
8

Ordinary differential equations

A differential equation is an equation involving one or more derivatives
of an unknown function. If all derivatives are taken with respect to a
single independent variable we call it an ordinary differential equation,
whereas we have a partial differential equation when partial derivatives
are present.

A differential equation (ordinary or partial) has order p if p is the
maximum order of differentiation that is present. The next chapter will
be devoted to the study of partial differential equations, whereas in the
present chapter we will deal with ordinary differential equations of first
order.

8.1 Some representative problems

Ordinary differential equations describe the evolution of many phenom-
ena in various fields, as we can see from the following four examples.

Problem 8.1 (Thermodynamics) Consider a body having internal
temperature T which is set in an environment with constant temperature
Te. Assume that its mass m is concentrated in a single point. Then the
heat transfer between the body and the external environment can be
described by the Stefan-Boltzmann law

v(t) = εγS(T 4(t) − T 4
e),

where t is the time variable, ε the Stefan-Boltzmann constant (equal to

5.6·10−8J/(m
2
K4s) where J stands for Joule, K for Kelvin and, obviously,

m for meter, s for second), γ is the emissivity constant of the body, S
the area of its surface and v is the rate of the heat transfer. The rate
of variation of the energy E(t) = mCT (t) (where C denotes the specific
heat of the material constituting the body) equals, in absolute value,

A. Quarteroni et al., Scientific Computing with MATLAB and Octave,
Texts in Computational Science and Engineering 2,
DOI 10.1007/978-3-642-45367-0 8, © Springer-Verlag Berlin Heidelberg 2014

271

272 8 Ordinary differential equations

the rate v. Consequently, setting T (0) = T0, the computation of T (t)
requires the solution of the ordinary differential equation

dT

dt
= − v

mC
. (8.1)

See Exercise 8.15 for its solution. �

Problem 8.2 (Population dynamics) Consider a population of bac-
teria in a confined environment in which no more than B elements can
coexist. Assume that, at the initial time, the number of individuals is
equal to y0 � B and the growth rate of the bacteria is a positive con-
stant C. In this case the rate of change of the population is proportional
to the number of existing bacteria, under the restriction that the total
number cannot exceed B. This is expressed by the differential equation

dy

dt
= Cy

(
1 − y

B

)
, (8.2)

whose solution y = y(t) denotes the number of bacteria at time t.
Assuming that two populations y1 and y2 be in competition, instead

of (8.2) we would have

dy1
dt

= C1y1 (1 − b1y1 − d2y2) ,

dy2
dt

= −C2y2 (1 − b2y2 − d1y1) ,

(8.3)

where C1 and C2 represent the growth rates of the two populations.
The coefficients d1 and d2 govern the type of interaction between the
two populations, while b1 and b2 are related to the available quantity
of nutrients. The above equations (8.3) are called the Lotka-Volterra
equations and form the basis of various applications. For their numerical
solution, see Example 8.7. �

Problem 8.3 (Baseball trajectory) We want to simulate the trajec-
tory of a ball from the pitcher to the catcher. By adopting the reference
frame of Figure 8.1, the equations describing the ball motion are (see
[Ada90], [GN06])

dx

dt
= v,

dv

dt
= F,

where x(t) = (x(t), y(t), z(t))T designates the position of the ball at time
t, v(t) = (vx(t), vy(t), vz(t))

T its velocity, while F is the vector whose
components are

8.1 Some representative problems 273

x

y
z

Figure 8.1. The reference frame adopted for Problem 8.3

Fx = −F (v)vvx +Bω(vz sinφ− vy cosφ),

Fy = −F (v)vvy + Bωvx cosφ,

Fz = −g − F (v)vvz −Bωvx sinφ.

(8.4)

v is the modulus of v, B = 4.1 10−4 a normalized constant, φ is the
pitching angle, ω is the modulus of the angular velocity impressed to the
ball from the pitcher. F (v) is a friction coefficient, normally defined as
([GN06])

F (v) = 0.0039 +
0.0058

1 + e(v−35)/5
.

The solution of this system of ordinary differential equations is post-
poned to Exercise 8.20. �

Problem 8.4 (Electrical circuits) Consider the electrical circuit of
Figure 8.2. We want to compute the function v(t) representing the po-
tential drop at the ends of the capacitor C starting from the initial time
t = 0 at which the switch I has been turned off. Assume that the induc-
tance L can be expressed as an explicit function of the current intensity
i, that is L = L(i). The Ohm law yields

e− d(i1L(i1))

dt
= i1R1 + v,

where R1 is a resistance. By assuming the current fluxes to be directed
as indicated in Figure 8.2, upon differentiating with respect to t both
sides of the Kirchoff law i1 = i2 + i3 and noticing that i3 = Cdv/dt and
i2 = v/R2, we find the further equation

di1
dt

= C
d2v

dt2
+

1

R2

dv

dt
.

274 8 Ordinary differential equations

R1

R2

L

I

i1

i3

i2

e C

Figure 8.2. The electrical circuit of Problem 8.4

We have therefore found a system of two differential equations whose
solution allows the description of the time variation of the two unknowns
i1 and v. The second equation has order two. For its solution see Example
8.8. �

8.2 The Cauchy problem

We confine ourselves to first order differential equations, as an equation
of order p > 1 can always be reduced to a system of p equations of order
1. The case of first order systems will be addressed in Section 8.9.

An ordinary differential equation in general admits an infinite num-
ber of solutions. In order to fix one of them we must impose a further
condition which prescribes the value taken by this solution at a given
point of the integration interval. For instance, the equation (8.2) admits
the family of solutions y(t) = Bψ(t)/(1 + ψ(t)) with ψ(t) = eCt+K , K
being an arbitrary constant. If we impose the condition y(0) = 1, we pick
up the unique solution corresponding to the value K = ln[1/(B − 1)].

We will therefore consider the solution of the so-called Cauchy prob-
lem which takes the following form:

find y : I ⊂ R → R such that

{
y′(t) = f(t, y(t)) ∀t ∈ I,

y(t0) = y0,
(8.5)

where I is an interval, f : I × R → R is a given function, y′ denotes the
derivative of y with respect to t, t0 is a point of I and y0 a given value
which is called the initial data.

In the following proposition we report a classical result of Analysis.

8.3 Euler methods 275

Proposition 8.1 Assume that the function f(t, y) is

1. continuous with respect to both its arguments;
2. Lipschitz-continuous with respect to its second argument, that

is, there exists a positive constant L (named Lipschitz constant)
such that

|f(t, y1) − f(t, y2)| ≤ L|y1 − y2| ∀t ∈ I, ∀y1, y2 ∈ R.

Then the solution y = y(t) of the Cauchy problem (8.5) exists, is
unique and belongs to C1(I).

Unfortunately, explicit solutions are available only for very special
types of ordinary differential equations. In some other cases, the solution
is available only in implicit form. This is, for instance, the case with the
equation y′ = (y− t)/(y+ t) whose solution satisfies the implicit relation

1

2
ln(t2 + y2) + arctg

y

t
= C,

where C is an arbitrary constant. In some other circumstances the solu-
tion is not even representable in implicit form, as in the case of the equa-
tion y′ = e−t2 whose general solution can only be expressed through a
series expansion. For all these reasons, we seek numerical methods capa-
ble of approximating the solution of every family of ordinary differential
equations for which solutions do exist.

The common strategy of all these methods consists of subdividing
the integration interval I = [t0, T], with T < +∞, into Nh intervals of
length h = (T − t0)/Nh; h is called the discretization step, or time-step,
or steplength. Then, at each node tn = t0 + nh (for n = 1, . . . , Nh) we
seek the unknown value un which approximates yn = y(tn). The set of
values {u0 = y0, u1, . . . , uNh

} represents our numerical solution.

8.3 Euler methods

A classical method, the forward Euler method, generates the numerical
solution as follows

un+1 = un + hfn, n = 0, . . . , Nh − 1 (8.6)

where we have used the shorthand notation fn = f(tn, un). This method
is obtained by considering the differential equation (8.5) at every node
tn, n = 1, . . . , Nh and replacing the exact derivative y′(tn) by means of
the incremental ratio (4.4).

276 8 Ordinary differential equations

In a similar way, using this time the incremental ratio (4.8) to ap-
proximate y′(tn+1), we obtain the backward Euler method

un+1 = un + hfn+1, n = 0, . . . , Nh − 1 (8.7)

Both methods provide an instance of a one-step method since for
computing the numerical solution un+1 at the node tn+1 we only need
the information related to the previous node tn. More precisely, in the
forward Euler method un+1 depends exclusively on the value un pre-
viously computed, whereas in the backward Euler method it depends
also on itself through the value fn+1. For this reason the first method is
called the explicit Euler method and the second one the implicit Euler
method.

For instance, the discretization of (8.2) by the forward Euler method
requires at every step the simple computation of

un+1 = un + hCun (1 − un/B) ,

whereas using the backward Euler method we must solve the nonlinear
equation

un+1 = un + hCun+1 (1 − un+1/B) .

Thus, implicit methods are more costly than explicit methods, since, if
the function f in (8.5) is not linear, at every time level tn+1 we must
solve a nonlinear problem to compute un+1. However, we will see that
implicit methods enjoy better stability properties than explicit ones.

The forward Euler method is implemented in Program 8.1; the inte-
gration interval is tspan = [t0,tfinal], odefun is the function handle
associated with the function f(t, y(t)) which depends on the variables t
and y.

Program 8.1. feuler: forward Euler method

function [t,u]=feuler(odefun ,tspan ,y0,Nh,varargin)
%FEULER Solves differential equations using the forward
% Euler method.
% [T,Y]= FEULER(ODEFUN ,TSPAN ,Y0,NH) with TSPAN=[T0,TF]
% integrates the system of differential equations
% y’=f(t,y) from time T0 to TF with initial condition
% Y0 using the forward Euler method on an equispaced
% grid of NH intervals .
% Function ODEFUN(T,Y) must return a vector , whose
% elements hold the evaluation of f(t,y), of the
% same dimension of Y.
% Each row in the solution array Y corresponds to a
% time returned in the column vector T.
% [T,Y] = FEULER(ODEFUN ,TSPAN ,Y0,NH,P1,P2 ,...) passes
% the additional parameters P1,P2 ,... to the function
% ODEFUN as ODEFUN(T,Y,P1,P2...).

8.3 Euler methods 277

h=(tspan(2)- tspan(1))/Nh;
y=y0(:); % always creates a column vector
w=y; u=y.’;
tt=linspace(tspan(1), tspan(2),Nh +1);
for t = tt(1:end -1)
w=w+h*odefun(t,w,varargin {:});
u = [u; w.’];

end
t=tt ’;
return

The backward Euler method is implemented in Program 8.2. Note
that we have used the function fsolve for the solution of the nonlinear
problem at each step. As initial data for fsolve we use the last computed
value of the numerical solution.

Program 8.2. beuler: backward Euler method

function [t,u]=beuler(odefun ,tspan ,y0,Nh,varargin)
%BEULER Solves differential equations using the
% backward Euler method.
% [T,Y]= BEULER(ODEFUN ,TSPAN ,Y0,NH) with TSPAN=[T0,TF]
% integrates the system of differential equations
% y’=f(t,y) from time T0 to TF with initial condition
% Y0 using the backward Euler method on an equispaced
% grid of NH intervals .
% Function ODEFUN(T,Y) must return a vector , whose
% elements hold the evaluation of f(t,y), of the
% same dimension of Y.
% Each row in the solution array Y corresponds to a
% time returned in the column vector T.
% [T,Y] = BEULER(ODEFUN ,TSPAN ,Y0,NH,P1,P2 ,...) passes
% the additional parameters P1,P2 ,... to the function
% ODEFUN as ODEFUN(T,Y,P1,P2...).
tt=linspace(tspan(1), tspan(2),Nh +1);
y=y0(:); % always create a vector column
u=y.’;
global glob_h glob_t glob_y glob_odefun ;
glob_h=(tspan(2)- tspan (1))/Nh;
glob_y=y;
glob_odefun =odefun;
glob_t=tt (2);

if (exist(’OCTAVE_VERSION ’))
o_ver=OCTAVE_VERSION ;
version=str2num ([o_ver(1), o_ver(3), o_ver(5)]);
end

if (~exist(’OCTAVE_VERSION ’) | version >= 320)
options=optimset ;
options.Display=’off’;
options.TolFun=1.e -12;
options.MaxFunEvals =10000;
end
for glob_t=tt(2: end)
if (exist(’OCTAVE_VERSION ’) & version < 320)

w = fsolve(’beulerfun ’,glob_y);

278 8 Ordinary differential equations

else
w = fsolve(@(w) beulerfun (w),glob_y ,options);

end
u = [u; w.’];
glob_y = w;

end
t=tt ’;
clear glob_h glob_t glob_y glob_odefun ;
end

function [z]= beulerfun (w)
global glob_h glob_t glob_y glob_odefun ;
z=w-glob_y -glob_h*glob_odefun (glob_t ,w);

end

8.3.1 Convergence analysis

A numerical method is convergent if

∀n = 0, . . . , Nh, |yn − un| ≤ C(h) (8.8)

where C(h) is infinitesimal with respect to h when h tends to zero. If
C(h) = O(hp) for some p > 0 (that is there exists a positive constant
c such that C(h) ≤ chp and p is the maximum integer for which this
inequality holds), then we say that the method converges with order p.

In order to verify that the forward Euler method converges, we write
the error as follows:

en = yn − un = (yn − u∗
n) + (u∗

n − un), (8.9)

where

u∗
n = yn−1 + hf(tn−1, yn−1)

denotes the numerical solution at time tn which we would obtain starting
from the exact solution at time tn−1; see Figure 8.3. The term yn−u∗

n in
(8.9) represents the error produced by a single step of the forward Euler
method (this error is infinitesimal thanks to the consistency property),
whereas the term u∗

n − un represents the propagation from tn−1 to tn of
the error accumulated at the previous time level tn−1 (this propagation
is bounded thanks to the stability property). The method converges pro-
vided both terms tend to zero as h → 0; otherwise said, convergence is
assured if the method is both consistent and stable.

Assuming that the second order derivative of y exists and is con-
tinuous, thanks to (4.6) we find that there exists ξn ∈ (tn−1, tn) such
that

yn − u∗
n =

h2

2
y′′(ξn). (8.10)

8.3 Euler methods 279

yn−1

un−1

u∗
n

un

tntn−1

yn

en

y = y(t)

hτn(h)

Figure 8.3. Geometrical representation of a step of the forward Euler method

The quantity

τn(h) = (yn − u∗
n)/h

is named local truncation error of the forward Euler method.
More in general, the local truncation error of a given method repre-

sents (up to a factor 1/h) the error that would be generated by forcing
the exact solution to satisfy that specific numerical scheme.

The global truncation error (or, more simply, truncation error) is
defined as

τ(h) = max
n=0,...,Nh

|τn(h)|.

In view of (8.10), the truncation error for the forward Euler method
takes the following form

τ(h) =Mh/2, (8.11)

where M = maxt∈[t0,T] |y′′(t)|.
From (8.10) we deduce that limh→0 τ(h) = 0, and a method for which

this happens is said to be consistent. Further, we say that it is consistent
with order p if τ(h) = O(hp) for a suitable integer p ≥ 1.

Consider now the other term in (8.9). We have

u∗
n − un = en−1 + h [f(tn−1, yn−1) − f(tn−1, un−1)] . (8.12)

Since f is Lipschitz-continuous with respect to its second argument, we
obtain

|u∗
n − un| ≤ (1 + hL)|en−1|.

280 8 Ordinary differential equations

If e0 = 0, the previous relations yield

|en| ≤ |yn − u∗
n| + |u∗

n − un|
≤ h|τn(h)| + (1 + hL)|en−1|
≤ [

1 + (1 + hL) + . . .+ (1 + hL)n−1
]
hτ(h)

=
(1 + hL)n − 1

L
τ(h) ≤ eL(tn−t0) − 1

L
τ(h).

We have used the identity

n−1∑
k=0

(1 + hL)k = [(1 + hL)n − 1]/hL,

the inequality 1 + hL ≤ ehL and we have observed that nh = tn − t0.
Therefore we find

|en| ≤ eL(tn−t0) − 1

L

M

2
h ∀n = 0, . . . , Nh, (8.13)

and thus we can conclude that the forward Euler method converges with
order 1. We can note that the order of this method coincides with the
order of its local truncation error. This property is shared by many
numerical methods for the numerical solution of ordinary differential
equations. The convergence estimate (8.13) is now obtained by simply
requiring f to be Lipschitz-continuous.

A better estimate, precisely

|en| ≤ Mh(tn − t0)/2, (8.14)

holds if ∂f/∂y exists and satisfies the further requirement ∂f(t, y)/∂y ≤
0 for all t ∈ [t0, T] and all −∞ < y < ∞. Indeed, in that case, using
Taylor expansion, from (8.12) we obtain

u∗
n − un =

(
1 + h

∂f

∂y
(tn−1, ηn)

)
en−1,

where ηn belongs to the interval whose endpoints are yn−1 and un−1,
thus |u∗

n − un| ≤ |en−1|, provided the inequality

0 < h < 2/ max
t∈[t0,T]

∣∣∣∣
∂f

∂y
(t, y(t))

∣∣∣∣ (8.15)

holds. Then |en| ≤ |yn − u∗
n| + |en−1| ≤ nhτ(h) + |e0|, whence (8.14)

owing to (8.11) and to the fact that e0 = 0. The limitation (8.15) on the
step h is in fact a stability condition, as we will see in the sequel.

8.3 Euler methods 281

Remark 8.1 (Consistency) The property of consistency is necessary in or-
der to get convergence. Actually, should it be violated, at each step the numer-
ical method would generate an error which is not infinitesimal with respect to
h. The accumulation with the previous errors would inhibit the global error to
converge to zero when h → 0. �

For the backward Euler method the local truncation error reads

τn(h) =
1

h
[yn − yn−1 − hf(tn, yn)].

Still using the Taylor expansion one obtains

τn(h) = −h

2
y′′(ξn)

for a suitable ξn ∈ (tn−1, tn), provided y ∈ C2. Thus also the backward
Euler method converges with order 1 with respect to h.

Example 8.1 Consider the Cauchy problem
⎧
⎨

⎩

y′(t) = cos(2y(t)), t ∈ (0, 1],

y(0) = 0,
(8.16)

whose solution is y(t) = 1
2
arcsin((e4t − 1)/(e4t + 1)). We solve it by the for-

ward Euler method (Program 8.1) and the backward Euler method (Pro-
gram 8.2). By the following commands we use different values of h, 1/2,
1/4, 1/8, . . . , 1/512:

tspan=[0 ,1]; y0=0; f=@(t,y) cos (2*y);
u=@(t) 0.5* asin ((exp(4*t)-1)./(exp(4*t)+1));
Nh =2;
for k=1:10

[t,ufe]= feuler(f,tspan ,y0 ,Nh);
fe(k)=abs(ufe(end)-u(t(end)));
[t,ube]= beuler(f,tspan ,y0 ,Nh);
be(k)=max(abs(ube -u(t)));
Nh = 2*Nh;

end

The errors computed at the point t = 1 are stored in the variable fe (forward
Euler) and be (backward Euler), respectively. Then we apply formula (1.12)
to estimate the order of convergence. Using the following commands

p=log(abs(fe(1:end -1)./fe(2:end)))/ log (2); p(1:2:end)

1.2898 1.0349 1.0080 1.0019 1.0005

0.8770 0.9649 0.9908 0.9978 0.9994

we can verify that both methods are convergent with order 1. �

282 8 Ordinary differential equations

Remark 8.2 (Roundoff errors effects) The error estimate (8.13) was de-
rived by assuming that the numerical solution {un} is obtained in exact arith-
metic. Should we account for the (inevitable) roundoff-errors, the error might
blow up like O(1/h) as h approaches 0 (see, e.g., [Atk89]). This circumstance
suggests that it might be unreasonable to go below a certain threshold h∗

(which is actually extremely tiny) in practical computations. �

See the Exercises 8.1-8.3.

8.4 The Crank-Nicolson method

By combining the generic steps of the forward and backward Euler meth-
ods we find the so-called Crank-Nicolson method

un+1 = un +
h

2
[fn + fn+1], n = 0, . . . , Nh − 1 (8.17)

This method can also be derived by applying the fundamental theorem
of integration (which we recalled in Section 1.5.3) to the Cauchy problem
(8.5), obtaining

yn+1 = yn +

tn+1∫

tn

f(t, y(t)) dt, (8.18)

and then approximating the integral by the trapezoidal rule (4.19).
The local truncation error of the Crank-Nicolson method satisfies

τn(h) =
1

h
[y(tn) − y(tn−1)] − 1

2
[f(tn, y(tn)) + f(tn−1, y(tn−1))]

=
1

h

tn∫

tn−1

f(t, y(t)) dt− 1

2
[f(tn, y(tn)) + f(tn−1, y(tn−1))] .

The last equality follows from (8.18) and expresses, up to a factor of 1/h,
the error associated with the trapezoidal rule for numerical integration
(4.19). If we assume that y ∈ C3 and use (4.20), we deduce that

τn(h) = −h2

12
y′′′(ξn) for a suitable ξn ∈ (tn−1, tn). (8.19)

Thus the Crank-Nicolson method is consistent with order 2, i.e. its lo-
cal truncation error tends to 0 as h2. Using a similar approach to that
followed for the forward Euler method, we can show that the Crank-
Nicolson method is convergent with order 2 with respect to h.

8.4 The Crank-Nicolson method 283

The Crank-Nicolson method is implemented in the Program 8.3. In-
put and output parameters are the same as for the Euler methods.

Program 8.3. cranknic: Crank-Nicolson method

function [t,u]= cranknic(odefun ,tspan ,y0,Nh, varargin)
%CRANKNIC Solves differential equations using the
% Crank -Nicolson method.
% [T,Y]= CRANKNIC (ODEFUN ,TSPAN ,Y0,NH) with
% TSPAN=[T0,TF] integrates the system of differential
% equations y’=f(t,y) from time T0 to TF with initial
% condition Y0 using the Crank -Nicolson method on an
% equispaced grid of NH intervals .
% Function ODEFUN(T,Y) must return a vector , whose
% elements hold the evaluation of f(t,y), of the
% same dimension of Y.
% Each row in the solution array Y corresponds to a
% time returned in the column vector T.
% [T,Y] = CRANKNIC (ODEFUN ,TSPAN ,Y0,NH,P1,P2 ,...)
% passes the additional parameters P1,P2 ,... to the
% function ODEFUN as ODEFUN(T,Y,P1,P2 ...).
tt=linspace(tspan(1), tspan(2),Nh +1);
y=y0(:); % always create a vector column
u=y.’;
global glob_h glob_t glob_y glob_odefun ;
glob_h=(tspan(2)- tspan (1))/Nh;
glob_y=y;
glob_odefun =odefun;
if (exist(’OCTAVE_VERSION ’))
o_ver=OCTAVE_VERSION ;
version=str2num ([o_ver(1), o_ver(3), o_ver(5)]);
end

if(~exist(’OCTAVE_VERSION ’) | version >= 320)
options=optimset ;
options.Display=’off’;
options.TolFun=1.e -12;
options.MaxFunEvals =10000;

end
for glob_t=tt(2: end)
if (exist(’OCTAVE_VERSION ’) & version < 320)

w = fsolve(’cranknicfun ’,glob_y);
else

w = fsolve(@(w) cranknicfun (w),glob_y ,options);
end

u = [u; w.’];
glob_y = w;

end
t=tt ’;
clear glob_h glob_t glob_y glob_odefun ;
end

function z=cranknicfun (w)
global glob_h glob_t glob_y glob_odefun ;
z=w - glob_y - ...

0.5* glob_h*(glob_odefun (glob_t ,w) + ...
glob_odefun (glob_t -glob_h ,glob_y));

end

284 8 Ordinary differential equations

Example 8.2 Let us solve the Cauchy problem (8.16) by using the Crank-
Nicolson method with the same values of h as used in Example 8.1. The results
show that the error tends to zero with order p = 2 with respect to h:

y0 =0; tspan=[0 1]; N=2; f=@(t,y) cos(2*y);
y=@(t) 0.5* asin ((exp(4*t)-1)./(exp(4*t)+1));
for k=1:10

[tt,u]= cranknic (f,tspan ,y0,N);
e(k)=max(abs(u-y(tt))); N=2*N;

end
p=log(abs(e(1:end -1)./e(2:end)))/ log(2); p(1:2:end)

1.9627 1.9986 2.0001 1.9999 2.0000

�

See the Exercises 8.4-8.5.

8.5 Zero-stability

Commonly speaking, by stability of a numerical scheme we mean its
capability to keep the effects on the solution of data perturbations under
control.

Among several concepts of stability, there is the zero-stability, which
guarantees that, in a fixed bounded interval, small perturbations of data
yield bounded perturbations of the numerical solution when h → 0.

More precisely, a numerical method for the approximation of problem
(8.5), with I = [t0, T], is zero-stable if

∃h0 > 0, ∃C > 0, ∃ε0 > 0 s.t. ∀h ∈ (0, h0], ∀ε ∈ (0, ε0], if |ρn| ≤ ε, 0 ≤
n ≤ Nh, then

|zn − un| ≤ Cε, 0 ≤ n ≤ Nh, (8.20)

where:
- C is a constant which might depend on the length T − t0 of the inte-
gration interval I, but is independent of h;
- zn is the solution that would be obtained by applying the numerical
method at hand to a perturbed problem;
- ρn denotes the size of the perturbation introduced at the nth step;
- ε indicates the maximum size of the perturbation.

Obviously, ε0 and ε must be small enough to guarantee that the
perturbed problem still has a unique solution on the integration interval
I.

For instance, in the case of the forward Euler method un satisfies the
problem

{
un+1 = un + hf(tn, un), n = 0, . . . , Nh − 1

u0 = y0,
(8.21)

8.5 Zero-stability 285

whereas zn satisfies the perturbed problem

{
zn+1 = zn + h [f(tn, zn) + ρn+1] , n = 0, . . . , Nh − 1

z0 = y0 + ρ0.
(8.22)

For a consistent one-step method zero-stability follows for the prop-
erty of f to be Lipschitz-continuous with respect to its second argument
(see, e.g. [QSS07]). In that case, the constant C that appears in (8.20)
depends on exp((T − t0)L), where L is the Lipschitz constant.

However, this is not necessarily true for other families of methods.
Assume for instance that the numerical method can be written in the
general form

un+1 =

p∑
j=0

ajun−j + h

p∑
j=0

bjfn−j + hb−1fn+1, n = p, p+ 1, . . . (8.23)

for suitable coefficients {ak} and {bk} and for an integer p ≥ 0.
Formula (8.23) defines an important family of methods, the linear

multistep methods and p+1 denotes the number of steps. These methods
will be analyzed with more details in Section 8.7. The initial values
u0, u1, . . . ,up must be provided. Apart from u0, which is equal to y0, the
other values u1, . . . , up can be generated by suitable accurate methods
such as e.g., the Runge-Kutta methods that we will address in Section
8.7.

The polynomial

π(r) = rp+1 −
p∑

j=0

ajr
p−j (8.24)

is called the first characteristic polynomial associated with the numer-
ical method (8.23), and we denote its roots by rj , j = 0, . . . , p. It can
be proved that the method (8.23) is zero-stable iff the following root
condition is satisfied:

{ |rj | ≤ 1 for all j = 0, . . . , p,

furthermore π′(rj) �= 0 for those j such that |rj | = 1.
(8.25)

For example, for the forward Euler method we have

p = 0, a0 = 1, b−1 = 0, b0 = 1,

for the backward Euler method we have

p = 0, a0 = 1, b−1 = 1, b0 = 0,

286 8 Ordinary differential equations

and for the Crank-Nicolson method we have

p = 0, a0 = 1, b−1 = 1/2, b0 = 1/2.

In all cases there is only one root of π(r) which is equal to 1 and therefore
all these methods are zero-stable.

The following property, known as Lax-Richtmyer equivalence the-
orem, is most crucial in the theory of numerical methods (see, e.g.,
[IK66]), and highlights the fundamental role played by the property of
zero-stability:

Any consistent method is convergent iff it is zero-stable

Coherently with what done before, the local truncation error for the
multistep method (8.23) is defined as follows

τn(h) =
1

h

⎧
⎨
⎩yn+1 −

p∑
j=0

ajyn−j

−h
p∑

j=0

bjf(tn−j , yn−j) − hb−1f(tn+1, yn+1)

⎫
⎬
⎭ .

(8.26)

As already noticed, the method is said to be consistent if τ(h) =
max |τn(h)| tends to zero when h tends to zero. By a tedious use of
Taylor expansions we can prove that this condition is equivalent to re-
quire that

p∑
j=0

aj = 1, −
p∑

j=0

jaj +

p∑
j=−1

bj = 1 (8.27)

which in turns amounts to say that r = 1 is a root of the polynomial
π(r) introduced in (8.24) (see, e.g., [QSS07, Chapter 11]).

8.6 Stability on unbounded intervals

In the previous section we considered the solution of the Cauchy problem
on bounded intervals. In that context, the number Nh of subintervals
becomes infinite only if h goes to zero.
On the other hand, there are several situations in which the Cauchy
problem needs to be integrated on very large (virtually infinite) time
intervals. In this case, even if h is fixed, Nh tends to infinity, and then
results like (8.13) become meaningless as the right hand side of the in-
equality contains an unbounded quantity. We are therefore interested in

8.6 Stability on unbounded intervals 287

methods that are able to approximate the solution for arbitrarily long
time intervals, even with a steplength h relatively “large”.

Unfortunately, the inexpensive forward Euler method does not enjoy
this property. To see this, let us consider the following model problem

{
y′(t) = λy(t), t ∈ (0,∞),

y(0) = 1,
(8.28)

where λ is a negative real number. The exact solution is y(t) = eλt, which
tends to 0 as t tends to infinity. Applying the forward Euler method to
(8.28) we find that

u0 = 1, un+1 = un(1 + λh) = (1 + λh)n+1, n ≥ 0. (8.29)

Thus limn→∞ un = 0 iff

−1 < 1 + hλ < 1, i.e. h < 2/|λ| (8.30)

This condition expresses the requirement that, for fixed h, the numer-
ical solution should reproduce the behavior of the exact solution when
tn tends to infinity. If h > 2/|λ|, then limn→∞ |un| = +∞; thus (8.30) is
a stability condition. The property that

lim
n→∞un = 0 (8.31)

is called absolute stability.

Example 8.3 Let us apply the forward Euler method to solve problem (8.28)
with λ = −1. In that case we must have h < 2 for absolute stability. In Figure
8.4 we report the solutions obtained on the interval [0, 30] for 3 different values
of h: h = 30/14 (which violates the stability condition), h = 30/16 (which
satisfies, although by a little amount only, the stability condition) and h = 1/2.
We can see that in the first two cases the numerical solution oscillates. However
only in the first case (which violates the stability condition) the absolute value
of the numerical solution does not vanish at infinity (and actually it diverges).
. �

Similar conclusions hold when λ is either a complex number (see Section
8.6.1) or when λ = λ(t) in (8.28) is a negative function of t in (8.28).
However in the latter case, |λ| must be replaced by maxt∈[0,∞) |λ(t)| in
the stability condition (8.30). This condition could however be relaxed
to one which is less restrictive by using a variable steplength hn which
accounts for the local behavior of |λ(t)| in every interval (tn, tn+1).

In particular, the following adaptive forward Euler method could be
used:

choose u0 = y0 and h0 = 2α/|λ(t0)|; then

288 8 Ordinary differential equations

0 5 10 15 20 25 30
−6

−4

−2

0

2

4

6

8

Figure 8.4. Solutions of problem (8.28), with λ = −1, obtained by the forward
Euler method, corresponding to h = 30/14 (> 2) (dashed line), h = 30/16 (<
2) (solid line) and h = 1/2 (dashed-dotted line)

for n = 0, 1, . . . , do

tn+1 = tn + hn,

un+1 = un + hnλ(tn)un,

hn+1 = 2α/|λ(tn+1)|,

(8.32)

where α is a constant which must be less than 1 in order to have an
absolutely stable method.

For instance, consider the problem

y′(t) = −(e−t + 1)y(t), t ∈ (0, 10),

with y(0) = 1. Since |λ(t)| is decreasing, the most restrictive condition for
absolute stability of the forward Euler method is h < h0 = 2/|λ(0)| = 1.
In Figure 8.5, left, we compare the solution of the forward Euler method
with that of the adaptive method (8.32) for three values of α. Note
that, although every α < 1 is admissible for stability purposes, to get
an accurate solution requires choosing α sufficiently small. In Figure 8.5,
right, we also plot the behavior of hn on the interval (0, 10] corresponding
to the three values of α. This picture clearly shows that the sequence
{hn} increases monotonically with n.

In contrast to the forward Euler method, neither the backward Eu-
ler method nor the Crank-Nicolson method require limitations on h for
absolute stability. In fact, with the backward Euler method we obtain
un+1 = un + λhun+1 and therefore

un+1 =

(
1

1 − λh

)n+1

, n ≥ 0,

8.6 Stability on unbounded intervals 289

0.5 1 1.5 2

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

α = 0.4

α = 0.45

α = 0.3

t 0 2 4 6 8 10
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α = 0.4

α = 0.45

α = 0.3

t

h

Figure 8.5. Left: the numerical solution on the time interval (0.5, 2) obtained
by the forward Euler method with h = αh0 (dashed line) and by the adaptive
variable stepping forward Euler method (8.32) (solid line) for three different
values of α. Right: the behavior of the variable steplength hn for the adaptive
method (8.32)

which tends to zero as n → ∞ for all values of h > 0. Similarly, with
the Crank-Nicolson method we obtain

un+1 =

[(
1 +

hλ

2

)/(
1 − hλ

2

)]n+1

, n ≥ 0,

which still tends to zero as n → ∞ for all possible values of h > 0. We
can conclude that the forward Euler method is conditionally absolutely
stable, while both the backward Euler and Crank-Nicolson methods are
unconditionally absolutely stable.

8.6.1 The region of absolute stability

If in (8.28) λ is a complex number with negative real part, the solution
u(t) = eλt still tends to 0 when t tends to infinity.

We call region of absolute stability A of a numerical method the
set of complex numbers z = hλ for which the method turns out to be
absolutely stable (that is, limn→∞ un = 0).

The region of absolute stability of forward Euler method is given by
those numbers hλ ∈ C such that |1+ hλ| < 1, thus it coincides with the
circle of radius one and with centre (−1, 0). This yields an upper bound
h < −2Re(λ)/|λ|2 for the steplength. For the backward Euler method
the property of absolute stability is instead satisfied by all values of hλ
which are exterior to the circle of radius one centered in (1, 0) (see Figure
8.6). Finally, the region of absolute stability of Crank-Nicolson method
coincides with the left hand complex plane of numbers with negative real
part.

Methods that are unconditionally absolutely stable for all complex
number λ in (8.28) with negative real part are called A-stable. Backward

290 8 Ordinary differential equations

1−1

Im(hλ)Im(hλ) Im(hλ)

Re(hλ)Re(hλ)Re(hλ)

Figure 8.6. The absolute stability regions (in cyan) of the forward Euler
method (left), backward Euler method (centre) and Crank-Nicolson method
(right)

Euler and Crank-Nicolson method are therefore A-stable, and so are
many other implicit methods. This property makes implicit methods
attractive in spite of being computationally more expensive than explicit
methods.

Example 8.4 Let us compute the restriction on h when using the forward
Euler method to solve the Cauchy problem y′(t) = λy with λ = −1 + i. This
λ stands on the boundary of the absolute stability region A of the forward
Euler method. Thus, any h such that h ∈ (0, 1) will suffice to guarantee that
hλ ∈ A. If it were λ = −2+ 2i we should choose h ∈ (0, 1/2) in order to bring
hλ within the stability region A. �

8.6.2 Absolute stability controls perturbations

Consider now the following generalized model problem

{
y′(t) = λ(t)y(t) + r(t), t ∈ (0,+∞),

y(0) = 1,
(8.33)

where λ and r are two continuous functions and −λmax ≤ λ(t) ≤ −λmin

with 0 < λmin ≤ λmax < +∞. In this case the exact solution does not
necessarily tend to zero as t tends to infinity; for instance if both r and
λ are constants we have

y(t) =
(
1 +

r

λ

)
eλt − r

λ

whose limit when t tends to infinity is −r/λ. Thus, in general, it does
not make sense to require a numerical method to be absolutely stable,
i.e. to satisfy (8.31), when applied to problem (8.33). However, we are
going to show that a numerical method which is absolutely stable on
the model problem (8.28), if applied to the generalized problem (8.33),
guarantees that the perturbations are kept under control as t tends to
infinity (possibly under a suitable constraint on the time-step h).

For the sake of simplicity we will confine our analysis to the forward
Euler method; when applied to (8.33) it reads

8.6 Stability on unbounded intervals 291

{
un+1 = un + h(λnun + rn), n ≥ 0,

u0 = 1

and its solution is (see Exercise 8.9)

un = u0

n−1∏
k=0

(1 + hλk) + h

n−1∑
k=0

rk

n−1∏
j=k+1

(1 + hλj), (8.34)

where λk = λ(tk) and rk = r(tk), with the convention that the last
product is equal to one if k + 1 > n − 1. Let us consider the following
“perturbed” method

{
zn+1 = zn + h(λnzn + rn + ρn+1), n ≥ 0,

z0 = u0 + ρ0,
(8.35)

where ρ0, ρ1, . . . are given perturbations which are introduced at every
time level. This is a simple model in which ρ0 and ρn+1, respectively,
account for the fact that neither u0 nor rn can be determined exactly.
(Should we account for all roundoff errors which are actually introduced
at any step, our perturbed model would be far more involved and diffi-
cult to analyze.) The solution of (8.35) reads like (8.34), provided uk is
replaced by zk and rk by rk + ρk+1, for all k = 0, . . . , n− 1. Then

zn − un = ρ0

n−1∏
k=0

(1 + hλk) + h

n−1∑
k=0

ρk+1

n−1∏
j=k+1

(1 + hλj). (8.36)

The quantity |zn − un| is called the perturbation error at step n. It is
worth noticing that this quantity does not depend on the function r(t).

i. For the sake of exposition, let us consider first the special case where
λk and ρk are two constants equal to λ and ρ, respectively. Assume that
h < h0(λ) = 2/|λ|, which is the condition on h that ensures the absolute
stability of the forward Euler method applied to the model problem
(8.28). Then, using the following identity for the geometric sum

n−1∑
k=0

ak =
1 − an

1 − a
, if |a| �= 1, (8.37)

we obtain

zn − un = ρ

{
(1 + hλ)n

(
1 +

1

λ

)
− 1

λ

}
. (8.38)

It follows that the perturbation error satisfies (see Exercise 8.10)

292 8 Ordinary differential equations

0 10 20 30 40 50 60 70 80 90 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Figure 8.7. The perturbation error when r(t) ≡ 0, ρ = 0.1: λ = −2 (left) and
λ = −0.5 (right). In both cases h = h0(λ) − 0.01

|zn − un| ≤ ϕ(λ)|ρ|, (8.39)

with ϕ(λ) = 1 if λ ≤ −1, while ϕ(λ) = |1 + 2/λ| if −1 < λ < 0. The
conclusion that can be drawn is that the perturbation error is bounded
by |ρ| times a constant which depends on λ but is independent of both
n and h. Moreover, from (8.38) it follows

lim
n→∞|zn − un| = |ρ|

|λ| .

Figure 8.7 corresponds to the case where r(t) ≡ 0, ρ = 0.1, λ = −2
(left) and λ = −0.5 (right). In both cases we have taken h = h0(λ) −
0.01. Note that the estimate (8.38) is exactly satisfied. Obviously, the
perturbation error blows up when n increases if the stability limit h <
h0(λ) is violated.

Remark 8.3 If the unique perturbation is on the initial data, i.e. if ρk = 0,
k = 1, 2, . . ., from (8.36) we deduce that limn→∞ |zn − un| = 0 under the
stability condition h < h0(λ). �

ii. In the general case where λ and r are non-constant, let us require
h to satisfy the restriction h < h0(λ), where this time h0(λ) = 2/λmax.
Then,

|1 + hλk| ≤ a(h) = max{|1 − hλmin|, |1 − hλmax|}.

Since 0 < λmax−λmin

λmax+λmin
≤ a(h) < 1, we can still use the identity (8.37) in

(8.36) and obtain

|zn − un| ≤ ρ

(
[a(h)]n + h

1 − [a(h)]n

1 − a(h)

)
, (8.40)

8.6 Stability on unbounded intervals 293

where ρ = supk |ρk|. First, let us take h ≤ h∗ = 2/(λmin + λmax), so
that a(h) = (1 − hλmin). It holds

|zn − un| ≤ ρ

λmin
[1 − [a(h)]n(1 − λmin)] , (8.41)

i.e.,

sup
n

|zn − un| ≤ ρ

λmin
sup
n
[1 − [a(h)]n(1 − λmin)].

If λmin = 1, we have
sup
n

|zn − un| ≤ ρ. (8.42)

If λmin < 1, the sequence bn = [1 − [a(h)]n(1 − λmin)] monotonically
increases with n, so that supn bn = limn→∞ bn = 1 and

sup
n

|zn − un| ≤ ρ

λmin
. (8.43)

Finally, if λmin > 1, the sequence bn monotonically decreases, supn bn =
b0 = λmin, and the estimate (8.42) holds too.

Let us take now h∗ < h < h0(λ), we have

1 + hλk = 1 − h|λk| ≤ 1 − h∗|λk| ≤ 1 − h∗λmin. (8.44)

Using (8.44), identity (8.37) in (8.36), and setting a = 1 − h∗λmin, we
find

zn − un ≤ ρ

(
an + h

1 − an

1 − a

)

=
ρ

λmin

(
an

(
λmin − h

h∗

)
+

h

h∗

)
.

(8.45)

We note that two possible situations arise.

If λmin ≥ h

h∗ , then
h

h∗ ≤ an
(
λmin − h

h∗

)
+

h

h∗ < λmin and we find

zn − un ≤ ρ ∀n ≥ 0. (8.46)

Otherwise, if λmin <
h

h∗ , then λmin ≤ an
(
λmin − h

h∗
)
+ h

h∗ <
h
h∗ and

zn − un ≤ ρ

λmin

h

h∗ ≤ ρ

λmin

h0
h∗ = ρ

(
1

λmin
+

1

λmax

)
. (8.47)

Note that the right hand side (8.47) is also an upper bound for the
absolute value of zn − un. In Figure 8.8 we report the perturbation
errors computed on the problem (8.33), where r(t) ≡ 0, λk = λ(tk) =

294 8 Ordinary differential equations

0 50 100 150 200 250 300
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

ρ

0 50 100 150 200 250 300
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

ρ(1/λmin + 1/λmax)

Figure 8.8. The perturbation error when ρ(t) = 0.1 sin(t) and λ(t) = −2 −
sin(t) for t ∈ (0, nh) with n = 500: the steplength is h = h∗ − 0.1 = 0.4 (left)
and h = h∗ + 0.1 = 0.6 (right). In this case λmin = 1, so that the estimate
(8.42) holds when h ≤ h∗, while (8.47) holds when h > h∗

−2 − sin(tk), ρk = ρ(tk) = 0.1 sin(tk) with h ≤ h∗ (left) and with
h∗ < h < h0(λ) (right).

iii. We consider now the Cauchy problem (8.5) with a general func-
tion f(t, y(t)). We claim that this problem can be related to the gener-
alized model problem (8.33), in those cases where

− λmax <
∂f

∂y
(t, y) < −λmin ∀t ≥ 0, ∀y ∈ (−∞,∞), (8.48)

for suitable values λmin, λmax ∈ (0,+∞). To this end, for every t in the
generic interval (tn, tn+1), we subtract (8.6) from (8.22) to obtain the
following equation for the perturbation error

zn − un = (zn−1 − un−1) + h{f(tn−1, zn−1) − f(tn−1, un−1)} + hρn.

By applying the mean-value theorem we obtain

f(tn−1, zn−1) − f(tn−1, un−1) = λn−1(zn−1 − un−1),

where λn−1 = fy(tn−1, ξn−1), ξn−1 is a suitable point in the interval
whose endpoints are un−1 and zn−1 and fy is a shorthand notation for
∂f/∂y. Thus

zn − un = (1 + hλn−1)(zn−1 − un−1) + hρn.

By a recursive application of this formula we obtain the identity (8.36),
from which we derive the same conclusions drawn in ii., provided the
stability restriction 0 < h < 2/λmax holds. Note that this is precisely
the condition (8.15).

8.6 Stability on unbounded intervals 295

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5

Figure 8.9. The perturbation errors when ρ(t) = sin(t) with h = h0 − 0.01
(thick line) and h = h0 + 0.01 (thin line) for the Cauchy problem (8.49);
h0 = 2/3

Example 8.5 Let us consider the Cauchy problem

y′(t) = arctan(3y) − 3y + t, t > 0, y(0) = 1. (8.49)

Since fy = 3/(1 + 9y2) − 3 is negative, we can choose λmax = max |fy | = 3
and set h < h0 = 2/3. Thus, we can expect that the perturbations on the
forward Euler method are kept under control provided that h < 2/3. This is
confirmed by the results which are reported in Figure 8.9. Note that in this
example, taking h = 2/3+0.01 (thus violating the previous stability limit) the
perturbation error blows up as t increases. �

Example 8.6 We seek an upper bound on h that guarantees stability for the
forward Euler method applied to approximate the Cauchy problem

y′ = 1 − y2, t > 0, (8.50)

with y(0) =
e − 1

e+ 1
. The exact solution is y(t) = (e2t+1 − 1)/(e2t+1 + 1) and

fy = −2y. Since fy ∈ (−2,−0.9) for all t > 0, we can take h less than h0 = 1.
In Figure 8.10, left, we report the solutions obtained on the interval (0, 35)
with h = 0.95 (thick line) and h = 1.05 (thin line). In both cases the solution
oscillates, but remains bounded. Moreover in the first case, which satisfies the
stability constraint, the oscillations are damped and the numerical solution
tends to the exact one as t increases. In Figure 8.10, right, we report the
perturbation errors corresponding to ρ(t) = sin(t) with h = h∗ = 2/2.9 (thick
solid line) and h = 0.9 (thin dashed line). In both cases the perturbation errors
remain bounded; precisely, estimate (8.42) is satisfied when h = h∗ = 2/2.9,
while estimate (8.47) holds when h∗ < h = 0.9 < h0. �

In those cases where no information on y is available, finding the
value λmax = max |fy| is not a simple matter. A more heuristic approach
could be pursued in these situations, by adopting a variable stepping
procedure. Precisely, one could take tn+1 = tn + hn, where

296 8 Ordinary differential equations

0 5 10 15 20 25 30 35
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 8.10. At left, numerical solutions of problem (8.50) obtained by the
forward Euler method with h = 1.05 (thin line) and h = 0.95 (thick line). The
values of the exact solution are indicated by circles. On the right, perturbation
errors corresponding to ρ(t) = sin(t) with h = h∗ = 2/2.9 (thick solid line)
and h = 0.9 (thin dashed line)

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

Figure 8.11. The perturbation errors corresponding to ρ(t) = sin(t) with
α = 0.8 (thick line) and α = 0.9 (thin line) for the Example 8.6, using the
adaptive strategy

0 < hn < 2
α

|fy(tn, un)| , (8.51)

for suitable values of α strictly less than 1. Note that the denominator
depends on the value un which is known. In Figure 8.11 we report the
perturbation errors corresponding to the Example 8.6 for two different
values of α.

The previous analysis can be carried out also for other kind of one-
step methods, in particular for the backward Euler and Crank-Nicolson
methods. For these methods which are A-stable, the same conclusions
about the perturbation error can be drawn without requiring any limita-
tion on the time-step. In fact, in the previous analysis one should replace
each term 1 + hλn by (1 − hλn)

−1 in the backward Euler case and by
(1 + hλn/2)/(1 − hλn/2) in the Crank-Nicolson case.

8.6 Stability on unbounded intervals 297

8.6.3 Stepsize adaptivity for the forward Euler method

As seen in the previous sections, the steplength h should be chosen in or-
der to satisfy the absolute stability constraint, see e.g. (8.32) and (8.51).

More in general, at every time level we could in principle choose a
(variable) time-step that not only fulfils the stability constraint but also
guarantees that a desired accuracy be achieved. Such procedure, called
step adaptivity, requires a convenient estimate of the local error, that is
obtained from an appropriate a-posteriori error estimate. (A priori error
estimates like (8.13) or (8.14) do not serve this porpuse, as they would
require information on the second derivative of the unknown solution.)
For the sake of simplicity, we illustrate this technique on the forward
Euler method.

Assume that the numerical solution is computed up to a given time
level that, for simplicity, will be denoted t. We choose an initial guess
for h and denote by uh (respectively, uh/2) the solution at the time t+h
provided by the forward Euler method with initial value u at time t with
time-step h (respectively, h/2), that is:

uh = u+ hf(t, u),

v1 = u+
h

2
f(t, u), uh/2 = v2 = v1 +

h

2
f

(
t+

h

2
, v1

)
.

Let us examine the errors eh = y(t+ h)− uh and eh/2 = y(t+ h)−uh/2,
where now y(t) represents the exact solution to the Cauchy problem

{
y′(t) = f(t, y(t)) t ≥ t,
y(t) = u.

(8.52)

Using (8.10) we find

eh =
h2

2
y′′(ξ) (8.53)

for a suitable ξ ∈ (t, t+ h). By setting, for simplicity,

t0 = t, t1 = t+ h/2, t2 = t+ h

(see Figure 8.12) and rewriting eh/2 in the form (8.9), we find

eh/2 = (y(t2) − v∗
2) + (v∗

2 − v2), (8.54)

where v∗
2 = y(t1)+

h

2
f(t1, y(t1)). The former term on the right hand side

of (8.54) represents the local truncation error, thus

298 8 Ordinary differential equations

t0 = t t1 t2 = t+ h

u

v1

uh/2 = v2

uh

y(t2)

eh

eh/2

Figure 8.12. The numerical solution provided by forward Euler method with
either one step of size h and two steps of size h/2. The solid curve represents
the solution of (8.52)

y(t2) − v∗
2 =

(h/2)2

2
y′′(η2)

for a suitable η2 ∈ (t1, t2), whereas the latter, that is due to the error
propagation on an interval of length h/2, thanks to (8.12) reads

v∗
2 − v2 = (y(t1) − v1) +

h

2
[f(t1, y(t1)) − f(t1, v1)] .

The term (y(t1) − v1) still represents a local truncation error which can

be written as y(t1) − v1 =
(h/2)2

2
y′′(η1) for a suitable η1 ∈ (t0, t1). On

the other hand, assuming f of class C1 and using the Lagrange theorem,
we obtain

f(t1, y(t1)) = f(t1, v1) + (y(t1) − v1)
∂f

∂y
(t1, ζ)

for a suitable ζ belonging to the interval whose endpoints are v1 and
y(t1). Consequently

v∗
2 − v2 = (y(t1) − v1)

[
1 + h

∂f

∂y
(t1, ζ)

]
=

(h/2)2

2
y′′(η1) + o(h2).

Assuming that y′′ is continuous in (t, t+ h), we have

eh/2 =
(h/2)2

2
[y′′(η2) + y′′(η1)] + o(h2) =

h2

4
y′′(η) + o(h2), (8.55)

for a suitable η ∈ (t, t+ h).
A convenient estimate of y′′ can be obtained by subtracting (8.55)

from (8.53). Still assuming that y′′ is continuous in (t, t+ h), we find

8.6 Stability on unbounded intervals 299

uh/2 − uh = eh − eh/2 =
h2

4
(2y′′(ξ) − y′′(η)) + o(h2) =

h2

4
y′′(ξ̂) + o(h2),

for a convenient ξ̂ ∈ (t, t+ h). On the other hand

|eh/2| h2

4
|y′′(ξ̂)| |uh/2 − uh|,

therefore the quantity |uh/2 − uh| provides an a-posteriori estimator of
the error |y(t+ h) − uh/2| up to an infinitesimal term o(h2).

To conclude, for a given tolerance ε, should

|uh/2 − uh| < ε

2

(the division by 2 is made conservatively), we accept the step h to ad-
vance and take uh/2 as our numerical solution at the new time level
t + h. Otherwise, h is halved and the above procedure is repeated until
convergence. In any case, to avoid too tiny steplengths we require that
the steplength satisfies h ≥ hmin for a prescribed minimum value hmin.

We finally observe that sometimes the error estimator |uh/2 − uh|
is replaced by its relative counterpart |uh/2 − uh|/umax, where umax

represents the maximum value attained by the numerical solution in the
interval [t0, t].

Let us summarize

1. An absolutely stable method is one which generates a solution un of
the model problem (8.28) which tends to zero as tn tends to infinity;

2. a method is said A-stable if it is absolutely stable for any possible
choice of the time-step (or steplength) h and any λ ∈ C with Re(λ) <
0 (otherwise a method is called conditionally stable, and h should
be lower than a constant depending on λ);

3. when an absolutely stable method is applied to a generalized model
problem (like (8.33)), the perturbation error (that is the absolute
value of the difference between the perturbed and unperturbed so-
lution) is uniformly bounded with respect to h. In short, we can say
that absolutely stable methods keep the perturbation controlled;

4. the analysis of absolute stability for the linear model problem can be
exploited to find stability conditions on the time-step when consider-
ing the nonlinear Cauchy problem (8.5) with a function f satisfying
(8.48). In that case the stability restriction requires the steplength
to be chosen as a function of ∂f/∂y. Precisely, the new integration
interval [tn, tn+1] is chosen in such a way that hn = tn+1 − tn satis-
fies (8.51) for a suitable α ∈ (0, 1), or (8.15) in the case of constant
time-step h.

See the Exercises 8.6-8.13.

300 8 Ordinary differential equations

8.7 High order methods

All methods presented so far are elementary examples of one-step meth-
ods. More sophisticated schemes, which allow the achievement of a higher
order of accuracy, are the Runge-Kutta methods and the multistep meth-
ods (whose general form was already introduced in (7.23)).

Runge-Kutta (briefly, RK) methods are still one-step methods; how-
ever, they involve several evaluations of the function f(t, y) on every
interval [tn, tn+1]. In its most general form, a RK method can be written
as

un+1 = un + h

s∑
i=1

biKi, n ≥ 0 (8.56)

where

Ki = f(tn + cih, un + h

s∑
j=1

aijKj), i = 1, 2, . . . , s

and s denotes the number of stages of the method. The coefficients {aij},
{ci} and {bi} fully characterize a RK method and are usually collected
in the so-called Butcher array

c A

bT T ,

where A = (aij) ∈ R
s×s, b = (b1, . . . , bs)

T ∈ R
s and c = (c1, . . . , cs)

T ∈
R

s. If the coefficients aij in A are equal to zero for j ≥ i, with i =
1, 2, . . . , s, then each Ki can be explicitly computed in terms of the i− 1
coefficients K1, . . . ,Ki−1 that have already been determined. In such a
case the RK method is explicit.
Otherwise, it is implicit and solving a nonlinear system of size s is nec-
essary for computing the coefficients Ki.

One of the most celebrated Runge-Kutta methods reads

un+1 = un +
h

6
(K1 + 2K2 + 2K3 +K4) (8.57)

where

K1 = fn,

K2 = f(tn + h
2 , un + h

2K1),

K3 = f(tn + h
2 , un + h

2K2),

K4 = f(tn+1, un + hK3),

0
1
2

1
2

1
2 0 1

2

1 0 0 1
1
6

T 1
3

1
3

1
6

.

8.7 High order methods 301

This method can be derived from (8.18) by using the Simpson quadrature
rule (4.23) to evaluate the integral between tn and tn+1. It is explicit,
of fourth order with respect to h; at each time level, it involves four
new evaluations of the function f . Other Runge-Kutta methods, either
explicit or implicit, with arbitrary order can be constructed. For instance,
an implicit RK method of order 4 with 2 stages is defined by the following
Butcher array

3−√
3

6
1
4

3−2
√
3

12

3+
√
3

6
3+2

√
3

12
1
4

1
2

T 1
2

.

The absolute stability region A of the RK methods, including explicit
RK methods, can grow in surface with the order: an example is provided
by the left graph in Figure 8.14, where A has been reported for some
explicit RK methods of increasing order: RK1, i.e. the forward Euler
method; RK2, the so called improved Euler method that will be derived
later (see (8.64)); RK3, the method associated with the following Butcher
array

0
1
2

1
2

1 −1 2
1
6

T 2
3

1
6

(8.58)

and RK4, the method (8.57) introduced previously.
As done for the forward Euler method, also RK method, as one-step

methods, are well-suited for implementing a steplength adaptivity.
The error estimator for these methods can be constructed in two ways:
- using the same RK method, but with two different steplengths (as done
for the Euler method);
- using two RK methods of different order, but with the same number s
of stages.
The latter procedure is the one used by MATLAB inside the functions
ode23 and ode45, see below.

RK methods stand at the base of a family of MATLAB programs
whose names contain the root ode followed by numbers and letters. In ode
particular, ode45 is based on a pair of explicit Runge-Kutta methods (the ode45
so-called Dormand-Prince pair) of order 4 and 5, respectively. ode23 is ode23

the implementation of another pair of explicit Runge-Kutta methods (the
Bogacki and Shampine pair). In these methods the integration step varies
in order to guarantee that the error remains below a given tolerance
(the default scalar relative error tolerance RelTol is equal to 10−3).
The program ode23tb is an implementation of an implicit Runge-Kutta ode23tb

302 8 Ordinary differential equations

formula whose first stage is the trapezoidal rule, while the second stage
is a backward differentiation formula of order two (see (8.61)).

Multistep methods (see (8.23)) achieve a high order of accuracy by
involving the values un, un−1, . . . , un−p for the determination of un+1.
They can be derived by applying first the formula (8.18) and then ap-
proximating the integral by a quadrature formula which involves the in-
terpolant of f at a suitable set of nodes. A notable example of multistep
method is the three-step (p = 2), third order (explicit) Adams-Bashforth
formula (AB3)

un+1 = un +
h

12
(23fn − 16fn−1 + 5fn−2) (8.59)

which is obtained by replacing f in (8.18) by its interpolating polynomial
of degree two at the nodes tn−2, tn−1, tn. Another important example is
the three-step, fourth order (implicit) Adams-Moulton formula (AM4)

un+1 = un +
h

24
(9fn+1 + 19fn − 5fn−1 + fn−2) (8.60)

which is obtained by replacing f in (8.18) by its interpolating polynomial
of degree three at the nodes tn−2, tn−1, tn, tn+1.

Another family of multistep methods can be obtained by writing the
differential equation at time tn+1 and replacing y′(tn+1) by a one-sided
incremental ratio of high order. An instance is provided by the two-step,
second order (implicit) backward difference formula (BDF2)

un+1 =
4

3
un − 1

3
un−1 +

2h

3
fn+1 (8.61)

or by the following three-step, third order (implicit) backward difference
formula (BDF3)

un+1 =
18

11
un − 9

11
un−1 +

2

11
un−2 +

6h

11
fn+1 (8.62)

All these methods can be recasted in the general form (8.23). It is easy
to verify that for all of them the relations (8.27) are satisfied, thus these
methods are consistent. Moreover, they are zero-stable. Indeed, in both
cases (8.59) and (8.60), the first characteristic polynomial is π(r) =
r3 − r2 and its roots are r0 = 1, r1 = r2 = 0; that of (8.61) is π(r) =
r2 − (4/3)r + 1/3 and its roots are r0 = 1 and r1 = 1/3, while the first
characteristic polynomial of (8.62) is π(r) = r3 −18/11r2+9/11r−2/11
and its roots are r0 = 1, r1 = 0.3182 + 0.2839i, r2 = 0.3182 − 0.2839i,

8.7 High order methods 303

-2 -1.5 -1 -0.5 0

-1

-0.5

0

0.5

1

Re(h λ)

Im
(h

 λ
)

AB1

AB2

AB3

AB4

-6 -4.5 -3 -1.5 0

-3

-1.5

0

1.5

3

Re(h λ)

Im
(h

λ)

AM3

AM4

AM5

Figure 8.13. The absolute stability regions of several Adams-Basforth (left)
and Adams-Moulton (right) methods

where i is the imaginary unit. In all cases, the root condition (8.25) is
satisfied.

When applied to the model problem (8.28), for any λ ∈ R
− the

method AB3 is absolutely stable if h < 0.545/|λ|, while AM4 is abso-
lutely stable if h < 3/|λ|. The method BDF2 is unconditionally abso-
lutely stable for any λ ∈ C with negative real part (i.e., A-stable). If
λ ∈ R

−, BDF3 is unconditionally absolutely stable, however this is no
longer true for any λ ∈ C with negative real part; in other words, BDF3
fails to be A-stable (see, Figure 8.14). More generally, according to the
second Dahlquist barrier there is no multistep A-stable method of order
strictly greater than two.

In Figures 8.13 the regions of absolute stability of several Adams-
Bashfort and Adams-Moulton methods are drawn. Note that their size
reduces as far as the order increases. In the right-hand side graphs of
Figure 8.14 we report the (unbounded) absolute stability regions of some
BDF methods: note that ABDF (k+1) ⊂ ABDF (k) as opposed to those of
the Runge-Kutta methods (reported on the left) which instead increase
in surface when the order increases, that is ARK(k) ⊂ ARK(k+1), k ≥ 1.

Remark 8.4 (How to draw absolute stability regions) The boundary
∂A of the absolute stability region A of a multistep method can be regarded
as the set of the complex numbers hλ such that

hλ =

(

rp+1 −
p∑

j=0

ajr
p−j

)

�

(
p∑

j=−1

bjr
p−j

)

, (8.63)

where r is a complex number of modulus equal to one. An approximation of ∂A
can be obtained by evaluating the right hand side of (8.63) for different values
of r on the unit circle (for instance, by setting r = exp(i*pi*(0:2000)/1000),
where i is the imaginary unit). The graphs in Figures 8.13 and 8.14 have indeed
been obtained in this way. �

304 8 Ordinary differential equations

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

Re(h λ)

Im
(h

 λ
) RK1

RK2

RK3

RK4

-6 -4 -2 0 2 4 6 8 10
-9

-6

-3

0

3

6

9

Re(h λ)

Im
(h

λ)

BDF2 BDF3

BDF4

Figure 8.14. The absolute stability regions of several explicit RK (left) and
BDF methods (right). In the latter case the stability regions are unbounded
and they spread outside the closed curves

According to the first Dahlquist barrier the maximum order q of a
p+ 1-step method satisfying the root condition is q = p+ 1 for explicit
methods and, for implicit methods q = p+ 2 if p+ 1 is odd, q = p+ 3 if
p+ 1 is even.

Remark 8.5 (Cyclic composite methods) Dahlquist barriers can be
overcome by appropriately combining several multistep methods. For instance,
the two following methods

un+1 = − 8

11
un +

19

11
un−1 +

h

33
(30fn+1 + 57fn + 24fn−1 − fn−2),

un+1 =
449

240
un +

19

30
un−1 − 361

240
un−2

+
h

720
(251fn+1 + 456fn − 1347fn−1 − 350fn−2),

have order five, but are both unstable. However, combined in such a way that
the former is used for n even, the latter for n odd, they give rise to an A-stable
3-step method of order five. �

Multistep methods are implemented in several MATLAB programs,
for instance in ode15s.ode15s

Octave 8.1 ode23 and ode45 are also available in Octave-forge. The
optional arguments however differ from MATLAB. Note that ode45 in
Octave-forge offers two possible strategies: the default one based on the
Dormand and Prince method generally produces more accurate results
than the other option that is based on the Fehlberg method. The built-
in ODE and DAE (Differential Algebraic Equations) solvers in Octave
(lsode, daspk, dassl, not available in MATLAB) also use multistep

8.8 The predictor-corrector methods 305

methods, in particular lsode can use either Adams or BDF formulas
while dassl and daspk use BDF formulas. �

8.8 The predictor-corrector methods

In Section 8.3 it was pointed out that if the function f of Cauchy problem
is nonlinear, implicit methods yield at each step a nonlinear problem for
the unknown value un+1. For its solution we can use one of the methods
introduced in Chapter 2, or else apply the function fsolve as we have
done with the Programs 8.2 and 8.3.

Alternatively, we can carry out fixed point iterations at every time
level. For example, for the Crank-Nicolson method (8.17), for k =
0, 1, . . ., we compute until convergence

u
(k+1)
n+1 = un +

h

2

[
fn + f(tn+1, u

(k)
n+1)

]
.

It can be proved that if the initial guess u
(0)
n+1 is chosen conveniently,

a single iteration suffices in order to obtain a numerical solution u
(1)
n+1

whose accuracy is of the same order as the solution un+1 of the original
implicit method. More precisely, if the original implicit method has order

p ≥ 2, then the initial guess u
(0)
n+1 must be generated by an explicit

method of order (at least) p− 1.
For instance, if we use the first order (explicit) forward Euler method

to initialize the Crank-Nicolson method, we get the Heun method (also
called improved Euler method), already referred as RK2:

u∗
n+1 = un + hfn,

un+1 = un +
h

2

[
fn + f(tn+1, u

∗
n+1)

] (8.64)

The explicit step is called a predictor, whereas the implicit one is called a
corrector. Another example combines the (AB3) method (8.59) as predic-
tor with the (AM4) method (8.60) as corrector. These kinds of methods
are therefore called predictor-corrector methods. They enjoy the order
of accuracy of the corrector method. However, being explicit, they un-
dergo a stability restriction which is typically the same as that of the
predictor method (see, for instance, the regions of absolute stability of
Figure 8.15). Thus they are not adequate to integrate a Cauchy problem
on unbounded intervals.

In Program 8.4 we implement a general predictor-corrector method.
The function handles predictor and corrector identify the type of
method that is chosen. For instance, if we use the functions feonestep
and cnonestep, which are defined in Programs 8.5 and 8.7, respectively,
we can call predcor as follows

306 8 Ordinary differential equations

-4 -3 -2 -1 0
-2

-1

0

1

2

Re(h λ)

Im
(h

λ)

EE

PC

-4 -3 -2 -1 0
-2

-1

0

1

2

Re(h λ)

Im
(h

λ)

AB3

AM4

PC

Figure 8.15. The absolute stability regions of the predictor-corrector (PC)
methods obtained by combining the explicit Euler (EE) and Crank-Nicolson
methods (left) and AB3 and AM4 (right). Notice the reduced surface of the
region when compared to the corresponding implicit methods (in the first case
the region of the Crank-Nicolson method hasn’t been reported as it coincides
with all the complex half-plane Re(hλ) < 0)

[t,u]= predcor(f,[t0,T],y0,N,@feonestep ,@cnonestep);

and obtain the Heun method.

Program 8.4. predcor: predictor-corrector method

function [t,u]=predcor(odefun ,tspan ,y0,Nh ,...
predictor ,corrector ,varargin)

%PREDCOR Solves differential equations using a
% predictor - corrector method
% [T,Y]= PREDCOR(ODEFUN ,TSPAN ,Y0,NH,PRED ,CORR) with
% TSPAN=[T0 TF] integrates the system of differential
% equations y’ = f(t,y) from time T0 to TF with
% initial condition Y0 using a general predictor
% corrector method on an equispaced grid of NH steps.
% Function ODEFUN(T,Y) must return a vector , whose
% elements hold the evaluation of f(t,y), of the
% same dimension of Y.
% Each row in the solution array Y corresponds to a
% time returned in the column vector T.
% [T,Y]= PREDCOR(ODEFUN ,TSPAN ,Y0,NH,PRED ,CORR ,P1 ,..)
% passes the additional parameters P1 ,... to the
% functions ODEFUN ,PRED and CORR as ODEFUN(T,Y,P1 ,..),
% PRED(T,Y,P1,P2...), CORR(T,Y,P1,P2 ...).
h=(tspan(2)- tspan(1))/Nh;
y=y0(:); w=y; u=y.’;
tt=linspace(tspan(1), tspan(2),Nh +1);
for t=tt(1:end -1)

fn = odefun(t,w,varargin {:});
upre = predictor (t,w,h,fn);
w = corrector (t+h,w,upre ,h,odefun ,...

fn,varargin {:});

8.9 Systems of differential equations 307

u = [u; w.’];
end
t = tt ’;
end

Program 8.5. feonestep: one step of the forward Euler method

function [u]= feonestep (t,y,h,f)
% FEONESTEP one step of the forward Euler method
u = y + h*f;
return

Program 8.6. beonestep: one step of the backward Euler method

function [u]= beonestep (t,u,y,h,f,fn,varargin)
% BEONESTEP one step of the backward Euler method
u = u + h*f(t,y,varargin {:});
return

Program 8.7. cnonestep: one step of the Crank-Nicolson method

function [u]= cnonestep (t,u,y,h,f,fn,varargin)
% CNONESTEP one step of the Crank -Nicolson method
u = u + 0.5*h*(f(t,y,varargin {:})+fn);
return

The MATLAB program ode113 implements a combined Adams- ode113

Bashforth-Moulton scheme with variable steplength.

See the Exercises 8.14-8.17.

8.9 Systems of differential equations

Let us consider the following system of first-order ordinary differential
equations whose unknowns are y1(t), . . . , ym(t):

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

y′
1 = f1(t, y1, . . . , ym),

...

y′
m = fm(t, y1, . . . , ym),

where t ∈ (t0, T], with the initial conditions

y1(t0) = y0,1, . . . , ym(t0) = y0,m.

308 8 Ordinary differential equations

For its solution we could apply to each individual equation one of the
methods previously introduced for a scalar problem. For instance, the
nth step of the forward Euler method would read

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

un+1,1 = un,1 + hf1(tn, un,1, . . . , un,m),

...

un+1,m = un,m + hfm(tn, un,1, . . . , un,m).

By writing the system in vector form y′(t) = F(t,y(t)), with obvious
choice of notation, the extension of the methods previously developed
for the case of a single equation to the vector case is straightforward.
For instance, the method

un+1 = un + h(ϑF(tn+1,un+1) + (1 − ϑ)F(tn,un)), n ≥ 0,

with u0 = y0, 0 ≤ ϑ ≤ 1, is the vector form of the forward Euler method
if ϑ = 0, the backward Euler method if ϑ = 1 and the Crank-Nicolson
method if ϑ = 1/2.

Example 8.7 (Population dynamics) Let us apply the forward Euler me-
thod to solve the Lotka-Volterra equations (8.3) with C1 = C2 = 1, b1 = b2 = 0
and d1 = d2 = 1. In order to use Program 8.1 for a system of ordinary
differential equations, let us create a function f which contains the component
of the vector function F, which we save in the file f.m. For our specific system
we have:

function fn = f(t,y,C1,C2,d1,d2,b1,b2)
[n,m]=size(y); fn=zeros(n,m);
fn (1)= C1*y(1)*(1- b1*y(1)- d2*y(2));
fn(2)=-C2*y(2)*(1- b2*y(2)- d1*y(1));
return

Now we execute Program 8.1 with the following instructions

C1 =1; C2=1; d1=1; d2=1; b1=0; b2=0;
[t,u]= feuler(@f ,[0 ,10],[2 2],20000,C1,C2,d1 ,d2,b1,b2);

They correspond to solving the Lotka-Volterra system on the time interval
[0, 10] with a time-step h = 5 · 10−4.

The graph in Figure 8.16, left, represents the time evolution of the two
components of the solution. Note that they are periodic. The graph in Figure
8.16, right, shows the trajectory issuing from the initial value in the so-called
phase plane, that is, the Cartesian plane whose coordinate axes are y1 and y2.
This trajectory is confined within a bounded region of the (y1, y2) plane. If we
start from the point (1.2, 1.2), the trajectory would stay in an even smaller
region surrounding the point (1, 1). This can be explained as follows. Our
differential system admits 2 points of equilibrium at which y′

1 = 0 and y′
2 = 0,

and one of them is precisely (1, 1) (the other being (0, 0)). Actually, they are
obtained by solving the nonlinear system

8.9 Systems of differential equations 309

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

Figure 8.16. Numerical solutions of system (8.3). At left, we represent y1 and
y2 on the time interval (0, 10), the solid line refers to y1, the dashed line to
y2. Two different initial data are considered: (2, 2) (thick lines) and (1.2, 1.2)
(thin lines). At right, we report the corresponding trajectories in the phase
plane

⎧
⎨

⎩

y′
1 = y1 − y1y2 = 0,

y′
2 = −y2 + y2y1 = 0.

If the initial data coincide with one of these points, the solution remains con-
stant in time. Moreover, while (0, 0) is an unstable equilibrium point, (1, 1) is
stable, that is, all trajectories issuing from a point near (1, 1) stay bounded in
the phase plane. �

When we use an explicit method, the steplength h should undergo a
stability restriction similar to the one encountered in Section 8.6. When
the real part of the eigenvalues λk of the Jacobian A(t) = [∂F/∂y](t,y)
of F are all negative, we can set λ = −maxt ρ(A(t)), where ρ(A(t)) is the
spectral radius of A(t). This λ is a candidate to replace the one entering
in the stability conditions (such as, e.g., (8.30)) that were derived for the
scalar Cauchy problem.

Remark 8.6 The MATLAB programs (ode23, ode45, ...) that we have men-
tioned before can be used also for the solution of systems of ordinary differential
equations. The syntax is odeXX(@f,[t0 tf],y0), where y0 is the vector of the
initial conditions, f is a function to be specified by the user and odeXX is one
of the methods available in MATLAB. �

Now consider the case of an ordinary differential equation of order m

y(m)(t) = f(t, y, y′, . . . , y(m−1)) (8.65)

for t ∈ (t0, T], whose solution (when existing) is a family of functions de-
fined up to m arbitrary constants. The latter can be fixed by prescribing
m initial conditions

y(t0) = y0, y
′(t0) = y1, . . . , y

(m−1)(t0) = ym−1.

310 8 Ordinary differential equations

Setting

w1(t) = y(t), w2(t) = y′(t), . . . , wm(t) = y(m−1)(t),

the equation (8.65) can be transformed into a first-order system of m
differential equations

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w′
1 = w2,

w′
2 = w3,

...

w′
m−1 = wm,

w′
m = f(t, w1, . . . , wm),

with initial conditions

w1(t0) = y0, w2(t0) = y1, . . . , wm(t0) = ym−1.

Thus we can always approximate the solution of a differential equation
of order m > 1 by resorting to the equivalent system of m first-order
equations, and then applying to this system a convenient discretization
method.

Example 8.8 (Electrical circuits) Consider the circuit of Problem 8.4 and
suppose that L(i1) = L is constant and that R1 = R2 = R. In this case v can
be obtained by solving the following system of two differential equations:

⎧
⎪⎨

⎪⎩

v′(t) = w(t),

w′(t) = − 1

LC

(
L

R
+RC

)

w(t) − 2

LC
v(t) +

e

LC
,

(8.66)

with initial conditions v(0) = 0, w(0) = 0. The system has been obtained from
the second-order differential equation

LC
d2v

dt2
+

(
L

R2
+R1C

)
dv

dt
+

(
R1

R2
+ 1

)

v = e. (8.67)

We set L = 0.1 Henry, C = 10−3 Farad, R = 10 Ohm and e = 5 Volt, where
Henry, Farad, Ohm and Volt are respectively the unit measure of inductance,
capacitance, resistance and voltage. Now we apply the forward Euler method
with h = 0.001 seconds in the time interval [0, 0.1], by the Program 8.1:

L=0.1; C=1.e -03; R=10; e=5;
[t,u]= feuler(@fsys ,[0,0.1],[0 0],100,L,C,R,e);

where fsys is contained in the file fsys.m:

function fn=fsys(t,y,L,C,R,e)
LC = L*C;
[n,m]=size(y); fn=zeros(n,m);
fn (1)=y(2);
fn (2)=-(L/R+R*C)/(LC)*y(2) -2/(LC)*y(1)+e/(LC);
return

8.9 Systems of differential equations 311

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.5

1

1.5

2

2.5

3

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
−50

0

50

100

150

200

250

Figure 8.17. Numerical solutions of system (8.66). The potential drop v(t) is
reported on the left, its derivative w(t) on the right: the dashed line represents
the solution obtained for h = 0.001 with the forward Euler method, the solid
line is for the one generated via the same method with h = 0.004, and the
solid line with circles is for the one produced via the Newmark method (8.71)
(with ζ = 1/4 and θ = 1/2) with h = 0.004

In Figure 8.17 we report the approximated values of v(t) and w(t). As ex-
pected, v(t) tends to e/2 = 2.5 Volt for t → ∞. In this case, the matrix
A = [∂F/∂y](t,y) = [0, 1;−20000,−200], hence does not depend on time. Its
eigenvalues are λ1,2 = −100 ± 100i, so that the bound on time-step which
guarantees absolute stability is h < −2Re(λi)/|λi|2 = 0.01. �

Sometimes numerical approximations can be directly derived on the
high order equation without passing through the equivalent first order
system. Consider for instance the case of the 2nd order Cauchy problem

{
y′′(t) = f(t, y(t), y′(t)) t ∈ (t0, T],
y(t0) = α0, y′(t0) = β0.

(8.68)

Two sequences un and vn will approximate y(tn) and y
′(tn), respectively.

A simple numerical scheme can be constructed as follows: find un+1 such
that

un+1 − 2un + un−1

h2
= f(tn, un, vn), n = 1, . . . , Nh, (8.69)

with u0 = α0 and v0 = β0. Moreover, since (yn+1 − 2yn + yn−1)/h
2 is

a second order approximation of y′′(tn), let us consider a second order
approximation for y′(tn) too, i.e. (see (4.9))

vn =
un+1 − un−1

2h
, with v0 = β0. (8.70)

The leap-frog method (8.69)-(8.70) is accurate of order 2 with respect to
h.

312 8 Ordinary differential equations

A more general method is the Newmark method, in which we build
two sequences with same meaning as before

un+1 = un + hvn + h2
[
ζf(tn+1, un+1, vn+1)

+(1/2− ζ)f(tn, un, vn)
]
,

vn+1 = vn + h [(1 − θ)f(tn, un, vn) + θf(tn+1, un+1, vn+1)] ,

(8.71)

with u0 = α0 and v0 = β0, and ζ and θ are two non-negative real
numbers. This method is implicit unless ζ = θ = 0, second order if
θ = 1/2, whereas it is first order accurate if θ �= 1/2. The condition
θ ≥ 1/2 is necessary to ensure stability. For θ = 1/2 and ζ = 1/4 we
find a rather popular method that is unconditionally stable. However,
this method is not suitable for simulations on long time intervals as
it introduces oscillatory spurious solutions. For these simulations it is
preferable to use θ > 1/2 and ζ > (θ+1/2)2/4 even though the method
degenerates to a first order one.

In Program 8.8 we implement the Newmark method. The vector
param allows to specify the values of the coefficients (param(1)=ζ,
param(2)=θ).

Program 8.8. newmark: Newmark method

function [t,u]=newmark(odefun ,tspan ,y0,Nh,param ,...
varargin)

%NEWMARK Solves second order differential equations
% using the Newmark method
% [T,Y]= NEWMARK(ODEFUN ,TSPAN ,Y0,NH,PARAM) with TSPAN =
% [T0 TF] integrates the system of differential
% equations y’’=f(t,y,y’) from time T0 to TF with
% initial conditions Y0=(y(t0),y’(t0)) using the
% Newmark method on an equispaced grid of NH steps.
% PARAM holds parameters zeta and theta
% Function ODEFUN(T,Y) must return a vector , whose
% elements hold the evaluation of f(t,y), of the
% same dimension of Y.
% Each row in the solution array Y corresponds to a
% time returned in the column vector T.
tt=linspace(tspan(1), tspan(2),Nh +1);
y=y0(:); u=y.’;
global glob_h glob_t glob_y glob_odefun ;
global glob_zeta glob_theta glob_varargin glob_fn;
glob_h=(tspan(2)- tspan (1))/Nh;
glob_y=y; glob_odefun =odefun;
glob_zeta = param (1); glob_theta = param (2);
glob_varargin =varargin ;
if (exist(’OCTAVE_VERSION ’))
o_ver=OCTAVE_VERSION ;
version=str2num ([o_ver(1), o_ver(3), o_ver(5)]);
end

if (~exist(’OCTAVE_VERSION ’) | version >= 320)
options=optimset ;

8.10 Some examples 313

options.Display=’off’;
options.TolFun=1.e -12;
options.MaxFunEvals =10000;

end
glob_fn =odefun(tt(1), glob_y , varargin {:});
for glob_t=tt(2: end)
if (exist(’OCTAVE_VERSION ’) & version < 320)

w = fsolve(’newmarkfun ’, glob_y);
else

w = fsolve(@(w) newmarkfun (w),glob_y ,options);
end

glob_fn =odefun(glob_t ,w,varargin {:});
u = [u; w.’]; glob_y = w;

end
t=tt ’;
clear glob_h glob_t glob_y glob_odefun ;
clear glob_zeta glob_theta glob_varargin glob_fn;
end

function z=newmarkfun (w)
global glob_h glob_t glob_y glob_odefun ;
global glob_zeta glob_theta glob_varargin glob_fn;
fn1=glob_odefun (glob_t ,w, glob_varargin {:});
z(1)=w(1) - glob_y (1) -glob_h*glob_y (2) -...

glob_h ^2*(glob_zeta *fn1 +(0.5- glob_zeta)* glob_fn);
z(2)=w(2) - glob_y (2) -...

glob_h *((1- glob_theta)* glob_fn+glob_theta *fn1);
end

Example 8.9 (Electrical circuits) We consider again the circuit of Prob-
lem 8.4 and we solve the second order equation (8.67) with the Newmark
scheme. In Figure 8.17 we compare the numerical approximations of the func-
tion v computed using the forward Euler scheme (dashed line for h = 0.001
and continuous line for h = 0.004) and the Newmark scheme with θ = 1/2
and ζ = 1/4 (solid line with circles), with the time-step h = 0.004. The better
accuracy of the latter solution is due to the fact that the method (8.71) is
second order accurate with respect to h. �

See the Exercises 8.18-8.20.

8.10 Some examples

We end this chapter by considering and solving three non-trivial exam-
ples of systems of ordinary differential equations.

8.10.1 The spherical pendulum

The motion of a point x(t) = (x1(t), x2(t), x3(t))
T with mass m sub-

ject to the gravity force F = (0, 0,−gm)T (with g = 9.8 m/s2)
and constrained to move on the spherical surface of equation Φ(x) =

314 8 Ordinary differential equations

x21 + x22 + x23 − 1 = 0 is described by the following system of ordinary
differential equations

..
x =

1

m

(
F − m

.
x
T
H

.
x +∇ΦTF

|∇Φ|2 ∇Φ
)

for t > 0. (8.72)

We denote by
.
x the first derivative with respect to t, with

..
x the second

derivative, with ∇Φ the spatial gradient of Φ, equal to 2x, with H the
Hessian matrix of Φ whose components are Hij = ∂2Φ/∂xi∂xj for i, j =
1, 2, 3. In our case H is a diagonal matrix with coefficients all equal to
2. System (8.72) must be provided with the initial conditions x(0) = x0

and
.
x (0) = v0.
To numerically solve (8.72) let us transform it into a system of dif-

ferential equations of order 1 in the new variable y, a vector with 6
components. Having set yi = xi and yi+3 =

.
xi with i = 1, 2, 3, and

λ =
m(y4, y5, y6)

TH(y4, y5, y6) + ∇ΦTF

|∇Φ|2 ,

we obtain, for i = 1, 2, 3,

.
yi= y3+i,
.
y3+i=

1

m

(
Fi − λ

∂Φ

∂yi

)
.

(8.73)

We apply the Euler and Crank-Nicolson methods. Initially it is
necessary to define a MATLAB function (fvinc in Program 8.9)
which yields the expressions of the right-hand terms (8.73). Further-
more, let us suppose that the initial conditions are given by vector
y0=[0,1,0,.8,0,1.2]and that the integration interval is tspan=[0,25].
We recall the explicit Euler method in the following way

[t,y]= feuler(@fvinc ,tspan ,y0,nt);

(the backward Euler beuler and Crank-Nicolson cranknicmethods can
be called in the same way), where nt is the number of intervals (of
constant width) used to discretize the interval [tspan(1),tspan(2)]. In
the graphs in Figure 8.18 we report the trajectories obtained with 10000
and 100000 discretization nodes. Only in the second case, the solution
looks reasonably accurate. As a matter of fact, although we do not know
the exact solution to the problem, we can have an idea of the accuracy
by noticing that the solution satisfies r(y) ≡ |y21+y22+y23−1| = 0 and by
consequently measuring the maximal value of the residual r(yn) when
n varies, yn being the approximation of the exact solution generated at
time tn. By using 10000 discretization nodes we find r = 1.0578, while
with 100000 nodes we have r = 0.1111, in accordance with the theory
requiring the explicit Euler method to converge with order 1.

8.10 Some examples 315

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1

−1

−0.5

0

y
1

y
2

y 3

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−1

−0.5

0

y
1

y
2

y 3

Figure 8.18. The trajectories obtained with the explicit Euler method with
h = 0.0025 (on the left) and h = 0.00025 (on the right). The blackened point
shows the initial datum

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
−1

−0.5

0

0.5

y
1

y
2

y 3

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
−1

−0.5

0

0.5

y
1

y
2

y 3

Figure 8.19. The trajectories obtained using the implicit Euler method with
h = 0.00125 (on the left) and using the Crank-Nicolson method with h = 0.025
(on the right)

By using the implicit Euler method with 20000 steps we obtain the
solution reported in Figure 8.19, while the Crank-Nicolson method (of
order 2) with only 1000 steps provides the solution reported in the same
figure on the right, which is undoubtedly more accurate. Indeed, we find
r = 0.5816 for the implicit Euler method and r = 0.0928 for the Crank-
Nicolson method.

As a comparison, let us solve the same problem using the explicit
adaptive methods of type Runge-Kutta ode23 and ode45, featured in
MATLAB. These (unless differently specified) modify the integration
step in order to guarantee that the relative error on the solution is less
than 10−3 and the absolute error is less than 10−6. We run them using
the following commands

[t1 ,y1]= ode23(@fvinc ,tspan ,y0);
[t2 ,y2]= ode45(@fvinc ,tspan ,y0);

obtaining the solutions in Figure 8.20.

316 8 Ordinary differential equations

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
−1

−0.5

0

0.5

y
1

y
2

y 3

−2
−1

0
1

2

−2

−1

0

1

2
−2.5

−2

−1.5

−1

−0.5

0

0.5

y
1

y
2

y 3

Figure 8.20. The trajectories obtained using methods ode23 (left) and ode45

(right) with the same accuracy criteria. In the second case the error control
fails and the solution obtained is less accurate

The two methods used 783, respectively 537, non-uniformly dis-
tributed discretization nodes. The residual r is equal to 0.0238 for ode23
and 3.2563 for ode45. Surprisingly, the result obtained with the highest-
order method is thus less accurate and this warns us as to using the ode
programs available in MATLAB. An explanation of this behavior is in
the fact that the error estimator implemented in ode45 is less constrain-
ing than that in ode23. By slightly decreasing the relative tolerance (it
is sufficient to set options=odeset(’RelTol’,1.e-04)) and renaming
the program to [t,y]=ode45(@fvinc,tspan,y0,options); we can in
fact find results comparable with those of ode23. Precisely ode23 re-
quires 1751 discretization nodes and it provides a residual r = 0.003,
while ode45 requires 1089 discretization nodes and it provides a residual
r = 0.060.

Program 8.9. fvinc: forcing term for the spherical pendulum problem

function [f]=fvinc(t,y)
[n,m]=size(y); f=zeros(n,m);
phix =2*y(1); phiy =2*y(2); phiz =2*y(3);
H=2* eye(3);
mass =1;
F1 =0; F2=0; F3=-mass *9.8;
xp=zeros(3 ,1);
xp (1:3)=y(4:6);
F=[F1;F2;F3];
G=[phix;phiy;phiz];
lambda=(mass*xp ’*H*xp+F’*G)/(G’*G);
f(1:3)=y(4:6);
for k=1:3;

f(k+3)=(F(k)-lambda*G(k))/ mass;
end
return

Octave 8.2 ode23 requires 924 steps while ode45 requires 575 steps for
the same accuracy tol=1.e-03.

8.10 Some examples 317

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1-1
-0.8

-0.6
-0.4

-0.2
 0

 0.2
 0.4

 0.6
 0.8

 1

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

y1(:,3)

y1(:,1)

y1(:,2)

y1(:,3)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1-1
-0.8

-0.6
-0.4

-0.2
 0

 0.2
 0.4

 0.6
 0.8

 1
 1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

y2(:,3)

y2(:,1)

y2(:,2)

y2(:,3)

Figure 8.21. The trajectories obtained using methods ode23 (left) and ode45

(right) with the same accuracy criteria.

Note that ode45 gives results similar to ode23 as opposed to ode45

in MATLAB, see Figure 8.21. �

8.10.2 The three-body problem

We want to compute the evolution of a system composed by three bodies,
knowing their initial positions and velocities and their masses under the
influence of their reciprocal gravitational attraction. The problem can
be formulated by using Newton’s laws of motion. However, as opposed
to the case of two bodies, there are no known closed form solutions.
We suppose that one of the three bodies has considerably larger mass
than the two remaining, and in particular we study the case of the Sun-
Earth-Mars system, a problem studied by celeber mathematicians such
as Lagrange in the eighteenth century, Poincaré towards the end of the
nineteenth century and Levi-Civita in the twentieth century.

We denote by Ms the mass of the Sun, by Me that of the Earth and
by Mm that of Mars. The Sun’s mass being about 330000 times that of
the Earth and the mass of Mars being about one tenth of the Earth’s, we
can imagine that the center of gravity of the three bodies approximately
coincides with the center of the Sun (which will therefore remain still in
this model) and that the three objects remain in the plane described by
their initial positions. In such case the total force exerted on the Earth
will be for instance

Fe = Fes + Fem =Me
d2xe

dt2
, (8.74)

where xe = (xe, ye)
T denotes the Earth’s position with respect to the

Sun, while Fes and Fem denote the force exerted by the Sun and by Mars,
respectively, on the Earth. By applying the universal gravitational law,
denoting by G the universal gravity constant and by xm the position of
Mars with respect to the Sun, equation (8.74) becomes

318 8 Ordinary differential equations

Me
d2xe

dt2
= −GMeMs

xe

|xe|3 +GMeMm
xm − xe

|xm − xe|3 .

Now, let us take the astronomical unit (1AU) as unit length, the year

(1yr) as temporal unit and define the Sun mass as Ms = 4π2(1AU)3

G(1yr)2 . By

adimensionalizing the previous equations and denoting again with xe,
xm, xs and t the adimensionalized variables, we obtain the following
equation

d2xe

dt2
= 4π2

(
Mm

Ms

xm − xe

|xm − xe|3 − xe

|xe|3
)
. (8.75)

A similar equation for planet Mars can be obtained using a similar com-
putation

d2xm

dt2
= 4π2

(
Me

Ms

xe − xm

|xe − xm|3 − xm

|xm|3
)
. (8.76)

The second-order system (8.75)-(8.76) immediately reduces to a system
of eight equations of order one. Program 8.10 allows to evaluate a func-
tion containing the right-hand side terms of system (8.75)-(8.76).

Program 8.10. threebody: forcing term for the simplified three body system

function f=threebody (t,y)
[n,m]=size(y); f=zeros(n,m); Ms =330000; Me=1; Mm =0.1;
D1 = ((y(5)-y(1))^2+(y(7)-y(3))^2)^(3/2);
D2 = (y(1)^2+y(3)^2)^(3/2);
f(1)=y(2); f(2)=4*pi ^2*(Me/Ms*(y(5)-y(1))/D1 -y(1)/ D2);
f(3)=y(4); f(4)=4*pi ^2*(Me/Ms*(y(7)-y(3))/D1 -y(3)/ D2);
D2 = (y(5)^2+y(7)^2)^(3/2);
f(5)=y(6); f(6)=4*pi ^2*(Mm/Ms*(y(1)-y(5))/D1 -y(5)/ D2);
f(7)=y(8); f(8)=4*pi ^2*(Mm/Ms*(y(3)-y(7))/D1 -y(7)/ D2);
return

Let us compare the implicit Crank-Nicolson method and the explicit
adaptive Runge-Kutta method implemented in ode23. Having set the
Earth to be 1 unit away from the Sun, Mars will be located at about
1.52 units: the initial position will therefore be (1, 0) for the Earth and
(1.52, 0) for Mars. Let us further suppose that the two planets initially
have null horizontal velocity and vertical velocity equal to −5.1 units
(Earth) and −4.6 units (Mars): this way they should move along reason-
ably stable orbits around the Sun. For the Crank-Nicolson method we
choose 2000 discretization steps:

[t23 ,u23]= ode23(@threebody ,[0 10] ,...
[1.52 0 0 -4.6 1 0 0 -5.1]);

[tcn ,ucn]= cranknic (@threebody ,[0 10] ,...
[1.52 0 0 -4.6 1 0 0 -5.1] ,2000);

The graphs in Figure 8.22 show that the two methods are both able to
reproduce the elliptical orbits of the two planets around the Sun. Method

8.10 Some examples 319

−1 −0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

1

S

−1 −0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

1

S

Figure 8.22. The Earth’s (inmost) and Mars’s orbit with respect to the Sun
as computed with the adaptive method ode23 (on the left) (with 543 steps)
and with the Crank-Nicolson method (on the right) (with 2000 steps)

ode23 only required 543 (nonuniform) steps to generate a more accurate
solution than that generated by an implicit method with the same order
of accuracy, but which does not use step adaptivity.

Octave 8.3 ode23 requires 847 steps to generate a solution with a tol-
erance of 1e-3. �

8.10.3 Some stiff problems

Let us consider the following differential problem, proposed by [Gea71],
as a variant of the model problem (8.28):

{
y′(t) = λ(y(t) − g(t)) + g′(t), t > 0,

y(0) = y0,
(8.77)

where g is a regular function and λ < 0 has a very large absolute value,
whose solution

y(t) = (y0 − g(0))eλt + g(t), t ≥ 0. (8.78)

is the sum of two components, also called transient and persistent so-
lution, respectively. Initially, on a time interval of length O(1/λ), the
transient component prevails, whereas the persistent component becomes
predominant in the asymptotic regime (for sufficiently large t).

In particular, we set g(t) = t, λ = −100, and y0 = 1 and solve
problem (8.77) over the interval (0, 100) using the explicit Euler method:
since in this case f(t, y) = λ(y(t)− g(t))+ g′(t) we have ∂f/∂y = λ, and
the stability analysis performed in Section 8.5 suggests that we choose
h < 2/100. This restriction is dictated by the presence of the component
behaving like e−100t and appears completely unjustified when we think

320 8 Ordinary differential equations

0 2 4 6 8 10
-6000

-4000

-2000

0

2000

4000

6000

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

Figure 8.23. Solutions obtained using method (8.59) for problem (8.77) vio-
lating the stability condition (h = 0.0055, left) and respecting it (h = 0.0054,
right)

of its weight with respect to the whole solution for sufficiently large t
(to get an idea, for t = 1 we have e−100 ≈ 10−44). The situation gets
worse using a higher order explicit method, such as for instance the
Adams-Bashforth (8.59) method of order 3: the absolute stability region
reduces (see Figure 8.13) and, consequently, the restriction on h becomes
even stricter, h < 0.00545. Violating – even slightly – such restriction
produces unacceptable solutions (as shown in Figure 8.23 on the left).

We thus face an apparently simple problem, but one that becomes
difficult to solve with an explicit method (and more generally with a
method which is not A-stable).

In fact, even though for large values of t it is the persistent component
of the solution that prevails (in the current case it is a straight line), yet
for its correct approximation we must enforce a strong limitation on h.
Such kind of problem is called stiff, or, more precisely, it is a stiff problem
on the interval on which the persistent solution prevails. As a matter of
fact the choice of h is subjected to stability constraints; in these cases, the
use of explicit methods, even if implemented using adaptive strategies,
is prohibitive.

Programs implementing adaptive methods do not explicitely check
that absolute stability condition is satisfied. Nevertheless, the error es-
timator provides steplength h such that hλ belongs to the absolute sta-
bility region.

We consider now a system of linear differential equations that reads

y′(t) = Ay(t) +ϕ(t), A ∈ R
n×n, ϕ(t) ∈ R

n, (8.79)

where A has n distinct eigenvalues λj , j = 1, . . . , n with Re(λj) < 0. Its
exact solution is

y(t) =

n∑
j=1

Cje
λjtvj +ψ(t), (8.80)

8.10 Some examples 321

where C1, . . . , Cn are n costants and {vj} is a basis of Rn whose com-
ponents are the eigenvectors of A, while ψ(t) is a special solution of
(8.79).

Similarly to the scalar case (8.78), Cje
λjtvj represent the transient

components of the solution and ψ(t) the persistent component (for large
t). If |Re(λj)| is large, the corresponding transient component will tend
to zero very quickly, while for small values of |Re(λj)|, the corresponding
transient components will decay more slowly. If we approximate (8.79)
by a numerical scheme that is not absolutely stable, the transient compo-
nent featuring the largest value of |Re(λj)| is the one that yields the most
stringent constraint on the steplength h, even though such component
is the quickest to decay to zero.

A parameter that is often used to measure the stiff character of a
system is

rs =
maxj |Re(λj)|
minj |Re(λj)| ,

even though by itself rs is not fully meaningful. As a matter of fact,
the stiff character of a system depends on rs, the eigenvalues of A, the
initial conditions, the persistent component of the solution and the time
interval on which the system has to be solved.

On the other hand, the stiff character depends not only on the form
of the exact solution of (8.79); as a matter of fact there exist different
systems, some of them stiff, some other non-stiff, all featuring the same
exact solution, see, e.g., [Lam91, Ch. 6].
How can we therefore state whether a system is stiff or not? Let us quote
the following definition proposed by [Lam91, pag. 220].

Definition 8.1 A system of ordinary differential equations is said
stiff if, once approximated by a numerical method featuring an abso-
lute stability region of bounded extension, “forces” the said numerical
method, for every initial condition for which the given problem ad-
mits a solution, to use a steplength exceedingly small with respect to
the one that would be necessary to reasonably reproduce the behavior
of the exact solution.

In the case of problem (8.77) (or (8.79)) the system is not stiff in
the initial interval where the solution varies quickly, whence the need
of adopting a small h to well capture the sharp layer. Rather, it is stiff
in the next interval where the solution features a mild slope. Within
this interval the fastest transient, although exhausted because negligible
with respect to the other components, still dictates the choice of a tiny
steplength h because of stability constraints.

322 8 Ordinary differential equations

A-stable numerical methods (those whose absolute stability region
comprises the half complex plane Reλ < 0) with adaptive choice of the
steplength are the most efficient for stiff problems. Their implicit char-
acter makes them more computationally involved than explicit methods,
however they can afford much larger steplengths. Explicit methods, on
their turn, may be unaffordable because of the strong limitation on h.

The algorithm implemented in function ode15s is based on multi-
step methods and backward differentiation formulas BDF introduced in
Section 8.7. Its formal convergence order is variable and at most 5. This
method is very effective also on systems that are non-stiff for which
the Jacobian matrix of f(t,y) is either constant or features very small
variations.

The function ode23s implements a linear implicit multistep methodode23s

based on Rosenbrock methods see [SR97] for a detailed description of
these two functions.

Example 8.10 Let us consider the system y′(t) = Ay(t), t ∈ (0, 100) with
initial condition y(0) = y0, where y = (y1, y2)

T , y0 = (y1,0, y2,0)
T and

A =

⎡

⎣
0 1

−λ1λ2 λ1 + λ2

⎤

⎦ ,

where λ1 and λ2 are two different negative numbers such that |λ1| � |λ2|.
Matrix A has eigenvalues λ1 and λ2 and eigenvectors v1 = (1, λ1)

T , v2 =
(1, λ2)

T . Thanks to (8.80) the exact solution is

y(t) =

⎛

⎝
C1e

λ1t + C2e
λ2t

C1λ1e
λ1t + C2λ2e

λ2t

⎞

⎠

T

. (8.81)

The constants C1 and C2 are obtained by fulfilling the initial condition:

C1 =
λ2y1,0 − y2,0

λ2 − λ1
, C2 =

y2,0 − λ1y1,0
λ2 − λ1

.

Based on the remarks made earlier, the integration step of an explicit method
used for the resolution of such a system will depend uniquely on the eigenvalue
having largest modulus, λ1. Let us assess this experimentally using the explicit
Euler method and choosing λ1 = −100, λ2 = −1 (therefore rs = 100), y1,0 =
y2,0 = 1. In Figure 8.24 we report the solutions computed by violating (left)
or respecting (right) the stability condition h < 1/50. �

The definition of stiff problem can be extended, with some care, to the
nonlinear case (see for instance [QSS07, Chapter 11]). One of the most
studied nonlinear stiff problems is given by the Van der Pol equation

d2x

dt2
= μ(1 − x2)

dx

dt
− x, (8.82)

8.10 Some examples 323

0 1 2 3 4 5 6
-4

-3

-2

-1

0

1

2

3

4
x 10

9

y1

y2

t
0 1 2 3 4 5 6

-1.5

-1

-0.5

0

0.5

1

1.5

y1

y2

t

Figure 8.24. Solutions to the problem in Example 8.10 for h = 0.0207 (left)
and h = 0.01 (right). In the first case the condition h < 2/|λ1| = 0.02 is vio-
lated and the method is unstable. The second case features a strong variation
of the fast transient component y2. Consider the totally different scale in the
two graphs

proposed in 1920 and used in the study of circuits containing thermionic
valves, the so-called vacuum tubes, such as cathodic tubes in television
sets or magnetrons in microwave ovens.

If we set y = (x, z)T , with z = dx/dt, (8.82) is equivalent to the
following nonlinear first order system

y′ = F(t,y) =

[
z

−x+ μ(1 − x2)z

]
. (8.83)

Such system becomes increasingly stiff with the increase of the μ pa-
rameter. In the solution we find in fact two components which denote
totally different dynamics with the increase of μ. The one having the
fastest dynamics imposes a limitation on the integration step which gets
more and more prohibitive with the increase of μ.

If we solve (8.82) using ode23 and ode45, we realize that these are
too costly when μ is large. With μ = 100 and initial condition y =
(1, 1)T , ode23 requires 7835 steps and ode45 23473 steps to integrate
between t = 0 and t = 100. Reading the MATLAB help we discover
that these methods are based on explicit schemes and therefore they
are not recommended for stiff problems: for these, other procedures are
suggested, such as for instance the implicit methods ode23s or ode15s. ode23s

The difference in terms of number of steps is remarkable, as shown in
Table 8.1. Notice however that the number of steps for ode23s is smaller
than that for ode23 only for large enough values of μ (thus for very stiff
problems).

Example 8.11 (Chemical kinetics) We want to investigate the temporal
behavior of chemical reactions of species in homogeneous media. Quite often,

324 8 Ordinary differential equations

0 5 10 15 20 25 30 35 40
-3

-2

-1

0

1

2

3

x

z

t
0 5 10 15 20 25 30 35 40

-15

-10

-5

0

5

10

15

x

z

t

Figure 8.25. Behavior of the components of the solutions y to system (8.83)
for μ = 1 (left) and μ = 10 (right)

Table 8.1. Behavior of the number of integration steps for various approxi-
mation methods with growing μ parameter

μ ode23 ode45 ode23s ode15s

0.1 471 509 614 586
1 775 1065 838 975
10 1220 2809 1005 1077
100 7835 23473 299 305
1000 112823 342265 183 220

both fast and slow species cohexist, that evolve according to differente char-
acteristic times. Below we consider a mathematical model that represents a
simplified version of this process. This model, named Davis-Skodje (see, e.g.,
[VGCN05]), addresses two species y1(t) and y2(t) that evolve according to the
equations

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dy1
dt

=
1

ε

(

−y1 +
y2

1 + y2

)

− y2
(1 + y2)2

, t > 0

dy2
dt

= −y2, t > 0

y1(0) = y1,0
y2(0) = y2,0,

(8.84)

where ε > 0, y1,0 and y2,0 are given.
The exact solution is:

y1(t) =

(

y1,0 − y2,0
1 + y2,0

)

e−t/ε +
y2,0e

−t

1 + y2,0e−t

y2(t) = y2,0e
−t.

The ratio 1/ε is a measure of the system’s stiffness: the larger 1/ε the wider
the gap between the temporal scales of the evolution of the two species, than
the more complex is the numerical computation.

To numerically solve system (8.84) with ε = 10−6 and initial condition
y0 = (1.5, 1)T , we have defined the function

8.11 What we haven’t told you 325

Table 8.2. Number of steps used by a few MATLAB functions to solve prob-
lem (8.84) for different values of the parameter ε

ε ... ode23 .. ode45 .. ode23s .. ode15s

10−2 409 1241 73 73
10−3 3991 12081 84 81
10−4 39808 120553 87 85

function [f]=funds(t,y)
epsilon =1.e-6; [n,m]= size(y);f=zeros(n,m);
f(1)=-1/ epsilon*y(1)+((1/ epsilon -1)*y(2)+...

1/ epsilon*y(2)*y(2))/(1+ y(2))^2;
f(2)=-y(2);
end

Then we call the MATLAB function ode23s by the following commands

y0 =[1.5 ,1]; tspan=[0 ,10];
[t,y]= ode23s(@funds ,tspan ,y0);

In Table 8.2 we report the number of steps required by the explicit methods
ode23, ode45, and by the implicit methods ode24s, ode15s. We can appreci-
ate the better efficiency of methods ode23s and ode15s, as they have been
specifically designed for stiff equations.

In Figure 8.26, left, we plot numerical solutions: the species y1 evolves very
quickly at the beginning of the simulation during a time interval of length
O(ε), and very slowly after. On the contrary, the species y2 varies slowly and
uniformly during the whole simulation time.

In Figure 8.26, right, trajectories of problem (8.84) are shown for ε =
10−6 and with several initial conditions [y1,0, y2,0]

T . Horizontal stretches of
trajectories are covered in a very short initial time interval of length O(ε),
while the curved ways are covered in the remaining time of length 10 − O(ε).
Analysis of trajectories can be useful to acquire carachteristic information of
the chemical process. �

Octave 8.4 While ode15s and ode23s are not available in Octave,
many ODE solvers capable of dealing with stiff problems are available in
the Octave core (lsode, dassl, daspk) and in the odepkg package from
Octave-Forge (ode2r, ode5r, odebda, oders, odesx). �

8.11 What we haven’t told you

For a complete derivation of the whole family of the Runge-Kutta meth-
ods we refer to [But87], [Lam91] and [QSS07, Chapter 11].

For derivation and analysis of multistep methods we refer to [Arn73]
and [Lam91].

326 8 Ordinary differential equations

-0.5 0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

t
0 0.5 1 1.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

y1

y
2

Figure 8.26. At left, numerical solutions (y1(t) (continuous line) and y2(t)
(dashed line)) of system (8.84) with initial conditions y1,0 = 1.5, y2,0 = 1.
At right, trajectories of (8.84) for several initial data y0 = (y1,0, y2,0)

T : y0 =
(1.5, 1)T (continuous line), (1.5, 3)T (dashed line), (0, 2)T (dotted-dashed line),
(0, 4)T (dotted line). ε = 10−6 in all simulations

8.12 Exercises

Exercise 8.1 Apply the backward Euler and forward Euler methods for the
solution of the Cauchy problem

y′ = sin(t) + y, t ∈ (0, 1], with y(0) = 0, (8.85)

and verify that both converge with order 1.

Exercise 8.2 Consider the Cauchy problem

y′ = −te−y, t ∈ (0, 1], with y(0) = 0. (8.86)

Apply the forward Euler method with h = 1/100 and estimate the number of
exact significant digits of the approximate solution at t = 1 (use the property
that the value of the exact solution is included between −1 and 0).

Exercise 8.3 The backward Euler method applied to problem (8.86) re-
quires at each step the solution of the nonlinear equation: un+1 = un −
htn+1e

−un+1 = φ(un+1). The solution un+1 can be obtained by the follow-
ing fixed-point iteration:
for k = 0, 1, . . . , compute u

(k+1)
n+1 = φ(u

(k)
n+1), with u

(0)
n+1 = un.

Find under which restriction on h these iterations converge.

Exercise 8.4 Repeat Exercise 8.1 for the Crank-Nicolson method.

Exercise 8.5 Verify that the Crank-Nicolson method can be derived from the
following integral form of the Cauchy problem (8.5)

y(t) − y0 =

∫ t

t0

f(τ, y(τ))dτ

provided that the integral is approximated by the trapezoidal formula (4.19).

8.12 Exercises 327

Exercise 8.6 Solve the model problem (8.28) with λ = −1+ i by the forward
Euler method and find the values of h for which we have absolute stability.

Exercise 8.7 Show that the Heun method defined in (8.64) is consistent.
Write a MATLAB program to implement it for the solution of the Cauchy
problem (8.85) and verify experimentally that the method has order of con-
vergence equal to 2 with respect to h.

Exercise 8.8 Prove that the Heun method (8.64) is absolutely stable if −2 <
hλ < 0 where λ is real and negative.

Exercise 8.9 Prove formula (8.34).

Exercise 8.10 Prove the inequality (8.39).

Exercise 8.11 Prove the inequality (8.40).

Exercise 8.12 Verify the consistency of the RK3 method (8.58). Write a
MATLAB program to implement it for the solution of the Cauchy problem
(8.85) and verify experimentally that the method has order of convergence
equal to 3 with respect to h. The methods (8.64) and (8.58) stand at the
base of the MATLAB program ode23 for the solution of ordinary differential
equations.

Exercise 8.13 Prove that the method (8.58) is absolutely stable if −2.5 <
hλ < 0 where λ is real and negative.

Exercise 8.14 The modified Euler method is defined as follows:

u∗
n+1 = un + hf(tn, un), un+1 = un + hf(tn+1, u

∗
n+1). (8.87)

Find under which condition on h this method is absolutely stable.

Exercise 8.15 (Thermodynamics) Solve equation (8.1) by the Crank-
Nicolson method and the Heun method when the body in question is a cube
with side equal to 1 m and mass equal to 1 Kg. Assume that T0 = 180K,
Te = 200K, γ = 0.5 and C = 100J/(Kg/K). Compare the results obtained by
using h = 20 and h = 10, for t ranging from 0 to 200 seconds.

Exercise 8.16 Use MATLAB to compute the region of absolute stability of
the Heun method.

Exercise 8.17 Solve the Cauchy problem (8.16) by the Heun method and
verify its order.

Exercise 8.18 The displacement x(t) of a vibrating system represented by a
body of a given weight and a spring, subjected to a resistive force proportional
to the velocity, is described by the second-order differential equation x′′+5x′+
6x = 0. Solve it by the Heun method assuming that x(0) = 1 and x′(0) = 0,
for t ∈ [0, 5].

328 8 Ordinary differential equations

Exercise 8.19 The motion of a frictionless Foucault pendulum is described
by the system of two equations

x′′ − 2ω sin(Ψ)y′ + k2x = 0, y′′ + 2ω cos(Ψ)x′ + k2y = 0,

where Ψ is the latitude of the place where the pendulum is located, ω =
7.29 · 10−5 sec−1 is the angular velocity of the Earth, k =

√
g/l with g = 9.8

m/sec2 and l is the length of the pendulum. Apply the forward Euler method
to compute x = x(t) and y = y(t) for t ranging between 0 and 300 seconds
and Ψ = π/4.

Exercise 8.20 (Baseball trajectory) Using ode23, solve Problem 8.3 by
assuming that the initial velocity of the ball be v(0) = v0(cos(φ), 0, sin(φ))

T ,
with v0 = 38 m/s, φ = 1 degree and an angular velocity equal to 180 ·1.047198
radiants per second. If x(0) = 0, after how many seconds (approximately) will
the ball touch the ground (i.e., z = 0)?

Exercise 8.21 (Chemical kinetics) Given the real values y1,0, y2,0 e y3,0,
the following system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dy1
dt

=
1

ε
(−5y1 − y1y2 + 5y2

2 + y3) + y2y3 − y1, t > 0

dy2
dt

=
1

ε
(10y1 − y1y2 − 10y2

2 + y3) − y2y3 + y1, t > 0

dy3
dt

=
1

ε
(y1y2 − y3) − y2y3 + y1, t > 0

y1(0) = y1,0
y2(0) = y2,0, y3(0) = y3,0,

(8.88)

simulates the evolution of the concentration of three species in a chemical
reaction. By fixing the initial datum y0 = (1, 0.5, 0)T and setting ε = 10−2,
solve system (8.88) with t ∈ [0, 10], calling ode23 and ode23s, then comment
on the stiffness of the system. Finally, plot the computed solution in the phase
space, for different values of the initial datum y0 = (y1,0, y2,0, y3,0)

T with
0 ≤ yi,0 ≤ 1 and i = 1, 3.

	8 Ordinary differential equations
	8.1 Some representative problems
	8.2 The Cauchy problem
	8.3 Euler methods
	8.3.1 Convergence analysis

	8.4 The Crank-Nicolson method
	8.5 Zero-stability
	8.6 Stability on unbounded intervals
	8.6.1 The region of absolute stability
	8.6.2 Absolute stability controls perturbations
	8.6.3 Stepsize adaptivity for the forward Eulermethod

	8.7 High order methods
	8.8 The predictor-corrector methods
	8.9 Systems of differential equations
	8.10 Some examples
	8.10.1 The spherical pendulum
	8.10.2 The three-body problem
	8.10.3 Some stiff problems

	8.11 What we haven't told you
	8.12 Exercises

