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Numerical approximation of
boundary-value problems

Boundary-value problems are differential problems set in an interval
(a, b) of the real line or in an open multidimensional region Ω ⊂ R

d

(d = 2, 3) for which the value of the unknown solution (or its deriva-
tives) is prescribed at the end-points a and b of the interval, or on the
boundary ∂Ω of the multidimensional region.

In the multidimensional case the differential equation will involve
partial derivatives of the exact solution with respect to the space co-
ordinates. Equations depending also on time (denoted with t), like the
heat equation and the wave equation, are called initial-boundary-value
problems. In that case initial conditions at t = 0 need to be prescribed
as well.

Some examples of boundary-value problems are reported below.

1. Poisson equation:

−u′′(x) = f(x), x ∈ (a, b), (9.1)

or (in several dimensions)

−Δu(x) = f(x), x = (x1, . . . , xd)
T ∈ Ω, (9.2)

where f is a given function and Δ is the so-called Laplace operator :

Δu =

d∑

i=1

∂2u

∂x2i
.

The symbol ∂ · /∂xi denotes partial derivative with respect to the xi
variable, that is, for every point x0

∂u

∂xi
(x0) = lim

h→0

u(x0 + hei) − u(x0)

h
, (9.3)

where ei is ith unitary vector of Rd.
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330 9 Numerical approximation of boundary-valueproblems

2. Heat equation:

∂u(x, t)

∂t
− μ

∂2u(x, t)

∂x2
= f(x, t), x ∈ (a, b), t > 0, (9.4)

or (in several dimensions)

∂u(x, t)

∂t
− μΔu(x, t) = f(x, t), x ∈ Ω, t > 0, (9.5)

where μ > 0 is a given coefficient representing the thermal diffusivity,
and f is again a given function.

3. Wave equation:

∂2u(x, t)

∂t2
− c

∂2u(x, t)

∂x2
= 0, x ∈ (a, b), t > 0,

or (in several dimensions)

∂2u(x, t)

∂t2
− cΔu(x, t) = 0, x ∈ Ω, t > 0,

where c is a given positive constant.

For a more complete description of general partial differential equations,
the reader is referred for instance to [Eva98], [Sal08], and for their nu-
merical approximation to [Qua13], [QV94], [EEHJ96] or [Lan03].

9.1 Some representative problems

Problem 9.1 (Hydrogeology) The study of filtration in groundwater
can lead, in some cases, to an equation like (9.2). Consider a portion Ω
occupied by a porous medium (like ground or clay). According to the
Darcy law, the water velocity filtration q = (q1, q2, q3)

T is equal to the
variation of the water level φ in the medium, precisely

q = −K∇φ, (9.6)

where K is the constant hydraulic conductivity of the porous medium
and ∇φ denotes the spatial gradient of φ. Assume that the fluid density
is constant; then the mass conservation principle yields the equation
divq = 0, where divq is the divergence of the vector q and is defined as

divq =

3∑

i=1

∂qi
∂xi

.

Thanks to (9.6) we therefore find that φ satisfies the Poisson problem
Δφ = 0 (see Exercise 9.8). �
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Problem 9.2 (Thermodynamics) Let Ω ⊂ R
d be a volume occupied

by a continuous medium. Denoting by J(x, t) and T (x, t) the heat flux
and the temperature of the medium, respectively, the Fourier law states
that heat flux is proportional to the variation of the temperature T , that
is

J(x, t) = −k∇T (x, t),
where k is a positive constant expressing the thermal conductivity coef-
ficient. Imposing the conservation of energy, that is, the rate of change of
energy of a volume equals the rate at which heat flows into it, we obtain
the heat equation

ρc
∂T

∂t
= kΔT, (9.7)

where ρ is the mass density of the continuous medium and c is the specific
heat capacity (per unit mass). If, in addition, heat is produced at the
rate f(x, t) by some other means (e.g., electrical heating), (9.7) becomes

ρc
∂T

∂t
= kΔT + f. (9.8)

The coefficient μ = k/(ρc) is the so-called thermal diffusivity. For the
solution of this problem see Example 9.4. �

Problem 9.3 (Communications) We consider a telegraph wire with
resistance R and self-inductance L per unit length. Assuming that the
current can drain away to ground through a capacitance C and a conduc-
tance G per unith length (see Figure 9.1), the equation for the voltage
v is

∂2v

∂t2
− c

∂2v

∂x2
= −α∂v

∂t
− βv, (9.9)

where c = 1/(LC), α = R/L+G/C and β = RG/(LC). Equation (9.9)
is an example of a second order hyperbolic equation and it is known
as telegrapher’s equation (or just telegraph equation) (see [Str07]). The
solution of this problem is given in Example 9.8. �

L dxR dx

C dx 1/(G dx)

x x+ dx

Figure 9.1. An element of cable of length dx
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9.2 Approximation of boundary-value problems

The differential equations presented so far feature an infinite number of
solutions. With the aim of obtaining a unique solution we must impose
suitable conditions on the boundary ∂Ω ofΩ and, for the time-dependent
equations, suitable initial conditions at time t = 0.

In this section we consider the Poisson equations (9.1) or (9.2). In
the one-dimensional case (9.1), to fix the solution one possibility is to
prescribe the value of u at x = a and x = b, obtaining

−u′′(x) = f(x) for x ∈ (a, b),

u(a) = α, u(b) = β
(9.10)

where α and β are two given real numbers. This is a Dirichlet boundary-
value problem, and is precisely the problem that we will face in the next
section.
Performing double integration it is easily seen that if f ∈ C0([a, b]), the
solution u exists and is unique; moreover it belongs to C2([a, b]).

Although (9.10) is an ordinary differential problem, it cannot be cast
in the form of a Cauchy problem for ordinary differential equations since
the value of u is prescribed at two different points.

Instead to set Dirichlet boundary conditions (9.10)2 we can impose
u′(a) = γ, u′(b) = δ (where γ and δ are suitable constants such that

γ−δ =
∫ b

a
f(x)dx). A problem with these boundary conditions is named

Neumann problem. Note that its solution is known up to an additive
constant.

In the two-dimensional case, the Dirichlet boundary-value problem
takes the following form: being given two functions f = f(x) and g =
g(x), find a function u = u(x) such that

−Δu(x) = f(x) for x ∈ Ω,

u(x) = g(x) for x ∈ ∂Ω
(9.11)

Alternatively to the boundary condition on (9.11), we can prescribe a
value for the partial derivative of u with respect to the normal direction
to the boundary ∂Ω, that is

∂u

∂n
(x) = ∇u(x) · n(x) = h(x) for x ∈ ∂Ω,

where h is a suitable function such that

∫

∂Ω

h = −
∫

Ω

f (see Figure 9.2),

in which case we will get a Neumann boundary-value problem.
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Ω

∂Ω

n(x)

Figure 9.2. A two-dimensional domain Ω and the unit outward normal versor
to ∂Ω

It can be proven that if f and g are two continuous functions and
the boundary ∂Ω of the region Ω is regular enough, then the Dirichlet
boundary-value problem (9.11) has a unique solution (while the solution
of the Neumann boundary-value problem is unique up to an additive
constant).

The numerical methods which are used for its solution are based on
the same principles used for the approximation of the one-dimensional
boundary-value problem. This is the reason why in Sections 9.2.1 and
9.2.3 we will make a digression on the numerical solution of problem
(9.10) with either finite difference and finite element methods, respec-
tively.

With this aim we introduce on [a, b] a partition into intervals Ij =
[xj , xj+1] for j = 0, . . . , N with x0 = a and xN+1 = b. We assume for
simplicity that all intervals have the same length h = (b− a)/(N + 1).

9.2.1 Finite difference approximation of the one-dimensional
Poisson problem

The differential equation (9.10) must be satisfied in particular at any
point xj (which we call nodes from now on) internal to (a, b), that is

−u′′(xj) = f(xj), j = 1, . . . , N.

We can approximate this set of N equations by replacing the second
derivative with a suitable finite difference as we have done in Chapter 4
for the first derivatives. In particular, we observe that if u : [a, b] → R

is a sufficiently smooth function in a neighborhood of a generic point
x̄ ∈ (a, b), then the quantity

δ2u(x̄) =
u(x̄+ h) − 2u(x̄) + u(x̄− h)

h2
(9.12)

provides an approximation to u′′(x̄) of order 2 with respect to h (see
Exercise 9.3). This suggests the use of the following approximation to
problem (9.10): find {uj}Nj=1 such that
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−uj+1 − 2uj + uj−1

h2
= f(xj), j = 1, . . . , N (9.13)

with u0 = α and uN+1 = β. Obviously, uj will be an approximation of
u(xj). Equations (9.13) provide a linear system

Auh = h2f , (9.14)

where uh = (u1, . . . , uN )T is the vector of unknowns, f = (f(x1) +
α/h2, f(x2), . . . , f(xN−1), f(xN )+ β/h2)T , and A is the tridiagonal ma-
trix

A = tridiag(−1, 2,−1) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 0 . . . 0

−1 2
. . .

...

0
. . .

. . . −1 0
... −1 2 −1
0 . . . 0 −1 2

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

. (9.15)

This system admits a unique solution since A is symmetric and positive
definite (see Exercise 9.1). Moreover, it can be solved by the Thomas
algorithm introduced in Section 5.6. We note however that, for small
values of h (and thus for large values of N), A is ill-conditioned. Indeed,
K(A) = λmax(A)/λmin(A) = Ch−2, for a suitable constant C indepen-
dent of h (see Exercise 9.2). Consequently, the numerical solution of sys-
tem (9.14), by either direct or iterative methods, requires special care. In
particular, when using iterative methods a suitable preconditioner ought
to be employed.

It is possible to prove (see, e.g., [QSS07, Chapter 12]) that if f ∈
C2([a, b]) then

max
j=0,...,N+1

|u(xj) − uj| ≤ (b− a)2h2

96
max
x∈[a,b]

|f ′′(x)| (9.16)

that is, the finite difference method (9.13) converges with order two with
respect to h.

In Program 9.1 we solve the following boundary-value problem (the
so-called diffusion-convection-reaction problem)

{−μu′′(x) + ηu′(x) + σu(x) = f(x) for x ∈ (a, b),

u(a) = α u(b) = β,
(9.17)

μ > 0, η and σ > 0 constants, which is a generalization of problem
(9.10).
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For this problem the finite difference method, which generalizes (9.13),
reads:
⎧
⎨

⎩
−μ

uj+1 − 2uj + uj−1

h2
+ η

uj+1 − uj−1

2h
+ σuj = f(xj), j = 1, . . . , N,

u0 = α, uN+1 = β.

The input parameters of Program 9.1 are the end-points a and b of
the interval, the number N of internal nodes, the constant coefficients
μ, η and σ and the function handle bvpfun associated with the function
f(x). Finally, ua and ub represent the values that the solution should
attain at x=a and x=b, respectively. Output parameters are the vector
of nodes xh and the computed solution uh. Notice that the solutions can
be affected by spurious oscillations if h ≥ 2μ/η (see next Section).

Program 9.1. bvp: approximation of a two-point diffusion-convection-reaction
problem by the finite difference method

function [xh,uh]=bvp(a,b,N,mu ,eta ,sigma ,bvpfun ,...
ua,ub,varargin )

%BVP Solves two -point boundary value problems .
% [XH,UH]=BVP(A,B,N,MU,ETA ,SIGMA ,BVPFUN ,UA ,UB)
% solves the boundary -value problem
% -MU*D(DU/DX)/DX+ETA*DU/DX+SIGMA*U=BVPFUN
% on the interval (A,B) with boundary conditions
% U(A)=UA and U(B)=UB, by the centered finite
% difference method at N equispaced nodes
% internal to (A,B). BVPFUN is a function handle.
% [XH,UH]=BVP(A,B,N,MU,ETA ,SIGMA ,BVPFUN ,UA ,UB ,...
% P1,P2 ,...) passes the additional parameters
% P1, P2, ... to the function BVPFUN.
% XH contains the nodes of the discretization ,
% including the boundary nodes.
% UH contains the numerical solutions .
h = (b-a)/(N+1);
xh = (linspace(a,b,N+2))’;
hm = mu/h^2;
hd = eta/(2*h);
e =ones(N,1);
A = spdiags([-hm*e-hd (2*hm+sigma)*e -hm*e+hd],...

-1:1, N, N);
xi = xh(2:end -1);
f =bvpfun(xi,varargin {:});
f(1) = f(1)+ ua*(hm+hd);
f(end) = f(end)+ub*(hm-hd);
uh = A\f;
uh=[ua; uh; ub];
return
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9.2.2 Finite difference approximation of a
convection-dominated problem

We consider now the following generalization of the boundary-value
problem (9.10)

−μu′′(x) + ηu′(x) = f(x) for x ∈ (a, b),

u(a) = α, u(b) = β,
(9.18)

μ and η being positive constants. This is the so-called convection-
diffusion problem since the terms −μu′′(x) and ηu′(x) are responsible
of diffusion and convection of the unknown function u(x), respectively.
The global Péclet number, associated to equation (9.18), is defined as

Pegl =
η(b− a)

2μ
, (9.19)

and it provides a measure of how much the convective term prevails
over the diffusive one. A problem featuring Pegl � 1 will be named
convection-dominated problem.

A possible discretization of (9.18) reads
⎧
⎪⎨

⎪⎩

−μuj+1 − 2uj + uj−1

h2
+ η

uj+1 − uj−1

2h
= f(xj), j = 1, . . . , N,

u0 = α, uN+1 = β,

(9.20)

in which the centered finite difference scheme (4.9) has been used to
approximate the convection term. As for the Poisson equation, one can
prove that the error between the solution of the discrete problem (9.20)
and that of the continuous problem (9.18) satisfies the following estimate

max
j=0,...,N+1

|u(xj) − uj | ≤ Ch2 max
x∈[a,b]

|f ′′(x)|. (9.21)

The constant C is proportional to Pegl, therefore it is very large when
the convection dominates the diffusion. Thus, if the discretization step
h is not small enough, the numerical solution computed by the scheme
(9.20) may be highly inaccurate and exhibit strong oscillations which are
far from satisfying the continuous problem. For a more detailed analysis
of this phenomenon we introduce the so-called local Péclet number (also
named “grid” Péclet number)

Pe =
ηh

2μ
. (9.22)

One can prove that the solution of the discrete problem (9.20) does not
exhibit oscillations if Pe < 1 (see [Qua13, Chap. 5]). Thus, in order to
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Figure 9.3. Exact solution (solid line), centered finite difference approxi-
mation with h = 1/15 (Pe > 1) (dotted line), centered finite difference ap-
proximation with h = 1/32 (Pe < 1) (dashed line), upwind finite difference
approximation with h = 1/15 (dashed-dotted line) of the solution of problem
(9.18) with a = 0, b = 1, α = 0, β = 1, f(x) = 0, μ = 1/50 and η = 1. For
clearness, numerical solutions have been plotted on the interval [0.6, 1] instead
of [0, 1]

ensure a good numerical solution, we have to choose a discretization step
h < 2μ/η. Unfortunately, such a choice is not convenient when the ratio
2μ/η is very small.

A possible alternative consists in choosing a different approximation
of the convective term u′; precisely, instead to use the centered finite
difference (4.9), we can employ the backward finite difference (4.8), so
that the system (9.20) is replaced by

⎧
⎨

⎩
−μuj+1 − 2uj + uj−1

h2
+ η

uj − uj−1

h
= f(xj), j = 1, . . . , N,

u0 = α, uN+1 = β,

(9.23)

which is known as upwind scheme. It is possible to prove that if (9.18)
is approximated by (9.23), then the yielded numerical solution will not
exhibit any oscillation, as the graphs reported in Figure 9.3 confirm.

9.2.3 Finite element approximation of the
one-dimensional Poisson problem

The finite element method represents an alternative to the finite differ-
ence method for the approximation of boundary-value problems and is
derived from a suitable reformulation of the differential problem (9.10).

Let us consider again (9.10) and multiply both sides of the differen-
tial equation by a generic function v ∈ C1([a, b]). Integrating the corre-
sponding equality on the interval (a, b) and using integration by parts
we obtain
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a bx1 x2 xN−1 xN

vh

xj−2 xj−1 xj+1 xj+2xj

ϕj

1

Figure 9.4. At left, a generic function vh ∈ V 0
h . At right, the basis function

of V 0
h associated with the jth node

b∫

a

u′(x)v′(x) dx− [u′(x)v(x)]ba =

b∫

a

f(x)v(x) dx.

By making the further assumption that v vanishes at the end-points
x = a and x = b, problem (9.10) becomes: find u ∈ C1([a, b]) such that
u(a) = α, u(b) = β and

b∫

a

u′(x)v′(x) dx =

b∫

a

f(x)v(x) dx (9.24)

for each v ∈ C1([a, b]) such that v(a) = v(b) = 0. This is called weak
formulation of problem (9.10). (Indeed, both u and the test function v
can be less regular than C1([a, b]), see, e.g. [Qua13], [QSS07], [QV94].)

Its finite element approximation is defined as follows:

find uh ∈ Vh such that uh(a) = α, uh(b) = β and

N∑

j=0

xj+1∫

xj

u′
h(x)v

′
h(x) dx =

b∫

a

f(x)vh(x) dx, ∀vh ∈ V 0
h

(9.25)

where

Vh =
{
vh ∈ C0([a, b]) : vh|Ij ∈ P1, j = 0, . . . , N

}
, (9.26)

i.e. Vh is the space of continuous functions on [a, b] whose restrictions
on every sub-interval Ij are linear polynomials. Moreover, V 0

h is the sub-
space of Vh of those functions vanishing at the end-points a and b. Vh is
called space of finite-elements of degree 1.

The functions in V 0
h are piecewise linear polynomials (see Figure 9.4,

left). In particular, every function vh of V 0
h admits the representation
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vh(x) =

N∑

j=1

vh(xj)ϕj(x),

where for j = 1, . . . , N,

ϕj(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x− xj−1

xj − xj−1
if x ∈ Ij−1,

x− xj+1

xj − xj+1
if x ∈ Ij ,

0 otherwise.

Thus, ϕj is null at every node xi except at xj where ϕj(xj) = 1 (see Fig-
ure 9.4, right). The functions ϕj , j = 1, . . . , N are called shape functions
and provide a basis for the vector space V 0

h .
Consequently, to fulfill (9.25) for any function in Vh is equivalent to

fulfill it only for the shape functions ϕj , j = 1, . . . , N . By exploiting the
fact that ϕj vanishes outside the intervals Ij−1 and Ij , from (9.25) we
obtain

∫

Ij−1∪Ij

u′
h(x)ϕ

′
j(x) dx =

∫

Ij−1∪Ij

f(x)ϕj(x) dx, j = 1, . . . , N. (9.27)

On the other hand, we can write uh(x) =
∑N

j=1 ujϕj(x) + αϕ0(x) +
βϕN+1(x), where uj = uh(xj), ϕ0(x) = (x1−x)/(x1−a) for a ≤ x ≤ x1,
and ϕN+1(x) = (x−xN )/(b−xN ) for xN ≤ x ≤ b, while both ϕ0(x) and
ϕN+1(x) are zero otherwise. By substituting this expression in (9.27),
we find:

u1

∫

I0∪I1

ϕ′
1(x)ϕ

′
1(x) dx+ u2

∫

I1

ϕ′
2(x)ϕ

′
1(x) dx

=

∫

I0∪I1

f(x)ϕ1(x) dx +
α

x1 − a
,

uj−1

∫

Ij−1

ϕ′
j−1(x)ϕ

′
j(x) dx+ uj

∫

Ij−1∪Ij

ϕ′
j(x)ϕ

′
j(x) dx

+uj+1

∫

Ij

ϕ′
j+1(x)ϕ

′
j(x) dx =

∫

Ij−1∪Ij

f(x)ϕj(x) dx, j = 2, . . . , N − 1,

uN−1

∫

IN−1

ϕ′
N−1(x)ϕ

′
N (x) dx+ uN

∫

IN−1∪IN

ϕ′
N (x)ϕ′

N (x) dx

=

∫

IN−1∪IN

f(x)ϕj(x) dx+
β

b− xN
.
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In the special case where all intervals have the same length h, then
ϕ′
j−1 = −1/h in Ij−1, ϕ

′
j = 1/h in Ij−1 and ϕ

′
j = −1/h in Ij , ϕ

′
j+1 = 1/h

in Ij . Consequently, we obtain

2u1 − u2 = h

∫

I0∪I1

f(x)ϕ1(x) dx+ α,

−uj−1 + 2uj − uj+1 = h

∫

Ij−1∪Ij

f(x)ϕj(x) dx, j = 2, . . . , N − 1,

−uN−1 + 2uN = h

∫

IN−1∪IN

f(x)ϕN (x) dx+ β.

The yielded linear system has unknowns {u1, . . . , uN} and shares the
same matrix (9.15) as the finite difference system, however it has a dif-
ferent right-hand side (and a different solution too, in spite of coincidence
of notation). Finite difference and finite element solutions share however
the same accuracy with respect to h when the nodal maximum error is
computed.

We notice that 2nd-order convergence with respect to h is guaranteed
for finite difference approximation if f ∈ C2([a, b]) (see (9.21)), while for
finite elements it is sufficient that f be a square-integrable function in
(a, b), i.e.,

∫ b

a

f2(x)dx < +∞.

Obviously the finite element approach can be generalized to problems
like (9.17) (also in the case when μ, η and σ depend on x) and (9.18).

To approximate the convection-dominated problem (9.18), the up-
wind scheme used for finite differences can be reproduced also for finite-
elements. More precisely, by noting that

ui − ui−1

h
=
ui+1 − ui−1

2h
− h

2

ui+1 − 2ui + ui−1

h2
,

we can conclude that decentralizing finite differences is equivalent to
perturb the centered incremental ratio by a term corresponding to a
second-order derivative. This additional term can be interpreted as an
artificial viscosity. In other words, using upwind with finite-elements is
equivalent to solve, by the (centered) Galerkin method, the following
perturbed problem

−μhu
′′(x) + ηu′(x) = f(x), (9.28)

where μh = (1 + Pe)μ is the augmented viscosity.
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A further generalization of linear finite element methods consists
of using piecewise polynomials of degree greater than 1, allowing the
achievement of higher convergence orders. In these cases, the finite ele-
ment matrix does not coincide anymore with that of finite differences.

See Exercises 9.1-9.7.

9.2.4 Finite difference approximation of the two-dimensional
Poisson problem

Let us consider the Poisson problem (9.2), in a two-dimensional region
Ω.

The idea behind finite differences relies on approximating the partial
derivatives that are present in the PDE again by incremental ratios com-
puted on a suitable grid (called the computational grid) made of a finite
number of nodes. Then the solution u of the PDE will be approximated
only at these nodes.

The first step therefore consists of introducing a computational grid.
Assume for simplicity that Ω is the rectangle (a, b) × (c, d). Let us in-
troduce a partition of [a, b] in subintervals (xi, xi+1) for i = 0, . . . , Nx,
with x0 = a and xNx+1 = b. Let us denote by Δx = {x0, . . . , xNx+1} the
set of end-points of such intervals and by hx = max

i=0,...,Nx

(xi+1 − xi) their

maximum length.
In a similar manner we introduce a discretization of the y-axis Δy =

{y0, . . . , yNy+1} with y0 = c, yNy+1 = d and hy = max
j=0,...,Ny

(yj+1 − yj).

The cartesian product Δh = Δx×Δy provides the computational grid on
Ω (see Figure 9.5), and h = max{hx, hy} is a characteristic measure of
the grid-size. We are looking for values ui,j which approximate u(xi, yj).
We will assume for the sake of simplicity that the nodes be uniformly
spaced, that is, xi = x0 + ihx for i = 0, . . . , Nx+1 and yj = y0 + jhy for
j = 0, . . . , Ny + 1.

The second order partial derivatives of a function can be approxi-
mated by a suitable incremental ratio, as we did for ordinary deriva-
tives. In the case of a function of two variables, we define the following
incremental ratios:

δ2xui,j =
ui−1,j − 2ui,j + ui+1,j

h2x
,

δ2yui,j =
ui,j−1 − 2ui,j + ui,j+1

h2y
.

(9.29)

They are second order accurate with respect to hx and hy, respectively,
for the approximation of ∂2u/∂x2 and ∂2u/∂y2 at the node (xi, yj). If
we replace the second order partial derivatives of u with the formula
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Figure 9.5. The computational grid Δh with only 15 internal nodes on a
rectangular domain

(9.29), by requiring that the PDE is satisfied at all internal nodes of Δh,
we obtain the following set of equations:

−(δ2xui,j + δ2yui,j) = fi,j , i = 1, . . . , Nx, j = 1, . . . , Ny. (9.30)

We have set fi,j = f(xi, yj). We must add the equations that enforce
the Dirichlet data at the boundary, which are

ui,j = gi,j ∀i, j such that (xi, yj) ∈ ∂Δh, (9.31)

where ∂Δh indicates the set of nodes belonging to the boundary ∂Ω of
Ω. These nodes are indicated by small squares in Figure 9.5. If we make
the further assumption that the computational grid is uniform in both
cartesian directions, that is, hx = hy = h, instead of (9.30) we obtain

− 1

h2
(ui−1,j + ui,j−1 − 4ui,j + ui,j+1 + ui+1,j) = fi,j ,

i = 1, . . . , Nx, j = 1, . . . , Ny

(9.32)

The system given by equations (9.32) (or (9.30)) and (9.31) allows the
computation of the nodal values ui,j at all nodes of Δh. For every fixed
pair of indices i and j, equation (9.32) involves five unknown nodal values
as we can see in Figure 9.6. For that reason this finite difference scheme
is called the five-point scheme for the Laplace operator. We note that
the unknowns associated with the boundary nodes can be eliminated
using (9.31) and therefore (9.30) (or (9.32)) involves only N = NxNy

unknowns.
The resulting system can be written in a more interesting form if

we adopt the lexicographic order according to which the nodes (and,
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(i, j) (i+1, j)(i−1, j)

(i, j−1)

(i, j+1)

Figure 9.6. The stencil of the five point scheme for the Laplace operator

correspondingly, the unknown components) are numbered by proceeding
from left to right and from the bottom to the top. By so doing, we obtain
a system like (9.14), with a matrix A ∈ R

N×N which takes the following
block tridiagonal form:

A = tridiag(D,T,D). (9.33)

There are Ny rows and Ny columns, and every entry (denoted by a
capital letter) consists of a Nx×Nx matrix. In particular, D ∈ R

Nx×Nx is
a diagonal matrix whose diagonal entries are −1/h2y, while T ∈ R

Nx×Nx

is a symmetric tridiagonal matrix

T = tridiag(− 1

h2x
,
2

h2x
+

2

h2y
,− 1

h2x
).

A is symmetric since all diagonal blocks are symmetric. It is also positive
definite, that is vTAv > 0 ∀v ∈ R

N , v �= 0. Actually, by partitioning v
in Ny vectors vk of length Nx we obtain

vTAv =

Ny∑

k=1

vT
k Tvk − 2

h2y

Ny−1∑

k=1

vT
k vk+1. (9.34)

We can write T = 2/h2yI + 1/h2xK where K is the (symmetric and
positive definite) matrix given in (9.15) and I is the identity matrix.
Consequently, using the identity 2a(a− b) = a2 − b2 +(a− b)2 and some
algebraic manipulation, (9.34) reads

vTAv =
1

h2x

Ny−1∑

k=1

vT
k Kvk

+
1

h2y

⎛

⎝vT
1 v1 + vT

Ny
vNy +

Ny−1∑

k=1

(vk − vk+1)
T (vk − vk+1)

⎞

⎠ ,

which is a strictly positive real number since K is positive definite and
at least one vector vk is non-null.
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Figure 9.7. Pattern of the matrix associated with the five-point scheme using
the lexicographic ordering of the unknowns

Having proven that A is non-singular we can conclude that the finite
difference system admits a unique solution uh.

The matrix A is sparse; as such, it will be stored in the format sparse
of MATLAB (see Section 5.3). In Figure 9.7 (obtained by using the
command spy(A)) we report the structure of the matrix corresponding
to a uniform grid of 11× 11 nodes, after having eliminated the rows and
columns associated to the nodes of ∂Δh. It can be noted that the only
nonzero elements lie on five diagonals.

Since A is symmetric and positive definite, the associated system can
be solved efficiently by either direct or iterative methods, as illustrated
in Chapter 5. Finally, it is worth pointing out that A shares with its
one-dimensional analog the property of being ill-conditioned: indeed, its
condition number grows like h−2 as h tends to zero.

In the Program 9.2 we construct and solve the system (9.30)-(9.31)
(using the command \, see Section 5.8). The input parameters a, b,
c and d denote the endpoints of the intervals generating the domain
Ω = (a, b)× (c, d), while nx and ny denote the values of Nx and Ny (the
case Nx �= Ny is admitted). Finally, the two function handles fun and
bound are associated with the right-hand side f = f(x, y) (otherwise
called the source term) and the Dirichlet boundary data g = g(x, y),
respectively. The output variable uh is a matrix whose j, ith entry is
ui,j , while xh and yh are vectors whose components are the nodes xi and
yj , respectively, all including the nodes of the boundary. The numerical
solution can be visualized by the command mesh(x,y,u). The (optional)mesh

input function uex stands for the exact solution of the original problem
for those cases (of theoretical interest) where this solution is known. In
such cases the output parameter error contains the nodal relative error
between the exact and numerical solution, which is computed as follows:

error = max
i,j

|u(xi, yj) − ui,j |
/
max
i,j

|u(xi, yj)|.
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Program 9.2. poissonfd: approximation of the Poisson problem with
Dirichlet boundary data by the five-point finite difference method

function [xh,yh ,uh,error]= poissonfd (a,b,c,d,nx,ny ,...
fun ,bound ,uex ,varargin )

%POISSONFD two -dimensional Poisson solver
% [XH,YH,UH]= POISSONFD (A,B,C,D,NX,NY,FUN ,BOUND) solves
% by the five -point finite difference scheme the
% problem -LAPL(U) = FUN in the rectangle (A,B)X(C,D)
% with Dirichlet boundary conditions U(X,Y)=BOUND(X,Y)
% at any (X,Y) on the boundary of the rectangle .
% [XH,YH,UH,ERROR]= POISSONFD (A,B,C,D,NX,NY ,FUN ,...
% BOUND ,UEX) computes also the maximum nodal error
% ERROR with respect to the exact solution UEX.
% FUN ,BOUND and UEX are function handles.
% [XH,YH,UH,ERROR]= POISSONFD (A,B,C,D,NX,NY ,FUN ,...
% BOUND ,UEX ,P1 ,P2, ...) passes the optional arguments
% P1,P2 ,... to the functions FUN ,BOUND ,UEX.
if nargin == 8

uex = @(x,y)0+0*x+0*y;
end
nx1 = nx+2; ny1=ny+2; dim = nx1*ny1;
hx = (b-a)/(nx+1); hy = (d-c)/(ny+1);

hx2 = hx^2; hy2 = hy^2;
kii = 2/hx2+2/hy2; kix = -1/hx2; kiy = -1/hy2;
K = speye(dim ,dim); rhs = zeros(dim ,1);
y = c;
for m = 2:ny+1
x = a; y = y + hy;
for n = 2:nx+1

i = n+(m-1)* nx1; x = x + hx;
rhs(i) = fun(x,y,varargin {:});
K(i,i) = kii; K(i,i-1) = kix; K(i,i+1) = kix;
K(i,i+nx1) = kiy; K(i,i-nx1) = kiy;

end
end
rhs1 = zeros(dim ,1); xh = [a:hx:b]’; yh = [c:hy:d];
rhs1 (1:nx1) = bound(xh,c,varargin {:});
rhs1 (dim -nx -1:dim) = bound(xh ,d,varargin {:});
rhs1 (1:nx1:dim -nx -1) = bound(a,yh,varargin {:});
rhs1 (nx1:nx1:dim) = bound(b,yh ,varargin {:});
rhs = rhs - K*rhs1;
nbound = [[1: nx1],[dim -nx -1:dim],[1:nx1:dim -nx -1],...

[nx1:nx1:dim ]];
ninternal = setdiff ([1: dim],nbound);
K = K(ninternal ,ninternal );
rhs = rhs(ninternal );
utemp = K\ rhs;
u = rhs1; u ( ninternal ) = utemp;
k = 1; y = c;
for j = 1:ny1

x = a;
for i = 1:nx1

uh(j,i) = u(k); k = k + 1;
ue(j,i) = uex(x,y,varargin {:});
x = x + hx;

end
y = y + hy;
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end
if nargout == 4 & nargin >= 9

error = max(max(abs(uh-ue )))/ max(max(abs(ue)));
elseif nargout == 4 & nargin ==8

warning(’Exact solution not available ’);
error = [ ];

end
end

Example 9.1 The transverse displacement u of an elastic membrane from the
reference plane z = 0, under a load whose intensity is f(x, y) = 8π2 sin(2πx)
cos(2πy), satisfies a Poisson problem like (9.2) in the domain Ω = (0, 1)2. The
Dirichlet value of the displacement is prescribed on ∂Ω as follows: g = 0 on
the sides x = 0 and x = 1, and g(x, 0) = g(x, 1) = sin(2πx), 0 < x < 1.
This problem admits the exact solution u(x, y) = sin(2πx) cos(2πy). In Figure
9.8 we show the numerical solution obtained by the five-point finite difference
scheme on a uniform grid. Two different values of h have been used: h = 1/10
(left) and h = 1/20 (right). When h decreases the numerical solution improves,
and actually the nodal relative error is 0.0292 for h = 1/10 and 0.0081 for
h = 1/20. �

Also the finite element method can be easily extended to the two-
dimensional case. To this end the problem (9.2) must be reformulated
in an integral form and the partition of the interval (a, b) in one dimen-
sion must be replaced by a decomposition of Ω by polygons (typically,
triangles) called elements. The generic shape function ϕk will still be a
continuous function, whose restriction on each element is a polynomial of
degree 1 on each element, which is equal to 1 at the kth vertex (or node)
of the triangulation and 0 at all other vertices. For its implementation
one can use the MATLAB toolbox pde.pde

Figure 9.8. Transverse displacement of an elastic membrane computed on
two uniform grids, coarser at left and finer at right. On the horizontal plane
we report the isolines of the numerical solution. The triangular partition of Ω
only serves the purpose of the visualization of the results
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9.2.5 Consistency and convergence of finite difference
discretization of the Poisson problem

In the previous section we have shown that the solution of the finite
difference problem exists and is unique. Now we investigate the approx-
imation error. We will assume for simplicity that hx = hy = h. If

max
i,j

|u(xi, yj) − ui,j | → 0 as h → 0 (9.35)

the method used to compute ui,j is called convergent.
As we have already pointed out (see Remark 8.1), consistency is

a necessary condition for convergence. A method is consistent if the
residual, that is the error obtained when the exact solution is plugged
into the numerical scheme, tends to zero when h tends to zero. If we
consider the five point finite difference scheme, at every internal node
(xi, yj) of Δh we define

τh(xi, yj) = −f(xi, yj)

− 1

h2
[u(xi−1, yj) + u(xi, yj−1) − 4u(xi, yj) + u(xi, yj+1) + u(xi+1, yj)] .

This is the local truncation error at the node (xi, yj). By (9.2) we obtain

τh(xi, yj) =

{
∂2u

∂x2
(xi, yj) − u(xi−1, yj) − 2u(xi, yj) + u(xi+1, yj)

h2

}

+

{
∂2u

∂y2
(xi, yj) − u(xi, yj−1) − 2u(xi, yj) + u(xi, yj+1)

h2

}
.

Thanks to the analysis that was carried out in Section 9.2.4 we can
conclude that both terms vanish as h tends to 0. Thus

lim
h→0

τh(xi, yj) = 0, (xi, yj) ∈ Δh \ ∂Δh,

that is, the five-point method is consistent.
It is also convergent, as stated in the following Proposition (for its

proof, see, e.g., [IK66]):

Proposition 9.1 Assume that the exact solution u ∈ C4(Ω̄), i.e.
all its partial derivatives up to the fourth order are continuous in
the closed domain Ω̄. Then there exists a constant C > 0 such that

max
i,j

|u(xi, yj) − ui,j| ≤ CMh2 (9.36)

where M is the maximum absolute value attained by the fourth order
derivatives of u in Ω̄.
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Example 9.2 Let us experimentally verify that the five-point scheme applied
to solve the Poisson problem of Example 9.1 converges with order two with
respect to h. We start from h = 1/4 and, then we halve subsequently the value
of h, until h = 1/64, through the following instructions:

a=0;b=1;c=0;d=1;
f=@(x,y) 8*pi^2* sin(2*pi*x).* cos(2*pi*y);

g=@(x,y) sin(2*pi*x).*cos(2*pi*y);
uex=g; nx=4; ny=4;
for n=1:5

[xh,yh,uh,error(n)]= poissonfd (a,b,c,d,nx,ny,f,g,uex);
nx = 2*nx; ny = 2*ny;

The vector containing the error is

format short e; error

1.3565e-01 4.3393e-02 1.2308e-02 3.2775e-03 8.4557e-04

As we can verify using the following commands (see formula (1.12))

log(abs(error(1:end-1)./error(2:end)))/log(2)

1.6443e+00 1.8179e+00 1.9089e+00 1.9546e+00

this error decreases as h2 when h → 0. �

9.2.6 Finite difference approximation of the one-dimensional
heat equation

We consider the one-dimensional heat equation (9.4) with homogeneous
Dirichlet boundary conditions u(a, t) = u(b, t) = 0 for any t > 0 and
initial condition u(x, 0) = u0(x) for x ∈ [a, b].

To solve this equation numerically we have to discretize both the x
and t variables. We can start by dealing with the x-variable, following the
same approach as in Section 9.2.1. We denote by uj(t) an approximation
of u(xj , t), j = 0, . . . , N+1, and approximate the Dirichlet problem (9.4)
by the scheme: for all t > 0
⎧
⎨

⎩

duj
dt

(t) − μ

h2
(uj−1(t) − 2uj(t) + uj+1(t)) = fj(t), j = 1, . . . , N,

u0(t) = uN+1(t) = 0,

where fj(t) = f(xj , t) and, for t = 0,

uj(0) = u0(xj), j = 0, . . . , N + 1.

This is actually a semi-discretization of the heat equation, yielding a
system of ordinary differential equations of the following form

⎧
⎨

⎩

du

dt
(t) = − μ

h2
Au(t) + f(t) ∀t > 0,

u(0) = u0,

(9.37)
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where u(t) = (u1(t), . . . , uN(t))T is the vector of unknowns, f(t) =
(f1(t), . . . , fN(t))T , u0 = (u0(x1), . . . , u

0(xN ))T , and A is the tridiag-
onal matrix introduced in (9.15). Note that for the derivation of (9.37)
we have assumed that u0(x0) = u0(xN+1) = 0, which is coherent with
the homogeneous Dirichlet boundary conditions.

A popular scheme for the integration in time of (9.37) is the so-called
θ−method. Let Δt > 0 be a constant time-step, and denote by vk the
value of a variable v referred at the time level tk = kΔt. Then the θ-
method reads

uk+1 − uk

Δt
= − μ

h2
A(θuk+1 + (1 − θ)uk) + θfk+1 + (1 − θ)fk,

k = 0, 1, . . .
u0 given

(9.38)
or, equivalently,

(
I +

μ

h2
θΔtA

)
uk+1 =

(
I − μ

h2
Δt(1 − θ)A

)
uk + gk+1, (9.39)

where gk+1 = Δt(θfk+1+(1− θ)fk) and I is the identity matrix of order
N .

For suitable values of the parameter θ, from (9.39) we can recover
some familiar methods that have been introduced in Chapter 8. For
example, if θ = 0 the method (9.39) coincides with the forward Euler
scheme and we can obtain uk+1 explicitly; otherwise, a linear system
(with constant matrix I + μθΔtA/h2) needs to be solved at each time
level.

Regarding stability, when f = 0 the exact solution u(x, t) tends to
zero for every x as t → ∞. Then we would expect the discrete solution to
have the same behavior, in which case we would call our scheme (9.39)
asymptotically stable, this being coherent with the absolute stability con-
cept defined in Section 8.6 for ordinary differential equations.

In order to study asymptotic stability, let us consider the equation
(9.39) with g(k+1) = 0 ∀k ≥ 0.

If θ = 0, it follows that

uk = (I − μΔtA/h2)ku0, k = 1, 2, . . .

whence uk → 0 as k → ∞ iff

ρ(I − μΔtA/h2) < 1. (9.40)

On the other hand, the eigenvalues λj of A are given by

λj = 2 − 2 cos(jπ/(N + 1)) = 4 sin2(jπ/(2(N + 1))), j = 1, . . . , N
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(see Exercise 9.2). Then (9.40) is satisfied if

Δt <
1

2μ
h2.

As expected, the forward Euler method is conditionally asymptotically
stable, under the condition that the time-step Δt should decay as the
square of the grid spacing h.

In the case of the backward Euler method (θ = 1), we would have
from (9.39)

uk =
[
(I + μΔtA/h2)−1

]k
u0, k = 1, 2, . . .

Since all the eigenvalues of the matrix (I+μΔtA/h2)−1 are real, positive
and strictly less than 1 for every value of Δt, this scheme is uncondi-
tionally asymptotically stable. More generally, the θ-scheme is uncon-
ditionally asymptotically stable for all the values 1/2 ≤ θ ≤ 1, and
conditionally asymptotically stable if 0 ≤ θ < 1/2 (see, for instance,
[QSS07, Chapter 13]).

As far as the accuracy of the θ-method is concerned, its local trunca-
tion error behaves like Δt+h2 if θ �= 1

2 while it is of the order of Δt2+h2

if θ = 1
2 . The latter is the Crank-Nicolson method (see Section 8.4) and is

therefore unconditionally asymptotically stable; the corresponding global
(in both space and time) discretization scheme is second-order accurate
with respect to both Δt and h.

The same conclusions hold for the heat equation in a two-dimensional
domain. In this case in the scheme (9.38) one must substitute to the
matrix A/h2 the finite difference matrix defined in (9.33).

Program 9.3 solves numerically the heat equation on the time interval
(0, T ) and on the domain Ω = (a, b) using the θ-method. The input
parameters are the vectors xspan=[a,b] and tspan=[0,T], the number
of discretization intervals in space (nstep(1)) and in time (nstep(2)),
the scalar mu which contains the positive real coefficient μ, the function
handles u0, fun and g associated with the initial function u0(x), the right
hand side f(x, t) and the Dirichlet datum g(x, t), respectively. Finally,
the variable theta contains the coefficient θ. The output variable uh

contains the numerical solution at the final time t = T .

Program 9.3. heattheta: θ-method for the one-dimensional heat equation

function [xh,uh]= heattheta (xspan ,tspan ,nstep ,mu ,...
u0,g,f,theta , varargin)

%HEATTHETA Solves the heat equation with the
% theta -method.
% [XH,UH]= HEATTHETA (XSPAN ,TSPAN ,NSTEP ,MU,U0 ,G,F,THETA)
% solves the heat equation D U/DT - MU D^2U/DX^2 = F
% in (XSPAN(1), XSPAN (2)) X (TSPAN(1), TSPAN (2)) using
% the theta -method with initial condition U(X ,0)= U0(X)
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% and Dirichlet boundary conditions U(X,T)=G(X,T) at
% X=XSPAN(1) and X=XSPAN (2).
% MU is a positive constant , F=F(X,T), G=G(X,T) and
% U0=U0(X) are function handles.
% NSTEP(1) is the number of space integration intervals
% NSTEP(2) is the number of time -integration intervals
% XH contains the nodes of the discretization .
% UH contains the numerical solutions at time TSPAN (2).
% [XH,UH]= HEATTHETA (XSPAN ,TSPAN ,NSTEP ,MU,U0 ,G,F,...
% THETA ,P1,P2 ,...) passes the additional parameters
% P1,P2 ,... to the functions U0 ,G,F.

h = (xspan(2)- xspan (1))/nstep (1);
dt = (tspan(2)- tspan (1))/nstep (2);
N = nstep (1)+1;
e = ones(N,1);
D = spdiags([-e 2*e -e],[-1,0,1],N,N);
I = speye(N);
A = I+mu*dt*theta*D/h^2;
An = I-mu*dt*(1- theta)*D/h^2;
A(1,:) = 0; A(1,1) = 1;
A(N,:) = 0; A(N,N) = 1;
xh = (linspace(xspan(1), xspan(2),N))’;
fn = f(xh,tspan(1), varargin {:});
un = u0(xh,varargin {:});
[L,U]=lu(A);
for t = tspan (1)+ dt:dt:tspan(2)

fn1 = f(xh,t,varargin {:});
rhs = An*un+dt*( theta*fn1+(1- theta)*fn);
temp = g([ xspan(1), xspan(2)],t,varargin {:});
rhs([1,N]) = temp;
uh = L\rhs; uh = U\uh; fn = fn1; un = uh;

end
return

Example 9.3 We consider the heat equation (9.4) in (a, b) = (0, 1) with
μ = 1, f(x, t) = − sin(x) sin(t)+sin(x) cos(t), initial condition u(x, 0) = sin(x)
and boundary conditions u(0, t) = 0 and u(1, t) = sin(1) cos(t). In this case
the exact solution is u(x, t) = sin(x) cos(t). In Figure 9.9 we compare the
behavior of the errors maxi=0,...,N |u(xi, 1) − uM

i | with respect to the time-
step on a uniform grid in space with h = 0.002. {uM

i } are the values of the
finite difference solution computed at time tM = 1. As expected, for θ = 0.5
the θ-method is second order accurate until when the time-step is so small that
the spatial error dominates over the error due to the temporal discretization.
. �

Example 9.4 (Thermodynamics) We consider a homogeneous, three me-
ters long aluminium bar with uniform section. We are interested in simulating
the evolution of the temperature in the bar starting from a suitable initial
condition, by solving the heat equation (9.5). If we impose adiabatic condi-
tions on the lateral surface of the bar (i.e. homogeneous Neumann conditions),
and Dirichlet conditions at the end sections of the bar, the temperature only
depends on the axial space variable (denoted by x). Thus the problem can
be modeled by the one-dimensional heat equation (9.7) with f = 0, com-
pleted by the initial condition at t = t0 and by Dirichlet boundary con-
ditions at the endpoints of the reduced computational domain Ω = (0, L)
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Figure 9.9. Error versus Δt for the θ-method (for θ = 1, solid line, and
θ = 0.5 dashed line), for three different values of h: 0.008 (�), 0.004 (◦) and
0.002 (no symbols)

(L = 3m). Pure aluminium has thermal conductivity k = 237 W/(m K), den-
sity ρ = 2700kg/m3 and specific heat capacity c = 897 J/(kg K), then its
thermal diffusivity is μ = 9.786 · 10−5m2/s. Finally we consider the initial
condition T (x, 0) = 500 K if x ∈ (1, 2), 250 K otherwise and the Dirich-
let boundary conditions T (0, t) = T (3, t) = 250 K. In Figure 9.10 we report
the evolution of the temperature starting from the initial data, computed by
the backward Euler method (θ = 1, left) and by the Crank-Nicolson method
(θ = 0.5, right) (using Program 9.3).
The results show that when the time-step is large (Δt = 20sec), the Crank-
Nicolson method is unstable because of the low smoothness of the initial datum
(about this point, see also [QV94, Chapter 11]). On the contrary, the implicit
Euler method provides a stable solution because it is more dissipative than
Crank-Nicolson. Both methods compute a solution that decays to the correct
value 250 K as t → ∞. �

9.2.7 Finite element approximation of the
one-dimensional heat equation

The space discretization of the heat equation (9.4) with homogeneous
Dirichlet boundary conditions u(a, t) = u(b, t) = 0, ∀t > 0 can be ac-
complished using the Galerkin finite element method by proceeding as
we did in Section 9.2.3 for the Poisson equation. First, for all t > 0 we
multiply (9.4) by a test function v = v(x) ∈ C1([a, b]) and we integrate
the resulting equation over (a, b). For all t > 0 we therefore look for a
function t → u(x, t) ∈ C1([a, b]) such that

∫ b

a

∂u

∂t
(x, t)v(x)dx +

∫ b

a

μ
∂u

∂x
(x, t)

dv

dx
(x)dx = (9.41)

=

∫ b

a

f(x)v(x)dx ∀v ∈ C1([a, b]),
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Figure 9.10. Temperature profiles in an aluminium bar at different time levels
(from t = 0 to t = 2000 seconds with time-step Δt of 0.25 seconds (top) and
20 seconds (bottom)), obtained using the backward Euler method (left) and
the Crank-Nicolson method (right). In both cases, the space discretization is
carried out by centered finite differences with steplength h = 0.01. The zoom
on the solutions for Δt = 20sec (at bottom) shows instability of the Crank-
Nicolson scheme

with u(x, 0) = u0(x). To simplify notations, from now on the dependence
on variable x in u, v and f will be understood.

Equation (9.41) keeps holding also for functions v less regular than
C1([a, b]), e.g., like those of the space Vh defined in (9.26). Therefore,
we consider the following Galerkin formulation: ∀t > 0, find uh(t) ∈ Vh
such that
∫ b

a

∂uh
∂t

(t)vhdx+

∫ b

a

μ
∂uh
∂x

(t)
dvh
dx

dx =

∫ b

a

f(t)vhdx ∀vh ∈ Vh, (9.42)

where uh(0) = u0h and u0h ∈ Vh is a convenient approximation of u0.
Formulation (9.42) is called semi-discretization of problem (9.41), since
only the space discretization (not yet the time) was carried out.

For what concerns the finite element discretization of (9.42), let us
consider the basis functions ϕj introduced in Section 9.2.3. Then, the
solution uh of (9.42) can be sought under the form

uh(t) =

N∑

j=1

uj(t)ϕj ,
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where {uj(t)} are the unknown coefficients and N is the dimension of
Vh.
Then, from (9.42) we obtain

∫ b

a

N∑

j=1

duj
dt

(t)ϕjϕidx+ μ

∫ b

a

N∑

j=1

uj(t)
dϕj

dx

dϕi

dx
dx =

=

∫ b

a

f(t)ϕidx, i = 1, . . . , N

that is,

N∑

j=1

duj
dt

(t)

∫ b

a

ϕjϕidx+ μ

N∑

j=1

uj(t)

∫ b

a

dϕj

dx

dϕi

dx
dx =

=

∫ b

a

f(t)ϕidx, i = 1, . . . , N.

Using the same notations as in (9.37) we obtain

M
du

dt
(t) + Afeu(t) = ffe(t), (9.43)

where (Afe)ij = μ
∫ b

a
dϕj

dx
dϕi

dx dx, (ffe(t))i =
∫ b

a
f(t)ϕidx and Mij =

(
∫ b

aϕjϕidx) for i, j = 1, . . . , N . M is called the mass matrix. Since it
is not singular, the system of ordinary differential equations (9.43) can
be written in normal form as

du

dt
(t) = −M−1Afeu(t) +M−1ffe(t). (9.44)

To solve (9.43) approximately, we can still apply the θ-method and obtain

M
uk+1 − uk

Δt
+Afe

[
θuk+1 + (1 − θ)uk

]
= θfk+1

fe + (1 − θ)fkfe. (9.45)

As usual, the upper index k means that the quantity at hand is computed
at time tk = kΔt, Δt > 0 being the time discretization step. As in the
finite difference case, for θ = 0, 1 and 1/2, we respectively obtain the
forward Euler, backward Euler and Crank-Nicolson methods, the latter
being the only one which is second-order accurate with respect to Δt.
For each k, (9.45) is a linear system whose matrix is

K =
1

Δt
M+ θAfe.

Since both matrices M and Afe are symmetric and positive definite, the
matrix K is also symmetric and positive definite. Moreover, K is in-
dependent of k and then it can be factorized once at t = 0. For the
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one-dimensional case that we are handling, this factorization is based
on the Thomas method (see Section 5.6) and it requires a number of
operation proportional to N . In the multidimensional case the use of the
Cholesky factorization K = RTR, R being an upper triangular matrix
(see (5.17)), will be more convenient. Consequently, at each time level
the following two linear triangular systems, each of size equal to N , must
be solved:

⎧
⎨

⎩
RTy =

[
1

Δt
M − (1 − θ)Afe

]
uk + θfk+1

fe + (1 − θ)fkfe,

Ruk+1 = y.

When θ = 0, a suitable diagonalization of M would allow to decouple the
system equations (9.45). The procedure is carried out by the so-called
mass-lumping in which we approximate M by a non-singular diagonal
matrix M̃. In the case of piecewise linear finite elements, M̃ can be ob-
tained using the composite trapezoidal formula over the nodes {xi} to

evaluate the integrals
∫ b

a
ϕjϕi dx, obtaining m̃ij = hδij , i, j = 1, . . . , N .

If θ ≥ 1/2, the θ-method is unconditionally stable for every positive
value of Δt, while if 0 ≤ θ < 1/2 the θ-method is stable only if

0 < Δt ≤ 2

(1 − 2θ)λmax(M−1Afe)
,

to this aim see [Qua13, Chap. 5]. Moreover, it is possible to prove that
there exist two positive constants c1 and c2, independent of h, such that

c1h
−2 ≤ λmax(M

−1Afe) ≤ c2h
−2

(see [QV94, Section 6.3.2] for a proof). Thanks to this property, if 0 ≤
θ < 1/2 the method is stable only if

0 < Δt ≤ C1(θ)h
2, (9.46)

where C1(θ) is a suitable constant independent of both discretization
parameters h and Δt.

9.3 Hyperbolic equations: a scalar pure advection
problem

Let us consider the following scalar hyperbolic problem

⎧
⎨

⎩

∂u

∂t
+ a

∂u

∂x
= 0, x ∈ R, t > 0,

u(x, 0) = u0(x), x ∈ R,

(9.47)

where a is a positive real number. Its solution is given by
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Figure 9.11. At left: examples of characteristics which are straight lines is-
suing from the points P and Q. At right: characteristic straight lines for the
Burgers equation (9.51)

u(x, t) = u0(x − at), t ≥ 0,

and represents a wave travelling with velocity a. The curves (x(t), t)
in the plain (x, t), that satisfy the following scalar ordinary differential
equation

⎧
⎨

⎩

dx

dt
(t) = a, t > 0,

x(0) = x0,

(9.48)

are called characteristic curves (or, simply, characteristics), and are the
straight lines x(t) = x0 + at, t > 0. The solution of (9.47) remains
constant along them since

du

dt
=
∂u

∂t
+
∂u

∂x

dx

dt
= 0 on (x(t), t).

For the more general problem

⎧
⎨

⎩

∂u

∂t
+ a

∂u

∂x
+ a0u = f, x ∈ R, t > 0,

u(x, 0) = u0(x), x ∈ R,

(9.49)

where a, a0 and f are given functions of the variables (x, t), the charac-
teristic curves are still defined as in (9.48). In this case, the solutions of
(9.49) satisfy along the characteristics the following differential equation

du

dt
= f − a0u on (x(t), t).

Let us now consider problem (9.47) on a bounded interval [α, β]
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⎧
⎨

⎩

∂u

∂t
+ a

∂u

∂x
= 0, x ∈ (α, β), t > 0,

u(x, 0) = u0(x), x ∈ (α, β).

(9.50)

Let us start with a > 0. Since u is constant along the characteristics,
from Figure 9.11, left, we deduce that the value of the solution at P
attains the value of u0 at P0, the foot of the characteristic issuing from
P . On the other hand, the characteristic issuing from Q intersects the
straight line x(t) = α at a certain time t = t̄ > 0. Thus, the point x = α
is an inflow point and it is necessary to assign there a boundary value for
u, for every t > 0. Notice that if a < 0 then the inflow point is x = β and
it is necessary to assign there a boundary value for u, for every t > 0.

Referring to problem (9.47) it is worth noting that if u0 is discon-
tinuous at a point x0, then such a discontinuity propagates along the
characteristics issuing from x0. This process can be made rigorous by in-
troducing the concept of weak solutions of hyperbolic problems, see e.g.
[GR96]. Another reason for introducing weak solutions is that in the case
of nonlinear hyperbolic problems the characteristic lines can intersect:
in this case the solution cannot be continuous and no classical solution
does exist.

Example 9.5 (Burgers equation) Let us consider the Burgers equation

∂u

∂t
+ u

∂u

∂x
= 0, x ∈ R, t > 0, (9.51)

which is perhaps the simplest nontrivial example of a nonlinear hyperbolic
equation. Taking as initial condition

u(x, 0) = u0(x) =

⎧
⎨

⎩

1, x ≤ 0,
1 − x, 0 < x ≤ 1,
0, x > 1,

the characteristic line issuing from the point (x0, 0) is given by

x(t) = x0 + tu0(x0) =

⎧
⎨

⎩

x0 + t, x0 ≤ 0,
x0 + t(1 − x0), 0 < x0 ≤ 1,
x0, x0 > 1.

Notice that the characteristic lines do not intersect only if t < 1 (see Figure
9.11, right). �

9.3.1 Finite difference discretization of the scalar transport
equation

The half-plane {(x, t) : −∞ < x < ∞, t > 0} is discretized by choosing
a spatial grid sizeΔx > 0 (the parameter named h until now), a temporal
step Δt > 0 and the grid points (xj , t

n) as follows
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xj = jΔx, j ∈ Z, tn = nΔt, n ∈ N.

Let us set
λ = Δt/Δx,

and define xj+1/2 = xj +Δx/2. We look for discrete solutions unj which
approximate the values u(xj , t

n) of the exact solution for any j, n. Quite
often, explicit methods are employed for advancing in time hyperbolic
initial-value problems.
Any explicit finite-difference method can be written in the form

un+1
j = unj − λ(hnj+1/2 − hnj−1/2), (9.52)

where hnj+1/2 = h(unj , u
n
j+1) for every j and h(·, ·) is a function, to be

properly chosen, that is called the numerical flux.
In what follows we will illustrate several instances of explicit methods

for the approximation of problem (9.47):

1. forward Euler/centered

un+1
j = unj − λ

2
a(unj+1 − unj−1), (9.53)

which can be cast in the form (9.52) by setting

hnj+1/2 =
1

2
a(unj+1 + unj ); (9.54)

2. Lax-Friedrichs

un+1
j =

1

2
(unj+1 + unj−1) − λ

2
a(unj+1 − unj−1), (9.55)

which is of the form (9.52) with

hnj+1/2 =
1

2
[a(unj+1 + unj ) − λ−1(unj+1 − unj )]; (9.56)

3. Lax-Wendroff

un+1
j = unj − λ

2
a(unj+1 − unj−1) +

λ2

2
a2(unj+1 − 2unj + unj−1), (9.57)

which can be written in the form (9.52) provided that

hnj+1/2 =
1

2
[a(unj+1 + unj ) − λa2(unj+1 − unj )]; (9.58)

4. Upwind (or forward Euler/decentered)

un+1
j = unj − λ

2
a(unj+1 − unj−1) +

λ

2
|a|(unj+1 − 2unj + unj−1), (9.59)

which fits the form (9.52) when the numerical flux is defined to be

hnj+1/2 =
1

2
[a(unj+1 + unj ) − |a|(unj+1 − unj )]. (9.60)
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Table 9.1. Artificial viscosity, artificial diffusion flux, and truncation error for
Lax-Friedrichs, Lax-Wendroff and upwind methods

method k hdiff
j+1/2 τ (Δt,Δx)

Lax-Friedrichs Δx2 − 1

2λ
(uj+1 − uj) O (

Δx2/Δt+Δt+Δx2
)

Lax-Wendroff a2Δt2 −λa2

2
(uj+1 − uj) O (

Δt2 +Δx2 +ΔtΔx2
)

upwind |a|ΔxΔt −|a|
2
(uj+1 − uj) O(Δt+Δx)

Each one of the last three methods can be obtained from the forward
Euler/centered method by adding a term proportional to the centered
finite difference (4.9), so that they can be written in the equivalent form

un+1
j = unj − λ

2
a(unj+1 − unj−1) +

1

2
k
unj+1 − 2unj + unj−1

(Δx)2
. (9.61)

The last term represents indeed a discretization of the second-order
derivative

k

2

∂2u

∂x2
(xj , t

n).

The coefficient k > 0 plays the role of artificial viscosity. Its expression
is given for the three previous cases in Table 9.1. Consequently, the
numerical flux for each scheme can be equivalently written as

hj+1/2 = hFE
j+1/2 + hdiffj+1/2,

where hFE
j+1/2 is the numerical flux of the forward Euler/centered scheme

(which is given in (9.54)) and the artificial diffusion flux hdiffj+1/2 for the

three cases is also reported in Table 9.1.
The most classical implicit method is the backward Euler/centered scheme

un+1
j +

λ

2
a(un+1

j+1 − un+1
j−1 ) = unj . (9.62)

It can still be written in the form (9.52) provided that hn is replaced by
hn+1. In the example at hand, the numerical flux is the same as for the
forward Euler/centered method.

9.3.2 Finite difference analysis for the scalar transport
equation

The convergence analysis of finite difference methods introduced in the
previous Section requires that both consistency and stability hold.
Consider for instance, the forward Euler/centered method (9.53). As
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done in Section 8.3.1, denoting by u the exact solution of problem (9.47),
the local truncation error at (xj , t

n) represents, up to a factor 1/Δt, the
error that would be generated by forcing the exact solution to satisfy that
specific numerical scheme. In particular for the forward Euler/centered
method it is defined as follows

τnj =
u(xj , t

n+1) − u(xj , t
n)

Δt
+ a

u(xj+1, t
n) − u(xj−1, t

n)

2Δx
,

while the (global) truncation error is defined as

τ(Δt,Δx) = max
j,n

|τnj |.

When τ(Δt,Δx) goes to zero as Δt and Δx tend to zero independently,
the numerical scheme is said to be consistent.

More in general, we say that a numerical method is of order p in
time and of order q in space (for suitable positive values p and q) if, for
a sufficiently smooth solution of the exact problem,

τ(Δt,Δx) = O(Δtp +Δxq).

Finally, we say that a numerical scheme is convergent (in the maximum
norm) if

lim
Δt,Δx→0

max
j,n

|u(xj , tn) − unj | = 0.

If the exact solution is regular enough, using Taylor’s expansion con-
veniently, we can characterize the truncation error of the methods previ-
ously introduced. For the forward (or backward) Euler/centered method
it is O(Δt+Δx2). For the other methods, see Table 9.1.

As of stability, we say that a numerical scheme for the approximation
of a hyperbolic (either linear or nonlinear) problem is stable if, for any
time T , there exist two constants CT > 0 (possibily depending on T )
and δ0 > 0, such that

‖un‖Δ ≤ CT ‖u0‖Δ, (9.63)

for any n such that nΔt ≤ T and for any Δt, Δx such that 0 < Δt ≤ δ0,
0 < Δx ≤ δ0. The symbol ‖ · ‖Δ stands for a suitable discrete norm,
there are three instances:

‖v‖Δ,p =

⎛

⎝Δx
∞∑

j=−∞
|vj |p

⎞

⎠

1
p

for p = 1, 2, ‖v‖Δ,∞ = sup
j

|vj |. (9.64)

Courant, Friedrichs and Lewy [CFL28] have proved that a necessary and
sufficient condition for any explicit scheme of the form (9.52) to be stable
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is that the time and space discretization steps must obey the following
condition

|aλ| ≤ 1, i.e. Δt ≤ Δx

|a| (9.65)

which is known as the CFL condition. The adimensional number aλ (a
is a velocity) is commonly referred to as the CFL number. If a is not
constant the CFL condition becomes

Δt ≤ Δx

sup
x∈R, t>0

|a(x, t)| .

It is possible to prove that

1. the forward Euler/centered method (9.53) is unconditionally unsta-
ble, i.e. it is unstable for any possible choice of Δx > 0 and Δt > 0;

2. the upwind method (also called forward Euler/decentered method)
(9.59) is conditionally stable with respect to the ‖ · ‖Δ,1 norm, i.e.

‖un‖Δ,1 ≤ ‖u0‖Δ,1 ∀n ≥ 0,

provided that the CFL condition (9.65) is satisfied; the same result
can be proved also for both Lax-Friedrichs (9.55) and Lax-Wendroff
(9.57) schemes;

3. the backward Euler/centered method (9.62) is unconditionally stable
with respect to the ‖ · ‖Δ,2 norm, i.e., for any Δt > 0

‖un‖Δ,2 ≤ ‖u0‖Δ,2 ∀n ≥ 0.

See Exercise 9.11.

For a proof of the these results see, e.g., [QSS07, Chap. 13] and [Qua13,
Chap. 12].

We want now to mention two important features of a numerical
scheme: dissipation and dispersion. To this aim, let us suppose that the
initial datum u0(x) of problem (9.47) is 2π−periodic so that it can be
expanded in a Fourier series as

u0(x) =

∞∑

k=−∞
αke

ikx,

where

αk =
1

2π

∫ 2π

0

u0(x)e−ikxdx

is the k−th Fourier coefficient of u0(x). The exact solution u of problem
(9.47) satisfies (formally) the nodal conditions
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u(xj , t
n) =

∞∑

k=−∞
αke

ikjΔx(gk)
n, j ∈ Z, n ∈ N (9.66)

with gk = e−iakΔt, while the numerical solution unj , computed by one of
the schemes introduced in Section 9.3.1, reads

unj =
∞∑

k=−∞
αke

ikjΔx(γk)
n, j ∈ Z, n ∈ N. (9.67)

The form of coefficients γk ∈ C depends on the particular numeri-
cal scheme used; for instance, for the scheme (9.53) we can show that
γk = 1 − aλi sin(kΔx).
We notice that, while |gk| = 1 for any k ∈ Z, the values |γk| depend on the
CFL number aλ, and then also on the chosen discretization. Precisely,
by choosing ‖·‖Δ = ‖·‖Δ,2, one can prove that a necessary and sufficient
condition for a given numerical scheme to satisfy the stability inequality
(9.63) is that |γk| ≤ 1, ∀k ∈ Z. The ratio εa(k) = |γk|/|gk| = |γk| is the
so-called dissipation coefficient (or amplification coefficient) of the k−th
harmonic associated with the numerical scheme. We recall that the exact
solution of (9.47) is the travelling wave u(x, t) = u0(x − at) whose am-
plitude is independent of time; as of its numerical approximation (9.67),
the smaller εa(k), the higher the reduction of the wave amplitude and,
whence the higher the numerical dissipation. Moreover, if the stability
condition is violated, then the wave amplitude will increase and a blow-
up of the numerical solution will occur at sufficiently large times.

Besides dissipation, numerical schemes introduce also dispersion, that
is either a delay or an advance in the wave propagation. To understand
this phenomenon we write gk and γk as follows:

gk = e−iaλφk , γk = |γk|e−iωΔt = |γk|e−iωk λφk ,

φk = kΔx being the so-called phase angle associated to the k−th har-
monic.
By comparing gk with γk and recalling that a is the propagation veloc-
ity of the “exact” wave, we define dispersion coefficient associated to the
kth harmonic the value εd(k) =

ω
ak = ωΔt

φkaλ
.

In Figures 9.12 and 9.13 we report the exact solution of problem
(9.50) (for a = 1) and the numerical solutions obtained by some of the
schemes presented in Section 9.3.1. The initial datum is

u0(x) =

{
sin(2πx/�) −1 ≤ x ≤ �
0 � < x < 3,

(9.68)

of wavelength � = 1 (left) and � = 1/2 (right). In both cases the CFL
number is equal to 0.8. For � = 1 we have chosen Δx = �/20 = 1/20, so
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Figure 9.12. Exact solution (dashed line) and numerical solution (solid line)
of problem (9.50) at t = 0.4, with a = 1 and initial datum given by (9.68) with
equal wavelength � = 1/2

that φk = 2πΔx/� = π/10 and Δt = 1/25. For � = 1/2 we have chosen
Δx = �/8 = 1/16, so that φk = π/4 and Δt = 1/20.

In Figures 9.14 and 9.15 we display the dissipation and dispersion
coefficients, respectively, versus the CFL number (at top) and the phase
angle φk = kΔx (at bottom).
Notice from Figure 9.14 that, when CFL=0.8, the Lax-Wendroff scheme
is the least dissipative one, this information is confirmed by the numerical
solutions shown in Figure 9.13, for both φk = π/10 and φk = π/4. About
the dispersion error, still for CFL=0.8, from Figure 9.15 it emerges that
the upwind scheme features the lowest dispersion and shows a light phase
advance; the Lax-Friederichs scheme has a considerable phase advance,
while both Lax-Wendroff and implicit Euler/centered schemes show a
phase delay. These conclusions are confirmed by the numerical solution
shown in Figure 9.12.

Notice that the dissipation coefficient is responsible for the damping
of the wave amplitude, while the dispersion coefficient is responsible for
the inexact propagation velocity.
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Figure 9.13. Exact solution (dashed line) and numerical solution (solid line)
at t = 1 of problem (9.50) with a = 1 and initial datum given by (9.68) with
wavelength � = 1 (left) and � = 1/2 (right)
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Figure 9.14. Dissipation coefficients
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9.3.3 Finite element space discretization of the scalar
advection equation

Following Section 9.2.3, a Galerkin semi-discrete approximation of prob-
lem (9.47) can be introduced as follows. Let us assume that a = a(x) > 0
∀x ∈ [α, β], so that the node x = α coincides with the inflow boundary.
For any t > 0, we complete system (9.47) with the boundary condition

u(α, t) = ϕ(t), t > 0, (9.69)

where ϕ is a given function of t.

After defining the space

V in
h = {vh ∈ Vh : vh(α) = 0},

we consider the following finite element approximation of problem (9.47),
(9.69): for any t ∈ (0, T ) find uh(t) ∈ Vh such that

⎧
⎪⎪⎨

⎪⎪⎩

β∫

α

∂uh(t)

∂t
vh dx+

β∫

α

a
∂uh(t)

∂x
vh dx = 0 ∀ vh ∈ V in

h ,

uh(t) = ϕ(t) at x = α,

(9.70)

with uh(0) = u0h ∈ Vh being a suitable finite element approximation of
the initial datum u0, e.g. its piecewise polynomial interpolant.

The time discretization of (9.70) can be accomplished still by using
finite difference schemes. If, for instance, we use the backward Euler
method, for any n ≥ 0, we have: find un+1

h ∈ Vh such that

1

Δt

β∫

α

(un+1
h − unh)vh dx+

β∫

α

a
∂un+1

h

∂x
vh dx = 0 ∀vh ∈ V in

h , (9.71)

with un+1
h (α) = ϕn+1.

If ϕ = 0, we can conclude that

‖unh‖L2(α,β) ≤ ‖u0h‖L2(α,β) ∀n ≥ 0,

which means that the backward Euler scheme is unconditionally stable

with respect to the norm ‖v‖L2(α,β) =
(∫ β

α v2(x)dx
)1/2

.

See Exercises 9.10-9.14.
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9.4 The wave equation

We consider now the following second-order hyperbolic equation in one
dimension

∂2u

∂t2
− c

∂2u

∂x2
= f (9.72)

where c is a given positive constant.
When f = 0, the general solution of (9.72) is the so-called d’Alembert
travelling-wave

u(x, t) = ψ1(
√
ct− x) + ψ2(

√
ct+ x), (9.73)

for arbitrary functions ψ1 and ψ2.
In what follows we consider problem (9.72) for x ∈ (a, b) and t > 0,

therefore we need to complete the differential equation with the initial
data

u(x, 0) = u0(x) and
∂u

∂t
(x, 0) = v0(x), x ∈ (a, b), (9.74)

and the boundary data

u(a, t) = 0 and u(b, t) = 0, t > 0. (9.75)

In this case, u may represent the transverse displacement of an elastic
vibrating string of length b−a, fixed at the endpoints, and c is a positive
coefficient depending on the specific mass of the string and on its tension.
The string is subjected to a vertical force of density f . The functions
u0(x) and v0(x) denote respectively the initial displacement and the
initial velocity of the string.

The change of variables

ω1 =
∂u

∂x
, ω2 =

∂u

∂t
,

transforms (9.72) into the first-order system

∂ω

∂t
+A

∂ω

∂x
= f , x ∈ (a, b), t > 0 (9.76)

where

ω =

[
ω1

ω2

]
, A =

[
0 −1

−c 0

]
, f =

[
0
f

]
,

and the initial conditions are ω1(x, 0) = u′
0(x) and ω2(x, 0) = v0(x) for

x ∈ (a, b).
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In general, we can consider systems of the form (9.76) where ω, f :
R×[0,∞) → R

p are two given vector functions and A ∈ R
p×p is a matrix

with constant coefficients. This system is said hyperbolic if A is diago-
nalizable and has real eigenvalues, that is, if there exists a nonsingular
matrix T ∈ R

p×p such that

A = TΛT−1,

where Λ = diag(λ1, ..., λp) is the diagonal matrix of the real eigenvalues
of A, while T = (v1,v2, . . . ,vp) is the matrix whose column vectors are
the right eigenvectors of A. Thus

Avk = λkv
k, k = 1, . . . , p.

Introducing the characteristic variables w = T−1ω, system (9.76) be-
comes

∂w

∂t
+ Λ

∂w

∂x
= g,

where g = T−1f . This is a system of p independent scalar equations of
the form

∂wk

∂t
+ λk

∂wk

∂x
= gk, k = 1, . . . , p.

When gk = 0, its solution is given by wk(x, t) = wk(x − λkt, 0), k =
1, . . . , p. Therefore the solution ω = Tw of problem (9.76) (for f = 0)
can be written as

ω(x, t) =

p∑

k=1

wk(x− λkt, 0)v
k.

The curve (xk(t), t) in the plane (x, t) that satisfies x′
k(t) = λk is the kth

characteristic curve (see Section 9.3) and wk is constant along it. Then
ω(x, t) depends only on the initial datum at the points x− λkt. For this
reason, the set of p points that form the feet of the characteristics issuing
from the point (x, t),

D(t, x) = {x ∈ R : x = x− λkt , k = 1, ..., p}, (9.77)

is called the domain of dependence of the solution ω(x, t).
If (9.76) is set on a bounded interval (a, b) instead of on the whole real

line, the inflow point for each characteristic variable wk is determined
by the sign of λk. Correspondingly, the number of positive eigenvalues
determines the number of boundary conditions that should be assigned
at x = a, whereas at x = b the number of conditions that must be as-
signed equals the number of negative eigenvalues.



9.4 The wave equation 369

Example 9.6 System (9.76) is hyperbolic since A is diagonalizable with ma-
trix

T =

⎡

⎣
− 1√

c

1√
c

1 1

⎤

⎦

and features two distinct real eigenvalues ±√
c (representing the propagation

velocities of the wave). Moreover, one boundary condition needs to be pre-
scribed at every end-point, as in (9.75). �

9.4.1 Finite difference approximation of the wave
equation

To discretize in time equation (9.72) we can use the Newmark method
formerly proposed in Chapter 8 for second-order ordinary differential
equations, see (8.71). Still denoting by Δt the (uniform) time-step and
using in space the classical finite difference method on a grid with
nodes xj = x0 + jΔx, j = 0, . . . , N + 1, x0 = a and xN+1 = b,
the Newmark scheme for (9.72) reads as follows: for any n ≥ 1 find
{unj , vnj , j = 1, . . . , N} such that

un+1
j = unj +Δtvnj

+Δt2
[
ζ(cwn+1

j + f(xj , t
n+1)) + (1/2 − ζ)(cwn

j + f(xj , t
n))

]
,

vn+1
j = vnj +Δt

[
(1 − θ)(cwn

j + f(xj , t
n)) + θ(cwn+1

j + f(xj , t
n+1))

]
,

(9.78)

with u0j = u0(xj) and v
0
j = v0(xj) and w

k
j = (ukj+1 − 2ukj + ukj−1)/(Δx)

2

for k = n or k = n + 1. System (9.78) must be completed by imposing
the boundary conditions (9.75).

The Newmark method is implemented in Program 9.4. The input
parameters are the vectors xspan=[a,b] and tspan=[0,T], the number
of discretization intervals in space (nstep(1)) and in time (nstep(2)),
the scalar c (corresponding to the positive constant c), the function
handles u0 and v0 associated with the initial data u0(x) and v0(x),
respectively, and the function handles g and fun associated with the
functions g(x, t) and f(x, t), respectively. Finally, the vector param allows
to specify the values of the coefficients (param(1)=θ, param(2)=ζ). This
method is second order accurate with respect to Δt if θ = 1/2, whereas
it is first order if θ �= 1/2. Moreover, the condition θ ≥ 1/2 is necessary
to ensure stability (see Section 8.9).

Program 9.4. newmarkwave: Newmark method for the wave equation

function [xh,uh]= newmarkwave (xspan ,tspan ,nstep ,param ,...
c,u0,v0,g,f,varargin )

%NEWMARKWAVE solves the wave equation with the Newmark
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% method.
% [XH,UH]= NEWMARKWAVE (XSPAN ,TSPAN ,NSTEP ,PARAM ,C,...
% U0,V0,G,F)
% solves the wave equation D^2 U/DT^2 - C D^2U/DX^2 = F
% in (XSPAN(1), XSPAN (2)) X (TSPAN(1), TSPAN (2)) using
% Newmark method with initial conditions U(X ,0)= U0(X),
% DU/DX(X,0)= V0(X) and Dirichlet boundary conditions
% U(X,T)=G(X,T) for X=XSPAN(1) and X=XSPAN (2). C is a
% positive constant .
% NSTEP(1) is the number of space integration intervals
% NSTEP(2) is the number of time -integration intervals .
% PARAM (1)= ZETA and PARAM (2)= THETA.
% U0(X), V0(X), G(X,T) and F(x,T) are function handles.
% XH contains the nodes of the discretization .
% UH contains the numerical solutions at time TSPAN (2).
% [XH,UH]= NEWMARKWAVE (XSPAN ,TSPAN ,NSTEP ,PARAM ,C,...
% U0,V0,G,F,P1,P2 ,...) passes the additional parameters
% P1,P2 ,... to the functions U0,V0,G,F.
h = (xspan(2)- xspan (1))/nstep (1);
dt = (tspan(2)- tspan (1))/nstep (2);
zeta = param (1); theta = param (2);
N = nstep (1)+1;
e = ones(N,1); D = spdiags ([e -2*e e],[-1,0,1],N,N);
I = speye(N); lambda = dt/h;
A = I-c*lambda^2* zeta*D;
An = I+c*lambda ^2*(0.5 -zeta )*D;
A(1,:) = 0; A(1,1) = 1; A(N,:) = 0; A(N,N) = 1;
xh = (linspace(xspan(1), xspan(2),N))’;
fn = f(xh,tspan(1), varargin {:});
un = u0(xh,varargin {:});
vn = v0(xh,varargin {:});
[L,U]=lu(A);
alpha = dt^2* zeta; beta = dt^2*(0.5 -zeta );
theta1 = 1-theta;
for t = tspan (1)+ dt:dt:tspan(2)

fn1 = f(xh,t,varargin {:});
rhs = An*un+dt*I*vn+alpha*fn1+beta*fn;
temp = g([ xspan(1), xspan(2)],t,varargin {:});
rhs([1,N]) = temp;
uh = L\rhs; uh = U\uh;
v = vn + dt*((1- theta)*(c*D*un/h^2+fn)+...

theta*(c*D*uh/h^2+fn1 ));
fn = fn1; un = uh; vn = v;

end

An alternative to the Newmark method is provided by the following
Leap-Frog method

un+1
j − 2unj + un−1

j = c

(
Δt

Δx

)2

(unj+1 − 2unj + unj−1), (9.79)

which is obtained by discretizing both time and space derivatives by the
centered finite difference formula (9.12).

Both Newmark (9.78) and Leap-Frog (9.79) schemes are second or-
der accurate with respect to Δt and Δx. About stability, the Leap-Frog
method is stable provided that the CFL condition Δt ≤ Δx/

√
c is
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Figure 9.16. Comparison between the solutions obtained using the Newmark
method for a discretization with Δx = 0.04 and Δt = 0.15 (dashed line),
Δt = 0.075 (solid line) and Δt = 0.0375 (dashed-dotted line)

satisfied, while the Newmark method is unconditionally stable if 2ζ ≥
θ ≥ 1

2 (see [Joh90]).

Example 9.7 Using Program 9.4 we study the evolution of the initial con-

dition u0(x) = e−10x2

for x ∈ (−2, 2), by putting f = 0 and c = 1 in (9.72).
We assume v0 = 0 and homogeneous Dirichlet boundary conditions. In Figure
9.16 we compare the solutions obtained at time t = 3 using Δx = 0.04 and
time-steps Δt = 0.15 (dashed line), Δt = 0.075 (solid line) and Δt = 0.0375
(dashed-dotted line). The parameters of the Newmark method are θ = 1/2 and
ζ = 0.25, and they ensure a second order unconditionally stable method. �

Example 9.8 (Communications) In this example we use the equation
(9.9) to model the way a telegraph wire transmits a pulse of voltage. The
equation is a combination of diffusion and wave equations, and accounts for
effects of finite velocity in a standard mass transport equation. In Figure 9.17
we compare the evolution of one bump (precisely a cubic B-spline (see [QSS07,
Sect. 8.7.2])) centered in x = 3 and non-null in the interval (1,5) using the wave
equation (9.72) (dashed line) and the telegrapher’s equation (9.9) (solid line),
on the interval (0, 10) with c = 1, α = 0.5 and β = 0.04. The initial speed
is chosen to be v0(x) = −cu′

0(x) (v0(x) = −cu′
0(x) − α/2u0(x), resp.) for the

wave (telegrapher’s, resp.) equation, so that the bump travels with speed c.
We have solved both the wave equation and telegrapher’s equation by the
Newmark scheme using Δx = 0.025, time-step Δt = 0.1, ζ = 1/4 and θ = 1/2.
To approximate the wave equation we have called Program 9.4, while to solve
the telegrapher’s equation we have written a different program implementing
the Newmark scheme (8.71) applied to equation (9.9). The presence of the
dissipation effect is evident in the solution of the telegrapher’s equation. �

An alternative approach consists of discretizing the first-order system
(9.76) instead of the (equivalent) second order scalar equation (9.72).
When f = 0, Lax-Wendroff and upwind schemes for the hyperbolic sys-
tem (9.76) are defined as follows:
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Figure 9.17. Propagation of a pulse of voltage using the wave equation
(dashed line) and the telegrapher’s equation (solid line). At left, the thin solid
line represents the initial condition u0(x)

1. Lax-Wendroff method

ωn+1
j = ωn

j − λ

2
A(ωn

j+1 − ωn
j−1)

+
λ2

2
A2(ωn

j+1 − 2ωn
j + ωn

j−1),
(9.80)

2. upwind (or forward Euler/decentered) method

ωn+1
j = ωn

j − λ

2
A(ωn

j+1 − ωn
j−1)

+
λ

2
|A|(ωn

j+1 − 2ωn
j + ωn

j−1),
(9.81)

where |A| = T|Λ|T−1 and |Λ| is the diagonal matrix of the moduli
of the eigenvalues of A.

The Lax-Wendroff method is second order accurate (in both time
and space), while the upwind scheme is first order.

About stability, all considerations made in Section 9.3.1 are still valid,
provided the CFL condition (9.65) is replaced by

Δt <
Δx

ρ(A)
. (9.82)

As usual, ρ(A) denotes the spectral radius of A.
For the proof of these results see, e.g., [QV94], [LeV02], [GR96],

[QSS07, Chapter 13].

See Exercises 9.8-9.9.
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Let us summarize

1. One-dimensional boundary value problems are set up on an interval;
boundary conditions on the solution (or on its derivative) must be
prescribed at the endpoints of the interval;

2. numerical approximation can be carried out by finite-differences
(arising from truncated Taylor series) or by finite-elements (aris-
ing from the weak formulation of the differential problem; in this
context, both test and trial functions are piecewise polynomials);

3. multidimensional problems can be faced by using similar arguments.
For two-dimensional boundary-value problems, finite element ap-
proximations make use of piecewise polynomials, where “piecewise”
refers to either triangles or quadrilaterals of a grid partitioning the
spatial domain;

4. matrices arising from both finite element and finite difference dis-
cretizations are sparse and ill-conditioned;

5. initial-boundary-value problems contain time derivatives of the so-
lution which are discretized by finite difference formulas, of either
explicit or implicit type;

6. when explicit schemes are used, stability conditions have to be satis-
fied: the time-step turns out to be bounded by the spatial grid size.
On the other hand, when implicit schemes are used, a linear alge-
braic system (similar to that obtained for stationary problems) has
to be solved at each time level;

7. in this Chapter we have presented some simple linear problems of
elliptic, parabolic and hyperbolic type. For a more exhaustive treat-
ment of this subject we suggest the reader to refer to the bibliography
presented in the next Section.

9.5 What we haven’t told you

We could simply say that we have told you almost nothing, since the field
of numerical analysis which is devoted to the numerical approximation
of partial differential equations is so broad and multifaceted to deserve
an entire monograph simply for addressing the most essential concepts
(see, e.g., [TW98], [EEHJ96]).

We would like to mention that the finite element method is nowadays
probably the most widely diffused method for the numerical solution of
partial differential equations (see, e.g., [Qua13], [QV94], [Bra97], [BS01]).
As already mentioned the MATLAB toolbox pde allows the solution of a
broad family of partial differential equations by the linear finite element
method, in particular for the discretization of space variables.
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Other popular techniques are the spectral methods (see, e.g., [CHQZ06],
[CHQZ07], [Fun92], [BM92], [KS99]) and the finite volume method (see,
e.g., [Krö98], [Hir88] and [LeV02]).

Octave 9.1 The Octave-Forge package bim offers most of the main func-
tionalities of the pde toolbox, although its syntax is in general not com-
patible with that of MATLAB. �

9.6 Exercises

Exercise 9.1 Verify that matrix (9.15) is positive definite.

Exercise 9.2 Verify that the eigenvalues of the matrix A∈ R
N×N , defined in

(9.15), are

λj = 2(1 − cos(jθ)), j = 1, . . . , N,

while the corresponding eigenvectors are

qj = (sin(jθ), sin(2jθ), . . . , sin(Njθ))T ,

where θ = π/(N + 1). Deduce that K(A) is proportional to h−2.

Exercise 9.3 Prove that the quantity (9.12) provides a second order approx-
imation of u′′(x̄) with respect to h.

Exercise 9.4 Compute the matrix and the right-hand side of the numerical
scheme that we have proposed to approximate problem (9.17).

Exercise 9.5 Use the finite difference method to approximate the boundary-
value problem

⎧
⎨

⎩

−u′′ +
k

T
u =

w

T
in (0, 1),

u(0) = u(1) = 0,

where u = u(x) represents the vertical displacement of a string of length
1, subject to a transverse load of intensity w(x) per unit length. T is the
tension and k is the elastic coefficient of the string. For the case in which
w(x) = 1 + sin(4πx), T = 1 and k = 0.1, compute the solution corresponding
to h = 1/i, with i = 10, 20, 40, and deduce the order of accuracy of the method.

Exercise 9.6 Use the finite difference method to solve problem (9.17) in the
case where the following boundary conditions are prescribed at the endpoints
(called Neumann boundary conditions)

u′(a) = α, u′(b) = β.

Use the formulae given in (4.11) to discretize u′(a) and u′(b).
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Exercise 9.7 Verify that, when using a uniform grid, the right-hand side of
the system (9.14) associated with the centered finite difference scheme coin-
cides, up a factor h, with that of the finite element scheme (9.27) provided
that the composite trapezoidal formula is used to compute the integrals on
the elements Ij−1 and Ij .

Exercise 9.8 Verify that div∇φ = Δφ, where ∇ is the gradient operator
that associates to a function u the vector whose components are the first
order partial derivatives of u.

Exercise 9.9 (Thermodynamics) Consider a square plate whose side
length is 20 cm and whose thermal conductivity is k = 0.2 cal/(sec·cm·C).
Denote by Q = 5 cal/(cm3·sec) the heat production rate per unit area. The
temperature T = T (x, y) of the plate satisfies the equation −ΔT = Q/k. As-
suming that T is null on three sides of the plate and is equal to 1 on the fourth
side, determine the temperature T at the center of the plate.

Exercise 9.10 Verify that the solution of problem (9.72), (9.74) – (9.75) (with
f = 0) satisfies the identity

∫ b

a

(ut(x, t))
2dx+ c

∫ b

a

(ux(x, t))
2dx = (9.83)

∫ b

a

(v0(x))
2dx+ c

∫ b

a

(u0,x(x))
2dx,

provided that u0(a) = u0(b) = 0.

Exercise 9.11 Prove that the numerical solution provided by the backward
Euler/centered scheme (9.62) is unconditionally stable, that is ∀Δt > 0,

‖un‖Δ,2 ≤ ‖u0‖Δ,2 ∀n ≥ 0. (9.84)

Exercise 9.12 Prove that the solution provided by the upwind scheme (9.59)
satisfies the estimate

‖un‖Δ,∞ ≤ ‖u0‖Δ,∞ ∀n ≥ 0, (9.85)

provided that the CFL condition has been verified. The inequality (9.85) is
named discrete maximum principle.

Exercise 9.13 Solve problem (9.47) with a = 1, x ∈ (0, 0.5), t ∈ (0, 1),
initial datum u0(x) = 2 cos(4πx)+sin(20πx) and boundary condition u(0, t) =
2 cos(4πt)−sin(20πt) for t ∈ (0, 1). Use both Lax-Wendroff (9.57) and upwind
(9.59) schemes. Set the CFL number equal to 0.5. Verify experimentally that
the Lax-Wendroff scheme is second-order accurate with respect to Δx and Δt,
while the upwind scheme is first-order accurate. To evaluate the error use the
norm ‖ · ‖Δ,2.
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Figure 9.18. Numerical solutions at time t = 5 for the problem (9.47) by
using data of Exercise 9.13. The CFL number is 0.8

Exercise 9.14 In Figure 9.18 both exact and numerical solutions of problem
(9.47) at time t = 5 are shown. The latter are computed by the Lax-Wendroff
(9.57) and upwind (9.59) schemes, using the same data of Exercise 9.13. By
knowing that the CFL number is 0.8 and that we have used Δt = 5.e − 3,
comment on the dissipation and dispersion coefficients that we have obtained.
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