding dissertations for fur-
ther reading, and Section 7.6 concludes the chapter with parting thoughts.

7.2 Kinds of Web Systems and their Evolution

This section describes the different kinds of web systems that have been targeted
by web systems evolution research: static web sites, web applications, web services,
Ajax-based Rich Internet Applications, and cloud computing. These web systems—
and the accompanying major research topics and challenges—are introduced in the
following subsections as they have emerged over the history of the web. This struc-
turing should allow readers that are not familiar with the overall research to better
place and assess individual publications and research achievements. This section
also highlights that each evolutionary step of the web itself had a corresponding
impact on evolution research.

To better understand and classify approaches for web systems evolution, one can
distinguish between different views—client, server/deployment or developer—that
an approach supports [469]. These views address the user perspective of an approach
or tool in the sense of what kinds of information are presented to web developers
and maintainers.

Client view: The view of the web system that a user sees (typically using a web
browser). For this view, information can be obtained by automatically crawling4

the web system, which is accomplished without requiring direct access to a web
system’s sources: The web system has to be treated as a black box, only its output
in terms of served web pages can be observed and analyzed.

Server/deployment view: The view of the web system that a web server sees
(accessing the local file system). This view provides access to the web sys-
tem’s sources (such as, HTML pages, Common Gateway Interface (CGI) scripts,
JavaServer Pages (JSP), PHP: Hypertext Preprocessor (PHP) scripts, and config-
uration files).

4 Extracting facts from a web system based on the client view is called crawling or spidering.



7 Evolution of Web Systems 207

Developer view: The view of the web system that a developer sees (using a web
development tool such as Dreamweaver, or an IDE such as Eclipse, and a web
server or an application server such as Apache or Apache Tomcat, respectively).
This view is, by necessity, dependent on the tool’s abstractions and features.

The three views introduced above are all of potential interest for web systems evo-
lution. For example, the developer view shows the high-level web design such as
information about templates; the server view is the one the web server uses and thus
important for server maintenance and security; finally, the client view is the one that
the end user sees and thus is important to assess external quality factors of the web
system, such as navigability, learnability, accessibility, and usability. For effective
web systems evolution an approach should ideally support all three views and track
dependencies among them.

7.2.1 Static Web Sites

The first technological wave of the web consisted of static web sites that were pri-
marily coded in HTML (so-called brochure-ware web sites [850]). A seminal paper
raised awareness and popularized the notion that the web was predisposed to be-
come “the next maintenance mountain” [141]. As a starting point for further evo-
lution research, it was recognized that features of web sites could be conceptually
mapped to software and, hence, that there was a need for web site evolution research
in areas such as development process, version management, testing, and (structural)
decay.

One key focus of research at the time was on metrics and (link) structure of web
sites. Metrics for web sites typically analyze the properties of the HTML code. Ac-
tual metrics are often inspired by software and/or hypertext metrics. The evolution
of a web site can then be tracked by analyzing historical snapshots and their as-
sociated metrics [141] [909]. The link structure of a web site is similar to the call
structure of a program written in a procedural programming language. The nodes
of the graph represent web pages and directed arcs between nodes represent a hy-
pertext link between them. Different node types can be used to distinguish between
HTML pages, image files, ‘mailto:” URIs, etc.

The graph can be constructed by crawling the web site, starting from its home
page.5 One such tool adapted a customizable reverse engineering tool, Rigi [465],
with functionalities for the web-domain. It allowed interactive exploration of the
link structure of a crawled web site and to apply automated graph layout algorithms
(cf. Figure 7.1) [569]. Based on such graph structures static properties can be veri-
fied, such as unreachable pages (i.e., pages that are available at the server side, but
not accessible via navigation from the site’s home page) and the shortest path to

5 Typically there is the assumption that all pages are reachable from the home page. However, there
are also analyses to detect unreachable pages (see below).



208 Holger M. Kienle and Damiano Distante

Fig. 7.1: Link structure of a web site consisting of 651 nodes rendered with the Rigi
tool [569].

each page from the homepage [717]. The latter can be useful, for instance, for a
rudimentary usability assessment.

7.2.2 Web Applications

Over the years, new web sites emerged (or existing web sites evolved) to support
dynamic behavior both on the client-side (e.g., via JavaScript) and the server-side
(e.g., via CGI and PHP).6 This new breed of web sites were termed web appli-
cations. In order to accommodate the increasing sophistication of web applications
over the years—which is also a reflection of the Web 2.0 (Chapter 6)—, the research

6 Scripting languages have always played a prominent role in realizing web systems. On the server
side, before dedicated scripting languages such as PHP and JSP became available, Perl was a
popular approach for ad-hoc composition of web sites. (In 1999, Perl has been called “the duct
tape of the Internet” [359].) Since around 2010 the ability of server-side JavaScript has gained
momentum (e.g., the Node.js library). Its proponents want to close the conceptual gap between
client and server technologies.



7 Evolution of Web Systems 209

literature has also taken up the term Rich Internet Applications (RIAs) to distinguish
these technically complex web applications from the more primitive ones.7

RIAs are web applications that are characterized by a user experience that is
highly interactive and responsive so that they can rival the experience that desktop
applications can offer. In this respect, the “rich” in RIA refers to the complexity
of the underlying data that the user can manipulate as well as the user interface it-
self. The client side of RIAs is typically realized with a combination of JavaScript,
CSS and HTML. While web sites use little JavaScript that is often self-contained
and hand-coded, web applications often use a substantial amount of JavaScript that
builds on top of existing libraries and frameworks (e.g., jQuery and Dojo). Com-
pared to early web applications that can be characterized as thin client, RIAs are
realizing more of the web system’s functionality on the client side (i.e., fat client).
Furthermore, links are often encoded with client-side scripting and their targets have
no obvious semantic meaning [602]. As a consequence, such web applications can-
not be simply crawled and understood based on a static link structure anymore.

Static web sites, which have HTML-encoded links, are straightforward to crawl
(and because of this many tools could afford to implement a custom solution for
this functionality). However, with the introduction of more and more dynamic web
applications with scripted links these crawlers became very limited because the nav-
igation model that they are producing reflects an increasingly smaller subset of a
web system’s whole navigation space. A web application is often based on events
that trigger JavaScript code that manipulates part of the current page’s Document
Object Model (DOM), in effect causing a state change in the web application. At
the extreme, a single-page, Ajax-based web application may not even offer a single
static link, resulting in an empty navigation model for a traditional crawler. Another
problem that makes it difficult or impossible to construct a complete model is the
”hidden” web caused by interactive query forms that access a server-side database.

Since many analyses for web systems evolution are based on the client view an
accurate crawler is highly desirable. Unfortunately, crawling techniques did consis-
tently lag behind the latest web systems and handling the dynamic features was ad-
dressed only inadequately for many years. The Crawljax tool, introduced in 2008,
offered a solution to this problem [602]. It automatically constructs a state-flow
graph of the target web system where different states are based on comparing the
states’ DOM trees. State transitions are performed by a robot that simulates actions
on “clickable” elements (i.e., DOM elements with attached listeners). However, the
tool’s authors caution that “there is no feasible way to automatically obtain a list
of all clickable elements” [602]. State changes are determined by an edit distance
between the source and target DOMs. The edit distance uses a similarity threshold
that can be varied by the tool user, where one possible setting corresponds to match-
ing for identical trees. Besides the edit distance’s threshold other settings can be
used to control the crawling behavior such as maximum number of states and ignor-
ing of certain links based on regular expressions. ReAJAX is another example of a
sophisticated crawler based on a similar approach than Crawljax (cf. Section 7.2.4).

7 However, it should be noted that RIA is not clearly defined and different authors attach different
meanings to it.



210 Holger M. Kienle and Damiano Distante

In response to the advent of web applications, new approaches were developed
to capture the increasingly dynamic behavior of web sites and their increasing het-
erogeneity in terms of the employed standards and technologies. This research met
a need because development tools lacked in functionality for web site evolution: In
2001, a study of two popular web development tools at the time (FrontPage and
Dreamweaver) showed that they had rather limited support for understanding and
reverse engineering of web sites and that support was mostly restricted to static fea-
tures [850]. Maintenance activities that were supported by these tools at the time are,
for example, validation of HTML and XML documents, reports of usage-violations
of ALT and META tags, link checking, metrics that summarize characteristics of
web pages, and page download-time estimates.

In order to provide suitable information to reverse engineers who have to under-
stand ASP-based sites, Hassan and Holt extract information from HTML, VBScript,
COM source code, and COM binaries [374]. During the extraction process, each file
in the local directory tree that contains the web site is traversed, and the correspond-
ing file’s extractor (depending on the file type) is invoked. All extractors’ output is
first consolidated into a single model and then visualized as a graph structure. This
graph structure provides an architectural view of the web system that can be used as
a starting point for evolution (cf. Figure 7.2). There are also approaches that com-
bine static and dynamic analysis. For example, one proposed method leverages an
extension of UML to show the architecture of the web application as class diagrams
and its dynamic behavior with sequence and collaboration diagrams [242].

Fig. 7.2: Architectural view of a web system’s components: Blue boxes are DLL
files, gray boxes are ASP files, blue ovals are COM objects, green tubes are
databases [372].



7 Evolution of Web Systems 211

To improve evolvability, restructuring of server-side code has been proposed. For
instance, Xu and Dean automatically transform legacy JSP to take advantage of an
added JSP feature—the so-called custom tag libraries—to improve future maintain-
ability by more clearly separating presentation from business logic [933]. Research
has also tackled the migration away from static, HTML-only sites towards dynamic
ones. For example, Estiévenart et al. have a tool-supported method to populate a
database with content extracted from HTML pages [281]. This database can then
be used to build and serve pages dynamically. Ricca and Tonella have realized a
conceptually similar approach [718].

Web applications, and especially RIAs, are often developed with sophisticated
frameworks and tools that provide higher-level concepts, which then need to be re-
alized with a generator that produces code that can be executed by the web server.
An unusual example is the Google Web Toolkit: it allows coding in Java with ded-
icated APIs and widgets and this code is then compiled to optimized JavaScript.
Dedicated functionality for web site evolution can be added to tools if their archi-
tecture is plug-in based. Such an approach has the advantage that the user can work
within the developer view. The REGoLive tool adds reverse engineering capabilities
to the Adobe GoLive web authoring tool [354]. For example, REGoLive provides a
graph-based structure of a web site, showing artifacts—including web pages, CSS
files and JSPs as well as tool-specific entities such as templates and so-called smart
objects—and their dependencies.

RIAs typically make extensive use of JavaScript on the client side and the
resulting code base can be significant.8 For instance, Google’s GMail has more
than 400,000 lines of hand-written JavaScript [430]. Thus, JavaScript is an im-
portant consideration for web systems evolution. It is a dynamic, weakly-typed
language that offers an interesting combination of language features, mixing im-
perative, object-based and functional programming with concepts such as mutable
objects, prototype-based delegation, closures, and (anonymous) functions objects.
In JavaScript pretty much everything can be manipulated at run-time (introspection
and intercession), there is no information hiding and there is “eval” functionality that
allows to execute an arbitrary string as JavaScript code. As a result, JavaScript fea-
tures make it difficult for static analyses to produce meaningful results, and dynamic
analyses are a more promising approach for analyzing the behavior of JavaScript.

JavaScript has no explicit concept of classes and as a result various idioms are
used to mimic this concept. If multiple idioms are used in a single code base main-
tainability becomes more difficult. Gama et al. studied 70 systems and found five
different idioms in practice [310]. Based on these idioms they developed an auto-
mated code transformation that normalizes a code base to a common idiom. The
authors observe that “there seems to be remarkably little other work on JavaScript
style improvement” but one would expect that research interest in this area will pick
up in the future. Another transformation example is an approach and tool for extract-
ing a subset of client-side JavaScript code that encapsulates a certain behavior [560].
With this dynamic analysis a certain (usage) scenario such as using a UI widget is

8 RIAs can be also realized without JavaScript if they are based on proprietary technology (e.g.,
Adobe Flex or Microsoft Silverlight).



212 Holger M. Kienle and Damiano Distante

first interactively executed and tracked. Based on this run a dependency graph is
constructed that contains HTML, CSS, and JavaScript nodes along with their struc-
tural, data and control flow dependencies. This enables to extract a self-contained
subset of the code that is able to reproduce the usage scenario. This approach can be
also used for dead code removal (e.g., to speed up page load time) if the scenario is
able to capture all expected behaviors of the web application.

7.2.3 Web Services

Around the time that web applications established themselves, the concept of web
services started to become more prominent. The move towards web services was
mostly driven from a business perspective that envisioned cost savings and increased
flexibility [849] [20]. Web services are closely related to Service Oriented Architec-
ture (SOA) in the sense that web services are an enabling technology for realizing a
system that adheres to the service-oriented architectural style [830] [592, Chapter 7].
From this perspective, migration towards web services can be seen as architecture
evolution and is discussed in more detail in Section 7.3.1.

Evolution of a web service entails significant challenges: distributed compo-
nents with multiple owners, distributed execution where multiple workflows are exe-
cuted concurrently, and machine-generated description files (e.g., WSDL, XSD and
BPEL) [918] and messages (e.g., SOAP messages). Understanding a Web Service
Description Language (WSDL) specification can be complex because it contains a
number of concepts (i.e., types, messages, port types, bindings and services) that
can be highly interrelated via referencing. Since WSDL provides a high-level de-
scription of the important aspects of a web service, it plays an important role when
a service—or a system that uses the service—is evolved.

Examples of analyses based on WSDL files are clone detection of services and
enabling of automated service discovery [568] [348]. To obtain meaningful results,
the WSDL files are first suitably restructured (so-called contextualization) by in-
lining referenced information. This allows to apply established algorithms such as
topic models [348] and near-miss clone detection [568] to find similar operations.
These similarities can be used as input for maintenance activities, but also for web
service discovery (i.e., finding an alternative service).

Fokaefs et al. [298] present an empirical study on the evolution of web services
by applying a differencing technique to WSDLs. The WSDL files are first suitably
stripped to form another valid XML representation that reflects the client’s per-
spective of the service. Pairwise differencing of the XMLs are then performed by
the VTracker tool, which is based on a tree-edit distance algorithm that calculates
the minimum edit distance between two XML trees given a context-sensitive cost
function for different edit operations. The evolution of the successive WSDLs can
be studied with the percentage distribution of change, delete and insert operations.
Among other cases, the authors have tracked the evolution of 18 WSDL versions of
Amazon’s Elastic Cloud. The analysis showed that the service underwent rapid ex-



7 Evolution of Web Systems 213

pansion (additions are dominating) while the existing interface was kept relatively
stable (deletions and radical changes are avoided). The authors could also find cor-
relations between WSDL changes and business announcements.

SOAMiner is a static analysis tool for searching and indexing a collection of
service description files, including WSDL [918]. It is based on Apache Solr, which
provides a faceted search infrastructure. Examples of search facets are file types and
XML tag names. A user study found that “faceted search capability proved to be
very efficient in some cases” and that this approach can be more effective compared
to text-based searching because the latter requires more domain knowledge.

The authors of SOAMiner also present a dynamic analysis tool. The feature se-
quence viewer (FSV) visualizes sequence diagrams of messages passed between
web services [918]. The sequences are extracted from trace data and a simple heuris-
tic is used to determine messages that are relevant for a certain scenario. De Pauw
et al. have also realized an approach based on trace data that relies on message con-
tent and timestamps [225]. Their analysis is able to find identifying keys such as
order numbers, which are used by the web services to correlate messages and to re-
alize possibly asynchronous workflows. This enables to find “semantic correlation”
between different kinds of messages (e.g., an order number that is first used in a
message to order an item and then, in a subsequent message, to confirm its ship-
ment). In effect, sequence diagrams, which only show the control flow (such as the
FSV tool, see above), are augmented with dependencies that show correlations of
message content.

As described above, a standard approach for a web service is to utilize WSDL
and SOAP, which specify the service’s contract and API in terms of permissible
invocations and required data types. This flavor of web service is also referred to
as WS-* web service [683]. Alternatively, the API of a web service can be also
realized with Representational State Transfer (REST) [293]. The basic approach is
to design the data model as a network of data items, or so-called resources, and to
define URIs to access, navigate and manipulate these resources with HTTP request
methods (i.e., GET, PUT, POST and DELETE). Typical data encodings for such
RESTful web services are JSON or XML, but plain text is also conceivable. Alarcón
and Wilde propose the Resource Linking Language (ReLL) to model RESTful web
services [15]. They have developed a crawler, called RESTler, that can extract a
resource network from a RESTful web service based on the service’s ReLL model.
The obtained resources in combination with the ReLL models can then be used for
composing new, mashed-up services.

According to Pautasso and Wilde, “it is not possible to simply say that one va-
riety is better than the other, but since RESTful web services gained momentum,
it has become clear that they do provide certain advantages in terms of simplicity,
loose coupling, interoperability, scalability and serendipitous reuse that are not pro-
vided to the same degree by WS-*” [683]. Thus, support for migrations from WS-*
to RESTful web services, and vice versa, is desirable. Strauch and Schreier present
RESTify, a semi-automated approach to transform a WSDL-based web service to
a RESTful design [798]. The approach supports, for instance, the identification of
resources from a WSDL description, and the definition of resource access by defin-



214 Holger M. Kienle and Damiano Distante

ing a mapping from a WSDL operation to URI request sequences. Research has
strongly focused on REST as migration and reengineering target (e.g., [534] [816]
[798]), neglecting the opposite direction.

7.2.4 Ajax-based Web Systems

Another major evolution of the web is marked by the possibility of a web application
to initiate an asynchronous connection to obtain data and presentation information
(i.e., Ajax programming [314]). RIAs that employ Ajax frameworks and technolo-
gies result in highly sophisticated web applications whose functionality rivals and
surpasses native desktop applications. Compared to traditional web sites and web
applications in which contents and functionalities are distributed among several
pages that the user navigates, an Ajax-based RIA might consist of one single web
page whose content and user functionalities change dynamically in consequence of
the user actions, without any page reloads. More frequently, however, Ajax-based
RIAs are a combination of traditional web applications and enriched user-interface
features, which are made possible by Ajax technology. JavaScript is used as the
main coding language to implement features, both on the client and, increasingly,
on the server side.

Of course, for this new stage, yet again novel approaches are needed for effec-
tive web systems evolution. ReAJAX is a reverse engineering tool for single-page
Ajax RIAs [561]. Similar to Crawljax (cf. Section 7.2.2) the web system is dynami-
cally executed to construct a state model based on the pages’ DOM representations.
However, with ReAJAX the model extraction can be customized by abstracting the
DOM representation with a function that maps DOM elements to higher-level val-
ues that strives to capture the state of the application based on its GUI elements. For
instance, for a certain application it may make sense to abstract an HTML table with
three distinct values that represent an empty table, a table with one row, or a table
with more than one row. State transitions represent a change in the abstracted DOM
rather than the actual DOM and hence can represent meaningful states in the appli-
cation’s logic. The state model is constructed by manual or automatic execution of
a set of execution scenarios. The quality of the resulting state model varies depend-
ing on the coverage of the scenarios and the suitability of the DOM abstractions.
CReRIA is another example of a reverse engineering tool that is based on dynamic
analysis and creates a state model [26] [27].

Research has also tackled the migration from legacy web systems towards RIAs
and/or Ajax-enabling them (“ajaxification”). In 2007 Mesbah and van Deursen ob-
served that “today we have a new challenge of migrating classic web applications
to single-page web applications” [601]. This kind of migration can be seen as tech-
nological evolution as discussed in Section 7.3.3.



7 Evolution of Web Systems 215

7.2.5 Web Systems Leveraging Cloud Computing

Arguably, cloud computing marks another major step in the web’s evolution. How-
ever, it should be stressed that cloud computing is an independent principle that
applies to software systems in general. The “running [of] applications within a net-
work server or downloading the software from the network each time the software is
used” is one of its prominent characteristics [817]. Cloud computing can be defined
as “a model for enabling convenient, on-demand network access to a shared pool
of configurable computing resources (e.g., networks, servers, storage, applications,
and services) that can be rapidly provisioned and released with minimal manage-
ment effort or service provider interaction” [585]. Importantly, the access to these
resources needs neither be realized with a browser-based user interface nor with
web-based technologies.

Tupamäki and Mikkonen point out that there can be mismatches between web
principles and cloud computing (e.g., single-server design) [861]. Still, existing web
systems are among the most promising candidates to evolve towards the cloud—or
often have already properties that are now associated with mainstream cloud com-
puting. Ajax-based RIAs typically provide an application/service along with storing
the corresponding user-data on the server-side (e.g., webmail such as Yahoo! Mail
and GMail, and storage such as Dropbox and Microsoft’s SkyDrive)—properties
that are labeled as Software-as-a-Service (SaaS) by cloud computing.9 The under-
lying service level, Platform-as-a-Service (PaaS), can be seen as web-based mid-
dleware to realize SaaS. For example, Windows Azure and Google App Engine
provide a platform of different services, which can be realized to build SaaS-based
web systems based on an integrated set of diverse APIs. Thus, similar to SOA and
web services, different (heterogeneous) PaaS and Infrastructure-as-a-Service (IaaS)
based services can be orchestrated to realize a higher-level service.

Every advent of a new technology poses the challenge of how to best utilize
it in the context of an existing (legacy) system. Established techniques for transi-
tioning to a new technology include wrapping, migration, and reengineering (cf.
Section 7.3). In this context the potential mismatch between the principles and ar-
chitectures of web application frameworks and cloud computing platforms present a
significant challenge [861]. Kienle et al. observed in 2010 that “surprisingly, there is
still comparably little discussion of [web] system evolution towards the cloud such
as when and how systems should be migrated to the cloud and techniques to accom-
plish such a migration in an effective manner” [462]. This observation still holds
true as of this writing.

9 HTML5 enables clients to utilize local storage; thus, the location of (personal) data may partially
move from the server to the client. However, leveraging this capability may not be in the interest
of the service provider.



216 Holger M. Kienle and Damiano Distante

7.2.6 HTML5-based Web Systems

The HTML5 standard is still at a draft stage and far from being finalized, but it is
already well on its way to become a ubiquitous platform for building all kinds of
(web) systems. Thus, it can be expected that HTML5 will play a significant role in
web systems evolution.

It appears at this point that there are two major competing approaches: HTML5-
based web systems, which are vendor-agnostic and represent the open web, and
native web systems, which are vendor-specific [608]. Examples of the latter are
apps running on Apple’s iPhone and iPad or Google’s Android devices. While these
apps can utilize web-based protocols and principles (e.g., HTML and REST) and
while their look-and-feel can be similar to browser-based systems, they are built
with vendor-specific platforms and native graphics libraries, and are typically dis-
tributed in binary form. It remains to be seen if both approaches will coexist or if
one will extinguish the other. In the following we focus on open web systems only,
because in many respects native apps are close to traditional desktop software.

HTML5 significantly expands the scope of previous HTML standards with the
aim to enable web systems to come even closer to native desktop applications (with-
out having to rely on browser plug-ins) [608]. Specifically, web systems can utilize
local storage and built-in audio/video support, temporarily function without net-
work connection, draw on a 2D canvas for procedural, interactive graphics, and
render hardware-accelerated (3D) graphics. HTML5’s capabilities may cause de-
velopment to the move away from native, vendor-specific apps, meaning in effect
that “browser technology will dominate over operating systems” [50]. This would
further strengthen the trend towards truly web-based software.

In the past, web systems evolution research did address the migration from web
applications to early mobile devices because this was rightly perceived as “the next
big thing” [410]. If the trend towards HTML5-enabled mobile applications holds
true, then research should tackle the migration from mobile applications written for
native platforms to HTML5 technologies.

7.3 Dimensions of Evolution

As the previous section illustrates, research in web systems evolution has come
up with a rich set of approaches and techniques, typically with accompanying tool
support. In the following, we structure the discussion along three dimensions of
evolution: architecture (cf. Section 7.3.1), (conceptual) design (cf. Section 7.3.2)
and technology (cf. Section 7.3.3). Each of these have in common that an existing
web system is migrated or reengineered, and, in any case, updated towards a new
system. Depending on the dimensions, the new system differs in its architecture,
design, or technology compared to the old one. However, it should be stressed that
these dimensions are not orthogonal to each other, meaning that evolution in one
dimension can imply or require evolution in the other ones as well.



7 Evolution of Web Systems 217

7.3.1 Architecture Evolution

Evolving the architecture of a system means a fundamental change on how func-
tionality is distributed into components and how these components communicate
among each other. For instance, a monolithic system may be “split” into (loosely
coupled) components for user interface, application/business logic, and data persis-
tence, by using a client-server three-tier architecture with the client side running
the user interface component [157]. Also, such a three-tiered client-server system
may be further evolved to move part of the business logic onto the client. Such an
architecture evolutions often also impacts the system’s technology. In the previous
example, the client-server architecture may be realized with web-based middleware
technology (such as Java Business Integration or IBM Integration Bus), the business
logic to be moved onto the client side may be implemented by using a client-side
scripting language (such as JavaScript), and data persistence may be realized using
some data persistence framework (such as Hibernate).

7.3.1.1 Towards Service Oriented Architecture

As mentioned before (cf. Section 7.2.3) web services are a popular approach—but
not the only one—to realize a system that adheres to SOA. Since our focus is on
web systems evolution, we restrict our discussion mostly to web services. However,
there are generic approaches for migrating systems to SOA (e.g., SMART [518]
and Heckel et al. [592, Chapter 7]) that can be instantiated to suit the context of web
systems migration: the existing system is then any kind of web system and the SOA-
enabled target system is based on web services. Generally, the purpose of migrating
towards web services is the identification of existing (higher-level) functionality,
isolating and extracting them from the existing system and making them accessible
via web service interfaces.

One design principle for SOA—and, by extension, for web services as well—is
composability where each (basic) service provides a well-defined and self-contained
(business) need. An application is then realized by service composition. Web ser-
vices are realized with WSDL (to specify their interfaces) and Simple Object Access
Protocol (SOAP) (for messaging). A more lightweight approach for web services
based on so-called web APIs eschews WSDL/SOAP in favor of HTTP-encoded re-
quest messages and JSON for data exchange. The latter approach is often used in
combination with REST (cf. Section 7.2.3) and Ajax (cf. Section 7.2.4).

In 2008, Hainaut et al. observed that migration to SOA “appears as one of the next
challenges” [592, Chapter 6, page 109]. Indeed, migrating existing code towards
web services is a common evolution scenario, and Almonaies et al. present a sur-
vey of approaches [21]. Arguably, a web site may already offer “services” through
HTTP response/request pairs that are initiated through user interactions. Jiang and
Stroulia analyze these interactions with pattern mining to semi-automatically iden-
tify service candidates [441]. Almonaies et al. present a semi-automatic approach to
migrate a monolithic PHP-based web application towards web services [20]. Poten-



218 Holger M. Kienle and Damiano Distante

tial business services are first identified and separated, then PHP code is restructured
to expose functionality as services (based upon the Service Component Architecture
(SCA) specification, which is available as a PHP implementation) and to allow com-
munication between services (based upon SCA’s Service Data Objects).

A migration does not necessarily start with “web-enabled” code, it may as well be
an EJB application that is rearchitected towards a system composed of a set of web
services [531]. Another scenario is the wrapping of COBOL mainframe programs
so that their functionality is exposed as web services [782]. Compared to a full-
fledged reengineering approach, “the complexity of the wrapping techniques is low,
since there is no deep analysis of the legacy system” [21].

7.3.1.2 Towards Model-Driven Engineering

The emergence of the web as a prominent platform to develop and deploy systems
and services—i.e., in other words cloud computing’s SaaS, PaaS and IaaS (cf. Sec-
tion 7.2.5)—and the increasing complexity of these systems has led to the need
of tools and methodologies that streamline their design, development, and mainte-
nance. Model-Driven Engineering (MDE) advocates the systematic use of models
and model transformations throughout the life cycle of a software system, from
requirement specification, to design, implementation (usually envisioned as auto-
matic code generation), and maintenance [756]. By promoting automation of tasks
and reuse of artifacts, MDE aims to increase productivity and to reduce development
time and costs. One of the better known MDE initiatives is the Model-Driven Archi-
tecture (MDA) software development framework defined by the OMG [650]. MDA
proposes a particular approach for realizing MDE by leveraging OMG standards
(e.g., UML and MOF).

The engineering of web systems is a specific application domain in which the
principles of MDE have been successfully applied, originating the rich and lively
research area of Model-Driven Web Engineering (MDWE). By decoupling the func-
tional description of applications (models at various levels of abstraction) from their
implementation (code for a given platform) and by enabling the modification of the
first and re-generation of the last out of the first, MDWE methods ease the evolution
and adaptation of web systems to continuous changing requirements and emerging
technologies. In this process, model evolution plays an important role (cf. Chapter 2)

The list of web engineering methods which natively adopt a model-driven ap-
proach to the development of web applications or which have been extended towards
MDE includes: UWA [252], WebML [750] and its extension towards RIAs [304],
UWE [480] and OOHDM [752], and OOWS [299]. Valderas and Pelechano present
a comparative study of these and other MDWE methods which analyzes the tech-
niques they propose for specifying functional, data and navigational requirements
as well as the mechanisms provided for automatically translating these requirements
into conceptual models [866]. According to their survey, only the WebML model ex-
plicitly addresses evolution concerns in a dedicated “Maintenance and Evolution”
phase.



7 Evolution of Web Systems 219

The reverse engineering of an existing web application with one of the above
listed methods opens the door to reaping the benefits of MDE. An approach that
enables recovering user–centered conceptual models from an existing web applica-
tion according to the UWA methodology [865] is RE-UWA [98]. The approach is
able to recover the content, navigation, and presentation models of the application,
as observed from a user’s perspective. These models can provide effective support
for maintainer when deciding on some change/improvement to be applied to the ap-
plication, with respect to its external, user-perceived, quality. The recovered mod-
els, eventually evolved according to new requirements, can be used then as input
for a UWA model-driven forward engineering process, which is supported by ded-
icated tools [97]. Similarly, an approach that abstracts WebML hypertext models
[137] from existing web applications is proposed by Rodriguez-Echeverria [724].
The approach can be used as the initial step towards modernizing the existing ap-
plication into a RIA-based one using the WebML model-driven web engineering
method [304].

7.3.2 Design Evolution

Often the intent of evolution is improving some external and user-perceivable qual-
ity characteristics of a system, rather than properties related to its internal realiza-
tion. When this intent applies, the evolution process is usually first accomplished
(conceptually) at the design level with the help of a (web) design model (cf. Sec-
tion 7.3.1.2), to move then to the implementation level where it may be realized by
selecting suitable technologies or algorithms.

In this section we present two approaches for web application design evolution: a
redesign approach and a refactoring approach. The intent of the former is to modify
the behavior of the web system while the latter preserves it.

7.3.2.1 Meeting New Requirements

When evolution is driven by the need to modify the behavior of the application
(e.g., to implement new business rules and meet new or evolved requirements [592,
Chapter 1]) or by the opportunity to improve aspects influencing the external quality
characteristics of the application (e.g., its usability), evolution should be carried out
at the design level. To this aim, it is desirable to rely on approaches that enable
(1) to recover the current design model of a web application, and (2) to modify the
recovered design model in order to effect the evolution’s goals. RE-UWA is such
an approach for the domain of web systems design evolution (already discussed in
Section 7.3.1 in the context of MDE) [96].

The RE-UWA design evolution approach is based on a three-step process:

Reverse Engineering: A semi-automatic reverse engineering phase is used to an-
alyze the HTML pages of the system’s front-end with the goal to abstract its “as-



220 Holger M. Kienle and Damiano Distante

Fig. 7.3: The RE-UWA web application design evolution approach.

is” design. This phase applies clustering and clone detection techniques on the
HTML pages of the application and is supported by the Eclipse IDE environment.

Design Evolution: This phase leverages the recovered models from the previous
phase. The (new) requirements—which identify shortcomings and opportunities
for improvements in the current design—are then used to construct the desired
“to-be” design. This phase is supported by a set of modeling tools, which are
build on top of the Eclipse Graphical Editing Framework (GEF) and the Eclipse
Graphical Modeling Framework (GMF).

Forward Engineering: In this phase, the “to-be” design model is used to produce
the “to-be” version of the web system. The UWA fast prototyping tools [97] can
be also used to quickly implement a prototype of the new application and to
verify/validate the new design.

Thus, the whole approach leverages the UWA design methodology to guide both the
reverse and forward engineering design processes, and the UWA design models as
the formalism to represent the “as-is” and “to-be” designs of the web system. Fig-
ure 7.3 summarizes the whole approach with the involved activities and supporting
tools and techniques.

Client side HTML pages 
of the application

Reverse 
Engineering

Design 
Evolution

Design "As-Is"
(UWA Information, 

Navigation and Publishing 
models)

Design "To-Be"
(UWA Information, 

Navigation and Publishing 
models)

Forward 
Engineering

Prototype of the new 
version of the 

application

Design Evolution 
Process

Methods & 
Techniques

Clustering and clone 
detection techniques

+
UWA Design 
Methodology

I/O Artifacts

RE-UWA tool based 
on 

Eclipse IDE

Tool Support

UWA Design 
Methodology

UWA modeling tool 
based on Eclipse 

GEF and GMF

UWA Model Driven 
Engineering 
Methodology

(MOF metamodels 
+ M2M & M2C 

transformations)

UWA application 
fast-prototyping 
tools based on 
Eclipse GEF and 

GMF



7 Evolution of Web Systems 221

7.3.2.2 Improving Usability

The design of a web application can also be evolved to improve quality in use char-
acteristics such as usability while preserving its behavior and business rules. To this
aim, refactoring techniques can be applied to the design models of the application
[316].

Refactoring is a technique that applies step-by-step transformations to a soft-
ware system to improve its quality while preserving its behavior [596]. Originally
introduced by Opdyke and Johnson in the early 90’s [664] and mainly focused on
restructuring a class hierarchy of some object-oriented design, refactoring became
popular a few years later with Fowler’s book [301], which broadened the perspec-
tive to a wider spectrum of code-centric refactorings and motivated its application
for improving internal quality characteristics of software such as maintainability
and evolvability. Since then, refactoring has further broadened both in scope and
intent, as refactoring techniques have been applied to UML models [804], databases
[29], and HTML documents [368]. In all cases the basic philosophy of refactoring
has been kept (i.e., each refactoring is a small behavior-preserving transformation),
but, as the scope, also the intent of refactoring has expanded to target external and
quality in use characteristics of software, such as learnability and effectiveness.

Garrido et al. present catalogs of refactorings for the navigation and presentation
models of a web application aimed at improving its usability [315] [316]. Each of
the refactorings included in the catalog is characterized by a scope (i.e., the software
artifact to which it applies), an intent (i.e., one or more usability factors it aims
to improve), and a bad smell (i.e., the symptoms that may suggest applying the
refactoring). The usability improvement approach that results from the application
of the refactorings in the catalog is agnostic with respect to the method and the
technologies adopted to develop the application, as all refactorings are described
by showing how they affect the corresponding web page. Table 7.1 summarizes a
subset of the refactorings included in the aforementioned catalogs.

7.3.3 Technology Evolution

Technology evolution of a system can be triggered by the retirement of a technology
because the vendor supports it no longer, or by the realization that the employed
technology no longer matches the system’s requirements. In the former case, the
vendor may provide a migration tool. For instance, a helper tool supported the mi-
gration from IBM’s Net.Data legacy technology to JSP [499]. The latter case can
mean, for instance, that internal qualities (e.g., maintainability), external qualities
(e.g., performance), or both are increasingly difficult or impossible to meet because
new requirements and old technology are at a mismatch.

For web systems, each new wave of the web (as described in Section 7.2) has
triggered a technological evolution. However, web systems, especially early ones



222 Holger M. Kienle and Damiano Distante

Table 7.1: A subset of refactorings for usability improvement in web applications
proposed by Garrido et al. [315] [316].

Refactoring Intent Scope
Convert images to text
In web pages, replace any images that contain text with the text
they contain, along with the markup and CSS rules that mimic
the styling.

Accessibility Code

Add link
Shorten the navigation path between two nodes.

Navigability Navigation
model

Turn on autocomplete
Save users from wasting time in retyping repetitive content. This
is especially helpful to physically impaired users.

Effectiveness,
accessibility

Code

Replace unsafe GET with POST
Avoid unsafe operations, such as confirming a subscription or
placing an order without explicit user request and consent, by
performing them only via POST.

Credibility Code

Allow category changes
Add widgets that let users navigate to an item’s related subcat-
egories in a separate hierarchy of a hierarchical content organi-
zation.

Customization Presentation
model

Provide breadcrumbs
Help users keep track of their navigation path up to the current
page.

Learnability Presentation
model

with limited functionality, were not necessarily migrated in the strict sense but rather
rebuilt from the ground up with new technology.

Another technological evolution is driven by mobile devices. They do not only
bring new form factors and input devices, but also new technical challenges to keep
web systems responsive. Web systems are typically developed with the expectation
of a PC and a wired base connection, but smartphones and tablets can be less pow-
erful than PCs and latency is more pronounced for wireless connections. Also, the
performance when executing JavaScript on mobile devices is much reduced com-
pared to PCs [944]. As a result, to make web systems responsive and fast for mobile
devices, different techniques and algorithms are needed. For example, basic rules for
achieving this are reducing of HTTP requests by concatenating files, avoiding redi-
rects, limiting the number of connections, and replacing images with CSS3-based
renderings. To accommodate mobile devices, the web system’s APIs for the client
can be changed and extended to handle device profiles and to allow the client to
control limits on data [572].

Towards Ajax

From a technical point of view the introduction of asynchronous connections in the
browser is a minor functional addition whose full potential was not recognized until



7 Evolution of Web Systems 223

Ajax programming was proposed (cf. Section 7.2.4). However, as Ajax-based RIAs
have demonstrated, Ajax can have a huge impact on the user experience. Conse-
quently, if a web system is migrated towards Ajax it is often done with the goal
to improve the system’s usability (i.e., a design evolution, cf. Section 7.3.2.2) by
taking advantage of Ajax’s unique capabilities. Similarly, the prior technical shift
towards more dynamic web systems and RIAs was intertwined with the evolution
for usability improvements.

Chu and Dean have developed a transformation for “ajaxification” of JSP-based
web applications [185]. They are handling the use of a user interface (UI) compo-
nent to navigate a list of items where only a subset of list items is displayed for each
page. A typical example would be the list of search results of a search engine with
controls for “previous”/“next” as well as direct links to all result pages. The basic
idea goes as follows. The user has to identify and annotate the sections of the JSP
code that is responsible for rendering the list (e.g., a loop with a database query and
markup code for a table row). The marked code is then sliced to produce an exe-
cutable subset of the marked JSP code. The slicing criteria can be controlled with
suitable annotations. As a result, the sliced code provides, when called, the render-
ing data that is sent in response to an Ajax request. Also based on manual markup,
the JSP source is transformed to make an Ajax call that pulls in the list items. To
make the list item’s rendering data match with the needed HTML/DOM structure of
the hosting page, the transformation has to make suitable adaptations. The approach
has been tried out on four applications and for all of them the visual rendering is
preserved.

Mesbah and van Deursen propose Retjax, an approach and tool for migrating
multi-page RIAs to Ajax-based, single-page web systems [601]. The goal is to find
UI components that can be transformed to leverage Ajax. Multi-page RIAs have
to build a whole new page whenever information in a UI component changes. A
single-page approach, in contrast, would refresh only the UI component, which is
embedded within the page. To identify the UI components, first a model of the exist-
ing web application is constructed. Retjax uses HTML Parser for this purpose, but
this step could employ other advanced crawling and reverse engineering techniques.
Based on the model, the navigation paths that users can follow when exercising the
web application are followed; the depth of the followed links can be set. When a
new page is encountered then all of the target pages are retrieved and only these
are clustered based on schema similarity. The schema of each page is obtained by
converting the HTML into a well-formed XHTML (with the JTidy tool) and auto-
matically extracting a DTD from it (with the DTDGenerator tool). The clustering is
performed with the edit distance between the pages’ DTDs using the Levenshtein
method [517]. The similarity threshold can be set. On the clustered navigation paths
a differencing algorithms determines the HTML structural changes between page
source and targets. The result is a set of candidate components where each one is
examined for promising UI elements (e.g., button or tab) that can be converted to
Ajax. The authors propose to describe the candidates with the help of a generic
Ajax-based representation model (which could take inspiration from static UI mod-



224 Holger M. Kienle and Damiano Distante

els such as Mozilla’s XUL) that can then be used to drive the transformation from
the generic model to a platform-specific representation.

7.4 Research Topics

Sections 7.2 and 7.3 have covered a large part of the research landscape of web
systems evolution. In Table 7.2, the references of research contributions that are
given in bold face have already been discussed in previous sections.

Table 7.2: Examples of “classical” research topics and selected research contribu-
tions.

Research topic Examples of web-related research F M A T V
architecture recovery of web sites [569] • •

of web applications [373] [374] • •
clone detection in web sites [243] •

in web applications [815] [494] •
in web services (WSDL) [568] • •

clustering of web pages via keyword extraction [853] •
of web applications [601] [244] •

dead/unreachable code removal of JavaScript code [560] •
fact extraction HTML [569] [909] •

crawling of RIAs (with Ajax) (Crawljax) [602] •
crawling of single-page Ajax [561] •
crawling of RESTful web services [15] •
J2EE web projects (in WebSphere) [464] •

metrics based on HTML code [909] [141] • •
based on WSDL differencing [298] •

migration from static sites to dynamic web applications [718] •
from ASP to NSP [375] •
from EJB to web services[531] •
from web application to single-page Ajax [601] •
to Ajax [185] •
to web services [20] •
involving MDE [98] [97] [724] • • • •

refactoring of web applications design models [315] [316] [154] • •
restructuring of multilingual web sites [852] •

of JSP code for renovation [933] •
of web transactions [848] • • • •

sequence diagrams for web applications [38] • •
for web services [918] [225] • •

slicing of web applications [851] •
testing of web applications [717] •

of web services [783] [780] •
wrapping of web applications with WSDL [441] •

of COBOL with web services [782] •
Legend: F: fact extraction, M: modeling, A: analysis, T: transformation, V: visualization.



7 Evolution of Web Systems 225

Many of these topics have their roots in the more general and traditional areas
of software evolution and maintenance research. To illustrate this point, Table 7.2
provides some examples of “classical” research topics (first column) along with
research that has addressed—and suitably adapted—these topics for the web’s do-
main (second column). The table also identifies if a research’s main contribution lies
in the areas of fact extraction (F), modeling (M), analysis (A), transformation (T),
or visualization (V). For understanding a certain research contribution, it is often
beneficial to know the functionalities that its techniques cover and how these func-
tionalities are relating to each other. Reverse engineering approaches are primarily
concerned with fact extraction (F) and analysis (A), whereas forward engineering
primarily deals with modeling (M) and transformations (T). Both can also employ
visualizations (V) to present (intermediary) results. Examples of analyses in reverse
engineering are clustering, clone detection, and architecture recovery; examples of
transformations in forward engineering are restructuring, refactoring, dead code re-
moval, wrapping and migratwion.

Besides the “classical” research topics covered in Table 7.2, there are also re-
search topics that are unique—or much more pronounced—for web systems evolu-
tion. Important topics that exemplify this point—content analysis, accessibility, and
browser-safeness—are discussed in the following.

Originally, metrics-based evolution research has exclusively focused on the code
and structure of a web system, but it was then realized that evolution can be also
tracked by analyzing the (textual) content of a web system with appropriate met-
rics. An early example of such research is textual analysis of multilingual sites to
find matching pairs of pages for different languages [852]. More recently, the evo-
lution of Wikipedia in terms of number of edits and unique contributors has been
analyzed [263], and another evolution study looked at legal statements of web sites,
analyzing their length and readability [468]. The latter was measured with estab-
lished readability metrics, namely SMOG and Flesch Reading Ease Score (FRES)
[468]. Content analysis is an example of how web system evolution research has
continuously broadened its focus.

An interesting example of a research area that has much broader and more promi-
nent focus in web systems evolution than classical evolution research is accessibil-
ity, which is concerned with “how people with [varying degrees of] disabilities can
perceive, understand, navigate, and interact with the web, and that they can con-
tribute to the web” [410]. In fact, accessibility has been a constant throughout the
history of web evolution research [467]. In 1999, Eichmann cautioned that for the
development of many web systems “little attention is paid to issues of comprehen-
sion, navigation or accessibility” [271]. Cesarano et al. tackle the problem of usabil-
ity of web pages for blind users [168]. They point out that web pages are designed
for viewing on a two-dimensional screen while screen-reader tools for the blinds are
reading the content in a linear, one-dimensional fashion. Consequently, the reading
order should be redefined for blinds. Di Lucca et al. present refactoring heuristics
for the automatic reordering of the items on a web page based on structural analysis
and on summarization, with the purpose to reduce the “reaching time” (i.e. the time
needed to reach the most relevant content of the web page) [245].



226 Holger M. Kienle and Damiano Distante

In contrast, Berry provides a detailed classification of characteristics of hear-
ing impaired individuals and their respective accessibility issues [99]. These issues
became more and more acute in the last years with the popularity of services that ex-
ploit the Internet as a medium to transmit voice and multimedia such as Skype and
YouTube. Berry also points out that accessibility requirements of sight-impaired
individuals can contradict the ones of hearing-impaired individuals. While acces-
sibility research is often focused on seeing and hearing impaired, Boldyreff points
out that “web accessibility encompasses a variety of concerns ranging from soci-
etal, political, and economic to individual, physical, and intellectual through to the
purely technical. Thus, there are many perspectives from which web accessibility
can be understood” [125].

An example of a research area that is unique to web site evolution is browser-
safeness, meaning the requirement that a web system should look and behave the
same across different web browsers. This problem is almost as old as the web and it
is increasingly challenging to satisfy because of the large number of browsers and
browser versions. While browsers try to adhere to (ambiguous) web standards, they
are also trying to accommodate legacy web systems that are (partially) violating
these standards. Also, JavaScript engines of different browsers differ in more or less
subtle ways (e.g., as exposed by the test262 suite [182]).

The state-of-the-practice to address this problem are tools that take screenshots
of the web system running in different browsers so that they can be inspected manu-
ally for differences. The WebDiff tool identifies cross-browser issues by taking pairs
of screenshots of a web page in combination with analyzing the respective DOMs
[183]. Variable elements in the DOM that are changing when pages are reloaded
(e.g., advertisements) are filtered out, and then a structural comparison of the DOMs
is performed. The DOM is also used to guide a visual analysis that does a graphical
matching of DOM elements. The tool reports each mismatch so that it can be fur-
ther inspected by the tool user. The CrossT tool offers a complementary approach
that can be applied to a whole web application [600]. CrossT crawls the web system
in the same manner using different browsers (i.e., Internet Explorer, Firefox and
Chrome are supported), constructing for each a navigation model based on a finite
state machine. A state corresponds to a “screen” as observed by the user, transitions
are actions executed on the screen such as clicking a button. The constructed models
are compared pairwise for discrepancies. Differences are detected in the navigation
model as a set of traces that exist in one model but not in the other, and for two
state pairs by comparing the underlying DOMs of the states’ screens. When com-
paring DOMs the algorithm has to account for different DOM representations in the
browsers.



7 Evolution of Web Systems 227

7.5 Sources for Further Reading

Web systems evolution has been an active research area for over 15 years and con-
sequently there are many resources available for studying. Thus, this chapter, by
necessity, only represents a (biased) selection of this growing field, but constitutes a
good starting point for the reader to explore further. In this vain, this section identi-
fies the field’s key research venues and journals as well as outstanding dissertations.

The annual WSE symposium has targeted this research area since 1999 and has
featured the most influential research trends as they have emerged and changed
through the years. In fact, many of the references in this chapter are WSE publi-
cations. Special issues for WSE 2002, 2006 and 2010 have been published with
Wiley’s JSEP [461].

Research on web systems evolution can also be found in venues for software
maintenance (ICSM, CSMR), reverse engineering (WCRE), program comprehen-
sion (IWPC/ICPC), and software engineering (ICSE). Publications in the afore-
mentioned venues are typically dealing with techniques and tools for web systems
comprehension, analysis and migration. The communities on web, hypertext, multi-
media and documentation/communication are also conducting research on web sys-
tems evolution, albeit at a context that is typically broader than what is covered in
this chapter. Examples of interesting venues are the ACM Special Interest Group on
the Design of Communication (SIGDOC) conference, the ACM Web Science Con-
ference (WebSci), the International Conference on Web Information Systems En-
gineering (WISE), the International Conference on Web Engineering (ICWE), and
the International World Wide Web Conference (WWW). In terms of dedicated jour-
nals, there are the ACM’s Transaction on the Web (TWEB), Rinton Press’ Journal of
Web Engineering (JWE), Inderscience’s International Journal of Web Engineering
and Technology (IJWET), and Emerald’s International Journal of Web Information
Systems (IJWIS).

Last but not least, there is a growing number of Ph.D. theses that target web
systems evolution, testifying that the research community has recognized the rel-
evance of this subfield of software evolution. To name some outstanding disserta-
tions: “Analysis, Testing, and Re-structuring of Web Applications” by Ricca [715],
“Reengineering Legacy Applications and Web Transactions: An extended version
of the UWA Transaction Design Model” by Distante [251], “Analysis and Testing
of Ajax-based Single-page Web Applications” by Mesbah [599], and “Reverse En-
gineering and Testing of Rich Internet Applications” by Amalfitano [27].



228 Holger M. Kienle and Damiano Distante

7.6 Conclusions

This chapter described the key research topics and achievements in the domain of
web systems evolution. It can be expected that web systems evolution research will
continue to be of great relevance due to the fact that more and more software func-
tionality is made available via web-based infrastructure. The impact of HTML5 is
already felt in this respect and should further intensify the move towards open web
systems. Web technologies are highly dynamic by nature, making them predisposed
as a platform for building highly-dynamic systems (cf. Chapter 7.6), incorporating
features such as customization/personalization, resource discovery, late binding, and
run-time composition of services. Thus, future evolution research should provide
techniques and tools for reasoning about dynamic properties.

Other evolution drivers that may have a strong influence on future research are the
Internet of Things (IoT) and the Web 3.0. IoT would expand the web’s reach signifi-
cantly, incorporating devices of any scale. Web 3.0 would make large-scale semantic
reasoning feasible. In a sense, the web will increasingly blend the ecosystems of cy-
berspace and biological space (cf. Chapter 10). Both IoT and Web 3.0 would open up
many new research avenues, but also demand a much more inter/multi-disciplinary
approach to research, which does not only address technical concerns, but also oth-
ers, such as society, law/regulation, economics and environmental sustainability.



Chapter 8
Runtime Evolution of Highly Dynamic Software

Hausi Müller and Norha Villegas

Summary. Highly dynamic software systems are applications whose operations are
particularly affected by changing requirements and uncertainty in their execution
environments. Ideally such systems must evolve while they execute. To achieve
this, highly dynamic software systems must be instrumented with self-adaptation
mechanisms to monitor selected requirements and environment conditions to as-
sess the need for evolution, plan desired changes, as well as validate and verify the
resulting system. This chapter introduces fundamental concepts, methods, and tech-
niques gleaned from self-adaptive systems engineering, as well as discusses their
application to runtime evolution and their relationship with off-line software evolu-
tion theories. To illustrate the presented concepts, the chapter revisits a case study
conducted as part of our research work, where self-adaptation techniques allow the
engineering of a dynamic context monitoring infrastructure that is able to evolve
at runtime. In other words, the monitoring infrastructure supports changes in mon-
itoring requirements without requiring maintenance tasks performed manually by
developers. The goal of this chapter is to introduce practitioners, researchers and
students to the foundational elements of self-adaptive software, and their applica-
tion to the continuos evolution of software systems at runtime.

229
 Springer

. et al. (eds.), E ,
DOI 10.1007/978-3- - - _8, ©  2014
T Mens volving Software Systems

642 45398 4 -Verlag Berlin Heidelberg



230 Hausi Müller and Norha Villegas

8.1 Introduction

Software evolution has been defined as the application of software maintenance ac-
tions with the goal of generating a new operational version of the system that guar-
antees its functionalities and qualities, as demanded by changes in requirements and
environments [170, 598]. In the case of continuously running systems that are not
only exposed frequently to varying situations that may require their evolution, but
also cannot afford frequent interruptions in their operation (i.e., 24/7 systems), soft-
ware maintenance tasks must be performed ideally while the system executes, thus
leading to runtime software evolution [598]. Furthermore, when changes in require-
ments and environments cannot be fully anticipated at design time, maintenance
tasks vary depending on conditions that may be determined only while the system
is running.

This chapter presents runtime evolution from the perspective of highly dynamic
software systems, which have been defined as systems whose operation and evolu-
tion are especially affected by uncertainty [646]. That is, their requirements and ex-
ecution environments may change rapidly and unpredictably. Highly dynamic soft-
ware systems are context-dependent, feedback-based, software intensive, decentral-
ized, and quality-driven. Therefore, they must be continually evolving to guarantee
their reliable operation, even when changes in their requirements and context sit-
uations are frequent and in many cases unforeseeable. Müller et al. have analyzed
the complexity of evolving highly dynamic software systems and argued for the ap-
plication of evolution techniques at runtime [621]. They base their arguments on
a set of problem attributes that characterize feedback-based systems [622]. These
attributes include (i) the uncertain and non-deterministic nature of the environment
that affects the system, and (ii) the changing nature of requirements and the need
for regulating their satisfaction through continuous evolution, rather than traditional
software engineering techniques.

Control theory, and in particular feedback control, provides powerful mecha-
nisms for uncertainty management in engineering systems [625]. Furthermore, a
way of exploiting control theory to deal with uncertainty in software systems is
through self-adaptation techniques. Systems enabled with self-adaptive capabili-
ties continuously sense their environment, analyze the need for changing the way
they operate, as well as plan, execute and verify adaptation strategies fully or semi-
automatically [177, 221]. On the one hand, the goal of software evolution activities
is to extend the life span of software systems by modifying them as demanded by
changing real-world situations [595]. On the other hand, control-based mechanisms,
enabled through self-adaptation, provide the means to implement these modifica-
tions dynamically and reliably while the system executes.

Rather than presenting a comprehensive survey on runtime software evolution
and self-adaptive systems, this chapter introduces the notion of runtime software
evolution, and discusses how foundational elements gleaned from self-adaptation
are applicable to the engineering of runtime evolution capabilities. For this we or-
ganized the contents of this chapter as follows. Section 8.2 describes a case study,
based on dynamic context monitoring, that is used throughout the chapter to ex-



8 Runtime Evolution of Highly Dynamic Software 231

plain the presented concepts. Section 8.3 revisits traditional software evolution to
introduce the need for applying runtime software evolution, and discusses selected
aspects that may be taken into account when deciding how to evolve software sys-
tems dynamically. Section 8.4 characterizes dimensions of runtime software evolu-
tion, and discusses Lehman’s laws in the context of runtime evolution. Section 8.5
introduces the application of feedback, feedforward, and adaptive control to run-
time software evolution. Sections 8.6 and 8.7 focus on foundations and enablers of
self-adaptive software that apply to the engineering of runtime software evolution,
and Section 8.8 illustrates the application of these foundations and enablers in the
case study introduced in Section 8.2. Section 8.9 discusses selected self-adaptation
challenges that deserve special attention. Finally, Section 8.10 summarizes and con-
cludes the chapter.

8.2 A Case Study: Dynamic Context Monitoring

As part of their collaborative research on self-adaptive and context-aware soft-
ware applications, researchers at University of Victoria (Canada) and Icesi Univer-
sity (Colombia) developed SMARTERCONTEXT [822, 895–898, 900]. SMARTER-
CONTEXT is a service-oriented context monitoring infrastructure that exploits self-
adaptation techniques to evolve at runtime with the goal of guaranteeing the rele-
vance of monitoring strategies with respect to changes in monitoring requirements
[894].

In the case study described in this section, the SMARTERCONTEXT solution
evolves at runtime with the goal of monitoring the satisfaction of changing quality
of service (QoS) contracts in an e-commerce scenario [822]. Changes in contracted
conditions correspond to either the addition/deletion of quality attributes to the con-
tracted service level agreement (SLA), or the modification of desired conditions and
corresponding thresholds. Suppose that an online retailer and a cloud infrastructure
provider negotiate a performance SLA that specifies throughput, defined as the time
spent to process a purchase order request (ms/request), as its quality factor. Sup-
pose also that a first version of SMARTERCONTEXT was developed to monitor the
variable relevant to the throughput quality factor (i.e., processing time per request).
Imagine now that later the parties renegotiate the performance SLA by adding ca-
pacity, defined in terms of bandwidth, as a new quality factor. Since SMARTER-
CONTEXT has been instrumented initially to monitor processing time only, it will
have to evolve at runtime to monitor the system’s bandwidth. Without these runtime
evolution capabilities, the operation of the system will be compromised until the
new monitoring components are manually developed and deployed.

SMARTERCONTEXT relies on behavioral and structural self-adaptation tech-
niques to realize runtime evolution. Behavioural adaptation comprises mechanisms
that tailor the functionality of the system by modifying its parameters or business
logic, whereas structural adaptation uses techniques that modify the system’s soft-
ware architecture [899]. SMARTERCONTEXT implements behavioral adaptation by



232 Hausi Müller and Norha Villegas

modifying existing monitoring conditions or adding new context types and reason-
ing rules at runtime, and structural adaptation by (un)deploying context gatherers
and context processing components. All these operations are realized without re-
quiring the manual development or deployment of software artifacts, and minimiz-
ing human intervention.

8.3 Assessing the Need for Runtime Evolution

The need for evolving software systems originates from the changing nature of sys-
tem requirements and the changing environment that can influence their accom-
plishment by the system [123]. Indeed, as widely discussed in Chapter 1, chang-
ing requirements are inherent in software engineering. For example, in the case
of SMARTERCONTEXT the need for generating new versions of the system arises
from the renegotiation of contracted SLAs, which implies changes in monitoring
requirements. Several models have been proposed to characterize the evolution pro-
cess of software systems [590]. In particular, the change mini-cycle model proposed
by Yau et al. defines a feedback-loop-based software evolution process comprising
the following general activities: change request, analysis, planning, implementation,
validation and verification, and re-documentation [936]. Figure 8.1 depicts the flow
among the general activities of the change mini-cycle process model. These activi-
ties were proposed for off-line software evolution, which implies the interruption of
the system’s operation.

Request 

Change

Analyze and 

Plan Change

Implement 

Change

Verify and 

Validate

Further changes requiredRejected request

Re-

documentation

Fig. 8.1: Activities of the change mini-cycle process model for software evolu-
tion [936] (adapted from [590]). This model implements a feedback loop mecha-
nism with activities that are performed off-line.

We define off-line software evolution as the process of modifying a software sys-
tem through actions that require intensive human intervention and imply the in-
terruption of the system operation. We define the term runtime software evolution
as the process of modifying a software system through tasks that require minimum
human intervention and are performed while the system executes. This section char-
acterizes software evolution from a runtime perspective.

The need for evolving software systems emerges from changes in environments
and requirements that, unless addressed, compromise the operation of the system.
The need for evolving software systems at runtime arises from the frequency and



8 Runtime Evolution of Highly Dynamic Software 233

uncertainty of these changes, as well as the cost of implementing off-line evolu-
tion. In the context of software evolution, we define frequency as the number of
occurrences of a change event per unit of time that will require the evolution of the
system. For example, the number of times an SLA monitored by SMARTERCON-
TEXT is modified within a year. We define uncertainty as the reliability with which it
is possible to characterize the occurrence of changes in requirements and execution
environments. The level of uncertainty in a software evolution process depends on
the deterministic nature of these changes. That is, the feasibility of anticipating their
frequency, date, time, and effects on the system. In the case of SMARTERCONTEXT,
changes in SLAs will be less uncertain to the extent that it is possible to anticipate
the date and time contract renegotiation will occur, as well as the aspects of the
SLA that will be modified including quality factors, metrics and desired thresholds.
The cost of implementing off-line evolution can be quantified in terms of metrics
such as system’s size, time to perform changes, personnel, engineering effort, and
risk [123, 509, 510]. Further information about the cost of evolving SMARTERCON-
TEXT at runtime are available in the evaluation section presented in [822].

As introduced in Section 8.2 engineering techniques applicable to self-adaptive
software systems [177] can be used to evolve software systems dynamically. Never-
theless, runtime evolution is not always the best solution given the complexity added
by the automation of evolution tasks. As an alternative to decide whether or not to
implement runtime software evolution we envision the analysis of its benefit-cost
ratio (BCR). We define the BCR of runtime software evolution as a function of the
three variables mentioned above: frequency, uncertainty, and off-line evolution cost.

Figure 8.2 characterizes the application of runtime versus off-line software evo-
lution according to the variables that affect the BCR function. Figure 8.2(a) concerns
scenarios where the cost of off-line software evolution is high, whereas Figure 8.2(b)
scenarios where this cost is low. In both tables rows represent the frequency of
changes in requirements and environments, columns the level of uncertainty of these
changes, and cells whether the recommendation is to apply runtime or off-line soft-
ware evolution. Dark backgrounds indicate high levels of complexity added by the
application of runtime evolution. We refer to each cell as celli, j where i and j are
the row and column indices that identify the cell.

According to Figure 8.2, runtime evolution is the preferred alternative when the
cost of evolving the system off-line is high, as for example in the application of
SMARTERCONTEXT to the monitoring of SLAs that may be renegotiated while the
e-commerce platform is in production. When off-line evolution is affordable and the
frequency of changes is high, both alternatives apply. Nevertheless, it is important
to analyze the value added by runtime evolution versus its complexity (cf. cell1,1 in
Figure 8.2(b)). The complexity added by runtime evolution lies in the automation of
activities such as the ones defined in the change mini-cycle process (cf. Figure 8.1).
That is, the system must be instrumented with monitors to identify the need for evo-
lution, analyzers and planners to correlate situations and define evolution actions
dynamically, executors to modify the system, runtime validation and verification
tasks to assure the operation of the system after evolution, and runtime modelling
mechanisms to preserve the coherence between the running system and its design



234 Hausi Müller and Norha Villegas

High off-line 

evolution cost

High frequency

Low frequency

High

uncertainty

Low

uncertainty

runE runE

runE     offE runE

Low off-line 

evolution cost

High frequency

Low frequency

High

uncertainty

Low

uncertainty

runE runE

offE

(a)

offE

offE

Column 1 Column 2

Row 1

Row 2

Row 1

Row 2

Column 1 Column 2

Fig. 8.2: A characterization of runtime versus off-line software evolution in light
of frequency of changes in requirements and environments, uncertainty of these
changes, and cost of off-line evolution. Dark backgrounds indicate high levels of
complexity added by the application of runtime evolution.

artifacts. The complexity of the system is augmented since the functionalities that
realize these tasks at runtime not only require qualified engineers for their imple-
mentation, but also become system artifacts that must be managed and evolved.

Under high levels of uncertainty runtime evolution is an alternative to be consid-
ered despite its complexity. This is because the variables that characterize the execu-
tion environment of the running system are unbound at design or development time,
but bound at runtime. For example, in many cases it is infeasible to anticipate at de-
sign time or development time changes to be implemented in SMARTERCONTEXT.
On the contrary, the runtime evolution scenarios that expose the lowest complexity
are those with low uncertainty (cf. column 2 in both matrices). This is because the
system operates in a less open environment where the evolution process can be char-
acterized better at design and development time. As a result, the functionalities used
to evolve the system at runtime are less affected by unforeseeable context situations.
For example, it is possible to manually program runtime evolution functionalities to
guarantee more demanding throughput levels during well known shopping seasons
such as Black Friday.1 When the off-line evolution cost is high and the uncertainty

1 On Black Friday, the day after Thanksgiving Day in USA, sellers offer unbeatable deals to
kick off the shopping season thus making it one of the most profitable days. Black Friday is



8 Runtime Evolution of Highly Dynamic Software 235

is low, runtime evolution seems to be the best alternative (cf. cell1,2 and cell2,2 in
Figure 8.2(a)). Complexity is directly proportional to uncertainty. Therefore, when
uncertainty and the cost of off-line evolution are low, runtime evolution is still a
good option if the frequency of changes that require the evolution of the system are
extremely high (cf. cell1,2 in Figure 8.2(b)). In contrast, under low change frequen-
cies, high levels of uncertainty and low off-line evolution costs, off-line evolution
constitutes the best alternative (cf. cell2,1 in Figure 8.2(b)). Moreover, off-line evo-
lution is the best option when evolution cost, change frequencies and uncertainty
are low (cf. cell2,2 in Figure 8.2(b)).

Recalling the evolution scenario described in Section 8.2, it is possible to il-
lustrate the application of the characterization of the BCR variables presented in
Figure 8.2 to decide whether to implement runtime or off-line software evolution
for adding new functionalities to the SMARTERCONTEXT monitoring infrastruc-
ture. Regarding the cost of off-line software evolution, the implementation of man-
ual maintenance tasks on the monitoring infrastructure of the e-commerce platform
is clearly an expensive and complex alternative. First, the manual deployment and
undeployment of components is expensive in terms of personnel. Second, the evolu-
tion time can be higher than the accepted levels, therefore the risk of violating con-
tracts and losing customers increases. In particular, this is because renegotiations
in SLAs cannot always be anticipated and must be addressed quickly. Uncertainty
can also be high due to the variability of requirements among the retailers that use
the e-commerce platform, thus increasing the frequency of changes in requirements.
For example, new retailers may subscribe to the e-commerce platform with quality
of service requirements for which the monitoring instrumentation is unsupported.
Therefore, the system must evolve rapidly to satisfy the requisites of new customers.
These high levels of uncertainty and frequency of changes in requirements require
runtime support for monitoring, system adaptation, and assurance.

8.4 Dimensions of Runtime Software Evolution

Software evolution has been analyzed from several dimensions comprising, among
others, the what, why and how dimensions of the evolution process [590]. The what
and why perspectives focus on the software artifacts to be evolved (e.g., the software
architecture of SMARTERCONTEXT) and the reason for evolution (e.g., a new moni-
toring requirement), respectively. The how view focuses on the means to implement
and control software evolution (e.g., using structural self-adaptation to augment the
functionality of the system by deploying new software components at runtime). Fig-
ure 8.3 summarizes these perspectives as dimensions of runtime software evolution.
With respect to the why perspective, the emphasis is on changing requirements (cf.
Chapter 1), malfunctions, and changing execution environments as causes of run-

the day in which retailers earn enough profit to position them “in the black” – an accounting
expression that refers to the practice of registering profits in black and losses in red. Source:
http://www.investopedia.com.



236 Hausi Müller and Norha Villegas

time evolution. Regarding the what, the focus is on system goals, system structure
and behavior, and design specifications as artifacts susceptible to runtime evolu-
tion. For example models and metamodels as studied in Chapter 2. Concerning the
how, the attention is on methods, frameworks, technologies, and techniques gleaned
from control theory and the engineering of self-adaptive software (SAS) systems.
The elements highlighted in gray correspond the answers to the why, what and how
questions for the case study presented in Section 8.2.

Dimensions of Runtime Software 

Evolution

What

(artifacts to be evolved)

Why

(reasons for evolution)

How

(means for runtime evolution)

Changing requirements

Malfunctions

Changing environments

System goals

System structure and behavior

Design specifications

Control and 

Self-adaptation

Fig. 8.3: Characterizing dimensions of runtime software evolution. The highlighted
elements relate to the SMARTERCONTEXT case study.

Software evolution has been characterized through the laws of software evolu-
tion proposed by Lehman [509, 553]. Lehman’s laws apply to E-type systems, the
term he used to refer to software systems that operate in real world domains that are
potentially unbounded and susceptible to continuing changes [507]. Therefore, it is
clear that when Lehman proposed his laws of software evolution back in the sev-
enties, he focused on systems that operate in real world situations and therefore are
affected by continuing changes in their operation environments [509, 553]. Hence,
Lehman’s laws corroborate the need for preserving the qualities of software systems
in changing environments, which may require the implementation of runtime evo-
lution capabilities depending on the cost of off-line evolution, the uncertainty of the
environment and the frequency of changes. Lehman’s laws of software evolution
can be summarized as follows:

1. Continuing change. E-type systems must adapt continuously to satisfy their re-
quirements.

2. Increasing complexity. The complexity of E-type systems increases as a result of
their evolution.

3. Self-regulation. E-type system evolution processes are self-regulating.
4. Conservation of organizational stability. Unless feedback mechanisms are appro-

priately adjusted in the evolution process, the average effective rate in an evolving
E-type system tends to remain constant over the product lifetime.



8 Runtime Evolution of Highly Dynamic Software 237

5. Conservation of familiarity. The incremental growth and long term growth rate
of E-type systems tend to decline.

6. Continuing growth. The functional capability of E-type systems must be contin-
ually increased to maintain user satisfaction over the system lifetime.

7. Declining quality. Unless adapted according to changes in the operational envi-
ronment, the quality of E-type systems decline.

8. Feedback system. E-type evolution processes are multi-level, multi-loop, multi-
agent feedback systems [553].

Considering the continuing change law, highly dynamic software systems such
as SMARTERCONTEXT need not only adapt continuously to satisfy their require-
ments, but in many cases do it at runtime. One of the key benefits of evolving a
system at runtime is to be able to verify assumptions made at design time. Although
valid when the system was designed, some of these assumptions become invalid
over time. For example, the QoS requirements of the e-commerce company in the
application scenario described in Section 8.2 may vary over time. Moreover, new
monitoring requirements must be addressed to satisfy changes in SLAs. To counter-
act the effects of this first law, traditional software evolution focuses on the off-line
activities defined in the change mini-cycle process (cf. Figure 8.1). On the contrary,
runtime evolution argues for the instrumentation of software systems with feedback-
control capabilities that allow them to manage uncertainty and adapt at runtime, by
performing these tasks while the system executes. Of course, due to the increasing
complexity law, the trade-off between runtime and off-line evolution affects the level
of automation and the instrumentation required to evolve the system without risking
its operation. The complexity of highly dynamic software systems includes aspects
such as the monitoring of the execution environment, the specification and man-
agement of changing system requirements, the implementation of dynamic mech-
anisms to adjust the software architecture and business logic, the preservation of
the coherence and causal connection among requirements, specifications and imple-
mentations, and the validation of changes at runtime.

The self-regulation law stated by Lehman characterizes software evolution as
a self-regulating process. In highly dynamic software systems self-regulation ca-
pabilities are important across the software life cycle, in particular at runtime. One
implication, among others, is the capability of the system to decide when to perform
maintenance and evolution tasks and to assure the evolution process. Self-regulating
software evolution can be realized by enabling software systems with feedback con-
trol mechanisms [147, 212, 553, 622].

Laws continuing growth and declining quality are undeniably connected with the
capabilities of a software system to evolve at runtime. Continuing growth argues for
the need of continually increasing the functionalities of the system to maintain user
satisfaction over time. Similarly, declining quality refers to the need for continually
adapting the system to maintain the desired quality properties.

Regarding declining quality, runtime software evolution can effectively deal with
quality attributes whose preservation depends on context situations [820, 899].



238 Hausi Müller and Norha Villegas

8.5 Control in Runtime Software Evolution

Control is an enabling technology for software evolution. At runtime, control mech-
anisms can be realized using self-adaptation techniques [147]. Feedback control
concerns the management of the behavior of dynamic systems. In particular, it can
be applied to automate the control of computing and software systems [147, 388].
From the perspective of software evolution, feedback control can be defined as
the use of algorithms and feedback for implementing maintenance and evolution
tasks [553, 625].

8.5.1 Feedback Control

Feedback control is a powerful tool for uncertainty management. As a result, self-
evolving software systems based on feedback loops are better prepared to deal with
uncertain evolution scenarios. This is the reason why the BCR of runtime evolution
is higher under uncertain environments (cf. Section 8.3). Uncertainty management
using feedback control is realized by monitoring the operation and environment of
the system, comparing the observed variables against reference values, and adjust-
ing the system behavior accordingly. The goal is to adapt the system to counteract
disturbances that can affect the accomplishment of its goals.

8.5.2 Feedforward Control

Feedforward control, which operates in an open loop, can also benefit the evolution
of software systems. The fundamental difference between feedback and feedfor-
ward control is that in the first one control actions are based on the deviation of
measured outputs with respect to reference inputs, while in the latter control actions
are based on plans that are fed into the system. These plans correspond to actions
that are not associated with uncertain changes in the execution environment. An-
other application of feedforward control is the empowerment of business and sys-
tem administrators to modify system goals (e.g., non-functional requirements) and
policies that drive the functionalities of feedback controllers. Feedforward control
could be exploited using policies and pre-defined plans as the mechanism to con-
trol runtime software evolution tasks. Therefore, feedforward control provides the
means to manage short-term evolution according to the long-term goals defined in
the general evolution process.

The application of feedback and feedforward control to runtime software evolu-
tion can be analyzed in light of the dimensions of software evolution depicted in
Figure 8.3. With respect to the why dimension, feedback control applies to runtime
evolution motivated by malfunctions or changing environments, and feedforward
to runtime evolution originated in changing requirements. The reasons for this dis-



8 Runtime Evolution of Highly Dynamic Software 239

tinction are that in the first case the symptoms that indicate the need for evolution
result from the monitoring of the system and its environment and the analysis of
the observed conditions. In the second case, the evolution stimulus comes from the
direct action of an external entity (e.g., a system administrator). For example, in the
case of SMARTERCONTEXT feedback control allows the monitoring infrastructure
to replace failing sensors automatically, whereas feedforward enables SMARTER-
CONTEXT to deploy new monitoring artifacts or modify the monitoring logic to
address changes in SLAs. With respect to the what dimension, pure control-based
evolution techniques better apply to the modification of the system behavior or its
computing infrastructure (this does not involve the software architecture). The rea-
son is that pure control-based adaptation actions are usually continuous or discrete
signals calculated through a mathematical model defined in the controller [899].

The feedback loop, a foundational mechanism in control theory, is a reference
model in the engineering of SAS systems [622, 772]. Therefore, the implementation
of runtime evolution mechanisms based on feedback control and self-adaptation re-
quires the understanding of the feedback loop, its components, and the relationships
among them. Figure 8.4 depicts the feedback loop model from control theory. To
explain its components and their relationships, we will extend our runtime software
evolution case study described in Section 8.2. These extensions are based on exam-
ples written by Hellerstein et al. [388].

Imagine that the service-oriented e-commerce system that is monitored by the
SMARTERCONTEXT monitoring infrastructure provides the online retailing plat-
form for several companies worldwide. Important concerns in the operation of this
system are its continuous availability and its operational costs. The company that
provides this e-commerce platform is interested in maximizing system efficiency
and guaranteeing application availability, according to the needs of its customers.
Concerning efficiency, the company defines a performance quality requirement for
the service that processes purchase orders. The goal is to maximize the number of
purchase orders processed per time unit. Regarding availability, the business imple-
ments a strategy based on redundant servers. The objective is to guarantee that the
operation of the e-commerce platform upon eventual failures in its infrastructure.
After the system has been in production for a certain time period, the company real-
izes that the system capacity to process purchase orders is insufficient to satisfy the
demand generated by Black Friday and by different special offers placed at strategic
points during the year. To solve this problem, the company may decide to extend
its physical infrastructure capacity to guarantee availability under peak load levels.
Nevertheless, this decision will affect efficiency and costs since an important part
of the resources will remain unused for long periods of time, when the system load
is at its normal levels. To improve the use of resources, the company may decide
to perform periodic maintenance tasks manually to increase or decrease system ca-
pacity according to the demand. However, this strategy not only increases the costs
and complexity of maintaining and evolving the system, but is also ineffective since
changes in the demand cannot always be anticipated and may arise quickly (e.g., in
intervals of minutes when a special discount becomes popular in a social network)
and frequently. Similarly, the strategy based on redundant servers to guarantee avail-



240 Hausi Müller and Norha Villegas

ability may challenge the maintenance and evolution of the system when performed
manually. First, the use of redundant servers to address failures in the infrastructure
must not compromise the contracted capacity of the system. Thus, servers must be
replaced only with machines of similar specifications. Second, this strategy must
take into account the capacity levels contracted with each retailer, which may vary
not only over time, but also from one retailer to another.

The target system represents the system to be evolved dynamically using self-
adaptation (e.g., our e-commerce platform). System requirements correspond to ref-
erence inputs (label (A) in Figure 8.4). Suppose that for the e-commerce company
to guarantee the availability of its platform, it implements the redundant server strat-
egy by controlling the CPU utilization of each machine. For this, it must maintain
servers working below their maximum capacity in such a way that when a server
fails, its load can be satisfied by the others. The reference input corresponds to the
desired CPU utilization of the servers being controlled. The system is monitored
continuously by comparing the actual CPU usage, the measured output (label (B)),
against the reference input. The difference between the measured output and the
reference input is the control error (label (C)). The controller implements a mathe-
matical function (i.e., transfer function) that calculates the control input (label (D))
based on the error. Control inputs are the stimuli used to affect the behavior of the
target system. To control the desired CPU usage, the control input is defined as the
maximum number of connections that each controlled server must satisfy. The mea-
sured output can also be affected by external disturbances (label (E)), or even by the
noise (label (F)) caused by the system evolution. Transducers (label (G)) translate
the signals coming from sensors, as required by the comparison element (label (H),
for example to unify units of measurement). In this scenario the why dimension of
runtime software evolution corresponds to malfunctions, the what to the processing
infrastructure, and the how to self-adaptation based on feedback control.

Controller Target System

Transducer

+
-

Reference 

input

Control

Error

Control

Input

Disturbance

Input

Noise

Input

Measured

Output

Transduced

Output

(B)(A) (C) (D) (E)(F)

(G)

(H)

Fig. 8.4: Classical block diagram of a feedback control system [388]. Short-term
software evolution can be realized through feedback loops that control the behavior
of the system at runtime.



8 Runtime Evolution of Highly Dynamic Software 241

To Probe Further

Readers interested in studying the application of feedback loops to the
engineering of self-adaptation mechanisms for software systems may refer
to [147, 388, 622, 772, 900].

8.5.3 Adaptive Control

From the perspective of control theory, adaptive control concerns the automatic ad-
justment of control mechanisms. Adaptive control researchers investigate parameter
adjustment algorithms that allow the adaptation of the control mechanisms while
guaranteeing global stability and convergence [268]. Control theory offers several
reference models for realizing adaptive control. We focus our attention on two of
them, model reference adaptive control (MRAC) and model identification adaptive
control (MIAC).

8.5.3.1 Model Reference Adaptive Control (MRAC)

MRAC, also known as model reference adaptive system (MRAS), is used to im-
plement controllers that support the modification of parameters online to adjust the
way the target system is affected (cf. Figure 8.5). A reference model, specified in
advance, defines the way the controller’s parameters affect the target system to ob-
tain the desired output. Parameters are adjusted by the adaptation algorithm based
on the control error, which is the difference of the measured output and the expected
result according to the model.

In runtime software evolution, MRAC could applied to the modification of the
evolution mechanism at runtime. Since the controller uses the parameters received
from the adaptation algorithm to evolve the target system, the control actions im-
plemented by the controller could be adjusted dynamically by modifying the ref-
erence model used by the adaptation algorithm. The application of MRAC clearly
improves the dynamic nature of the evolution mechanism, which is important for
scenarios where the why dimension focuses on changes in requirements. Neverthe-
less, MRAC has a limited application in scenarios with high levels of uncertainty
because it is impractical to predict changes in the reference model.

8.5.3.2 Model Identification Adaptive Control (MIAC)

In MIAC, the reference model that allows parameter estimation is identified or in-
ferred at runtime using system identification methods. As depicted in Figure 8.6, the



242 Hausi Müller and Norha Villegas

Fig. 8.5: Model Reference Adaptive Control (MRAC)

control input and measured output are used to identify the reference model (system
identification). Then, the new model parameters are calculated and sent to the ad-
justment mechanism which calculate the parameters that will modify the controller.

Fig. 8.6: Model Identification Adaptive Control (MIAC)

In the context of runtime software evolution, MIAC could support the detection
of situations in which the current evolution strategy is no longer effective. Moreover,
it could be possible to exploit MIAC to adjust the evolution mechanism fully or
semi automatically. Since the reference model used to realize the controller’s actions

    Controller
System Model Target System

Transducer

+
-Reference

Input
Control 

Error

Control 
Input

Model Output

Measured
Output

Transduced
Output

Reference 
Model

Controller Parameters

Adaptation 
Algorithm

PID Controller

System Model
Target System

Transducer

+

-
Reference

Input

Control 

Error

Control 

Input

New Model Parameters

Measured

Output

Transduced

Output

System (Model) 

Identification
Controller

 Parameters

Adjustment

Mechanism



8 Runtime Evolution of Highly Dynamic Software 243

is synthesized from the system, MIAC seems more suitable for highly uncertain
scenarios where the why dimension of software evolution corresponds to changes in
the environment.

8.6 Self-Adaptive Software Systems

Another dimension that has been used to characterize software evolution refers to
the types of changes to be performed in the evolution process [590], for which sev-
eral classifications have been proposed [170, 813]. In particular, the ISO/IEC stan-
dard for software maintenance proposes the following familiar classification: adap-
tive maintenance, defined as the modification of a software product after its delivery
to keep it usable under changing environmental conditions; corrective maintenance,
as the reactive modification of the system to correct faults; and perfective mainte-
nance, as the modification of the software to improve its quality attributes [424].
These maintenance types can be implemented using different self-adaptation ap-
proaches [739]. For example, adaptive maintenance can be realized through context-
aware self-reconfiguration, corrective maintenance through self-healing, and perfec-
tive maintenance through self-optimization. Self-adaptive software (SAS) systems
are software applications designed to adjust themselves, at runtime, with the goal
of satisfying requirements that either change while the system executes or depend
on changing environmental conditions. For this, SAS systems are usually instru-
mented with a feedback mechanism that monitors changes in their environment—
including their own health and their requirements—to assess the need for adapta-
tion [177, 221]. In addition to the monitoring component, the feedback mechanism
includes components to analyze the problem, decide on a plan to remedy the prob-
lem, effect the change, as well as validate and verify the new system state. This feed-
back mechanism, also called adaptation process, is similar to the continuous feed-
back process of software evolution characterized by the change mini-cycle model
(cf. Figure 8.1).

As analyzed in Section 8.3, under highly changing requirements and/or execu-
tion environments, it is desirable to perform evolution activities while the system
executes. In particular when the off-line evolution is expensive. By instrumenting
software systems with control capabilities supported by self-adaptation, it is possi-
ble to manage short-term evolution effectively. Indeed, the activities performed in
the adaptation process can be mapped to the general activities of software evolution
depicted by the change mini-cycle model. Therefore, self-adaptation can be seen as a
short-term evolution process that is realized at runtime. SAS system techniques can
greatly benefit the evolution of highly dynamic software systems such in the case of
the SMARTERCONTEXT monitoring infrastructure of our case study. The monitor-
ing requirements addressed by SMARTERCONTEXT are highly changing since they
depend on contracted conditions that may be modified after the e-commerce system
is in production. Therefore, to preserve the relevance of monitoring functionalities
with respect to the conditions specified in SLAs, SMARTERCONTEXT relies on self-



244 Hausi Müller and Norha Villegas

adaptation to address new functional requirements by evolving the monitoring in-
frastructure at runtime. This section introduces the engineering foundations of SAS
systems and illustrates their application to runtime software evolution.

To Probe Further

The survey article by Salehie and Tahvildari presents an excellent in-
troduction to the state of the art of SAS systems [739]. Their survey presents
a taxonomy, based on how, what, when and where to adapt software systems,
as well as an overview of application areas and selected research projects. For
research roadmaps on SAS systems please refer to [177, 221].

8.6.1 Self-Managing Systems

Self-managing systems are systems instrumented with self-adaptive capabilities to
manage (e.g., maintain or evolve) themselves given high-level policies from ad-
ministrators. and with minimal human intervention [457]. Autonomic computing,
an IBM initiative, aims at implementing self-managing systems able to anticipate
changes in their requirements and environment, and accommodate themselves ac-
cordingly, to address system goals defined by policies [457]. The ultimate goal of
autonomic computing is to improve the efficiency of system operation, maintenance,
and evolution by instrumenting systems with autonomic elements that enable them
with self-management capabilities. Systems with self-management capabilities ex-
pose at least one of the four self-management properties targeted by autonomic com-
puting: self-configuration, self-optimization, self-healing, and self-protection. This
subsection presents concepts from autonomic computing and self-managing sys-
tems that are relevant to the evolution of highly dynamic software systems.

8.6.2 The Autonomic Manager

The autonomic manager, illustrated in Figure 8.7, is the fundamental building block
of self-managing systems in autonomic computing. The autonomic manager can be
used to realize runtime evolution. For this, it implements an intelligent control loop
(cf. Figure 8.4) that is known as the MAPE-K loop because of the name of its el-
ements: the monitor, analyzer, planner, executor, and knowledge base. Monitors
collect, aggregate and filter information from the environment and the target system
(i.e., the system to be evolved), and send this information in the form of symptoms
to the next element in the loop. Analyzers correlate the symptoms received from
monitors to decide about the need for adapting the system. Based on business poli-
cies, planners define the maintenance activities to be executed to adapt or evolve the



8 Runtime Evolution of Highly Dynamic Software 245

system. Executors implement the set of activities defined by planners. The knowl-
edge base enables the information flow along the loop, and provides persistence for
historical information and policies required to correlate complex situations.

The autonomic manager implements sensors and effectors as manageability end-
points that expose the state and control operations of managed elements in the sys-
tem (e.g., the service that processes purchase orders and the managed servers in our
e-commerce scenario). Sensors allow autonomic managers to gather information
from both the environment and other autonomic managers. Effectors have a twofold
function. First they provide the means to feed autonomic managers with business
policies that drive the adaptation and evolution of the system. Second they provide
the interfaces to implement the control actions that evolve the managed element.
Managed elements can be either system components or other autonomic managers.

Sensor Effector

Monitoring Execution

Analysis Planning

Sensor Effector

Symptoms

Change

Request
Apply

Plan

Knowledge

Base

Fig. 8.7: The autonomic manager [457]. Each autonomic manager implements a
feedback loop to monitor environmental situations that may trigger the adaptation
of the system, analyze the need for adapting, plan the adaptation activities, and
execute the adaptation plan.

To Probe Further

One of the most important articles on the notion of an autonomic man-
ager and its applications is the 2006 IBM Technical Report entitled “An
Architectural Blueprint for Autonomic Computing (Fourth Edition)” [417].
In another article, Dobson et al. argue for the integration of autonomic
computing and communications and thus surveyed the state-of-the-art in
autonomic communications from different perspectives [258].



246 Hausi Müller and Norha Villegas

Figure 8.8 depicts the mapping (cf. dashed arrows) between phases of the soft-
ware evolution process defined by the change mini-cycle model (cf. white rounded
boxes in the upper part of the figure) and the phases of the MAPE-K loop imple-
mented by the autonomic manager (cf. gray rounded boxes at the bottom of the
figure). On the one hand, the change mini-cycle model characterizes the activi-
ties of the “traditional” long-term software evolution process which is performed
off-line [936]. On the other hand, the phases of the MAPE-K loop are realized at
runtime. Therefore, autonomic managers can be used to realize short-term software
evolution at runtime. The last two activities of the change mini-cycle model have
no mapping to the MAPE-K loop process. However, this does not mean that these
activities are not addressed in the implementation of self-adaptation mechanisms
for software systems. Validation and verification (V&V) refer to the implementa-
tion of assurance mechanisms that allow the certification of the system after its
evolution. Re-documentation concerns the preservation of the relevance of design
artifacts with respect to the new state of the evolved system. To realize runtime
evolution through self-management capabilities of software systems these activities
must also be performed at runtime. Indeed, these are challenging topics subject of
several research initiatives in the area of software engineering for self-adaptive and
self-managing software systems. In particular, assurance concerns can be addressed
through the implementation of V&V tasks along the adaptation feedback loop [823].
The preservation of the relevance between design artifacts and the evolving sys-
tem can be addressed through the implementation of runtime models [92]. Runtime
V&V and runtime models are foundational elements of SAS systems also addressed
in this chapter.

Request 

Change

Analyze and 

Plan Change

Implement 

Change

Monitor Analyze Plan Execute

Validate and

Verify

Re-

documentation

Fig. 8.8: Mapping the phases of the software evolution change mini-cycle (cf. Fig-
ure 8.1) to the phases of the MAPE-K loop implemented by the autonomic manager
(cf. Figure 8.7)



8 Runtime Evolution of Highly Dynamic Software 247

8.6.3 The Autonomic Computing Reference Architecture

The autonomic computing reference architecture (ACRA), depicted in Figure 8.9,
provides a reference architecture as a guide to organize and orchestrate self-evolving
(i.e., autonomic) systems using autonomic managers. Autonomic systems based on
ACRA are defined as a set of hierarchically structured building blocks composed of
orchestrating managers, resource managers, and managed resources. Using ACRA,
software evolution policies can be implemented as resource management policies
into layers where system administrator (manual manager) policies control lower
level policies. System operators have access to all ACRA levels.

...

M
a

n
u

a
l 
M

a
n

a
g

e
r
s

K
n

o
w

le
d

g
e

 S
o

u
r
c

e
s

Orchestra�ng Managers

Resource Managers

Managed Resources

Fig. 8.9: The Autonomic Computing Reference Architecture (ACRA) [417]

To Probe Further

Over the past thirty years, researchers from different fields have proposed
many three-layer models for dynamic systems. In particular, researchers from
control engineering, AI, robotics, software engineering, and service-oriented
systems have devised—to a certain extent independently—reference archi-
tectures for designing and implementing control systems, mobile robots,
autonomic systems, and self-adaptive systems. Seminal three-layer reference
architectures for self-management are the hierarchical intelligent control
system (HICS) [745], the concept of adaptive control architectures [48],
Brooks’ layers of competence [145], Gats Atlantis architecture [317], IBM’s
ACRA—autonomic computing reference architecture [417, 457], and Kramer



248 Hausi Müller and Norha Villegas

and Magee’s self-management architecture [478, 479]. Oreizy et al. intro-
duced the concept of dynamic architecture evolution with their the Figure 8
model separating the concerns of adaptation management and evolution man-
agement [668–670]. Dynamico is the most recent three-layer reference model
for context-driven self-adaptive systems [900]. The key idea in these layered
architectures is to build levels of control or competence. The lowest level
controls individual resources (e.g., manage a disk). The middle layer aims
to achieve particular goals working on individual goals concurrently (e.g.,
self-optimizing or self-healing). The highest level orchestrates competing or
conflicting goals and aims to achieve overall system goals (e.g., minimizing
costs).

ACRA is useful as a reference model to design and implement runtime evolution
solutions based on autonomic managers. For example, as depicted in Figure 8.10,
the ACRA model can be used to derive architectures that orchestrate the interac-
tions among managers, deployed at different levels, to control the evolution of goals,
models, and systems. Recall from Figure 8.3 that goals, models, and the structure
and behavior of systems correspond to the artifacts that characterize the what di-
mension of runtime software evolution (i.e., the elements of the system susceptible
to dynamic evolution). Runtime evolution mechanisms based on ACRA can take
advantage of both feedforward and feedback control. Feedforward control can be
implemented through the interactions between manual managers (i.e., business and
system administrators) and the autonomic managers deployed at each level of the
runtime evolution architecture (cf. dashed arrows in Figure 8.10). Feedback con-
trol can be exploited to orchestrate the evolution of related artifacts located at two
different levels (i.e., inter-level feedback represented by continuous arrows), and
to implement autonomic managers at each level of the architecture (i.e., intra-level
feedback control represented by autonomic managers). Thick arrows depict the in-
formation flow between knowledge bases and autonomic managers.

The evolution architecture depicted in Figure 8.10 applies to our e-commerce
scenario (cf. Section 8.2). Goals correspond to QoS requirements that must be satis-
fied for the retailers that use the e-commerce platform (e.g., performance as a mea-
sure of efficiency). Models correspond to specifications of the software architecture
configurations defined for each QoS requirement. System artifacts correspond to
the actual servers, components, and services. As explained in Section 8.5, feedback
control can be exploited to evolve the configuration of servers with the goal of guar-
anteeing system availability. For this, autonomic managers working at the top level
of the architecture monitor and manage changes in system goals. Whenever a goal is
modified, these managers use inter-level control to trigger the evolution of models at
the next level. Subsequently, autonomic managers in charge of controlling the evo-
lution of models provide managers at the bottom level with control actions that will
trigger the reconfiguration of the system. In this application scenario feedforward
enables the runtime evolution of the system to satisfy changes in requirements of
retailers. For example, when a new retailer becomes a customer, business adminis-



8 Runtime Evolution of Highly Dynamic Software 249

trators can feed the evolution mechanism with new goals to be satisfied. The defini-
tion of a new goal triggers the inter- and intra-level feedback mechanisms to evolve
models and systems according to the new requirement. When the new requirement
cannot be satisfied with existing models and adaptation strategies, feedforward al-
lows system administrators to feed the system with new ones.

M
a

n
u

a
l 
M

a
n

a
g

e
r
s

K
n

o
w

le
d

g
e

 S
o

u
r
c

e
s

Evolving Goals Managers

Evolving Models Managers

Evolving Systems Managers

Feedforward 

control

Inter-level

Feedback control

Intra-level

Feedback control

K-Base

Information flow

Legend

Fig. 8.10: A runtime evolution architecture based on ACRA supporting the evolution
of software artifacts at the three levels of the what dimension: goals, models, and
system structure and behavior. Dashed arrows represent feedforward control mecha-
nisms, continuous arrows inter-level feedback control mechanisms, autonomic man-
agers intra-level feedback control, and thick arrows the information flow between
autonomic managers and knowledge bases.

8.6.4 Self-Management Properties

In autonomic computing self-managing systems expose one or more of the fol-
lowing properties: self-configuration, self-optimization, and self-protection, self-
healing [457]. These properties are also referred to as the self-* adaptation prop-
erties of SAS systems and concern the how perspective of the runtime software evo-
lution dimensions depicted in Figure 8.3. Of course, they also relate to the why and
what perspectives since runtime evolution methods target evolution goals and affect
artifacts of the system. Self-* properties allow the realization of maintenance tasks
at runtime. For example, self-configuration can be used to realize adaptive mainte-
nance, which goal is to modify the system to guarantee its operation under chang-
ing environments; self-healing and self-protection to realize corrective maintenance,
which goal is to recover the system from failures or protect it from hazardous sit-
uations; and self-optimization to implement perfective maintenance, which goal is



250 Hausi Müller and Norha Villegas

usually to improve or preserve quality attributes. Each self-* property can be fur-
ther sub-classified. For example self-recovery is often classified as a self-healing
property.

Kephart and Chess characterized self-* properties in the context of autonomic
computing [457]. In this subsection we characterize these properties in the context
of runtime software evolution. Table 8.1 presents selected examples of self-adaptive
solutions characterized with respect to the three dimensions of runtime software
evolution depicted in Figure 8.3, where the how dimension corresponds to self-*
properties.

Table 8.1: Examples of self-adaptation approaches characterized with respect to the
why, what and how dimensions of runtime software evolution.

Approach Why What How

Cardellini et al. [166]
Changing environments

System structure

Self-configuration
Dowling and Cahill [261] System structure
Parekh et al. [678] System behavior
Tamura et al. [821] System structure
Villegas et al. [898] Changing requirements Structure/behavior

Kumar et al. [484]
Changing environments System structure Self-optimizationSolomon et al. [786]

Appleby et al. [44]

Baresi and Guinea [73]
Malfunctions

System behavior
Self-healingCandea et al. [156] System structure

Ehrig et al. [270] System behavior

White et al. [917] Malfunctions System behavior Self-protection

Self-Configuration

Self-configuration is a generic property that can be implemented to realize any other
self-* property. Systems with self-configuration capabilities reconfigure themselves,
automatically, based on high level policies that specify evolution goals, as well as
reconfiguration symptoms and strategies. Self-configuring strategies can affect ei-
ther the system’s behavior or structure. Behavioral reconfiguration can be achieved
by modifying parameters of the managed system, whereas structural reconfiguration
can be achieved by modifying the architecture. Self-configuration strategies can be
applied to our exemplar e-commerce system to guarantee new quality attributes that
may be contracted with retailers. This could be realized by reconfiguring the system
architecture at runtime based on design patterns that benefit the contracted quali-
ties [820]. In self-configuration approaches the why dimension of runtime software
evolution may correspond to changing requirements or environments, and malfunc-



8 Runtime Evolution of Highly Dynamic Software 251

tions, whereas the what dimension concerns the system structure or behavior, de-
pending on the way the target system is adapted.

The first group of approaches in Table 8.1 illustrates the application of self-
configuration as the means to runtime software evolution. The prevalent reason for
evolution (i.e., the why dimension) is changing environments, except the approach
by Villegas et al. whose reason for evolution is the need for supporting changes in re-
quirements. Cardellini and her colleagues implemented Moses (MOdel-based SElf-
Adaptation of SOA systems), a self-configuration solution for service selection and
workflow restructuring, with the goal of preserving selected quality attributes under
environmental disruptions [166]. To reconfigure the system, MOSES’s self-adaptive
solution, based on a runtime model of the system, calculates the service composi-
tion that better satisfies the QoS levels contracted with all the users of the system.
This mechanism is based on a linear programming optimization problem that allows
them to efficiently cope with changes in the observed variables of the execution en-
vironment. Downling and Cahill [261], as well as Tamura et al. [820, 821] proposed
self-configuration approaches applied to component-based software systems with
the goal of dealing with the violation of contracted qualities due to changes in the
environment. Both approaches use architectural reflection to affect the system struc-
ture. Self-adaptation approaches can be classified along a spectrum of techniques
that ranges from pure control-based to software-architecture-based solutions [899].
Control-based approaches are often applied to the control of the target system’s be-
havior and hardware infrastructure rather than its software architecture. Parekh et
al. proposed a more control theory oriented approach for self-configuration [678],
where the what dimension of software evolution concerns the system behavior. The
evolution objective in this case is also the preservation of quality properties, and the
evolution is realized through a controller that manipulates the target system’s tuning
parameters. Villegas et al. implemented SMARTERCONTEXT, a context manage-
ment infrastructure that is able to evolve itself to address changes in monitoring
requirements [894, 898]. SMARTERCONTEXT can support dynamic monitoring in
several self-adaptation and runtime evolution scenarios. In particular, they have ap-
plied their solution to support the runtime evolution of software systems with the
goal of addressing changes in SLA dynamically.

Self-Optimization

Perfective maintenance often refers to the improvement of non-functional properties
(i.e., quality requirements and ility properties) of the software system such as per-
formance, efficiency, and maintainability [170]. Perfective maintenance can be real-
ized at runtime using self-optimization. Self-optimizing systems adapt themselves
to improve non-functional properties according to business goals and changing en-
vironmental situations. For example, in our e-commerce scenario the capacity of
the system can be improved through a self-configuration mechanism implemented
to increase the number of services available for processing purchase orders. This op-
eration affects the software architecture of the system, and is performed to address



252 Hausi Müller and Norha Villegas

changing context situations (e.g., critical changes in the system load due to shop-
ping seasons or special offers that become extremely popular). Therefore, the what
dimension concerns the structure of the system, and the why dimension changing
environments that must be monitored continuously.

Examples of self-optimization mechanisms implemented through self-adaptation
are the Océno approach proposed by Appleby et al. [44], the middleware for data
stream management contributed by Kumar et al. [484], and the self-adaptation ap-
proach for business process optimization proposed by Solomon et al. [786]. Appleby
and her IBM colleagues proposed a self-optimization approach that evolves the in-
frastructure of an e-business computing utility to satisfy SLAs under peak-load sit-
uations. In their approach, self-adaptive capabilities support the dynamic allocation
of computing resources according to metrics based on the following variables: ac-
tive connections/server, overall response time, output bandwidth, database response
time, throttle rate, admission rate, and active servers. These variables constitute the
relevant context that is monitored to decide whether or not to evolve the system.
Kumar and colleagues proposed a middleware that exposes self-optimizing capabil-
ities, based on overlay networks, to aggregate data streams in large-scale enterprise
applications. Their approach deploys a data-flow graph as a network overlay over
the enterprise nodes. In this way, processing workload is distributed thus reducing
the communication overhead involved in transmitting data updates. The configura-
tion and optimization of the deployed overlay is performed by an autonomic module
that focuses on maximizing a utility function where monitoring conditions involve
several internal context variables. Solomon et al. proposed an autonomic approach
that evolves software systems to optimize business processes. At runtime, their ap-
proach predicts the business process that better addresses SLAs while optimizing
system resources. The prediction is based on a simulation model whose parameters
are tuned at runtime by tracking the system with a particle filter.

Balasubramanian et al. introduce a mathematical framework that adds structure
to problems in the realm of self-optimization for different types of policies [66].
Structure is added either to the objective function or the constraints of the optimiza-
tion problem to progressively increase the quality of the solutions obtained using the
greedy optimization technique. They characterized and analyzed several optimiza-
tion problems encountered in the area of self-adaptive and self-managing systems
to provide quality guarantees for their solutions.

Self-Healing

Corrective maintenance is a main issue in software evolution. In complex systems it
is particularly challenging due to the difficulty of finding the root cause of failures.
This is in part because the situation that triggers the failure may be no longer avail-
able by the time the analysis is performed. Self-healing systems are equipped with
feedback loops and runtime monitoring instrumentation to detect, diagnose, and fix
malfunctions that are originated from the software or hardware infrastructure. In
our e-commerce runtime evolution example, self-healing applies to the assurance



8 Runtime Evolution of Highly Dynamic Software 253

of the system availability. In particular, the runtime evolution strategy described in
Section 8.5 applies behavioral reconfiguration to control the maximum number of
connections that each server can satisfy, with the goal of having always processing
capacity available to replace faulty servers. In this situation, the what dimension of
runtime evolution corresponds to the behavior of the system, whereas the why corre-
sponds to malfunctions. The third group in Table 8.1 corresponds to runtime evolu-
tion approaches focused on self-healing. Self-healing evolution is usually triggered
by malfunctions, and can affect both the structure (e.g., Candea et al. [156]) and
behavior of the system (e.g., Baresi and Guinea [73], as well as Ehrigh et al. [270]).
Candea et al. built a self-recovery approach that uses recursive micro-reboots to opti-
mize the maintenance of Mercury, a commercial satellite ground station that is based
on an Internet service platform. Baresi and Guinea implemented a self-supervising
approach that monitors and recovers service-oriented systems based on user-defined
rules. Recovery strategies in their approach comprise a set of atomic recovery ac-
tions such as the rebinding and halt of services. Ehrigh et al. implemented self-
healing capabilities using typed graphs and graph-based transformations to model
the system to be adapted and the adaptation actions, respectively.

Self-Protection

Self-protection can be classified as perfective maintenance. Self-protected systems
are implemented with feedback loops to evolve themselves at runtime to counter-
act malicious attacks and prevent failures. White et al. proposed an approach and
methodology to design self-protecting systems by exploiting model-driven engi-
neering [917].

8.7 Self-Adaptation Enablers for Runtime Evolution

The continuing evolution of software systems, and the uncertain nature of execu-
tion environments and requirements have contributed to blur the line between de-
sign time (or development time) and runtime [72, 280]. As a result, activities that
have been traditionally performed off-line must now also be performed at runtime.
These activities include the maintenance of requirements and design artifacts, as
well as the validation and verification (V&V) of software system. This section sum-
marizes self-adaptation enablers from the perspective of runtime software evolution.
We concentrate on requirements and models at runtime as well as runtime monitor-
ing and V&V.



254 Hausi Müller and Norha Villegas

8.7.1 Requirements at Runtime

The concept requirements at runtime refers to the specification of functional and
non-functional requirements using machine-processable mechanisms [748]. As dis-
cussed in Chapter 1 requirements form part of the evolving artifacts in a software
system. Therefore, having requirement specifications available at runtime is partic-
ularly important for evolution scenarios where the why dimension corresponds to
changing requirements, and the what to system goals. Aspects of runtime software
evolution that rely on runtime specifications of requirements include:

• The specification of evolution goals and policies by business and system admin-
istrators.

• The control of evolving goals. For example, by the autonomic managers defined
at the first level of runtime software evolution in the ACRA-based architecture
depicted in Figure 8.10.

• The specification of adaptation properties that must be satisfied by evolution con-
trollers. Adaptation properties refer to qualities that are important for controllers
to operate reliably and without compromising the quality of the evolving system.
Examples of adaptation properties include properties gleaned from control en-
gineering such as short settling time, accuracy, small overshoot, and stability. A
characterization of these properties from the perspective of software systems is
available in [899].

• The monitoring of the execution environment and the system to identify the need
for evolution.

• The preservation of the context-awareness along the evolution process. Runtime
requirement specifications must maintain an explicit mapping with monitoring
strategies to the adaptation of monitoring infrastructures as required by the evo-
lution of the system.

• The management of uncertainty due to changes in requirements. Requirements
are susceptible to changes in the environment, user preferences, and business
goals. Thus, runtime specifications of requirements allow the system to main-
tain an explicit mapping between requirements and aspects that may affect
them [921]. Moreover, they are crucial for the re-documentation phase of the
software evolution process (cf. Figure 8.8), since they ease the maintenance of
the coherence between the actual system implementation and its documentation.

• The validation and verification of the system along the runtime evolution process
(cf. Figure 8.8). Requirements at runtime allow the specification of aspects to
validate and verify [823].

8.7.2 Models at Runtime

The concept models at runtime refers to representations of aspects of the system
that are specified in a machine-readable way, and are accessible by the system at



8 Runtime Evolution of Highly Dynamic Software 255

runtime. In the context of runtime software evolution, runtime models provide the
system with up-to-date information about itself and its environment. Moreover, run-
time models are themselves artifacts that evolve with the system (i.e., design speci-
fications as defined in the what dimension of software evolution, cf. Figure 8.3).

To Probe Further

The models@run.time research community defines a runtime model as
a “causally connected self-representation of the associated system that
emphasizes the structure, behavior, or goals of the system from a problem
space perspective” [52, 92, 115]. In the context of self-adaptation and
runtime evolution, the environment that affects the system in the accom-
plishment of its goals is also an aspect that requires runtime models for its
specification [177, 221, 823, 900].

Runtime models provide effective means to evolve software systems at runtime.
For example, in our e-commerce scenario administrators can modify the runtime
model that specifies the software architecture to be implemented to improve the
capacity of the system for processing purchase orders. The modification of the soft-
ware architecture model will trigger the adaptation of the software system. This
model-based evolution mechanism can be implemented using ACRA as depicted in
Figure 8.10. The middle layer contains the autonomic managers in charge of evolv-
ing runtime models.

Runtime models also support the implementation of runtime evolution mecha-
nisms based on adaptive control. In particular using MRAC and MIAC. In MRAC,
the reference model used by the adaptation algorithm corresponds to a runtime
model that can be adjusted dynamically to change the controller’s parameters (cf.
Figure 8.5). In this case the runtime model is adjusted using feedforward control,
that is by a mechanism external to the system (e.g., a human manager). In MIAC,
the reference model is also a runtime model but adjusted using system identification
methods. That is, the model is automatically adapted based on stimuli generated
within the boundaries of the system (cf. Figure 8.6).

In the context of runtime software evolution, runtime models are important
among others to represent evolution conditions, requirements and properties that
must be assured, monitoring requirements and strategies, and to evolve the system
or the evolution mechanism via model manipulation.

8.7.3 Runtime Monitoring

The why dimension of runtime software evolution characterizes reasons for evolving
the system (cf. Figure 8.3). Runtime monitoring concerns the sensing and analysis



256 Hausi Müller and Norha Villegas

of context information from the execution environment, which includes the system
itself, to identify the need for evolution.

Context can be defined as any information useful to characterize the state of in-
dividual entities and the relationships among them. An entity is any subject that
can affect the behavior of the system and/or its interaction with the user. Context
information must be modeled in such a way that it can be pre-processed after its ac-
quisition from the environment, classified according to the corresponding domain,
handled to be provisioned based on the systems requirements, and maintained to
support its dynamic evolution [896]. Based on this definition of context informa-
tion, and from the perspective of runtime software evolution, runtime monitoring
must support context representation and management to characterize the system’s
state with respect to its environment and evolution goals. Regarding context repre-
sentation, operational specifications of context information must represent seman-
tic dependencies among properties and requirements to be satisfied, evolution and
V&V strategies, and the context situations that affect the evolution of the system.
In highly uncertain situations, an important requisite is the representation of context
such that its specifications can adapt dynamically, according to changes in require-
ments and the environment. Regarding context management, monitoring solutions
must support every phase of the context information life cycle, that is context acqui-
sition, handling, provisioning, and disposal. Context acquisition concerns the sens-
ing of environmental information, handling refers to the analysis of the sensed infor-
mation to decide whether or not to evolve the system, context provisioning allows
evolution planers and executors to obtain environmental data that affect the way of
evolving the system, and context disposal concerns the discard of information that is
no longer useful for the evolution process. Moreover, to preserve context-awareness
along the evolution process, monitoring infrastructures must be instrumented with
self-adaptive capabilities that support the deployment of new sensors and handlers.
For example, in our e-commerce scenario changes in the requirements due to the
need for serving a new customer may imply new context types to be monitored.

8.7.4 Runtime Validation and Verification

Software validation and verification (V&V) ensures that software products satisfy
user requirements and meet their expected quality attributes throughout their life cy-
cle. V&V is a fundamental phase of the software evolution process [936]. Therefore,
when the evolution is performed at runtime, V&V tasks must also be performed at
runtime [823].

Aspects of runtime V&V that require special attention in the context of run-
time software evolution include: (i) the dynamic nature of context situations; (ii)
what to validate and verify, and its dependency on context information; (iii) where
to validate—whether in the evolving system or the evolution mechanism; and (iv)
when to perform V&V with respect to the adaptation loop implemented by evolu-
tion controllers. Researchers from communities related to SAS systems have argued



8 Runtime Evolution of Highly Dynamic Software 257

for the importance of instrumenting the adaptation process with explicit runtime
V&V tasks [221, 823]. In particular by integrating runtime validators and veri-
fiers—associated with the planning phase of evolution controllers, and V&V moni-
tors—associated with the monitoring process. The responsibility of runtime valida-
tors & verifiers is to verify each of the outputs (i.e., evolution plans) produced by
the planner with respect to the properties of interest. The execution of an adaptation
plan on a given system execution state implies a change of the system state. There-
fore, the verification requirements and properties should be performed before and/or
after instrumenting the plan. The responsibility of V&V monitors is to monitor and
enforce the V&V tasks performed by runtime validators & verifiers.

8.8 Realizing Runtime Evolution in SMARTERCONTEXT

Figure 8.11 depicts a partial view of the software architecture of SMARTERCON-
TEXT using Service Component Architecture (SCA) notation. Further details about
this architecture are available in [894]. SCA defines a programming model for build-
ing software systems based on Service Oriented Architecture (SOA) design princi-
ples [665]. It provides a specification for both the composition and creation of ser-
vice components. Components are the basic artifacts that implement the program
code in SMARTERCONTEXT. Services are the interfaces that expose functions to
be consumed by other components. References enable components to consume ser-
vices. Composites provide a logical grouping for components. Wires interconnect
components within a same composite. In a composite, interfaces provided or re-
quired by internal components can be promoted to be visible at the composite level.
Properties are attributes modifiable externally, and are defined for components and
composites. Composites are deployed within an SCA domain that generally corre-
sponds to a processing node.

Component GoalsManager has a twofold function. First, it allows system ad-
ministrators to modify system goals (e.g. SLAs) at runtime. These changes in SLAs
imply modifications in the monitoring requirements thus triggering the runtime evo-
lution of SMARTERCONTEXT. Second, it enables system administrators to define
and modify context reasoning rules as part of the evolution of the monitoring infras-
tructure at runtime. Components ContextManager and DynamicMonitoringInfras-
tructure implement the context monitoring functionalities of SMARTERCONTEXT.
ContextManager includes software artifacts that integrate context information into
context repositories, maintain and dispose existing contextual data, provide intro-
spection support, and update the inventory of components managed dynamically
as part of the runtime evolution process. DynamicMonitoringInfrastructure corre-
sponds to the adaptive part of the monitoring infrastructure, and implements the
context gathering, processing and provisioning tasks. In the case study described in
Section 8.2, these tasks are performed by the components depicted within the dark
gray box in Figure 8.11, ContextGatheringAndPreprocessing and ContextMonitor-
ing. These components are deployed as part of the runtime evolution process to



258 Hausi Müller and Norha Villegas

monitor the new bandwidth quality factor that is added after renegotiating the per-
formance SLA. Component MFLController includes the artifacts that implement the
feedback loop in charge of controlling the runtime evolution of our context manage-
ment infrastructure.

The two AdaptationMiddleware components are an abstraction of FraSCAti [763]
and QoS-CARE [820, 821], which constitute the middleware that provides the struc-
tural adaptation capabilities that allow the evolution of SMARTERCONTEXT at run-
time.

ContextMFL
Monitor

Dynamic Context Management Server

GoalsManager
System

Administrator
GUI

ContractSpec
Generator

MFL-Controller

ContextMFL
Analyzer

ContextMFL
Planner

ContextMFL
Executor

QoSCare
Frascati 

Context
Manager

Introspection

AdaptationMiddlewareContextManager

Target System Server

RDF
Sensor1

MonitoredSystem

RDF
SensorN

DynamicMonitoringInfrastructure

Context
GatheringAnd
Preprocessing

Sensor1
<<Dynamic>>

Context
Monitoring

<<Dynamic>>

monitorong
Logic

context
Variables

sensorType
contracted
MeasureUnit

QoSCare
Frascati 

Abstraction of the 
Frascati middleware and all the 
components of the QoS Care 

adaptation infrastructure

AdaptationMiddleware

Observed
Entity

1..N

Context
GatheringAnd
Preprocessing

SensorN
<<Dynamic>>

SensorType
Contracted
MeasureUnit

1..N

Structural 
Adaptation

Behavioral 
and Structural 

Adaptation

analyzeMonReq
(RDFSpecification,

RDFSpecification):void

planMonitoringStrategy(RDFSpecification,Model)
:void

executeAdaptation
(InputStream[],String,

List<String>,List<String>):
void

registerStrategy
(MonitoringStrategy):

void

pushContext
(String):
boolean

pushContext
(String):boolean

processContext
(String, String):void

provisioning
Context

(String):void

symptom
Event

Context
Monitoring

<<Dynamic>>

processContext
(String, String):void

provisioning
Context (String):void

Deployed into 
the existing 

composite after the 
modification of the 

SLA

gatherRDFSpecification(String,String):boolean

Context
Provisioning

<<Dynamic>>

provisioningContext
(String):void

executeAdaptation
(InputStream[],String,
List<String>,List< String>):void

executeAdaptation
(InputStream[],String,

List<String>,List<String>):void

frequency frequency

Fig. 8.11: SMARTERCONTEXT’s software architecture. The components depicted
within the dark gray box represent software artifacts deployed dynamically as a
result of the runtime evolution process.

8.8.1 Applying the MAPE-K Loop Reference Model

Composite MFL-Controller is an implementation of the MAPE-K loop reference
model that enables our monitoring infrastructure with dynamic capabilities to evolve
at runtime through the adaptation of (i) the set of context reasoning rules supported
by the reasoning engine, (ii) the context monitoring logic that evaluates gathered



8 Runtime Evolution of Highly Dynamic Software 259

context against monitoring conditions, and (iii) the context gathering and provision-
ing infrastructure.

The initial component of composite MFL-Controller is ContextMFLMonitor.
This component receives the SLA specification in XML/RDF format from the user,
creates an RDFSpecification object from the received specification, looks for a pre-
vious version of this SLA, stores the new SLA specification in its knowledge base,
and finally provides component ContextMFLAnalyzer with two RDFSpecification
objects that represent the new and former (if applicable) SLA specifications. SLA
specifications in SMARTERCONTEXT are named control objectives (COb) specifi-
cations since they refer to the goals that drive the adaptive behavior of the system.
[822]. SMARTERCONTEXT realizes COb specifications using Resource Description
Framework (RDF) models [894]. RDF is a semantic web framework for realizing
semantic interoperability in distributed applications [558].

The second component of the MFL-Controller composite is ContextMFLAna-
lyzer, which is in charge of analyzing changes in COb specifications, and specifying
these changes in an RDF model. After analyzing changes in COb specifications, this
component invokes ContextMFLPlanner and provides it with the new COb specifi-
cation and the model that specifies the changes. If there is not previous COb spec-
ification, ContextMFLAnalyzer simply provides ContextMFLPlanner with the new
COb specification and a null Model.

The third component of this MAPE-K loop is ContextMFLPlanner. This com-
ponent is in charge of synthesizing new monitoring strategies as well as changes
in existing ones. We define monitoring strategies as an object that contains (i) a
set of implementation files for the SCA components to be deployed, the specifica-
tion of the corresponding SCA composite, and two lists that specify SCA services
and corresponding references. These services and references allow the connection
of sensors exposed by the monitored third parties to context gatherers exposed by
the SMARTERCONTEXT infrastructure, and context providers’ gatherers exposed
by third parties to context providers exposed by the SMARTERCONTEXT infras-
tructure; or (ii) a set of context reasoning rules to be added or deleted from the
SMARTERCONTEXT’s reasoning engine.

The last component of composite MFL-Controller is ContextMFLExecutor. This
component invokes the services that will trigger the adaptation of the context mon-
itoring infrastructure. The SMARTERCONTEXT monitoring infrastructure can be
adapted at runtime by either (i) changing the set of context reasoning rules, (ii)
modifying the monitoring logic, (iii) deploying new context sensors, and context
gathering, monitoring and provisioning components. The case study presented in
this chapter concerns mechanisms (ii) and (iii).

Table 8.2 summarizes the self-adaptive capabilities of SMARTERCONTEXT that
allow its runtime evolution. The first column refers to changes in COb specifications
that may trigger the evolution of SMARTERCONTEXT at runtime; the second column
presents the type of control action used to adapt the monitoring infrastructure; the
third column describes the evolution effect obtained on SMARTERCONTEXT after
performing the adaptation process.



260 Hausi Müller and Norha Villegas

Table 8.2: Self-adaptive capabilities of SMARTERCONTEXT that support its evolu-
tion at runtime

3pt4pt

Changes in COb
Specifications Control Actions Evolution Effects

Addition/deletion of reason-
ing rules

Parameters (i.e., RDF rules)
affecting the behavior of
SMARTERCONTEXT

Modified reasoning capabili-
ties of the reasoning engine

Addition/deletion of context
providers and/or consumers

Discrete operations affecting the
SMARTERCONTEXT software ar-
chitecture

Changes in the set of de-
ployed context sensing, gath-
ering, and provisioning com-
ponents

Addition or renegotiation
of system objectives

Parameters (i.e., arithmetic and
logic expressions) affecting the
behavior of SMARTERCONTEXT

Changes in existing monitor-
ing logic

Discrete operations affecting the
SMARTERCONTEXT software ar-
chitecture

Changes in the set of de-
ployed context sensing, gath-
ering, monitoring and provi-
sioning components

8.8.2 Applying Requirements and Models at Runtime

To control the relevance of the monitoring mechanisms implemented by SMARTER-
CONTEXT with respect to control objectives (e.g., the contracted QoS specified in
SLAs), it is necessary to model and map these objectives explicitly to monitoring re-
quirements. These models must be manipulable at runtime. This section illustrates
the use of models at runtime to maintain operative specifications of requirements
and evolving monitoring strategies during execution.

Control objectives (COb) specifications allow SMARTERCONTEXT to synthesize
new and change existing monitoring strategies according to changes in contracted
conditions. In the case study described in Section 8.2, COb specifications corre-
spond to SLAs that not only define the contracted QoS and corresponding metrics,
but also specify monitoring conditions associated with metrics, sensing interfaces
and guarantee actions.

8.8.2.1 Control Objectives Specifications

Figure 8.12 represents, partially, a COb specification for the performance SLA that
resulted from the first negotiation in our case study. This specification is a concrete
instantiation of the control objectives ontology for QoS contracts in SMARTER-
CONTEXT. This ontology allows the specification of control objectives (e.g., SLAs)
mapped to elements of both monitoring strategies and adaptation mechanisms rep-



8 Runtime Evolution of Highly Dynamic Software 261

resented by entities derived from the context monitoring strategy (cms) ontology
[894].

throughput

cob:definesQA

cob:hasGuarantee

sla.rdf#SLA001 qa:Performance

qa:Throughput

qa:ThroughputMetric cob:measuredThrough

sla.rdf#ActionGurantee
Throughput

qa:Throughput
MeasureUnit

qa:processingTime

cob:hasVariable

sla.rdf#gathering
ServiceThroughput

sla.rdf#adaptTarget
System

?processingTime
<=2000

cms:hasExpression

cms:gathering
Service cms:sensorType

cms:hasMeasureUnit

cms:hasMeasure
Unit

ms/request

cms:hasLabel

Throughput
Event

cob:triggers
EventType

ApacheSensorThroughput/
gatheringServiceThroughput

cms:consumedByReference
QoSCare/adapttargetsystem

Quality attributes vocabulary  qa: http://smartercontext.org/vocabularies/rdf/qa.rdf
Control objectives specification example    http://smartercontext.org/examples/thesis/sla-performance-SOACaseStudy-V1.rdf

cob:definedByQF

http:SOAGovApp:8080/
AdminGUI

cms:hasTargetsla.rdf#notify
Administrator

cms:provisioning
Reference

cms:hasBinding

Fig. 8.12: A control objectives specification example for the throughput quality at-
tribute defined in the first negotiation of the performance SLA.

Namespace qa: corresponds to the vocabulary that characterizes quality at-
tributes mapped to quality factors in the study. This version of the performance
SLA defines a throughput quality factor, measured through a throughput metric
(qa:ThroughputMetric) that is composed of a single variable (qa:processingTime).
This variable is involved in the metric expression ?processingTime ≤ 2000, mea-
sured in terms of ms/request (as defined in the element qa:ThroughputMeasureUnit)
and associated with a service identified as sla.rdf#gatheringServiceThroughput. The
action guarantee sla.rdf#ActionGuaranteeThroughput associated with the through-
put quality factor is associated with two provisioning references. The first one,
sla.rdf#adaptTargetSystem is to invoke the service in charge of activating the adap-
tation process. The second one, sla.rdf#notifyAdministrator, is to inform business
administrators about the violation of the contracted throughput conditions.



262 Hausi Müller and Norha Villegas

8.8.2.2 Synthesizing Monitoring Strategies at Runtime

In SMARTERCONTEXT monitoring strategies can be generated dynamically from
COb specifications such as the one depicted in Figure 8.12. A monitoring strat-
egy is defined as DynamicMonitoringInfrastructure composite (cf. the architec-
ture depicted in Figure 8.11) that specifies components for context gathering, pre-
processing, monitoring, and provisioning. These strategies are dynamic because
SMARTERCONTEXT supports at runtime the modification of the monitoring logic,
and, enabled by an architectural adaptation middleware, the deployment of new con-
text management components.

Figure 8.13 illustrates, for the case study presented in this chapter, the genera-
tion of the DynamicMonitoringInfrastructure composite (cf. the highlighted com-
posite in the same figure) from the COb specification presented in Figure 8.12.
The RDF subgraphs associated with elements sla.rdf#ActionGuaranteeThorughput
and qa:ThroughputMetric constitute the foundational elements for generating the
DynamicMonitoringInfrastructure composite. The dotted connectors associate ele-
ments of the COb specification with the corresponding architectural artifact. For ex-
ample, the connector labeled with number 1 indicates that component ContextMon-
itoring is dynamically generated from metric qa:ThroughputMetric.

When an existing SLA is renegotiated, the GoalsManager composite generates
a new COb specification. Then, component ContextMFLMonitor defined in com-
posite MFL-Controller gathers this specification, analyzes whether it corresponds
to renegotiated SLA, and if so, generates a new plan with consists of the set of new
context gathering and monitoring components to be deployed. Finally, the Con-
textMFLExecutor component executes the plan to deploy the new components.

8.9 Open Challenges

Many challenges remain open in the engineering of software systems with self-
adaptive capabilities. Cheng et al. [177], as well as de Lemos et al. [221] charac-
terize a comprehensive set of open questions and opportunities that are important
to advance the field. The research roadmap by Cheng et al. focuses on development
methods, techniques and tools required for the engineering of self-adaptive systems.
This first roadmap groups challenges into four main topics: modeling dimensions,
requirements, engineering, and assurances. The research roadmap by de Lemos et al.
complements the first one while focusing on a different set of topics: design space,
processes, decentralization of control loops, and practical runtime verification and
validation (V&V).

Most difficult challenges in self-adaptation relate to the lack of effective meth-
ods for assuring the dynamic behavior of adaptive systems under high levels of
uncertainty. In this realm control science and runtime models are research areas that
deserve special attention. Control science can be defined as a systematic way to
study certifiable V&V methods and tools to allow humans to trust decisions made



8 Runtime Evolution of Highly Dynamic Software 263

Throughput

qa:ThroughputMetric

qa:processingTime

cob:hasVariable

sla.rdf#gathering
ServiceThroughput

?processingTime
<=2000

cms:hasExpression

cms:hasGathering
Service cms:sensorType

ThroughputSensor/
sendSensedData

cms:consumedByReference

qa:Throughput
MeasureUnit

cms:hasMeasureUnit

ms/request

cms:hasLabel

sla.rdf#ActionGurantee
Throughput

sla.rdf#adaptTarget
System

Throughput
Event

cob:triggers
EventType

QoSCare/adapttargetsystem

cms:hasTarget

QoSCare
Frascati 

AdaptationMiddlewareprovisioningContext
(String):void

RDF
Sensor1

TargetSystem
(Third Party)

DynamicMonitoringInfrastructure

Context
GatheringAnd
Preprocessing

Sensor1
<<Dynamic>>

Context
Monitoring

<<Dynamic>>

monitorong
Logic

context
Variables

sensorType
contracted
MeasureUnit

Observed
Entity

pushContext
(String):
boolean

processContext
(String, String):void

provisioning
Context

(String):void

symptom
Event

Context
Provisioning

<<Dynamic>>

frequency

1

Fig. 8.13: Synthesizing monitoring strategies dynamically. The dashed connectors
associate the element from the COb specification to the corresponding architectural
artifact in the architecture.

by self-adaptive systems. In a 2010 report, Dahm identified control science as a
top priority for the US Air Force (USAF) science and technology research agenda
for the next 20 years [212]. Certifiable V&V methods and tools are critical for the
success of self-adaptive systems. One systematic approach to control science for
adaptive systems is to study V&V methods for the mechanisms that sense the dy-
namic environmental conditions and the target system behavior, and act in response
to these conditions by answering the questions what, when and how to adapt [823].

Research on models at runtime study the exploitation of models available while
the system executes. The goal is to provide effective mechanisms for complexity
management in software systems whose behavior evolves at runtime [52]. Run-
time models have been recognized as important enablers for the assurance of self-
adaptive systems. We identified three subsystems that are key in the design of effec-
tive context-driven self-adaptation: the control objectives manager, the adaptation
controller, and the context monitoring system [900]. These subsystems represent
three levels of dynamics in self-adaptation that can be controlled through three feed-



264 Hausi Müller and Norha Villegas

back loops, i.e., the control objectives, the adaptation, and the monitoring feedback
loops, respectively. We argue that runtime models provide abstractions that are cru-
cial to support the feedback loops that control these three levels of dynamics. From
this perspective, models at runtime could be developed specifically for each level
of dynamics to support the control objectives manager, adaptation controller, and
the monitoring system. At the control objectives level, models at runtime represent
requirements specifications subject to assurance in the form of functional and non-
functional requirements. At the adaptation level, models at runtime represent states
of the managed system, adaptation plans and their relationships with the assurance
specifications. At the monitoring level, models at runtime represent context entities,
monitoring requirements, as well as monitoring strategies and their relationships
with assurance criteria and adaptation models.

8.10 Conclusions

This chapter presented fundamental concepts of control and self-adaptive systems
engineering, and their application to runtime software evolution. Departing from
seminal aspects of “traditional” software evolution such as the change mini-cycle,
Lehman’s laws, and dimensions of software evolution, we discussed the complex
dynamics of software systems and the way runtime software evolution can help deal
with this complexity. Self-adaptation can be considered as short-term software evo-
lution. Therefore, foundational concepts of self-adaptive software such as feedback,
feedforward and adaptive control, the MAPE-K loop, ACRA reference architecture
and self-* properties; and enabling mechanisms, such as requirements and models
at runtime, context monitoring, and runtime V&V must be well understood by re-
searchers, engineers and students interested in the evolution of highly dynamic and
continuously running software systems.

It is important to point out that despite its benefits, runtime evolution is not al-
ways the best solution. We analyzed the need for runtime software evolution using
the notion of its benefit cost ratio based on three selected variables: frequency of
changes in requirements and environments, uncertainty, and off-line evolution cost.
As part of this analysis we discussed trade-offs between runtime software evolution
and the complexity added by the software artifacts required to automate software
evolution tasks.

Rather than providing an exhaustive explanation of the application of self-
adaptation and control theory to the engineering of runtime evolution mechanisms,
or present new approaches to solve existing software evolution challenges, the goal
of this chapter is to provide practitioners, researchers, and students with an overview
of how the research work that is being conducted in the field of self-adaptive soft-
ware relates to software evolution.



Chapter 9
Evolution of Software Product Lines

Goetz Botterweck and Andreas Pleuss

Summary. A Software Product Line (SPL) aims to support the development of a
family of similar software products from a common set of shared assets. SPLs rep-
resent a long-term investment and have a considerable life-span. In order to real-
ize a return-on-investment, companies dealing with SPLs often plan their product
portfolios and software engineering activities strategically over many months or
years ahead. Compared to single system engineering, SPL evolution exhibits higher
complexity due to the variability and the interdependencies between products. This
chapter provides an overview on concepts and challenges in SPL evolution and sum-
marizes the state of the art. For this we first describe the general process for SPL
evolution and general modeling concepts to specify SPL evolution. On this base, we
provide an overview on the state-of-the-art in each of the main process tasks which
are migration towards SPLs, analysis of (existing) SPL evolution, planning of future
SPL evolution, and implementation of SPL evolution.

We thank Howell Jordan for comments on an early version of the text. This work was supported,
in part, by Science Foundation Ireland grant 10/CE/I1855 to Lero - the Irish Software Engineering
Research Centre (www.lero.ie).

265
 Springer

. et al. (eds.), E ,
DOI 10.1007/978-3- - - _9, ©  2014
T Mens volving Software Systems

642 45398 4 -Verlag Berlin Heidelberg

www.lero.ie


266 Goetz Botterweck and Andreas Pleuss

9.1 Introduction

A Software Product Line (SPL) aims to support the development of a family of
similar software products from a common set of shared assets [193, 688, 910].
By applying SPL practices, organizations are able to achieve significant improve-
ment in time-to-market, engineering and maintenance costs, portfolio size, and qual-
ity [193]. SPLs have been commercially applied in many industry domains [784]
including embedded systems, web and mobile applications.

SPLs represent a long-term investment and have a considerable life-span. More-
over, SPLs scale to a considerable size and are often embedded in larger structures,
i. e. they consist of subsystems and are part of a larger supersystem. Hence, changes
on an SPL can have a complex impact not only on the whole product family but
also on related systems. When a change is introduced, inconsistencies are unavoid-
able until the change has been propagated through the system and related systems.
Since usually multiple parties are involved and there are multiple changes, this can
easily lead to further inconsistencies. All this needs to be taken into account when
considering potential changes.

Because of the long term perspective, size, and complexity, organizations dealing
with SPLs need to address evolution in a systematic fashion. In this chapter, we give
an overview of such systematic approaches to SPL evolution. Our goal is to provide
the reader with an introduction and given an overview of the field, which allows to
identify more specialized literature that provides more details of a particular aspect.

As a background, Section 9.2 summarizes the main ideas of SPLs and Section 9.3
covers basic concepts for SPL evolution. Then, Section 9.4 gives an overview of ap-
proaches to SPL evolution. More concretely, we cover modeling of SPL evolution,
processes for SPL evolution, migration towards SPLs, as well as the analysis, plan-
ning and implementation of SPL evolution. Section 9.5 concludes the chapter with
an overview of remaining research challenges and final thoughts.

9.2 Software Product Lines

An SPL aims to support the development of a whole family of software products
through systematic reuse of shared assets [193, 688, 910]. By an asset we refer to
any artifact that is part of the software production process, such as an architecture,
a software component, a domain model, a requirements document, a formal specifi-
cation, documentation, a plan, a test case, or a process description [193].

As an example for an SPL consider online shop software: while different on-
line shops usually differ from each other – e. g. in the supported payment methods,
shipping options or article types – their underlying concepts are very common and
can be implemented from reusable assets. Hence, a company offering a spectrum of
online shop applications can use SPL techniques to achieve systematic reuse by (1)
first identifying and creating the required reusable assets and (2) deriving the indi-



9 Evolution of Software Product Lines 267

vidual products (i. e. different online shop implementations) from the assets created
in the first step in a systematic way.

Variability 
Model

Product
Configuration

Variability Implementation

Product 
Configura-

tion

D
o

m
ai

n
 

En
gi

n
ee

ri
n

g
A

p
p

lic
at

io
n

 E
n

gi
n

ee
ri

n
g

SPL Assets

Product

Product 
Derivation

SPL
Architect

Product 
Engineer

SPL 
Requirements

Product 
Requirements

Requirements

Artefact ProcessLegend Data flow

m
ap

p
in

g

Fig. 9.1: Software Product Line Engineering (SPLE) framework

SPL engineering (SPLE) provides concepts on how to develop SPLs. A basic
SPLE framework is shown in Figure 9.1: SPLE approaches often distinguish be-
tween domain engineering and application engineering1. Domain engineering deals
with creating (and maintaining) the whole SPL. First, requirements for the SPL are
elicited and the scope of the SPL is defined, i. e. a definition which potential prod-
ucts are to be supported. The variability between potential products is captured in a
variability model. It defines the available variants, e. g. different payment methods
and shipping options in an online shop, and the allowed combinations. To allow the
creation of products the variants identified in the variability model need to be imple-
mented by reusable SPL assets. A mapping is then specified to define which variant
from the variability model is implemented by which assets.

Figure 9.2 shows example domain engineering models from an fictitious SPL for
online shop software (e-shop). The left-hand side shows the variability model. There
are several variability modeling approaches that could all be applied here, e. g. fea-
ture models [757], decision models [755] or the orthogonal variability model [688].
In this chapter we use feature models as a basis for the discussion. Other approaches
are conceptually similar [208] and could be applied in a similar fashion.

A feature is a “distinguishable characteristic of a concept (e. g. component, sys-
tem, etc.) that is relevant to some stakeholder of the concept” [207]. The example
model shows features of an e-shop such as support for a Catalog, a Search function,
and different ArticleTypes.

1 Some approaches use different terms, like core asset development and product development, but
provide essentially a similar distinction.



268 Goetz Botterweck and Andreas Pleuss

Fig. 9.2: Example domain engineering models: A feature model (left) and associated
reusable implementation assets (right).

A feature model specifies all features supported by the SPL and the dependencies
between them. Features are structured in a tree hierarchy. Additional constraints
express further restrictions on which features can be selected or eliminated when
specifying a concrete product. Mandatory features must always be selected if their
parent is selected while optional features are facultative depending on the choices
of the user. Features can also be grouped into or-groups (if the parent is selected at
least one child must be selected) or xor-groups (if the parent is selected exactly one
child must be selected). Selecting a child feature mandates that its parent is selected
as well.

The feature model shown in Figure 9.2 specifies that each e-shop must support
a Catalog (mandatory feature) which may include a Search function (optional) and
must include an ArticleType feature (mandatory) from which at least one child has to
be selected (or-group).

In addition, cross-tree constraints can be defined between arbitrary features in the
model like requires (selecting a features requires to select another one) or excludes
(two features mutually exclude each other). In the example, a requires constraint
defines that PhysicalGoods always requires ShippingOptions to be selected.

The features in a feature model have to be implemented by reusable assets, rep-
resented by software components on the right-hand side of Figure 9.2. Additional
mappings specify which features are implemented by which assets. In practice,
these mappings are not always one-to-one but more complex. Moreover, features
are usually mapped to different types of assets which in combination specify the
complete implementation, including the product line architecture (PLA [130]), code
fragments, test cases, and documentation.

During application engineering (see Figure 9.1), concrete products are developed
based on the assets provided by the SPL. A product is defined by a product config-

Carrier
Selection

EShop

Search

Shipping
Options

QualityOf
Service

Selection

Shipping
Cost Calcu-

lations

Catalog

Article 
Type

<<requires>>

Legend: optional mandatory or xor

Electronic
Goods

Physical 
Goods

Basic 
Search

Advanced 
Search

Variability
Do

m
ai

n 
En

gi
ne

er
in

g

Shipping

Carrier
Selection

QualityOf
ServiceSelection

Search

Advanced
Search

Catalog

Implementation

EShop

feature

asset mapping



9 Evolution of Software Product Lines 269

Fig. 9.3: Example product definition during application engineering: A product con-
figuration (left) and the resulting product implementation (right).

uration, which resolves the variability by selecting from the given variants while
considering the defined constraints. In the case of a feature model, this is done by
selecting or eliminating features. Based on the product configuration and the feature
mappings it is then possible to derive the resulting product (product derivation).

Figure 9.3 shows an example for one particular product configuration created
during application engineering. Here, a concrete product of the example SPL is
defined by selected and eliminated features (left-hand side of Figure 9.3). The sam-
ple product configuration defines an e-shop that supports AdvancedSearch, Physical-
Goods, and ShippingOptions with QualityOfServiceSelection while BasicSearch, Elec-
tronicGoods and CarrierSelection have been eliminated from the product. The corre-
sponding implementation for this product (right-side of Figure 9.3) is then derived
based on the mappings defined during domain engineering. For instance, the com-
ponent implementing AdvancedSearch is included into the product implementation
while the component Search, which implements BasicSearch, is eliminated.

Often, SPL concepts are combined with techniques from model-driven software
development [795]. In a model-driven SPL, the product derivation is realized by
model transformations that, ideally, generate the complete product together with all
documentation, test cases, etc., in a fully automated way [349, 901]. However, a
more extensive use of modeling frameworks, as required for automation, can also
lead to a higher maintenance effort [238]. For instance, changes in a metamodel
might require all existing model instances to be migrated (co-evolution, see Chap-
ter 2).

Carrier
Selection

EShop

Search

Shipping
Options

QualityOf
Service

Selection

Shipping
Cost Calcu-

lations

Catalog

Article 
Type

<<requires>>

Electronic
Goods

Physical 
Goods

Basic 
Search

Advanced 
Search

Variability
Do

m
ai

n 
En

gi
ne

er
in

g

Shipping

QualityOf
ServiceSelection

Advanced
Search

Catalog

Implementation

EShop

Legend: selected eliminated



270 Goetz Botterweck and Andreas Pleuss

9.3 Characteristics of SPL Evolution

SPL evolution faces several challenges caused by the characteristics of SPLs:

• Long life-span. On the one hand, an SPL is a long-term investment that pays off
the more, the more products are derived from the SPL. On the other hand, an SPL
must evolve to reflect new and changed requirements for its products. Hence, an
SPL will often evolve to a greater extent and over a longer period of time than
the single products.

• Large size and complexity. As an SPL represents a whole family of products, it
is of larger size and complexity than its individual products. Usually, multiple
teams are involved in its creation and maintenance. Hence, knowledge can be
more distributed and evolution of different the parts of an SPL can happen at
different speeds.

• More interdependencies. Due to the systematic reuse in an SPL, there are more
interdependencies between software assets. For instance, changes on the SPL
level (e. g. a bug fix in a reusable asset) can affect many individual products
created based on the SPL, and new requirements on individual product level can
require changes with the whole SPL (e. g. substituting a reusable asset).

Fig. 9.4: SPL levels and assets subject to evolution.

The additional complexity in an SPL is partly caused by the different abstrac-
tion layers that have to be considered together (see Figure 9.4). In an SPL, one has
to distinguish between the SPL (upper part in Figure 9.4) and its products (lower
part). In addition, there can also be multiple SPLs to manage complex product
portfolios [753], for instance, (i) to modularize development of very large systems
into multiple SPLs with a shared architecture (program of product lines [230]),
(ii) to handle very large variability by specifying main variability decisions on a
top-level SPL while lower level SPLs specialize this further (hierarchical product

Requirements

Variability

Product-
specific

Requirements

Variability

Implementation

Common Variable

Derived

Products

SPLs

C
h

an
ge

 p
ro

p
ag

at
io

n

Legend

Implementation



9 Evolution of Software Product Lines 271

lines [130]), or (iii) to support reuse across multiple domains by multiple SPLs that
share some assets (product populations [873]). Such very large systems are some-
times developed not only by the organization’s internal developers but by a whole
developer community, including external developers and third-party contributors,
leading to so-called software ecosystems (see Chapter 10).

SPLs and products, as any other software, can be defined by assets on different
levels of abstraction, from requirements to the final implementation. As indicated in
Figure 9.4, different abstraction levels need to be considered both in the SPL and its
products: on SPL level there are the requirements and implementation for the whole
SPL. In addition, variability between the products is defined. On product level there
are the product requirements that influence the product-specific variability resolu-
tion (i. e. the product configuration) and the corresponding implementation.

To analyze the impact of evolutionary changes, the assets in an SPL can be further
classified into three categories:

• Common assets are defined on the SPL level. They are part of all products and are
hence directly derived from the SPL (derived assets are represented by shaded
areas in Figure 9.4). For instance, in the example from Figure 9.2, the feature
Catalog is defined as mandatory child feature of each e-shop. Hence, the feature
Catalog, the associated requirements, and the corresponding asset Catalog are by
definition part of every product.

• Variable assets are defined on the SPL level as well. They are part of some prod-
ucts depending on each product’s configuration. Hence, on product level, there
must be a variability decision about each variable asset (e. g. selecting or elimi-
nating a feature) which is driven by the requirements for the particular product.
The assets within the product’s implementation are then derived according to
this decision (i. e. including or excluding variable assets into the product). For
instance, the Search feature is optional in the e-shop example, so it has to be de-
cided on product level (based on the product’s requirements) whether to include
it or not.

• Product-specific assets are used to add functionality to individual products, e. g.
some customer-specific functionality not supported by the reusable assets in the
SPL. Hence, product-specific assets and their corresponding requirements reside
on product level only and there is no variability configuration for them. An exam-
ple in the e-shop might be a customized search function optimized for a specific
article type. Usage of product-specific assets should ideally be minimized within
an SPL approach as it diminishes reuse and increases maintenance effort. How-
ever, depending on the market and the business model it is not always possible to
reject product-specific requirements.

Considering Figure 9.4, evolution can occur on three different levels (see [753,
809]). On the level of the set of SPLs, new SPLs can be added or deprecated ones
can be deleted. In addition, SPLs can be merged, for instance, due to an acquisition
or if SPLs become similar over time [753]. SPLs can also be split, e. g. when parts
of the SPL are likely to evolve in a different direction in the future [809].



272 Goetz Botterweck and Andreas Pleuss

On the level of the set of products, new products can be added (by product
derivation) and old deprecated ones can be deleted. Basically, adding new products
should not require any changes to the SPL or other products. However in practice,
as pointed out in [407], new feature combinations in a product configuration can
sometimes lead to unforeseen effects in the implementation (e. g. feature interac-
tions [133]) which then require implementation changes.

On the level of single assets, assets can be added, deleted, or modified. Changes
have to be propagated towards lower levels of abstraction (e. g. from requirements
to implementation). Changes on common assets are performed on the SPL level and
affect all derived products. Changes on variable assets that are performed on the SPL
level affect all products where the respective variants are selected. On the product
level, variable assets are added or removed by changing the product configuration.
Changes on product-specific assets affect only individual products.

Fig. 9.5: Types of changes on assets (based on [753]).

A specific type of change in SPLs is “moving” assets between the categories
common, variable, and product-specific. Figure 9.5 shows the different types of
changes and their impact (based on [753]). For instance, common functionality can
be made variable if it should be excluded from some products. Usually this requires
changing the implementation (to make it variable) which then affects all products.
Making a variable asset common influences at least those products that did not con-
tain the asset before. Making a variable asset specific or a product-specific asset
generic influences only the specific product.

Of course, changes on SPL level take only effect on an existing product if the
product is re-derived, e. g. to release a new version of the product that includes the
changes made on SPL level. It depends on the company strategy and the impor-
tance of a change (e. g. important bug-fixes) if and when changes on SPL level are
propagated to existing products.

To summarize this section, we can say that evolving an SPL can be particularly
complex as one has to consider (1) both the SPL and its products and (2) the vari-
ability of the assets.

make 
specific

make 
generic

make 
variable

make 
common

Commonality Variability
Product-
specific

modify 
commonality

modify 
variability

product-local 
change

Legend impact on individual productsimpact on multiple productsimpact on all products



9 Evolution of Software Product Lines 273

9.4 Approaches to SPL Evolution

In this section we will give an overview of the state-of-the-art in SPL evolution. To
give the reader some orientation, Figure 9.6 shows a graphical summary of the areas
that we will cover.

Fig. 9.6: Overview of activities and aspects in the evolution of SPLs.

First, we will address general concepts, i. e. process models for SPL evolution
(Section 9.4.1) and modeling techniques for SPL evolution (Section 9.4.2). We will
then roughly follow a process of evolution, as follows: An SPL is often initiated
through the migration of existing products into an SPL (Section 9.4.3). A second
step in initiating SPL evolution is the analysis of past evolution (Section 9.4.4),
which leads to an overview of which changes happened in previous evolution steps.
Subsequently, SPL evolution is performed by iterations of planning future evolution
(Section 9.4.5), and implementing it (Section 9.4.6). In each iteration, the evolution
plan is updated and the change relative to the earlier version implemented to reach

ProductProductProductProduct

SPLSPL

Evolution 
Plan

Planning

9.4.5

Implemen-
tation

9.4.6

SPL

Analysis

Experiences 
and 

Feedback

9.4.4

Processes for 
SPL Evolution

Modeling SPL 
Evolution

9.4.1 9.4.2

Migration

Product

9.4.3

Analysis 
Results

Business Goals and 
External Triggers for 

Evolution

SPL
Do

m
ai

n 
En

gi
ne

er
in

g
Ap

pl
ic

at
io

n 
En

gi
ne

er
in

g

Product

Artifact Process Data
flow

Legend

General 
concepts

(Concepts, Artifacts, and 
Processes related to)
SPL Engineering

(Concepts, Artifacts, and 
Processes related to)
Software Evolution

9.4.x

Section in this 
chapter



274 Goetz Botterweck and Andreas Pleuss

the next evolution step of the SPL. Experiences and feedback are then used as input
to the planning of the next iteration.

9.4.1 Process Models for SPL Evolution

In the context of SPL evolution, the literature provides various suggestions for pro-
cesses and methods. These range from evolution-oriented extensions of general
SPLE frameworks [85] to methods that address a particular aspect of SPL evolu-
tion, e. g. the mining of legacy assets [655].

9.4.1.1 Process framework for SPL evolution

We will now introduce a process framework for SPL evolution, which is based on
the generic framework for SPLE (Figure 9.1) introduced earlier in Section 9.2. We
extend and refine that to cover the specific aspects of SPL evolution (see Figure 9.7).

Just like in the basic SPLE framework, we vertically distinguish activities for
the creation of the product (domain engineering) and the derivation of products
(application engineering). Horizontally, we distinguish various types of artifacts,
for instance, requirements, features (as a common type of variability specification),
and implementation. On a higher level, i. e. method engineering, we deal with the
set-up and configuration of a process and organizational structures (the method) in
the other two layers.

To handle evolution, this framework includes activities taking care of adaptation
and change. This begins with the initial setup through method configuration Ê ac-
cording to the particular context. Here we have to take into account specific method
requirements given by the context, which influence the process structures on do-
main engineering and application engineering level. For instance, in domains that
deal with co-design by various disciplines (e. g. mechanics, electronics, software)
we might have to execute and synchronize multiple parallel design activities. Sim-
ilarly, in domains with regulated software we might have to include special review
activities into the process. These variations are not shown in Figure 9.7, but give
examples of why an adaptation of the process might be necessary.

Once this setup has been completed, the activities of domain engineering and ap-
plication engineering are performed. As their main objectives these activities aim to
create the SPL (in domain engineering) and derive products from it (in application
engineering). However, as side results they also initiate change and evolution: The
activities of product configuration and product derivation yield information on mis-
matches and suggested changes, e. g. when the current SPL is not able to cover all
product-specific requirements. In some cases the engineers might decide to imple-
ment product-specific assets to overcome these gaps between the current capabilities
of the SPL and product-specific requirements.



9 Evolution of Software Product Lines 275

Fig. 9.7: Process framework for SPL evolution.

Experiences 
with Method

T4

M
et

ho
d 

En
gi

ne
er

in
g

Domain 
Analysis

Partial
Product 

Implementation

Feature
Model

Feature
Configuration

Features Implementation

Product
Configuration

Do
m

ai
n 

En
gi

ne
er

in
g

Ap
pl

ic
at

io
n 

En
gi

ne
er

in
g

Product 
Derivation

M
ap

p
in

gs

SPL 
Requirements
and Domain 
Knowledge

Product-specific 
Requirements 

Domain 
Implemen-

tation

Requirements

Method 
Requirements

Process and Organisational Structure

SPL 
Implementation

(Assets)

Method 
Configuration

Product
Usage and 
Evaluation

Experiences 
with Product / 

SPL

Method
Usage and 
Evaluation

Method
Evolution

SPL Evolution

Product 
Evolution

1

2

3

4

6

7

Product-specific 
Implementation

Product-specific 
Assets

Product 
Assembly and 

Integration

Product 
Implementation

Promotion to 
SPL Assets

Business Goals 
and External 
Triggers for 
Evolution

Mismatches 
and Suggested 

Changes

5

Product
Evolution

Plan

SPL Evolution
Plan

T1

T3T2



276 Goetz Botterweck and Andreas Pleuss

Eventually, application engineering yields product implementations. Then, prod-
uct usage and evaluation Ë results in experiences with the product and the SPL
respectively. These experiences combined with mismatches and suggested changes
provide input to product evolution Ì as well as SPL evolution Í. The latter often
includes the promotion of product-specific assets to SPL assets Î. The execution
of domain engineering and application engineering, i. e. method usage and evalua-
tion Ï yields experiences with the method and can trigger method evolution Ð, e. g.
adaptation of the process and organizational structure. For instance, it might be de-
cided that to improve product quality additional testing activities will be introduced
on application engineering level.

9.4.1.2 Evolution strategies

The process framework in Figure 9.7 shows multiple ways how SPLs evolve: evo-
lution can take place on different levels and be caused by different triggers.

Concerning the level of evolution, there is SPL Evolution (Í in Figure 9.7) and
product evolution Ì. A specific case is when product-specific assets are promoted to
SPL level Î. (Note that this also complies with the discussion in Section 9.3 where
making a product-specific asset generic corresponds to promotion to SPL level.)

Concerning triggers for evolution, there are business goals and external trig-
gers T1 for evolution, mismatches and suggested changes T2 resulting from product
derivation, and experiences with the product/SPL T3 (leaving aside method evolution
here).

Deelstra et al. [230] and Schmid et al. [754] describe several SPL evolution
strategies that commonly occur in practice. They can easily be related to our process
framework by classifying them according to the level of evolution and the triggers.
Figure 9.8 shows a taxonomy of evolution strategies where these strategies (or sit-
uations) are classified according to its trigger and the level of evolution on which it
takes place. We describe each situation in the following.

Fig. 9.8: Categorization of SPL evolution strategies with respect to trigger and level
of evolution (from Figure 9.7).

Promotion to 

SPL Assets

Trigger (see Fig. 7) Strategy / Situation Level of Evolution

SPL Evolution

Product Evolution

Proactive evolution

Reactive evolution

Branch-and-unite

“Bulk”

Maintenance

Business goals and external 
triggers for evolution

Mismatches and 
suggested changes

Experiences with product / 
SPL

T1 4

T2

T3

3

5

triggered by level ofLegend



9 Evolution of Software Product Lines 277

Proactive evolution refers to proactively planning future requirements and adding
them on the SPL level. This is a pure domain engineering activity where evolution
planning is based on business goals and external triggers for evolution (such as
market changes).

There are three common ways how to deal with mismatches and suggested
changes that arise during product derivation:

Reactive evolution refers to integrating new requirements that arise during prod-
uct derivation directly into the SPL, e. g. as variable assets. This means that reactive
evolution is performed on SPL level. The advantages are the immediate possibility
for reuse in future products and the avoidance of product-specific implementations
or multiple branches. Highly automated approaches, like model-driven SPLs, of-
ten aim for this strategy to avoid product-specific implementations so that complete
products can be derived automatically from the SPL. The disadvantages are required
frequent changes on SPL level and the potential need to co-evolve already existing
products. Also, creating product-specific functionality as a reusable asset can result
in extra effort.

In the branch-and-unite approach, product-specific requirements are initially
handled on product level, e. g. by creating a new product-specific branch. Later on,
the product-specific branches can then be reunified with the SPL after releasing the
product (promotion to SPL assets). In this way, the frequency of changes to the
overall SPL can be reduced and emphasis can be put on the concrete product first.
On the other hand the merge can become complex. A related concept is the grow-
and-prune model which states that in large systems quick reaction to changes often
requires copying and specialization (grow) and later on needs to be cleaned up by
merging and refactoring (prune) [284].

The bulk situation occurs when an organization ends up with too many branches
by evolving on product level only. This can lead to quality and maintenance prob-
lems and major effort is required to reintegrate the branches into the SPL.

Beside the strategies above that mainly deal with changing requirements, there
are also other maintenance activities caused by experiences with the product and
the SPL, like refactorings and correction of bugs that occur over time. The level of
evolution then depends on whether the assets to be changed reside on SPL level or
are product-specific.

9.4.1.3 Other process models

All SPLE frameworks described in the literature (e. g. [193, 688]) cover the main
SPLE activities (process and organizational structure in the center of Figure 9.7).
Some approaches extend this to address evolution on various levels (activities
around process and organizational structure).

For instance, Bayer et al. [85] present PuLSE, a generic framework for SPLE,
including the PuLSE-EM module, which covers evolution and maintenance. Based
on information provided as a result of other PuLSE modules, PuLSE-EM accumu-
lates knowledge and history information (e. g. a product configuration history and



278 Goetz Botterweck and Andreas Pleuss

PLA history) and restarts other modules (for scoping, domain engineering, and ap-
plication engineering) with adaptations.

Similarly, the ConIPF method suggested by Hotz et al. [407] considers “mis-
matches” arising during product configuration and realization on the application
engineering level and feeds them back into domain engineering where they are as-
sessed and required changes are identified. These required changes are processed by
an “evolution and development” activity, which leads to evolved and new assets as
well as updates in configuration models.

There are several other SPLE methods that describe process structures for SPL
evolution, e. g. [9, 176, 339, 809]. Further approaches which are more focused on
the migration of existing groups of products towards SPLE are discussed later in
Section 9.4.3.

9.4.2 Modeling Evolution and Change

A prerequisite to handle evolution in a systematic way is the ability to explicitly
specify evolutionary changes. This is required during analysis of the evolution his-
tory of an SPL (to capture and specify observed changes), during planning of future
evolution (to specify potential future changes and reason about them), and during
implementation of evolution (to specify the changes to be realized).

On a lower abstraction level, like source code files, changes can be handled with
the same tools as for single product development, like source code versioning sys-
tems. However, the higher the abstraction level (e. g. to view the evolution of an SPL
as a whole), the more SPL specifics, like variability, need to be taken into account.

In earlier work in [134, 135, 686] we suggested feature models as a suitable
means of abstraction to describe the overall evolution of an SPL, as features repre-
sent an SPL in a way that is meaningful to different stakeholders. Hence, evolution
of an SPL is represented as a sequence of feature models over time. We will now
first introduce an example and then discuss concepts for modeling evolution and
change on this base.

Figure 9.9 shows a small example from the e-shop domain. It shows the four ver-
sions of the SPL’s feature model at four different points in time, including historic
evolution (2012) and planned future evolution steps (2014 and 2015). In this exam-
ple, the version in 2012 supports only a Catalog and ShippingOptions with optional
support for CarrierSelection. The version in 2013 (today) has been extended by sup-
port for Search which is available either as BasicSearch or, with extra costs, as an
AdvancedSearch that supports a more intelligent search algorithm. The planned ver-
sion for 2014 will distinguish between ElectronicGoods (which can be either shipped
or downloaded directly) and PhysicalGoods that need to be shipped. Hence, Shipping-
Options has become an optional feature and a cross-tree constraint has been added.
In this version, AdvancedSearch will not be supported as it requires additional time
to integrate it with the changes on Catalog. For 2015 it is planned to support an



9 Evolution of Software Product Lines 279

2014

20132012

2015

Services

Article 
Type

EShop

Catalog
Shipping 
Options

Carrier 
Selection

Electronic 
Goods

Physical 
Goods

Basic 
Search

Advanced 
Search

Search

<<requires>>

EShop

Catalog
Shipping 
Options

Carrier 
Selection

Basic 
Search

Advanced 
Search

Search

EShop

Catalog
Shipping 
Options

Carrier 
Selection

Article 
Type

Search

EShop

Catalog
Shipping 
Options

Carrier 
Selection

Electronic 
Goods

Physical 
Goods

<<requires>>

Basic 
Search

Fig. 9.9: Evolution of an SPL as a sequence of feature models

additional article type Services and to support AdvancedSearch again for all article
types.

The remainder of this section describes how to model the changes between differ-
ent versions of an artifact using the example of feature models above. Analogous to
other areas like metamodel evolution (Chapter 2), there are two basic ways to spec-
ify such changes: 1) by modeling the differences between them (Section 9.4.2.1)
or 2) by describing the performed modifications in terms of change operators (Sec-
tion 9.4.2.2). Finally, Section 9.4.2.3 provides a more detailed example using a com-
bined approach.

9.4.2.1 Difference Models

Approaches which are specifying the differences between versions work similar to
approaches for program differencing [470] or common source code versioning sys-
tems that determine differences between versions of text-based files based on heuris-
tics on the level of lines or characters. On the level of models, a difference model can



280 Goetz Botterweck and Andreas Pleuss

be used that contains the changes between two versions in terms of added, removed,
and modified elements.

Figure 9.10 shows an example for the evolution step from 2013 to 2014 in our
e-shop example: the xor-group and its child feature AdvancedSearch has been re-
moved. The features ArticleType, ElectronicGoods, and PhysicalGoods and their rela-
tionships and constraints have been added. In addition, ShippingOptions has been
modified to become an optional feature. Context elements (represented by light
color in Figure 9.10) are used to specify the locations in the model, e. g. where
to add new elements.

Article 
Type

Catalog
Shipping 
Options

Electronic 
Goods

Physical 
Goods

<<requires>>

Added Element

Removed Element

Context Element

Legend:

Advanced 
Search

Search

Modified Element

+
–

*

+

+ +
+

+

*

–
–

Fig. 9.10: Difference model for the evolution step from 2013 to 2014.

Several approaches have applied such concepts in context of SPLs: Acher et
al. [5] provide a formal approach to identify the syntactic and the semantic differ-
ence between two feature models. Schäfer et al. [749] define a concept of difference
models (called delta models) and apply it e. g. to specify multiple products in terms
of differences to a core product. Hendrickson et al. [390] use difference models
(called change sets) and relationships between them to specify the architecture of
different products by combinations of change sets.

At this point, an important observation can be made: Specifying changes is not
only relevant in context of evolution but also in context of variability, e. g. to specify
the differences between multiple product variants in an SPL. In context of SPLE the
latter is called variability in space while evolution can be considered as variability
in time. Hence, it is not only possible to apply change modeling concepts to describe
variability in an SPL (like Schäfer et al. and Hendrickson et al. mentioned above)
but also to apply variability modeling concepts to specify evolution. An approach
that makes use of this idea is EvoPL described later in Section 9.4.2.3.

9.4.2.2 Change Operators

The second basic concept to specify changes are change operators. A change op-
erator describes an operation performed on a model to achieve a change. There are
three atomic change operators add, delete, and modify that have the same semantics



9 Evolution of Software Product Lines 281

as the elements in difference models. However, the main difference is the possibil-
ity of more complex operators that allow to express richer semantics about a change
like “split feature f into f1 and f2”.

Semantically rich operators are usually defined for a specific modeling concept
(e. g. feature models or metamodels, see Chapter 2) and can also be optimized for a
specific purpose. For instance, in context of SPL refactoring Alves et al. [25] define
a set of change operators on feature models that do not change the feature model’s
semantics (e. g. “convert or to optional” or “push up node”). Seidl et al. [761] define
change operators in context of implementing SPL evolution which are discussed
later in Section 9.4.6.

9.4.2.3 Combined Approach

An approach that combines concepts of difference models and change operators to
model long-term evolution of an SPL is EvoPL [686]. It also leverages the idea of
considering evolution as variability in time introduced above.

EvoPL focuses on feature models as main artifact to manage SPL evolution. The
approach is intended to be used for both, analyzing past evolution (see Section 9.4.4)
and planning future evolution (see Section 9.4.5).

In EvoPL, each feature model version is composed of model fragments. Fig-
ure 9.11a shows the fragments for the evolution in Figure 9.9. A fragment clusters
related feature model elements that are added or removed only together during the
same evolution step. The purpose of fragments is to raise the level of abstraction
by representing multiple related elements. Each fragment has a unique name and
is stored together with a context element (the parent feature) specifying its location
within the overall feature model. In this way, each feature model at a certain point
in time can be described as a composition of fragments.

Changes within fragments, e. g. changing a feature from mandatory to optional
or adding a cross-tree constraint, are specified by change operators (called evoOper-
ators, see [686] for details) associated with the fragments. For instance, Shipping-
Options are changed from mandatory to optional in 2014 which is defined by a
change operator <ShippingOptions optional> that is applied to the versions for 2014
and 2015.

The overall evolution is then specified using the concept of “variability in time”:
The fragments and evoOperators themselves are stored in a specific kind of fea-
ture model (called EvoFM) that specifies their hierarchy and other dependencies
between them. Each evolution step can then be represented by a “configuration” of
the EvoFM, i. e. a selection of fragments and evoOperators that together make up
a feature model. The evolution of a feature model can, hence, be represented by a
sequence of EvoFM configurations.

We visualize this by a representation that we call evolution plan (Figure 9.11b).
The horizontal dimension represents the time line; each column represents an evo-
lution step. The vertical dimension represents the EvoFM; each row represents an
EvoFM element, i. e. a fragment or an evoOperator (the latter denoted in angle



282 Goetz Botterweck and Andreas Pleuss

Services

Article 
Type

EShop

Catalog
Shipping 
Options

Carrier 
Selection

Electronic 
Goods

Physical 
Goods

Basic 
Search

Advanced 
Search

Search

<<requires>>

Search

Advanced 
Search

EShop

Services
Article Type

(a) Clustering into fragments

2012 2013 2014 2015Fragment

Time

EShop

Search

<ShippingOptions optional>

Current

Advanced Search

Services

Article Type

(b) Evolution plan

Fig. 9.11: Fragments and resulting evolution Plan

brackets). Each cell in the plan represents a configuration decision, i. e. whether
the fragment or evoOperator is selected (i. e. applied) in that version or not.

For instance, the evolution plan in Figure 9.11b represents the evolution steps
from Figure 9.9: In 2012, only the fragment EShop is selected (applied). In 2013, the
fragments EShop, Search and AdvancedSearch are applied. In 2014, AdvancedSearch
is no longer applied while ArticleType and the change operator <ShippingOptions
optional> are applied. In 2015 all fragments and change operators are applied.

Figure 9.12 shows the overall workflow with EvoPL: A model transformation
enables to automatically extract an evolution plan from a given sequence of fea-
ture models. The evolution plan is then used to plan future evolution by adding
new evoConfigurations (and, if necessary, new fragments and evoOperators). Please
note that fragments are never modified (as evoOperators are used instead) except
for splitting fragments which can become necessary if in a future evolution step a
subset of a fragment should be removed. Once planning of future versions has been
finished, another model transformation supports automated composition of the re-
sulting feature models. Due to the incremental nature of the model transformations
it is possible at any time to update the evolution plan to include changes on feature
model level and, in turn, to re-generate feature models after the evolution plan has
been modified.



9 Evolution of Software Product Lines 283

FM 1

Legend:
manual

automated
1 2 3 4

a
b

f

c

e
d

1 2 3 4
a

b

f
g

c

e
d

5

FM 2 FM 3 FM 4 FM 5

Fig. 9.12: Workflow and transformations on feature model level with EvoPL

An advantage of the evolution plan representation is its degree of abstraction.
As demonstrated in [686], abstraction into fragments can significantly reduce com-
plexity when dealing with large evolving feature models while the evolution plan
provides a comprehensive overview of the different versions. Another advantage of
the approach is its support for order-independent planning. Changes are not spec-
ified relative to the previous version (or a common baseline) but by selecting or
eliminating fragments and change operators. This enables incremental planning of
multiple versions in parallel or specifying a later version before its predecessors
have been fully defined.

9.4.3 Migration to SPLE

In practice, the introduction of SPLE often arises when after some success in a
market segment a company finds itself with a family of products. Hence, when
discussing the adoption of SPLE, besides starting SPLE from scratch we have to
consider approaches which evolve SPLs from legacy products and focus on migra-
tion and mining of existing assets. We can distinguish four types of SPLE adoption
[228, 754]:

• Independent - A new SPL is created independently of any existing products.
• Leveraged - A new SPL is set up based on an existing one.
• Project-integrating - With an existing product base as background, a set of

projects (developing new products) is selected to contribute to an SPL.
• Reengineering - From existing legacy products, assets are extracted and reengi-

neered to contribute to a new SPL.

In addition, we can distinguish between revolutionary (“big bang”) and evo-
lutionary (incremental) models [130, 754]. This is somewhat orthogonal to the



284 Goetz Botterweck and Andreas Pleuss

four adoption types, however, adoption types that take existing systems into ac-
count (project-integrating, reengineering) are most amenable for an evolutionary
approach.

In the literature there are numerous approaches to SPL migration, e. g. [86, 140,
228, 284, 472, 778]. In the remainder of this section we will describe various aspects
and activities of such migration approaches, i. e. initiation of a migration project
(Section 9.4.3.1), scoping (Section 9.4.3.1), variability analysis (Section 9.4.3.3),
refactoring (Section 9.4.3.4), extraction of assets (Section 9.4.3.5), and assessment
(Section 9.4.3.6). While conceptually such aspects can be interpreted as a logical
sequence of activities, in practice they are often performed in an iterative fashion
(see, e. g. [86]). For instance, an initial analysis of variability among existing prod-
ucts might lead to a preliminary selection, which is followed by a more detailed
variability analysis.

9.4.3.1 Initiation of the migration project

At the beginning of a migration project the relevant base information needs to be
collected. This might include, e. g. information on product capabilities, evolution so
far, existing software architectures, documents about scope and existing assets, and
preliminary estimates of required changes (interface vs. deeper changes) [93, 785].
Relevant information can be extracted from artifacts or gathered by interviewing
product experts, maintainers, and users [785].

Then, based on a first assessment an approach for the mining of assets can be
drafted. It needs to be decided on which abstraction levels (e. g. features, compo-
nents) the mining will happen and whether further processing (e. g. refactoring) is
necessary.

A migration project must also consider business and organizational aspects. First,
the advantages and potential drawbacks of the various options (current situation
vs. introducing SPLE) need to be considered, e. g. with an estimation of costs and
productivity benefits. Second, various organizational structures are possible. For in-
stance, SPLE can be performed in product teams or in a separate dedicated SPL
team [112].

9.4.3.2 Scoping and assessment of migration options

Similarly to general SPLE approaches [444, 785], in SPL migration the scope of
the overall effort needs to be defined, i. e. deciding about which features to include
in the SPL and which are out of scope. Since this might require additional input
(e. g. a prioritization of features) the scoping might have to be performed after or in
combination with other activities (e. g. after an initial variability analysis).

In scoping we can take a problem-oriented perspective (“What does the customer
value most?”), but we also need to consider solution-oriented aspects (“What can we
implement most easily?”) [778].



9 Evolution of Software Product Lines 285

9.4.3.3 Variability analysis

The migration of existing products into an SPL often starts with an analysis of their
commonalities and variabilities. This can be performed on various abstraction lev-
els, e. g. (1) on the level of requirements, customer visible functionality and features
or (2) on the level of implementation artifacts.

On higher abstraction levels we can apply techniques for commonality and vari-
ability analysis [688], e. g. an application-requirements matrix (table of products vs.
requirements), priority-based techniques (requirements are rated by different stake-
holders) or checklist-based analysis (collecting and analyzing requirements with the
help of various checklists).

On more concrete levels, we can analyze implementation artifacts to extract vari-
ability models. When reverse engineering higher level variability models, we might
have to apply heuristics and involve experts to (re-) construct their structure [773]
(cf. Section 9.4.4.2).

Just like in general SPLE approaches, in a migration project we have to anticipate
future changes. This includes product and feature planning, the anticipation of future
features [778] and the analysis of consequences for the PLA and implementation
assets.

9.4.3.4 Refactoring

Before the actual extraction of SPL assets is performed, it is often necessary to
refactor existing artifacts [472], e. g. to remove accidental differences and increase
commonalities. This can occur on various abstraction levels, e. g. when refactoring
code [532, 857] or when restructuring the software architectures of existing products
to prepare them for merging them into a shared PLA [228].

We have to distinguish such preparative and transformative refactoring (prepar-
ing assets for a migration, transforming them into SPL assets) from refactoring of
the SPL after it has been established, e. g. on the conceptual and feature-model level
[25, 128] or of PLAs [204].

Related techniques are feature-oriented restructurings, which are not predomi-
nantly aimed towards an SPL, but rather use feature-orientation as guiding concepts,
e. g. with the help of regression tests [583] or when aiming to untangle and separate
concerns on the implementation level [624].

9.4.3.5 Extraction of assets

One of the key artifacts when establishing SPL practices is a PLA. While in other
scenarios it might be appropriate to design a PLA from scratch, we have to take
a different approach when migrating existing products into an SPL. Here, tech-
niques for architecture and component recovery can be applied, e. g. Option Anal-
ysis for Reengineering (OAR) [94] and Mining Architectures for Product Lines



286 Goetz Botterweck and Andreas Pleuss

(MAP) [655, 796]. In many cases, the approach will be to extract product-specific ar-
chitectures [228] and then analyze and merge them, e. g. using techniques for model
merging [174, 735].

In that course, mechanisms for variability realization [810] have to be selected
and, based on earlier variability analysis, variation points have to be chosen.

Alongside the extraction of a PLA, the corresponding core asset implementations
need to be extracted and refined [93, 94]. Here, we have to address the mapping of
variability models onto implementation artifacts (feature location) [255], the iden-
tification of similar implementation artifacts (clone detection) [475, 587] and the
analysis of feature implementations with respect to dependencies as well as inter-
actions (dependency analysis, feature interaction) [42]. Dependencies that are de-
tected on the implementation level need to be propagated up to higher abstraction
levels (PLA, variability/feature model).

During a migration to SPLE, often SPLE activities and reverse engineering activ-
ities are performed side by side. For instance, Bayer et al. [86] suggest to integrate
the reverse engineering of existing assets and the creation of SPL models via a
“blackboard”, i. e. a shared workspace allowing reengineering and SPL activities to
exchange and incrementally enrich information.

9.4.3.6 Assessment

After the SPL infrastructure has been established, the created artifacts, in particular
the PLA, should be evaluated [130]. Here, architecture evaluation methods [257]
and analysis of selected product instances [130] can be applied. Of particular in-
terest in the context of this chapter is the assessment of the PLA with respect to
is evolvability/maintainability. Since the context (requirements, business goals) and
the PLA will change over time, reevaluations should be performed [785].

The result of such a migration project provides input for subsequent activities.
For instance, migration can provide a first draft of an evolution plan for the near
future, based on features that do not exist yet but are anticipated.

9.4.4 Analyzing Evolution

This section discusses the analysis of the current status and the evolution history
of an SPL as a basis for planning (Section 9.4.5) or to predict future evolution.
We first briefly discuss repository mining techniques, then analysis approaches on
the feature and architectural levels, and finally prediction of maintenance effort and
evolution via simulation.



9 Evolution of Software Product Lines 287

9.4.4.1 Mining software repositories

Approaches for Mining of Software Repositories (MSR) [216, 451] (cf. Chapter 5)
process various data sources, e. g. source code repositories, bug databases, and mail-
ing lists. Often different input sources are combined to gain better results. Ap-
proaches aim to uncover relationships and trends, e. g. using data mining techniques.
Examples of extracted information are the growth of a system, change relationships
between assets, or the reuse degree of components. Kagdi et al. [451] categorize
MSR approaches into two types. Some approaches answer market-based questions,
i. e. “If A occurs then what else occurs on a regular basis?” (resulting, e. g. in as-
sociation rules). Other approaches answer prevalence questions, e. g. the number of
functions reused or if a particular function was changed. Orthogonal to that, Kagdi
et al. distinguish between approaches measuring changes to properties, i. e. cal-
culating metrics for each version and then comparing over different versions, and
approaches focusing on changes to artifacts. There is a large spectrum across levels
of abstraction (e. g. features, architecture, source code) and granularity addressed
by such approaches. SPL-specific issues, like variability or distinction between SPL
and products, have received little attention to date.

9.4.4.2 Analyzing features

When analyzing the evolution of an SPL, feature-oriented analyses are of obvious
interest. Various work on feature location [255] aims to establish traceability be-
tween features and assets that implement them (see Section 9.4.3.5). In an existing
(model-driven) SPL, such traceability might already exist explicitly. However, in
less structured SPLs, e. g. with many product-specific implementation parts, feature
location can be essential for refactoring and migration (see Section 9.4.3).

Other approaches aim to reverse engineer the feature model, starting, e.g., from
a set of unstructured features [773], the architecture [4], or even informal product
descriptions [219]. One can expect that an automatically extracted feature model
differs from one that is manually crafted by a human software architect; however
there is not sufficient empirical data on this yet. To close this gap, Hsi and Pots [409]
suggest to extract features from an application’s user interface and to link them to
code assets, e. g. via the operations called by user interface actions.

9.4.4.3 Architecture assessment

Most existing SPL-specific approaches for analysis of evolution address the assess-
ment of the PLA. This can be useful both during creation of an SPL (see Sec-
tion 9.4.3.6) as well as on existing SPLs. Maccari [549] applies the Architecture
Trade-off Analysis Method (ATAM) [257] to assess the suitability of the PLA for
future requirements.



288 Goetz Botterweck and Andreas Pleuss

Johnsson and Bosch [445] aim to quantify SPL aging. They measure average
costs per maintenance task as well as the relative distribution of effort among adding
components, adding functionality to components, and changes to existing function-
ality. They argue this can be used to detect architecture erosion and the related in-
crease in maintenance effort. This can in turn be used to decide on the reorganization
or retirement of SPLs.

9.4.4.4 Prediction based on simulation

Heider et al. [381] propose to simulate SPL evolution to predict the long-term de-
velopment of maintenance effort and model complexity. The analysis is performed
on a problem space model (i. e. decision or feature model), a solution space model,
and dependencies within and between them. The simulation modifies the models
with random operations based on probabilities defined in profiles. For instance, the
“evolution profile” describes the type of evolution to be performed, like “contin-
uous evolution”, “refactoring”, or “product placement” (i. e. changing mostly the
problem space while keeping the solution space mostly unchanged). The evolution
profile can be created based on existing evolution history.

9.4.5 Planning Evolution

This section deals with planning of evolution, i. e. how to decide about changes to
the SPL to be implemented in the upcoming versions.

Usually important planning decisions on the evolution of complex software sys-
tems require careful consideration. Ad-hoc planning would bear the risk of deficien-
cies like insufficient anticipation of future requirements, lack of resources to realize
new requirements, or loss of knowledge about previous decisions [736]. In single
system engineering there are several research strands – like rationale management
and release planning – that aim to reduce this risk by supporting systematic planning
and decision-making. These concepts can be applied to SPLE.

An important prerequisite for deciding on future changes is to gain knowledge on
the impact of a potential change. However, for an SPL this can be much more com-
plex than in single system engineering due to the complexity of interdependencies
between artifacts (see Section 9.3).

In this section we first discuss change impact analysis in SPLs and then present
approach for decision-making in SPL evolution.



9 Evolution of Software Product Lines 289

9.4.5.1 Change Impact Analysis

When deciding about a change we have to predict the required effort and potential
pitfalls for its realization. This is supported by approaches for impact analysis [124,
173].

An important aspect of impact analysis is traceability, i. e. storing links between
all logically related assets in the software development process to understand what
other assets might be affected if an asset changes. An example are traces between a
requirement and its implementation assets. In context of SPLs, the mapping between
features and implementation assets (if fully specified) can be considered as a kind of
trace link. However, traceability approaches consider additional types of links and
often add some extra information to each link (like a rationale description).

For instance, Anquetil et al. [34] propose a traceability framework for SPLs.
They propose four general categories of trace links: Refinement traceability relates
artifacts from different level of abstraction like an element in the design model and
its implementation. Similarity traceability relates artifacts at the same level of ab-
straction such as similar requirements that have some logical relationships or similar
elements from different architectural views. Variability traceability relates artifacts
as relevant for variability management like the mapping between a feature and its
implementation. Versioning traceability relates successive versions of an artifact. As
pointed out by Heider et al. [386], traceability needs to cover not only all assets on
SPL level but also on product level. Other traceability approaches for SPLs can be
found e. g. in [8, 442, 616].

Defining (and maintaining) trace links requires much effort, so there is a need
for tool support. There are two ways how to acquire trace links in a tool-supported
way: 1) ex-post by statically analyzing existing artifacts or 2) during development
when artifacts are created. Heider et al. present EvoKing [383], an IDE for SPLs
which supports both strategies. EvoKing supports monitoring evolution by keeping
track of all assets and their relationships within an SPL. To provide some degree of
abstraction, users can define the types of assets and relationships and how the tool
interprets events like creating or modifying an asset of a certain type. Trace links are
established according to user-defined rules. For instance, whenever a product con-
figuration is created, a trace link is established to the underlying variability model.
These rules can also be applied to existing artifacts. However, heuristics or statis-
tical analysis to acquire trace links automatically have not been applied yet. Other
approaches that aim to provide automated extraction of traceability links for SPLs
are e. g. [442, 747].

Beside traceability approaches, there are only few other approaches for impact
analysis in context of SPLs. Heider et al. [385] present an approach using regression
testing to analyze the impact of changes on SPL level on products. Whenever the
SPL is changed, the tool first analyses whether the existing product configurations
need to be changed as well, e. g. whether configuration decisions need to be modified
due to changes on the variability model. In a second step, the tool re-derives all
products and compares them with their previous version and reports the differences.



290 Goetz Botterweck and Andreas Pleuss

In this way it provides instant feedback to developers about the consequences of a
change on the SPL.

9.4.5.2 Decision making in SPL evolution

Planning evolution means to make decisions that may have essential impact on the
future success. Concepts like the QOC approach (Questions, Options and Crite-
ria) [550] provide general support for systematic decision-making. The first step in
QOC is to define the issue on which to decide (question). Second, available solu-
tion options are identified and specified. In addition, criteria are defined by which
the available options can be rated. Examples for criteria are the expected develop-
ment effort (e. g. estimated by an impact analysis as above), market value, strategic
benefit or risk. Each solution option is rated according to these criteria. Finally, an
option is selected on this base. This allows systematic decision making and captures
the reasons behind a decision.

Approaches in the area of release planning [736] apply such concepts to decide
about new requirements (or features). For instance, when a set of new candidate
requirements is given (e. g. due to customer requests and market analysis) they sup-
port to prioritize them and to select those to be implemented in the next release(s).
Similar to QOC, criteria have to be defined by which the requirements can be rated.
Usually ratings are performed by multiple stakeholders including e. g. prime cus-
tomers. Criteria and stakeholders can be prioritized by assigning weights. More-
over, constraints can be defined to specify preconditions such as available resources
(e. g. person months until next release) and dependencies between the candidate re-
quirements (e. g. two requirements exclude each other). After each requirement has
been rated according to the criteria, approaches like EVOLVE [643] automatically
propose a candidate release plan that conforms to the defined constraints.

Similar concepts have been applied to SPLs for scoping (see Section 9.4.3.2),
i. e. selecting which features from an existing set of related to include in an SPL.
The PuLSE-Eco approach by DeBaud and Schmid [229] proposes to refine business
goals into “benefit functions” (e. g. effort saved by making a feature reusable) which
are decomposed into basic “characterization functions” (e. g. implementation effort
in person months) by which each potential feature is judged. In this way the benefit
of each feature is calculated as a base for the decision which features to include into
an SPL.

Besides deciding about new features or requirements, which is similar to single
system engineering, SPL evolution also needs SPL-specific decisions like 1) de-
ciding about whether changes should become product-specific or be performed on
SPL level and 2) about the variability of features on SPL level. In the following we
describe an approach for each of these issues.

Heider et al. [382] address decision making about whether new requirements
that arise on product level should be promoted to SPL level. Their tool EvoKing
(see Section 9.4.5.1) provides SPL engineers an overview on new requirements that
have arisen on product level. SPL engineers can then decide about each requirement



9 Evolution of Software Product Lines 291

to either lift it to SPL level or to assign it to developers on product level other-
wise. In [380] the authors describe how this decision is supported by a Win-Win
model negotiation approach. Win-Win [120] is a general approach similar like QOC
but with a focus on brainstorming and negotiation: Different stakeholders define
their objectives as win conditions. Win conditions where all stakeholders agree on
are stored as agreements. Otherwise conflicts, risks or uncertainties are defined as
issues. Stakeholders then brainstorm for options to resolve these issues and to ex-
plore trade-offs with the goal to find an option that can be turned into an agreement.
In context of new SPL requirements, the win conditions are the new requirements
proposed by SPL engineers and product engineers. Issues raise, for instance, when
there are inconsistencies between the requirements on these two levels or between
requirements of different products.

Thurimella and Brügge [843] address decision-making about the variability in
SPLs. They apply similar concepts like in QOC. To decide about variability, the
possible solution options are identified (e. g. whether a feature is mandatory or op-
tional) and rated by criteria. The same principle is also applied to product configu-
ration decisions where available variants can be considered as options.

Basically, concepts like QOC or Win-Win can be applied to any particular evolu-
tion decision [842]. Besides the concrete approach used, any additional tacit knowl-
edge underlying a decision (e. g. why an option was finally selected) should be ex-
plicitly documented by a rationale description to preserve the knowledge for future
decision-making [824]. For instance, the EvoPL approach from Section 9.4.2.3 has
been extended by support for decision-making by modeling high level goals, crite-
ria, rationale, and the relationships between them [758].

As discussed in [759], it should be considered that planning information – such
as goals, criteria, and rationale – evolves itself (e. g. changing business goals). It
is useful to handle this evolution in a structured way as well (e. g. traceability of
previous versions of a goal description) to preserve the information and understand
previous decisions.

9.4.6 Implementing Evolution

Existing work on the implementation of SPL evolution aims to support realizing
changes in a systematic way. It can be classified according to the abstraction layers
in Figure 9.4. On the SPL level, changes to requirements lead to changes in the vari-
ability model. Several works aim to support changes to variability models and the
associated mappings while preventing inconsistencies (Section 9.4.6.1). Other work
focuses on realizing changes on the implementation level, e. g. by structuring the
implementation according to features (Section 9.4.6.2). When an SPL has changed,
this has to be propagated to existing products (Section 9.4.6.3).



292 Goetz Botterweck and Andreas Pleuss

9.4.6.1 Evolution of the variability model and its mappings to assets

Changes to requirements often lead to changes in the variability model, e. g. adding
or removing features or splitting a feature to make some part of it variable. Also,
the variability model has to be maintained itself, e. g. by restructuring to improve
readability. Changes to the variability model can be (tool-) supported by change
operators (cf. Section 9.4.2) to systematize changes and to update the mappings to
implementation assets.

Thüm et al. [837] provide a tool that analyses changes performed on a feature
model and classifies them into one of the four categories: (1) refactoring, not chang-
ing the set of valid products, (2) generalization, only adding products, (3) special-
ization, reducing the set of products, or (4) arbitrary changes otherwise:

Refactoring, as used by Thüm et al. [837], refers to changes of the feature model
that do not change its semantics in terms of valid product configurations. The source
and target feature model are then referred to as “equivalent” [803]. Such changes
include, for instance, restructuring of the feature model, and changes that do not
influence product configurations (e. g. renaming a feature).

Generalization refers to changes that only add products (i. e. valid configurations)
to the SPL. All existing products remain valid and can still be derived from the SPL.
Simple examples for such changes are adding a new optional variant or changing
a feature from mandatory to optional. A catalog of feature model operations that
preserve the set of products is presented in [25]. In contrast to [837], the authors call
these types of changes “refactorings” or “refinements”. Based on a formal notation
for refinements introduced by Borba et al. [129], Neves et al. [642] specify sev-
eral complex change operations for common behavior-preserving changes of SPLs
which include not only the feature model itself but also the mappings and the asso-
ciated assets. For instance, a new mandatory feature can be safely added to a feature
model only if it represents functionality that is already part of all products (e. g. to
convert it into an optional feature later on).

Specialization is mainly used during staged configuration [209], i. e. configura-
tion performed in multiple steps, e. g. by various stakeholders. Variability is reduced
in each step until it is completely resolved and exactly one product remains.

A tool that aims to support arbitrary changes is Feature Mapper [762]. It focuses
on the co-evolution of feature models, implementation assets, and the mappings be-
tween them. On the level of feature models it supports several change operators,
like “add feature”, “split feature”, “remove feature”, or “remove feature and owned
asset”. On the level of assets (also represented as a model) changes depend on the
concrete type of model. The authors provide some examples for UML models (e. g.
“replace method with method object”) and for models representing Java code (e. g.
“extract method”). The authors classify three types of changes (focusing on con-
sistency of feature mappings): (1) changes that only have effects within one model
(like changing an optional feature to mandatory or renaming an asset); (2) changes
that affect a model and the mapping (like “split feature” or “extract method”); and
(3) changes that affect the model, the mapping, and the mapped model (like “remove



9 Evolution of Software Product Lines 293

feature and owned assets”). In the second and third case, the tool automatically up-
dates the mappings to keep them consistent.

Beside the work on feature models, there are also approaches addressing other
types of variability models, e. g. decision models and their associated assets [385].

The change operators and tools described above cover only a subset of possible
changes to an SPL. Other changes that require manual implementation (like adding
new functionality to an SPL) cannot be specified just in terms of predefined opera-
tors. However, tool support should indicate potential inconsistencies after a change.
In general, this can be achieved by analyzing mappings between assets (similarly to
Feature Mapper as described above) or additional traceability links between depen-
dent assets (see Section 9.4.5.1).

Finally, after performing changes, the consistency should be checked between the
different abstraction levels in the SPL as shown by Vierhauser et al. [892]. Guo et al.
[355] show how to check the consistency of large feature models so that only those
parts which are affected by an evolutionary change need to be checked again. In the
context of formal validation of SPLs, Cordy et al. [199] provide a model-checking
approach that supports evolution. They define a method to identify specific types of
features and show that for such features, when added to an evolving SPL, only a
subset of the products need to be model-checked again.

9.4.6.2 Evolution of assets

Work supporting changes on lower levels of abstraction mainly addresses mecha-
nisms to increase modularity and maintainability of assets. Garg et al. [313] provide
specific tool support to specify changes or multiple variants for SPL architectures.
The presented tool Ménage represents visual architecture models in terms of com-
ponents and connectors based on xADL 2.0. Variability and different versions are
visually highlighted.

Other work addresses evolution on the code level. Here, one challenge is to mod-
ularize code so that changes on higher abstraction levels, e. g. new features, can
be implemented with as few side effects as possible. For this, techniques similar to
those for implementing variability in code can be used. For instance, aspect-oriented
development can be used to implement cross-cutting features [902]. Loghran et al.
[541] propose supporting evolution by a combination of aspect-oriented techniques
and frames, which are hierarchically ordered code templates. They provide code ex-
amples showing how these “framed aspects” can be used to support reuse and the
easier integration of new features.

Some work addresses evolution at runtime [339] (cf. Chapter 7.6). For this, soft-
ware reconfiguration patterns are used that allow the configuration in component-
based systems to be updated during runtime. The authors describe multiple recon-
figuration patterns based on existing architectural patterns, e. g. “master/slave re-
configuration” or “centralized control reconfiguration”, and discuss how to perform
evolutionary changes based on them.



294 Goetz Botterweck and Andreas Pleuss

After changing the implementation, the SPL has to be tested. Here, the testing
strategy should take variability into account to avoid that all possible feature com-
binations and all existing products have to be tested again [256].

9.4.6.3 Propagating changes from the SPL to products

Heider et al. [384] provide tool support to propagate changes from the SPL to indi-
vidual products. In theory, model-driven SPLs allow products to be regenerated after
the SPL has changed. However, as Heider et al. point out, in practice product con-
figuration can be a complex and time-consuming process which requires decisions
by multiple stakeholders. Hence, configuration of different products and evolution
of the SPL is often performed in parallel. After a variability model has changed,
product configurations must be updated by considering the dependencies in the vari-
ability model, between the assets, and between variants and assets. Hence, updating
the product configuration can be challenging. The authors address this with a tool
that supports automated updates of products, resolves conflicts, and assists users in
manually resolving conflicts based on trace data when automated update fails.

9.5 Conclusions

In this chapter, we provided an overview of basic concepts and state-of-the-art in
SPL evolution, as well as a short introduction to our own work in feature-oriented
software evolution. Many challenges remain.

We need to improve support for handling changes, this includes understanding
consequences of potential changes (taking all dependencies into account, across
abstraction layers) and better support for the propagation of changes, for instance
techniques that tolerate inconsistencies and resolve them, while propagating the
changes.

With increasing scale and complexity it becomes infeasible to adapt the whole
system (i. e. the whole SPL) to change in a short time frame. Hence, when an or-
ganization aims to react to market events or urgent customer requests, we require
strategies and techniques to support fast adaptation, e. g. with product-specific ex-
tensions, which are later propagated into the SPL. Here, we have to consider an
oscillation between adaptation/extensions and creating a consolidated shared infras-
tructure (“grow-and-prune model”, [284]).

Tracing concepts in the problem space to the solution space, from high abstrac-
tion levels to details of the software design and lines of code, is a fundamental
problem in software engineering. Such mappings are often not one-to-one and am-
biguous. For instance, in SPLE and SPL evolution we have to map features to their
implementations, a problem addressed by feature location. Here, (1) a feature is po-
tentially implemented by multiple classes, a class potentially contributes to multiple



9 Evolution of Software Product Lines 295

features and (2) it is not a clear-cut decision whether a class is part of a feature’s
implementation.

Finally, we have to deal with evolution for PLE “in-the-large”, for instance in
hierarchical SPLs or a systems-of-systems context, which requires propagation of
changes up or down the systems hierarchy. When dealing with evolution of large
SPLs in all its aspects (migration, analysis, planning, implementation, etc.) we need
to consider the potential hierarchical structure of such systems. For instance, Gall
et al. [308] report that the characteristics of the evolution of a particular subsystem
deviated substantially from that of the main system, an effect that can be masked
when we would only consider the system as a whole.

As a final thought, we concur with Dhungana et al. [241] who argue that SPLE
should treat evolution as a normal case and not as the exception. Hence, improved
concepts and techniques are required that are able to handle evolution of large
software-intensive systems while taking the particular characteristics of SPLs into
account. We believe that there lies great potential in a smart combination of auto-
mated and interactive techniques, which combine the best of both worlds–efficiency
through automated mechanisms and guidance towards creative solutions through the
capabilities of the human engineer.



Chapter 10
Studying Evolving Software Ecosystems
based on Ecological Models

Tom Mens, Maëlick Claes, Philippe Grosjean and Alexander Serebrenik

Summary. Research on software evolution is very active, but evolutionary prin-
ciples, models and theories that properly explain why and how software systems
evolve over time are still lacking. Similarly, more empirical research is needed to
understand how different software projects co-exist and co-evolve, and how contrib-
utors collaborate within their encompassing software ecosystem.

In this chapter, we explore the differences and analogies between natural ecosys-
tems and biological evolution on the one hand, and software ecosystems and soft-
ware evolution on the other hand. The aim is to learn from research in ecology to
advance the understanding of evolving software ecosystems. Ultimately, we wish
to use such knowledge to derive diagnostic tools aiming to predict survival of soft-
ware projects within their ecosystem, to analyse and optimise the fitness of software
projects in their environment, and to help software project communities in managing
their projects better.

This work has been partially supported by F.R.S-F.N.R.S. research grant BSS-2012/V 6/5/015
and ARC research project AUWB-12/17-UMONS-3, “Ecological Studies of Open Source Soft-
ware Ecosystems” financed by the Ministère de la Communauté française - Direction générale de
l’Enseignement non obligatoire et de la Recherche scientifique, Belgium.

297
 Springer

. et al. (eds.), E ,
DOI 10.1007/978-3- - - _10, ©  2014
T Mens volving Software Systems

642 45398 4 -Verlag Berlin Heidelberg



298 Tom Mens, Maëlick Claes, Philippe Grosjean and Alexander Serebrenik

10.1 Introduction

Mathematics and computer science have been very helpful to advance research in
biology, even so much that it has spawned a research field of its own: bioinfor-
matics [512]. In the other direction, inspiration from biology has lead to numerous
new achievements and improvements in computer science, such as neural networks
[377], genetic algorithms [338, 611], optimization and artificial intelligence algo-
rithms inspired by ant colonies and swarms of bees [126]. As explained in Chap-
ter 4, some of these techniques have found their use in the context of search-based
software engineering.

More specifically, ecology has been a fruitful source of inspiration for software
engineering research. Huberman and Hogg considered a distributed computing sys-
tem of concurrent agents as a computational ecosystem, analogous to biological
ecosystems [411]. They studied the dynamics and chaotic behavior of such com-
putational systems and showed how reward mechanisms may stabilize the system,
thereby optimizing its performance. Calzolari et al. adapted the ecological predator-
prey model to empirically study and predict the relation between software defects
(prey) and programmers (predators) [155]. Lawrance et al. leveraged predator-prey
relationships to apply information foraging theory to software maintenance, by con-
sidering developers as predators and the information they seek as prey [500]. Posnett
et al. studied the risk of using aggregation techniques in empirical software engi-
neering through its relation to the notions of ecological inference and ecological
fallacy from sociology and epidemiology [699]. More recently, they also compared
the developer-artifact contribution network to a predator-prey relationship, leading
to a conceptually unified view of measuring focus and ownership [698].

In this chapter, we explore similar analogies with software ecosystems and soft-
ware evolution. Several researchers have advocated biological evolution and ecolog-
ical principles as a source of inspiration for software evolution [79, 638, 811, 940]
but, until now, this has remained mostly at the level of the intention. Although re-
search on software ecosystems is emerging, the application of ideas transposed from
ecosystems in nature seems to be underexploited. The transfer of knowledge has es-
sentially limited itself to a reuse of terms.

Despite the fact that natural ecosystems have been studied for many decades, and
that many evolutionary theories and ecological models have been proposed and ex-
perimentally validated, little research exists that tries to adopt or adapt such theories
to the domain of evolving software ecosystems. Although it is true that biological
species, systems and ecosystems are quite different from what we can find in soft-
ware, we share the belief of [240] that ecological models and biological evolution-
ary theories can be adapted to study how software ecosystems and their constituent
projects evolve. Even if biological and software ecosystems do not evolve at the
same pace, life on earth got a much longer history and thus, had more opportunities
to explore and find optimized pathways through natural selection.

The evolutionary processes that can be observed in nature may therefore be very
inspiring for software engineers and researchers. It allows them to gain an increased
understanding in how software projects compete or collaborate in their surrounding



10 Studying Evolving Software Ecosystems based on Ecological Models 299

environment, and how this differs from biological environments. This insight will
hopefully lead to guidelines and tool support to help the software project commu-
nities in predicting and improving survival of their projects. This will allow them
to stay ahead of the competition, produce higher quality products and increase their
fitness, resilience and stability over time in a rapidly changing environment.

The remainder of this chapter is structured as follows. Section 10.2 starts by
exploring and comparing the notions of ecosystem and ecological principles that
exist in biology and software engineering. Section 10.3 compares the notions of
biological evolution and software evolution. Section 10.4 presents our emerging
research to study the evolution of open source software ecosystem based on insights
from the dynamics of natural ecosystems. Finally, Section 10.5 concludes.

10.2 Ecosystem terminology

The term ecosystem exists both in ecology and software. We present the characteris-
tics and examples for both types of ecosystems in Section 10.2.1 and Section 10.2.2,
respectively. In Section 10.2.3 we go beyond a simple reuse of terminology by draw-
ing analogies between both types of ecosystem, despite the fact that the domain and
discipline in which they are used and studied is completely different. In particular,
we explain how ecological principles can be adapted and applied in the context of
software ecosystems.

10.2.1 Natural ecosystems and ecology

According to [481], ecology is the scientific study of the interactions that deter-
mine the distribution and abundance of organisms. Typically, the dynamics of these
interactions are studied in the context of an ecosystem. The term ecosystem was
originally coined in 1930 by Roy Clapham, to denote the physical and biological
components of an environment considered in relation to each other as a unit [927]. In
other words, an ecosystem combines all living organisms (plants, animals, microor-
ganisms) and physical components (light, water, soil, rocks, minerals) that interact
with one another.

More generally, the ecosystem dynamics are traditionally represented in a trophic
web (more commonly known as the so-called food web or food chain). This trophic
web forms an interaction network that relates predator to prey or organism to re-
source [47, 682, 926]. Such a network usefully captures the relationship between
consumers and the ecosystem’s resources (such as food, nutrients and space), and
the effect of this relationship on the population of different species in an ecosystem.
A trophic web is organized in trophic levels corresponding to families of function-
ally consistent species. Consumer-resource relationships typically take place be-
tween different levels of the trophic web.



300 Tom Mens, Maëlick Claes, Philippe Grosjean and Alexander Serebrenik

An ecosystem is the result of a delicate and dynamic balance between its inter-
acting components. Trophic webs can be constrained from the bottom up, limited
by the resources available to primary producers, or from the top down, driven by
predation by top consumers. Ecosystems with “wasp-waist” control combine both
mechanisms with partial effects in both directions acting simultaneously. Several
marine ecosystems exhibit such a wasp-waist structure, where a single species, or
at most several species, entirely dominate the population [64, 206, 412]. A typ-
ical example of the top-down control dynamics in an ecosystem is the so-called
predator-prey model, representing a biological interaction in which some organisms
(the predators) hunt for, and feed on, other organisms (their prey). The dynamics
of such interaction can be described using linear or nonlinear models consisting of
parametric differential equations [720].

Since an ecosystem’s resources are finite, they need to be recycled or reused
whenever possible. To achieve this, energy needs to be put into ecosystems con-
stantly, typically in the form of light to drive the necessary biochemical processes
that enable recycling of resources. An ecosystem has a static equilibrium if there
are no exchanges between the components constituting it. Natural ecosystems typi-
cally have a dynamic equilibrium since there are always major exchanges between
its components. For example, there may be important exchanges between the var-
ious levels in the trophic web, and an equilibrium is reached by fluxes in opposite
directions whose total sum is zero.

The capacity of a biological ecosystem to maintain an equilibrium over longer
periods of time is called its stability. Systems that can attain the most stable equi-
librium survive the longest [826]. Often, this stability is put into peril by human in-
terference, e. g. through the use of some of the resources required by the ecosystem.
Examples of such disturbances for the ecosystem of coral reefs are, for example,
climate change, water pollution and overfishing. Sustainability refers to the ability
to maintain the ecosystem despite of humans deriving their needs from its natural
resources.

The resistance of an ecosystem characterizes its ability to withstand environ-
mental changes without (too much) disturbances of its biological communities. If
the disturbances become too important, ecosystems may get out of balance (e. g. a
meteorite impact that made all dinosaurs extinct). The ability of an ecosystem to
reorganize itself and return to an equilibrium close to the initial one is called its re-
silience [405]. Because of the disturbance, the new equilibrium that is reached may
be different from the original one (some types of organisms may have disappeared,
and others may have taken up their place), so the ecosystem will have evolved.

Ecologists emphasize the importance of biodiversity [570, 576, 671], and gen-
erally acknowledge that the stability and resilience of an ecosystem is favored by
a higher diversity. If the ecosystem has a large species diversity of producers and
consumers that respond in different ways to disturbances, it is more likely that the
ecosystem will be able to heal itself after a disturbance, since some species can com-
pensate for others that disappear. Relating diversity to the aforementioned predator-
prey relationship, Williams and Martinez considered two symmetric perspectives,
from a prey’s perspective and from a predator’s perspective [570]. Other types of



10 Studying Evolving Software Ecosystems based on Ecological Models 301

diversity have been studied by ecologists such as genetic diversity, functional diver-
sity, spatio-temporal diversity, etc.

An ecological niche of a species determines the environmental conditions nec-
essary for the species to maintain its population in response to the distribution of
physical conditions, resources and predators in the ecosystem. Among others, it
characterizes the subregions of the ecosystem’s habitat that are usable or accessible
to the species (e.g., land animals will not live under water).

Example 10.1 (coral reefs). Coral reefs are among the most biologically diverse
ecosystems on earth [925]. Competition for resources such as food, space and sun-
light are the primary factors determining the biodiversity and population of organ-
isms on a reef. The single most important species of the ecosystem are the scler-
actinian coral polyps. They secrete hard skeletons that form the coral reef structure
required for the other species to thrive: sea anemones (soft coral polyps), sponges,
crustaceans, mollusks, sea urchins, fish, sea turtles, algae, sea grasses, and many
more. These species have established a dynamic equilibrium with a delicate bal-
ance between predators and prey. Fluctuations in the population of one species can
drastically alter the population of other species. External forces that may disturb
the equilibrium of the coral reef ecosystem are for example hurricanes, but other
human-inflicted changes may play an even more important role. Overfishing, for
example, may lead to an increased growth of algae and sea grasses, resulting in an
increase of the population of sea urchins that may destroy the corals.

10.2.2 Software ecosystems

Software systems are among the most complex artefacts ever created by humans.
Collaborative software development has become increasingly popular over the last
two decades. It represents a successful model of software development where com-
munities of developers collaborate on a voluntary basis, while users and developers
of the software can submit bug reports and requests for changes.

To reflect this increase in complexity and scale, the term software ecosystem has
been coined by Messerschmitt and Szyperski [603] to refer to such systems. It has
now become a very active area of research, as can be seen in a recent systematic
literature review [556]. Unfortunately, in contrast to natural ecosystems, there is
no common definition of software ecosystem. It can be defined and interpreted in
different ways, depending on the point of view.

10.2.2.1 Business-centric viewpoint

One of the first occurrences of the term software ecosystem can be found in [131]
where it is used to refer to the way in which software suppliers, vendors, competi-
tors, users, and third-party developers interact in software product lines. This view
emphasizes the business perspective of a software system. A similar view, including



302 Tom Mens, Maëlick Claes, Philippe Grosjean and Alexander Serebrenik

the socio-economic environment and regulatory framework is adopted by Jansen et
al. [433, 434], who define a software ecosystem as a “a set of actors functioning
as a unit and interacting with a shared market for software and services, together
with the relationships among them.” This view is schematically presented in Figure
10.1. An entire book is devoted to this perspective of software ecosystems [435].
A typical, but not exclusive, characteristic of these types of software ecosystems is
the competitive aspect. The different projects in the ecosystem are in competition,
either because they target the same end-users or offer the same type of service.

Fig. 10.1: Actors in a software ecosystem. Figure reproduced from [893] with per-
mission from Edward Elgar publishers

Since, as illustrated above, business-centric software ecosystems often constitute
a core strategic asset for its contributors and supporting companies, it is crucial to
gain more insight in how ecosystems evolve and can be maintained successfully
over time.

10.2.2.2 Development-centric viewpoint

An alternative, more fine-grained definition of software ecosystem is provided in the
seminal work of Messerschmitt [603] to refer to “a collection of software products
that have some given degree of symbiotic relationships.” A similar definition is given
by Lungu [546, 547], who defines a software ecosystem as “a collection of software
projects which are developed and evolve together in the same environment.” This
environment refers to the development environment, i.e. the software and hardware
tools used during the development process.

We extend these definitions to take into account the collaborative and social as-
pects as well, by explicitly considering the communities involved (e. g. user and
developer communities) as being part of the software ecosystem. Like software

ecosystems.  

 

Outsourcer 

Software  
Vendor 

Customer 
Software 
Vendor 

Customer Organisational level 

Software Supply Network level 
Software 
Vendor Customer 

Software Ecosystem level 

Standardisation 
Organisation 

Related 
Ecosystem 

Research 
Community 

A flow of products  
or services 
Mutual  
contribution 

Open Source 
Community 

Open Source
Community 



10 Studying Evolving Software Ecosystems based on Ecological Models 303

projects, the communities involved evolve over time (users and developers come
and go). In addition, there is a high degree of interaction, even some kind of sym-
biosis, between the software projects and the communities of the ecosystems. This
viewpoint is adopted by [321, 333, 335, 594, 684, 723, 886] that focus both on the
technical aspects of the software produced and the social aspects of the communities
producing and using this software.

It is especially in ecosystems where the community works towards a common
goal that the collaborative nature wins over the competitive nature. Typically, soft-
ware ecosystems consist of a relatively closed core software system that provides
the basic functionality and that is developed by a more or less stable core team of
developers, surrounded by a large collection of contributions provided by peripheral
developers or even end-users [631, 689, 723].

We can provide numerous examples of software ecosystems, and many of them
can be interpreted from both the business-centric and the development-centric view-
point.

Mobile app stores, commercial or free application repositories for mobile op-
erating systems (such as iOS, Android and Windows 8), form a business-centric
ecosystem. While these operating systems are provided by Apple, Google and Mi-
crosoft, respectively, the SDKs and APIs allow third-party developers to build mo-
bile applications on top of these operating systems. The mobile app ecosystems con-
sist of the users, developers, managers of the mobile OS and the third-party mobile
applications built on top of them. The official mobile app stores allow for applica-
tions to be sold to end-users, with a shared profit. For Android, there is also a free
and open source software repository of applications, called F-Droid.
The empirical study of the evolution of mobile applications is an emerging area
of research. For example, Battacharya et al. [78] carried out an empirical study on
the evolution of bug-related issues in 24 widely-used open source Android apps,
while Basole et al. [77] studied the emergence and growth of mobile app stores in
the mobile service ecosystem. McDonnell et al. [578] studied the rapid evolution of
APIs and their adoption by client apps in the Android ecosystem.

IDEs for programming languages such as Java (e. g. Eclipse and NetBeans) or
Smalltalk (e. g. Squeak and Pharo [721]) can be seen from a business-centric view-
point. For example, the non-profit Eclipse Foundation is involved in the strategic
direction, marketing and promotion of Eclipse and contains representatives of dif-
ferent companies such as IBM (the founder of Eclipse), Google, OBEO, Oracle,
SAP, Talend. Eclipse is supported by numerous software vendors, and each of these
vendors may provide different plugins with similar functionality, that are in direct
competition with one another.
From a development-centric viewpoint, the Eclipse ecosystem is the universe of
Eclipse plugins [191] together with the developers of these plugins. Studying the
evolution of plugins is an active area of research [151–153, 915, 916]. All differ-
ent Eclipse plugins rely on a common underlying architecture, platform and set of
libraries without which they are unable to function correctly. The community of
plugin developers therefore shares the common goal of improving a complete inte-



304 Tom Mens, Maëlick Claes, Philippe Grosjean and Alexander Serebrenik

grated software development environment. NetBeans, the main open source com-
petitor for Eclipse, has a similar modular architecture with a common core.

Linux distributions form an ecosystem comprising several hundreds of actively
competing Linux distributions, that are all based on a common core (the kernel of
the Linux operating system [428] and a set of GNU libraries and utilities). The dis-
tributions vary in the system they target (e. g. desktop computers, laptops, tablets,
smartphones, embedded systems) and the applications that are bundled with the dis-
tribution. Some distributions are commercially driven (e. g. Fedora Red Hat, SUSE,
Ubuntu, and Mandriva), while others are entirely community-driven (e. g. Debian
and Gentoo). An excerpt of the evolution of Linux distributions is shown in Fig-
ure 10.2. While the family of all Linux distributions is an ecosystem, each of the
distributions that belong to this family can also be considered as an ecosystem of
their own, composed of the packages (together with the necessary building and con-
figuration files) contained in the distribution. Gonzalez et al. [341] have taken a
closer look at the evolution of the Red Hat and Debian distributions.

Forges. Open Source Software (OSS) repositories, commonly known as forges,
can be considered as business-centric, since there is no control on the governance of
the projects hosted in the forge. Examples of such forges are SourceForge, GitHub,
Bitbucket, Launchpad and Savannah. There are also many forges that are dedicated
to particular programming languages, such as the CCAN archive network for the C
programming language, the CPAN archive network for PERL, RubyGems for the
Ruby language, the Python Packaging Index for Python programs, and so on. Be-
cause of the lack of control, within and across these forges there are often different
projects with similar functionality between which the users can freely choose.
Capiluppi and Beecher [161] performed an interesting empirical study in which they
studied the type of software forge (they refer to them as FLOSS repositories) and
their mode of governance on the projects they host. They compared SourceForge
(which they consider to be an open repository) with Debian (which they consider
to be a controlled repository). They concluded that Debian hosted larger, more ac-
tive and more complex structures. As a side-effect, more effort is needed to main-
tain these projects. Chapter 6 of this book explains how socio-technical information
recorded in OSS forges (but also in microblogs and software forums) can be lever-
aged for different types of development and evolution activities, using a variety of
information discovery and retrieval techniques.

Social networks, such as Facebook, LinkedIn, MySpace and Google+ can also
be regarded as business-centric software ecosystems. They allow application devel-
opers to develop and integrate third-party applications, through a well-defined API.
This provides significant added value to both the social network and the application
providers.

GNU (which is a recursive acronym for GNU’s not UNIX) aims to provide a
full free operating system based on the GNU General Public License (GPL) and the
principles of UNIX. It is composed of GNU projects which are often ecosystems
themselves. Examples of such sub-ecosystems are R and GNOME. Unlike most other
software ecosystems, R is targeted towards end-user programming [321] since, the



10 Studying Evolving Software Ecosystems based on Ecological Models 305

S
ko

le
lin

ux
E

du
bu

nt
u M

in
t

U
bu

nt
u 

S
tu

d
io

C
ru

nc
h

B
an

g Lu
bu

nt
u

Jo
lic

lo
u

d E
le

m
en

ta
ry

 O
S

K
ub

un
tu

B
od

hi
C

hr
om

iu
m

 O
S

U
bu

nt
u 

ee
e

E
as

y 
P

ea
sy

F
lu

xb
un

tu
gN

ew
S

en
se

X
ub

un
tu

U
bu

nt
u

D
am

n 
V

ul
ne

ra
bl

e 
Li

n
ux

O
S

20
05

M
ae

m
o

M
ee

go
 H

ar
m

a
tta

n
C

lo
ne

zi
lla

 L
iv

e
K

ae
lla

D
am

n 
S

m
al

l L
in

ux
K

no
pp

ix

D
eb

ia
n

S
la

x

F
ru

ga
lw

ar
e

S
la

ck
w

a
re

S
LS

T
iz

en
M

ee
G

o
M

ob
lin

 2
F

ed
or

a 
C

or
e

F
ed

or
a

M
an

dr
ak

e
M

an
dr

iv
a

C
en

tO
S

R
ed

 H
at

R
ed

 H
at

 E
nt

er
pr

is
e

19
92

19
92

19
93

19
93

19
94

19
94

19
95

19
95

19
96

19
96

19
97

19
97

19
98

19
98

19
99

19
99

20
00

20
00

20
01

20
01

20
02

20
02

20
03

20
03

20
04

20
04

20
05

20
05

20
06

20
06

20
07

20
07

20
08

20
08

20
09

20
09

20
10

20
10

20
11

20
11

20
12

20
12

20
13

20
13

G
N

U
/L

in
u

x 
D

is
tr

ib
u

ti
o

n
 T

im
el

in
e

V
er

si
on

 1
2.

9

A
. L

un
dq

vi
st

, D
. R

od
ic

 -
 f

u
tu

ri
st

.s
e/

g
ld

t
P

ub
lis

he
d 

un
de

r 
th

e 
G

N
U

 F
re

e
 D

oc
um

en
ta

tio
n 

Li
ce

ns
e

In
flu

en
ce

, d
ev

el
op

er
 s

w
itc

hi
ng

R
eb

as
in

g,
 s

ub
st

an
tia

l c
od

e
 fl

ow
, p

ro
je

ct
 o

ve
rt

ak
in

g
D

ev
el

op
er

 &
 c

od
e

 s
ha

rin
g

, p
ro

je
ct

 m
er

gi
ng

Fig. 10.2: Linux distribution timeline (simplified version based on
http://futurist.se/gldt/)



306 Tom Mens, Maëlick Claes, Philippe Grosjean and Alexander Serebrenik

majority of its contributors are statisticians and scientists rather than professional
software engineers.

Archive networks. The GNU R community shares the goal of creating a statisti-
cal computing environment. It achieves this through the Comprenhensive R Archive
Network (CRAN), a developer-centric ecosystem in which each community mem-
ber can contribute packages implementing specific statistical analysis functions and
visualization tools. Similarly, the TEX community has its CTAN archive network
containing all kinds of material around TEX. There exists similar archives for other
languages such as CEAN for Erlang, RubyGems for Ruby and PyPI for Python.

Graphical dekstop environments. GNOME and KDE are two full desktop en-
vironments for Linux and BSD operating systems. Both are based on a specific
graphic toolkit (respectively GTK+ and Qt4). The developer communities share the
common goal of delivering a complete user-friendly desktop environment. GNOME
has been the topic of study for many researchers [320, 524, 640, 886].

Apache is an ecosystem with a community of developers based around the
Apache Software Foundation and the Apache License. One of its most famous
projects is the Apache HTTP server. Apache is a decentralized community that uses
a consensus-like development process. The aim is to provide stable, open and qual-
ity software developed by technical experts. Mockus et al. compared the Apache
development process with the one of Mozilla [613]. Bavota et al. [81] studied the
evolution of the dependencies between projects constituting the Apache ecosystem.
Weiss et al. [911] studied the emails exchanged by the contributors of the Apache
projects for discovering simple migration patterns between projects and from the
outside to a project. Gala-Pérez et al. observed that the ratio of email messages in
public mailing lists to versioning system commits has remained relatively constant
along the history of Apache, and therefore advocate this ratio as a way to measure
healthiness of an ecosystem’s evolution [306].

10.2.2.3 Collaborative and socio-technical aspects of software ecosystems

From the two aforementioned definitions of software ecosystems we have seen that
projects belonging to a software ecosystem can vary in a continuum ranging from
highly competitive (if the business-centric viewpoint prevails) to highly collabora-
tive (if the sense of community is very strong and there is strong incentive to work
together towards a common goal). Many ecosystems fall somewhere in between,
with some degree of collaboration and some degree of competition. It is clear that
the competitiveness will have an important influence on the way the ecosystem will
evolve over time.

Example 10.2 (The R ecosystem). Let us have a look at the collaboration and com-
petition in the previously mentioned R ecosystem. It only minimally complies to the
business-centric view because of its open nature: all packages in the CRAN archive
network are required to comply to an open source license. Because of this there is
much less competition in the sense of having many different packages with similar



10 Studying Evolving Software Ecosystems based on Ecological Models 307

functions. When packages do contain similar functions (this tends to be more com-
mon for “basic” functionalities), it is mainly because some contributor needed more
advanced features for that function in its own package than what was available in
existing packages. In many cases, that contributor will write his own function in-
side his own package instead of proposing to contribute changes to the existing one.
Thus, there is little collaboration, but a more fragmented implementation of features
across packages that are developed rather separately from each other. Formally ver-
ifying the above claims is outside the scope of the current chapter, as it requires an
extensive empirical study of R packages.

Technical aspects are essential for software ecosystems. They need to rely on a
sophisticated software and hardware infrastructure and tools needed for their proper
functioning, distribution, development, maintenance and evolution. Typical sup-
port that is provided are SDKs, APIs, download repositories, package management,
dependency management and installation tools, version control systems, tools for
change tracking, bug tracking and defect management, mailing lists, websites and
other communication fora.

Social aspects and communication between the members of the software devel-
opment team are at least as important as the technical aspects for the success of
any software project [90, 236, 265, 868]. This is especially true for OSS projects
where it is, in most cases, easier to become involved in the development team. This
implies that the team structure needs to be more flexible in order to accommodate
the easy integration of newcomers and to deal with the frequent departure of de-
velopers. Chapter 6 of this book proposes a number of techniques to recommend
“compatible” developers to a project.

Fitzgerald [295] coined the term OSS 2.0 to reflect the new generation of OSS
ecosystems that significantly “evolved” over the last decade or so from its single-
project antecedents. Empirical results and insights obtained for individual OSS
projects do not necessarily apply to projects that are part of a bigger, highly collab-
orative ecosystem of interacting parts. Nakakoji et al. [631] distinguished between
different types of OSS community members: developers, bug fixers, bug reporters,
readers and passive users. They further subdivided developers into peripheral de-
velopers, active developers, core members and project leaders. They proposed a
so-called onion model for the OSS community structure, suggesting that there are
very few project leaders, a bit more core members, even more active developers, and
so on, and that promotion and migration of contributions tends to follow the layers
of this model. Jergensen contested this onion model in an OSS 2.0 setting [439], by
showing that contributor migrations do not tend to follow this model in many cases.
Many other empirical studies have studied the activity patterns of, and differences
between, core developers and peripheral developers [162, 250, 689, 723, 828, 941].
A detailed discussion of these is, however, beyond the scope of this chapter. We
refer the interested reader to [336].

Still related to developer communication, Abreu and Premraj [2] studied the cor-
relation with software quality. They observed a statistically significant correlation
between communication frequency and number of injected bugs in the software.



308 Tom Mens, Maëlick Claes, Philippe Grosjean and Alexander Serebrenik

Through mining the source code repository and mailing lists of the well-known
Apache and Mozilla OSS projects, Mockus et al. [613] investigated the roles and
responsibilities of developers, and observed a set of implicit conventions among
developers that implies an intensive communication. Madey et al. [305, 868] anal-
ysed the social networks involved in OSS development and observed power laws at
many scales. Bird et al. [108] analysed social networks emerging from mailing lists
discussions and observed a Pareto distribution. Mailers tend to form a small-world
network at several points of view; for instance, few mailers received messages from
an important number of persons while most of mailers received messages from few
senders. A strong correlation between mailing and coding activities was found and
evidence was provided that the role of developers in mailing lists is more important
than the other mailers.

10.2.3 Comparing natural and software ecosystems

The premise of this chapter is to learn from ecology and natural ecosystems, that
have evolved over millions of years, and use this knowledge to improve our un-
derstanding of software ecosystems. Existing research on natural ecosystems has
already provided many useful insights on the underlying mechanisms and how we
could better manage and preserve these ecosystems. Our hope is to learn from this
research, and to apply some of its insights to obtain better strategies for manag-
ing, developing and maintaining software ecosystems, and to come up with pro-
cesses that increase the fitness of projects and contributors belonging to the software
ecosystem.

Fig. 10.3: Natural versus software ecosystems

When comparing biological evolution with software evolution, despite their ob-
vious differences, we can also draw many analogies. This analogy is illustrated in
Figure 10.3. If we take the development-centric viewpoint of a software ecosystem,

natural ecosystem
living species

plantsanimals

micro-
organisms

habitat: soil, rocks, air,
 water, light, ...

software ecosystem
contributorsprojects

users

developers

category 
A

category 
B

category 
C

environment: software and hardware 
tools and platforms, social media, ...



10 Studying Evolving Software Ecosystems based on Ecological Models 309

we can consider the software projects as being the equivalent of the “living species”
of a natural ecosystem, and the physical habitat is replaced by the socio-technical
environment in which these projects co-exist and evolve. The projects require soft-
ware and hardware resources for developing, installing and executing the software
products belonging to the ecosystem. All software projects interact with each other
and with the user and developer communities and available resources. The software
ecosystem can also be interpreted in an alternative way, by considering the con-
tributors to the software projects as the equivalent of the “living species” and the
software products then become part of the software and hardware environment of
these species. This view may be particularly suited if we wish to study the social as-
pects of a software ecosystem. In practice, both of the above views are complemen-
tary and need to be combined in order to fully understand how software ecosystems
evolve.

Example 10.3 (Coral reefs). In a coral reef ecosystem, the scleractinian coral polyps
are responsible for creating the coral reef structure required for the other species to
thrive. We find a similar idea in most business-centric software ecosystems, where
there is typically a core set of projects (or core architecture), developed by a core
group of developers, based on which the other projects are created.

Like natural ecosystems, a desirable property of software ecosystems is to be
sustainable, in that their user and developer communities can use, maintain and
improve the ecosystem’s projects over longer periods of time. Just like the habi-
tat of a natural ecosystem, the environment of a software ecosystem may undergo
important changes, whether they be planned or unexpected. The resilience of a soft-
ware ecosystem then refers to its ability to return to a stable equilibrium after mi-
nor or major disturbances. Examples of such disturbances are the appearance of a
new competitor products, a loss of interest by the user or developer community, a
change of technology (e. g. switch from the use of a centralized version repository to
a distributed version repository), the introduction of new communication channels
(mailing lists, StackOverflow—cf. Chapter 5 and Chapter 6, respectively) and other
ways of collaboration.

Biological species evolve through mutation and crossover of genes between indi-
viduals of the same or different species. An analogy of such gene transfer in software
projects could be the reuse of code from one project to another, or the migration of
software developers from one software project to another.

Natural ecosystems require energy (e. g. air, water and sunlight) to thrive. The
same is true for software ecosystems, but the type of energy required is quite dif-
ferent. If we consider the software projects as the species of a software ecosystem,
the energy required to maintain and evolve them is the time and effort invested by
the users and developers contributing to the software ecosystem, through commits
in the version repository, bug and change requests, mails in the mailing lists, com-
munication in forums and websites, and so on.

The notion of biodiversity also exists in software ecosystems, at different levels
(as illustrated, in part, in Figure 10.3). First of all, there is a diversity of contributors
involved in software development. The role of contributors may range from more



310 Tom Mens, Maëlick Claes, Philippe Grosjean and Alexander Serebrenik

passive (e. g. users) to more active (e. g. developers, translators, UI specialists, etc.).
Zooming in on the developers, we can distinguish between core developers, active
developers and peripheral developers at a more fine-grained level [631, 723, 828].
For the software projects that are part of the ecosystem we observe a similar diver-
sity. Some projects will be more user-oriented (i. e. they can be installed and used by
end-users) while others will offer the core functionality that is needed by others in
order to function properly. Sometimes there may be different projects with a similar
functionality. This may be beneficial for the biodiversity since the disappearance of
such projects will not be detrimental to the ecosystem since the other project could
take its place. Another example of diversity is conditional compilation, which al-
lows for a software product to create different variants adapted to specific platforms
or user needs. Software product lines encourage controlled diversity across different
software products with some shared common features (see Chapter 9).

It is likely that the mechanisms controlling the ecosystem dynamics (top-down,
bottom-up or wasp-waist) can be adapted to software ecosystems as well. If a soft-
ware ecosystem is mainly driven by its core developers or by limited hardware re-
sources it might follow a bottom-up control process. If it is mainly driven by change
and bug requests from the end users, it might rather have a top-down control. In
many cases, the type of control is probably a mix between both, in the sense that
some projects of the ecosystem (typically the core projects) will be driven or initi-
ated by the developers, while others will be driven by the end-users’ change requests
and desire for new or modified functionality. A better understanding of the type of
dynamics that control a software ecosystem may ultimately lead to better manage-
ment strategies for maintaining the ecosystem over time.

The notion of ecological niche of a species also has a counterpart in software
ecosystems: if we consider contributors (e. g. developers) to be the equivalent of a
species, their ecological niche is determined by environmental factors such as the
operating system they are using, their preferred programming language, the APIs
they are using, their domain of interest, and so on. These characteristics will con-
strain the ecological niche of a developer to a subset of the total set of projects she
could potentially contribute to.

10.3 Evolution

10.3.1 Biological evolution

A biological species corresponds to a group of organisms capable of interbreeding
and producing fertile offspring. Biological evolution is characterized by the fact
that a species is composed of many individuals whose genetic code differs. Those
individuals can reproduce, leading to mutations and crossing in the genetic code.
The evolutionary driving force is variation and natural selection. A central idea
in the evolutionary theory of natural selection is the notion of fitness. It describes



10 Studying Evolving Software Ecosystems based on Ecological Models 311

the ability of a species to both survive and reproduce, and is equal to the average
contribution to the gene pool of the next generation that is made by an average
individual of the specified genotype or phenotype [673].

Different theories have been proposed by biologists to explain the evolution of
biological species, and the field still evolves today. The Darwinian evolution model
is generally considered as the major mechanism driving biological speciation (i.e.
one species differentiating into two) in life on earth [218]. The field of phylogenet-
ics studies, among others, the biological evolution history of a set of species [764].
In the Darwinian model, the evolution history can be represented by phylogenetic
trees [294]. Such a tree describes the evolutionary relationships among species as-
suming that they share a common ancestor and that evolution takes place in a tree
like manner.

There are other, less well-known evolutionary models, such as reticulate evo-
lution [523, 779]. These models cannot be represented using a tree structure, but
require some graph-like or network-like structure instead [414]. Reticulate evolu-
tion refers to the dependence between two evolutionary lineages. This is radically
different from pure Darwinism where there cannot exist such transfer of informa-
tion between two different species. When reticulation occurs, two or more evolu-
tionary lineages are combined at some level of biological organization. Because life
is organized hierarchically, reticulation can occur at different levels: chromosomes,
genomes and species. At the species level, events such as hybrid speciation (by
which two lineages recombine to create a new one) and horizontal gene transfer (by
which genes are transferred across species) are the main causes of reticulate evo-
lution. A group of animals where reticulate evolution is suspected to be of major
importance is the scleractinian corals [891].

Apart from Darwinism and reticulation, other evolutionary theories have been
proposed, such as Lamarckism [488]. Lamarck considered that the evolution is based
on uses and needs rather than on natural selection. While this theory has been su-
perseded by Darwinism in biology, this does not necessarily mean that we should
exclude it as a possibly useful theory for modeling the evolution of software ecosys-
tems. Indeed, software is developed with the aim to fill a need and its survival fitness
is partially constrained by its likelihood to be used.

A fairly recent evolutionary theory is the so-called hologenome theory of evo-
lution, originating from studies on coral reefs [732]. In this theory, the object of
natural selection is not the individual organism, but the organism together with its
associated microbial communities. This theory may perhaps be more closely related
to what one observes in software ecosystems, where one should not consider the
object of evolution (the software project) in isolation, but rather together with its
associated community of contributors (e.g., users and developers).

The biological phenomenon of co-evolution [862] arises if the genetic composi-
tion of one species changes in response to a genetic change in another one. This can
occur, for example, when two or more species interact and influence each other, or
live in symbiosis (e.g., host-parasite, plant-pollinator).

The notion of ecological refuge is also very relevant in the context of ecosystem
evolution [101]. The conditions in a refuge are such that the species are protected



312 Tom Mens, Maëlick Claes, Philippe Grosjean and Alexander Serebrenik

from certain threats such as predation. A key characteristic of refuges is that they
are a reservoir of diversity since they provide a means to sustain species that are
not the fittest at some point in time. Refuges are important in an evolution context,
since species in refuges may become dominant species in the future in response to
environmental changes.

10.3.2 Comparing biological evolution with software evolution

To be able to apply the aforementioned and other biological evolutionary models to
study the evolution of software ecosystems, these models will need to be adapted
because there are notable differences between software projects and living species.

While biological species evolve due to changes and variations in the genetic code
of its individuals, it is difficult to consider a software project as a collection of indi-
viduals. Of course, we could view the different instances of a software system that
are deployed on particular machines as individuals of the biological species. The
major difference is that there is strictly no variation in the code of the various soft-
ware project instances installed (to draw the parallel with differences in the genetic
code of living organisms), while even small genetic differences between biological
individuals is a major driving force of biological evolution. It is worth noting, how-
ever, that the equivalent of phenotypic changes in living organisms is represented at
a varying degree in software: configuration files, installable plugins or packages can
modulate how a particular instance operates in a given context.

Another type of software where one can observe a sufficient level of variation
necessary for being able to apply biological evolutionary theories are so-called soft-
ware product families. These are addressed in Chapter 9 of this book. Each member
of a product family is a variant that has similarities and differences with the other
product family members, and the family as a whole evolves over time.

The main driver for evolution of biological species is the creation of offspring
through biological reproduction. This is not true for the elements that constitute a
software ecosystem: software projects cannot “reproduce” themselves to produce
new generations (read: versions or releases) of offspring.1 Note that one could also
consider project forking or branching as some kind of reproduction. A similar ar-
gument as above holds for the members of the ecosystem’s communities: new gen-
erations of developers and users are not produced through interbreeding of existing
members, but rather through the intake of new members from outside the ecosystem.

The rate at which software projects evolve is several orders of magnitude higher
than the evolution of biological species. Hence, one has to determine the relative
temporal scale at which comparison is possible between biological mutations and
changes in software projects.

1 This argument does not necessarily hold for self-adaptive systems, which are capable of dy-
namically changing their runtime behavior. For more information on this specific type of software
system we refer to Chapter 7.6 of this book.



10 Studying Evolving Software Ecosystems based on Ecological Models 313

We can only collect very partial records of the evolution of natural ecosystems,
restricted to limited sampling in time and space. Models in ecology are thus always
applied with a large degree of uncertainty. On the contrary, more exhaustive histori-
cal records exist for many open source software ecosystems, from their onset, thanks
to version control systems2 where every change is recorded and documented.

Scientific research on biology is primarily observational and passive. One can
observe how natural ecosystems have evolved in a self-organised way over long
period of times, and develop theories that explain this evolution. Given the long
time scales involved it is hard to carry out “in vivo” experimental research to study
how actual ecosystems and the species populating it evolve by modifying certain
parameters in the ecosystem. For software ecosystems, it is really possible to carry
out applied, in vivo research, since the software environment involves human beings
(developers and users). This makes it possible, in principle, to interact with them in
order to find out how and why a software project has evolved over time, and making
it easier to alter the way in which the ecosystem will evolve in the future.

10.3.3 Transposing biological models to the software realm

Given these many differences, the question arises whether ideas from biological
evolution can be easily adapted to gain a better understanding of software evolu-
tion. Nehaniv [638] discussed the differences between software systems and bio-
logical species from an evolutionary point of view. Svetinovic [811] suggested that
a comparison between software evolution and biological evolution is a fertile field
of study. Yu and Ramaswamy [940] suggested that software systems share similar
evolvability properties with biological systems, implying that studying the evolu-
tion of these biological systems can help us understand and improve development
of software systems. None of the aforementioned papers, however, have empirically
studied this potential.

Some researchers have gone a step further in adapting biological models or mech-
anisms in the context of software evolution. For example, Hutchins [416] used ge-
netic algorithms to understand evolutionary software development processes. Each
branch of a software project is compared to an individual of a biological species and
merging of branches is similar to the crossover operation (reproduction of two indi-
viduals). Software evolution is then described as a form of human-guided search for
a program meeting requirements. Jaafar et al. [429] used phylogenetic trees to show
the evolutionary history of object-oriented programs. They suggest to use such trees
to facilitate the detection of code decay and fault-proneness.

Baudry [79] studied the relevance of the notion of ecological refuge in the context
of evolving OSS projects. More in particular, they analyzed the potential of largely
inactive projects as alternatives for biodiversity and evolution: some of these “un-
successful” projects may survive and increase diversity by seeding future, successful

2 While some data can still be incomplete in software repositories, it remains far more complete
than for biological species where historical data like fossils are very sparse and incomplete.



314 Tom Mens, Maëlick Claes, Philippe Grosjean and Alexander Serebrenik

projects. They empirically analyzed this by studying project forks for 48 projects in
the GitHub forge, and found 3 occurrences of the refuge effect. Similar to national
parks, that serve to protect endangered species, software forges may therefore serve
to protect unsuccessful projects and reuse or revive them in the future.

Calzolari et al. [155] explored the use of the biological predator-prey model in
the context of software evolution. This model has been used in biology to describe
the dynamics of an ecological systems using linear or nonlinear models consist-
ing of two parametric differential equations [720]. The basic idea is that software
defects (requiring corrective actions) can be seen as the equivalent of biological
prey, whereas the programmers act as predators (removing the defects by correcting
them). Empirical evidence of the usefulness of this model was given by analyz-
ing the evolution of two industrial software systems and accurately predicting their
dynamics using the proposed model. Some adaptations of the original biological
model were needed since, unlike species, software defects cannot reproduce them-
selves, implying the elimination of the reproduction term in the dynamic model.

Posnett et al. [698] explored a similar idea, by considering software modules as
predators that feed upon the limited cognitive resources of developers (their prey).
They combined this with the notion of biodiversity [570] to measure how focused
the activities on a module are, as well as how focused the activities of a developer
are. They found empirical evidence that more focused developers introduce fewer
defects. Conversely, increased module activity focus leads to a larger number of
defects.

To transpose other theories of evolution and speciation of living species to soft-
ware ecosystems we might require a mix of different evolutionary mechanisms, with
probably a domination of reticulate-like mechanisms over pure Darwinian differen-
tiation. For example, we could transpose the notion of fitness to reflect the ability
of projects to survive and maintain themselves within the ecosystem of which they
are part. We could also transpose the notion of biological speciation to software
ecosystems to represent the mechanism of software project forking.

Example 10.4 (Evolution of Linux distributions). One illustration of this phenomenon
is the different GNU/Linux distributions that have forked from a few main distribu-
tions (Fig. 10.2). The distribution timeline of Linux distributions does not represent
a tree structure but forms a directed acyclic graph with some connections between
different branches of the tree, indicating the exchange or sharing of ideas, code, and
developers (corresponding to horizontal gene transfer across species). This may ul-
timately lead to project merging, if the level of sharing becomes sufficiently high.
Such project merging fits the phenomenon of reticulation that occurs when two or
more evolutionary lineages are combined at some level of biological organization.
The following examples illustrate these phenomena: (i) Maemo (Nokia’s mobile
OS based on Debian) and Moblin (an Intel Atom optimized GNU/Linux distribu-
tion) merged to form Meego; (ii) Crunchbang was first based on Ubuntu, but since
2010 it has been based on Debian rather than Ubuntu.

The biological phenomenon of co-evolution can also be useful to explain and
model certain aspects of software ecosystem evolution. The term co-evolution has



10 Studying Evolving Software Ecosystems based on Ecological Models 315

been borrowed by software engineering researchers on numerous occasions and
for various purposes, but only at a very shallow level. A typical usage is to re-
flect the need for different types of software artefacts (e.g., design models and
code) to be kept synchronised while they are changing from one version to the
next [188, 239, 285]. Chapter 2 of this book discusses the need to co-evolve soft-
ware models and their metamodels. In the context of open source, Ye et al. [937]
explored the co-evolution between software systems and their developer communi-
ties. Yu [939] has studied the co-evolution between 12 kernel modules of Linux in
597 different releases and found that co-evolution arises when one module changes
in response to a change in another component. Jaafar et al. [429] studied the fault-
proneness of co-evolved classes in object-oriented programs. Fluri et al. [297] an-
alyzed the co-evolution between source code and comments. Zaidman et al. [943]
explored the co-evolution between production code and test code.

In the context of software ecosystems, we propose to study the co-evolution be-
tween different projects belonging to the same ecosystem. Two software projects
fulfilling a similar purpose inside the same ecosystem (e. g. two games in a mobile
app store, or two drawing tools or text editors in an OSS forge) can be seen as being
in a state of competition. This can lead to co-evolution in the sense that a new feature
in one of the projects may disavantage the other one and may force its developers
to adapt the project if they want it to maintain its fitness for purpose. Similarly, if
two software projects are complementary and useless if used separately, developers
of both projects will need to collaborate when evolving their software. The latter
scenario can be viewed as a kind of symbiosis.

10.4 Exploratory case study

In this section, we report on techniques used to study natural ecosystems and their
adaptation and application to software ecosystems. We do this through a case study
on the well-known GNOME ecosystem that will be presented in subsection 10.4.1.
In subsection 10.4.2, we explore to which extent the characteristics of GNOME,
an example of a software ecosystem, differ from the characteristics of a biological
vegetation ecosystem. In subsection 10.4.3, we study the immigration of new de-
velopers in GNOME and the local migration of developers across GNOME projects,
motivated by the fact that the success and sustainability of a software ecosystem
depends on its ability to attract and retain developers.

10.4.1 The GNOME OSS ecosystem

In order to assess to which extent biological models, techniques and tools for ecosys-
tems and evolution are applicable to software ecosystems, we need to carry out em-
pirical studies. These studies will allow us to determine what are the main common-



316 Tom Mens, Maëlick Claes, Philippe Grosjean and Alexander Serebrenik

alities and differences in the characteristics and dynamics of biological and software
ecosystems.

To carry out such empirical studies, we need access to ecosystems that are suf-
ficiently large (in terms of number of projects), active (in terms of number of con-
tributors) and long-lived (in terms of number of years of activity). To avoid confi-
dentiality issues and to facilitate reproducibility and replication of results by other
researchers, we also require the analyzed data to be freely accessible. These re-
quirements naturally lead us to OSS ecosystems. OSS is generally established as
an important software development practice, and all major software vendors rely, to
some extent, on OSS. In some cases, the OSS products they rely on are even critical
to the company’s success.

Lehman’s laws of software evolution [505, 511] have inspired many researchers
and have significantly influenced research on OSS project evolution [291, 330].
Many of these studies focus on understanding and predicting the evolution of in-
dividual software projects and their developer communities. Much less empirical
research exists on the evolutionary study of long-lived OSS ecosystems containing
hundreds or even thousands of projects and contributors.

As an exploratory case study, we analyse the GNOME OSS ecosystem, since it
has been the subject of a lot of research in the past [320, 331, 336, 536, 640, 886].
The historical data of all GNOME projects is accessible through their Git version
control repositories. We have shared our extracted data set with the research commu-
nity [332]. According to git.gnome.org, GNOME has been under development
since January 1997, and currently contains more than 1400 projects (more than half
of which are archived) to which over 5000 contributors have contributed over the
entire lifetime of GNOME. Table 10.1 provides some basic historical metrics for the
GNOME ecosystem, obtained over a period of 15 years. Figure 10.4 gives an idea of
the size distribution of GNOME’s projects.

Table 10.1: Basic historical metrics for GNOME from January 1997 to December
2012. A file touch corresponds to the addition, removal or modification of a partic-
ular file in a particular commit.

Metric Value
number of projects 1,418
number of projects with coding activity 1,353
number of commits 1,303,649
number of commits containing code files 685,007
number of file touches 12,394,786
number of code file touches 6,183,282
number of contributors having made at least 1 commit 5,885
number of coders (authors having made code file touches) 4,321
considered lifetime 5844 days (16 years)

Jan 1997→ Dec 2012
number of considered 6-month activity periods 32

git.gnome.org


10 Studying Evolving Software Ecosystems based on Ecological Models 317

Fig. 10.4: Size (on log-log scale) in number of lines of code (LOC) and number of
files of GNOME projects. Extracted using CLOC from the latest version of each git
repository of January 8, 2013. Total size: 2,2251,913 LOC and 104,594 files.

In previous work [886], we have observed that the contributors to the GNOME
ecosystem can be classified in different, partially overlapping, subcommunities ac-
cording to their types of activity. The principal activity type of a contributor (approx-
imated by the number of file touches of a particular type in her commits) determines
to a large extent her work pattern and part of her ecological niche.

The current case study focuses solely on the coding activity. Our results will
therefore be restricted to coders, code files, commits containing code file touches,
and projects containing such commits. Coders are GNOME authors having an ac-
count and code commit activity in at least one of GNOME’s Git repositories. Code
files are files in a commit that are considered to contain source code, based on their
file extension (e.g. .java for Java files, .c and .h for C files, .cpp for C++ files,
.py for Python files, .pl for Perl files, and so on). Of all thirteen activity types we
defined for GNOME in [886], we observed that coding was the most important activ-
ity of the frequent GNOME contributors. Figure 10.5 gives information on the usage

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●
●

●

●●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

● ●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●
● ●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

1e+01

1e+03

1e+05

10 1000
Files

LO
C



318 Tom Mens, Maëlick Claes, Philippe Grosjean and Alexander Serebrenik

of programming languages across all GNOME repositories. It was extracted using
the CLOC code lines counting tool (cloc.sourceforge.net). We see that C
and C++ are by far the most frequently used programming languages in GNOME,
followed at a distance by Python and C#, and then followed by Perl.

Fig. 10.5: Language usage in GNOME. Extracted using CLOC from the latest ver-
sion of each repository of January 8 2013.

A challenge during data extraction is that coders may use different accounts. To
avoid counting such coders as separate identities, we used identity matching. Mul-
tiple techniques have been proposed for this [108, 334, 476, 722]. We merged the
different identities belonging to the same person using a semi-automatic approach.
First we applied an automatic algorithm detailed in [886] and then we manually
post-checked the results to remove false positives.

We chose 6-month activity periods, since GNOME has a 6-month release policy
(two releases per year in March and in September). The first considered period starts
on 1 January 1997 and the last one starts on 1 July 2012. For each period, we only
consider commits containing at least one code file touch. Similarly, we only consider
a coder to be active in a GNOME project during a period if she made at least one code
commit using one of her accounts during that period. Her number of code commits
for that period is the sum of the number of code commits of all her accounts for
all GNOME projects during the period. The number of code file touches of a coder
during a period is the sum of the number of code file touches in each of her project
commits during the period. As we can observe from the boxplots in Figure 10.6, the
majority of coders contribute to a single or very few projects (median value of 1,
mean value of 4.866) and have a limited number of code commits (median value of
4, mean value of 156.4). The distributions are strongly skewed with a long tail.

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●
●

●

●

C

Java

Objective C

Python

Lisp

JS

ASP.Net

C/C++ Header
C++

Perl

yacc

C#

IDL

HaskellObjective C++

lex
Assembly

Visual Basic PHP

Ruby

Tcl/Tk

1e+05

1e+07

100 1000 10000
Files

LO
C

cloc.sourceforge.net


10 Studying Evolving Software Ecosystems based on Ecological Models 319

Fig. 10.6: Boxplots showing the distribution of projects and commits per coder. (The
white triangle shows the mean value.)

10.4.2 Comparing GNOME with a natural ecosystem

In Section 10.2.3 we presented different ways to compare natural ecosystems to
software ecosystems. There is, however, another useful analogy that we can draw.
When studying natural ecosystems, such as a vegetation community of different
species of plants in a forest [880], one can take samples of individual plants at
different arbitrarily chosen locations (so-called sampling stations), and use this to
get an idea of the coverage of the location by each species and the variation of this
coverage across the ecosystem, for example in order to assess the biodiversity. For
software systems, one can adopt a similar approach: randomly select a number of
software projects belonging to the ecosystem, and count the coverage (in number of
commits, or any other measure of activity) of each contributor to the ecosystem. In
this analogy, contributors correspond to the equivalent of a plant species, and their
number of commits to the project correspond to the coverage. One can then use the
same portfolio of techniques as those used for studying natural ecosystems.

One such technique is hierarchical clustering. For the considered GNOME life-
time, we computed a matrix with projects (i. e. locations) as columns, coders (i. e.
species) as rows and the number of code commits per coder as cell values. We have
found in the boxplots of Figure 10.6 that more than half of the coders (54.5% to
be more precise) were not involved in more than one project. Thus in the remain-
der of this section, we will ignore these “singleton” coders, since we would like to
group together projects based on the similarities of their community and “singleton”
coders do not provide useful information on such similarities or dissimilarities. We
removed the columns containing only zeroes (i. e. projects without coding activity)
and the rows with less than two non-zero cells (i. e. coders that were active in zero or
only one project). This gives a matrix containing a total of 1352 projects and 1966
coders.

projects commits

1
10

10
0

10
00

10
00

0



320 Tom Mens, Maëlick Claes, Philippe Grosjean and Alexander Serebrenik

After applying a hierarchical clustering on this matrix, in contrast to the results
for a natural ecosystem, we observe a large number of small clusters, implying that
coders are much more restricted to a few projects than plants are on sampling sta-
tions, resulting into most items connected much higher in the clustering dendro-
gram.

21
14

27 28
13 18 5

7 6
22 16

15 24 25
23 20

19 4
11

3
12

2
9 10

0.
1

0.
2

0.
3

0.
4

0.
5

H
ei

gh
t

de
di

t
im

.e
ur

o
gx

sn
m

p2
st

ro
ng

w
in

d
gt

k.
.a

dd
on

s
gn

om
e.

te
st

.s
pe

cs
gp

ro
cv

ie
w

sp
ar

kl
es

ha
re

si
lk

y
us

ab
ili

ty
.w

eb
A

pp
lic

at
io

nM
an

ag
er

to
te

m
fil

e.
ro

lle
r

ca
rib

ou
gn

om
ep

ed
ia

ev
ol

ut
io

n.
gc

on
f.l

da
p.

ba
ck

en
d

gn
om

e.
m

en
us

bo
no

bo
.d

ra
w

ac
ht

un
g

be
ef

y
gt

k.
th

em
e.

en
gi

ne
.c

le
ar

lo
ok

s
gn

om
ew

eb
.w

m
l

lib
gt

kt
ty

oa
f

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

H
ei

gh
t

Fig. 10.7: Comparison of hierarchical clustering applied on: [left figure] a vegetation
dataset at 24 randomly chosen locations on 44 plant species; and [right figure] a
GNOME dataset of 24 projects chosen randomly from the fourth quartile and 44
randomly chosen coders chosen randomly from the fourth quartile.

On the left of Figure 10.7, the aforementioned vegetation community [880] mea-
sured at 24 randomly chosen locations is hierarchically clustered.3 The Bray-Curtis
distance was used as a basis for the clustering process [139]. On the right of Fig-
ure 10.7 the same hierarchical clustering technique is applied to a sampling of
GNOME software ecosystem and its code contributors for 24 projects chosen ran-
domly from the last quartile (i. e. projects with at least 283 commits) and 44 coders
chosen from the last quartile. The values of 24 projects and 44 coders were cho-
sen so that the clustering contains the same amount of species and locations as the
vegetation ecosystem data.

From this comparison, we observe that a vegetation ecosystem seems to behave
quite differently from a software ecosystem. The survival strategy of plants is to be
as ubiquitous as possible at all locations of the ecosystem (through direct competi-
tion for sunlight and other nutrients with the other plants in its direct surroundings).
In contrast, the survival strategy of code contributors appears to be by specialising
themselves in very few projects of the software ecosystem. As such, there is much
less competition with the other coders, and the dynamics of the ecosystem are based
primarily on collaboration, as opposed to competition with other coders.

3 We applied a hierarchical clustering with single linkage using the R function hclust.



10 Studying Evolving Software Ecosystems based on Ecological Models 321

After ignoring all coders that are involved in a single project, and carrying out a
hierarchical clustering on all GNOME projects, we observed an interesting pattern:
the majority of GNOME projects related to the programming languages Perl and
Python, respectively, were clustered together. The fragments of the cluster dendo-
gram illustrating this phenomenon are shown in Figure 10.8. Hence, the program-
ming language used in projects appears to be both a barrier limiting expansion of
developers across projects, and a subdomain inside which developers tend to interact
more closely. This allows us to confirm and further refine the notion of ecological
niche for GNOME code contributors.

Fig. 10.8: Zoom on two interesting clusters (representing the communities of Perl
coders and Python coders, respectively) in the dendograms obtained through hi-
erarchical clustering of GNOME project and coder data. Those clusters contains a
majority of Perl and Python projects. This shows that those projects’ communities
are very similar and tied.



322 Tom Mens, Maëlick Claes, Philippe Grosjean and Alexander Serebrenik

Another technique frequently used for studying natural ecosystems is principal
component analysis (PCA). Figure 10.9 again compares the vegetation community
measured at 24 randomly selected locations to the coder’s commits measured at 24
randomly selected Gnome projects. The PCA is carried out on correlation matri-
ces in both cases. Figure 10.9 shows how the total variance decreases among the
first 10 principal axes. On the left, we observe that the vegetation data can easily
be reduced down to the first three axes while loosing less that 20% of the total
variance. This means the dataset is highly structured with essentially three degrees
of freedom in the distribution of the vegetation. On the right, we do not observe
an important decrease of variance of the 10 principal axes for the Gnome dataset.
The variance is therefore more homogeneously distributed, meaning there are rather
different groups of coders working on each of the 24 projects. This confirms our pre-
vious findings that, in contrast to the vegetation ecosystem, GNOME has a relatively
well-balanced community.

Fig. 10.9: Comparison of the variance of the first 10 principal components of PCA
applied on the biological vegetation dataset (left) and the GNOME dataset (right).

To summarize, the results we obtained for GNOME are quite different from what
one typically observes in natural ecosystems, where there is a high degree of com-
petition between the species. This usually leads to well-differentiated subcommu-
nities with identifiable key species that largely structure the whole dataset, leading
to well-separated clusters in the dendrogram and to most of the variance caught by
the few first principal components in the principal component analysis. It remains to
be seen if this major difference with natural ecosystems is found in other software
ecosystems as well. If this turns out to be the case, the traditional biological evolu-
tionary theories (such as Darwinian evolution) are probably not applicable to OSS
evolution, because of the much lower level of competition observed, while compe-
tition is an essential driver of biological evolution. Future studies on other software
ecosystems will allow us to shed more light on this issue.

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10

V
ar

ia
nc

es

0
2

4
6

8
10

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10

V
ar

ia
nc

es

0.
0

0.
5

1.
0

1.
5



10 Studying Evolving Software Ecosystems based on Ecological Models 323

10.4.3 Migration of GNOME developers

The process of intake (also known as immigration) and retention of developers to
OSS projects has been the subject of study by many researchers. Von Krogh et al.
[903] have studied how one can join a project, get write access to a source code
repository and then how the newcomer specialisation is related to contribution bar-
riers. Canfora et al [160] have designed an approach to identify which contributor
could be assigned as a mentor to a newcomer. Zhou and Mockus [950, 951] have
shown that the social environment impacts both rate at which people joins a project
and the chance that a new developer becomes a long-term one.

The reason for this interest is that the success and sustainability of a project de-
pends on its ability to attract and retain developers. There is a crucial difference
with natural ecosystems, where populations of individuals can create new genera-
tions through reproduction. In OSS projects, the only way to increase or renew the
population is to attract new contributors from the outside. If a software ecosystem
is not interesting enough, it will not attract new developers, or worse it may even
loose its developers to other systems.

New developers are interested in joining OSS projects for variety of reasons, such
as personal interest in, need for the software, increasing their personal reputation,
out of altruism or because they are being paid for it [114, 292, 369, 400, 637].

Little empirical studies exist, however, on the migration of software developers
across projects. Weiss et al. [911] studied the emails exchanged by the contributors
of the Apache projects for discovering simple migration patterns between projects
and from the outside to a project. They observed that many developers joining a
project come from another project. These developers tend to migrate together with
their workmates. Based on three case studies (Apache web server, Postgres and
Python), Bird et al. [109] found three factors that influence immigration, i. e., intake
of new developers: their technical commitment, skill level and social status. Among
others, they found evidence that demonstration of skill level by submitting patches
to known bugs will increase the likelihood of becoming an official developer of the
project.

Jergensen et al. [439] studied how GNOME developers start using social mediums
and move progressively to socio-technical and technical mediums. They tried to
see if migrating from one project to another could result in bigger centrality of the
developer in the newly joined project.

Due to the little studies of developer migration at the level of software ecosys-
tems, we started to study the effect of the intake, retention and loss of developers at
the level of individual projects of the GNOME ecosystem. For each 6-month activity
period we counted the number of joiners and leavers. We distinguished between lo-
cal joiners to a project (resp. local leavers) and global joiners (resp. global leavers).
Local joiners are incoming coders in the considered project that were not active in
this project during the preceding 6-month period, but that were involved in some
activity in other GNOME projects instead. Global joiners are incoming coders in the
considered project that were not active in any of the GNOME projects during the
preceding period. A similar definition holds for the local and global leavers.



324 Tom Mens, Maëlick Claes, Philippe Grosjean and Alexander Serebrenik

The formal definition of these metrics is given in Equation 10.1. Let p be a
GNOME project, t a 6-month activity period, t − 1 the previous period, c a coder,
Gnome the set of GNOME’s code projects, and isDev(c, t, p) a predicate which is
true if and only if c made a code commit in p during t:

localLeavers(p, t) =
{c|isDev(c, t−1, p)∧¬isDev(c, t, p)∧∃p2 (p2 ∈ Gnome∧ isDev(c, t, p2))}

globalLeavers(p, t) =
{c|isDev(c, t−1, p)∧∀p2 (p2 ∈ Gnome⇒¬isDev(c, t, p2))}

localJoiners(p, t) =
{c|isDev(c, t, p)∧¬isDev(c, t−1, p)∧∃p2 (p2 ∈ Gnome∧ isDev(c, t−1, p2))}

globalJoiners(p, t) =
{c|isDev(c, t, p)∧∀p2 (p2 ∈ Gnome⇒¬isDev(c, t−1, p2))}

(10.1)

Time

J
o
i
n
e
r
s

1997 1999 2001 2003 2005 2007 2009 2011 2013

0
5

1
0

1
5

2
0

2
5

3
0

Time

J
o

i
n

e
r
s

1997 1999 2001 2003 2005 2007 2009 2011 2013

0
5

1
0

1
5

2
0

2
5

3
0

Time

J
o
i
n
e
r
s

1997 1999 2001 2003 2005 2007 2009 2011 2013

0
5

1
0

1
5

2
0

2
5

3
0

Evolution GTK+ GIMP

Fig. 10.10: Historical evolution (timeline on x-axis) of the number of local (solid)
and global (dashed) joiners (y-axis) for three GNOME projects.

We did not find any general trend, the patterns of intake and loss of coders are
highly project-specific. Figure 10.10 illustrates the evolution of the number of local
and global joiners for some of the more important GNOME projects (the figures for
leavers are very similar). For some projects (e. g. evolution) we do not observe
a big difference between the number of local and global joiners, respectively. These
projects seem to attract new developers both from within and outside of GNOME.
Other projects, like GIMP (a popular image manipulation program that can be used
and installed separately from other Gnome applications), attract most of its incom-
ing developers from outside GNOME. A third category of projects attracts most of its
incoming developers from other GNOME projects. This is the case for GTK+ which
can be considered as belonging to the core of GNOME. This observation seems to
suggests that libraries, toolkits and auxiliary projects attract more inside develop-
ers, while projects that are well-known to the outside world (such as GIMP) attract
outside developers.

However, it is also important to measure if the projects that attract developers
from the outside of the ecosystem tend to keep those developers inside the project
or also “diffuse” them to other projects of GNOME. In order to give an idea of this



10 Studying Evolving Software Ecosystems based on Ecological Models 325

on the three previously mentioned projects we defined a metrics we called the col-
laboration factor of a project. It represents the percentage of coders contributing to
the project and who are also contributing to another project of GNOME. The collab-
oration factors for Evolution, GIMP and GTK+ are respectively 65.1%, 85% and
94.7%. This leads us to think that while GIMP attracts a lot of people from the
outside of GNOME it seems that its community is not integrated into the GNOME
community as well as other projects like GNOME. At the opposite, the GTK+ com-
munity appears to be more integrated in the GNOME community, which is probably
not surprising since GTK+ is the core user interface library which is used by all
GNOME end-user programs. It is worthwhile to study this phenomenon in more de-
tail to find empirical evidence of this. One might consider, e. g., concentration of
project participants’ contributions to projects within the ecosystem which can be
measured using inequality indices (cf. [768, 881, 888]). Presence of many develop-
ers with highly concentrated contributions would suggest low integration within the
community.

10.5 Conclusions

This chapter presented an in-depth analysis of the analogy between natural and OSS
ecosystems, from the evolutionary point of view. While there are many similarities
between both types of ecosystems a lot of differences can be observed.

From a technical viewpoint, many techniques and models that have been pro-
posed and used in ecology may provide new insights for the study of evolving soft-
ware ecosystems. Some examples of techniques are the use of phylogenetic trees
and cluster dendograms. Some ecological models, such as the dynamic predator-
prey model have already been adapted with success in a software evolution setting
[155, 500].

Some other models, even after adaptation, appear to give different results when
applied to OSS ecosystems. For example, for the GNOME ecosystem there appears
to be a much higher degree of collaboration than what is found in many natural
ecosystems, and a lower degree of competition. For such collaborative ecosystems,
the more recent hologenome theory of evolution that has been proposed to explain
the evolution of coral reef ecosystems [732] may perhaps be closer to how soft-
ware ecosystems evolve, since it considers the evolving organism together with its
associated communities, just like a software project co-evolves by the grace of its
associated user and developer communities.

Because the traditional biological evolutionary theories are essentially driven by
competition between species in a shared resource pool, they are not always readily
applicable to explain the dynamics of highly collaborative OSS ecosystems. Other,
more business-driven proprietary software ecosystems, such as the app stores for
mobile devices, are likely to have a higher degree of competition since all apps
struggle for a larger market share in order to increase their profits. The developers of
commercial software ecosystems are also remunerated, while contributors to OSS



326 Tom Mens, Maëlick Claes, Philippe Grosjean and Alexander Serebrenik

ecosystems often work on a voluntary basis and usually have no direct financial
benefits from their involvement.

The main challenge is that historical data of commercial software ecosystems
is much harder to obtain, making it difficult to study evolutionary theories on such
ecosystems. OSS ecosystems like GitHub and SourceForge do not have this limi-
tation and probably fall somewhere between both extremes, with some amount of
competition but also a certain degree of collaboration.

Seen from a complex systems viewpoint, OSS ecosystems seem to be closer to
their biological counterpart than business software ecosystems [435]. Commercial
ecosystems are typically governed by a decision maker that decides how the ecosys-
tem should evolve, while OSS ecosystems often have a much more flexible deci-
sional structure. Like in biological ecosystems, decisions are taken at the level of
individual species (read: projects), with an emergent overall effect on the software
ecosystem as a whole.

In the current state of software ecosystems research, it is still too early to make
any general conclusions, and much more empirical results are required to understand
how one can benefit the most from existing research on natural ecosystems.



Appendices



Appendix A
Emerging trends in software evolution

Alexander Serebrenik, Tom Mens

Software evolution research is a thriving area of software engineering research.
Recent years have seen a growing interest in variety of evolution topics, many of
which have been covered in this book. Still, a number of research topics has re-
cently emerged and is not covered in the current volume. Without attempting to be
complete, this appendix provides an overview of such topics.

Beyond software

The first group of newly investigated research directions expands the idea of “soft-
ware”.

Traditionally, software evolution research has focused on the program code, and
to lesser extent on databases [358]. While the topic of co-evolution or coupled evo-
lution between software artefacts and other artefacts produced during software de-
velopment is an active area of research [297, 943], its application to data-intensive
software systems is not trivial [194, 328, 704]. The study of how code-related and
data-related artefacts co-evolve is therefore an emerging area of research that is
becoming increasingly relevant and challenging, as more and more software appli-
cations tend to rely on data, and the datasets that need to be dealt with are rapidly
growing [606].

More and more attention goes to collections of projects (called software ecosys-
tems, cf. Chapter 10), as well as to the need to take into account the social dimen-
sion, for example through the use of social network analysis (cf. Chapter 6).

Evolving software developed with modeling languages or domain-specific lan-
guages, necessitates additional insights in model evolution (cf. Chapter 2). A
particularly example of domain-specific languages are those used by mechani-
cal and electrical engineers, using languages such as MATLAB and Simulink R©
[211]. First steps towards addressing the evolution of such models have been
taken [14, 213, 214, 710].

329
 Springer

. et al. (eds.), E ,
DOI 10.1007/978-3- - - , ©  2014
T Mens volving Software Systems

642 45398 4 -Verlag Berlin Heidelberg



330 Alexander Serebrenik, Tom Mens

Spreadsheet applications are another example of artifacts that are not usually con-
sidered as software. Nevertheless, they are extremely common in industry, and can
be considered as a specific kind of end-user programming [150]. Studying the evo-
lution of such spreadsheet applications therefore constitutes an important emerging
trend in software evolution research [56, 391].

While individual software applications studied in the past usually were relatively
large, there is a growing attention to evolution of software installed on embedded
devices [486, 790] such as cars [213, 840] or consumer appliances. Similarly, a
better understanding of the evolution of mobile apps for smartphones [78, 814],
as well as the app stores in which they reside [77, 367] is becoming increasingly
important.

Robots are another example of embedded devices for which software is indis-
pensable. The field of evolutionary robotics [127] applies the idea of self-adaptive,
autonomous systems (cf. Chapter 7.6) to robotic systems. It involves evolutionary
algorithms and metaheuristics (cf. Chapter 4), as well as machine learning tech-
niques (Chapter 5 and Chapter 6). Moreover, the approach is inspired by biological
evolution (cf. Chapter 10).

Finally, verification of software correctness typically involves additional artifacts
such as tests or formal models (e. g. finite automata and transition systems). While
evolution of software tests has been considered in the past [542, 617], this is much
less the case for formal verification techniques. Most of the existing approaches to
formal software verification assume that the specification of a software system is
fixed and does not change over time. Techniques, mechanisms and theories for in-
cremental verification [200, 288, 924] embrace change as a fact of life: if a program
that has been formally verified evolves, how to go about reverifying the evolved
program without having to do the full verification again from scratch?

How is software developed?

Newly proposed software development approaches are frequently accompanied by
new evolutionary challenges that call for adaptation of existing analysis techniques
or design of new ones. For instance, while migration of (legacy) applications has
been extensively studied in the literature [358, 378], more research is needed to sup-
port migration to different computing paradigms such as cloud computing, parallel
computing, multi-core computing, mobile computing and the like. For example, it
has been shown that migration from a pseudo-cloud environment to a large-scale
cloud environment, a common step in deploying applications on massively par-
allel processing frameworks (e.g., Hadoop [919]), leads to new challenges [771].
Similarly, migration of software from a general-purpose computer to a device with
limited resources such as a smartphone or a gaming console, requires novel tech-
niques [17]. The same is true for migration to many-core and multi-core proces-
sors [878], clouds [172, 462, 861] and parallelization in general [22, 879].



A Emerging trends in software evolution 331

Another example of new software development approach calling for novel analy-
sis techniques comes from the area of reverse engineering [590, 617]. For example,
while reverse engineering UML sequence diagrams is not new [143, 353, 474, 734],
Enterprise JavaBeans interceptors [272] altered the semantics of traditional Java
programs and necessitated development of a new technique [733, 767]. Similarly,
while GUI reverse engineering has been introduced already in [586] growing popu-
larity of mobile applications called for new reverse engineering techniques [28, 447]
aiming at discovery of a comprehensible model of the user interface states and tran-
sitions between them.

From a managerial point of view, more insight is needed in the relation between
how software evolves and its impact of the technical debt of a software project
or organization [146, 522]. By gaining a better understanding in this, better debt
management strategies can be adopted.

Socio-technical networks

Another active research trend pertains to the analysis of socio-technical networks.
This goes beyond studying artifacts used and produced by software stakeholders
(e. g. developers and users), and includes studying the stakeholders themselves and
their activities and interactions. This trend is illustrated by studies of personal-
ity traits of StackOverflow users [87], their gender [882, 883], age [620], loca-
tions [751], expertise [700], working rhytms [934] and knowledge sharing strate-
gies [884, 885].

Understanding the differences among individuals involved in software system
evolution leads to the conclusion that different stakeholders have different needs. In
addition to the traditional focus on technical issues important for software develop-
ers, maintainers, architects [70, 378] and quality assessors (Chapter 3), recent work
also pertains to release engineers [6, 639, 808], legal advisors [246, 300, 309], user
interface designers [687] and translators [886]. Moreover, individuals developing
software are not necessarily trained as software engineers: e. g. statistical applica-
tions in R [321] are often being developed by statisticians and data analysts rather
than software engineers [885]. The needs of these individuals are likely to be differ-
ent from those of traditional software engineers.

Interdisciplinary research

Similar to how software evolution research has been influenced by research in social
networks, inspiration can be drawn from techniques originating from a wide variety
of different disciplines, including biology (Chapter 10 of this book, but also [867]),
bibliometrics [164], economics [768, 881], linguistics [889], psychology [87, 267],
seismology [370] and complex systems [626].



332 Alexander Serebrenik, Tom Mens

In their turn, software evolution studies have inspired recent research in green
computing and power consumption modeling [403], bibliometrics [887] and recruit-
ment [163].

Reproducible research

To conclude this chapter, we would like to stress that empirical research in soft-
ware evolution (and in software engineering in general), is in need of processes,
tools, techniques that facilitate reproduction and replication of studies. While re-
producibility of research is one of the main principles of the scientific method, in
practice there is still a long way to go. There are many reasons why replication of
research studies in software evolution is notoriously hard: because the datasets used
in the original study are difficult to obtain, because important implementation de-
tails or environmental settings of the study are not documented, because the proper
tools for replicating the study or no longer available, because the statistical findings
are not significant or are not correctly interpreted, and many other factors can be
cited.

Gonzalez-Barahona et al. have analyzed important aspects that render reproduc-
tion of empirical software engineering studies difficult or impossible [340]. Ghezzi
and Gall [324] have proposed the SOFAS framework to facilitate reproduction of
software mining studies, and used it to try to reproduce 88 empirical studies. Of
these, only 25 studies could be fully replicated, and 27 studies partially. Dit et al.
[254] proposed the TraceLab component library, a research framework that supports
and facilitates reproducible research in software evolution. While these are impor-
tant steps in the right direction, more research along the same lines is needed in
order to make the reproduction and replication of empirical research in software
evolution commonplace, thereby contributing to the trustworthiness and reliability
of empirical software engineering as a scientific discipline.



Appendix B
List of acronyms

ACM Association for Computing Machinery (www.acm.org)

ACRA Autonomic Computing Reference Architecture

ADG Attribute Dependency Graph

ALM Application Lifecycle Management

AOP Aspect-Oriented Programming

API Application Programmer Interface

ASP Active Server Pages

AST Abstract Syntax Tree

AUC Area Under the ROC Curve

BCR Benefit-Cost Ratio

BPMN Business Process Modeling Notation

CFG Control Flow Graph

CGI Common Gateway Interface

CMMI Capability Maturity Model Integration (www.sei.cmu.edu/cmmi)

CSS Cascading Style Sheet

DAS Dynamically Adaptive System

DOM Document Object Model

DPP Developer-Project-Property

DSL Domain-Specific Language

DTD Document Type Definition

333
 Springer

. et al. (eds.), E ,
DOI 10.1007/978-3- - - , ©  2014
T Mens volving Software Systems

642 45398 4 -Verlag Berlin Heidelberg

www.sei.cmu.edu/cmmi
www.acm.org


334

EJB Enterprise JavaBeans

EMF Eclipse Modeling Framework (www.eclipse.org/modeling/emf)

FLOSS Free/Libre Open Source Software

FODA Feature-Oriented Domain Analysis

GA Genetic Algorithm

GEF Graphical Editing Framework (www.eclipse.org/gef)

GMF Graphical Modeling Framework (www.eclipse.org/modeling/gmf)

GP Genetic Programming

GNU GNU’s not Unix (recursive acronym, www.gnu.org)

GPL General Public Licence

GUI Graphical User Interface

HC Hill Climbing

HMM Hidden Markov Model

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

IaaS Infrastructure-as-a-Service

IDE Integrated Development Environment

IEC International Electrotechnical Commission (www.iec.ch)

IEEE Institute of Electrical and Electronics Engineers (www.ieee.org)

IR Information Retrieval

ISO International Organisation for Standardisation (www.iso.org)

JSP Java Server Pages

LDA Latent Dirichlet Allocation

LOC Lines of Code. SLOC = Source Lines Of Code. KLOC = thousand (kilo)
lines of code

LSI Latent Semantic Indexing

MAP Mean Average Precision

MDA Model-Driven Architecture

MDD Model-Driven Development

MDE Model-Driven Engineering

B List of acronyms

www.iso.org
www.ieee.org
www.iec.ch
www.gnu.org
www.eclipse.org/modeling/gmf
www.eclipse.org/gef
www.eclipse.org/modeling/emf


B List of acronyms 335

MDWE Model-Driven Web Engineering

MI Maintainability Index

MIAC Model Identification Adaptive Control

MOF Meta-Object Facility (www.omg.org/mof)
EMOF = Essential MOF
CMOF = Complete MOF

MRAC Model Reference Adaptive Control

MTBE Model Transformation By Examples

NFR Non-Functional Requirements, also known as quality attributes or ‘ilities’

NLP Natural Language Processing

NLTK Natural Language Toolkit

OMG Object Management Group (www.omg.org)

OS Operating System

OSLC Open Services for Lifecycle Collaboration (open-services.net)

OSS Open Source Software

PaaS Platform-as-a-Service

PCA Principal Component Analysis

PHP Recursive acronym for PHP Hypertext Processor

PLA Product Line Architecture

PCI-DSS Payment Card Industry Data Security Standard, a set of principles for
ensuring cardholder information is protected by those accepting, e.g., VISA and
Mastercard as payment.
www.pcisecuritystandards.org/security_standards

PSO Particle Swarm Optimization

QMOOD Quality Model for Object-Oriented Design

QoS Quality of Service

QI Quality Index

QVT Query -View-Transformation

RCA Root Cause Analysis

RE Requirements Engineering

REKB Requirements Engineering Knowledge Base

REP Requirements Evolution Problem

www.pcisecuritystandards.org/security_standards
open-services.net
www.omg.org
www.omg.org/mof


336

RIA Rich Internet Application

RML Requirements Modeling Language

ROC Receiver Operating Characteristic

RWR Random Walk with Restart

SA Simulated Annealing

SaaS Software-as-a-Service

SAS Self-Adaptive Software

SAP Self Adaptation Problem

SBSE Search-Based Software Engineering

SCA Service Component Architecture

SDK Software Development Kit

SEI Carnegie Mellon Software Engineering Institute (www.sei.cmu.edu)

SLA Service Level Agreement

SOA Service-Oriented Architecture

SOAP Simple Object Access Protocol

SPL Software Product Line

SPLE Software Product Line Engineering

SQALE Software Quality Assessment based on Lifecycle Expectations

SQUALE Software QUALity Enhancement [619]

SQuaRE Systems and Software Quality Requirements and Evaluation

SRS Software Requirements Specification, typically as defined in the IEEE-830
standard [421]

SVG Scalable Vector Graphics

SVM Support Vector Machine

UML Unified Modeling Language (www.uml.org)

URI Uniform Resource Identifier

VSM Vector Space Model

WWW World Wide Web

WSDL Web Services Description Language

XML eXtensible Markup Language

B List of acronyms

www.uml.org
www.sei.cmu.edu


Appendix C
Glossary of Terms

This appendix contains a glossary of terms and definitions that have been introduced
and used in the various chapters contributing to this book.

as-is utility According to Boehm [122], the extent to which the as-is software can
be used (i.e. ease of use, reliability and efficiency).

conformance A relationship between models and metamodels. A model conforms
to its metamodel if it obeys the syntactic rules defined by the metamodel.

content model A model describing the business and data objects of a web system,
including their properties and relationships.

coupled evolution A coupled evolution is a triple (µ,µ ′,m) of the original meta-
model µ , the evolved metamodel µ ′, and migration m, a partial function from the
extension of µ to the extension of µ ′.

dynamic software systems Software systems whose operation is especially af-
fected by uncertainty, that is their requirements and execution environments may
change rapidly and unpredictably [646].

ecology The scientific study of the interactions that determine the distribution and
abundance of living organisms.

ecosystem The physical and biological components of an environment considered
in relation to each other as a unit.

efficiency According to Boehm [122], the optimum use of system resources during
correct execution.

evolution A process of progressive, for example beneficial, change in the attributes
of the evolving entity or that of one or more of its constituent elements. What is ac-
cepted as progressive must be determined in each context. It is also appropriate to
apply the term evolution when long-term change trends are beneficial even though
isolated or short sequences of changes may appear degenerative. For example, an
entity or collection of entities may be said to be evolving if their value or fitness

337
 Springer

. et al. (eds.), E ,
DOI 10.1007/978-3- - - , ©  2014
T Mens volving Software Systems

642 45398 4 -Verlag Berlin Heidelberg



338

is increasing over time. Individually or collectively they are becoming more mean-
ingful, more complete or more adapted to a changing environment. (Chapter 1 of
[553].)
Alternative definition: The application of software maintenance actions with the
goal of generating a new operational version of the system that guarantees its func-
tionalities and qualities, as demanded by changes in requirements and environ-
ments [170, 598].

extension The extension of a software language is the set of utterances that are
syntactically correct with respect to the software language.

feature Distinguishable characteristics of a concept (e. g. component, system, etc.)
that are relevant to some stakeholder of the concept[207].

free software A popular mode of software distribution as a common good in which
users can access, modify and re-distribute the code, under the terms of the license
and some parts (e.g., notices) that should not been modified.

flexibility Acording to McCall [574], the ability to make changes required as dic-
tated by the business. According to Boehm [122], the ease of changing the software
to meet revised requirements.

frequency The number of occurrences of a change event per unit of time that will
require the evolution of the system.

intensional definition An intensional definition of a software language defines the
rules to check whether an utterance is syntactically correct with respect to the soft-
ware language.

interoperability Acording to McCall [574], the extent or ease to which software
components work together.

maintainability According to McCall [574], the ability to find and fix a defect.
According to Boehm [122], the ease of identifying what needs to be changed as
well as the ease of modification and retesting.

maintenance According to the ISO Standard 12207 [423], the software product
undergoes modification to code and associated documentation due to a problem or
the need for improvement. The objective of software maintenance is to modify the
existing software while preserving its integrity.
According to the IEEE Standard 1219 [420], software maintenance is the modifica-
tion of a software product after delivery to correct faults, to improve performance or
other attributes, or to adapt the product to a modified environment. In the ISO/IEC
Standard 14764 [424], maintenance is further subdivided into four categories:

Perfective maintenance is any modification of a software product after delivery to
improve performance or maintainability.

Corrective maintenance is the reactive modification of a software product per-
formed after delivery to correct discovered faults.

C Glossary of Terms



C Glossary of Terms 339

Adaptive maintenance is the modification of a software product performed after
delivery to keep a computer program usable in a changed or changing environ-
ment.

Preventive maintenance refers to software modifications performed for the pur-
pose of preventing problems before they occur. This type of maintenance, that
does not alter the system functionality, is also referred to as anti-regressive work.

metamodel An intensional definition of a modeling language. It specifies the ab-
stract syntax of the language.

model An abstract specification of a part of a software system. A model is an ut-
terance of a modeling language.

model migration A transformation that transforms a model that conforms to the
old version of the metamodel to the new version of the metamodel.

modeling language A software language to specify models. Its abstract syntax is
defined by a metamodel, and its semantics usually defines how to map models to
programs.

navigation model A model describing the user interactions of a web system (e.g.,
navigation through links and form submission).

off-line software evolution The process of modifying a software system through
actions that require intensive user intervention and imply the interruption of the
system operation.

open source software Software of which the source code is available for users and
third parties to be inspected and used. It is made available to the general public with
either relaxed or non-existent intellectual property restrictions. It is generally used as
a synonym of free software even though the two terms have different connotations.
Open emphasises the accessibility to the source code, while free emphasises the
freedom to modify and redistribute under the terms of the original license.

portability According to McCall [574], the ability to transfer the software from
one environment to another. According to Boehm [122], the ease of changing soft-
ware to accommodate a new environment, or the extent to which the software will
work under different computer configurations (i.e. operating systems, databases
etc.).

presentation model A model describing the layout and the look and feel of a web
systems interface, as well as the widgets that enable user interactions.

programming language A software language to specify executable programs.

reliability According to McCall [574], the extent to which the system fails. Ac-
cording to Boehm [122], the extent to which the software performs as required, i. e.
the absence of defects.

re-engineering According to [181], re-engineering is the examination and alter-
ation of a subject system to reconstitute it in a new form and the subsequent imple-



340

mentation of the new form. Re-engineering generally includes some form of reverse
engineering (to achieve a more abstract description) followed by some form of for-
ward engineering or restructuring. This may include modifications with respect to
new requirements not met by the original system.

refactoring According to [301], refactoring is [the process of making] a change
to the internal structure of software to make it easier to understand and cheaper to
modify without changing its observable behaviour. If applied to programs, we talk
of program refactoring. If applied to models, we talk of model refactoring.

reusability Acording to McCall [574], the ease of using existing software compo-
nents in a different context.

reverse engineering According to [181], reverse engineering is the process of an-
alyzing a subject system to identify the system’s components and their interrelation-
ships and create representations of the system in another form or at a higher level of
abstraction. Reverse engineering generally involves extracting design artefacts and
building or synthesizing abstractions that are less implementation-dependent.

rich internet applications (RIA) Web applications that are characterized by a user
experience that is highly interactive and responsive so that they can rival the experi-
ence that desktop software applications can offer.

runtime software evolution The process of modifying a software system through
tasks that require minimum human intervention and are performed while the system
executes.

search-based software engineering The application of meta-heuristic search tech-
niques like genetic algorithms to software engineering problems.

self-adaptive software systems are software applications designed to adjust them-
selves, at runtime, with the goal of satisfying requirements that either change while
the system executes or depend on changing environmental conditions.

software ecosystem We provide two alternative definitions:

1. A collection of software projects which are developed and evolve together in the
same environment. [547]

2. A set of actors functioning as a typically is interconnected with institutions, such
as standardisation organisations, unit and interacting with a shared market for
software and services, together with the relationships among them. [433, 434]

software engineering We provide two alternative definitions:

1. The establishment and use of sound engineering principles in order to obtain
economically software that is reliable and works efficiently on real machines.
[635]

2. The application of a systematic, disciplined, quantifiable approach to the devel-
opment, operation, and maintenance of software; that is, the application of engi-
neering to software. [419]

C Glossary of Terms



C Glossary of Terms 341

software evolution See evolution.

software language A general term for artificial languages that are used to develop
software. A software language consists of an abstract and concrete syntax as well as
a semantics.

software product line A software product line aims to support the development of
a family of similar software products from a common set of shared assets.

software repository A kind of database, file system or other kind of repository in
which historical information of a software system is stored. The repository may be
used to store source code, executable code, bug reports, change requests, documen-
tation or any other type of software-related artefact for which it is useful to store
historical information.

static website A website whose content is primarily based on HTML and that of-
fers no dynamic features such as content generation.

testability According to McCall [574], the ability to validate the software require-
ments. According to Boehm [122], the ease of validation that the software meets the
requirements.

uncertainty The reliability with which it is possible to characterize the occurrence
of changes in requirements and execution environments.

understandability According to Boehm [122], the extent to which the software is
easily comprehended with regard to purpose and structure.

unstructured data Data which does not have clear, semantically overt, easy-for-
a-computer structure. It is the opposite of structured data, the canonical example of
which is a relational database, of the sort companies usually use to maintain product
inventories and personnel records [557].

usability According to McCall [574] and Boehm [122], the ease of use.

version A snapshot of a certain software system at a certain point in time. When-
ever a change is made to the software system, a new version is created.

version history The historical collection of all versions of a software system and
their relationships.

version repository A software repository containing different versions of the soft-
ware over time.

web application A system that is based on web technologies and access via a web
browser.



Appendix D
Resources

This appendix lists a number of additional resources for those readers that wish to
gain more detailed information on particular topics addressed in this book.

Books

Over the years, many books have been published on the topics of software mainte-
nance, software evolution and related areas. It is not our intent to provide a complete
list of such books here, especially since many of the older books are either outdated
or out of print. Therefore, we have preferred to present in reverse chronological or-
der our personal, subjective, list of recent books (less than 10 years old) that we
believe to be of relevance for the interested reader.

• Reverse Engineering – Recent Advances and Applications [827]. This book
presents applications of reverse engineering in the software engineering, shape
engineering, medical and life sciences application domains. The 12 contributed
chapters provide the state-of-the-art in reverse engineering techniques, tools, and
use-cases, as well as an overview of open challenges for reverse engineering re-
searchers.

• Software Engineering – The Current Practice [706]. This book presents recent
developments in object-oriented software engineering, including techniques to
cope with software changes in iterative, agile, and traditional software develop-
ment.

• Software Maintenance Success Recipes [711] identifies success recipes in effec-
tive software maintenance projects based on in-depth analysis of more than 200
real-world projects. This includes creating a robust management infrastructure,
ensuring that proper resources are available, establishing a user support structure,
conducting a meaningful measurement program, and determining the best way
and time to retire software systems.

343
 Springer

. et al. (eds.), E ,
DOI 10.1007/978-3- - - , ©  2014
T Mens volving Software Systems

642 45398 4 -Verlag Berlin Heidelberg



344

• Making Software: What Really Works, and Why We Believe It [666] discusses
such software evolution topics as software measurement and quality, and bug
prediction.

• The Encyclopedia of Software Engineering [496] contains several chapters specif-
ically dedicated to software evolution and software maintenance.

• Software Evolution [592]. This book can be considered as the predecessor of
the book you are currently reading, but it is complementary to it. The chapters
contained in both books focus on different research topics related to software
evolution. Together, they cover a very large part of software evolution research.

• Effective Software Maintenance and Evolution – A Reuse-Based Approach [437].
Stan Jarzabek explores tools for program analysis, reverse engineering, and
reengineering in-depth and explains the best ways to deploy them. It also dis-
cusses the role of XML, software components, object technology, and metapro-
gramming in improving systems maintenance, as well as how to align software
with business goals through strategic maintenance.

• Software Maintenance Management: Evaluation and Continuous Improvement
[45]. This book explores the domain of software maintenance management and
provides road maps and maturity models for improving software maintenance
organizations, aligned with the maturity models of CMMI and ISO 15504.

• Software Evolution and Feedback: Theory and Practice [553]. This book scien-
tifically explores what software evolution is and why it is inevitable. It addresses
the phenomenological and technological underpinnings of software evolution,
and it explains the role of feedback in software development and maintenance.

• Refactoring Databases: Evolutionary Database Design [29]. This book applies
the ideas of refactoring to database schemas.

• Working Effectively with Legacy Code [287]. Michael Feathers shows how to
deal with the “testing versus reengineering” dilemma. Before you reengineer you
need a good suite of regression tests to ensure that the system does not break.
However, the design of a system that needs reengineering typically makes testing
very difficult and would benefit from reengineering.

• Software Evolution with UML and XML [935]. This collection of contributed
chapters addresses some of the potential applications of UML and XML in the
field of software evolution.

• Refactoring to patterns [458]. Joshua Kerievsky’s book explains how to intro-
duce design patterns in your code, by listing typical code smells and ways to
refactor them away. An appealing way to teach reluctant designers how to clean
up their code base.

It is also worthwhile to mention the 1985 book Program Evolution: Processes
of Software Change written by Lehman and Belady, one of the very first books
that has been published on the topic of software evolution [508]. Although it is no
longer available in print, an electronic version of the book may be downloaded for
free on the internet from http://informatique.umons.ac.be/genlog/
BeladyLehman1985-ProgramEvolution.pdf.

D Resources

http://informatique.umons.ac.be/genlog/BeladyLehman1985-ProgramEvolution.pdf
http://informatique.umons.ac.be/genlog/BeladyLehman1985-ProgramEvolution.pdf


D Resources 345

Journals

The only dedicated international journal on the topic of software evolution and soft-
ware maintenance is Wiley’s Journal on Software: Evolution and Process (JSEP).
Some other international journals in which scientific articles on software mainte-
nance and evolution are published occasionally are (ordered by publisher):

ACM

• TOPLAS: Transactions on Programming Languages and Systems
• TOSEM: Transactions on Software Engineering and Methodology
• TWEB: Transactions on the Web

Elsevier

• JSS: Journal on Systems and Software

Inderscience

• IJWET: International Journal of Web Engineering and Technology

IEEE

• TSE: Transactions on Software Engineering

Kluwer

• ASE: Automated Software Engineering

Rinton Press

• JWE: Journal of Web Engineering

Springer

• SoSyM: Software and Systems Modeling
• EMSE: Empirical Software Engineering

Wiley

• SPE: Software: Practice and Experience

Standards

The following ISO/IEC approved standards are very relevant in the field of software
evolution, though some of them may be a bit outdated with respect to the state-of-
the-art in research:

• Standard 25000 on “Software Engineering – Software product Quality Require-
ments and Evaluation (SQuaRE)” [426]

• Standard 9001 on “Quality Management Systems - Requirements” [427]



346

• Standard 14764 on “Software Maintenance” [424]
• Standard 12207 (and its amendments) on “Information Technology - Software

Life Cycle Processes” [423]
• Standard 9126 on “Information technology - Software product evaluation - Qual-

ity characteristics and guidelines for their use” [422]

Events

Many events are organised each year around the themes of software evolution, soft-
ware maintenance and reengineering, or related areas. We list only the most well-
known international events here.

Conferences

A number of international conferences are organised each year, devoted to the
topics of software evolution, software maintenance, reverse engineering and re-
engineering:

CSMR European Conference on Software Maintenance and Reengineering
http://www.csmr.eu

ICPC International Conference on Program Comprehension
http://www.program-comprehension.org

ICSM International Conference on Software Maintenance1

http://conferences.computer.org/icsm

SCAM International Working Conference on Source Code Analysis and Manipu-
lation
http://www.ieee-scam.org/

SEAMS International Symposium on Software Engineering for Adaptive and Self-
managing Systems
http://www.self-adaptive.org

SLE International Conference on Software Language Engineering
http://planet-sl.org/sle2013

MSR Working Conference on Mining Software Repositories
http://www.msrconf.org

WCRE Working Conference on Reverse Engineering
http://www.reengineer.org/wcre

1 Starting from 2014 the conference will be called International Conference on Software Mainte-
nance and Evolution (ICSME).

D Resources

http://www.reengineer.org/wcre
http://www.msrconf.org
http://planet-sl.org/sle2013
http://www.self-adaptive.org
http://www.ieee-scam.org/
http://conferences.computer.org/icsm
http://www.program-comprehension.org
http://www.csmr.eu


D Resources 347

Beyond these, many other international conferences in computer science are being
organised that include contributions on software evolution. We do not list those
conferences here as there are too many of them. We invited the reader to look at the
references at the end of this book to find out which conferences may be relevant.

Workshops

A wide range of international workshops are organised each year on the topic of
software evolution or a subdomain thereof:

EVOL International workshop on software evolution organised by the ERCIM
Working Group on Software Evolution

IWPSE International Workshop on Principles of Software Evolution

ME International Workshop on Models and Evolution

MESOCA International Symposium on Maintenance and Evolution of Service-
Oriented and Cloud-Based Systems

RE@Runtime International Workshop on Requirements at RunTime. Usually co-
located with the International Conference on Requirements Engineering.

SATTOSE Seminar on Advanced Tools and Techniques on Software Evolution

WSE International workshop on Web Site Evolution



Appendix E
Datasets

Empirical software evolution research very regularly relies on the use of datasets,
containing detailed information about the history of many (typically open source)
software projects. Below, we list the most prominent datasets we have found in the
research literature.

Bug Prediction Dataset A collection of models and metrics of software systems
and their histories. The goal of this dataset is to allow people to compare different
bug prediction approaches and to evaluate whether a new technique is an improve-
ment over existing ones.
bug.inf.usi.ch

COMETS - Code metrics time series dataset A dataset of source code metrics
collected from several Java-based systems to support empirical studies on source
code evolution.
java.llp.dcc.ufmg.br/comets

DaCapo - Benchmark Suite A benchmark tool suite intended for Java benchmark-
ing by the programming language, memory management and computer architecture
communities. It consists of a set of open source, real world applications with non-
trivial memory loads.
www.dacapobench.org

Edapt Metamodel Histories A set of metamodel evolution histories that have been
reverse engineered from snapshots using the operator-based tool Edapt.

git.eclipse.org/c/edapt/org.eclipse.emf.edapt.git
/tree/tests/org.eclipse.emf.edapt.tests/data

FLOSSMetrics A database, provided by the FLOSSMetrics project, containing
data and metrics about open source software development coming from several
thousands of software projects.
melquiades.flossmetrics.org

349
 Springer

. et al. (eds.), E ,
DOI 10.1007/978-3- - - , ©  201
T Mens volving Software Systems

642 45398 4 -Verlag Berlin Heidelberg 4

melquiades.flossmetrics.org
www.dacapobench.org
java.llp.dcc.ufmg.br/comets
bug.inf.usi.ch


350

FLOSSMole A dataset, provided by the FLOSSMole project, containing over 1TB
of data and metrics about open source software projects coming from several thou-
sands of software projects [408].
flossmole.org

GHTorrent GHTorrent monitors the Github public event time line. It retrieves the
contents and dependencies of each event and stores this in a database. The data
collected for every couple of months is released as downloadable archives through
the Bittorent protocol.
ghtorrent.org

Helix A compilation of release histories of a number of non-trivial Java open
source software systems. It has been developed to assist researchers in the field
of empirical software engineering with a focus on software evolution.
www.ict.swin.edu.au/research/projects/helix/

Ohloh A public directory that indexes (as opposed to hosting) free and open source
software projects and provides analytics and search services. By connecting to
project source code repositories, analyzing the project’s history and attributing com-
mits to contributors, Ohloh can report on the composition and activity of project
code bases.
www.ohloh.net

PROMISE - PRedictOr Models In Software Engineering This website makes
data available for a compilation of release histories of a number of non-trivial Java
open source software systems. It has been developed to assist researchers in the field
of empirical software engineering with a focus on software evolution and predictive
models.
code.google.com/p/promisedata/

Qualitas Corpus A curated collection of open source Java software systems in-
tended to be used for empirical studies of code artefacts. The primary goal is to
provide a resource that supports reproducible studies of software.
qualitascorpus.com

Sourcerer An ongoing research project at the University of California, Irvine
aimed at exploring the open source phenomenon through the use of code analysis.
Sourcerer’s Managed Repository stores local copies of projects aggregated from
numerous open source repositories. The repository contains 18,000 Java projects
downloaded from Apache, Java.net, Google Code and SourceForge.
sourcerer.ics.uci.edu/repository.html

TraceLab A workbench for designing, running and sharing traceability experi-
ments using a visual modeling environment [254]. Along with the workbench,
the authors provide datasets containing issues, associated functionality (methods),
queries and execution traces.
www.coest.org/index.php/tracelab

E Datasets

www.coest.org/index.php/tracelab
sourcerer.ics.uci.edu/repository.html
qualitascorpus.com
code.google.com/p/promisedata/
www.ohloh.net
www.ict.swin.edu.au/research/projects/helix/
ghtorrent.org
flossmole.org


References

[1] A. Abran, R. Al Qutaish, J. Desharnais, and N. Habra, ISO-based Models to Measure Soft-
ware Product Quality. Institute of Chartered Financial Analysts of India (ICFAI) - ICFAI
Books, 2007. cited on page 67

[2] R. Abreu and R. Premraj, “How developer communication frequency relates to bug intro-
ducing changes,” in Joint Int’l Workshop on Principles of software evolution (IWPSE) and
ERCIM software evolution workshop. ACM, 2009, pp. 153–158. cited on page 307

[3] P. Achananuparp, I. N. Lubis, Y. Tian, D. Lo, and E.-P. Lim, “Observatory of trends in
software related microblogs,” in Int’l Conf. Automated Software Engineering, 2012, pp.
334–337. 3 citations on pages 163, 165, and 181

[4] M. Acher, A. Cleve, P. Collet, P. Merle, L. Duchien, and P. Lahire, “Reverse engineer-
ing architectural feature models,” in European Conf. Software Architecture, ser. ECSA’11.
Berlin, Heidelberg: Springer, 2011, pp. 220–235. cited on page 287

[5] M. Acher, P. Heymans, P. Collet, C. Quinton, P. Lahire, and P. Merle, “Feature model differ-
ences,” in Int’l Conf. Advanced Informations Systems Engineering, ser. CAiSE’12. Berlin,
Heidelberg: Springer, 2012, pp. 629–645. cited on page 280

[6] B. Adams, C. Bird, F. Khomh, and K. Moir, “Int’l workshop on release engineer-
ing (RELENG 2013),” in Int’l Conf. Software Engineering, 2013, pp. 1545–1546.

cited on page 331
[7] S. N. Ahsan, J. Ferzund, and F. Wotawa, “Automatic software bug triage system (BTS)

based on Latent Semantic Indexing and Support Vector Machine,” in Int’l Conf. Software
Engineering Advances, 2009, pp. 216–221. cited on page 153

[8] S. A. Ajila and A. B. Kaba, “Using traceability mechanisms to support software product
line evolution,” in Proc. of 2004, 2004, pp. 157–162. cited on page 289

[9] ——, “Evolution support mechanisms for software product line process,” J. Systems and
Software, vol. 81, no. 10, pp. 1784–1801, 2008. cited on page 278

[10] F. Akiyama, “An Example of Software System Debugging,” in IFIP Congress (2), 1971, pp.
353–359. cited on page 69

[11] J. Al Dallal and L. C. Briand, “A precise method-method interaction-based cohesion metric
for object-oriented classes,” ACM Trans. Software Engineering and Methodology, vol. 21,
no. 2, pp. 8:1–8:34, Mar. 2012. cited on page 132

[12] H. Al-Kilidar, K. Cox, and B. Kitchenham, “The use and usefulness of the ISO/IEC 9126
quality standard,” in IEEE Int’l Symp. Empirical Software Engineering (ISESE), Nov. 2005,
pp. 126–132. cited on page 203

[13] R. E. Al-qutaish, “Quality Models in Software Engineering Literature: An Analytical and
Comparative Study,” Journal of American Science, vol. 6, no. 3, pp. 166–175, Feb. 2010.

cited on page 74

351
 Springer

. et al. (eds.), E ,
DOI 10.1007/978-3- - - , ©  2014
T Mens volving Software Systems

642 45398 4 -Verlag Berlin Heidelberg



352 References

[14] M. H. Alalfi, J. R. Cordy, T. R. Dean, M. Stephan, and A. Stevenson, “Models are code
too: Near-miss clone detection for Simulink models,” in Int’l Conf. Software Maintenance,
2012, pp. 295–304. cited on page 329

[15] R. Alarcón and E. Wilde, “RESTler: Crawling RESTful services,” in Int’l Conf. World Wide
Web, Apr. 2010, pp. 1051–1052. 2 citations on pages 213 and 224

[16] C. E. Alchourrón, P. Gärdenfors, and D. Makinson, “On the Logic of Theory Change: Partial
Meet Contraction and Revision Functions,” Journal of Symbolic Logic, vol. 50, no. 2, pp.
510–530, 1985. cited on page 29

[17] N. Ali, W. Wu, G. Antoniol, M. Di Penta, Y.-G. Guéhéneuc, and J. H. Hayes, “MoMS:
Multi-objective miniaturization of software,” in Int’l Conf. Software Maintenance, 2011,
pp. 153–162. 3 citations on pages 117, 136, and 330

[18] R. Ali, F. Dalpiaz, P. Giorgini, and V. E. S. Souza, “Requirements Evolution: From As-
sumptions to Reality,” in Int’l Conf. Exploring Modeling Methods in Systems Analysis and
Design, 2011, pp. 1–10. 2 citations on pages 16 and 22

[19] E. Allen and C. Seaman, “Likert scales and data analyses,” Quality Progress, vol. July, 2007.
cited on page 180

[20] A. A. Almonaies, M. H. Alalfi, J. R. Cordy, and T. R. Dean, “Towards a framework for
migrating web applications to web services,” in Conf. Center for Advanced Studies on Col-
laborative Research, Nov. 2011, pp. 229–241. 3 citations on pages 212, 217, and 224

[21] A. A. Almonaies, J. R. Cordy, and T. R. Dean, “Legacy system evolution towards service-
oriented architecture,” in Int’l Workshop on SOA Migration and Evolution (SOAME), Mar.
2010, pp. 53–62. 2 citations on pages 217 and 218

[22] S. M. Alnaeli, A. Alali, and J. I. Maletic, “Empirically examining the parallelizability of
open source software system,” in Working Conf. Reverse Engineering, 2012, pp. 377–386.

cited on page 330
[23] T. A. Alspaugh, S. R. Faulk, K. H. Britton, R. A. Parker, D. L. Parnas, and J. E. Shore,

“Software Requirements for the A-7E Aircraft,” Naval Research Laboratory, Tech. Rep.
NRL/FR/5530-92-9194, Aug. 1992. cited on page 11

[24] T. L. Alves, C. Ypma, and J. Visser, “Deriving metric thresholds from benchmark
data,” in Int’l Conf. Software Maintenance. IEEE Computer Society, 2010, pp. 1–10.

cited on page 80
[25] V. Alves, R. Gheyi, and T. Massoni, “Refactoring product lines,” in Int’l Conf. Generative

Programming, 2006, pp. 201–210. 3 citations on pages 281, 285, and 292
[26] D. Amalfitano, A. R. Fasolino, and P. Tramontana, “Reverse engineering finite state ma-

chines from rich internet applications,” in Working Conf. Reverse Engineering, Oct. 2008,
pp. 59–68. cited on page 214

[27] D. Amalfitano, “Reverse engineering and testing of rich internet applications,”
Ph.D. dissertation, Universitá degli Studi di Napoli Federico II, Nov. 2011.

2 citations on pages 214 and 227
[28] D. Amalfitano, A. R. Fasolino, and P. Tramontana, “A GUI crawling-based tech-

nique for android mobile application testing,” in ICST Workshops, 2011, pp. 252–261.
cited on page 331

[29] S. W. Ambler and P. J. Sadalage, Refactoring Databases: Evolutionary Database Design.
Addison-Wesley, 2006. 2 citations on pages 221 and 344

[30] D. J. Anderson, Kanban. Blue Hole Press, 2010. cited on page 14
[31] S. Anderson and M. Felici, “Controlling Requirements Evolution: An Avionics Case

Study,” in Int’l Conf. Computer Safety, Reliability and Security, F. Koornneef and M. van
Der Meulen, Eds., 2000. cited on page 12

[32] ——, “Requirements Evolution: From Process to Product Oriented Management,” in Int’l
Conf. Product Focused Software Process Improvement, 2001, pp. 27–41. cited on page 12

[33] D. Andrzejewski, A. Mulhern, B. Liblit, and X. Zhu, “Statistical debugging using latent
topic models,” in European Conf. Machine Learning, 2007, pp. 6–17. cited on page 155



References 353

[34] N. Anquetil, U. Kulesza, R. Mitschke, A. Moreira, J.-C. Royer, A. Rummler, and A. Sousa,
“A model-driven traceability framework for software product lines,” Software and Systems
Modeling, vol. 9, no. 4, pp. 427–451, Sep. 2010. cited on page 289

[35] A. I. Antón, “Goal-Based Requirements Analysis,” in Int’l Conf. Req. Engineering, 1996,
pp. 136–144. cited on page 10

[36] A. I. Antón and C. Potts, “Functional paleontology: system evolution as the user sees it,” in
Int’l Conf. Software Engineering, 2001, pp. 421–430. cited on page 11

[37] G. Antoniol, M. Di Penta, and M. Neteler, “Moving to smaller libraries via clustering and
Genetic Algorithms,” in European Conf. Software Maintenance and Reengineering. IEEE
Computer Society, 2003, pp. 307–316. 2 citations on pages 116 and 117

[38] G. Antoniol, M. Di Penta, and M. Zazzara, “Understanding web applications through
dynamic analysis,” in Int’l Workshop Program Comprehension, Jun. 2004, pp. 120–129.

cited on page 224
[39] G. Antoniol, J. Huffman Hayes, Y.-G. Guéhéneuc, and M. Di Penta, “Reuse or rewrite:

Combining textual, static, and dynamic analyses to assess the cost of keeping a system up-
to-date,” in Int’l Conf. Software Maintenance, 2008, pp. 147–156. cited on page 162

[40] M. Antwerp and G. Madey, “Advances in the SourceForge research data archive (SRDA),”
in OSS, 2008. 2 citations on pages 191 and 194

[41] J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this bug?” in Int’l Conf. Software
Engineering, 2006, pp. 361–370. 2 citations on pages 124 and 153

[42] S. Apel, W. Scholz, C. Lengauer, and C. Kästner, “Detecting dependences and interactions
in feature-oriented design,” in Int’l Symp. Software Reliability Engineering, 2010, pp. 161–
170. cited on page 286

[43] J. Appelo, “Twitter top 100 for software developers,” http://www.noop.nl/2009/02/twitter-
top-100-for-software-developers.html, last accessed: 20 September 2003.

cited on page 182
[44] K. Appleby, S. Fakhouri, L. Fong, G. Goldszmidt, M. Kalantar, S. Krishnakumar, D. P.

Pazel, J. Pershing, and B. Rochwerger, “Océano - SLA Based Management of a Computing
Utility,” in IFIP/IEEE Int’l Symp. Integrated Network Management. IEEE, 2001, pp. 855–
868. 2 citations on pages 250 and 252

[45] A. April and A. Abran, Software Maintenance Management: Evaluation and Continuous
Improvement. Wiley, 2008. cited on page 344

[46] J. Aranda, S. M. Easterbrook, and G. V. Wilson, “Requirements in the wild: How small
companies do it,” in Int’l Conf. Req. Engineering, 2007. cited on page 15

[47] R. Arditi and L. R. Ginzburg, “Coupling in predator-prey dynamics: Ratio-dependence,” J.
Theoretical Biology, vol. 139, pp. 311–326, 1989. cited on page 299

[48] K. Astrom and B. Wittenmark, Adaptive Control. Addison-Wesley, 1995.
cited on page 247

[49] H. U. Asuncion, A. U. Asuncion, and R. N. Taylor, “Software traceability with topic mod-
eling,” in Int’l Conf. Software Engineering, 2010, pp. 95–104. cited on page 162

[50] V. Atluri, U. Cakmak, R. Lee, and S. Varanasi, “Making smartphones brilliant: Ten trends,”
McKinsey & Company, Tech. Rep. 20, Jun. 2012. cited on page 216

[51] M. Azuma, “Software Products Evaluation System: Quality Models, Metrics and Processes
– International Standards and Japanese Practice,” Information and Software Technology,
vol. 38, no. 3, pp. 145–154, 1996. cited on page 67

[52] U. Amann, N. Bencomo, B. H. C. Cheng, and R. B. France, Eds., Models@run.time, ser.
Dagstuhl Seminar, no. 11481, 2011. 2 citations on pages 255 and 263

[53] A. Bacchelli, A. Cleve, M. Lanza, and A. Mocci, “Extracting structured data from natural
language documents with island parsing,” in Int’l Conf. Automated Software Engineering,
2011, pp. 476–479. 2 citations on pages 146 and 155

[54] A. Bacchelli, M. D’Ambros, and M. Lanza, “Extracting source code from e-mails,” in Int’l
Conf. Program Comprehension, 2010, pp. 24–33. cited on page 154

[55] A. Bacchelli, M. Lanza, and R. Robbes, “Linking e-mails and source code artifacts,” in Int’l
Conf. Software Engineering, 2010, pp. 375–384. cited on page 154

http://www.noop.nl/2009/02/twittertop-100-for-software-developers.html
http://www.noop.nl/2009/02/twittertop-100-for-software-developers.html


354 References

[56] S. Badame and D. Dig, “Refactoring meets spreadsheet formulas,” in Int’l Conf. Software
Maintenance, 2012, pp. 399–409. cited on page 330

[57] R. Baeza-Yates and B. Ribeiro-Neto, Modern information retrieval. ACM Press, 1999,
vol. 463. cited on page 147

[58] R. Baggen, K. Schill, and J. Visser, “Standardized code quality benchmarking for improving
software maintainability,” in Int’l Workshop Software Quality and Maintainability, 2010.

cited on page 80
[59] E. Bagheri and D. Gasevic, “Assessing the Maintainability of Software Product Line Feature

Models using Structural Metrics,” Software Quality Journal, vol. 19, no. 3, pp. 579–612,
2011. cited on page 77

[60] S. K. Bajracharya and C. V. Lopes, “Mining search topics from a code search engine usage
log,” in Int’l Conf. Mining Software Repositories, 2009, pp. 111–120. cited on page 155

[61] ——, “Analyzing and mining a code search engine usage log,” J. Empirical Software Engi-
neering, pp. 1–43, Sep. 2010. cited on page 155

[62] T. Bakota, P. Hegedűs, G. Ladányi, P. Körtvélyesi, R. Ferenc, and T. Gyimóthy, “A Cost
Model Based on Software Maintainability,” in Int’l Conf. Software Maintenance, 2012, pp.
316–325. 2 citations on pages 67 and 87

[63] T. Bakota, P. Hegedűs, P. Körtvélyesi, R. Ferenc, and T. Gyimóthy, “A Probabilistic Soft-
ware Quality Model,” in Int’l Conf. Software Maintenance. IEEE Computer Society, 2011,
pp. 368–377. 4 citations on pages 66, 67, 69, and 81

[64] A. Bakun, “Wasp-waist populations and marine ecosystem dynamics: Navigating the
“predator pit” topographies,” Progress In Oceanography, vol. 68, no. 2-4, pp. 271–288,
2006. cited on page 300

[65] D. Balasubramanian, T. Levendovszky, A. Narayanan, and G. Karsai, “Continuous migra-
tion support for domain-specific languages,” in The 9th OOPSLA Workshop on Domain-
Specific Modeling, 2009. cited on page 52

[66] S. Balasubramanian, R. Desmarais, H. A. Müller, U. Stege, and S. Venkatesh, “Characteriz-
ing Problems for Realizing Policies in Self-Adaptive and Self-Managing Systems,” in Int’l
Symp. Software Engineering for Adaptive and Self-Managing Systems. ACM, 2011, pp.
70–79. cited on page 252

[67] P. F. Baldi, C. V. Lopes, E. J. Linstead, and S. K. Bajracharya, “A theory of aspects as latent
topics,” ACM SIGPLAN Notices, vol. 43, no. 10, pp. 543–562, 2008. cited on page 150

[68] J. Bansiya and C. Davis, “A Hierarchical Model for Object-Oriented Design Quality Assess-
ment,” IEEE Trans. Soft. Eng., vol. 28, pp. 4–17, 2002. 2 citations on pages 67 and 86

[69] J. Bansiya and C. G. Davis, “A hierarchical model for object-oriented design qual-
ity assessment,” IEEE Trans. Soft. Eng., vol. 28, no. 1, pp. 4–17, Jan. 2002.

2 citations on pages 132 and 134
[70] O. Barais, A.-F. L. Meur, L. Duchien, and J. L. Lawall, Software Evolution. Springer,

2008, ch. Software Architecture Evolution, pp. 233–262. 2 citations on pages x and 331
[71] M. Barbacci, M. Klein, T. Longstaff, and C. Weinstock, “Quality Attributes,” Software

Engineering Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, Tech. Rep.
CMU/SEI-95-TR-021, 1995. cited on page 77

[72] L. Baresi and C. Ghezzi, “The Disappearing Boundary Between Development-Time and
Run-Time,” in Workshop on Future of Software Engineering Research (FoSER). ACM,
2010, pp. 17–22. cited on page 253

[73] L. Baresi and S. Guinea, “Self-Supervising BPEL Processes,” IEEE Trans. Soft. Eng.,
vol. 37, no. 2, pp. 247–263, 2011. 2 citations on pages 250 and 253

[74] D. J. Bartholomew, Latent variable models and factors analysis. Oxford University Press,
1987. cited on page 149

[75] A. Barua, S. W. Thomas, and A. E. Hassan, “What are developers talking about? An analysis
of topics and trends in Stack Overflow,” J. Empirical Software Engineering, pp. 1–36, 2012.

2 citations on pages 152 and 154
[76] V. Basili and B. T. Perricone, “Software Errors and Complexity: An Empirical Investiga-

tion,” Comm. ACM, vol. 27, pp. 42–52, 1984. 2 citations on pages 7 and 9



References 355

[77] R. C. Basole and J. Karla, “Value transformation in the mobile service ecosystem: A study
of app store emergence and growth,” Service Science, vol. 4, no. 1, pp. 24–41, 2012.

2 citations on pages 303 and 330
[78] P. Battacharya, L. Ulanova, I. Neamtiu, and S. C. Koduru, “An empirical analysis of

bug reports and bug fixing in open source Android apps,” in European Conf. Soft-
ware Maintenance and Reengineering. IEEE Computer Society, 2013, pp. 133–143.

2 citations on pages 303 and 330
[79] B. Baudry and M. Monperrus, “Towards ecology inspired software engineering,” INRIA,

Tech. Rep. 7952, May 2012. 2 citations on pages 298 and 313
[80] G. Bavota, B. Dit, R. Oliveto, M. Di Penta, D. Poshyvanyk, and A. De Lucia, “An em-

pirical study on the developers’ perception of software coupling,” in Int’l Conf. Software
Engineering, 2013, pp. 1–10. cited on page 154

[81] G. Bavota, G. Canfora, M. Di Penta, R. Oliveto, and S. Panichella, “The evolution of project
inter-dependencies in a software ecosystem: the case of Apache,” in Int’l Conf. Software
Maintenance, 2013. cited on page 306

[82] G. Bavota, F. Carnevale, A. De Lucia, M. Di Penta, and R. Oliveto, “Putting the developer
in-the-loop: An interactive GA for software re-modularization,” in Int’l Symp. Search Based
Software Engineering, ser. Lect. Notes in Computer Science, vol. 7515. Springer, 2012,
pp. 75–89. 3 citations on pages 118, 120, and 136

[83] G. Bavota, A. De Lucia, A. Marcus, R. Oliveto, and F. Palomba, “Supporting ex-
tract class refactoring in Eclipse: The ARIES project,” in ICSE, 2012, pp. 1419–1422.

cited on page 128
[84] G. Bavota, M. Gethers, R. Oliveto, D. Poshyvanyk, and A. De Lucia, “Improving software

modularization via automated analysis of latent topics and dependencies,” Trans. Software
Engineering and Methodologies, 2013. cited on page 128

[85] J. Bayer, O. Flege, P. Knauber, R. Laqua, D. Muthig, K. Schmid, T. Widen, and J.-M.
DeBaud, “Pulse: a methodology to develop software product lines,” in Symp. Software
Reusability, 1999, pp. 122–131. 2 citations on pages 274 and 277

[86] J. Bayer, J. F. Girard, M. Wuerthner, J.-M. DeBaud, and M. Apel, “Transition-
ing legacy assets to a product line architecture,” in ESEC, 1999, pp. 446–463.

2 citations on pages 284 and 286
[87] B. Bazelli, A. Hindle, and E. Stroulia, “On the personality traits of StackOverflow users,”

in Int’l Conf. Software Maintenance, 2013. cited on page 331
[88] K. Beck and C. Andres, Extreme Programming Explained: Embrace Change. Addison-

Wesley Professional, 2004. cited on page 128
[89] S. Becker, T. Goldschmidt, B. Gruschko, and H. Koziolek, “A process model and classi-

fication scheme for semi-automatic meta-model evolution,” in Workshop MDD, SOA und
IT-Management (MSI). GiTO-Verlag, 2007, pp. 35–46. 2 citations on pages 40 and 53

[90] A. Begel, R. DeLine, and T. Zimmermann, “Social media for software engineering,” in
Workshop on Future of Software Engineering (FoSE), 2010. cited on page 307

[91] L. A. Belady and M. M. Lehman, “A model of large program development,” IBM Systems
Journal, vol. 3, pp. 225–252, 1976. cited on page 7

[92] N. Bencomo, G. Blair, R. France, F. Munoz, and C. Jeanneret, “4th int’l workshop on mod-
els@run.time,” in MoDELS Workshops, ser. Lect. Notes in Computer Science, vol. 6002.
Springer, 2010, pp. 119–123. 2 citations on pages 246 and 255

[93] J. Bergey, L. O’Brien, and D. Smith, “Mining existing assets for software
product lines,” SEI, CMU, Technical Note CMU/SEI-2000-TN-008, May 2000.

2 citations on pages 284 and 286
[94] ——, “(OAR): A method for mining legacy assets,” SEI, CMU, Technical Note CMU/SEI-

2001-TN-013, June 2001. 2 citations on pages 285 and 286
[95] B. Berliner, “CVS II: Parallelizing software development,” in USENIX Winter 1990 Techni-

cal Conf., vol. 341, 1990, p. 352. cited on page 143



356 References

[96] M. L. Bernardi, M. Cimitile, and D. Distante, “Web applications design recovery and evolu-
tion with RE-UWA,” J. Software: Evolution and Process, vol. 25, no. 8, pp. 789–814, 2013.

2 citations on pages 201 and 219
[97] M. L. Bernardi, G. A. Di Lucca, and D. Distante, “A model-driven approach for the fast

prototyping of web applications,” in Int’l Symp. Web Systems Evolution, Sep. 2011, pp.
65–74. 4 citations on pages 201, 219, 220, and 224

[98] M. L. Bernardi, G. A. Di Lucca, and D. Distante, “The RE-UWA approach to recover user
centered conceptual models from web applications,” J. Software Tools for Technology Trans-
fer, vol. 11, no. 6, pp. 485–501, 2009. 3 citations on pages 201, 219, and 224

[99] D. M. Berry, “Requirements for maintaining web access for hearing-impaired individuals,”
in Int’l Workshop on Web Site Evolution, Nov. 2001, pp. 33–41. cited on page 226

[100] D. M. Berry, B. H. C. Cheng, and J. Zhang, “The Four Levels of Requirements Engineering
for and in Dynamic Adaptive Systems,” in Int’l Conf. Req. Engineering, 2005, pp. 113–120.

2 citations on pages 23 and 28
[101] A. A. Berryman and B. A. Hawkins, “The refuge as an integrating concept in ecology and

evolution,” Oikos, vol. 115, no. 1, pp. 192–196, 2006. cited on page 311
[102] N. Bettenburg, B. Adams, A. Hassan, and M. Smidt, “A lightweight approach to uncover

technical artifacts in unstructured data,” in Int’l Conf. Program Comprehension, 2011, pp.
185–188. 2 citations on pages 146 and 155

[103] N. Bettenburg, E. Shihab, and A. E. Hassan, “An empirical study on the risks of using off-
the-shelf techniques for processing mailing list data,” in Int’l Conf. Software Maintenance,
2009. 2 citations on pages 143 and 146

[104] N. Bettenburg, S. W. Thomas, and A. E. Hassan, “Using fuzzy code search to link code
fragments in discussions to source code,” in European Conf. Software Maintenance and
Reengineering, 2012, pp. 319–328. cited on page 155

[105] N. Bettenburg and B. Adams, “Workshop on Mining Unstructured Data (MUD) because
“Mining Unstructured Data is like fishing in muddy waters”!” in Working Conf. Reverse
Engineering, 2010, pp. 277–278. cited on page 141

[106] J. Bézivin, “Model driven engineering: An emerging technical space,” in Summer School on
Generative and Transformational Techniques in Software Engineering, ser. Lect. Notes in
Computer Science, vol. 4143. Springer, 2006, pp. 36–64. cited on page 34

[107] W. Binder and J. Hulaas, “Using bytecode instruction counting as portable cpu consumption
metric,” Electronic Notes in Theoretical Computer Science, vol. 153, no. 2, pp. 57–77, 2006.

cited on page 117
[108] C. Bird, A. Gourley, P. Devanbu, M. Gertz, and A. Swaminathan, “Mining email social

networks,” in Int’l Conf. Mining Software Repositories. ACM Press, 2006, pp. 137–143.
4 citations on pages 168, 171, 308, and 318

[109] C. Bird, A. Gourley, P. Devanbu, A. Swaminathan, and G. Hsu, “Open borders? im-
migration in open source projects,” in Int’l Conf. Mining Software Repositories, 2007.

cited on page 323
[110] C. Bird, P. C. Rigby, E. T. Barr, D. J. Hamilton, D. M. Germán, and P. T. Devanbu, “The

promises and perils of mining Git,” in Int’l Conf. Mining Software Repositories, 2009, pp.
1–10. cited on page 143

[111] S. Bird, E. Klein, and E. Loper, Natural language processing with Python. O’Reilly Media,
2009. cited on page 146

[112] A. Birk, G. Heller, I. John, K. Schmid, T. von der Maßen, and K. Müller, “Product line
engineering: The state of the practice,” IEEE Software, vol. 20, no. 6, pp. 52–60, Novem-
ber/December 2003. cited on page 284

[113] C. M. Bishop, “Latent variable models,” Learning in graphical models, 1998.
cited on page 149

[114] J. Bitzer, W. Schrettl, and P. J. Schröder, “Intrinsic motivation in open source software
development,” Journal of Comparative Economics, vol. 35, no. 1, pp. 160–169, 2007.

cited on page 323



References 357

[115] G. Blair, N. Bencomo, and R. B. France, “Models@run.time,” IEEE Computer, vol. 42, pp.
22–27, 2009. cited on page 255

[116] D. M. Blei and J. D. Lafferty, “Topic models,” in Text Mining: Classification, Clustering,
and Applications. Chapman & Hall, 2009, pp. 71–94. cited on page 148

[117] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent Dirichlet allocation,” Journal of Machine
Learning Research, vol. 3, pp. 993–1022, 2003. cited on page 148

[118] R. Blumberg and S. Atre, “The problem with unstructured data,” DM Review, vol. 13, pp.
42–49, 2003. cited on page 140

[119] J. Boegh, S. Depanfilis, B. Kitchenham, and A. Pasquini, “A Method for Software
Quality Planning, Control, and Evaluation,” IEEE Software, vol. 16, pp. 69–77, 1999.

cited on page 77
[120] B. Boehm, P. Bose, E. Horowitz, and M.-J. Lee, “Software requirements as negotiated win

conditions,” in Int’l Conf. Req. Engineering, 1994, pp. 74–83. cited on page 291
[121] B. W. Boehm, “A Spiral Model of Software Development and Enhancement,” IEEE Com-

puter, vol. 21, no. 5, pp. 61–72, 1988. cited on page 8
[122] B. W. Boehm, J. R. Brown, H. Kaspar, M. Lipow, G. J. Macleod, and M. J. Merrit, Char-

acteristics of Software Quality. Vol. 1, ser. TRW series of software technology. Elsevier,
1978. 7 citations on pages 66, 68, 71, 337, 338, 339, and 341

[123] B. W. Bohem, “Perspectives: The Changing Nature of Software Evolution,” IEEE Software,
vol. 27, no. 4, pp. 26–29, 2010. 2 citations on pages 232 and 233

[124] S. A. Bohner, “Impact analysis in the software change process: a year 2000 perspective,” in
Int’l Conf. Software Maintenance, 1996, pp. 42–51. cited on page 289

[125] C. Boldyreff, “Keynote: Web accessibility,” in Int’l Workshop on Web Site Evolution, Nov.
2001, p. 3. cited on page 226

[126] E. Bonabeau, M. Dorigo, and G. Theraulaz, Swarm Intelligence: From Natural to Artificial
Systems. Oxford University Press, 1999. cited on page 298

[127] J. C. Bongard, “Evolutionary robotics,” Comm. ACM, vol. 56, no. 8, pp. 74–83, Aug. 2013.
cited on page 330

[128] P. Borba, L. Teixeira, and R. Gheyi, “A theory of software product line refinement,” Int’l
Colloquium on Theoretical Aspects of Computing, pp. 15–43, 2010. cited on page 285

[129] ——, “A theory of software product line refinement,” Theor. Comput. Sci., vol. 455, pp.
2–30, 2012. cited on page 292

[130] J. Bosch, Design and Use of Software Architectures: Adopting and Evolving a Product-Line
Approach. Addison-Wesley, 2000. 4 citations on pages 268, 271, 283, and 286

[131] J. Bosch and P. Bosch-Sijtsema, “From integration to composition: on the impact of soft-
ware product lines, global development and ecosystems,” in Int’l Conf. Software Product
Lines. Springer, 2009. cited on page 301

[132] J. C. Bose and U. Suresh, “Root cause analysis using sequence alignment and La-
tent Semantic Indexing,” in Australian Conf. Software Engineering, 2008, pp. 367–376.

cited on page 155
[133] G. Botterweck and K. Lee, “Feature dependencies have to be managed throughout the whole

product life-cycle,” in Software Engineering (Workshops), ser. Lecture Notes in Informatics,
vol. 150. Gesellschaft für Informatik, 2009, pp. 101–106. cited on page 272

[134] G. Botterweck, A. Pleuss, D. Dhungana, A. Polzer, and S. Kowalewski, “EvoFM: feature-
driven planning of product-line evolution,” in Workshop on Product Line Approaches in
Software Engineering. ACM, 2010, pp. 24–31. cited on page 278

[135] G. Botterweck, A. Pleuss, A. Polzer, and S. Kowalewski, “Towards feature-driven planning
of product-line evolution,” in 1st Int’l Workshop on Feature-oriented Software Development
(FOSD), October 2009. cited on page 278

[136] G. Bougie, J. Starke, M.-A. Storey, and D. Germán, “Towards understanding Twitter use in
software engineering: Preliminary findings, ongoing challenges, and future questions,” in
Int’l Workshop on Web 2.0 for Software Engineering, 2011. cited on page 173



358 References

[137] M. Brambilla, S. Comai, P. Fraternali, and M. Matera, “Designing web applications with
WebML and Webratio,” in Web Engineering: Modelling and Implementing Web Appli-
cations, ser. Human-Computer Interaction Series, G. Rossi, O. Pastor, D. Schwabe, and
L. Olsina, Eds. Springer, 2008, pp. 221–261. cited on page 219

[138] S. Brand, How Buildings Learn: What Happens After They’re Built. Viking Press, 1995.
cited on page 9

[139] J. R. Bray and J. T. Curtis, “An ordination of upland forest communities of southern wis-
consin,” Ecological Monographs, vol. 27, no. 325-349, 1957. cited on page 320

[140] H. P. Breivold, S. Larsson, and R. Land, “Migrating industrial systems towards software
product lines: Experiences and observations through case studies,” in Conf. Software Engi-
neering and Advanced Applications (SEAA), 2008, pp. 232–239. cited on page 284

[141] P. Brereton, D. Budgen, and G. Hamilton, “Hypertext: The next maintenance mountain,”
IEEE Computer, vol. 31, no. 12, pp. 49–55, Dec. 1998. 2 citations on pages 207 and 224

[142] L. Briand, K. E. Emam, and S. Morasca, “Theoretical and Empirical Validation of Soft-
ware Product Measures,” International Software Engineering Research Network, Tech. Rep.
ISERN-95-03, 1995. cited on page 75

[143] L. C. Briand, Y. Labiche, and J. Leduc, “Toward the reverse engineering of UML sequence
diagrams for distributed Java software,” IEEE Trans. Soft. Eng., vol. 32, pp. 642–663, 2006.

cited on page 331
[144] F. P. Brooks, The mythical man-month, 1st ed. Addison Wesley, 1975. cited on page 8
[145] R. A. Brooks, “A Robust Layered Control System for a Mobile Robot,” IEEE Journal on

Robotics and Automation, vol. 2, no. 1, pp. 14–23, 1986. cited on page 247
[146] N. Brown, Y. Cai, Y. Guo, R. Kazman, M. Kim, P. Kruchten, E. Lim, A. MacCor-

mack, R. Nord, I. Ozkaya et al., “Managing technical debt in software-reliant systems,” in
FSE/SDP workshop on Future of software engineering research. ACM, 2010, pp. 47–52.

2 citations on pages 69 and 331
[147] Y. Brun, G. D. M. Serugendo, C. Gacek, H. M. Giese, H. Kienle, M. Litoiu, H. A.

Müller, M. Pezzè, and M. Shaw, Engineering Self-Adaptive Systems through Feedback
Loops, ser. Lect. Notes in Computer Science. Springer, 2009, vol. 5525, pp. 48–70.

3 citations on pages 237, 238, and 241
[148] W. Bruyn, R. Jense, D. Keskar, and P. Ward, “An extended systems modeling language

(esml),” ACM SIGSOFT Software Engineering Notes, vol. 13, no. 1, pp. 58–67, 1988.
cited on page 52

[149] J. A. Bubenko, “Information modeling in the context of system development,” in IFIP
Congress, 1980, pp. 395–411. cited on page 10

[150] M. Burnett, C. Cook, and G. Rothermel, “End-user software engineering,” Comm. ACM,
vol. 47, no. 9, pp. 53–58, Sep. 2004. cited on page 330

[151] J. Businge, A. Serebrenik, and M. G. J. van den Brand, “An empirical study of the evolution
of Eclipse third-party plug-ins,” in Joint Int’l Workshop on Principles of software evolution
(IWPSE) and ERCIM software evolution workshop, 2010, pp. 63–72. cited on page 303

[152] ——, “Survival of Eclipse third-party plug-ins,” in Int’l Conf. Software Maintenance, 2012,
pp. 368–377. No citation

[153] ——, “Analyzing the Eclipse API usage: Putting the developer in the loop,” in European
Conf. Software Maintenance and Reengineering. IEEE Computer Society, 2013, pp. 37–
46. cited on page 303

[154] J. Cabot and C. Gomez, “A catalogue of refactorings for navigation models,” in Int’l Conf.
Web Engineering, 2008, pp. 75–85. cited on page 224

[155] F. Calzolari, P. Tonella, and G. Antoniol, “Maintenance and testing effort modeled by linear
and nonlinear dynamic systems,” Information and Software Technology, vol. 43, no. 8, pp.
477 – 486, 2001. 3 citations on pages 298, 314, and 325

[156] G. Candea, J. Cutler, and A. Fox, “Improving Availability with Recursive Microreboots:
a Soft-State System Case Study,” Performance Evaluation, vol. 56, no. 1-4, pp. 213–248,
2004. 2 citations on pages 250 and 253



References 359

[157] G. Canfora, A. Cimitile, A. De Lucia, and G. A. Di Lucca, “Decomposing legacy programs:
a first step towards migrating to client-server platforms,” J. Systems and Software, vol. 54,
no. 2, pp. 99–110, Oct. 2000. cited on page 217

[158] G. Canfora and M. Di Penta, “New frontiers of reverse engineering,” in Workshop on the
Future of Software Engineering Research, 2007, pp. 326–341. cited on page 137

[159] G. Canfora, M. Di Penta, R. Esposito, and M. L. Villani, “A framework for QoS-aware
binding and re-binding of composite web services,” J. Systems and Software, vol. 81, no. 10,
pp. 1754–1769, 2008. cited on page 137

[160] G. Canfora, M. Di Penta, R. Oliveto, and S. Panichella, “Who is going to mentor newcomers
in open source projects?” in Int’l Symp. Foundations of Software Engineering. ACM, 2012,
pp. 44:1–44:11. cited on page 323

[161] A. Capiluppi and K. Beecher, “Structural complexity and decay in FLOSS systems:
An inter-repository study,” in European Conf. Software Maintenance and Reengineering,
March, pp. 169–178. cited on page 304

[162] A. Capiluppi, P. Lago, and M. Morisio, “Characteristics of open source projects,” in Euro-
pean Conf. Software Maintenance and Reengineering. IEEE Computer Society, 2003, pp.
317–327. cited on page 307

[163] A. Capiluppi, A. Serebrenik, and L. Singer, “Assessing technical candidates on the social
web,” IEEE Software, vol. 30, no. 1, pp. 45–51, 2013. cited on page 332

[164] A. Capiluppi, A. Serebrenik, and A. Youssef, “Developing an h-index for OSS developers,”
in Int’l Conf. Mining Software Repositories, 2012, pp. 251–254. cited on page 331

[165] G. Capobianco, A. De Lucia, R. Oliveto, A. Panichella, and S. Panichella, “Traceability
recovery using numerical analysis,” in Working Conf. Reverse Engineering, 2009, pp. 195–
204. cited on page 162

[166] V. Cardellini, E. Casalicchio, V. Grassi, F. Lo Presti, and R. Mirandola, “QoS-driven run-
time adaptation of service oriented architectures,” in Int’l Symp. Foundations of Software
Engineering. ACM, 2009, pp. 131–140. 2 citations on pages 250 and 251

[167] J. Carter and P. Dewan, “Are you having difficulty?” in Int’l Conf. Computer Supported
Cooperative Work, 2010, pp. 211–214. cited on page 195

[168] C. Cesarano, A. R. Fasolino, and P. Tramontana, “Improving usability of web pages for
blinds,” in Int’l Symp. Web Systems Evolution, Sep. 2007, pp. 97–104. cited on page 225

[169] N. Chapin, J. E. Hale, J. C. Fernandez-Ramil, and W.-G. Tan, “Types of software evolution
and software maintenance,” J. Software Maintenance and Evolution: Research and Practice,
vol. 13, no. 1, pp. 3–30, 2001. cited on page 9

[170] N. Chapin, J. E. Hale, K. M. Kham, J. F. Ramil, and W.-G. Tan, “Types of Software Evo-
lution and Software Maintenance,” J. Software Maintenance and Evolution: Research and
Practice, vol. 13, no. 1, pp. 3–30, Jan 2001. 4 citations on pages 230, 243, 251, and 338

[171] E. B. Charrada, A. Koziolek, and M. Glinz, “Identifying outdated requirements
based on source code changes,” in Int’l Conf. Req. Engineering, Jun. 2012.

2 citations on pages 20 and 22
[172] M. A. Chauhan and M. A. Babar, “Migrating service-oriented system to cloud computing:

An experience report,” in IEEE CLOUD, 2011, pp. 404–411. cited on page 330
[173] C.-Y. Chen and P.-C. Chen, “A holistic approach to managing software change impact,” J.

Syst. Softw., vol. 82, no. 12, pp. 2051–2067, Dec. 2009. cited on page 289
[174] P. Chen, M. Critchlow, A. Garg, C. Van der Westhuizen, and A. van der Hoek, “Differencing

and merging within an evolving product line architecture,” in Intl. Workshop on Product
Family Engineering, 2003. cited on page 286

[175] T. Chen, S. W. Thomas, M. Nagappan, and A. E. Hassan, “Explaining software defects
using topic models,” in Int’l Conf. Mining Software Repositories, 2012, pp. 189–198.

cited on page 162
[176] Y. Chen, G. C. Gannod, J. S. Collofello, and H. S. Sarjoughian, “Using simulation to fa-

cilitate the study of software product line evolution,” in Int’l Workshop on Principles of
Software Evolution, 2004, pp. 103–112. cited on page 278



360 References

[177] B. H. Cheng, R. Lemos, H. Giese, P. Inverardi, J. Magee, J. Andersson, B. Becker, N. Ben-
como, Y. Brun, B. Cukic, G. Marzo Serugendo, S. Dustdar, A. Finkelstein, C. Gacek,
K. Geihs, V. Grassi, G. Karsai, H. M. Kienle, J. Kramer, M. Litoiu, S. Malek, R. Mirandola,
H. A. Müller, S. Park, M. Shaw, M. Tichy, M. Tivoli, D. Weyns, and J. Whittle, “Software
Engineering for Self-Adaptive Systems: A Research Roadmap,” in Software Engineering
for Self-Adaptive Systems, ser. Lect. Notes in Computer Science. Springer, 2009, pp. 1–
26. 6 citations on pages 230, 233, 243, 244, 255, and 262

[178] B. H. C. Cheng and J. M. Atlee, “Research Directions in Requirements Engineering,” Work-
shop on Future of Software Engineering, pp. 285–303, Feb. 2007. cited on page 23

[179] H. Cheng, D. Lo, Y. Zhou, X. Wang, and X. Yan, “Identifying bug signatures us-
ing discriminative graph mining.” in Int’l Symp. Software Testing and Analysis, 2009.

2 citations on pages 194 and 195
[180] S. R. Chidamber and C. F. Kemerer, “A Metrics Suite for Object Oriented Design,” IEEE

Trans. Soft. Eng., vol. 20, no. 6, pp. 476–493, June 1994. cited on page 69
[181] E. J. Chikofsky and J. H. Cross, “Reverse engineering and design recovery: A taxonomy,”

IEEE Software, vol. 7, no. 1, pp. 13–17, 1990. 2 citations on pages 339 and 340
[182] S. R. Choudhary, M. Prasad, and A. Orso, “Crosscheck: Combining crawling and differ-

encing to better detect cross-browser incompatibilities in web applications,” in Int’l Conf.
Software Testing, Verification and Validation, Apr. 2012, pp. 171–180. cited on page 226

[183] S. R. Choudhary, H. Versee, and A. Orso, “WebDiff: Automated identification of cross-
browser issues in web applications,” in Int’l Conf. Software Maintenance, Oct. 2010.

cited on page 226
[184] M. B. Chrissis, M. Konrad, and S. Shrum, CMMI: Guidelines for Process Integration and

Product Improvement (Sei Series in Software Engineering), 2nd ed. Addison-Wesley Long-
man, Nov. 2006. cited on page 66

[185] J. Chu and T. R. Dean, “Automated migration of list based JSP Web pages to Ajax,”
in Working Conf. Source Code Analysis and Manipulation, Oct. 2008, pp. 217–226.

2 citations on pages 223 and 224
[186] L. Chung, J. Mylopoulos, and B. A. Nixon, “Representing and Using Nonfunctional Re-

quirements: A Process-Oriented Approach,” IEEE Trans. Soft. Eng., vol. 18, pp. 483–497,
1992. cited on page 16

[187] L. Chung, B. A. Nixon, and E. S. Yu, “Dealing with change: An approach using non-
functional requirements,” Int’l Conf. Req. Engineering, vol. 1, no. 4, pp. 238–260, 1996.

cited on page 11
[188] A. Cicchetti, D. Di Ruscio, R. Eramo, and A. Pierantonio, “Automating co-evolution in

model-driven engineering,” in Enterprise Distributed Object Computing Conf. (EDOC).
IEEE Computer Society, 2008, pp. 222–231. 2 citations on pages 53 and 315

[189] A. Cicchetti, D. Di Ruscio, and A. Pierantonio, “Managing dependent changes in coupled
evolution,” in Int’l Conf. Model Transformation (ICMT), ser. Lect. Notes in Computer Sci-
ence. Springer, 2009, pp. 35–51. cited on page 53

[190] J. A. Clark, J. J. Dolado, M. Harman, R. M. Hierons, B. F. Jones, M. Lumkin, B. S. Mitchell,
S. Mancoridis, K. Rees, M. Roper, and M. J. Shepperd, “Formulating software engineering
as a search problem,” IEE Proceedings - Software, vol. 150, no. 3, pp. 161–175, 2003.

cited on page 104
[191] E. Clayberg and D. Rubel, Eclipse: Building Commercial-Quality Plug-ins, 2nd ed.

Addison-Wesley Professional, April 2006. cited on page 303
[192] B. Cleary, C. Exton, J. Buckley, and M. English, “An empirical analysis of information

retrieval based concept location techniques in software comprehension,” J. Empirical Soft-
ware Engineering, vol. 14, no. 1, pp. 93–130, 2008. cited on page 161

[193] P. Clements and L. Northrop, Software Product Lines: Practices and Patterns. Addison-
Wesley, 2001. 2 citations on pages 266 and 277

[194] A. Cleve, T. Mens, and J.-L. Hainaut, “Data-intensive system evolution,” Computer, vol. 43,
no. 8, pp. 110–112, 2010. cited on page 329



References 361

[195] C. A. Coello Coello, “Theoretical and numerical constraint-handling techniques used with
evolutionary algorithms: A survey of the state of the art,” Computer Methods in Applied
Mechanics and Engineering, vol. 191, no. 11-12, January 2002. cited on page 119

[196] D. Coleman, D. Ash, B. Lowther, and P. Oman, “Using metrics to evaluate software system
maintainability,” IEEE Computer, vol. 27, no. 8, pp. 44–49, Aug. 1994. cited on page 76

[197] D. Coleman, B. Lowther, and P. Oman, “The Application of Software Maintainability Mod-
els in Industrial Software Systems,” J. Systems and Software, vol. 29, no. 1, pp. 3–16, Apr.
1995. cited on page 76

[198] J. R. Cordy, “The TXL source transformation language,” Science of Computer Program-
ming, vol. 61, no. 3, pp. 190–210, 2006. 2 citations on pages 146 and 157

[199] M. Cordy, A. Classen, P. Schobbens, P. Heymans, and A. Legay, “Managing evolution in
software product lines: A model-checking perspective,” in Int’l Workshop on Variability
Modeling of Software-Intensive Systems, 2012, pp. 183–191. cited on page 293

[200] M. Cordy, P.-Y. Schobbens, P. Heymans, and A. Legay, “Towards an incremental automata-
based approach for software product-line model checking,” in Int. Software Product Line
Conf. ACM, 2012, pp. 74–81. cited on page 330

[201] J. P. Correia, Y. Kanellopoulos, and J. Visser, “A survey-based study of the mapping of
system properties to ISO/IEC 9126 maintainability characteristics,” in Int’l Conf. Soft-
ware Maintenance. Los Alamitos, CA, USA: IEEE Computer Society, 2009, pp. 61–70.

cited on page 80
[202] J. P. Correia and J. Visser, “Benchmarking Technical Quality of Software Products,”

in Working Conf. Reverse Engineering. IEEE Computer Society, 2008, pp. 297–300.
cited on page 80

[203] ——, “Certification of Technical Quality of Software Products,” in Int’l Workshop on
Foundations and Techniques for Open Source Software Certification, 2008, pp. 35–51.

cited on page 80
[204] M. Critchlow, K. Dodd, J. Chou, and A. Van Der Hoek, “Refactoring product line architec-

tures,” IWR: Achievements, Challenges, and Effects, pp. 23–26, 2003. cited on page 285
[205] J. S. Cuadrado and J. G. Molina, “Building domain-specific languages for model-driven

development,” IEEE Software, vol. 24, no. 5, pp. 48–55, 2007. cited on page 34
[206] P. Cury, L. Shannon, and Y.-J. Shin, “The functioning of marine ecosystems,” in Reykjavik

Conf. Responsible Fisheries in the Marine Ecosystem, October 2001. cited on page 300
[207] K. Czarnecki and U. W. Eisenecker, Generative programming: methods,

tools, and applications. ACM Press/Addison-Wesley Publishing Co., 2000.
2 citations on pages 267 and 338

[208] K. Czarnecki, P. Grünbacher, R. Rabiser, K. Schmid, and A. Wasowski, “Cool features
and tough decisions: a comparison of variability modeling approaches,” in Int’l Workshop
on Variability Modeling of Software-Intensive Systems. ACM , 2012, pp. 173–182.

cited on page 267
[209] K. Czarnecki, S. Helsen, and U. W. Eisenecker, “Staged configuration using feature mod-

els,” in Int. Software Product Line Conf., 2004, pp. 266–283. cited on page 292
[210] L. A. Dabbish, H. C. Stuart, J. Tsay, and J. D. Herbsleb, “Social coding in GitHub: trans-

parency and collaboration in an open software repository,” in Int’l Conf. Computer Sup-
ported Cooperative Work, 2012, pp. 1277–1286. cited on page 174

[211] J. B. Dabney and T. L. Harman, Mastering Simulink 4, 1st ed. Prentice Hall, 2001.
cited on page 329

[212] W. J. A. Dahm, “Technology Horizons a Vision for Air Force Science & Technology During
2010-2030,” U.S. Air Force, Tech. Rep., 2010. 2 citations on pages 237 and 263

[213] Y. Dajsuren, M. G. J. van den Brand, and A. Serebrenik, “Modularity analysis of
automotive control software,” ERCIM News, vol. 2013, no. 94, pp. 20–21, 2013.

2 citations on pages 329 and 330
[214] Y. Dajsuren, M. G. J. van den Brand, A. Serebrenik, and S. Roubtsov, “Simulink models are

also software: modularity assessment,” in ACM Sigsoft conference on Quality of Software
Architectures. ACM, 2013, pp. 99–106. cited on page 329



362 References

[215] F. Dalpiaz, P. Giorgini, and J. Mylopoulos, “An Architecture for Requirements-Driven Self-
reconfiguration,” in Int’l Conf. Advanced Informations Systems Engineering, 2009, pp. 246–
260. 3 citations on pages 17, 22, and 23

[216] M. D’Ambros, H. Gall, M. Lanza, and M. Pinzger, Software Evolution. Springer,
2008, ch. Analysing Software Repositories to Understand Software Evolution, pp. 37–67.

2 citations on pages x and 287
[217] A. Dardenne, A. van Lamsweerde, and S. Fickas, “Goal-directed requirements acquisition,”

Science of Computer Programming, vol. 20, no. 1-2, pp. 3–50, 1993. cited on page 17
[218] C. Darwin, On the Origin of Species by Means of Natural Selection, or the Preservation of

Favoured Races in the Struggle for Life. John Murray, Nov. 1859. cited on page 311
[219] J.-M. Davril, E. Delfosse, N. Hariri, M. Acher, J. Cleland-Huang, and P. Heymans, “Feature

model extraction from large collections of informal product descriptions,” in Joint European
Software Engineering Conf. and ACM SIGSOFT Int. Symp. on Foundations of Software
Engineering, ser. ESEC/FSE 2013. New York, NY, USA: ACM , 2013, pp. 290–300.

cited on page 287
[220] R. C. de Boer and H. van Vliet, “Architectural knowledge discovery with Latent Semantic

Analysis: constructing a reading guide for software product audits,” J. Systems and Soft-
ware, vol. 81, no. 9, pp. 1456–1469, 2008. cited on page 162

[221] R. de Lemos, H. Giese, H. A. Müller, M. Shaw, J. Andersson, M. Litoiu, B. Schmerl,
G. Tamura, N. M. Villegas, T. Vogel, D. Weyns, L. Baresi, B. Becker, N. Bencomo,
Y. Brun, B. Cikic, R. Desmarais, S. Dustdar, G. Engels, K. Geihs, K. M. Göschka, A. Gorla,
V. Grassi, P. Inverardi, G. Karsai, J. Kramer, A. Lopes, J. Magee, S. Malek, S. Mankovskii,
R. Mirandola, J. Mylopoulos, O. Nierstrasz, M. Pezzè, C. Prehofer, W. Schäfer, R. Schlicht-
ing, D. B. Smith, J. P. Sousa, L. Tahvildari, K. Wong, and J. Wuttke, “Software En-
gineering for Self-Adaptive Systems: A second Research Roadmap,” in Software Engi-
neering for Self-Adaptive Systems II, ser. Lect. Notes in Computer Science, R. Lemos,
H. Giese, H. A. Müller, and M. Shaw, Eds. Springer, 2013, vol. 7475, pp. 1–32.

6 citations on pages 230, 243, 244, 255, 257, and 262
[222] A. De Lucia, F. Fasano, R. Oliveto, and G. Tortora, “Enhancing an artefact management

system with traceability recovery features,” in Int’l Conf. Software Maintenance, 2004, pp.
306–315. cited on page 161

[223] ——, “Can information retrieval techniques effectively support traceability link recovery?”
in Int’l Conf. Program Comprehension, 2006, pp. 307–316. No citation

[224] ——, “Recovering traceability links in software artifact management systems using infor-
mation retrieval methods,” ACM Trans. Software Engineering and Methodology, vol. 16,
no. 4, 2007. cited on page 161

[225] W. De Pauw, R. Hoch, and Y. Huang, “Discovering conversations in web services using
semantic correlation analysis,” in Int’l Conf. Web Services (ICWS). IEEE, Jul. 2007, pp.
639–646. 2 citations on pages 213 and 224

[226] K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms. Wiley, 2001.
2 citations on pages 116 and 117

[227] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multi-objective genetic
algorithm: NSGA-II,” Trans. Evolutionary Computation, vol. 6, no. 2, pp. 182 – 197, 2002.

cited on page 112
[228] J.-M. DeBaud and J.-F. Girard, “The relation between the product line development

entry points and reengineering,” in ESPRIT ARES Workshop, 1998, pp. 132–139.
4 citations on pages 283, 284, 285, and 286

[229] J.-M. DeBaud and K. Schmid, “A systematic approach to derive the scope of software prod-
uct lines,” in Int’l Conf. Software Engineering, 1999, pp. 34–43. cited on page 290

[230] S. Deelstra, M. Sinnema, and J. Bosch, “Product derivation in software product fam-
ilies: a case study,” J. Systems and Software, vol. 74, no. 2, pp. 173–194, 2005.

2 citations on pages 270 and 276



References 363

[231] D. Deeptimahanti and M. Ali Babar, “An automated tool for generating UML models from
natural language requirements,” in Int’l Conf. Automated Software Engineering, 2009, pp.
680–682. cited on page 154

[232] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harshman, “Indexing
by Latent Semantic Analysis,” Journal of the American Society for Information Science,
vol. 41, no. 6, pp. 391–407, 1990. cited on page 147

[233] F. Deissenboeck, L. Heinemann, M. Herrmannsdoerfer, K. Lochmann, and S. Wagner, “The
Quamoco tool chain for quality modeling and assessment,” in Int’l Conf. Software Engi-
neering. ACM, 2011, pp. 1007–1009. cited on page 92

[234] F. Deissenboeck, E. Juergens, B. Hummel, S. Wagner, B. Mas y Parareda, and M. Pizka,
“Tool Support for Continuous Quality Control,” IEEE Software, vol. 25, no. 5, pp. 60–67,
Sep. 2008. 2 citations on pages 80 and 93

[235] J. Delaney, N. Salminen, and E. Lee, “Infographic: The growing impact of social me-
dia,” http://www.sociallyawareblog.com/2012/11/21/time-americans-spend-per-month-on-
social-media-sites/, 2012. cited on page 164

[236] T. DeMarco and T. Lister, Peopleware: Productive Projects and Teams, 2nd ed. Dorset
House, February 1999. cited on page 307

[237] S. Demeyer, Software Evolution. Springer, 2008, ch. Object-Oriented Reengineering, pp.
105–138. cited on page x

[238] G. Deng, G. Lenz, and D. C. Schmidt, “Addressing domain evolution challenges in soft-
ware product lines,” in Workshop Model-Driven Development for Product-Lines, 2005.

cited on page 269
[239] T. D’Hondt, K. De Volder, K. Mens, and R. Wuyts, “Co-evolution of object-oriented design

and implementation,” in Int’l Symp. Software Architectures and Component Technology.
Kluwer, January 2000. cited on page 315

[240] D. Dhungana, I. Groher, E. Schludermann, and S. Biffl, Software Ecosystems: Analyzing
and Managing Business Networks in the Software Industry. Edward Elgar, 2013, ch.
Guiding principles of natural ecosystems and their applicability to software ecosystems.

cited on page 298
[241] D. Dhungana, T. Neumayer, P. Grünbacher, and R. Rabiser, “Supporting the evolution of

product line architectures with variability model fragments,” in Working Conf. Software
Architecture, 2008, pp. 327–330. cited on page 295

[242] G. A. Di Lucca, M. Di Penta, G. Antoniol, and G. Casazza, “An approach for reverse engi-
neering of web-based applications,” in Working Conf. Reverse Engineering, Oct. 2001, pp.
231–240. cited on page 210

[243] G. A. Di Lucca, M. Di Penta, and A. R. Fasolino, “An approach to identify
duplicated web pages,” in Int’l Computer Software and Applications Conf., 2002.

2 citations on pages 202 and 224
[244] G. A. Di Lucca, A. R. Fasolino, F. Pace, P. Tramontana, and U. De Carlini, “Comprehending

web applications by a clustering based approach,” in Int’l Workshop Program Comprehen-
sion, Jun. 2002, pp. 261–270. cited on page 224

[245] G. A. Di Lucca, A. R. Fasolino, and P. Tramontana, “Web site accessibility: Identifying and
fixing accessibility problems in client page code,” in Int’l Symp. Web Systems Evolution,
Sep. 2005, pp. 71–78. cited on page 225

[246] M. Di Penta, D. M. Germán, Y.-G. Guéhéneuc, and G. Antoniol, “An exploratory study of
the evolution of software licensing,” in Int’l Conf. Software Engineering, 2010, pp. 145–
154. cited on page 331

[247] M. Di Penta, M. Neteler, G. Antoniol, and E. Merlo, “A language-independent soft-
ware renovation framework,” J. Systems and Software, vol. 77, no. 3, pp. 225–240, 2005.

3 citations on pages 116, 117, and 136
[248] D. Di Ruscio, R. Lämmel, and A. Pierantonio, “Automated co-evolution of gmf editor mod-

els,” in Software Language Engineering, ser. Lect. Notes in Computer Science, vol. 6563.
Springer, 2011, pp. 143–162. cited on page 63



364 References

[249] D. Dig and R. E. Johnson, “How do APIs evolve? a story of refactoring,” J. Software
Maintenance and Evolution: Research and Practice, vol. 18, no. 2, pp. 83–107, 2006.

cited on page 34
[250] T. T. Dinh-Trong and J. M. Bieman, “The FreeBSD project: A replication case study of

open source development,” IEEE Trans. Soft. Eng., vol. 31, no. 6, pp. 481–494, 2005.
cited on page 307

[251] D. Distante, “Reengineering legacy applications and web transactions: An extended version
of the UWA transaction design model,” Ph.D. dissertation, University of Salento, Italy, 2004.

cited on page 227
[252] D. Distante, P. Pedone, G. Rossi, and G. Canfora, “Model-driven development of Web appli-

cations with UWA, MVC and JavaServer faces,” in Int’l Conf. Web Engineering, ser. Lect.
Notes in Computer Science, vol. 4607, 2007, pp. 457–472. cited on page 218

[253] B. Dit, D. Poshyvanyk, and A. Marcus, “Measuring the semantic similarity of comments
in bug reports,” in Int’l Workshop on Semantic Technologies in System Maintenance, 2008.

cited on page 153
[254] B. Dit, E. Moritz, M. Linares-Vsquez, and D. Poshyvanyk, “Supporting and accelerating

reproducible research in software maintenance using tracelab component,” in Int’l Conf.
Software Maintenance, 2013. 2 citations on pages 332 and 350

[255] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk, “Feature location in source code: a
taxonomy and survey,” Journal of Software: Evolution and Process, vol. 25, no. 1, pp. 53–
95, 2013. 2 citations on pages 286 and 287

[256] I. do Carmo Machado, J. D. McGregor, and E. Santana de Almeida, “Strategies for testing
products in software product lines,” ACM SIGSOFT Software Engineering Notes, vol. 37,
no. 6, pp. 1–8, 2012. cited on page 294

[257] L. Dobrica and E. Niemela, “A survey on software architecture analysis methods,” IEEE
Trans. Soft. Eng., vol. 28, no. 7, pp. 638–653, 2002. 2 citations on pages 286 and 287

[258] S. Dobson, S. Denazis, A. Fernandez, D. Gaiti, E. Gelenbe, F. Massacci, P. Nixon, F. Saf-
fre, N. Schmidt, and F. Zambonelli, “A Survey of Autonomic Communications,” ACM
Trans. Autonomous and Adaptive Systems (TAAS), vol. 1, no. 2, pp. 223–259, 2006.

cited on page 245
[259] A. Dorling, “SPICE: Software Process Improvement and Capability Determination,” Soft-

ware Quality Journal, vol. 2, no. 4, pp. 209–224, Dec. 1993. cited on page 66
[260] D. Doval, S. Mancoridis, and B. S. Mitchell, “Automatic clustering of software systems

using a genetic algorithm,” in Proc. Software Technology and Engineering Practice. IEEE
Computer Society, 1999, pp. 73–82. 4 citations on pages 115, 116, 117, and 118

[261] J. Dowling and V. Cahill, “Self-Managed Decentralised Systems using K-Components and
Collaborative Reinforcement Learning,” in SIGSOFT Workshop on Self-Managed Systems.
ACM , 2004, pp. 39–43. 2 citations on pages 250 and 251

[262] R. G. Dromey, “A Model for Software Product Quality,” IEEE Trans. Soft. Eng., vol. 21,
no. 2, pp. 146–162, 1995. cited on page 71

[263] A. C. Duarte Pimentel, A. Capiluppi, and C. Boldyreff, “Patterns of creation and us-
age in the evolution of Wikipedia,” in Int’l Symp. Web Systems Evolution, Sep. 2012.

cited on page 225
[264] E. Dubois, J. Hagelstein, E. Lahou, F. Ponsaert, and A. Rifaut, “A knowledge representa-

tion language for requirements engineering,” Proc. IEEE, vol. 74, pp. 1431–1444, 1986.
cited on page 10

[265] N. Ducheneaut, “Socialization in an open source software community: A socio-technical
analysis,” Computer Supported Cooperative Work (CSCW), vol. 14, no. 4, pp. 323–368,
Aug. 2005. cited on page 307

[266] R. M. Dudley, Uniform Central Limit Theorems. Cambridge University Press, 1999,
vol. 23. cited on page 83

[267] S. T. Dumais and T. K. Landauer, “A solution to platos problem: The latent semantic analysis
theory of acquisition, induction and representation of knowledge,” Psychological review,
vol. 104, pp. 211–240, 1997. cited on page 331



References 365

[268] G. Dumont and M. Huzmezan, “Concepts, Methods and Techniques in Adaptive Control,”
in IEEE American Control Conf. (ACC), vol. 2, 2002, pp. 1137–1150. cited on page 241

[269] S. M. Easterbrook and B. A. Nuseibeh, “Managing inconsistencies in an evolving specifi-
cation,” in Int’l Conf. Req. Engineering, 1995, pp. 48–55. cited on page 10

[270] H. Ehrig, C. Ermel, O. Runge, A. Bucchiarone, and P. Pelliccione, Formal Analysis and
Verification of Self-Healing Systems, ser. Lect. Notes in Computer Science. Springer,
2010, vol. 6013, pp. 139–153. 2 citations on pages 250 and 253

[271] D. Eichmann, “Evolving an engineered web,” in Int’l Workshop on Web Site Evolution, Oct.
1999. cited on page 225

[272] EJB 3.1 Expert Group, Interceptors 1.1, 2009. cited on page 331
[273] D. R. Engler, D. Y. Chen, and A. Chou, “Bugs as inconsistent behavior: A general approach

to inferring errors in systems code,” in Symp. Operating Systems Principles, 2001, pp. 57–
72. cited on page 124

[274] E. Enslen, E. Hill, L. Pollock, and K. Vijay-Shanker, “Mining source code to automatically
split identifiers for software analysis,” in Int’l Conf. Mining Software Repositories, 2009,
pp. 71–80. cited on page 145

[275] I. Epifani, C. Ghezzi, R. Mirandola, and G. Tamburrelli, “Model evolution by run-
time parameter adaptation,” in Int’l Conf. Software Engineering, 2009, pp. 111–121.

3 citations on pages 17, 22, and 23
[276] N. Ernst, “Software Evolution: A Requirements Engineering Approach,” Ph.D. dissertation,

University of Toronto, 2012. cited on page 3
[277] N. Ernst, A. Borgida, and I. Jureta, “Finding Incremental Solutions for Evolv-

ing Requirements,” in Int’l Conf. Req. Engineering, Feb. 2011, pp. 15–24.
6 citations on pages 5, 6, 24, 26, 30, and 31

[278] N. Ernst, A. Borgida, I. J. Jureta, and J. Mylopoulos, “Agile requirements engineering via
paraconsistent reasoning,” Information Systems, Jun. 2013. 2 citations on pages 19 and 22

[279] N. Ernst and G. C. Murphy, “Case Studies in Just-In-Time Requirements Analysis,” in Em-
pirical Requirements Engineering Workshop at RE, Sep. 2012, pp. 1–8. cited on page 12

[280] N. Esfahani, E. Kouroshfar, and S. Malek, “Taming Uncertainty in Self-Adaptive Soft-
ware,” in Int’l Symp. Foundations of Software Engineering. ACM, 2011, pp. 234–244.

cited on page 253
[281] F. Estievenart, A. Francois, J. Henrard, and J.-L. Hainaut, “A tool-supported method to

extract data and schema from web sites,” in Int’l Workshop on Web Site Evolution, Sep.
2003, pp. 3–11. cited on page 211

[282] S. Fahmy, N. Haslinda, W. Roslina, and Z. Fariha, “Evaluating the quality of software in e-
book using the ISO 9126 model,” Int’l J. Control and Automation, vol. 5, no. 2, pp. 115–122,
2012. 2 citations on pages 72 and 74

[283] D. Fatiregun, M. Harman, and R. M. Hierons, “Evolving transformation sequences using
genetic algorithms,” in Working Conf. Source Code Analysis and Manipulation. IEEE CS
Press, 2004, pp. 66–75. 3 citations on pages 122, 123, and 136

[284] D. Faust and C. Verhoef, “Software product line migration and deployment,”
J. Software: Practice and Experience, vol. 33, no. 10, pp. 933–955, 2003.

3 citations on pages 277, 284, and 294
[285] J.-M. Favre, “Meta-model and model co-evolution within the 3D software space,”

in ELISA workshop Evolution of Large-scale Industrial Software Evolution, 2003.
3 citations on pages 34, 36, and 315

[286] ——, “Languages evolve too! changing the software time scale,” in Int’l Workshop on Prin-
ciples of Software Evolution. IEEE Computer Society, 2005, pp. 33–44. cited on page 34

[287] M. C. Feathers, Working Effectively with Legacy Code. Prentice Hall, 2005.
cited on page 344

[288] G. Fedyukovich, O. Sery, and N. Sharygina, “eVolCheck: Incremental upgrade checker for
C,” in Int’l Conf. Tools and Algorithms for Construction and Analysis of Systems, ser. Lect.
Notes in Computer Science. Springer, 2013, vol. 7795, pp. 292–307. cited on page 330



366 References

[289] N. Fenton and S. L. Pfleeger, Software Metrics: A Rigorous and Practical Approach, 2nd ed.
International Thomson Computer Press, 1997. cited on page 75

[290] N. E. Fenton and M. Neil, “Software Metrics: Roadmap,” in Int’l Conf. Software Engineer-
ing, 2000, pp. 357–370. cited on page 69

[291] J. Fernández-Ramil, A. Lozano, M. Wermelinger, and A. Capiluppi, Software Evolu-
tion. Springer, 2008, ch. Empirical Studies of Open Source Evolution, pp. 263–288.

2 citations on pages x and 316
[292] C. Fershtman and N. Gandal, “Open source software: Motivation and restrictive licens-

ing,” International Economics and Economic Policy, vol. 4, no. 2, pp. 209–225, 2007.
cited on page 323

[293] R. T. Fielding and R. N. Taylor, “Principled design of the modern web architecture,” Trans.
Internet Technology (TOIT), vol. 2, no. 2, pp. 115–150, May 2002. cited on page 213

[294] W. Fitch and M. E., “Construction of phylogenetic trees,” Science, vol. 155, no. 3760, pp.
279–284, January 1967. cited on page 311

[295] B. Fitzgerald, “The transformation of open source software,” MIS Quarterly, vol. 30, no. 3,
2006. cited on page 307

[296] G. Flouris, D. Manakanatas, H. Kondylakis, D. Plexousakis, and G. Antoniou, “Ontology
change: classification and survey,” Knowledge Eng. Review, vol. 23, no. 2, pp. 117–152,
2008. cited on page 34

[297] B. Fluri, M. Würsch, E. Giger, and H. C. Gall, “Analyzing the co-evolution of com-
ments and source code,” Software Quality Control, vol. 17, no. 4, pp. 367–394, Dec. 2009.

2 citations on pages 315 and 329
[298] M. Fokaefs, R. Mikhaiel, N. Tsantalis, E. Stroulia, and A. Lau, “An empirical

study on web services evolution,” Int’l Conf. Web Services (ICWS), pp. 49–56, 2011.
2 citations on pages 212 and 224

[299] J. Fons, V. Pelechano, O. Pastor, P. Valderas, and V. Torres, “Applying the OOWS Model-
Driven Approach for Developing Web Applications. The Internet Movie Database Case
Study,” in Web Engineering: Modelling and Implementing Web Applications, ser. Human-
Computer Interaction Series, G. Rossi, O. Pastor, D. Schwabe, and L. Olsina, Eds. Springer,
2008, pp. 65–108. cited on page 218

[300] C. Forbes, I. Keivanloo, and J. Rilling, “When open source turns cold on innovation - the
challenges of navigating licensing complexities in new research domains,” in Int’l Conf.
Software Engineering, 2012, pp. 1447–1448. cited on page 331

[301] M. Fowler, Refactoring: Improving the Design of Existing Code. Addison-Wesley, 1999.
7 citations on pages 46, 54, 105, 128, 135, 221, and 340

[302] ——, Domain-specific languages. Addison-Wesley, 2010. cited on page 34
[303] M. Fowler and K. Scott, UML distilled: A brief guide to the standard object modeling lan-

guage. Addison-Wesley Longman Publishing Co., 2000. cited on page 143
[304] P. Fraternali, S. Comai, A. Bozzon, and G. T. Carughi, “Engineering rich internet appli-

cations with a model-driven approach,” ACM Transaction on the Web, vol. 4, no. 2, pp.
7:1–7:47, apr 2010. 2 citations on pages 218 and 219

[305] R. T. G. Madey, V. Freeh, “The open source software development phenomenon: An anal-
ysis based on social network theory,” in Americas Conf. on Information Systems, 2002, pp.
1806–1813. cited on page 308

[306] S. Gala-Pérez, G. Robles, J. M. González-Barahona, and I. Herraiz, “Intensive metrics
for the study of the evolution of open source projects: case studies from apache soft-
ware foundation projects,” in Int’l Conf. Mining Software Repositories, 2013, pp. 159–168.

cited on page 306
[307] C. S. Gall, S. Lukins, L. Etzkorn, S. Gholston, P. Farrington, D. Utley, J. Fortune, and S. Vi-

rani, “Semantic software metrics computed from natural language design specifications,”
IET Software, vol. 2, no. 1, pp. 17–26, 2008. cited on page 162

[308] H. Gall, M. Jazayeri, R. Klosch, and G. Trausmuth, “Software evolution observations based
on product release history,” in Int’l Conf. Software Maintenance, oct 1997, pp. 160–166.

cited on page 295



References 367

[309] K. Gallagher, C. Caner, and J. Deignan, “The law and reverse engineering,” in Working
Conf. Reverse Engineering, 2012, pp. 3–4. cited on page 331

[310] W. Gama, M. H. Alalfi, J. R. Cordy, and T. R. Dean, “Normalizing object-oriented class
styles in JavaScript,” in Int’l Symp. Web Systems Evolution, Sep. 2012. cited on page 211

[311] K. Garcés, F. Jouault, P. Cointe, and J. Bézivin, “Managing model adaptation by precise
detection of metamodel changes,” in Model Driven Architecture - Foundations and Appli-
cations, ser. Lect. Notes in Computer Science, vol. 5562. Springer, 2009, pp. 34–49.

cited on page 53
[312] M. Garey and D. Johnson, Computers and Intractability: a Guide to the Theory of NP-

Completeness. W.H. Freeman, 1979. 3 citations on pages 104, 113, and 135
[313] A. Garg, M. Critchlow, P. Chen, C. Van der Westhuizen, and A. van der Hoek, “An envi-

ronment for managing evolving product line architectures,” in Int’l Conf. Software Mainte-
nance, 2003, pp. 358–. cited on page 293

[314] J. J. Garrett, “Ajax: A new approach to Web applications,” Adaptive Path, Feb. 2005, http:
//www.adaptivepath.com/ideas/ajax-new-approach-web-applications. cited on page 214

[315] A. Garrido, G. Rossi, and D. Distante, “Systematic improvement of web appli-
cations design,” Journal of Web Engineering, vol. 8, no. 4, pp. 371–404, 2009.

4 citations on pages 201, 221, 222, and 224
[316] ——, “Refactoring for usability in web applications,” IEEE Software, vol. 28, no. 3, pp.

60–67, 2011. 4 citations on pages 201, 221, 222, and 224
[317] E. Gat, On Three-layer Architectures. MIT/AAAI, 1998, pp. 1–26. cited on page 247
[318] G. de Geest, S. D. Vermolen, A. van Deursen, and E. Visser, “Generating version convertors

for domain-specific languages,” in Working Conf. Reverse Engineering. IEEE Computer
Society, 2008, pp. 197–201. cited on page 53

[319] M. Genero, J. Olivas, M. Piattini, and F. Romero, “Using Metrics to Predict OO Informa-
tion Systems Maintainability,” in Int’l Conf. Advanced Informations Systems Engineering.
Springer, 2001, pp. 388–401. cited on page 76

[320] D. M. Germán, “The GNOME project: a case study of open source, global software devel-
opment,” Software Process: Improvement and Practice, vol. 8, no. 4, pp. 201–215, 2003.

2 citations on pages 306 and 316
[321] D. M. Germán, B. Adams, and A. E. Hassan, “The evolution of the R software ecosys-

tem,” in European Conf. Software Maintenance and Reengineering, 2013, pp. 243–252.
3 citations on pages 303, 304, and 331

[322] M. Gethers and D. Poshyvanyk, “Using relational topic models to capture coupling among
classes in object-oriented software systems,” in Int’l Conf. Software Maintenance, 2010, pp.
1–10. cited on page 162

[323] S. Ghaith and M. Ó Cinnéide, “Improving software security using search-based refactoring,”
in Int’l Symp. Search Based Software Engineering, vol. 7515. Springer, 28-30 September
2012, pp. 121–135. 5 citations on pages 129, 130, 132, 133, and 136

[324] G. Ghezzi and H. C. Gall, “Replicating mining studies with sofas,” in Int’l Conf. Mining
Software Repositories, 2013, pp. 363–372. cited on page 332

[325] A. K. Ghose, “Formal tools for managing inconsistency and change in RE,”
in Int’l Workshop on Software Specification and Design, 2000, pp. 171–181.

3 citations on pages 18, 21, and 22
[326] T. Gilb, Software Metrics. Chartwell-Bratt, 1976. cited on page 69
[327] P. Giorgini, J. Mylopoulos, E. Nicchiarelli, and R. Sebastiani, “Formal Reasoning Tech-

niques for Goal Models,” Journal on Data Semantics, vol. 2800, pp. 1–20, 2003.
2 citations on pages 16 and 24

[328] M. Gobert, J. Maes, A. Cleve, and J. Weber, “Understanding schema evolution as a basis for
database reengineering,” in Int’l Conf. Software Maintenance. IEEE Computer Society,
2013. cited on page 329

[329] M. W. Godfrey, A. E. Hassan, J. Herbsleb, G. C. Murphy, M. Robillard, P. Devanbu,
A. Mockus, D. E. Perry, and D. Notkin, “Future of mining software archives: A roundtable,”
IEEE Software, vol. 26, no. 1, pp. 67–70, 2008. cited on page 140

http://www.adaptivepath.com/ideas/ajax-new-approach-web-applications
http://www.adaptivepath.com/ideas/ajax-new-approach-web-applications


368 References

[330] M. W. Godfrey and Q. Tu, “Evolution in open source software: A case study,” in Int’l Conf.
Software Maintenance. IEEE Computer Society, 2000, pp. 131–142. cited on page 316

[331] M. Goeminne, “Understanding the evolution of social aspects in open source ecosys-
tems: An empirical analysis of Gnome,” Ph.D. dissertation, University of Mons, 2013.

cited on page 316
[332] M. Goeminne, M. Claes, and T. Mens, “A historical dataset for the GNOME ecosystem,”

in Int’l Conf. Mining Software Repositories. IEEE Computer Society, 2013, pp. 167–170,
https://bitbucket.org/mgoeminne/sgl-flossmetric-dbmerge. cited on page 316

[333] M. Goeminne and T. Mens, “A framework for analysing and visualising open source soft-
ware ecosystems,” in Int’l Workshop on Principles of Software Evolution, 2010, pp. 42–47.

cited on page 303
[334] ——, “A comparison of identity merge algorithms for software repositories,” Science of

Computer Programming, 2011. cited on page 318
[335] ——, “Evidence for the Pareto principle in open source software activity,” in Workshop on

Software Quality and Maintainability (SQM), ser. CEUR Workshop Proceedings, vol. 701.
CEUR-WS.org, 2011, pp. 74–82. cited on page 303

[336] ——, Software Ecosystems: Analyzing and Managing Business Networks in the Software
Industry. Edward Elgar, 2013, ch. Analyzing ecosystems for open source software devel-
oper communities. 2 citations on pages 307 and 316

[337] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley Longman Publishing Co., 1989. 2 citations on pages 105 and 109

[338] ——, Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-
Wesley Professional, 1989. cited on page 298

[339] H. Gomaa and M. Hussein, “Software reconfiguration patterns for dynamic evolution
of software architectures,” in Working Conf. Software Architecture, 2004, pp. 79–88.

2 citations on pages 278 and 293
[340] J. M. González-Barahona and G. Robles, “On the reproducibility of empirical software

engineering studies based on data retrieved from development repositories,” J. Empirical
Software Engineering, vol. 17, no. 1-2, pp. 75–89, 2012. cited on page 332

[341] J. M. Gonzalez-Barahona, G. Robles, M. Ortuño-Pérez, L. Rodero-Merino, J. Centeno-
González, V. Matellán-Olivera, E. M. Castro, and P. de las Heras Quirós, Analyzing the
anatomy of GNU/Linux distributions: methodology and case studies (Red Hat and Debian).
Idea Group Publishing, 2005, ch. 2, pp. 27–58. cited on page 304

[342] J. Gosling, B. Joy, G. Steele, G. Bracha, and A. Buckley, The Java Language Specification,
Java SE 7 edition, Oracle, 2013. cited on page 34

[343] S. Gottipati, D. Lo, and J. Jiang, “Finding relevant answers in software fo-
rums,” in Int’l Conf. Automated Software Engineering, 2011, pp. 323–332.

6 citations on pages 154, 163, 165, 168, 174, and 176
[344] R. B. Grady, Practical Software Metrics for Project Management and Process Improvement.

Prentice Hall, 1992. cited on page 72
[345] S. Grant and J. R. Cordy, “Vector space analysis of software clones,” in Int’l Conf. Program

Comprehension, 2009, pp. 233–237. cited on page 154
[346] ——, “Estimating the optimal number of latent concepts in source code analysis,” in Work-

ing Conf. Source Code Analysis and Manipulation, 2010, pp. 65–74. cited on page 154
[347] S. Grant, J. R. Cordy, and D. Skillicorn, “Automated concept location using indepen-

dent component analysis,” in Working Conf. Reverse Engineering, 2008, pp. 138–142.
cited on page 161

[348] S. Grant, D. Martin, J. R. Cordy, and D. B. Skillicorn, “Contextualized semantic anal-
ysis of web services,” in Int’l Symp. Web Systems Evolution, Sep. 2011, pp. 33–42.

cited on page 212
[349] J. Greenfield, K. Short, S. Cook, and S. Kent, Software factories: assembling applications

with patterns, models, frameworks and tools. Wiley, 2004. cited on page 269

https://bitbucket.org/mgoeminne/sgl-flossmetric-dbmerge


References 369

[350] S. Greenspan, J. Mylopoulos, and A. Borgida, “Capturing more world knowledge in
the requirements specification,” in Int’l Conf. Software Engineering, 1982, pp. 225–234.

cited on page 10
[351] S. Grimes, “Unstructured data and the 80 percent rule,” Clarabridge Bridgepoints, 2008.

cited on page 140
[352] B. Gruschko, D. S. Kolovos, and R. F. Paige, “Towards synchronizing models

with evolving metamodels,” in Workshop on Model-Driven Software Evolution, 2007.
2 citations on pages 40 and 53

[353] Y.-G. Guéhéneuc and T. Ziadi, “Automated reverse-engineering of UML v2.0 dynamic mod-
els,” in Proc. ECOOP workshop on Object-Oriented Reengineering. Springer, July 2005.

cited on page 331
[354] G. Gui, H. M. Kienle, and H. A. Müller, “REGoLive: Web site comprehension with

viewpoints,” in Int’l Workshop Program Comprehension, May 2005, pp. 161–164.
cited on page 211

[355] J. Guo, Y. Wang, P. Trinidad, and D. Benavides, “Consistency maintenance for evolving
feature models,” Expert Syst. Appl., vol. 39, no. 5, pp. 4987–4998, 2012. cited on page 293

[356] A. Guzzi, M. Pinzger, and A. van Deursen, “Combining micro-blogging and IDE inter-
actions to support developers in their quests,” in Int’l Conf. Software Maintenance, 2010.

cited on page 195
[357] T. Gyimóthy, R. Ferenc, and I. Siket, “Empirical Validation of Object-Oriented Metrics on

Open Source Software for Fault Prediction,” IEEE Trans. Soft. Eng., pp. 897–910, 2005.
cited on page 77

[358] J.-L. Hainaut, A. Cleve, J. Henrard, and J.-M. Hick, Software Evolution.
Springer, 2008, ch. Migration of Legacy Information Systems, pp. 105–138.

3 citations on pages x, 329, and 330
[359] J. N. Hall, “Perl: Internet duct tape,” IEEE Internet Computing, vol. 3, no. 4, pp. 95–96,

Jul.-Aug. 1999. cited on page 208
[360] M. Hall, N. Walkinshaw, and P. McMinn, “Supervised software modularisation,” in

Int’l Conf. Software Maintenance. IEEE Computer Society, 2012, pp. 472–481.
2 citations on pages 118 and 136

[361] M. H. Halstead, Elements of Software Science. Elsevier Science, 1977. cited on page 69
[362] J. Han and M. Kamber, Data Mining Concepts and Techniques, 2nd ed. Morgan Kaufmann,

2006. cited on page 195
[363] S. D. P. Harker, K. D. Eason, and J. E. Dobson, “The change and evolution of requirements

as a challenge to the practice of software engineering,” in Int’l Conf. Req. Engineering,
1993, pp. 266–272. cited on page 9

[364] M. Harman, “Search-based software engineering for maintenance and reengineering,” in
European Conf. Software Maintenance and Reengineering. IEEE Computer Society, 2006,
p. 311. cited on page 104

[365] ——, “The current state and future of search based software engineering,” in Workshop on
the Future of Software Engineering Research, 2007, pp. 342–357. cited on page 104

[366] ——, “Search based software engineering for program comprehension,” in Int’l Conf. Pro-
gram Comprehension. IEEE Computer Society, 2007, pp. 3–13. cited on page 104

[367] M. Harman, Y. Jia, and Y. Zhang, “App store mining and analysis: MSR for app stores,” in
Int’l Conf. Mining Software Repositories, 2012, pp. 108–111. cited on page 330

[368] E. R. Harold, Refactoring HTML: Improving the Design of Existing Web Applications.
Addison-Wesley, 2012. cited on page 221

[369] A. Hars and S. Ou, “Working for free? motivations of participating in open source projects,”
in Annual Hawaii Int’l Conf. System Sciences. IEEE, 2001, pp. 9–pp. cited on page 323

[370] S. Hassaine, F. Boughanmi, Y.-G. Guéhéneuc, S. Hamel, and G. Antoniol, “A seismology-
inspired approach to study change propagation,” in Int’l Conf. Software Maintenance, 2011,
pp. 53–62. cited on page 331

[371] A. E. Hassan, “The road ahead for mining software repositories,” in Frontiers of Software
Maintenance, 2008, pp. 48–57. cited on page 140



370 References

[372] ——, “Architecture recovery of web applications,” Master’s thesis, University of Waterloo,
Ontario, Canada, 2001. cited on page 210

[373] A. E. Hassan and R. C. Holt, “Towards a better understanding of Web applications,” in Int’l
Symp. Web Systems Evolution, Nov. 2001, pp. 112–116. cited on page 224

[374] ——, “Architecture recovery of Web applications,” in Int’l Conf. Software Engineering,
May 2002, pp. 349–359. 2 citations on pages 210 and 224

[375] ——, “Migrating web frameworks using water transformations,” in Int’l Computer Software
and Applications Conf., Nov. 2003, pp. 296–303. cited on page 224

[376] J. H. Hayes, A. Dekhtyar, and S. K. Sundaram, “Advancing candidate link generation for
requirements tracing: The study of methods,” IEEE Trans. Soft. Eng., pp. 4–19, 2006.

cited on page 161
[377] S. O. Haykin, Neural Networks and Learning Machines. Prentice Hall, 2008.

cited on page 298
[378] R. Heckel, R. Correia, C. M. P. Matos, M. El-Ramly, G. Koutsoukos, and L. F. Andrade,

Software Evolution. Springer, 2008, ch. Architectural Transformations: From Legacy to
Three-Tier and Services, pp. 139–170. 3 citations on pages x, 330, and 331

[379] P. Hegedűs, T. Bakota, G. Ladányi, C. Faragó, and R. Ferenc, “A Drill-Down Approach for
Measuring Maintainability at Source Code Element Level,” Electronic Communications of
the EASST, vol. 60, 2013. [Online]. Available: http://journal.ub.tu-berlin.de/eceasst/article/
download/852/846 cited on page 85

[380] W. Heider, P. Grünbacher, and R. Rabiser, “Negotiation constellations in reactive prod-
uct line evolution,” in Int’l Workshop Software Project Mamangement, 2010, pp. 63–66.

cited on page 291
[381] W. Heider, R. Froschauer, P. Grünbacher, R. Rabiser, and D. Dhungana, “Simulating evo-

lution in model-based product line engineering,” Information and Software Technology,
vol. 52, no. 7, pp. 758–769, July 2010. cited on page 288

[382] W. Heider and R. Rabiser, “Tool support for evolution of product lines through rapid feed-
back from application engineering,” in Int’l Workshop on Variability Modeling of Software-
Intensive Systems, 2010, pp. 167–170. cited on page 290

[383] W. Heider, R. Rabiser, D. Dhungana, and P. Grünbacher, “Tracking evolution in model-
based product lines,” in Model-based Product Line Engineering (MAPLE), 2009, pp. 59–63.

cited on page 289
[384] W. Heider, R. Rabiser, and P. Grünbacher, “Facilitating the evolution of products in product

line engineering by capturing and replaying configuration decisions,” J. Software Tools for
Technology Transfer, vol. 14, pp. 613–630, 2012. cited on page 294

[385] W. Heider, R. Rabiser, P. Grünbacher, and D. Lettner, “Using regression testing to analyze
the impact of changes to variability models on products,” in Int. Software Product Line
Conf., 2012, pp. 196–205. 2 citations on pages 289 and 293

[386] W. Heider, M. Vierhauser, D. Lettner, and P. Grunbacher, “A case study on the evolution of
a component-based product line,” in Joint Working IEEE/IFIP Conf. Software Architecture
and European Conference on Software Architecture (WICSA-ECSA). IEEE Computer
Society, 2012, pp. 1–10. cited on page 289

[387] I. Heitlager, T. Kuipers, and J. Visser, “A Practical Model for Measuring Maintainabil-
ity,” Int’l Conf. Quality of Information and Communications Technology, pp. 30–39, 2007.

5 citations on pages 66, 67, 69, 75, and 80
[388] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury, Feedback Control of Computing

Systems. John Wiley & Sons, 2004. 4 citations on pages 238, 239, 240, and 241
[389] S. Henβ , M. Monperrus, and M. Mezini, “Semi-automatically extracting FAQs to improve

accessibility of software development knowledge,” in Int’l Conf. Software Engineering,
2012, pp. 793–803. 2 citations on pages 154 and 189

[390] S. A. Hendrickson and A. van der Hoek, “Modeling product line architectures through
change sets and relationships,” in Int’l Conf. Software Engineering, 2007, pp. 189–198.

cited on page 280

http://journal.ub.tu-berlin.de/eceasst/article/download/852/846
http://journal.ub.tu-berlin.de/eceasst/article/download/852/846


References 371

[391] F. Hermans, B. Sedee, M. Pinzger, and A. van Deursen, “Data clone detection and vi-
sualization in spreadsheets,” in Int’l Conf. Software Engineering, 2013, pp. 292–301.

cited on page 330
[392] A. Herrmann, A. Wallnöfer, and B. Paech, “Specifying Changes Only – A Case Study

on Delta Requirements ,” in Int’l Conf. Req. Engineering, Apr. 2009, pp. 45–58.
3 citations on pages 12, 20, and 22

[393] M. Herrmannsdoerfer, “COPE - a workbench for the coupled evolution of metamodels and
models,” in Software Language Engineering, 2010. cited on page 56

[394] M. Herrmannsdoerfer, S. Benz, and E. Juergens, “Automatability of coupled evolution of
metamodels and models in practice,” in Int’l Conf. Model Driven Engineering Languages
and Systems, ser. Lect. Notes in Computer Science, vol. 5301. Springer, 2008, pp. 645–659.

2 citations on pages 38 and 44
[395] ——, “COPE - automating coupled evolution of metamodels and models,” in ECOOP 2009

- Object-Oriented Programming. Springer, 2009. cited on page 54
[396] M. Herrmannsdoerfer and M. Koegel, “Towards semantics-preserving model migration,” in

Int’l Workshop on Models and Evolution, 2010. cited on page 62
[397] M. Herrmannsdoerfer and D. Ratiu, “Limitations of automating model migration in re-

sponse to metamodel adaptation,” in Models in Software Engineering, ser. Lect. Notes in
Computer Science, vol. 6002. Springer, 2010, pp. 205–219. cited on page 62

[398] M. Herrmannsdoerfer, D. Ratiu, and G. Wachsmuth, “Language evolution in practice: The
history of GMF,” in Int’l Conf. Software Language Engineering, ser. Lect. Notes in Com-
puter Science, vol. 5969. Springer, 2010, pp. 3–22. cited on page 45

[399] M. Herrmannsdoerfer, S. D. Vermolen, and G. Wachsmuth, “An extensive catalog of
operators for the coupled evolution of metamodels and models,” in Int’l Conf. Soft-
ware Language Engineering, ser. Lect. Notes in Computer Science. Springer, 2010.

4 citations on pages 38, 54, 55, and 56
[400] G. Hertel, S. Niedner, and S. Herrmann, “Motivation of software developers in open source

projects: an internet-based survey of contributors to the Linux kernel,” Research policy,
vol. 32, no. 7, pp. 1159–1177, 2003. cited on page 323

[401] A. Hindle, M. W. Godfrey, and R. C. Holt, “What’s hot and what’s not: Windowed developer
topic analysis,” in Int’l Conf. Software Maintenance, 2009, pp. 339–348. cited on page 152

[402] ——, “Software process recovery using recovered unified process views,” in Int’l Conf.
Software Maintenance, 2010, pp. 1–10. cited on page 152

[403] A. Hindle, “Green mining: Investigating power consumption across versions,” in Int’l Conf.
Software Engineering, 2012, pp. 1301–1304. cited on page 332

[404] A. Hindle, C. Bird, T. Zimmermann, and N. Nagappan, “Relating Requirements to Im-
plementation via Topic Analysis: Do Topics Extracted from Requirements Make Sense
to Managers and Developers?” in Int’l Conf. Software Maintenance, 2012, pp. 1–12.

3 citations on pages 12, 20, and 22
[405] C. S. Holling, “Resilience and stability of ecological systems,” Annual Review of Ecology

and Systematics, vol. 4, pp. 1–23, 1973. cited on page 300
[406] J. Hößler, M. Soden, and H. Eichler, Models and Human Reasoning. Wissenschaft und

Technik Verlag, 2005, ch. Coevolution of Models, Metamodels and Transformations, pp.
129–154. cited on page 54

[407] L. Hotz, K. Wolter, T. Krebs, J. Nijhuis, S. Deelstra, M. Sinnema, and J. MacGregor, Con-
figuration in Industrial Product Families - The ConIPF Methodology. IOS Press, 2006.

2 citations on pages 272 and 278
[408] J. Howison, M. Conklin, and K. Crowston, “Flossmole: A collaborative repository for floss

research data and analyses,” Int’l J. Information Technology and Web Engineering, vol. 1,
no. 3, pp. 17–26, 2006. cited on page 350

[409] I. Hsi and C. Potts, “Studying the evolution and enhancement of software features,” in Int’l
Conf. Software Maintenance, 2000, pp. 143–151. cited on page 287

[410] S. Huang, “Frontiers of website evolution,” in Int’l Conf. Software Maintenance, Sep. 2008,
pp. 78–86. 2 citations on pages 216 and 225



372 References

[411] B. A. Huberman and T. Hogg, “The emergence of computational ecologies,” in Lectures in
Complex Systems. Addison-Wesley, 1993, pp. 185–205. cited on page 298

[412] G. Hunt and S. McKinnell, “Interplay between top-down, bottom-up, and wasp-waist con-
trol in marine ecosystems,” in Progress In Oceanography, vol. 68, no. 2-4, 2006, pp. 115–
124. cited on page 300

[413] A. Hunter and B. A. Nuseibeh, “Managing inconsistent specifications: reasoning, analy-
sis, and action,” ACM Trans. Software Engineering and Methodology, vol. 7, no. 4, 1998.

2 citations on pages 19 and 22
[414] D. H. Huson, R. Rupp, and C. Scornavacca, Phylogenetic Networks: Concepts, Algorithms

and Applications. Cambridge University Press, 2010. cited on page 311
[415] K. Hussey and M. Paternostro, “Advanced features of EMF,” Tutorial at EclipseCon 2006,

California, USA. [Accessed 07 September 2009] Available at: http://www.eclipsecon.org/
2006/Sub.do?id=171, 2006. cited on page 60

[416] D. Hutchins, “A biologist’s view of software evolution,” in Reflection, AOP and Meta-Data
for Software Evolution, 2005, pp. 95–105. cited on page 313

[417] IBM Corporation, “An Architectural Blueprint for Autonomic Computing,” IBM Corpora-
tion, Tech. Rep., 2006. 2 citations on pages 245 and 247

[418] W. Ibrahim, N. Bettenburg, E. Shihab, B. Adams, and A. Hassan, “Should I contribute to
this discussion?” in Int’l Conf. Mining Software Repositories, 2010. cited on page 195

[419] IEEE, Standard 610.12-1990: Glossary of Software Engineering Terminology. IEEE Press,
1999, vol. 1. cited on page 340

[420] ——, Standard IEEE Std 1219-1999 on Software Maintenance. IEEE Press, 1999, vol. 2.
cited on page 338

[421] IEEE Software Engineering Standards Committee, “IEEE Recommended Prac-
tice for Software Requirements Specifications,” IEEE, Tech. Rep., 1998.

2 citations on pages 13 and 336
[422] International Standards Organization, “Standard 9126 on information technology – soft-

ware product evaluation – quality characteristics and guidelines for their use,” 1991.
6 citations on pages 66, 68, 72, 77, 92, and 346

[423] ——, “Software life cycle processes,” 1995. 2 citations on pages 338 and 346
[424] ——, “Standard 14764 on software engineering – software life cycle processes – software

maintenance,” 1999. 5 citations on pages 45, 46, 243, 338, and 346
[425] ——, ISO/IEC 25000:2005. Software Engineering – Software product Quality Re-

quirements and Evaluation (SQuaRE) – Guide to SQuaRE. ISO/IEC, 2005.
3 citations on pages 66, 68, and 72

[426] ——, “Standard 25000 on software engineering – software product quality requirements
and evaluation (SQuaRE),” 2005. cited on page 345

[427] ——, “Standard 9001 on quality management systems – requirements,” 2008.
2 citations on pages 66 and 345

[428] A. Israeli and D. G. Feitelson, “The Linux kernel as a case study in software evolution,” J.
Systems and Software, vol. 83, no. 3, pp. 485–501, 2010. cited on page 304

[429] F. Jaafar, S. Hassaine, Y. Guéhéneuc, S. Hamel, and B. Adams, “On the relation-
ship between program evoluton and fault-proneness: an empirical study,” in European
Conf. Software Maintenance and Reengineering. IEEE Press, 2013, pp. 15–24.

2 citations on pages 313 and 315
[430] J. Jackson, “Google to use HTML5 in Gmail,” Computerworld, Jun. 2010.

cited on page 211
[431] M. Jackson, Problem Frames: Analysing & Structuring Software Development Problems.

Addison-Wesley, 2000. cited on page 16
[432] I. Jacobson, M.Christerson, P. Jonsson, and G. Overgaard, Object-Oriented Software Engi-

neering – A Use Case Driven Approach. Addison-Wesley, 1992. cited on page 87
[433] S. Jansen, A. Finkelstein, and S. Brinkkemper, “A sense of community: A research agenda

for software ecosystems,” in Int’l Conf. Software Engineering, May 2009, pp. 187–190.
2 citations on pages 302 and 340

http://www.eclipsecon.org/2006/Sub.do?id=171
http://www.eclipsecon.org/2006/Sub.do?id=171


References 373

[434] S. Jansen, S. Brinkkemper, and A. Finkelstein, “Business Network Management as a
Survival Strategy: A Tale of Two Software Ecosystems,” in Int’l Workshop on Soft-
ware Ecosystems, ser. CEUR Workshop Proceedings. CEUR-WS.org, 2009, pp. 34–48.

2 citations on pages 302 and 340
[435] S. Jansen, M. Cusumano, and S. Brinkkemper, Eds., Software Ecosystems: Analyzing

and Managing Business Networks in the Software Industry. Edward Elgar, 2013.
2 citations on pages 302 and 326

[436] M. Jarke, P. Loucopoulos, K. Lyytinen, J. Mylopoulos, and W. N. Robinson, “The Brave
New World of Design Requirements: Four Key Principles,” in Int’l Conf. Advanced Infor-
mations Systems Engineering, 2010, pp. 470–482. cited on page 4

[437] S. Jarzabek, Effective Software Maintenance and Evolution: A Reuse-Based Approach.
Auerbach Publications, 2008. cited on page 344

[438] A. C. Jensen and B. H. Cheng, “On the use of genetic programming for automated refac-
toring and the introduction of design patterns,” in Genetic and Evolutionary Computation
Conf. ACM, 7-11 July 2010, pp. 1341–1348. 3 citations on pages 129, 134, and 136

[439] C. Jergensen, A. Sarma, and P. Wagstrom, “The onion patch: migration in open
source ecosystems,” in Joint European Software Engineering Conf. and ACM SIG-
SOFT Int. Symp. on Foundations of Software Engineering. ACM, 2011, pp. 70–80.

2 citations on pages 307 and 323
[440] H. Jiang, T. N. Nguyen, I. Chen, H. Jaygarl, and C. Chang, “Incremental Latent Semantic

Indexing for automatic traceability link evolution management,” in Int’l Conf. Automated
Software Engineering, 2008, pp. 59–68. cited on page 161

[441] Y. Jiang and E. Stroulia, “Towards reengineering Web sites to Web-services providers,”
in European Conf. Software Maintenance and Reengineering, Mar. 2004, pp. 296–305.

2 citations on pages 217 and 224
[442] W. Jirapanthong and A. Zisman, “Xtraque: traceability for product line systems,” Software

and Systems Modeling, vol. 8, pp. 117–144, 2009. cited on page 289
[443] T. Joachims, “SVM-HMM: Sequence tagging with SVMs,”

http://www.cs.cornell.edu/people/tj/svm light/svm hmm.html. cited on page 176
[444] I. John, J. Knodel, T. Lehner, and D. Muthig, “A practical guide to product line scoping,” in

Int. Software Product Line Conf., 2006, pp. 3–12. cited on page 284
[445] S. Johnsson and J. Bosch, “Quantifying software product line ageing,” in Workshop on

Software Product Lines: Economics, Architectures, and Implications, 2000, pp. 27–32.
cited on page 288

[446] Joint ACM and IEEE CS Taks Force on Computing Curricula, “Computer science curricula
2013,” ACM and IEEE Computer Society, Tech. Rep. Ironman Draft (Version 1.0), February
2013. cited on page ix

[447] M. E. Joorabchi and A. Mesbah, “Reverse engineering iOS mobile applications,” in Working
Conf. Reverse Engineering, 2012, pp. 177–186. cited on page 331

[448] F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev, “Atl: A model transformation tool,” Science
of Computer Programming, vol. 72, no. 12, pp. 31 – 39, 2008, special Issue on Experimental
Software and toolkits (EST). 2 citations on pages 51 and 53

[449] I. J. Jureta, A. Borgida, N. Ernst, and J. Mylopoulos, “Techne: Towards a New Generation of
Requirements Modeling Languages with Goals, Preferences, and Inconsistency Handling,”
in Int’l Conf. Req. Engineering, Sydney, Australia, 2010, pp. 115–124. cited on page 5

[450] I. J. Jureta, J. Mylopoulos, and S. Faulkner, “Revisiting the Core Ontology and Prob-
lem in Requirements Engineering,” in Int’l Conf. Req. Engineering, 2008, pp. 71–80.

cited on page 5
[451] H. Kagdi, M. L. Collard, and J. I. Maletic, “A survey and taxonomy of approaches for

mining software repositories in the context of software evolution,” J. Software Maintenance
and Evolution: Research and Practice, vol. 19, no. 2, pp. 77–131, 2007. cited on page 287

[452] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson, “Feature-oriented do-
main analysis (FODA) feasibility study,” Carnegie-Mellon University Software Engineering
Institute, Tech. Rep., November 1990. cited on page 49



374 References

[453] H. Katsuno and A. O. Mendelzon, “On the difference between updating a knowledge base
and revising it,” in Int’l Conf. Knowledge Representation and Reasoning. Cambridge
University Press, 1991, pp. 1–21. cited on page 29

[454] S. Kawaguchi, P. K. Garg, M. Matsushita, and K. Inoue, “Mudablue: An automatic catego-
rization system for open source repositories,” J. Systems and Software, vol. 79, no. 7, pp.
939–953, 2006. cited on page 153

[455] ——, “Mudablue: An automatic categorization system for open source repositories,” Jour-
nal of Systems and Software, vol. 79, no. 7, pp. 939–953, 2006. cited on page 177

[456] J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” in Int’l Conf. Neural Net-
works, vol. 4, 1995, pp. 1942 – 1948. cited on page 108

[457] J. O. Kephart and D. M. Chess, “The Vision of Autonomic Computing,” IEEE Computer,
vol. 36, no. 1, pp. 41–50, 2003. 5 citations on pages 244, 245, 247, 249, and 250

[458] J. Kerievsky, Refactoring to patterns. Addison-Wesley, 2004.
2 citations on pages 128 and 344

[459] M. Kessentini, H. A. Sahraoui, M. Boukadoum, and O. B. Omar, “Search-based model
transformation by example,” Software and Systems Modeling, vol. 11, no. 2, pp. 209–226,
2012. 3 citations on pages 126, 127, and 136

[460] H. M. Kienle, “Building reverse engineering tools with software components,” Ph.D.
dissertation, Department of Computer Science, University of Victoria, Nov. 2006.

cited on page 201
[461] H. M. Kienle, G. A. Di Lucca, and K. Kontogiannis, “Special issue: Selected papers from the

12th international symposium on web systems evolution (wse 2010),” J. Software: Evolution
and Process, vol. 25, no. 8, 2013. cited on page 227

[462] H. M. Kienle, G. A. Di Lucca, and S. R. Tilley, “Research directions in web systems evo-
lution IV: Migrating to the cloud,” in Int’l Symp. Web Systems Evolution, Sep. 2010, pp.
121–122. 2 citations on pages 215 and 330

[463] H. M. Kienle, D. German, S. Tilley, and H. A. Müller, “Managing legal risks associated
with web content,” Int’l J. Business Information Systems (IJBIS), vol. 3, no. 1, pp. 86–106,
Dec. 2008. cited on page 205

[464] H. M. Kienle and H. A. Müller, “A WSAD-based fact extractor for J2EE web projects,” in
Int’l Symp. Web Systems Evolution, Oct. 2007, pp. 57–64. cited on page 224

[465] ——, “Rigi–an environment for software reverse engineering, exploration, visualization,
and redocumentation,” Science of Computer Programming, vol. 75, no. 4, pp. 247–263,
Apr. 2010. cited on page 207

[466] ——, “Legal aspects of web systems,” in Int’l Symp. Web Systems Evolution, Sep. 2013.
cited on page 205

[467] H. M. Kienle, P. Tramontana, S. R. Tilley, and D. Bolchini, “Ten years of access for all
from wse 2001 to wse 2011,” in Int’l Symp. Web Systems Evolution, Sep. 2011, pp. 99–104.

2 citations on pages 201 and 225
[468] H. M. Kienle and C. A. Vasiliu, “Evolution of legal statements on the web,” in Int’l Symp.

Web Systems Evolution, Oct. 2008, pp. 73–82. cited on page 225
[469] H. M. Kienle, A. Weber, J. Martin, and H. A. Müller, “Development and maintenance of

a web site for a bachelor program,” in Int’l Symp. Web Systems Evolution, Sep. 2003, pp.
20–29. 2 citations on pages 201 and 206

[470] M. Kim and D. Notkin, “Discovering and representing systematic code changes,” in Int’l
Conf. Software Engineering, 2009, pp. 309–319. cited on page 279

[471] A. Kleppe, Software Language Engineering: Creating Domain-Specific Languages Using
Metamodels. Addison-Wesley Professional, 2008. cited on page 34

[472] R. Kolb, D. Muthig, T. Patzke, and K. Yamauchi, “Refactoring a legacy component for reuse
in a software product line: a case study,” J. Software Maintenance and Evolution: Research
and Practice, vol. 18, no. 2, pp. 109–132, 2006. 2 citations on pages 284 and 285

[473] D. Kolovos, “An extensible platform for specification of integrated languages for
model management,” Ph.D. dissertation, University of York, United Kingdom, 2009.

cited on page 57



References 375

[474] E. Korshunova, M. Petković, M. G. J. van den Brand, and M. R. Mousavi, “CPP2XMI:
Reverse Engineering of UML Class, Sequence, and Activity Diagrams from C++ Source
Code,” in Working Conf. Reverse Engineering, 2006, pp. 297–298. cited on page 331

[475] R. Koschke, Software Evolution. Springer, 2008, ch. Identifying and Removing Software
Clones, pp. 15–36. 2 citations on pages x and 286

[476] E. Kouters, B. Vasilescu, A. Serebrenik, and M. G. J. van den Brand, “Who’s who in Gnome:
using LSA to merge software repository identities,” in Int’l Conf. Software Maintenance.
IEEE, 2012, pp. 592–595. cited on page 318

[477] J. R. Koza, Genetic Programming: On the Programming of Computers by Means of Natural
Selection. MIT Press, 1992. cited on page 110

[478] J. Kramer and J. Magee, “Dynamic Structure in Software Architectures,” ACM SIGSOFT
Software Engineering Notes, vol. 21, no. 6, pp. 3–14, 1996. cited on page 248

[479] ——, “Self-Managed Systems: an Architectural Challenge,” in Workshop on the Future of
Software Engineering (FoSE). IEEE, 2007, pp. 259–268. cited on page 248

[480] A. Kraus, A. Knapp, and N. Koch, “Model-driven generation of web applications in uwe,”
in Int’l Workshop on Model-Driven Web Engineering (MDWE), ser. CEUR Workshop Pro-
ceedings, vol. 261. CEUR-WS.org, 2007. cited on page 218

[481] C. Krebs, Ecology: The experimental analysis of distribution and abundance. Harper and
Row, 1972. cited on page 299

[482] A. Kuhn, S. Ducasse, and T. Girba, “Semantic clustering: Identifying topics in source
code,” Information and Software Technology, vol. 49, no. 3, pp. 230–243, 2007.

cited on page 142
[483] T. Kuipers and J. Visser, “Maintainability Index Revisited - position paper,” in Int’l Work-

shop on Software Quality and Maintainability (SQM). IEEE Computer Society Press,
2007. 2 citations on pages 75 and 80

[484] V. Kumar, B. F. Cooper, Z. Cai, G. Eisenhauer, and K. Schwan, “Middleware for Enterprise
Scale Data Stream Management using Utility-driven Self-Adaptive Information Flows,”
Cluster Computing, vol. 10, pp. 443–455, 2007. 2 citations on pages 250 and 252

[485] I. Kurtev, J. Bézivin, and M. Aksit, “Technological spaces: An initial appraisal,” in Int’l
Symp. Distributed Objects and Applications (DOA), 2002. cited on page 34

[486] P. van de Laar and T. Punter, Views on Evolvability of Embedded Systems. Springer, 2010.
cited on page 330

[487] W. Lam and M. Loomes, “Requirements Evolution in the Midst of Environmental Change:
A Managed Approach,” in European Conf. Software Maintenance and Reengineering, 1998,
pp. 121–127. cited on page 9

[488] J. Lamarck, Philosophie zoologique. Dentu, Paris, 1809. cited on page 311
[489] A. Lamkanfi, S. Demeyer, Q. Soetens, and T. Verdonck, “Comparing mining algorithms for

predicting the severity of a reported bug,” in European Conf. Software Maintenance and
Reengineering, 2011. cited on page 186

[490] R. Lämmel, “Grammar adaptation,” in Int’l Conf. Formal Methods Europe (FME), ser. Lect.
Notes in Computer Science, vol. 2021. Springer, 2001, pp. 550–570. cited on page 54

[491] R. Lämmel and W. Lohmann, “Format evolution,” in Int’l Conf. Reverse Engineering for
Information Systems (RETIS), vol. 155. OCG, 2001. cited on page 34

[492] R. Lämmel and V. Zaytsev, “Recovering grammar relationships for the Java language
specification,” Software Quality Journal, vol. 19, no. 2, pp. 333–378, March 2011.

cited on page 34
[493] P. Langer, M. Wimmer, P. Brosch, M. Herrmannsdoerfer, M. Seidl, K. Wieland, and

G. Kappel, “A posteriori operation detection in evolving software models,” J. Software
Maintenance and Evolution: Research and Practice, vol. 86, no. 2, pp. 551 – 566, 2013.

cited on page 63
[494] F. Lanubile and T. Mallardo, “Finding function clones in Web applications,” in Eu-

ropean Conf. Software Maintenance and Reengineering, Mar. 2003, pp. 379–386.
cited on page 224



376 References

[495] M. Lanza, R. Marinescu, and S. Ducasse, Object-Oriented Metrics in Practice. Springer,
2005. 2 citations on pages 70 and 86

[496] P. A. Laplante, Ed., Encyclopedia of Software Engineering. Auerbach Publications, 2010.
cited on page 344

[497] A. Lapouchnian and J. Mylopoulos, “Modeling Domain Variability in Requirements
Engineering with Contexts,” in Int’l Conf. Conceptual Modelling, 2009, pp. 115–130.

2 citations on pages 16 and 22
[498] C. Larman and V. R. Basili, “Iterative and incremental development: A brief history,” IEEE

Computer, vol. 36, no. 6, pp. 47–56, June 2003. cited on page 8
[499] T. C. Lau, J. Lu, E. Hedges, and E. Xing, “Migrating e-commerce database applications

to an enterprise Java environment,” in Conf. Center for Advanced Studies on Collaborative
Research, Nov. 2001. cited on page 221

[500] J. Lawrance, R. Bellamy, and M. Burnett, “Scents in programs: Does information forag-
ing theory apply to program maintenance?” in IEEE Symp. Visual Languages and Human-
Centric Computing (VL/HCC), 2007, pp. 15–22. 2 citations on pages 298 and 325

[501] D. Lawrie and D. Binkley, “Expanding identifiers to normalize source code vocabulary,” in
Int’l Conf. Software Maintenance, 2011, pp. 113–122. cited on page 145

[502] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “Genprog: A generic method for
automatic software repair,” IEEE Trans. Soft. Eng., vol. 38, no. 1, pp. 54–72, 2012.

3 citations on pages 124, 125, and 136
[503] D. Leffingwell, Agile Software Requirements: Lean Requirements Practices for Teams, Pro-

grams, and the Enterprise. Addison-Wesley, 2011. cited on page 14
[504] D. Leffingwell and D. Widrig, Managing Software Requirements: A Use Case Approach,

2nd ed. Addison-Wesley Professional, 2003. cited on page 13
[505] M. M. Lehman, “On understanding laws, evolution and conservation in the large program

life cycle,” J. Systems and Software, vol. 1, no. 3, pp. 213–221, 1980. cited on page 316
[506] ——, “Programs, life cycles, and laws of software evolution,” Proceedings of the IEEE,

vol. 68, no. 9, pp. 1060–1076, 1980. cited on page 152
[507] ——, “Feedback in the Software Evolution Process,” Information and Software Technology,

vol. 38, no. 11, pp. 681–686, 1996. cited on page 236
[508] M. M. Lehman and L. A. Belady, Program Evolution: Processes of Software Change, ser.

Apic Studies In Data Processing. Academic Press, 1985. cited on page 344
[509] M. M. Lehman and J. Fernandez Ramil, “Rules and tools for software evolution planning

and management,” Annals of Software Engineering, vol. 11, pp. 16–44, 2001, special Issue
on Software Management. 2 citations on pages 233 and 236

[510] ——, Software Evolution and Feedback: Theory and Practice. Wiley, 2006, ch. Software
evolution, pp. 7–40. 2 citations on pages 6 and 233

[511] M. M. Lehman, J. Fernandez Ramil, P. D. Wernick, D. E. Perry, and W. M. Turski, “Metrics
and laws of software evolution – the nineties view,” in Int’l Symp. Software Metrics. IEEE
Computer Society, 1997, pp. 20–32. 2 citations on pages 88 and 316

[512] A. Lesk, Introduction to Bioinformatics. Oxford University Press, 2008.
cited on page 298

[513] L. Lessig, Free Culture: How Big Media Uses Technology and the Law to Lock Down
Culture and Control Creativity. The Penguin Press, 2004, http://www.free-culture.cc/
freeculture.pdf. cited on page 205

[514] T. C. Lethbridge, R. Laganiere, and C. King, Object-oriented software engineer-
ing: practical software development using UML and Java. McGraw-Hill, 2005.

2 citations on pages 141 and 143
[515] E. Letier and A. van Lamsweerde, “Reasoning about partial goal satisfaction for require-

ments and design engineering,” in Int’l Symp. Foundations of Software Engineering. ACM
Press, 2004, pp. 53—62. 2 citations on pages 18 and 22

[516] J. L. Letouzey and T. Coq, “The SQALE Analysis Model: An Analysis Model Compliant
with the Representation Condition for Assessing the Quality of Software Source Code,” in

http://www.free-culture.cc/freeculture.pdf
http://www.free-culture.cc/freeculture.pdf


References 377

Int’l Conf. Advances in System Testing and Validation Lifecycle (VALID). IEEE, Aug.
2010, pp. 43–48. 4 citations on pages 66, 67, 69, and 78

[517] V. Levenshtein, “Binary codes capable of correcting deletions, insertions, and reversals,” in
Soviet Physics Doklady, vol. 10, 1966, pp. 707–710. cited on page 223

[518] G. Lewis, E. Morris, and D. Smith, “Analyzing the reuse potential of migrating legacy com-
ponents to a service-oriented architecture,” in European Conf. Software Maintenance and
Reengineering, Mar. 2006, pp. 15–23. cited on page 217

[519] W. Li, C. Zhang, and S. Hu, “G-finder: Routing programming questions closer to the ex-
perts,” in ACM Sigplan Notices, vol. 45, no. 10. ACM, 2010, pp. 62–73. cited on page 154

[520] S. Liaskos, A. Lapouchnian, Y. Yu, E. S. Yu, and J. Mylopoulos, “On Goal-based Variability
Acquisition and Analysis,” in Int’l Conf. Req. Engineering, 2006. cited on page 16

[521] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan, “Bug isolation via remote pro-
gram sampling,” Programming language design and implementation, pp. 141–154, 2003.

cited on page 124
[522] E. Lim, N. Taksande, and C. Seaman, “A balancing act: What software practitioners

have to say about technical debt,” IEEE Software, pp. 22–27, November/December 2012.
cited on page 331

[523] C. R. Linder, B. M. E. Moret, L. Nakhleh, and T. Warnow, “Network (reticulate) evolution:
biology, models, and algorithms,” in Pacific Symp. Biocomputing, 2004. cited on page 311

[524] E. Linstead and P. Baldi, “Mining the coherence of GNOME bug reports with sta-
tistical topic models,” in Int’l Conf. Mining Software Repositories, 2009, pp. 99–102.

2 citations on pages 153 and 306
[525] E. Linstead, C. Lopes, and P. Baldi, “An application of latent Dirichlet allocation to an-

alyzing software evolution,” in Int’l Conf. Machine Learning and Applications, 2008, pp.
813–818. cited on page 152

[526] E. Linstead, P. Rigor, S. Bajracharya, C. Lopes, and P. Baldi, “Mining concepts from code
with probabilistic topic models,” in Int’l Conf. Automated Software Engineering, 2007, pp.
461–464. cited on page 161

[527] ——, “Mining Eclipse developer contributions via author-topic models,” in Int’l Conf. Min-
ing Software Repositories, 2007, pp. 30–33. cited on page 161

[528] ——, “Mining internet-scale software repositories,” in Advances in Neural Information Pro-
cessing Systems, vol. 2007, 2008, pp. 929–936. cited on page 154

[529] E. Linstead, S. Bajracharya, T. Ngo, P. Rigor, C. Lopes, and P. Baldi, “Sourcerer: mining
and searching internet-scale software repositories,” Data Mining and Knowledge Discovery,
vol. 18, no. 2, pp. 300–336, 2008. cited on page 154

[530] A. Liso, “Software Maintainability Metrics Model: An Improvement in the Coleman-Oman
Model,” Crosstalk, p. 1517, 2001. cited on page 75

[531] M. Litoiu, “Migrating to web services - latency and scalability,” in Int’l Symp. Web Systems
Evolution, Oct. 2002, pp. 13–20. 2 citations on pages 218 and 224

[532] J. Liu, D. S. Batory, and C. Lengauer, “Feature oriented refactoring of legacy applications,”
in Int’l Conf. Software Engineering, 2006, pp. 112–121. cited on page 285

[533] Y. Liu, D. Poshyvanyk, R. Ferenc, T. Gyimothy, and N. Chrisochoides, “Modeling class
cohesion as mixtures of latent topics,” in Int’l Conf. Software Maintenance, 2009, pp. 233–
242. cited on page 162

[534] Y. Liu, Q. Wang, M. Zhuang, and Y. Zhu, “Reengineering legacy systems with RESTful
web service,” in Int’l Computer Software and Applications Conf., Jul. 2008, pp. 785–790.

cited on page 214
[535] X. Llorà, K. Sastry, D. E. Goldberg, A. Gupta, and L. Lakshmi, “Combating user fatigue

in iGAs: partial ordering, support vector machines, and synthetic fitness,” in Genetic and
Evolutionary Computation Conf. ACM, 2005, pp. 1363–1370. cited on page 136

[536] L. Lopez-Fernandez, G. Robles, J. Gonzalez-Barahona, and I. Herraiz, “Applying social net-
work analysis techniques to community-driven libre software projects,” Int’l J. Information
Technology and Web Engineering, vol. 1, no. 3, pp. 27–48, 2006. cited on page 316



378 References

[537] M. Lormans, “Monitoring requirements evolution using views,” in European Conf. Software
Maintenance and Reengineering, 2007, pp. 349–352. cited on page 161

[538] M. Lormans, H. G. Gross, A. van Deursen, and R. van Solingen, “Monitoring requirements
coverage using reconstructed views: An industrial case study,” in Working Conf. Reverse
Engineering, 2006, pp. 275–284. No citation

[539] M. Lormans and A. van Deursen, “Can LSI help reconstructing requirements traceability in
design and test?” in European Conf. Software Maintenance and Reengineering, 2006, pp.
47–56. cited on page 161

[540] R. Lotufo, Z. Malik, and K. Czarnecki, “Modelling the ‘hurried’ bug report reading pro-
cess to summarize bug reports,” in Int’l Conf. Software Maintenance, 2012, pp. 1–10.

cited on page 153
[541] N. Loughran, A. Rashid, W. Zhang, and S. Jarzabek, “Supporting product line evolution

with framed aspects,” in Workshop APC4IS, 2004, pp. 22–26. cited on page 293
[542] Z. Lubsen, A. Zaidman, and M. Pinzger, “Using association rules to study the co-evolution

of production and test code,” in Int’l Conf. Mining Software Repositories, 2009, pp. 151–
154. cited on page 330

[543] B. Luijten and J. Visser, “Faster Defect Resolution with Higher Technical Quality Software,”
in Int’l Workshop on Software Quality and Maintainability (SQM). IEEE Computer Society
Press, 2010, pp. 11–20. cited on page 81

[544] S. K. Lukins, N. A. Kraft, and L. H. Etzkorn, “Source code retrieval for bug localization
using latent Dirichlet allocation,” in Working Conf. Reverse Engineering, 2008, pp. 155–
164. cited on page 162

[545] ——, “Bug localization using latent Dirichlet allocation,” Information and Software Tech-
nology, vol. 52, no. 9, pp. 972–990, 2010. cited on page 162

[546] M. Lungu, “Towards reverse engineering software ecosystems,” in Int’l Conf. Software
Maintenance, 2008, pp. 428–431. cited on page 302

[547] ——, “Reverse engineering software ecosystems,” Ph.D. dissertation, University of Lugano,
2009. 2 citations on pages 302 and 340

[548] M. Lungu, M. Lanza, T. Girba, and R. Heeck, “Reverse engineering super-repositories,” in
Working Conf. Reverse Engineering, 2007. cited on page 189

[549] A. Maccari, “Experiences in assessing product family software architectures for evolution,”
in Int’l Conf. Software Engineering, 2002, pp. 585–592. cited on page 287

[550] A. MacLean, R. M. Young, V. M. E. Bellotti, and T. P. Moran, “Questions, options, and
criteria: elements of design space analysis,” Hum.-Comput. Interact., vol. 6, pp. 201–250,
September 1991. cited on page 290

[551] N. Madani, L. Guerrouj, M. Di Penta, Y. Guéhéneuc, and G. Antoniol, “Recognizing words
from source code identifiers using speech recognition techniques,” in European Conf. Soft-
ware Maintenance and Reengineering, 2010, pp. 68–77. cited on page 145

[552] G. Madey, V. Freeh, and R. Tynan, “The open source software development phenomenon:
An analysis based on social network theory,” in Americas Conf. Information Systems, 2002.

cited on page 173
[553] N. H. Madhavji, J. F. Ramil, and D. E. Perry, Software Evolution and Feedback: Theory and

Practice. John Wiley & Sons, 2006. 5 citations on pages 236, 237, 238, 338, and 344
[554] R. Madsen, S. Sigurdsson, L. Hansen, and J. Larsen, “Pruning the vocabulary for better con-

text recognition,” in Int’l Conf. Pattern Recognition, 2004, pp. 483–488. cited on page 145
[555] S. Mancoridis, B. S. Mitchell, C. Rorres, Y.-F. Chen, and E. R. Gansner, “Using automatic

clustering to produce high-level system organizations of source code,” in Int’l Conf. Pro-
gram Comprehension, 1998, pp. 45–. 2 citations on pages 113 and 136

[556] K. Manikas and K. M. Hansen, “Software ecosystems: A systematic literature review,” J.
Systems and Software, 2012. cited on page 301

[557] C. D. Manning, P. Raghavan, and H. Schutze, Introduction to in-
formation retrieval. Cambridge University Press, 2008, vol. 1.

6 citations on pages 141, 146, 176, 177, 179, and 341



References 379

[558] F. Manola and E. Miller, “RDF Primer,” W3C, Tech. Rep., 2004. [Online]. Available:
http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ cited on page 259

[559] O. Maqbool and H. A. Babri, “Hierarchical clustering for software architecture recovery,”
IEEE Trans. Soft. Eng., vol. 33, no. 11, pp. 759–780, 2007. cited on page 113

[560] J. Maras, J. Carlson, and I. Crnkovic, “Extracting client-side web application code,” in Int’l
Conf. World Wide Web, Apr. 2012, pp. 819–828. 2 citations on pages 211 and 224

[561] A. Marchetto, P. Tonella, and F. Ricca, “ReAjax: a reverse engineering tool for Ajax Web ap-
plications,” IET Software, vol. 6, no. 1, pp. 33–49, 2012. 2 citations on pages 214 and 224

[562] E. Marcotte, Responsive Web Design. A Book Apart, Jan. 2012. cited on page 204
[563] A. Marcus and J. I. Maletic, “Identification of high-level concept clones in source code,” in

Int’l Conf. Automated Software Engineering, 2001, pp. 107–114. cited on page 154
[564] A. Marcus, V. Rajlich, J. Buchta, M. Petrenko, and A. Sergeyev, “Static techniques for

concept location in object-oriented code,” in Int’l Workshop Program Comprehension, 2005,
pp. 33–42. cited on page 161

[565] A. Marcus, A. Sergeyev, V. Rajlich, and J. I. Maletic, “An information retrieval approach
to concept location in source code,” in Working Conf. Reverse Engineering, 2004, pp. 214–
223. cited on page 161

[566] A. Marcus and J. I. Maletic, “Recovering documentation-to-source-code traceability links
using Latent Semantic Indexing,” in Int’l Conf. Software Engineering, 2003, pp. 125–135.

cited on page 161
[567] A. Marcus, D. Poshyvanyk, and R. Ferenc, “Using the conceptual cohesion of classes for

fault prediction in object-oriented systems,” IEEE Trans. Soft. Eng., vol. 34, no. 2, pp. 287–
300, 2008. cited on page 162

[568] D. Martin and J. R. Cordy, “Analyzing web service similarity using contextual clones,” in
Int’l Workshop on Software Clones (IWSC), May 2011. 2 citations on pages 212 and 224

[569] J. Martin and L. Martin, “Web site maintenance with software-engineering
tools,” in Int’l Symp. Web Systems Evolution, Nov. 2001, pp. 126–131.

3 citations on pages 207, 208, and 224
[570] N. D. Martinez, R. Williams, and J. A. Dunne, Diversity, complexity, and persis-

tence in large model ecosystems. Oxford University Press, 2006, pp. 163–185.
2 citations on pages 300 and 314

[571] G. Maskeri, S. Sarkar, and K. Heafield, “Mining business topics in source code using la-
tent Dirichlet allocation,” in India software engineering conference, 2008, pp. 113–120.

cited on page 161
[572] K. Matsudaira, “Making the mobile web faster,” ACM Queue, vol. 11, no. 1, Jan. 2013.

cited on page 222
[573] T. J. McCabe, “A complexity measure,” IEEE Trans. Soft. Eng., vol. 2, no. 4, pp. 308–320,

July 1976. cited on page 69
[574] J. McCall, P. Richards, and G. Walters, “Factors in software quality: Vol. 1:

Concepts and definitions of software quality,” General Electric, Tech. Rep., 1977.
8 citations on pages 66, 68, 70, 92, 338, 339, 340, and 341

[575] A. K. McCallum, “Mallet: A machine learning for language toolkit,”
http://mallet.cs.umass.edu, 2002. cited on page 149

[576] K. S. McCann, “The diversity-stability debate,” Nature, vol. 405, pp. 228–233, 2000.
cited on page 300

[577] C. McDonald, “From Art Form to Engineering Discipline?: A History of US Military
Software Development Standards, 1974-1998,” IEEE Annals of the History of Computing,
vol. 32, no. 4, pp. 32–45, 2010. cited on page 8

[578] T. McDonnell, B. Ray, and M. Kim, “An empirical study of API stability and adoption in
the Android ecosystem,” in Int’l Conf. Software Maintenance, 2013. cited on page 303

[579] C. McMillan, M. Grechanik, D. Poshyvanyk, C. Fu, and Q. Xie, “Exemplar: A source code
search engine for finding highly relevant applications,” IEEE Trans. Soft. Eng., vol. 38,
no. 5, pp. 1069–1087, 2012. cited on page 181

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/


380 References

[580] C. McMillan, D. Poshyvanyk, and M. Revelle, “Combining textual and structural analysis
of software artifacts for traceability link recovery,” in Workshop on Traceability in Emerging
Forms of Software Engineering, 2009, pp. 41–48. cited on page 162

[581] C. McMillan, M. Grechanik, and D. Poshyvanyk, “Detecting similar software applications,”
in Int’l Conf. Software Engineering, 2012, pp. 364–374. 2 citations on pages 177 and 179

[582] C. McMillan, M. Grechanik, D. Poshyvanyk, Q. Xie, and C. Fu, “Portfolio: finding relevant
functions and their usage,” in Int’l Conf. Software Engineering, 2011. cited on page 181

[583] A. Mehta and G. T. Heineman, “Evolving legacy system features into fine-grained compo-
nents,” in Int’l Conf. Software Engineering, 2002, pp. 417–427. cited on page 285

[584] P. Meirelles, C. Santos Jr., J. Miranda, F. Kon, A. Terceiro, and C. Chavez, “A Study of the
Relationships between Source Code Metrics and Attractiveness in Free Software Projects,”
in Brazilian Symp. Software Engineering. IEEE Computer Society, 2010, pp. 11–20.

cited on page 77
[585] P. Mell and T. Grance, “The NIST definition of cloud computing,” National Institute of Stan-

dards and Technology, Tech. Rep., 2009, http://csrc.nist.gov/groups/SNS/cloud-computing/
cloud-def-v15.doc. cited on page 215

[586] A. M. Memon, I. Banerjee, and A. Nagarajan, “GUI ripping: Reverse engineering of graph-
ical user interfaces for testing,” in Working Conf. Reverse Engineering, 2003, pp. 260–269.

cited on page 331
[587] T. Mende, F. Beckwermert, R. Koschke, and G. Meier, “Supporting the grow-and-prune

model in software product lines evolution using clone detection,” in European Conf. Soft-
ware Maintenance and Reengineering, april 2008, pp. 163 –172. cited on page 286

[588] D. Méndez, A. Etien, A. Muller, and R. Casallas, “Transformation migration after meta-
model evolution,” in Int’l Workshop on Models and Evolution, 2010. cited on page 63

[589] K. Mens and T. Tourwé, Software Evolution. Springer, 2008, ch. Evolution Issues in
Aspect-Oriented Programming, pp. 203–232. cited on page x

[590] T. Mens, Software Evolution. Springer, 2008, ch. Introduction and
Roadmap: History and Challenges of Software Evolution, pp. 1–11.

5 citations on pages x, 232, 235, 243, and 331
[591] ——, “Future Research Challenges in Software Evolution,” in Presentation to ERCIM

Working Group on Software Evolution, Sep. 2009, pp. 1–17. cited on page 4
[592] T. Mens and S. Demeyer, Software Evolution. Springer, 2008.

9 citations on pages ix, x, xi, 202, 203, 212, 217, 219, and 344
[593] T. Mens, L. Doctors, N. Habra, B. Vanderose, and F. Kamseu, “QUALGEN: Modeling

and Analysing the Quality of Evolving Software Systems,” in European Conf. Software
Maintenance and Reengineering. IEEE, 2011, pp. 351–354. cited on page 86

[594] T. Mens and M. Goeminne, “Analysing the evolution of social aspects of open source soft-
ware ecosystems,” in Int’l Workshop on Software Ecosystems, ser. CEUR Workshop Pro-
ceedings. CEUR-WS.org, June 2011, pp. 1–14. cited on page 303

[595] T. Mens, Y.-G. Guehénéuc, J. Fernández-Ramil, and M. D’Hondt, “Guest Editors’ In-
troduction: Software Evolution,” IEEE Software, vol. 27, no. 4, pp. 22–25, Jul. 2010.

cited on page 230
[596] T. Mens and T. Tourwé, “A survey of software refactoring,” IEEE Trans. Soft. Eng., vol. 30,

no. 2, pp. 126–139, 2004. 3 citations on pages 128, 202, and 221
[597] T. Mens and P. Van Gorp, “A taxonomy of model transformation,” Electronic Notes in The-

oretical Computer Science, vol. 152, pp. 125–142, 2006. 2 citations on pages 51 and 122
[598] T. Mens, M. Wermelinger, S. Ducasse, S. Demeyer, R. Hirschfeld, and M. Jazayeri, “Chal-

lenges in software evolution,” in Int’l Workshop on Principles of Software Evolution, 2005.
3 citations on pages 4, 230, and 338

[599] A. Mesbah, “Analysis and testing of Ajax-based single-page Web applications,” Ph.D. dis-
sertation, Delft University of Technology, The Netherlands, 2009. cited on page 227

[600] A. Mesbah and M. R. Prasad, “Automated cross-browser compatibility testing,” in Int’l
Conf. Software Engineering, May 2011, pp. 561–570. cited on page 226

http://csrc.nist.gov/groups/SNS/cloud-computing/cloud-def-v15.doc
http://csrc.nist.gov/groups/SNS/cloud-computing/cloud-def-v15.doc


References 381

[601] A. Mesbah and A. van Deursen, “Migrating multi-page Web applications to single-page
Ajax interfaces,” in European Conf. Software Maintenance and Reengineering, Mar. 2007,
pp. 181–190. 3 citations on pages 214, 223, and 224

[602] A. Mesbah, A. van Deursen, and S. Lenselink, “Crawling Ajax-based Web applications
through dynamic analysis of user interface state changes,” ACM Trans. Web, vol. 6, no. 1,
Mar. 2012. 2 citations on pages 209 and 224

[603] D. Messerschmitt and C. Szyperski, Software ecosystem: Understanding and indispensable
technology and industry. MIT Press, 2003. 2 citations on pages 301 and 302

[604] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller, “Equation of state
calculations by fast computing machines,” Journal of Chemical Physics, vol. 21, pp. 1087–
1092, 1953. cited on page 107

[605] B. Meyer, “Schema evolution: Concepts, terminology, and solutions,” IEEE Computer,
vol. 29, no. 10, pp. 119–121, 1996. cited on page 34

[606] K. Michael and K. W. Miller, “Big data: New opportunities and new challenges [guest edi-
tors’ introduction],” Computer, vol. 46, no. 6, pp. 22–24, 2013. cited on page 329

[607] Z. Michalewicz and D. B. Fogel, How to Solve It: Modern Heuristics, 2nd ed. Springer,
2004. 4 citations on pages 105, 106, 107, and 109

[608] T. Mikkonen and A. Taivalsaari, “Apps vs. open web: The battle of the decade,” in Work-
shop on Mobile Software Engineering, Oct. 2011, http://mobileseworkshop.org/papers/
6-Mikkonen Taivalsaari.pdf. cited on page 216

[609] S. C. Misra, “Modeling Design/Coding Factors That Drive Maintainability of Software Sys-
tems,” Software Quality Control, vol. 13, no. 3, pp. 297–320, Sep. 2005. cited on page 76

[610] B. S. Mitchell and S. Mancoridis, “On the automatic modularization of software sys-
tems using the bunch tool,” IEEE Trans. Soft. Eng., vol. 32, no. 3, pp. 193–208, 2006.

6 citations on pages 113, 114, 115, 116, 118, and 136
[611] M. Mitchell, An Introduction to Genetic Algorithms, 3rd ed. A Bradford Book, 1998.

cited on page 298
[612] T. Mitchell, Machine Learning. McGraw-Hill, 1997. 2 citations on pages 186 and 194
[613] A. Mockus, R. Fielding, and J. Herbsleb, “Two case studies of open source software de-

velopment: Apache and Mozilla,” ACM Trans. Software Engineering and Methodology,
vol. 11, no. 3, pp. 309–346, 2002. 2 citations on pages 306 and 308

[614] I. H. Moghadam and M. Ó Cinnéide, “Code-imp: A tool for automated search-based refac-
toring,” in Workshop on Refactoring Tools (WRT), 2011. 2 citations on pages 129 and 131

[615] ——, “Automated refactoring using design differencing,” in European Conf. Software
Maintenance and Reengineering, 2012. cited on page 129

[616] M. Moon, H. S. Chae, T. Nam, and K. Yeom, “A metamodeling approach to tracing vari-
ability between requirements and architecture in software product lines,” in Int’l Conf. Com-
puter and Information Technology. IEEE, 2007, pp. 927–933. cited on page 289

[617] L. Moonen, A. van Deursen, A. Zaidman, and M. Bruntink, Software Evolution. Springer,
2008, ch. On the Interplay Between Software Testing and Evolution and its Effect on Pro-
gram Comprehension, pp. 173–202. 3 citations on pages x, 330, and 331

[618] I. Moore, “Automatic inheritance hierarchy restructuring and method refactoring,” in Int’l
Conf. Object-Oriented Programming Systems, Languages and Applications. ACM Press,
1996, pp. 235–250. cited on page 128

[619] K. Mordal-Manet, F. Balmas, S. Denier, S. Ducasse, H. Wertz, J. Laval, F. Bellingard,
and P. Vaillergues, “The Squale Model – A Practice-based Industrial Quality Model,”
in Int’l Conf. Software Maintenance. IEEE Computer Society, 2009, pp. 531–534.

5 citations on pages 66, 67, 69, 77, and 336
[620] P. Morrison and E. R. Murphy-Hill, “Is programming knowledge related to age? an explo-

ration of Stack Overflow,” in Int’l Conf. Mining Software Repositories, 2013, pp. 69–72.
cited on page 331

[621] H. A. Müller, H. M. Kienle, and U. Stege, Autonomic Computing: Now You See it, Now You
Don’t–Design and Evolution of Autonomic Software Systems, ser. Lect. Notes in Computer
Science. Springer, 2009, vol. 5413, pp. 32–54. cited on page 230

http://mobileseworkshop.org/papers/6-Mikkonen_Taivalsaari.pdf
http://mobileseworkshop.org/papers/6-Mikkonen_Taivalsaari.pdf


382 References

[622] H. A. Müller, M. Pezzè, and M. Shaw, “Visibility of Control in Adaptive Systems,” in Int’l
Workshop on Ultra-Large-Scale Software-Intensive Systems (ULSSIS), 2008, pp. 23–26.

4 citations on pages 230, 237, 239, and 241
[623] G. C. Murphy, “Houston: We are in overload,” in Int’l Conf. Software Maintenance. IEEE,

2007, p. 1. cited on page 135
[624] G. C. Murphy, A. Lai, R. J. Walker, and M. P. Robillard, “Separating features in source

code: an exploratory study,” in Int’l Conf. Software Engineering, 2001, pp. 275–284.
cited on page 285

[625] R. M. Murray, Ed., Control in an Information Rich World: Report of the Panel on Future
Directions in Control, Dynamics, and Systems. Society for Industrial and Applied Mathe-
matics, 2003. 2 citations on pages 230 and 238

[626] C. R. Myers, “Software systems as complex networks: Structure, function, and evolvabil-
ity of software collaboration graphs,” Physical Reviews E, vol. 68, p. 046116, Oct 2003.

cited on page 331
[627] J. Mylopoulos, “The Requirements Problem Revisited,” in Presentation to IFIP Working

Group 2.9, Cancun, 2011. cited on page 5
[628] J. Mylopoulos, A. Borgida, M. Jarke, and M. Koubarakis, “Telos: Representing Knowledge

About Information Systems,” ACM Trans. Information Systems, vol. 8, pp. 325–362, 1990.
cited on page 10

[629] M. Naaman, J. Boase, and C.-H. Lai, “Is it really about me? Message content in so-
cial awareness streams,” in Int’l Conf. Computer Supported Cooperative Work, 2010.

cited on page 185
[630] N. Nagappan, T. Ball, and B. Murphy, “Using Historical In-Process and Product Metrics

for Early Estimation of Software Failures,” in Int’l Symp. Software Reliability Engineering.
IEEE Computer Society, 2006, pp. 62–74. cited on page 66

[631] K. Nakakoji, Y. Yamamoto, Y. Nishinaka, K. Kishida, and Y. Ye, “Evolution patterns of
open-source software systems and communities,” in Int’l Workshop on Principles of Soft-
ware Evolution. ACM, 2002, pp. 76–85. 3 citations on pages 303, 307, and 310

[632] V. Nanda and N. H. Madhavji, “The Impact of Environmental Evolution on Requirements
Changes,” in Int’l Conf. Software Maintenance, 2002, pp. 452–461. cited on page 11

[633] A. Narayanan, T. Levendovszky, D. Balasubramanian, and G. Karsai, “Automatic domain
model migration to manage metamodel evolution,” in Model Driven Engineering Languages
and Systems, ser. Lect. Notes in Computer Science, vol. 5795. Springer, 2009, pp. 706–711.

cited on page 52
[634] S. M. Nasehi, J. Sillito, F. Maurer, and C. Burns, “What makes a good code example?: A

study of programming Q&A in StackOverflow,” in Int’l Conf. Software Maintenance, 2012,
pp. 25–34. cited on page 172

[635] P. Naur and B. Randell, Software Engineering. NATO, Scientific Affairs Division, Brus-
sels, 1969, report of a conference sponsored by the NATO Science Committee, Garmisch,
Germany, 7-11 Oct. 1968. cited on page 340

[636] I. Navarro, N. Leveson, and K. Lunqvist, “Semantic decoupling: reducing the impact of
requirement changes,” Int’l Conf. Req. Engineering, vol. 15, no. 4, pp. 419–437, 2010.

cited on page 12
[637] D. Neary, V. David, and N. Consulting, “The GNOME census: Who writes GNOME?” in

GNOME users and developers European conference, 2010. cited on page 323
[638] C. L. Nehaniv, J. Hewitt, B. Christianson, and P. Wernick, “What software evolution and

biological evolution don’t have in common,” in Int’l IEEE Workshop on Software Evolv-
ablility, 2006, pp. 58–65. 2 citations on pages 298 and 313

[639] A. Neitsch, K. Wong, and M. W. Godfrey, “Build system issues in multilanguage software,”
in Int’l Conf. Software Maintenance, 2012, pp. 140–149. cited on page 331

[640] S. Neu, M. Lanza, L. Hattori, and M. D’Ambros, “Telling stories about GNOME
with Complicity,” in Working Conf. Software Visualisation. IEEE, 2011, pp. 1–8.

2 citations on pages 306 and 316



References 383

[641] S. Neuhaus and T. Zimmermann, “Security trend analysis with CVE topic models,” in Int’l
Symp. Software Reliability Engineering, 2010, pp. 111–120. cited on page 152

[642] L. Neves, L. Teixeira, D. Sena, V. Alves, U. Kulezsa, and P. Borba, “Investigating the safe
evolution of software product lines,” in Int’l Conf. Generative Programming, 2011, pp. 33–
42. cited on page 292

[643] A. Ngo-The and G. Ruhe, “A systematic approach for solving the wicked problem of soft-
ware release planning,” Soft Computing, vol. 12, pp. 95–108, 2008. cited on page 290

[644] A. T. Nguyen, T. T. Nguyen, J. Al-Kofahi, H. V. Nguyen, and T. N. Nguyen, “A topic-based
approach for narrowing the search space of buggy files from a bug report,” in Int’l Conf.
Automated Software Engineering, 2011, pp. 263–272. cited on page 162

[645] A. T. Nguyen, T. T. Nguyen, T. N. Nguyen, D. Lo, and C. Sun, “Duplicate bug report
detection with a combination of information retrieval and topic modeling,” in Int’l Conf.
Automated Software Engineering, 2012, pp. 70–79. cited on page 192

[646] L. Northrop, P. Feiler, R. Gabriel, J. Goodenough, T. Longstaff, R. Kazman, M. Klein,
D. Schmidt, K. Sullivan, and K. Wallnau, “Ultra-Large-Scale Systems–The Software Chal-
lenge of the Future,” Carnegie Mellon University Software Engineering Institute (SEI),
Tech. Rep., 2006. 2 citations on pages 230 and 337

[647] B. A. Nuseibeh and S. M. Easterbrook, “Requirements Engineering: A Roadmap,” in Work-
shop on The Future of Software Engineering, 2000, pp. 35–46. cited on page 23

[648] B. A. Nuseibeh, S. M. Easterbrook, and A. Russo, “Making inconsistency respectable
in software development,” J. Systems and Software, vol. 58, no. 2, pp. 171–180, 2001.

cited on page 19
[649] M. Ó Cinnéide, D. Boyle, and I. H. Moghadam, “Automated refac-

toring for testability,” in Workshop on Refactoring and Testing, 2011.
5 citations on pages 128, 129, 130, 132, and 136

[650] Object Management Group , Model Driven Architecture (MDA). cited on page 218
[651] ——, Unified Modeling Language (UML), Infrastructure. Version 2.0, Jul. 2005.

cited on page 43
[652] ——, Unified Modeling Language (UML), Superstructure. Version 2.0, formal/2005-07-04,

Jul. 2005. 2 citations on pages 34 and 43
[653] ——, Business Process Model and Notation (BPMN). Version 2.0, Jan. 2011.

cited on page 34
[654] ——, Meta Object Facility (MOF) Core Specification. Version 2.4.1, Aug. 2011.

cited on page 35
[655] L. O’Brien and D. Smith, “MAP and OAR methods: Techniques for developing core

assets for software product lines from existing assets,” Software Engineering Insti-
tute – Carnegie Mellon University, Technical Note SEI/CMU-2002-TN-007, April 2002.

2 citations on pages 274 and 286
[656] M. O’Keeffe and M. Ó Cinnéide, “A stochastic approach to automated design improve-

ment,” in Int’l Conf. Principles and Practice of Programming in Java. Computer Science
Press, 2003, pp. 59–62. cited on page 129

[657] ——, “Getting the most from search-based refactoring,” in Genetic and Evo-
lutionary Computation Conf. ACM, 7-11 July 2007, pp. 1114–1120.

4 citations on pages 130, 131, 132, and 136
[658] ——, “Search-based refactoring: An empirical study,” J. Software Maintenance and Evo-

lution: Research and Practice, vol. 20, no. 5, pp. 345–364, September 2008, special Issue
Search Based Software Engineering. 2 citations on pages 129 and 133

[659] ——, “Search-based refactoring for software maintenance,” J. Sys-
tems and Software, vol. 81, no. 4, pp. 502–516, April 2008.

6 citations on pages 128, 129, 130, 132, 133, and 136
[660] H. M. Olague, L. H. Etzkorn, S. Gholston, and S. Quattlebaum, “Empirical Validation of

Three Software Metrics Suites to Predict Fault-Proneness of Object-Oriented Classes De-
veloped Using Highly Iterative or Agile Software Development Processes,” IEEE Trans.
Soft. Eng., vol. 33, no. 6, pp. 402–419, 2007. cited on page 77



384 References

[661] R. Oliveto, M. Gethers, D. Poshyvanyk, and A. De Lucia, “On the equivalence of infor-
mation retrieval methods for automated traceability link recovery,” in Int’l Conf. Program
Comprehension, 2010, pp. 68–71. cited on page 162

[662] P. Oman and J. Hagemeister, “Metrics for Assessing a Software System’s Maintainability,”
in Int’l Conf. Software Maintenance. IEEE Computer Society Press, 1992, pp. 337–344.

2 citations on pages 75 and 80
[663] ——, “Construction and Testing of Polynomials Predicting Software Maintain-

ability,” J. Systems and Software, vol. 24, no. 3, pp. 251–266, Mar. 1994.
2 citations on pages 68 and 76

[664] W. F. Opdyke, “Refactoring object-oriented frameworks,” Ph.D. dissertation, University of
Illinois at UrbanaChampaign, 1992. 2 citations on pages 128 and 221

[665] Open Service Oriented Architecture, “SCA Assembly Model version 1.0,” http://www.osoa.
org, 2007. cited on page 257

[666] A. Oram and G. Wilson, Making Software: What Really Works, and Why We Believe It.
O’Reilly Media, 1998. cited on page 344

[667] T. O’Reilly, “What is web 2.0. design patterns and business models for the next generation of
software.” http://oreilly.com/web2/archive/what-is-web-20.html, 2005. cited on page 164

[668] P. Oreizy, M. M. Gorlick, R. N. Taylor, D. Heimbigner, G. Johnson, N. Medvidovic,
A. Quilici, D. S. Rosenblum, and A. L. Wolf, “An Architecture-Based Approach to
Self-Adaptive Software,” IEEE Intelligent Systems, vol. 14, no. 3, pp. 54–62, 1999.

cited on page 248
[669] P. Oreizy, N. Medvidovic, and R. N. Taylor, “Architecture-Based Runtime Software Evolu-

tion,” in Int’l Conf. Software Engineering. IEEE, 1998, pp. 177–186. No citation
[670] ——, “Runtime Software Adaptation: Framework, Approaches, and Styles,” in Int’l Conf.

Software Engineering. ACM, 2008, pp. 899–910. cited on page 248
[671] G. Orians, “Diversity, stability, and maturity in natural ecosystems,” in Unifying con-

cepts in ecology, W. van Dobben and R. Lowe-McConnel, Eds., 1975, pp. 139–150.
cited on page 300

[672] O. Ormandjieva, I. Hussain, and L. Kosseim, “Toward a text classification system for the
quality assessment of software requirements written in natural language,” in Int’l Workshop
on Software Quality Assurance, 2007, pp. 39–45. cited on page 154

[673] H. Orr, “Fitness and its role in evolutionary genetics,” Nature Reviews Genetics, vol. 10,
no. 8, pp. 531–539, August 2009. cited on page 311

[674] I. Ozkaya, L. Bass, R. S. Sangwan, and R. L. Nord, “Making Practical Use of Quality
Attribute Information,” IEEE Software, vol. 25, no. 2, pp. 25–33, 2008. cited on page 86

[675] D. Pagano and W. Maalej, “How Do Developers Blog? An Exploratory Study,” in Int’l Conf.
Mining Software Repositories, 2011. 2 citations on pages 168 and 172

[676] L. Page, S. Brin, R. Motwani, and T. Winograd, “Pagerank citation ranking: Bringing order
to the web,” in Technical Report, Stanford University, 1998. cited on page 191

[677] B. Pang and L. Lee, Opinion Mining and Sentiment Analysis. NOW Publisher, 2008.
cited on page 188

[678] S. Parekh, N. Gandhi, J. Hellerstein, D. Tilbury, T. Jayram, and J. Bigus, “Using Control
Theory to Achieve Service Level Objectives In Performance Management,” Real-Time Sys-
tems, vol. 23, pp. 127–141, 2002. 2 citations on pages 250 and 251

[679] D. L. Parnas, “Software Aspects of Strategic Defense Systems,” Comm. ACM, vol. 28, pp.
1326–1335, 1985. cited on page 8

[680] C. Parnin and C.Treude, “Measuring API documentation on the web,” in Int’l Workshop on
Web 2.0 for Software Engineering, 2011, pp. 25–30. cited on page 172

[681] C. Parnin, C.Treude, and M. Storey, “Blogging developer knowledge: Motivations,
challenges and future directions,” in Int’l Conf. Program Comprehension, 2013.

cited on page 172
[682] M. Pascual and J. A. Dunne, Eds., Ecological networks: linking structure to dynamics in

food webs. Oxford Univ. Press, 2006. cited on page 299

http://www.osoa.org
http://www.osoa.org


References 385

[683] C. Pautasso and E. Wilde, REST: From Research to Practice. Springer, 2011, ch. Intro-
duction, pp. 1–18. cited on page 213

[684] J. Perez, R. Deshayes, M. Goeminne, and T. Mens, “Seconda: Software ecosystem anal-
ysis dashboard,” in European Conf. Software Maintenance and Reengineering, T. Mens,
A. Cleve, and R. Ferenc, Eds., 2012, pp. 527–530. cited on page 303

[685] C. M. Pilato, B. Collins-Sussman, and B. W. Fitzpatrick, Version Control with Subversion.
O’Reilly Media, 2008. cited on page 143

[686] A. Pleuss, G. Botterweck, D. Dhungana, A. Polzer, and S. Kowalewski, “Model-driven
support for product line evolution on feature level,” J. Systems and Software, vol. 85,
no. 10, pp. 2261–2274, October 2012, special Issue on Automated Software Evolution.

3 citations on pages 278, 281, and 283
[687] A. Pleuss, S. Wollny, and G. Botterweck, “Model-driven development and evolution of

customized user interfaces,” in Symp. Engineering Interactive Computing Systems (EICS),
2013, pp. 13–22. cited on page 331

[688] K. Pohl, G. Boeckle, and F. van der Linden, Software Product Line En-
gineering : Foundations, Principles, and Techniques. Springer, 2005.

4 citations on pages 266, 267, 277, and 285
[689] W. Poncin, A. Serebrenik, and M. G. J. van den Brand, “Process mining software repos-

itories,” in European Conf. Software Maintenance and Reengineering, 2011, pp. 5–14.
2 citations on pages 303 and 307

[690] L. Ponzanelli, A. Bacchelli, and M. Lanza, “Leveraging crowd knowledge for software com-
prehension and development,” in European Conf. Software Maintenance and Reengineer-
ing, 2013, pp. 57–66. cited on page 181

[691] D. Poole, “A logical framework for default reasoning,” Artificial Intelligence, vol. 36, no. 1,
pp. 27–47, 1988. cited on page 18

[692] M. F. Porter, “An algorithm for suffix stripping,” Program, vol. 14, no. 3, pp. 130–137,
1980. 2 citations on pages 145 and 186

[693] D. Poshyvanyk, M. Di Penta, and H. Kagdi, Eds., Int’l Workshop on Traceability in Emerg-
ing Forms of Software Engineering, 2011. cited on page 24

[694] D. Poshyvanyk and M. Grechanik, “Creating and evolving software by searching, selecting
and synthesizing relevant source code,” in Int’l Conf. Software Engineering, 2009, pp. 283–
286. cited on page 154

[695] D. Poshyvanyk, Y. Guéhéneuc, A. Marcus, G. Antoniol, and V. Rajlich, “Feature location
using probabilistic ranking of methods based on execution scenarios and information re-
trieval,” IEEE Trans. Soft. Eng., vol. 33, no. 6, pp. 420–432, 2007. cited on page 146

[696] D. Poshyvanyk and A. Marcus, “Combining formal concept analysis with information re-
trieval for concept location in source code,” in Int’l Conf. Program Comprehension, 2007,
pp. 37–48. cited on page 161

[697] D. Poshyvanyk, A. Marcus, V. Rajlich, Y.-G. Guéhéneuc, and G. Antoniol, “Combining
probabilistic ranking and Latent Semantic Indexing for feature identification,” in Int’l Conf.
Program Comprehension, 2006, pp. 137–148. cited on page 161

[698] D. Posnett, R. D’Souza, P. Devanbu, and V. Filkov, “Dual ecological measures of focus in
software development,” in Int’l Conf. Software Engineering. IEEE, 2013, pp. 452–461.

2 citations on pages 298 and 314
[699] D. Posnett, V. Filkov, and P. Devanbu, “Ecological inference in empirical software engi-

neering,” in Int’l Conf. Automated Software Engineering. IEEE Computer Society, 2011,
pp. 362–371. 2 citations on pages 85 and 298

[700] D. Posnett, E. Warburg, P. T. Devanbu, and V. Filkov, “Mining stack exchange: Ex-
pertise is evident from initial contributions,” in SocialInformatics, 2012, pp. 199–204.

cited on page 331
[701] K. Praditwong, M. Harman, and X. Yao, “Software module clustering as a multi-

objective search problem,” IEEE Trans. Soft. Eng., vol. 37, no. 2, pp. 264–282, 2011.
4 citations on pages 113, 116, 118, and 136



386 References

[702] P. Prasarnphanich and M. L. Gillenson, “The hybrid clicks and bricks business model,”
Comm. ACM, vol. 46, no. 12ve, pp. 178–185, Dec. 2003. cited on page 204

[703] P. K. Prasetyo, D. Lo, P. Achananuparp, Y. Tian, and E.-P. Lim, “Automatic classification
of software related microblogs,” in Int’l Conf. Software Maintenance, 2012, pp. 596–599.

3 citations on pages 163, 165, and 181
[704] D. Qiu, B. Li, and Z. Su, “An empirical analysis of the co-evolution of schema and code in

database applications,” in Joint European Software Engineering Conf. and ACM SIGSOFT
Int. Symp. on Foundations of Software Engineering. ACM , 2013. cited on page 329

[705] N. A. Qureshi, I. J. Jureta, and A. Perini, “Requirements Engineering for Self-Adaptive
Systems : Core Ontology and Problem Statement,” in Int’l Conf. Advanced Informations
Systems Engineering, 2011, pp. 1–15. 2 citations on pages 17 and 22

[706] V. Rajlich, Software Engineering - The Current Practice. Chapman & Hall/CRC, 2011.
cited on page 343

[707] V. Rajlich and N. Wilde, “The role of concepts in program comprehension,” in Int’l Work-
shop Program Comprehension, 2002, pp. 271–278. cited on page 150

[708] S. Rao and A. Kak, “Retrieval from software libraries for bug localization: a comparative
study of generic and composite text models,” in Int’l Conf. Mining Software Repositories,
2011, pp. 43–52. cited on page 162

[709] S. Rastkar, G. C. Murphy, and G. Murray, “Summarizing software artifacts: a case study of
bug reports,” in Int’l Conf. Software Engineering, 2010, pp. 505–514. cited on page 153

[710] R. Reicherdt and S. Glesner, “Slicing MATLAB Simulink models,” in Int’l Conf. Software
Engineering, 2012, pp. 551–561. cited on page 329

[711] D. J. Reifer, Ed., Software Maintenance Success Recipes. Auerbach Publications, 2011.
cited on page 343

[712] M. Revelle, B. Dit, and D. Poshyvanyk, “Using data fusion and web mining to support
feature location in software,” in Int’l Conf. Program Comprehension, 2010, pp. 14–23.

cited on page 161
[713] M. Revelle and D. Poshyvanyk, “An exploratory study on assessing feature location tech-

niques,” in Int’l Conf. Program Comprehension, 2009, pp. 218–222. cited on page 161
[714] M. Riaz, E. Mendes, and E. Tempero, “A systematic review of software maintainability

prediction and metrics,” in Int’l Symp. Empirical Software Engineering and Measurement.
IEEE Computer Society, 2009, pp. 367–377. 2 citations on pages 75 and 76

[715] F. Ricca, “Analysis, testing, and re-structuring of Web applications,” Ph.D. dissertation,
Universitá degli Studi di Genova, Italy, Sep. 2003. cited on page 227

[716] F. Ricca and A. Marchetto, “Heroes in FLOSS projects: An explorative study,” in Working
Conf. Reverse Engineering, 2010, pp. 155–159. cited on page 174

[717] F. Ricca and P. Tonella, “Analysis and testing of Web applications,” in Int’l Conf. Software
Engineering, May 2001, pp. 25–34. 2 citations on pages 208 and 224

[718] ——, “Using clustering to support the migration from static to dynamic web
pages,” in Int’l Workshop Program Comprehension, May 2003, pp. 207–216.

2 citations on pages 211 and 224
[719] ——, “Anomaly detection in Web applications: a review of already conducted case stud-

ies,” in European Conf. Software Maintenance and Reengineering, Mar. 2005, pp. 385–394.
cited on page 203

[720] S. Rinaldi, Y. Muratori, and Y. Kuznetsov, “Multiple attractors, catastrophes and chaos
in seasonally perturbed predator-prey communities,” Bulletin of Mathematical Biology,
vol. 55, no. 1, pp. 15–35, 1993. 2 citations on pages 300 and 314

[721] R. Robbes, M. Lungu, and D. Röthlisberger, “How do developers react to API deprecation?:
the case of a Smalltalk ecosystem,” in Int’l Symp. Foundations of Software Engineering.
ACM , 2012. cited on page 303

[722] G. Robles and J. M. González-Barahona, “Developer identification methods for integrated
data from various sources,” in Int’l Conf. Mining Software Repositories. ACM, 2005.

cited on page 318



References 387

[723] G. Robles, J. M. Gonzalez-Barahona, and I. Herraiz, “Evolution of the core team of de-
velopers in libre software projects,” in Int’l Conf. Mining Software Repositories. IEEE
Computer Society, 2009, pp. 167–170. 3 citations on pages 303, 307, and 310

[724] R. Rodriguez-Echeverra, J. M. Conejero, P. J. Clemente, M. D. Villalobos, and F. Sanchez-
Figueroa, “Generation of WebML hypertext models from legacy web applications,”
in Int’l Symp. Web Systems Evolution. IEEE Computer Society, 2012, pp. 91–95.

2 citations on pages 219 and 224
[725] D. Roman, U. Keller, H. Lausen, J. de Bruijn, R. Lara, M. Stollberg, A. Polleres, C. Feier,

C. Bussler, and D. Fensel, “Web service modeling ontology,” Appl. Ontol., vol. 1, no. 1, pp.
77–106, Jan. 2005. cited on page 34

[726] L. M. Rose, A. Etien, D. Mendez, D. S. Kolovos, F. A. C. Polack, and R. F. Paige, “Compar-
ing Model-Metamodel and Transformation-Metamodel Co-evolution,” in Model and Evo-
lution Wokshop, Olso, Norway, Oct. 2010. cited on page 63

[727] L. M. Rose, M. Herrmannsdoerfer, S. Mazanek, P. Van Gorp, S. Buchwald, T. Horn,
E. Kalnina, A. Koch, K. Lano, B. Schaetz, and M. Wimmer, “Graph and model trans-
formation tools for model migration,” Software and Systems Modeling, pp. 1–37, 2012.

cited on page 58
[728] L. M. Rose, M. Herrmannsdoerfer, J. Williams, D. Kolovos, K. Garcés, R. Paige, and F. Po-

lack, “A comparison of model migration tools,” in Model Driven Engineering Languages
and Systems, ser. Lect. Notes in Computer Science, vol. 6394. Springer, 2010, pp. 61–75.

cited on page 60
[729] L. M. Rose, D. S. Kolovos, R. F. Paige, and F. A. Polack, “Model migration with Ep-

silon Flock,” in Int’l Conf. Model Transformation (ICMT). Springer, 2010, pp. 184–198.
3 citations on pages 44, 52, and 57

[730] L. M. Rose, R. F. Paige, D. S. Kolovos, and F. A. Polack, “An analysis of approaches to
model migration,” in Models and Evolution (MoDSE-MCCM) Workshop, 2009, pp. 6–15.

cited on page 48
[731] M. Rosen-Zvi, T. Griffiths, M. Steyvers, and P. Smyth, “The author-topic model for au-

thors and documents,” in Conf. Uncertainty in Artificial Intelligence, 2004, pp. 487–494.
cited on page 161

[732] E. Rosenberg, O. Koren, L. Reshef, R. Efrony, and I. Zilber-Rosenberg, “The role of mi-
croorganisms in coral health, disease and evolution,” Nature Reviews Microbiology, vol. 5,
no. 5, pp. 355–362, 2007. 2 citations on pages 311 and 325

[733] S. Roubtsov, A. Serebrenik, A. Mazoyer, M. G. J. van den Brand, and E. Roubtsova, “I2SD:
reverse engineering sequence diagrams from Enterprise JavaBeans with interceptors,” IET
Software, vol. 7, pp. 150–166, June 2013. cited on page 331

[734] A. Rountev and B. H. Connell, “Object naming analysis for reverse-engineered sequence
diagrams,” in Int’l Conf. Software Engineering, 2005, pp. 254–263. cited on page 331

[735] J. Rubin and M. Chechik, “Combining related products into product lines,” Fundamental
Approaches to Software Engineering, pp. 285–300, 2012. cited on page 286

[736] G. Ruhe, Product Release Planning Methods, Tools and Applications. Auerbach Publica-
tions, 2010. 2 citations on pages 288 and 290

[737] P. Runeson, M. Alexandersson, and O. Nyholm, “Detection of duplicate defect reports us-
ing natural language processing,” in Int’l Conf. Software Engineering, 2007, pp. 499–510.

2 citations on pages 153 and 192
[738] C. R. Rupakheti and D. Hou, “Evaluating forum discussions to inform the design of an API

critic,” in Int’l Conf. Program Comprehension, 2012, pp. 53–62. cited on page 171
[739] M. Salehie and L. Tahvildari, “Self-Adaptive Software: Landscape and Research Chal-

lenges,” ACM Trans. Autonomous and Adaptive Systems, vol. 4, pp. 14:1–14:42, 2009.
2 citations on pages 243 and 244

[740] G. Salton, Introduction to modern information retrieval. Mcgraw-Hill, 1983.
cited on page 147

[741] G. Salton, A. Wong, and C. S. Yang, “A vector space model for automatic indexing,” Comm.
ACM, vol. 18, no. 11, p. 620, 1975. cited on page 147



388 References

[742] A. Sampaio, A. Rashid, and P. Rayson, “Early-aim: An approach for identifying aspects in
requirements,” in Int’l Conf. Req. Engineering, 2005, pp. 487–488. cited on page 154

[743] P. Samuelson, “Statutory damages as a threat to innovation,” Comm. ACM, vol. 56, no. 7,
pp. 24–26, Jul. 2013. cited on page 205

[744] A. Sardinha, R. Chitchyan, N. Weston, P. Greenwood, and A. Rashid, “EA-Analyzer: Au-
tomating conflict detection in aspect-oriented requirements,” in Int’l Conf. Automated Soft-
ware Engineering, 2009, pp. 530–534. cited on page 154

[745] G. Saridis and H. E. Stefanou, “A Hierarchically Intelligent Control for a Bionic Arm,” in
IEEE Conf. Decision and Control including the 14th Symp. on Adaptive Processes. IEEE,
1975, pp. 99–104. cited on page 247

[746] A. Sarma, L. Maccherone, P. Wagstrom, and J. Herbsleb, “Tesseract: Interactive visual ex-
ploration of socio-technical relationships in software development,” in Int’l Conf. Software
Engineering, 2009. cited on page 189

[747] T. K. Satyananda, D. Lee, S. Kang, and S. I. Hashmi, “Identifying traceability between
feature model and software architecture in software product line using formal concept anal-
ysis,” in ICCSA Workshops, 2007, pp. 380–388. cited on page 289

[748] P. Sawyer, N. Bencomo, J. Whittle, E. Letier, and A. Finkelstein, “Requirements-Aware
Systems. A Research Agenda for RE for Self-Adaptive Systems,” in Int’l Conf. Req. Engi-
neering. IEEE, 2010, pp. 95–103. cited on page 254

[749] I. Schäfer, L. Bettini, V. Bono, F. Damiani, and N. Tanzarella, “Delta-oriented program-
ming of software product lines,” in Int. Software Product Line Conf., 2010, pp. 77–91.

cited on page 280
[750] A. Schauerhuber, M. Wimmer, E. Kapsammer, W. Schwinger, and W. Retschitzegger,

“Bridging WebML to model-driven engineering: from document type definitions to meta
object facility,” IET Software, vol. 1, no. 3, pp. 81–97, 2007. cited on page 218

[751] D. Schenk and M. Lungu, “Geo-locating the knowledge transfer in Stack Overflow,” in
Social Software Engineering, 2013. cited on page 331

[752] H. Schmid and O. Donnerhak, “OOHDMDA – An MDA Approach for OOHDM,” in Int’l
Conf. Web Engineering, ser. Lect. Notes in Computer Science, vol. 3579. Springer, 2005,
pp. 569–574. cited on page 218

[753] K. Schmid and H. Eichelberger, “A requirements-based taxonomy of software
product line evolution,” Electronic Communications of the EASST, vol. 8, 2008.

3 citations on pages 270, 271, and 272
[754] K. Schmid and M. Verlage, “The economic impact of product line adoption and evolution,”

IEEE Software, vol. 19, no. 4, pp. 50 – 57, jul/aug 2002. 2 citations on pages 276 and 283
[755] K. Schmid, R. Rabiser, and P. Grünbacher, “A comparison of decision modeling approaches

in product lines,” in Int’l Workshop on Variability Modeling of Software-Intensive Systems,
2011, pp. 119–126. cited on page 267

[756] D. C. Schmidt, “Model-driven engineering,” IEEE Computer, vol. 39, no. 2, pp. 25–31, Feb.
2006. cited on page 218

[757] P.-Y. Schobbens, P. Heymans, and J.-C. Trigaux, “Feature diagrams: A survey and a formal
semantics,” in Int’l Conf. Req. Engineering, 2006, pp. 136–145. cited on page 267

[758] M. Schubanz, A. Pleuss, G. Botterweck, and C. Lewerentz, “Modeling rationale over time
to support product line evolution planning,” in Int’l Workshop on Variability Modeling of
Software-Intensive Systems, 2012, pp. 193–199. cited on page 291

[759] M. Schubanz, A. Pleuss, L. Pradhan, G. Botterweck, and A. K. Thurimella, “Model-
driven planning and monitoring of long-term software product line evolution,” in Int’l
Workshop on Variability Modeling of Software-Intensive Systems, 2013, pp. 18:1–18:5.

cited on page 291
[760] R. Sebastiani, P. Giorgini, and J. Mylopoulos, “Simple and Minimum-Cost Satisfiability for

Goal Models,” in Int’l Conf. Advanced Informations Systems Engineering, 2004, pp. 20–35.
3 citations on pages 16, 22, and 24

[761] C. Seidl, “Evolution in feature-oriented model-based software product line engineering,”
Diploma Thesis, TU Dresden, 2011. cited on page 281



References 389

[762] C. Seidl, F. Heidenreich, and U. Aßmann, “Co-evolution of models and feature map-
ping in software product lines,” in Int. Software Product Line Conf., 2012, pp. 76–85.

cited on page 292
[763] L. Seinturier, P. Merle, D. Fournier, N. Dolet, V. Schiavoni, and J.-B. Stefani, “Reconfig-

urable SCA Applications with the FraSCAti Platform,” in IEEE Int’l Conf. Services Com-
puting (SCC). IEEE, 2009, pp. 268–275. cited on page 258

[764] C. Semple and M. Steel, Phylogenetics, ser. Oxford Lecture Series in Mathematics and Its
Applications. Oxford University Press, 2003. cited on page 311

[765] O. Seng, J. Stammel, and D. Burkhart, “Search-based determination of refac-
torings for improving the class structure of object-oriented systems,” in Genetic
and Evolutionary Computation Conf. ACM, 8-12 July 2006, pp. 1909–1916.

5 citations on pages 128, 129, 133, 134, and 136
[766] A. Serebrenik, A. Mishra, T. Delissen, and M. Klabbers, “Requirements Certification for

Offshoring Using LSPCM,” in Int’l Conf. Quality of Information and Communications
Technology. IEEE Computer Society, 2010, pp. 177–182. cited on page 86

[767] A. Serebrenik, S. A. Roubtsov, E. E. Roubtsova, and M. G. J. van den Brand, “Reverse en-
gineering sequence diagrams for Enterprise JavaBeans with business method interceptors,”
in Working Conf. Reverse Engineering, 2009, pp. 269–273. cited on page 331

[768] A. Serebrenik and M. G. J. van den Brand, “Theil index for aggregation of
software metrics values,” in Int’l Conf. Software Maintenance, 2010, pp. 1–9.

2 citations on pages 325 and 331
[769] A. Serebrenik, M. G. J. van den Brand, and B. Vasilescu, “Seeing the Forest for the Trees

with New Econometric Aggregation Techniques,” ERCIM News, vol. 88, p. 21, 2012.
cited on page 85

[770] N. Serrano and I. Ciordia, “Bugzilla, ITracker, and other bug trackers,” IEEE Software,
vol. 22, no. 2, pp. 11–13, 2005. cited on page 142

[771] W. Shang, Z. M. Jiang, H. Hemmati, B. Adams, A. E. Hassan, and P. Martin, “Assisting
developers of big data analytics applications when deploying on Hadoop clouds,” in Int’l
Conf. Software Engineering, 2013, pp. 402–411. cited on page 330

[772] M. Shaw, “Beyond Objects: A Software Design Paradigm Based on Process Con-
trol,” ACM SIGSOFT Software Engineering Notes, vol. 20, no. 1, pp. 27–38, 1995.

2 citations on pages 239 and 241
[773] S. She, R. Lotufo, T. Berger, A. Wasowski, and K. Czarnecki, “Reverse engi-

neering feature models,” in Int’l Conf. Software Engineering, 2011, pp. 461–470.
2 citations on pages 285 and 287

[774] K. Shibata, K. Rinsaka, T. Dohi, and H. Okamura, “Quantifying Software Maintainabil-
ity Based on a Fault-Detection/Correction Model,” in Pacific Rim Int’l Symp. Dependable
Computing. IEEE Computer Society, 2007, pp. 35–42. cited on page 76

[775] E. Shihab, N. Bettenburg, B. Adams, and A. Hassan, “On the central role of mailing lists in
open source projects: An exploratory study,” in Int’l Workshop on Knowledge Collaboration
in Software Development, 2009, pp. 91–103. 2 citations on pages 142 and 146

[776] E. Shihab, Z. M. Jiang, and A. E. Hassan, “On the use of IRC channels by developers of the
GNOME GTK+ open source project,” in Int’l Conf. Mining Software Repositories, 2009.

cited on page 143
[777] ——, “Studying the use of developer irc meetings in open source projects,” in Int’l Conf.

Software Maintenance, 2009. cited on page 143
[778] D. Simon and T. Eisenbarth, “Evolutionary introduction of software prod-

uct lines,” in Int. Software Product Line Conf., August 2002, pp. 272–283.
2 citations on pages 284 and 285

[779] P. H. A. Sneath, “Cladistic representation of reticulate evolution,” Systematic Zoology,
vol. 24, no. 3, pp. 360–368, 1975. cited on page 311

[780] H. Sneed, Software Testing in the Cloud: Perspectives on an Emerging Discipline. IGI
Global, Nov. 2012, ch. Testing Web Services in the Cloud, pp. 136–173. cited on page 224



390 References

[781] H. M. Sneed, “20 years of software-reengineering: A resume,” in 10th Workshop Software
Reengineering (WSR’08), may 2008, pp. 115–124. cited on page 203

[782] ——, “A pilot project for migrating COBOL code to web services,” J. Soft-
ware Tools for Technology Transfer, vol. 11, no. 6, pp. 441–451, dec 2009.

2 citations on pages 218 and 224
[783] H. M. Sneed and S. Huang, “WSDLTest – a tool for testing web services,” in Int’l Symp.

Web Systems Evolution, Sep. 2006, pp. 14–21. cited on page 224
[784] Software Engineering Institute, “SPL Hall of Fame,” Web site, 2008, http://splc.net/fame.

html. cited on page 266
[785] ——, “A framework for software product line practice, version 5.0,”

2011. [Online]. Available: http://www.sei.cmu.edu/productlines/frame report/index.html
2 citations on pages 284 and 286

[786] A. Solomon, M. Litoiu, J. Benayon, and A. Lau, “Business Process Adaptation on a Tracked
Simulation Model,” in Conf. Center for Advanced Studies on Collaborative Research.
ACM , 2010. 2 citations on pages 250 and 252

[787] I. Sommerville and P. Sawyer, Requirements Engineering: A Good Practice Guide. John
Wiley & Sons, 1997. cited on page 9

[788] V. E. S. Souza, A. Lapouchnian, W. N. Robinson, and J. Mylopoulos, “Awareness Require-
ments for Adaptive Systems,” in Int’l Symp. Software Engineering for Adaptive and Self-
Managing Systems, 2011, pp. 1–10. cited on page 28

[789] S. K. Sowe, I. Stamelos, and L. Angelis, “Understanding knowledge sharing activities in
free/open source software projects: An empirical study,” Journal of Systems and Software,
vol. 81, no. 3, pp. 431–446, 2008. cited on page 171

[790] P. van der Spek, “Managing software evolution in embedded systems,” Ph.D. dissertation,
Vrije Universiteit Amsterdam, The Netherlands, 2010. cited on page 330

[791] P. van der Spek, S. Klusener, and P. van de Laar, “Towards recovering architectural concepts
using Latent Semantic Indexing,” in European Conf. Software Maintenance and Reengi-
neering, 2008, pp. 253–257. cited on page 161

[792] J. M. Sprinkle, “Metamodel driven model migration,” Ph.D. dissertation, Vanderbilt Uni-
versity, 2003. 2 citations on pages 52 and 62

[793] J. M. Sprinkle and G. Karsai, “A domain-specific visual language for domain model evo-
lution,” Journal of Visual Languages and Computing, vol. 15, no. 3-4, pp. 291–307, 2004.

2 citations on pages 52 and 59
[794] G. Sridhara, E. Hill, D. Muppaneni, L. Pollock, and K. Vijay-Shanker, “Towards automati-

cally generating summary comments for Java methods,” in Int’l Conf. Automated Software
Engineering, 2010, pp. 43–52. cited on page 155

[795] T. Stahl and M. Voelter, Model-driven software development : technology, engineering,
management. John Wiley, 2006. cited on page 269

[796] C. Stoermer and L. O’Brien, “Map - mining architectures for product line evaluations,” in
Working Conf. Software Architecture, 2001, pp. 35–44. cited on page 286

[797] G. Stoneburner, A. Goguen, and A. Feringa, “Risk Management Guide for Information
Technology Systems,” National Institute of Standards and Technology, Tech. Rep. 800-30,
Jul. 2002. cited on page 7

[798] J. Strauch and S. Schreier, “RESTify: From RPCs to RESTful HTTP design,” in
Int’l Workshop on RESTful Design (WS-REST). ACM , Apr. 2012, pp. 11–18.

2 citations on pages 213 and 214
[799] J. A. Street and R. G. Pettit, “The impact of UML 2.0 on existing UML 1.4 models,” in

Model Driven Engineering Languages and Systems, ser. Lect. Notes in Computer Science,
vol. 3713. Springer, 2005, pp. 431–444. cited on page 43

[800] C. Sun, D. Lo, S.-C. Khoo, and J. Jiang, “Towards more accurate retrieval of dupli-
cate bug reports,” in Int’l Conf. Automated Software Engineering, 2011, pp. 253–262.

2 citations on pages 192 and 196

http://www.sei.cmu.edu/productlines/frame_report/index.html
http://splc.net/fame.html
http://splc.net/fame.html


References 391

[801] C. Sun, D. Lo, X. Wang, J. Jiang, and S.-C. Khoo, “A discriminative model approach for
accurate duplicate bug report retrieval,” in Int’l Conf. Software Engineering, 2010, pp. 45–
54. cited on page 153

[802] ——, “A discriminative model approach for accurate duplicate bug report retrieval,” in Int’l
Conf. Software Engineering, 2010, pp. 45–54. cited on page 186

[803] J. Sun, H. Zhang, and H. Wang, “Formal semantics and verification for feature mod-
eling,” in Int’l Conf. Engineering of Complex Computer Systems, 2005, pp. 303–312.

cited on page 292
[804] G. Sunyé, D. Pollet, Y. L. Traon, and J.-M. Jézéquel, “Refactoring UML models,” in

UML 2001 – The Unified Modeling Language. Modeling Languages, Concepts, and
Tools, ser. Lect. Notes in Computer Science, vol. 2185. Springer, 2001, pp. 134–148.

cited on page 221
[805] D. Surian, N. Liu, D. Lo, H. Tong, E.-P. Lim, and C. Faloutsos, “Recommending people

in developers’ collaboration network,” in Working Conf. Reverse Engineering, 2011, pp.
379–388. 3 citations on pages 163, 165, and 189

[806] D. Surian, Y. Tian, D. Lo, H. Cheng, and E.-P. Lim, “Predicting project outcome leveraging
socio-technical network patterns,” in European Conf. Software Maintenance and Reengi-
neering, 2013. 3 citations on pages 163, 165, and 189

[807] W. Suryn, P. Bourque, A. Abran, and C. Laporte, “Software product quality practices quality
measurement and evaluation using TL9000 and ISO/IEC 9126,” Int’l Workshop on Software
Technology and Engineering Practice, pp. 156–162, 2002. cited on page 77

[808] R. Suvorov, M. Nagappan, A. E. Hassan, Y. Zou, and B. Adams, “An empirical study of
build system migrations in practice: Case studies on kde and the linux kernel,” in Int’l Conf.
Software Maintenance, 2012, pp. 160–169. cited on page 331

[809] M. Svahnberg and J. Bosch, “Evolution in software product lines: two cases,” J. Software
Maintenance and Evolution: Research and Practice, vol. 11, no. 6, pp. 391–422, 1999.

2 citations on pages 271 and 278
[810] M. Svahnberg, J. van Gurp, and J. Bosch, “A taxonomy of variability realiza-

tion techniques,” J. Software: Practice and Experience, vol. 35, pp. 705–754, 2005.
cited on page 286

[811] D. Svetinovic and M. Godfrey, “Software and biological evolution: Some com-
mon principles, mechanisms, and a definition,” in Int’l Workshop on Principles
of Software Evolution, 2005, http://plg.uwaterloo.ca/∼migod/papers/2005/iwpse05.pdf.

2 citations on pages 298 and 313
[812] E. B. Swanson, “The dimensions of maintenance,” in Int’l Conf. Software Engineering,

1976, pp. 492–497. cited on page 7
[813] ——, “The Dimensions of Maintenance,” in Int’l Conf. Software Engineering. IEEE, 1976,

pp. 492–497. cited on page 243
[814] M. D. Syer, B. Adams, Y. Zou, and A. E. Hassan, “Exploring the development of micro-

apps: A case study on the blackberry and android platforms,” in Working Conf. Source Code
Analysis and Manipulation, 2011, pp. 55–64. cited on page 330

[815] N. Synytskyy, J. R. Cordy, and T. Dean, “Resolution of static clones in dynamic Web pages,”
in Int’l Workshop on Web Site Evolution, Sep. 2003, pp. 49–56. cited on page 224

[816] C. Szymaǹski and S. Schreier, “Case study: Extracting a resource model from an object-
oriented legacy application,” in Int’l Workshop on RESTful Design (WS-REST). ACM ,
Apr. 2012, pp. 19–24. cited on page 214

[817] A. Taivalsaari and T. Mikkonen, “Objects in the cloud may be closer than they appear:
Towards a taxonomy of web-based software,” in Int’l Symp. Web Systems Evolution, sep
2011, pp. 59–64. cited on page 215

[818] H. Takagi, “Interactive evolutionary computation: Fusion of the capacities of EC op-
timization and human evaluation,” Proc. IEEE, vol. 89, no. 9, pp. 1275–1296, 2001.

3 citations on pages 104, 118, and 135
[819] A. Tamrawi, T. T. Nguyen, J. M. Al-Kofahi, and T. N. Nguyen, “Fuzzy set-based automatic

bug triaging,” in Int’l Conf. Software Engineering, 2011, pp. 884–887. cited on page 189

http://plg.uwaterloo.ca/~migod/papers/2005/iwpse05.pdf


392 References

[820] G. Tamura, “QoS-CARE: A reliable system for preserving QoS contracts through dynamic
reconfiguration,” Ph.D. dissertation, University of Lille 1 - Science and Technology, and
Universidad de Los Andes, 2012. 4 citations on pages 237, 250, 251, and 258

[821] G. Tamura, R. Casallas, A. Cleve, and L. Duchien, “QoS contract-aware reconfiguration of
component architectures using E-Graphs,” in Int’l Workshop on Formal Aspects of Compo-
nent Software (FACS), ser. Lect. Notes in Computer Science, vol. 6921. Springer, 2012,
pp. 34–52. 3 citations on pages 250, 251, and 258

[822] G. Tamura, N. M. Villegas, H. A. Müller, L. Duchien, and L. Seinturier, “Improving context-
awareness in self-adaptation using the dynamico reference model,” in Int’l Symp. Software
Engineering for Adaptive and Self-Managing Systems. IEEE Press, 2013, pp. 153–162.

3 citations on pages 231, 233, and 259
[823] G. Tamura, N. M. Villegas, H. A. Müller, J. P. Sousa, B. Becker, M. Pezzè,

G. Karsai, S. Mankovskii, W. Schäfer, L. Tahvildari, and K. Wong, Towards Prac-
tical Runtime Verification and Validation of Self-Adaptive Software Systems, ser.
Lect. Notes in Computer Science. Springer, 2013, vol. 7475, pp. 108–132.

6 citations on pages 246, 254, 255, 256, 257, and 263
[824] A. Tang, M. A. Babar, I. Gorton, and J. Han, “A survey of architecture design rationale,” J.

Systems and Software, vol. 79, no. 12, pp. 1792–1804, 2006. cited on page 291
[825] J. Tang, H. Li, Y. Cao, and Z. Tang, “Email data cleaning,” in Int’l Conf. Knowledge Dis-

covery in Data Mining, 2005, pp. 489–498. cited on page 146
[826] A. G. Tansley, “The use and abuse of vegetational concepts and terms,” Ecology, vol. 16,

no. 3, pp. 284–307, Jul. 1935. cited on page 300
[827] A. C. Telea, Ed., Reverse Engineering: Recent Advances and Applications. InTech, 2012.

cited on page 343
[828] A. Terceiro, L. Rios, and C. Chavez, “An empirical study on the structural complexity in-

troduced by core and peripheral developers in free software projects,” in Brazilian Symp.
Software Engineering, Oct. 2010, pp. 21 –29. 2 citations on pages 307 and 310

[829] The DART Team, Dart Programming Language Specification, http://www.dartlang.org/
docs/spec/latest/dart-language-specification.pdf, Jun. 2012, 0.42. cited on page 183

[830] The Open Group, SOA Source Book. The Open Group, 2009. cited on page 212
[831] L. G. Thomas, “An Analysis of Software Quality and Maintainability Metrics with an Ap-

plication to a Longitudinal Study of the Linux Kernel,” Ph.D. dissertation, Vanderbilt Uni-
versity, Nashville, TN, USA, 2008. cited on page 75

[832] S. W. Thomas, B. Adams, D. Blostein, and A. E. Hassan, “Studying software evo-
lution using topic models,” Science of Computer Programming, pp. 1–23, 2013.

2 citations on pages 152 and 155
[833] S. W. Thomas, H. Hemmati, A. E. Hassan, and D. Blostein, “Static test case pri-

oritization using topic models,” J. Empirical Software Engineering, pp. 1–31, 2012.
cited on page 155

[834] S. W. Thomas, B. Adams, A. E. Hassan, and D. Blostein, “Validating the use of topic models
for software evolution,” in Working Conf. Source Code Analysis and Manipulation, 2010,
pp. 55–64. cited on page 152

[835] ——, “Modeling the evolution of topics in source code histories,” in Int’l Conf. Mining
Software Repositories, 2011, pp. 173–182. cited on page 152

[836] S. W. Thomas, M. Nagappan, D. Blostein, and A. E. Hassan, “The impact of classifier
configuration and classifier combination on bug localization,” pp. 1–16, 2012, submitted to
IEEE Trans. Software Engineering. 2 citations on pages 155 and 159

[837] T. Thüm, D. Batory, and C. Kästner, “Reasoning about edits to feature models,” in Int’l
Conf. Software Engineering, 2009, pp. 254–264. cited on page 292

[838] S. Thummalapenta and T. Xie, “Spotweb: Detecting framework hotspots and coldspots via
mining open source code on the web,” in Int’l Conf. Automated Software Engineering, 2008,
pp. 327–336. cited on page 181

[839] ——, “Parseweb: a programmer assistant for reusing open source code on the web.” in Int’l
Conf. Automated Software Engineering, 2007, pp. 204–213. cited on page 181

http://www.dartlang.org/docs/spec/latest/dart-language-specification.pdf
http://www.dartlang.org/docs/spec/latest/dart-language-specification.pdf


References 393

[840] A. Thums and J. Quante, “Reengineering embedded automotive software,” in ICSM, 2012,
pp. 493–502. cited on page 330

[841] F. Thung, D. Lo, and L. Jiang, “Detecting similar applications with collab-
orative tagging,” in Int’l Conf. Software Maintenance, 2012, pp. 600–603.

3 citations on pages 163, 165, and 174
[842] A. K. Thurimella and B. Brügge, “Evolution in product line requirements engineering:

A rationale management approach,” in Int’l Conf. Req. Engineering, 2007, pp. 254–257.
cited on page 291

[843] ——, “Issue-based variability management,” Information and Software Technology, vol. 54,
no. 9, pp. 933–950, 2012. cited on page 291

[844] K. Tian, M. Revelle, and D. Poshyvanyk, “Using latent Dirichlet allocation for automatic
categorization of software,” in Int’l Conf. Mining Software Repositories, 2009, pp. 163–166.

cited on page 154
[845] Y. Tian, P. Achananuparp, I. N. Lubis, D. Lo, and E.-P. Lim, “What does software engineer-

ing community microblog about?” in Int’l Conf. Mining Software Repositories, 2012, pp.
247–250. 3 citations on pages 163, 173, and 187

[846] Y. Tian, C. Sun, and D. Lo, “Improved duplicate bug report identification,” in European
Conf. Software Maintenance and Reengineering, 2012, pp. 385–390. cited on page 196

[847] W. Tichy, “An interview with Prof. Andreas Zeller: Mining your way to software reliability,”
Ubiquity, vol. 2010, Apr. 2010. cited on page 140

[848] S. R. Tilley, D. Distante, and S. Huang, “Web site evolution via transaction reengineering,”
in Int’l Symp. Web Systems Evolution, 2004, pp. 31–40. cited on page 224

[849] S. R. Tilley, J. Gerdes Jr., T. Hamilton, S. Huang, H. A. Müller, D. B. Smith, and K. Wong,
“On the business value and technical challenges of adopting Web services,” J. Software
Maintenance and Evolution: Research and Practice, vol. 16, no. 1-2, pp. 31–50, Jan.–Apr.
2004. cited on page 212

[850] S. R. Tilley and S. Huang, “Evaluating the reverse engineering capabilities of Web tools for
understanding site content and structure: A case study,” in Int’l Conf. Software Engineering,
May 2001, pp. 514–523. 2 citations on pages 207 and 210

[851] P. Tonella and F. Ricca, “Web application slicing in presence of dynamic code gen-
eration,” J. Automated Software Engineering, vol. 12, no. 2, pp. 259–288, Apr. 2005.

cited on page 224
[852] P. Tonella, F. Ricca, E. Pianta, and C. Girardi, “Restructuring multilingual web sites,” in Int’l

Conf. Software Maintenance, Oct. 2003, pp. 290–299. 2 citations on pages 224 and 225
[853] ——, “Using keyword extraction for web site clustering,” in Int’l Workshop on Web Site

Evolution, sep 2003, pp. 41–48. cited on page 224
[854] C. Treude, O. Barzilay, and M.-A. Storey, “How do programmers ask and answer questions

on the web?” in Int’l Conf. Software Engineering, 2011. cited on page 171
[855] C. Treude and M. Storey, “How tagging helps bridge the gap between social and tech-

nical aspects in software development?” in Int’l Conf. Software Engineering, 2009.
cited on page 190

[856] F. Trucchia and J. Romei, Pro PHP Refactoring. Apress, 2010. cited on page 202
[857] S. Trujillo, D. Batory, and O. Diaz, “Feature refactoring a multi-representation pro-

gram into a product line,” in Int’l Conf. Generative Programming, 2006, pp. 191–200.
cited on page 285

[858] N. Tsantalis and A. Chatzigeorgiou, “Identification of move method refactoring opportuni-
ties,” IEEE Trans. Soft. Eng., vol. 35, pp. 347–367, 2009. cited on page 128

[859] T. T. Tun, T. Trew, M. Jackson, R. Laney, and B. A. Nuseibeh, “Specifying features of
an evolving software system,” J. Software: Practice and Experience, vol. 39, no. 11, pp.
973–1002, 2009. 2 citations on pages 16 and 22

[860] T. T. Tun, Y. Yu, R. Laney, and B. A. Nuseibeh, “Recovering problem structures to support
the evolution of software systems,” The Open University, Milton Keynes, UK, Tech. Rep.
2008/08, Apr. 2008. 3 citations on pages 12, 16, and 22



394 References

[861] J. Tupamäki and T. Mikkonen, “On the transition from the web to the cloud,” in Int’l Symp.
Web Systems Evolution, sep 2013. 2 citations on pages 215 and 330

[862] M. M. Turcotte, M. S. C. Corrin, and M. T. J. Johnson, “Adaptive evolution in ecological
communities,” PLoS Biology, vol. 10, no. 5, 2012. cited on page 311

[863] https://twitter.com/. cited on page 164
[864] B. Ujhazi, R. Ferenc, D. Poshyvanyk, and T. Gyimothy, “New conceptual coupling and

cohesion metrics for object-oriented systems,” in Working Conf. Source Code Analysis and
Manipulation, 2010, pp. 33–42. cited on page 162

[865] UWA Project Consortium, “Ubiquitous Web Applications,” in eBusiness and eWork Conf.,
2002. cited on page 219

[866] P. Valderas and V. Pelechano, “A survey of requirements specification in model-driven de-
velopment of web applications,” ACM Transaction on the Web, vol. 5, no. 2, may 2011.

cited on page 218
[867] S. Valverde, G. Theraulaz, J. Gautrais, V. Fourcassie, and R. Sole, “Self-organization pat-

terns in wasp and open source communities,” Intelligent Systems, IEEE, vol. 21, no. 2, pp.
36 – 40, march-april 2006. cited on page 331

[868] M. Van Antwerp and G. R. Madey, “The importance of social network structure in the
open source software developer community,” in Hawaii Int’l Conf. System Sciences. IEEE
Computer Society, 2010, pp. 1–10. 2 citations on pages 307 and 308

[869] C. van Koten and A. R. Gray, “An Application of Bayesian Network for Predicting Object-
Oriented Software Maintainability,” Information and Software Technology, vol. 48, no. 1,
pp. 59–67, Jan. 2006. 2 citations on pages 68 and 76

[870] A. van Lamsweerde, “Goal-oriented requirements engineering: A guided tour,” in Int’l Conf.
Req. Engineering, 2001, pp. 249–262. 2 citations on pages 23 and 24

[871] ——, “Reasoning About Alternative Requirements Options,” in Conceptual
Modeling: Foundations and Applications. Springer, 2009, pp. 380–397.

2 citations on pages 18 and 22
[872] A. van Lamsweerde and E. Letier, “Handling obstacles in goal-oriented requirements en-

gineering,” ACM Trans. Software Engineering and Methodology, vol. 26, pp. 978–1005,
2000. 2 citations on pages 18 and 22

[873] R. van Ommering, “Software reuse in product populations,” IEEE Trans. Soft. Eng., vol. 31,
no. 7, pp. 537 – 550, july 2005. cited on page 271

[874] R. Van Solingen and E. Berghout, The Goal/Question/Metric Method: a Practical Guide for
Quality Improvement of Software Development. McGraw-Hill, 1999. cited on page 92

[875] B. Vanderose, “Supporting a Model-driven and Iterative Quality Assessment Methodology:
The MoCQA Framework,” Ph.D. dissertation, University of Namur, Namur, Belgium, 2012.

cited on page 86
[876] B. Vanderose, N. Habra, F. Kamseu, and T. Mens, “A Feasibility Study of Quality Assess-

ment During Software Maintenance,” in Int’l Workshop Software Quality and Maintainabil-
ity, 2012. cited on page 86

[877] B. Vanderose, F. Kamseu, and N. Habra, “Towards a Model-centric Quality Assessment,”
in Int’l Workshop on Software Measurement, 2010, pp. 21–34. cited on page 86

[878] H. Vandierendonck and T. Mens, “Averting the next software crisis,” IEEE Computer,
vol. 44, no. 4, pp. 88–90, 2011. cited on page 330

[879] ——, “Techniques and tools for parallelizing software,” IEEE Software, vol. 29, no. 2, pp.
22–25, 2012. cited on page 330

[880] H. Väre, R. Ohtonen, and J. Oksanen, “Effects of reindeer grazing on understorey vegeta-
tion in dry pinus sylvestris forests,” Journal of Vegetation Science, vol. 6, p. 523530, 1995.

2 citations on pages 319 and 320
[881] R. Vasa, M. Lumpe, P. Branch, and O. Nierstrasz, “Comparative analysis of evolving soft-

ware systems using the gini coefficient,” in Int’l Conf. Software Maintenance, 2009, pp.
179–188. 2 citations on pages 325 and 331



References 395

[882] B. Vasilescu, A. Capiluppi, and A. Serebrenik, “Gender, representation and online partic-
ipation: A quantitative study of StackOverflow,” in SocialInformatics, 2012, pp. 332–338.

cited on page 331
[883] ——, “Gender, representation and online participation: A quantitative study,” Interacting

with Computers, pp. xx–xx, 2013. cited on page 331
[884] B. Vasilescu, V. Filkov, and A. Serebrenik, “StackOverflow and GitHub: Associations be-

tween software development and crowdsourced knowledge,” in SocialCom/PASSAT, 2013,
pp. 188–195. cited on page 331

[885] B. Vasilescu, A. Serebrenik, P. Devanbu, and V. Filkov, “How social Q&A sites are chang-
ing knowledge sharing in open source software communities,” in Int’l Conf. Computer Sup-
ported Cooperative Work, 2014, pp. xx–xx. cited on page 331

[886] B. Vasilescu, A. Serebrenik, M. Goeminne, and T. Mens, “On the variation and specialisa-
tion of workload: A case study of the Gnome ecosystem community,” J. Empirical Software
Engineering, pp. 1–54, 2013. 6 citations on pages 303, 306, 316, 317, 318, and 331

[887] B. Vasilescu, A. Serebrenik, and T. Mens, “A historical dataset of software engi-
neering conferences,” in Int’l Conf. Mining Software Repositories, 2013, pp. 373–376.

cited on page 332
[888] B. Vasilescu, A. Serebrenik, and M. G. J. van den Brand, “You can’t control the unfamiliar:

A study on the relations between aggregation techniques for software metrics,” in Int’l Conf.
Software Maintenance, 2011, pp. 313–322. cited on page 325

[889] B. Vasilescu, A. Serebrenik, and M. G. J. van den Brand, “The Babel of software devel-
opment: Linguistic diversity in open source,” in International Conference on Social Infor-
matics, ser. Lect. Notes in Computer Science, vol. 8238. Springer, 2013, pp. 391–404.

cited on page 331
[890] S. Vermolen, G. Wachsmuth, and E. Visser, “Reconstructing complex metamodel evolu-

tion,” in Int’l Conf. Software Language Engineering, ser. Lect. Notes in Computer Science,
vol. 6940. Springer, 2012, pp. 201–221. cited on page 63

[891] J. E. N. Veron, “Coral taxonomy and evolution,” in Coral Reefs: An Ecosystem in Transition.
Springer, 2011, pp. 37–45. cited on page 311

[892] M. Vierhauser, P. Grünbacher, W. Heider, G. Holl, and D. Lettner, “Applying a consistency
checking framework for heterogeneous models and artifacts in industrial product lines,” in
MoDELS, 2012, pp. 531–545. cited on page 293

[893] M. Viljainen and M. Kauppinen, Software Ecosystems: Analyzing and Managing Business
Networks in the Software Industry. Edward Elgar, 2013, ch. Framing Management Prac-
tices for Keystones in Platform Ecosystems. cited on page 302

[894] N. M. Villegas, “Context Management and Self-Adaptivity for Situation-Aware Smart
Software Systems,” Ph.D. dissertation, University of Victoria, Canada, February 2013.

5 citations on pages 231, 251, 257, 259, and 261
[895] N. M. Villegas and H. A. Müller, “Context-driven Adaptive Monitoring for Supporting SOA

Governance,” in Int’l Workshop on a Research Agenda for Maintenance and Evolution of
Service-Oriented Systems (MESOA). Carnegie Mellon University Software Engineering
Institute, 2010, pp. 111–133. cited on page 231

[896] ——, Managing Dynamic Context to Optimize Smart Interactions and Services. Springer,
2010, pp. 289–318. cited on page 256

[897] N. M. Villegas, H. A. Müller, J. C. Muñoz, A. Lau, J. Ng, and C. Brealey, “A Dynamic Con-
text Management Infrastructure for Supporting User-driven Web Integration in the Personal
Web,” in Conf. Center for Advanced Studies on Collaborative Research. ACM, 2011, pp.
200–214. No citation

[898] N. M. Villegas, H. A. Müller, and G. Tamura, “Optimizing Run-Time SOA Governance
through Context-Driven SLAs and Dynamic Monitoring,” in International Workshop on
the Maintenance and Evolution of Service-Oriented and Cloud-Based Systems (MESOCA).
IEEE, 2011, pp. 1–10. 3 citations on pages 231, 250, and 251

[899] N. M. Villegas, H. A. Müller, G. Tamura, L. Duchien, and R. Casallas, “A Frame-
work for Evaluating Quality-driven Self-Adaptive Software Systems,” in Int’l Symp. Soft-



396 References

ware Engineering for Adaptive and Self-Managing Systems. ACM, 2011, pp. 80–89.
5 citations on pages 231, 237, 239, 251, and 254

[900] N. M. Villegas, G. Tamura, H. A. Müller, L. Duchien, and R. Casallas, DYNAMICO: A
Reference Model for Governing Control Objectives and Context Relevance in Self-Adaptive
Software Systems, ser. Lect. Notes in Computer Science. Springer, 2013, vol. 7475, pp.
265–293. 5 citations on pages 231, 241, 248, 255, and 263

[901] M. Voelter and E. Visser, “Product line engineering using domain-specific languages,” in
Int. Software Product Line Conf., 2011, pp. 70–79. cited on page 269

[902] M. Voelter and I. Groher, “Product line implementation using aspect-oriented and model-
driven software development,” in Int. Software Product Line Conf., 2007, pp. 233–242.

cited on page 293
[903] G. von Krogh, S. Snaeth, and K. Lakhani, “Community, joining, and specialization in open

source software innovation: a case study,” Research Policy, vol. 32, no. 7, pp. 1217–1241,
2003. cited on page 323

[904] G. Wachsmuth, “Metamodel adaptation and model co-adaptation,” in European Conf.
Object-Oriented Programming, ser. Lect. Notes in Computer Science, vol. 4609, 2007, pp.
600–624. 5 citations on pages 38, 39, 52, 53, and 54

[905] S. Wagner, K. Lochmann, L. Heinemann, M. Kläs, A. Trendowicz, R. Plösch, A. Seidl,
A. Goeb, and J. Streit, “The Quamoco product quality modelling and assessment ap-
proach,” in Int’l Conf. Software Engineering. IEEE Press, 2012, pp. 1133–1142.

4 citations on pages 66, 67, 69, and 79
[906] S. Wang, D. Lo, and L. Jiang, “Code search via topic-enriched dependence graph matching,”

in Working Conf. Reverse Engineering, 2011, pp. 119–123. cited on page 196
[907] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun, “An approach to detecting duplicate bug

reports using natural language and execution information,” in Int’l Conf. Software Engineer-
ing, 2008, pp. 461–470. cited on page 153

[908] M. P. Ward, “The FermaT maintenance environment tool demonstration,” in Working Conf.
Source Code Analysis and Manipulation. IEEE Computer Society, 2009, pp. 125–126.

cited on page 123
[909] P. Warren, C. Boldyreff, and M. Munro, “The evolution of websites,” in Int’l Workshop

Program Comprehension, May 1999, pp. 178–185. 2 citations on pages 207 and 224
[910] D. M. Weiss and C. T. R. Lai, Software Product Line Engineering: A Family-Based Software

Development Process. Addison-Wesley, 1999. cited on page 266
[911] M. Weiss, G. Moroiu, and P. Zhao, “Evolution of open source communities,” in Open Source

Systems, ser. IFIP International Federation for Information Processing, vol. 203, 2006, pp.
21–32. 2 citations on pages 306 and 323

[912] K. D. Welker, P. W. Oman, and G. G. Atkinson, “Development and Application of an Au-
tomated Source Code Maintainability Index,” J. Software Maintenance and Evolution: Re-
search and Practice, vol. 9, no. 3, pp. 127–159, May 1997. cited on page 76

[913] K. Welsh and P. Sawyer, “Requirements Tracing to Support Change in Dynam-
ically Adaptive Systems,” Int’l Conf. Req. Engineering, pp. 59–73, Apr. 2009.

3 citations on pages 20, 21, and 22
[914] Z. Wen and V. Tzerpos, “An effectiveness measure for software clustering algorithms,”

in Int’l Conf. Program Comprehension. IEEE Computer Society, 2004, pp. 194–203.
cited on page 115

[915] M. Wermelinger and Y. Yu, “Analyzing the evolution of Eclipse plugins,” in Int’l Conf.
Mining Software Repositories. ACM Press, 2008, pp. 133–136. cited on page 303

[916] M. Wermelinger, Y. Yu, and A. Lozano, “Design principles in architectural evolution: a case
study,” in Int’l Conf. Software Maintenance, 2008. cited on page 303

[917] J. White, “Simplifying Autonomic Enterprise Java Bean Applications via Model-driven
Development: a Case Study,” Software and Systems Modeling, pp. 601–615, 2005.

2 citations on pages 250 and 253
[918] L. J. White, T. Reichherzer, J. Coffey, N. Wilde, and S. Simmons, “Maintenance

of service oriented architecture composite applications: static and dynamic sup-



References 397

port,” J. Software: Evolution and Process, vol. 25, no. 1, pp. 97–109, Jan. 2013.
3 citations on pages 212, 213, and 224

[919] T. White, Hadoop: The Definitive Guide. O’Reilly, 2012. cited on page 330
[920] J. Whittle, P. Sawyer, N. Bencomo, B. H. C. Cheng, and J.-M. Bruel, “RELAX: Incor-

porating Uncertainty into the Specification of Self-Adaptive Systems,” in Int’l Conf. Req.
Engineering, 2009, pp. 79–88. 4 citations on pages 17, 22, 23, and 25

[921] ——, “RELAX: A Language to Address Uncertainty in Self-Adaptive Systems Require-
ment,” Requirements Engineering, vol. 15, no. 2, pp. 177–196, 2010. cited on page 254

[922] K. E. Wiegers, Software Requirements. Microsoft Press, 2003. cited on page 13
[923] T. A. Wiggerts, “Using clustering algorithms in legacy systems remodularization,” in Work-

ing Conf. Reverse Engineering. IEEE Computer Society, 1997, p. 33. cited on page 113
[924] A. Wijs and L. Engelen, “Efficient property preservation checking of model refinements,” in

Int’l Conf. Tools and Algorithms for Construction and Analysis of Systems, ser. Lect. Notes
in Computer Science. Springer, 2013, vol. 7795, pp. 565–579. cited on page 330

[925] C. Wilkinson, “Status of the coral reefs of the world: 2008,” Global Coral Reef Monitoring
Network and Reef and Rainforest Research Centre, Tech. Rep., 2008. cited on page 301

[926] R. J. Williams and N. D. Martinez, “Simple rules yield complex food webs,” Nature, vol.
404, pp. 180–183, 2000. cited on page 299

[927] A. J. Willis, “The ecosystem: an evolving concept viewed historically,” Functional Ecology,
vol. 11, pp. 268–271, 1997. cited on page 299

[928] A. Wingkvist, M. Ericsson, and W. Löwe, “Making Sense of Technical Information Qual-
ity: A Software-based Approach,” J. Software Technology, vol. 14, no. 3, pp. 12–18, 2011.

cited on page 86
[929] World Wide Web Consortium, HTML 4.01 Specification, 1999. cited on page 34
[930] ——, Scalable Vector Graphics (SVG) 1.1, 2nd ed., 2011. cited on page 34
[931] C. Wu, E. Chang, and A. Aitken, “An empirical approach for semantic web services discov-

ery,” in Australian Conf. Software Engineering, 2008, pp. 412–421. cited on page 155
[932] J. Xu, Y. Gao, S. Christley, and G. Madey, “A topological analysis of the open

source software development community,” in Hawaii Int’l Conf. System Sciences, 2005.
cited on page 173

[933] S. Xu and T. Dean, “Modernizing JavaServer pages by transformation,” in Int’l Symp. Web
Systems Evolution, sep 2005, pp. 111–118. 2 citations on pages 211 and 224

[934] Q. Xuan, M. Gharehyazie, P. T. Devanbu, and V. Filkov, “Measuring the effect of social
communications on individual working rhythms: A case study of open source software,” in
SocialInformatics, 2012, pp. 78–85. cited on page 331

[935] H. Yang, Ed., Software Evolution with UML and XML. Idea Group Publishing, 2005.
cited on page 344

[936] S. Yau, J. Collofello, and T. MacGregor, “Ripple effect analysis of software mainte-
nance,” in Int’l Computer Software and Applications Conf. IEEE, 1978, pp. 60–65.

3 citations on pages 232, 246, and 256
[937] Y. Ye, K. Nakakoji, Y. Yamamoto, and K. Kishida, “The co-evolution of systems and com-

munities in free and open source software development,” in Free/Open Source Software
Development. IDEA Group Publishing, 2005, pp. 59–82. cited on page 315

[938] E. S. Yu, “Towards modelling and reasoning support for early-phase requirements engineer-
ing,” in Int’l Conf. Req. Engineering, 1997, pp. 226–235. cited on page 20

[939] L. Yu, “Understanding component co-evolution with a study on Linux,” J. Empirical Soft-
ware Engineering, vol. 12, no. 2, pp. 123–141, Apr. 2006. cited on page 315

[940] L. Yu and S. Ramaswamy, “Software and biological evolvability: A comparison using
key properties,” in Int’l IEEE Workshop on Software Evolvability, 2006, pp. 82– 88.

2 citations on pages 298 and 313
[941] ——, “Mining CVS repositories to understand open-source project developer roles,” in Min-

ing Software Repositories. IEEE Computer Society, 2007. cited on page 307



398 References

[942] Y. Yu, T. T. Tun, A. Tedeschi, V. N. L. Franqueira, and B. A. Nuseibeh, “OpenArgue: Sup-
porting argumentation to evolve secure software systems,” in Int’l Conf. Req. Engineering.
IEEE Computer Society, 2011. 2 citations on pages 16 and 22

[943] A. Zaidman, B. Rompaey, A. Deursen, and S. Demeyer, “Studying the co-evolution of
production and test code in open source and industrial developer test processes through
repository mining,” J. Empirical Software Engineering, vol. 16, no. 3, pp. 325–364, 2011.

2 citations on pages 315 and 329
[944] N. C. Zakas, “The evolution of web development for mobile devices,” ACM Queue, vol. 11,

no. 2, Feb. 2013. cited on page 222
[945] P. Zave and M. Jackson, “Four Dark Corners of Requirements Engineering,” ACM Trans.

Software Engineering and Methodology, vol. 6, pp. 1–30, 1997. cited on page 5
[946] H. Zawawy, K. Kontogiannis, and J. Mylopoulos, “Log filtering and interpretation for root

cause analysis,” in Int’l Conf. Software Maintenance, 2010, pp. 1–5. cited on page 155
[947] A. Zeller, “Yesterday, my program worked. today, it does not. why?” in Joint European

Software Engineering Conf. and ACM SIGSOFT Int. Symp. on Foundations of Software
Engineering. Springer, 1999, pp. 253–267. cited on page 125

[948] C. X. Zhai, “Statistical language models for information retrieval,” Synthesis Lectures on
Human Language Technologies, vol. 1, no. 1, pp. 1–141, 2008. cited on page 146

[949] J. Zhou, H. Zhang, and D. Lo, “Where should the bugs be fixed? more accurate information
retrieval-based bug localization based on bug reports,” in Int’l Conf. Software Engineering,
2012, pp. 14–24. cited on page 196

[950] M. Zhou and A. Mockus, “Does the initial environment impact the future of developers?”
in Int’l Conf. Software Engineering. ACM, 2011, pp. 271–280. cited on page 323

[951] ——, “What make long term contributors: willingness and opportunity in OSS community,”
in Int’l Conf. Software Engineering. IEEE Press, 2012, pp. 518–528. cited on page 323

[952] Y. Zhou and H. Leung, “Predicting Object-oriented Software Maintainability Using Mul-
tivariate Adaptive Regression Splines,” J. Systems and Software, vol. 80, no. 8, pp. 1349–
1361, Aug. 2007. 2 citations on pages 68 and 76

[953] Y. Zhou and B. Xu, “Predicting the Maintainability of Open Source Software Using Design
Metrics,” Wuhan University Journal of Natural Sciences, vol. 13, no. 1, pp. 14–20, Feb.
2009. cited on page 76

[954] T. Zimmermann, N. Nagappan, and A. Zeller, Software Evolution. Springer, 2008, ch.
Predicting Bugs from History, pp. 69–88. cited on page x

[955] D. Zowghi and V. Gervasi, “On the interplay between consistency, completeness and cor-
rectness in requirements evolution,” Information and Software Technology, vol. 45, no. 14,
pp. 993–1009, 2003. cited on page 10

[956] D. Zowghi and R. Offen, “A Logical Framework for Modeling and Reasoning about
the Evolution of Requirements,” in Int’l Conf. Req. Engineering, 1997, pp. 247–257.

2 citations on pages 18 and 22



Index

accessibility, 222, 225
blinds, 225
hearing impaired, 226

adaptation, 7, 14, 15, 17, 20, 21, 23–25, 28, 32
behavioral, 231
structural, 231

adaptive, 5
adaptive control, 241, 255

model identification, 241, 255
model reference, 241, 255

agile, 4, 14, 23
Ajax, 209, 214, 222, 223
Android, 303
Apache, 306

HTTP Server, 171
Solr, 183

API, 170–172, 181, 213, 217, 222, 303, 304,
333

API critic, 171
apps, 216
architectural view, 210
architecture, 31

evolution, 212, 217
three-tier, 203, 217

as-is utility, 71
assurance, 235
attribute dependency graph, 81
AUC, 195
autonomic computing, 244

reference architecture, 247, 248, 254, 255,
264

autonomic manager, 244, 246

battery consumption, 117
benchmark, 69
benefit-cost ratio, 233, 235, 238
biodiversity, 309

blog, 168, 204
brochure-ware, 204, 207
browser-safeness, 226
Bunch, 113
business

logic, 211
model, 204, 205
rule, 219, 221

Central Limit Theorem, 83
change mini-cycle, 264

model, 232, 243, 246
process, 233, 237

chromosome, 105
client-side, 203
clone detection, 212, 220
cloud computing, 215, 218

IaaS, 215
PaaS, 215
SaaS, 215

clustering, 220, 223
CMMI, 333
co-evolution, 311
COBOL, 218
code generation, 211, 218
CODe-Imp, 129
cohesion, 113, 131
collaborative tagging, 177
Columbus, 81
ColumbusQM, 66
competition, 302
conformance, 35, 337
construction, 39
consumer, 299
content model, 337
control theory, 230
correctness, 70

399
 Springer

. et al. (eds.), E ,
DOI 10.1007/978-3- - - , ©  2014
T Mens volving Software Systems

642 45398 4 -Verlag Berlin Heidelberg



400 Index

cosine similarity, 179
coupled

evolution, 36, 337
irreversible, 41
model-migrating, 40
model-preserving, 40
reversible, 41

operator, 54, 56
custom, 56
reusable, 56

coupling, 113, 131
crawler, 206, 207, 209
Crawljax tool, 209
crossover, 109

rate, 110
CrossT tool, 226

dependency graph, 212
design evolution, 219
design model, 219

as-is, 220
to-be, 220

destruction, 39
device, 203

form factor, 204, 222
mobile, 203, 216, 222
smartphone, 203, 222

differencing, 212, 223
diversity, 300
DOM, 209, 214, 223, 226
domain-specific language, 329
DTD, 223
dynamic software systems, 337

highly, 230, 237, 243

E-type systems, 236
Eclipse, 220, 303
ecological

niche, 301, 310, 321
refuge, 311, 313

ecology, 298, 299, 337
ecosystem, 228, 299, 337

biodiversity, 300
biological, 299
coral reef, 301
dynamics, 310
equilibrium

dynamic, 300
static, 300

resilience, 300, 309
resistance, 300
stability, 300
sustainability, 300, 309

edit distance, 209, 223

effectiveness measure, 115
efficiency, 66, 70, 71, 337
embedded software, 330
empirical, 5, 10, 16, 23, 24

prediction models, 68, 74
end-user programming, 330
energy, 300
equilibrium, 309
evolution, 203, 230, 236, 337, 341

architecture, 212, 217
challenges, 203, 204
co-evolution, 311
Darwinism, 311
design, see design evolution
dimensions, 216, 238
drivers, 204
Lamarckism, 311
laws, 236
model, 218
off-line, 232, 233

cost, 234, 236
process

dimensions, 235
reticulate, 311
runtime, see runtime evolution
technology, 221

extension, 35, 338

F-measure, 176
faceted search, 213
feature, 267, 338
feedback

control, 237, 238, 248
loop, 238, 239, 258

feedforward
control, 238, 248

FermaT, 123
file touch, 316
fitness, 310, 314

function, 104, 106
flexibility, 70, 71, 338
FLOSS, 304
forge, 304, 314
forward engineering, 202, 219, 225
free software, 334, 338
frequency, 233, 235, 236
FrontEndART, 94
functionality, 66, 72

gene transfer, 311
generalization, 292
genetic

algorithm, 334
interactive, 118



Index 401

non-dominated sorting, 112
algorithms, 109
program repair, 124
programming, 110, 334

genotype, 105
GNOME, 167, 172, 189
GNU, 304, 334
GPL, 334

hashtag, 169, 173, 186
hierarchical model, 67
highly-dynamic systems, 228
hill climbing, 106, 334

multiple ascent, 106
hosted service, 205
HTML, 207, 210, 211, 219, 221, 223

differencing, 223
HTML5, 216, 228

features, 216
HTTP, 217, 222, 334

request methods, 213

IDE, 172, 181, 195, 303, 334
immigration, 323
information gain, 194
integrity, 70
intensional definition, 34, 338
Internet of Things, 228
interoperability, 70, 338
inverse document frequency, 179
iOS, 303

JavaScript, 209, 211, 214
eval, 211
features, 211
idioms, 211
performance, 222
test262 suite, 226
transformation, 211

JSON, 213, 217
JSP, 208, 211, 221, 223

slicing, 223
tag library, 211

k-fold cross validation, 188

latent semantic indexing, 334
law, 204, 205, 228

copyright, 205
legal statements, 225

LDA, 189
Lehman’s laws, 88
libre software, 334
Likert scale, 180

link structure, 207, 209
Linux distribution, 304
logic, 10, 18

abduction, 19
default, 18
fuzzy, 25

machine learning, 176, 184, 185, 195
mailing lists, 167
maintainability, 66, 70, 71, 338

index, 75
models, 66

maintainability index, 68
maintenance, 211, 338

adaptive, 243, 249, 338
corrective, 243, 249, 338
perfective, 243, 249, 338
preventive, 339

Mann-Whitney U test, 180
MAP, 177
MAPE-K loop, 244, 246, 258, 259, 264
MATLAB, 329
metamodel, 34, 339

evolution, 36, 218
composite, 39
primitive, 39

matching, 53
metrics, 207, 225

hypertext, 207
migration, 211–216, 221, 223, 309, 323

SOA, 217
model, 34, 202, 210, 219, 223, 339

conceptual, 218, 219
feature, 14, 16, 21
migration, 36, 220, 339

language-independent, 42
language-specific, 42
model-specific, 41

navigation, 219, 221, 222, 226
presentation, 219, 221, 222
runtime, 254
transformation

as optimization by examples, 126
by example, 126

model-driven
architecture, 218
engineering, 218
software development, 269
web engineering, 218

modeling, 225
language, 34, 329, 339
tools, 220

modularization quality, 113
module dependency graph, 113



402 Index

monitoring, 235
multi-objective

modularization, 115
optimization, 110

mutation, 109
rate, 110

natural selection, 310
navigation model, 219, 221, 222, 226, 339
navigation path, 223
NetBeans, 303
NLTK, 186
Node.js library, 208

off-line
evolution, 233, 339

offspring, 109
onion model, 307
ontology, 5
open source, 11, 12, 339

software, 304, 307, 334, 335, 339
open web, 216
operating system, 335
OSS 2.0, 307

paraconsistency, 19, 29
Pareto

dominance, 110
front, 111
optimality, 104
set, 111

particle swarm optimization, 108
PCI-DSS, 6, 25, 27
performance, 72
Perl, 208
phenotype, 106
PHP, 208
phylogenetic tree, 311, 313
phylogenetics, 311
plugin, 172, 303
portability, 66, 70, 71, 339
power-law

distribution, 171, 174
relationship, 173

precision, 176
predator-prey, 298, 300, 314

model, 314
presentation model, 219, 221, 222, 339
principal component analysis, 322
problem frames, 16, 18
problem representation, 104
product line, 12, 15, 18, 21, 28
program transformation, 122
programming language, 339

prototyping, 220

QMOOD, 131
quality, 203, 219, 221

factor, 70
model, 66
predictor, 74

QualityGate, 94
QUAMOCO, 66

R, 306
re-engineering, 339
RE-UWA, 219
ReAJAX tool, 214
recall, 176
reconfiguration

behavioral, 250, 253
structural, 250

reengineering, 202, 214
refactoring, 39, 128, 221, 222, 292, 340

catalog, 221
REGoLive tool, 211
reliability, 66, 70–72, 339
remodularization

supervised, 118
requirements, 203, 220, 221

engineering, 335
evolution problem, 5, 10, 24–26, 28, 29, 32
goals, 16, 18, 23–25, 27–30, 32
non-functional, see also quality, 4, 7, 11, 21,

31, 32
problem, 5, 8, 16, 17, 19, 21, 25–27, 29
runtime, 254
specification, 4–6, 10, 12–14, 16–19, 21, 25,

30
resource, 299
responsive web design, 204
RESTful, 213
RESTify tool, 213
restructuring, 211, 221
Retjax tool, 223
reusability, 70, 340
reverse engineering, 202, 205, 219, 225, 340
revision control system, 143
rich internet application, 209, 211, 223, 340

scripted links, 209
Rigi tool, 207
ROC curve, 195
roulette wheel selection, 110
RSS, 168
runtime

evolution, 230, 232, 233, 236, 340
monitoring, 255

RWR, 190, 191



Index 403

screenshot, 226
scripting, 208, 209
search engine, 174, 175, 177, 181
self-

configuration, 249, 250
healing, 249, 250, 252
optimization, 249, 251, 252
protection, 249, 253
recovery, 250

self-adaptation, 336
behavioral, 231
problem, 336
properties, 249, 250
structural, 231
techniques, 230

self-adaptive software, 233, 236
self-managing systems, 244, 249
sequence diagram, 213
server-side, 203, 211
service-oriented architecture, 212, 217
SIG, 66
similarity measure, 179
similarity-based class cohesion, 132
simulated annealing, 107
Simulink, 329
slicing, 223
SOA

composition, 217
migration, 217

SOAMiner tool, 213
SOAP, 213, 217
social network, 171, 173, 304
socio-technical

graph, 193
information, 192
interaction, 163
network, 331
relationship, 189

software
evolution, see evolution
free, see free software
maintenance, see maintenance
refactoring, see refactoring

software defect, 314
software development

collaborative, 301
kit, 303, 336

software ecosystem, 301, 340
software engineering, 340

search-based, 104, 298, 336, 340
software language, 341
software miniaturization, 117
software modularization, 112

interactive, 118

software process, 203
software product

family, 312
line, 266, 301, 310, 336, 341

engineering, 336
software repair

automatic, 123
software repository, 304, 341

mining, 287
SourceAudit, 94
specialization, 292
speciation, 311, 314

hybrid, 311
spreadsheet application, 330
SQALE, 66, 336
SQUALE, 66, 336
SQuaRE, 336
StackOverflow, 167, 171, 172, 181
stemming, 176
stopword, 176
supportability, 72
sustainability, 228
SVM, 186, 194
symbiosis, 311

tag, 168, 175
technical debt, 69, 92, 331
technology evolution, 221
term frequency, 176
testability, 31, 70, 71, 341
tournament selection, 110
traceability, 12, 20, 24
transformation, 224, 225

endogenous, 51
exogenous, 51
JavaScript, 211

trophic web, 299

UML, 210, 221
uncertainty, 233–236
understandability, 71, 341
usability, 66, 70–72, 208, 219, 221, 223, 225,

341
use cases, 4
user stories, 4, 12, 14
user-generated content, 204
UWA, 218, 219

prototyping, 220

validation and verification, 256
runtime, 256

variation, 310
version, 341

control system, 143



404 Index

history, 341
repository, 341

visual analytics, 182
visualization, 225

web, 202
Web 3.0, 228
web application, 208
web engineering, 218

model-driven, 218
web service, 212, 217, 218

REST, 213
WS-*, 213

web site
link structure, 207, 209
multilingual, 225
static, 207, 341

web system, 202
Ajax, 209, 214, 222, 223
ajaxification, 223
architecture, 203, 217
blog, 204
brochure-ware, 204, 207
browser-safeness, 226
characteristics, 203
client, 203, 209

client view, 206, 209
commercialization, 204
crawler, 206, 207, 209
developer view, 207, 211
hosted service, 205
kinds of, 206
middleware, 217
native, 216
platform, 203
responsiveness, 222
RESTful, 213
server, 203, 211
server view, 206
view, 206

WebDiff tool, 226
WebML, 218, 219
Wikipedia, 225
World Wide Web, see web
wrapping, 218
WSDL, 212, 213, 217

differencing, 212
WSE, 202, 227

XHTML, 223
XML, 212, 213
XUL, 224


	Foreword
	Preface
	Where does software evolution fit in a computing curriculum?
	What is this book about?
	Who Should Read this Book?

	List of Contributors
	Contents
	Part I Evolving Software Artefacts
	Chapter 1 An Overview of Requirements Evolution
	1.1 Introduction
	The Requirements Problem

	1.2 Historical Overview of Requirements Evolution
	1.2.1 From Software Evolution to Requirements Evolution
	1.2.2 Empirical Studies of Requirements Evolution

	1.3 A Survey of Industry Approaches
	1.3.1 Standards and Industry
	1.3.2 Requirements Management Tools
	1.3.3 Task Managers
	1.3.4 Summary

	1.4 Recent Research
	1.4.1 Problem Frames Approach
	1.4.2 Extensions of the NFR Framework
	1.4.3 Run-time Adaptive Requirements
	1.4.4 KAOS-based Approaches
	1.4.5 Paraconsistent and Default Logics
	1.4.6 Traceability Approaches
	1.4.7 Feature Models
	1.4.8 Summary

	1.5 A Framework for Requirements Evolution
	1.5.1 The Payment Card Industry Example
	1.5.2 Methodological Guidance for Solving Unanticipated Changes
	1.5.3 Revising Requirements
	1.5.4 Selecting Non-Dominated Solutions
	1.5.5 Summary

	1.6 Conclusions

	Chapter 2 Coupled Evolution of Software Metamodels and Models
	2.1 Introduction
	2.1.1 Metamodels and Models
	2.1.2 Metamodel Evolution
	2.1.3 Model Migration

	2.2 Analysis: Classification of Coupled Evolution
	2.2.1 Metamodel Aspect
	2.2.2 Granularity
	2.2.3 Language Preservation
	2.2.4 Model Preservation
	2.2.5 Reversibility
	2.2.6 Automatability

	2.3 Empirical Results: Metamodel Evolution in Practice
	2.3.1 Evolution of the Unified Modeling Language
	2.3.2 Evolution of Automotive Metamodels
	2.3.3 Evolution of the Graphical Modeling Framework
	2.3.4 Discussion of the Empirical Results

	2.4 State-of-the-Art: Approaches and their Classification
	2.4.1 Classification Scheme
	2.4.1.1 Metamodel Evolution Specification
	2.4.1.2 Model Migration Specification
	2.4.1.3 Approach Evaluation

	2.4.2 Manual Specification Approaches
	2.4.3 Metamodel Matching Approaches
	2.4.4 Operator-based Approaches
	2.4.5 Discussion of State-of-the-Art

	2.5 Tool support: Available Tools and their Comparison
	2.5.1 COPE / Edapt
	2.5.2 Epsilon Flock
	2.5.3 Comparison of Migration and Transformation Tools
	2.5.4 Comparison of Model Migration Tools
	2.5.5 Discussion of Tool Support

	2.6 Conclusions

	Chapter 3 Software Product Quality Models
	3.1 Introduction
	3.2 Evolution of Software Product Quality Models
	3.2.1 Software Metrics
	3.2.2 Early Theoretical Quality Models
	3.2.3 Metrics-based Empirical Prediction Models
	3.2.4 State-of-the-art Practical Quality Models
	3.2.4.1 Software QUALity Enhancement project (SQUALE)
	3.2.4.2 Software Quality Assessment based on Lifecycle Expectations (SQALE)
	3.2.4.3 Quamoco Quality Model
	3.2.4.4 SIG Maintainability Model
	3.2.4.5 Columbus Quality Model
	3.2.4.6 Other Approaches


	3.3 Application of Practical Quality Models in Software Evolution
	3.3.1 A Cost Model Based on Software Maintainability

	3.4 Tools Supporting Software Quality Estimation
	3.4.1 Software QUALity Enhancement project (SQUALE)
	3.4.2 Software Quality Assessment based on Lifecycle Expectations (SQALE)
	3.4.3 QUAMOCO Quality Model
	3.4.4 SIG Maintainability Model
	3.4.5 Columbus Quality Model

	3.5 Comparing the Features of the Quality Models and Tools
	3.5.1 Comparing the Properties of Different Practical Models
	3.5.2 Evaluating the Properties of the Different Tools

	3.6 Conclusions


	Part II Techniques
	Chapter 4 Search Based Software Maintenance: Methods and Tools
	4.1 Introduction
	4.2 An Overview of Search-Based Optimization Techniques
	4.2.1 Hill Climbing
	4.2.2 Simulated Annealing
	4.2.3 Particle Swarm Optimization
	4.2.4 Genetic Algorithms
	4.2.5 Multi-Objective Optimization

	4.3 Search-based Software Modularization
	4.3.1 The Bunch approach for software modularization
	4.3.2 Multi-Objective Modularization
	4.3.3 Achieving different software modularization goals
	4.3.4 Putting the developer in the loop: interactive software modularization

	4.4 Software Analysis and Transformation Approaches
	4.4.1 Program transformation
	4.4.2 Automatic Software Repair
	4.4.3 Model transformation

	4.5 Search-based Software Refactoring
	4.5.1 The CODe-Imp tool
	4.5.2 Other search-based refactoring approaches

	4.6 Conclusions

	Chapter 5 Mining Unstructured Software Repositories
	5.1 Introduction
	5.2 Unstructured Software Repositories
	5.2.1 Source Code
	5.2.2 Bug Databases
	5.2.3 Mailing Lists and Chat Logs
	5.2.4 Revision Control System
	5.2.5 Requirements and Design Documents
	5.2.6 Software System Repositories

	5.3 Tools and Techniques for Mining Unstructured Data
	5.3.1 NLP Techniques for Data Preprocessing
	5.3.1.1 General Preprocessing Steps
	5.3.1.2 Source Code Preprocessing
	5.3.1.3 Email Preprocessing
	5.3.1.4 Tools

	5.3.2 Information Retrieval

	5.4 The State of The Art
	5.4.1 Concept/Feature Location and AOP
	5.4.2 Traceability Recovery and Bug Localization
	5.4.3 Source Code Metrics
	5.4.4 Software Evolution and Trend Analysis
	5.4.5 Bug Database Management
	5.4.6 Organizing and Searching Software Repositories
	5.4.7 Other Software Engineering Tasks

	5.5 A Practical Guide: IR-based Bug Localization
	5.5.1 Collect data
	5.5.2 Preprocess the source code
	5.5.3 Preprocess the bug reports
	5.5.4 Build the IR model on the source code
	5.5.5 Query the LDA model with a bug report

	5.6 Conclusions

	Chapter 6 Leveraging Web 2.0 for software evolution
	6.1 Introduction
	6.2 Web 2.0 Resources
	6.2.1 Software Forums, Mailing Lists and Q&A Sites
	6.2.2 Software Blogs & Microblogs
	6.2.3 Software Forges
	6.2.4 Other Resources

	6.3 Empirical Studies
	6.3.1 Software Forums, Mailing Lists and Q&A Sites
	6.3.2 Software Blogs & Microblogs
	6.3.3 Software Forges

	6.4 Supporting Information Search
	6.4.1 Searching for Answers in Software Forums
	6.4.2 Searching for Similar Applications in Software Forges
	6.4.3 Other studies

	6.5 Supporting Information Discovery
	6.5.1 Visual Analytics Tool for Software Microblogs
	6.5.2 Categorizing Software Microblogs
	6.5.3 Other studies

	6.6 Supporting Project Management
	6.6.1 Recommendation of Developers
	6.6.2 Prediction of Project Success
	6.6.3 Other studies

	6.7 Open Problems and Future Work
	6.8 Conclusions


	Part III Evolution of specific types of software Sytems
	Chapter 7 Evolution of Web Systems
	7.1 Introduction
	7.1.1 Reengineering
	7.1.2 Evolution Challenges and Drivers
	7.1.3 Chapter’s Organization

	7.2 Kinds of Web Systems and their Evolution
	7.2.1 Static Web Sites
	7.2.2 Web Applications
	7.2.3 Web Services
	7.2.4 Ajax-based Web Systems
	7.2.5 Web Systems Leveraging Cloud Computing
	7.2.6 HTML5-based Web Systems

	7.3 Dimensions of Evolution
	7.3.1 Architecture Evolution
	7.3.1.1 Towards Service Oriented Architecture
	7.3.1.2 Towards Model-Driven Engineering

	7.3.2 Design Evolution
	7.3.2.1 Meeting New Requirements
	7.3.2.2 Improving Usability

	7.3.3 Technology Evolution

	7.4 Research Topics
	7.5 Sources for Further Reading
	7.6 Conclusions

	Chapter 8 Runtime Evolution of Highly Dynamic Software
	8.1 Introduction
	8.2 A Case Study: Dynamic Context Monitoring
	8.3 Assessing the Need for Runtime Evolution
	8.4 Dimensions of Runtime Software Evolution
	8.5 Control in Runtime Software Evolution
	8.5.1 Feedback Control
	8.5.2 Feedforward Control
	8.5.3 Adaptive Control
	8.5.3.1 Model Reference Adaptive Control (MRAC)
	8.5.3.2 Model Identification Adaptive Control (MIAC)


	8.6 Self-Adaptive Software Systems
	8.6.1 Self-Managing Systems
	8.6.2 The Autonomic Manager
	8.6.3 The Autonomic Computing Reference Architecture
	8.6.4 Self-Management Properties

	8.7 Self-Adaptation Enablers for Runtime Evolution
	8.7.1 Requirements at Runtime
	8.7.2 Models at Runtime
	8.7.3 Runtime Monitoring
	8.7.4 Runtime Validation and Verification

	8.8 Realizing Runtime Evolution in SMARTERCONTEXT
	8.8.1 Applying the MAPE-K Loop Reference Model
	8.8.2 Applying Requirements and Models at Runtime
	8.8.2.1 Control Objectives Specifications
	8.8.2.2 Synthesizing Monitoring Strategies at Runtime


	8.9 Open Challenges
	8.10 Conclusions

	Chapter 9 Evolution of Software Product Lines
	9.1 Introduction
	9.2 Software Product Lines
	9.3 Characteristics of SPL Evolution
	9.4 Approaches to SPL Evolution
	9.4.1 Process Models for SPL Evolution
	9.4.1.1 Process framework for SPL evolution
	9.4.1.2 Evolution strategies
	9.4.1.3 Other process models

	9.4.2 Modeling Evolution and Change
	9.4.2.1 Difference Models
	9.4.2.2 Change Operators
	9.4.2.3 Combined Approach

	9.4.3 Migration to SPLE
	9.4.3.1 Initiation of the migration project
	9.4.3.2 Scoping and assessment of migration options
	9.4.3.3 Variability analysis
	9.4.3.4 Refactoring
	9.4.3.5 Extraction of assets
	9.4.3.6 Assessment

	9.4.4 Analyzing Evolution
	9.4.4.1 Mining software repositories
	9.4.4.2 Analyzing features
	9.4.4.3 Architecture assessment
	9.4.4.4 Prediction based on simulation

	9.4.5 Planning Evolution
	9.4.5.1 Change Impact Analysis
	9.4.5.2 Decision making in SPL evolution

	9.4.6 Implementing Evolution
	9.4.6.1 Evolution of the variability model and its mappings to assets
	9.4.6.2 Evolution of assets
	9.4.6.3 Propagating changes from the SPL to products


	9.5 Conclusions

	Chapter 10 Studying Evolving Software Ecosystems based on Ecological Models
	10.1 Introduction
	10.2 Ecosystem terminology
	10.2.1 Natural ecosystems and ecology
	10.2.2 Software ecosystems
	10.2.2.1 Business-centric viewpoint
	10.2.2.2 Development-centric viewpoint
	10.2.2.3 Collaborative and socio-technical aspects of software ecosystems

	10.2.3 Comparing natural and software ecosystems

	10.3 Evolution
	10.3.1 Biological evolution
	10.3.2 Comparing biological evolution with software evolution
	10.3.3 Transposing biological models to the software realm

	10.4 Exploratory case study
	10.4.1 The GNOME OSS ecosystem
	10.4.2 Comparing GNOME with a natural ecosystem
	10.4.3 Migration of GNOME developers

	10.5 Conclusions


	Appendices
	Appendix A Emerging trends in software evolution
	Beyond software
	How is software developed?
	Socio-technical networks
	Interdisciplinary research
	Reproducible research

	Appendix B List of acronyms
	Appendix C Glossary of Terms
	Appendix D Resources
	Books
	Journals
	Standards
	Events
	Conferences
	Workshops


	Appendix E Datasets

	References
	Index

