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Solutions of the exercises

In this chapter we will provide solutions of the exercises that we have
proposed at the end of the previous eight chapters. The expression “So-
lution n.m” is an abridged notation for “Solution of Exercise n.m” (mth
Exercise of the nth Chapter).

10.1 Chapter 1

Exercise 1.1 Only the numbers of the form ±0.1a2 · 2e with a2 = 0, 1 and
e = ±2,±1, 0 belong to the set F(2, 2,−2, 2). For a given exponent, we can
represent in this set only the two numbers 0.10 and 0.11, and their opposites.
Consequently, the number of elements belonging to F(2, 2,−2, 2) is 20. Finally,
εM = 1/2.

Exercise 1.2 For any fixed exponent, each of the digits a2, . . . , at can assume
β different values, while a1 can assume only β−1 values. Therefore 2(β−1)βt−1

different numbers can be represented (the 2 accounts for the positive and
negative sign). On the other hand, the exponent can assume U −L+1 values.
Thus, the set F(β, t, L, U) contains 2(β−1)βt−1(U −L+1) different elements.

Exercise 1.3 Thanks to the Euler formula i = eiπ/2; we obtain ii = e−π/2,
that is, a real number. In MATLAB

exp(-pi/2)
ans =

0.2079
i^i
ans =

0.2079

Exercise 1.4 Use the instructions U=2*eye(10)-3*diag(ones(8,1),2) and
L=2*eye(10)-3*diag(ones(8,1),-2).
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378 10 Solutions of the exercises

Exercise 1.5 We can interchange the third and seventh rows of the previous
matrix using the instructions: r=[1:10]; r(3)=7; r(7)=3; Lr=L(r,:). Notice
that the character : in L(r,:) ensures that all columns of L are spanned in theL(r,:)
usual increasing order (from the first to the last). To interchange the fourth
column with the eighth column we can write c=[1:10]; c(8)=4; c(4)=8;

Lc=L(:,c). Similar instructions can be used for the upper triangular matrix.

Exercise 1.6 We can define the matrix A = [v1;v2;v3;v4] where v1, v2,
v3 and v4 are the 4 given row vectors. They are linearly independent iff the
determinant of A is different from 0, which is not true in our case.

Exercise 1.7 The two given functions f and g have the symbolic expression:

syms x
f=sqrt(x^2+1); pretty(f)

(x2+1)1/2

g=sin(x^3)+ cosh(x); pretty(g)

sin(x3) + cosh(x)

The command pretty(f) prints the symbolic expression f in a format thatpretty
resembles type-set mathematics. At this stage, the symbolic expression of the
first and second derivatives and the integral of f can be obtained with the
following instructions:

diff (f,x)
ans =
1/(x^2+1)^(1/2)* x
diff (f,x,2)
ans =
-1/(x^2+1)^(3/2)* x^2+1/(x^2+1)^(1/2)
int(f,x)
ans =
1/2* x*(x^2+1)^(1/2)+1/2* asinh(x)

Similar instructions can be used for the function g.

Exercise 1.8 The accuracy of the computed roots downgrades as the polyno-
mial degree increases. This experiment reveals that the accurate computation
of the roots of a polynomial of high degree can be troublesome.

Exercise 1.9 Here is a possible program to compute the sequence:

function I=sequence (n)
I = zeros(n+2 ,1); I(1) = (exp (1)-1)/ exp (1);
for i = 0:n, I(i+2) = 1 - (i+1)*I(i+1); end

The sequence computed by this program doesn’t tend to zero (as n increases),
but it diverges with alternating sign. This behavior is a direct consequence of
rounding errors propagation.

Exercise 1.10 The anomalous behavior of the computed sequence is due to
the propagation of roundoff errors from the innermost operation. In particular,
when 41−nz2n is less than εM/2, the subsequent element zn+1 of the sequence
is equal to 0. This happens for n ≥ 30.
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Exercise 1.11 The proposed method is a special instance of the Monte Carlo
method and is implemented by the following program:

function mypi=pimontecarlo (n)
x = rand(n,1); y = rand(n,1);
z = x.^2+y.^2;
v = (z <= 1);
m=sum(v); mypi =4*m/n;

The command rand generates a sequence of pseudo-random numbers. The
instruction v = (z <= 1) is a shortand version of the following procedure: we
check whether z(k) <= 1 for any component of the vector z. If the inequality
is satisfied for the kth component of z (that is, the point (x(k),y(k)) belongs
to the interior of the unit circle) v(k) is set equal to 1, and to 0 otherwise.
The command sum(v) computes the sum of all components of v, that is, the sum

number of points falling in the interior of the unit circle.
By launching the program mypi=pimontecarlo(n) for different values of

n, when n increases, the approximation mypi of π becomes more accurate.
For instance, for n=1000 we obtain mypi=3.1120, whilst for n=300000 we have
mypi=3.1406. (Obviously, since the numbers are randomly generated, the re-
sult obtained with the same value of n may change at each run.)

Exercise 1.12 To answer the question we can use the following function:

function pig=bbpalgorithm (n)
pig = 0;
for m=0:n

m8 = 8*m;
pig = pig + (1/16)^m*(4/(m8+1) -(2/( m8 +4)+ ...

1/(m8+5)+1/( m8 +6)));
end

For n=10 we obtain an approximation pig of π that coincides (up to MATLAB
precision) with the persistent MATLAB variable pi. In fact, this algorithm is
extremely efficient and allows the rapid computation of hundreds of significant
digits of π.

Exercise 1.13 The binomial coefficient can be computed by the following
program (see also the MATLAB function nchoosek): nchoosek

function bc=bincoeff (n,k)
k = fix(k); n = fix(n);
if k > n, disp(’k must be between 0 and n’);

return; end
if k > n/2, k = n-k; end
if k <= 1, bc = n^k; else

num = (n-k+1):n; den = 1:k; el = num./den;
bc = prod(el);

end

The command fix(k) rounds k to the nearest integer smaller than k. The fix
command disp(string) displays the string, without printing its name. The
command return terminates the execution of the function. Finally, prod(el)

return

prod
computes the product of all elements of the vector el.

Exercise 1.14 The following functions compute fn using the form fi =
fi−1 + fi−2 (fibrec) or using the form (1.14) (fibmat):
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function f=fibrec(n)
if n == 0

f = 0;
elseif n == 1

f = 1;
else

f = fibrec(n -1)+ fibrec(n -2);
end

function f=fibmat(n)
f = [0;1];
A = [1 1; 1 0];
f = A^n*f;
f = f(1);

For n=20 we obtain the following results:

t=cputime; fn=fibrec (20), cpu=cputime -t
fn =

6765
cpu =

0.48
t=cputime; fn=fibmat (20), cpu=cputime -t
fn =

6765
cpu =

0

The recursive function fibrec requires much more CPU time than fibmat.
The latter requires to compute only the power of a matrix, an easy operation
in MATLAB.

10.2 Chapter 2

Exercise 2.1 The command fplot allows us to study the graph of the given
function f for various values of γ. For γ = 1, the corresponding function does
not have real zeros. For γ = 2, there is only one zero, α = 0, with multiplicity
equal to four (that is, f(α) = f ′(α) = f ′′(α) = f ′′′(α) = 0, while f (4)(α) �= 0).
Finally, for γ = 3, f has two distinct zeros, one in the interval (−3,−1) and
the other one in (1, 3). In the case γ = 2, the bisection method cannot be
used since it is impossible to find an interval (a, b) in which f(a)f(b) < 0.
For γ = 3, starting from the interval [a, b] = [−3,−1], the bisection method
(Program 2.1) converges in 34 iterations to the value α = −1.85792082914850
(with f(α) � −3.6 · 10−12), using the following instructions:

f=@(x) cosh(x)+cos(x)-3; a=-3; b=-1;
tol =1.e-10; nmax =200;
[zero ,res ,niter]= bisection (f,a,b,tol ,nmax)

zero =
-1.8579

res =
-3.6872e-12

niter =
34
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Similarly, choosing a=1 and b=3, for γ = 3 the bisection method converges after
34 iterations to the value α = 1.8579208291485 with f(α) � −3.6877 · 10−12.

Exercise 2.2 We have to compute the zeros of the function f(V ) = pV +
aN2/V −abN3/V 2−pNb−kNT , where N is the number of molecules. Plotting
the graph of f , we see that this function has just a simple zero in the interval
(0.01, 0.06) with f(0.01) < 0 and f(0.06) > 0. We can compute this zero using
the bisection method as follows:

f=@(x) 35000000* x+401000./x -17122.7./ x.^2 -1494500;
[zero ,res ,niter]= bisection (f ,0.01 ,0.06 ,1.e-12 ,100)

zero =
0.0427

res =
-6.3814e-05

niter =
35

Exercise 2.3 The unknown value of ω is the zero of the function f(ω) =
s(1, ω)−1 = 9.8[sinh(ω)− sin(ω)]/(2ω2)−1. From the graph of f we conclude
that f has a unique real zero in the interval (0.5, 1). Starting from this interval,
the bisection method computes the value ω = 0.61214447021484 with the
desired tolerance in 15 iterations as follows:

f=@(omega) 9.8/2*( sinh(omega)-sin(omega ))./ omega.^2-1;
[zero ,res ,niter]= bisection (f,0.5,1,1.e-05 ,100)

zero =
6.1214e-01

res =
3.1051e-06

niter =
15

Exercise 2.4 The inequality (2.6) can be derived by observing that |e(k)| <
|I(k)|/2 with |I(k)| < 1

2
|I(k−1)| < 2−k−1(b− a). Consequently, the error at the

iteration kmin is less than ε if kmin is such that 2−kmin−1(b − a) < ε, that is,
2−kmin−1 < ε/(b − a), which proves (2.6).

Exercise 2.5 The implemented formula is less sensitive to roundoff errors.

Exercise 2.6 In Solution 2.1 we have analyzed the zeros of the given func-
tion with respect to different values of γ. Let us consider the case when γ = 2.
Starting from the initial guess x(0) = 1, the Newton method (Program 2.2)
converges to the value ᾱ = 1.4961e− 4 in 31 iterations with tol=1.e-10 while
the exact zero of f is equal to 0. This discrepancy is due to the fact that f is al-
most a constant in a neighborhood of its zero, whence the root-finding is an ill-
conditioned problem (see the comment at the end of Sect. 2.8.2). The method
converges at the same solution and with the same number of iterations even if
we set tol=εM . Actually, the corresponding residual computed by MATLAB
is 0. Let us set now γ = 3. The Newton method with tol=εMconverges to
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the value 1.85792082915020 in 9 iterations starting from x(0) = 1, while if
x(0) = −1 after 9 iterations it converges to the value −1.85792082915020 (in
both cases the residuals are zero in MATLAB).

Exercise 2.7 The square and the cube roots of a number a are the solutions
of the equations x2 = a and x3 = a, respectively. Thus, the corresponding
algorithms are: for a given x(0) compute

x(k+1) =
1

2

(
x(k) +

a

x(k)

)
, k ≥ 0 for the square root,

x(k+1) =
1

3

(
2x(k) +

a

(x(k))2

)
, k ≥ 0 for the cube root.

Exercise 2.8 Setting δx(k) = x(k) − α, from the Taylor expansion of f we
find:

0 = f(α) = f(x(k)) − δx(k)f ′(x(k)) +
1

2
(δx(k))2f ′′(x(k)) + O((δx(k))3). (10.1)

The Newton method yields

δx(k+1) = δx(k) − f(x(k))/f ′(x(k)). (10.2)

Combining (10.1) with (10.2), we have

δx(k+1) =
1

2
(δx(k))2

f ′′(x(k))

f ′(x(k))
+ O((δx(k))3).

After division by (δx(k))2 and letting k → ∞ we prove the convergence result.

Exercise 2.9 For certain values of β the equation (2.2) can have two roots
that correspond to different configurations of the rods system. The two initial
values that are suggested have been chosen conveniently to allow the Newton
method to converge toward one or the other root, respectively. We solve the
problem for β = kπ/150 with k = 0, . . . , 100 (if β > 2.6389 the Newton
method does not converge since the system has no admissible configuration).
We use the following instructions to obtain the solution of the problem (shown
in Figure 10.1, left):

a1 =10; a2=13; a3=8; a4=10;
ss = (a1^2 + a2^2 - a3^2+ a4^2)/(2* a2*a4);
n=150; x01= -0.1; x02=2*pi/3; nmax =100;
beta =zeros (100 ,1);
for k=0:100

w = k*pi/n; i=k+1; beta(i) = w;
f = @(x) 10/13* cos(w)-cos(x)-cos(w-x)+ss;
df = @(x) sin(x)-sin(w-x);
[zero ,res ,niter]= newton(f,df,x01 ,1e-5, nmax );
alpha1(i) = zero; niter1(i) = niter;
[zero ,res ,niter]= newton(f,df,x02 ,1e-5, nmax );
alpha2(i) = zero; niter2(i) = niter;

end
plot (beta ,alpha1 ,’c--’,beta ,alpha2 ,’c’,’Linewidth ’ ,2)
grid on
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The components of the vectors alpha1 and alpha2 are the angles computed for
different values of β, while the components of the vectors niter1 and niter2

are the number of Newton iterations (between 2 and 6) necessary to compute
the zeros with the requested tolerance.

Exercise 2.10 From an inspection of its graph we see that f has two positive
real zeros (α2 � 1.5 and α3 � 2.5) and one negative (α1 � −0.5). The Newton
method converges in 4 iterations (having set x(0) = −0.5 and tol = 1.e-10)
to the value α1:

f=@(x) exp(x)-2*x^2; df=@(x) exp(x)-4*x;
x0 =-0.5; tol=1.e-10; nmax =100;
format long; [zero ,res ,niter]=newton(f,df,x0 ,tol ,nmax)

zero =
-0.53983527690282

res =
0

niter =
4

The given function has a maximum at x̄ � 0.3574 (which can be obtained
by applying the Newton method to the function f ′): for x(0) < x̄ the method
converges to the negative zero. If x(0) = x̄ the Newton method cannot be
applied since f ′(x̄) = 0. For x(0) > x̄ the method converges to one of the two
positive zeros, either α2 or α3.

Exercise 2.11 Let us set x(0) = 0 and tol= εM . In MATLAB the Newton
method converges in 43 iterations to the value 0.641182985886554, while in
Octave it converges in 32 iterations to the value 0.641184396264531. By tak-
ing the MATLAB approximated value as the reference solution in our error
analysis, we can observe that the (approximate) errors decrease only linearly
when k increases (see Figure 10.1, right). This behavior is due to the fact that
α has a multiplicity greater than 1. To recover a second-order method we can
use the modified Newton method.

Exercise 2.12 We should compute the zero of the function f(x) = sin(x) −√
2gh/v20 . By inspecting its graph, we can conclude that f has one zero in

the interval (0, π/2). The Newton method with x(0) = π/4 and tol= 10−10

converges in 5 iterations to the value 0.45862863227859.

Exercise 2.13 Using the data given in the exercise, the solution can be ob-
tained with the following instructions:

M=6000; v=1000; f=@(r) M-v*(1+r)./r.*((1+r).^5 -1);
df=@(r) v*((1+r).^5.*(1 -5*r) -1)./(r.^2);
[zero ,res ,niter]= bisection (f ,0.01 ,0.1 ,1.e-12,5);
[zero ,res ,niter]=newton(f,df,zero ,1.e-12 ,100)

The Newton method converges to the desired result in 3 iterations.

Exercise 2.14 By a graphical study, we see that (2.38) is satisfied for a value
of α in (π/6, π/4). Using the following instructions:
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Figure 10.1. At left: the two curves represent the two possible configurations
of roads system in terms of the angle α versus β ∈ [0, 2π/3] (Solution 2.9). At
right: error versus iteration number of the Newton method for the computation
of the zero of the function f(x) = x3 − 3x22−x + 3x4−x − 8−x (Solution 2.11)

l1 =8; l2=10; g=3*pi/5;
f=@(a) -l2*cos(g+a)/sin(g+a)^2-l1*cos(a)/sin(a)^2;
df=@(a) [l2/sin(g+a)+2* l2*cos(g+a)^2/ sin(g+a)^3+...

l1/sin(a)+2* l1*cos(a)^2/ sin(a)^3];
[zero ,res ,niter]=newton(f,df,pi/4,1.e-15 ,100)
L=l2/sin(2*pi/5-zero )+l1/sin(zero)

the Newton method provides the approximate value 0.59627992746547 in 6
iterations, starting from x(0) = π/4. We deduce that the maximum length of
a rod that can pass in the corridor is L = 30.5484.

Exercise 2.15 If α is a zero of f with multiplicity m, then there exists a
function h such that h(α) �= 0 and f(x) = h(x)(x − α)m. By computing the
first derivative of the iteration function φN of the Newton method, we have

φ′
N (x) = 1 − [f ′(x)]2 − f(x)f ′′(x)

[f ′(x)]2
=

f(x)f ′′(x)
[f ′(x)]2

.

By replacing f , f ′ and f ′′ with the corresponding expressions as functions of
h(x) and (x − α)m, we obtain limx→α φ′

N (x) = 1 − 1/m, hence φ′
N(α) = 0

if and only if m = 1. Consequently, if m = 1 the method converges at least
quadratically, according to (2.9). If m > 1 the method converges with order 1
according to Proposition 2.1.

Exercise 2.16 Let us inspect the graph of f by using the following com-
mands:

f=@(x) x^3+4*x^2 -10; fplot(f,[-10 ,10]); grid on;
fplot(f,[-5 ,5]); grid on;
fplot(f,[0 ,2]); grid on; axis ([0,2,-10,15])

we can see that f has only one real zero, equal approximately to 1.36 (see
Figure 10.2, left, for the last graph generated by the previous instructions).
The iteration function and its derivative are:
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Figure 10.2. At left: graph of f(x) = x3 + 4x2 − 10 for x ∈ [0, 2] (Solution
2.16). At right: graph of f(x) = x3 − 3x22−x + 3x4−x − 8−x for x ∈ [0.5, 0.7]
(Solution 2.18)

φ(x) =
2x3 + 4x2 + 10

3x2 + 8x
= − f(x)

3x2 + 8x
+ x,

φ′(x) =
(6x2 + 8x)(3x2 + 8x) − (6x+ 8)(2x3 + 4x2 + 10)

(3x2 + 8x)2

=
(6x+ 8)f(x)

(3x2 + 8x)2
,

and φ(α) = α. We easily deduce that φ′(α) = 0, since f(α) = 0. Consequently,
the proposed method converges (at least) quadratically.

Exercise 2.17 The proposed method is convergent at least with order 2 since
φ′(α) = 0.

Exercise 2.18 By keeping the remaining parameters unchanged, the method
converges after 30 iterations to the value 0.641182210863894 which differs by
less than 10−7 from the result previously computed in Solution 2.11. However,
the behavior of the function, which is quite flat near x = 0, suggests that the
result computed previously could be more accurate. In Figure 10.2, right, we
show the graph of f in (0.5, 0.7), obtained by the following instructions:

f=@(x) x^3-3*x^2*2^(-x)+3*x*4^(-x)-8^(-x);
fplot(f,[0.5 0.7]);
grid on

10.3 Chapter 3

Exercise 3.1 Since x ∈ (x0, xn), there exists an interval Ii = (xi−1, xi) such
that x ∈ Ii. We can easily see that maxx∈Ii |(x − xi−1)(x − xi)| = h2/4. If
we bound |x − xi+1| above by 2h, |x − xi−2| by 3h and so on, we obtain the
inequality (3.6).
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Exercise 3.2 In all cases we have n = 4 and thus we should estimate the fifth
derivative of each function in the given interval. We find: maxx∈[−1,1] |f (5)

1 | �
1.18, maxx∈[−1,1] |f (5)

2 | � 1.54, maxx∈[−π/2,π/2] |f (5)
3 | � 1.41. Thanks to for-

mula (3.7), the upper bounds for the corresponding errors are about 0.0018,
0.0024 and 0.0211, respectively.

Exercise 3.3 Using the MATLAB command polyfit we compute the inter-
polating polynomials of degree 3 in the two cases:

year =[1975 1980 1985 1990];
west =[72.8 74.2 75.2 76.4];
east =[70.2 70.2 70.3 71.2];
cwest=polyfit(year ,west ,3);
ceast=polyfit(year ,east ,3);
estwest=polyval(cwest ,[1977 1983 1988]);
esteast=polyval(ceast ,[1977 1983 1988]);

The estimated values in 1977, 1983 and 1988 are

estwest =
73.4464 74.8096 75.8576

esteast =
70.2328 70.2032 70.6992

for the Western and Eastern Europe, respectively.

Exercise 3.4 We choose the month as time-unit. The initial time t0 = 1
corresponds to November 1987, while t7 = 157 to November 2000. With the
following instructions we compute the coefficients of the polynomial interpo-
lating the given prices:

time = [1 14 37 63 87 99 109 157];
price = [4.5 5 6 6.5 7 7.5 8 8];
[c] = polyfit(time ,price ,7);

Setting [price2002]=polyval(c,181) we find that the estimated price of the
magazine in November 2002 is approximately 11.24 euros.

Exercise 3.5 In this special case, since the number of interpolation nodes is
4, the interpolatory cubic spline, computed by the command spline, coincides
with the interpolating polynomial. As a matter of fact, the spline interpolates
the nodal data, moreover its first and second derivatives are continuous while
the third derivative is continuous at the internal nodes x1 and x2, thanks to
the not-a-knot condition used by MATLAB. This wouldn’t be true for the
natural interpolating cubic spline.

Exercise 3.6 We use the following instructions:

T = [4:4:20];
rho =[1000.7794 ,1000.6427 ,1000.2805 ,999.7165 ,998.9700];
Tnew = [6:4:18]; format long e;
rhonew = spline(T,rho ,Tnew)

rhonew =
Columns 1 through 2

1.000740787500000 e+03 1.000488237500000 e+03
Columns 3 through 4

1.000022450000000 e+03 9.993649250000000 e+02
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The comparison with the further measures shows that the approximation is
extremely accurate. Note that the state equation for the sea-water (UNESCO,
1980) assumes a fourth-order dependence of the density on the temperature.
However, the coefficient of the fourth power of T is of the order of 10−9 and
the cubic spline provides a good approximation of the measured values.

Exercise 3.7 We compare the results computed using the interpolatory cubic
spline obtained using the MATLAB command spline (denoted with s3), the
interpolatory natural spline (s3n) and the interpolatory spline with null first
derivatives at the endpoints of the interpolatory interval (s3d) (computed with
Program 3.2). We use the following instructions:

year =[1965 1970 1980 1985 1990 1991];
production =[17769 24001 25961 34336 29036 33417];
z=[1962:0.1:1992];
s3 = spline(year ,production ,z);
s3n = cubicspline (year ,production ,z);
s3d = cubicspline (year ,production ,z,0,[0 0]);

In the following table we resume the computed values (expressed in thousands
of tons of goods):

year 1962 1977 1992

s3 514.6 2264.2 4189.4
s3n 1328.5 2293.4 3779.8
s3d 2431.3 2312.6 2216.6

The comparison with the real data (1238, 2740.3 and 3205.9 thousands of tons,
respectively) shows that the values predicted by the natural spline are accurate
also outside the interpolation interval (see Figure 10.3, left). On the contrary,
the interpolating polynomial introduces large oscillations near this end-point
and underestimates the production of as many as −7768.5 ×106 Kg for 1962.

Exercise 3.8 The interpolating polynomial p and the spline s3 can be eval-
uated by the following instructions:

pert = 1.e-04;
x=[ -1:2/20:1]; y=sin(2*pi*x)+( -1).^[1:21]* pert;
z=[ -1:0.01:1]; c=polyfit(x,y,20);
p=polyval(c,z); s3=spline(x,y,z);

When we use the unperturbed data (pert=0) the graphs of both p and s3

are indistinguishable from that of the given function. The situation changes
dramatically when the perturbed data are used (pert=1.e-04). In particular,
the interpolating polynomial shows strong oscillations at the end-points of the
interval, whereas the spline remains practically unchanged (see Figure 10.3,
right). This example shows that approximation by splines is in general more
stable with respect to perturbation errors than the global Lagrange interpola-
tion.

Exercise 3.9 If n = m, setting f̃ = Πnf we find that the first member
of (3.28) is null. Thus in this case Πnf is the solution of the least-squares
problem. Since the interpolating polynomial is unique, we deduce that this is
the unique solution to the least-squares problem.
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Figure 10.3. At left: comparison among the cubic spline for the data of Ex-
ercise 3.7: s3 (solid line), s3d (dashed line) and s3n (dotted line). The circles
denote the values used in the interpolation. At right: the interpolating polyno-
mial (dashed line) and the interpolatory cubic spline (solid line) corresponding
to the perturbed data (Solution 3.8). Note the severe oscillations of the inter-
polating polynomial near the end-points of the interval
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Figure 10.4. At left: least-squares polynomial of degree 4 (solid line) com-
pared with the data in the first column of Table 3.1. (Solution 3.10). At right:
the trigonometric interpolant obtained using the instructions in Solution 3.14.
Circles refer to the available experimental data

Exercise 3.10 The coefficients (obtained by the command polyfit) of the
requested polynomials are (only the first 4 significant digits are shown):

K = 0.67, a4 = 7.211 10−8, a3 = −6.088 10−7, a2 = −2.988 10−4, a1 =
1.650 10−3, a0 = −3.030;

K = 1.5, a4 = −6.492 10−8, a3 = −7.559 10−7, a2 = 3.788 10−4, a1 =
1.67310−3 , a0 = 3.149;

K = 2, a4 = −1.050 10−7, a3 = 7.130 10−8, a2 = 7.044 10−4, a1 =
−3.828 10−4, a0 = 4.926;

K = 3, a4 = −2.319 10−7, a3 = 7.740 10−7, a2 = 1.419 10−3, a1 =
−2.574 10−3, a0 = 7.315.

In Figure 10.4, left, we show the graph of the polynomial computed using
the data in the column with K = 0.67 of Table 3.1.
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Exercise 3.11 By repeating the first 3 instructions reported in Solution 3.7
and using the command polyfit, we find the following values (in 105 Kg):
15280.12 in 1962; 27407.10 in 1977; 32019.01 in 1992, which represent good
approximations to the real ones (12380, 27403 and 32059, respectively).

Exercise 3.12 We can rewrite the coefficients of the system (3.30) in terms
of mean and variance by noting that the variance can be expressed as v =

1
n+1

∑n
i=0 x

2
i − M2. Thus the coefficients of the first equation are (n+ 1) and

M , while those of the second equation are M and (n+ 1)(v +M2).

Exercise 3.13 The equation of the least-squares straight line is y = a0+a1x,
where a0 and a1 are the solutions of system (3.30). The first equation of (3.30)
provides that the point, whose abscissa is M and ordinate is

∑n
i=0 yi/(n+1),

belongs to the least-squares straight line.

Exercise 3.14 We can use the command interpft as follows:

discharge = [0 35 0.125 5 0 5 1 0.5 0.125 0];
y =interpft(discharge ,100);

The graph of the obtained solution is reported in Figure 10.4, right.

10.4 Chapter 4

Exercise 4.1 Using the following second-order Taylor expansions of f at the
point x0, we obtain

f(x1) = f(x0) + hf ′(x0) +
h2

2
f ′′(x0) +

h3

6
f ′′′(ξ1),

f(x2) = f(x0) + 2hf ′(x0) + 2h2f ′′(x0) +
4h3

3
f ′′′(ξ2),

where ξ1 ∈ (x0, x1) and ξ2 ∈ (x0, x2). Replacing these two expressions in the
first formula of (4.11), yields

1

2h
[−3f(x0) + 4f(x1) − f(x2)] = f ′(x0) +

h2

3
[f ′′′(ξ1) − 2f ′′′(ξ2)],

then the thesis follows for a suitable ξ0 ∈ (x0, x2). A similar procedure can be
used for the formula at xn.

Exercise 4.2 By writing the second-order Taylor expansions of f(x ± h)
around x, we have

f(x̄ ± h) = f(x̄) ± hf ′(x̄) +
h2

2
f ′′(x̄) ± h3

6
f ′′′(ξ±),

with ξ− ∈ (x̄−h, x̄) and ξ+ ∈ (x̄, x̄+h). Subtracting these two expressions and
dividing by 2h we obtain formula (4.10) which is a second-order approximation
of f ′(x).
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Exercise 4.3 Assuming that f ∈ C4 and proceeding as in Solution 4.2 we
obtain the following errors:

a. − 1

4
f (4)(ξ)h3, b. − 1

12
f (4)(ξ)h3, c.

1

6
f (4)(ξ)h3.

Exercise 4.4 Using the approximation (4.9), we obtain the following values:

t (months) 0 0.5 1 1.5 2 2.5 3

δn – 78 45 19 7 3 –
n′ – 77.91 39.16 15.36 5.91 1.99 –

By comparison with the exact values of n′(t) we can conclude that the com-
puted values are sufficiently accurate.

Exercise 4.5 The quadrature error can be bounded by

(b − a)3/(24M2) max
x∈[a,b]

|f ′′(x)|,

where [a, b] is the integration interval and M the (unknown) number of subin-
tervals.

The function f1 is infinitely differentiable. From the graph of f ′′
1 we infer

that |f ′′
1 (x)| ≤ 2 in the integration interval. Thus the integration error for f1

is less than 10−4 provided that 2 · 53/(24M2) < 10−4, that is M > 322.
Also the function f2 is differentiable to any order. Since maxx∈[0,π] |f ′′

2 (x)|=√
2e3π/4, the integration error is less than 10−4 provided that M > 439. These

inequalities actually provide an over estimation of the integration errors. In-
deed, the (effective) minimum number of intervals which ensures that the error
is below the fixed tolerance of 10−4 is much lower than that predicted by our
result (for instance, for the function f1 this number is 71). Finally, we note
that, since f3 is not differentiable at both x = 0 and x = 1, the theoretical
error estimate doesn’t hold.

Exercise 4.6 On each interval Ik, k = 1, . . . ,M , the error is equal to
H3/24f ′′(ξk) with ξk ∈ [xk−1, xk] and hence the global error will be H3/24∑M

k=1 f
′′(ξk). Since f ′′ is a continuous function in [a, b] there exists a point

ξ ∈ [a, b] such that f ′′(ξ) = 1
M

∑M
k=1 f

′′(ξk). Using this result and the fact
that MH = b − a, we derive equation (4.14).

Exercise 4.7 This effect is due to the accumulation of local errors on each
sub-interval.

Exercise 4.8 By construction, the mid-point formula integrates exactly the
constants. To verify that the linear polynomials also are exactly integrated, it
is sufficient to verify that I(x) = IPM (x). As a matter of fact we have

I(x) =

b∫

a

x dx =
b2 − a2

2
, IPM (x) = (b − a)

b+ a

2
.
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Exercise 4.9 For the function f1 we find M = 71 if we use the trapezoidal
formula and only M = 8 for the composite Gauss-Legendre formula with
n = 1. (For this formula we can use Program 10.1.) Indeed, the computational
advantage of this latter formula is evident.

Program 10.1. gausslegendre: Gauss-Legendre composite quadrature formula,
with n = 1

function intGL=gausslegendre (a,b,f,M,varargin )
y = [-1/ sqrt (3),1/ sqrt (3)];
H2 = (b-a)/(2*M);
z = [a:2*H2:b];
zM = (z(1:end -1)+z(2:end ))*0.5;
x = [zM+H2*y(1), zM+H2*y(2)];
f = f(x,varargin {:});
intGL = H2*sum(f);
return

Exercise 4.10 Equation (4.18) states that the quadrature error for the
composite trapezoidal formula with H = H1 is equal to CH2

1 , with C =

− b − a

12
f ′′(ξ). If f ′′ does not vary “too much”, we can assume that also the

error with H = H2 behaves like CH2
2 . Then, by equating the two expressions

I(f) � I1 +CH2
1 , I(f) � I2 + CH2

2 , (10.3)

we obtain C = (I1 − I2)/(H
2
2 −H2

1 ). Using this value in one of the expressions
(10.3), we obtain equation (4.35), that is, a better approximation than the one
produced by I1 or I2.

Exercise 4.11 We seek the maximum positive integer p such that Iappr(x
p) =

I(xp). For p = 0, 1, 2, 3 we find the following nonlinear system with 4 equations
in the 4 unknowns α, β, x̄ and z̄:

p = 0 → α+ β = b − a,

p = 1 → αx̄+ βz̄ =
b2 − a2

2
,

p = 2 → αx̄2 + βz̄2 =
b3 − a3

3
,

p = 3 → αx̄3 + βz̄3 =
b4 − a4

4
.

From the first two equations we can eliminate α and z̄ and reduce the system
to a new one in the unknowns β and x̄. In particular, we find a second-order
equation in β from which we can compute β as a function of x̄. Finally, the
nonlinear equation in x̄ can be solved by the Newton method, yielding two
values of x̄ that are the nodes of the Gauss-Legendre quadrature formula with
n = 1.
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Exercise 4.12 Since

f
(4)
1 (x) = 24

1 − 10(x − π)2 + 5(x − π)4

(1 + (x − π)2)5
,

f
(4)
2 (x) = −4ex cos(x),

we find that the maximum of |f (4)
1 (x)| is bounded by M1 � 23, while that of

|f (4)
2 (x)| by M2 � 18. Consequently, from (4.22) we obtain H < 0.21 in the

first case and H < 0.16 in the second case.

Exercise 4.13 The MATLAB commands:

syms x
I=int(exp(-x^2/2),0,2);
Iex=eval(I)

yields the value 1.19628801332261 for the integral at hand.
The Gauss-Legendre formula applied to the same interval with M = 1

would provide the value 1.20278027622354 (with an absolute error equal to
6.4923e-03), while the simple Simpson formula gives 1.18715264069572 with a
slightly larger error, equal to 9.1354e-03.

Exercise 4.14 We note that Ik > 0 ∀k, since the integrand is non-negative.
Therefore, we expect that all the values produced by the recursive formula
should be non-negative. Unfortunately, the recursive formula is unstable to
the propagation of roundoff errors and produces negative elements:

I(1)=1/ exp (1); for k=2:20, I(k)=1-k*I(k -1); end

The result is I(20) = 104.86 in MATLAB, while Octave produces I(20)

= -30.1924. Using the composite Simpson formula, with M ≥ 16, we can
compute the integral with the desired accuracy, as a matter of fact, denoting
by f(x) the integrand function, the absolute value of its fourth derivative is
bounded by M � 1.46 105. Consequently, from (4.22) we obtain H < 0.066.

Exercise 4.15 The idea of Richardson’s extrapolation is general and can be
applied to any quadrature formula. By proceeding as in Solution 4.10, recalling
that both Simpson and Gauss quadrature formulas are fourth-order accurate,
formula (4.35) reads

IR = I1 + (I1 − I2)/(H
4
2/H

4
1 − 1).

For the Simpson formula we obtain

I1 = 1.19616568040561, I2 = 1.19628173356793, ⇒ IR = 1.19628947044542,

with an absolute error I(f) − IR = −1.4571e − 06 (we gain two orders of
magnitude with respect to I1 and a factor 1/4 with respect to I2). Using the
Gauss-Legendre formula we obtain (the errors are reported between parenthe-
ses):

I1 = 1.19637085545393 (−8.2842e − 05),
I2 = 1.19629221796844 (−4.2046e − 06),
IR = 1.19628697546941 (1.0379e − 06).

The advantage of using the Richardson extrapolation method is evident.
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Exercise 4.16 We must compute by the Simpson formula the values j(r, 0) =
σ/(ε0r

2)
∫ r

0
f(ξ)dξ with r = k/10, for k = 1, . . . , 10 and f(ξ) = eξξ2.

In order to estimate the integration error we need the fourth derivative
f (4)(ξ) = eξ(ξ2 + 8ξ + 12). The maximum of f (4) in the integration interval
[0, r] is attained at ξ = r since f (4) is monotonically increasing. For a given
r the error is below 10−10 provided that H4 < 10−102880/(rf (4)(r)). For
r = k/10 with k = 1, . . . , 10 by the following instructions we can compute the
minimum numbers of subintervals which ensure that the previous inequalities
are satisfied:

r=[0.1:0.1:1]; maxf4=exp(r).*(r.^2+8*r+12);
H=(10^( -10)*2880./( r.* maxf4 )).^(1/4); M=fix(r./H)

M =
4 11 20 30 41 53 67 83 100

118

Therefore, the values of j(r, 0) are computed by running the following instruc-
tions:

sigma =0.36; epsilon0 = 8.859e -12;
f=@(x) exp(x).*x.^2;
for k = 1:10

r = k/10;
j(k)= simpsonc (0,r,M(k),f);
j(k) = j(k)*sigma/(r^2* epsilon0 );

end

Exercise 4.17 We compute E(213) using the Simpson composite formula by
increasing the number of intervals until the difference between two consecutive
approximations (divided by the last computed value) is less than 10−11:

f=@(x) 1./(x.^5.*( exp (1.432./(213* x)) -1));
a=3.e-04; b=14.e-04;
i=1; err = 1; Iold = 0; while err >= 1.e-11
I=2.39e-11* simpsonc (a,b,i,f);
err = abs(I-Iold )/abs(I);
Iold =I;
i=i+1;
end

The procedure returns the value i = 59. Therefore, using 58 equispaced in-
tervals we can compute the integral E(213) with ten exact significant digits.
The same result could be obtained by the Gauss-Legendre formula using 53
intervals. Note that as many as 1609 intervals would be nedeed if using the
composite trapezoidal formula.

Exercise 4.18 On the whole interval the given function is not regular enough
to allow the application of the theoretical convergence result (4.22). One pos-
sibility is to decompose the integral into the sum of two intervals, [0, 0.5] and
[0.5, 1], in which the function is regular (it is actually a polynomial of degree 2
in each sub-interval). In particular, if we use the Simpson rule on each interval
we can even integrate f exactly.
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10.5 Chapter 5

Exercise 5.1 Let xn denote the number of algebraic operations (sums, sub-
tractions and multiplications) required to compute one determinant of a matrix
of order n×n by the Laplace rule (1.8). The following recursive formula holds

xk − kxk−1 = 2k − 1, k ≥ 2,

with x1 = 0. Multiplying both sides of this equation by 1/k!, we obtain

xk

k!
− xk−1

(k − 1)!
=

2k − 1

k!

and summing both sides from 2 to n gives the solution:

xn = n!
n∑

k=2

2k − 1

k!
.

Recalling that

∞∑
k=0

1

k!
= e, it holds

n∑
k=2

2k − 1

k!
= 2

n−1∑
k=1

1

k!
−

n∑
k=2

1

k!
� 2.718,

whence xn � 3n!. It is worth mentioning that the Cramer rule (see Section
5.2) requires about 3(n+1)! operations to solve a square linear system of order
n with full matrix.

Exercise 5.2 We use the following MATLAB commands to compute the
determinants and the corresponding CPU-times:

t = []; NN =3:500;
for n = NN
A=magic(n); tt=cputime; d=det(A); t=[t, cputime -tt];
end

Let us compute the coefficients of the cubic least-squares polynomial that
approximate the data NN=[3:500] and t

c=polyfit(NN,t,3)
c =

1.4055e-10 7.1570e-08 -3.6686e-06 3.1897e-04

If we compute the fourth degree least-squares polynomial

c=polyfit(NN,t,4)

we obtain the following coefficients:

c =

7.6406e-15 1.3286e-10 7.4064e-08 -3.9505e-06 3.2637e-04

that is, the coefficient of n4 is close to the machine precision while the other
ones are quite unchanged with respect to the projection on P3. From this result,
we can conclude that in MATLAB the CPU-time required for computing the
determinant of a matrix of dimension n scales as n3.
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Exercise 5.3 Denoting by Ai the principal submatrix of A of order i, we
have: detA1 = 1, detA2 = ε, detA3 = detA = 2ε + 12. Consequently, if ε = 0
the second principal submatrix is singular and the LU factorization of A does
not exist (see Proposition 5.1). The matrix A is singular if ε = −6. In this case
the LU factorization exists and yields

L =

⎡
⎣
1 0 0
2 1 0
3 1.25 1

⎤
⎦ , U =

⎡
⎣
1 7 3
0 −12 −4
0 0 0

⎤
⎦ .

Nevertheless, note that U is singular (as we could have predicted since A is
singular) and the upper triangular system Ux = y admits infinite solutions.
We notice that the backward substitutions (5.10) cannot be applied because
of the same reason.

Exercise 5.4 Let us consider algorithm 5.13. At step k = 1, n − 1 divisions
were used to calculate the li1 entries for i = 2, . . . , n. Then (n − 1)2 multi-

plications and (n − 1)2 additions were used to create the new entries a
(2)
ij , for

i, j = 2, . . . , n. At step k = 2, the number of divisions is (n − 2), while the
number of multiplications and additions will be (n−2)2. At final step k = n−1
only 1 addition, 1 multiplication and 1 division is required. Thus, using the
identies

q∑
s=1

s =
q(q + 1)

2
,

q∑
s=1

s2 =
q(q + 1)(2q + 1)

6
, q ≥ 1,

we can conclude that to complete the LU factorization we need the following
number of operations

n−1∑
k=1

n∑
i=k+1

⎛
⎝1 +

n∑
j=k+1

2

⎞
⎠ =

n−1∑
k=1

(n − k)(1 + 2(n − k))

=

n−1∑
j=1

j + 2

n−1∑
j=1

j2 =
(n − 1)n

2
+ 2

(n − 1)n(2n − 1)

6
=

2

3
n3 − n2

2
− n

6
.

Exercise 5.5 By definition, the inverse X of a matrix A ∈ R
n×n satisfies

XA = AX = I. Therefore, for j = 1, . . . , n the column vector xj of X is the
solution of the linear system Axj = ej , where ej is the jth vector of the
canonical basis of Rn with all components equal to zero except the jth that
is equal to 1. After computing the LU factorization of A, the computation of
the inverse of A requires the solution of n linear systems with the same matrix
and different right-hand sides.

Exercise 5.6 Using the Program 5.1 we compute the L and U factors:

L =

⎡
⎣
1 0 0
2 1 0
3 −3.38 · 1015 1

⎤
⎦ , U =

⎡
⎣
1 1 3
0 −8.88 · 10−16 14
0 0 4.73 · 10−16

⎤
⎦ .

If we compute their product we obtain the matrix
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L*U
ans =

1.0000 1.0000 3.0000
2.0000 2.0000 20.0000
3.0000 6.0000 0.0000

which differs from A since the entry in position (3,3) is equal to 0 while in A
it is equal to 4.
The accurate computation of both L and U can be accomplished by invoking a
partial pivoting by rows, indeed by the instruction [L,U,P]=lu(A) we obtain
the correct results.

Exercise 5.7 Usually, only the triangular (upper or lower) part of a sym-
metric matrix is stored. Therefore, any operation that does not respect the
symmetry of the matrix is not optimal in view of the memory storage. This
is the case when row pivoting is carried out. A possibility is to exchange si-
multaneously rows and columns having the same index, limiting therefore the
choice of the pivot only to the diagonal elements. More generally, a pivoting
strategy involving exchange of rows and columns is called complete pivoting
(see, e.g., [QSS07, Chap. 3]).

Exercise 5.8 The symbolic computation of the L and U factors yields

L =

⎡
⎣

1 0 0
(ε − 2)/2 1 0

0 −1/ε 1

⎤
⎦ , U =

⎡
⎣
2 −2 0
0 ε 0
0 0 3

⎤
⎦ ,

thus l32 → ∞, when ε → 0. If we choose b = (0, ε, 2)T , it is easy to verify
that x = (1, 1, 1)T is the exact solution of Ax = b. To analyze the error with
respect to the exact solution for ε → 0, let us take ε = 10−k, for k = 0, . . . , 9.
The following instructions

e=1; xex=ones (3,1); err=[];
for k=1:10
b=[0;e;2];
L=[1 0 0; (e-2)*0.5 1 0; 0 -1/e 1];
U=[2 -2 0; 0 e 0; 0 0 3];
y=L\b; x=U\y;
err(k)=norm(x-xex)/norm(xex); e=e*0.1;
end

yield

err =

0 0 0 0 0 0 0 0 0 0

i.e., the numerical solution is not affected by rounding errors. This can be
explained by noticing that all the entries of L, U and b are floating point
numbers not affected by rounding errors and, unusually, no rounding errors
are propagated during both forward and backward substitutions, even if the
condition number of A is proportional to 1/ε.
On the contrary, by setting b = (2 log(2.5) − 2, (ε− 2) log(2.5) + 2, 2)T , which
corresponds to the exact solution x = (log(2.5), 1, 1)T , and analyzing the rel-
ative error for ε = 1/3 · 10−k, for k = 0, . . . , 9, the instructions
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e=1/3; xex=[log (5/2),1,1]’; err =[];
for k=1:10
b=[2* log(5/2)-2,(e-2)* log (5/2)+2 ,2] ’;
L=[1 0 0; (e-2)*0.5 1 0; 0 -1/e 1];
U=[2 -2 0; 0 e 0; 0 0 3];
y=L\b; x=U\y;
err(k)=norm(x-xex)/norm(xex); e=e*0.1;
end

provide

err =

Columns 1 through 5

1.8635e-16 5.5327e-15 2.6995e-14 9.5058e-14 1.3408e-12

Columns 6 through 10

1.2828e-11 4.8726e-11 4.5719e-09 4.2624e-08 2.8673e-07

In the latter case the error depends on the condition number of A, which obeys
the law K(A) = C/ε and satisfies the estimate (5.34).

Exercise 5.9 The computed solutions become less and less accurate when
i increases. Indeed, the error norms are equal to 1.10 · 10−14 for i = 1, to
9.32 · 10−10 for i = 2 and to 2.51 · 10−7 for i = 3. (We warn the reader that
these results indeed change depending upon the different MATLAB versions
used!!) This can be explained by observing that the condition number of Ai

increases as i increases. Indeed, using the command cond we find that the
condition number of Ai is � 103 for i = 1, � 107 for i = 2 and � 1011 for
i = 3.

Exercise 5.10 If (λ,v) are an eigenvalue-eigenvector pair of a matrix A, then
λ2 is an eigenvalue of A2 with the same eigenvector. Indeed, from Av = λv
follows A2v = λAv = λ2v. Consequently, if A is symmetric and positive
definite K(A2) = (K(A))2.

Exercise 5.11 The iteration matrix of the Jacobi method is:

BJ =

⎡
⎣

0 0 −α−1

0 0 0
−α−1 0 0

⎤
⎦ .

Its eigenvalues are {0, α−1,−α−1}. Thus the method converges if |α| > 1.
The iteration matrix of the Gauss-Seidel method is

BGS =

⎡
⎣
0 0 −α−1

0 0 0
0 0 α−2

⎤
⎦

with eigenvalues {0, 0, α−2}. Therefore, the method converges if |α| > 1. In
particular, since ρ(BGS) = [ρ(BJ )]

2, the Gauss-Seidel converges more rapidly
than the Jacobi method.
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Exercise 5.12 A sufficient condition for the convergence of the Jacobi and
the Gauss-Seidel methods is that A is strictly diagonally dominant. The second
row of A satisfies the condition of diagonal dominance provided that |β| < 5.
Note that if we require directly that the spectral radii of the iteration matrices
are less than 1 (which is a sufficient and necessary condition for convergence),
we find the (less restrictive) limitation |β| < 25 for both methods.

Exercise 5.13 The relaxation method in vector form is

(I − ωD−1E)x(k+1) = [(1 − ω)I + ωD−1F]x(k) + ωD−1b

where A = D − (E + F), D being the diagonal of A, and -E and -F the lower
(resp. upper) part of A. The corresponding iteration matrix is

B(ω) = (I − ωD−1E)−1[(1 − ω)I + ωD−1F].

If we denote by λi the eigenvalues of B(ω), we obtain

∣∣∣∣∣
n∏

i=1

λi

∣∣∣∣∣ = |detB(ω)|
= |det[(I − ωD−1E)−1]| · |det[(1 − ω)I + ωD−1F )]|.

Noticing that, given two matrices A and B with A = I + αB, for any α ∈ R

it holds λi(A) = 1 + αλi(B), and that all the eigenvalues of both D−1E and
D−1F are null, we have

∣∣∣∣∣
n∏

i=1

λi

∣∣∣∣∣ =
∣∣∣∣∣

n∏
i=1

(1 − ω) + ωλi(D
−1F )

1 − ωλi(D−1E)

∣∣∣∣∣ = |1 − ω|n.

Therefore, at least one eigenvalue must satisfy the inequality |λi| ≥ |1 − ω|.
Thus, a necessary condition to ensure convergence is that |1 − ω| < 1, that is,
0 < ω < 2.

Exercise 5.14 Matrix A =

[
3 2
2 6

]
is strictly diagonally dominant by rows, a

sufficient condition for the Gauss-Seidel method to converge. On the contrary,

matrix A =

[
1 1
1 2

]
is not strictly diagonally dominant by rows, however it

is symmetric. Moreover, we can easily verify that it is positive definite, i.e.
zTAz > 0 for any z �= 0 of R2. We perform the following computations by
MATLAB (obviously, for this simple case, we could perform them by hands!):

syms z1 z2 real
z=[z1;z2]; A=[1 1; 1 2];
pos=z’*A*z; simple(pos)
ans =

z1^2+2*z1*z2+2*z2^2

ans =
z1^2+2*z1*z2+2*z2^2
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where the command syms z1 z2 real converts the variables z1 and z2 from
symbolic to real type, while the command simple tries several algebraic sim-
plifications of pos and returns the shortest. It is easy to see that the computed
quantity is positive since it can be rewritten as (z1+z2)ˆ2+z2ˆ2. Thus, the
given matrix is symmetric and positive definite, a sufficient condition for the
Gauss-Seidel method to converge.

Exercise 5.15 We find:

for the Jacobi method:

{
x
(1)
1 = 1

2
(1 − x

(0)
2 ),

x
(1)
2 = − 1

3
(x

(0)
1 );

⇒
{

x
(1)
1 = 1

4
,

x
(1)
2 = − 1

3
;

for the Gauss-Seidel method:

{
x
(1)
1 = 1

2
(1 − x

(0)
2 ),

x
(1)
2 = − 1

3
x
(1)
1 ,

⇒
{
x
(1)
1 = 1

4
,

x
(1)
2 = − 1

12
;

for the gradient method, we first compute the initial residual

r(0) = b − Ax(0) =

[
1
0

]
−
[
2 1
1 3

]
x(0) =

[−3/2
−5/2

]
.

Then, since

P−1 =

[
1/2 0
0 1/3

]
,

we have z(0) = P−1r(0) = (−3/4,−5/6)T . Therefore

α0 =
(z(0))T r(0)

(z(0))TAz(0)
=

77

107
,

and

x(1) = x(0) + α0z
(0) = (197/428, −32/321)T .

Exercise 5.16 In the stationary case, the eigenvalues of the matrix Bα =
I − αP−1A are μi(α) = 1 − αλi, λi being the ith eigenvalue of P−1A. Then

ρ(Bα) = max
i=1,...,n

|1 − αλi| = max{|1 − αλmin|, |1 − αλmax|}.

Thus, the optimal value of α (that is the value that minimizes the spectral
radius of the iteration matrix) is the root of the equation

1 − αλmin = αλmax − 1

which yields (5.58). Formula (5.72) follows now by a direct computation of
ρ(Bαopt).
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Exercise 5.17 We have to minimize the function Φ(α) = ‖e(k+1)‖2
A with

respect to α ∈ R. Since e(k+1) = x − x(k+1) = e(k) − αz(k), we obtain

Φ(α) = ‖e(k+1)‖2
A = ‖e(k)‖2

A + α2‖z(k)‖2
A − 2α(z(k))TAe(k).

The minimum of Φ(α) is found in correspondence to the value αk such that
Φ′(αk) = 0, i.e.,

αk‖z(k)‖2
A − (z(k))TAe(k) = 0,

so that αk = ((z(k))TAe(k))/‖z(k)‖2
A. Finally, (5.60) follows by noticing that

Ae(k) = r(k).

Exercise 5.18 We provide two possible proofs.
1. Note that P−1A = P−1/2(P−1/2AP−1/2)P1/2 where P1/2 is the square root
of P (see, e.g. [QV94, Sect. 2.5]). Since P is symmetric positive definite, P1/2

is symmetric and positive definite and it is the unique solution of the matrix
equation X2 = P. This shows that P−1A is similar to the matrix P−1/2AP−1/2

which is symmetric positive definite.
2. The eigenpairs (μ,y) of P−1A satisfy the equation P−1Ay = μy, that is
Ay = μPy, therefore μ = (yTAy)/(yTPy) > 0 since both A and P are
symmetric positive definite.

Exercise 5.19 The matrix associated to the Leontieff model is symmetric,
but not positive definite. Indeed, using the following instructions:

for i=1:20;
for j=1:20;

C(i,j)=i+j;
end;

end;
A=eye(20)-C;
[min(eig(A)), max(eig(A))]

ans =
-448.58 30.583

we can see that the minimum eigenvalue is a negative number and the maxi-
mum eigenvalue is a positive number. Therefore, the convergence of the gra-
dient method is not guaranteed. However, since A is nonsingular, the given
system is equivalent to the system ATAx = ATb, where ATA is symmetric
and positive definite. We solve the latter by the gradient method requiring
that the norm of the residual be less than 10−10 and starting from the initial
data x(0) = 0:

b = [1:20] ’; AA=A’*A; b=A’*b; x0 = zeros(20 ,1);
[x,iter ]= itermeth (AA,b,x0 ,100,1.e -10);

The method converges in 15 iterations. A drawback of this approach is that the
condition number of the matrix ATA is, in general, larger than the condition
number of A.
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10.6 Chapter 6

Exercise 6.1 A1: the power method converges in 34 iterations to the value
2.00000000004989. A2: starting from the same initial vector, the power method
requires now 457 iterations to converge to the value 1.99999999990611. The
slower convergence rate can be explained by observing that the two largest
eigenvalues are very close one another. Finally, for the matrix A3 the method
doesn’t converge since A3 features two distinct eigenvalues (i and −i) of max-
imum modulus.

Exercise 6.2 The Leslie matrix associated with the values in the table is

A =

⎡
⎢⎢⎣

0 0.5 0.8 0.3
0.2 0 0 0
0 0.4 0 0
0 0 0.8 0

⎤
⎥⎥⎦ .

Using the power method we find λ1 � 0.5353. The normalized distribution of
this population for different age intervals is given by the components of the cor-
responding unitary eigenvector, that is, x1 � (0.8477, 0.3167, 0.2367, 0.3537)T .

Exercise 6.3 We rewrite the initial guess as

y(0) = β(0)

(
α1x1 + α2x2 +

n∑
i=3

αixi

)
,

with β(0) = 1/‖x(0)‖. By calculations similar to those carried out in Section
6.2, at the generic step k we find:

y(k) = γkβ(k)

(
α1x1e

ikϑ + α2x2e
−ikϑ +

n∑
i=3

αi
λk
i

γk
xi

)
.

Therefore, when k → ∞, the first two terms don’t vanish and, due to the
opposite sign of the exponents, the sequence of the y(k) oscillates and cannot
converge.

Exercise 6.4 If A is non-singular, from the eigenvalue equation Ax = λx, we
deduce A−1Ax = λA−1x, and therefore A−1x = (1/λ)x.

Exercise 6.5 The power method applied to the matrix A generates an oscil-
lating sequence of approximations of the maximum modulus eigenvalue (see,
Figure 10.5). This behavior is due to the fact that the matrix A has two distinct
eigenvalues of maximum modulus.

Exercise 6.6 Since the eigenvalues of a real symmetric matrix are all real,
they lie inside a closed bounded interval [λa, λb]. Our aim is to estimate both
λa and λb. To compute the eigenvalue of maximum modulus of A we use
Program 6.1:
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Figure 10.5. The approximations of the maximum modulus eigenvalue of
the matrix of Solution 6.5 computed by the power method

A=wilkinson (7);
x0=ones (7,1); tol =1.e-15; nmax =100;
[lambdab ,x,iter ]= eigpower(A,tol ,nmax ,x0);

After 35 iterations we obtain lambdab=3.76155718183189. Since λa is the
eigenvalue of A farest from λb, in order to compute it we apply the power
method to the matrix Ab = A−λbI, that is we compute the maximum modu-
lus eigenvalue of the matrix Ab. Then we will set λa = λ+λb. The instructions

[lambda ,x,iter ]= eigpower(A-lambdab*eye(7),tol ,nmax ,x0);
lambdaa=lambda+lambdab

yield lambdaa =-1.12488541976457 after 33 iterations. These results are sat-
isfactory approximations of the extremal eigenvalues of A.

Exercise 6.7 Let us start by considering the matrix A. We observe that there
is an isolated row circle centered at (9, 0) with radius equal to 1, that can
contain only one eigenvalue (say λ1), in view of Proposition 6.1. Therefore
λ1 ∈ R, more precisely λ1 ∈ (8, 10). Moreover, from Figure 10.6, right, we note
that A features two other isolated column circles centered at (2, 0) and (4, 0),
respectively, both with radius equal to 1/2. Therefore A has two other real
eigenvalues λ2 ∈ (1.5, 2.5) and λ3 ∈ (3.4, 4.5). Since all the coefficients of A
are real, we can conclude that also the fourth eigenvalue will be real.

Let us consider now the matrix B that admits only one isolated column
circle (see Figure 10.7 right), centered at (−5, 0) and with radius 1/2. Then,
thanks to the previous consideration the corresponding eigenvalue must be
real and it will belong to the interval (−5.5,−4.5). The remaining eigenvalues
can be either all real, or one real and 2 complex.

Exercise 6.8 The row circles of A feature an isolated circle of center (5,0)
and radius 2 the maximum modulus eigenvalue must belong to. Therefore, we
can set the value of the shift equal to 5. The comparison between the number of
iterations and the computational cost of the power method with and without
shift can be found using the following commands:

A=[5 0 1 -1; 0 2 0 -1/2; 0 1 -1 1; -1 -1 0 0];
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Figure 10.6. Row circles (at left) and column circles (at right) of the matrix
A of Solution 6.7
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Figure 10.7. Row circles (at left) and column circles (at right) circles of the
matrix B of Solution 6.7

tol=1e-14; x0=[1 2 3 4]’; nmax =1000;
tic; [lambda ,x,iter ]= eigpower (A,tol ,nmax ,x0);
toc , iter

Elapsed time is 0.001854 seconds.
iter = 35

tic; [lambda ,x,iter ]= invshift (A,5,tol ,nmax ,x0);
toc , iter

Elapsed time is 0.000865 seconds.
iter = 12

The power method with shift requires in this case a lower number of iterations
(1 versus 3) and almost half the cost than the usual power method (also
accounting for the extra time needed to compute the LU factorization of A
off-line).

Exercise 6.9 It holds

A(k) = Q(k+1)R(k+1) and A(k+1) = R(k+1)Q(k+1)

and then

(Q(k+1))TA(k)Q(k+1) = R(k+1)Q(k+1) = A(k+1).

Since (Q(k+1))T = (Q(k+1))−1 we can conclude that matrix A(k) is similar to
A(k+1) for any k ≥ 0.

Exercise 6.10 We can use the command eig in the following way: [X,D]=eig
(A), where X is the matrix whose columns are the unit eigenvectors of A and D

is a diagonal matrix whose elements are the eigenvalues of A. For the matrices
A and B of Exercise 6.7 we should execute the following instructions:
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A=[2 -1/2 0 -1/2; 0 4 0 2; -1/2 0 6 1/2; 0 0 1 9];
sort (eig(A))
ans =

2.0000
4.0268
5.8003
9.1728

B=[-5 0 1/2 1/2; 1/2 2 1/2 0; 0 1 0 1/2; 0 1/4 1/2 3];
sort (eig(B))
ans =

-4.9921
-0.3038
2.1666
3.1292

The conclusions drawn on the basis of Proposition 6.1 are quite coarse.

10.7 Chapter 7

Exercise 7.1 By direct inspection on the plot of function f we find that there
is a single minimizer in the interval [−2, 1]. We use the following instructions
to call Program 7.7:

a=-2; b=1; tol=1.e-8; kmax =100;
[xmin ,fmin ,iter ]= golden(f,a,b,tol ,kmax)

Note that the tolerance for the stopping test is set to 10−8. After 42 iterations
we obtain xmin=-3.660253989004456e-01 and fmin=-1.194742596743503. The
method converges linearly (see (7.19)).
Using now the MATLAB command fminbnd with the instructions:

options=optimset (’TolX ’ ,1.e-8);
[xminf ,fminf ,exitflag ,output]= fminbnd(f,a,b,options)

the same problem is solved by the golden section method with quadratic in-
terpolation. In this case convergence is achieved in 9 iterations to the point
xmin=-3.660254076197302e-01.

Exercise 7.2 Given γi(t) = (xi(t), yi(t)), for i = 1, 2, we need to minimize
the distance

d(t) =
√

(x1(t) − x2(t))2 + (y1(t) − y2(t))2

or, equivalently, its square as function of t. To solve this one dimensional min-
imum problem we can use the golden section method with quadratic interpo-
lation implemented in the function fminbnd. Using the following instructions

x1=@(t)7*cos(t/3+pi /2)+5; y1=@(t)-4* sin(t/3+pi/2)-3;
x2=@(t)6*cos(t/6-pi/3)-4; y2=@(t)-6* sin(t/6-pi /3)+5;
d=@(t)(x1(t)-x2(t))^2+(y1(t)-y2(t))^2;
ta =0; tb=20; options=optimset (’TolX ’ ,1.e-8);
[tmin ,dmin ,exitflag ,output]=fminbnd (d,ta,tb ,options)

we converge after 10 iterations to the solution tmin=8.438731484275010. At
that time, the two ships stand at minimal distance dmin=5.691754805947144

nautical miles, eigth hours and a half after their departure.
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Exercise 7.3 We define the cost function and represent it together with its
contour lines on a circular domain centered at (-1,0) with radius 3 by the
following instructions:

fun=@(x) x(1)^4+x(2)^4+x(1)^3+3* x(1)*...
x(2)^2 -3*x(1)^2 -3*x (2)^2+10;

[r,theta]= meshgrid (0:.1:3,0:pi/25:2*pi);
x1=r.*cos(theta)-1; y1=r.*sin(theta);
[n,m]=size(x1);z1=zeros(n,m);
for i=1:n, for j=1:m

z1(i,j)=fun([x1(i,j);y1(i,j)]);
end , end
figure (1); clf; p1=mesh(x1,y1 ,z1);
set(p1,’Edgecolor ’ ,[0,1,1]); hold on
contour(x1,y1,z1 ,100,’Linecolor ’ ,[0.8 ,0.8 ,0.8]);

By a direct inspection we see that the cost function features a local maximizer,
a saddle point and two global minimizers (being this function even with respect
to the x2 variable). Choosing x(0) = (−3, 0) and setting a tolerance ε = 10−8

for the stopping test, using the commands:

x0 =[ -3;0]; options=optimset(’TolX ’,1.e-8);
[xm ,fval ,exitf ,out]= fminsearch (fun ,x0,options)

we find the minimizer xm=[-2.1861e+00, 2.1861e+00] after 181 iterations
and having used 353 function evaluations. The second minimizer is therefore
xm=[-2.1861e+00, -2.1861e+00] because of the parity property of the func-
tion.

We warn the reader that choosing x0=[1;0], the fminsearch MATLAB
function converges to the local maximizer (.75000, .61237) instead than to
the minimizer, whereas the fminsearch Octave function still converges to the
minimizer (−2.1861, 2.1861).

Exercise 7.4 Let us write the sequence x(k+1) = x(k) + αkd
(k) as

x(k+1) = x(0) +
k∑

�=0

α�d
(�).

Since x(0) = 3/2 we find

x(k+1) =
3

2
+

(
2 +

2

3k+1

)
(−1)k+1 =

3

2
− 2

k∑
�=0

(−1)� − 1

2
− 1

6

(
−1

3

)k

= (−1)k+1

(
1 +

1

6 · 3k
)
.

Note that x(k) does not converge to zero eventhough the sequence f(x(k)) is
decreasing, as can be seen from Figure 10.8, left. When the points x(k) are
near to +1 and −1, the first Wolfe condition (7.43) is not fulfilled since the
variation of f between two steps becomes infinitesimal while the steplength is
about the same (circa 2).

Exercise 7.5 By proceeding as done in the previous Exercise, we find x(0) =
−2 and x(k+1) = −2 + (1 − 3−k)/2 → −3/2 when k → ∞. Also in this case
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Figure 10.8. At left, the sequence yielded by the descent method of Exercise
7.4. Taking x(k) � −1, the point (x(k+1), f(x(k+1))) should stay beneath the
blue straight line in order to satisfy the first Wolfe’s condition with σ = 0.2;
on the contrary it lies largely above, indeed (x(k+1), f(x(k+1))) � (1, 1). At
right, the sequence generated for Exercise 7.5. The point (x(k+1), f(x(k+1)))
should stay at the right to the point where the blue straight line is tangent
to the blue curve in order for the second Wolfe’s condition with δ = 0.9 to be
satisifed; instead, it is close to (−1.5, 5.06)

the sequence of values f(x(k)) is decreasing as we can see in Figure 10.8, right.
When the points x(k) are close to −3/2, the second Wolfe’s condition (7.43) is
not satisfied as f ′(x(k+1)) (with its own sign) should be larger than δf ′(x(k)).

Exercise 7.6 After the following initializations

fun=@(x) 100*(x(2)-x(1)^2)^2+(1 -x(1))^2;
grad =@(x) [ -400*( x(2)-x(1)^2)*x(1) -2*(1-x(1));

200*(x(2)-x(1)^2)];
hess =@(x) [ -400*x(2)+1200* x(1)^2+2 , -400*x(1);

-400*x(1), 200];
x0 =[-1.2,1]; tol =1.e-8; kmax =500;

we call Program 7.3 using the following instructions:

meth =1; % Newton
[x1 ,err1 ,k1]=descent(fun ,grad ,x0,tol ,kmax ,meth ,hess );
meth =2; H0=eye(length(x0)); % BFGS
[x2 ,err2 ,k2]=descent(fun ,grad ,x0,tol ,kmax ,meth ,H0);
meth =3; %gradient
[x3 ,err3 ,k3]=descent(fun ,grad ,x0,tol ,kmax ,meth );
meth =41; % FR conjugate gradient
[x41 ,err41 ,k41]= descent(fun ,grad ,x0,tol ,kmax ,meth );
meth =42; % PR conjugate gradient
[x42 ,err42 ,k42]= descent(fun ,grad ,x0,tol ,kmax ,meth );
meth =43; % HS conjugate gradient
[x43 ,err43 ,k43]= descent(fun ,grad ,x0,tol ,kmax ,meth );

All the methods converge to the same global minimizer (1, 1), precisely:

Newton: k1 = 22, err = 1.8652e-12

BFGS: k2 = 35, err = 1.7203e-09

Grad: k3 = 352, err = 8.1954e-09

CG-FR: k41 = 284, err = 5.6524e-10
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Figure 10.9. Contour lines comprised between the values 0 and 20 of the cost
function of Exercise 7.7

CG-PR: k42 = 129, err = 5.8148e-09

CG-HS: k43 = 65, err = 9.8300e-09

The number of iterations (k1, k2, ..., k43) is in accordance with the theo-
retical convergence rate of the various methods: quadratic for Newton, super-
linear for BFGS, linear for the others. The variable err contains the last value
of the error estimation used for the stopping test.

Exercise 7.7 By evaluating the function f(x) on the square [−5, 5]2 and
graphically representing the contour lines corresponding to the values within
the interval [0, 20], we see that it features a saddle point near (0, 0) and two
local minimizers, one (x2) close to (−1,−1), the other (x1) to (2, 2) (see Fig-
ure 10.9). (One of them will coincide with the global minimizer we are looking
for.) Using tol=1.e-5 as tolerance for the stopping test and 100 as maximum
number of iterations, we take delta0=0.5 as initial radius for the trust region
method implemented in Program 7.4. After having defined the function han-
dle of the cost function and its gradient, we set meth=2 for both Programs
7.4 and 7.3 in such a way that they use quasi-Newton descent directions (and
hess=eye(2)). Choosing x0 = (2,−1), the trust-region method converges in
28 iterations to the point x1=(1.8171, 1.6510), while the BFGS method
converges in 27 iterations to the other local minimizer x2=(-5.3282e-01,

-5.8850e-01). Correspondingly, f(x1) � 3.6661 and f(x2) � 8.2226. Tak-
ing instead x(0) = (2, 1), both methods converge to the global minimizer x1 in
11 iterations.

Exercise 7.8 Computing the stationary points of f̃k(x) =
1

2
‖R̃k(x)‖2 amo-

unts to solve the linear system

∇f̃k(x) = J
˜Rk

(x)T R̃k(x) = 0. (10.4)
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Thanks to the definition (7.64), J
˜Rk

(x) = JR(x(k)) for all x ∈ R
n and system

(10.4) becomes

JR(x(k))TR(x(k)) + JR(x(k))T JR(x(k))(x − x(k)) = 0,

that is (7.63).

Exercise 7.9 We must show that δx(k) fulfills conditions (7.34). We recall
that for every rectangular matrix A having full rank, the square matrix ATA
is symmetric and positive definite.

Let us prove (7.34)2. From ∇f(x(k)) = JR(x(k))TR(x(k)), it follows that
∇f(x(k)) = 0 iff R(x(k)) = 0 (as JR(x(k)) has full rank) then δx(k) = 0 thanks
to (7.63)1.

Suppose now that R(x(k)) �= 0. Then

(δx(k))T∇f(x(k)) =

−
{[

JR(x(k))T JR(x(k))
]−1

JR(x(k))TR(x(k))

}T

JR(x(k))TR(x(k))

−
(
JR(x(k))TR(x(k))

)T [
JR(x(k))TJR(x(k))

]−1 (
JR(x(k))TR(x(k))

)
< 0,

that is (7.34)1 is fulfilled.

Exercise 7.10 Setting ri(x) = x1 + x2ti + x3t
2
i + x4e

−x5ti − yi, for i =
1, . . . , 8, the desired coefficients x1, . . . , x5, are those for which the associated
function (7.61) attains its minimum. We call Program 7.5 using the following
instructions:

t= [0.055;0.181;0.245;0.342;0.419;0.465;0.593;0.752];
y= [2.80;1.76;1.61;1.21;1.25;1.13;0.52;0.28];
tol =1.e-12; kmax =500;
x0=[2,-2.5,-.2,5,35];
[x,err ,iter ]= gaussnewton (@mqnlr ,@mqnljr ,...

x0,tol ,kmax ,t,y);

where mqnlr and mqnljr are the functions which define R(x) and JR(x) re-
spectively:

function r=mqnlr(x,t,y)
m=length(t); n=length(x);
r=zeros(m,1);
for i=1:m
r(i)=sqrt (2)*(x(1)+t(i)*x(2)+t(i)^2*x(3)+...

x(4)* exp(-t(i)*x(5))-y(i));
end

function jr=mqnljr(x,t,y)
m=length(t); n=length(x); jr=zeros(m,n);
for i=1:m
jr(i ,1)=1; jr(i ,2)=t(i);
jr(i,3)=t(i)^2; jr(i,4)= exp(-t(i)*x(5));
jr(i,5)=-t(i)*x(4)* exp(-t(i)*x(5));
end
jr=jr*sqrt (2);
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Figure 10.10. Left: the data and the solution of the Exercise 7.10. Right:
the solution of the Exercise 7.12. The grey curves represent the contour lines
of the cost function. The admissibility domain Ω is the unbounded portion of
the plane beneath the blue straight line

After 19 iterations convergence is achieved to the point
x=[2.2058e+00 -2.4583e+00 -2.1182e-01 5.2106e+00 3.5733e+01].
At that point the residual is far from zero, actually f(x) = 1.8428e − 01.
Nevertheless we can classify the given problem as a small residual problem,
therefore convergence is linear. For the same problem, Newton’s method (7.31)
converges in 8 iterations. If the initial point is not close enough to the mini-
mizer, e.g. if x0 = [1,1,1,1,10], the Gauss-Newton method fails to converge,
while the damped Gauss-Newton method converges in 21 iterations. In Fig-
ure 10.10, left, we plot function φ(t) whose coefficients x1, . . . , x5 are those
computed numerically. The empty circles represent the distribution of data
(ti, yi).

Exercise 7.11 Starting from Φ(x) = 1
2
‖R(x)‖2 a quadratic approximation

of Φ around x(k) reads

Φ̃k(s) = Φ(x(k)) + sT∇Φ(x(k)) +
1

2
sTHks ∀s ∈ R

n,

where Hk is a suitable approximation of the Hessian of Φ. By exploiting (7.62)
and taking

Hk = JR(x(k))TJR(x(k)),

it holds

Φ̃k(s) =
1

2
‖R(x(k))‖2 + sTJR(x(k))TR(x(k)) +

1

2
sTJR(x(k))T JR(x(k))s

=
1

2
‖R(x(k)) + JR(x(k))s‖2

=
1

2
‖R̃k(x)‖2.

In conclusion, Φ̃k can be regarded as a quadratic model of Φ around x(k),
obtained by replacing R(x) with R̃k(x).
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Exercise 7.12 We need to solve the minimization problem (7.2) with cost
function f(x, y) =

∑3
i=1 vi

√
(x − xi)2 + (y − yi)2 and admissibility domain

Ω = {(x, y) ∈ R
2 : y ≤ x − 10}. The values vi represent the number of

journeys toward the selling point Pi.
We define first the cost function and the constraint functions, then we call
Program penalty.m, using the following instructions:

x1 =[6; 3]; x2=[ -9;9]; x3=[-8;-5]; v=[140;134;88];
d=@(x)v(1)* sqrt ((x(1)-x1 (1)).^2+( x(2)- x1 (2)).^2)+...

v(2)* sqrt ((x(1)-x2 (1)).^2+( x(2)-x2 (2)).^2)+...
v(3)* sqrt ((x(1)-x3 (1)).^2+( x(2)-x3 (2)).^2);

g=@(x)[x(1)-x(2) -10];
meth =0; x0 =[10;-10]; tol=1.e-8; kmax =200;kmaxd=200;
[xmin ,err ,k]=penalty(d,[],[],[],g,[],x0,tol ,...

kmax ,kmaxd ,meth );

This program makes use of the penalty algorithm coupled with the Nelder
and Mead method for unconstrained minimization. We have not used descent
method since the cost function features non-differentiable points, moreover the
matrices Hk used for the direction d(k) may be ill-conditioned. The optimal lo-
cation where to place the warehouse has coordinates xmin=[6.7734,-3.2266].
Convergence is achieved after 13 iterations of the penalty method.

Exercise 7.13 Since no inequality constraint is present, problem can be
rewritten under the form (7.77) and then we can proceed as done in Example
7.14. Matrix C has rank 2 and its kernel ker(C) = {z = α[1, 1, 1]Tα ∈ R} has
dimension 1. Matrix A is symmetric; as

∑3
i,j=1 aij > 0, it is positive definite

when restricted to the kernel of C. We built matrix M = [A, −CT ; C, 0] and
the right hand side f = [−b,d]T , then we solve the linear system (7.77) using
the instructions:

A=[2,-1,1;-1,3,4;1,4,1]; b=[1;-2;-1];
C=[2,-2,0;2,1,-3]; d=[1;1];
M=[A -C’; C, zeros(2)]; f=[-b;d];
xl=M\f;

We obtain the solution

xl =

5.7143e-01

7.1429e-02

7.1429e-02

1.0476e+00

2.3810e-02

The first 3 components of xl provide the approximation of the minimizer,
whereas the Lagrangian multipliers associated to the constraints are given by
the last components. The minimum value attained by the cost function is
6.9388e-01.

Exercise 7.14 We represent the function v(x, y) on the square [−2.5, 2.5]2

and its restriction to the curve h(x, y) = x2/4 + y2 − 1 = 0 representing the
constraint in Figure 10.11. As we can see, several local maximizers exist, the
global one lying in a neighborhoud of the point (2,0.5).
We use the following instructions to call Program 7.7
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Figure 10.11. The function v(x, y) of Exercise 7.14 and the two maxima
computed using the augmented Lagrangian method

fun=@(x)-(sin(pi*x(1)*x(2))+1)*(2* x(1)+3*x(2)+4);
grad_fun =@(x)[-pi*x(2)* cos(pi*x(1)*x(2))*...

(2*x(1)+3*x(2)+4) -( sin(pi*x(1)*x(2))+1)*2;
-pi*x(1)* cos(pi*x(1)*x(2))*(2* x(1)+3*x(2)+4)-...
(sin(pi*x(1)*x(2))+1)*3];

h=@(x)x(1)^2/4+ x(2)^2 -1; grad_h=@(x)[x(1)/2;2* x(2)];
x0 =[1;0]; lambda0 =1; tol=1.e-8; kmax =100; kmaxd=100;
meth =2;hess=eye (2);
[x,err ,k]= auglagrange (fun ,grad_fun ,h,grad_h ,...

x0,lambda0 ,tol ,kmax ,kmaxd ,meth ,hess)

To solve the unconstrained minimization problem for the function f(x, y) =
−v(x, y) inside the augmented Lagrangian method, we use BFGS method.
Choosing x(0) = (1, 0), convergence is achieved in 6 iterations to the point
x1 = (0.56833, 0.95877). The latter is a maximizer but not the global one, as
Figure 10.11 shows. Choosing instead x(0) = (2, 1) we obtain convergence (in 5
iterations) to the point x2 = (1.9242, 0.27265); note that v(x1) = 15.94 while
v(x2) = 17.307, x2 is therefore the global maximizer.

10.8 Chapter 8

Exercise 8.1 Let us approximate the exact solution y(t) = 1
2
[et − sin(t) −

cos(t)] of the Cauchy problem (8.85) by the forward Euler method using dif-
ferent values of h: 1/2, 1/4, 1/8, . . . , 1/512. The associated error is computed
by the following instructions:

t0 =0; y0=0; T=1; f=@(t,y) sin(t)+y;
y=@(t) 0.5*(exp(t)-sin(t)-cos(t));
Nh =2;
for k=1:10;
[tt ,u]= feuler(f,[t0 ,T],y0,Nh);
e(k)=max(abs(u-y(tt))); Nh=2*Nh;
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end

Now we apply formula (1.12) to estimate the order of convergence:

p=log(abs(e(1:end -1)./e(2:end )))/ log(2); p(1:2:end)
p =

0.7696 0.9273 0.9806 0.9951 0.9988

As expected the order of convergence is one. With the same instructions (sub-
stituting the call to Program 8.1 with that to Program 8.2) we obtain an
estimate of the convergence order of the backward Euler method:

p=log(abs(e(1:end -1)./e(2:end )))/ log(2); p(1:2:end)
p =

1.5199 1.0881 1.0204 1.0050 1.0012

Exercise 8.2 The numerical solution of the given Cauchy problem by the
forward Euler method can be obtained as follows:

t0 =0; T=1; N=100; f=@(t,y) -t*exp(-y);
y0 =0;[t,u]= feuler(f,[t0,T],y0 ,N);

To compute the number of exact significant digits we can estimate the
constants L andM which appear in (8.13). Note that, since f(t, y(t)) < 0 in the
given interval, y(t) is a monotonically decreasing function, vanishing at t = 0.
Since f is continuous together with its first derivative, we can approximate L
as L = max0≤t≤1 |L(t)| with L(t) = ∂f/∂y = te−y. Note that L(0) = 0 and
L′(t) > 0 for all t ∈ (0, 1]. Thus, by using the assumption −1 < y < 0, we can
take L = e.

Similarly, in order to compute M = max0≤t≤1 |y′′(t)| with y′′ = −e−y −
t2e−2y, we can observe that this function has its maximum at t = 1, and then
M = e + e2. We can draw these conclusions by analyzing the graph of the
vector field v(t, y) = [v1, v2]

T = [1, f(t, y(t))]T associated to the given Cauchy
problem. Indeed, the solutions of the differential equation y′(t) = f(t, y(t)) are
tangential to the vector field v. By the following instructions:

[T,Y]= meshgrid (0:0.05:1 , -1:0.05:0);
V1=ones(size(T)); V2=-T.*exp(Y); quiver(T,Y,V1,V2)

we see that the solution of the Cauchy problem has a nonpositive second
derivative whose absolute value grows up with t. This fact leads us to conclude
that M = max0≤t≤1 |y′′(t)| is reached at t = 1.
The same conclusions can be drawn by noticing that the function −y is positive
and increasing, since y ∈ [−1, 0] and f(t, y) = y′ < 0. Thus, also the functions
e−y and t2e−2y are positive and increasing, while the function y′′ = −e−y −
t2e−2y is negative and decreasing. It follows that M = max0≤t≤1 |y′′(t)| is
obtained at t = 1.

From (8.13), for h = 0.01 we deduce

|u100 − y(1)| ≤ eL − 1

L

M

200
� 0.26.

Therefore, there is no guarantee that more than one significant digit be exact.
Indeed, we find u(end)=-0.6785, while the exact solution (y(t) = log(1−t2/2))
at t = 1 is y(1) = −0.6931.
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Exercise 8.3 The iteration function is φ(u) = u − htn+1e
−u and the fixed-

point iteration converges if |φ′(u)| < 1. This property is ensured if h(t0 +
(n + 1)h) < eu. If we substitute u with the exact solution, we can provide
an a priori estimate of the value of h. The most restrictive situation occurs
when u = −1 (see Solution 8.2). In this case the solution of the inequality
(n+ 1)h2 < e−1 is h <

√
e−1/(n+ 1).

Exercise 8.4 We repeat the same set of instructions of Solution 8.1, however
now we use the program cranknic (Program 8.3) instead of feuler. According
to the theory, we obtain the following result that shows second-order conver-
gence:

p=log(abs(e(1:end -1)./e(2:end )))/ log(2); p(1:2:end)
p =

2.0379 2.0023 2.0001 2.0000 2.0000

Exercise 8.5 Consider the integral formulation of the Cauchy problem (8.5)
in the interval [tn, tn+1]:

y(tn+1) − y(tn) =

tn+1∫

tn

f(τ, y(τ ))dτ

� h

2
[f(tn, y(tn)) + f(tn+1, y(tn+1))] ,

where we have approximated the integral by the trapezoidal formula (4.19).
By setting u0 = y(t0) and defining un+1 as

un+1 = un +
h

2
[f(tn, un) + f(tn+1, un+1)] , ∀n ≥ 0,

we obtain precisely the Crank-Nicolson method.

Exercise 8.6 We know that the absolute stability region for the forward Euler
method is the circle centered at (−1, 0) with radius equal to 1, that is the set
A = {z = hλ ∈ C : |1 + hλ| < 1}. By replacing λ = −1 + i we obtain the
bound on h: h2 − h < 0, i.e. h ∈ (0, 1).

Exercise 8.7 Let us rewrite the Heun method in the following (Runge-Kutta
like) form:

un+1 = un +
h

2
(K1 +K2),

K1 = f(tn, un), K2 = f(tn+1, un + hK1).

(10.5)

We have hτn+1(h) = y(tn+1) − y(tn) − h(K̂1 + K̂2)/2, with K̂1 = f(tn, y(tn))

and K̂2 = f(tn+1, y(tn) + hK̂1). Since f is continuous with respect to both
arguments, it holds

lim
h→0

τn+1 = y′(tn) − 1

2
[f(tn, y(tn)) + f(tn, y(tn))] = 0.
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Therefore, the Heun method is consistent. We prove now that τn+1 is an in-
finitesimal of second order with respect to h. Suppose that y ∈ C3([t0, T [). For
simplicity of notations, we set yn = y(tn) for any n ≥ 0. We have

τn+1 =
yn+1 − yn

h
− 1

2
[f(tn, yn) + f(tn+1, yn + hf(tn, yn))]

=
yn+1 − yn

h
− 1

2
y′(tn) − 1

2
f(tn+1, yn + hy′(tn)).

Thanks to the error formula (4.20) related to the trapezoidal rule there exists
ξn ∈]tn, tn+1[ such that

yn+1 − yn =

∫ tn+1

tn

y′(t)dt =
h

2

[
y′(tn) + y′(tn+1)

]− h3

12
y′′′(ξn),

therefore

τn+1 =
1

2

(
y′(tn+1) − f(tn+1, yn + hy′(tn)) − h2

6
y′′′(ξn)

)

=
1

2

(
f(tn+1, yn+1) − f(tn+1, yn + hy′(tn)) − h2

6
y′′′(ξn)

)
.

Moreover, as the function f is Lipschitz continuous with respect to the second
variable (see Proposition 8.1), it holds

|τn+1| ≤ L

2
|yn+1 − yn − hy′(tn)| + h2

12
|y′′′(ξn)|.

Finally, by applying the Taylor formula

yn+1 = yn + hy′(tn) +
h2

2
y′′(ηn), ηn ∈]tn, tn+1[,

we obtain

|τn+1| ≤ L

4
h2|y′′(ηn)| + h2

12
|y′′′(ξn)| ≤ Ch2.

The Heun method is implemented in Program 10.2. Using this program,
we can verify the order of convergence as in Solution 8.1. Precisely, by the
following instructions, we find that the Heun method is second-order accurate
with respect to h

p=log(abs(e(1:end -1)./e(2:end )))/ log(2); p(1:2:end)
ans =

1.7642 1.9398 1.9851 1.9963 1.9991

Program 10.2. rk2: Heun (or RK2) method

function [tt,u]=rk2(odefun ,tspan ,y0,Nh,varargin )
tt=linspace(tspan(1), tspan(2),Nh +1);
h=(tspan(2)- tspan(1))/Nh; hh=h*0.5;
u=y0;
for t=tt(1:end -1)

y = u(end ,:);
k1=odefun(t,y,varargin {:});
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t1 = t + h; y = y + h*k1;
k2=odefun(t1,y,varargin {:});
u = [u; u(end ,:) + hh*(k1+k2)];

end
tt=tt ’;

Exercise 8.8 Applying the method (10.5) to the model problem (8.28) we ob-
tain K1 = λun andK2 = λun(1+hλ). Therefore un+1 = un[1+hλ+(hλ)2/2] =
unp2(hλ). To ensure absolute stability we must require that |p2(hλ)| < 1,
which is equivalent to 0 < p2(hλ) < 1, since p2(hλ) is positive. Solving the
latter inequality, we obtain −2 < hλ < 0, that is, h < 2/|λ|, since λ is a real
negative number.

Exercise 8.9 We prove the property (8.34), that we call for simplicity Pn,
by induction on n. To this aim, it is sufficient to prove that if P1 holds and if
Pn−1 implies Pn for any n ≥ 2, then Pn holds for any n ≥ 2.
It is easily verified that u1 = u0+h(λ0u0+r0). In order to prove that Pn−1 ⇒
Pn, it is sufficient to note that un = un−1(1 + hλn−1) + hrn−1.

Exercise 8.10 Since |1 + hλ| < 1, from (8.38) it follows

|zn − un| ≤ |ρ|
(∣∣∣∣1 +

1

λ

∣∣∣∣+
∣∣∣∣
1

λ

∣∣∣∣
)
.

If λ ≤ −1, we have 1/λ < 0 and 1 + 1/λ ≥ 0, then

∣∣∣∣1 +
1

λ

∣∣∣∣+
∣∣∣∣
1

λ

∣∣∣∣ = 1 +
1

λ
− 1

λ
= 1 = ϕ(λ).

On the other hand, if −1 < λ < 0, we have 1/λ < 1 + 1/λ < 0, then

∣∣∣∣1 +
1

λ

∣∣∣∣+
∣∣∣∣
1

λ

∣∣∣∣ = −1 − 2

λ
=

∣∣∣∣1 +
2

λ

∣∣∣∣ = ϕ(λ).

Exercise 8.11 From (8.36) we have

|zn − un| ≤ ρ[a(h)]n + hρ
n−1∑
k=0

[a(h)]n−k−1.

The result follows using (8.37).

Exercise 8.12 We have

hτn+1(h) = y(tn+1) − y(tn) − h

6
(K̂1 + 4K̂2 + K̂3),

K̂1 = f(tn, y(tn)), K̂2 = f(tn + h
2
, y(tn) +

h
2
K̂1),

K̂3 = f(tn+1, y(tn) + h(2K̂2 − K̂1)).

Since f is continuous with respect to both arguments, we obtain
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lim
h→0

τn+1 = y′(tn) − 1

6
[f(tn, y(tn)) + 4f(tn, y(tn)) + f(tn, y(tn))] = 0,

which proves that the method is consistent.
This method is an explicit Runge-Kutta method of order 3 and is imple-

mented in Program 10.3. As in Solution 8.7, we can derive an estimate of its
order of convergence by the following instructions:

p=log(abs(e(1:end -1)./e(2:end )))/ log(2); p(1:2:end)
ans =

2.7306 2.9330 2.9833 2.9958 2.9990

Program 10.3. rk3: explicit Runge-Kutta method of order 3

function [tt,u]=rk3(odefun ,tspan ,y0,Nh,varargin );
tt=linspace(tspan(1), tspan(2),Nh +1);
h=(tspan(2)- tspan(1))/Nh; hh=h*0.5; h2=2*h;
u=y0; h6=h/6;
for t=tt(1:end -1)

y = u(end ,:);
k1=odefun(t,y,varargin {:});
t1 = t + hh; y1 = y + hh* k1;
k2=odefun(t1,y1,varargin {:});
t1 = t + h; y1 = y + h*(2*k2 -k1);
k3=odefun(t1,y1,varargin {:});
u = [u; u(end ,:) + h6*(k1+4*k2+k3)];

end
tt=tt ’;

Exercise 8.13 By following the same arguments used in Solution 8.8, we
obtain the relation

un+1 = un[1 + hλ+
1

2
(hλ)2 +

1

6
(hλ)3] = unp3(hλ).

By inspection of the graph of p3, obtained with the instruction

c=[1/6 1/2 1 1]; z=[ -3:0.01:1];
p=polyval(c,z); plot(z,abs(p))

we deduce that |p3(hλ)| < 1, provided that −2.5 < hλ < 0.

Exercise 8.14 The method (8.87) applied to the model problem (8.28) with
λ ∈ R

− gives the equation un+1 = un(1+hλ+(hλ)2). By solving the inequality
|1 + hλ+ (hλ)2| < 1 we find −1 < hλ < 0.

Exercise 8.15 To solve Problem 8.1 with the given values, we repeat the
following instructions with N=10 and N=20:

f=@(t,y) -1.68e-9*y^4+2.6880;
[tc ,uc]= cranknic (f,[0 ,200],180, N);
[tp ,up]=rk2(f,[0,200],180, N);

The graphs of the computed solutions are shown in Figure 10.12.
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Figure 10.12. Computed solutions with N = 10 (left) and N = 20 (right) for
the Cauchy problem of Solution 8.15: the solutions computed by the Crank-
Nicolson method (solid line), and by the Heun method (dashed line)

Exercise 8.16 Heun method applied to the model problem (8.28), gives

un+1 = un

(
1 + hλ+

1

2
h2λ2

)
.

In the complex plane the boundary of the region of absolute stability is the set
of points hλ = x+iy such that |1+hλ+h2λ2/2|2 = 1. This equation is satisfied
by the pairs (x, y) such that f(x, y) = x4+y4+2x2y2+4x3+4xy2+8x2+8x = 0.
We can represent this curve as the 0-contour line of the function z = f(x, y).
This can be done by means of the following instructions:

f=@(x,y)[x.^4+y.^4+2*(x.^2).*(y.^2)+...
4*x.*y.^2+4*x.^3+8*x.^2+8*x];

[x,y]= meshgrid ([ -2.1:0.1:0.1] ,[ -2:0.1:2]);
contour(x,y,f(x,y),[0 0]); grid on

The command meshgrid draws in the rectangle [−2.1, 0.1] × [−2, 2] a grid
with 23 equispaced nodes in the x-direction, and 41 equispaced nodes in the
y-direction. With the command contour we plot the contour line of f(x, y) contour
corresponding to the value z = 0 (made precise in the input vector [0 0]

of contour). In Figure 10.13 the solid line delimitates the region of absolute
stability of the Heun method. This region is larger than the absolute stability
region of the forward Euler method (which corresponds to the interior of the
dashed circle). Both curves are tangent to the imaginary axis at the origin
(0, 0).

Exercise 8.17 We use the following instructions:

t0 =0; y0=0; f=@(t,y)cos(2*y);
y=@(t) 0.5* asin ((exp(4*t)-1)./( exp(4*t)+1));
T=1; N=2; for k=1:10;
[tt ,u]=rk2(f,[t0 ,T],y0,N);
e(k)=max(abs(u-y(tt))); N=2*N; end
p=log(abs(e(1:end -1)./e(2:end )))/ log(2); p(1:2:end)

2.4733 2.1223 2.0298 2.0074 2.0018
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Figure 10.13. Boundaries of the regions of absolute stability for the Heun
method (solid line) and the forward Euler method (dashed line). The corre-
sponding regions lie at the interior of the boundaries

As expected, we find that the order of convergence of the method is 2. However,
the computational cost is comparable with that of the forward Euler method,
which is first-order accurate only.

Exercise 8.18 The second-order differential equation of this exercise is equiv-
alent to the following first-order system:

x′(t) = z(t), z′(t) = −5z(t) − 6x(t),

with x(0) = 1, z(0) = 0. We use the Heun method as follows:

t0 =0; y0=[1 0]; T=5;
[t,u]=rk2(@fspring ,[t0 ,T],y0,N);

where N is the number of nodes and fspring.m is the following function:

function fn=fspring(t,y)
b=5;
k=6;
[n,m]=size(y);
fn=zeros(n,m);
fn (1)=y(2);
fn(2)=-b*y(2)-k*y(1);

In Figure 10.14 we show the graphs of the two components of the solution,
computed with N=20 and N=40 and compare them with the graph of the exact
solution x(t) = 3e−2t − 2e−3t and that of its first derivative.

Exercise 8.19 The second-order system of differential equations is reduced
to the following first-order system:

⎧⎪⎪⎨
⎪⎪⎩

x′(t) = z(t),
y′(t) = v(t),
z′(t) = 2ω sin(Ψ)v(t) − k2x(t),
v′(t) = −2ω sin(Ψ)z(t) − k2y(t).

(10.6)

If we suppose that the pendulum at the initial time t0 = 0 is at rest in the
position (1, 0), the system (10.6) must be given the following initial conditions:
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Figure 10.14. Approximations of x(t) (solid line) and x′(t) (dashed line)
computed with N=20 (at left) and N=40 (at right). Small circles and squares
refer to the exact functions x(t) and x′(t), respectively

x(0) = 1, y(0) = 0, z(0) = 0, v(0) = 0.

Setting Ψ = π/4, which is the average latitude of the Northern Italy, we use
the forward Euler method as follows:

[t,u]= feuler(@ffoucault ,[0 ,300],[1 0 0 0],N);

where N is the number of steps and ffoucault.m is the following function:

function fn=ffoucault (t,y)
l=20; k2 =9.8/l; psi=pi/4; omega =7.29*1.e -05;
[n,m]=size(y); fn=zeros(n,m);
fn (1)=y(3); fn(2)=y(4);
fn (3)=2* omega*sin(psi)*y(4)- k2*y(1);
fn (4)=-2* omega*sin(psi)*y(3)-k2*y(2);

By some numerical experiments we conclude that the forward Euler method
cannot produce acceptable solutions for this problem even for very small h.
For instance, on the left of Figure 10.15 we show the graph, in the phase
plane (x, y), of the motion of the pendulum computed with N=30000, that is,
h = 1/100. As expected, the rotation plane changes with time, but also the am-
plitude of the oscillations increases. Similar results can be obtained for smaller
h and using the Heun method. In fact, the model problem corresponding to
the problem at hand has a coefficient λ that is purely imaginary. The corre-
sponding solution (a sine function) is bounded for any t, however it doesn’t
tend to zero.

Unfortunately, both the forward Euler and Heun methods feature a region
of absolute stability that doesn’t include any point of the imaginary axis (with
the exception of the origin). Thus, to ensure the absolute stability one should
choose the prohibited value h = 0.

To get an acceptable solution we should use a method whose region of
absolute stability includes a portion of the imaginary axis. This is the case,
for instance, for the adaptive Runge-Kutta method of order 3, implemented in
the MATLAB function ode23. We can invoke it by the following command:

[t,u]=ode23(@ffoucault ,[0 ,300],[1 0 0 0]);
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Figure 10.15. Trajectories on the phase plane for the Foucault pendulum of
Solution 8.19 computed by the forward Euler method (left) and the third-order
adaptive Runge-Kutta method (right)

In Figure 10.15 (right) we show the solution obtained using only 1022 inte-
gration steps. Note that the numerical solution is in good agreement with the
exact one.

Exercise 8.20 We fix the right hand side of the problem in the following
function

function fn=baseball (t,y)
phi = pi /180; omega = 1800*1.047198 e-01;
B = 4.1*1.e-4; g = 9.8;
[n,m]=size(y); fn=zeros(n,m);
vmodule = sqrt(y(4)^2+y(5)^2+y(6)^2);
Fv = 0.0039+0.0058/(1+ exp(( vmodule -35)/5));
fn (1)=y(4);
fn (2)=y(5);
fn (3)=y(6);
fn(4)=-Fv*vmodule*y(4)+...

B*omega*(y(6)* sin(phi)-y(5)* cos(phi));
fn(5)=-Fv*vmodule*y(5)+B*omega*y(4)* cos(phi);
fn(6)=-g-Fv*vmodule*y(6)-B*omega*y(4)* sin(phi);

At this point we only need to recall ode23 as follows:

[t,u]=ode23(@baseball ,[0 0.4] ,...
[0 0 0 38* cos(pi /180) 0 38*sin(pi /180)]);

Using command find we approximately compute the time at which the altitude
becomes negative, which corresponds to the exact time of impact with the
ground:

n=max(find(u(:,3)>=0)); t(n)
ans =

0.1066

In Figure 10.16 we report the trajectories of the baseball with an inclination
of 1 and 3 degrees represented on the plane x1x3 and on the x1x2x3 space,
respectively.

Exercise 8.21 Let us define the function
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Figure 10.16. The trajectories followed by a baseball launched with an initial
angle of 1 degree (solid line) and 3 degrees (dashed line), respectively
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Figure 10.17. Trajectories of the model (8.88) corresponding to several intial
data and with ε = 10−2

function f=fchem3(t,y)
e=1.e-2;
[n,m]=size(y);f=zeros(n,m);
f(1)=1/e*(-5*y(1)-y(1)*y(2)+5*y(2)^2+...

y(3))+y(2)*y(3)-y(1);
f(2)=1/e*(10*y(1)-y(1)*y(2)-10* y(2)^2+y(3))...

-y(2)*y(3)+y(1);
f(3)=1/e*(y(1)*y(2)-y(3))-y(2)*y(3)+y(1);

and execute the following instructions

y0 =[1,0.5,0]; tspan=[0 ,10];
[t1 ,y1]= ode23(@fchem3 ,tspan ,y0);
[t2 ,y2]= ode23s(@fchem3 ,tspan ,y0);
fprintf(’Passi ode23=%d, passi ode23s=%d\n’ ,...
length(t1),length(t2))

ode23 requires 8999 steps while ode23s only 43. Consequently we can state
that the given problem is stiff. The computed numerical solutions are shown
in Figure 10.17.
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10.9 Chapter 9

Exercise 9.1 We can verify directly that xTAx > 0 for all x �= 0. Indeed,

[x1 x2 . . . xN−1 xN ]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 0 . . . 0

−1 2
. . .

...

0
. . .

. . . −1 0
... −1 2 −1
0 . . . 0 −1 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

x1

x2

...
xN−1

xN

⎤
⎥⎥⎥⎥⎥⎦

= 2x2
1 − 2x1x2 + 2x2

2 − 2x2x3 + . . . − 2xN−1xN + 2x2
N .

The last expression is equivalent to (x1−x2)
2+. . .+(xN−1−xN)2+x2

1+x2
N ,

which is positive, provided that at least one xi is non-null.

Exercise 9.2 We verify that Aqj = λjqj . Computing the matrix-vector prod-
uct w = Aqj and requiring that w is equal to the vector λjqj , we find:

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2 sin(jθ) − sin(2jθ) = 2(1 − cos(jθ)) sin(jθ),

− sin(j(k − 1)θ) + 2 sin(jkθ) − sin(j(k + 1)θ) = 2(1 − cos(jθ)) sin(kjθ),
k = 2, . . . , N − 1

2 sin(Njθ) − sin((N − 1)jθ) = 2(1 − cos(jθ)) sin(Njθ).

The first equation is an identity since sin(2jθ) = 2 sin(jθ) cos(jθ). The other
equations can be simplified in view of the sum-to-product formula

sin((k − 1)jθ) + sin((k + 1)jθ) = 2 sin(kjθ) cos(jθ)

and noticing that sin((N+1)jθ) = 0 since θ = π/(N+1). Since A is symmetric
and positive definite, its condition number is K(A) = λmax/λmin, that is,
K(A) = λN/λ1 = (1−cos(Nπ/(N+1)))/(1−cos(π/(N+1))). By the identity
cos(Nπ/(N + 1)) = − cos(π/(N + 1)) and by using the Taylor expansion of
order 2 of the cosine function, we obtainK(A) � (N+1)2, that is, K(A) � h−2.

Exercise 9.3 We note that

u(x̄+ h) = u(x̄) + hu′(x̄) +
h2

2
u′′(x̄) +

h3

6
u′′′(x̄) +

h4

24
u(4)(ξ+),

u(x̄ − h) = u(x̄) − hu′(x̄) +
h2

2
u′′(x̄) − h3

6
u′′′(x̄) +

h4

24
u(4)(ξ−),

where ξ+ ∈ (x, x + h) and ξ− ∈ (x − h, x). Summing the two expression we
obtain

u(x̄+ h) + u(x̄ − h) = 2u(x̄) + h2u′′(x̄) +
h4

24
(u(4)(ξ+) + u(4)(ξ−)),

which is the desired property.
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Exercise 9.4 The matrix is tridiagonal with entries ai,i−1 = −μ/h2−η/(2h),
aii = 2μ/h2 + σ, ai,i+1 = −μ/h2 + η/(2h). The right-hand side, accounting
for the boundary conditions, becomes f = (f(x1) + α(μ/h2 + η/(2h)), f(x2),
. . . , f(xN−1), f(xN) + β(μ/h2 − η/(2h)))T .

Exercise 9.5 With the following instructions we compute the corresponding
solutions to the three given values of h:

f=@(x) 1+sin(4*pi*x);
[x,uh11 ]=bvp(0,1,9,1,0,0.1,f,0,0);
[x,uh21 ]=bvp(0,1,19,1,0,0.1, f,0,0);
[x,uh41 ]=bvp(0,1,39,1,0,0.1, f,0,0);

We recall that h = (b − a)/(N + 1). Since we don’t know the exact solution,
to estimate the convergence order we compute an approximate solution on a
very fine grid (for instance h = 1/1000), then we use this latter as a surrogate
for the exact solution. We find:

[x,uhex ]=bvp(0,1,999,1,0,0.1,f,0,0);
max(abs(uh11 -uhex (1:100: end)))

ans =
8.6782e-04

max(abs(uh21 -uhex (1:50: end)))
ans =

2.0422e-04
max(abs(uh41 -uhex (1:25: end)))
ans =

5.2789e-05

Halving h, the error is divided by 4, proving that the convergence order with
respect to h is 2.

Exercise 9.6 We should modify the Program 9.1 in order to impose Neumann
boundary conditions. In the Program 10.4 we show one possible implementa-
tion.

Program 10.4. neumann: numerical solution of a Neumann boundary-value
problem

function [xh,uh]= neumann(a,b,N,mu,eta ,sigma ,bvpfun ,...
ua,ub,varargin )

h = (b-a)/(N+1); xh = (linspace (a,b,N+2))’;
hm = mu/h^2; hd = eta/(2*h); e =ones(N+2,1);
A = spdiags([-hm*e-hd (2*hm+sigma)*e -hm*e+hd],...

-1:1, N+2, N+2);
A(1 ,1)=3/(2*h); A(1 ,2)=-2/h; A(1 ,3)=1/(2*h); f(1)= ua;
A(N+2,N+2)=3/(2* h); A(N+2,N+1)=-2/h; A(N+2,N)=1/(2*h);
f =bvpfun(xh,varargin {:}); f(1)= ua; f(N+2)= ub;
uh = A\f;

Exercise 9.7 The trapezoidal integration formula, used on the two subinter-
vals Ij−1 and Ij , produces the following approximation
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Figure 10.18. The contour lines of the computed temperature for Δx = Δy =
1/10 (dashed lines) and for Δx = Δy = 1/80 (solid lines)

f∫

Ij−1∪Ij

(x)ϕj(x) dx � h

2
f(xj) +

h

2
f(xj) = hf(xj),

since ϕj(xi) = δij for any i, j. When j = 1 or j = N we can proceed similarly,
taking into account the Dirichlet boundary conditions. Thus, we obtain the
same right-hand side of the finite difference system (9.14) up to the factor h.

Exercise 9.8 We have ∇φ = (∂φ/∂x, ∂φ/∂y)T and therefore div∇φ =
∂2φ/∂x2 + ∂2φ/∂y2, that is, the Laplacian of φ.

Exercise 9.9 To compute the temperature at the center of the plate, we solve
the corresponding Poisson problem for various values of Δx = Δy , using the
following instructions:

k=0; fun=@(x,y) 25+0*x+0*y;
bound=@(x,y) (x==1);
for N = [10,20,40,80,160]
[xh ,yh,uh]= poissonfd (0,1,0,1,N,N,fun ,bound);
k=k+1; uc(k) = uh(N/2+1,N/2+1);
end

The components of the vector uc are the values of the computed temperature
at the center of the plate as the steplength h of the grid decreases. We have

uc
2.0168 2.0616 2.0789 2.0859 2.0890

We can therefore conclude that at the center of the plate the temperature is
about 2.08◦C. In Figure 10.18 we show the contour lines of the temperature
for two different values of h.

Exercise 9.10 For sake of simplicity we set ut = ∂u/∂t and ux = ∂u/∂x. We
multiply by ut the equation (9.72) with f ≡ 0, integrate in space on (a, b) and
use integration by parts on the second term:
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∫ b

a

utt(x, t)ut(x, t)dx+ c

∫ b

a

ux(x, t)utx(x, t)dx − c[ux(x, t)ut(x, t)]
b
a = 0.

(10.7)

Now we integrate in time equation (10.7), from 0 up to t. By noticing that
uttut =

1
2
(u2

t )t and that uxuxt =
1
2
(u2

x)t, by applying the fundamental theorem
of integral calculus and recalling the initial conditions (9.74) (that is ut(x, 0) =
v0(x) and ux(x, 0) = u0x(x)), we obtain

∫ b

a

u2
t (x, t)dx+ c

∫ b

a

u2
x(x, t)dx =

∫ b

a

v20(x)dx

+c

∫ b

a

u2
0x(x)dx+ 2c

∫ t

0

(ux(b, s)ut(b, s) − ux(a, s)ut(a, s)) ds.

On the other hand, by integrating by parts and applying the homogeneous
Dirichlet boundary conditions for t > 0 and on the initial data we obtain

∫ t

0

(ux(b, s)ut(b, s) − ux(a, s)ut(a, s))ds = 0.

Then (9.83) follows.

Exercise 9.11 In view of definition (9.64) it is sufficient to verify that

∞∑
j=−∞

|un+1
j |2 ≤

∞∑
j=−∞

|un
j |2. (10.8)

In formula (9.62), let us move all terms to the left-hand side and then multiply
by un+1

j . Owing to the identity 2(a − b)a = a2 − b2 + (a − b)2 we have

|un+1
j |2 − |un

j |2 + |un+1
j − un

j |2 + λa(un+1
j+1 − un+1

j−1 )u
n+1
j = 0,

then, summing up on j and noticing that
∑∞

j=−∞(un+1
j+1 − un+1

j−1 )u
n+1
j = 0, we

obtain

∞∑
j=−∞

|un+1
j |2 ≤

∞∑
j=−∞

|un+1
j |2 +

∞∑
j=−∞

|un+1
j − un

j |2 ≤
∞∑

j=−∞
|un

j |2.

Exercise 9.12 The upwind scheme (9.59) can be rewritten in the simplified
form

un+1
j =

{
(1 − λa)un

j + λaun
j−1 if a > 0

(1 + λa)un
j − λaun

j+1 if a < 0.

Let us first consider the case a > 0. If the CFL condition is satisfied, then
both coefficients (1 − λa) and λa are positive and less than 1.
This fact implies that

min{un
j−1, u

n
j } ≤ un+1

j ≤ max{un
j−1, u

n
j }

and, by recursion on n, it holds



426 10 Solutions of the exercises

inf
l∈Z

{u0
l } ≤ un+1

j ≤ sup
l∈Z

{u0
l } ∀n ≥ 0,

from which the estimate (9.85) follows.
When a < 0, using again the CFL condition, both coefficients (1 + λa) and
−λa are positive and less than 1. By proceeding as we did before, the estimate
(9.85) follows also in this case.

Exercise 9.13 To numerically solve problem (9.47) we call the Program 10.5.
Note that the exact solution is the travelling wave with velocity a = 1, that is
u(x, t) = 2 cos(4π(x − t)) + sin(20π(x − t)). Since the CFL number is fixed to
0.5, the discretization parameters Δx and Δt are related through the equation
Δt = CFL · Δx, thus we can arbitrarily choose only one of them.
In order to verify the accuracy of the scheme with respect to Δt we can use
the following instructions:

xspan=[0 ,0.5];
tspan=[0 ,1];
a=1; cfl =0.5;
u0=@(x) 2*cos(4*pi*x)+sin (20* pi*x);
uex=@(x,t) 2*cos (4*pi*(x-t))+ sin(20* pi*(x-t));
ul=@(t) 2*cos(4*pi*t)-sin (20* pi*t);
DT =[1.e-2,5.e-3,2.e-3,1.e-3,5.e-4,2.e-4,1.e-4];
e_lw =[]; e_up =[];
for deltat=DT
deltax=deltat*a/cfl;
[xx ,tt,u_lw ]= hyper(xspan ,tspan ,u0,ul ,2,...

cfl ,deltax ,deltat);
[xx ,tt,u_up ]= hyper(xspan ,tspan ,u0,ul ,3,...

cfl ,deltax ,deltat);
U=uex(xx,tt(end));
[Nx ,Nt]=size(u_lw );
e_lw =[e_lw sqrt(deltax)* norm(u_lw(Nx ,:)-U ,2)];
e_up =[e_up sqrt(deltax)* norm(u_up(Nx ,:)-U ,2)];
end
p_lw =log(abs(e_lw (1:end -1)./ e_lw (2:end )))./...

log(DT(1:end -1)./DT(2:end))
p_up =log(abs(e_up (1:end -1)./ e_up (2:end )))./...

log(DT(1:end -1)./DT(2:end))

p_lw =
0.1939 1.8626 2.0014 2.0040 2.0112 2.0239

p_up =
0.2272 0.3604 0.5953 0.7659 0.8853 0.9475

By implementing a similar loop for the parameter Δx, we can verify the accu-
racy of the scheme with respect to the space discretization. Precisely, for Δx
ranging from 10−4 to 10−2 we obtain

p_lw =
1.8113 2.0235 2.0112 2.0045 2.0017 2.0007

p_up =
0.3291 0.5617 0.7659 0.8742 0.9407 0.9734



10.9 Chapter 9 427

Program 10.5. hyper: Lax-Friedrichs, Lax-Wendroff and upwind schemes

function [xh,th ,uh]= hyper(xspan ,tspan ,u0,ul ,...
scheme ,cfl ,deltax ,deltat)

% HYPER solves hyperbolic scalar equations
% [XH,TH,UH]=HYPER(XSPAN ,TSPAN ,U0,UL,SCHEME ,CFL ,...
% DELTAX ,DELTAT)
% solves the hyperbolic scalar equation
% DU/DT+ A * DU/DX=0
% in (XSPAN(1), XSPAN (2))x(TSPAN(1), TSPAN (2))
% with A>0, initial condition U(X,0)= U0(X) and
% boundary condition U(T)=UL(T) given at XSPAN(1)
% with several finite difference schemes.
% scheme = 1 Lax - Friedrichs
% 2 Lax - Wendroff
% 3 Upwind
% The propagation velocity ‘a’ is not required as
% input of the function , since it can be derived
% from CFL = A * DELTAT / DELTAX
% Output: XH is the vector of space nodes
% TH is the vector of time nodes
% UH is a matrix containing the computed solution
% UH(n,:) contains the solution at time TT(n)
% U0 and UL can be either inline , anonymous
% functions or functions defined by M-file.
Nt=(tspan(2)- tspan(1))/ deltat +1;
th=linspace(tspan(1), tspan(2),Nt);
Nx=(xspan(2)- xspan(1))/ deltax +1;
xh=linspace(xspan(1), xspan(2),Nx);
u=zeros(Nt,Nx); cfl2=cfl *0.5; cfl21=1-cfl^2;
cflp1=cfl+1; cflm1=cfl -1; uh(1 ,:)=u0(xh);
for n=1:Nt -1
uh(n+1,1)=ul(th(n+1));
if scheme == 1

% Lax Friedrichs
for j=2:Nx -1

uh(n+1,j)=0.5*( - cflm1*uh(n,j+1)+ cflp1*uh(n,j-1));
end
j=Nx;
uh(n+1,j)=0.5*( - cflm1 *(2* uh(n,j)-uh(n,j -1))+...

cflp1*uh(n,j-1));
elseif scheme == 2

% Lax Wendroff
for j=2:Nx -1
uh(n+1,j)=cfl21*uh(n,j)+...

cfl2 *( cflm1*uh(n,j+1)+ cflp1*uh(n,j-1));
end
j=Nx;
uh(n+1,j)=cfl21*uh(n,j)+...
cfl2 *( cflm1 *(2* uh(n,j)-uh(n,j -1))+ cflp1*uh(n,j-1));

elseif scheme ==3
% Upwind

for j=2:Nx
uh(n+1,j)=-cflm1*uh(n,j)+cfl*uh(n,j-1);

end
end

end
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Exercise 9.14 The exact solution is the sum of two simple harmonics, the
former with low frequency and the latter with high frequency. If we choose
Δt = 5 · 10−2, since a = 1 and CFL=0.8, we have Δx = 6.25e − 3 and the
phase angles associated to the harmonics are φk1 = 4π · 6.25e− 3 � 0.078 and
φk2 = 20π · 6.25e − 3 � 0.393, respectively. By inspecting Figure 9.18 we note
that the upwind scheme is more dissipative than Lax-Wendroff’s. This fact is
confirmed by the behavior of dissipation coefficients (see the right graph at
the bottom of Figure 9.14). Indeed, when we take into account instances of φk

corresponding to the given harmonics, the curve relative to the Lax-Wendroff
scheme is nearer to the constant 1 than the curve associated to the upwind
scheme.

For what concerns the dispersion coefficient, we see from Figure 9.18 that
the Lax-Wendroff scheme features a phase delay, while the upwind scheme
presents a light phase advance. The right graph at the bottom of Figure 9.15
confirms this conclusion. Moreover we can observe that the phase delay of the
Lax-Wendroff scheme is larger than the phase advance of the upwind scheme.
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