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Abstract. Coordination languages have emerged for the specification
and implementation of interaction protocols among concurrent entities.
Currently, we are developing a code generator for one such a language,
based on the formalism of constraint automata (CA). As part of the com-
pilation process, our tool computes the CA-specific synchronous product
of a number of CA, each of which models a constituent of the protocol
to generate code for. This ensures that implementations of those CA at
run-time reach a consensus about their global behavior in every step.
However, using the existing product operator on CA can be practically
problematic. In this paper, we provide a solution by defining a new, local
product operator on CA that avoids those problems. We then identify a
sufficiently large class of CA for which using our new product instead of
the existing one is semantics-preserving.

1 Introduction

Context. Coordination languages have emerged for the specification and imple-
mentation of interaction protocols among concurrent entities (services, threads,
etc.). This class of languages includes Reo [1,2], a graphical dataflow language for
compositional construction of connectors : communication media through which
entities can interact with each other. Figure 1 shows example connectors in
their usual graphical syntax. Briefly, connectors consist of one or more channels,
through which data items flow, and a number of nodes, on which channel ends
coincide. Through connector composition (the act of gluing connectors together
on their common nodes), users can construct arbitrarily complex connectors.

To implement and use connectors in real applications, one must derive im-
plementations from their graphical specification [3,4,5,6,7,8,9], as precompiled
executable code or using a run-time interpretation engine. Roughly two imple-
mentation approaches currently exist. In the distributed approach, one imple-
ments the behavior of each of the k constituents of a connector and runs these
k implementations concurrently as a distributed system; in the centralized ap-
proach, one computes the behavior of a connector as a whole, implements this
behavior, and runs this implementation sequentially as a centralized system.

Currently, we are developing a Reo-to-Java code generator using the central-
ized approach based on the formalism of constraint automata (ca) [10]. On input
of a graphical connector specification (as an Xml file), our tool automatically
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Fig. 1. Four example connectors. Open circles represent boundary nodes, on which
entities perform i/o-operations; filled circles represent nodes for internal routing. Ev-
ery connector in this figure consists of two primitives (i.e., minimal subconnectors);
the pairs of primitives in the first, third, and fourth connector have one common
node.

generates code in four steps. First, it extracts from the specification a list of
the channels constituting the specified connector. Second, it consults a database
to find for every channel in the list a “small” ca that formally describes the
behavior of that particular channel. Third, it computes the product of the ca in
the constructed collection to obtain one “big” ca describing the behavior of the
whole connector. Fourth, it feeds a data structure representing that big ca to a
template. Essentially, this template is an incomplete Java class with “holes” that
need be “filled” (with information from the data structure). The class generated
in this way implements Java’s Runnable interface. This means that a Java vir-
tual machine can execute the implemented run method (declared in Runnable

and generated by our tool), which simulates the big ca computed in the third
step, sequentially in a separate thread (details appear elsewhere [4]).

Problem. Computing one big ca (the third step of the centralized approach)
and afterward translating it to sequential code (the fourth step) can be prob-
lematic: at run-time, the generated implementation may unnecessarily restrict
parallelism among independent transitions.1 The problem is implementing such
a big ca using exactly one thread: single-threaded programs cannot execute
multiple independent transitions simultaneously, but instead, they force those
transitions to execute one after the other (see Section 2 for details). Conse-
quently, although formally sound, the generated implementation may run overly
sequentially (e.g., if the first transition to execute takes a long time to complete,
while other transitions could have fired manifold during that time).

One approach to this problem is to not compute one big ca but generate code
directly for each of the small ca instead, essentially moving from the centralized
approach to the distributed approach: the implementations of the small ca com-
pute the product operators between them at run-time instead of at compile-time.
Although this approach solves the stated problem—independent transitions can
execute simultaneously—the necessary distributed algorithms for run-time prod-
uct computation may inflict a substantial amount of overhead.

1 Independent transitions cannot disable each other by firing.
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α = β = γ = δ = ε = ζ =

{A , B} {B , C} {C , D}
{B}

{C}

{A , C , E} {B , D}

{E , D}

Fig. 2. Port automata, denoted by α, β, γ, δ, ε, and ζ, describing the behavior of
the primitives constituting the example connectors in Figure 1: α and β model the
primitives in the first connector, α and γ the primitives in the second, α and δ the
primitives in the third, and ε and ζ the primitives in the fourth.

Contribution. This paper provides a better solution to the stated problem by of-
fering a middle ground between centralized and distributed approaches, wherein
some subsets of the constituent automata are statically composed to comprise a
distributed system of locally centralized automata. Typically, each locally cen-
tralized automaton interacts/synchronizes with few other such automata for its
transitions, while it represents the composition of a subset of the constitutent
automata that interact/synchronize with each other relatively heavily.

Taking the purely distributed approach as our starting point, we define a
new product operator whose computation at run-time requires only relatively
simple distributed algorithms—ca need to communicate only locally (i.e., with
“neighbors”) instead of globally (i.e., with everybody)—while allowing indepen-
dent transitions to execute simultaneously. We then characterize a class of prod-
uct automata where substituting the existing product operator with our new
product operator is semantics-preserving. This class includes product automata
whose constituents communicate only asynchronously with each other, and so,
the optimization technique based on the identification of synchronous and asyn-
chronous regions of connectors can be combined with our results [8].

Although inspired byReo,we can express ourmain results in a purely automata-
theoretic setting.We therefore skip an introduction to Reo; interested readersmay
consult [1,2].

2 Preliminaries: Port Automata

Many formalisms exist for mathematically defining the semantics of connec-
tors [11]; our code generator, for instance, relies on constraint automata (ca).
In this paper, however, we adopt a simplification of ca, called port automata
(pa) [12]. We prefer pa, because they allow us to focus on the core of our problem
(synchronization of communication) without getting distracted by those details
of ca (the data exchanged in communication) irrelevant to our present purpose.
The results in this paper straightforwardly carry over from pa to ca.

A pa consists of a finite set of states and transitions between them, each of
which has a set of ports as label. A transition represents an execution step of a
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connector, from one internal configuration to the next, where synchronous inter-
action occurs on the ports labeling that transition. Let Port and State denote
global sets of ports and states (see [13, Appendix A] for formal definitions).

Definition 1 (Universe of port automata). The universe of pa, denoted by
Pa and typically ranged over by α, β, or γ, is the largest set of tuples (Q , P ,
−→ , ı) where:2

– Q ⊆ State; (states)
– P ⊆ Port; (ports)
– −→ ⊆ Q × ℘(P)×Q; (transitions)
– and ı ∈ Q. (initial state)

Figure 2 shows example pa. For instance, the {A , B}-transition of α describes
the only (infinitely repeated) execution step of the horizontal primitive, say Prim,
of the first connector in Figure 1. In that execution step, Prim has synchronous
interaction on nodes A (a write of data d by the environment) and B (the flow
of a copy of d from the horizontal to the vertical primitive). Similarly, the {A ,
C , E}-transition of ε means that the left-hand primitive of the fourth connector
in Figure 1 has synchronous interaction on nodes A (a write of data d by the
environment), C (a take of a copy of d by the environment), and E (the flow of
another copy of d from the left-hand to the right-hand primitive).

If α denotes a pa, let State(α), Port(α), and init(α) denote its states, ports,
and initial state (see [13, Appendix A] for formal definitions).

We adopt strong bisimilarity on pa as behavioral equivalence [12]: if α and β
are bisimilar, denoted by α ≈ β, α can “simulate” every transition of β in every
state and vice versa (see [13, Appendix A] for a formal definition).

Individual pa describe the behavior of individual connectors; the application
of the existing product operator to such pa models connector composition [12].
We define this operator in two steps.3 First, we introduce a relation that defines
when a transition of one pa, say Alice, and a transition of another pa, say Bob,
represent execution steps in which Alice and Bob weakly agree on their behavior.
In that case, Alice and Bob agree on which of their common ports to fire while
allowing each other to simultaneously fire other ports. In the following definition,
we represent a transition of Alice as a pair of port-sets: one for all Alice’s ports
(Pα) and one that labels a particular transition of hers (Pα). Likewise for Bob.

Definition 2 (Weak agreement relation). The weak agreement relation, de-
noted by ♦, is the relation on ℘(Port)2 × ℘(Port)2 defined as:

(Pα , Pα) ♦ (Pβ , Pβ) iff

[
Pα ⊆ Pα and Pβ ⊆ Pβ

and Pα ∩ Pβ = Pβ ∩ Pα

]

Next, we define the existing product operator on pa in terms of ♦.

2 Let ℘( ) denote the power set operator.
3 This simplifies relating this product operator to the product operator of Section 3.
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α� β = α � γ = α� δ = ε� ζ =

{A , B , C} {A , B}

{C , D}

{A , B , C , D}

{A , B}

{C}

{B , D}

{A , C , E , D}

Fig. 3. Port automata describing the behavior of the example connectors in Figure 1,
constructed using � (α, β, γ, δ, ε, and ζ denote the pa in Figure 2).

Definition 3 (Product operator). The product operator, denoted by � , is
the operator on Pa× Pa defined by the following equation:

α� β = (State(α) × State(β) , Port(α) ∪ Port(β) , −→ , (init(α) , init(β)))

where −→ denotes the smallest relation induced by:

qα
Pα−−→α q′α and qβ

Pβ−−→β q′β and (Port(α) , Pα) ♦ (Port(β) , Pβ)

(qα , qβ)
Pα∪Pβ−−−−→ (q′α , q′β)

(WkAgr)

qα
Pα−−→α q′α and qβ ∈ Qβ

and Pα ∩ Port(β) = ∅
(qα , qβ)

Pα−−→ (q′α , qβ)
(IndepA)

qβ
Pβ−−→β q′β and qα ∈ Qα

and Pβ ∩ Port(α) = ∅
(qα , qβ)

Pβ−−→ (qα , q′β)
(IndepB)

The previous definition reformulates the product of pa in [12], which is a simpli-
fication of the product of ca in [10]. Figure 3 shows examples of the application
of �. The {A , B , C , D}-transition in the second pa results from applying rule
WkAgr to disjoint sets of ports. This models that two independent transi-
tions coincidentally can happen simultaneously (true concurrency). The follow-
ing lemma states that bisimilarity is a congruence. See [12, Theorem 1] for a
proof.

Lemma 1.
[
α ≈ β and γ ≈ δ

]
implies α� γ ≈ β � δ

Furthermore, � is associative and commutative.
Interestingly, � “transitively” propagates synchrony over successive applica-

tions. We explain what this means with an example. Suppose Alice knows about
ports {A , B} and has one transition in which she fires exactly those ports. Simi-
larly, suppose Bob knows about ports {B , C} and has one transition in which he
fires exactly those ports. Because these two transitions satisfy ♦, the product of
Alice and Bob has one transition labeled by {A , B , C}. This means that Alice
and Bob always synchronize on their common port B: Alice can perform her
transition (i.e., is willing to fire B) only if Bob can perform his (i.e., is ready to
fire B) and vice versa. Now, suppose Carol knows about ports {C , D} and has
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one transition in which she fires exactly those ports. By the same reasoning as
before, the product of

[
the product of Alice and Bob

]
4 and Carol has one tran-

sition labeled by {A , B , C , D}. Thus, in the product of Alice, Bob, and Carol,
Alice “transitively” synchronizes with Carol, through Bob.5

The problem addressed in this paper is that code generators using the cen-
tralized approach produce connector implementations that may unnecessarily
restrict parallelism. To illustrate this problem, suppose Dave knows about ports
{E , F} and has one transition in which he fires exactly those ports. The prod-
uct of Alice, Bob, Carol, and Dave computed by a tool using the centralized
approach has three transitions: one labeled by {A , B , C , D} (Alice, Bob, Carol
make a transition), another labeled by {E , F} (Dave makes a transition), and
yet another labeled by {A , B , C , D , E , F} (Alice, Bob, Carol and Dave coinci-
dentally make a transition at the same time by true concurrency). At run-time,
in every iteration of its main loop, the thread simulating this big automaton
nondeterministically picks one of those transitions, checks it for enabledness (in
which case all ports are ready to fire), and if so, executes it. By this scheme, as
soon as the automaton thread has selected the transition labeled by {A , B , C ,
D}, the transition labeled by {E , F} has to wait for the next iteration, even if it
is enabled already in the current iteration. In other words, Dave cannot execute
at its own pace despite being independent of Alice, Bob, and Carol.

Although the centralized approach may unnecessarily restrict parallelism, it
guarantees high throughput compared to the alternative, distributed approach of
generating code for Alice, Bob, Carol, and Dave individually. The problem with
the distributed approach is the communication necessary for computing� at run-
time. To see this, suppose that we indeed have separate threads simulating the
automata of Alice, Bob, Carol, and Dave. Now, if Alice at some point becomes
willing to execute her {A , B} transition, she must ask Bob if he is ready to
execute his {B , C} transition. Before he can answer Alice’s question, however,
Bob in turn must ask Carol if she is ready to execute her {C , D} transition. All
this communication negatively affects throughput: it takes much longer for Alice,
Bob, and Carol to agree on synchronously executing their individual transitions
than for one big automaton to make and carry out such a decision by itself.
Nevertheless, the distributed approach enhances parallelism: Dave can execute
his transition while Alice, Bob, and Carol communicate to come to an agreement.

3 A New Local Product Operator

The approaches of the previous section force one to choose between two desirable
properties: high throughput between interdependent port automata (pa), at the
cost of parallelism, and maximal parallelism between independent ones, at the
cost of throughput. We need to find a middle ground between the purely cen-
tralized and fully distributed approaches that has both these desirable qualities.

4 Square brackets for readability.
5 This property of � models an important feature of Reo: compositional construction
of globally synchronous protocol steps out of locally synchronous parts.
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Working toward such an approach, we start from the purely distributed ap-
proach of computing � at run-time through global, transitive communication
between automaton threads (e.g., Alice talks to Bob, who in turn talks to Carol,
etc.). The idea is to bound this transitivity: generally, when some Alice asks some
Bob if he is ready to fire a transition involving common ports, Bob should im-
mediately answer without engaging others. By doing so, Alice and Bob achieve a
higher throughput, while independent others can still execute at their own pace.

In the proposed approach, automaton threads no longer compute �: instead,
they compute a new product operator whose run-time computation requires only
local communication. Problematically, however, computing that new product op-
erator instead of � can be unsound or incomplete, sometimes to the extent of
deadlock. Which of those two happens depends on how Bob immediately answers
Alice in cases where he actually should have consulted Carol (and possibly oth-
ers). If Bob replies being ready, the firing of Alice’s ports (including her ports
common with Bob) incorrectly introduces asynchrony between Bob’s two ports.
However, if Bob always replies not being ready, he and Alice never interact on
their common ports. In the rest of this section, we formalize the new product
operator and make a first effort at studying under which circumstances substi-
tuting � with the new product operator is semantics-preserving.

First, we introduce a relation that defines when transitions of Alice and Bob
represent execution steps in which they strongly agree on their behavior (cf.
Definition 2 of ♦). In that case, they agree on which of their common ports to
fire (possibly none), and either Alice forbids Bob to simultaneously fire any other
port or vice versa. Afterward, we define our new product operator on pa.

Definition 4 (Strong agreement relation). The strong agreement relation,
denoted by �, is the relation on ℘(Port)2 × ℘(Port)2 defined as:

(Pα , Pα) � (Pβ , Pβ) iff

⎡
⎢⎣

Pα ⊆ Pα and Pβ ⊆ Pβ and[
Pα = Pα ∩ Pβ or Pβ = Pβ ∩ Pα

or Pα ∩ Pβ = ∅ = Pβ ∩ Pα

]
⎤
⎥⎦

Definition 5 (Local product operator, l-product). The local product op-
erator, l-product, denoted by � , is the operator on Pa × Pa defined by the
following equation:

α� β = (State(α) × State(β) , Port(α) ∪ Port(β) , −→ , (init(α) , init(β)))

where −→ denotes the smallest relation induced by IndepA, IndepB, and:

qα
Pα−−→α q′α and qβ

Pβ−−→β q′β and (Port(α) , Pα) � (Port(β) , Pβ)

(qα , qβ)
Pα∪Pβ−−−−→ (q′α , q′β)

(StAgr)

Figure 4 shows examples of the application of �. The following lemma states
that bisimilarity is a congruence. See [13, Appendix D] for a proof.

Lemma 2.
[
α ≈ β and γ ≈ δ

]
implies α� γ ≈ β � δ
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α� β = α � γ = α� δ = ε� ζ =

{A , B}

{C , D}

{A , B , C , D}

{A , B}

{C}

Fig. 4. Port automata constructed using � (α, β, γ, δ, ε, and ζ denote the pa in
Figure 2).

Furthermore, � is commutative but generally not associative. This makes us-
ing � for modeling purposes nontrivial. We address this issue in Section 5. To
minimize numbers of parentheses in our notation, we assume right-associativity
for �. For instance, we write α� β � γ � δ for α� (β � (γ � δ)).

As informally explained earlier, substituting � with � is not always seman-
tics-preserving. It is, for instance, for the two l-products in the middle of Figure 4
(cf. the two products in the middle of Figure 3) but not for the l-products on
the sides. To determine when substituting � with � is semantics-preserving, we
first define when Alice is a subautomaton of Bob. In that case, Bob has at least
every transition that Alice has.

Definition 6 (Subautomaton relation). The subautomaton relation, denoted
by 	, is the relation on Pa× Pa defined as:

(Q , P , −→α , ı) 	 (Q , P , −→β , ı) iff −→α ⊆ −→β

The following proposition follows directly from the previous definition. In the
rest of this section, we investigate under which circumstances its premise holds.

Proposition 1.
[
α 	 β and β 	 α

]
implies α = β

Before showing that the l-product of Alice and Bob is a subautomaton of their
product, the next lemma states that strong agreement implies weak agreement:
if Alice fires exactly those common ports that Bob fires or vice versa, Alice and
Bob agree on their common ports. See [13, Appendix D] for a proof.

Lemma 3. (Pα , Pα) � (Pβ , Pβ) implies (Pα , Pα) ♦ (Pβ , Pβ)

The next lemma states that the l-product of Alice and Bob is a subautomaton
of their product: the product of Alice and Bob can do at least the same as their
l-product. See [13, Appendix D] for a proof (which uses Lemma 3).

Lemma 4. α� β 	 α� β

The product of Alice and Bob is not necessarily a subautomaton of their l-
product: if Alice and Bob agree on which of their common ports to fire, this does
not necessarily mean that they fire no other ports. To characterize the cases in
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which they do, we define conditional strong agreement as a relation “in between”
of � and ♦ (and lifted from transitions to pa): Alice and Bob conditionally
strongly agree iff, for each of their transitions, their weak agreement on which
of their common ports to fire implies their strong agreement.

Definition 7 (Conditional strong agreement relation). The conditional
strong agreement relation, denoted by ♦�, is the relation on Pa× Pa defined as:

(Qα , Pα , −→α , ıα)
♦� (Qβ , Pβ , −→β , ıβ)

iff

⎡
⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎣

[
qα

Pα−−→α q′α and qβ
Pβ−−→β q′β and

(Port(α) , Pα) ♦ (Port(β) , Pβ)

]

implies (Port(α) , Pα) � (Port(β) , Pβ)

⎤
⎥⎥⎦

for all qα , qβ , q
′
α , q′β , Pα , Pβ

⎤
⎥⎥⎥⎥⎥⎦

The next lemma states that if Alice and Bob conditionally strongly agree,
their product is a subautomaton of their l-product (cf. Lemma 4). See [13, Ap-
pendix D] for a proof.

Lemma 5. α ♦� β implies α� β 	 α� β

We end this section with the following theorem: if Alice and Bob conditionally
strongly agree, substituting � with � is semantics-preserving (in fact, not just
under bisimilarity but even under structural equality). See [13, Appendix D] for
a proof (which uses Proposition 1 and Lemmas 4, 5).

Theorem 1. α ♦� β implies α� β = α� β

4 Substituting � with �, a Cheaper Characterization

To test if Alice and Bob conditionally strongly agree, one must pairwise com-
pare their transitions. This can be computationally expensive (i.e., O(n1n2),
where n1 and n2 denote the numbers of transitions), and it makes the ♦�-based
characterization, although (conjectured to be) complete, hard to apply in prac-
tice. In this section, we therefore study a cheaper characterization of (a subset
of) conditionally strongly agreeing port automata (pa) without restricting the
applicability of � for our present purpose.

In Section 2, we explained reduction of parallelism in terms of independent
pa. Therefore, substituting � with � should be semantics-preserving at least
when applied to such pa. We start by formally defining when Alice and Bob are
independent: in that case, they have no common ports.

Definition 8 (Independence relation). The independence relation, denoted
by 
, is the relation on Pa× Pa defined as:

α 
 β iff Port(α) ∩ Port(β) = ∅
The next lemma states that if Alice and Bob are independent, they conditionally
strongly agree (because their independence means that Alice and Bob have no
common ports). See [13, Appendix D] for a proof.
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Lemma 6. α 
 β implies α ♦� β

Lemma 6 and Theorem 1 imply that substituting � with � is semantics-preserv-
ing, if their operands satisfy the independence relation. Moreover, checking 

costs less than checking whether pa conditionally strongly agree: O(1) versus
O(n1n2). The next lemma states another important property, namely that �
preserves independence: if Alice is independent of Bob and Carol individually,
she is independent of Bob and Carol together. See [13, Appendix D] for a proof.

Lemma 7.
[
α 
 β and α 
 γ

]
implies α 
 β � γ

Although checking pa for independence is cheap, the result implied by Lemma 6
and Theorem 1 in its present form has limited practical value: total indepen-
dence is a condition rarely satisified by the pa encountered in code generation
of a composite system. To get a more useful similar result, we now introduce
the notion of slavery and afterward combine it with independence. We start by
formally defining when Bob is a slave of Alice: in that case, every transition of
Bob that involves some ports common with Alice, involves only ports common
with Alice. In other words, if common ports are involved, Alice completely dic-
tates what Bob does. Our notion of slavery does not prevent Bob from freely
executing transitions involving only ports that Alice does not know about.

Definition 9 (Slave relation). The slave relation, denoted by �→, is the rela-
tion on Pa× Pa defined as:

(Qβ , Pβ , −→β , ıβ)
�→ α

iff

⎡
⎢⎢⎣
[[ qβ

Pβ−−→ q′β and

Pβ ∩ Port(α) �= ∅

]
implies Pβ ⊆ Port(α)

]

for all qβ , q
′
β , Pβ

⎤
⎥⎥⎦

The next lemma states that if Bob is a slave of Alice, they conditionally strongly
agree (i.e., Alice forces her will upon Bob). See [13, Appendix D] for a proof.

Lemma 8. β �→ α implies β ♦� α

Lemma 8 and Theorem 1 imply that substituting � with � is semantics-preserv-
ing, if their operands satisfy the slave relation. Moreover, checking �→ costs less
than checking whether pa conditionally strongly agree: O(n1) versus O(n1n2).
The next lemma states another important property, namely that � preserves
slavery: if Bob is a slave of Alice, he is a slave of Alice and Carol together. See
[13, Appendix D] for a proof.

Lemma 9. β �→ α implies β �→ α� γ

By combining independence and slavery, we obtain the notion of conditional slav-
ery: Bob is a conditional slave of Alice iff Alice and Bob not being independent
implies that Bob is a slave of Alice.
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Definition 10 (Conditional slave relation). The conditional slave relation,
denoted by 
�→, is the relation on Pa× Pa defined as:

β 
�→ α iff
[
β 
 α or β �→ α

]
The next lemma states that if Bob is a conditional slave of Alice, they condi-
tionally strongly agree (i.e., Alice and Bob are independent or Alice forces her
will upon Bob). See [13, Appendix D] for a proof (which uses Lemmas 6, 8).

Lemma 10. β 
�→ α implies β ♦� α

The combination of Lemma 10 and Theorem 1 implies that substituting � with�
is semantics-preserving, if the pa involved satisfy the conditional slave relation.
Moreover, checking the conditional slave relation costs the same as checking the
slave relation (i.e., less than checking whether pa conditionally strongly agree).
The next lemma states another important property, namely that � preserves
conditional slavery: if Bob is a conditional slave of Alice and Carol individually,
he is a conditional slave of Alice and Carol together. The corollary following this
lemma generalizes this result from 2 to k individuals. See [13, Appendix D] for
a proof (which uses Lemmas 7, 9).

Lemma 11.
[
β 
�→ α and β 
�→ γ

]
implies β 
�→ α� γ

Corollary 1.
[
β 
�→ α1 and · · · and β 
�→ αk

]
implies β 
�→ (α1 � · · ·� αk)

With conditional slavery, in contrast to independence alone, one can characterize
a sufficiently large class of pa that satisfies the premise of Theorem 1 (i.e., for
which substituting � with � is semantics-preserving), as follows. Suppose that
we have a list of k pa such that every i-th pa in the list is a conditional slave
of all pa in a higher position. Then, the l-product of all pa in this list, starting
from the ones with the highest positions and working our way down, is in the
class. The following definition formalizes this (recall that � is right-associative).

Definition 11. A denotes the smallest set induced by the following rule:

[
i �= j implies αi 
�→ αj

]
for all 1 ≤ i < j ≤ k

α1 � · · ·� αk ∈ A
Strictly, A contains terms over (Pa , �), which represent pa, rather than actual
elements from Pa. Nevertheless, we often call the elements from A “pa” for
simplicity. Also, instead of writing α1 � · · ·� αk, we sometimes write α1 · · ·αk.

The following theorem states that for every pa in A, substituting � for � is
semantics-preserving. See [13, Appendix D] for a proof (which uses Lemma 10
and Corollary 1).

Theorem 2. α1 � · · ·� αk ∈ A implies α1 � · · ·� αk = α1 � · · ·� αk

Although α1�· · ·�αk = α1�· · ·�αk generally does not imply α1�· · ·�αk ∈ A,
it does for the examples considerd in this paper. For instance, Figures 3, 4 show
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that β�δ = β�δ (Figure 2 defines β and δ). By the commutativity of � and �,
we have also δ � β = δ � β. Now, because δ is a slave of β, we conclude that
δ�β is an element of A: indeed, if δ makes a transition involving ports common
with β (only B), it fires no other ports (β, in contrast, does fire another port in
that case, namely C).

Previously, we claimed that the subclass of pa characterized in this section
(i.e., A in Definition 11) does not restrict the applicability of � for our purpose.
We end this section by substantiating that claim. We start by introducing a
further restricted class of pa with a more natural interpretation in our context.

Definition 12. B denotes the smallest set induced by the following rule:

[[
i1 �= i2 implies αi1 
�→ αi2

]
for all 1 ≤ i1 , i2 ≤ k

]
and[[

j1 �= j2 implies βj1 
 βj2

]
for all 1 ≤ j1 , j2 ≤ l

]
and[

αi 
�→ βj for all 1 ≤ i ≤ k , 1 ≤ j ≤ l
]

α1 � · · ·� αk � β1 � · · ·� βl ∈ B
The following proposition follows directly from the previous definition.

Proposition 2. B ⊆ A
The combination of Proposition 2 and Theorem 2 implies that substituting �
with � is semantics-preserving for every pa in B.

Informally, every pa in B is the l-product of (i) k pa that are conditional slaves
of all other pa in the term and (ii) l pairwise independent pa that are “masters”
of the k conditional slaves. The masters, being pairwise independent, do not
directly communicate with each other. However, when two or more masters share
the same slave (the definition of B allows this), communication between those
masters occurs indirectly through that slave. Such indirect communication is
always asynchronous: if it were synchronous, the slave involved would fire ports
of more than one of its masters in the same transition, which slavery forbids.

The previous interpretation of masters and slaves corresponds exactly to the
notion of synchronous and asynchronous regions in the Reo literature [5,8].
Roughly, one can always split a connector into subconnectors—the regions—
such that firings of ports in such a subconnector are either purely independent
(i.e., always, only one port fires at a time) or require some synchronization (i.e.,
at least once, more than one port fires). Furthermore, the synchronous regions
of a connector are maximal in the sense that no two synchronous regions have
common ports: all synchronous regions are, by definition, pairwise independent.
Consequently, the pa describing the l synchronous regions of a connector can
act as the l masters in a pa term from B.

To actually obtain those pa, for every synchronous region, a code generator
during compilation computes the existing product of the pa describing the con-
stituents of that particular region (finding the synchronous regions of a connector
is trivial). At compile-time, this resembles the purely centralized approach, while
at run-time, it ensures high throughput between interdependent “small” pa for
constituents of the same synchronous region (i.e., no run-time computation of
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product operators within synchronous regions). The asynchronous regions then
form the “glue” between the synchronous regions: the pa for every asynchronous
region has the same shape as δ in Figure 2,6 and consequently, they can act as
the k conditional slaves in a pa term from B. Finally, at run-time, the automaton
threads executing the generated code compute the l-product operators.

In summary: a code generator can always process the set of pa describing a
connector to a form that satisfies B, by computing � between interdependent
pa belonging to the same synchronous region at compile-time (for the sake of
throughput), and by computing � between the resulting “medium” pa plus
the pa for the asynchronous regions at run-time (for the sake of parallelism).
Proposition 2 and Theorem 2 ensure that this is semantics-preserving.

5 Note on Associativity

The associativity of � plays a role in the centralized approach and is even more
important in the distributed approach. In the centralized approach, it guarantees
that it does not matter in which particular order a code generator computes the
product of the port automata (pa) for the constituents of a connector—all have
the same semantics. In the distributed approach, it guarantees that it does not
matter in which order pa threads communicate with each other: the pa term
corresponding to a particular communication order is always bisimilar to the
original (because one can freely move parentheses).

Now, recall from Section 3 that � is generally not associative. The structure of
the pa terms from A also reflects this (and the proof of Theorem 2 exploits this
structure). This means that the pa constituting such terms must communicate in
a particular order at run-time for the substitution of � with � to be semantics-
preserving. This can kill performance and seems a serious practical problem. For
reasons of space, we postpone a full exposition of our solution to this problem
to a future paper; interested readers may consult [13].

6 Related Work and Conclusion

Related work. Closest to ours is the work on splitting connectors into (a)synchro-
nous regions for better performance. Proença developed the first implementation
based on these ideas, demonstrated its merit through benchmarks, and invented
an automaton model—behavioral automata—to reason about split connectors
in his PhD thesis and associated publications [7,8,9]. Furthermore, Clarke and

6 Port automaton δ in Figure 2 describes the behavior of an asynchronous Reo prim-
itive, called Fifo [1,2], with a buffer (of capacity 1) that accepts data on one port
(i.e., B), buffers it, and at a later time dispenses that same data on another port
(i.e. C). Of the currently common Reo primitives, only Fifo is asynchronous, and so,
only Fifo instances induce asynchronous regions in the current practice. In general,
a pa modeling an asynchronous region can have more than two states or ports but,
crucially, each of its transitions has a singleton set of ports as label (as does δ), which
guarantees that that pa can act as a conditional slave in a B-term.
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Proença explored connector splitting in the context of the connector coloring
semantics [3]. They discovered that the standard version of that semantics has
undesirable properties in the context of splitting: some split connectors that
intuitively should be equivalent to the original connector are not equivalent under
the standard version. To address this problem, Clarke and Proença propose
a new variant—partial connector coloring—which allows one to better model
locality and independencies between different parts of a connector. Recently,
Jongmans et al. studied a formal justification of connector splitting in a process
algebraic setting [5]. Although, as shown in Section 4, one can use the notion of
(a)synchronous regions to apply our results to code generation for connectors,
our results go beyond that. (They can, for instance, also be applied to code
generation for Web service proxies in Reo-based orchestrations [6].)

Also related to the work presented in this paper is the work of Kokash et
al. on action constraint automata (aca) [14]. Kokash et al. argue that ordinary
port/constraint automata describe the behavior of Reo connectors too coarsely,
which makes it impossible to express certain fine parallel behavior. In contrast,
aca have more flexible transition labels which, for instance, allow one to ex-
plicitly model the start and end of interaction on a particular port (one cannot
make this distinction using port/constraint automata). Consequently, aca bet-
ter describe the behavior of existing connector implementations (under certain
assumptions). However, the increased granularity of aca comes at the price of
substantially larger models. This makes them less suitable for code generation.

Conclusion. Existing approaches to implementing connectors force one to make
a choice between high throughput (at the cost of parallelism) and maximal par-
allelism (at the cost of throughput). In this paper, we proposed a formal ba-
sis to support a solution for this problem. We found and formalized a middle
ground between those approaches by defining a new product operator on port
automata (pa) and by showing that in all practically relevant cases (with re-
spect to code generation for connectors), one can use this new operator instead
of the existing one to get both high throughput and maximal parallelism in a
semantics-preserving way.

Although we developed our results for pa, they generalize straightforwardly
to the more powerful constraint automata (ca) [10]. See [13] for more details.

While inspired by Reo, our results apply to every language whose programs
can be described by automata satisfying the characterizations in Section 4. For
instance, a possible application of our results outside Reo is projection in chore-
ography languages [15,16,17,18,19,20]. See [13] for more details.
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