SNPS: An OSGi-Based Middleware
for Wireless Sensor Networks

Giuseppe Di Modica, Francesco Pantano, and Orazio Tomarchio

Department of Electric, Electronic and Computer Engineering
University of Catania
Catania, Italy
firstname.lastname@dieei.unict.it

Abstract. We are witnessing a widespread deployment of sensors and
sensor networks in any application domain. These sensors produce huge
amounts of raw data that need to be structured, stored, analyzed, corre-
lated and mined in a reliable and scalable way. Some application environ-
ments also add real-time requirements which make things even harder to
manage. The size of the produced data, and the high rate at which data
are being produced, suggest that we need new solutions that combine
tools for data management and services capable of promptly structur-
ing, aggregating and mining data even just when they are produced. In
this paper we propose a middleware, to be deployed on top of physical
sensors and sensor networks,; capable of abstracting sensors from their
proprietary interfaces, and offering them to third party applications in an
as-a-Service fashion for prompt and universal use. The middleware also
offers tool to elaborate real-time measurements produced by sensors. A
prototype of the middleware has been implemented.

1 Introduction

Nowadays, sensors are everywhere. You may find them in your smartphone, in
your house, in your car, in streets, and so on. They measure various phenomena,
and can be used for very different purposes: monitoring, surveillance, prediction,
controlling. Their number is actually increasing day by day, as foreseen by the
Internet of Things (IoT) vision [9]. A huge amount of data is generated each
second but we are far from taking advantage of all this “potential” knowledge.

There are several reasons for that: heterogeneous sensor networks are usually
disconnected among them, and often are still not connected to a globally acces-
sible information network. Even in the case they are connected, we do not know
how to search for those sensors which may be of help for our purpose. Moreover,
when we find a potentially interesting sensor, often we are not able to get data
from it due to its proprietary data interface or, if we succeed to get data, we
need to correctly interpret its meaning. In addition, when developing an appli-
cation that has to use a sensor network for monitoring a certain phenomena,
the application programmer should only concentrate on application-level issues
and ideally use the programming languages, tools and methodologies that he is
accustomed to.

C. Canal and M. Villari (Eds.): ESOCC 2013, CCIS 393, pp. 1-12, 2013.
(© Springer-Verlag Berlin Heidelberg 2013

2 G. Di Modica, F. Pantano, and O. Tomarchio

We believe that the service-oriented approach [7,13] provides adequate ab-
stractions for application developers, and that it is a good approach to integrate
heterogeneous sensors and different sensor network technologies with Cloud plat-
forms through the Internet, by paving the way for new IoT applications.

In this paper we present an OSGi-based middleware, called Sensor Node Plug-
in System (SNPS), where sensors are no longer low-level devices producing raw
measurement data, but are seen as “services” able to be used and composed over
the Internet in a simple and standardized way in order to build even complex
and sophisticated applications.

The remainder of the paper is structured in the following way. Section 2
presents a review of the literature. In Section 3 the architecture of the proposed
solution is introduced. In Section 4 we discuss and motivate the choice of the
data model implemented in the middleware. Section 5 provides some details on
the sensor composition process. We conclude our work in Section 6.

2 Related Work

The most notably effort in providing standard definition of Web service interfaces
and data encodings to make sensors discoverable and accessible on the Web is the
work done by the Open Geospatial Consortium (OGC) within the Sensor Web
Enablement initiative [2,12]. The role of the SWE group is to develop common
standards to determine sensors capabilities, to discover sensor systems, and to
access sensors’ observations. The principal services offered by SWE include:

— Sensor Model Language (SensorML): provides a high level description of
sensors and observation processes using an XML schema methodology

— Sensor Observation Service (SOS): used to retrieve sensors data.

— Sensor Planning Service (SPS): used to determine if an observation request
can be achieved, determine the status of an existing request, cancel a previous
request, and obtain information about other OGC web services

— Web Processing Service (WPS): used to perform a calculation on sensor data.

A common misconception of the adoption of SWE standards is that they,
instead of encapsulating sensor information on application level, were originally
designed to operate directly on a hardware level. Of course, supporting interop-
erable access on the hardware level has some advantages and comes very close
to the “plug and play” concept. Currently, some sensor systems such as weather
stations and observation cameras already offer access to data resources through
integrated web servers. However, besides contradicting the view of OGC SWE
of uncoupling sensor information from sensor systems, the downside of this ap-
proach arise when dealing with a high number of specialized and heterogeneous
sensor systems, and in resource-limited scenario (as typical WSNs) where com-
munication and data transportation operations have to be highly optimized.
Even a relatively powerful sensor gateway is not necessarily suitable as a web
server in many cases it may typically be networked via a low-bandwidth net-
work and powered by a battery and so it has neither the energy or bandwidth
resources required to provide a web service interface.

SNPS: An OSGi-Based Middleware for Wireless Sensor Networks 3

The need for an intermediate software layer (middleware) derives from the
gap between the high-level requirements from pervasive computing applications
and the complexity of the operations in the underlying WSNs. The complexity
of the operations within a WSN is characterized by constrained resources, dy-
namic network topology, and low level embedded OS APIs, while the application
requirements include high flexibility, re-usability, and reliability to cite a few. In
general, WSN middleware helps the programmer develop applications in several
ways: it provides appropriate system abstractions, reusable code services and
data services. It helps the programmer in network infrastructure management
and providing efficient resource services.

Some research efforts have been done on surveying the different aspects of
middleware and programming paradigms for WSN. For example, [5] analyzed
different middleware challenges and approaches for WSN, while [14] and [11]
analyzed programming models for sensor networks.

As an example of different approaches, we cite here TinyDB [8], a query pro-
cessing system based on SQL-like queries that are submitted by the user at a
base station where the application intelligence resides. Enabling dynamic re-
configuration is one of the main motivations for component-based designs like
the RUNES middleware [3]. Finally, operating systems for WSNs are typically
simple, providing basic mechanisms to schedule concurrent tasks and access the
hardware. In this respect, a representative example is TinyOS [15] and the ac-
companying nesC language.

Very recently, to provide high flexibility and for adding new and advanced
functions to WSN middleware, the service-oriented approach has been applied
to sensor environments [7,10]. The common idea of these approaches is that,
in a sensor application, there are several common functionalities that are gen-
erally irrelevant to the main application. For example, most services will have
to support service registries and discovery mechanisms and they will also need
to provide some level of abstraction to hide the underlying environments and
implementation details. Furthermore, all applications need to support some lev-
els of reliability, performance, security, and QoS. All of these can be supported
and made available through a common middleware platform instead of having
to incorporate them into each and every service and application developed.

In this context, the OSGi technology [1] defines a standardized, componen-
t/service oriented, computing environment for networked services. Enabling a
networked device with an OSGi framework adds the capability to manage the
life cycle of the software components in the device from anywhere in the net-
work without ever having to disrupt the operation of the device. In addition, the
service oriented paradigm allows for a more smooth integration with Cloud plat-
forms and for advanced discovery mechanisms also employing semantic
technologies [4].

3 The SNPS Middleware

This section presents the proposal for a middleware devised to lay on the phys-
ical layer of wireless sensors, abstract away the sensors’ specific features, and

4 G. Di Modica, F. Pantano, and O. Tomarchio

turn sensors into smart and composable services accessible through the Internet
in an easy and standardized way. The middleware was designed to follow the ba-
sic principles of the IoT paradigm [9]. Sensors are not just sources of raw data,
but are seen like smart objects capable of providing services like filtering, com-
bining, manipulating and delivering information that can be readily consumed
by any other entity over the Internet according to well-known and standardized
techniques.

Primary goal of the middleware, which we called Sensor Node Plug-in System
(SNPS), is to bring any physical sensor (actuator) on an abstraction level that
allows for easier and standardized management tasks (switch on/off, sampling),
in a way that is independent of the proprietary sensor’s specification. By the time
a sensor is “plugged” into the middleware, it will constitute a resource/service
capable of interacting with other resources (be them other sensors plugged into
the middleware or third party services) in order to compose high-value services
to be accessed in SOA-fashion. The middleware also offers a set of complimentary
services and tools to support the management of the entire life cycle of sensors
and to sustain the overall QoS provided by them.

Basically, the SNPS can be said to belong to the category of the service-
oriented middlewares [13]. In fact, the provided functionality are exposed through
a service-oriented interface which grants for universal access and high interoper-
ability. Yet, all data and information gathered by sensors are stored in a database
that is made publicly accessible and can be queried by third party applications.
Further, the SNPS also support asynchronous communication by implementing
the exchange of messages among entities (sensors, components, triggers, external
services). All these features makes the middleware flexible to any application’s
need in any execution environment.

At design time it was decided not to implement the entire middleware from
scratch. A scouting was carried out in order to identify the software frame-
work that best supported, in a native way, all the characteristics of flexibility
and modularity required by the project. Eventually, the OSGi framework[1] was
chosen. The OSGi framework implements a component-oriented model, which
natively supports the component’s life cycle management, the distribution of
components over remote locations, the seamless management of components’
inter-dependencies, and the asynchronous communication paradigm.

The SNPS middleware was then organized into several components, and each
component was later implemented as a software module (or “bundle”) within
the OSGi framework. Figure 1 depicts the architecture of the middleware and
its main components.

The overall architecture can be broken down into three macro-blocks: Sensor
Layer Integration, Core and related Components, Web Service Integration. In
the following we provide a description of each macro-block.

SNPS: An OSGi-Based Middleware for Wireless Sensor Networks 5

~

-

Event

Reqgistry || Composer || Processor Manager

Caore
DB

Sensaor Layer Integration

Fig. 1. SNPS architecture

3.1 Core and Related Components

The components we are about to discuss are charged the responsibility of provid-
ing most of the middleware’s functionality. In Figure 2 the connections among
the components are depicted.

Core. It is where the business logic of the Middleware resides. The Core acts
as an orchestrator who coordinates the middleware’s activities. Data and com-
mands flowing forth and back from the web service layer to the sensor layer are
dispatched by the Core to the appropriate component.

Event
Manager
ﬁ" D Core

Registry

eg|

DataModel

Fig. 2. Core and related Components

6 G. Di Modica, F. Pantano, and O. Tomarchio

Registry. It is the component where all information about sensors, middleware’s
components and provided services are stored and indexed for search purpose.
As for the sensors, data regarding the geographic position and the topology
of the managed wireless sensor networks are stored in the Registry. Also, each
working component needs to signal its presence and functionality to the Registry,
which will have to make this information public and available so that it can be
discovered by any other component/service in the middleware.

Processor. It is the component responsible for the manipulation of the data flow
coming from the sensors. In particular, it provides a service to set and enforce
a sampling plan on a single sensor or on an aggregate of sensors. Also, this
component can be instructed to process data according to specific processing
templates.

Composer. It represents the component which implements the sensors’ compo-
sition service. Physical sensors can be “virtualized” and are given a uniform
representation which allows for “aggregating” multiple virtualized sensors into
one sensor that will eventually be exposed to applications. An insight and prac-
tical examples about this functionality are provided in Section 5.

Event Manager. 1t is one of the most important components of the middleware.
It provides a publish/subscribe mechanism which can be exploited by every mid-
dleware’s component to implement asynchronous communication. Components
can either be producers (publishers) or consumers (subscribers) of every kind
of information that is managed by the middleware. This way, data flows, alerts,
commands are wrapped into “events” that are organized into topics and are
dispatched to any entity which has expressed interest in them.

DAO. Tt represents the persistence layer of the middleware. It exposes APIs that
allow service requests to be easily mapped onto storage or search calls to the
database.

3.2 Sensor Layer Integration

The Sensor Layer Integration (SLI) represents the gateway connecting the mid-
dleware to the physical sensors. It implements a bidirectional communication
channel (supporting commands to flow both from the middleware to the sensors
and from the sensors to the middleware as well and a data channel (for data
that are sampled by sensors and need to go up to the middleware).

The addressed scenario is that of wireless sensor networks implemented through
so called Base Stations (BS) to which multiple sensors are “attached”. A BS imple-
ments the logic for locally managing its attached sensors. Sensors can be wiredly
or wirelessly attached to a BS, forming a network which is managed according to
specific communication protocols, which are out of our scope. The SLI will then
interact just with the BS, which will only expose its attached sensors hiding away
the issues related to the networking.

SNPS: An OSGi-Based Middleware for Wireless Sensor Networks 7

The integration is realized by means of two symmetrical bundles, which are
named respectively Middleware Gateway bundle (iMdmBundle) and WSN Gate-
way Bundle (iWsnBundle). The former lives in the middleware’s runtime con-
text, and was thought to behave as a gateway for both commands and data
coming from the BSs and directed to the middleware; the latter lives (runs) in
the BS’s runtime context, and forwards commands generated by the middleware
to the BSs. Since the middleware and the BSs may be attached to different
physical networks, the communication between the two bundles is implemented
through a remote ”OSGI Context”, which is a specific OSGi’s features allowing
bundles living in different runtime contexts to communicate to each other’s. In
Figure 3 the two bundles and their respective runtime contexts are shown.

Sensor Node Plugin System

R-0SGi
EndPoint

uoneibaju| Joke Josues

EEETENTTY

e sais

Fig. 3. OSGi bundles implementing the Sensor Layer Integration

The SLI was designed to work with any kind of BS, independently of the pe-
culiarity of the sensors it manages, with the aim of abstracting and uniforming
the access to sensors’ functionality. Uniforming the management of the sensors’
life cycle does not mean giving up the specific capabilities of sensors. Physical
sensors will maintain the way they work and their peculiar features (in terms,
for instance, of maximum sampling rate, sampling precision, etc.). But, in order
for sensors (read base stations) to be pluggable into the middleware and be com-
pliant to its management logic, a minimal set of requirements must be satisfied:
the iWsnBundle to be deployed on the specific BS will have to interface to the
local BS’ logic and implement the functionality imposed by the SNPS middle-
ware (switch on/off sensors, sample data, run sampling plan) by invoking the
proprietary base station’s API.

8 G. Di Modica, F. Pantano, and O. Tomarchio

3.3 Web Service Integration

As depicted in Figure 4, the OSGi bundle Wrapper exports the functionality of
the SNPS middleware to a Web Service context.

Compose(<Sensors>) ~ Get SendCommand
) measurements (<parameters>)

L Web Service 1
111111}

0OSGl Bundle Wrapper

Sensor Node Plugin System

Fig. 4. Wrapping and exposing SPNS as a Web Service

SNPS services can be invoked from any OSGi compliant context. On the
other hand, making the SNPS accessible as a plain Web Service will make its
services profitable for a great number of applications in several domains. The
functionality implemented by the SNPS’ bundles have been packaged into the
following categories of services:

— Search for sensors;

— Retrieve sensors capabilities and sensors data;

— Compose sensors;

— Send commands to sensors (enable/disable, set a sampling plan).

4 SNPS Data Model

The SNPS data model is one of the most interesting features of the middleware.
Goals like integration, scalability, interoperability are the keys that drove the
definition of the model at design time. The objective was then to devise a data
model to structure both sensors’ features (or capabilities) and data produced by
sensors. The model had to be rich enough to satisfy the multiple needs of the
middleware’s business logic, but at the same time had to be light and flexible to
serve the objectives of performance and scalability. We surveyed the literature
in order to look for any proposal that might fit the middleware’s requirement.
Specification like SensorML and O&M [2] seam to be broadly accepted and
widely employed in many international projects and initiatives. SensorML is

SNPS: An OSGi-Based Middleware for Wireless Sensor Networks

an XML-based language which can be used to describe, in a relatively simple
manner, sensors capabilities in terms of phenomena they are able to offer and
other features of the specific observation they are able to implement. O&M is
a specification for describing data produced by sensors, and is XML-based as
well. XML-based languages are known to be hard to treat, and in many cases
the burden for the management of XML-based data overcomes the advantage of
using rigorous and well-structured languages. We therefore opted for a solution
that calls on a reduced set of terms of the SensorML specification to describe
the sensor capabilities, and makes use of a much lighter JSON[6] format to
structure the data produced by sensors. An excerpt of what a description of
sensor capabilities look like is depicted in Figure 5.

<SensorML>

<identification=>

<classification>

MetaData of

<characteristics>

<capabilities>
<contact>

<interface>
<interfaceDefinition>
=<applicationLayer=

<fapplicationLayer>
=</interface>
=input name="temperatura®=

=<swe:ObservableProperty
<finput=

<output name="temperature">
<swe:Quantity
=sweuom codes"Ce|" />
=fswe:Quantity>
<foutput=

<components>
<=ComponentLisi=>
<component name="windChil* xlink:role="process" xlink:href=...
" alink:role="detector” xlink:href.

‘detector

name="{
name

the Sensorsystem

Interfacedefinition
to accsess inputs and

outputs
inputs
List of signals flowing
————— to and from the
paricular Sensor
output

Collection of physical
and non physical
subprocesses

Fig. 5. Description of sensor capabilities in SensorML

This is the basic information that must be attached to any sensor before it is
plugged into the middleware. Among others, it carries data regarding the phe-
nomena being observed, the sampling capabilities, and the absolute geographic
position. When the sensor wakes up, it sends this information to the middleware,
which will register the sensor to the Registry bundle, and produce its virtual-
ized image, i.e., a software alter-ego of the physical sensor which lives inside the
middleware run-time. The virtual sensor has a direct connection with the phys-
ical sensor. Each interaction involving the virtual sensor will produce effects on

10 G. Di Modica, F. Pantano, and O. Tomarchio

the physical sensor too. It is important to point out that all virtual sensors are
treated uniformly by the middleware’s business logic.

Furthermore, SensorML is by its nature a process-oriented language. Starting
from the atomic process, it is possible to build the so-called process chain. We
exploited this feature to implement one of the main service provided by the
SNPS, i.e., the sensors’ composition service (see Section 5 for more details).
This service, in fact, makes use of this feature to elaborate on measurements
gathered by multiple sensors.

As regards the definition of the structure for sensor data, JSON was chosen
because it ensures easier and lighter management tasks. The middleware is de-
signed to handle (sample, transfer, store, retrieve) huge amounts of data, with
the ambitious goal to also satisfy the requirements of real-time applications.
XML-based structures are known to cause overhead in communication, storage
and processing tasks, and therefore they do not absolutely fit our purpose. An-
other strong point of JSON is the ease of writing and analyzing data, which
greatly facilitates the developer’s task. A data sampled by a sensor will then be
put in the following form:

Sensor Measure:

{

b

‘“Sensorld’’: ‘ ‘value’’,
‘‘data’’: ‘ ‘value’’,
Cltype77:£ b

‘value’ 7,
‘“timestamp 7

77 fyvalue

5 Building and Composing Virtual Sensors

Sensor Composition is the most important feature of the SNPS middleware.
Simply said, it allows to get complex measurements starting from the samples of
individual sensors. This composition service is provided by the Composer bundle
(see Figure 1).

An important prerequisite of the composition is the sensor “virtualization”,
which is a procedure performed when a sensor is plugged into the SNPS mid-
dleware (see Section 3.2). Aggregates of sensors can be built starting from their
software images (virtual sensors) that live inside the SNPS middleware. There-
fore, in order to create a new composition (or aggregate) of sensors, the individual
virtual sensors to be combined need to be first selected. Secondly, the operation
that is to be applied to sensor’s measurements must be specified. This is done by
defining the so-called Operator, which is a function that defines the expected in-
put and output formats of the operation being performed. The final composition
is obtained by just applying the Operator to the earlier chosen virtual sensors.
By that time, a new virtual sensor (the aggregate) is available in the system,
and is exposed as a new sensor by the middleware.

4

SNPS: An OSGi-Based Middleware for Wireless Sensor Networks 11

Let us figure out a practical use case of sensor composition. Imagine that there
are four temperature sensors available in four different rooms of an apartment.
An application would like to know about the instant average temperature of the
apartment. A new sensor can be built starting from the four temperature sensors
applying the average operator, as depicted in Figure 6.

N\
\
y
I

I//

G

Fig. 6. Average operator

In this specific case, the input sensors are homogeneous. The middleware also
provides for the composition of heterogeneous sensors (e.g., temperature, humid-
ity, pressure, proximity), provided that the operator’s I/O scheme is adequately
designed to be compatible with the sensors’ measurement types.

6 Conclusion

The size of data produced by sensors and sensor networks deployed worldwide is
growing at a rate that current data analysis tools are not able to follow. Sources
of data are multiplying on the Internet (think about smart devices equipped with
photo/video cameras). There is a plethora of sensor devices producing informa-
tion of any kind, at very high rates and according to proprietary specification.
This complicates a lot the task of data analysis and manipulation. In this pa-
per we have proposed a solution that aims to ease these tasks. What we have
proposed is not just an early-stage idea but a concrete middleware that imple-
ments a mechanism to abstract sensors away from their proprietary interfaces
and structure, and offers tool to aggregate and expose sensors and sensor data
in the form of services to be accessed in SOA fashion. A prototype of the mid-
dleware has been implemented. In the future we are going to conduct extensive
experiments to test the scalability and the performance of the middleware in
distributed (even geographic) contexts.

12

G. Di Modica, F. Pantano, and O. Tomarchio

Acknowledgments. This work has been partially funded by the Italian project
“Sensori” (Industria 2015 - Bando Nuove Tecnologie per il Made in Italy) - Grant
agreement n. 00029MI01,/2011.

References

10.

11.

12.

13.

14.

15.

. OSGi Alliance: Open Service Gateway initiative, OSGi (2013),

http://www.osgi.org/

. Botts, M., Percivall, G., Reed, C., Davidson, J.: OGC Sensor Web Enablement:

Overview and high level architecture. In: Nittel, S., Labrinidis, A., Stefanidis, A.
(eds.) GSN 2006. LNCS, vol. 4540, pp. 175-190. Springer, Heidelberg (2008)

. Costa, P., Coulson, G., Gold, R., Lad, M., Mascolo, C., Mottola, L., Picco, G.P.,

Sivaharan, T., Weerasinghe, N., Zachariadis, S.: The runes middleware for net-
worked embedded systems and its application in a disaster management scenario.
In: Fifth Annual IEEE International Conference on Pervasive Computing and Com-
munications (PerCom 2007), pp. 69-78. IEEE Computer Society (2007)

. Di Modica, G., Tomarchio, O., Vita, L.: A P2P based architecture for Semantic Web

Service discovery. International Journal of Software Engineering and Knowledge
Engineering 21(7), 1013-1035 (2011)

Hadim, S., Mohamed, N.: Middleware: Middleware challenges and approaches for
wireless sensor networks. IEEE Distributed Systems Online 7(3), 1 (2006)

IEEE Network Working Group: JavaScript Object Notation, JSON (2006),
http://www.ietf.org/rfc/rfc4627.txt?number=4627

Issarny, V., Georgantas, N., Hachem, S., Zarras, A., Vassiliadist, P., Autili, M.,
Gerosa, M.A., Hamida, A.B.: Service-oriented middleware for the Future Internet:
state of the art and research directions. Journal of Internet Services and Applica-
tions 2(1), 23-45 (2011)

Madden, S.R., Franklin, M.J., Hellerstein, J.M., Hong, W.: Tinydb: an acquisitional
query processing system for sensor networks. ACM Trans. Database Syst. 30(1),
122-173 (2005)

Miorandi, D., Sicari, S., Pellegrini, F.D., Chlamtac, I.: Internet of things: Vision,
applications and research challenges. Ad Hoc Networks 10(7), 1497-1516 (2012)
Mohamed, N., Al-Jaroodi, J.: A survey on service-oriented middleware for wireless
sensor networks. Service Oriented Computing and Applications 5(2), 71-85 (2011)
Mottola, L., Picco, G.P.: Programming wireless sensor networks: Fundamental con-
cepts and state of the art. ACM Comput. Surv. 43(3), 19:1-19:51 (2011)

OGC: Sensor Web Enablement, SWE (2013),
http://www.opengeospatial.org/ogc/markets-technologies/swe/

Papazoglou, M.P., van den Heuvel, W.J.: Service Oriented Architectures: ap-
proaches, technologies and research issues. VLDB Journal 16(3), 389415 (2007)
Sugihara, R., Gupta, R.K.: Programming models for sensor networks: A survey.
ACM Trans. Sen. Netw. 4(2), 8:1-8:29 (2008)

TinyOS community: TinyOS (2013), http://www.tinyos.net/

http://www.osgi.org/
http://www.ietf.org/rfc/rfc4627.txt?number=4627
http://www.opengeospatial.org/ogc/markets-technologies/swe/
http://www.tinyos.net/

	SNPS: An OSGi-Based Middleware
for Wireless Sensor Networks

	1 Introduction
	2 Related Work
	3 The SNPS Middleware
	3.1 Core and Related Components
	3.2 Sensor Layer Integration
	3.3 Web Service Integration

	4 SNPSDataModel
	5 Building and Composing Virtual Sensors
	6 Conclusion
	References

