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Numerical optimization

Let f : Rn → R, n ≥ 1, be a function that we call cost function or
objective function. The problem

min
x∈Rn

f(x) (7.1)

is called unconstrained (or free) optimization problem, whereas

min
x∈Ω

f(x) (7.2)

over a closed proper subset Ω ⊂ R
n, is called constrained optimization

problem. The set Ω will be determined by either equality or inequal-
ity constraints that will be dictated by the nature of the problem to
solve. For instance, should we find the optimal allocation of n bounded
resources xi (i = 1, . . . , n), the constraints will be expressed by inequal-
ities as 0 ≤ xi ≤ Ci (with Ci given constants) and the set Ω will be the
subset of Rn determined by the fulfilment of the constraints

Ω = {x = (x1, . . . , xn) : 0 ≤ xi ≤ Ci, i = 1, . . . , n}.

Since computing the maximum of a function f is equivalent to com-
pute the minimum of g = −f , for the sake of simplicity we will only
consider algorithms suitable for minimization problems.

Often, more interesting than the minimum value of the given function
is the point at which that minimum is achieved, that we call minimizer,
the latter of course may not be unique.

This chapter will be essentially devoted to numerical methods for
unconstrained optimization and, at a lesser extent, to that of constrained
optimization.
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Figure 7.1. Gaussian functions

7.1 Some representative problems

Problem 7.1 (Population dynamics) A colony of 250 bacteries liv-
ing in an isolated environment self reproduces according to the so called
Verhulst model

b(t) =
2500

1 + 9e−t/3
, t > 0

where t represents the time (expressed in days) past after the start of
the colture (t = 0). We would like to find after how many days the
population growth rate is maximum. For the solution of this problem,
see Examples 7.1 and 7.2. �

Problem 7.2 (Signal analysis) Applications involving automatic vo-
cal identification, like those implemented on smartphones, compress the
acoustic signal into a set of parameters that fully characterize it. The
signal intensity is modeled as a sum of m Gaussian functions (also called
peaks)

fk(t; ak, σk) =
1

√
2πσ2

k

e−(t−ak)
2/(2σ2

k), for k = 1, . . . ,m, t ∈ [t0, tf ],

(7.3)
characterized by 2 coefficients for every peak: the expected value ak of
the kth peak, that is the center of the peak itself, and its variance σ2

k

(see Figure 7.1). The knowledge of the variance of each peak allows
the evaluation of both its height hk = 1/

√
2πσ2

k and amplitude wk =

2
√
log 4σ2

k.
We set now

f(t; a,σ) =
m∑

k=1

fk(t; ak, σk), (7.4)
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where we have set a = [a1, . . . , am] and σ = [σ1, . . . , σm]. The com-
putation of the vectors a and σ entails the solution of the following
minimization problem

min
a,σ

n∑

i=1

(f(ti; a,σ) − yi)
2, (7.5)

where (ti, yi), i = 1, . . . , n represent a sampling of our signal. (7.5) is a
nonlinear least squares problem that is solved in Example 7.12.

The model (7.4) is also named Gaussian Mixture Model (GMM) and
is used in statistics for data mining and pattern recognition. �

Problem 7.3 (Mesh optimization) Consider a given triangulation of
the domainD ⊂ R

2, as in Figure 7.2, left. We want to modify the position
of vertices of the internal triangles in order to optimize the triangles’

quality in the sense specified below. Let (x
(k)
i , y

(k)
i ) (for i = 0, 1, 2) be

the coordinates of the vertices of the kth triangle Tk. Define the matrix

Ak =

(
x
(k)
1 − x

(k)
0 x

(k)
2 − x

(k)
0

y
(k)
1 − y

(k)
0 y

(k)
2 − y

(k)
0

)

and the scalar quantity

μk =
4det(Ak)√
3‖AkW−1‖2F

, (7.6)

where W = [1, 1/2; 0,
√
3/2] while ‖B‖F =

√∑2
i,j=1 b

2
ij denotes the

Frobenius norm of the matrix B. Should Tk be equilateral then μk = 1;
the more Tk departs from being an equilateral triangle, the more μk ap-
proaches zero. To optimize our mesh we minimize the function

∑Ne
k=1 μ

−1
k

with respect to the position of the vertices of the internal triangles of
D, under the constraints det(Ak) ≥ τ (for a given τ), and that no inver-
sion occurs in the ordering of the nodes ([Mun07]). The solution of this
problem will be given in Example 7.16.

In Figure 7.2 we display the original triangulation and the optimized
one. This kind of problems are faced in the numerical solution of partial
differential equations by the finite element method (see Chapter 9). �

Problem 7.4 (Finance) A given capital is placed in investment funds
whose expected rate of interest is 6%, 10%, and 12%, respectively. The
risk associated with this investment is modeled by a function that de-
pends on the fractions xi of the entire capital invested into the three
funds, the risk probability of the funds, and their correlations

r(x) = 0.04x2
1 + 0.25x2

2 + 0.64x2
3 + 0.1x1x2 + 0.208x2x3. (7.7)
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Figure 7.2. Mesh of Problem 7.3. At left the original one, at right that
optimized

The goal is to minimize the risk while guaranteeing that the expected
return be equal to 10.4%. The solution of this problem is provided in
Example 7.14. �

Problem 7.5 (Road network) Consider a network of n roads and p
cross roads as represented in Figure 7.3. Every minute M vehicles travel
through the network; on the jth road the maximum speed limit is vj,m
km/min, moreover no more than ρj,m vehicles per km can transit on the
jth road sj .

We aim at finding the optimal density ρj (vehicles/km) on the road
sj (with 0 ≤ ρj ≤ ρj,m) in order to minimize the average travel time from
the inlet (1st node in Figure 7.3) and the outlet (7th node in Figure 7.3).
It is assumed that the speed of vehicles traveling along the jth road
depends on both the maximum speed vj,m and the maximum density
according to the formula vj = vj,m(1− ρj/ρj,m) km/min. Consequently,
the flowrate of vehicles on the jth street is qj = ρjvj = ρjvj,m(1 −
ρj/ρj,m) vehicles/min. By denoting with tj (in min) the time necessary
to cover the jth road of length Lj km, we find tj = Lj/vj = Lj/(vj,m(1−
ρj/ρj,m)) min. The objective function to be minimized is

f(ρ) =

∑n
j=1 tjρj∑n
j=1 ρj

. (7.8)

At every node of the network the vehicles inflow should balance the
outflow. By denoting with positive sign those incoming in the ith node
(qi,jin) and negative sign those outgoing (qi,jout), the following equations
need to be satisfied

∑

jin

qi,jin −
∑

jout

qi,jout = 0 for i = 1, . . . , p. (7.9)

This is a constrained minimization problem whose constraints are
expressed by both equations and inequalities. See Example 7.17 for its
solution. �
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Figure 7.3. The road network of Problem 7.5

7.2 Unconstrained optimization

When minimizing an objective function one might be interested in find-
ing either a local or a global minimizer. A point x∗ ∈ R

n is called a
global minimizer for f if

f(x∗) ≤ f(x) ∀x ∈ R
n,

while x∗ is a local minimizer for f if there exists a ball Br(x
∗) ⊂ R

n

centered at x∗ and with radius r > 0 such that

f(x∗) ≤ f(x) ∀x ∈ Br(x
∗).

We denote by

∇f(x) =

(
∂f

∂x1
(x), . . . ,

∂f

∂xn
(x)

)T

(7.10)

the gradient of f at point x ∈ R
n, provided f is differentiable in R

n.
Moreover we denote by H(x) the Hessian matrix of f at the point x,

whose elements are

hij(x) =
∂2f(x)

∂xj∂xi
, i, j = 1, . . . , n,

provided that second derivatives of f at that point x do exist.
If f ∈ C2(Rn), that is all first and second order derivatives of f exist

and are continuous, than H(x) is symmetric for every x ∈ R
n. A point

x∗ is called a stationary (or critical) point for f if ∇f(x∗) = 0, a regular
point if ∇f(x∗) �= 0.

A function f defined on R
n does not necessarily admit a mini-

mizer; moreover, should such point exist, it is not necessarily unique.
For instance f(x) = x1 + 3x2 is unbounded in R

2, while f(x) =
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sin(x1) sin(x2) · · · sin(xn) admits an infinite number of minimizers and
maximizers in R

n (either local and global).
The function f : Rn → R is convex if ∀x,y ∈ R

n and ∀α ∈ [0, 1],

f(αx+ (1 − α)y) ≤ αf(x) + (1 − α)f(y); (7.11)

it is Lipschitz continuous if there exists a costant L > 0 such that

|f(x) − f(y)| ≤ L‖x − y‖ ∀x,y ∈ R
n. (7.12)

The following result holds.

Proposition 7.1 (Optimality conditions) Let x∗ ∈ R
n. If x∗ is

a minimizer for f (either local or global) and if there exists r > 0
such that f ∈ C1(Br(x

∗)), then ∇f(x∗) = 0. Moreover, if f ∈
C2(Br(x

∗)), the matrix H(x∗) is positive semidefinite.
Viceversa, let r > 0 exist such that f ∈ C2(Br(x

∗)). If ∇f(x∗) = 0
and H(x) is positive definite for all x ∈ Br(x

∗), then x∗ is a local
minimizer for f .
Finally, if f is differentiable and convex in R

n and ∇f(x∗) = 0,
then x∗ is a global minimizer for f .

In view of the numerical solution of optimization problems, an ideal
situation is that of a cost function featuring a unique global minimizer.
However, most often there exist several local minimizers. This is why in
this chapter we will describe numerical methods for the approximation
of local minimizers.

Most often, methods for numerical optimization are of iterative type.
They may be classified into two categories depending on whether or not
they require the knowledge of the derivative of the cost function.

The so called derivative free methods make use of direct compari-
son between values taken by the cost function in order to investigate
its local behavior. Among these methods, some make use of numerical
approximation (tipically, through finite differences, see Section 9.2.1) of
the derivatives, see Section 7.3.

Methods using exact derivatives can take advantage of accurate infor-
mation on the local function behaviour to achieve faster convergence to
the minimizer. As a matter of fact, if f is differentiable at x and ∇f(x)
is different than zero, then the maximum growth of f , moving away from
x, occurs along the (signed) direction given by the vector ∇f(x).

Among the minimization methods that make use of exact derivatives,
the two most important classes (based on complementary strategies) are:
descent (or line search methods) and trust region methods that will be
described in Sections 7.5 and 7.6, respectively.
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7.3 Derivative free methods

In this section we describe two simple numerical methods for the mini-
mization of univariate real valued functions or multivariate real valued
functions along a one-dimensional direction. We will then describe the
Nelder and Mead method for the minimization of functions of several
variables.

7.3.1 Golden section and quadratic interpolation methods

Let f : (a, b) → R be a continuous function featuring a unique minimizer
x∗ ∈ (a, b). We set I0 = (a, b) and for k ≥ 0 we generate a sequence of
intervals Ik = (a(k), b(k)) of decreasing length, each of those containing
x∗.

For any given k, the next interval Ik+1 is determined as follows. Let
c(k), d(k) ∈ Ik, with c(k) < d(k), be two points such that both

b(k) − a(k)

d(k) − a(k)
=

d(k) − a(k)

b(k) − d(k)
= ϕ (7.13)

and
b(k) − a(k)

b(k) − c(k)
=

b(k) − c(k)

c(k) − a(k)
= ϕ (7.14)

be the golden ratio ϕ =
1 +

√
5

2
� 1.628.

Thanks to (7.13), (7.14) we find

c(k) = a(k) +
1

ϕ2
(b(k) − a(k)) and d(k) = a(k) +

1

ϕ
(b(k) − a(k))

(7.15)

The points c(k) and d(k) are symmetrically distributed about the mid-
point of Ik, that is

a(k) + b(k)

2
− c(k) = d(k) − a(k) + b(k)

2
. (7.16)

Indeed, if we replace c(k) and d(k) in (7.16) with the correspond-
ing expressions given in (7.15), after dividing by the common factor
(b(k) − a(k))/ϕ2 we obtain the identity ϕ2 − ϕ − 1 = 0.

Setting a(0) = a and b(0) = b, the golden section algorithm is formu-
lated as follows (see Figure 7.4): for k = 0, 1, . . . until convergence



220 7 Numerical optimization

a(k) b(k)c(k) d(k)

b(k+1)a(k+1) c(k+1)

x∗

Lk ϕLk

Lk+1 ϕLk+1

x

y

f

Figure 7.4. A generic iteration of the golden section method for seeking the
minimizer of the function f ; ϕ is the golden ratio, while Lk = c(k) − a(k)

compute c(k) and d(k) through (7.15)

if f(c(k)) ≥ f(d(k))

set Ik+1 = (a(k+1), b(k+1)) = (c(k), b(k))

else

set Ik+1 = (a(k+1), b(k+1)) = (a(k), d(k))

endif

(7.17)

From (7.13) and (7.14) it also follows that c(k+1) = d(k) if Ik+1 =
(c(k), b(k)), while d(k+1) = c(k) if Ik+1 = (a(k), d(k)).

A stopping criterion for the previous iterations is

b(k+1) − a(k+1)

|c(k+1)| + |d(k+1)| < ε (7.18)

where ε is a given tolerance. In the successful case, the midpoint of
the last interval Ik+1 can be taken as an approximation of the desired
minimizer x∗.

Still using (7.13) (or (7.14)) we obtain

|b(k+1) − a(k+1)| = 1

ϕ
|b(k) − a(k)| = . . . =

1

ϕk+1
|b(0) − a(0)|, (7.19)

that is the golden section method converges linearly with a convergence
rate ϕ−1 � 0.618.

This method is implemented in Program 7.1: fun is either an anony-
mous function or an inline function representing the function f , a and b

are the endpoints of the search interval, tol is the tolerance ε and kmax

is the maximum allowed number of iterations.
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The output variable xmin contains the value of the minimizer, fmin
the minimum value of f in (a, b), iter the number of iterations carried
out by the algorithm.

Program 7.1. golden: golden section method

function [xmin ,fmin ,iter ]= golden(fun ,a,b,tol ,...
kmax ,varargin)

%GOLDEN Approximates a minimizer of 1D-functions
% XMIN=GOLDEN(FUN ,A,B,TOL ,KMAX) approximates a
% minimizer of the function FUN in the interval
% [A,B] by the golden section method.
% If the search fails , the program returns an
% error message. FUN is either an anonymous
% function , or an inline function , or a function
% defined in a M-file.
% XMIN=GOLDEN(FUN ,A,B,TOL ,KMAX ,P1,P2 ,...) passes
% parameters P1 , P2 ,... to the function
% FUN(X,P1,P2 ,...).
% [XMIN ,FMIN ,ITER ]= GOLDEN(FUN ,...) returns
% the value of FUN at XMIN and the number of
% iterations required to compute XMIN.
phi =(1+ sqrt (5))/2; phi1 =1/phi; phi2 =1/( phi +1);
c=a+phi2 *(b-a); d=a+phi1 *(b-a);
err=tol+1; k=0;
while err >tol & k< kmax

if(fun(c) >= fun(d))
a=c; c=d; d=a+phi1 *(b-a);

else
b=d; d=c; c=a+phi2 *(b-a);

end
k=k+1; err=abs(b-a)/(abs(c)+abs(d));

end
xmin =(a+b)/2; fmin=fun(xmin ); iter=k;
if (iter == kmax & err > tol)
fprintf ([’The golden section method stopped \n’ ,...
’without converging to the desired tolerance \n’ ,...
’because the maximum number of iterations was \n’ ,...
’reached\n’]);

end

Example 7.1 Let us solve Problem 7.1 using the golden section method. The
function f(t) = −b′(t) = −7500et/3/(et/3 + 9)2 admits a global minimizer in
the interval [6, 7] as it appears from its plot. We use Program 7.1 with tolerance
equal to 10−8 using the following instructions:

f=@(t)[ -(7500* exp(t/3))/(exp(t/3) + 9)^2]
a=0; b=10; tol=1.e-8; kmax =100;
[tmin ,fmin ,iter ]= golden(f,a,b,tol ,kmax)

After 38 iterations we find

xmin=6.591673759332620 fmin=-2.083333333333333e+02

The maximum growth rate is of 208.3 bacteria per day and occurs about after
6.59 days since the start of the colture. �
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Figure 7.5. The first step of the quadratic interpolation method

The quadratic interpolation method is often used as an alternative
to the golden section algorithm.

Let f be a continuous function. Starting from three distinct points
x(0), x(1) and x(2), a sequence of points x(k), with k ≥ 3, is built in a
way that x(k+1) represents the vertex (and therefore the minimizer) of

the parabola p
(k)
2 interpolating f at the points x(k), x(k−1), and x(k−2),

see Figure 7.5:

p
(k)
2 (x) = f(x(k−2)) + f [x(k−2), x(k−1)](x − x(k−2))+

f [x(k−2), x(k−1), x(k)](x − x(k−2))(x − x(k−1)).

Here,

f [xi, xj ] =
f(xj) − f(xi)

xj − xi
, f [xi, xj , x�] =

f [xj , x�] − f [xi, xj ]

x� − xi
(7.20)

are the so called Newton divided differences (see [QSS07, Ch. 8]). By

solving the first order equation p
(k)
2

′
(x(k+1)) = 0 we obtain

x(k+1) =
1

2

(
x(k−2) + x(k−1) − f [x(k−2), x(k−1)]

f [x(k−2), x(k−1), x(k)]

)
(7.21)

We iterate until |x(k+1) − x(k)| < ε for a prescribed tolerance ε > 0.
Provided for every k the divided difference f [x(k−2), x(k−1), x(k)] does

not vanish, this method converges super-linearly to the minimizer with
a convergence rate p � 1.3247 (see [Bre02]). Otherwise, the method may
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not terminate. For this reason the quadratic interpolation method is
tipically used in combination with other methods, such as the golden
section method, whose convergence is always guaranteed.

The command MATLAB fminbnd implements the combination of fminbnd

these two methods. The calling sintax is x = fminbnd(fun,a,b) where
fun is the function handle associated with the cost function and a, b

represent the endpoints of the interval containing the minimizer. The
output x provides the approximation of the minimizer.

Example 7.2 We use function fminbnd to solve the same problem described
in Example 7.1. We use the following commands:

a=0; b=10; tol=1.e-8; kmax =100;
[tmin1 ,fmin1 ,exitflag ,output]= fminbnd(f,a,b ,...

optimset(’TolX ’,1.e -8));

Convergence to fmin1= 6.591673708945312 is achieved in 8 iterations, much
fewer than the 38 iterations requested by the golden section method. The
command optimset allows fixing the tolerance to a desired value (tol=1.e-8 optimset
in the current case) different than the one that would be otherwise set by
default (tol=1.e-4). The output optional parameters are: fmin1 containing
the evaluation of f at the minimizer, exitflag indicating the termination
state, and output containing the number of iterations carried out as well as
the global number of function evaluations requested by the whole algorithm.

�

As noticed, the two previous methods are genuinely one dimensional,
yet they can be used to solve multidimensional optimization problems
provided they are restricted to the search of optimizers along a given one
dimensional direction (see Section 7.5).

7.3.2 Nelder and Mead method

Let n > 1 and f : Rn → R be a continuous function.
The n−simplex with n+1 vertices xi ∈ R

n (with i = 0, . . . , n) is the
set

S = {y ∈ R
n : y =

n∑

i=0

λixi, λi ∈ R and λi ≥ 0 :

n∑

i=0

λi = 1}, (7.22)

under the assumption that the n vectors xi−x0 (i = 1, . . . , n) be linearly
independent (S is a segment in R, a triangle in R

2 and a tethraedron in
R

3).
The method of Nelder and Mead [NM65] is a derivative free mini-

mization algorithm which generates a sequence of simplices {S(k)}k≥0

in R
n that run after or circumscribe the minimizer x∗ ∈ R

n of the cost
function f . It uses the evaluations of f at the simplices’ vertices, as well
as simple geometrical transformations such as reflections, expansions and
contractions.
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To generate the initial simplex S(0) we take a point x̃ ∈ R
n and a

positive real number η, and set x
(0)
i = x̃ + ηei for i = 0, . . . , n, where

{ei} are the vectors of the standard basis in R
n.

For every k ≥ 0 (until convergence) we select the “worst” vertex
of S(k)

x
(k)
M = argmax

0≤i≤n
f(x

(k)
i ) (7.23)

then replace it by a new point to form the new simplex S(k+1).
The new point is chosen as follows. First we select

x(k)
m = argmin

0≤i≤n
f(x

(k)
i ) and x(k)

μ = argmax
0≤i≤n
i�=M

f(x
(k)
i ) (7.24)

and define the centroid of the hyperplane H(k) passing through the ver-

tices {x(k)
i , i = 0, . . . , n, i �= M}

x(k) =
1

n

n∑

i=0
i�=M

x
(k)
i . (7.25)

(When n = 2, the centroid is the midpoint of the edge of S(k) opposite

to x
(k)
M , see Fig. 7.6.)

Then we compute the reflection x
(k)
α of x

(k)
M with respect to the hy-

perplane H(k), i.e.

x(k)
α = (1 − α)x(k) + αx

(k)
M , (7.26)

where α < 0 is the reflection coefficient (tipically, α = −1). The point

x
(k)
α lies on the straight line joining x(k) and x

(k)
M , on the side of x(k) far

from x
(k)
M (see Fig. 7.6).
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Now, we compare f(x
(k)
α ) with the values of f at the other vertices

of the simplex, before accepting x
(k)
α as the new vertex. Meanwhile, we

try to move x
(k)
α on the straight line joining x(k) and x

(k)
M , to set the new

simplex S(k+1). More precisely we proceed as follows.

- If f(x
(k)
α ) < f(x

(k)
m ), i.e. the reflection has produced a new minimum,

we compute

x(k)
γ = (1 − γ)x(k) + γx

(k)
M , (7.27)

where γ < −1 (tipically, γ = −2). Then, if f(x
(k)
γ ) < f(x

(k)
m ), x

(k)
M is

replaced by x
(k)
γ ; otherwise x

(k)
M is replaced by x

(k)
α ; then we proceed

by incrementing k by one.

- If f(x
(k)
m ) ≤ f(x

(k)
α ) < f(x

(k)
μ ), x

(k)
M is replaced by x

(k)
α ; then we proceed

by incrementing k by one.

- If f(x
(k)
μ ) ≤ f(x

(k)
α ) < f(x

(k)
M ) we compute

x
(k)
β = (1 − β)x(k) + βx(k)

α , (7.28)

where β > 0 (tipically, β = 1/2). Now, if f(x
(k)
β ) > f(x

(k)
M ) define

the vertices of the new simplex S(k+1) by

x
(k+1)
i =

1

2
(x

(k)
i + x(k)

m ) (7.29)

otherwise x
(k)
M is replaced by x

(k)
β ; then we proceed by incrementing

k by one.

- If f(x
(k)
α ) > f(x

(k)
M ) we compute

x
(k)
β = (1 − β)x(k) + βx

(k)
M , (7.30)

(again β > 0), if f(x
(k)
β ) > f(x

(k)
M ) define the vertices of the new

simplex S(k+1) by (7.29), otherwise x
(k)
M is replaced by x

(k)
β ; then we

proceed by incrementing k by one.

As soon as the stopping criterium max
i=0,...,n

‖x(k)
i − x(k)

m ‖∞ < ε is ful-

filled, x
(k)
m will be retained as an approximation of the minimizer.

The convergence of Nelder and Mead method is guaranteed in very
special cases only (see example [LRWW99]); in fact a stagnation may oc-
cur in which case the algorithm needs to be restarted. Nevertheless, this
algorithm is quite robust and efficient for small dimensional problems.
Its rate of convergence is severely affected by the choice of the initial sim-
plex. The Nelder and Mead method is implemented by the MATLAB
command fminsearch; its sintax is described in the following example. fminsearch
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Figure 7.7. Contour lines of the Rosenbrock function

Example 7.3 (The Rosenbrock function) The Rosenbrock function

f(x1, x2) = 100(x2 − x2
1)

2 + (1 − x1)
2,

whose contour lines are displayed in Figure 7.7 ([Ros61]), is often used to test
both efficiency and robustness of minimization algorithms. Its global minimum
is attained at the point x∗ = (1, 1), however its variation around x∗ is fairly
low, making algorithms’ convergence quite problematic. Through the following
command

fun=@(x) 100*(x(2)-x(1)^2)^2+(1 -x(1))^2; x0=[ -1.2,1]
xstar=fminsearch (fun ,x0)

we get

xstar =
1.000022021783570 1.000042219751772

In MATLAB, by replacing the second instruction with the expanded one

[xstar ,fval ,exitflag ,output]= fminsearch (fun ,x0)

we would obtain additional information on the minimum value of f
fval=8.1777e-10, on the number of iterations, output.iterations=85 as well
as the total number of function evaluations output.funcCount=159. Finally,
the error tolerance can be modified by using the command optimset, as al-
ready discussed in Example 7.2. �

See Exercises 7.1-7.3.
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7.4 The Newton method

Assume that f : Rn → R (n ≥ 1) is of class C2(Rn) and that we know
how to compute its first and second order partial derivatives. We can
apply Newton’s method, already introduced in Chapter 2 for the solution
of the system F(x) = ∇f(x) = 0, whose Jacobian matrix JF(x

(k)) is
nothing but the Hessian matrix of F computed at the generic iteration
point x(k). The method reads as follows: for a given x(0) ∈ R

n, for
k = 0, 1, . . ., until convergence

solve H(x(k))δx(k) = −∇f(x(k))

set x(k+1) = x(k) + δx(k)
(7.31)

For a given tolerance ε > 0, a suitable stopping test is ‖x(k+1)−x(k)‖ ≤ ε.

Example 7.4 The function

f(x) =
2

5
− 1

10
(5x2

1 + 5x2
2 + 3x1x2 − x1 − 2x2)e

−(x2
1+x2

2) (7.32)

is displayed in Figure 7.8, right. We apply Newton’s method to approximate
its global minimizer x∗ � (−0.63065832, −0.7007420) (rounded to the first 7
significant digits). We take x(0) = (−0.9,−0.9) and tolerance ε = 10−5. After 5
iterations the method (7.31) converges to x=[-0.63058;-0.70074]. Should we
have chosen x(0) = (−1,−1), after 400 iterations the stopping test would not
be fulfilled. In fact a necessary condition for convergence of Newton’s method
is that x(0) should be sufficiently close to the minimizer x∗ (see Section 2.3).
This is known as local convergence of Newton’s method.

The reader should be aware that Newton’s method may converge to any
stationary point (not necessarily to a minimizer). For instance, by taking
x(0) = (0.5,−0.5) after 5 iterations the method converges to the saddle point
x=[0.80659; -0.54010]. �

A general convergence criterium for the method (7.31) is as follows:
if f ∈ C2(Rn), x∗ is a stationary point, the Hessian matrix H(x∗) is
positive definite, the components of H(x) are Lipschitz continuous in a
neighbourhood of x∗ and x(0) is sufficiently close to x∗, then the Newton
method (7.31) converges quadratically to x∗ (see, for instance [SY06,
pag. 132], [NW06]).

In spite of its simple implementation, Newton’s method is computa-
tionally demanding when n is large (as it requires the analytic expression
of the derivatives and, at each iteration, the computation of both the gra-
dient and the Hessian matrix of f). Besides, x(0) has to be chosen close
enough to x∗.

A suitable strategy to build up efficient and robust minimization al-
gorithms relies on combining locally convergent with globally convergent
methods, as described in the next section.
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Figure 7.8. At left, countour lines of a function f(x), its gradient evaluated
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function f(x) (7.32) along a descent direction d(k) and the minimizer x
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along d(k)

7.5 Descent (or line search) methods

In this Section we assume for simplicity that f ∈ C2(R) and is bounded
from below.

Descent methods (also known as line search methods) are iterative
methods in which, for every k ≥ 0, x(k+1) depends on x(k), on a vector
d(k) depending on ∇f(x(k)) and on a suitable parameter αk ∈ R. Given
x(0) ∈ R

n, the method reads as follows:
for k = 0, 1, . . . , until convergence

find a direction d(k) ∈ R
n

compute the step αk ∈ R

set x(k+1) = x(k) + αkd
(k)

(7.33)

The vector d(k) must be a descent direction, meaning that

d(k)T∇f(x(k)) < 0 if ∇f(x(k)) �= 0,

d(k) = 0 if ∇f(x(k)) = 0.
(7.34)

The name descent direction arises from the property that the vector
∇f(x(k)) provides in R

n the direction with sign of maximum positive

growth of f moving from x(k). As d(k)T∇f(x(k)) represents the direc-
tional derivative of f along d(k), the first condition in (7.34) ensures that
we are moving along a direction opposite to the gradient, that is towards
a minimizer of f , as displayed in Figure 7.8.

Some popular descent directions will be reported in the next Section.
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Once d(k) is determined, the optimum value of αk ∈ R is the one that
guarantees the maximum variation of f along d(k) and can therefore be
computed by solving a one-dimensional minimization problem (that is
minimizing the restriction of f along d(k)), see Figure 7.8.

However, as the computation of αk is quite involved when f is not
a quadratic function, we will report in Section 7.5.2 some alternative
techniques aimed at approximating αk.

7.5.1 Descent directions

The most widely used descent directions are:

1. Newton’s directions

d(k) = −(H(x(k)))−1∇f(x(k)) (7.35)

2. quasi-Newton directions

d(k) = −H−1
k ∇f(x(k)) (7.36)

where Hk represents an approximation of the true Hessian matrix
H(x(k)). This choice is a valuable alternative to Newtons’ method
when second derivatives of f are heavy to compute (see Section
7.5.4);

3. gradient directions

d(k) = −∇f(x(k)) (7.37)

(they can be regarded as a trivial example of quasi-Newton direc-
tions);

4. conjugate gradient directions

d(0) = −∇f(x(0))

d(k+1) = −∇f(x(k+1))−βkd
(k), k ≥ 0

(7.38)

The coefficients βk can be chosen according to different criteria, see
Section 7.5.5, however they coincide with those of Conjugate Gra-
dient method for linear systems (see (5.66)) when f is a quadratic
function.

The descent direction (7.37) fulfills the condition (7.34), then (7.35) and
(7.36) assure that H(x(k)) and Hk, respectively, are positive definite ma-
trices. The vectors (7.38) fulfill (7.34) provided that the coefficients βk

are suitably chosen, as we will see in Section 7.5.5.
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Figure 7.9. Convergence history of Newton’s and descent methods for the
function of the Example 7.5

Example 7.5 Consider again the function f(x) (7.32), featuring two local
minimizers, one local maximizer and two saddle points. See Figure 7.8, right.
We compare the sequences {x(k)} generated by Newton’s method (7.31) and
descent methods with descent directions given by (7.35)–(7.38).

Consider first x
(0)
1 = (0.5,−0.5) as initial point. In Figure 7.9 we see that

Newton’s method (7.31) converges to the saddle point (.8065,−.5401); the de-
scent method with Newton direction (7.35) breaks down at the second iteration
as it generates a matrix H(x(1)) which is not definite positive. (See Remark 7.2
on how to overcome this drawback.) The other descent methods with direc-
tions given by (7.36), (7.37), and (7.38) (for the latter, two different criteria for
the determination of the parameters βk have been used, named GC-FR and
GC-PR, see Section 7.5.5) converge to the local minimizer (−0.6306,−0.7007).
The faster convergence is achieved in 9 iterations using quasi-Newton direc-
tions (7.36), see the blue path in Figure 7.9. By choosing a different initial

point x
(0)
2 = (0.4, 0.5), the Newton method diverges while method (7.35), even

though it shares the same first descent direction with Newton’s method, builds
up a short steplength αk which then allows convergence to the local minimizer
(0.8095, 0.7097) in only 4 iterations. All the other descent methods with di-
rections (7.36), (7.37), and (7.38) converge in 10 to 15 iterations to the same
local minimizer. �

The choice of the steplength αk will be discussed in Section 7.5.2,
while the analysis of different descent directions is deferred to Sections
7.5.3–7.5.5.
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7.5.2 Strategies for choosing the steplength αk

Once the descent direction d(k) is chosen, the steplength αk has to be
determined in such a way that the new iterate x(k+1) be the minimizer
of f along such a direction, that is

αk = argmin
α∈R

f(x(k) + αd(k)).

A second order Taylor expansion of f around x(k) yields

f(x(k) + αd(k)) = f(x(k)) + αd(k)T∇f(x(k))+

α2

2
d(k)TH(x(k))d(k) + o(‖αd(k)‖2).

(7.39)

In the special case in which f is a quadratic function, that is

f(x) =
1

2
xTAx − xTb+ c

with A ∈ R
n×n, b ∈ R

n symmetric and positive definite and c ∈ R,
the expansion in (7.39) is exact, that is the infinitesimal residual is null.
As H(x(k)) = A for every k ≥ 0 and ∇f(x(k)) = Ax(k) − b = −r(k)

(see (5.35)), by differentiating (7.39) with respect to α and setting the
derivative equal to zero we obtain

αk =
d(k)T r(k)

d(k)TAd(k)
(7.40)

In the case (7.37), we find d(k) = r(k) thus we obtain the well known
gradient method described in Chapter 5, which obeys the convergence
estimate (5.59).

Instead, should the direction d(k) be chosen as in (7.38), by setting

βk = − (Ad(k))T r(k+1)

d(k)TAd(k)
(7.41)

we would recover the conjugate gradient method (5.66) for linear systems
which fulfills the convergence estimate (5.67).

If f is a generic (non quadratic) function, the computation of the
optimal αk would require an iterative method to solve numerically the
above minimization problem along the direction d(k). In these cases an
approximate (rather than exact) value of αk can be chosen by requiring
that the new iterate x(k+1) defined in (7.33) ensures that

f(x(k+1)) < f(x(k)). (7.42)
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Figure 7.10. At left, the terms comparing in the first inequality in (7.43)
when σ = 0.2. (7.43)1 is satisfied for those values of α providing the continuous

lightblue line. At right, some straightlines with slope δd(k)T∇f(x(k)) and δ =
0.9, (7.43)2 is fulfilled for those α corresponding to the continuous lightblue
line. The Wolfe conditions are simultaneously fulfilled when either 0.23 ≤ α ≤
0.41 or 0.62 ≤ α ≤ 0.77

In this respect, a natural strategy is that of assigning αk a large value
and then reducing it iteratively until when (7.42) is satisfied. Unfortu-
nately, this strategy does not guarantee that the associated sequence
{x(k)} converges to the desired minimizer x∗. See Exercise 7.4 and the
associated Figure 10.8, left, where steplengths are too long. See also Ex-
ercise 7.5 and the associated Figure 10.8, right, where steplengths are
now too short.

A better criterium for the choice of αk > 0 is the one based on the
Wolfe’s conditions :

f(x(k) + αkd
(k)) ≤ f(x(k)) + σαkd

(k)T∇f(x(k))

d(k)T∇f(x(k) + αkd
(k)) ≥ δd(k)T∇f(x(k))

(7.43)

where σ and δ, such that 0 < σ < δ < 1, are two given constants

and d(k)T∇f(x(k)) represents the directional derivative of f along the
direction d(k).

The first inequality in (7.43) is named Armijo’s rule, and it inhibits
too little variations of f with respect to the steplength αk (see Figure
7.10, left). More precisely, the larger αk the higher the variation of f .

The second Wolfe condition states that at the new point x(k)+αkd
(k)

the value of the directional derivative of f should be larger than δ times
the same derivative at the previous value x(k) (see Figure 7.10, right).

From the example depicted in Figure 7.10 one can see that Wolfe’s
conditions might also be fulfilled far from the minimizer of f along d(k)

and even when the directional derivative of f takes large values. More
restricitive conditions than (7.43) are the strong Wolfe’s conditions
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f(x(k) + αkd
(k)) ≤ f(x(k)) + σαkd

(k)T∇f(x(k)),

|d(k)T∇f(x(k) + αkd
(k))| ≤ −δd(k)T∇f(x(k))

(7.44)

being 0 < σ < δ < 1 suitable fixed constants.
The first condition is the same as in (7.43), whereas the second

one gives rise to (7.43)2 as well as to d(k)T∇f(x(k) + αkd
(k)) ≤

−δd(k)T∇f(x(k)) (having recalled that the right hand side of (7.44)2
is positive because of (7.34)1). Conditions (7.44)2 inhibits f to vary too
strongly at x(k) + αkd

(k) (see Figure 7.11 for an example).
It can be proved (see, e.g., [NW06, Lemma 3.1]) that if d(k) is a

descent direction in x(k) and f ∈ C1(Rn) is lower bounded in the set
{x(k) + αd(k), α > 0}, then for every σ, δ such that 0 < σ < δ < 1,
there exist intervals of steplengths αk satisfying (7.43) and (7.44).

In practice, σ is chosen very small, e.g. σ = 10−4 ([NW06]), while
δ is large (δ = 0.9) for Newton, quasi-Newton and gradient directions,
small (δ = 0.1) for the conjugate gradient directions.

A simple strategy to determine the steplength αk satisfying Wolfe’s
conditions is backtracking: it consists of starting with α = 1 and then
reducing it by a prescribed factor ρ (tipically, ρ ∈ [1/10, 1/2)) until when
the first condition (7.43) is satisfied. In pseudocode: for a given x(k) and
a descent direction d(k), for σ ∈ (0, 1), ρ ∈ [1/10, 1/2)
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set α = 1

while f(x(k) + αd(k)) > f(x(k)) + σαd(k)T∇f(x(k))
α = αρ

end
set αk = α

(7.45)

The second condition in (7.43) is never checked because the back-
tracking technique intrinsically computes steplengths that are not too
small.

Remark 7.1 The backtracking technique is often combined with replacing f
by a quadratic or cubic interpolant of f along d(k). The chosen steplength αk

yields a new point x(k+1) which represents the minimizer of the interpolant of
f along d(k). The corresponding algorithm is named quadratic or cubic line
search, respectively. See [NW06, Ch. 3] for further details on this approach. �

The Program backtrack 7.2 implements the strategy (7.45). Param-
eters fun and grad are function handles rispectively associated with the
functions f(x) and ∇f(x); xk and dk respectively contain the point x(k)

and the descent direction d(k), while sigma and rho contain the param-
eter values σ and ρ. When sigma and rho are not specified, the default
values σ = 10−4 and ρ = 1/4 are set. The output variable x contains the
new point x(k+1).

Program 7.2. backtrack: backtracking strategy

function [x,alphak]= backtrack (fun ,xk,gk,dk ,varargin)
%BACKTRACK Backtracking strategy for line search.
% [X,ALPHAK] = BACKTRACK (FUN ,XK,GK,DK) computes the
% new point x_{k+1}= x_k+alpha_k d_k , where alpha_k
% is determined by the backtracking technique
% with sigma=1.e-4 and rho =1/4.
% [X,ALPHAK] = BACKTRACK (FUN ,XK,GK,DK,SIGMA ,RHO)
% allows to specify the parameters sigma and rho.
% Tipically 1.e-4<sigma <0.1 and 1/10< rho <1/2.
% FUN is the function handle associated with the cost
% function. XK , GK, and DK contain respectively the
% point x_k , the gradient of f at x_k and the
% descent direction d_k.
if nargin ==4

sigma=1.e-4; rho =1/4;
else

sigma=varargin {1}; rho=varargin {2};
end
alphamin =1.e-5; % minimum value allowed for alpha_k
alphak = 1; fk = fun(xk);
k=0; x=xk+alphak*dk;
while fun(x)>fk+sigma*alphak*gk ’*dk & alphak >alphamin

alphak = alphak*rho;
x = xk+alphak*dk; k = k+1;

end
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The Program descent 7.3 implements the descent method (7.33)
with directions (7.35)–(7.38) and steplengths αk determined according
to the backtracking strategy. The stopping criterium is (see [JS96])

max
1≤i≤n

∣
∣
∣
∣∣
[∇f(x(k+1))]imax{|x(k+1)

i |, typ(xi)}
max{|f(x(k+1))|, typ(f(x))}

∣
∣
∣
∣∣
≤ ε (7.46)

for a given ε > 0, where typ(x) is a characteristic value expressing the
order of magnitude of the x variable. Its presence prevents test failure
when either x∗ or f(x∗) are null.

Parameters fun and grad are function handles associated with f(x)
and ∇f(x), respectively, x0 contains the initial value of the sequence,
tol the tolerance of the stopping criterium and kmax the maximum al-
lowed number of iterations. The variable meth sorts the descent direction:
Newton’s directions correspond to meth=1, quasi-Newton’s to meth=2,
gradient directions to meth=3, while meth=41, 42, 43 select three dif-
ferent directions of the conjugate gradient: CG-FR, CG-PR, and CG-HS,
respectively, as we will see in Section 7.5.5.

Program 7.3. descent: descent method

function [x,err ,iter ]= descent(fun ,grad ,x0,tol ,kmax ,...
meth ,varargin )

%DESCENT Descent method for optimization
% [X,ERR ,ITER ]= DESCENT(FUN ,GRAD ,X0,TOL ,KMAX ,METH ,HESS)
% computes a local minimizer of function FUN by the
% descent method with Newton directions (METH =1),
% quasi -Newton directions (BFGS) (METH =2), gradient
% directions (METH =3) or conjugate gradient directions
% with Fletcher and Reeves beta_k (METH =41),
% Polak and Ribiere beta_k (METH =42),
% Hestenes and Stiefel beta_k (METH =43).
% The steplength is computed by the backtracking
% technique . FUN , GRAD and HESS (the latter being
% used only if METH =1) are function handles associated
% with the cost function , its gradient and its Hessian
% matrix , respectively . If METH =2, HESS is a matrix
% approximating the Hessian of FUN at the initial
% point X0. TOL is the tolerance for the stopping
% test , while KMAX is the maximum allowed number of
% iterations . The function backtrack is called inside.
if nargin >6
if meth ==1, hess=varargin {1};
elseif meth ==2, H=varargin {1}; end
end
err=tol+1; k=0; xk=x0(:); gk=grad(xk); dk=-gk;
eps2 =sqrt(eps);
while err >tol & k< kmax
if meth ==1; H=hess(xk); dk=-H\gk; % Newton
elseif meth ==2 dk=-H\gk; % BFGS
elseif meth ==3 dk=-gk; % gradient
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end
[xk1 ,alphak]= backtrack (fun ,xk ,gk,dk);
gk1=grad(xk1);
if meth ==2 % BFGS update

yk=gk1 -gk; sk=xk1 -xk; yks=yk ’*sk;
if yks > eps2*norm(sk)* norm(yk)
Hs=H*sk;
H=H+(yk*yk ’)/yks -(Hs*Hs ’)/(sk ’*Hs);
end

elseif meth >=40 % CG update
if meth == 41
betak=-(gk1 ’*gk1)/(gk ’*gk); % FR

elseif meth == 42
betak=-(gk1 ’*(gk1 -gk))/(gk ’*gk); % PR

elseif meth == 43
betak=-(gk1 ’*(gk1 -gk))/(dk ’*(gk1 -gk)); % HS

end
dk=-gk1 -betak*dk;

end
xk=xk1; gk=gk1; k=k+1; xkt=xk1;
for i=1: length(xk1); xkt(i)=max([abs(xk1(i)) ,1]); end
err=norm ((gk1.*xkt)/max([abs(fun(xk1)),1]), inf);
end
x=xk; iter=k;
if (k==kmax & err > tol)
fprintf ([’Descent method stopped \n’ ,...
’without converging to the desired tolerance \n’ ,...
’because the maximum number of iterations was \n’ ,...
’reached\n’]);

end

Example 7.6 Consider again function f(x) (7.32). To approximate its global
minimizer (−0.6306,−0.7007), we use the diff command introduced in Section
1.5.3 for the symbolic computation of both the gradient of f and the Hessian
matrix H of f . Then we define the function handles f, grad f, and hess

respectively associated with f , ∇f , and H and call the Program 7.3 with the
following instructions:

x0 =[0.5; -0.5]; tol =1.e-5; kmax =200;
meth =1; % Newton ’s directions
[x1 ,err1 ,k1]= descent(f,grad_f ,x0,tol ,kmax ,meth ,hess );
meth =2; hess=eye (2); % quasi -Newton directions
[x2 ,err2 ,k2]= descent(f,grad_f ,x0,tol ,kmax ,meth ,hess );
meth =3; % gradient directions
[x3 ,err3 ,k3]= descent(f,grad_f ,x0,tol ,kmax ,meth );
meth =42; % CG-PR directions
[x4 ,err4 ,k4]= descent(f,grad_f ,x0,tol ,kmax ,meth );

We choose x(0) = (0.5,−0.5), tolerance 10−5 and maximum number of itera-
tions equal to 200 and obtain these results:

descent Newton k=200, x=[ 7.7015e-01, -6.3212 e-01]
descent quasi -Newton k=9, x=[ -6.3058 e-01,-7.0075 e-01]
descent gradient k=17, x=[ -6.3058 e-01,-7.0075 e-01]
descent CG-PR k=17, x=[ -6.3060 e-01,-7.0073 e-01]

Note that the descent method with Newton’s direction has not achieved conver-
gence because directions can be generated that do not fulfill condition (7.34).

�
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In the next sections we indicate how to compute the approximate Hes-
sian matrices Hk and the parameters βk in (7.36) and (7.38). Moreover,
we will comment on the convergence properties of the various methods
introduced so far.

7.5.3 The descent method with Newton’s directions

Consider a lower bounded function f ∈ C2(Rn) and the descent method
(7.33) with Newton’s descent directions (7.35) and steplengths αk fulfill-
ing the Wolfe’s conditions (7.43).

Assume that for every k ≥ 0 the Hessian matrix H(x(k)) in (7.35),
besides being symmetric thanks to the assumption on f , is positive def-
inite. Moreover, setting Bk = H(x(k)) we suppose that

∃M > 0 : K(Bk) = ‖Bk‖‖B−1
k ‖ ≤ M ∀k ≥ 0. (7.47)

(Note that K(Bk) coincides with the spectral condition number of Bk,
see (5.31).)

Then the sequence x(k) generated by (7.33) converges to a stationary
point x∗ of f . Moreover, by choosing αk = 1 from a given k on (that is
when we are sufficiently close to x∗) the convergence order is quadratic.
See [NW06, Thm. 3.2] for the proof.

Remark 7.2 Since the Hessian matrices are positive definite, the stationary
point x∗ must necessarily be a minimizer.

However, should H(x(k)) fail to be positive definite for a given k, the corre-
sponding d(k) in (7.35) could fail to be a descent direction and the Wolfe condi-
tions might become meaningless. To overcome this problem the Hessian matrix
could be replaced by Bk = H(x(k))+Ek for a suitable matrix Ek (either diago-
nal or not) in such a way that Bk is positive definite and d(k) = −B−1

k ∇f(x(k))
turns out to be a descent direction. �

The descent method with Newton’s directions is implemented in Pro-
gram 7.3.

Example 7.7 Let us compute the global minimizer of the function f(x)
(7.32) by using the descent method (7.33), with the Newton’s directions
(7.35) and steplengths αk satisfying the Wolfe conditions. We use a toler-
ance ε = 10−5 for the stopping criterium and we start from x(0) = (−1,−1).
By using Program 7.3 with meth=1, after 4 iterations, we have convergence
to x=[-0.63058;-0.70074]. Choosing instead x(0) = (0.5,−0.5), the method
stagnates as H(x(0)) is not positive definite, yielding a vector d(0) which is not
a descent direction; consequently, the backtracking technique is unable to find
a value α0 > 0 that fulfills the Wolfe conditions. �
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7.5.4 Descent methods with quasi-Newton directions

When using the directions (7.36) we need a strategy to build Hk. For
a given symmetric and positive definite matrix H0, a popular recursive
technique is that based on the so called rank-one update of Broyden’s
method (2.19) for the solution of nonlinear systems. The matrices Hk

are required:

– to satisfy the secant condition

Hk+1(x
(k+1) − x(k)) = ∇f(x(k+1)) − ∇f(x(k));

– to be symmetric, as H(x);
– to be positive definite to guarantee that vectors d(k) are descent

directions;
– to satisfy the condition

lim
k→∞

‖(Hk − H(x∗))d(k)‖
‖d(k)‖ = 0,

which, from one hand, ensures that Hk is a good approximation of
H(x∗) along the descent direction d(k) and, from the other hand,
guarantees a super-linear rate of convergence.

The strategy due to Broyden, Fletcher, Goldfarb, and Shanno (BFGS)
is based on the following recursivity relationship

Hk+1 = Hk +
y(k)y(k)T

y(k)T s(k)
− Hks

(k)s(k)
T
Hk

s(k)
T
Hks(k)

(7.48)

where s(k) = x(k+1)−x(k) and y(k) = ∇f(x(k+1))−∇f(x(k)). These ma-

trices are symmetric and positive definite under the condition y(k)T s(k) >
0, which is fulfilled provided the steplengths αk satisfy the Wolfe condi-
tions (either (7.43) or (7.44)). See [JS96].

The corresponding BFGS method (implemented in Program 7.3) can
be summarized as follows: for a given x(0) ∈ R

n and a suitable symmetric
and positive definite matrix H0 ∈ R

n×n which approximates H(x(0)), for
k = 0, 1, . . . , until convergence:

solve Hkd
(k) = −∇f(x(k))

compute αk satisfying Wolfe’s conditions

set x(k+1) = x(k) + αkd
(k)

s(k) = x(k+1) − x(k)

y(k) = ∇f(x(k+1)) − ∇f(x(k))

compute Hk+1 using (7.48)

(7.49)
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Under the condition that f ∈ C2(Rn) is lower bounded and the matri-
ces Hk are positive definite with a condition number uniformly bounded
(see (7.47)), the BFGS method converges to a minimizer with (super-
linear) convergence order p ∈ (1, 2) (see for instance [JS96, NW06]).

Example 7.8 We apply the BFGS method (7.49) to compute the minimizer
of the (yet another time) function f(x) (7.32). We choose ε = 10−5 for
the stopping criterium and H0 equal to the identity matrix (which is obvi-
ously symmetric and positive definite). The latter choice is more convenient
than choosing H0 = H(x(0)), i.e. the exact Hessian in x(0), as it yields a
faster convergence. Program 7.3 with meth=2 and hess=eye(2) converges to
x=[-0.63058;-0.70074] in 6 iterations if x(0) = (−1,−1) and in 9 iterations
if x(0) = (0.5,−0.5). �

Remark 7.3 As in Broyden method (2.19), the computational cost of order
O(n3) for the calculation of d(k) = −H−1

k ∇f(x(k)) can be reduced to order
O(n2), by using QR factorizations of Hk (see [GM72]).

An alternative strategy is based on the use of the inverse ˜Hk of Hk both
in (7.48) and (7.49). This strategy can be implemented in order of O(n2)
operations per step, however in practice it is less stable than the more standard
(7.48). �

The BFGS method (as well as several other minimization methods)
is implemented in the MATLAB function fminunc included in the op- fminunc

timization toolbox. By the following commands:

fun=@(x) 100*(x(2)-x(1)^2)^2+(1 -x(1))^2; x0=[1.2;-1];
options = optimset (’LargeScale ’,’off’);
[x,fval ,exitflag ,output]= fminunc(fun ,x0,options)

the function fminunc computes the minimizer of the Rosenbrock function
using the BFGS method (which corresponds to using the value ’off’

to initialize the option ’LargeScale’). The output parameters have the
same meaning as those of the function fminsearch described in Example
7.3. Convergence is achieved in 24 iterations with a tolerance ε = 10−6;
this has required 93 function evaluations.

With the previous options the gradient of the function f is approxi-
mated in fminunc by using finite difference methods (see Section 9.2.1).
However, in case an exact expression of the gradient of f is available, it
can be passed to the function as follows:

fun=@(x) 100*(x(2)-x(1)^2)^2+(1 -x(1))^2; x0=[1.2;-1];
grad_fun =@(x)[ -400*( x(2)-x(1)^2)*x(1) -2*(1-x(1));

200*(x(2)-x(1)^2)];
options = optimset (’LargeScale ’,’off’,’GradObj ’,’on’);
[x,fval ,exitflag ,output]= fminunc ({fun ,grad_fun },...

x0,options )

Note the changement in the command options. Convergence is achieved
in 25 iterations with 32 function evaluations.
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Octave 7.1 The BFGS method is implemented in the Octave function
bfgsmin. The Octave command fminunc instead implements the trustbfgsmin

region method that we describe in Section 7.6. �

7.5.5 Gradient and conjugate gradient descent methods

Let us consider the descent method (7.33) with gradient directions (7.37).
As already noticed, the latter are descent directions.

If f ∈ C2(Rn) is lower bounded and the steplengths αk satisfy Wolfe’s
conditions, this method converges linearly to a steady point ([NW06]).
See Program 7.3 for its implementation.

Example 7.9 We consider once more the function (7.32). We fix the tol-
erance ε = 10−5 for the stopping criterium and call Program 7.3 setting
meth=3 (this corresponds to gradient directions). Choosing x(0) = (−0.9,−0.9),
x(0) = (−1,−1) and x(0) = (0.5,−0.5), the method converges to the global
minimizer x=[-0.63058;-0.70074] in 11, 12, and 17 iterations, respectively.
Choosing instead x(0) = (0.9, 0.9), which is closer to the local minimizer
x∗ = (.8094399, .7097390), the method converges to the latter in 21 iterations.

�

Consider now the conjugate gradient directions (7.38). Several op-
tions are available for the choice of βk (see for instance [SY06, NW06]).
Among those we quote the following:

1. Fletcher–Reeves (1964)

βFR
k = − ‖∇f(x(k))‖2

‖∇f(x(k−1))‖2 (7.50)

2. Polak–Ribière (1969) (also known as Polak–Ribière–Polyak parame-
ters)

βPR
k = −∇f(x(k))T (∇f(x(k)) − ∇f(x(k−1)))

‖∇f(x(k−1))‖2 (7.51)

3. Hestenes–Stiefel (1952)

βHS
k = −∇f(x(k))T (∇f(x(k)) − ∇f(x(k−1)))

d(k−1)T (∇f(x(k)) − ∇f(x(k−1)))
(7.52)

In fact, all these choices reduce to (7.41) if f is a quadratic convex
function.

For coherence, we will indicate with FR (respectively, PR, HS) the
directions associated with βFR

k (respectively, βPR
k , βHS

k ).
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The following are sufficient conditions for the FR conjugate gradient
converge to a steady point ([NW06, SY06]): f ∈ C1(Rn), its gradient is
Lipschitz continuous, the initial point x(0) is such that the set A = {x :
f(x) ≤ f(x(0))} is bounded and the steplengths αk satisfy the strong
Wolfe’s conditions (7.44) with 0 < σ < δ < 1/2.

Under the same assumptions on f and x(0) and under the condition
that βPR

k is replaced by βPR+
k = max{−βPR

k , 0} also the PR conjugate
gradient method with these modified coefficients converges to a steady
point, provided however that the steplengths αk undergo a variant of
the strong Wolfe’s conditions (7.44). Same conclusions hold for the HS
conjugate gradient algorithm. We refer to [Noc92, NW06, SY06] for the
proof and a more in-depth analysis.

The conjugate gradient method with FR, PR, and HS directions and
steplengths αk computed by the backtracking technique are all imple-
mented in Program 7.3.

Example 7.10 Still on the function (7.32) we fix a tolerance ε = 10−5 for the
stopping criterium and call Program 7.3 by setting meth=41, 42, 43, which
correspond to the conjugate gradient method associated with directions FR,
PR, and HS, respectively. The number of iterations are reported in the table
below.

Directions x(0)

(−1,−1) (1, 1) (0.5,−0.5)

FR 20 12 >400
PR 21 28 17
HS 23 40 28

For both choices x(0) = (−1,−1) and x(0) = (0.5,−0.5), the method converges
to the global minimizer x=[-0.63058;-0.70074], whereas with x(0) = (1, 1)
all the variants converge to the local minimizer x=[0.8094;0.7097]. �

Several remarks are in order.
From the previous table and Fig. 7.9, we see that directions PR and

HS are more efficient than FR. The latter may be quite inefficient and
generate very tiny steplengths. This may yield very slow convergence
or even stagnation; in the latter case the algorithm can be restarted by
using a gradient direction d(k) = −∇f(x(k)).

When the steplengths αk are computed exactly (as described at the
beginning of Sect. 7.5.1) the rate of convergence of the conjugate gradi-
ent method is simply linear, that of Newton methods quadratic, while
that of quasi-Newton’s super-linear. In spite of that, the conjugate gra-
dient method is simple to implement: it does not require the Hessian
matrix (neither its approximations) and only one evaluation of f and its
gradient is required at every iteration. It is definitely preferable on large
dimensional optimization problems, whereas Newton and quasi-Newton
methods are in general more efficient on small dimensional problems.
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See Exercises 7.4-7.6.

7.6 Trust region methods

At the generic kth step, line search methods determine the descent di-
rection d(k) first and then the steplength αk. Instead trust region meth-
ods choose direction and steplength simultaneously by building a ball
centered at x(k) and radius δk (the so called trust region), a quadratic
approximation f̃k of the objective function f and choosing the new value
x(k+1) as the minimizer of f̃k in the trust region, see Figure 7.12.

More precisely, we start by a “trust” value δk > 0, we use second
order Taylor development of f about x(k) to compute f̃k,

f̃k(s) = f(x(k)) + sT∇f(x(k)) +
1

2
sTHks ∀s ∈ R

n (7.53)

where Hk is either Hessian of f at x(k) or a suitable approximation of it,
then we compute

s(k) = argmin
s∈Rn: ‖s‖≤δk

f̃k(s). (7.54)

At this stage we compute

ρk =
f(x(k) + s(k)) − f(x(k))

f̃k(s(k)) − f̃k(0)
, (7.55)

then we proceed as follows:
i) If ρk is close to one, we accept s(k) and move to the next iteration.
However, if the minimizer of f̃k lies on the border of the trust region, we
extend the latter before proceeding with the next iteration.
ii) If ρk is either negative or positive and small (much smaller than
one), we reduce the trust region and look for a new s(k) by solving again
problem (7.54).
iii) Finally if ρk is much larger than one, we accept s(k), we keep the
trust region as is, and move to the next iteration.

Should the second derivative of f be available we could take Hk equal
to the Hessian (or, in case the latter fails to be positive definite, one of its
variants described in Remark 7.2). Otherwise, Hk can be built recursively
as done for quasi-Newton descent direction method (see Sect. 7.5.4).

Assume that: Hk is symmetric positive definite and ‖H−1
k ∇f(x(k))‖ ≤

δk; then (7.54) admits s(k) = H−1
k ∇f(x(k)) as minimizer in the trust

region. Otherwise the minimizer of f̃k lies at the exterior of the trust
region; in that case one has to solve a minimization problem for f̃k
constrained to the circumference centered at x(k) with radius δk, that is
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Figure 7.12. Convergence history of trust region method (at left) and the
quadratic model f̃k at step k = 8 (at right)

min
s∈Rn: ‖s‖=δk

f̃k(s). (7.56)

To solve (7.56) we can use the Lagrange multipliers approach (see Section
7.8.2), that is we look for the saddle point of the Lagrangian Lk(s, λ) =
f̃k(s)+

1
2λ(s

T s−δ2k), i.e. for a vector s(k) and a scalar λ(k) > 0 satisfying:

(Hk + λ(k)I)s(k) = −∇f(x(k)),

(Hk + λ(k)I) is semidefinite positive
‖s(k)‖ − δk = 0.

(7.57)

From (7.57)1 we formally derive s(k) = s(k)(λ(k)) and we replace it
into (7.57)3 to get the nonlinear equation

ϕ(λ(k)) =
1

‖s(k)(λ(k))‖ − 1

δk
= 0.

The reason for using instead of (7.57)3 its reciprocal is that the latter
is easier to solve numerically. Indeed few Newton iterations (tipically, 3

or less) suffice. Precisely, for a given λ
(k)
0 , setting g(k) = ∇f(x(k)), we

proceed as follows:

for � = 0, . . . , 2

compute s
(k)
� = −(Hk + λ

(k)
� I)−1g(k)

evaluate ϕ(λ
(k)
� ) =

1

‖s(k)� ‖
− 1

δk

evaluate ϕ′(λ(k)
� )

update λ
(k)
�+1 = λ

(k)
� − ϕ(λ

(k)
� )

ϕ′(λ(k)
� )



244 7 Numerical optimization

The vector s
(k)
� is obtained by using the Cholesky factorization (5.18)

of B
(k)
� = (Hk + λ

(k)
� I) provided this matrix is positive definite. (Notice

that B
(k)
� is symmetric, in view of the definition of Hk, and its eigenvalues

are all real.) More in general, instead of B
(k)
� we use (B

(k)
� + βI) where β

is larger than the negative eigenvalue of maximum modulus of B
(k)
� .

By suitably representing the derivative of ϕ(λ(k)), problem (7.54) can
be solved by using the following algorithm: for g(k) = ∇f(x(k)) and a
given δk,

solve Hks = −g(k)

if ‖s‖ ≤ δk and Hk is positive definite

set s(k) = s

else

compute β1 = the negative eigenvalue of Hk

with largest modulus

set λ
(k)
0 = 2|β1|

for � = 0, . . . , 2

compute R : RTR = Hk + λ
(k)
� I

solve RTRs = −g(k), RTq = s

update λ
(k)
�+1 = λ

(k)
� +

( ‖s‖
‖q‖

)2 ‖s‖ − δk
δk

set s(k) = s

endif

(7.58)

In conclusion, we provide the trust region algorithm in its sim-
plest form for the solution of the minimization problem (7.1) ([CL96a,

CL96b]). Consider an initial point x(0), a maximum value δ̂ > 0 for

the trust region radii and an initial radius 0 < δ0 < δ̂. Consider then
four real parameters η1, η2, γ1 and γ2 such that 0 < η1 < η2 < 1 and
0 < γ1 < 1 < γ2 for updating the trust region and a real parameter
0 ≤ μ < η1 for the acceptability of the solution. For k = 0, 1, . . . , until
convergence
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compute f(x(k)), ∇f(x(k)) and Hk,

solve min‖s‖2≤δk f̃k(s) by (7.58)

compute ρk using (7.55),

if ρk > μ

set x(k+1) = x(k) + s(k)

else

set x(k+1) = x(k)

endif

if ρk < η1

set δk+1 = γ1δk

elseif η1 ≤ ρk ≤ η2

set δk+1 = δk

elseif ρk > η2 and ‖s(k)‖ = δk

set δk+1 = min{γ2δk, δ̂}
endif

(7.59)

A possible choice of parameters is η1 = 1/4, η2 = 3/4, γ1 = 1/4,
γ2 = 2 (see [NW06]). By choosing μ = 0 we accept any step yielding a
decrease of f ; choosing instead μ > 0 we only accept steps for which the
variation of f be at least μ times that of its quadratic model f̃k.

Remark 7.4 (Approximate solution of (7.54)) Problem (7.54) can be
solved approximately, using however an approximation that does not affect
the convergence properties of the trust region method. A possible strategy
consists in solving the problem not in the whole R

n but rather in a subspace
of dimension two. More precisely, we look for the solution of

min
s∈Sk: ‖s‖≤δk

f̃k(s). (7.60)

If Hk is positive (or negative) definite, Sk = span{∇f(x(k)),H−1
k ∇f(x(k))};

otherwise we compute its negative eigenvalue β1 with maximum modulus and
set Sk = span{∇f(x(k)), (Hk + αI)−1∇f(x(k))}, with α ∈ (−β1,−2β1]. The
choice of these subspaces is motivated by the search of the so-called Cauchy
point, the minimizer of f̃k along the directional gradient and internal to the
trust region ([NW06]). The most demanding computational effort when solving
(7.60) consists in the factorization of either Hk or Hk+αI and in computing its
eigenvalue β1. However, the computational cost required by (7.60) is definitely
lower than that necessary to solve (7.54). �

The algorithm (7.59) is implemented in Program 7.4. Parameters
fun, grad, x0, tol, kmax have the same meaning as in the Program
descent 7.3. Moreover, delta0 is the radius of the initial trust region,
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meth characterizes the choice of matrices Hk: if meth=1, hess contains
the function handle of the Hessian of f and Hk is the exact Hessian. If
meth is different than one there is no need to pass the input variable hess;
in this case Hk is a rank-one approximation of the Hessian computed as
in (7.48).

Program 7.4. trustregion: trust region method

function [x,err ,iter ]= trustregion (fun ,grad ,x0 ,...
delta0 ,tol ,kmax ,meth ,hess)

%TRUSTREGION Trust region method for minimization
% [X,ERR ,ITER ]= TRUSTREGION (FUN ,GRAD ,X0,TOL ,KMAX ,...
% METH ,HESS) computes a local minimizer of function
% f by the trust region method. FUN and GRAD
% (and HESS) are the function handles of the cost
% function , its gradient (and its Hessian ).
% If METH =1, the Hessian HESS of f is used , otherwise
% rank -one updates approximations of the Hessian are
% built as in BFGS and the variable HESS is not requi -
% red. X0 is the initial point for the sequence gene -
% rated by the method. TOL is the tolerance for the
% stopping test , KMAX is the maximum number of
% iterations allowed.
delta=delta0; err=tol+1; k=0; mu=0.1;
eta1 =0.25; eta2 =0.75; gamma1 =0.25; gamma2=2; deltam=5;
xk=x0(:); gk=grad(xk); eps2=sqrt(eps);
if meth ==1 Hk=hess(xk); else Hk=eye(length(xk)); end
while err >tol & k< kmax
[s]= trustone(Hk ,gk,delta);
rho=(fun(xk+s)-fun(xk ))/(s’*gk+0.5*s’*Hk*s);
if rho > mu, xk1=xk+s; else , xk1=xk; end
if rho <eta1

delta=gamma1*delta;
elseif rho > eta2 & abs(norm(s)-delta)<sqrt(eps)

delta=min([gamma2*delta ,deltam ]);
end
gk1=grad(xk1);
err=norm ((gk1.*xk1)/max([abs(fun(xk1)),1]), inf);
if meth ==1 % Newton

xk=xk1; gk=gk1; Hk=hess(xk);
else % quasiNewton

gk1=grad(xk1); yk=gk1 -gk; sk=xk1 -xk;
yks=yk ’*sk;
if yks > eps2*norm(sk)* norm(yk)
Hs=Hk*sk;
Hk=Hk+(yk*yk ’)/yks -(Hs*Hs ’)/(sk ’*Hs);
end
xk=xk1; gk=gk1;

end
k=k+1;
end
x=xk; iter=k;
if (k==kmax & err > tol)
fprintf ([’The trust region method stopped \n’ ,...
’without converging to the desired tolerance \n’ ,...
’because the maximum number of iterations was \n’ ,...
’reached\n’]);

end
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end

function [s]=trustone (Hk,gk,delta)
s=-Hk\gk; d = eigs(Hk ,1,’sa’);
if norm (s)>delta | d<0
lambda=abs(2*d); I=eye(size(Hk));
for l=1:3
R=chol(Hk+lambda*I);
s=-R \ (R’\gk); q=R’\s;
lambda=lambda+(s’*s)/(q’*q)*( norm (s)-delta)/delta;
if lambda < -d, lambda=abs(lambda *2); end
end
end
end

Example 7.11 Let us compute the minimizer of f(x1, x2) = (x1 + 2x2 +

2x1x2 − 5x2
1 − 5x2

2)/(5e
x2
1+x2

2) + 7/5 using method (7.59). As seen in Figure
7.12, this function features a local maximum, a saddle point and two local
minima, one xm1 in proximity of (−1., 0.2) and the other xm2 in proximity
of (0.3,−0.9); the latter is also a global minimizer. We choose x(0) = (0, 0.5)
and compute the matrices Hk recursively, according to (7.48). By calling the
Program trustregion with the following instructions:

fun=@(x)7/5+(x(1)+2*x(2)+2*x(1)*x(2)-5*x(1)^2 -...
5*x(2)^2)/(5* exp(x(1)^2+x(2)^2));

grad_fun =@(x)[(1+2*x(2) -10*x(1)-2*x(1)*(x(1)+2*x(2)+...
2*x(1)*x(2)-5*x(1)^2 -5*x(2)^2))/(5* exp(x(1)^2+x(2)^2));
(2+2*x(1) -10*x(2)-2*x(2)*(x(1)+2*x(2)+...
2*x(1)*x(2)-5*x(1)^2 -5*x(2)^2))/(5* exp(x(1)^2+x(2)^2))];
delta0 =0.5; tol=1.e-5; kmax =100; meth =2; x0 =[0;0.5];
[x,err ,iter ]= trustregion (fun ,grad_fun ,x0,delta0 ,...

tol ,kmax ,meth)

convergence to the point (.27849,−.89695) is achieved in 24 iterations.
Using instead meth=1 and at each step the exact Hessian matrix, con-

vergence will be achieved in 12 iterations. In both cases a slowing down in
convergence is observed when the iterates x(k) are near the local minimum
xm1. The convergence history when using the exact Hessian is reported in
Figure 7.12, left, while Figure 7.13, corresponds to using a non-exact Hessian.

�

For the convergence analysis of the trust region method we refer to
[NW06, Sez. 4.2] and [SSB85].

The MATLAB command fminunc with the ’LargeScale’ option
initialized to the value ’on’ implements the trust region method, and the
function handle grad fun contains the gradient of the objective function.
For instance, using the following instructions:

fun=@(x)100*(x(2)-x(1)^2)^2+(1 -x(1))^2; x0=[1.2;-1];
grad_fun =@(x)[ -400*( x(2)-x(1)^2)*x(1) -2*(1-x(1));

200*(x(2)-x(1)^2)];
options = optimset (’LargeScale ’,’on’,’GradObj ’,’on’);
[x,fval ,exitflag ,output]= fminunc ({fun ,grad_fun },...

x0,options)
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Figure 7.13. Convergence history of the trust region method when Hk are
built as in (7.48)

we converge to the minimizer of the Rosenbrock function in 8 iterations;
only 9 function evaluations are requested.

Octave 7.2 The fminunc command in Octave implements the trust re-
gion method with approximated Hessian matrices Hk, computed accord-
ing to the BFGS recursive formula (7.48). The option ’LargeScale’ is
not used in this case. �

See Exercise 7.7.

7.7 The nonlinear least squares method

In Chapter 3 we have introduced the least squares method for the ap-
proximation of either functions or a discrete set of data, by a polynomial
(3.29) or another function f̃ linearly depending on a set of unknown
coefficients aj , j = 1, . . . ,m. When such a dependence is nonlinear, we
face a nonlinear least squares problem.

In abstract terms, let R(x) = (r1(x), . . . , rn(x))
T , with ri : R

m → R,
be a given function, and consider the following minimization problem

min
x∈Rm

Φ(x) with Φ(x) =
1

2
‖R(x)‖2 =

1

2

n∑

i=1

r2i (x). (7.61)

When the function ri are nonlinear, Φ might not be convex, featuring
several stationary points. All the methods considered thus far, that is
Newton’s (7.31), descents (7.33) and trust region (7.59), can virtually be
used to solve (7.61).
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Thanks to the special form of Φ, its gradient and Hessian can be
written in terms of the Jacobian JR(x) ∈ R

n×m and of the first and
second derivatives of R, as follows:

∇Φ(x) = JR(x)TR(x),

H(x) = JR(x)T JR(x) + S(x),

with S�j(x) =

n∑

i=1

∂2ri
∂x�∂xj

(x)ri(x), �, j = 1, . . . ,m.

(7.62)

Exact calculation of the Hessian can be cumbersome when m and n
are large, especially due to the presence of the matrix S(x). On the other
hand, in several cases the latter matrix is less influent than JR(x)T JR(x)
and could be approximated or even neglected in the construction of H(x).
This is the case of the two methods that we are going to present in the
next two sections.

7.7.1 Gauss-Newton method

This method is a variant of the Newton method (7.31) for the solution
of (7.61) in which the exact Hessian H(x) is approximated by neglecting
S(x) in (7.62).

Its formulation is as follows: given x(0) ∈ R
m, for k = 0, 1, . . . , until

convergence:

solve
[
JR(x(k))T JR(x(k))

]
δx(k) = −JR(x

(k))TR(x(k))

set x(k+1) = x(k) + δx(k)
(7.63)

If JR(x
(k)) has not full rank, the linear system (7.63)1 features in-

finitely many solutions, in which case the Gauss-Newton method can
stagnate, diverge, or converge to a non-stationary point.

If instead JR(x(k)) has full rank, system (7.63)1 features the form
(5.42) and can be solved using either a QR factorization or a singular
value decomposition of JR(x

(k)) as seen in Section 5.7.
It can be proved (see Exercise 7.8) that neglecting S(x(k)) at the

step k of the minimization process amounts to approximate R(x) with
its Taylor development centered at x(k) and truncated at the first order

R̃k(x) = R(x(k)) + JR(x
(k))(x − x(k)). (7.64)

The convergence of Gauss-Newton method is not always guaranteed.
It actually depends on both the property of Φ and the choice of the initial
point. The following result is proved in [JS96]: if x∗ is a stationary point
for Φ and JR(x) has full rank in a suitable neighborhood of x∗, we have:
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1. if S(x∗) = 0, which is the case if R(x) is linear or R(x∗) = 0, the
Gauss-Newton method is locally (quadratically) convergent (in fact
it coincides with Newton’s method);

2. if ‖S(x∗)‖2 is small with respect to the minimum (positive) eigen-
value of JR(x∗)T JR(x∗), then Gauss-Newton method converges lin-
early. This is for instance the case if R(x) is nonlinear with a small
non-linearity or if R(x∗) is small;

3. if ‖S(x∗)‖2 is large with respect to the minimum (positive) eigenvalue
of JR(x

∗)T JR(x∗), the Gauss-Newton method might not converge
even if x(0) is very close to x∗. This happens if R(x) is strongly
nonlinear or its residual R(x∗) is large.

Remark 7.5 Line search techniques can be used in combination with the
Gauss-Newton method by replacing (7.63)2 with x(k+1) = x(k) + αkδx

(k),
where the computation of the steplengths αk is described in Section 7.5.1. If
JR(x(k)) has full rank, the matrix JR(x(k))T JR(x(k)) is symmetric and positive
definite and δx(k) is a descent direction for Φ (see Exercise 7.9). In this case,
under suitable assumptions on Φ, we obtain a globally convergent method,
called damped Gauss-Newton method. �

The Gauss-Newton method is implemented in Program 7.5; r and jr

are function handles associated with the function R(x) and its Jacobian
JR(x), respectively, x0 is the initial vector, while tol and kmax contain
the tolerance for the stopping test and the maximum number of iter-
ations allowed. The output variable x contains the computed solution,
err an estimate of the error at the last iteration and iter the number
of iterations required to converge.

Program 7.5. gaussnewton: Gauss-Newton method

function [x,err ,iter ]= gaussnewton (r,jr,x0,tol ,...
kmax ,varargin )

%GAUSSNEWTON Solves nonlinear least squares problems
% [X,ERR ,ITER ]= GAUSSNEWTON (R,JR,X0,TOL ,KMAX)
% solves the nonlinear least squares by the Gauss -
% Newton method. R and JR are the function handles
% associated with the function R and its Jacobian ,
% respectively . X0 is the initial point for the se-
% quence. TOL is the tolerance for the stopping test ,
% KMAX is the maximum number of allowed iterations .
err=tol+1; k=0; xk=x0(:);
rk=r(xk,varargin {:}); jrk=jr(xk,varargin {:});
while err >tol & k< kmax
[Q,R]=qr(jrk ,0); dk=-R \ (Q’*rk);
xk1=xk+dk;
rk1=r(xk1 ,varargin {:});
jrk1 =jr(xk1 ,varargin {:});
k=k+1; err=norm(xk1 -xk);
xk=xk1; rk=rk1; jrk=jrk1;
end
x=xk; iter=k;
if (k==kmax & err > tol)
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fprintf ([’Gauss -Newton method stopped \n’ ,...
’without converging to the desired tolerance \n’ ,...
’because the maximum number of iterations was \n’ ,...
’reached\n’]);

end

Example 7.12 Let us consider Problem 7.2 under the form (7.5) (a special
case of (7.61)). We use the Gauss-Newton method (7.63), we storage vector a
in the upper part of x and σ in the lower one, yielding

ri(x) = f(ti;a,σ) − yi =

m
∑

k=1

fk(ti; ak, σk) − yi,

∂ri
∂ak

= fk(ti; ak, σk)
ti − ak

σ2
k

,
∂ri
∂σk

= fk(ti; ak, σk)

[

(ti − ak)
2

σ3
k

− 1

2σk

]

.

We generate the n points (ti, yi) with i = 1, . . . , n, 0 ≤ ti ≤ 10, by summing
5 Gaussian functions of the form (7.3) taking a = [2.3, 3.25, 4.82, 5.3, 6.6],
σ = [0.2, 0.34, 0.50, 0.23, 0.39] and adding a random noise:

a=[2.3,3.25 ,4.82,5.3 ,6.6]; m=length(a);
sigma=[0.2 ,0.34 ,0.50 ,0.23 ,0.39];
gaussian =@(t,a,sigma )...

exp(-((t-a)/( sqrt (2)* sigma )).^2)/( sqrt(pi*2)* sigma);
n=2000; t=linspace (0,10,n)’; y=zeros(n ,1);
for k=1:m, y=y+ gaussian(t,a(k),sigma(k)); end
y=y+0.05* randn(n ,1);

We now call Program 7.5 using the following instructions:

x0 =[2,3,4,5,6,0.3,0.3,0.6,0.3 ,0.3];
tol =3.e-5; kmax =200;
[x,err ,iter ]= gaussnewton (@gmmr ,@gmmjr ,x0,tol ,kmax ,t,y)
xa=x(1:m); xsigma=x(m+1:end);
h=1./( sqrt (2*pi)* xsigma); w=2* sqrt(log (4))*xsigma;

where gmmr and gmmjr are the functions defining R(x) and JR(x), respectively.

function [R]= gmmr(x,t,y)
x=x(:);
m=length(x)/2; a=x(1:m); sigma=x(m+1:end);
n=length(t); R=zeros(n,1);
gaussian =@(t,a,sigma)[exp(-((t-a)/( sqrt (2)* sigma ))...

.^2)/( sqrt(pi*2)* sigma)];
for k=1:m, R=R+ gaussian(t,a(k),sigma(k)); end , R=R-y;

function [Jr]=gmmjr(x,t,y)
x=x(:); m=length(x)/2; a=x(1:m); sigma=x(m+1: end);
n=length(t); Jr=zeros(n,m*2);
gaussian =@(t,a,sigma)[exp(-((t-a)/( sqrt (2)* sigma ))...

.^2)/( sqrt(pi*2)* sigma)];
fk=zeros(n,m);
for k=1:m, fk(:,k)= gaussian(t,a(k),sigma(k)); end
for k=1:m, Jr(:,k)=(fk(:,k).*(t-a(k))/ sigma(k)^2)’; end
for k=1:m, Jr(:,k+m)=(fk(:,k).*((t-a(k)).^2/...

sigma(k)^3 -1/(2* sigma(k))))’; end

Convergence is achieved in 22 iterations. The vectors xa and xsigma contain
the approximation of vectors a and σ, respectively, while h and w contain the
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Figure 7.14. I dati (in azzurro) e la soluzione (in nero) dell’Esempio 7.12

height and amplitude, respectively, of the Gaussian functions we are looking
for.

We display in Figure 7.14 the points (ti, yi) (in blue) representing the
signal and the 5 Gaussian functions (7.3) (black lines) built on the obtained
numerical solution. This is the case with large residual: as a matter of fact
Φ(x∗) = 1.0385e + 03, x∗ being the solution vector. By a slight change of the
initial data, for instance by simply modifying the last component of x(0) from
0.3 to 0.5, the method would not converge any more. This remark prompts us
to a convenient choice of x(0). �

7.7.2 Levenberg-Marquardt’s method

This is a trust region method for the solution of the minimization prob-
lem (7.61). Following algorithm (7.59), after replacing f with Φ (see
(7.61)) and f̃ with Φ̃, at each step k we solve the minimization problem

min
s∈Rn: ‖s‖≤δk

Φ̃k(s)

with

Φ̃k(s) =
1

2
‖R(x(k)) + JR(x(k))s‖2. (7.65)

Note that Φ̃k(x) (7.65) is a quadratic approximation of Φ(x) around

x(k), obtained by approximatingR(x) with its linear model R̃k(x) (7.64)
(see Exercise 7.11).

Even though JR(x) does not have full rank, this method is well
suited for minimization problems featuring a strong non-linearity or a
large residual Φ(x∗) = 1

2‖R(x∗)‖2 in correspondence with a local mini-
mizer x∗.
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Since the approximation of the Hessian matrix is the same as for the
Gauss-Newton method, the two methods share the same local conver-
gence properties. In particular, should the Levenberg-Marquardt itera-
tions converge, convergence rate is quadratic if the residual is null at
local minimizer, linear otherwise.

See Exercises 7.8-7.11.

Let us summarize

1. For the minimization of the function f , the derivative free methods
are those using only the functional values of f . They are quite robust
in practice even though very little is known about their theoretical
convergence;

2. descent methods exploit the knowledge of the function derivatives
and compute at each step a descent direction and a steplength, based
on line search strategies;

3. descent methods with Newton directions associated with linear search
strategies are globally convergent when the matrices H(x(k)) are pos-
itive definite. They feature quadratic convergence rate in proximity
of the minimizer. They are well suited for small and medium size
problems;

4. descent methods with quasi-Newton directions make use of approxi-
mate Hessian matrices Hk at every iteration. When associated with
line search strategies, they are globally convergent provided Hk are
positive definite, with superlinear convergence order. They too are
well suited for small and medium size problems;

5. descent methods with conjugate gradient type descent directions,
associated with line search strategies, are globally convergent with
linear rate of convergence. They are recommended for large size prob-
lems;

6. trust region strategies are more recent and less diffused than line
search ones. They replace the objective function with a quadratic ap-
proximation and look for a minimizer of the latter in a n-dimensional
ball.

7.8 Constrained optimization

In this Section we introduce two simple strategies for the solution of
minimization problems with constraints: the penalty method for prob-
lems with both equality and inequality constraints and the so-called aug-
mented Lagrangian method for problems featuring equality constraints
only.
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These two methods allow the solutions of simple problems and pro-
vide the basic tools for more robust and complex algorithms that we will
not address here (see however [NW06, SY06, BDF+10]).

The constrained optimization problem is formulated as follows: we
consider the minimization problem (7.2) for which the domain Ω can be
either given by

Ω = {x ∈ R
n : hi(x) = 0, for i = 1, . . . , p}, (7.66)

where hi : R
n → R for i = 1, . . . , p, are given functions, or by

Ω = {x ∈ R
n : gj(x) ≥ 0, for j = 1, . . . , q}, (7.67)

where gj : R
n → R for j = 1, . . . , q; p and q are given natural numbers.

In the more general case, however, Ω is defined by both equality and
inequality constraints, that is

Ω = {x ∈ R
n : hi(x) = 0, for i = 1, . . . , p, gj(x) ≥ 0, for j = 1, . . . , q}.

(7.68)
The three different situations (7.66), (7.67), and (7.68) undergo a

unique notation,

Ω = {x ∈ R
n : hi(x) = 0, for i ∈ Ih, gj(x) ≥ 0, for j ∈ Ig},

for two suitable chosen sets Ih and Ig, under the convention that Ih = ∅
in (7.67) and Ig = ∅ in (7.66).

Problem (7.2) can thus be written as

minx∈Rn f(x), subject to

hi(x) = 0 ∀i ∈ Ih,

gj(x) ≥ 0 ∀j ∈ Ig

(7.69)

Everywhere in this section we will assume that f , hi, and gj be C1

functions on R
n.

The points of x ∈ Ω are called admissibile (as they fulfill all the
constraints); Ω is the set of admissible points.

A point x∗ ∈ Ω ⊂ R
n is a global minimizer for problem (7.2) if

f(x∗) ≤ f(x) ∀x ∈ Ω,

whereas x∗ is a local minimizer for (7.2) if there exists a ballBr(x
∗) ⊂ R

n

with radius r > 0 and centered at x∗ such that

f(x∗) ≤ f(x) ∀x ∈ Br(x
∗) ∩ Ω.

A constraint is said active at x ∈ Ω if it is satisfied with equality at
x ∈ Ω. According to this definition, active constraints at x are all the hi

as well as those gj such that gj(x) = 0.
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Figure 7.15. The contour lines of the cost function f , the admissibility set
Ω and the global minimizer x∗ constrained to Ω. The plot at left is relative to
Problem 1 (7.70), that at right to Problem 2 (7.71)

Example 7.13 Consider the following constrained optimization problems:
Problem 1:

min
x∈R2

f(x), with f(x) =
3

5
x2
1 +

1

2
x1x2 − x2 + 3x1,

under the following constraint

h1(x) = x2
1 + x2

2 − 1 = 0;

(7.70)

Problem 2:

min
x∈R2

f(x), with f(x) = 100(x2 − x2
1)

2 + (1 − x1)
2,

under the following constraints:

g1(x) = −34x1 − 30x2 + 19 ≥ 0,

g2(x) = 10x1 − 5x2 + 11 ≥ 0,

g3(x) = 3x1 + 22x2 + 8 ≥ 0.

(7.71)

The contour lines of the two cost functions and the associated set of admissible
points Ω are displayed in Figure 7.15. Note that Ω is a closed curve for Problem
1, while it is a closed convex set in R

2 for Problem 2. For both problems there
is one active constraint. �

The Weierstrass theorem guarantees the existence of both the max-
imum and the minimum for f in Ω when the latter is a non-empty,
bounded and closed set. Consequently, problem (7.69) admits a solu-
tion.

We recall that a function f : Ω ⊆ R
n → R is strongly convex in Ω if

∃ρ > 0 such that ∀x,y ∈ Ω and ∀α ∈ [0, 1],

f(αx+ (1 − α)y) ≤ αf(x) + (1 − α)f(y) − α(1 − α)ρ‖x − y‖2. (7.72)
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This reduces to the definition of convexity (7.11) when ρ = 0.

Proposition 7.2 (Optimality conditions) Let Ω ⊂ R
n be a

convex set, and x∗ ∈ Ω be such that f ∈ C1(Br(x
∗)) for a suit-

able r > 0. If x∗ is a local minimizer for (7.2) then

∇f(x∗)T (x − x∗) ≥ 0 ∀x ∈ Ω. (7.73)

Moreover, if f is convex in Ω and (7.73) is satisfied, x∗ is a global
minimizer for (7.2).
Finally, under the additional requirement for Ω to be closed and f
strongly convex, the minimizer for (7.2) is unique.

Let us introduce the Lagrangian function associated with problem
(7.2)

L(x,λ,μ) = f(x) −
∑

i∈Ih

λihi(x) −
∑

j∈Ig

μjgj(x). (7.74)

Here λ = (λi) (for i ∈ Ih) and μ = (μj) (for j ∈ Ig) play the role of La-
grangian multipliers associated with equality and inequality constraints,
respectively. A point x∗ is called a Karush–Kuhn–Tucker (KKT) point
for L if there exist λ∗ and μ∗ such that the triplet (x∗,λ∗,μ∗) satisfies
the following conditions, called Karush–Kuhn–Tucker conditions :

∇xL(x∗,λ∗,μ∗) = ∇f(x∗) −
∑

i∈Ih

λ∗
i ∇hi(x

∗) −
∑

j∈Ig

μ∗
j∇gj(x

∗) = 0

hi(x
∗) = 0 ∀i ∈ Ih

gj(x
∗) ≥ 0 ∀j ∈ Ig

μ∗
j ≥ 0 ∀j ∈ Ig

μ∗
jgj(x

∗) = 0 ∀j ∈ Ig

For a given point x, the constraints are said to satisfy the LICQ
(linear independence constraint qualification) condition at x if the gra-
dients ∇hi(x) and ∇gj(x) associated with the sole active constraints at
x provide a set of linear independent vectors.

The following result holds (see, e.g., [NW06, Thm. 12.1]).
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Theorem 7.1 (First order KKT necessary conditions) If x∗

is a local minimizer for problem (7.69), the functions f , hi, and gj
are of class C1(Ω), and the constraints satisfy the LICQ condition
at x∗, then there exist λ∗ and μ∗ such that (x∗,λ∗,μ∗) is a KKT
point.

Thanks to this theorem, the local minimizers for (7.69) should be
sought for among the KKT points and those points where LICQ condi-
tion is not fulfilled.

When the set Ig is empty (only equality constraints are present) the
Lagrangian function reads L(x,λ) = f(x)−∑

i∈Ih
λihi(x) and the KKT

conditions reduce to the classical necessary (Lagrangian) conditions

∇xL(x∗,λ∗) = ∇f(x∗) −
∑

i∈Ih

λ∗
i ∇hi(x

∗) = 0

hi(x
∗) = 0 ∀i ∈ Ih

(7.75)

Sufficient conditions for a KKT point to be a minimizer for f con-
strained in Ω would require the knowledge of the Hessian matrix of L
or else an assumption of strict convexity for both f and the constraint
functions ([NW06, SY06]).

In general terms, a constrained optimization problem can be written
as an unconstrained problem using either the penalized formulation or
the augmented Lagrangian formulation, as we will explain in the next
two sections.

Remark 7.6 If at a point x∗ that minimizes f no active constraints are
present, the Lagrangian function coincides with the cost function f therein, as
Ih = ∅ and μ∗

j = 0 for all j ∈ Ig thanks to the KKT conditions. In this case
our problem reduces to an unconstrained minimization problem that can be
solved by using the methods discussed in the previous sections. �

A remarkable instance of constrained optimization is that of
Quadratic Programming: this is precisely the case where f is a quadratic
function, the constraints are expressed by linear functions, thus problem
(7.69) can be written under the special form:

min
x∈Rn

f(x), f(x) = 1
2x

TAx+ xTb

subject to the constraints Cx − d = 0, Dx − e ≥ 0
(7.76)

where A ∈ R
n×n, b ∈ R

n, C ∈ R
p×n, d ∈ R

p, D ∈ R
q×n, e ∈ R

q, p, q
are suitable positive integers and the notations v ≥ 0 means vi ≥ 0 for
all i. See [Bom10, NW06] for a presentation of Quadratic Programming.
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In the special case where constraints are all expressed by equalities,
the matrix form of the Langrange conditions (7.75) reads (with obvious
choice of notations)

[
A −CT

C 0

] [
x
λ

]
=

[−b
d

]
. (7.77)

If A is symmetric and positive definite on the kernel of C, that is

yTAy > 0 ∀y ∈ ker(C) = {z : Cz = 0}, y �= 0,

and assuming that C has full rank, system (7.77) admits a unique so-
lution, thus there exists a unique global minimizer for the cost function
defined in (7.76).

A quadratic programming problem can therefore be tackled by solv-
ing the linear system (7.77) using one of the methods of Chapter 5.

In general, the matrix M = [A, −CT ; C, 0] of (7.77) is not definite,
that is it features both positive and negative eigenvalues. Suitable it-
erative methods for its treatment are Krylov methods like GMRES or
Bi-CGStab. See, e.g., [Qua13] and [BGL05].

Example 7.14 To solve Problem 7.4 we note that the cost function defined
in (7.7) (the risk) is quadratic, while the constraints read

h1(x) = 0.6x1 + x2 + 1.2x3 = 1.04, h2(x) = x1 + x2 + x3 = 1. (7.78)

The former states that the expected return be equal to 10.4%, while the latter
establishes that the sum of the fractions invested into the 3 funds be equal
to the entire capital. This is a quadratic programming problem that we can
rewrite under the form (7.77), where

A =

⎡

⎣

0.08 0.1 0
0.1 0.5 0.208
0 0.208 1.28

⎤

⎦ , b =

[

0
0

]

, C =

[

0.6 1 1.2
1 1 1

]

, d =

[

1.04
1

]

.

Matrix C has (maximum) rank equal to 2, its kernel ker(C) = {z =
α[1,−3, 2]T , α ∈ R} has dimension 1.

As A is symmetric, we need to verify that it is positive definite on ker(C),
that is zTAz > 0 for all z = α[1,−3, 2]T , α �= 0. As a matter of fact,
zTAz = α2[1,−3, 2]TA[1,−3, 2] = 6.6040α2 > 0. Upon building the matrix
M = [A, −CT ; C, 0] and the right hand side f = [−b,d]T , we solve (7.77)
using the following instructions:

A=[0.08 0.1 0; 0.1 0.5 0.208; 0 0.208 1.28]; b=[0;0;0];
C=[0.6 1 1.2;1,1,1]; d=[1.04;1];
M=[A -C’; C, zeros(2)]; f=[-b;d];
xl=M\f

and obtain the solution
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xl =

0.0606

0.6183

0.3211

0.7883

-0.4063

The first 3 components of xl correspond to the 3 fractions of the capital to
invest in the 3 funds, whereas the last two components provide the values of the
Lagrangian multipliers associated with the constraints. The risk corresponding
to this capital splitting is given by the value of the cost function at the point
xl(1:3) and is approximately equal to 21%. �

7.8.1 The penalty method

A strategy for solving problem (7.69) consists of turning it into a non-
constrained optimization problem for a modified penalty function

Pα(x) = f(x) +
α

2

∑

i∈Ih

h2
i (x) +

α

2

∑

j∈Ig

(max{−gj(x), 0})2 (7.79)

where α > 0 is a parameter to be chosen.
If the given constraints are not fulfilled at the point x, the sums

appearing in (7.79) provide a measure of how far x is from the admissible
set Ω. Since in this case x violates the constraints, choosing large values
of α would severely penalize such a violation. Every solution x∗ of (7.69)
clearly provides a minimizer of P . Conversely, assuming f , hi, and gj
regular enough, and denoting with x∗(α) a minimizer of Pα(x), it holds
([Ber82])

lim
α→∞x∗(α) = x∗.

For α � 1, x∗(α) can therefore be regarded as a convenient ap-
proximation of x∗. However, since numerical instabilities arising from
the minimization of Pα(x) increase with α, a better strategy consists of
solving a sequence of unconstrained minimization problems

x(k) = argmin
x∈Rn

Pαk
(x) (7.80)

where {αk} is a monotonically increasing unbounded sequence of param-
eters (with, e.g., α0 = 1). For every k, αk+1 is chosen as a function of
αk and x(k) provides the initial value for problem (7.80) at the new step
k + 1.

A heuristic approach consists of choosing αk+1 = δαk where δ is
small (say δ ∈ [1.5, 2]) if many iterations have been necessary to solve
(7.80) at the step k, otherwise one could afford a larger value for δ, say
δ � 10.
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As a matter of fact, in the course of the first iterations, when using
a moderate (not too high) αk, there is no reason why the solution of
(7.80) should resemble that of (7.69). This legitimates the search for an
inexact solution of (7.80), differing from the exact one x(k) by a small
enough tolerance εk.

The algorithm above is formulated as follows (note that a further
tolerance ε > 0 is requested to assess the behaviour of the gradient of P
at x(k)).

For given α0 (tipically, α0 = 1), ε0 (tipically, ε0 = 1/10), ε > 0 and

x
(0)
0 ∈ R

n, for k = 0, 1, . . . until convergence

compute an approximation x(k) to (7.80) using an initial

data x
(k)
0 and a tolerance εk on the stopping criterium;

if ‖∇xPαk
(x(k))‖ ≤ ε

set x∗ = x(k) (convergence achieved)

else

choose αk+1 s.t. αk+1 > αk

choose εk+1 s.t. εk+1 < εk

set x
(k+1)
0 = x(k)

endif

(7.81)

This alogorithm is implemented in Program 7.6. fun and grad fun

are function handles associated with the cost function and its gradient,
respectively; h and grad h are those associated with the equality con-
straint functions, while g and grad g those associated with inequality
constraint functions. When Ih (resp., Ig) is an empty set, h and grad h

(resp. g and grad g) are empty variables. The output of the functions
grad fun, grad h and grad g respectively contain: an n dimensional col-
umn vector y with components yi = ∂f/∂xi, an n × p matrix C whose
coefficients are Cji = ∂hi/∂xj, an n × q matrix G whose entries are

Gj� = ∂g�/∂xj . The vector x0 contains x
(0)
0 , tol and kmax the tolerance

and the maximum number of iterations for the penalty loop, while kmaxd
is the maximum number of iterations for the descent method, when the
latter is called at every step to solve the unconstrained minimization
problem. In this program the tolerance εk for the descent method is
chosen equal to 1/10 for k = 0 and then reduced at every iteration by
a factor 10 until the tolerance ε is reached. The variable meth is used
to select the unconstrained minimization method: if meth=0 the MAT-
LAB fminsearch function implementing the Nelder and Mead method
is chosen, while meth>1 has the same role played in Program descent
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7.3 to select the descent method. Finally, if meth=1, the Hessian matrix
necessary to implement the descent method with Newton’s directions is
provided as input variable, while it provides H0 for the BFGS method
(7.49) if meth=2.

Program 7.6. penalty: penalty method

function [x,err ,k]= penalty(fun ,grad_fun ,h,grad_h ,...
g,grad_g ,x0,tol ,kmax ,kmaxd ,meth ,varargin)
% PENALTY Constrained optimization with penalty
% [X,ERR ,K]=PENALTY(FUN ,GRAD_FUN ,H,GRAD_H ,...
% G,GRAD_G ,X0,TOL ,KMAX ,KMAXD ,METH)
% computes a local minimizer of the cost function
% FUN under the constraints H=0 and G>=0, by the
% penalty method. X0 is the initial point , TOL is
% the tolerance for the stopping test , KMAX is the
% maximum number of allowed iterations .
% GRAD_FUN , GRAD_H , and GRAD_G contain the gradient
% of FUN , H, and G, respectively . The variables
% H, G, GRAD_H , and GRAD_G can be set to [], if they
% are not present. The solution of the corresponding
% unconstrained minimization problem is performed
% by calling either Matlab FMINSEARCH function
% (if METH =0) or DESCENT function (if METH >0).
% When METH >0, KMAXD and METH contain respectively
% the maximum number of allowed iterations for the
% function DESCENT and the choice of the descent
% directions . When METH >1
% [X,ERR ,K]=PENALTY(FUN ,GRAD_FUN ,H,GRAD_H ,...
% G,GRAD_G ,X0,TOL ,KMAX ,KMAXD ,METH , HESS)
% is the correct calling instruction .
% If METH =1 HESS is the function handle associated
% with the Hessian is required , if METH =2 HESS is a
% suitable approximation of the Hessian at the step 0.
xk=x0(:); alpha0 =1;
if meth ==1, hess=varargin {1};
elseif meth ==2, hess=varargin {1};
else hess =[]; end
if ~isempty(h), [nh,mh]= size(h(xk)); end
if ~isempty(g), [ng,mg]= size(g(xk)); else , ng=[]; end
err=tol+1; k=0;
alphak=alpha0; alphak2=alphak /2; told =.1;
while err >tol && k< kmax
P=@(x)Pf(x,fun ,g,h,alphak2 ,ng);
grad_P=@(x)grad_Pf(x,grad_fun ,h,g,...

grad_h ,grad_g ,alphak ,ng);
if meth ==0
options=optimset (’TolX ’,told );
[x,err ,kd]= fminsearch (P,xk,options );
err=norm(x-xk);
else
[x,err ,kd]= descent(P,grad_P ,xk ,told ,kmaxd ,meth ,hess );
err=norm(grad_P(x));
end
if kd<kmaxd , alphak=alphak *10; alphak2=alphak /2;
else alphak=alphak *1.5; alphak2=alphak/2; end
k=k+1; xk=x; told=max([tol ,told /10]);
end
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end % end of the function penalty
function y=Pf(x,fun ,g,h,alphak2 ,ng)
y=fun(x);
if ~isempty(h), y=y+alphak2*sum((h(x)).^2); end
if ~isempty(g), G=g(x);
for j=1:ng, y=y+alphak2*max([-G(j) ,0])^2; end
end
end % end of function Pf
function y=grad_Pf(x,grad_fun ,h,g,...

grad_h ,grad_g ,alphak ,ng)
y=grad_fun(x);
if ~isempty(h), y=y+alphak*grad_h(x)*h(x); end
if ~isempty(g), G=g(x); Gg=grad_g(x);
for j=1:ng
if G(j)<0, y=y+alphak*Gg(:,j)*G(j); end
end , end
end % end of function grad_Pf

Example 7.15 Let us solve Problem 2 of the Example 7.13 using Program
7.6. Setting x(0) = (1.2, 0.2) and tolerance ε = 10−5, by the following instruc-
tions

fun=@(x) 100*(x(2)-x(1).^2).^2+(1 -x(1)).^2;
grad_fun =@(x) [-400*(x(2)-x(1)^2)*x(1) -2*(1-x(1));

200*(x(2)-x(1)^2)];
g=@(x)[-34*x(1)-30* x(2)+19; 10*x(1)-5*x(2)+11;

3*x(1)+22*x(2)+8];
grad_g=@(x)[-34,10,3;-30,-5 ,22];
x0 =[1.2 ,.2]; tol =1.e-5; kmax =100; kmaxd=100;
meth =2; hess=eye (2);
[x,err ,k]= penalty(fun ,grad_fun ,[],[],g,grad_g ,...

x0,tol ,kmax ,kmaxd ,meth ,hess)

after 3 iterations we achieve convergence to the point (0.41183, 0.16660) with a
residual on the gradient ‖∇xPα3(x

(3))‖ � 2.6379 ·10−7 . For the solution of the
unconstrained minimization problem we have used the program 7.3 descent,
more precisely the BFGS method described in Section 7.5.4. The constraints
at the minimizers are equal to g1(x) = 2.0036e− 04, g2(x) = 1.4285e+01 and
g3(x) = 1.2901e + 01. �

Example 7.16 To solve Problem 7.3 with the penalty method, let Ω be the
circle centered at the origin with radius 2. Let us triangulate Ω with a grid
featuring 49 nodes (the vertices) and Ne = 72 triangles, as shown in Figure
7.2, left. The 24 boundary nodes are kept fixed, whereas the coordinates of
the 25 internal nodes are collected in a vector x and represent the problem
independent variables. The cost function is

f(x) =
Ne
∑

k=1

1

μk(x)
=

Ne
∑

k=1

√
3‖Ak(x)W

−1‖2
F

4 det(Ak(x))
,

where we have used definition (7.6), while the inequality constraints are

gk(x) = det(Ak(x)) − τ ≥ 0, k = 1, . . . , Ne,

with τ = 0.10876 being twice the value of the area of the smallest triangle of
the initial grid. The result shown in Figure 7.2, right, has been obtained after
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21 iterations of the penalty algorithm, having set ε = 10−8 for the stopping
test. The maximum number of iterations for the Nelder and Mead method has
been fixed to 100. �

Example 7.17 We solve Problem 7.5 by considering the road network of
Figure 7.3. There are 11(= n) streets sj and 7(= p) cross roads. We assume
that at every minute M = 20 cars enter and leave the network, that the length
of the streets sj are collected in the vector L = (1, 1, 1.5, 1.5, 1.5, 2.2, 1.5, 1.5,
2.2, 1.5, 2.2) km (the jth component refers to the length of sj street, see
Figure 7.3), that the maximum speed allowed on every street is 1 km/min and
that the maximum car densities on every street are (the ordered components of
the vector) ρm = (60, 40, 20, 60, 60, 40, 60, 20, 40, 20, 60). Since we are dealing
with a constrained minimization problem with both equality and inequality
constraints, we can use the penalty method. The associated unconstrained
minimization problem will be solved by the descent method with quasi-Newton
directions, for which we need to provide the expression of the gradient of the
cost function as well as the constraints. By expressing the cost function f
and the functions associated with the constraints in terms of the independent
variables ρj , we have

f(ρ) =

(

11
∑

j=1

Lj

vj,m

ρj
1 − ρj/ρj,m

)

/

11
∑

j=1

ρj ,

h1(ρ) = M −
2
∑

j=1

vj,m(1 − ρj/ρj,m)

h2(ρ) = v1,m(1 − ρ1/ρ1,m) −
4
∑

j=3

vj,m(1 − ρj/ρj,m)

. . .

h7(ρ) =
11
∑

j=9

vj,m(1 − ρj/ρj,m) − M

gj(ρ) = ρj j = 1, . . . , 11
g11+j(ρ) = ρj,m − ρj j = 1, . . . , 11.

(7.82)

For a given vector ρ, the gradient ∇f(ρ) and the matrices [∇h1(ρ), . . . ,∇hp(ρ)]
and [∇g1(ρ), . . . ,∇gn(ρ),∇gn+1(ρ), . . . ,∇g2n(ρ)] can be built up through 3
distinct MATLAB functions grad fun.m, grad h.m, and grad g.m. By calling
the Program penalty.m, using an initial vector with unitary components and
the tolerance ε = 10−5 for the stopping test, after 5 iterations the method
converges to the vector

rho_opt =

15.0246 12.8942 4.6535 9.0594 5.5847 9.4996

0.5278 -0.0000 11.5494 6.9723 8.4272.

Its components, ordered by rows and represented in Figure 7.16, provide the
densities ρj of the cars on the streets sj that minimize the cost function. The
minimum average time founded is f(ρopt) = 2.0782 min. �
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Figure 7.16. The densities ρj of the road network Problem 7.5

7.8.2 The augmented Lagrangian method

In this section we address minimization problems with equality con-
straints only, whence Ig = ∅ in (7.69). The function

Lα(x,λ) = f(x) −
∑

i∈Ih

λihi(x) +
α

2

∑

i∈Ih

h2
i (x) (7.83)

obtained from (7.74) is called augmented Lagrangian; α > 0 is a suitable
large coefficient to be assigned.

The augmented Lagrangian method is an iterative method that, at
the kth iteration, given αk and λ(k), computes

x(k) = argmin
x∈Rn

Lαk
(x,λ(k)) (7.84)

in such a way that the sequence x(k) converges to a KKT point (see
(7.75)) for the Lagrangian L(x,λ) = f(x) − ∑

i∈Ih
λihi(x).

The initial values α0 and λ(0) are set arbitrarily. The values for the
new iterations are generated as follows. The coefficient αk+1 is obtained
from αk proceeding as in the penalty method discussed in Section 7.8.1.
On its hand, λ(k+1) is computed as follows. We compute ∇xLαk

(x,λ(k))
and set it to zero, yielding:

∇xLαk
(x(k),λ(k)) = ∇f(x(k)) −

∑

i∈Ih

(λ
(k)
i − αkhi(x

(k)))∇hi(x
(k)) = 0.

By comparison with the optimality condition (7.75), we identify the new

value of λ
(k+1)
i as

λ
(k+1)
i = λ

(k)
i − μkhi(x

(k)). (7.85)
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We now obtain x(k+1) by solving (7.84) with k replaced by k + 1.
We summarize the algorithm as follows: given α0 (tipically, α0 = 1),

ε0 (tipically, ε0 = 1/10), ε > 0, x
(0)
0 ∈ R

n and λ
(0)
0 ∈ R

p for k = 0, 1, . . .
until convergence

compute an approximation x(k) to (7.84) using an initial

data x
(k)
0 and a tolerance εk on the stopping criterium;

if ‖∇xLαk
(x(k),λ(k))‖ ≤ ε

set x∗ = x(k)(convergence achieved)

else

compute λ
(k+1)
i by (7.85)

choose αk+1 s.t. αk+1 > αk

choose εk+1 s.t. εk+1 < εk

set x
(k+1)
0 = x(k)

endif

(7.86)

This algorithm is implemented in Program 7.7. Apart from lambda0

that contains the initial vector λ(0) of the Lagrange multipliers, all the
other input and output parameters coincide with those of Program 7.6.

Program 7.7. auglagrange: augmented Lagrangian method

function [x,err ,k]= auglagrange (fun ,grad_fun ,h,grad_h ,...
x0,lambda0 ,tol ,kmax ,kmaxd ,meth ,varargin )

% AUGLAGRANGE Constrained optimization
% [X,ERR ,K]= AUGLAGRANGE (FUN ,GRAD_FUN ,H,GRAD_H ,...
% X0,LAMBDA0 ,TOL ,KMAX ,KMAXD ,METH)
% computes a local minimizer of the cost function
% FUN under the constraints H=0, by the augmented
% Lagrangian method. X0 is the initial point , TOL
% the tolerance for the stopping test , KMAX the
% maximum number of allowed iterations .
% GRAD_FUN and GRAD_H contain the gradient of FUN
% and H respectively . The solution of the associated
% unconstrained minimization problem is performed
% by calling either the Matlab FMINSEARCH function
% (if METH =0) or the DESCENT function (if METH >0).
% When METH >0, KMAXD and METH contain respectively
% the maximum number of allowed iterations for the
% function DESCENT and the choice of the descent
% directions . When METH >1
% [X,ERR ,K]= AUGLAGRANGE (FUN ,GRAD_FUN ,H,GRAD_H ,...
% X0,LAMBDA0 ,TOL ,KMAX ,KMAXD ,METHi , HESS)
% is the correct calling instruction .
% If METH =1 HESS is the function handle associated
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% with the Hessian is required , if METH =2 HESS is a
% suitable approximation of the Hessian at the step 0.
alpha0 =1;
if meth ==1, hess=varargin {1};
elseif meth ==2, hess=varargin {1};
else , hess =[]; end
err=tol+1; k=0; xk=x0(:); lambdak=lambda0 (:);
if ~isempty(h), [nh,mh]= size(h(xk)); end
alphak=alpha0; alphak2=alphak /2; told =0.1;
while err >tol && k< kmax
L=@(x)Lf(x,fun ,lambdak ,alphak2 ,h);
grad_L=@(x)grad_Lf(x,grad_fun ,lambdak ,alphak ,h,grad_h);
if meth ==0
options=optimset (’TolX ’,told );
[x,err ,kd]= fminsearch (L,xk,options );
err=norm(x-xk);
else
[x,err ,kd]= descent(L,grad_L ,xk ,told ,kmaxd ,meth ,hess );
err=norm(grad_L(x));
end
lambdak=lambdak -alphak*h(x);
if kd<kmaxd , alphak=alphak *10; alphak2=alphak /2;
else alphak=alphak *1.5; alphak2=alphak/2; end
k=k+1; xk=x; told=max([tol ,told /10]);
end
end % end auglagrange
function y=Lf(x,fun ,lambdak ,alphak2 ,h)
y=fun(x);
if ~isempty(h)
y=y-sum(lambdak ’*h(x))+ alphak2*sum((h(x)).^2); end
end % end function Lf
function y=grad_Lf(x,grad_fun ,lambdak ,alphak ,h,grad_h)
y=grad_fun(x);
if ~isempty(h)

y=y+grad_h(x)*( alphak*h(x)- lambdak); end
end % end function grad_Lf

Example 7.18 To solve Problem 1 of Example 7.13 we use the augmented
Lagrangian method by calling Program 7.7 as follows:

fun=@(x)0.6*x(1).^2+0.5* x(2).*x(1)-x(2)+3*x(1);
grad_fun =@(x) [1.2*x(1)+0.5*x(2)+3; 0.5*x(1)-1];
h=@(x)x(1).^2+x(2).^2 -1;
grad_h=@(x)[2*x(1); 2*x(2)];
x0 =[1.2 ,.2]; tol =1.e-5; kmax =500; kmaxd=100;
p=1; % number of equality constraints
lambda0=rand(p,1); meth =2; hess=eye(2);
[xmin ,err ,k]= auglagrange (fun ,grad_fun ,h,grad_h ,...

x0,lambda0 ,tol ,kmax ,kmax ,meth ,hess)

We have set the tolerance equal to 10−5 for the stopping test, and solved
the associated unconstrained minimization problem by quasi-Newton descent
directions (therefore setting meth=2 and hess=eye(2)).
After 5 iterations we reach convergence to the point

xmin =

-8.454667252699469e-01

5.340281045624525e-01
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The constraint function h at this point is equal to resh=5.6046-10. The solu-
tion to this problem is reported in Figure 7.15, left.

Should we use the penalty method instead, leaving unchanged all the other
settings, we would obtain convergence after 6 iterations to the point

xmin =

-8.454715822058602e-01

5.340328869427682e-01

with the value of h therein equal to resh=1.3320e-04. The latter value is
larger by 6 orders of magnitude than the one obtained using the augmented
Lagrangian method. Since this behaviour occurs quite often, the augmented
Lagrangian method is in general preferable in case of minimization problems
featuring only equality constraints. �

See Exercises 7.12-7.14.

Let us summarize

1. For a constrained minimization problem, the minimizers should be
sought for among the KKT points associated with the Lagrangian
function, or among the points where the LICQ condition fails to be
satisfied;

2. a quadratic programming problem is one for which the cost function
is quadratic and the constraints are linear. Under suitable assump-
tions on the matrix associated with the quadratic terms and on the
constraint functions, it admits a unique minimizer that can be ob-
tained by solving a linear system;

3. a constrained minimization problem can be turned into an uncon-
strained one using a suitable penalty function. The corresponding
penalized problem can be severely ill-conditioned because of the large
value that is tipically assigned to the penalty parameter;

4. the augmented Lagrangian method is a penalty method suitable for
the search of KKT points.

7.9 What we haven’t told you

Large scale optimization problems are especially demanding in terms of
computational time and storage requirements. Both line search and trust
region methods require the factorization of the Hessian matrix or the con-
struction of suitable approximations that might be dense even when the
Hessian is sparse. Special variants featuring limited memory of the meth-
ods illustrated above have been developed, based on Conjugate Gradient
and Lanczos iterations. See for instance [Ste83, NW06, GOT05].
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A classical and efficient method for the solution of constrained min-
imization problems is the Sequential Quadratic Programming (SQP),
which transforms a minimization problem with cost function f and arbi-
trary constraints into the successive solution of quadratic programming
problems. At every iteration, f is approximated by a quadratic func-
tion like (7.76), then one looks for the KKT points of the associated
Lagrangian function (see for instance [Fle10], [NW06]).

In case of inequality constraints solely, the barrier methods repre-
sent an alternative to penalty methods: the cost function is modified by
adding a function depending on the inequality constraints which inhibits
an admissible point x ∈ Ω to generate a successive point which is not
admissible. This barrier function is defined only at the interior of the
admissible set and is unbounded on the boundary of Ω. These methods
require the initial point to be admissible, a condition hard to be fulfilled.
For a more in depth presentation we refer to [Ter10].

7.10 Exercises

Exercise 7.1 Compute the minimum of f(x) = (x− 1)e−x2

using the golden
section method with or without quadratic interpolation.

Exercise 7.2 Two ships leave the harbour at the same time and move along
trajectories respectively described by the parametric curves

γ1(t) =

{

7 cos
(

t
3
+ π

2

)

+ 5
−4 sin

(

t
3
+ π

2

)− 3
, γ2(t) =

{

6 cos
(

t
6

− π
3

)− 4
−6 sin

(

t
3

− π
3

)

+ 5
.

The parameter t > 0 represents the time (in hours), whereas the positions are
expressed in miles with respect to the origin of the reference framework. Find
the minimum distance between the two ships along all their motion.

Exercise 7.3 Compute the global minima of f(x) = x4
1 + x4

2 + x3
1 + 3x1x

2
2 −

3x2
1 − 3x2

2 + 10 using the Nelder and Mead method.

Exercise 7.4 By setting x(0) = 3/2, d(k) = (−1)k+1, and αk = 2 + 2/3k+1,
show that the descent method generates a sequence that does not converge to
the minimizer of f(x) = x4 even though {f(x(k))} is monotonically decreasing.
Show moreover that the steplengths αk do not fulfill the Wolfe conditions
(7.43).

Exercise 7.5 Show that the same conclusions drawn for the previous exercise
hold by taking x(0) = −2, d(k) = 1, and αk = 3−(k+1).

Exercise 7.6 Approximate the minimizer of the Rosenbrock function defined
in Example 7.3 using the descent method with different choices of the descent
directions (7.35)–(7.38). Set x(0) = (−1.2, 1) and ε = 10−8 as tolerance for
the stopping test, plot the convergence histories for the different choices of the
descent directions and comment on the efficiency of the different methods.
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Exercise 7.7 Compute the minimum of f(x) = (x2
1 −x3

1x2 −2x2+2x1x
2
2)

2+
(3 − x1x2)

2 using the BFGS method and the trust region method with quasi-
Newton directions to solve problem (7.54). As initial guess try x(0) = (2,−1),
or x(0) = (2, 1), or else x(0) = (−1,−1).

Exercise 7.8 Show that the Gauss-Newton method (7.63) can be reformu-
lated as follows: for k = 0, 1, . . . until convergence, solve

min
x∈Rn

1

2
‖˜Rk(x)‖2 with ˜Rk(x) defined in (7.64). (7.87)

Exercise 7.9 Consider the Gauss-Newton method of Section 7.7.1. Show that
if JR(x(k)) has full rank, then the solution δx(k) of (7.63)1 is a descent direction
for the function f defined in (7.61).

Exercise 7.10 Consider the table

ti 0.055 0.181 0.245 0.342 0.419 0.465 0.593 0.752

yi 2.80 1.76 1.61 1.21 1.25 1.13 0.52 0.28

and find the least squares approximation φ(t) = x1 + x2t + x3t
2 + x4e

−x5t

(with unknown coefficients x1, x2, . . . , x5) of the data set (ti, yi).

Exercise 7.11 Prove that the function Φ̃k(x) defined in (7.65) is a quadratic
approximation of Φ obtained by approximating R(x) with its linear model
(7.64).

Exercise 7.12 We look for the optimal positioning of the warehouse that has
to provide goods to three selling points whose coordinates are reported in the
table below:

Selling point coordinates (xi, yi) (km) annual deliveries (units)

1 (6,3) 140
2 (-9,9) 134
3 (-8,-5) 88

The warehouse must be allocated within the region Ω = {(x, y) ∈ R
2 : y ≤

x − 10}.

Exercise 7.13 Compute the minimum of the Quadratic Programming prob-
lem (7.76) featuring only equality constraints, with

A =

⎡

⎣

2 −1 1
−1 3 0
0 0 1

⎤

⎦ , b =

⎡

⎣

1
−2
−1

⎤

⎦ , C =

[

2 −2 0
2 1 −3

]

, d =

[

1
1

]

.

Exercise 7.14 A material point moves with speed v(x, y) = (sin(πxy) + 1)
(2x + 3y + 4) along an elliptic trajectory whose equation is x2/4 + y2 = 1.
Find the maximum value of the velocity reached by the point as well as the
corresponding position.
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