
123

Carlos Canal
Massimo Villari (Eds.)

Workshops of ESOCC 2013
Málaga, Spain, September 2013
Revised Selected Papers

Advances in
Service-Oriented
and Cloud Computing

Communications in Computer and Information Science 393

Communications
in Computer and Information Science 393

Editorial Board

Simone Diniz Junqueira Barbosa
Pontifical Catholic University of Rio de Janeiro (PUC-Rio),
Rio de Janeiro, Brazil

Phoebe Chen
La Trobe University, Melbourne, Australia

Alfredo Cuzzocrea
ICAR-CNR and University of Calabria, Italy

Xiaoyong Du
Renmin University of China, Beijing, China

Joaquim Filipe
Polytechnic Institute of Setúbal, Portugal

Orhun Kara
TÜBİTAK BİLGEM and Middle East Technical University, Turkey

Igor Kotenko
St. Petersburg Institute for Informatics and Automation
of the Russian Academy of Sciences, Russia

Krishna M. Sivalingam
Indian Institute of Technology Madras, India

Dominik Ślęzak
University of Warsaw and Infobright, Poland

Takashi Washio
Osaka University, Japan

Xiaokang Yang
Shanghai Jiao Tong University, China

Carlos Canal Massimo Villari (Eds.)

Advances in
Service-Oriented
and Cloud Computing

Workshops of ESOCC 2013
Málaga, Spain, September 11-13, 2013
Revised Selected Papers

13

Volume Editors

Carlos Canal
Universidad de Málaga, Spain
E-mail: canal@lcc.uma.es

Massimo Villari
University of Messina, Italy
E-mail: mvillari@unime.it

ISSN 1865-0929 e-ISSN 1865-0937
ISBN 978-3-642-45363-2 e-ISBN 978-3-642-45364-9
DOI 10.1007/978-3-642-45364-9
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013955300

CR Subject Classification (1998): D.2, H.3, H.2.8, C.2, K.6, J.1

© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains the technical papers presented in the five high-quality
workshops associated with ESOCC 2013 (European Conference on Service-
Oriented and Cloud Computing, held in Malaga, September 11–13, 2013), focus-
ing on specific topics in service-oriented and cloud computing-related domains:
Cloud for IoT (CLIoT 2013), Cloud Storage Optimization (CLOUSO 2013),
12th International Workshop on Foundations of Coordination Languages and
Self-Adaptative Systems (FOCLASA 2013), First Workshop on Mobile Cloud
and Social Perspectives (MoCSoP 2013), and the Third International Workshop
on Adaptive Services for the Future Internet (WAS4FI 2013).

There were a total of 51 submissions, from which 29 papers were accepted
giving an acceptance rate of 56%. The review and selection process was per-
formed rigorously, with each paper being reviewed by at least three Program
Committee (PC) members. Here, a brief description of each workshop is given.

The CLIoT 2013 workshop aimed at discussing the limits and/or advantages
of existing cloud solutions for IoT, and proposing original and innovative con-
tributions for enhancing real-world resources over cloud environments. Smart
connectivity with existing networks and context-aware computation is becoming
indispensable for IoT. Cloud computing provides a very strategic virtual in-
frastructure that integrates monitoring devices, storage devices, analytics tools,
visualization platforms, and client delivery. It supports enormous amounts of
data generated for IoT purposes, which have to be stored, processed, and pre-
sented in a seamless, efficient, and easily interpretable form. The first part of
this volume comprises all the technical papers of CLIoT 2013.

The CLOUSO 2013 workshop focused on research and development efforts in
the domain of storage clouds, driven by the research outcomes in the framework
of an EU-funded project, VISION Cloud. The workshop allowed the commu-
nity to define the current state, identifying requirements and determining future
goals, presenting architectures and services in the area of emerging storage cloud
technologies. While the emergence of cloud environments has made feasible the
delivery of Internet-scale services, current research efforts focus on key issues
related to cloud storage, which are considered of major importance given the
amount of data produced by various sources. The vast amounts of digital data
being produced hold the key to creating such an advantage, but only if the
data can be efficiently utilized. The second part of this volume comprises all the
technical papers of CLOUSO 2013.

The goal of the FOCLASA 2013 workshop was to bring together researchers
and practitioners in the fields of coordination languages and formal approaches
to modelling and reasoning self-adaptive services, so as to share and identify
common problems and to devise general solutions in the context of self-* sys-
tems. The organizers invited researchers and practitioners to submit novel works

VI Preface

and experience reports on service coordination and self-adaptive behavior man-
agement in the areas of business process modeling, component-based and large-
scale distributed systems, service-oriented and cloud computing, grid computing,
and multi-agent and peer-to-peer system engineering. The organizers accepted
relevant works on coordination and self-adaptive behavior in other areas, e.g.,
bio-inspired computing. The third part of this volume comprises all the technical
papers of FOCLASA 2013.

The MoCSoP 2013 workshop focused on mobile cloud and social perspectives.
In 2016 the network traffic generated from mobile devices is estimated to reach
50%. Such traffic is expected to be dedicated to cloud services consumption
such as video streaming, email and instant messaging, or social media access.
The interest in the development of cloud computing in the context of mobility is
undeniable. However, the great interest in this type of services contrasts with the
simplicity of their technological foundations. In most cases, their architectures
consist in mobile apps interacting with cloud services, which, depending on their
logic, interact with other clients. This was just the starting hypothesis of the
MoCSoP workshop in which the organizers faced questions such as what kind
of new services could be proposed? Are new communication protocols needed
to manage them? How could the exposure of services in the mobile context be
managed? What are the social perspectives of cloud computing in the mobile
context? What is the impact on personal privacy in this context? Who owns
the generated data? Several other questions come in mind, that provide a broad
field for research in the coming years. MoCSoP tried to give an answer to these
questions. The fourth part of this volume comprises all the technical papers of
MoCSoP 2013.

The WAS4FI 2013 workshop focused on Future Internet (FI) technologies.
The FI has emerged as a new initiative to pave a novel infrastructure linked
to objects (things) of the real world to meet the changing global needs of busi-
ness and society. It offers Internet users a standardized, secure, efficient, and
trustable environment, which allows open and distributed access to global net-
works, services, and information. There is a need for both researchers and prac-
titioners to develop platforms made up of adaptive FI applications. In this sense,
the emergence and consolidation of service-oriented architectures (SOA), cloud
computing, and wireless sensor networks (WSN) give benefits, such as flexibility,
scalability, security, interoperability, and adaptability for building these appli-
cations. FI systems will need to sense and respond to a huge amount of signals
sourced from different entities in real time. WAS4FI addresses different aspects
of adaptive FI applications, emphasizing the importance of governing the con-
vergence of contents, services, things, and networks to achieve building platforms
for efficiency, scalability, security, and flexible adaptation. WAS4FI covered the

Preface VII

foundations of these technologies as well as new emerging proposals. The fifth
part of this volume comprises all the technical papers of WAS4FI 2013.

October 2013 Carlos Canal
Massimo Villari

Workshop Chairs
ESOCC 2013

Organization

ESOCC 2013 was organized by the Department of Computer Science of the
University of Málaga (Spain).

Preface of CLIoT

The Internet of Things (IoT) seems to change the way we interact with the world
around us. It aims to represent the physical world through uniquely identifiable
and interconnected objects (things). Things have the capacity for sensing, pro-
cessing, or actuating information about entities available from within the real
world. Thus, information travels along heterogeneous systems, such as routers,
databases, information systems, and the Internet, leading to the generation and
movement of enormous amounts of data that have to be stored, processed, and
presented in a seamless, efficient, and easily interpretable form. Both the IoT and
cloud technologies address two important goals for distributed system: high scal-
ability and high availability. All these features make cloud computing a promis-
ing choice for supporting IoT services. IoT can appear as a natural extension
of cloud computing implementations, where the cloud allows one to access IoT-
based resources and capabilities, to process and manage IoT environments, and
to deliver on-demand utility IoT services such as sensing/actuation as a service.

CLIoT 2013 aimed at bringing together scientists, practitioners, and PhD
students in order to discuss the limits and/or advantages of existing cloud solu-
tions for IoT, and to propose original and innovative contributions for enhancing
real-world resources over cloud environments.

Several contributions were presented and discussed during the workshop.
Tomarchio et al. presented a middleware able to abstract sensors from their
proprietary interfaces, offering their capabilities to third-party applications ac-
cording to an as-a-service approach. Cirani et al. proposed a constrained version
of the Session Initiation Protocol (SIP), named CoSIP, whose intent is to allow
constrained devices to instantiate communication sessions in a lightweight and
standard fashion. Fazio et al. discussed the design of a message-oriented mid-
dleware for cloud, called MOM4C, able to arrange customizable cloud facilities
by means of a flexible federation-enabled communication system. Destefano et
al. dealt with sensing and actuation as a service (SAaaS) architecture, intro-
ducing the module specifically conceived to deal with all the issues related to
user-resource interfaces.

The workshop program included two invited presentations. In particular, Ian
Thomas, Strategy Director at Fujitsu Enabling Software Technologies GmbH,
gave a talk on cloud platforms for Web convergence. In addition, Antonio J. Iara,
Assistant Professor at the University of Applied Sciences Western Switzerland
(HES-SO), presented solutions, challenges, and opportunities of cloud computing

XII Preface of CLIoT

for Smart Cities and the Internet of Things. Antonio is a vice-chair of the
IEEE Communications Society Internet of Things Technical Committee, CTO
and co-founder of the Smart Cities company viBrain Solutions.

Maria Fazio
Nik Bessis

Workshop Organizers
CLIoT 2013

Organization

Steering Committee

Antonio J. Jara University of Applied Sciences Western
Switzerland (HES-SO), Switzerland

Orazio Tomarchio University of Catania, Italy
Massimo Villari University of Messina, Italy

Referees

Antonio Celesti
Salvatore Distefano
Ciprian Dobre
Pietro Ducange
Luca Foschini

Natalia Kryvinska
Aimı̈£¡ Lay-Ekuakille
Fei LI
Lu Liu
Giovanni Merlino

Navonil Mustafee
Chrysa Papagianni
Florin Pop
Stelios Sotiriadis

Sponsoring Institutions

The event was co-sponsored by the IEEE ComSoc IoT Emerging Technical
Committee.

Preface of CLOUSO

The explosion of personal and organizational digital data is presently recognized
as one of the most significant characteristics of the last few years. However, while
the emergence of cloud environments has made feasible the delivery of Internet-
scale services, current research efforts focus on key issues related to cloud storage,
which are considered of major importance given the amount of data produced
by various sources. The vast amounts of digital data being produced (a repre-
sentative figure that highlights the huge amount of data being produced nowa-
days is the fraction of data on the Internet that is indexed by Google, which is
only 0.004%) hold the key to creating such an advantage, but only if the data
can be efficiently utilized. The latter poses the need for new, cloud-based and
cloud-scalable technologies in order to overcome various limitations that affect
the adoption of storage cloud services (86% of enterprises do not have specific
plans in doing so). These limitations refer to: (1) the abstraction level of stor-
age and the requirement to access content without dealing with details of the
underlying infrastructure, (2) data mobility, (3) computational storage enabling
computations to be performed close to storage, (4) service level agreements for
data-intensive services, and (5) security and compliance considerations.

The aforementioned limitations were discussed, amongst others, during the
Cloud Storage Optimization (CLOUSO) workshop that took place in conjunc-
tion with the European Conference on Service Oriented and Cloud Computing
(ESOCC) in Malaga, Spain. The topics of interest for CLOUSO 2013 included
but were not limited to:

– Data mobility and interoperability between cloud providers
– Scalability and elasticity in storage clouds
– Performance evaluation of storage cloud infrastructures
– Computational storage
– Energy-efficient data cloud design and management
– Data placement and scheduling
– Quality of service and service level agreements
– Data privacy and protection
– Data-intensive applications, characteristics, challenges
– Case studies of data-intensive computing in the clouds
– Future research challenges in storage clouds
– Test-beds and field trials
– Standardization and regulatory issues

The workshop focused on research and development efforts in the domain
of storage clouds, driven by the research outcomes in the framework of an
EU-funded project, namely, VISION Cloud [11]. In this context, an interest-
ing approach for cloud storage performance and efficiency analysis (“peaCS -
Performance and Efficiency Analysis for Cloud Storage”) was presented during

XVI Preface of CLOUSO

the workshop. The authors proposed a framework for the analysis, comparison,
and optimization both of functional and non functional properties of storage
services targeting the users’ digital environment. With respect to multi-cloud
environments and the corresponding security challenges for cloud storage, an
approach was presented (“Delegation for On-boarding Federation Across Storage
Clouds”) that proposes an architecture allowing the efficient migration of data
between storage cloud providers. The approach enables users to delegate to the
on-boarding layer a subset of his/her access rights on the source and destination
clouds to enable on-boarding to occur in a safe and secure way. Focusing on
availability, the authors presented quite novel work (“Availability Assessment of
a Vision Cloud Storage Cluster”), in which they introduce a stochastic reward
net model that allows quantification of the availability level in storage clouds
from a user perspective. Besides availability, reliability and data mobility were
also discussed during the workshop. The proposed approach (“Data Reliability
in Multi-Provider Cloud Storage Service with RRNS”) enables customers to use
concurrently different providers by guaranteeing at the same time redundancy
and obfuscation. The basis of the presented work is the so-called redundant
residue number system (RRNS) that allows files to be fragmented and stored in
different providers. What is more, during the workshop, the application space
was also addressed. More specifically, cross-layer management of dynamic IT
service components was introduced through a work (“Automated Provisioning
of SaaS Applications over IaaS-based Cloud Systems”) that placed emphasis on
an infrastructure aimed to facilitate the composition of heterogeneous resources,
such as single virtual machines (VMs), DB services and storage, and stand-alone
services, by automating the provisioning of complex SaaS applications on top of
OpenStack. Finally, open source topics were tackled (“Open Source Issues with
Cloud Storage Software”), focusing on the contribution of different assets in cloud
storage solutions and the corresponding licensing issues.

The approaches presented in these proceedings aim at providing insight into
innovative research outcomes in the domain of cloud storage optimization. In the
emerging era of the Future Internet the explosion of digital data highlights the
need for cloud-based storage as the next-generation solution to address the data
proliferation and the reliance on data. The latter is of major importance given
that our society has become critically dependent on services to extract valuable
information from the data and drive decision making by individuals, businesses,
and government, across all aspects of life.

We would like to thank all Program Committee members for providing in-
sightful review reports, the authors for submitting papers to the workshop, and
the participants of the workshop in Málaga for productive discussions and useful
comments.

Massimo Villari
Dimosthenis Kyriazis
CLOUSO 2013 Chairs

Organization

Program Committee

Danilo Ardagna Politecnico di Milano, Italy
Lorenzo Blasi HP Technology Services
Ivona Brandic Vienna University of Technology, Austria
Francesco D’andria ATOS Spain
Patrizio Dazzi ISTI-CNR, Italy
Kevin Doolin Telecommunications Software & Systems

Group
Anastasios Doulamis Technical University of Crete, Greece
Luca Foschini Università di Bologna, Italy
Alex Galis University College London, UK
Emilio Javier Garcia Escobar Telefonica I&D
Wolfgang Gentzsch Executive HPC Consultant
Spyridon Gogouvitis National Technical University of Athens,

Greece
Burak Kantarci University of Ottawa, Canada
Gabor Kecskemeti University of Innsbruck, Austria
George Kousiouris National Technical University of Athens,

Greece
Andreas Menychtas National Technical University of Athens,

Greece
Dalit Naor IBM Research Haifa, Israel
Antonios Niros University of the Aegean, Greece
Suraj Pandey IBM Research Melbourne, Australia
Dana Petcu West University of Timisoara, Romania
Brian Pickering University of Southampton, UK
Paolo Romano INESC-ID
Rajiv Ranjan CSIRO ICT Centre Canberra, Australia
Osama Sammodi University of Duisburg-Essen, Germany
Aidan Shribman SAP Israel
Domenico Talia Università della Calabria, Italy
Jie Tao Karlsruhe Institue of Technology, Germany
Johan Tordsson Umea University, Sweden
Giovanni Toffetti IBM Research - Haifa, Israel
Luis Vaquero HP-UK

Preface of FOCLASA

The FOCLASA workshop provides a venue where researchers and practitioners
meet, exchange ideas, identify common problems, and discuss fundamental issues
related to coordination languages and self-adaptive systems. The special focus of
this year’s edition was the coordination and self-adaptive behavior in the Internet
of services and cloud computing.

Modern software systems are distributed, concurrent, mobile, and often in-
volve composition of heterogeneous components and stand-alone services. Service
coordination and self-adaptation constitute the core characteristics of distributed
and service-oriented systems. Coordination languages and formal approaches to
modelling and reasoning about self-adaptive behavior help to simplify the devel-
opment of complex distributed service-based systems, enable functional correct-
ness proofs, and improve reusability and maintainability of such systems. The
topics of interest for FOCLASA 2013 included but were not limited to:

– Theoretical models and frameworks for component and service coordination,
service composition, service adaptation and concurrent system modeling

– Applications and usability studies for the aforementioned theoretical models,
interaction and coordination challenges in various application domains

– Languages and specification protocols for component and service interaction,
their semantics, expressiveness, validation and verification, type checking,
static and dynamic analysis

– “Software as a service” models and dynamic software architectures, such as
self-adaptive and self-organizing systems

– Tools and environments for the development of concurrent and customizable
self-monitoring, self-adaptive and self-organizing applications

– Calculus, mathematical models and algorithms for Quality-of-Service (QoS)
observation, storage, history-based analysis in self-adaptive systems (queuing
models, load balancing, fault- tolerance analysis, machine learning systems)

This year, we received 15 submissions involving 38 authors from 18 different
countries. Papers underwent a rigorous review process, and all papers received
three review reports. After the review process, the international Program Com-
mittee (PC) of FOCLASA 2013 decided to select eight papers for presentation
during the workshop and publication in the joint proceedings of the ESOCC
2013 workshops. These papers tackle different issues that are currently central
to our community, namely, component and service composition, models and cal-
culus for coordination in distributed systems, as well as implementation and tool
support for existing coordination languages.

XX Preface of FOCLASA

We would like to thank all Program Committee members and external re-
viewers for providing insightful review reports, the authors for submitting papers
to the workshop, and the participants of the workshop in Málaga for productive
discussions and useful comments.

Natallia Kokash
Javier Cámara Moreno

FOCLASA 2013 PC Chairs

Organization

Program Committee

Carlos Cuesta Rey Juan Carlos University, Spain
Holger Giese University of Potsdam, Germany
Keijo Heljanko Aalto University, Finland
Ludovic Henrio INRIA Sophia Antipolis, France
Rogério de Lemos University of Kent, UK
Antónia Lopes University of Lisbon, Portugal
António Ravara New University of Lisbon, Portugal
Liliana Pasquale University of Limerick, Ireland
Pascal Poizat Paris Ouest University and LIP6, France
José Proena KU Leuven, Belgium
Bradley Schmerl Carnegie Mellon University, USA
Marjan Sirjani Reykjavik University, Iceland
Carolyn Talcott SRI International, USA
Francesco Tiezzi IMT Lucca Institute for Advanced Studies,

Italy
Mirko Viroli University of Bologna, Italy
Uwe Zdun University of Vienna, Austria
Huibiao Zhu East China Normal University, China

External Reviewers

Ehsan Khamespanah University of Tehran, Iran
Ali Jafari Reykjavik University, Iceland
Stefano Mariani Università di Bologna, Italy
Gregor Berg University of Potsdam, Germany
Thomas Haitzer University of Vienna, Austria
Qin Li East China Normal University, China
Patrick Gaubatz University of Vienna, Austria
Yongxin Zhao East China Normal University, China

Steering Committee

Farhad Arbab CWI, The Netherlands
Anẗı£¡nio Brogi University of Pisa, Italy

XXII Organization

Carlos Canal University of Malaga, Spain
Jean-Marie Jacquet University of Namur, Belgium
Ernesto Pimentel University of Malaga, Spain
Gwen Salan Grenoble INP - Inria Grenoble - LIG, France

Publicity Chair

José Antonio Mart́ın Baena University of Malaga, Spain

Preface of MoCSoP

In recent years cloud computing has emerged as one of the most active research
topics. Many efforts have been invested in research to propose new technolo-
gies that provide IT solutions in different modalities, i.e., IaaS, PaaS or SaaS,
always based on the utility-computing business model. The goal is to allow com-
panies (both small and large) to purchase IT services from cloud vendors on a
pay-as-you-go basis, rather than owning their own IT department and infras-
tructures. The main benefits reside in increased business agility, IT control, cost
efficiency, and productivity, as well as a reduction in the number of manage-
ment resources that are required. Thus, cloud computing has been recognized
not only as a technological innovation but also as an IT market and business
innovation. For that purpose techniques and technologies have been proposed for
virtualization, balancing and efficient resource usage, easy and reliable remote
services consumption, and avoiding services from being tied to the specification
of particular cloud vendors.

While the general consensus establishes that the larger the company adopting
the cloud alternative, the larger the benefits provided by this paradigm, real
experiences of large companies massively adopting cloud computing are still
needed. Companies manifest their intention and willingness to move to the cloud
but they are still at the stage of studying its potential and actual benefits. This
could cause doubts about the real potential of cloud computing. However, since
millions of people already consume cloud services like Dropbox, Facebook, etc.,
one can argue that cloud computing is here to stay. Although these services are
small and structurally simple, the magnitude of their success is reaffirmed by
their figures. As an example, in 2011 Google billed 29.3 billion dollars, and in
October 2012 Facebook reached its first billion users.

Such massive consumption of cloud services takes place in a context in which
25% of the global network traffic is generated from mobile devices. Smartphones
and tablets are reaching, and even in some cases surpassing, the capabilities of
laptops and desktop computers. In 2016 the network traffic generated from mo-
bile devices is estimated to reach 50%. Such traffic is expected to be dedicated
to cloud services consumption such as video streaming, email and instant mes-
saging, or social media access. Thus, the interest in the development of cloud
computing in the context of mobility is undeniable.

However, the great interest in this type of service contrasts with the simplicity
of their technological foundations. In most cases, their architectures consist in
a client (mobile app) interacting with a server (cloud service) which, depending
on its logic, interacts with other clients. It seems as though there is still plenty
of room for improvement in the technological richness of these architectures to
offer services and applications that allow for more complex interactions with
servers or even directly between clients. This is just the starting hypothesis of

XXIV Preface of MoCSoP

this workshop in which we would like to face questions such as what kind of
new services could be proposed? Are new communication protocols needed to
manage them? How could the exposure of services in the mobile context be
managed? What are the social perspectives of cloud computing in the mobile
context? What is the impact on personal privacy in this context? Who owns the
generated data? Several other questions come in mind, which provide a broad
field for research in the coming years.

Despite the interest aroused by these topics and the great growth prospects in
this field, there are still very few conferences and workshops that focus specifically
on cloud and mobility especially with respect to technical AND social aspects.
We therefore believe that MoCSoP can help to attract a growing community
to ESOCC that still does not have many specific conferences in which to meet.
Eventually, this will lead ESOCC to strengthen its position in the field of cloud
computing, service-oriented computing and mobility. The Workshop Organiz-
ing Committee greatly appreciates the contribution of the Program Committee
members, without which rvIoCSop would not have been possible.

Organization

Organizing Committee

Muhammad Ali Babar
Marc Jansen
Tommi Mikkonen
Juan Manuel Murillo
Dana Petcu

Program Committee

The Program Committee of the workshop was formed by

Muhammad Ali Babar IT University of Copenhagen
Timo Aaltonen Tampere University of Technology
Lars Bollen University of Twente

Carlos Canal University of MĞlaga
Elisabetta Di Nitto Politecnico Di Milano
Adam Giemza University of Duisburg-Essen
Marc Jansen University of Applied Sciences Ruhr West
Tomi Mnnist University of Helsinki, Helsinki
Tommi Mikkonen Tampere University of Technology
Juan M. Murillo University of Extremadura
Dana Petcu West University of Timisoara
Ivan Porres Abo Akademi University
Ulf Schreier Hochschule Furtwangen University

Preface of WAS4FI

As the proud Organizing Committee and chairs of the Third International Work-
shop on Adaptive Services for the Future Internet, we would like to take this
opportunity to welcome you to the proceedings of WAS4FI 2013. We thank all
participants for taking time out from their busy lives and work in their home
countries to attend this workshop.

In this third edition, WAS4FI again aimed to bring together the community at
ESOCC and addresses different aspects of adaptive Future Internet applications.
In this workshop, we cover the foundations of the aforementioned technologies
as well as new emerging proposals for their potential in Future Internet ser-
vices. To promote collaboration, WAS4FI has a highly interactive format with
short technical sessions complemented by discussions on adaptive services in the
Future Internet applications. The broad scope of WAS4FI is reflected in the
wide range of topics covered by the 15 submissions that we received. Of these,
with the 24 members of the WAS4FI Program Committee from both academic
and industrial research labs, we selected six research papers. These papers are
grouped into two sessions, representing two key themes of Adaptive Services for
the Future Internet

1. Security, Quality and Runtime Verification for Service Adaptation
2. Resources and Complex-Event Management forService Adaptation

We would like to thank all the people who contributed to make this workshop
a reality, including the WAS4FI Program Committees, the ESOCC 2013 Work-
shop Chairs Massimo Villari and Carlos Canal and all the presenters, authors
and participants.

Javier
Guadalupe

Juan
Howard
Winfried

Organization

Organizing Committee

Javier Cubo University of Málaga, Spain
Guadalupe Ortiz University of Cádiz, Spain
Juan Boubeta-Puig University of Cádiz, Spain
Howard Foster City University London, UK
Winfried Lamersdorf University of Hamburg, Germany

Program Committee

Marco Aiello University of Groningen, The Netherlands
Vasilios Andrikopoulos University of Stuttgart, Germany
Antonio Brogi University of Pisa, Italy
Anis Charfi SAP Research CEC Darmstadt, Germany
Florian Daniel University of Trento, Italy
Valeria de Castro Universidad Rey Juan Carlos, Spain
Gregorio Dı́az Universidad de Castilla La Mancha, Spain
Schahram Dustdar Vienna University of Technology, Austria
Nadia Gámez University of Málaga, Spain
Laura González Universidad de la República, Uruguay
Tiziana Margaria University of Potsdam, Germany
E. Michael Maximilien IBM Almaden Research, USA
Massimo Mecella University of Rome La Sapienza, Italy
Andreas Metzger University of Duisburg-Essen, Germany
Claus Pahl Dublin City University, Ireland
Achille Peternier University of Lugano, Switzerland
Franco Raimondi Middlesex University, UK
Gustavo Rossi Universidad Nacional de La Plata, Argentina
Romain Rouvoy University of Lille 1, France
Antonio Ruiz-Cortés University of Seville, Spain
Quanzheng Sheng The University of Adelaide, Australia
Massimo Tivoli University of L’Aquila, Italy
Willem-Jan van den Heuvel Tilburg University, The Netherlands
Gianluigi Zavattaro University of Bologna, Italy

Table of Contents

CLIoT Workshop Papers

SNPS: An OSGi-Based Middleware for Wireless Sensor Networks 1
Giuseppe Di Modica, Francesco Pantano, and Orazio Tomarchio

CoSIP: A Constrained Session Initiation Protocol for the Internet
of Things . 13

Simone Cirani, Marco Picone, and Luca Veltri

Design of a Message-Oriented Middleware for Cooperating Clouds 25
Maria Fazio, Antonio Celesti, and Massimo Villari

The Core Approach of SAaaS in Action: The Planning Agent 37
Lionel Cremer, Salvatore Distefano, Giovanni Merlino, and
Antonio Puliafito

CLOUSO Workshop Papers

peaCS-Performance and Efficiency Analysis for Cloud Storage 47
Josef Spillner, Maximilian Quellmalz, Martin Friedrich, and
Alexander Schill

Delegation for On-boarding Federation Across Storage Clouds 59
Elliot K. Kolodner, Alexandra Shulman-Peleg, Gil Vernik,
Ciro Formisano, and Massimo Villari

Availability Assessment of a Vision Cloud Storage Cluster 71
Dario Bruneo, Francesco Longo, David Hadas, and Hillel Kolodner

Data Reliability in Multi-provider Cloud Storage Service with RRNS . . . 83
Massimo Villari, Antonio Celesti, Francesco Tusa, and
Antonio Puliafito

Automated Provisioning of SaaS Applications over IaaS-Based Cloud
Systems . 94

Paolo Bellavista, Antonio Corradi, Luca Foschini, and
Alessandro Pernafini

Open Source Issues with Cloud Storage Software . 106
Michael C. Jaeger

XXXII Table of Contents

FOCLASA Workshop Papers

A Calculus of Computational Fields . 114
Mirko Viroli, Ferruccio Damiani, and Jacob Beal

Trace- and Failure-Based Semantics for Bounded Responsiveness 129
Walter Vogler, Christian Stahl, and Richard Müller

On the Introduction of Time in Distributed Blackboard Rules 144
Jean-Marie Jacquet, Isabelle Linden, and Mihail-Octavian Staicu

Data Abstraction in Coordination Constraints . 159
José Proença and Dave Clarke

Global Consensus through Local Synchronization . 174
Sung-Shik T.Q. Jongmans and Farhad Arbab

On Density in Coordination Languages . 189
Jean-Marie Jacquet, Isabelle Linden, and Denis Darquennes

A Tag Contract Framework for Heterogeneous Systems 204
Thi Thieu Hoa Le, Roberto Passerone, Uli Fahrenberg, and
Axel Legay

Matching Cloud Services with TOSCA . 218
Antonio Brogi and Jacopo Soldani

MoCSoP Workshop Papers

First Hand Developer Experiences of Social Devices 233
Niko Mäkitalo, Timo Aaltonen, and Tommi Mikkonen

Social Index: A Content Discovery Application for Ad Hoc
Communicating Smart Phones . 244

Janne Kulmala, Mikko Vataja, Saku Rautiainen,
Teemu Laukkarinen, and Marko Hännikäinen

Mobile Web Service Infrastructure Supporting Successful Aging 254
Marc Jansen, Oliver Koch, and Michael Schellenbach

Cloud and Web Services Integration for mHealth Telerehabilitation
Support . 266

Angel Ruiz-Zafra, Manuel Noguera, Kawtar Benghazi,
José Luis Garrido, Gustavo Cuberos Urbano, and Alfonso Caracuel

Architecting Infrastructures for Cloud-Enabled Mobile Devices 277
Javier Miranda, Joaqúın Guillén, Javier Berrocal,
Jose Garcia-Alonso, Juan Manuel Murillo, and
Carlos Canal

Table of Contents XXXIII

WAS4FI Workshop Papers

Improving Security Assurance of Services through Certificate Profiles . . . 288
Marioli Montenegro, Antonio Maña, and Hristo Koshutanski

A Domain-Specific Model for Data Quality Constraints in Service
Process Adaptations . 303

Claus Pahl, Neel Mani, and Ming-Xue Wang

Run-Time Verification of Behaviour-Aware Mashups in the Internet
of Things . 318

Laura González, Javier Cubo, Antonio Brogi, Ernesto Pimentel, and
Raúl Ruggia

Designing a Service Platform for Sharing Internet Resources
in MANETs . 331

Gabriel Guerrero-Contreras, José Luis Garrido,
Carlos Rodŕıguez-Domı́nguez, Manuel Noguera, and
Kawtar Benghazi

A Model-Driven Approach for Web Service Adaptation Using Complex
Event Processing . 346

Yéhia Taher, Juan Boubeta-Puig, Willem-Jan van den Heuvel,
Guadalupe Ortiz, and Inmaculada Medina-Bulo

An ESB-Based Infrastructure for Event-Driven Context-Aware Web
Services . 360

Laura González and Guadalupe Ortiz

Author Index . 371

SNPS: An OSGi-Based Middleware

for Wireless Sensor Networks

Giuseppe Di Modica, Francesco Pantano, and Orazio Tomarchio

Department of Electric, Electronic and Computer Engineering
University of Catania

Catania, Italy
firstname.lastname@dieei.unict.it

Abstract. We are witnessing a widespread deployment of sensors and
sensor networks in any application domain. These sensors produce huge
amounts of raw data that need to be structured, stored, analyzed, corre-
lated and mined in a reliable and scalable way. Some application environ-
ments also add real-time requirements which make things even harder to
manage. The size of the produced data, and the high rate at which data
are being produced, suggest that we need new solutions that combine
tools for data management and services capable of promptly structur-
ing, aggregating and mining data even just when they are produced. In
this paper we propose a middleware, to be deployed on top of physical
sensors and sensor networks, capable of abstracting sensors from their
proprietary interfaces, and offering them to third party applications in an
as-a-Service fashion for prompt and universal use. The middleware also
offers tool to elaborate real-time measurements produced by sensors. A
prototype of the middleware has been implemented.

1 Introduction

Nowadays, sensors are everywhere. You may find them in your smartphone, in
your house, in your car, in streets, and so on. They measure various phenomena,
and can be used for very different purposes: monitoring, surveillance, prediction,
controlling. Their number is actually increasing day by day, as foreseen by the
Internet of Things (IoT) vision [9]. A huge amount of data is generated each
second but we are far from taking advantage of all this “potential” knowledge.

There are several reasons for that: heterogeneous sensor networks are usually
disconnected among them, and often are still not connected to a globally acces-
sible information network. Even in the case they are connected, we do not know
how to search for those sensors which may be of help for our purpose. Moreover,
when we find a potentially interesting sensor, often we are not able to get data
from it due to its proprietary data interface or, if we succeed to get data, we
need to correctly interpret its meaning. In addition, when developing an appli-
cation that has to use a sensor network for monitoring a certain phenomena,
the application programmer should only concentrate on application-level issues
and ideally use the programming languages, tools and methodologies that he is
accustomed to.

C. Canal and M. Villari (Eds.): ESOCC 2013, CCIS 393, pp. 1–12, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

2 G. Di Modica, F. Pantano, and O. Tomarchio

We believe that the service-oriented approach [7,13] provides adequate ab-
stractions for application developers, and that it is a good approach to integrate
heterogeneous sensors and different sensor network technologies with Cloud plat-
forms through the Internet, by paving the way for new IoT applications.

In this paper we present an OSGi-based middleware, called Sensor Node Plug-
in System (SNPS), where sensors are no longer low-level devices producing raw
measurement data, but are seen as “services” able to be used and composed over
the Internet in a simple and standardized way in order to build even complex
and sophisticated applications.

The remainder of the paper is structured in the following way. Section 2
presents a review of the literature. In Section 3 the architecture of the proposed
solution is introduced. In Section 4 we discuss and motivate the choice of the
data model implemented in the middleware. Section 5 provides some details on
the sensor composition process. We conclude our work in Section 6.

2 Related Work

The most notably effort in providing standard definition of Web service interfaces
and data encodings to make sensors discoverable and accessible on the Web is the
work done by the Open Geospatial Consortium (OGC) within the Sensor Web
Enablement initiative [2,12]. The role of the SWE group is to develop common
standards to determine sensors capabilities, to discover sensor systems, and to
access sensors’ observations. The principal services offered by SWE include:

– Sensor Model Language (SensorML): provides a high level description of
sensors and observation processes using an XML schema methodology

– Sensor Observation Service (SOS): used to retrieve sensors data.
– Sensor Planning Service (SPS): used to determine if an observation request

can be achieved, determine the status of an existing request, cancel a previous
request, and obtain information about other OGC web services

– Web Processing Service (WPS): used to perform a calculation on sensor data.

A common misconception of the adoption of SWE standards is that they,
instead of encapsulating sensor information on application level, were originally
designed to operate directly on a hardware level. Of course, supporting interop-
erable access on the hardware level has some advantages and comes very close
to the “plug and play” concept. Currently, some sensor systems such as weather
stations and observation cameras already offer access to data resources through
integrated web servers. However, besides contradicting the view of OGC SWE
of uncoupling sensor information from sensor systems, the downside of this ap-
proach arise when dealing with a high number of specialized and heterogeneous
sensor systems, and in resource-limited scenario (as typical WSNs) where com-
munication and data transportation operations have to be highly optimized.
Even a relatively powerful sensor gateway is not necessarily suitable as a web
server in many cases it may typically be networked via a low-bandwidth net-
work and powered by a battery and so it has neither the energy or bandwidth
resources required to provide a web service interface.

SNPS: An OSGi-Based Middleware for Wireless Sensor Networks 3

The need for an intermediate software layer (middleware) derives from the
gap between the high-level requirements from pervasive computing applications
and the complexity of the operations in the underlying WSNs. The complexity
of the operations within a WSN is characterized by constrained resources, dy-
namic network topology, and low level embedded OS APIs, while the application
requirements include high flexibility, re-usability, and reliability to cite a few. In
general, WSN middleware helps the programmer develop applications in several
ways: it provides appropriate system abstractions, reusable code services and
data services. It helps the programmer in network infrastructure management
and providing efficient resource services.

Some research efforts have been done on surveying the different aspects of
middleware and programming paradigms for WSN. For example, [5] analyzed
different middleware challenges and approaches for WSN, while [14] and [11]
analyzed programming models for sensor networks.

As an example of different approaches, we cite here TinyDB [8], a query pro-
cessing system based on SQL-like queries that are submitted by the user at a
base station where the application intelligence resides. Enabling dynamic re-
configuration is one of the main motivations for component-based designs like
the RUNES middleware [3]. Finally, operating systems for WSNs are typically
simple, providing basic mechanisms to schedule concurrent tasks and access the
hardware. In this respect, a representative example is TinyOS [15] and the ac-
companying nesC language.

Very recently, to provide high flexibility and for adding new and advanced
functions to WSN middleware, the service-oriented approach has been applied
to sensor environments [7,10]. The common idea of these approaches is that,
in a sensor application, there are several common functionalities that are gen-
erally irrelevant to the main application. For example, most services will have
to support service registries and discovery mechanisms and they will also need
to provide some level of abstraction to hide the underlying environments and
implementation details. Furthermore, all applications need to support some lev-
els of reliability, performance, security, and QoS. All of these can be supported
and made available through a common middleware platform instead of having
to incorporate them into each and every service and application developed.

In this context, the OSGi technology [1] defines a standardized, componen-
t/service oriented, computing environment for networked services. Enabling a
networked device with an OSGi framework adds the capability to manage the
life cycle of the software components in the device from anywhere in the net-
work without ever having to disrupt the operation of the device. In addition, the
service oriented paradigm allows for a more smooth integration with Cloud plat-
forms and for advanced discovery mechanisms also employing semantic
technologies [4].

3 The SNPS Middleware

This section presents the proposal for a middleware devised to lay on the phys-
ical layer of wireless sensors, abstract away the sensors’ specific features, and

4 G. Di Modica, F. Pantano, and O. Tomarchio

turn sensors into smart and composable services accessible through the Internet
in an easy and standardized way. The middleware was designed to follow the ba-
sic principles of the IoT paradigm [9]. Sensors are not just sources of raw data,
but are seen like smart objects capable of providing services like filtering, com-
bining, manipulating and delivering information that can be readily consumed
by any other entity over the Internet according to well-known and standardized
techniques.

Primary goal of the middleware, which we called Sensor Node Plug-in System
(SNPS), is to bring any physical sensor (actuator) on an abstraction level that
allows for easier and standardized management tasks (switch on/off, sampling),
in a way that is independent of the proprietary sensor’s specification. By the time
a sensor is “plugged” into the middleware, it will constitute a resource/service
capable of interacting with other resources (be them other sensors plugged into
the middleware or third party services) in order to compose high-value services
to be accessed in SOA-fashion. The middleware also offers a set of complimentary
services and tools to support the management of the entire life cycle of sensors
and to sustain the overall QoS provided by them.

Basically, the SNPS can be said to belong to the category of the service-
oriented middlewares [13]. In fact, the provided functionality are exposed through
a service-oriented interface which grants for universal access and high interoper-
ability. Yet, all data and information gathered by sensors are stored in a database
that is made publicly accessible and can be queried by third party applications.
Further, the SNPS also support asynchronous communication by implementing
the exchange of messages among entities (sensors, components, triggers, external
services). All these features makes the middleware flexible to any application’s
need in any execution environment.

At design time it was decided not to implement the entire middleware from
scratch. A scouting was carried out in order to identify the software frame-
work that best supported, in a native way, all the characteristics of flexibility
and modularity required by the project. Eventually, the OSGi framework[1] was
chosen. The OSGi framework implements a component-oriented model, which
natively supports the component’s life cycle management, the distribution of
components over remote locations, the seamless management of components’
inter-dependencies, and the asynchronous communication paradigm.

The SNPS middleware was then organized into several components, and each
component was later implemented as a software module (or “bundle”) within
the OSGi framework. Figure 1 depicts the architecture of the middleware and
its main components.

The overall architecture can be broken down into three macro-blocks: Sensor
Layer Integration, Core and related Components, Web Service Integration. In
the following we provide a description of each macro-block.

SNPS: An OSGi-Based Middleware for Wireless Sensor Networks 5

Fig. 1. SNPS architecture

3.1 Core and Related Components

The components we are about to discuss are charged the responsibility of provid-
ing most of the middleware’s functionality. In Figure 2 the connections among
the components are depicted.

Core. It is where the business logic of the Middleware resides. The Core acts
as an orchestrator who coordinates the middleware’s activities. Data and com-
mands flowing forth and back from the web service layer to the sensor layer are
dispatched by the Core to the appropriate component.

Fig. 2. Core and related Components

6 G. Di Modica, F. Pantano, and O. Tomarchio

Registry. It is the component where all information about sensors, middleware’s
components and provided services are stored and indexed for search purpose.
As for the sensors, data regarding the geographic position and the topology
of the managed wireless sensor networks are stored in the Registry. Also, each
working component needs to signal its presence and functionality to the Registry,
which will have to make this information public and available so that it can be
discovered by any other component/service in the middleware.

Processor. It is the component responsible for the manipulation of the data flow
coming from the sensors. In particular, it provides a service to set and enforce
a sampling plan on a single sensor or on an aggregate of sensors. Also, this
component can be instructed to process data according to specific processing
templates.

Composer. It represents the component which implements the sensors’ compo-
sition service. Physical sensors can be “virtualized” and are given a uniform
representation which allows for “aggregating” multiple virtualized sensors into
one sensor that will eventually be exposed to applications. An insight and prac-
tical examples about this functionality are provided in Section 5.

Event Manager. It is one of the most important components of the middleware.
It provides a publish/subscribe mechanism which can be exploited by every mid-
dleware’s component to implement asynchronous communication. Components
can either be producers (publishers) or consumers (subscribers) of every kind
of information that is managed by the middleware. This way, data flows, alerts,
commands are wrapped into “events” that are organized into topics and are
dispatched to any entity which has expressed interest in them.

DAO. It represents the persistence layer of the middleware. It exposes APIs that
allow service requests to be easily mapped onto storage or search calls to the
database.

3.2 Sensor Layer Integration

The Sensor Layer Integration (SLI) represents the gateway connecting the mid-
dleware to the physical sensors. It implements a bidirectional communication
channel (supporting commands to flow both from the middleware to the sensors
and from the sensors to the middleware as well and a data channel (for data
that are sampled by sensors and need to go up to the middleware).

The addressed scenario is that of wireless sensor networks implemented through
so called Base Stations (BS) to whichmultiple sensors are “attached”. ABS imple-
ments the logic for locally managing its attached sensors. Sensors can be wiredly
or wirelessly attached to a BS, forming a network which is managed according to
specific communication protocols, which are out of our scope. The SLI will then
interact just with the BS, which will only expose its attached sensors hiding away
the issues related to the networking.

SNPS: An OSGi-Based Middleware for Wireless Sensor Networks 7

The integration is realized by means of two symmetrical bundles, which are
named respectively Middleware Gateway bundle (iMdmBundle) and WSN Gate-
way Bundle (iWsnBundle). The former lives in the middleware’s runtime con-
text, and was thought to behave as a gateway for both commands and data
coming from the BSs and directed to the middleware; the latter lives (runs) in
the BS’s runtime context, and forwards commands generated by the middleware
to the BSs. Since the middleware and the BSs may be attached to different
physical networks, the communication between the two bundles is implemented
through a remote ”OSGI Context”, which is a specific OSGi’s features allowing
bundles living in different runtime contexts to communicate to each other’s. In
Figure 3 the two bundles and their respective runtime contexts are shown.

Fig. 3. OSGi bundles implementing the Sensor Layer Integration

The SLI was designed to work with any kind of BS, independently of the pe-
culiarity of the sensors it manages, with the aim of abstracting and uniforming
the access to sensors’ functionality. Uniforming the management of the sensors’
life cycle does not mean giving up the specific capabilities of sensors. Physical
sensors will maintain the way they work and their peculiar features (in terms,
for instance, of maximum sampling rate, sampling precision, etc.). But, in order
for sensors (read base stations) to be pluggable into the middleware and be com-
pliant to its management logic, a minimal set of requirements must be satisfied:
the iWsnBundle to be deployed on the specific BS will have to interface to the
local BS’ logic and implement the functionality imposed by the SNPS middle-
ware (switch on/off sensors, sample data, run sampling plan) by invoking the
proprietary base station’s API.

8 G. Di Modica, F. Pantano, and O. Tomarchio

3.3 Web Service Integration

As depicted in Figure 4, the OSGi bundle Wrapper exports the functionality of
the SNPS middleware to a Web Service context.

Fig. 4. Wrapping and exposing SPNS as a Web Service

SNPS services can be invoked from any OSGi compliant context. On the
other hand, making the SNPS accessible as a plain Web Service will make its
services profitable for a great number of applications in several domains. The
functionality implemented by the SNPS’ bundles have been packaged into the
following categories of services:

– Search for sensors;
– Retrieve sensors capabilities and sensors data;
– Compose sensors;
– Send commands to sensors (enable/disable, set a sampling plan).

4 SNPS Data Model

The SNPS data model is one of the most interesting features of the middleware.
Goals like integration, scalability, interoperability are the keys that drove the
definition of the model at design time. The objective was then to devise a data
model to structure both sensors’ features (or capabilities) and data produced by
sensors. The model had to be rich enough to satisfy the multiple needs of the
middleware’s business logic, but at the same time had to be light and flexible to
serve the objectives of performance and scalability. We surveyed the literature
in order to look for any proposal that might fit the middleware’s requirement.
Specification like SensorML and O&M [2] seam to be broadly accepted and
widely employed in many international projects and initiatives. SensorML is

SNPS: An OSGi-Based Middleware for Wireless Sensor Networks 9

an XML-based language which can be used to describe, in a relatively simple
manner, sensors capabilities in terms of phenomena they are able to offer and
other features of the specific observation they are able to implement. O&M is
a specification for describing data produced by sensors, and is XML-based as
well. XML-based languages are known to be hard to treat, and in many cases
the burden for the management of XML-based data overcomes the advantage of
using rigorous and well-structured languages. We therefore opted for a solution
that calls on a reduced set of terms of the SensorML specification to describe
the sensor capabilities, and makes use of a much lighter JSON[6] format to
structure the data produced by sensors. An excerpt of what a description of
sensor capabilities look like is depicted in Figure 5.

Fig. 5. Description of sensor capabilities in SensorML

This is the basic information that must be attached to any sensor before it is
plugged into the middleware. Among others, it carries data regarding the phe-
nomena being observed, the sampling capabilities, and the absolute geographic
position. When the sensor wakes up, it sends this information to the middleware,
which will register the sensor to the Registry bundle, and produce its virtual-
ized image, i.e., a software alter-ego of the physical sensor which lives inside the
middleware run-time. The virtual sensor has a direct connection with the phys-
ical sensor. Each interaction involving the virtual sensor will produce effects on

10 G. Di Modica, F. Pantano, and O. Tomarchio

the physical sensor too. It is important to point out that all virtual sensors are
treated uniformly by the middleware’s business logic.

Furthermore, SensorML is by its nature a process-oriented language. Starting
from the atomic process, it is possible to build the so-called process chain. We
exploited this feature to implement one of the main service provided by the
SNPS, i.e., the sensors’ composition service (see Section 5 for more details).
This service, in fact, makes use of this feature to elaborate on measurements
gathered by multiple sensors.

As regards the definition of the structure for sensor data, JSON was chosen
because it ensures easier and lighter management tasks. The middleware is de-
signed to handle (sample, transfer, store, retrieve) huge amounts of data, with
the ambitious goal to also satisfy the requirements of real-time applications.
XML-based structures are known to cause overhead in communication, storage
and processing tasks, and therefore they do not absolutely fit our purpose. An-
other strong point of JSON is the ease of writing and analyzing data, which
greatly facilitates the developer’s task. A data sampled by a sensor will then be
put in the following form:

Sensor Measure :
{

‘ ‘ SensorId ’ ’ : ‘ ‘ value ’ ’ ,
‘ ‘ data ’ ’ : ‘ ‘ value ’ ’ ,
‘ ‘ type ’ ’ : ‘ ‘ value ’ ’ ,
‘ ‘ timestamp ’ ’ : ‘ ‘ value ’ ’

}

5 Building and Composing Virtual Sensors

Sensor Composition is the most important feature of the SNPS middleware.
Simply said, it allows to get complex measurements starting from the samples of
individual sensors. This composition service is provided by the Composer bundle
(see Figure 1).

An important prerequisite of the composition is the sensor “virtualization”,
which is a procedure performed when a sensor is plugged into the SNPS mid-
dleware (see Section 3.2). Aggregates of sensors can be built starting from their
software images (virtual sensors) that live inside the SNPS middleware. There-
fore, in order to create a new composition (or aggregate) of sensors, the individual
virtual sensors to be combined need to be first selected. Secondly, the operation
that is to be applied to sensor’s measurements must be specified. This is done by
defining the so-called Operator, which is a function that defines the expected in-
put and output formats of the operation being performed. The final composition
is obtained by just applying the Operator to the earlier chosen virtual sensors.
By that time, a new virtual sensor (the aggregate) is available in the system,
and is exposed as a new sensor by the middleware.

SNPS: An OSGi-Based Middleware for Wireless Sensor Networks 11

Let us figure out a practical use case of sensor composition. Imagine that there
are four temperature sensors available in four different rooms of an apartment.
An application would like to know about the instant average temperature of the
apartment. A new sensor can be built starting from the four temperature sensors
applying the average operator, as depicted in Figure 6.

Fig. 6. Average operator

In this specific case, the input sensors are homogeneous. The middleware also
provides for the composition of heterogeneous sensors (e.g., temperature, humid-
ity, pressure, proximity), provided that the operator’s I/O scheme is adequately
designed to be compatible with the sensors’ measurement types.

6 Conclusion

The size of data produced by sensors and sensor networks deployed worldwide is
growing at a rate that current data analysis tools are not able to follow. Sources
of data are multiplying on the Internet (think about smart devices equipped with
photo/video cameras). There is a plethora of sensor devices producing informa-
tion of any kind, at very high rates and according to proprietary specification.
This complicates a lot the task of data analysis and manipulation. In this pa-
per we have proposed a solution that aims to ease these tasks. What we have
proposed is not just an early-stage idea but a concrete middleware that imple-
ments a mechanism to abstract sensors away from their proprietary interfaces
and structure, and offers tool to aggregate and expose sensors and sensor data
in the form of services to be accessed in SOA fashion. A prototype of the mid-
dleware has been implemented. In the future we are going to conduct extensive
experiments to test the scalability and the performance of the middleware in
distributed (even geographic) contexts.

12 G. Di Modica, F. Pantano, and O. Tomarchio

Acknowledgments. This work has been partially funded by the Italian project
“Sensori” (Industria 2015 - Bando Nuove Tecnologie per il Made in Italy) - Grant
agreement n. 00029MI01/2011.

References

1. OSGi Alliance: Open Service Gateway initiative, OSGi (2013),
http://www.osgi.org/

2. Botts, M., Percivall, G., Reed, C., Davidson, J.: OGC Sensor Web Enablement:
Overview and high level architecture. In: Nittel, S., Labrinidis, A., Stefanidis, A.
(eds.) GSN 2006. LNCS, vol. 4540, pp. 175–190. Springer, Heidelberg (2008)

3. Costa, P., Coulson, G., Gold, R., Lad, M., Mascolo, C., Mottola, L., Picco, G.P.,
Sivaharan, T., Weerasinghe, N., Zachariadis, S.: The runes middleware for net-
worked embedded systems and its application in a disaster management scenario.
In: Fifth Annual IEEE International Conference on Pervasive Computing and Com-
munications (PerCom 2007), pp. 69–78. IEEE Computer Society (2007)

4. Di Modica, G., Tomarchio, O., Vita, L.: A P2P based architecture for Semantic Web
Service discovery. International Journal of Software Engineering and Knowledge
Engineering 21(7), 1013–1035 (2011)

5. Hadim, S., Mohamed, N.: Middleware: Middleware challenges and approaches for
wireless sensor networks. IEEE Distributed Systems Online 7(3), 1 (2006)

6. IEEE Network Working Group: JavaScript Object Notation, JSON (2006),
http://www.ietf.org/rfc/rfc4627.txt?number=4627

7. Issarny, V., Georgantas, N., Hachem, S., Zarras, A., Vassiliadist, P., Autili, M.,
Gerosa, M.A., Hamida, A.B.: Service-oriented middleware for the Future Internet:
state of the art and research directions. Journal of Internet Services and Applica-
tions 2(1), 23–45 (2011)

8. Madden, S.R., Franklin, M.J., Hellerstein, J.M., Hong, W.: Tinydb: an acquisitional
query processing system for sensor networks. ACM Trans. Database Syst. 30(1),
122–173 (2005)

9. Miorandi, D., Sicari, S., Pellegrini, F.D., Chlamtac, I.: Internet of things: Vision,
applications and research challenges. Ad Hoc Networks 10(7), 1497–1516 (2012)

10. Mohamed, N., Al-Jaroodi, J.: A survey on service-oriented middleware for wireless
sensor networks. Service Oriented Computing and Applications 5(2), 71–85 (2011)

11. Mottola, L., Picco, G.P.: Programming wireless sensor networks: Fundamental con-
cepts and state of the art. ACM Comput. Surv. 43(3), 19:1–19:51 (2011)

12. OGC: Sensor Web Enablement, SWE (2013),
http://www.opengeospatial.org/ogc/markets-technologies/swe/

13. Papazoglou, M.P., van den Heuvel, W.J.: Service Oriented Architectures: ap-
proaches, technologies and research issues. VLDB Journal 16(3), 389–415 (2007)

14. Sugihara, R., Gupta, R.K.: Programming models for sensor networks: A survey.
ACM Trans. Sen. Netw. 4(2), 8:1–8:29 (2008)

15. TinyOS community: TinyOS (2013), http://www.tinyos.net/

http://www.osgi.org/
http://www.ietf.org/rfc/rfc4627.txt?number=4627
http://www.opengeospatial.org/ogc/markets-technologies/swe/
http://www.tinyos.net/

CoSIP: A Constrained Session Initiation

Protocol for the Internet of Things

Simone Cirani, Marco Picone, and Luca Veltri

Department of Information Engineering
University of Parma

Viale G.P. Usberti, 181/A
43124 Parma, Italy

{simone.cirani,marco.picone,luca.veltri}@unipr.it

Abstract. The Internet of Things (IoT) refers to the interconnection of
billions of constrained devices, denoted as “smart objects” (SO), in an
Internet-like structure. SOs typically feature limited capabilities in terms
of computation and memory and operate in constrained environments,
such low-power lossy networks. As IP has been foreseen as the standard
for smart-object communication, an effort to bring IP connectivity to
SOs and define suitable communication protocols (i.e. CoAP) is being
carried out within standardization organisms, such as IETF. In this pa-
per, we propose a constrained version of the Session Initiation Protocol
(SIP), named “CoSIP”, whose intent is to allow constrained devices to in-
stantiate communication sessions in a lightweight and standard fashion.
Session instantiation can include a negotiation phase of some parame-
ters which will be used for all subsequent communication. CoSIP can be
adopted in several application scenarios, such as service discovery and
publish/subscribe applications, which are detailed. An evaluation of the
proposed protocol is also presented, based on a Java implementation of
CoSIP, to show the benefits that its adoption can bring about, in terms
of compression rate with the existing SIP protocol and message overhead
compared with the use of CoAP.

Keywords: Internet of Things, service discovery, communication pro-
tocols, constrained applications, SIP, CoAP.

1 Introduction

The Internet of Things (IoT) refers to the interconnection of billions of con-
strained devices, denoted as “smart objects” (SO), in an Internet-like structure.
Smart objects have limited capabilities, in terms of computational power and
memory (e.g., 8-bit microcontrollers with small amounts of ROM and RAM),
and might be battery-powered devices, thus raising the need to adopt particu-
larly energy efficient technologies. Smart objects typically operate in constrained
networks which often have high packet error rates and a throughput of tens of
kbit/s. In order to interconnect smart objects, it is required to use standard
and interoperable communication mechanisms. The use of IP has been foreseen

C. Canal and M. Villari (Eds.): ESOCC 2013, CCIS 393, pp. 13–24, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

14 S. Cirani, M. Picone, and L. Veltri

as the standard for interoperability for smart objects by standardization organ-
isms, such as the IETF and the IPSO Alliance. As billions of smart objects
are expected to come to life and IPv4 addresses have eventually reached deple-
tion, IPv6 has been identified as a candidate for smart-object communication.
Within the IETF, several working groups have been set in order to address the
issues related to smart-object communication. The IETF 6LoWPAN Working
Group is defining encapsulation and other adaptation mechanisms to allow IPv6
packets to be sent to and received from over Low power Wireless Personal Area
Networks, such as those based on IEEE 802.15.4. For the application layer, the
IETF CoRE Working Group is currently defining a Constrained Application
Protocol (CoAP) [1], to be used as a generic web protocol for RESTful con-
strained environments, targeting Machine-to-Machine (M2M) applications, and
that can be seen as a compressed version of HTTPCoAP includes the follow-
ing features: request/response interaction model between application endpoints,
built-in discovery of services and resources and key concepts of the Web such as
URIs and Internet media types.

As CoAP is designed to be used by constrained nodes, such as duty-cycled
devices, in constrained environments, CoAP uses UDP as a lightweight trans-
port. Besides a request/response communication paradigm, CoAP also supports
a publish/subscribe paradigm, by letting CoAP clients to “observe” resources.
When observing resources, the CoAP server, following client’s subscription, sends
multiple responses to the client. There are many other applications in both con-
strained and non-constrained environments that feature non-request/response
communication model. Some of these applications require the creation and man-
agement of a session. A session is an exchange of data between an associa-
tion of participants. The Session Initiation Protocol (SIP) [2] is an Internet
application-layer control protocol which aims at enabling the endpoints of the
communication to create, modify, and terminate multimedia sessions, such as
VoIP calls, multimedia conferences, or any point-to-multipoint data distribution
communications. Once a multimedia session has been established, the media are
transmitted typically by using other application-layer protocols, such as RTP
and RTCP, or as raw UDP data, directly between the endpoints, in a peer-to-
peer fashion. SIP is a text protocol, similar to HTTP, which can run on top of
several transport protocols, such as UDP (default), TCP, or SCTP, or on top
of secure transport protocol such as TLS and DTLS. Session parameters are
exchanged as SIP message payloads; a standard protocol used for this purpose
is the Session Description Protocol.The SIP protocol also supports intermediate
network elements which are used to allow endpoint registration and session es-
tablishment, such as SIP Proxy servers and Registrar servers. SIP also defines
the concepts of transaction, dialog, and call as groups of related messages, at
different abstraction layers. As asserted before, also in constrained environments,
establishing a session is a likely event to occur, as communication between nodes
might go beyond simple request/response pairs, as accomplished by using CoAP.
Although in principle CoAP encapsulation could be used also for carrying data
in non-request/response fashion, for example by using CoAP POST request in

CoSIP: A Constrained Session Initiation Protocol for the Internet of Things 15

non-confirmable mode, it could be much more efficient to instantiate a session
between constrained nodes first, while negotiating some parameters for subse-
quent communication, and then perform a more lightweight communication by
using the session parameters already negotiated, rather then having to carry on
the burden of CoAP headers, which in most cases would end up being equal in
any request/response. Such session initiation could be still performed through
the standard SIP protocol, also in constrained environments. Moreover, SIP and
its extensions, such as event notification [3], already include mechanisms that
are being defined for CoAP, such as observing resources [4], which allows for
a subscribe/notify communication paradigm, and resource directory [5], which
can be used for resource discovery. For this reason, SIP appears to be a suitable
alternative to many mechanisms defined in CoAP and related proposals that
might be used to address these issues.The main drawback of using standard SIP
protocol in constrained environments is the large size of text-based SIP mes-
sages (compared to other binary protocols such CoAP), and the processing load
required for parsing such messages.

For this reason, in this paper, we propose a constrained version of the Session
Initiation Protocol, named “CoSIP”, whose intent is to allow constrained devices
to instantiate communication sessions in a lightweight and standard fashion and
can be adopted in M2M application scenarios. Session instantiation can include
a negotiation phase of some parameters which will be used for all subsequent
communication. CoSIP is a binary protocol which maps to SIP, similarly to
CoAP and HTTP. CoSIP can be adopted in several application scenarios, such
as service discovery and publish/subscribe applications.

The rest of this paper is organized as follows. In Section 2, an overview of
related works is presented. In Section 3, the CoSIP protocol is detailed together
with its architecture and preliminary implementation. Use cases for CoSIP-based
applications in Internet of Things scenarios are presented in Section 4 and a
performance evaluation of the proposed protocol is shown in Section 5. Finally,
in Section 6 we draw our conclusions.

2 Related Work

Smart objects typically are required to operate using low-power and low-rate
communication means, featuring unstable (lossy) links, such as IEEE 802.15.4,
usually termed Low-power Wireless Personal Area Networks (LoWPANs) or
Low-power and Lossy Networks (LLNs). The Internet Engineering Task Force
(IETF) has setup several working groups in order to address many issues re-
lated to bringing IP connectivity to LoWPAN smart objects. In particular, the
6LoWPAN (IPv6 over Low power WPAN) WG was chartered to work on defin-
ing mechanisms that optimize the adoption of IPv6 in LoWPANs and the ROLL
(Routing Over Low power and Lossy networks) WG was chartered to develop
optimal IPv6 routing in LLNs. Finally, the CoRE (Constrained RESTful Envi-
ronments) WG has been chartered to provide a framework for RESTful appli-
cations in constrained IP networks. The CoRE WG is working on the definition

16 S. Cirani, M. Picone, and L. Veltri

of a standard application-level protocol, named CoAP, which can be used to let
constrained devices communicate with any node, either on the same network
or on the Internet, and provides a mapping to HTTP REST APIs. CoAP is
intended to provide, among others, Create-Read-Update-Delete (CRUD) primi-
tives for resources of constrained devices and publish/subscribe communication
capabilities. While the work on CoAP is already at an advanced stage, the CoRE
WG is also investigating mechanisms for discovery and configuration, but the
work on these issues is still at an early stage and therefore open to proposals.
The “observer” CoAP extension [4] allows to let CoAP clients observe resources
(subscribe/notify mechanism) and be notified when the state of the observed re-
source changes. This approach requires the introduction of a new CoAP Observe
option to be used in GET requests in order to let the client register its interest
in the resource. The server will then send “unsolicited” responses back to the
client echoing the token specified by the client in the GET request and reporting
an Observe option with a sequence number used for reordering purposes. As we
will describe later, we envision that the instantiation of a session could signifi-
cantly reduce the amount of transmitted bytes, since, after the session has been
established, only the payloads could be sent to the observer, thus eliminating the
overhead due to the inclusion of the CoAP headers in each notification message.

As for service discovery, the CoRE WG has defined a mechanism, denoted as
Resource Directory (RD) [5], to be adopted in M2M applications. The use of a
RD is necessary because of the impracticality of a direct resource discovery, due
to the presence of duty-cycled nodes and unstable links in LLNs. The registration
of a resource in the RD is performed by sending a POST request to the RD,
while the discovery can be accomplished by issuing a GET request to the RD
targeting the .well-known/core URI. This discovery mechanism is totally self-
contained in CoAP as it uses only CoAP messages. The adoption of the CoSIP
protocol provides an alternative mechanism to register resources on a RD, which
may be also called CoSIP Registrar Server. The advantage of using a CoSIP
based registration mechanism is that it might be possible to register resources
other than those reachable through CoAP, thus providing a scalable and generic
mechanism for service discovery in constrained applications with a higher degree
of expressiveness, such as setting an expiration time for the registration.

3 CoSIP

As described in Section 1, in both constrained and non-constrained environments
there are many applications that may require or simply may obtain advantages
by negotiating end-to-end data sessions. In this case the communication model
consists in a first phase in which one endpoint requests the establishment of a
data communication and, optionally, both endpoints negotiate some communi-
cation parameters (transfer protocols, data formats, endpoint IP addresses and
ports, encryption algorithms and keying materials, and other application specific
parameters) of the subsequent data sessions. This may be useful for both client-
server or peer-to-peer applications, regardless the data sessions evolve or not

CoSIP: A Constrained Session Initiation Protocol for the Internet of Things 17

according to a request/response model. The main advantage is that all such pa-
rameters, including possible resource addressing, may be exchanged in advance,
while no such control information is required during data transfer. The longer
the data sessions, the more the advantage is evident respect to a per-message
control information. Also in case of data sessions that may vary formats or other
parameters during time, such adaptation may be supported by performing ses-
sion renegotiation. A standard way to achieve all this onto an IP-based network
may be by using the Session Initiation Protocol [2]. In fact SIP has been de-
fined as standard protocol for initiating, modifying and tearing down any type
of end-to-end multimedia sessions. SIP is independent from the protocol used
for data transfer and from the protocol used for negotiating the data transfer
(such negotiation protocol can be encapsulated transparently within the SIP
exchange). In order to simplify the implementation, SIP reuses the same mes-
sage format and protocol fields of HTTP. However, differently from HTTP, SIP
works by default onto UDP, by directly implementing all mechanisms for a re-
liable transaction-based message transfer. This is an advantage in duty-cycled
constrained environment where some problems may arise when trying to use
connection-oriented transports, such as TCP. However, SIP may also run onto
other transport protocols such as TCP, SCTP, TLS or DTLS. Unfortunately
SIP derives from HTTP the text-based protocol syntax that, even if it simplifies
the implementation and debugging, results in larger message sizes and bigger
processing costs (and source code size / RAM footprint) required for message
parsing. Note that the SIP standard defines also a mechanism for reducing the
overall size of SIP messages; this is achieved by using a compact form of some
common header field names. However, although it allows a partial reduction of
the message size, it may still result in big messages, especially if compared to
other binary formats, for example those defined for CoAP. For this reason we
tried to define and implement a new message format for SIP in order to take
advantages of the functionalities already defined and supported by SIP and by a
new binary and very compact message encoding. We naturally called such new
protocol CoSIP, that stands for Constrained Session Initiation Protocol, or, sim-
ply, Constrained SIP. Due to the protocol similarities between SIP and HTTP,
in order to maximize the reuse of protocol definitions and source code implemen-
tations, we decide to base CoSIP onto the same message format that has been
defined for CoAP, thanks to the role that CoAP plays respect to HTTP. How-
ever, it is important to note that, while CoAP required to define new message
exchanges, mainly due to the fact that CoAP need to operated in constrained
and unreliable networked scenario over UDP transport protocol, while HTTP
works over TCP, CoSIP may completely reuse all SIP message exchanges and
transactions already defined by the SIP standard, since SIP already works over
unreliable transport protocols (e.g. UDP).

SIP is structured as a layered protocol, where at the top there is the concept
of dialog, that is a peer-to-peer relationship between two SIP nodes that persists
for some time and facilitates sequencing of different request-response exchanges
(transactions). In CoAP there is no concept equivalent to SIP dialogs, and, if

18 S. Cirani, M. Picone, and L. Veltri

needed, it has to be explicitly implemented at application level. Under the dia-
log there is the transaction layer, that is the message exchange that comprises a
client request, the following optional server provisional responses and the server
final response. The concept of transaction is also present in CoAP where requests
and responses are bound and matched through a token present as message header
field. Under the transaction there is the messaging layer where messages are ef-
fectively formatted and sent through an underlying non-SIP transport protocol
(such as UDP or TCP). Instead of completely re-designing a session initiation
protocol for constrained environments, we propose to reuse the SIP layered ar-
chitecture of SIP, by simply re-defining the messaging layer with a constrained-
oriented binary encoding. For such a purpose, we propose to reuse the same
CoAP message syntax [1]. Figure 1(a) shows the CoSIP message format derived
by CoAP. A CoSIP message starts with the 2-bit Version field (1), followed by
the 2-bit Type field (1 = Non-confirmable), the 4-bit CoAP TKL field (set to
0), the 8-bit Code field that encode request methods (for request messages) and
response codes (for response messages), the 16-bit CoAP Message ID field, fol-
lowed by zero or more Option fields. In case a CoSIP message body is present,
as in CoAP it is appended after Options field, prefixed by an 1-byte marker
(0xFF) that separates CoSIP header and payload. Options are encoded as in
CoAP in Type-Length-Value (TLV) format and encode all CoSIP header fields
(From, Via, Call-ID, etc.) included in the CoSIP message. For each header field
a different option number has been set. In order to increase the SIP-to-CoSIP
compression ratio, alternatively of encoding the header field value as an opaque
byte string, a per SIP header field encoding rule has been also defined.

(a) (b)

Fig. 1. CoSIP Protocol: (a) CoSIP message format; (b) Comparison of the layered
architectures of SIP (a) and CoSIP (b)

Since CoSIP re-uses the transaction layer of SIP, no CoAP optional Token
field is needed [1] and the TKL (Token Length) field can be permanently set
to 0. Moreover, since CoSIP already has reliable message transmission (within
the transaction layer), no Confirmable (0), Acknowledgement (2) nor Reset (3)
message types are needed, and the only type of message that must be supported
is Non-confirmable (1).

The comparison of the layered architecture of CoSIP and SIP is shown in
Figure 1(b). One problem in reusing the current CoAP message format [1] is

CoSIP: A Constrained Session Initiation Protocol for the Internet of Things 19

that in CoAP the 8-bit Code field is used to encode all possible request methods
and response codes. In particular, for response messages the 8-bit Code field
is divided by CoAP into two sub-fields “class” (3 bits) and “details” (5 bits);
the upper three bits (“class”) encodes the CoAP response classes 2xx (Success),
4xx (Client Error), and 5 (Server Error), while the remaining 5 bits (“details”)
encode the sub-type of the response within a given class type. For example a 403
“Forbidden” response is encoded as 4 (“class”) and 03 (“details”). Unfortunately,
this method limits the number of possible response codes that can be used (for
example, using only 5 bits for “details” does not allow the direct encoding of
response codes such as 480 “Temporarily Unavailable” or 488 “Not Acceptable
Here”). In CoSIP, we overcome this problem by encoding within the Code field
only the response class (2xx, 4xx, etc.) and by adding an explicit Option field
that encodes the response sub-type. Moreover, in order to support all SIP/CoSIP
response codes we also added the classes 1xx (Provisional) and 3xx (Redirect)
used in SIP.

4 IoT Application Scenarios

In this section, we will describe the most significant for IoT applications, in-
tended to provide an overview of the capabilities and typical usage of the CoSIP
protocol. In all the scenarios, we consider a network element, denoted as “IoT
Gateway”, which includes also a HTTP/CoAP proxy, which can be used by
nodes residing outside the constrained network to access CoAP services.

4.1 CoAP Service Discovery

CoSIP allows smart objects to register the services they provide to populate
a CoSIP Registrar Server, which serves as a Resource Directory. The terms
“Registrar Server” and “Resource Directory” are here interchangeable. Figure 2
shows a complete service registration and discovery scenario enabled by CoSIP.
We consider a smart object that includes a CoAP server, which provides one or
more RESTful services, and a CoSIP agent, which is used to interact with the
CoSIP Registrar Server. The smart object issues a REGISTER request (denoted
with the letter “a” in the figure) which includes registration parameters, such as
the Address of Record (AoR) of the CoAP service and the actual URL that can
be used to access the resource (Contact Address). Note that, while the original
SIP specification states that the To header MUST report a SIP or SIPS URI,
CoSIP allows to specify any scheme URI in the To header, e.g. a CoAP URI.
Upon receiving the registration request, the Registrar Server stores the AoR-
to-Contact Address mapping in a Location Database and then sends a 200 OK

response. When a REST client, either CoAP or HTTP, is willing to discover the
services, it can issue a GET request targeting the .well-known/core URI, which
is used as a default entry point to retrieve the resources hosted by the Resource
Directory, as defined in [6]. The GET request is sent to the HTTP/CoAP proxy,
which returns a 200 OK (in case of HTTP) or a 2.05 Content (in case of CoAP)
response containing the list of services in the payload.

20 S. Cirani, M. Picone, and L. Veltri

Fig. 2. CoAP Service Discovery

4.2 Session Establishment

A session is established when two endpoints need to exchange data. CoSIP al-
lows the establishment of session in a standard way without binding the session
establishment method to a specific session protocol. For instance, CoSIP can
be used to negotiate and instantiate a RTP session between constrained nodes.
Once a session has been established, the data exchange between the endpoints
occurs (logically) in a peer-to-peer fashion. Figure 3 shows how CoSIP can be
used to establish a session between two endpoints. Let’s assume an IoT Agent
(IoT-A1) identified by the CoSIP URI cosip:user1@domain, which includes at
least a CoSIP agent, has registered its contact address to an IoT Gateway in the
same way as described in the previous subsection (steps 1 and 2). If another IoT-
A2 cosip:user2@domain wants to establish a session with IoT-A1, it will send
a proper INVITE request to the IoT Gateway, which will act as a CoSIP Proxy
relaying the request to IoT-A1 (steps 3 and 4). IoT-A1 will then send a 200 OK

response to IoT-A2 (steps 5 and 6), which will finalize the session creation by
sending an ACK message to IoT-A2 (steps 7 and 8). At this point the session has
been setup and data flow between IoT-A1 and IoT-A2 can occur directly. The
session establishment process can be used to negotiate some communication pa-
rameters, for instance by encapsulating Session Description Protocol (SDP) or
equivalent in the message payload.

4.3 Subscribe/Notify Applications

IoT scenarios typically involve smart objects which might be battery-powered
devices. It is crucial to adopt energy-efficient paradigms, e.g. OS tasks, applica-
tion processing, and communication. In order to minimize the power consumed,
duty-cycled smart objects are adopted. Sleepy nodes, especially those operat-
ing in LLNs, aren’t guaranteed to be reached, therefore it is more appropriate
for smart objects to use a Subscribe/Notify, also denoted as Publish/Subscribe
(Pub/Sub), approach to send notifications regarding the state of their resources,
rather than receive and serve incoming requests. Such a behavior can be achieved

CoSIP: A Constrained Session Initiation Protocol for the Internet of Things 21

Fig. 3. CoSIP Session Establishment

by leveraging on the inherent capabilities of SIP, and therefore of CoSIP, as
sketched in Figure 4. The depicted scenarios considers several Pub/Sub interac-
tions: notifications can be sent either by a Notifier IoT Agent (IoT-AN) or by
an IoT Gateway, and subscribers can be either Subscriber IoT Agents (IoT-AS),
IoT Gateways, or generic Remote Subscribers. Let’s assume that all the notifiers
have previously registered with their CoSIP Registrar Server (this step is also
denoted as the Publishing phase in a typical Pub/Sub scenario). The standard
subscription/notification procedure is the following: i) the subscriber sends a
SUBSCRIBE request to the notifier, also specifying the service events it is inter-
ested in; ii) the notifier stores the subscriber’s and event information and sends
a 200 OK response to the subscriber; iii) whenever the notifier’s state changes,
it sends a NOTIFY request to the subscriber; iv) the subscriber sends a 200 OK

response back to the notifier.
Figure 4 reports all the use cases when a Pub/Sub might be used. An IoT-

AS can subscribe to the service of an IoT-AN in the same network, in case
it is willing to perform some task, such as data/service aggregation. The IoT
Gateway can subscribe to the IoT-AN ’s in order to collect sensed data, e.g. to
store them in the cloud, without the need to periodically poll for data. Finally,
the IoT Gateway itself might be a notifier for remote subscribers, which are
interested in notifications for specific services provided by the gateway, which
may or may not be the same of existing IoT-AN nodes managed by the gateway.
The adoption of CoSIP in IoT scenarios allows to easily set up efficient Pub/Sub-
based applications in a standard way, thus allowing for seamless integration and
interaction with the Internet.

5 Protocol Evaluation

In order to evaluate the performance of CoSIP, an implementation of the pro-
tocol has been developed together with some test applications. In this work,
we have decided to focus on network performance as a metric by measuring the
amount of network traffic generated by the test applications. The CoSIP protocol
has been implemented in Java language, due to its simplicity, cross-platform sup-
port, and the availability of already developed SIP and CoAP libraries [7,8]. The

22 S. Cirani, M. Picone, and L. Veltri

Fig. 4. Subscribe/Notify applications with CoSIP

source code of the CoSIP implementation is freely available at [9]. The perfor-
mance results show that many advantages can be achieved by using CoSIP, both
in constrained and non-constrained applications. The first evaluation compares
CoSIP and SIP in terms of bytes transmitted for the signalling part related to
the instantiation and termination of a session. Each CoSIP request and response
message is separately compared with its SIP counterpart. The results are illus-
trated in Figure 5(a). Table 1 shows the compression ratio for each CoSIP/SIP
message pair. Regarding the session as a whole, CoSIP yields an overall com-
pression ratio of slightly more than 0.55.

Table 1. Comparison between CoSIP and SIP signalling (bytes per message) for session
instantiation and establishment

Message type CoSIP (bytes) SIP (bytes) compression ratio

INVITE 311 579 0.537

100 Trying 141 279 0.505

180 Ringing 173 372 0.465

200 OK 293 508 0.577

ACK 216 363 0.595

BYE 183 309 0.592

200 OK 162 274 0.591

Another evaluation has been made to show the advantage of using session
in constrained applications. Figure 5(b) shows the amount of network traffic
(in bytes) generated by two constrained applications: the first application uses
CoSIP to establish a session and then performs the data exchange by send-
ing the payloads over UDP; the second is a standard CoAP-based application
where the communication occurs between a CoAP client and a CoAP server,
using confirmed CoAP POST requests. In both cases data is sent at the same
rate of one data message every 2 seconds. The figure shows that the lightweight
CoSIP session is instantiated in a very short period of time and after the session
has been established few bytes are exchanged between the endpoints. On the

CoSIP: A Constrained Session Initiation Protocol for the Internet of Things 23

other hand the CoAP-based application has no overhead at the beginning due
to the instantiation of the session but, soon after, the amount of traffic gener-
ated by this application exceeds that of the CoSIP-based application, since in the
CoAP-based scenario data is exchanged within CoAP messages resulting in an
unnecessary CoAP overhead. Note that in the depicted scenario the CoSIP sig-
naling used for session initiation includes all SIP header fields normally used in
standard non-constrained SIP application, that is no reduction in term of header
fields has been performed. Instead for the CoAP application we considered only
mandatory CoAP header fields resulting in the best-case scenario for CoAP in
term of CoAP overhead (minimum overhead). This means that in other CoAP
applications the slope of the line could become even steeper, thus reducing the
time when the break-even point with CoSIP is reached.

INVITE 100 Trying 180 Ringing 200 OK ACK BYE 200 OK
0

100

200

300

400

500

600

Session Message

M
es

sa
ge

 S
iz

e
[B

yt
es

]

CoSIP session
SIP session

(a)

0 50 100 150
0

200

400

600

800

1000

1200

1400

1600

Time [s]

T
ra

ns
m

itt
ed

 B
yt

es

CoAP

CoSIP

(b)

Fig. 5. Evaluation of the CoSIP Protocol: (a) transmitted bytes for CoSIP and SIP
session (signalling only); (b) transmitted bytes in a CoSIP Session vs. CoAP confirmed
POST requests and responses

6 Conclusions

In this paper, we have introduced a low-power protocol, named “CoSIP”, for
establishing sessions between two or more endpoints targeting constrained en-
vironments. Many applications, both in constrained and non-constrained sce-
narios, do benefit from establishing a session between the participants in order
to minimize the communication overhead and to negotiate some parameters re-
lated to the data exchange that will occur. The CoSIP protocol is a constrained
version of the SIP protocol intended to minimize the amount of network traffic,
and therefore energy consumption, targeted for IoT scenarios. A similar effort
in trying to minimize the amount of data in IoT and M2M applications is being
carried on in standardization organizations, such as the IETF CoRE Working
Group, which is currently defining a protocol (CoAP) to be used as a generic web
protocol for RESTful constrained environments and maps to HTTP. Similarly,
in this work we have proposed to apply the same approach to define a protocol

24 S. Cirani, M. Picone, and L. Veltri

for session instantiation, negotiation, and termination. We have described some
interesting IoT scenarios that might benefit from using such a protocol, namely
service discovery, session establishment, and services based on a subscribe/notify
paradigm. A Java-language implementation of CoSIP has been developed and
tested to evaluate the performance of the newly proposed protocol, by measur-
ing the amount of transmitted bytes compared to other solutions based on SIP
and CoAP respectively. The results show that applications that use CoSIP can
outperform other SIP- and CoAP-based applications in terms of generated net-
work traffic: SIP signalling can be compressed of nearly 50% and long-running
applications based on CoAP require less bytes to be transmitted since CoAP
options do not need to be sent along in each transmitted message, thus reduc-
ing the need for packet fragmentation (in 6LoWPAN networks) and the energy
consumption of the nodes involved in the data exchange.

Acknowledgments. The work of Simone Cirani and Luca Veltri is funded
by the European Community’s Seventh Framework Programme, area “Internet-
connected Objects”, under Grant no. 288879, CALIPSO project - Connect All
IP-based Smart Objects. The work reflects only the authors views; the Euro-
pean Community is not liable for any use that may be made of the information
contained herein.

References

1. Shelby, Z., Hartke, K., Bormann, C.: Constrained Application Protocol (CoAP).
IETF Internet-Draft draft-ietf-core-coap (May 2013),
http://tools.ietf.org/id/draft-ietf-core-coap

2. Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A., Peterson, J., Sparks,
R., Handley, M., Schooler, E.: SIP: Session Initiation Protocol. RFC 3261 (Proposed
Standard) (June 2002); Updated by RFCs 3265, 3853, 4320, 4916, 5393, 5621, 5626,
5630, 5922, 5954, 6026, 6141, 6665, 6878 (June 2002)

3. Roach, A.B.: Session Initiation Protocol (SIP)-Specific Event Notification. RFC
3265 (Proposed Standard) (June 2002); Obsoleted by RFC 6665, updated by RFCs
5367, 5727, 6446

4. Hartke, K.: Observing Resources in CoAP. IETF Internet-Draft draft-ietf-core-
observe (February 2013), http://tools.ietf.org/id/draft-ietf-core-observe

5. Shelby, Z., Krco, S., Bormann, C.: CoRE Resource Directory. IETF Internet-Draft
draft-ietf-core-resource-directory (June 2013),
http://tools.ietf.org/id/draft-ietf-core-resource-directory

6. Shelby, Z.: Constrained RESTful Environments (CoRE) Link Format. RFC 6690
(Proposed Standard) (August 2012)

7. mjSIP project, http://mjsip.org/
8. mjCoAP project, http://mjcoap.org/
9. CoSIP project, http://cosip.org/download/

http://tools.ietf.org/id/draft-ietf-core-coap
http://tools.ietf.org/id/draft-ietf-core-observe
http://tools.ietf.org/id/draft-ietf-core-resource-directory
http://mjsip.org/
http://mjcoap.org/
http://cosip.org/download/

Design of a Message-Oriented Middleware

for Cooperating Clouds

Maria Fazio, Antonio Celesti, and Massimo Villari

DICIEAMA, University of Messina,
Contrada Di Dio, 98166 Sant’Agata - Messina

{mfazio,acelesti,mvillari}@unime.it
http://mdslab.unime.it

Abstract. Nowadays, Cloud services are not always able to promptly
deal with the new emerging customers’ requirements. A possible solu-
tion to such a problem consists in developing a piece of middleware
able to combine available services in order to address different scenar-
ios. In this paper, we present a Message Oriented Middleware for Cloud
(MOM4C) able to arrange customizable Cloud facilities by means of a
flexible federation-enabled communication system. From the customer’s
the point of view, Cloud facilities are composed as well as a planetary
system model, in which the central star is the communication system
and planets are utilities (e.g., storage, computation, security, sensing,
data analytics, etc). More specifically, we describe the key features of
the proposed architecture and its applicability in different scenarios.

Keywords: message oriented middleware, cloud computing, federation,
service provisioning, planetary system model.

1 Introduction

The Cloud technology has reached an amazing level of complexity embracing
many application fields. In spite of the number of services and virtualization
tools that are rising on the market, often, many Cloud providers do not easily
find the right Cloud solutions that properly suit their business requirements. For
this reason, Cloud operators are looking for alternative approaches for the devel-
opment of next generation versatile mash-up applications. Such a need leads to
the necessary development of Cloud architectures aimed at integrating different
types of technologies and hardware/software solutions.

In order to better describe such next generation Cloud services, in the rest
of the paper we will refer to “utility” and “Cloud facilities”. We define “Cloud
utility” a specific Cloud service (e.g., storage, network, computation, security,
sensing, data analytics, etc), instead, we define “Cloud Facilities” a mash-up
Cloud service composed using one or more Cloud utilities.

A possible approach for the achievement of such next generation Cloud ser-
vices consists in considering a management “middleware” able to set up Cloud
facilities aggregating several available Cloud utilities across one or more enter-
prises in a federated environment. In simple words, the aim of the middleware

C. Canal and M. Villari (Eds.): ESOCC 2013, CCIS 393, pp. 25–36, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://mdslab.unime.it

26 M. Fazio, A. Celesti, and M. Villari

is to acts as a liaison among utilities in order to support the deployment of
advanced, flexible, and differentiated Cloud facilities [1]. In such a versatile sce-
nario, enterprises become, at the same time, Cloud customers and providers.

In this paper, we present aMessage-OrientedMiddleware For Cloud (MOM4C),
a distributed system that aims to fulfill the requirements of the aforementioned
next generation Cloud services. MOM4C provides flexibility, efficiency, and elas-
ticity for the setup of Cloud facility to Cloud providers, seamlessly integrating the
utilities belonging to different heterogeneous environments. It allows to expand
existing Cloud systems and to integrate several virtual and physical resources. Its
ability of collecting heterogeneous utilities and abstracting their functionalities to
high level services, is strategic. In fact, it is useful to support the development of
advanced applications for Internet of Things (IoT) environments.

MOM4C has been designed according to the Message-Oriented model. This
model has already been used for the designing of Cloud middleware such as
IBM WebSphere MQ (MQSeries), TIBCO Rendezvous, and RabbitMQ. In com-
parison with them, MOM4C has very innovative features, that make the Cloud
service provisioning efficient, scalable and versatile. MOM4C enables the devel-
opment of distributed services over an asynchronous instant-messaging architec-
ture, which can be used for both intra- and inter-domain communications.

MOM4C allows to compose Cloud facilities according to client requirements.
Making a simile, the MOM4C works as a planetary system, where the central
star includes the “core”, i.e., all the basic communication functionalities of the
middleware and the planets are the Cloud utilities that can be used. Such a
service provisioning model guarantees high scalability and customization of the
required service. In addition, besides the basic communication functionalities,
the core, includes security mechanisms for guaranteeing secure data exchange.

The rest of the paper is organized as follows. Section 2 describes related works.
Motivations are discussed in Section 3. An overview of MOM4C service provi-
sioning strategy is provided in Section 4. In Section 5, we present the MOM4C
architecture also discussing our designing choices. Section 6, concludes the paper.

2 Related Works

Some works in literature deal with the need of Cloud middleware, addressing
specific issues and exploiting different technologies. To support application ex-
ecution in the Cloud, in [2], authors present CloudScale. It is a piece of mid-
dleware for building Cloud applications like regular Java programs and easily
deploy them into IaaS Clouds. It implements a declarative deployment model,
in which application developers specify the scaling requirements and policies of
their applications using the Aspect-Oriented Programming (AOP) model. A dif-
ferent approach is proposed in [3], which presents a low latency fault tolerance
middleware to support distributed applications deployment within a Cloud envi-
ronment. It is based on the leader/follower replication approach for maintaining

Design of a MOM4C 27

strong replica consistency of the replica states. If a fault occurs, the reconfigura-
tion/recovery mechanisms implemented in the middleware ensure that a backup
replica obtains all the information it needs to reproduce the actions of the ap-
plication. The middleware presented in [4] has been designed aiming mission
assurance for critical Cloud applications across hybrid Clouds. It is centered
on policy-based event monitoring and dynamic reactions to guarantee the ac-
complishment of “end-to-end” and “cross-layered” security, dependability and
timeliness. In [5], the authors present a piece of middleware for enabling media-
centered cooperation among home networks. It allows users to join their home
equipments through a Cloud, providing a new content distribution model that
simplifies the discovery, classification, and access to commercial contents within a
home networks. Mathias and Baude [6] focus their work on the integration of dif-
ferent types of computational environments. In fact, they propose a lightweight
component-based middleware intended to simplify the transition from clusters,
to Grids and Clouds and/or a mixture of them. The key points of this middle-
ware are a modular infrastructure, that can adapt its behavior to the running
environment, and application connectivity requirements. The problem of inte-
grating multi-tenancy into the Cloud is addressed in [7]. The authors propose a
Cloud architecture for achieving multi-tenancy at the SOA level by virtualizing
the middleware servers running the SOA artifacts and allowing a single instance
to be securely shared between tenants or different customers. The key idea of the
work is that the combination between virtualization, elasticity and multi-tenancy
makes it possible an optimal usage of data center resources (i.e., CPU, memory,
and network). A piece of middleware designed for monitoring Cloud resources is
proposed in [8]. The presented architecture is based on a scalable data-centric
publish/subscribe paradigm to disseminate data in multi-tenant Cloud scenarios.
Furthermore, it allows to customize both granularity and frequency of received
monitored data according to specific service and tenant requirements. The work
proposed in [9] aims to support mobile applications with processing power and
storage space, moving resource-intensive activities into the Cloud. It abstracts
the API of multiple Cloud vendors, thus providing a unique JSON-based inter-
face that responds according to the REST-based Cloud services. The current
framework considers the APIs from Amazon EC2, S3, Google and some open
source Cloud projects like Eucalyptus. In [10], the authors present a piece of
middleware to support fast system implementation and ICT cost reduction by
making use of private Clouds. The system includes application servers that run
a Java Runtime Environment (JRE) and additional modules for service man-
agement and information integration, designed according to a Service Oriented
Architecture (SOA). As highlighted by this state of the art analysis, our effort
arises from the evident need of a piece of middleware for versatile evolving Cloud
scenarios. Differently from the aforementioned solutions, MOM4C abstracts the
type of offered services, providing a framework able to integrate both the current
and future Cloud solutions, offering to the clients the possibility to customize
their Cloud facilities.

28 M. Fazio, A. Celesti, and M. Villari

3 Motivation

Analyzing the trend of the Cloud computing market, we can highlight, on the one
hand, a growing number of providers that are investing in Cloud-based services
and infrastructures and, on the other hand, the interest of companies in long-
term, customizable and complex business solutions, which must be easy to be
set up, reliable and accessible through the Internet. MOM4C has been design to
bridge this gap, integrating Cloud facilities, infrastructures and resources into
one efficient, scalable, reactive and secure wide system. Its deployment can be
strategic for many different stakeholder, as shown in Figure 1. MOM4C enables

Fig. 1. Reference scenario

third-party enterprises and developers to implement Cloud facilities in an easy
way, integrating different CLoud utilities according to a mash-up development
model. Specifically, end-users (i.e., consumers and/or enterprises) can quickly
push for basic CLoud utilities and advanced Cloud facilities. MOM4C enables
Cloud providers to abstract the service level. Typically, Cloud providers can
deliver three main service levels, i.e., Infrastructure as a Service (IaaS), Platform
as a Service (PaaS), and Software as a Service (SaaS). According to such a
classification, MOM4C allows to develop Cloud facilities in form of IaaS, PaaS,
and SaaS instances. It is important to notice that also Cloud utilities themselves
can be hardware/software functionality delivered in form of IaaS, PaaS, and
SaaS.

IaaS Providers deliver computers and devices (i.e., physical and/or virtual)
and other resources. Typically, a Virtual Infrastructure Manager (VIM) man-
ages one or more hypervisors each one running several Virtual Machines (VMs)
as guests. A VIM allows to manage a large numbers of VMs (e.g., preparing
disk images, setting up networking, starting, suspending, stopping VM, etc) and
to scale services up/down according to customers’ requirements. An example
is represented by a provider that offers on-demand VMs to end-users. PaaS
providers deliver a computing platform, typically including operating system,

Design of a MOM4C 29

programming language execution environment, database, and web server. Soft-
ware developers can implement and run their software solutions on a cloud plat-
form without the cost and complexity of buying and managing the underlying
hardware and software layers. The underlying computer and storage resources
scale automatically to match application demand. An example is represented by
a provider that offers a platform that collects data coming from one or more
sensor networks and that offer Application Program Interfaces (APIs) for data
processing, hence enabling developers to implement intelligent sensing applica-
tions. SaaS providers, typically deliver on-demand pieces of software via Web
2.0 that are usually priced on a pay-per-use basis. Providers install and operate
application software in the cloud and cloud users access the software from cloud
clients, generally web browsers. An example is represented by a provider that
offers via Web 2.0 interface an office automation software suite such as Google
Drive to manage documents.

All the providers and clients exploiting MOM4C will be organized in a feder-
ated system. In a federation, each entity is independent and can not be condi-
tioned by a “central government” in its activities. The components of a
federation are in some sense “sovereign” with a certain degree of autonomy
from the “central government”: this is why a federation can be intended more
than a mere loose alliance of independent entities. Moreover, the treatment of
all the data and information transfered through MOM4C is performed accord-
ing to secure policies able to assure: data confidentiality, data integrity, data
authenticity, non-repudiation of the sender, non-repudiation of the receiver.

4 Service Provisioning: A Planetary System Model

Due to its native ability in integrating heterogeneous infrastructures and sys-
tems, MOM4C can potentially offer a wide plethora of utilities, which can com-
bined each other in order to provide complex, customizable and differentiated
services.

4.1 Design Overview

A monolithic design of the proposed system is inconceivable, since it implies
an heavy management effort for all the available components, low scalability
and useless service availability for clients. On the contrary, to guarantee the
maximum flexibility, we have conceived MOM4C as a very modular architecture,
in which every client can compose a Cloud utility according to his requirements.
From the client point of view, we can schematize MOM4C as well as a planetary
system, as shown in Figure 2. The planetary system is composed by one or more
planets that orbit around a central star. According to our abstraction, Planets
identify available utilities. For example, planets can be: i) VIM IaaS, for on-
demand VM provisioning; ii) Sensing PaaS, collecting data by different sensing
environments; iii) Distributed Processing PaaS, providing high computational
power; iv) Big Data Storage, providing distribute storage for huge amount of

30 M. Fazio, A. Celesti, and M. Villari

Fig. 2. Planetary system model for service provisioning through MOM4C

data, and so on. The core of MOM4C is the star of the planetary system. It
provides all the basic functionalities necessary for the life of planets. Specifically,
it includes a scalable messaging and presence system, security mechanisms for
data integrity, confidentiality and non-repudiation, federation management and
other specific communication features for the management and integration of
heterogeneous utilities.

All the possible combinations of planets specialize the behavior of the plan-
etary system. According to our similitude, a specific planetary system configu-
ration, including target planets defines the Cloud facility. In fact, according to
our definition, the Cloud facility has to be customizable from clients in order
to suit specific public and/or business scenarios. This concept will be better ex-
plained in Section 4.2. In the following, we will show the benefits of the proposed
planetary system with reference to different Cloud facilities.

4.2 Cloud Utility Combinations with MOM4C: The Cloud Facility

Thanks to its modularity, MOM4C allows to instantiate different types of com-
posed services. As well as a planetary system is composed by a star with several
planets that turn around it along their orbits, in MOM4C, a Cloud facility is
built around a distributed management system or core (i.e., the central star)
and several Cloud utilities (i.e., planets). In order to better explain the plan-
etary system model at the basis of the MOM4C design, let us consider four
different Cloud utilities: i) VIM, which allows to dynamically orchestrate VMs
regardless of the underlying hypervisor (e.g., Xen, KVM, VMware, Virtual Box,
Virtual PC, etc), ii) Sensing, which allows to collect, filter, and expose through
web services data coming from several sensing environments and devices, iii)
Trusted computing, for building a chain of trust among several hardware and

Design of a MOM4C 31

software components, iv) Big data storage, which allows to store and retrieval
huge amount of data in a distributed fashion.

The VIM utility allows to aggregate heterogeneous computing infrastructures,
providing suitable interfaces at the high-level management layer for enabling the
integration of high-level features, such as public Cloud interfaces, contextualiza-
tion, security [11][12] and dynamic resources provisioning [13].

The Sensing utility allows to virtualize different types of sensing infrastruc-
tures, adding new capabilities in data abstraction. It gathers sensing information
from a peripheral decision-maker, called Virtual Pervasive Element (VPE), able
to interact with smart sensing devices or sensing environments [14]. The Sens-
ing PaaS utility is compliant with the Sensor Web Enablement (SWE) standard
defined by the Open Geospatial Consortium, which allows to make all types
of sensors, transducers and sensor data repositories discoverable, accessible and
usable via the Web.

The Trusted Computing utility allows interact with the Trusted Platform
Module (TPM) on the physical host [15] by means of a software agent. The
TPM is a hardware micro-controller that allows to combine hardware and soft-
ware components by building a chains of trust. In addition by means of the
remote and deep attestation protocols, the utility is able to verify the configu-
ration of physical hosts and VMs.

The Big Data Storage utility allows to perform an efficient retrieval of big
data adopting, for example the map/reduce paradigm and the Hadoop system.
The hadoop system includes three main nodes: master, backup, and worker. The
master node takes the input, divides it into smaller sub-problems, and distributes
them to worker nodes. The worker node processes the smaller problem, and
passes the answer back to the master node that produces the output. The backup
node is a passive master node.

In the following, we briefly describe three different planetary systems, i.e.,
Cloud facilities, originated by some possible combinations of the aforementioned
utilities and we discuss their applicability in different scenarios.

– Antares: it is composed of Sensing PaaS and the Big Data Storage utilities,
in order to collect informations on the environments, which are stored into
the Cloud. This Cloud facility offers a scalable tool that can be very useful
in Smart Cities. Cities of the future will need to collect data from a lot
of heterogeneous urban sensors, such as smart water, electric meters, GPS
devices, building sensors, weather sensors and so on [16], in order to monitor
available services and citizens requirements. However, the heavy penetration
of sensing devices will cause the explosion of the amount of data to be stored
and managed.

– Omicron: it is composed of VIM, Big Data Storage and Trusted Computing
utilities. The Cloud facility offers a scalable and elastic virtual infrastructure
able to verify the integrity of both physical hosts and VMs, tracking all
the activities of the system components. Such a mash-up service is very
useful for the compliance management of distributed systems deployed on
a virtual infrastructure through the VIM utility. It can identify problems

32 M. Fazio, A. Celesti, and M. Villari

and regulate configuration and software changes, thanks the abilities of the
Trusted Computing utility, which allows to track “who has done what”, and
the Big Data Storage utility, which allows to manage log information and
output files.

– Vega; it is composed of VIM and Trusted Computing utilities. Such a Cloud
facility offers a secure dynamic Content Delivery Network (CDN) for web
server mirroring. In fact, the VIM utility allows to elastically deploy dis-
tribute server mirrors all over the world into VMs (a similar scenario is
discussed in [17]) and the Trusted Computing utility guarantees that differ-
ent mirrors are consistent from the point of view of the security. For example,
let us consider the web site of a press agency, which has to manage news
regarding a sudden event, such as a big sport event. The site has to extend
the service by increasing the number of mirrors, in order to meet the peak
of client requests. At the same time, it has to guarantee that the VMs on
which web server mirrors are deployed have not been corrupted with false
news.

It is important to notice that logically, different planetary systems, i.e, Cloud
facilities can coexist on the same physical system.

5 MOM4C Architecture

We have designed MOM4C according to the message-oriented paradigm, in order
to provide an efficient communication framework among distributed components
into the Cloud system. From the message-oriented paradigm, MOM4C inherits
a primary benefit, that is loosing coupling between participants in a system
due their asynchronous interaction. It results in a highly cohesive, decoupled
system deployment. It also decouples the performance of the subsystems from
each other. Subsystems can be independently scaled, with little or no disruption
of performance into the other subsystems. With reference to the management
of unpredictable activity overloads in a subsystem, the message-oriented model
allows to accept a message when it is ready, rather than being forced to accept
it. MOM4C adds important features, that are strategic for business in Cloud.
Its major benefits includes:

– Modularity: the middleware can be quickly extended in terms of available
utilities and it can be easily customized in order to suits a specific Cloud
scenario.

– Polymorphism: each distributed entity in the system can play different
roles according to the system requirements. Different rules includes both the
core management tasks and the utility-related tasks.

– Security: an indispensable requirement for the large-scale adoption Cloud
computing is security, especially in business scenarios. Security has to be na-
tively addressed at any level of communication (intra-module, inter-module,
and inter-domain), providing guarantees in terms of data confidentiality and
data integrity

Design of a MOM4C 33

– Federation: it is a strategic approach to promote collaboration among co-
operating Cloud providers.

5.1 Two-Layer Architecture

As depicted in Figure 3, MOM4C is based on a distributed architecture, orga-
nized in two layers, that are the Cluster Layer (CL) and the Execution Layer
(EL). The Cluster Layer includes an overlay network of decentralized Cluster

Fig. 3. MOM4C basic scheme

Manager (CM) nodes. Each CM is responsible for the working activities of the
Task Executor (TE) nodes belonging to the cluster. The EL is composed of TEs,
which are intended to perform operative tasks. TEs can be trained to perform a
specific task. It means that they do not instantiate all the services and utilities
available in MOM4C, but they download code, initialize and configure services,
launch software agents whenever they receives instructions from the CM. An
appropriate utility module configuration into TEs allows to specialize MOM4C
services. According to the specific code in execution at TEs, we have different
characterizations of the EL.

To perform different types of tasks (e.g., VM execution and sensing data
gathering), we set up specialized ELs, which independently works according to
the CL specifications. Such an organization of roles and activities carries out high
modularity to the MOM4C system. Building around the Cluster Layer many TE
layers at the same time characterizes the MOM4C behavior. Thus, an ad-hoc
layers configuration is designed to support a specific scenario. With reference
to the planetary system model discussed in Section 4, the star includes all the
functionalities of the Cluster Layer, which sustains the whole system. Any orbit

34 M. Fazio, A. Celesti, and M. Villari

represents a specific Execution Layer and the planet is the utility offered by TEs
belonging to the related Execution Layer.

Another important feature of MOM4C is the polymorphic nature of nodes. At
different times, each physical node can serve as CM or TE. However, only a node
in a cluster is elected as CM and actively works for managing the whole cluster.
Some other node are elected as “passive CMs”, which are redundant CMs that
can quickly replace the active CM if it fails. This approach improves the fault
tolerance of the CL. The size of the cluster depends on the system workload and
it can dynamically change according to the specific elasticity requirements of
the system. About TEs, they can belong to one or more ELs, hence they work
at different Cloud utilities. Such a concept is better explained in Figure 4. For

Fig. 4. Hybrid Executor Node Layer composition

example, TE 1, 2, 3, 4, 5, 6 are hypervisor servers working to provide a VIM
IaaS. At the same time, TE 2, TE 3, and TE 4 work also to provide a Distributed
Processing PaaS, since software agents running on TEs are independent active
processes. Following the example in Figure 4, TE 7, 8, 9, and 10 work as em-
bedded devices for Sensing IaaS provisioning, whereas TE 6, 9, and 10 works
for a Sensing PaaS, for example collecting sensing data from TE 9 and 10 and
providing services through the AJAX Web APIs of Web application deployed in
TE 6.

5.2 Communication System

MOM4C supports three types of communications:

– IntraModule Communication: itcharacterizes information exchange
inside each node of the architecture, both CMs and TEs. It guarantees a

Design of a MOM4C 35

seamless way for allowing their internal software modules to communicate
each other.

– InterModule Communication: it governs communications between CMs
and TEs and viceversa.

– InterDomainCommunication: is specific for communications among CMs
belonging to different administrative domains, hence enabling InterCloud or
Cloud federation scenarios.

In order to ensure as much as possible the middleware modularity, the tasks
running on each node are mapped on different processes within the Operating
System, which communicate each other by means of an Inter Process Communi-
cation (IPC) or InterModule communication. According to the message-oriented
design of MOM4C, InterModule communications are based on an Instant Mes-
saging and Presence (IMP) protocol. A presence system allows participants to
subscribe to each other and to be notified about changes in their state. On the
other hand, Instant messaging is defined as the exchange of content between a
set of participants in near real time. InterDomain communications among differ-
ent administrative domains are managed considering the federation agreements
among the domains. Federation allows Cloud providers to “lend” and “borrow”
resources. Thus, a CM of a domain is able to control one or more TEs belonging
to other domains.

6 Conclusion

In this paper, we have presented MOM4C. The middleware offers a very scal-
able solution for integrating several utilities in a federated environment. The key
feature of MOM4C is the high customization of Cloud utilities. In particular,
service provisioning can be modeled as a planetary system, in which the central
star is the core communication system and the planets are the Cloud utilities
that orbits around the star. Combining different planets, it is possible to carry
out different planetary systems, i.e., Cloud facilities. We presented the MOM4C
architecture, in which distributed nodes are organized into a cluster-based struc-
ture, in order to separate the core communication system from specific utilities.
Finally, several service composition use cases have been analyzed.

References

1. Ranabahu, A., Maximilien, M.: A Best Practice Model for Cloud Middleware Sys-
tems. In: Best Practices in Cloud Computing: Designing for the Cloud (2009)

2. Leitner, P., Satzger, B., Hummer, W., Inzinger, C., Dustdar, S.: Cloudscale: a novel
middleware for building transparently scaling cloud applications. In: SAC 2012, pp.
434–440 (2012)

3. Wenbing, Z., Melliar-Smith, P., Moser, L.: Fault Tolerance Middleware for Cloud
Computing. In: IEEE 3rd CLOUD 2010, pp. 67–74 (July 2010)

4. Campbell, R., Montanari, M., Farivar, R.: A middleware for assured clouds. Journal
of Internet Services and Applications 3(1), 87–94 (2012)

36 M. Fazio, A. Celesti, and M. Villari

5. Diaz-Sanchez, D., Almenarez, F., Marin, A., Proserpio, D., Arias Cabarcos, P.:
Media Cloud: an open cloud computing middleware for content management. IEEE
Transactions on Consumer Electronics 57(2), 970–978 (2011)

6. Manias, E., Baude, F.: A component-based middleware for hybrid grid/cloud com-
puting platforms. Concurrency and Computation: Practice and Experience 24(13),
1461–1477 (2012)

7. Azeez, A., Perera, S., Gamage, D., Linton, R., Siriwardana, P., Leelaratne, D.,
Weerawarana, S., Fremantle, P.: Multi-tenant SOA Middleware for Cloud Com-
puting. In: IEEE CLOUD 2010, pp. 458–465 (2010)

8. Povedano-Molina, J., Lopez-Vega, J.M., Lopez-Soler, J.M., Corradi, A., Foschini,
L.: Dargos: A highly adaptable and scalable monitoring architecture for multi-
tenant clouds. Future Generation Computer Systems (May 2013)

9. Flores, H., Srirama, S.N.: Dynamic Re-configuration of Mobile Cloud Middleware
based on Traffic. In: IEEE MASS 2012, October 8-1 (2012)

10. Nagakura, H., Sakurai, A.: Middleware for creating private clouds. Fujitsu Scientific
& Technical Journal (FSTJ) 47(3), 263–269 (2011)

11. Celesti, A., Fazio, M., Villari, M., Puliafito, A.: Se clever: A secure message ori-
ented middleware for cloud federation. In: IEEE Symposium on Computers and
Communications (ISCC 2013), ISCC 2012 (2013)

12. Juels, A., Oprea, A.: New approaches to security and availability for cloud data.
Communication of the ACM 56(2), 64–73 (2013)

13. Celesti, A., Tusa, F., Villari, M., Puliafito, A.: Integration of clever clouds with
third party software systems through a rest web service interface. In: IEEE Sym-
posium on Computers and Communications (ISCC 2012), pp. 827–832 (2012)

14. Fazio, M., Paone, M., Puliafito, A., Villari, M.: Huge amount of heterogeneous
sensed data needs the cloud. In: SSD 2012 (2012)

15. Celesti, A., Fazio, M., Villari, M., Puliafito, A., Mulfari, D.: Remote and deep
attestations to mitigate threats in cloud mash-up services. In: World Congress on
Computer and Information Technologies (WCCIT 2013), Sousse, Tunisia (2013)

16. Naphade, M., Banavar, G., Harrison, C., Paraszczak, J., Morris, R.: Smarter cities
and their innovation challenges. Computer 44(6), 32–39 (2011)

17. Celesti, A., Fazio, M., Villari, M., Puliafito, A.: Virtual machine provisioning
through satellite communications in federated cloud environments. Future Gen-
eration Computer Systems 28(1), 85–93 (2012)

The Core Approach of SAaaS in Action:
The Planning Agent

Lionel Cremer1, Salvatore Distefano2, Giovanni Merlino3,4, and Antonio Puliafito3

1 Haute Ecole de la Province de Liege, 4020, Belgium
lionel cremer@hotmail.com

2 Dip. di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133 Milano, Italy
salvatore.distefano@polimi.it

3 Dip. di Ingegneria, Università di Messina, 98166 Messina, Italy
{gmerlino,apuliafito}@unime.it

4 Dip. di Ingegneria (DIEEI), Università di Catania, 95125 Catania, Italy
giovanni.merlino@dieei.unict.it

Abstract. The main goal of the sensing and actuation as a service (SAaaS) ap-
proach is to enrol and aggregate sensing resources from heterogeneous sensor
networks and smart devices, providing them as a service in a Cloud-wise fashion.
SAaaS aims at providing handles on sensing and actuation resources, abstracted
and virtualized on top of physical ones, shared by contributors to the SAaaS.
This requires adequate mechanisms for letting SAaaS end users interact with
the contributing nodes hosting the provided resources. In this paper we focus on
such problem, introducing the module of our SAaaS architecture specifically con-
ceived to deal with all the issues related to user-resource interfaces: the Planning
Agent (PA). The modular architecture of the PA and its main interactions with
SAaaS stakeholders and framework components are described. The development
of the PA on the Android platform is detailed, thus implementing a preliminary
version of the SAaaS framework, targeted at mobiles: SAaaS4mobile.

Keywords: Cloud, sensors and actuators, sensing abstraction and virtualisation,
OGC Sensor Web Enablement.

1 Introduction and Motivations

In the current worldwide ICT scenario, a constantly growing number of devices (mobile
devices, sensors, RFID tags, etc.) join the Internet foreshadowing a world of (more or
less) smart devices or “things” in the Internet of Things (IoT) perspective. It is therefore
necessary to think about possible ways and solutions to face an all-encompassing chal-
lenge, where such ecosystem of geographically distributed sensors and actuators may
be discovered, selected according to the functionalities they provide, interacted with,
and may even cooperate for pursuing a specific goal.

Taking this need into consideration and following current trends for models and ap-
proaches, such as service oriented and Cloud computing-based ones, in previous work
[1,2] we presented an innovative framework for dealing with a geographic-wide sensing
environment involving mobile devices and sensor networks. The sensing and actuation

C. Canal and M. Villari (Eds.): ESOCC 2013, CCIS 393, pp. 37–46, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

38 L. Cremer et al.

as a service (SAaaS) approach aims at collecting sensors and actuators shared by both
mobile device owners and sensor network administrators into a unique sensing infras-
tructure, thus providing sensing resources to users on demand, as a service, adopting a
Cloud-oriented provisioning model.

The novelty of this approach is to consider a sensor or an actuator as resources that
can be abstracted and virtualized, as virtual machines in an IaaS-fashion, and then pro-
vided to end users that can operate directly on the sensing resources, thus implementing
a sensing Cloud. Existing models for sensing Clouds mainly feature a data-driven ap-
proach, collecting sensed data on provider-side databases, then exposing searching and
filtering facilities to the end user, much like a Software as a Service (SaaS). This does
not allow end users to directly operate or handle sensing and actuation resources. This
is a severe limitation when e.g. certain configuration parameters for resources are to be
set, or in case some data preprocessing is required before sending.

In order to pursue a device-driven approach it is necessary to provide the end user
with adequate interfaces to sensing resources. In the SAaaS architecture, the core mod-
ule devoted to this task is the Planning Agent (PA), a component of the SAaaS Hypervi-
sor. The PA is in charge of directly interfacing with the contributing node on behalf of
the end user, implementing facilities for handling and configuring the instances of sens-
ing resources, as provided to the customers. In this paper we focus on the PA, proposing
an overall modular architecture and discussing its implementation on Android-powered
smart devices. We named this specific implementation SAaaS4mobile. More specifi-
cally, we describe how to create a scheme for planning and configuring the sensors on
smart devices through the SAaaS4mobile PA interface, dealing with hardware and inter-
operability issues. To this purpose we based the SAaaS4mobile PA implementation on
the Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) [3] standards.

The paper is organized as follows. Background concepts and an overview of the state
of the art are provided in Section 2, while a brief description of the SAaaS Hypervisor
is given in Section 3. Then, the modular architecture of the PA is described in Section
4, and the SAaaS4mobile PA implementation on Android smart devices is described in
Section 5. Some conclusive remarks and future work discussed in Section 6 close the
paper.

2 Background and Related Work

2.1 SAaaS

The main aim of SAaaS [1] is to adapt the IaaS paradigm to sensing platforms, bring-
ing to a Cloud of sensors, where sensing and actuation resources may be discovered,
aggregated, and provided as a service, according to a Cloud provisioning model.

The inclusion of sensors and actuators in geographic networks as Cloud-provisioned
resources brings new opportunities with regards to contextualization and geo-awareness.
By also considering mobiles, possibly joining and leaving at any time, the result can be
a highly dynamic environment. The issue of node churn can only be addressed through
volunteer contribution paradigms [4,1]. Furthermore, the SAaaS has to manage contri-
butions coming from sensor networks, mobiles or any other “smart” device equipped
with sensors and actuators, to ensure interoperability in a Cloud environment. It must

The Core Approach of SAaaS in Action: The Planning Agent 39

Sensing
Environment/
Infrastructure

Node

SAaaS
Sensing Cloud

Device

Autonomic
Enforcer

Hypervisor

SN

VolunteerCloud
Manager

Autonomic
Enforcer

Hypervisor

M2MM2M

Fig. 1. SAaaS reference architecture

also be able to provide the mechanisms necessary for self-management, configuration
and adaptation of nodes, without forgetting to provide the functions and interfaces for
the activation and management of voluntarily shared resources.

The SAaaS reference architecture [1] comprises three modules, Hypervisor, Auto-
nomic Enforcer and VolunteerCloud Manager, shown in Fig. 1. The Hypervisor allows
to manage, abstract, virtualise and customise sensing and actuation resources that could
be provided by enrolling either mobile device or SN nodes. Among key features are:
abstraction of devices and capabilities, virtualization of abstracted resources, communi-
cations and networking, customization, isolation, semantic labeling, and thing-enabled
services. All these features are presented in the next section. At a higher level with
respect to the Hypervisor, the Autonomic Enforcer and the VolunteerCloud Manager
deal with issues related to the interaction among nodes. The former is responsible of
the enforcement of local and global Cloud policies, subscription management, coopera-
tion on overlay instantiation. The VolunteerCloud Manager is in charge of exposing the
Cloud of sensors via Web service interfaces, indexing of resources, monitoring Quality
of Service (QoS) metrics and adherence to Service Level Agreements (SLAs) [5,6,7].

2.2 OGC: Sensor Web Enablement

The OGC provides a large number of specifications, among which we can find the
Sensor Web Enablement (SWE) family of standards. Designed for the management of
sensor data on the web, ia unique and revolutionary framework of open standards for
exploiting Web-connected sensors and sensor systems of all types is the focus of the
specifications. SWE standards aim at making all types of Web sensors, instruments,
and imaging devices accessible and controllable on the Web. The SWE framework is
composed of seven standards, four of them have been approved as official standards by
the OGC members.

– SensorML: it is a language based on XML schema to describe the sensor systems.
It encodes a lot of features for sensors, such as discovery, geolocation processing

40 L. Cremer et al.

observations, mechanisms for sensor programming, subscriptions to sensor alerts.
In particular, it provides standard models and XML schemas to describe processes,
and instructions for obtaining information from observations. SensorML enables
discovery, access and query execution for the processes and sensors it models.

– Observations & Measurements (O & M): this model in particular is featured in the
SOS specification, coupled with an XML encoding for observations and measure-
ments originating from sensors, and archived in real-time. It provides standardized
methods for accessing and exchanging observations, alleviating the need to support
a wide range of sensor-specific and community specific data formats.

– Sensor Observation Service (SOS): it corresponds to the Observation Agent spec-
ified in the previous section. This is the service responsible of the transmission of
measured observations, from sensors to a client, in a standard way that is consistent
for all sensor systems including remote, in-situ, fixed and mobile sensors. It allows
the customer to control the measurement retrieval process. This is the intermediary
between a client and an observation or near real-time sensor repository.

– Sensor Planning Service (SPS): it corresponds to the Planning Agent, whose design
and implementation this paper focuses on.

2.3 State of the Art

Research about the design and implementation issues of a unified interface to sensors
belonging to different administrative domains is not available, but some investigations
amenable to the main topics under consideration have been made. A few of these deal
with implementations of the SWE Sensor Observation Service on mobiles. The Mobile
phone Sensor Network concept demonstrator proposed in [8] enables mobiles to collect
observations from Bluetooth-enabled sensing devices, to be then uploaded to a central
database via an SOS, directly integrated on the mobile, to convert the observations into
Sensor Web Protocol-enabled ones.

In the same vein, the platform running on mobile devices proposed in [9] implements
the same type of measurements conversion, afterwards injecting the measurements into
a sensor service. The aim is to use the processing capabilities of latest generation of
mobile devices for converting low-level sensor protocols into higher-level Sensor Web
Enablement ones for data. Then the storage of these measurements into the Sensor Web
is carried out using the transactional interface of an SOS.

The opposite approach is proposed in [10], including mechanisms to discover sensor
data, retrieve the data using the SOS as sensor metadata protocol endpoint, and expose
the data using a mapping application. Along the same lines, the project described in
[11] features a generic mobile client for SOS to visualize any SOS-provided data in a
map or tabular view.

The Human Sensor Web [12] aims to integrate two kinds of human-provided obser-
vations, by leveraging the SWE standard framework. Those two kinds of observations
are human-sensed ones (such as textual descriptions) on one hand, and information
gathered from sensors carried (i.e. worn) by people. From these works we can argue
that using the SWE standards on a mobile phone to gather or to insert sensor observa-
tions is a first step towards a full SWE implementation on mobiles, a starting point for
the present work.

The Core Approach of SAaaS in Action: The Planning Agent 41

SWE turns out to be also one of the privileged solutions to enable interoperability
between all kinds of devices, as exemplified in [13] where the authors describe how
SWE enables developers to leverage mechanisms for a high level of interoperability in
the domain of sensor networks.

A technical treatment for SWE is available in [3] comprising many standard models.
The Sensor Model Language enables the description of sensor systems and processes
associated with sensor observations. The encoding of sensor observations and measure-
ments is described in the Observations & Measurements standard, where also standard
web service interfaces are specified. The Sensor Observations Service (SOS) enables
the collection of observations and system information, while the Sensor Planning Ser-
vice (SPS) enables the planning of observations. The Sensor Alert Service (SAS) en-
ables the publication of, and subscription to, alerts, as produced by sensors, while Web
Notification Service is in charge of delivering messages and alerts from SAS and SPS,
in an asynchronous manner. A service-oriented sensor Web architecture, leveraging the
SWE standards, is presented in [14].

3 Overview of the Hypervisor

An SAaaS Hypervisor [2] can be viewed as the foundational component of our device-
driven approach to infrastructure-focused Clouds of sensors: it manages the resources
related to sensing and actuation, introducing layers of abstraction and mechanisms for
virtualization, operating at the level of a single SAaaS node, defined either as an en-
tire sensor network, as long as under exclusive tenancy, or a set of sensors, as built-in
to a standalone device. As a single node can be as dispersed as “smart dust”, as in
typical WSN scenarios, in order to provide mechanisms of direct interaction with, and
manipulation of, sensing resources the Hypervisor is split among a centralized (nodal)
device, possibly embedding one or more sensors, and the motes, i.e. small-footprint

(a) Hypervisor (b) Adapter

Fig. 2. The SAaaS Hypervisor and Adapter modular architecture

42 L. Cremer et al.

edge devices in a SN, bearing built-in sensors or even driving standalone (albeit wired
to) ones. This kind of two-level separation of concerns and assignment of operations
descends also from the need for certain duties to be (self-)managed through autonomic
approaches, typical of distributed entities.

A high-level, modular view of the Hypervisor architecture comprises four main
building blocks: Adapter, Node Manager, Abstraction Unit and Virtualization Unit as
shown in Fig. 2a.

As depicted in Fig. 2b, the lowest component of the Hypervisor, the Adapter, plays
several distinct roles: on one hand, exposing a standards-compliant customer-friendly
Interface to on-board resources. The Observation Agent requests, retrieves and eventu-
ally pre-processes measurements. As we are going to describe in the following sections,
in terms of both behaviour and implementation details, the Planning Agent pushes re-
quests for actions (tasks) to the device, for preparing the resource to carry out a variety
of duties (reservation of functionalities, tuning of parameters, scheduling of observa-
tions). These commands allow management of operating parameters such as duty cy-
cle, sampling frequency, etc. The jargon we are using talking about observation and
planning operations traces back to our aim to be compliant with the SWE standards
[3]. These two agents rely on the presence of a platform-specific driver, the Translation
Engine, responsible for converting the high-level directives in native commands. The
Hypervisor is also in charge of processing requests for reconfiguration of the device,
using the Customization Engine, an interpreter able to execute on the sensing device
the code needed to tailor the sensing activities to customer-mandated requirements.
Finally, an autonomic approach is adopted delegating some management tasks of the
Adapter to the Mote Manager running mote-side, performing specific operations such
as power-driven self-optimization in collaboration with the Node Manager.

Above the Adapter, there is the Node Manager. It works only at the node level and
is in charge of sensing resources operations and implementing policies.

The upper level contains the Abstraction Unit. It replicates planning and observa-
tion facilities modeled after those featured in the Adapter but on a node-wide scale,
combining the pool of resources of the whole SN or smartphone.

Along this short descriptions, summarizing the Abstraction Unit, coupled with those
about the Node Manager and the Adapter with its submodules, we referred to motes and
nodes, per our definitions, thus sticking to WSN-like topologies. In this sense, when
depicting the diagrams, we intentionally left out any standalone-centered device model,
as in that case our architecture degenerates to a simpler one, where the node is the smart
device itself, thus featuring an Abstraction Unit which fills the role of the upper layers
of the Adapter (e.g. the Agents), just leaving the Customization and Translation Engines
in their place for the reduced version of the Adapter needed on a mobile. As well, the
Node Manager is not needed on a standalone device, where the Mote Manager itself
makes up for the combination of the two modules.

At last, at the top of the layered model of the Hypervisor we have the Virtualization
Unit, whose main task is slicing, i.e. generating possible partitioning schemes for the
cluster of resources exposed by the Abstraction Unit. These partitioning schemes can
be subsequently ranked according to a number of criteria including sensor provenance,
proximity, QoS, security and so on.

The Core Approach of SAaaS in Action: The Planning Agent 43

4 Planning Agent

The SAaaS PA works side-by-side with the Observation Agent, complementing its fea-
tures. Unlike the latter, engaged in providing upper layers with XML-encoded measure-
ments (observations), sampled while driving the sensing resources, the former is mainly
devoted to the tuning of sampling parameters according to user-defined preferences, still
to be interfaced with by means of extensible standards-compliant encoding of requests
for tasks, and corresponding responses. Other than tuning, tasks for scheduling of ob-
servations can be consumed by the PA: it may be following a predefined schedule, or
upon the occurrence of a particular event, or simply a request from a client. The main
aim of this effort is exposing all underlying knobs to make them available for customers
to operate on transparently.

In order to meet the aforementioned requirements, an architecture comprising the six
modules shown in Fig. 3 has been designed: a Request Dispatcher, a Sensors Prober, a
Task Explorer, a Task Manager, an Observation Access Provider and an Interface. The

Sensor
Prober

Task
Explorer

Task
Manager

Observation
Access

Provider

Interface

Request Dispatcher

Fig. 3. SAaaS Planning Agent architecture

Request Dispatcher has to identify and demultiplex a request to the modules under-
neath. The lowest Interface has to interact with low-level services, i.e. the Customiza-
tion Engine, the Translation Engine and the Mote Manager.

The Sensor Prober is in charge of enumerating all the sensors and actuators within
a sensors platform, however rich and complex, by low-level platform-specific system
probing. These sensors are then identified according to their types, supported observa-
tion facilities and sampling specs, overall (nominal) features and manufacturing details
(brand, model, etc.).

The Task Explorer is responsible for enumeration of available tasks, to be provided
by probing sensors as listed by the aforementioned Prober. In terms of tasks, those
related to parameter tuning for sensing resources differ logically, according to sensor
type and technology, so it is possible to e.g. plan retrieval of temperature samples from

44 L. Cremer et al.

a thermometer, once a certain threshold has been exceeded, change the relative position
and the focal length of a camera, or simply schedule reading of sensor observations
at fixed intervals, etc. Moreover, in order to assess feasibility of a certain task, among
the ones enumerated for selection, the sensor has to be queried and provide (runtime)
confirmation, or else denial, of availability for servicing (or reservation thereof). It’s
then up to the querying party to decide what to do after feasibility assessment for the
task under consideration.

The Task Manager controls tasks’ lifecycle, since feasibility assessment through reser-
vation/submission stages, then following up, and acting upon, running task progress.

If required, a user may reserve a task for a period of time, during which he/she gets
exclusive access to the underlying resource, as no other user can submit or reserve it.
The task will then be executed as soon as the user confirms for the real processing
stages to commence. The Reservation Manager is responsible for both reservation of
tasks, and its confirmation. The Feasibility Controller has to check if a task is feasible,
as detailed above. The feasibility of a task depends on the availability of any resource
essential for task servicing, e.g. if not still allocated due to a previous request.

Then, the Task Updater is in charge of updating configuration parameters of a task,
if some modifications have to be pushed after tasks enter into processing stages. Lastly,
the Task Canceller empowers users to stop and therefore retire a task, when already
submitted or under reservation.

Finally, once a task has been serviced, resulting observations get stored. Any obser-
vation will be accessible through the Observation Agent only. In terms of observations,
the sole duty up to the PA lies in the Observation Access Provider ability to provide
endpoints to access measurements.

5 The Implementation

The Planning Agent implementation has been carried out for mobiles equipped by An-
droid OS 4.0, using the NDK developer libraries and API provided by the Android
community [15]. It is based on the SWE Sensor Planning Service (SPS) 2.0 standard
[16]. It enables the interaction among user clients and sensor and actuator services using
XML schemas to submit requests and to allow the service to reply. Modeling behavior
by following the SPS standard, the functionalities of the Sensor Prober, Task Explorer,
Task Manager and Observation Access Provider modules described in Section 4 have
been developed.

The Sensor Prober has to retrieve information regarding: i) the contributor, if avail-
able (the extent of such information disclosure is totally up to the contributor); ii) the
node sensors and their descriptions, also including the measured phenomenon and cor-
responding metrics; and iii) the geographic area (range) inside which observations are
significant. This feature is implemented by the SPS GetCapabilities primitive. A Get-
Capabilities request is composed of four sections. The first one is ServiceIdentification
containing the contributing node metadata, i.e. generic info on the type of the node,
brand, model and similar. Then the ServiceProvider section provides information on
the contributor, if available and public. The third section is the OperationsMetadata
one, with metadata about the operations specified by the service and implemented by

The Core Approach of SAaaS in Action: The Planning Agent 45

the node. The last is the Content section, it contains metadata about the sensors provided
by the Planning Agent and the communication mechanisms supported (XML, SOAP,
etc.).

The Task Explorer retrieves the list of tasks that can be performed on a sensor through
specific SPS DescribeTasking requests. A description of the available configuration op-
erations for the sensor is thus obtained and provided to the Task Manager. The request
just contains a Procedure element to enquiry a sensor in the list about the tasks that can
be performed. The tasks are identified by the name, the description, and the capabilities’
configuration information.

The Task Manager implements a set of SPS requests. The Submit one allows the user
to launch the execution of a configured task. Eventually, before submitting a job re-
quest, it is possible to enquire about its feasibility through the GetFeasibility primitive.
The reply can be “Feasible” or “Not Feasible” and, optionally, it may contain a list of
alternative sets of tasking parameters that might help during revision of the request. The
user can also reserve the resources required to perform a specific task and then launch
the task through the Reserve and Confirm requests. In a Reserve request a time limit has
to be specified. At expiration time, all the reserved resources are to be released if the
task has not been confirmed. It is possible to check the progress of a task by sending
a Status request. A task can be in one out of six different states: “In Execution” if the
service is executing it, “Completed” if it was completed as planned, “Reserved” if it has
been reserved, “Failed” if execution fails, “Expired” when the task reservation expires
and “Cancelled” if the task was cancelled. The client can eventually update or cancel a
task, with Update and Cancel requests respectively.

Finally, the PA Observation Access Provider aims at providing the client with mech-
anisms, if needed, and endpoints to access the observations and measurements obtained
during execution. It implements processing of SPS DescribeTaskingResult requests to
interact with a certain sensor or task.

6 Conclusions

In this paper, we presented the Planning Agent, a core element of the nodal (contributor-
side) modules for a SAaaS-based system.

This Agent provides essential features for offering infrastructure Clouds of sensors
and actuators, like setting parameters on the device itself, or a virtualised instance
thereof, as long as customers get to access handles on contributed devices. The archi-
tecture of the Planning Agent is specified, identifying some specific modules also con-
sidering the interactions between the end-user and the contributing node. Afterwards
we delved in deeper details about the interactions and commands, looking at those in
light of our prototype implementation into Android-powered smart devices.

Future efforts in relation to this work will possibly expand at a lower-level, e.g. plat-
form specific abstractions. Amid ongoing research developments, we believe we’ll also
have the chance to explore compelling use cases and application scenarios, including
further evaluations on performance, while also trying to validate a SAaaS approach to
sensing resource provisioning according to Cloud paradigms by verifying remarkable
advantages and exclusive functionalities.

46 L. Cremer et al.

Acknowledgement. This work is partially funded by PhD programme under grant
PON R&C 2007/2013 ”Smart Cities”, by Simone project under grant POR FESR Si-
cilia 2007/2013 n. 179 and by the Cost-Action IC1303 ”Algorithms, Architectures and
Platforms for Enhanced Living Environments (AAPELE)”.

References

1. Distefano, S., Merlino, G., Puliafito, A.: Sensing and actuation as a service: A new devel-
opment for clouds. In: Proceedings of the 2012 IEEE 11th International Symposium on
Network Computing and Applications. NCA 2012, pp. 272–275. IEEE Computer Society,
Washington, DC (2012)

2. Distefano, S., Merlino, G., Puliafito, A., Vecchio, A.: A hypervisor for infrastructure-enabled
sensing clouds. In: IEEE International Conference on Communications, Budapest, Hungary,
June 9-13 (2013)

3. Reed, C., Botts, M., Davidson, J., Percivall, G.: Ogc(r) sensor web enablement: overview and
high level achhitecture. In: 2007 IEEE Autotestcon, pp. 372–380 (September 2007)

4. Cunsolo, V.D., Distefano, S., Puliafito, A., Scarpa, M.: Cloud@home: Bridging the gap be-
tween volunteer and cloud computing. In: Huang, D.-S., Jo, K.-H., Lee, H.-H., Kang, H.-J.,
Bevilacqua, V. (eds.) ICIC 2009. LNCS, vol. 5754, pp. 423–432. Springer, Heidelberg (2009)

5. Bruneo, D., Distefano, S., Longo, F., Puliafito, A., Scarpa, M.: Reliability assessment of
wireless sensor nodes with non-linear battery discharge. In: Wireless Days (WD). IFIP, pp.
1–5. IEEE Press (2010)

6. Bruneo, D., Distefano, S., Longo, F., Puliafito, A., Scarpa, M.: Evaluating wireless sensor
node longevity through markovian techniques. Computer Networks 56(2), 521–532 (2012)

7. Distefano, S.: Evaluating reliability of wsn with sleep/wake-up interfering nodes. Interna-
tional Journal of Systems Science 44(10), 1793–1806 (2013)

8. Clarke, J., Lethbridge, J., Liu, R., Terhorst, A.: Integrating mobile telephone based sensor
networks into the sensor web. In: 2009 IEEE Sensors, pp. 1010–1014 (2009)

9. Jamsa, J., Luimula, M., Schulte, J., Stasch, C., Jirka, S., Schoning, J.: A mobile data col-
lection framework for the sensor web. In: Ubiquitous Positioning Indoor Navigation and
Location Based Service (UPINLBS), pp. 1–8 (2010)

10. Foerster, T., Nüst, D., Bröring, A., Jirka, S.: Discovering the sensor web through mobile
applications. In: Gartner, G., Ortag, F. (eds.) Advances in Location-Based Services. Lecture
Notes in Geoinformation and Cartography, pp. 211–224. Springer, Heidelberg (2012)

11. Tamayo, A., Viciano, P., Granell, C., Huerta, J.: Sensor observation service client for android
mobile phones. In: Workshop on Sensor Web Enablement 2011 (SWE 2011), Banff, Alberta,
Canada (October 2011)

12. The Human Sensor Web Consortium: The human sensor web project (2011), http://
www.unhabitat.org/content.asp?typeid=19&catid=635&cid=7662

13. Sarakis, L., Zahariadis, T., Leligou, H.C., Dohler, M.: A framework for service provisioning
in virtual sensor networks. EURASIP Journal on Wireless Communications and Network-
ing 2012(1), 135 (2012)

14. Chu, X., Buyya, R.: Service oriented sensor web. In: Mahalik, N. (ed.) Sensor Networks and
Configuration, pp. 51–74. Springer, Heidelberg (2007)

15. Google Inc.: Android ndk,
http://developer.android.com/tools/sdk/ndk/index.html

16. Open Geospatial Consortium: OGC(R) Sensor Planning Service Implementation Standard.
OGC. 2.0 edn. (2011)

http://www.unhabitat.org/content.asp?typeid=19&catid=635&cid=7662
http://www.unhabitat.org/content.asp?typeid=19&catid=635&cid=7662
http://developer.android.com/tools/sdk/ndk/index.html

peaCS-Performance and Efficiency Analysis
for Cloud Storage

Josef Spillner, Maximilian Quellmalz, Martin Friedrich, and Alexander Schill

Technische Universität Dresden,
Faculty of Computer Science,

{josef.spillner,alexander.schill}@tu-dresden.de,
{maximilian.quellmalz,martin.friedrich}@mailbox.tu-dresden.de

Abstract. Those who need to store larger amounts of data either for
burst periods or for convenient synchronisation between devices are cur-
rently looking at new ways of how to integrate cloud storage services into
the data processing applications. The benefits (on-demand access and
pricing, elasticity) and the drawbacks (reduced control, increased depen-
dencies on providers) need to be well balanced. Recently, a new class of
applications called cloud storage controllers or integrators appeared with
a high potential to become a standard feature of operating systems and
network gateways. They seamlessly integrate single and bundled storage
services into the users’ digital environment. However, it is not clear which
controllers are better than others. Some are open source, some commer-
cial, some perform better than others, but some of the others provide
more data pre-processing and routing features. We solve this problem by
introducing peaCS as a test framework to analyse, compare and optimise
the functional and non-functional properties of such client-side storage
service integration solutions.

1 Motivation

Access to the cloud is shifting from an ad-hoc style to planned and systematic
integration. Often, either a hardware appliance (e.g. for cryptographic key man-
agement) or a software gateway (e.g. for enforcing a policy of not using compute
clouds during expensive periods) is used to manage the controlled access. For
cloud storage services in particular, differently named service-independent client-
side storage controllers, integrators, gateways, "cloud filesystems" or access ap-
plications are becoming more popular [26]. The popularity causes an increasing
number of prototypes to become available and thus ensures healthy competi-
tion [20,10]. On the downside, it becomes more difficult to evaluate and assess
the best solution for this task. Especially non-functional properties such as per-
formance or efficiency, while becoming more commonplace as standard metrics
in service descriptions [16], are hard to determine in an objective, reproducible
and portable manner for client-side integration tools beyond arbitrary test series
[9]. The difficulty aggravates when considering coordinated distributed storage
integration across multiple independent services in which the individual service
metrics shall be encapsulated as much as possible [21].

C. Canal and M. Villari (Eds.): ESOCC 2013, CCIS 393, pp. 47–58, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

48 J. Spillner et al.

This trend motivates us to present a test framework to systematically deter-
mine these metrics. Fig. 1 positions the testing methodology as a special case of
Service Bundle Integration Testing (SBIT) in which a number of independent
reference services, real or simulated, are used in combination during the test ex-
ecution. SBIT is distinct from Service Testing (ST) [7,13] which focuses more on
invocation and protocols and less on the eventual effect on the client. It is also
unlike most Service Integration Testing (SIT) methods which focus on a single
service interface with one or multiple applications during one test run [3]. SBIT
is applicable to all XaaS service classes, including Cloud Storage on the IaaS and
PaaS levels for which the combination technique is data splitting, multiplexing
and dispersion.

Service Testing
Service Integration Testing

Service Bundle Integration Testing

Functional Non-Functional

API Conformance
Features

Performance
Efficiency
Simplicity
Quality

Test

AnalysisOptimisation

Comparison

Fig. 1. General overview about Service Bundle Integration Testing

The next section gives an overview about testable cloud storage controllers
and storage service integrators. Then, the peaCS test framework is introduced
and explained with multiple experiments in which we analyse, compare and
optimise storage controllers. In the fourth section, its functionality is compared
to related work, before concluding the paper in the fifth section.

2 Overview about Multiplexing Cloud Storage
Controllers and Libraries

The client-side integration of single and multiple cloud storage services hap-
pens on multiple layers. The lowest layer encompasses the algorithmic treat-
ment and pre-processing of data, which includes coding, dispersion, replication,
de-duplication and encryption. A middle layer offers an interface to applications,
e.g. through a service interface or a virtual file system, to let data in to and out

peaCS-Performance and Efficiency Analysis for Cloud Storage 49

of the lowest layer. Higher layers offer storage service selection, attachment and
configuration as well as user and permission management. Such multi-layer inte-
gration systems for cloud storage services are usually called storage controllers or
integrators. We will first present a number of file system-based cloud-of-clouds
(1 : n) prototypes which appear to be the least common denominator among
all types and are typically a superset of all service-specific (1 : 1) unification
interfaces like DeltaCloud or jClouds. Afterwards, we extend the presentation
to promising libraries for data treatment which may influence future storage
controllers and hence motivate the need for systematic testing and comparison.

2.1 Controllers, Integrators, Gateways and Filesystems

NubiSave [21] is an Optimal Cloud Storage Controller which takes storage service
properties into account to achieve an optimal data distribution through replica-
tion and dispersion. It offers a FUSE file system interface and hence is a valid
candidate for file-based testing on all operating systems supported by FUSE,
such as Linux, BSD and Mac OS X. A strong characteristic of NubiSave con-
cerning testing is the hot-plugging of storage service providers by means of writ-
ing configuration files into a special directory. ChironFS1 is a RAIFS controller,
essentially functioning like a RAID controller on a file system level. Compared to
NubiSave, it only replicates files and doesn’t allow for more fine-grained config-
uration. The dispersing Secure Cloud Storage Integrator for Enterprises (SecC-
SIE) [18] focuses on Intranet integration and offers a CIFS interface to network
clients. Most operating systems can natively import CIFS drives as local directo-
ries. In a similar way, the Least Authority File System (Tahoe-LAFS) operates
as a gateway with HTTP(S) and (S)FTP interfaces which can be mapped to
a local directory [27]. Hence, SecCSIE and Tahoe-LAFS are also valid candi-
dates for file system-based testing. One design difference between them is that
SecCSIE integrates arbitrary storage services whereas the Tahoe-LAFS gateway
assumes Tahoe-LAFS storage backends. This difference is well hidden behind
a unifying file system interface. RACS, a Redundant Array of Cloud Storage
proxy [1], exposes an S3 bucket interface for which FUSE file system translators
exist. FUSE pass-through adapters typically add an overhead of about 8-15% in
the worst case so it remains feasible to test RACS. The Iris cloud file system,
in contrast, already offers a remote file system natively [22]. More FUSE mod-
ules exist for individual online and cloud storage services, e.g. CloudFusion2 for
DropBox and SugarSync, S3QL for Amazon S3, Google Storage and OpenStack
Swift, FuseDav for WebDAV and CurlFtpFs for FTP. In general, single-service
integration offers less parametrisation space compared to multi-service integra-
tion, but otherwise the former is a subset of the latter and hence the same test
methods are applicable.

Additional storage integration tools exist without an appropriate data man-
agement interface which can be accessed automatically as part of a SIT or SBIT

1 ChironFS: http://www.furquim.org/chironfs/index.en.html
2 CloudFusion: https://github.com/joe42/CloudFusion

http://www.furquim.org/chironfs/index.en.html
https://github.com/joe42/CloudFusion

50 J. Spillner et al.

test execution. Trust Store [12], for instance, requires the drag and drop inter-
action with a GUI to initiate the storage and retrieval of files. Such tools are
out of scope for peaCS and require GUI testing frameworks like Sikuli. Simi-
larly, Dependable Sky [4] only offers a library interface, the commercial product
Trusted Safe a Windows plugin interface and another unnamed platform [17]
a web interface which all require additional test agents with user interface in-
teraction intelligence. For Cloud Shredder [25], the interface is not specified. A
survey on distributed cloud storage integration compares the security character-
istics which are hard to measure and hard to assess in an automated way [20].
Characteristics determined in such a manual process complement the expected
results of automated test frameworks. Therefore, our work aims at a subset of
storage controllers (those with a file system interface) and a subset of metrics
(which can be measured or calculated).

2.2 Data Pre-processing Libraries

The transformation and distribution of files and file parts is often captured in
specific libraries which are used by some of the systems presented in the previous
paragraph. A well-known dispersion and secret sharing library is Jerasure in
version 1.2 and 2.0 [14]. It performs erasure coding with optional encryption of
the resulting file fragments. Each fragment is then distributed to a storage service
by the surrounding controller. Erasure codes and implementations thereof are
still subject to research, for instance, to adapt them to efficient SIMD processor
instructions and hard-wired cryptographic routines or to speed up the recovery
process with regenerating codes. Therefore, a test framework is useful to track
the progress of integration systems over time even when only internal parts like
a pre-processing library change.

Alternative dispersion libraries with comparable functionality are JigDFS,
Schifra, dsNet, Crypto++, IDA-Java, the Tahoe-LAFS library ZFec, JSharing,
CORE and StorageCORE. Varying run-time characteristics result from design
and implementation differences between them, last but not least due to differ-
ent programming languages – C/C++, Java, Python, Haskell and VHDL for the
mentioned libraries. Further pre-processing, which includes compression, encryp-
tion, de-duplication, steganography and versioning, is realised either by FUSE
modules or by additional libraries. For some algorithms, like AONT-RS secret
sharing or Chinese remainders splitting, no publicly available implementations
exist. An overview about algorithms and emerging techniques for networked dis-
tributed storage systems is given in [8].

It is important to understand that the performance and efficiency of dis-
tributed storage depends not only on the algorithms and implementations, but
also heavily on configurable parameters such as redundancy, degree of paral-
lelism, distribution scheduling, streaming support and file system buffers. For
cloud storage service bundles, service selection preferences influence the results
further. For arbitrary combinations of these parameters, a test framework must
support multi-dimensional result sets. The most common parameters are k and

peaCS-Performance and Efficiency Analysis for Cloud Storage 51

m, referring to the number of significant and redundant storage targets, and w
as the coding word size.

3 The peaCS Test Framework

We introduce the test framework peaCS, which stands for Performance and Ef-
ficiency Analysis for Cloud Storage, in order to allow for systematic testing,
analysis and comparison of file-based cloud storage controllers and integrators.
The strength of peaCS is the coordinated, controlled and repeatable test of var-
iegated storage service combinations by instrumenting a target controller as the
subject of testing.

3.1 peaCS Architecture

Driven by the desired features, the design of peaCS mandates flexibility concern-
ing the definition of test executions, extensibility of test cases and reproducibility
of test results. The resulting test suite architecture is shown in Fig. 2. The main
application of peaCS is implemented as a shell script. It can be extended by
plugins (realised as include scripts) which perform the controller configuration
and subsequently the actual test runs. The behaviour of peaCS is driven by
both a configuration file and overriding command-line switches and interactive
commands. Test results can be compared against previously measured and deter-
mined gold standards. All output, including temporary scratch files, informative
logs, numerical results and visualisations derived from them are stored in ap-
propriately versioned locations. On the implementation level, Git, Gnuplot and
various measurement tools like Iozone are used in this workflow.

modular test
cases

log
files

peaCS
application

run
configuration

curation &
visualisation

sample data
gold standard

result
repository

local scratch
area

specific
conf.

storage service
interface(s)

storage integr./
controller

Fig. 2. Architecture of peaCS for coordinated storage integration testing

52 J. Spillner et al.

Within peaCS, variability is achieved by combining server-side parameters such
as storage service selection and configuration with client-side parameters such as
weights, redundancy and scheduling methods. Storage services and datasets can
be simulated through mass-generated local directories and files, but can also be
picked up from an existing configuration. Remote storage services can be inte-
grated semi-automatically by supplying a file with a list of accounts, typically
consisting of user names and passwords or access keys.

The variability is captured in the modular run configuration. Each step of
the test sequence can be switched on and off. Adapter scripts translate each
portable configuration directive into a controller-specific one. Listing 1.1 con-
veys the structure of the peaCS configuration file with portions of the key-value
parameter pairs.

Listing 1.1. Configuration file sections of peacs.conf

[global]
mntpoint = /media/cloud
syslog = /var/log/peacs.log
[samplefiles]
[sampledirectories]
[samplewebdavs]
[redundancytest]
startbyredundancy = 1
[iozonetest]
[availabilitytest]
strategy = AllUseInParallel
[directorytest]
[plot]

The goal of peaCS is to determine the performance and the resource utilisation
efficiency of storage integration combinations. Additionally, deterministic func-
tional and calculable tests are offered to build regression detection series. These
metrics will be discussed in the following three paragraphs before completing
the prototype presentation with an example of a test run.

3.2 Performance Determination

In times of increasing big data requirements [5], high performance for data
storage, retrieval, search and general processing becomes paramount. Storage
controllers should not cause performance penalties through compute-intensive
dispersion, encryption or de-duplication tasks, and yet offer these powerful mech-
anisms with high quality. In peaCS, throughput and performance are measured
through Iozone.

3.3 Efficiency Determination

Efficiency and high utilisation of minimal resources are two largely overlapping
primary goals in utility and cloud computing. This applies both to energy ef-
ficiency [2] and to hardware resource allocation scheduling [11] in addition to

peaCS-Performance and Efficiency Analysis for Cloud Storage 53

efficient time utilisation through high performance. Computational resource con-
sumption, i.e. processor, main memory, disk and network adapter, is measured
through Smem, Iozone and further tools in peaCS.

3.4 Functional Testing and Calculations

Functional tests verify the capabilities of the file system interface by invoking all
possible functions on it. These functions encompass directory, file and metadata
management. As an example, maximum file name lengths and directory nest-
ing limits can be found out this way. Calculations are performed to determine
availability values for certain storage service combinations and other repeatable
per-configuration results. Higher-level calculations combine measured and calcu-
lated values. For example, peaCS can determine the efficiency of required storage
capacity per redundancy level.

3.5 Test Run Examples

peaCS allows for multi-dimensional combinatorial variations which result in dia-
grams with an additional dimension for the calculated or measured target metric,
for instance, per-thread performance or RAM utilisation efficiency. The following
test results were achieved with the NubiSave cloud storage controller.

Fig. 3 gives an example of a two-dimensional variation. It has been created
by 1000 repeated availability calculation calls for each of the two main file part
distribution strategies. The results are independent of the hardware and must be
reproducible on any machine. In contrast, measured metrics differ depending on
the experimentation system and must at least be normalised before a comparison.

Fig. 4 represents a different visualisation of the availability calculation. peaCS
generates multiple table and plotting instruction files by default. This increases
the chance to spot anomalies and interesting artefacts.

Nubisave Availability/Storage Footprint - UseAllInParallel

1
2

3
4

5
6

7
8

9
10

Storages

0
10

20
30

40
50

60
70

80
90

100

Redundancy

0
20
40
60
80

100

0

20

40

60

80

100

Nubisave Availability/Storage Footprint - RoundRobin

1
2

3
4

5
6

7
8

9
10

Storages

0
10

20
30

40
50

60
70

80
90

100

Redundancy

0
20
40
60
80

100

0

20

40

60

80

100

Fig. 3. Comparison of the ratio of file availability and storage requirements, depending
on both redundancy and number of storage targets, for both parallel (left) and round-
robin (right) scheduling

54 J. Spillner et al.

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

A
va

ila
bi

lit
y

in
 %

Redundancy

Nubisave Storage-Availability with Redundancy - UseAllInParallel

1 Storage
2 Storages
3 Storages
4 Storages
5 Storages
6 Storages
7 Storages
8 Storages
9 Storages

10 Storages

Fig. 4. Alternative visualisation of the parallel availability calculation results

Nubisave Read Performance - 1MB File - UseAllInParallel

Read in KB/s

12345678910
Storages

0 10 20 30 40 50 60 70 80 90100

Redundancy

4000

6000

8000

10000

12000

14000

5000
6000
7000
8000
9000
10000
11000
12000
13000

Nubisave Read Performance - 1MB File - RoundRobin

Read in KB/s

12345678910
Storages

0 10 20 30 40 50 60 70 80 90100

Redundancy

0
2000
4000
6000
8000

10000
12000
14000

0
2000
4000
6000
8000
10000
12000
14000

Fig. 5. Comparison of the read performance for both parallel (left) and round-robin
(right) scheduling

Fig. 5 is an example of a measured result. For both strategies, the read per-
formance for a 1 MB file is determined. Given that the experiment used only
one hard disk (notebook HDD) to simulate up to 10 storage providers, it comes
at no surprise that the performance suffers when the file needs to be assembled
from independently read file parts (fragments) under the UseAllInParallel strat-
egy, compared to a single large read with nearly constant performance under the
RoundRobin strategy.

Fig. 6 contrasts the performance in Fig. 5 with the CPU utilisation for read
requests. The optimisation goal is to minimise the CPU utilisation and to max-
imise the performance. However, the optimum resides within the corner of only
one storage service with no redundancy, which is not a desired configuration for
practical use due to the lack of safety against unavailability and security against
confidentiality.

After performing the measurements, the results of peaCS can be analysed and
compared between implementations and parametrisations to derive optimisation
targets. Fig. 7 shows an example of a comparison between the ChironFS replica-
tion file system and NubiSave with two strategies at 100% redundancy. For all
three configurations, a video file of 87 MB was copied 100 times to the integration

peaCS-Performance and Efficiency Analysis for Cloud Storage 55

Nubisave CPU Usage - 1MB File - UseAllInParallel

cpu usage

1 2 3 4 5 6 7 8 9 10

Storages
0102030405060708090100

Redundancy

0
10
20
30
40
50
60
70
80
90

100

%

0

20

40

60

80

100

Nubisave CPU Usage - 1MB File - RoundRobin

cpu usage

1 2 3 4 5 6 7 8 9 10

Storages
0102030405060708090100

Redundancy

0
10
20
30
40
50
60
70
80
90

100

%

0

20

40

60

80

100

Fig. 6. Comparison of the CPU utilisation for both parallel (left) and round-robin
(right) scheduling

folder which replicated the file to a number of simulated cloud storage folders,
each of which was located on the same disk. The experiments were conducted
on a notebook with Intel Core i7 M620 CPU (4 cores) and a 320 GB Hitachi
SATA II disk (5400 RPM, 8 MB cache) running Debian 7.0 for AMD64. The
results clearly show an overall optimisation potential for NubiSave, which can
be attributed due to its implementation being Java while ChironFS is written in
C++, and a particular optimisation potential for the case of 5 or more storages,
depending on the number of cores.

Fig. 7. Comparison between ChironFS and NubiSave n-fold replication performance
for 1 ≤ n ≤ 7

4 Related Research

Those who define analysis and comparison frameworks should not forget to anal-
yse and compare the framework itself. There are already both experimental and
simulation approaches to compare cloud services and file systems, but thus far
none to evaluate complementary client-side integration solutions with filesystem
or alternative interfaces.

56 J. Spillner et al.

CloudSim [6] uses simulation supports the modelling of distributed cloud en-
vironments and simulated experiments inside them. Although it is extensible, it
currently does not cover the integration of services on the client. C-Meter [24],
a tool developed from its Grenchmark ancestry, lets the user define artificial
workloads which are then executed in the cloud. It is not suitable for storage
service bundle integration testing due to its focus on compute clouds. Central
storage and filesystem performance comparison, on the other hand, is a well
established activity, both for native [23] and for user-space filesystems [15]. Co-
ordinated measurements of multiple file systems for distributed cloud storage
service integration are however not covered by these approaches and require the
flexible selection and configuration approach taken in peaCS. Some researchers
have proposed proof-of-retrievability (PoR) techniques for cloud storage services
[19]. These are currently not covered by peaCS but may be added as probes in
the future so that the tool will gain usefulness for security-related non-functional
properties.

Industrial practice considers cloud storage service testing and certification
a necessity3. However, as opposed to related industrial domains such as high-
performance computing with its omnipresent Linpack benchmark, there is no
standard benchmark tool available for storage services and their integration yet.
Our intention is that tools like peaCS contribute to the development of a stan-
dard way of assessing the client-side combination of cloud storage services.

5 Conclusion

The increasing availability of unified filesystem-based access to dedicated cloud
storage providers or mixed local and cloud storage areas calls for a systematic
testing tool. We have motivated the need for such a tool for both users (compar-
ison) and developers (regression testing), gathered use cases through an analysis
of integration interfaces, and designed the peaCS framework accordingly. Clearly,
peaCS is work in progress and warrants large-scale experiments with deduced
comparative results. We intend to perform this work in the near future through
a grant which is publicly described at a Lab website4. Its success depends on the
availability of storage integration interfaces to the research community.

Acknowledgements. This work has received funding under project number
080949277 by means of the European Regional Development Fund (ERDF), the
European Social Fund (ESF) and the German Free State of Saxony.

References

1. Abu-Libdeh, H., Princehouse, L., Weatherspoon, H.: RACS: A Case for Cloud Stor-
age Diversity. In: 1st ACM Symposium on Cloud Computing (SoCC), Indianapolis,
Indiana, USA, pp. 229–240 (June 2010)

3 Industrial storage service testing: http://www.nasuni.com/blog/15-testing_the_
cloud_storage_providers_part_1-api

4 NubiSave Lab: http://lab.nubisave.org/

http://www.nasuni.com/blog/15-testing_the_cloud_storage_providers_part_1-api
http://www.nasuni.com/blog/15-testing_the_cloud_storage_providers_part_1-api
http://lab.nubisave.org/

peaCS-Performance and Efficiency Analysis for Cloud Storage 57

2. Beloglazov, A., Buyya, R.: Energy Efficient Resource Management in Virtualized
Cloud Data Centers. In: Proceedings of the 2010 10th IEEE/ACM International
Conference on Cluster, Cloud and Grid Computing (CCGrid), Melbourne, Aus-
tralia, pp. 826–831 (May 2010)

3. Bertolino, A., Polini, A.: SOA Test Governance: Enabling Service Integration Test-
ing across Organization and Technology Borders. In: International Conference on
Software Testing, Verification and Validation Workshops (ICSTW), Denver, Col-
orado, USA, pp. 277–286 (April 2009)

4. Bessani, A., Correia, M., Quaresma, B., André, F., Sousa, P.: DEPSKY: De-
pendable and Secure Storage in a Cloud-of-Clouds. In: Proceedings of EuroSys,
Salzburg, Austria (2011)

5. Boyd, D., Crawford, K.: Six Provocations for Big Data. In: Decade, A. (ed.) A
Decade in Internet Time: Symposium on the Dynamics of the Internet and Society,
Oxford Internet Institute (September 2011)

6. Calheiros, R.N., Ranjan, R., Rose, C.A.F.D., Buyya, R.: CloudSim: A Novel Frame-
work for Modeling and Simulation of Cloud Computing Infrastructures and Ser-
vices. Tech. Rep. GRIDS-TR-2009-1, Grid Computing and Distributed Systems
Laboratory, The University of Melbourne, Australia (March 2009)

7. Canfora, G., Penta, M.D.: Testing Services and Service-Centric Systems: Chal-
lenges and Opportunities. IT Professional 8(2), 10–17 (2006)

8. Datta, A., Oggier, F.: An Overview of Codes Tailor-made for Better Repairabil-
ity in Networked Distributed Storage Systems. ACM SIGACT News Distributed
Computing Column (March 2013)

9. Khan, O., Burns, R., Plank, J., Pierce, W., Huang, C.: Rethinking Erasure Codes
for Cloud File Systems: Minimizing I/O for Recovery and Degraded Reads. In:
10th USENIX Conference on File and Storage Technologies (FAST), San Jose,
California, USA (February 2012)

10. Livenson, I., Laure, E.: Towards Transparent Integration of Heterogeneous Cloud
Storage Platforms. In: Proceedings of the Fourth International Workshop on Data-
Intensive Distributed Computing (DIDC), San Jose, California, USA, pp. 27–34
(June 2011)

11. Meng, X., Isci, C., Kephart, J., Zhang, L., Bouillet, E., Pendarakis, D.: Efficient
Resource Provisioning in Compute Clouds via VM Multiplexing. In: Proceedings of
the 7th IEEE/ACM International Conference on Autonomic Computing (ICAC),
Washington, DC, USA, pp. 11–20 (June 2010)

12. Nepal, S., Friedrich, C., Henry, L., Chen, S.: A Secure Storage Service in the Hy-
brid Cloud. In: Fourth IEEE/ACM International Conference on Utility and Cloud
Computing (UCC), Melbourne, Australia, pp. 334–335 (December 2011)

13. Noikajana, S., Suwannasart, T.: An Improved Test Case Generation Method for
Web Service Testing from WSDL-S and OCL with Pair-Wise Testing Technique. In:
33rd Annual IEEE International Computer Software and Applications Conference
(COMPSAC), Seattle, Washington, USA, pp. 115–123 (July 2009)

14. Plank, J.S., Simmerman, S., Schuman, C.D.: Jerasure: A Library in C/C++ Facil-
itating Erasure Coding for Storage Applications. Tech. Rep. UT-CS-08-627, Uni-
versity of Tennessee, Knoxville, Tennessee, USA (August 2008)

15. Rajgarhia, A., Gehani, A.: Performance and Extension of User Space File Systems,
Sierre, Switzerland (March 2010)

16. Reiff-Marganiec, S., Yu, H.Q., Tilly, M.: Service Selection Based on Non-functional
Properties. In: Di Nitto, E., Ripeanu, M. (eds.) ICSOC 2007. LNCS, vol. 4907, pp.
128–138. Springer, Heidelberg (2009)

58 J. Spillner et al.

17. Schnjakin, M., Meinel, C.: Plattform zur Bereitstellung sicherer und hochverfüg-
barer Speicherressourcen in der Cloud. In: Sicher in die Digitale Welt von Morgen
– 12. Dt. IT-Sicherheitskongress des BSI. SecuMedia Verlag, Bonn (May 2011)

18. Seiger, R., Groß, S., Schill, A.: SecCSIE: A Secure Cloud Storage Integrator for
Enterprises. In: 13th IEEE Conference on Commerce and Enterprise Computing,
Workshop on Clouds for Enterprises, Luxembourg, pp. 252–255 (September 2011)

19. Shacham, H., Waters, B.: Compact Proofs of Retrievability. In: Pieprzyk, J. (ed.)
ASIACRYPT 2008. LNCS, vol. 5350, pp. 90–107. Springer, Heidelberg (2008)

20. Slamanig, D., Hanser, C.: On cloud storage and the cloud of clouds approach. In:
The 7th International Conference for Internet Technology and Secured Transac-
tions (ICITST), London, United Kingdom, pp. 649–655 (December 2012)

21. Spillner, J., Müller, J., Schill, A.: Creating Optimal Cloud Storage Sys-
tems. Future Generation Computer Systems 29(4), 1062–1072 (June 2013),
doi:http://dx.doi.org/10.1016/j.future.2012.06.004

22. Stefanov, E., van Dijk, M., Oprea, A., Juels, A.: Iris: A Scalable Cloud File System
with Efficient Integrity Checks. In: 28th Annual Computer Security Applications
Conference (ACSAC), Orlando, Florida, pp. 1–33 (December 2012)

23. Vanninen, M., Wang, J.Z.: On Benchmarking Popular File Systems. Clemson Uni-
versity Study (2009)

24. Yigitbasi, N., Iosup, A., Epema, D., Ostermann, S.: C-Meter: A Framework for
Performance Analysis of Computing Clouds. In: 9th IEEE/ACM International
Symposium on Cluster Computing and the Grid (CCGRID), Shanghai, China,
pp. 472–477 (May 2009)

25. Zhang, N., Jing, J., Liu, P.: Removing the Laptop On-Road Data Disclosure Threat
in the Cloud Computing Era. In: Proceedings of the 6th International Conference
on Frontier of Computer Science and Technology (FCST). IEEE Digital Library
(November 2011)

26. Zhao, G., Rong, C., Li, J., Zhang, F., Tang, Y.: Trusted Data Sharing over Un-
trusted Cloud Storage Providers. In: IEEE Second International Conference on
Cloud Computing Technology and Science (CloudCom), Indianapolis, Indiana,
USA, pp. 97–103 (December 2010)

27. Zooko, W.B., Hopwood, D., Secor, P., Deppierraz, F., McDonald, P., Marti, F.,
Tooley, M., Carstensen, K.: Tahoe-LAFS: The Least Authority File System. Open
source project (2013), http://tahoe-lafs.org/

http://dx.doi.org/10.1016/j.future.2012.06.004
http://tahoe-lafs.org/

Delegation for On-boarding Federation Across

Storage Clouds

Elliot K. Kolodner1, Alexandra Shulman-Peleg1, Gil Vernik1,
Ciro Formisano2, and Massimo Villari3

1 IBM Haifa Research Lab, Israel
2 Engineering Ingegneria Informatica SPA, Italy

3 Dept. of DICIEMA, University of Messina, Italy
ciro.formisano@eng.it, {kolodner,shulmana,gilv}@il.ibm.com,

mvillari@unime.it http://www.visioncloud.eu

Abstract. On-boarding federation allows an enterprise to efficiently
migrate its data from one storage cloud provider to another (e.g., for
business or legal reasons), while providing continuous access and a uni-
fied view over the data during the migration. On-boarding is provided
through a federation layer on the new destination cloud providing del-
egation for accessing object on the old source cloud. In this paper we
describe a delegation architecture for on-boarding where the user dele-
gates to the on-boarding layer a subset of his/her access rights on the
source and destination clouds to enable on-boarding to occur in a safe
and secure way, such that the on-boarding layer has the least privilege
required to carry out its work. The added value of this work is in evalu-
ating all security implications of a delegation necessary to be taken into
account during the on-boarding phase. We also show how this delega-
tion architecture can be implemented using Security Assertion Markup
Language.

Keywords: Storage Cloud, Federation, Delegation, SAML.

1 Introduction

Existing storage clouds do not provide true data mobility and do not provide ad-
equate mechanisms for allowing efficient migration of their data across providers.
Indeed in their work “Above the Clouds” Armbrust et al. [1] cite “data lock-
in” as being one of the top ten obstacles for growth in Cloud Computing. In
a recent paper Vernik et al. [2] present an architecture for on-boarding feder-
ation to deal with this problem. On-boarding federation allows an enterprise
to efficiently migrate its data from one storage cloud provider to another (e.g.,
for business or legal reasons), while providing continuous access and a unified
view over the data over the course of the migration. On-boarding is provided
through a federation layer on the new destination cloud by setting up a rela-
tionship between its containers and the containers on the old source cloud. Once
the relationship is set up, the on-boarding layer is responsible to carry out the

C. Canal and M. Villari (Eds.): ESOCC 2013, CCIS 393, pp. 59–70, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.visioncloud.eu

60 E.K. Kolodner et al.

migration on behalf of the user, reading objects from the old source cloud and
writing objects to the new destination cloud. This layer acts on behalf of the
user and requires authorization from the user to act in his/her name with the
old and new providers.

In this paper we present a detailed delegation architecture for on-boarding. In
particular, when a user sets up an on-boarding relationship between a container
in the new and old clouds, the user also delegates a subset of his/her access rights
to the federation layer of the new cloud. This subset should include the minimum
rights needed for the federation layer to on-board objects of the old container.
We also show how to implement the delegation architecture using SAML.

We are currently in the process of implementing the delegation mechanism in
the context of VISION Cloud [3], an EU-funded project where we are developing
advanced features for cloud object stores, such as on-boarding, and use case
scenarios to demonstrate the features.

The paper is organized as follows. Section 2 highlights related work on the
subject of delegation. Section 3 provides background on VISION Cloud and Sec-
tion 4 its approach to on-boarding federation. The main principles on Access
Control and Delegation are described in Section 5, whereas Section 6 introduces
two possible techniques for Delegation. Our delegation architecture and imple-
mentation using SAML is reported in Section 7. We conclude in Section 8.

2 Related Work

In this section we describe existing works falling into the area of Federation of
Access control looking at SAML for identity federation and Delegation technolo-
gies.

2.1 Access Control in a Federation

Usually federation consists of the establishment of a trust context between par-
ties with the purpose of benefiting of business advantages. Several pending issues
concerning security and privacy still have to be addressed and it is not clear what
cloud federation actually means and what the involved issues are (see [4]). In-
deed, the cloud has not kept pace with the enormous volume of user identities
that network administrators must manage and secure. The concept of Identity
Fabric described in Architecting a Cloud-Scale Identity Fabric (see [5]), is a pos-
sible solution. The authors in [6] produced several works on the ti They range
from: Federated Identity, to Delegation Of Authority, and Levels Of Assurance,
Attributes, Access Rights, till Authorization. In this work, the authors described
all APIs they introduced, and applied them to a real cloud middleware, the
Eucalyptus S3 Service.

SAML for Identity Federation. Service federation over the Internet is cur-
rently a well established approach: it is supported by a mechanism for trusting
identities across different domains, which is identity federation. The latest trend to

Delegation for On-boarding Federation Across Storage Clouds 61

federate identities over the Internet is representedby the Identity Provider/Service
Provider (IdP/SP)model [7], supported by digital certificates used in Security As-
sertion Markup Language (SAML) [8] profiles and Shibboleth [9,10].

Although these are becoming the most popular technologies, they are designed
for static environments requiring, for example, a priori policy agreements: this
is a limitation in cloud environment, which is dynamic and heterogeneous and
requires particular security and policy arrangements.

Interoperability in federated heterogeneous cloud environments is addressed
in [11], in which the authors propose a trust model where the trust is delegated
between trustworthy parties which satisfy certain constrains. Pearson at al. [12]
also introduce a privacy manager in order to care for data compliance according
to the laws of different jurisdictions.

Huang et al. present relevant work [13] about an Identity Federation Broker
for service clouds. They addressed federation in the context of SaaS services in
which SAML represents the basic protocol.

The works presented above justify the adoption of SAML in our solution, but
they consider it in a different aspect which is not suitable for our aims. Here,
in addition to presenting standard SAML flows, we discuss a slightly modified
version allowing to simplify the on-boarding federation.

Delegation Technologies. Grid systems have widely used credentials and del-
egations leveraging the PKI technology: right now, a recent trend for managing
credential and delegations in federated cloud scenarios appears to make use of
X.509 certificates. An example is given in OpenStack with Keystone in PKI
configuration (see [14]).

In the direction of managing identity and authorization for Community Clouds
using PKI is discussed in [15]. The authors introduce an identity broker to
bind the Web Single Sign-on to a key-based system. In particular they imple-
mented a solution (libabac package) using the Attribute-based Access Control
(ABAC) and the role-based trust management (RT): RT/ABAC. The libabac
uses X.509 as a transport. RT/ABAC credentials are X.509 attribute certifi-
cates. The RT/ABAC may handle the processing of delegation chains.

A recent and detailed work on delegation is described in the paper enti-
tled: OAuth and ABE based Authorization in Semi-Trusted Cloud computing,
[16]. Here the authors enhanced the OAuth capabilities using the encryption in
attribute-based access control system exploiting metadata. They introduced a
complex model in which authentication, authorization, delegation, access trees,
new tokens, time slots, user certificates are investigated.

3 Vision Cloud at a Glance

The VISION Cloud architecture is designed to support tens of geographically
dispersed data centers where each DC may contain tens of clusters each with

62 E.K. Kolodner et al.

hundreds of storage-rich compute nodes. An object consists of data and metadata
where the data can be of arbitrary size and type, and the metadata can include
arbitrary key value pairs, typically describing the content of the object. Object
data cannot be updated, but an entire new version of an object can be created.

In contrast, new metadata can be appended to an object and updated over
time. Data objects are grouped in containers, and each data object has a unique
name within a container. Containers provide context and are used for purposes
of data management, isolation, and placement (i.e., containers are the minimal
units of placement and can not be split across clusters.) Metadata can also be
associated with containers.

The account model includes tenants and users. A tenant subscribes to cloud
storage services and usually represents a company or an organization. A tenant
may have many users. A user is the entity that actually uses storage services, and
may refer to a person or to an application. A user belongs to one and only one
tenant, although a person might own a user account in more than one tenant.
Users, who are created by tenant administrators, have unique identifiers within
a tenant and possess credentials allowing them to authenticate themselves to the
cloud. A user may create containers and data objects in them.

4 On-boarding

Vernik et al. [2] introduce the concept of on-boarding federation for storage
clouds to prevent the vendor lock-in. A federation layer on the new destination
cloud imports data from an old source cloud without requiring any special func-
tion from the old cloud. Applications and users access their data through the
new cloud immediately after the on-boarding setup, without waiting for the mi-
gration process to complete. Migrating data via on-boarding federation directly
between the clouds leads to a significant savings in time and cost.

Fig. 1. On-boarding Architecture

Delegation for On-boarding Federation Across Storage Clouds 63

Figure 1 illustrates the on-boarding architecture presented by Vernik et al.
The architecture specifies three primary flows: (1) on-boarding set-up, (2) direct
access, and (3) background on-boarding.

On-boarding Set-up. An on-boarding relationship between a container in the old
cloud and a container in the new cloud is set up through the FMM (Federation
and Monitoring Administrator Module). This relationship and the parameters
describing it is persisted through the metadata of the container on the new cloud.

Direct Access. Once the relationship is set-up, all client’s applications may start
immediately to access the objects of the old container through the new cloud.
When a client accesses an object on the new cloud that has not yet been on-
boarded, the Federator-Direct module gets the object from the old cloud, puts it
in the new cloud and returns it to the client. Access to the old cloud is mediated
through the Multi-cloud Adapter component, which translates the access request
to the proper format for the specific cloud. The authorization to access the old
cloud on the user’s behalf is granted by using delegation mechanisms (described
in Section 7).

Background On-boarding. The FederatorJobExecutor creates background jobs
on the the new cloud that fetch objects from the container in the old cloud
and copy them to the container in the new cloud. These jobs run when the
resource utilization (e.g., CPU and network) in the new cloud is low so that
they do not interfere with the normal operation of the cloud. These jobs also
need authorization from the user to access the old cloud and depending on the
architecture may also need authorization the write the objects on the new cloud.

5 Identity and Access Management Systems for Access
Control

Tenants and users for accessing their data objects stored in the cloud need to
be authenticated and authorized by the Identity and Access Management
systems (IAM) of cloud providers through their web portals. There are two
typologies of configuration with at least three total identity management archi-
tectures that are relevant for federation:

– One IAM, that could be shared or external.
– Two IAMs, defining two administrative domains.

For the on-boarding procedure described in Section 4 in both cases delegation
is needed, but in the second, more complex case, also the issues caused by inter-
domain accesses must be addressed.

Before to discuss how to solve the problem, we analyze the concept of delega-
tion (see Sec. 5.1) taking into account a comparison of current solutions aimed
at web environments (see Sec. 6).

64 E.K. Kolodner et al.

5.1 Concept of Delegation

The Delegation is the possibility for an user (U1) to delegate a subset of his/her
access privileges to another user or process (U2). U1 is called delegator while U2
is the delegate. Both users keep their own identities, but U2 obtains a document
signed by U1 and stating that U2 is authorized to act on behalf of U1 for a
reduced set of operations. This means that U2 doesn’t obtain the identity of U1:
he/she doesn’t impersonate U1, but is explicitly authorized to perform several
actions on behalf of U1. Let’s consider, as an example, the use case of a human
context, in which a person going to a public office needs to get a certificate
on behalf of another person. For specific certificates this operation is possible
as long as the delegate shows his/her own personal ID card and the delegation
document (called a Power of Attorney) signed by the delegator and a copy of the
delegator ID Card. In computer science the context is identical, in particular:

– The delegator gives to the delegate an electronic document digitally signed,
containing the details of the delegation (permitted operations, possibility to
have more level of delegation etc).

– The delegate provides his/her credentials and the document mentioned above,
to formalize delegation and granting the rights for accessing the resource.

5.2 Difference between Web Single Sign On (SSO) and Web
Delegation

Identity Federation avoids the necessity to have multiple accounts to access
different administrative domains. SSO is a way in which it is possible to log in
once and access several services: when these services refer to different IMSs for
AuthN and AuthZ, SSO is built on an Identity Federation. We begin this section
describing the Identity Federation/SSO system, in order to clarify its difference
with Web Delegation. Figure 2 shows all parts composing a typical SSO system.
The picture shows a Relying Party (RP), an IAM (Identity Provider or OpenID

Fig. 2. An example of Web Singe Sign
On procedure

Fig. 3. An example of Web Delegation
procedure

Delegation for On-boarding Federation Across Storage Clouds 65

Provider - IdP, OIdP), and the end-user. End-user has an identity registered on
IAM and needs to access a certain web resource on RP:

1. he is redirected to IAM for the authentication (the authentication must be
performed on the home domain)

2. if the authentication has succeeded, he/she is redirected to RP for obtaining
the requested resource

Several implementations of Identity Federation/SSO are based on SAML pro-
tocol [8] or OpenID protocol [17]; CAS protocol [18] is an example of simple SSO
not associated with Identity Federation.

The Web Delegation procedure is conceptually different: it is the mechanism
employed, for example, when client applications want to use the functionalities
provided by Social Networks (such as Facebook or GooglePlus) on behalf of
end users. The end-user who decides to exploit these applications using these
functionalities, at first authorizes the client applications to use the functionalities
on his/her behalf, then the applications will continue to work without any user
supervision. In particular the user obtains a special token granting temporary
limited access and allowing partial operations on behalf of the user. Figure 3
depicts all parts composing a typical Web Delegation system. In the Figure the
SP can be assimilated to the Social Network, whereas the Third Part Application
is equivalent to client applications (i.e. Instagram).
To summarize:

– In the Web SSO it is necessary to Share the same User Identity among more
Web Services.

– In the Web Delegation it is necessary to Share User Data (or web resources)
without share his/her credentials.

Web delegation has been widely used in multiple applications implemented
by with well know protocols like OAuth [16]. However, when considering the
setups with delegation across two clouds these protocols are insufficient since
they assume an existence of an IAM server shared between the clouds. Another
way to setup the Delegation is using a modified version of SAML protocol. We
remark that SAML was born for solving the SSO issues, but with several new
specifications is able to deal with delegation needs (SAML 2.0 Condition to
Delegate [19]). The next section introduces OAuth and SAML2DEL solutions,
highlighting pro and cons of each one.

6 A Brief Presentation of OAuth 2.0 and SAML2Del

In this section we discuss the main difference existing between SAML delegation
mechanism against the OAuth 2.0. The early has been introduced by OASIS
consortium following the standardization of XML docs (i.e. SAML[8], XACML
[20]), where OAuth 2.0, specializes the existing features of OAuth 1.0.

OAuth 2.0 Authorization Framework, defined by the IETF standard standard
board, is described in the RFC 6749 (for further details see the reference [21]).

66 E.K. Kolodner et al.

According to Figure 4, we can see the following actors: Client, Resource
Owner, and Authorization Server. Resource Server is the application that
needs accessing protected resources on the user behalf. Resource Owner is
the user owning the protected resources that the client needs to be accessed.
Authorization Server is the server releasing access tokens to the client after
the user has been authenticated and has granted access to his resources. Re-
source Server is the server managing the user protected resources. All steps
characterizing the protocol are shown using the A− F letters.

Fig. 4. OAuth2.0 Abstract Protocol
Flow

Fig. 5. SAML2DEL Abstract Protocol
Flow

6.1 SAML2Del

SAML 2.0 Condition to Delegate (SAML2Del) is described in [19]. The spec-
ification shows how to use of SAML 2.0 protocol in the case of delegation. In
particular SAML2DEL describes different delegation-like scenarios, that are
Proxying, Impersonation and Forwarding, and defines the Delegation,
which goes beyond the forwarding scenario by adding information to the asser-
tion that explicitly identifies all the parties through which a transaction flows.

Figure 5 depicts how the delegation works in SAML. The User Agent (the
Client for OAuth 2.0 model) gains the access on Service Provider A (SP A),
using his credentials stored in the Identity Provider (IdP). The SP A also obtains
a SAML Assertion (using its credentials against IdP) hence it can access the
resource on SP B. The SAML Assertion of SP A is different respect to the User
Agent version; it is modified. In the Figure, all steps characterizing the protocol
are shown using the A−D letters.

6.2 Comparison of SAML2Del Versus OAuth 2.0

An interesting work is reported in “OAuth 2.0 Threat Model and Security
Considerations”[22] that shows what are the main threats that OAuth 2.0 can
suffer. The main reason of the weakness of OAuth 2.0 is due to its evolution
from OAuth 1.0 along with the adoption of incremental improvements that have

Delegation for On-boarding Federation Across Storage Clouds 67

exposed the system to possible flaws (i.e., (a1) the effects of attackers in the com-
munication among the parties, (b1) Obtaining Client Secrets, (c1) Eavesdropping
Access Tokens, etc.). In reality the OAuth 2.0 protocol provides a greater degree
of flexibility respect to OAuth 1.0, especially in how it can be applied and the
use cases that it can address, as it was argued in [22].

SAML is a much more mature framework conceived for many security pur-
poses, in which the exchange of XML “assertion” guarantees a high degree of
security, if we consider the possibility offered by SAML to sign all communica-
tions (i.e. this avoids the threat in (a1) case), with certificates and XML (see the
XML Signature and XML Encryption Native Support of SAML 2.0 [23]). In the
next sections we analyze the utilization of SAML for delegation, describing our
adoption. In this direction is also moving the working draft of IETF in which
SAML 2.0 Profile is used for OAuth 2.0 Client Authentication and Authorization
Grants [24].

7 Delegation Solution for On-boarding in VISION Cloud

In this section we describe the delegation solution that we have designed for
on-boarding federation as described in Section 4. We first describe the flow for
the SAML-based delegation mechanism that we have chosen, and then show how
we apply it for on-boarding.

We chose to implement delegation using SAML2Del (described in Section 6).
The delegation document is a signed SAML assertion containing the details of
the delegation, held in a specific field called Condition. To describe the delegation
flow, we consider the simple case of a single IAM system and two users, U1 and
U2. Both users must be registered on the IAM and their credentials must be
known to the IAM. A user could also be a process or an infrastructure can also
be registered as a trusted user, (e.g., through a certificate that is stored in the
trust-store of the IAM).

The flow is as follows: (1) U1 logs into the IAM using her credentials and
asks to generate a signed delegation assertion stating that U2 is authorized to
perform, for example, GET operations on behalf of U1 for 1 day. (2) U1 provides
the assertion to U2. (3) U2 logs into the IAM using her credentials, provides the
assertion and is authorized to perform GET operations for the entire day.

Figure 6 shows the on-boarding delegation flow. It shows two VISION Clouds,
that is the New Cloud and the Old Cloud. Each has its own IAM incorporating
an Identity Provider (IdP) and a Service Provider (SP). The New Cloud also
includes a Federator component, representing both the Federator-Direct and the
Background-Federator (see Section 4).

The Federator has an identity on both clouds. In particular, let F@OLDIAM ,
denote the federator identity (F) in the IAM of the Old Cloud (OLDIAM)
and let F@NEWIAM denote its identity (F) in the IAM of the New Cloud
(NEWIAM). The user (U) that requests the on-boarding also has an identity on
each cloud, in particular, U@OLDIAM (in the Old Cloud) and U@NEWIAM (on
the New Cloud). All the identities must be registered on their own IAM, asso-

68 E.K. Kolodner et al.

Fig. 6. Delegation Flow for On-boarding in VISION Cloud

ciated with suitable credentials (e.g. username/password) where the credentials
of F@OLDIAM and F@NEWIAM should be securely stored.

The delegation flow is modeled using two delegations, in particular:
(1) U@OLDIAM delegates F@OLDIAM to GET her objects from her container
on Old Cloud; and (2) U@NEWIAM delegates F@NEWIAM to PUT objects
on her container in New Cloud.

Now we can describe the delegation flow for on-boarding.

1. The user performs the login in both clouds obtaining delegation assertion
for both.
– The user gets the delegation assertion (A@NEWIAM), providing

U@NEWIAM username/password and F@NEWIAM userid
– The user gets the delegation assertion (A@OLDIAM), providing

U@OLDIAM username/password and F@OLDIAM userid
2. The user starts the federation process. Since the Federator is part of New

Cloud, the parameters needed are the following: (1) U@NEWIAM user-
name/password for being authorized to access as the Federator; (2)
A@NEWIAM : the assertion ID delegating F@NEWIAM to ask for PUT
operations on behalf of U@NEWIAM ; (3) A@OLDIAM : the assertion ID del-
egating F@OLDIAM to ask for GET operations on behalf of U@OLDIAM .

3. The Federator validates with IAM the credentials of U@NEWIAM (who
starts the process).

4. The Federator performs a GET operation to the Old Cloud using
F@OLDIAM credentials as delegate of U@OLDIAM .

5. The Object Service checks the credentials and the delegation with the IAM
of the Old Cloud.

6. The Federator PUTs the retrieved object to the New Cloud using
F@NEWIAM credentials as Delegate of U@NEWIAM .

Delegation for On-boarding Federation Across Storage Clouds 69

7. The Object Service checks the credentials and the delegation with the IAM
of the New Cloud.

For the integration of the system in VISION Cloud a generic SAML enabled IdP
has to be deployed and integrated with the IAM of the tenant. The IdP is compli-
ant with SAML 2.0 condition to delegate standard, in particular Shibboleth IdP
is integrated with a plug in. The generic case of web browser login can be used
also in this case and it is integrated with the specific use case to be taken into
account. The interface between the User and the Federator is not an issue, from
the point of view of Delegation, but it is important that username/password and
delegation assertion ids can be passed as parameters. The Federator has to ask
for GET and PUT operations using the parameters described previously.

8 Conclusions and Future Work

The added value of this paper is in considering all security implications in using
the delegation technique for the on-boarding procedure. We also show how this
delegation architecture can be implemented using SAML 2.0 Condition to Dele-
gate extension. We are currently implementing the solution as part of our work
on VISION cloud: in the future we will evaluate the impact of it on the whole
architecture, analyzing its complexity and performance.

Acknowledgments. The research leading to the results presented in this paper
has received funding from the European Union’s Seventh Framework Programme
(FP7 2007-2013) Project VISION-Cloud under grant agreement number 217019.

References

1. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R.H., Konwinski, A., Lee,
G., Patterson, D.A., Rabkin, A., Zaharia, M.: Above the Clouds: A Berkeley View
of Cloud Computing. Technical Report UCB/EECS-2009-28, EECS Department,
University of California, Berkeley (February 2009)

2. Vernik, G., Shulman-Peleg, A., Dippl, S., Formisano, C., Jaeger, M., Kolodner, E.,
Villari, M.: Data on-boarding in federated storage clouds. In: IEEE CLOUD 2013
IEEE 6th International Conference on Cloud Computing, Santa Clara Marriott,
CA, USA (Center of Silicon Valley), June 27-July 2 (2013)

3. Kolodner, E.K., Tal, S., Kyriazis, D., Naor, D., Allalouf, M., Bonelli, L., Brand, P.,
Eckert, A., Elmroth, E., Gogouvitis, S.V., Harnik, D., Hernández, F., Jaeger, M.C.,
Lakew, E.B., Lopez, J.M., Lorenz, M., Messina, A., Shulman-Peleg, A., Talyansky,
R., Voulodimos, A., Wolfsthal, Y.: A cloud environment for data-intensive storage
services. In: CloudCom, pp. 357–366 (2011)

4. Leavitt, N.: Is cloud computing really ready for prime time? Computer, 15–20
(January 2009)

5. Olden, E.: Architecting a cloud-scale identity fabric. Computer 44(3), 52–59 (2011)
6. Chadwick, D.W., Casenove, M.: Security apis for my private cloud - granting access

to anyone, from anywhere at any time. In: Proceedings of the 2011 IEEE Third
International Conference on Cloud Computing Technology and Science, CLOUD-
COM 2011, pp. 792–798. IEEE Computer Society, Washington, DC (2011)

70 E.K. Kolodner et al.

7. Liberty: An alliance project (2013), http://projectliberty.org
8. SAML-OASIS: V2.0 technical (January 2013),

http://www.oasis-open.org/specs/index.php

9. Shibboleth: System standards (January 2012),
http://shibboleth.internet2.edu/

10. Villari, M., Tusa, F., Celesti, A., Puliafito, A.: How to federate vision clouds
through saml/shibboleth authentication. In: De Paoli, F., Pimentel, E., Zavattaro,
G. (eds.) ESOCC 2012. LNCS, vol. 7592, pp. 259–274. Springer, Heidelberg (2012)

11. Li, W., Ping, L.: Trust model to enhance security and interoperability of cloud
environment. In: Jaatun, M.G., Zhao, G., Rong, C. (eds.) Cloud Computing. LNCS,
vol. 5931, pp. 69–79. Springer, Heidelberg (2009)

12. Pearson, S., Shen, Y., Mowbray, M.: A privacy manager for cloud computing. In:
Jaatun, M.G., Zhao, G., Rong, C. (eds.) Cloud Computing. LNCS, vol. 5931, pp.
90–106. Springer, Heidelberg (2009)

13. Huang, H.Y., Wang, B., Liu, X.X., Xu, J.M.: Identity federation broker for service
cloud. In: 2010 International Conference on Service Sciences (ICSS), pp. 115–120
(May 2010)

14. KEYSTONE: Welcome to keystone, the openstack identity service (2013),
http://docs.openstack.org/developer/keystone

15. Chase, J., Jaipuria, P.: Managing identity and authorization for community clouds.
Technical report, Department of Computer Science, Duke University, Technical
Report CS-2012-08 (2012)

16. Tassanaviboon, A., Gong, G.: Oauth and abe based authorization in semi-trusted
cloud computing: aauth. In: Proceedings of the Second International Workshop on
Data Intensive Computing in the Clouds, DataCloud-SC 2011, pp. 41–50. ACM,
New York (2011)

17. Recordon, D., Reed, D.: Openid 2.0: a platform for user-centric identity manage-
ment. In: Proceedings of the Second ACM Workshop on Digital Identity Manage-
ment, pp. 11–16. ACM, New York (2006)

18. CAS: Central authentication service (June 2013), http://www.jasig.org/cas
19. SAML-DEL: V2.0 condition for delegation (2013), http://docs.oasis-open.org/

security/saml/saml/Post2.0/sstc-saml-delegation-cs-01.pdf

20. XACML: Cross-enterprise security and privacy authorization (xspa) profile of
xacmlv2.0 for healthcare version 1.0, http://www.oasis-open.org/committees/
document.php?document id=34164&wg abbrev=xacml

21. Hardt, D.: The OAuth 2.0 Authorization Framework. RFC 6749 (Proposed Stan-
dard) (October 2012)

22. Lodderstedt, T., McGloin, M., Hunt, P.: OAuth 2.0 Threat Model and Security
Considerations. RFC 6819 (Informational) (January 2013)

23. SAML-ENHANC: 2.0 enhancements (2007),
http://saml.xml.org/saml-2-0-enhancements

24. SAML-OAUTH: Saml 2.0 profile for oauth 2.0 client authentication and authoriza-
tion grants”, note=” (2013),
http://datatracker.ietf.org/doc/draft-ietf-oauth-saml2-bearer

http://projectliberty.org
http://www.oasis-open.org/specs/index.php
http://shibboleth.internet2.edu/
http://docs.openstack.org/developer/keystone
http://www.jasig.org/cas
http://docs.oasis-open.org/security/saml/Post2.0/sstc-saml-delegation-cs-01.pdf
http://docs.oasis-open.org/security/saml/Post2.0/sstc-saml-delegation-cs-01.pdf
http://www.oasis-open.org/committees/document.php?document_id=34164&wg_abbrev=xacml
http://www.oasis-open.org/committees/document.php?document_id=34164&wg_abbrev=xacml
http://saml.xml.org/saml-2-0-enhancements
http://datatracker.ietf.org/doc/draft-ietf-oauth-saml2-bearer

Availability Assessment of a Vision Cloud

Storage Cluster�

Dario Bruneo1, Francesco Longo1, David Hadas2, and Hillel Kolodner2

1 Dipartimento di Ingegneria DICIEAMA,
Università degli Studi di Messina

Messina, Italy
{dbruneo,flongo}@unime.it
2 IBM Research Labs Haifa

Haifa, Israel
{kolodner,davidh}@il.ibm.com

Abstract. VISION Cloud is a European Commission funded project,
whose aim is to design and propose a new architecture for a scalable and
flexible cloud environment. The VISION Cloud reference architecture
considers a single cloud as composed by multiple distributed data centers
each of which can be composed by a great number of storage clusters.
On top of the storage rich nodes forming each cluster, a distributed file
system is built. In this paper, we provide an stochastic reward net model
for a storage cluster in the context of the storage cloud environment
proposed by the VISION Cloud project. The proposed model represents
a first step in the direction of obtaining a quantification of the availability
level reached through the use of the VISION Cloud proposed architecture
from a user perspective.

1 Introduction

Cloud computing allows to dramatically reduce the cost of service provisioning
by providing IT assets as commodities and on-demand usage patterns. Resource
provisioning is efficiently adapted to the dynamic user demands through virtual-
ization of hardware, rapid service provisioning, scalability, elasticity, accounting
granularity and cost allocation models. However, the rich digital environment
we are experiencing nowadays poses new requirements and challenges mainly
related to the explosion of personal and organizational digital data. In fact, in
the emerging era of the Future Internet and the Internet of Things, the explosion
of raw data and the dependence on data services will surely be amplified due to
the strong proliferation of data-intensive services and the digital convergence of
telecommunications, media, and ICT.

In the last years, several research trends have been investigated in the Cloud
computing area, system performance and dependability [1,2], energy consump-
tion [3], workload characterization [4] are only few examples. VISION Cloud [5]

� The research leading to these results has received funding from the European Com-
munitys Seventh Framework Programme (FP7/2007-2013) under grant agreement
number 257019.

C. Canal and M. Villari (Eds.): ESOCC 2013, CCIS 393, pp. 71–82, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

72 D. Bruneo et al.

is a European Commission Seventh Framework Programme (FP7/2006-2013)
funded project, whose aim is to design and propose a new architecture for a
scalable and flexible cloud environment addressing the challenge of providing
data-intensive storage cloud services through raising the abstraction level of
storage, enabling data mobility across providers, allowing computational and
content-centric access to storage and deploying new data-oriented mechanisms
for QoS and security guarantees. In such a context, QoS guarantees are not only
related to performance aspects but also, even more strictly, to reliability, avail-
ability, and fault tolerance and resiliency characteristics of the provided services.

The VISION Cloud reference architecture considers a single cloud as composed
by multiple distributed data centers interconnected through dedicated networks.
Each data center can be composed by a large number of storage clusters each
of which involves several storage rich nodes. VISION Cloud considers nodes
belonging to the same cluster as a single storage resource able to store data
objects and provide computational power on top of it in a transparent way.
This is obtained by the use of a distributed file system installed on top of the
storage cluster. In the proposed implementation of the architecture, General
Parallel File System for Shared Nothing Clusters (GPFS-SNC) [6] is exploited.
High level of availability and resiliency to faults are achieved by replicating data
objects among different storage cluster.

Aim of this paper is to provide an analytic model for a storage cluster in
the context of the storage cloud environment proposed by the VISION Cloud
project. The model is based on stochastic reward nets (SRNs) [7], an extension
of generalized stochastic Petri nets, that are useful in capturing the key concepts
of large-scale distributed systems [8,9]. From such a model, information about
the reached availability level varying the system parameters can be obtained.
Parameters include structural parameters and timing parameters. Structural pa-
rameters are related to the number of nodes in the cluster, number of disks in
each node, cluster file system metadata replication level, and similar informa-
tion. Timing parameters involve information about the time necessary to specific
events (e.g., disk or node failure) to occur or specific operations (e.g., disk or
node repair, cluster file system metadata recovery) to be performed.

The proposed model represents a first step in the direction of obtaining a
quantification of the availability level reached through the use of the VISION
Cloud proposed architecture from a user perspective. Several works in the liter-
ature deal with performance analysis of storage Cloud infrastructure [10] while
few effort has been put in the context of availability analysis [11]. In this con-
text, the majority of the work mainly consider replica placement policies [12,13]
without taking into consideration real case studies as done in our work. In fact,
our model could be exploited by a VISION Cloud administrator in order to op-
portunely build the infrastructure accordingly to the desired availability level
both from the hardware (e.g., computation, storage, network resources) and the
software (e.g., replication schema, cluster file system configuration) points of
view. Moreover, it could represent an useful instrument for a modeled assisted
SLAs management.

Availability Assessment of a Vision Cloud Storage Cluster 73

The paper is organized as follows. Section 2 provides an overview about the
VISION Cloud reference architecture and illustrates how GPFS-SNC is exploited
within the proposed storage cloud environment. Section 3 formally describes the
considered scenario while Section 4 illustrates how such a scenario is modeled
through the use of SRNs. Section 5 provides some numerical results. Finally,
Section 6 concludes the paper with some final remarks on the proposed approach
and on possible future work.

2 The VISION Cloud Storage Environment

In this section, we provide an overview of the storage cloud environment pro-
posed by the VISION Cloud project [5] focusing on the implemented physical
infrastructure and on the data model. We also provide details about GPFS-SNC
[6] and about how it is exploited in the VISION Cloud architecture.

2.1 The Proposed Storage Cloud Environment

Goal of the VISION Cloud project is to provide efficient support for data-
intensive applications. Moreover, a content-centric view of storage services is
provided. Five main areas of innovation drive the VISION Cloud platform de-
sign and implementation [14]: i) content is managed through data objects that
can be associated with a rich metadata model, ii) data lock-in is avoided by
allowing migration of data across administrative domains, iii) computations are
moved close to data through the use of storlets in order to avoid costly data
transfers, iv) efficient retrieval of objects is allowed based on object content,
properties, and relationships, and v) a high QoS level is guaranteed together
with security and compliance with international regulations.

The storage cloud environment proposed by the VISION Cloud project is
built on top of an infrastructure consisting of multiple data centers, potentially
distributed worldwide. Each data center can be composed of one or more stor-
age clusters containing physical resources providing computational, storage, and
networking capabilities. The data centers need to be connected by dedicated
high speed networks.

Each storage cluster is composed of several storage rich nodes that can be build
from commodity hardware and connected by commodity network devices. In
fact, as common for cloud infrastructures, the storage cloud is built from low cost
components and the desired reliability level is assured through the software layer.
The software stack also builds advanced functionalities on top of this foundation.
An example of initial hardware configuration could be 4 or 8 multiprocessor
nodes with 12 to 16 GB of RAM each. Each node could have 12 to 24 high
capacity direct attached disks (e.g., 2TB SATA drives). The architecture, design,
and implementation of the VISION Cloud architecture supports a system with
hundreds of storage clusters, where each storage cluster can have several hundred
nodes and the storage clusters are spread out over dozens of data centers.

The VISION Cloud data model is based on the concept of data object. A
data object contains data of arbitrary type and size. It has a unique identifier

74 D. Bruneo et al.

that allows users to access it through the whole cloud. An object is written
as a whole and cannot be partially updated even if it can be partially read.
An object may be overwritten, in which case the whole content of the object
is replaced. Versioning is supported. Data objects are contained in containers
and each data object resides within the context of a single container. Containers
provide easy data management, isolation, and placement policies. Object are
associated with a rich metadata model that allows system and user metadata
to be associated to containers or to single objects. User metadata is set by the
user and is transparent to cloud storage system. System metadata has concrete
meaning to the cloud storage system.

The VISION Cloud data model extends traditional storage cloud models to
include computation on the data objects, which is performed within the cloud
storage environment through storlets. Storlets are software agents that are trig-
gered according to specific events.

Objects may be replicated across multiple clusters and data centers. The de-
gree of replication and placement restriction policies are defined and associated
with the object container. VISION Cloud employs a symmetric replication mech-
anism, where any operation on an object can be handled at any of its replicas. A
storlet, when triggered, is executed once, usually at the site where the triggering
condition first occurred.

2.2 GPFS-SNC as Underlying Distributed File System

In the storage cloud environment proposed by the VISION Cloud project, the
simpler and lower level storage unit is the storage cluster. On top of the storage
resources provided by each cluster (i.e., the direct attached disks), a distributed
file system is built. This allows each node to access the data objects stored in the
cluster and to provide computational power on top of it by serving user requests
and allowing the execution of storlets. In the current implementation of the
VISION Cloud stack, General Parallel File System for Shared Nothing Clusters
(GPFS-SNC) is exploited in order to build such a distributed file system.

General Parallel File System (GPFS) [15] is a parallel file system for computer
clusters providing the services of a general-purpose POSIX file system running
on a single machine. GPFS supports fully parallel access to both file data and file
system data structures (file system metadata). Moreover, administrative actions
(e.g., adding or removing of disks) are also performed in parallel without affecting
access to data. GPFS achieves its scalability through its shared-disk architecture
where all nodes in the cluster have equal access to all disks. Files are striped
across all disks in the file system providing load balancing and high throughput.
Large files are divided into equal sized blocks which are placed on different disks
in a round-robin fashion. GPFS uses distributed locking to synchronize access to
shared disks ensuring file system consistency while still allowing the necessary
parallelism. As an alternative or a supplement to RAID, GPFS supports repli-
cation, storing two or more copies of each data or file system metadata block on
different disks. Replication can be enabled separately for data and file system
metadata.

Availability Assessment of a Vision Cloud Storage Cluster 75

The GPFS-SNC file system [6] builds on the existing GPFS distributed file
system extending it to a shared-nothing cluster architecture. Such scenario is
the one being used in the current implementation of VISION Cloud. In shared-
nothing cluster architecture, every node has local disks behaving as primary
server for them. If a node tries to access data and such a data is not present on
a local disk, a request is sent to the its primary server to transfer it.

As formally described in Section 3, VISION Cloud exploit GPFS-SNC func-
tionalities as follows. Files corresponding to VISION Cloud objects are neither
stripped nor replicated on a single cluster, i.e., each object is stored as a whole in
a single disk. Additional object replicas are created in other VISION Cloud clus-
ters in order to guarantee the desired level of availability. Typically a (1+1, 1+1)
schema is used for objects replication, i.e., each object is replicated in two data
centers at two storage clusters in each data center. However, other replication
schema can be used. GPFS-SNC file system metadata are replicated with a cer-
tain level of redundancy in order to guarantee that the file system structure is
preserved in the presence of faults and that it is possible to determine which
object has been lost and needs to be recovered.

3 Problem Formulation

In the following, we formally describe the scenario we take into consideration in
the present work. Let us consider a VISION Cloud cluster composed by N nodes.
Each node is associated with D directed attached storage (DAS) disks where
both the distributed file system metadata and data (VISION Cloud objects)
are stored. Note that, in the following we will consider only the distributed
file system metadata (simply metadata from now on) while we will completely
neglect system and user metadata associated to VISION Cloud objects being
them treatable as object files from the cluster file system point of view. Disks
and nodes can fail. Let us suppose that the time to fail of a single disk (node) is
exponentially distributed with rate λdf (λnf). Disks (nodes) are repaired in an
exponentially distributed time with rate μdr (μnr).

Disk and node failures are supposed to be destructive. In other words, when
a disk fails the metadata and data stored in it are lost. Similarly, in order to
maintain the distributed file system consistency, when a node fails metadata and
data stored in all its attached disks are considered lost. VISION Cloud objects
are stored in the cluster without any striping or data replication, i.e., each object
is fully contained in a single disk as a single file. On the other hand, metadata is
scattered on the cluster disks and metadata records for each file are replicated
on different nodes. Let us assume the level of metadata replication for each file
to be R. When a disk fails the metadata that was present on it is replicated in
a working disk in order to restore the correct level of replication. The process
of metadata replication recovery takes an exponentially distributed amount of
time with rate μmr to be performed.

76 D. Bruneo et al.

VISION Cloud objects are replicated in other clusters. In the case of failure,
the VISION Cloud Resiliency Manager (RM) is responsible for returning the
storage Cloud to the proper level of resiliency. In fact, if a disk fails, a scan of
the distributed file system metadata allows the RM to determine which objects
were lost. Then, the RM contacts the other clusters in the Cloud (clusters in the
same data center are usually queried first, since they are the closest) in order to
recover the data from a replica and restore the objects into the cluster.

Let us consider a single VISION Cloud object X stored in the cluster. Objects
are distributed over the cluster disks in a uniform manner so that if a disk fails
the probability that object X becomes unavailable (if it was still available at
the failure time) is 1/x where x is the number of disks actually working with
0 < x ≤ N ·D. On the other hand, if a node fails the probability that object X
becomes unavailable depends on the number of working disks that were attached
to the failed node. In a first approximation, we assume that, given a VISION
Cloud replication schema, at least one of the clusters in which object X was
stored is always available for data recovery. Moreover, let us assume that, in
order to recover an entire disk full of data, an exponentially distributed time is
necessary with rate μfd. Among other factors, such a time can depend on the
network bandwidth that is present between the consider cluster and the cluster
from which the objects will be recovered.

Of course, given that the RM performs the data recovery as soon as possible
after a disk failure, free space on other available disks is necessary in order
to restore the lost objects in the cluster. Let us assume that the recovery can
be performed only if there are at least K working disks in the local cluster.
K can be computed considering the average disk capacity, the average object
dimension, and the average number of objects in a cluster. For example, if c is
the average fraction of occupied space in a disk then K = �N ·D · c�. The time
that is necessary to recover a single disk is also affected by the parameter c.
In fact, the time needed to recover a single disk (characterized by an average
fraction of occupied space c) is considered as exponentially distributed with rate
μobr = μfd/c.

Disk failures can affect the availability of a generic VISION Cloud object X
even if it is not stored in the disk that fails. In fact, the distributed file system
correctly works only until at least one metadata replica for each file is present
on a working disk. If all the metadata replica for a single generic file are lost, the
cluster file system is unmounted thus making object X unavailable. We suppose
that when the cluster file system is unmounted no disk failures can occur and
no objects recovery can be performed. The file system will be mounted again
only when a sufficient number of disks are available again (we suppose such a
sufficient number to be K). Moreover, all the objects that were originally present
on the cluster need to be recovered. This is assumed to take an exponentially
distributed time with rate μgr that can be computed as a function of μfd. In
particular, if N · D disks are present in the cluster with an average fraction of
occupied space c, then μgr = μfd/(c ·K) = μfd/(c · �N ·D · c�).

Availability Assessment of a Vision Cloud Storage Cluster 77

4 The Model

Figure 1 shows the SRN model for the Vision Cloud cluster described above.
Three layers have been identified: physical layer (concerning node and disk fail-
ures and repairs), distributed file system layer (modeling the cluster file system
metadata), and Vision Cloud layer (associated to object availability).

Places Pd and Pdf represent working and failed disks, respectively. Place Pd

initially contains N · D tokens while place Pdf is initially empty. Each token
represents a single disk. Transitions Tdf and Tdr represent disk failure and re-
pair events moving tokens between places Pd and Pdf . Rates of these transitions
are considered to be dependent on the number of tokens in places Pd and Pdf ,
respectively, so that the overall disk failure rate is equal to λdf multiplied by
the number of available disks while the overall repair rate is given by μdr mul-
tiplied by the number of failed disks. These marking dependent firing rates are
represented by the # symbol near the corresponding arc.

Transitions Tnf and Tnr represent node failure and repair events. The failure
of a single node is modeled as the contemporaneous failure of more than one disk
by letting transition Tnf to move more than one token from place Pd to place Pdf .
This is obtained by associating to the arcs connecting transition Tnf to places
Pd and Pdf a multiplicity that depends on the actual status of the net through
function [m1]. In particular, the number of disks that contemporaneously fail
when a node fails is assumed to be dependent on the actual number of failed

#

#

#

Fig. 1. SRN model for a Vision Cloud cluster

78 D. Bruneo et al.

nodes and disks: if nf nodes and df disks are failed, then we assume that the
average number of disks that fail when a node fails is given by (N ·D−df)/(N−
nf). Considering that transition Tnf also puts a token in place Pnf at each node
failure event (i.e., tokens in place Pnf model the number of failed nodes), we
have:

[m1] = #Pd/(N −#Pnf)
1.

The rate of transition Tnf also depends on the actual status of the net and, in
particular, it is equal to λnf multiplied by the number of working nodes, i.e.,
λnf ·(N−#Pnf). The repair of a single node is modeled as the contemporaneous
repair of D disks. For such a reason, each firing of transition Tnr moves D tokens
from place Pdf to place Pd. Also, one token is removed from place Pnf in order
to model a single node being repaired. The rate of transition Tnr depends on
the number of tokens in place Pnf so that the overall node repair rate is equal
to λnr multiplied by the number of failed nodes.

Finally, transition Tdr is associated with guard function [g2] that allows single
disks to be repaired only if there is a sufficient number of working nodes:

[g2] =

{
1, if #Pdf > D ·#Pnf

0, otherwise

In this way, if all the failed disks correspond to failed nodes, transition Tdr is
disabled.

Place Pm represents failed metadata replicas that need to be restored. It
initially contains zero tokens. As soon as a disk fails (transition Tdf fires) or
a node fails (transition Tnf fires), a number of tokens equal to the number
of failed disks is moved in place Pm representing the corresponding metadata
replicas being lost. Transition Tmr represents the time necessary for the failed
metadata replicas to be restored on the cluster. It is associated with a rate equal
to μmr and, as soon as it fires, it flushes the content of place Pm modeling all
the metadata replicas being restored. This is implemented by associating to the
arc connecting transition Tmr to place Pm a multiplicity equal to the number of
tokens in such a place.

As soon as a certain number of disks fail (either transition Tdf or transition
Tnf fires), a token is also put in place Pmf enabling the conflicting immediate
transitions tmf and tum. Transition tmf models the probability for the cluster
file system to continue to work properly after the newly occurred failure con-
ditioned to the fact that it was correctly working when the failure occurred.
Such a probability depends on the actual number of working nodes and meta-
data replicas present in the cluster so it can be computed as a function of the
current number of tokens in places Pd and Pm. As soon as transition tmf fires,
it removes the token from place Pmf leaving everything else unmodified. On the
other hand, transition tum models the probability for the cluster file system to be
unmounted after the newly occurred failure conditioned to the fact that it was

1 The notation #P indicates the number of tokens in place P .

Availability Assessment of a Vision Cloud Storage Cluster 79

correctly working when the failure occurred. Also in this case, such a probability
depends on the actual number of working nodes and metadata replicas present
in the cluster and it can be computed as a function of the current number of
tokens in places Pd and Pm. Given that transitions tmf and tum are conflicting
and no other transition is contemporaneously enabled the sum of their associ-
ated probabilities needs to be equal to one. As soon as transition tmf fires, a
token is moved from place Pon to place Poff . Moreover, the token in place Pmf

is removed.
Place Pon represents a working distributed file system while place Poff repre-

sents a faulty file system. When the cluster file system is down, no new metadata
replica can be created (inhibitor arc from place Poff to transition Tmr) and no
disks or nodes can fail (inhibitor arcs from place Poff to transitions Tdf and
Tnf).

Transition Tgr represents the time necessary to repair the distributed file
system after a crash due to metadata destruction, to recover all the objects
from the replicas in other Vision Cloud clusters, and to create the metadata
replicas. It is associated with a rate equal to μgr. Such recovery operation can
be performed only after the repair of at least K disks (inhibitor arc from place
Pdf to transition Tgr with multiplicity N ·D−K). As soon as transition Tgr fires,
a token is put back to place Pon (the cluster file system is up again) and all the
tokens in place Pm are flushed modeling the recovery of all the failed metadata
replicas. This is implemented by associating to the arc connecting transition Tgr

to place Pm a multiplicity equal to the number of tokens in such a place.
A token in place Pob represents the object being available. As soon as a failure

occurs, a number of tokens equal to the number of failed disks is moved in place
Pod by transitions Tdf or Tnf . Such tokens enable the conflict between transitions
tyes and tno representing the object being contained in the disks that failed or
not, respectively. The probabilities associated to transitions tyes and tno (pyes
and pno, respectively) depend on the system status and are given by the following
functions:

pyes = 1/(#Pd +#Pod)

pno =

{
1, if #Pd = 0 AND #Pun1 = 1

1− 1/(#Pd +#Pod), otherwise

Transition tno is also associated with a guard function ([g1]) that prevents it to
fire if the last disk failed:

[g1] =

{
0, if #Pd = 0 AND #Pob = 1

1, otherwise

If transition tno fires, the object was not contained in the disks that failed and
it is still available. If transitions tyes fires, the object was contained in one of the
disks that failed and the token in place Pob is moved in place Pun1 modeling the
object being unavailable. Transition Tobr represents the time necessary to recover
the object from another Vision Cloud cluster where a replica of that object is

80 D. Bruneo et al.

present. It is associated with a rate equal to μobr. The recovery operation can be
performed only when at least K disks are available (inhibitor arc from place Pdf

to transition Tobr). The token in place Pob can also be moved in place Pun2 when
the cluster file system is unmounted for a metadata destruction (transition tf).
A soon as the cluster file system is repaired, transition tr fires and the object
becomes available again.

5 Results

The SRN model reported in Fig. 1 can be analytically solved by using ad-hoc
tools (e.g., the SPNP tool [16]) thus allowing us to investigate the influence of
system parameters on the desired performance indexes. Several powerful mea-
sures can be obtained. One interesting index is the availability Aob of a generic
object X . It can be obtained by computing the probability for place Pob to
contain one token:

Aob = pr[#Pob = 1]. (1)

In this section, we present some preliminary results focusing on the object
availability and taking into account only disk failures (i.e., considering fully
reliable nodes). The relaxation of such an assumption, as well as the investigation
of other performance indexes will be covered in future works.

System parameters have been set as follows. The number of nodes N has
been fixed to 80 and the number of disks per node D has been fixed to 12,
also considering the average fraction of occupied space in a disk c equal to 0.5.
The disk mean time to failure (MTTF) 1/λdf has been considered equal to
2 years while the mean time to repair (MTTR) 1/μdr has been set to 48 h.
Finally, the mean time to recover a metadata replica 1/μmr has been set to
20 m. The mean time to recovery an entire disk from a remote cluster has been
computed by assuming the disk dimension equal to 500 GB and considering
an Internet-like connectivity (20 Mb/sec bandwidth). Starting from the above
reported assumptions, the values of the mean time to recover a disk 1/μobr and
the mean time to recover an entire cluster file-system 1/μgr have been computed,
as described in Section 3.

Our aim is to investigate the influence of the metadata replication level R
on the object availability, as reported in Table 1. It can be observed that the
parameter R plays an important role on the setting of the infrastructure. In fact,
when R changes from 3 to 5, we obtain a percentage gain, with respect to Aob,
of about 4%.

Table 1. Object availability Aob varying R

R Aob

3 0.9548245227

4 0.9983792830

5 0.9983795900

Availability Assessment of a Vision Cloud Storage Cluster 81

6 Conclusions

In the context of the VISION Cloud project reference architecture, we provided
an SRN model for a storage cluster able to provide information about the reached
availability level. The model can be exploited as a tool for an assisted SLA
management and a guided dimensioning of the VISION infrastructure.

Future work will focus on extending the obtained results to the case of node
failures and relaxing the simplifying hypothesis that we took into consideration
in the present work. Moreover, an high level methodology for the management
of VISION Cloud storage infrastructures based on our model will be set up
providing a powerful tool for both business and administrator choices.

References

1. Bruneo, D., Distefano, S., Longo, F., Puliafito, A., Scarpa, M.: Workload-based
software rejuvenation in cloud systems. IEEE Transactions on Computers 62(6),
1072–1085 (2013)

2. Ostermann, S., Iosup, A., Yigitbasi, N., Prodan, R., Fahringer, T., Epema, D.: A
Performance Analysis of EC2 Cloud Computing Services for Scientific Comput-
ing. In: Avresky, D.R., Diaz, M., Bode, A., Ciciani, B., Dekel, E. (eds.) Cloud
Computing. LNICST, vol. 34, pp. 115–131. Springer, Heidelberg (2010)

3. Bruneo, D., Fazio, M., Longo, F., Puliafito, A.: Smart data centers for green clouds.
In: 2013 IEEE 18th International Symposium on Computer and Communications
(ISCC), pp. 1–8 (2013)

4. Khan, A., Yan, X., Tao, S., Anerousis, N.: Workload characterization and pre-
diction in the cloud: A multiple time series approach. In: 2012 IEEE Network
Operations and Management Symposium (NOMS), pp. 1287–1294 (2012)

5. VISION Cloud Project, funded by the European Commission Seventh
Framework Programme (FP7/2006-2013) under grant agreement n. 257019,
http://www.visioncloud.eu/

6. Jain, R., Sarkar, P., Subhraveti, D.: Gpfs-snc: An enterprise cluster file system for
big data. IBM Journal of Research and Development 57(3/4), 5:1–5:10 (2013)

7. Ciardo, G., Blakemore, A., Chimento, P.F., Muppala, J.K., Trivedi, K.S.: Auto-
mated generation and analysis of Markov reward models using stochastic reward
nets. IMA Volumes in Mathematics and its Applications: Linear Algebra, Markov
Chains, and Queueing Models 48, 145–191 (1993)

8. Bruneo, D., Scarpa, M., Puliafito, A.: Performance evaluation of glite grids through
gspns. IEEE Transactions on Parallel and Distributed Systems 21(11), 1611–1625
(2010)

9. Bruneo, D.: A stochastic model to investigate data center performance and qos
in iaas cloud computing systems. IEEE Transactions on Parallel and Distributed
Systems PP, 1–10 (2013)

10. Krishnamurthy, S., Sanders, W., Cukier, M.: Performance evaluation of a prob-
abilistic replica selection algorithm. In: Proceedings of the Seventh International
Workshop on Object-Oriented Real-Time Dependable Systems (WORDS 2002),
pp. 119–127 (2002)

11. Venkatesan, V., Iliadis, I., Hu, X.-Y., Haas, R., Fragouli, C.: Effect of replica place-
ment on the reliability of large-scale data storage systems. In: 2010 IEEE Interna-
tional Symposium on Modeling, Analysis Simulation of Computer and Telecom-
munication Systems (MASCOTS), pp. 79–88 (2010)

http://www.visioncloud.eu/

82 D. Bruneo et al.

12. Krishnamurthy, S., Sanders, W., Cukier, M.: A dynamic replica selection algorithm
for tolerating timing faults. In: International Conference on Dependable Systems
and Networks, DSN 2001, pp. 107–116 (2001)

13. Venkatesan, V., Iliadis, I., Fragouli, C., Urbanke, R.: Reliability of clustered vs.
declustered replica placement in data storage systems. In: 2011 IEEE 19th Inter-
national Symposium on Modeling, Analysis Simulation of Computer and Telecom-
munication Systems (MASCOTS), pp. 307–317 (2011)

14. Kolodner, E., Tal, S., Kyriazis, D., Naor, D., Allalouf, M., Bonelli, L., Brand,
P., Eckert, A., Elmroth, E., Gogouvitis, S., Harnik, D., Hernandez, F., Jaeger,
M., Lakew, E., Lopez, J., Lorenz, M., Messina, A., Shulman-Peleg, A., Talyansky,
R., Voulodimos, A., Wolfsthal, Y.: A cloud environment for data-intensive stor-
age services. In: 2011 IEEE Third International Conference on Cloud Computing
Technology and Science (CloudCom), pp. 357–366 (2011)

15. Schmuck, F., Haskin, R.: Gpfs: A shared-disk file system for large computing clus-
ters. In: Proceedings of the 2002 Conference on File and Storage Technologies
(FAST), pp. 231–244 (2002)

16. Hirel, C., Tuffin, B., Trivedi, K.S.: SPNP: Stochastic Petri Nets. Version 6.0. In:
Haverkort, B.R., Bohnenkamp, H.C., Smith, C.U. (eds.) TOOLS 2000. LNCS,
vol. 1786, pp. 354–357. Springer, Heidelberg (2000)

Data Reliability in Multi-provider Cloud Storage

Service with RRNS

Massimo Villari, Antonio Celesti, Francesco Tusa, and Antonio Puliafito

DICIEMA, University of Messina,
C.Da Di Dio 1, 98166, Messina, Italy

{mvillari,acelesti,ftusa,apuliafito}@unime.it

http://mdslab.unime.it

Abstract. Nowadays, more and more Cloud storage providers are ap-
pearing on the market. Nevertheless, data availability and confidential-
ity represent critical issues considering Cloud computing. This paper
discusses an approach that on one hand enables customers to use at
the same time different Cloud storage providers, and that on the other
hand guarantees both data redundancy and obfuscation. According to
our approach, files are fragmented and stored in different Cloud storage
providers by means of the Redundant Residue Number System (RRNS).
Besides providing us data redundancy, RRNS allows us to preserve the
data confidentiality by means of an obfuscation-base strategy spreading
metadata over different cloud providers. In addition, our approach al-
lows a customer to retrieve his/her files even if a cloud storage provider
is not available anymore. Experiments highlight the factors that have
to be considered to configure the system according to the customer’s
requirements.

Keywords: Cloud Computing, Storage, Big Data, Reliability, Confiden-
tiality.

1 Introduction

Cloud computing allows to leverage new business opportunity by means of
emerging technologies enabling service integration over the web. [1]. Thanks
to Cloud computing, services in different application fields are possible [2] con-
sidering Infrastructure as a Service (IaaS) [3] [4], Platform as a Service (PaaS)
[5], and Software as a Service (SaaS) [6] [7]. Considering the storage service
in the Cloud, it is becoming more than a way for synchronizing and maintain
data for long time. In fact, it represents a good opportunity for customers and
providers to make new services, hence new business. The emerging business in
this field is motivated by the increasingly number of providers working in such
a context (e.g., Dropbox, Google Drive, Copy, Amazon S3, SkyDrive, etc). To
remark the high ferment in this context, recently another commercial service has
appeared in the IT market, i.e., Storage Made Easy (SME) [8]. SME provides a
hybrid Cloud storage system that federates over 35 public clouds and that offers
a front-end able to simplify the access to many operators. Nevertheless, SME

C. Canal and M. Villari (Eds.): ESOCC 2013, CCIS 393, pp. 83–93, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://mdslab.unime.it

84 M. Villari et al.

does not introduce any additional data reliability services, in fact files as stored
as whole. The drawback of this model is represented by the threat in misusing
personal data. This threat is sadly true, in fact cloud operators can see the files
stored in their servers. In addition, the NSA PRISM [9] program (US surveil-
lance program) has recently claimed a direct access to Cloud storage providers’
servers including Google, Apple and Facebook and so on [10]. They motivated
their intrusion with national security and safety purposes.

In this paper, we aim to address a scenario such as the one described in
Figure 1 in which files of customers can be spread over different Cloud storage
providers. In our view for adopting clouds is necessary to guarantee a strong
level of security and privacy [11,12]. Differently from SME, our work aims to
achieve two additional objectives: on one hand it aims to solve the problem
of data confidentiality by means of an obfuscation strategy, and on the other
hand it aims to enable data availability even if a cloud storage provider is not
available anymore by means of a data redundancy strategy. A provider cannot
be available for different reasons, e.g., for hardware failure, for disappearing from
the IT market, or due to an expired contract with the customer.

An interesting feature of our approach is that no operator can have full ac-
cess to the stored files. This is possible by splitting each file in several residue-
segments by means of the RRNS and sending them to different Cloud storage
providers. Each file is described by means of XML metadata files tracking where
the different residue-segments are stored. Even such a metadata files are spread
over different Cloud storage providers. Only the user is aware of number of pieces
of file and their distribution, using the XML metadata file. The end-user is in
charge to gather all data and she/he is the only responsible for reconstructing
XML metadata, residue-segments distribution and involved providers.

The remainder of the paper is organized as follows: Section 2 describes related
works, highlighting the lack of a resilient and confidential multi-provider Cloud

Fig. 1. multi-provider Cloud storage service distributed over the Internet

Data Reliability in Multi-provider Cloud Storage Service with RRNS 85

storage service. Section 3 briefly describe the RRNS on which our approach is
based. Our approach for a reliable and confidential multi-provider Cloud stor-
age service according to the RRNS is described in Section 4. Experiments are
described in Section 5. Conclusion and lights to the future are summarized in
Section 6.

2 Related Work

Data distribution [13] along with Data Migration [14] are topics quite relevant
in the context of Cloud storage. The needs to send big data over the Internet is
important as well as the possibility to overcome data lock-in issues. Many works
are available in licterature regarding data reliability in datacenters and in Cloud
Infrastructure as a Service (IaaS).

In [15], the authors describe a technique for optimizing the file partition con-
sidering a Network Storage Environment. They present a strategy to efficiently
distribute files inside a cluster taking into account concepts of reliability, avail-
ability and serviceability. In particular they deal with the possibility to partition
files into blocks to be spread among different storage servers. A file partitiong
approach for Cloud computing is described in [16] in which a smart procedure is
used to optimize the placement of each data block according to its size. In [17],
the authors faced the issue existing when a laptop is lost or stolen. The system
guarantees that data cannot be accessed, but after an a priori vulnerability time
window configuration. The authors make XOR operations using splitting and
merging of files that haveto be protected. The procedure is hard to be applica-
ble to other scenarios because it requires to customize kernel-base of the involved
servers.

In [18], a data restore is performed using regenerating codes. In such a work,
both redundancy and check controls are used for guaranteeing the possibility to
repair data during the transfer over an unreliable network. A work starting from
our same assumption about the storing pieces of file inside VMs is discussed in
[19] in which an enhanced distributed Cloud storage is described. Nevertheless,
the adopted protocol is rather complex and hard to be adapted our scenario.

3 Redundant Residue Number System

The Redundant Residue Number System (RRNS) bases its fundamentals on the
Residue Number System (RNS). For the sake of completeness, hereby we are
going to describe the RNS before, followed by the description of the RRNS.
If you consider p prime, pairwise and positive integers m1,m2, · · · ,mp called
modulus such as M =

∏p
i=1 mi and mi > mi−1 for each i ∈ [2, p]. Given

W ≥ 0, we can define wi = W mod mi the residue of W modulo mi. The
p-tuple (w1, w2, · · · , wp) is named the Residue Representation of W with the
given modulus and each tuple element wi is known as the ith residue digit of the

86 M. Villari et al.

representation. For every p-tuple (w1, w2, · · · , wp), the corresponding W can be
reconstructed by means of the Chinese Remainder Theorem:

W =

(
p∑

i=1

wi
M

mi
bi

)
mod M (1)

where bi, i ∈ [1, p] is such that

(
bi
M

mi

)
mod mi = 1 (i.e. the multiplica-

tive inverse of
M

mi
modulo mi). We call Residue Number System (RNS), with

residue modulus m1,m2, · · · ,mp, the number system representing integers in
[0,M) through the p-tuple (w1, w2, · · · , wp). Considering p + r modulus m1,
· · · ,mp,mp+1, · · · ,mp+r we have:

M =

p∏
i=1

mi (2)

and

MR =
r∏

i=p+1

mi (3)

without loss of generality mi > mi−1 for each i ∈ [2, p + r]. We define Re-
dundant Residue Number System (RRNS) of modulus m1, · · · ,mp+r, range M
and redundancy MR, the number system representing integers in [0,M) by
means of the (p + r)-tuple of their residue modulus m1, · · · ,mp+r. Although
the above mentioned RRNS can provide representations to all integers in the
range [0,M ·MR), the legitimate range of representation is limited to [0,M),
and the corresponding (p + r)-tuples are called legitimate. Integers in [M,M ·
MR) together with the corresponding (p + r)-tuples are instead called illegit-
imate. Let now consider an RRNS whose range is M and redundancy MR,
where (m1,m2, · · · ,mp,mp+1, · · · ,mp+r) is the (p + r)-tuple of modulus and
(w1, w2, · · · , wp, wp+1, · · · , wp+r) is the legitimate representation on an W in-
teger in [0,M). If an event making unavailable d arbitrary digits in the rep-
resentation occurs, we have two new sets of elements {w′

1, w
′
2, · · · , w′

p+r−d} ⊆
{w1, · · · , wp+r} with the corresponding modulus {m′

1,m
′
2, · · · ,m′

p+r−d} ⊆
{m1, · · · ,mp+r}. This status is also known as erasures of multiplicity d. If the
condition d ≤ r in true, the RNS of modulus {m′

1,m
′
2, · · · ,m′

p+r−d} has range:

M ′ =

p+r−d∏
i=1

m′
i ≤M (4)

since W < M , (w1, w2, · · · , wp, wp+1, · · · , wp+r) is the unique representation
of W in the latter RNS. Integer W can be reconstructed from the p + r − d-
tuple (w′

1, w
′
2, · · · , w′

p, w
′
p+1, · · · , w′

p+r−d) by means of the Chinese Remainder
Theorem (as in the case of equation 1):

W =

(
p+r−d∑
i=1

w′
i

M ′

m′
i

b′i

)
mod M ′ (5)

Data Reliability in Multi-provider Cloud Storage Service with RRNS 87

where bi is such that

(
b′i
M ′

m′
i

)
mod m′

i = 1 and i ∈ [1, p + r − d]. As a con-

sequence, the above mentioned RRNS can tolerate erasures up to multiplicity
r. It can be proved (see [20] for further details) that the same RRNS is able to
detect any error up the multiplicity r and it allows to correct any error up the
multiplicity � r2	.

4 Data Availability and Confidentiality in a
Multi-provider Cloud Storage Providers

In this Section, considering the assumptions made on the RRNS and the cloud
users’ requirements regarding the storage discussed in the introduction, we are
going to describe our approach aimed at improving the user experience while
interacting with Cloud storage services: we remark the two key-points on which
our solution is based, consist in guaranteeing data availability (resiliency) and
increasing data confidentiality through the obfuscation technique. In order to
pursue these goals, we implemented a software application able to receive as in-
put one or more files belonging to a given user with some particular constraints,
and to accomplish the upload of those files on the Cloud according to the spec-
ified constraints. The process makes use of a particular algorithm based on the
RRNS to spread pieces of file across different cloud storage providers, allowing
the owner only to be aware of its logical distribution and thus of its potential
reconstruction. Thanks to the RRNS properties already discussed in Section 3,
each time the encoding process is applied to a file, depending on the user re-
quirements (i.e. the constraints given as input to the software application), data
is vertically split (as depicted in Figure 2) on different segments according to
a given degree of redundancy. These residue-segments will then be copied and
stored on (possibly) different Cloud storage providers through the traditional
APIs they make available to users. At the end of the encoding/upload process,

Fig. 2. Representation of the RRNS encoding and decoding performed on a set of
user data: the upper side part shows the encoding procedure, while the underside one
depicts the decoding process

88 M. Villari et al.

a single cloud holding the whole file will not exist and this will lead to some
direct consequences: even though there’s no encryption on data, a self-contained
file will not exist on any storage provider, leading to an increased confidentiality
degree (this type of data access restriction is also know as Data obfuscation);
thanks to the redundancy introduced by the RRNS, in case either of tempo-
rary unavailability of one (or more, according to condition 5) XML wrappers
or the unlikely event of data loss from a provider, the user file might still be
reconstructed from the owner.

The introduced redundancy obviously increases the resulting amount of data
to be stored and transferred, but this drawback could sometimes be minimized
under particular network conditions. In the case where one of the storage provider
is heavily overwhelmed from users’ requests, having data spread among differ-
ent storage providers might be faster than waiting for the transmission of a
monolithic block from the overloaded one: different data segments might be
downloaded in parallel from the storage providers on the client, allowing a more
efficient bandwidth occupation from the client point of view. After having intro-
duced the general concepts regarding our idea and the related software applica-
tion, in the following we are going to discuss the details of its implementation,
analysing both the way by means of data is encoded before the upload pro-
cess, and how the logical meta-data catalogue is created to let the owner rebuild
his/her file(s) after all the needed XML wrappers are downloaded from the Cloud
during the decoding process. First of all, we need to describe the steps allowing
a generic file given in input to our software application, to be “expanded” into
a set of residue-fragments: for the sake of simplicity, we can assume a file as a
logic set of records and we will apply the RRNS encoding over the whole set of
data, considering each record at a time as an integer value.

Figure 2 depicts how this task is logically carried out: the top part of the pic-
ture represents the RRNS encoding procedure, while the underside one presents
schematically the RRNS decoding. Considering the encoding phase, the left part
of the picture shows the encrypted user data, whose structure was considered
as a sequence of N records. In terms of RRNS encoding, each record will be as-
sumed as an integer value (the P value introduced in Section 3) and the RRNS
encoding will be applied to each record obtaining the set of residue-segments
represented in the right part of the same Figure. The set of n + r-tuples ob-
tained as output will then be grouped following the approach still reported in
figure: all the ith digits from the whole set of N tuples will be included within
a corresponding ith residue-segment. The aforementioned set of tasks, will be
carried out according to the redundancy degree selected by the user, who will
provide his/her constraints into a separate file given as input to the software ap-
plication named init. The same file will contain also information about the cloud
storage providers involved in the data upload: more specifically, as soon as the
RRNS has been carried out on the whole dataset, each residue-segment will then
be BASE-64 encoded and attached within a different XML wrapper. Each XML
wrapper, in turn, will then be uploaded to one of the cloud service providers
specified by the user. In order to track the location where each fragment was

Data Reliability in Multi-provider Cloud Storage Service with RRNS 89

uploaded, for each user file going through the encoding process, a meta-data
catalogue has to be created: moreover, this catalogue will have to be accessible
from the data owner only, who will be able to rebuild the original file through
the information stored within during the decoding. Depending on the number of
available providers and the number of XML chunks resulting from the encoding,
one or more provider may be in charge of storing many pieces of data belonging
to a given user’s file. At the end of the encoding process, the java software ap-
plication will produce as output both the set of XML chunks associated to the
source file (with the requested resiliency degree) and the meta-data catalogue,
represented by an XML file named map. This latter will be similar to the one
reported below:

<OWNER>ownerInfo</OWNER>
<BIGFILE>noBig</BIGFILE>
<STUFFING>1</STUFFING>
<FILE>

[. . .]
<CHUNK num=”11”>Path/ to / the/StorageProviderX /

94090 e1381a1700fb8c34a0069bc6533 . xml</CHUNK>
<CHUNK num=”5”>Path/ to / the/StorageProviderY /

eaf2bcdcb47cd1eba2a4392857e66b33 . xml</CHUNK>
[. . .]

</FILE>

The first element of the file, owner merely contains the owner information. The
next two ones, are used by the java software application during the encoding/de-
coding operations and their description is out of the scope of this Section. The
FILE element contains a variable number of CHUNK elements: while the at-
tribute num refers to the chunk sequence number, its content represents a com-
bination of the path on the client machine associated to a given cloud storage
provider, and the name of the XML file containing the residue-segment. Informa-
tion stored within the above XML document will allow to build up the original
file during the decoding process. It is straightforward foreseeing that the map
meta-data catalogue represents a key-point of the whole process: its accidental
lost or unavailability may likely lead to the inability of building up the user data
previously uploaded on the Cloud. For this reason, the software application in
charge of carrying out the encoding/decoding process, has been designed to store
the catalogue on the Cloud together with the chunks. Uploading such a sensitive
information on a third-party storage, may be controversial in terms of data con-
fidentiality: for this reason, during the process, the map is split on two different
components (i.e. two different files, servicelist and trusted, each uploaded to a
different provider to hide (to malicious service providers) the actual mapping
between chunks and their physical location on the Cloud.

5 Performance Evaluation

In order to evaluate our system, we conducted several experiments considering
a real testbed composed of a client interacting with three different commercial

90 M. Villari et al.

Cloud storage providers, i.e., Google Drive, Dropbox, and Copy. In our experi-
ments, we splitted a file in different residue-segments and we stored them balanc-
ing the workload among the three Cloud storage providers, so that we evaluated
the time needed for sending out the residue-segments to the three providers. The
local testbed was arranged at DICIEAMA GRID Laboratory of the University of
Messina. The system was developed considering the Java programming language
deployed in a blade with the following hardware configuration CPU Dual-Core
AMDOpteron(tm) Processor 2218HE,RAM6GB,OS: ubuntu server 12.04.2 LTS
64 BIT. In order to understand the behavior of the system in a real scenario, we
considered files with different sizes and with different redundancy factors. More
specifically, we considered sizes of 10KB, 100KB, 1MB, 10MB: we fixed p=5 and
r=1, r=4 and r=7. According to the formula of the RRNS 5, we split each file re-
spectively in 6, 9, and 12 residue-segments and we stored them balancing the work-
load in Cloud storage providers, so that in each one we stored respectively 2, 3, and
4 pieces of file. Each experiment was repeated 30 times in order to consider mean
values and confidence intervals at 95%.

Figure 3 shows the time required to send the different residue-segments. We
grouped the histograms according to the file size. For each group, we considered
the time required for sending the residue-segments in parallel to Google Drive,
Copy, and Dropbox. More specifically for r=1, 4, and 7 we respectively sent 2,
3, and 4 residue-segments to each cloud storage provider. For files of 10KB and
100KB we experienced very similar transfer times with Google Drive resulting as
the slowest. For files of 10KB with r=1 the transfer time to Copy and Dropbox
respectively takes about 523 msec and 543 msec. With Google Drive, the transfer
instead takes about 4603 msec. We observed a similar trend considering r=4 and
r=7 as well. We had a similar trend also for files of 100KB. As the file size grew
over 1MB, the results began to change. Google Drive was the slowest provider
again, but we observed that the transfer times increased considering different
redundancy factors. Analyzing the result, we distinguished different behaviors
between Copy and Dropbox: the former was the most efficient, instead the latter
began to degrade in performance. For files of 10MB, we observed an interesting
behavior: Google Drive began to became more efficient instead in Copy and
Dropbox we experienced performance degradation. In fact, with r=7 the transfer
time took 11223 msec, 12461 msec, and 19015 msec respectively with Google
Drive, Copy and Dropbox. This results analysis means that for small file sizes
(¡100KB) Copy and Dropbox are more efficient than Google DRIVE, instead with
big file (¿10MB) Drive is more efficient than Copy and Dropbox. In particular,
Copy has a trend slightly worse than Google Drive, instead Dropbox results
absolutely the worst.

The graph of Figure 4 analyzes the transfer time of a file with size=10MB
and r=7. More specifically, we considered four possible configurations. In config-
uration a) we stored 4 residue-segments per provider, instead in configurations
b), c), and d) we stored all the 12 residue-segments respectively in Google Drive,

Data Reliability in Multi-provider Cloud Storage Service with RRNS 91

Fig. 3. Graphical representation of timing related to the upload process to the three
different providers, while data size and redundancy change

Copy, and Dropbox. Considering configurations b) and c), Google Drive and
Copy have similar transfer time (respectively 22465 msec and 25841 msec), even
though the first result is slightly more efficient. Instead Considering configuration
d), Dropbox is absolutely the worst in term data storing with 120138 msec.
Analyzing configuration a), since groups of 4 residue-segments are sent in parallel
to the three providers, the time required for data transfer is determined by the
slowest one, i.e., Dropbox in this case, that requires 19015 msec for storing
4 pieces of file (this is the time reported on the graph for case a). Although
Dropbox is the slowest one, thanks to residue-segments balancing, we managed
to get a slight improvement in performance compared to the 22465 msec required
by Google Drive. From our experiments, we can definitely conclude that for
emerging multi-provider cloud storage systems, a critical issue is represented by
the choice of providers. According to the customer requirements different factors
have to be taken into account for example the expected QoS, the type of file that
have to be distributed in term of size and the degree of required fault-tolerance.

Fig. 4. Performance Comparison of the upload process considering parallel transfer vs
single storage provider transfer

92 M. Villari et al.

6 Conclusion and Future Work

In this paper, we discuss the data reliability and confidentiality problems con-
sidering a multi-provider Cloud storage service. By means of the RRNS, our
approach consists in splitting a file in p+r pieces sending them to different
providers. The advantage of such an approach is twofold: on one hand each
single provider cannot access the whole file, and on the other hand if a provider
is not available, files can be retrieved considering p pieces of files stored in other
providers. Experiments have highlighted the factors affecting the configuration
of such a system. In future works, we aim to better investigate such an approach
also considering different data encryptin techniques.

References

1. Celesti, A., Tusa, F., Villari, M., Puliafito, A.: How the dataweb can support cloud
federation: Service representation and secure data exchange. In: Second Symposium
on Network Cloud Computing and Applications (NCCA 2012), pp. 73–79 (2012)

2. Fazio, M., Celesti, A., Villari, M.: Design of a message-oriented middleware for
cooperating clouds. In: Canal, C., Villari, M. (eds.) ESOCC 2013. CCIS, vol. 393,
pp. 25–36. Springer, Heidelberg (2013)

3. Celesti, A., Tusa, F., Villari, M., Puliafito, A.: Integration of clever clouds with
third party software systems through a rest web service interface. In: IEEE Sym-
posium on Computers and Communications (ISCC 2012), pp. 827–832 (2012)

4. Celesti, A., Puliafito, A., Tusa, F., Villari, M.: Energy sustainability in cooperating
clouds. In: Proceedings of the 3rd International Conference on Cloud Computing
and Services Science (CLOSER 2013), pp. 83–89 (2013)

5. Celesti, A., Peditto, N., Verboso, F., Villari, M., Puliafito, A.: Draco paas: a dis-
tributed resilient adaptable cloud oriented platform. In: 27th IEEE International
Parallel & Distributed Processing Symposium (IPDPS 2014), pp. 1490–1497 (2013)

6. Celesti, A., Fazio, M., Villari, M., Puliafito, A.: Virtual machine provisioning
through satellite communications in federated cloud environments. Future Gen-
eration Computer Systems 28(1), 85–93 (2012)

7. Mulfari, D., Celesti, A., Villari, M., Puliafito, A.: How cloud computing can support
on-demand assistive services. In: International Cross-Disciplinary Conference on
Web Accessibility (W4A 2013) (2013)

8. SME: Storage made easy (2013), http://storagemadeeasy.com

9. NSA-PRISM: surveillance program (2013),
http://en.wikipedia.org/wiki/PRISM_(surveillance_program)

10. NSA: Prism program taps in to user data of apple, google and others (June 2013),
http://www.guardian.co.uk/world/2013/jun/06/us-tech-giants-nsa-data

11. Celesti, A., Tusa, F., Villari, M., Puliafito, A.: Se clever: A secure message ori-
ented middleware for cloud federation. In: IEEE Symposium on Computers and
Communications (ISCC 2013) (2013)

12. Vernik, G., Shulman-Peleg, A., Dippl, S., Formisano, C., Jaeger, M., Kolodner, E.,
Villari, M.: Data on-boarding in federated storage clouds. In: IEEE CLOUD 2013
IEEE 6th International Conference on Cloud Computing, Santa Clara Marriott,
CA, USA, June 27-July 2. Center of Silicon Valley (2013)

http://storagemadeeasy.com
http://en.wikipedia.org/wiki/PRISM_(surveillance_program)
http://www.guardian.co.uk/world/2013/jun/06/us-tech-giants-nsa-data

Data Reliability in Multi-provider Cloud Storage Service with RRNS 93

13. Zhang, Y., Liu, W., Song, J.: A novel solution of distributed file storage for cloud
service. In: 2012 IEEE 36th Annual Computer Software and Applications Confer-
ence Workshops (COMPSACW), pp. 26–31 (2012)

14. Nahar, P., Joshi, A., Saupp, A.: Data migration using active cloud engine. In:
2012 IEEE International Conference on Cloud Computing in Emerging Markets
(CCEM), pp. 1–4 (2012)

15. Hai-Jia, W., Peng, L., Wei-wei, C.: The optimization theory of file partition in
network storage environment. In: 2010 9th International Conference on Grid and
Cooperative Computing (GCC), pp. 30–33 (2010)

16. Fan, K., Zhao, L., Shen, X., Li, H., Yang, Y.: Smart-blocking file storage method in
cloud computing. In: 2012 1st IEEE International Conference on Communications
in China (ICCC), pp. 57–62 (2012)

17. Zhang, N., Jing, J., Liu, P.: Cloud shredder: Removing the laptop on-road data
disclosure threat in the cloud computing era. In: 2011 IEEE 10th International
Conference on Trust, Security and Privacy in Computing and Communications
(TrustCom), pp. 1592–1599 (2011)

18. Shum, K., Hu, Y.: Functional-repair-by-transfer regenerating codes. In: 2012 IEEE
International Symposium on Information Theory Proceedings (ISIT), pp. 1192–
1196 (2012)

19. Srivastava, S., Gupta, V., Yadav, R., Kant, K.: Enhanced distributed storage on the
cloud. In: 2012 Third International Conference on Computer and Communication
Technology (ICCCT), pp. 321–325 (2012)

20. Szabo, N.S., Tanaka, R.I.: Residue Arithmetic and its Applications to Computer
Technology. Mc Graw-Hill, New York (1967)

C. Canal and M. Villari (Eds.): ESOCC 2013, CCIS 393, pp. 94–105, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Automated Provisioning of SaaS Applications over
IaaS-Based Cloud Systems

Paolo Bellavista1, Antonio Corradi1,
Luca Foschini1, and Alessandro Pernafini2

1 Dipartimento di Informatica – Scienza e Ingegneria (DISI), Bologna, Italy
{paolo.bellavista,antonio.corradi,luca.foschini}@unibo.it

2 Centro Interdipartimentale di Ricerca Industriale ICT (CIRI ICT), Bologna, Italy
alessandro.pernafini@unibo.it

Abstract. Software as a Service (SaaS) applications fully exploit the potential
of elastic Cloud computing Infrastructure as a Service (IaaS) platforms by
enabling new highly dynamic Cloud provisioning scenarios where application
providers could decide to change the placement of IT service components at
runtime, such as moving computational resources close to storage so to improve
SaaS responsiveness. These highly dynamic scenarios require automating the
whole SaaS provisioning cycle spanning from resource management to dynamic
IT service components placement, and from software deployment to enable
needed component re-activation and rebinding operations. However, notwith-
standing the core importance of these functions to truly enable the deployment
of complex SaaS over IaaS environments, at the current stage only partial and
ad-hoc solutions are available. This paper presents a support infrastructure
aimed to facilitate the composition of heterogeneous resources, such as single
Virtual Machines (VMs), DB services and storage, and stand-alone services, by
automating the provisioning of complex SaaS applications over the widely dif-
fused real-world open-source OpenStack IaaS.

Keywords: Cloud computing, Service orchestration, OpenStack, Juju, BPEL.

1 Introduction

Novel Cloud computing infrastructures consisting of worldwide fully interconnected
data centers offering their computational resources as IaaS on a pay-per-use basis are
opening brand new challenges and opportunities to develop novel SaaS-based
applications. These novel Cloud systems are typically characterized by both agile and
continuous developments and deployments as well as ever-changing service loads,
and call for highly novel automatic solutions able to dynamically and continuously
supervise and facilitate the whole application management lifecycle.

Focusing on SaaS-over-IaaS solutions, enabling the management and especially the
provisioning of complex SaaS applications over highly dynamic and large-scale
Cloud environments is still a difficult task that requires to solve several open
management issues spanning from virtualization issues, such as Virtual Machine

 Automated Provisioning of SaaS Applications over IaaS-Based Cloud Systems 95

(VM), storage, and network virtualization, to large-scale Cloud monitoring, from
optimal resource placement computation to standardization and interoperability of the
different deployment frameworks and Application Programming Interfaces (APIs)
adopted by various Cloud providers, and so forth.

Among all these challenging issues, the purpose of this paper is to present an
architecture that offers a support for the orchestration of all the steps needed to
publish a SaaS application within a Cloud IaaS. A SaaS application inside a Cloud
environment can be viewed as a collection of opportunely configured service
components deployed into a set of dynamically created IaaS resources. In modern
datacenters, there is a high availability of computational, storage, and network
resources, but it is still missing a mechanism to automatically orchestrate all the
involved entities to allocate resources, to deploy and configure various software
components, and to manage their interactions in order to provide the requested
application. Indeed, before application providers can provide an application, they
need to manually perform a set of operations (i.e., request new VMs, install and
configure software) that, especially for large-scale deployments, could be really time
consuming thus reducing the advantages of having flexible compute infrastructures.

In this context, we claim the necessity of new fully-integrated automated SaaS
provisioning facilities that start from the management of virtual resources, pass
through the installation, configuration and management of software components, and
end with the coordination of these components. That would be highly beneficial both
for SaaS application providers, to ease the realization of new SaaS applications
through the composition of existing single service components in a mash-up like
fashion, and for IaaS Cloud providers, by taking over all the error-prone and timely-
consuming deployment and configuration operations at the IaaS level.

To address all these open issues, this paper proposes a novel automated SaaS-over-
IaaS provisioning support that adopts three main original guidelines. First, it provides
to both IaaS Cloud providers and to SaaS application providers a tool that
transparently takes over the execution of software deployments and updates with
almost no need for human intervention. Second, it proposes a general automated
application provision support that integrates with state-of-the-art technologies, such as
the highly interoperable OpenStack IaaS and the standard Business Process Execution
Language (BPEL), to ease the definition of all main deployment, configuration, and
monitoring steps. Third, our prototype has been implemented as an open-source tool
based on the open-source OpenStack Cloud platform and is made available to the
Cloud community.

The remainder of this paper is organized as follows. In Section 2, we give an
overview of related work in the literature. In Section 3, we introduce needed
background material about all main involved standards, technologies, and support
tools; in Section 4, we present our framework and outline its main components.
Finally, in Section 5, we provide some implementation details about our presented
architecture. Conclusions and directions of future work end the paper.

96 P. Bellavista et al.

2 Related Works

The on-demand provisioning of services and resources in distributed architectures has
been deeply investigated in recent years. For the sake of space limitations, we will
focus on two research directions only: we start with works that provide solutions for
the deployment and lifecycle management of software components; then we move
towards solutions that, closer to our proposal, enable automated provisioning of
applications by integrating software lifecycle as part of the wider Cloud IaaS
management operations.

Focusing on the first research direction, the design, deployment, and management
of software components can be challenging in systems distributed on a large scale,
and several different systems provide solutions to automate these processes. [1]
presents a system management framework that, given a model of configuration and
lifecycle, automatically builds a distributed system. Similarly, [2] introduces a model-
based solution to automatically configure system specifications and provide this
system on-demand to the user. Finally, in [3], authors presented a solution to face
change management issues; this solution aims to automate all the steps required to
handle software or hardware changes to existing IT infrastructures, with the goal of an
high degree of parallelism. All these solutions provide the automation of the
deployment and management of software components, so relieving administrator of
the burden of manually configure distributed systems; however, they only focus on
the deployment of software components and do not consider virtual infrastructure
management, that instead assumes a central role in Cloud environments.

Along the second research directions, some seminal works have started to analyze
the automated provisioning of applications in Cloud systems. [4] describes a multi
layer architecture that enables the automated provisioning and management of cloud
services; with this solution users can select a service from a catalog of service
templates, then the service can be configured by the user and deployed automatically.
[5] presents a solution for on-demand resource provisioning based on BPEL [6]. This
solution extends BPEL implementations with the possibility to schedule workflow
steps to VMs having a low load and the possibility to add new VMs on-demand in
peak-loud situations. Both solutions focus on one of the most challenging aspects of
Cloud computing, i.e. the capability to request and use computational resources in a
small lapse of time, resulting in a fast performance increment and in a decrease of
management costs. However, these works do not consider VMs monitoring and
reconfiguration issues: every virtual resource is, in fact, allocated before software
deployment and there is no mechanism to move VMs among different physical nodes
in order to face peak-load situations.

In our previous works, to which we refer interested readers for additional details,
we have proposed advanced monitoring features to dynamically and efficiently adapt
and use all available virtual and physical resources in the Cloud system [7-8]. The
present paper completes that support and, starting from virtual resources management

 Automated Provisioning of SaaS Applications over IaaS-Based Cloud Systems 97

and service components orchestration functions, enables automate Cloud application
provisioning facilities within large-scale Cloud data centers.

3 Background

This section introduces some background knowledge to provide a better
understanding of the area. Section 3.1 presents Cloud IaaS environments and provides
needed details about the standard-de-facto OpenStack IaaS [9]. Section 3.2 presents
Juju, a scripting-based tool to ease the deployment of service components [10].
Finally, Section 3.3 gives some needed background material about the BPEL standard
that we use to orchestrate the whole application provisioning process through the
definition of proper workflows [6].

Before starting, let us introduce some terminology about the three main types of
actors in Cloud systems: Application users, Application providers, and Cloud
providers. Application users are the final clients that require access to particular
online SaaS application and use its resources. Application providers build and expose
SaaS applications, typically composed by several service components, to the end
users, and tend to externalize the execution of their own services to avoid the
deployment of costly private IT infrastructure. Finally, Cloud providers supply
application providers with resources on a pay-per-use fashion, in order to let them
execute their applications over their IaaS-based environment. In this paper, we will
focus mainly on the application providers and on how they interact with Cloud
providers to enable, declare, and monitor the provisioning of complex applications
consisting of multiple service components.

3.1 OpenStack

OpenStack is an open-source project for building and managing private and public
Cloud infrastructures [9], proposed and promoted by NASA and Rackspace in 2010.
OpenStack belongs to the category of Infrastructure as a Service (IaaS) systems,
whose goal is to provide resources, such as virtual machines, virtual storage blocks,
etc., on-demand from large pools installed in datacenters. OpenStack is based on a
very flexible architecture supporting a very large set of hardware devices and
hypervisors (i.e. Hyper-V, KVM, ESX, etc.) and even small businesses are allowed to
deploy their own private Cloud because of the open-source nature of this solution.
However, OpenStack still lacks a monitoring and dynamic reconfiguration
mechanism to favor a dynamic deployment of applications on a large scale, thus
requiring a manual management to tailor specific scenarios and deployments.

OpenStack manages computation, storage and networking resources on the Cloud
in order to provide dynamic allocation of VMs [9]. OpenStack is based on five main
services: the first one, called Nova, to manage both computational and networking
resources; the second one, named Glance, to manage and provide VMs images; the
third one, Neutron to manage network resources, and, finally, Swift and Cinder to

98 P. Bellavista et al.

manage storage resources. To better understand our work, we provide a more detailed
description of Nova service.

Nova manages the creation and the configuration of VMs, starting from images
stored in Glance catalog. Nova does not implement any virtualization software, rather
it defines some standard interfaces to control the underlying virtualization
mechanisms. Nova is composed by various main components that interact with each
other in order to manage the entire lifecycle of a VM: nova-compute launches and
configures VMs within a certain physical host, by communicating with the underlying
hypervisor; nova-network manages all the aspects related to network management,
making it possible to create virtual networks that allow communications between
different instances of VMs; finally, nova-scheduler determines on which node a VM
should be booted. All the requests made to Nova components are sent through
RESTful APIs to nova-api that acts as a front-end to export all OpenStack IaaS
functionalities, such as VM creation and termination, through Web Services. To
maintain compatibility towards multiple vendors and to facilitate the migration
toward different Cloud providers, OpenStack also supports Amazon EC2 APIs to
deploy applications written for Amazon Web Services with a minimal porting effort
[11].

3.2 Juju

Juju is a tool for the deployment and the orchestration of services that grants the same
ease of use we can see in some widely used packet management systems such as
Advanced Packaging Tool (APT) or Red Hat Package Manager (RPM) [10].

Juju focuses on the management and deployment of various service units and
components needed to provide a single application, by taking over the configuration
and installation of required software on the VMs where these service components will
be deployed. Juju allows independent service components to communicate through a
simple configuration protocol. End-users can deploy these service components inside
the Cloud, in a similar way they can install a set of packets with a single command.
As a result, it is possible to obtain an environment consisting of multiple machines
whose service components cooperate to provide the requested application.

Juju is independent from the underlying Cloud Infrastructure Layer and supports
several Cloud providers such as OpenStack, Amazon Web Services, HP Cloud,
Rackspace, etc. Thus, it is possible to migrate a service component between different
Clouds with minimal re-deploy effort.

A service component represents an application or a group of applications
integrated as a single component inside a Juju environment that can be used by other
components in order to build an higher level application. In this paper we consider a
use case where we publish WordPress, an open-source platform to create, manage,
and create dynamic Web site [12], by configuring and orchestrating two distinct
service components: a service component exposing the MySQL database needed by
WordPress, and another service component running the WordPress engine. A service
component instance is called Service Unit and it is possible to add more of these

 Automated Provisioning of SaaS Applications over IaaS-Based Cloud Systems 99

Service Units to the environment in order to scale the whole system, thus reducing the
load on each VM.

Three main concepts are at the basis of services publication: charms, hooks and
relations.

A charm encapsulates the logic required to publish and manage a service
component inside a Juju environment. A charm provides the definition of a service
component, including its metadata, its dependences on other service components, the
software packets we need to install in a VM, along with the logic needed to manage
the service component. Through the definition of a charm, it is possible to define the
functionalities exposed by the service component and, if we are dealing with a
composed service, all the sub-services required.

Hooks are executable files used by Juju to notify a service component about
changes related to its lifecycle or about other events happened inside the environment.
When a hook is executed, it can modify the underlying VM (i.e. it could install new
software packets) or it can change relations between two or more service components.

Finally, relations allow the communication between different service components.
Relations are defined inside a charm to declare the interfaces needed/exposed by a
service component, that are offered/used by another service component. Low level
communications between service components are based on TCP sockets.

The environment is a fundamental concept at the basis of Juju: it can be seen as a
container where service components can be published; environments are managed
through a configuration file where it is possible to define some configuration
parameters such as used Cloud provider, IP address of the Cloud provider,
authentication credentials, etc.

It is possible to execute an environment through the bootstrap operation exposed
by Juju’s API. The bootstrap operation initialize the system, instantiating a VM that
will act as the controller node of the environment. Zookeeper and Provisioning Agent
are two of the main software components executed on controller node. Zookeeper can
be viewed as a file systems that stores all the information about the environment,
while Provisioning Agent interacts with the underlying Cloud provider in order to
instantiate and terminate VMs where service components are going to be deployed.

3.3 BPEL

BPEL is the de facto standard to define business processes and business interaction
protocols [6]. The BPEL language, based on XML, allows to express the orchestration
of multiple Web Services by defining business interactions modeled after a sequence
of message exchanges between involved entities. A BPEL document contains the
control logic required to coordinate all the Web Services involved in a workflow.

BPEL provides many language constructs and mechanisms to define a sequence of
activities like invoke, receive and reply, parallel and sequential execution,
transactional execution of a group of activities, and exception handling. A
partnerLink is an important construct defined by BPEL to represent an external
service that is invoked by a process or that invokes the process itself.

100 P. Bellavista et al.

A BPEL engine elaborates a BPEL document, by defining an orchestration logic,
and consequently executes all the activities according to the order defined by the
logic. Typically, a BPEL engine exposes the business process through a Web Service
interface that can be either accessed by Web Service clients or used in other business
processes. One of the main advantages of BPEL is that the several activities of a
business process can be executed simultaneously, instead of imposing a sequential
execution.

4 Architecture

This section presents our architecture proposal to face all the main service
orchestration challenges described in the previous sections: the proposed architecture
provides the support to orchestrate all the steps involved in the publication of an
application inside a Cloud platform, starting from the instantiation of required VMs to
the deployment of required software components, together with the definition of their
relationships. First, we briefly introduce this architecture and then we give a more in
deep description of its components.

The proposed architecture is easily extensible, due to its multi-layer nature; it
allows to arbitrarily manage the software components that form an application, and to
use several Cloud providers. Starting from requests asking for application
provisioning sent from application providers, it is possible to automatically satisfy
their requests by monitoring all the steps involved in the application publication and
notifying application providers about the progress of their request.

The proposed architecture (see Fig. 1) consists of a Cloud Infrastructure Layer and
a Service Orchestrator Layer that, in its turn, we logically divided in two sub-layers:
an Abstraction Layer and an Orchestration Layer.

Fig. 1. Proposed architecture

 Automated Provisioning of SaaS Applications over IaaS-Based Cloud Systems 101

The Cloud Infrastructure Layer represents the virtual resources provided by the
Cloud infrastructure through the IaaS API: it contains VMs instances and defines the
APIs required to create, configure and destroy VMs used by upper layers; it also
offers a connection mechanism in order to grant access to VMs. In our
implementation, we choose to use OpenStack as Cloud Infrastructure Layer, as it is a
widely adopted open-source solution; at the same time, thanks to the highly flexible
nature of our architecture, it is possible to use any other Cloud provider.

The Orchestration Layer and the Abstraction Layer compose together the Service
Orchestrator Layer. It is the composition of these two layers that makes it possible to
create an orchestration support. Once the user has sent a request, this layer will
coordinate and execute all the activities to satisfy that request, by opportunely
configuring and communicating with the VMs provided by the Cloud Infrastructure
Layer.

Abstraction Layer’s goal is hiding the complexity of the underlying Cloud
Infrastructure Layer by providing a high level interface to the Orchestration Layer
which encapsulates the functionalities offered by the Cloud Infrastructure Layer. This
abstraction mechanism obtains a highly flexible architecture working with several
Cloud providers. The functionalities exposed by this layer are useful to manage the
entire VM lifecycle, in addition to the services offered by that VM. This makes it
possible to create a VM with a chosen operating system and install on it all the
software components required to build a service. Moreover, it is also possible to add
relationships between different services in order to allow them to cooperate. Let us
introduce an example to better understand the functionalities. If we want to build a
service exposing a dynamic web site, we need to instantiate and deploy two sub-
services: a web server and a database to store all objects and data required by the web
server. To deploy this scenario, the Abstraction Layer will create two VMs (one for
the web server and the other one for the database), install all the required software
packages, and configure and start the two services. However, in order to publish a
working web server, these services need to communicate to each other. This can be
done by defining a relationship between the two services and specifying the
functionalities exposed by each service along with the required functionalities. It is
essential that the Abstraction Layer could access the VMs where the two services are
deployed in order to monitor and, possibly, reconfigure the services; this is achieved
by establishing SSH tunnels to VMs.

The Orchestration Layer represents the orchestration engine inside our architecture.
When an application provider submits a request to this layer, it coordinates and
orchestrates all the steps required to automatically provide the application provider
with the requested application. Every request received by the Orchestration Layer
contains a description of the required application, that can be seen as a model defining
the service components that compose the application, along with the description of
their relationships to determine how they must mutually interact. Typically, many
activities are involved in exposing an application, so this layer needs to manage
transitions between these activities, by taking into account the dependencies between
service components as shown in Fig. 2-a. These dependencies represent the
synchronization points between operation sequences executed inside a workflow.

102 P. Bellavista et al.

Fig. 2. a) Typical Orchestration Layer workflow and b) BPEL workflow

Going back to our previous example, it is impossible to publish a web server
before the database is ready, because it would lack the required support to manage
data. When the database is ready and the web server has been deployed, we can
specify the relationship between these two software components. The Service
Orchestrator Layer deploys those service components in parallel, monitoring the
involved steps; that allows to simultaneously deploy several service components. In
our solution, we implement this layer by using a BPEL engine.

5 Implementation Details

This section provides some implementation insights about our solution, based on both
proprietary and ad-hoc software. Our presentation will follow a bottom-up approach,
starting from the physical layer up to the Orchestration Layer. For the Cloud Infra-
structure Layer, we have chosen OpenStack due to its highly flexible and open-source
nature; in particular, we used the latest Grizzly release. Atop OpenStack, we use Juju
to implement our Abstraction Layer: functionalities exposed by Juju encapsulate APIs
provided by OpenStack, so we opportunely configured Juju environment in order to
work with OpenStack, hiding these configuration details to the end user. Other open-
source service management tools, such as Puppet [13] or Chef [14], could be used to
implement the Abstraction Layer; we chose to use Juju because it is a very recent
solution, continuously evolving with the introduction of new useful features. The
Orchestration Layer, using Juju charms, enables the composition of complex applica-
tions and offers monitoring facilities through the monitoring events forwarded by
Zookeeper. The Orchestration layer represents the engine of our support towards ser-
vices orchestration: this layer makes it possible to coordinate the publication of SaaS
applications, defining reusable and modular workflows.

In our case study, we deploy a complete WordPress platform composed by two
service components: a MySQL database and a WordPress engine running on a web
server. In order to deploy a working WordPress platform, we need, at first, to deploy
the database service component and the WordPress engine, and then to add a relation

S
er

vi
ce

 1

S
ervice 2

 Automated Provisioning of SaaS Applications over IaaS-Based Cloud Systems 103

between them to let them cooperate. We mapped all these steps into the BPEL
workflow shown in Fig. 2-b.

The BPEL process, defined as an XML document, contains all the references to the
external Web Services employed in the workflow; this can be done by populating the
<partnerLinks> section. In our case study, we inserted references to DeployWS
and AddRelationWS, to let the BPEL engine invoke them. These two Web Services
represents respectively the Web Service used to deploy a service component, and the
Web Service used to add a relation between two already deployed service compo-
nents. The BPEL engine will also fill the request sent to DeployWS with the name of
the service component that need to be deployed. BPEL constructs allow to execute the
deployment of MySQL and WordPress service components (namely, two different
instances of the DeployWS, see Fig. 2-b) in parallel on different VMs, and, through
the definition of synchronization points, it is possible to orchestrate them. In particu-
lar, we use BPEL <flow> construct to achieve parallelism. A <flow> terminates its
execution only when all activities included inside this tag have completed: in our case
study, the completion of <flow> activity will occur only after both WordPress and
MySQL have been deployed. Only at this time, we can invoke AddRelationWS to add
a relation between these two service components.

We encapsulated the functionalities exposed by Juju, to deploy and monitor a ser-
vice component inside the Web Services published on Apache Axis2. The name of
the service component that needs to be published is specified inside the request sent to
the Web Service.

DeployWS is realized by two Java classes: Executor, that invokes juju deploy
command in order to deploy the service component, and DataMonitor, that manages
ZooKeeper events in order to monitor the progress of the request. The following
shows an excerpt of the WSDL file relative to DeployWS (see Fig. 3).

<wsdl:message name="deployWSRequest">

 <wsdl:part name="parameters" element="ns:deployWS"/>

 </wsdl:message>

 <wsdl:message name="deployWSResponse">

 <wsdl:part name="parameters" ele-

ment="ns:deployWSResponse"/>

 </wsdl:message>

 <wsdl:portType name="DeployWSPortType">

 <wsdl:operation name="deployWS">

 <wsdl:input message="ns:deployWSRequest"

wsaw:Action="urn:deployWS"/>

 <wsdl:output message="ns:deployWSResponse"

wsaw:Action="urn:deployWSResponse"/>

 </wsdl:operation>

 </wsdl:portType>

Fig. 3. DeployWS WSDL code

104 P. Bellavista et al.

AddRelationWS invokes juju add-relation command and communicates
the result of this operation to the BPEL Engine.

In order to publish WordPress and MySQL services, we need to write the corres-
ponding charm to be memorized inside the bootstrap node and sent, during the crea-
tion of a VM, to the node were that service component will be deployed. When dep-
loying a MySQL service component, the hook ‘install’ will be executed to download
and configure MySQL related packets, and finally to start the service component. In
the same way, all these steps will be repeated when deploying a WordPress service.
After deploying MySQL and WordPress service components, we add a relation be-
tween these service components, by executing the respective relation-joined hooks.
The relation-joined script relative to WordPress will write, in the WordPress configu-
ration file, a reference to the host where MySQL database is running, together with
the credentials to access the database. The following is an excerpt of the WordPress
relation-joined hook used in our tests, as shown in Fig. 4.

database=`relation-get database`

user=`relation-get user`

password=`relation-get password`

host=`relation-get private-address`

juju-log "Writing wordpress config file $config_file_path"

Write the wordpress config

cat > $config_info_path <<EOF

<?php

define('DB_NAME', '$database');

define('DB_USER', '$user');

define('DB_PASSWORD', '$password');

define('DB_HOST', '$host');

define('SECRET_KEY', '$secret_key');

define('WP_CACHE', true);

Fig. 4. Juju hook script

6 Conclusion and Future Works

In this paper, we presented a management support to automate the provisioning of
complex SaaS applications over Cloud based infrastructures. Due to BPEL-based
orchestration, our solution can achieve high expressivity in the definition of the
application provisioning logic, including not only deployment issues, but also
advanced monitoring of service component status; moreover, it enables concurrent
execution of parallelizable service component deployment steps, thus significantly
reducing the time needed to activate complex SaaS applications in large-scale Cloud
environments. Moreover, the use of BPEL and workflow processes enables a higher
degree of flexibility and reusability of our framework; indeed, already existing
provisioning workflows can be reused to provide new SaaS applications.

 Automated Provisioning of SaaS Applications over IaaS-Based Cloud Systems 105

Encouraged by these results, we are considering several future directions: on the
one hand, we are currently integrating our new application provisioning facilities with
our IaaS runtime monitoring and management support; on the other hand, we are
developing an automatic application live-migration support to move the whole
application, including all needed service components and relations, from local private
Cloud IaaS to public ones, by dynamically re-binding all needed virtual resources
therein; finally, we are implementing a mechanism to define multi-tenant network
infrastructures and to provide isolation for multi-tenant SaaS applications deployed
atop them.

Acknowledgment. This research was partly funded by CIRI, technology transfer
center for ICT, of the University of Bologna; we also thank CINECA for its support.

References

1. Goldsack, P., et al.: The SmartFrog configuration management framework. ACM SIGOPS
Operating Systems Review 43(1), 16–25 (2009)

2. Singhal, S., Arlitt, M., Beyer, D., Graupner, S., Machiraju, V., Pruyne, J., Rolia, J., et al.:
Quartermaster — A Resource Utility System. In: 9th IFIPIEEE International Symposium
on Integrated Network Management, pp. 265–278. IEEE Press (2005)

3. Keller, A., Hellerstein, J.L.L., Wolf, J.L.L., Wu, K.-L.L., Krishnan, V.: The CHAMPS
system: change management with planning and scheduling. In: 2004 IEEE/IFIP Network
Operations and Management Symposium, pp. 395–408. IEEE Press (2004)

4. Kirschnick, J., Alcaraz Calero, J.M., Edwards, N.: Toward an architecture for the auto-
mated provisioning of cloud services. IEEE Communications Magazine 48(12), 124–131
(2010)

5. Dornemann, T., Juhnke, E., Freisleben, B.: On-Demand Resource Provisioning for BPEL
Workflows Using Amazon’s Elastic Compute Cloud. In: 9th IEEE/ACM International
Symposium on Cluster Computing and the Grid, pp. 140–147. IEEE Press (2009)

6. Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu, K., Roll-
er, D., Smith, D., Thatte, S., Trickovic, I., Weerawarana, S.: Business Process Execution
Language for Web Services Version 1.1. 1.1 Edition. Microsoft, IBM, Siebel, BEA, and
SAP (2003)

7. Povedano-Molina, J., et al.: DARGOS: A highly adaptable and scalable monitoring archi-
tecture for multi-tenant clouds. Future Generation Computer Systems. Elsevier (2013)

8. Foschini, L., Tortonesi, M.: Adaptive and Business-driven Service Placement in Federated
Cloud Computing Environments. In: IFIP/IEEE International Workshop on Business-
driven IT Management 2013, pp. 1245–1251. IEEE Computer Society Press (2013)

9. OpenStack Cloud Software, http://www.openstack.org/ (retrieved June 2013)
10. Juju homepage, https://juju.ubuntu.com (retrieved June 2013)
11. Amazon Elastic, Compute Cloud, http://aws.amazon.com/ec2/ (retrieved June

2013)
12. Wordpress, http://wordpress.org/ (retrieved July 2013)
13. Puppet, http://puppetlabs.com/ (retrieved July 2013)
14. Chef, http://www.opscode.com/chef/ (retrieved July 2013)

Open Source Issues with Cloud Storage Software

Michael C. Jaeger

Siemens AG, Corporate Technology
Otto-Hahn-Ring 6, D-80200 Munich, Germany

michael.c.jaeger@siemens.com

Abstract. A brief look at the available cloud storage software projects
reveals that many of them are built as open source efforts. Compared
with other server technology, such as application servers, relational data-
bases or messaging systems, this high degree of open source project de-
velopment represents a special characteristic of cloud storage software.
Therefore, when working with this technology also basic issues with open
source projects are relevant and should be understood when choosing or
evaluating such projects. The issues cover for example the consequence of
the licensing for the desired use or the quality of the open source project.

1 Introduction

Cloud storage represents a broad term, the meaning of the term cloud storage
can target NoSQL database software as well as storage solutions provided in a
cloud-computing manner. The understanding about NoSQL databases is that
referring database servers or services follow a different approach than the tradi-
tional table-model provided by relational database servers. This approach repre-
sents an adaptation to distributed systems and cloud computing environments.
One basic view formulates that NoSQL databases do not provide the ACID
(Atomicity, Consistency, Isolation, Durability) characteristics of the traditional
(relational) database servers; instead they are characterized by the so-named
BASE acronym which stands for Basic Availability, Soft state, Eventual consis-
tency [1]. This characteristic suits the cloud computing paradigm of a distributed
environment leveraging horizontal scalability.

Cloud storage as cloud computing service applies the traditional characteris-
tics of cloud computing to storage, which are a) virtually unlimited resources,
b) no upfront commitment and c) pay per use [2]. Depending on the definition
or view point a couple of other characteristics are also relevant, for example, one
software offering runs in a mode supporting multiple tenants serving different
customers at once.

Today, a large number of solutions are available for development projects. For
software solutions that can be locally installed or extended for own purposes, a
large number of open source projects are currently available. In the area of dis-
tributed systems and server software this represents an exception, because most
software areas provide mixed offerings, proprietary and open source projects, for
example:

C. Canal and M. Villari (Eds.): ESOCC 2013, CCIS 393, pp. 106–113, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Open Source Issues with Cloud Storage Software 107

– Java application servers, are both available as open source and proprietary
software. Both types of licensing are also very popular. For example, besides
the open source project Glassfish, Oracle offers a proprietary version, named
Weblogic.

– Relational database software: While there are well-known examples for open
source relational database servers, such as MySQL, MariaDB or PostgeSQL,
also proprietary database serves are very popular. Examples are the Oracle
RDBMS or Microsoft SQL Server.

– Messaging systems or middleware show also popularity in both areas, open
source and proprietary. For example, considering the Java world: While open
source implementations of the JEE spec exist, also software companies have
released messaging software since years, such as products from Tibco in this
area.

This situation is different for cloud storage as available software project or
distribution. Referring to so-named NoSQL databases we can see the major-
ity being open source projects or non-proprietary software. Even cases exist in
which software is developed following an open source approach, but the main
contributors are employed or affiliated at a single company (e.g. Neo4j backed by
a company named Neo Technology). In another similar case, a company which
has developed this project as part of their software or services, has released
this software as open source (e.g. Cassandra was originally developed by Face-
book [3]). Having a close look at the page nosql-database.org, reveals that many
of the offered solutions are in fact open source projects.

An overview about how much of them are open source is given in the Table 1
in the Appendix. The table lists the open source software projects from the
three first categories of nosql-databases.org, column-based databases, docu-
ment databases and key-value stores as an example. Some companies actually
develop one of the open source databases while releasing the software using an
open source license and require a commercial license for some enterprise use
cases (e.g. RavenDB). From the listing at nosql-databases.org table, projects
were omitted where no license information was found on the Web (investing
a reasonable amount of efforts) or the license situation could not been deter-
mined. Also, commercial products have been omitted. A full list can be found
on nosql-databases.org.

Having such a large list of projects available, the question arises, how to
choose such projects. One major criterion is the actual functionality, of course.
Functional and non-functional requirements can represent the main input to
choose either one or another software. However, when it comes to commonal-
ity use, for example basic use of a relational database in a software project,
relevant differences between major (open source) database servers can become
irrelevant: Unless for example, one does not require special XML query meth-
ods or similar features of one particular database server, choosing between the
major open source relational database servers can turn out in a very ambivalent
decision. From an open source point of view, it is not. For example, the license
of the MySQL server, which is the GNU GPL, can represent a conflict for some

nosql-databases.org
nosql-databases.org
nosql-databases.org

108 M.C. Jaeger

commercial use cases of software that builds upon the MySQL server. Then, in
the MySQL case, the acquisition of an enterprise license could be considered. In
summary, the remainder of the paper will introduce two basic issues with open
source software here: the licensing issues in Section 2 and the software product
quality issues in Section 3.

2 License Issues

The license is among the most important open source issues to consider. It is
important to evaluate the license of a project planned for use or integration
against own plans. Among other things, own plans can refer to whether software
is considered for distribution or for in-house operations. The distinction is rele-
vant, because from a legal point of view, the two cases ask for different rights.
The right for distribution is often separately covered from the right for use. For
usage, popular points are:

– Is the software allowed for commercial use? Some licenses forbid commercial
use, which includes also in-house usage. By some point of view, a license
which forbids commercial use does not implement the open source spirit
because it limits the freedom of use of the software.

– Also, some licenses express some a statement like“Do not do something bad
with it”. Theoretically this can also exclude commercial use, because it might
be difficult to prove that the own case of commercial use does not represent
something bad. A case where such consideration applies is the Code Project
Open License (CPOL), for example, which is used by the RaptorDB. This
license states that improper use of this software is forbidden (cf. paragraph
5f of the CPOL 1.02), therefore the licensee must evaluate if the own planned
use is to be considered ‘improper”.

– Is the license for usage valid? Admitted this sounds special on the first hand,
but it might be that some condition of the usage contradicts against some
license statement and then, the license may loose its validity. Without a valid
license, the use of the software may not be allowed (most likely case). This
situation can occur, for example, with patent clauses in licenses. A popular
license condition expresses that the usage right invalidates, if the licensee
rises a patent infringement claim against the licensor. Given that major IT
companies in the smart phone sector are or have been in patent law suits
against each other, while some of them release open source software, such
case appears possible and is thus relevant for commercial use.

The mentioned points apply for using the software, for example in order to pro-
vide an internal system capturing travel expenses in a company. If the software
is subject for distribution, different terms are relevant. Example, redistribution
covers the case of selling a software product which contains or integrates the
open source NoSQL database. Or for example, also selling an appliance where
such software is installed can represent a case of redistribution. While complete
consequences for all licenses in all cases cannot be given, some points to check
are:

Open Source Issues with Cloud Storage Software 109

– Does the license require the delivery of own source code to the user? From
the products listed in Table 1 some of them are licenses using different ver-
sions of the GNU General Public License (GPL) where such conditions may
apply. Choosing this software requires evaluation for compatibility with own
business interests.

– Does the license asks you for documenting that the software is included and
is that documentation is actually in place? For many open source project
developers, it is important to have presented at least the “credits”. There-
fore it must be ensured that appropriate copyright or authorship statements
are given. The challenge for this task lies in how to generate such informa-
tion with an evolving software project. In the ideal case, the development
tooling keeps track of involved open source projects and referring ”credit”
information.

– Does the license asks you for delivering the open source software in complete
or some defined form and is the delivery of the own software combined with
the open source software compliant to this? Again, as with the previous
point, this challenge is of organizational nature, because it requires to keep
track of involved open source projects and their complete distributions.

While these points seem obvious, it must be noted that the number of in-
dividual licenses is in the hundreds. As a consequence, each individual license
must be read and understood in order to have an understanding of what rights
are allowed for usage and distribution. As a general rule, these issues should be
clarified before the software is actually chosen. If the software is already in the
software project and it turns out that the license is incompatible with own plans
for distribution, migration to a different database server can become cumbersome
and difficult.

This issue is especially important with NoSQL-databases: Because unlike with
relational databases, a standard interface or commonly used query language may
exist. But those do not share the popularity of SQL or JDBC. Therefore, choosing
a particular NoSQL solution likely results in the use of specific interfaces.

3 Open Source Project Quality

Most open source projects work very open in terms of project communication
and work. In the usual case, project mailing lists, documentation, common source
repository and issue tracking are public. Therefore, some characteristics of the
project can be easily looked at in order to get an idea about the quality of project
work. Also, looking at the project’s Web facilities may help for getting an idea of
the software. Furthermore, such evaluation of the project allows for determining
if the software has reached some kind of end-of-life status. End of life means
here that the main developers have abandoned or closed the project. While an
end-of-life project can have resulted in good software, this information is still
relevant: In this phase no community support for bug fixes or closing security
holes can be expected. Besides the end of life, there are some more common
characteristics that are relevant to check (cf. [4]):

110 M.C. Jaeger

– How does the issue tracker look like? Does the project work on tickets, or is
the majority of tickets open since long time ago? Kuru and Tao, for example
have published a general analysis about the duration of open tickets in open
source projects [5].

– How many developers commit actually source code to the repository? Is it
just only one main developer? Then, maybe this project is fragile in terms
of that it could be abandoned, if the life of that single developer changes.

– What are the threads of the mailing list? What are the main issues the
project talks about? Having a brief look at the mailing list archive can quickly
reveal issues or common problems with the software project.

– How does the commit history look like? Did the project commit larger pieces
a long time ago and since the past year not much activity is apparent? Is the
project maybe in stabilization phase? Some software may not get further
large changes after it has been established and the desired it works. So
stabilization phase cannot be considered a bad sign.

Most of the mentioned metrics can be looked at in the ohloh.net Web site.
This Web site provides analysis and data repositories of thousands of open source
projects. Users can access commit statistics, the number of active developers
and so on. For a first look of an open source project it represents a relevant
source of statistical information. The Figure 1 provides an example view of such
comparison on ohloh.net with example projects from the documents database
section. The example are “MongoDB”, “RethinkDB” and “ThruDB”. For a first
look, MongoDb and RethinkDB appear in the same area w.r.t. project activity
and software project size. This comparison reveals also that ThruDB represents
a smaller project in comparison to the previous two.

Since the source code is available, also the code could be downloaded and
analyzed using some code analysis tools [6]. Some of them might be available as
open source as well. Other tools exist that are proprietary. The results gained
from such analyses are similar to the points mentioned above: In all cases, natural
explanations for surprising numbers / scores / ranks can exist. Therefore, the
experience of an expert cannot be replaced by tools and statistics, of course.

Another, rather subjective information for the estimation of the project qual-
ity represents the origin of the project. For example, CassandraDB was initially
developed by Facebook employees. Obviously, Facebook did not decide to make
a business out of selling software licenses and decided rather to release their own
written software in an open source project.

The advantage is clear: if the development community grows larger than the
involved group of Facebook developers, the software will grow quicker and be-
come richer in functionality as the group of own developers could have done. The
advantage for the software project is that in the case of CassandraDB, obviously
a large use case (use at Facebook) exists which represents an indicator that the
project will be kept maintained in future.

ohloh.net

Open Source Issues with Cloud Storage Software 111

4 Conclusions

For cloud storage we can distinguish two major forms: One is the actually hosted
version of cloud storage involving a cloud-like business model for this hosting.
And another is the form of a cloud storage software for own deployment or
use in software development projects. For the latter, it was pointed out that a
major number of projects are in fact open source projects. Therefore, considering
basic open source issues is required for choosing the right software – besides the
function and non-functional requirements.

The brief overview about open source issues shows that open source software
does not come for “free”.1 Rather, it is “open” and requires the understanding
of basic issues in order to be able to leverage its full advantages.

References

1. Tudorica, B.G., Bucur, C.: A comparison between several NoSQL databases with
comments and notes. In: 2011 10th Roedunet International Conference (RoEduNet),
June 23-25, pp. 1–5 (2011)

2. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee,
G., Patterson, D., Rabkin, A., Stoica, I., Zaharia, M.: A view of cloud computing.
Commun. ACM 53(4), 50–58 (2010)

3. Lakshman, A., Prashant, M.: Cassandra: a decentralized structured storage system.
ACM SIGOPS Operating Systems Review 44(2), 35–40 (2010)

4. Ruffin, C., Christof, E.: Using open source software in product development: A
primer. IEEE Software 21(1), 82–86 (2004)

5. Koru, A.G., Tian, J.: Defect handling in medium and large open source projects.
IEEE Software 21(4), 54–61 (2004)

6. Stamelos, I., Angelis, L., Oikonomou, A., Bleris, G.L.: Code quality analysis in open
source software development. Information Systems Journal 12(1), 43–60 (2002)

7. Stallmann, R.: The Free Software Definition, Free Software Foundation (2013),
http://www.gnu.org/philosophy/free-sw.html

1 R. Stallmann expressed this view as follows: ”Free software is a matter of liberty,
not price. To understand the concept, you should think of free as in free speech, not
as in free beer.” [7]

http://www.gnu.org/philosophy/free-sw.html

112 M.C. Jaeger

Appendix

Fig. 1. Example for Comparison of Open Source Projects on ohloh.net

Open Source Issues with Cloud Storage Software 113

Table 1. Selection of Open Source Projects Listed on nosql-databases.org. Lines
of code and number of contributors according to http://www.ohloh.net/, retrieved
in June 2013. The number of contributors covers the past 12 months. Please note
that data from this Web site is licensed under the ”CC BY 3.0” license, available at
https://creativecommons.org/licenses/by/3.0/.

Project / Software License Lines of Code Contributors

Wide Column Store / Column Families

HBase (based on Hadoop) Apache License 2.0 577,000 23

Cassandra Apache License 2.0 191,000 20

Hypertable GNU GPL v2 410,000 17

Accumulo Apache License 2.0 148,000 15

Cloudata Apache License 2.0 156,000 currently n.a.

HPCC Apache License 2.0 1.520,000 23

Stratosphere Apache License 2.0 n.a. n.a.

OpenNeptune Apache License 2.0 70,000 currently n.a.

Document Store

MongoDB GNU AGPL v3.0 513,000 87

Elasticsearch Apache License 2.0 276,000 53

CouchDB Apache License 2.0 135,000 44

RethinkDB Driver: Apache License 2.0 614,000 49

RavenDB GNU AGPL 3.0+ 1,070,000 80

ThruDB BSD License 21,400 currently n.a.

Terrastore Apache License 2.0 23,900 currently n.a.

RaptorDB Code Project Open License 14,300 currently n.a.

JasDB MIT X11 License n.a. n.a.

SisoDB MIT License n.a. n.a.

djondb GNU GPL n.a. n.a.

EJDB (Embedded JSON database) LGPL License 197,000 8

DensoDB GNU AGPL 3.0+ 197,000 8

Key Value / Tuple Store

Riak Apache License 2.0 105,000 53

Redis BSD License 100,000 43

LevelDB BSD License 39,200 4

Berkeley DB GNU AGPL 3.0 n.a. n.a.

BangDB BSD License n.a. n.a.

Chordless GNU GPL v2 n.a. n.a.

Scalaris Apache License 2.0 140,000 9

Tokyo Cabinet / Tyrant GNU LGPL n.a. n.a.

Scalien GNU AGPL 3.0 21,900 n.a.

Voldemort Apache License 2.0 160,000 18

Dynomite BSD License n.a. n.a.

KAI Apache License 2.0 47,000 currently n.a.

MemcacheDB BSD License 13,900 n.a.

Tarantool/Box BSD License 235,000 12

Maxtable GNU GPL v3 n.a. n.a.

Pincaster MIT License 58,500 2

nessDB GNU GPL n.a. n.a.

Mnesia Open Source Erlang Licence n.a. n.a.

LightCloud BSD License n.a. n.a.

Hibari Apache License 2.0 n.a. n.a.

OpenLDAP OpenLDAP Public License 558,000 21

Genomu Apache License 2.0 n.a. n.a.

BinaryRage Titan Apache License 2.0 n.a. n.a.

Elliptics GNU GPLv2+ 28,700 19

http://www.ohloh.net/
https://creativecommons.org/licenses/by/3.0/

A Calculus of Computational Fields

Mirko Viroli1, Ferruccio Damiani2, and Jacob Beal3

1 University of Bologna, Italy
mirko.viroli@unibo.it

2 University of Torino, Italy
ferruccio.damiani@unito.it

3 Raytheon BBN Technologies, USA
jakebeal@bbn.com

Abstract. A number of recent works have investigated the notion of “computa-
tional fields” as a means of coordinating systems in distributed, dense and mobile
environments such as pervasive computing, sensor networks, and robot swarms.
We introduce a minimal core calculus meant to capture the key ingredients of lan-
guages that make use of computational fields: functional composition of fields,
functions over fields, evolution of fields over time, construction of fields of values
from neighbours, and restriction of a field computation to a sub-region of the net-
work. This calculus can act as a core for actual implementation of coordination
languages and models, as well as pave the way towards formal analysis of prop-
erties concerning expressiveness, self-stabilisation, topology independence, and
relationships with the continuous space-time semantics of spatial computations.

1 Introduction

In a world ever more densely saturated with computing devices, it is increasingly im-
portant to have effective tools for developing coordination strategies that can govern
collections of these devices. The goals of such systems are typically best expressed in
terms of operations and behaviours over aggregates of devices, e.g., “send a tornado
warning to all phones in the forecast area,”, or “activate all displays in the route towards
the nearest group of friends of mine.” Effective models and programming languages are
needed to allow the construction of distributed systems at the natural level of aggregates
of devices, contrasting with the classical individual-device view that often obfuscates
the system design.

Recently, approaches based on models of computation over continuous space and
time have been introduced, which promise to deliver aggregate programming capabil-
ities for the broad class of spatial computers: networks of devices embedded in space,
such that the difficulty of moving information between devices is strongly correlated
with the physical distance between devices. Examples of spatial computers include
sensor networks, robot swarms, mobile ad-hoc networks, reconfigurable computing,
emerging pervasive computing scenarios, and colonies of engineered biological cells.

A large number of formal models, programming languages, and infrastructures have
been created with the aim of supporting computation over space-time, surveyed in [5].
Several of these are directly related to the field of coordination models and languages,

C. Canal and M. Villari (Eds.): ESOCC 2013, CCIS 393, pp. 114–128, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

A Calculus of Computational Fields 115

such as the pioneer model of TOTA [11], the (bio)chemical tuple-space model [17],
the στ-Linda model [19], and the pervasive ecosystems model in [13]. Their recurrent
core idea is that through a process of diffusion, recombination, and composition, in-
formation injected in one device (or a few devices) can produce global, dynamically
evolving computational fields—functions mapping each device to a structured value.
Such fields are aggregate-level distributed data structures which, due to the ongoing
feedback loops that produce and maintain them, are generally robust to changes in the
underlying topology (e.g., due to faults, mobility, or openness) and to unexpected in-
teractions with the external environment. They are thus useful for implementing and
composing self-organising coordination patterns to adaptively regulate the behaviour of
complex distributed systems [11,17,18].

A sound engineering methodology for space-time coordination systems will require
more than just specification, but the ability to predict to a good extent the behaviour of
computational fields from the underlying local interaction rules—a problem currently
solved only for particular cases [4]. This paper contributes to that goal by introducing
a core calculus meant to precisely capture a set of key ingredients of programming lan-
guages supporting the creation of computational fields: composition of fields, functions
over fields, evolution of fields over time, construction of fields of values from neigh-
bours, and restriction of a field computation to a sub-region of the network.

The proposed calculus is largely inspired by Proto [3,12], the archetypal spatial
computing language (and is in fact a fragment of it). As with Proto, it is based on
the idea of expressing aggregate system behaviour by a functional composition of op-
erators that manipulate (evolve, combine, restrict) continuous fields. Critically, these
specifications can be also interpreted as local rules on individual devices, which are
iteratively executed in asynchronous “computation rounds”, comprising reception of
messages from neighbours, computing the local value of fields, and spreading messages
to neighbours. The operational semantics of the proposed calculus precisely models
single device computation, which is ultimately responsible for the whole network exe-
cution. The distinguished interaction model of this approach, which is first formalised
into a calculus in this paper, is based on representing state and message content in an
unified way as an annotated evaluation tree. Field construction, propagation, and restric-
tion are then supported by local evaluation “against” the evaluation trees received from
neighbours.

The calculus thus developed formalises key constructs of existing coordination lan-
guages or models targeting spatial computing. As such, we believe it paves the way
towards formal analysis of key properties applicable to various coordination systems,
concerning soundness, expressiveness, self-stabilisation, topology independence, and
relationships with the continuous space-time semantics of spatial computations.

The remainder of the paper is organized as follows. Section 2 describes the proposed
linguistic constructs and their application to system coordination. Section 3 illustrates
how single devices interpret the proposed constructs locally. Section 4 presents the for-
mal calculus. Section 5 discusses the soundness property of the calculus. Section 6 con-
cludes by discussing related works and outlining possible directions for future works.

116 M. Viroli, F. Damiani, and J. Beal

e ::= x
∣∣ l ∣∣ (o e) ∣∣ (f e) ∣∣ (rep x w e) ∣∣ (nbr e) ∣∣ (if e e e) expression

w ::= x
∣∣ l variable or value

F ::= (def f(x) e) function
P ::= F e program

Fig. 1. Surface syntax

2 Computational Fields

Generalising the common notion of scalar and vector field in physics, a computational
field is a map from every computational device in a space to an arbitrary computational
object. Examples of fields used in distributed situated systems include temperature in a
building as perceived by a sensor network (a scalar field), the best routes to get to a loca-
tion (a vector field), the area near an object of interest (a boolean indicator field), or the
people allowed access to computational resources in particular areas (a set-valued field).
With careful choice of operators for manipulating fields, the aggregate and local views
of a program can be kept coherent and each element of the aggregate-level program can
be implemented by simple, automatically generated local interaction rules [2]. Follow-
ing this idea, in this section we present a core language to express such operators. This
language is identified based on the strengths and commonalities across many different
approaches to spatial computing reviewed in [5] (though we do not rule out the possi-
bility that others may be identified), and drawing on the Proto [3,12] implementations
of these mechanisms.

We describe the selected mechanisms directly showing the syntax of the proposed
calculus, reported in Figure 1. We take the global, aggregate-level viewpoint, consid-
ering the main syntactic element e as being a field expression, or simply a field. As a
standard syntactic notation in calculi for object-oriented and functional languages [10],
we use the overbar notation to denote metavariables over lists, e.g., we let e range over
lists of expressions, written e1 e2 . . . en.

A basic expression can be a literal value l (also called local value), such as a floating
point number, a boolean, or a tuple—note most of the ideas of computational fields are
agnostic to the structure of such values. According to the global viewpoint, a literal field
expression l actually represents the constant function mapping l to all nodes. A basic
expression can also be a variable x, which can be the formal parameter of a function or
a store of information to support stateful computations (see rep construct below).

Such basic expressions (values and variables) can be composed by the following
5 constructs. The first one is functional composition, a natural means of manipulat-
ing fields as they are functions themselves: (o e1 e2 . . . en) is the field obtained by
composing together all the fields e1, e2, . . . , en by an operator o. Operators are built-
in, and include standard mathematical ones (e.g. addition, sine): they are applied in
a pointwise manner to all devices. For instance, if et is a field of Fahrenheit tem-
peratures, then the corresponding field of Celsius temperatures is naturally written
(* (/ 5 9) (- et 32)). Execution of built-in operators is context-dependent, i.e.,
it can be affected by the current state of the external world. So, 0-ary operator self
gives a field that maps each device to its identifier, dt maps each device to the time

A Calculus of Computational Fields 117

elapsed since its previous computation round, and finally nbr-rangemaps each device
to a table associating estimated distances to each neighbour (such a table being a field
itself).

The second construct is function (definition and) call, which we use as ab-
straction tool and to support recursion: (f e1 e2 . . . en) is the field obtained
as result of applying user-defined function f to the fields e1, e2, . . . en. Such
functions are declared with syntax (def f(x) e). For instance, after definition
(def convert (x) (* (/ 5 9) (- x 32))), expression (convert et) denotes
the same field of Celsius temperatures as above. Note that function definitions, along
with the top-level expression, form a program P.

The third construct is time evolution, used to keep track of a changing state over
time: (rep x w e) is initially the field w (a local value or a variable) that is stored in
the new variable x, and at each step in time is updated to a new field as computed by
e, based on the prior value of x. For instance, (rep x 0 (+ x 1)) is the (evolving)
field counting in each device how many rounds that device has computed. Similarly,
(rep x 0 (+ x (dt))) is the field of time passing.

The fourth construct is neighbourhood field construction, the mechanism by which
information moves between devices: (nbr e) maps each device to the field of its neigh-
bours’ local value of field e; hence, it is a field of neighbourhood fields like the output
of nbr-range above. As an example, let min-hood be the operator taking a neighbour-
hood field and returning its minimum value, then (min-hood (nbr et)) is the field
mapping each device to the minimum temperature perceived in its neighbourhood.

The last construct is domain restriction, a sort of distributed branch: (if e0 e1 e2)
is the field obtained by superimposing field e1 computed everywhere e0 is true and
e2 everywhere e0 is false. As an example (if efah et (convert et)) is the field of
temperatures provided in Fahrenheit (resp. Celsius) where the field efah is true (resp.
false). Restriction is the most subtle of the five mechanisms, because it has the effect
of preventing the unexpected spreading of computation to devices outside of the re-
quired domain, even within arbitrarily nested function calls, as will be clarified in the
following.

We now present some examples to illustrate how these five key mechanisms can be
combined to implement useful spatial patterns.

(def gossip-min (source) (rep d source (min-hood (nbr d))))

(def distance-to (source)

(rep d infinity (mux source 0 (min-hood (+ (nbr d) (nbr-range))))))

(def distance-obs-to (source obstacle)

(if (not obstacle) (distance-to source) infinity))

We first exemplify how constructs rep and nbr can be nested to create a long-distance
computation, to achieve network-wide propagation processes. Function gossip-min

takes a source field and produces a new field mapping each device to the minimum
value that source initially takes. The rep construct initially sets the output variable
d at source, and it iteratively updates the value at each device with the minimum

118 M. Viroli, F. Damiani, and J. Beal

one available in d’s neighbours. Hence, gossip-min describes a process of gossiping
values until the minimum one converges throughout the network.

Similarly, function distance-to takes as its input a source field holding boolean
values, and returns a new scalar field that maps each device to the estimated distance
to the nearest device where source is true. This works by first setting d to infinity,
then updating it as follows: sources are of course at distance 0, while all other devices
use the triangle inequality, finding the minimum sum of a neighbour’s estimated dis-
tance d and the distance to that neighbour. Operator mux, used to combine the two, is
a purely functional multiplexer, which uses the first input to choose whether to return
the second or third. The field returned by distance-to is often also referred to as a
gradient [11,4,17], and is a key building block for many computations in mobile ad-hoc
networks, such as finding routes to points of interest. There are many similar variants
with different purposes, most of which automatically repair themselves when either the
sources or network structure change.

The last definition exemplifies the use of construct if. It creates two different spatial
domains: one where the obstacle is present (field obstacle holds positive boolean
value) and one where is not. In the former an infinity constant field is computed; in the
latter we spread the distance-to field. As a result, distance estimation as provided
by distance-to automatically takes into account the need of circumventing obstacle
areas, since information does not cross the two domains due to the semantics of nbr as
explained in next section.

A number of coordination mechanisms can be constructed on the basis of these ex-
amples, like the gradient-based patterns discussed in [17,13,19], which find applications
in many areas, including crowd steering in pervasive computing.

3 From Global to Local

The description of field constructs so far has focused on what we can call the global
viewpoint, in which the computation is considered as occurring on the overall com-
putational fields distributed in the network. For the calculus to be actually executed,
however, each device has to perform a specific set of actions at particular times, includ-
ing interaction with neighbours and local computations. The result of these local actions
then produces the overall evolution of computational fields. We call this description of
the language in term of individual devices the local viewpoint, and it is this view that we
shall use for the operational semantics. Let us now begin with an informal presentation
of the peculiar aspects of that operational semantics, to aid in understanding the full
formalisation presented in Section 4.

Following the approach considered in Proto [12] and many other distributed pro-
gramming languages, devices undergo computation in rounds. In each round, a device
sleeps for some limited time, wakes up, gathers information about messages received
while sleeping, performs its actual field evaluation, and finally emits a message to all
neighbours with information about the outcome of computation, before going back to
sleep.

Taking the local viewpoint, we may model a field computation by modeling the eval-
uation of a single device at a single round, assuming the scheduling of such rounds

A Calculus of Computational Fields 119

across the network be fair and non-synchronous—either fully asynchronous or partially
synchronous, meaning that devices cannot execute infinitely quickly. Assuming that
the main bottleneck in the system is communication rather than computation (which
is frequently the case in wireless communication networks), this model can be readily
achieved by any collection of devices with internal clocks that schedule execution of
rounds at regular intervals. So long as the relative drift between clocks is not extreme,
execution on such a system will be fair and partially synchronous.

To support the combination of field constructs, we design our operational semantics
as follows. First, our functional style of composition, definition and calls, fits well with a
small-step evaluation semantics, in which we start from the initial expression to evaluate
and reduce it to a normal form representing the outcome of computation, including the
local value of the resulting field and the information to be spread to neighbours. In
order to keep track of the state of variables introduced by rep constructs, and values
at nbr constructs to be exchanged with neighbours, we take our computational state to
be the dynamically produced evaluation tree. During a round of computation, such a
tree is incrementally decorated with partial results expressed as annotations of the form
“·v” or superscripts “s”. These decorations track the local outcome of evaluation and
determine which subexpression will be next evaluated.

To illustrate our management of evaluation order and computational rounds, as well
as the rep construct, let us begin by considering expression (rep x 0 (+ x 1)) (cf.
Section 2). As this tree is evaluated according to the operational semantics, it goes
through a sequence of four transitions. We show these informally by in each step un-
derlining the next portion of the tree to be rewritten, by coloring the changes introduced
by each rewrite red (they will appear grey in a non-color print of the paper), and by
labelling the transitions with the (nested) rules of the operational semantics causing the
transition. The rules may be ignored for now, and be considered later to understand the
formal calculus in Section 4. The first computation round goes as follows:

(rep x 0 (+ x 1))
[REP,CONG,VAR]−−−−−−−→ (rep x 0 (+ x·0 1))

[REP,CONG,VAL]−−−−−−−→
(rep x 0 (+ x·0 1·1)) [REP,CONG,OP]−−−−−−→ (rep x 0 (+ x·0 1·1)·1)
[REP]−−→ (rep1 x 0 (+ x·0 1·1)·1)·1

Annotations are computed depth-first in the expression tree until eventually reach-
ing the outer expression: we first annotate variable x with its current (initial) value 0,
then simply identically annotate value 1, then perform built-in operation + causing an-
notation of its sub-tree with 1, and finally execute the rep construct, which records the
result value as a superscript to rep and as an annotation of the whole expression.

Once the evaluation is complete, with the result value in the outer-most annotation,
the whole evaluation tree will be shipped as a message to neighbours, in order to align
nbr statements and share values between neighbours, as described later. Pragmatically,
of course, any implementation might massively compress the tree, sending only enough
information for nbr statements to be aligned.

The subsequent round begins after an initialisation that erases all non-superscript
decorations. This second round leads to evaluation tree (rep2 x 0 (+ x·1 1·1)·2)·2,
third one to (rep3 x 0 (+ x·2 1·1)·3)·3, and so on.

120 M. Viroli, F. Damiani, and J. Beal

The main purpose of managing evaluation trees in this way is to support information
exchange through the nbr construct. Consider the expression (min-hood (nbr (t)))

(cf. Section 2), where t is a 0-ary built-in operator that returns the temperature perceived
in each device. If a device σ perceives a temperature of 7 degrees Celsius, and executes
its first computation round before its neighbours, then the result of computation should
clearly be 7. This is implemented by the following sequence of transitions:

(min-hood (nbr (t)))
[CONG,CONG,OP]−−−−−−−→ (min-hood (nbr (t)·7)) [CONG,NBR]−−−−−→

(min-hood (nbr (t)·7)·(σ �→ 7))
[OP]−→ (min-hood (nbr (t)·7)·(σ �→ 7))·7

We first enter the subexpression with the 0-ary operator t which yelds 7. We then eval-
uate nbr to the field of neighbour values, associating only σ to 7, written (σ �→ 7).
Finally, we evaluate unary operator min-hood, which extracts the smallest element of
the input field, which in this case is 7.

Construct nbr retrieves values from neighbours using the tree environment of the
device σ , which models its store of recent messages received from neighbours. The
tree environment is a mapping Θ = (σ1 �→ e1, . . . ,σn �→ en) created at each round, from
neighbours (σi) to their last-received evaluation tree (ei), which we call the neighbour
tree of σi . The evaluation of (nbr e), where e is evaluated to local value l, takes values
from the tree environment to produce a field (σ �→ l,σ1 �→ l1, . . . ,σn �→ ln), mapping
σ to l and each neighbour σi to the corresponding local value li from σi.

In the example above we assumed that none of the neighbours of σ had
already completed a round of computation, and that therefore Θ was empty
and accordingly (nbr (t)) gave simply (σ �→ 7). If we instead assume that
the first round of computation on the device σ takes place when the neigh-
bours σ1 and σ2 have completed exactly one round of computation, perceiv-
ing temperatures of 4 and 9 degrees respectively, then the tree environment of
σ would be (σ1 �→ e1,σ2 �→ e2), where e1 = (min-hood (nbr (t)·4)·(σ �→ 4))·4
and e2 = (min-hood (nbr (t)·9)·(σ �→ 9))·9. The computation goes similarly,
the only difference is that the evaluation of (nbr (t)·7) now produces the field
φ = (σ �→ 7,σ1 �→ 4, σ2 �→ 9) and the final outcome of the computation round on σ
is the tree (min-hood (nbr (t)·7)·φ)·4.

More specifically, the extraction of values from neighbours is achieved by computing
the local evaluation tree “against” the set of its neighbour trees: when evaluation enters a
subtree, in the tree environment Θ we correspondingly enter the corresponding subtree
on all of its neighbour trees, which are structurally compatible by construction since each
node executes the same program. This process on neighbour trees is called alignment.
So, in the example above, sub-tree (nbr (t)·7) is recursively evaluated against the
neighbour sub-trees (σ1 �→ (nbr (t)·4) · (σ1 �→ 4),σ2 �→ (nbr (t)·9) · (σ2 �→ 9)), in
which the neighbour values are immediately available as the outermost annotation of
the argument of nbr.

One reason for using this structural alignment mechanism is to seamlessly
handle the cases where nbr subtrees could be nested at a deep level of the
evaluation tree because of (possibly recursive) function calls. Assume defini-
tion (def f (x) (min-hood (nbr x))), and the main expression (f (t)) whose

A Calculus of Computational Fields 121

expected behaviour is then equivalent to our prior example (min-hood (nbr (t))).
This expression would be handled by the following sequence of transitions:

(f (t))
[CONG,OP]−−−−→ (f (t)·7) [FUN,CONG,CONG,VAR]−−−−−−−−−−→ (f(min-hood (nbr x·7)) (t)·7) [FUN,CONG,NBR]−−−−−−−→

(f(min-hood (nbr x·7)·φ) (t)·7) [FUN,OP]−−−−→ (f(min-hood (nbr x·7)·φ) (t)·7)·4
After the function arguments are all evaluated, the second transition creates a super-
script to function f, holding the evaluation tree corresponding to its body. This gets
evaluated as usual, and its resulting annotation 4 is transferred to become the annota-
tion of the function call. So, note that the evaluation tree is a dynamically expanding
data structure because of such function superscripts being generated and navigated at
each call, with alignment automatically handling nbr construct, even for arbitrary recur-
sive call structures. Note that this mechanism also prevents terminating recursive calls
from implying infinite evaluation trees, since only those calls that are actually made are
annotated.

This management of memory trees also easily accommodates the semantics of re-
striction. An if sub-expression is evaluated by first evaluating its condition, then eval-
uating the selected branch, and finally erasing all decorations on the non-taken branch,
including superscripts. In this way, neighbour trees corresponding to devices that took
a different branch will be automatically discarded at alignment time, since entering the
same subexpression is impossible because of a bad match. For example, consider ex-
pression (if (b) (f (t)) 0), where operator b returns a boolean field that is true at
σ and σ2, and false at σ1. Assuming again that first round of σ happens after first round
of σ1 and σ2, we have:

(if (b) (f (t)) 0)
[CONG,OP]−−−−→ (if (b)·true (f (t)) 0)→∗

(if (b)·true (f(min-hood (nbr x·7)·(σ �→ 7,σ2 �→ 9)) (t)·7)·7 0)
[THEN]−−−→

(if (b)·true (f(min-hood (nbr x·7)·(σ �→ 7,σ2 �→ 9)) (t)·7)·7 |0|)·7
The reason why the rep sub-expression now yields field (σ �→ 7,σ2 �→ 9) is that the
neighbour tree of σ1 cannot be aligned, for it has (b) annotated with false, which does
not match. Hence, nbr will retrieve values only from the aligned nodes that followed
the same branch, avoiding interference from nodes residing in different regions of the
partition made by restriction. The erasure of the non-taken branch by operator |.| (0
trivially erases to 0 in this case) is used to completely reinitialise computation there,
since the node no longer belongs to the domain in which the non-taken branch should
be evaluated.

4 The Computational Field Calculus

The computational field calculus formalisation is set forth in Figure 2 and described
here in turn after a few preliminaries. We let σ range over device unique identifiers and
φ over field values (mapping set of devices to local values). Given any meta-variable y
we let ẙ range over an element y or the null decoration (which in the calculus is ◦ when
it has to be expressed, and blank otherwise). The calculus is agnostic to the syntax of
local values: we only assume they include at least device identifiers and value 0. We
let metavariables f and t range over boolean-interpreted values, orderly 0 and any other
value.

122 M. Viroli, F. Damiani, and J. Beal

Runtime Expression Syntax:
e ::= a·v̊ runtime expression (rte)
a ::= x

∣∣ v
∣∣ (nbr e)

∣∣ (if eee)
∣∣ (reps xwe)

∣∣ (fs e)
∣∣ (oe) auxiliary rte

v ::= l
∣∣ φ runtime value

s ::= å superscript
w ::= x

∣∣ l variable or local value
φ ::= σ �→ l field value
Θ ::= σ �→ e tree environment
Γ ::= x := v variable environment

Congruence Contexts:
C ::= (nbr [])

∣∣ (fs e [] e)
∣∣ (o e [] e)

∣∣ (if [] e e)
∣∣ (if a·t [] e)

∣∣ (if a·f e [])

Alignment contexts:
A ::= C

∣∣ (reps x w []) ∣∣ (f[] a·v)
Auxiliary functions:

πA(Θ ,Θ ′) = πA(Θ),πA(Θ ′)
πA(σ �→ (A′[e])·v) = σ �→ e if A′ :: A

πA(σ �→ e) = • otherwise

s�a = a
s�◦= s

(nbr []) :: (nbr [])

(fs
′

e′1...e
′
i−1 [] e′i+1...e

′
n) :: (fs e1...ei−1 [] ei+1...en)

(o e′1...e
′
i−1 [] e′i+1...e

′
n) :: (o e1...ei−1 [] ei+1...en)

(if [] e′1 e′2)) :: (if [] e1 e2))
(if a′·t [] e′) :: (if a·t [] e)
(if a′·f e′ []) :: (if a·f e [])
(reps

′
x w []) :: (reps x w [])

(f[] e′1...e
′
n) :: (f[] e1...en)

Reduction Rules: [THEN]

Θ ;Γ � (if a·t a′·l e)→ (if a·t a′·l |e|)·l
[VAL]

Θ ;Γ � v→ v·v
[ELSE]

Θ ;Γ � (if a·f e a′·l)→ (if a·f |e| a′·l)·l
[VAR]

Θ ;Γ � x→ x·Γ (x)|dom(Θ),ε(self)

[CONG] πC(Θ);Γ � a→ e
Θ ;Γ � C[a]→ C[e]

π(nbr [])(Θ) = σ �→ a·l
[NBR] φ = (σ �→ l,ε(self) �→ l)

Θ ;Γ � (nbr a·l)→ (nbr a·l)·φ

[REP] π(repl̊ x w [])(Θ);Γ ,(x := (Γ (w)� l̊)) � a→ a′·v̊
Θ ;Γ � (repl̊ x w a)→ (repl̊�v̊ x w a′·v̊)·v̊

[OP]

Θ ;Γ � (o a·v)→ (o a·v)·ε(o,v)
[FUN] π(f[] a·v)(Θ);(args(f) := v) � (body(f)�s)→ a·v̊

Θ ;Γ � (fs a·v)→ (fa a·v)·v̊

Fig. 2. Device Semantics

Runtime Expression Syntax. A runtime expression is the evaluation tree created out of
a surface expression. It is similar to expressions in the surface syntax (cf. Figure 1) with
the following differences (see Figure 2): (i) a (runtime) value v is either a local value
l or a field value φ ; (ii) a run-time expression e can be coupled (at any level of depth)
with optional annotation v̊ representing the transient side-effect of a computation; (iii)
constructs rep and function calls can have a superscript (s) representing the durable
side-effect of a computation. Note that, syntactically, surface syntax expressions can
(and will) be used to denote runtime expressions with null decorations in all annotations
and superscripts.

A Calculus of Computational Fields 123

The erasure operator | · | turns a runtime expression e (or an auxiliary rte a) to the
surface expression |e| (resp. |a|) obtained by dropping all annotations and superscripts.
The erasure of an expression e (or a) is defined if and only if for every auxiliary rte a′

occurring in e (resp. a): (i) a′ = (nbra′′·v) implies that the runtime value v is a local
value, and (ii) a′ = (fa′′ e) implies that |a′′| is the body of the the function f.

Note that fields are actually mappings, for which we introduce some syntactic con-
ventions and operators. A field value φ can either be written as σ1 �→ l1, . . . ,σn �→ ln

or be shortened by notation σ �→ l. The domain of φ , which is the set {σ1, ...,σn}, is
denoted by dom(φ). The value li associated to a given device σi by field φ is retrieved
by notation φ(σi). Since a field can be seen as a list, we use the notation • for the empty
field, and comma as list concatenation operator: e.g. φ ,φ ′ is the field having both the
mappings of φ and φ ′. We shall sometime restrict the domain of a field φ to a given
set of devices σ , which we denote as φ |σ . When restriction is applied to local val-
ues it works as the identity function. A tree environment, Θ , maps devices to runtime
expressions (namely, it keeps neighbour trees), and a variable environment, Γ , maps
variables to runtime values. Since tree environments and variable environments are also
mappings, all the above conventions and operators will be used for them as well.

To take into account special constants, mathematical operations, usual abstract data
types operations, and context-dependent operators, we introduce a special function ε .
This is such that ε(o,v) computes the result of applying built-in operator o to values v.
In particular, we assume constant self gets evaluated to the current device identifier.
In order not to escape the domain restricted by operator if, as discussed in Sections 2
and 3, for each primitive operator o we assume that: (i) ε(o,v1, · · · ,vn) is defined (i.e.,
its evaluation does not get stuck) only if all the field values in v1, . . . ,vn have the same
domain; and (ii) if ε(o,v1, · · · ,vn) returns a field value φ and there is at least one field
value vi in v1, . . . ,vn, then dom(φ) = dom(vi).

Congruence Contexts and Alignment Contexts. The operational semantics uses con-
gruence contexts, ranged over by C, to impose an order of evaluation of subexpressions
in an orthogonal way with respect to the actual semantic rules; and it uses alignment
contexts, ranged over by A, to properly navigate into evaluation trees. In particular, note
that C is a subcase of A (see Figure 2).

A context A is an auxiliary runtime expression with a hole []. As usual, we write A[e]
to denote runtime expression obtained by filling the hole of A with the runtime expres-
sion e. If a given runtime expression e matches C[e′], then e′ is the next subexpression of
e where evaluation will occur, positioned in e as described by the position of [] in C. The
way the syntax of congruence contexts C is structured constraints the operational se-
mantics to evaluate the first argument of if and then, depending on its outcome, the sec-
ond or third, and to non-deterministically evaluate arguments in function and operation
calls. For instance, the runtime expression (* 1·1 (+ 2·2 3)) matches C′[e′] only by
C′ = (* 1·1 []) and e′ = (+ 2·2 3): this means that e′ contains the next subexpres-
sion to evaluate. The expression e′, in turn, matches C′′[e′′] only by C′′ = (+ 2·2 [])
and e′′ = 3. Therefore 3 is the next subexpression to evaluate (becoming 3 ·3).

124 M. Viroli, F. Damiani, and J. Beal

Auxiliary Functions. The projection operator π implements the mechanism for syn-
chronising navigation of an evaluation tree with those of neighbour trees. Namely,
πA(Θ) takes a tree environment Θ and extracts a new tree environment obtained by
discarding the trees that do not match the alignment context A (according to the align-
ment context matching relation “::”) and extracting the corresponding subtree matching
the hole in the remaining ones. As an example, given Θ0 =(σ1 �→ (if a·t e1 e2)·v1, σ2 �→
(if a′·f e3 e4)·v2) and A= (if a′·t [] e′2), we have πA(Θ0) = (σ1 �→ e1). In fact, the evalu-
ation tree for σ2 is discarded since it does not match A due to the label of first argument
being f, while the evaluation tree for σ1 matches and extracts e1.

The replacement operator � is introduced that retains the right-hand side if this is
not empty, otherwise it takes the left-hand side. It is useful to handily update null deco-
rations.

Reduction Rules. Following [10], we formulate the reduction relation by means
of reduction rules (which may be applied at any point in an expression) and con-
gruence rules (which express the fact that if e → e′ then (o e1 . . .ei−1 e ei+1 . . .en)
→ (o e1 . . .ei−1 e′ ei+1 . . .en), and so on). The reduction relation is of the form

Θ ;Γ � e→ e′ , to be read “expression e reduces to expression e′ in one step”, where
Θ is the current tree environment and Γ is the current store of variables (which is
built incrementally in each reduction step by the congruence rules [REP] and [FUN] when
evaluation enters the third argument of a rep-expressions or the body of a function,
respectively).

The reduction relation models the execution of a single computation round, com-
puted as Θ ;• � a→∗ a′·v where: Θ is the set of evaluation trees produced by neighbours
at their prior computation round; the variable environment is empty (the main expres-
sion must not contain free variables); and a is the runtime expression resulting from the
computation of previous round with all the annotations (not superscripts) erased—at
very first round a is simply the top-level surface expression. During computation steps
the run-time expression will be decorated with annotations, until one appears at top
level in the final runtime expression a′·v, where v represents the local value of the com-
putational field currently computed. Also some superscripts will be present at the end
of the round, for they represent the side-effect of computation on the evaluation tree
that should be transferred to next round. In particular, as already mentioned: (i) the final
runtime expression a′·v will be shipped to neighbours replacing there the one previously
sent (and being dropped only when the current device exists the neighbourhood); (ii)
the runtime expression obtained from a′·v by dropping all annotations (not superscripts),
denoted by init(a′·v), will be used as starting point for the next round computation.

We now describe each reduction rule in turn. Computation rules have a common
pattern: they compute a result value v, which appears as top-level annotation—in the
following we shall say that v is the “local result”. Rule [VAL] simply identically annotates
a value. Rule [VAR] looks at the value Γ (x) associated to x by the variable environment,
and (in case it is a field) restricts it to the set of currently aligned neighbours σ (plus
the local device ε(self)). Rule [NBR] is the one actually exploiting Θ : let l be the value
locally computed, we extract the corresponding values l from aligned neighbours σ ,
and use as local result the corresponding field σ �→ l (adding the local slot self �→ l).
Rule [OP] computes the result of applying operator o to values v (done by function ε ,

A Calculus of Computational Fields 125

which gives semantics to operators), to be used as local result. Rules [THEN] and [ELSE]

handle condition branching: rule [THEN] (resp. [ELSE]) uses the label of second (resp.
third) argument as local result in case of positive (resp. negative) condition, and erases
the other branch (which may contain superscripts generated in the previous round).

Rule [CONG] can be understood as a compact representation for six different con-
gruence rules, corresponding to the 6 cases for the context C. While navigating the
evaluation tree inside context C to identify the next evaluation site a (which should be
non-annotated), this rule contemporarily enters the same context into all slots of the tree
environment Θ , guaranteeing that the expression to evaluate is kept synchronised with
the corresponding trees in Θ . Note that rule [CONG] does not describe the congruence
rules for rep-expressions and function applications. In fact, the metavariable C does
not range over contexts of the form (repl̊ x w []) and (f[] a · v). The rational for this
choice is that the corresponding rules, [REP] and [FUN], need to update the variable envi-
ronment Γ by adding to Γ the rep-bound variable x or by completely replacing Γ with
the environment for the function formal parameters args(f), respectively. Moreover,
[REP] and [FUN] are not pure congruence rules: each of them encodes a congruence rule
possibly followed by a computation rule. Note that this encoding exploits the notation
ẙ and the auxiliary function � defined above.

Rule [REP] handles evolution of a field. When the superscript l̊ is null, the evaluation
of the body of rep-expression is carried on in an environment that assigns to the rep-
bound variable x the value of the variable or local value w—with abuse of notation we
indicate it as Γ (w): when w is a local value l we assume Γ (l) = l. When the superscript
l̊ is a local value l, the evaluation of the body of rep-expression is carried on in an
environment that assigns to the rep-bound variable x the value l. If the reduction step
performed (in the premise of the rule) on the body of the rep-expression produces an
evaluated runtime expression (i.e., if the annotation v̊ is not null), then the local result
is propagated to the rep-expression (which becomes evaluated).

When the actual parameters of a function call are evaluated, rule [FUN] performs a re-
duction step on the function body in an environment consisting of the proper association
of formal parameters args(f) to values v: the (possibly null) resulting annotation v̊ is
transferred as local result. If the superscript s is null, replacement operator � guarantees
the function body is used instead.

5 Properties

A key property to pave the way towards advanced forms of behavioural analysis is the
following soundness. We say that the operational semantics of the field calculus is sound
to mean that the execution of a well-formed surface program satisfies the following two
properties:

P1. The reduction does not get stuck.
P2. The domain of every field value arising during the reduction consists of the identi-

fiers of the aligned neighbours and of the identifier of the self device.

While the former follows from the standard type soundness argument, the latter is
needed to guarantee a proper handling of restriction. Of course, it is key to find a

126 M. Viroli, F. Damiani, and J. Beal

definition of well-formedness for expressions that filters out those expressions which
would eventually lead to either P1 or P2 failing to hold, without restring the expressive
power of the language.

Let us illustrate how well-formedness should work with some counter-examples,
all connected to the novel issues of field values rather than just the more typical el-
ements shared with many other calculi. Any program containing a non-well-formed
function or expression is non-well-formed. An example of a non-well-formed function
is (def wrong-distance-to (x) (distance-to (nbr x))), using the function
distance-to defined in Section 2. In this example, the field value φ , which is pro-
duced by (nbr x) and passed into distance-to, conflicts with its use as the first
input to mux, which requires a local value for ε . Rule [OP] thus cannot be applied, and
the evaluation cannot be completed.

Another example is the function (def wrong-f-two (x) (min-hood

(min-hood (nbr (nbr x))))), which tries to find the minimum value of x

within two hops. This fails to evaluate because Rule [NBR] requires its input to be a
local value, and thus cannot be applied to the outer nbr. This prevents the need to
communicate a field value whose size scales linearly with the number of neighbours,
which might be extremely burdensome. A well-formed alternative that produces the
same computational result as wrong-f-two is intended to is (def right-f-two

(x) (min-hood (nbr (min-hood (nbr x))))). This takes advantage of the
commutative property of minimisation to break the minimisation into two stages, thus
avoiding the communication explosion of the not well-formed formulation.

A final example is the function (def wrong-nbr-if (x y z) (min-hood (-

(if (sense 1) (nbr x) (nbr y)) (nbr z))). This will fail to evaluate on Rules
[THEN] and [ELSE], since they require local values for the test and returned values. This
prevents conflicts between field domains, as in this case, where the field produced by
(nbr z) would contain all neighbours, while the field produced by the if expression
would contain only a subset, leaving the fields mismatched in domain at the subtrac-
tion. A correct alternative is (def right-nbr-if (x y z) (min-hood (- (nbr

(if (sense 1) x y)) (nbr z))), which conducts the test locally, ensuring that
the domains of the two fields match.

We argue that these sorts of well-formedness problems are detectable as type errors
through static analysis, without having to evaluate the program in a full context. We are
currently working at a formalisation of the notion of well-formed surface program by
means of a simple type system designed to support the formal statement for properties
P1 and P2.

6 Conclusion, Related and Future Work

A number of works present notions of computational fields; a thorough review may be
found in [5]. Regarding the most similar: the Hood sensor network abstraction [20] and
Butera’s “paintable computing” hardware model [7] implement computational fields
using only the local view, and thus do not ensure well-formed domains. The στ-
Linda model [19] proposes an extension of Linda with few constructs for spreading
tuples to form fields, and adopting a notion of computation rounds very similar to the

A Calculus of Computational Fields 127

one we formalised. More generally, while all of the key ingredients for programming
computational fields are supported in a number of different languages (see [5]), at
present only Proto supports all five that we found critical to include in the calculus.

A number of other formal calculi have also been developed for parallel computa-
tions in structured environments, like 3π-calculus [8], Ambient calculus [9], and P-
systems [14]: they all describe parallel computation over variously abstracted notions
of space; differently from our calculus they do not focus on raising the level of abstrac-
tion beyond local interaction rules and up to aggregate-level descriptions.

A core operational semantics for discrete execution of Proto programs was devel-
oped in [15]. Although closely related to the present one, it was a preliminary attempt
extremely limited in the types of computations it could represent, since it did not tackle
the fully general problem of combining restriction, evolution, and recursive function
calls (i.e. dynamically expanding evaluation trees), which we have addressed through
the idea of aligning annotated evaluation trees. Based on [15], in [16] a full formali-
sation of discrete Proto was provided. This resulted in a rather large semantics aimed
at a faithful representation of every construct in Proto and of their execution by the
platform—e.g., including an intricate technique for optimising message size. The re-
sulting model is then too complicated to readily use in proving language properties.
In contrast, the operational semantics of the calculus presented in this paper is gen-
eral enough to cover all of Proto and many other spatial languages [5], and is compact
enough to be suitable as a basis for tackling interesting properties.

In particular, we believe that equipping the calculus with a sound static type system
can bootstrap investigations on other important properties. For example, the work in
[6] develops a precise model of spatial computing covering the same key mechanisms
considered in this paper, but for fields over continuous space-time rather than discrete
device executions. In future works, we mean to prove that there is a broad class of cases
where our model converges to the continuous one in the limit, as the density of devices
increases and the length of time steps decreases. This would allow characterisation of
those programs that have a predictable conformation to the aggregate-level behavior
independently on the topology (density) and on the timing of devices. Another interest-
ing thread concerns finding a characterisation of expressiveness of spatial computing
languages [1], with clear implications in the design of new mechanisms.

This calculus should thus serve as an important step toward identifying an engineer-
ing methodology for developing spatial computing and coordination systems able to
make use of complex yet predictably well-behaved self-organising mechanisms, both
in today’s and in emergent distributed computing scenarios.

Acknowledgements. We thank the anonymous FOCLASA referees for comments and
suggestions for improving the presentation.

References

1. Beal, J.: A basis set of operators for space-time computations. In: Spatial Computing Work-
shop (2010), http://www.spatial-computing.org/scw10/

2. Beal, J.: Engineered self-organization approaches to adaptive design. In: Roy, R., Shehab,
E., Hockley, C., Khan, S. (eds.) 1st International Conference on Through-life Engineering
Services, pp. 35–42. Cranfield University Press (November 2012)

http://www.spatial-computing.org/scw10/

128 M. Viroli, F. Damiani, and J. Beal

3. Beal, J., Bachrach, J.: Infrastructure for engineered emergence in sensor/actuator networks.
IEEE Intelligent Systems 21, 10–19 (2006)

4. Beal, J., Bachrach, J., Vickery, D., Tobenkin, M.: Fast self-healing gradients. In: Proceedings
of ACM SAC 2008, pp. 1969–1975. ACM (2008)

5. Beal, J., Dulman, S., Usbeck, K., Viroli, M., Correll, N.: Organizing the aggregate: Lan-
guages for spatial computing. In: Mernik, M. (ed.) Formal and Practical Aspects of Domain-
Specific Languages: Recent Developments, ch. 16, pp. 436–501. IGI Global (2013), A longer
version available at: http://arxiv.org/abs/1202.5509

6. Beal, J., Usbeck, K., Benyo, B.: On the evaluation of space-time functions. The Computer
Journal (2012), Online first, available through doi:10.1093/comjnl/bxs099

7. Butera, W.: Programming a Paintable Computer. PhD thesis, MIT, Cambridge, MA, USA
(2002)

8. Cardelli, L., Gardner, P.: Processes in space. In: Ferreira, F., Löwe, B., Mayordomo, E.,
Mendes Gomes, L. (eds.) CiE 2010. LNCS, vol. 6158, pp. 78–87. Springer, Heidelberg
(2010)

9. Cardelli, L., Gordon, A.D.: Mobile ambients. Theoretical Computer Science 240(1),
177–213 (2000)

10. Igarashi, A., Pierce, B.C., Wadler, P.: Featherweight Java: A minimal core calculus for Java
and GJ. ACM Transactions on Programming Languages and Systems 23(3) (2001)

11. Mamei, M., Zambonelli, F.: Programming pervasive and mobile computing applications: The
tota approach. ACM Trans. on Software Engineering Methodologies 18(4), 1–56 (2009)

12. MIT Proto, http://proto.bbn.com (retrieved January 1, 2012)
13. Montagna, S., Viroli, M., Fernandez-Marquez, J.L., Di Marzo Serugendo, G., Zambonelli,

F.: Injecting self-organisation into pervasive service ecosystems. Mobile Networks and Ap-
plications 18(3), 398–412 (2013)

14. Paun, G.: Computing with membranes. Journal of Computer and System Sciences 61(1),
108–143 (2000)

15. Viroli, M., Beal, J., Casadei, M.: Core operational semantics of Proto. In: Proceedings of
ACM SAC 2011, pp. 1325–1332. ACM (March 2011)

16. Viroli, M., Beal, J., Usbeck, K.: Operational semantics of proto. Science of Computer Pro-
gramming 78(6), 633–656 (2013)

17. Viroli, M., Casadei, M., Montagna, S., Zambonelli, F.: Spatial coordination of pervasive
services through chemical-inspired tuple spaces. ACM Transactions on Autonomous and
Adaptive Systems 14, 14:1–14:24 (2011)

18. Viroli, M., Casadei, M., Omicini, A.: A framework for modelling and implementing self-
organising coordination. In: Proceedings of ACM SAC 2009, vol. III, pp. 1353–1360, March
8-12. ACM (2009)

19. Viroli, M., Pianini, D., Beal, J.: Linda in space-time: an adaptive coordination model for
mobile ad-hoc environments. In: Sirjani, M. (ed.) COORDINATION 2012. LNCS, vol. 7274,
pp. 212–229. Springer, Heidelberg (2012)

20. Whitehouse, K., Sharp, C., Brewer, E., Culler, D.: Hood: a neighborhood abstraction for
sensor networks. In: Proceedings of the 2nd International Conference on Mobile Systems,
Applications, and Services. ACM Press (2004)

http://arxiv.org/abs/1202.5509
http://proto.bbn.com

Trace- and Failure-Based Semantics

for Bounded Responsiveness

Walter Vogler1, Christian Stahl2, and Richard Müller2,3

1 Institut für Informatik, Universität Augsburg, Germany
vogler@informatik.uni-augsburg.de

2 Department of Mathematics and Computer Science,
Technische Universiteit Eindhoven, The Netherlands

c.stahl@tue.nl
3 Institut für Informatik, Humboldt-Universität zu Berlin, Germany

richard.mueller@informatik.hu-berlin.de

Abstract. We study open systems modeled as Petri nets with an inter-
face for asynchronous communication with other open systems. As a min-
imal requirement for successful communication, we investigate bounded
responsiveness, which guarantees that an open system and its environ-
ment always have the possibility to communicate, while the number of
pending messages never exceeds a previously known bound. Bounded re-
sponsiveness accordance describes when one open system can be safely
replaced by another open system. We present a trace-based characteri-
zation for accordance. As this relation turns out not to be compositional
(i.e., it is no precongruence), we characterize the coarsest compositional
relation (i.e., the coarsest precongruence) that is contained in this rela-
tion, using a variation of should testing, and show decidability.

1 Introduction

Today’s software systems are complex distributed systems that are composed
of less complex open systems. In this paper, we focus on open systems that
have a well-defined interface and communicate with each other via asynchronous
message passing. Service-oriented systems like Web-service applications [15] and
systems based on wireless network technologies like wireless sensor networks [2],
medical systems, transportation systems, or online gaming are examples of such
distributed systems. During system evolution, often one open system is replaced
by another one—for example, when new features have been implemented or
bugs have been fixed. This requires a refinement notion, which should respect
compositionality.

In this paper, we model an open system as a Petri net with finitely many
states. As a minimal requirement for successful communication, bounded respon-
siveness demands that an open system and its environment (called a controller)
always have the possibility to communicate, while their composition is finite-
state and in particular the number of pending messages never exceeds a previ-
ously known bound. The bound on the message channels thereby ensures that

C. Canal and M. Villari (Eds.): ESOCC 2013, CCIS 393, pp. 129–143, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

130 W. Vogler, C. Stahl, and R. Müller

the composition is again finite state. An open system is in bounded responsive-
ness accordance with another one, if it can replace the latter without affecting
this property. Responsiveness has gained interest because, in addition to dead-
lock freedom, it also ensures the possibility to communicate, which is crucial
in the setting of interacting open systems. Rather ad-hoc variants of bounded
responsiveness have been introduced in [21,11], mainly motivated by algorithmic
considerations for deciding the respective accordance, but without characterizing
the latter semantically or studying compositionality.

Usually, controller-based preorders like ours are precongruences and, thus, a
compositional refinement notion on open systems; but for bounded responsive-
ness accordance this was an open question.

In [20], we considered unbounded responsiveness, where an open system and its
environment should always have the possibility to communicate. This variant of
accordance is not a precongruence, and we characterized its coarsest precongru-
ence, using a failure-based semantics close to should testing [17]. In this paper,
we study bounded responsiveness for two reasons. First, in unpublished work,
we showed undecidability for the precongruence for unbounded responsiveness.
Second, in practice, distributed systems operate on a middleware with buffers
that are of bounded size. The actual buffer size can be the result of a static
analysis of the underlying middleware or of the communication behavior of an
open system, or simply be chosen sufficiently large.

Our contribution is fourfold. First, we give a trace-based characterization for
bounded responsiveness accordance, thereby adapting and combining results from
the unbounded variant in [20] and work on traces that cannot be used reliably
by any controller [12]. Due to the latter traces, accordant systems may violate
language inclusion. Second, as accordance turns out not to be a precongruence,
we characterize—along the lines of our previous results [20]—the coarsest precon-
gruence which is contained in the accordance relation. Such a characterization
is vital, because the definition of a coarsest precongruence considers arbitrary
parallel environments and is, therefore, hard to check in concrete cases. Third,
based on our characterization, we prove the coarsest precongruence to be de-
cidable by reducing it to the setting of should testing [17]. Fourth, we sketch a
practically attractive, but more involved approach where also reachability of a
final marking counts as successful communication.

Like in our previous works [18,20], we contribute to a general theory on open
systems and consider an asynchronous unqueued communication scheme. Al-
though we present only the theory, open systems specified in industrial languages
such as WS-BPEL or BPMN can be translated into our formal model and then
be analyzed [10].

After some background in Sect. 2, Sect. 3 introduces b-bounded responsive-
ness, characterizes the respective accordance relation semantically, presents a
characterization of the coarsest precongruence which is contained in this rela-
tion, and proves its decidability. Section 4 sketches bounded responsiveness in
the presence of final states. We close with a discussion of related work and a
conclusion in Sect. 5.

Trace- and Failure-Based Semantics for Bounded Responsiveness 131

2 Preliminaries

This section provides the basic notions, such as Petri nets, open nets for modeling
open systems, and environments for describing the semantics of open nets.

2.1 Petri Nets

For two sets A and B, let A�B denote the disjoint union; writing A�B implies
that A and B are implicitly assumed to be disjoint.

We use Place/Transition Petri nets extended by either transition labels or—
later—specific interface places.

Definition 1 ((labeled) net). A net N = (P, T, F,mN , Ω) consists of finite
disjoint sets P of places and T of transitions, a flow relation F ⊆ (P×T)�(T×P),
an initial marking mN , where a marking m : P → IN is a multiset over the set
P , and a set Ω of final markings.

A labeled net N = (P, T, F,mN , Ω, I ,O , l) is a net (P, T, F,mN , Ω) together
with an alphabet Σ = I � O of input actions I and output actions O and a
labeling function l : T → Σ � {τ}, where τ represents an invisible, internal
action. We only consider labeled nets in which, for every transition t, the label
l(t) of t is either τ or t itself.

Graphically, a circle represents a place, a box represents a transition, and
the directed arcs between places and transitions represent the flow relation. A
marking is a distribution of tokens over the places. Graphically, a black dot
represents a token.

Let x ∈ P � T be a node of a net N . As usual, •x = {y | (y, x) ∈ F} denotes
the preset of x and x• = {y | (x, y) ∈ F} the postset of x. We interpret presets
and postsets as multisets when used in operations also involving multisets.

A transition t ∈ T is enabled at a marking m, denoted by m
t−→ , if for all

p ∈ •t, m(p) > 0. If t is enabled at m, it can fire, denoted by m
t−→ m′, thereby

changing the marking m to a marking m′ = m− •t+ t•. A sequence of transition

firings m1
t1−−→ . . .

tk−1−−−→ mk is a run of N if mi
ti−→ mi+1 for all 0 < i < k. A

marking m′ is reachable from a marking m if there exists a (possibly empty) run

m1
t1−−→ . . .

tk−1−−−→ mk with m = m1 and m′ = mk; for v = t1 . . . tk−1, we also

write m1
v−→ mk. A marking m′ is reachable if it is reachable from the initial

marking. The set MN represents the set of all reachable markings of N .
In the case of labeled nets, we lift runs to traces: If m1

v−→ mk and w is
obtained from v by replacing each transition with its label and removing all τ -
labels, we writem1

w
==⇒ mk (or sometimes justm1

w
==⇒) and refer to w as a trace.

The language L(N) of a labeled net N is the set of all traces of N starting from

mN . Marking m weakly enables some a ∈ Σ if m
a

==⇒. The reachability graph
RG(N) of N has the reachable markings MN as its nodes and an l(t)-labeled

edge from m to m′ whenever m
t−→ m′ in N .

Let Σ be an alphabet. With v � w we denote that v is a prefix of w, and ε
denotes the empty word. For a set of traces U ∈ P(Σ∗), ↓ U = {u ∈ Σ∗ | ∃v ∈

132 W. Vogler, C. Stahl, and R. Müller

U : u � v} is the prefix closure of U and v−1U = {u ∈ Σ∗ | vu ∈ U} is the
remainder of v in U .

A marking m of a net N is b-bounded for a bound b ∈ IN, if m(p) ≤ b for all
p ∈ P . The net N is b-bounded if every reachable marking is b-bounded; it is
bounded if it is b-bounded for some b ∈ IN. Throughout the paper, b denotes a
bound—a positive natural number.

2.2 Open Nets and Environments

An open system consists of a control structure describing its behavior and of an
interface to interact with other open systems. We model the behavior of an open
system as an open net [19,9]. In the model, we abstract from data and identify
each message with the label of its message channel. An open net extends a net
by an interface consisting of two disjoint sets of input and output places; these
correspond to asynchronous input and output channels. We consider only open
nets that have either at least one input and one output place or no input and
output places; open nets with just input or just output places cannot really take
part in a responsive communication.

Definition 2 (open net). An open net N is a tuple (P, T, F,mN , I, O,Ω) such
that (P � I �O, T, F,mN , Ω) is a net; the initial and all final markings leave all
places in I � O empty; the set I of input places satisfies for all p ∈ I, •p = ∅;
the set O of output places satisfies for all p ∈ O, p• = ∅; finally, I = ∅ if
and only if O = ∅. If I = O = ∅, then N is a closed net. Two open nets are
interface-equivalent if they have the same sets of input and output places.

Graphically, we represent an open net like a net with a dashed frame around
it. An interface place p is positioned on the frame; an additional arrow indicates
whether p is an input or an output place.

For the composition of open nets, we assume that their ingredients are pair-
wise disjoint and that the interfaces intentionally overlap. We require that all
communication is bilateral and directed ; that is, every shared place p has only
one open net that sends into p and one open net that receives from p. In addi-
tion, we require that either all interface places are shared or there is at least one
input and one output place which are not shared. We refer to open nets that
fulfill these conditions as composable. We compose two composable open nets
by merging shared interface places and turning these places into internal places.
Below, for example, m1+m2 is the marking that coincides with mi on the places
of Ni, i ∈ {1, 2}.

Definition 3 (open net composition). Two open nets N1 and N2 are com-
posable if (P1 � T1 � I1 �O1) ∩ (P2 � T2 � I2 �O2) = (I1 ∩O2) � (I2 ∩O1), and
I = (I1 � I2) \ (O1 �O2) and O = (O1 �O2) \ (I1 � I2) are both either empty or
nonempty. The composition of two composable open nets N1 and N2 is the open
net N1⊕N2 = (P, T, F,mN , I, O,Ω), where P = P1 �P2 � (I1 ∩O2)� (I2 ∩O1),
T = T1 � T2, F = F1 � F2, mN = mN1 + mN2 , and Ω = {m1 + m2 | m1 ∈
Ω1,m2 ∈ Ω2}.

Trace- and Failure-Based Semantics for Bounded Responsiveness 133

retrieve
d

s

q

shut-
down process

p2p1

f

(a) Open net D

d
analyze

s

q

query

p3 p4

f

(b) Open net U

s

q

d

s
q

d
retrieve

do

si

qi
shut-
down process

p2p1

fo
ff

(c) Labeled net env(D)

Fig. 1. The open nets D and U , and the environment env(D) of D

To give an open net N a trace-based semantics, we consider its environment
env(N), which we define similarly to Vogler [19]. The net env(N) can be con-
structed from N by adding to each interface place p ∈ I (p ∈ O) a p-labeled
transition p in env(N) and renaming the place p to pi (po). The net env(N) is
just a tool to define our characterizations and prove our results. But intuitively,
one can understand the construction as translating the asynchronous interface
of N into a buffered synchronous interface (with potentially unbounded buffers)
described by the transition labels of env(N).

Definition 4 (open net environment). The environment of an open net N
is the labeled net env(N) = (P � P I � PO, T � I �O,F ′,mN , Ω, I, O, l′), where

– P I = {pi | p ∈ I}, PO = {po | p ∈ O},
– F ′ = ((P � T)× (T � P)) ∩ F

� {(pi, t) | p ∈ I, t ∈ T, (p, t) ∈ F} � {(t, po) | p ∈ O, t ∈ T, (t, p) ∈ F}
� {(po, p) | p ∈ O} � {(p, pi) | p ∈ I}, and

– l′(t) = τ if t ∈ T , and l′(t) = t if t ∈ I �O.

Convention: Throughout the paper, each trace set for labeled nets is implic-
itly extended to any open net N via env(N)—for example, L(N) = L(env(N)).

Example 1. Figure 1 illustrates our running example. It shows two open systems,
each modeled as an open net. The open net D models a database server. After
processing a received query (input place q), it responds with the retrieved data
(output place d). A user may shut downD by sending a shutdown message (input
place s). D has the (unused) capability to forward messages (output place f).
The open net U models a user of the database. It repeatedly queries the database
and analyzes the returned data. U never sends a shutdown message and ignores
any forwarded message from D. Clearly, D and U are composable, and their
composition (not shown in Fig. 1) can be obtained by merging equally labeled
interface places. Finally, Fig. 1c shows the environment of D.

134 W. Vogler, C. Stahl, and R. Müller

3 Bounded Responsiveness

Two open nets are bounded responsive if at least one net can repeatedly talk
while respecting the message bound. This property depends on N1 and N2 in
combination: In the composition, N1 (N2) will usually not reach all markings
it could reach in other compositions; for the definition, it suffices that just one
component can enable an output.

Definition 5 (b-responsiveness). Let N1 and N2 be composable open nets.
A marking m of N1 ⊕ N2 is responsive if we can reach from m a marking that
enables a transition t with t• ∩ (O1 � O2) �= ∅; m is b-responsive if it is b-
bounded and responsive. Open nets N1 and N2 are responsive (b-responsive) if
their compositionN1⊕N2 is a closed net and every reachable marking in N1⊕N2

is responsive (b-responsive).

A natural criterion for “good” behavior is deadlock freedom; that is, each
reachable marking ofN1⊕N2 enables some transition. This can be fulfilled by one
of the components firing internal transitions without effects to the outside. But
this is presumably not satisfactory, and responsiveness is the natural improved
requirement. Observe that, so far, final markings are ignored.

Example 2. The open nets D and U are b-responsive and thus responsive: D⊕U
has only one infinite run whose transition sequence is (query, process , retrieve,
analyze)ω . Suppose we remove the place p4 from U to obtain an open net, say
U ′. Then, D and U ′ are responsive, but not b-responsive as the places q and p3
are unbounded in D ⊕ U ′.

In contrast to responsiveness [20], b-responsiveness guarantees that each net
always can send a message (possibly after some messages from the other net).
This property, as formulated in Prop. 6, can be directly verified by a model
checker.

Proposition 6. Let open nets N1 and N2 be b-responsive. Then, from any
reachable marking m of N1 ⊕N2, markings m1 and m2 are reachable such that

m1
t1−−→ and m2

t2−−→ with t•1 ∩O1 �= ∅ and t•2 ∩O2 �= ∅.

We define the notion of a br -controller of an open net N as an open net C
such that N and C are b-responsive. If the br -controllers of an open net are a
superset of the br -controllers of another open net, then the first open net is a re-
finement of the second; intuitively, it makes more users happy due to b-responsive
interaction than the latter. We refer to the resulting refinement relation as br-
accordance, which yields an equivalence similar to safe P -deadlock equivalence
in [19]. For modular reasoning, a refinement relation should be a precongruence
for composition. Because br -accordance shall turn out not to be one, we will
make it stricter (smaller) as far as needed to obtain such a precongruence, and
we already introduce a notation for this coarsest precongruence.

Trace- and Failure-Based Semantics for Bounded Responsiveness 135

retrieve
d

s

q

shut-
down process

p2p1
p0

f
for-

ward

(a) Open net D′

x

process2

y

retrieve2p7
p6

f
shutdown2

(b) Open net B

d

analyze

s

q

init

query p5
p4

x y

p3

(c) Open net U ′′

Fig. 2. Example showing that br -accordance is a not precongruence for ⊕

Definition 7 (br -controller, br-accordance).An open netC is a br-controller
of an open net N if N and C are b-responsive. For interface-equivalent open nets
Impl and Spec, Impl br-accords with Spec, denoted by Impl �br ,acc Spec, if for all
open nets C: C is a br -controller of Spec implies C is a br -controller of Impl . We
denote the coarsest precongruence contained in �br ,acc by �c

br ,acc.

While every open net has at least one responsive controller (i.e., in the setting
of [20]), this is not the case for b-responsiveness: Consider an open net that
performs a self loop and in every cycle puts a token onto an output place,
thereby violating any bound.

Example 3. In the example, D is a br -controller of U but not of U ′ (i.e., U
without p4). Figure 2a depicts a modified database server D′. It has the same
functionality as D but forwards a received shutdown message to the output place
f . No br -controller of D sends a message s, as otherwise D could fire shutdown
and then could not produce any output, contradicting Prop. 6. Thus, D′ br -
accords with D although language inclusion does not hold. For instance, sf is
a trace of env(D′) but not of env(D). However, sf cannot be used reliably by
any br -controller of D′. We therefore refer to sf as an uncoverable trace. That
standard language inclusion can be too strict has been observed for a stronger
termination criterion than responsiveness in [12]. Uncoverable traces shall be a
crucial ingredient for our trace-based semantics. Extending the example with the
open nets B and U ′′ in Fig. 2, we can show that br -accordance is not composi-
tional: U ′′ is a br -controller of D⊕B but not of D′⊕B. Whereas the transition
shutdown2 of B can be fired in D′ ⊕ B (blocking br -responsiveness), it cannot
be fired in D ⊕B.

Definition 7 refers to all possible br -controllers and, thus, br -accordance is
an external concept. To characterize it internally, we first give a trace-based
semantics for b-responsiveness. Then, we characterize the coarsest precongruence
that is contained in the br -accordance relation and, finally, prove its decidability.

3.1 A Trace-Based Semantics for Bounded Responsiveness

A natural candidate for a trace-based semantics for b-responsiveness of an open
net N considers three sets of traces of its environment env(N): (1) A stop-trace

136 W. Vogler, C. Stahl, and R. Müller

records a trace of env(N) that ends in a marking weakly enabling actions of I only,
such that N does not produce an output unless some input is provided. These
traces were also used in the semantics for unbounded responsiveness in [20]. (2) A
bound violation is a marking that is not b-bounded, and we investigate the traces
leading to such a bound violation, called strict boundb-violators. They have been
introduced in the b-bounded stopdead -semantics in [18]. A bound violation is re-
garded as catastrophic because it cannot be corrected. Thus, the behavior after a
bound violation does not matter, and we will hide all possible differences by treat-
ing all strict boundb-violators and their continuations in the sameway.Technically,
we achieve the hiding by including all continuations of strict boundb -violators in
a set boundb , the set of boundb-violators. For the same reason, boundb is added to
the stop-traces and to the third component of our semantics, the language of N .
This technique is called flooding in [7].

However, to encode the covering nature of br -accordance in the trace-based
semantics, we have to replace the set boundb with a larger set that captures
all br-uncoverable traces; that is, traces w that cannot be executed by (the
environment of) any br -controller of N , regardless whether w can be executed
in env(N) or not.

Definition 8 (coverable b-bounded stop-semantics). A marking m of a

labeled net N is a stop except for inputs if there is no o ∈ O such that m
o

=⇒.
Let stop(N) = {w ∈ (I�O)∗ | mN

w
==⇒ m and m is a stop except for inputs}. A

word w is a strict boundb-violator of N if there exists a marking m with mN
w

==⇒
m that is not b-bounded; each continuation of a strict boundb-violator of N is a
boundb-violator of N . Let boundb(N) = {w ∈ (I � O)∗ | w is a boundb-violator
of N}, stopb(N) = stop(N) ∪ boundb(N), and Lb(N) = L(N) ∪ boundb(N).

A word w is a br-uncoverable trace of an open net N if there does not exist
a br -controller C of N with w ∈ Lb(C). The coverable b-bounded stop-semantics
of N is defined by the three sets of traces

– uncovbr (N) = {w ∈ (I �O)∗ | w is an br -uncoverable trace of N},
– uLbr (N) = L(N) ∪ uncovbr (N), and
– ustopbr (N) = stop(N) ∪ uncovbr (N) .

Note that boundb(N) � L(N) because boundb(N) also contains all continua-
tions of strict boundb-violators. Moreover, boundb(N) ⊆ uncovbr (N) and the set
uncovbr (N) is closed under continuation.

Example 4. Consider again the open net D. For example, we have {ε, qd} ⊆
stop(D) and {ss, qq, qqf } ⊆ bound1(D). More precisely, ss and qq are strict
bound1-violators whereas qqf is a continuation of qq and, clearly, qqf /∈ L(D).
Furthermore, s is an example of an br -uncoverable trace of D, see Ex. 3.

We show that br -accordance coincides with component-wise inclusion of the
coverable b-bounded stop-semantics. Interestingly, the “only-if” part also holds
if we replace br -uncoverable traces in each component of the semantics with the
boundb-violators.

Trace- and Failure-Based Semantics for Bounded Responsiveness 137

Theorem 9 (trace characterization of br-accordance). For any interface-
equivalent open nets Impl and Spec, we have Impl �br,acc Spec iff uncovbr (Impl)
⊆ uncovbr (Spec) ∧ uLbr (Impl) ⊆ uLbr (Spec) ∧ ustopbr (Impl) ⊆ ustopbr (Spec).

Example 5. In the example, D′ �br,acc D. Although sf ∈ L(D′) \ L(D), this
difference is hidden due to flooding: sf ∈ uLbr (D

′) ⊆ uLbr (D).

Despite the external definition of the trace set uncovbr , we can compute the
coverable b-bounded stop-semantics of an open net N by using the notion of
a most permissive controller [21], which is a controller that can visit all the
markings that can be visited using any controller. For space reasons, we do not
show the construction.

3.2 Deriving the Coarsest Precongruence for Bounded
Responsiveness

As for the unbounded variant of responsiveness in [20], we shall characterize
the coarsest precongruence �c

br ,acc in terms of Vogler’s F+-semantics [19], a
variant of failure semantics [4]. The latter consists of pairs (w,X), where w is
a trace and X is a subset of the alphabet—a refusal set ; the more informative
F+-semantics considers pairs (w,X), where X is a set of traces that can be
refused; such a pair is a tree failure. The traces in X are linked to a certain
marking m that is reached by executing w. Different markings m can be reached
by w because of nondeterminism, possibly giving rise to different sets X . To
cope with the restriction to b-boundedness, our novel semantics consists of the
boundb-violations and the F+-semantics extended with all tree failures (w,X),
where w is a trace in boundb and X is any set of words.

Definition 10 (b-bounded F+-semantics). The b-bounded F+-semantics of
a labeled net N consists of (1) boundb(N) and (2) F+

b (N) = F+(N)∪BF+
b (N),

where F+(N) = {(w,X) ∈ Σ∗ × P(Σ+) | ∃m ∈MN : mN
w

==⇒ m ∧ �w′ ∈ X :

m
w′

==⇒} and BF+
b (N) = {(w,X) | w ∈ boundb(N) ∧X ∈ P((I �O)+)}.

For the present setting, the tree failures used in the b-bounded F+-semantics
give too much information about the moment of choice in an open net. This
information can be removed by closing up under an ordering over tree failures.
It is a pleasant discovery that this modification—developed for the F+-semantics
in [17]—also works smoothly in combination with boundb . It yields the following
refinement relation.

Definition 11 (F+
b -refinement). For two labeled nets Impl and Spec, Impl

F+
b -refines Spec, denoted by Impl �F+

b
Spec, if

1. boundb(Impl) ⊆ boundb(Spec) and
2. ∀(w,X) ∈ F+

b (Impl) : ∃x ∈ {ε} ∪ ↓ X : (wx, x−1X) ∈ F+
b (Spec) .

For two interface-equivalent open nets Impl and Spec, we define Impl �F+
b
Spec,

if env(Impl) �F+
b
env(Spec).

138 W. Vogler, C. Stahl, and R. Müller

The F+
b -refinement relation is a precongruence for the composition opera-

tor ⊕. The proof uses the precongruence result for F+-refinement (i.e., should
testing [17]) on labeled nets. Even more, F+

b -refinement is the coarsest precon-
gruence contained in br -accordance.

Theorem 12 (coarsest precongruence). For any interface-equivalent open
nets Impl and Spec, we have Impl �c

br ,acc Spec iff Impl �F+
b
Spec.

Example 6. For our example, we have (sf , ∅) ∈ F+
b (D′) but (sf , ∅) /∈ F+

b (D);
thus, D′ does not F+

b -refine D. Whereas br -accordance does not distinguish
open nets due to some common uncoverable trace (e.g., sf in D and D′), this
can happen with the b-bounded F+-semantics. This is necessary, because the
example proving that br -accordance is not a precongruence for ⊕ (see Fig. 2)
illustrates that such uncoverable traces may destroy compositionality.

3.3 Decidability of F+
b -Refinement

We show that checking F+
b -refinement is decidable. Checking F+

b -refinement
entails checking both items of Def. 11. The first item of Def. 11 is decidable
because we can represent each of the languages boundb(Spec) and boundb(Impl)
as a finite automaton with the following construction: For a labeled net N ,
transform the reachability graph RG(N) by adding a new vertex U with a self-

loop for each action a ∈ I � O, and replacing each arc m
a−→ m′ by m

a−→ U
wheneverm is b-bounded whilem′ is not; finally, restrict the graph to the vertices
reachable from mN and consider only U as final state.

Example 7. Figure 3a sketches the automaton that represents bound1(D). Parts
of the automaton in Fig. 3a that can only be reached with an s-transition are
not shown. For example, we have {qq, qqqq , qqf } ⊆ bound1(D). The marking

[p1, q
i, qi] is not 1-bounded; therefore, the transition [p1, q

i]
q−→ [p1, q

i, qi] in

RG(env(D)) was replaced with [p1, q
i]

q−→ U . The traces qq and qqqq are strict
bound1-violators, as they lead from the initial state [p1] to the final state U while
visiting state U only once (for trace qqqq with three τ -transitions in-between).
The traces qqqq and qqf visit U more than once.

To decide the second item of Def. 11, we use the decidability of F+-refinement
for finite-state systems proven by Rensink and Vogler [17, Thm. 61]. Essentially,
we construct for each labeled net N a finite automaton (or rather a labeled
transition system, because we do not consider final states) that has F+

b (N) as
its F+-semantics. The previous automaton does not work, because each bound
violator reaches U and then no trace can be refused. Thus, we replace U by
two copies U1 and U2, remove the self-loops of U2, and add arcs U1

a−→ U2 for
each a ∈ I � O. The resulting U12(N) almost does the job but still, after some
w �∈ boundb(N), it might be impossible to refuse some traces due to the self-loops
at U1. We get the following:

Lemma 13. For a labeled net N , F+(U12(N)) ⊆ F+
b (N) and (w,X) ∈ F+

b (N)\
F+(U12(N)) implies ∃u ∈ ↓ X \X such that wu ∈ boundb(N).

Trace- and Failure-Based Semantics for Bounded Responsiveness 139

[p1] s

[p1,qi]

q

[p2]

[p2,qi]

q

[p1,do] d

[p1,qi,do]

q

d

[p2,do]

[p2,qi,do]

q

U

qq q
q

d

d

s,q,d,f

s

s

s

s

s

s

s

(a) Automaton for bound1(D)

[p1] s

[p1,qi]

q

[p2]

[p2,qi]

q

[p1,do] d

[p1,qi,do]

q

d

[p2,do]

[p2,qi,do]

q

U1

qq q
q

d

d

s,q,d,f

s

s

s

s

s

s

s

U2
s,q,d,f

q

qq

q

(b) Automaton U12(D)

Fig. 3. Sketches of the two finite automata used in the proof of Thm. 15. A transition
involving s is indicated by an arrow without sink.

Example 8. Figure 3b shows a part of the automaton U12(D). For example, we
have (qqqq , {f}) ∈ F+

b (D)∩F+(U12(D)), because the trace qqqq may lead to the
state U2 and then refuse f . Further, we have (q, {qqf }) ∈ F+

b (D)\F+(U12(D))—
observe f can never fire in env(D), while any state reached by q in U12(D) can
reach U1 with qq and then add f . There is q ∈ ↓ {qqf } \ {qqf } and the trace qq
is a bound1-violator of D.

Deciding F+
b -refinement for two labeled nets can be reduced to checking F+-

refinement for their U12-automata, from which we conclude decidability (also for
interface-equivalent open nets).

Lemma 14. Let Impl and Spec be labeled nets having the same alphabet and
satisfying boundb(Impl) ⊆ boundb(Spec); then Impl �F+

b
Spec iff U12(Impl) �F+

U12(Spec).

Theorem 15. Checking �F+
b

is decidable for labeled and for open nets.

4 Final Bounded Responsiveness

In this section, we extend our considerations to final markings. We refer to the
resulting variant as bf -responsiveness. Two open nets are bf -responsive if and
only if they are f -responsive and their composition is b-bounded. Semantically,
each net has always the chance to send a message or the composition can termi-
nate, and proper termination can certainly signal a successful communication.

140 W. Vogler, C. Stahl, and R. Müller

Definition 16 (bf -responsiveness). Let N1 and N2 be composable open nets.
A marking m of N1⊕N2 is bf -responsive if m is b-bounded and either responsive
or we can reach a final marking of N1 ⊕N2 from m. Open nets N1 and N2 are
bf -responsive if their composition N1 ⊕ N2 is a closed net and every reachable
marking in N1 ⊕N2 is bf -responsive.

We redefine the notion of a controller and of accordance for this variant of re-
sponsiveness. Using the open nets in Fig. 2 with the empty set of final markings
(see Ex. 3), we can show that also this variant of accordance is not a precongru-
ence; thus, we also introduce its coarsest precongruence.

Definition 17 (bfr-controller, bfr-accordance). An open net C is a bfr -
controller of an open netN ifN and C are bf -responsive. For interface-equivalent
open nets Impl and Spec, Impl bfr -accords with Spec, denoted by Impl �bfr ,acc

Spec, if for all open nets C holds: C is a bfr -controller of Spec implies C is a bfr -
controller of Impl . We denote the coarsest precongruence contained in �bfr ,acc

by �c
bfr ,acc.

We give a trace-based semantics for bf -responsiveness of an open net N . Like
the coverable b-bounded stop-semantics, it also consists of the uncoverable traces,
the language, and the stop-traces. The presence of final markings requires to add
a fourth set of traces, dead-traces, to distinguish between stop-traces leading to
a final or a nonfinal marking. Furthermore, we need to slightly adopt the notion
of an uncoverable trace to the present setting.

Definition 18 (coverable b-bounded stopdead -semantics). A marking m
of a labeled net N is dead except for inputs if m is a stop except for inputs and
there exists no final marking m′ of N with m

ε
=⇒ m′. Let dead(N) = {w ∈

(I �O)∗ | mN
w

==⇒ m and m is dead except for inputs}.
A word w ∈ (I � O)∗ is a bfr -uncoverable trace of an open net N if there

does not exist a bfr -controller C of N with w ∈ Lb(C). The coverable b-bounded
stopdead-semantics of N is defined by the sets of traces

– uncovbfr (N) = {w ∈ (I �O)∗ | w is a bfr -uncoverable trace of N},
– uLbfr (N) = L(N) ∪ uncovbfr (N),
– ustopbfr (N) = stop(N) ∪ uncovbfr (N), and
– udeadbfr (N) = dead(N) ∪ uncovbr (N) .

Example 9. Suppose ΩD = {[p1]}. Then we have {ε, s, qd} ⊆ stop(D) but only
s ∈ dead(D) because of the final marking.

We show that bfr -accordance coincides with component-wise inclusion of the
coverable b-bounded stopdead -semantics.

Theorem 19 (trace characterization of bfr -accordance). For any
interface-equivalent open nets Impl and Spec, we have Impl �bfr ,acc Spec iff
uncovbfr (Impl) ⊆ uncovbfr (Spec), uLbfr (Impl) ⊆ uLbfr (Spec), ustopbfr (Impl) ⊆
ustopbfr (Spec), and udeadbfr (Impl) ⊆ udeadbfr (Spec).

Trace- and Failure-Based Semantics for Bounded Responsiveness 141

To derive the coarsest precongruence contained in bfr -accordance, we integrate
the bound-violations into the F+

fin -semantics of [20]. The F+
fin -semantics was

defined for the unbounded variant of bf -responsiveness. It consists of triples
(w,X, Y) where (w,X) is a tree failure and Y a set of traces that cannot lead
to a final marking. Whereas X is used to identify stop-traces, Y ensures that we
can identify dead-traces.

Definition 20 (b-bounded F+
fin-semantics). The b-bounded F+

fin -semantics

of a labeled net N consists of (1) boundb(N) and (2) F+
b,fin(N) = F+

fin(N) ∪
finboundb(N), where F+

fin(N) = {(w,X, Y) ∈ Σ∗×P(Σ+)×P(Σ∗) | ∃m ∈MN :

mN
w

==⇒ m ∧ ∀x ∈ X : m � x==⇒ ∧ ∀y ∈ Y : ∀m′ : m
y

=⇒ m′ implies m′ /∈ ΩN}
and finboundb(N) = boundb(N)× P(Σ+)× P(Σ∗).

The F+
b,fin -refinement relation is similarly defined as F+

b -refinement in Def. 11

by closing up under an ordering over the elements in F+
b,fin , thereby removing

the too detailed information about the moment of choice in an open net.

Definition 21 (F+
b,fin-refinement). For two labeled nets Impl and Spec, Impl

F+
b,fin -refines Spec, denoted by Impl �F+

b,fin
Spec, if

1. boundb(Impl) ⊆ boundb(Spec) and
2. ∀(w,X, Y) ∈ F+

b,fin(Impl) : ∃x ∈ {ε} ∪ ↓ X ∪ ↓ Y : (wx, x−1X, x−1Y) ∈
F+

b,fin(Spec) .

For two interface-equivalent open nets Impl and Spec, we define Impl �F+
b,fin

Spec, if env(Impl) �F+
b,fin

env(Spec).

F+
b,fin -refinement is the coarsest precongruence which contained in the bfr -

accordance relation.

Theorem 22 (coarsest precongruence). For any interface-equivalent open
nets Impl and Spec, we have Impl �c

bfr ,acc Spec iff Impl �F+
b,fin

Spec.

Also �F+
b,fin

is decidable. The rather complicated proof generalizes the con-

struction of Rensink and Vogler [17, Theorem 61] for deciding F+-refinement
of two finite LTS to decide F+

fin -refinement (i.e., Def. 21(2) for F+
fin). Then, we

reduce deciding F+
b,fin -refinement of two labeled nets to checking F+

fin -refinement
of (a variant of) their U12-automata.

Theorem 23. Checking �F+
b,fin

is decidable for labeled and for open nets.

5 Conclusion

We studied an accordance preorder describing whether an open system can
safely be replaced by another open system, thereby guaranteeing bounded re-
sponsiveness of the overall system. The latter guarantees deadlock freedom and

142 W. Vogler, C. Stahl, and R. Müller

the permanent possibility to mutually communicate while maintaining a pre-
viously known message bound. We presented a trace-based characterization of
accordance using a set comprising the stop-traces, the language, and a set of
uncoverable traces collecting catastrophic traces that cannot be used reliably.
We showed that the accordance preorder is not a precongruence, characterized
the coarsest precongruence contained in the respective preorder, and proved de-
cidability. This precongruence is the should testing preorder [17] extended by
information about bound violations.

We also sketched bounded responsiveness in the presence of final states. The
extensions follow the same line as for bounded responsiveness without final
states. In the presence of final states, we need to distinguish successful and
unsuccessful complete traces resulting in an additional component in the trace-
based and failure-based semantics. We characterized the preorder, the coarsest
precongruence contained in this preorder, and proved decidability. This precon-
gruence is the should testing preorder extended by information about traces that
do not lead to a final marking and bound violations.

Compared to our previous work on deadlock freedom in [18], finer trace sets
are required to characterize the preorders based on responsiveness. While traces
are adequate for the precongruence dealing with deadlock freedom [18], they do
not suffice to characterize the coarsest precongruence for responsiveness, and we
had to use some kind of failures instead.

The idea of responsiveness for finite state open systems with final states has
been coined by Wolf in [21]. Together with the less restrictive variant in [11], it
defines responsiveness for single open nets and considers only such responsive
nets; this guarantees a weak form of our responsiveness. More generally, we deal
with open nets that are responsive in some open net compositions but not in
others. Müller [14] presents an asymmetrical definition from the point of view
of one individual open system in a composition. Our notion of responsiveness
leads to precongruences, where the related equivalence is similar to P-deadlock
equivalence in [19]. Responsiveness in [5] is stricter than our notion because it
additionally requires that no messages in any channel is ignored forever.

In other work, the term responsiveness refers to different properties: Reed
et al. [16] aim at excluding certain deadlocks, whereas responsiveness in our
setting refers to the ability to communicate. The works [1,8,6] consider with
the π-calculus a more expressive model than open nets but in the setting of
synchronous communication, whereas we consider asynchronous communication.
Moreover, responsiveness in [1,6] and lock-freedom in [8] guarantees that com-
munication over a certain channel is eventually possible. In contrast, our notion
of responsiveness requires that communication over some channel is always pos-
sible. The three approaches mainly differ from each other in their type systems.

It is future work to study the relation of our semantics and the compact rep-
resentation of all controllers in [11]. Another issue is weak termination [12,3,13]
as a minimal requirement: Reaching a final state should always be possible. This
criterion is very close to the idea of should testing, but it is not clear how to
characterize the respective accordance [12,3,13] (which is a precongruence itself).

Trace- and Failure-Based Semantics for Bounded Responsiveness 143

In contrast, we characterized precongruences related to responsiveness with se-
mantical ideas that also worked for should testing.

References

1. Acciai, L., Boreale, M.: Responsiveness in process calculi. Theor. Comp. Sci. 409(1),
59–93 (2008)

2. Akyildiz, I., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor net-
works: a survey. Computer Networks 38(4), 393–422 (2002)

3. Bravetti, M., Zavattaro, G.: A foundational theory of contracts for multi-party
service composition. Fundam. Inform. 89(4), 451–478 (2008)

4. Brookes, S.D., Hoare, C.A.R., Roscoe, A.W.: A theory of communicating sequential
processes. J. ACM 31(3), 560–599 (1984)

5. Desai, A., Gupta, V., Jackson, E., Qadeer, S., Rajamani, S.K., Zufferey, D.: P:
safe asynchronous event-driven programming. In: PLDI 2013, pp. 321–332. ACM
(2013)

6. Gamboni, M., Ravara, A.: Responsive choice in mobile processes. In: Wirsing, M.,
Hofmann, M., Rauschmayer, A. (eds.) TGC 2010, LNCS, vol. 6084, pp. 135–152.
Springer, Heidelberg (2010)

7. van Glabbeek, R.J.: The coarsest precongruences respecting safety and liveness
properties. In: Calude, C.S., Sassone, V. (eds.) TCS 2010. IFIP AICT, vol. 323,
pp. 32–52. Springer, Heidelberg (2010)

8. Kobayashi, N.: A type system for lock-free processes. Information and Computa-
tion 177(2), 122–159 (2002)

9. Lohmann, N., Massuthe, P., Wolf, K.: Operating guidelines for finite-state services.
In: Kleijn, J., Yakovlev, A. (eds.) ICATPN 2007. LNCS, vol. 4546, pp. 321–341.
Springer, Heidelberg (2007)

10. Lohmann, N., Verbeek, E., Dijkman, R.: Petri net transformations for business pro-
cesses – A survey. In: Jensen, K., van der Aalst, W.M.P. (eds.) Transactions on Petri
Nets and Other Models of Concurrency II. LNCS, vol. 5460, pp. 46–63. Springer,
Heidelberg (2009)

11. Lohmann, N., Wolf, K.: Compact representations and efficient algorithms for op-
erating guidelines. Fundam. Inform. 107, 1–19 (2011)

12. Malik, R., Streader, D., Reeves, S.: Conflicts and fair testing. Journal of Founda-
tions of Computer Science 17(4), 797–813 (2006)

13. Mooij, A.J., Stahl, C., Voorhoeve, M.: Relating fair testing and accordance for
service replaceability. J. Log. Algebr. Program. 79(3-5), 233–244 (2010)

14. Müller, R.: On the notion of deadlocks in open nets. In: AWPN 2010. CEUR WS
Proc., vol. 643, pp. 130–135 (2010)

15. Papazoglou, M.P.: Web Services: Principles and Technology. Pearson (2007)
16. Reed, J.N., Roscoe, A.W., Sinclair, J.E.: Responsiveness and stable revivals. Formal

Asp. Comput. 19(3), 303–319 (2007)
17. Rensink, A., Vogler, W.: Fair testing. Inf. Comput. 205(2), 125–198 (2007)
18. Stahl, C., Vogler, W.: A trace-based service semantics guaranteeing deadlock free-

dom. Acta Inf. 49(2), 69–103 (2012)
19. Vogler, W.: Modular Construction and Partial Order Semantics of Petri Nets.

LNCS, vol. 625. Springer, Heidelberg (1992)
20. Vogler, W., Stahl, C., Müller, R.: A trace-based semantics for responsiveness. In:

ACSD 2012, pp. 42–51. IEEE (2012)
21. Wolf, K.: Does my service have partners? In: Jensen, K., van der Aalst, W.M.P.

(eds.) ToPNoC II. LNCS, vol. 5460, pp. 152–171. Springer, Heidelberg (2009)

On the Introduction of Time

in Distributed Blackboard Rules

Jean-Marie Jacquet1, Isabelle Linden2, and Mihail-Octavian Staicu1

1 Faculty of Computer Science,
University of Namur, Belgium

{jean-marie.jacquet,mihail.staicu}@unamur.be
2 Business Administration Department,

University of Namur, Belgium
isabelle.linden@unamur.be

Abstract. In the realm of coordination languages, reactivity by means
of blackboard rules has been used in order to increase the dynamic behav-
ior of data-spaces by enriching them with programmable capabilities. In
real-life scenarios time constraints come as a natural requirement. In this
paper we introduce this temporal aspect in the definition of distributed
blackboard rules in several ways in order to accommodate requirements
which impose observing sets of events that occur at given time points as
well as within given time frames. Moreover, this allows to define contexts
as ordered sequences of events and to change their significance according
to the amount of time in which they are satisfied.

Keywords: coordination languages, blackboard rules, time.

1 Introduction

The passive stance of data in coordination languages has been rendered dynamic
with the introduction of reactivity. The road paved by GAMMA [1] and later by
the chemical abstract machine [2] gave rise to other models which exploited the
possibility of surveilling events occurring on the data-space. In models such as
MARS [5], TuCSoN [25], ReSpecT [8,9] and LIME [22,26] the reactive paradigm
is defined, in very generic lines, by the action to be taken once a given event
occurs on the data-space. By extending the detection of single events to the
detection of sets of events and/or sets of information it is possible to achieve
context-awareness. This concept first appeared in conjunction with the mobility
of hosts [27] and was related to sensing changes in their physical location. Recent
pieces of work [10] stress out that context-awareness must provide the desired
information to the interested user in a proper way and at the required time and
location.

Our proposition of context definition is based on the declarative blackboard
rules presented in [17], where this concept is modeled in terms of information
being present on (by means of in primitives) or absent from (by means of nin
primitives) the blackboard (i.e. data-space). The general declarative representa-
tion is LHS −→ RHS and means that as long as the condition expressed in the

C. Canal and M. Villari (Eds.): ESOCC 2013, CCIS 393, pp. 144–158, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Time in Distributed Blackboard Rules 145

left hand side(LHS) is verified, the right hand side(RHS) is made true. In this
paper, we enrich the language by adding time specifications to both in and nin
primitives. In the LHS this translates to new functionalities such as scheduling
(a rule becomes active only when the required information is available at the
right time) and ordering (using time it is possible to monitor whether pieces of
information became available in a desired sequence). In the RHS, adding time
allows for the statements to be made true with given delays. Omitting it, results
in having the default behaviour, that is as soon as the rule becomes active.

A key application of such concepts may be found in the modern trend of smart
cities. The recent work of Chourabi et al. [7] emphasizes that the challenges
of a smart city may be seen from different points of view: “management and
organization, technology, governance, policy context, people and communities,
economy, built infrastructure, and natural environment.” Let us see how we can
address some of these issues from the perspective of coordination languages and
timed context-awareness. The purpose is not to conduct an exhaustive study,
but to present some pointers of applicability.

In terms of traffic management, we can imagine that the main highway leading
to the center of the city has, by default, two lanes in each direction but that these
lanes can be dynamically re-allocated if needed, either for entering or exiting.
For example, in the case where incoming heavy traffic is detected in the morning
between 6AM and 10AM it would be desirable to have three of the four lanes for
the traffic flowing towards the city. This translates in a simple rule of the form:

in(inHeavyTraffic, [06 : 10]) −→ in(enter1), in(enter2), in(enter3), in(exit4)

In symmetry, in the afternoon between 4PM and 8PM there is normally heavy
traffic going out of the city. In that case, it is desirable to allocate three lanes
for exiting the city however only in the case where no concert or sport event are
announced in the evening. As such, the rule modelling this behavior would be:

in(outHeavyTraffic, [16 : 20]), nin(concert, [20 : 24]), nin(sportEvent, [20 : 24])

−→ in(enter1), in(exit2), in(exit3), in(exit4).

From the environmental perspective, it is common in large cities to have small
weather stations that monitor the quality of air, especially in the city center. It
may be desired, in situations in which pollution levels rise above predefined limits
between 10AM and 4PM and there is no wind, to divert traffic away from the
city center. Once the levels drop to acceptable limits, the traffic may be restored
to its normal flow.

This amounts to using the following two rules:

in(qualityAlarm, [10 : 16]), nin(wind) −→ in(blockCirculation)
nin(qualityAlarm, [10 : 16]) −→ in(allowCirculation)

(1)

In covering social and cultural aspects, we can model a customizable informa-
tion flow subscription service. Each subscription may be defined by a reaction
rule. If a user desires to receive on Saturday all the announcements published

146 J.-M. Jacquet, I. Linden, and M.-O. Staicu

on the subject of “theater” from Monday to Friday, it would suffice to use the
rule in(eventManager, theatre, [1 : 5]) −→ in(userID, theatre, 6), where event-
Manager represents the blackboard of the system handling the subscriptions
and userID the blackboard of the user. The subscription is handled with the
dedicated primitives presented in [17]: tellr(b, r) for outputting a rule r to a
blackboard b, getr(b, r) for removing it, askr(b, r) for querying its presence and
naskr(b, r) for querying its absence. In this light, making the aforementioned
subscription amounts to executing the following rule:

tellr(eventManager,

”in(eventManager, theatre, [1 : 5]) −→ in(userID, theatre, 6)”)

With these applications in mind, the main contribution of this paper lies in
studying different ways of formally introducing time in rules. We explore the
discrete and continuous perspectives, as well as absolute (for single activations)
and relative (for repeated activations) approaches. This purpose is extended by
a short description of a proposed implementation of the chosen solution that
would fit real-life scenarios. We will present as well the limitations that need to
be imposed in order to provide a feasible prototype for distributed blackboards.

The remainder of this paper is organized as follows. Section 2 evinces the
interest of introducting time in blackboard rules. Section 3 presents the black-
board rules in a discrete time context, while Section 4 presents the continuous
time approach. We continue with some general lines on our current implemen-
tation in Section 5. A study on related work is conducted in Section 6. Finally,
section 7 draws our conclusions and shows some perspectives for future work.

2 Timing Context-Awareness

The interest of introducing the temporal aspect in coordination languages, be-
ginning with TSpaces [32] and JavaSpaces [11], was advocated by the need to
model real-life coordination applications. It may not be desirable to keep pro-
cesses waiting indefinitely for pieces of information that may never become avail-
able. Or, pieces of information should be present on the data-space only for given
amounts of time. This translates to adding a temporal parameter to the prim-
itives that interact with the blackboard, respectively to the tuples. On these
lines, studies have been conducted on the relative-time approach [18] as well as
on the absolute-time one [15] by exploring the expressiveness of delays in prim-
itive execution and limited lifetime for tuples on the blackboard. Such features
may also be extended to the reactive mechanisms which provide the dynamic
and programmable features to the blackboards.

In our proposal we add the temporal dimension to the blackboard rules refined
in [17] by complementing their building blocks, the in and nin primitives, with
dedicated time parameters:

in(a1, u1, t1), in(a2, u2, t2), in(a3, u2, t4),

in(a4, u3, t3), in(a5, u4, t2), nin(b, u4, t5)

−→ in(c, u5, t5), nin(d, u6, t6) (2)

Time in Distributed Blackboard Rules 147

with the intuitive meaning that as long as some pieces of information u1, u2, u3

are present on the respective blackboards a1 to a5, at the respective time points
t1 to t4 and some information u4 is not present on blackboard b on time t5, then
we can assume that some information u5 will become available on blackboard
c on time t5 and some information u6, if present, will no longer be available
on blackboard d on time t6. A graphical representation of the context is given
in Fig. 1(a), where for each position (ti, ui), with 1 ≤ i ≤ 4, 1 denotes the
presence of a tuple, 0 denotes the absence and ⊥ denotes that no check should
be performed. By exploring different semantic variations and refinements it may
be possible to model use scenarios in discrete or continuous time, expressed in
either absolute or relative fashion. For example, from a discrete perspective, we
may define a blackboard rule that detects the successful execution of a workflow.
Since a workflow is comprised of an ordered list of activities, by outputting a
tuple to signal the end of each activity we can detect their correct completion and
in the right order. Other scenarios may require having multiple instances of the
same tuple at one given time point. For example, such a context would amount
to the writing in Equation 3 and the graphical representation in Fig. 1(b).

in(a1, u1, t3), in(a2, u2, t2), in(a2, u2, t2),

in(a2, u2, t2), in(a5, u4, t1), in(a6, u4, t1), nin(b, u4, t4)

−→ in(c, u5, t5), nin(d, u6, t6) (3)

In the declarative reading of the rule it is not imposed to have an ordering
in the primitives over the timestamps, but they are represented in such a way
for the ease of reading. By corroborating Equation 2 with the results obtained
in [17], we have the following generic representation of a timed blackboard rule:

in(b1, u1, t1), . . . , in(b1, u1, tn), . . . , in(bn, un, t1), . . . , in(bn, un, tn)

nin(bn+1, un+1, tn+1), . . . , nin(bn+1, un+1, tm),

. . . , nin(bm, um, tn+1), . . . , nin(bm, um, tm) −→
in(bm+1, um+1, tm+1), · · · , in(bp, up, tp),

nin(bp+1, up+1, tp+1), · · · , nin(bq, uq, tq) (4)

Such a rule becomes active when the context defined in the LHS is verified.
Following the intuition, from the graphical representation in Fig. 1(a), the acti-
vation condition may be modelled in the form of a matrix:

AMn×m =

⎧⎪⎨⎪⎩
ami,j = 1, 1 ≤ i, j ≤ n and ∃ in(bi, ui, tj) ∈ LHS

ami,j = 0, n+ 1 ≤ i, j ≤ m and ∃ nin(bi, ui, tj) ∈ LHS

ami,j = ⊥, 1 ≤ i, j ≤ m in the remaining positions

(5)

In the cases with multiple instances and with respect to Fig. 1(b), in the
activation matrix depicted in Equation 5, the ami,j elements corresponding to
the in primitives are equal to the number of instances of tuples ui that must be
present on bi at time ti.

148 J.-M. Jacquet, I. Linden, and M.-O. Staicu

⊥
⊥
⊥

⊥

⊥

⊥
⊥

⊥

⊥

⊥
⊥

⊥
⊥
⊥

0

1

1

1

1

1

0

t1 t2 t3 t4 t5 time

u1

u2

u3

u4

tuples

(a) Context representation for Equa-
tion 2

⊥
⊥

⊥

⊥
⊥
⊥

⊥
⊥

0

3

2

1

0

t1 t2 t3 t4 time

u1

u2

u4

tuples

(b) Context representation for
Equation 3

Fig. 1. Context representation

The actions defined in the RHS of the rule may be taken only after the rule has
been activated. Formally, this translates into the following integrity constraint:
min(tm+1, . . . , tq) ≥ max(t1, . . . , tm). Furthermore, two scenarios arise. If, on
the one hand, immediate actions are demanded, the primitives in the RHS do
not need to be timed. Their execution is triggered by the rule’s activation. If, on
the other hand, delays are desired, time should be specified in agreement with
the aforementioned constraint.

The time constructs in Equation 4 should be adapted in such a way to accom-
modate the representation of either discrete or continuous time, in a relative or
absolute fashion, as will be detailed in the following sections 3 and 4.

Such rules are introduced in a Linda-like language developed at the Univer-
sity of Namur, called Bach. Introduced in [16], the Bach coordination language
is built upon the principle of a blackboard (the equivalent of Linda’s tuple space)
represented by a shared memory space through which agents can communicate.
The interaction with the blackboard is ensured by the use of four timed prim-
itives: tell for outputting information on the blackboard, ask for querying the
presence of information, get for retrieving information and nask for querying
the absence of information. In order to express more complex actions, the four
primitives can be linked by three composition operators to form more complex
agents, namely: ”; ” for sequential composition, ”||” for parallel composition and
” + ” for nondeterministic choice. The blackboard is complemented with a set
of rules responsible for the detection of desired contexts. Whenever the agents
modify the content of the blackboard through the tell and get primitives, the
tuple making the object of the execution is compared to the tuples specified in
the LHS of the rules associated with the blackboard in question. This allows each
rule to keep track whether its LHS may be expressed from the current content
of the blackboard. Reversly, when a rule becomes active it must make true all
the actions described by its RHS. This translates the in primitives to tell ones
and the nin to get ones. Furthermore, these new agents may be destined for the
local blackboard or remote ones, according to the specifications.

The time extensions of the language have been introduced with respect to [14]
and follows the classical two-phase functioning approach to real-time systems

Time in Distributed Blackboard Rules 149

illustrated, among others, by Lustre [6], Esterel [3] and Statecharts [12]. In a
first phase, all the atomic actions of the statements are executed. They are
assumed to take no time. Furthermore, composition operators induce no extra
cost to the execution. In a second phase, when no actions can be reduced or
when all components encounter a special timed action, time progresses by one
unit.

3 Discrete Time Points

We now turn to the introduction of time in blackboard rules. The approach,
called discrete, is useful in scenarios where it is important to specify precise
time points in which the tuples defining the context are present on or absent
from the blackboard. In Equation 4, the temporal parameter tk (1 ≤ k ≤ q) of
each primitive may be expressed either as an absolute timestamp or as a number
depicting the units of time relatively to the current time point.

Surveying the moment when a rule reaches its activation condition is achieved
in an incremental fashion by using the events which alter the content of the
blackboard. The effect of tell and successful get primitives as well as expired
tuples being removed are the events that change the contents of the blackboard.
This new snapshot of the blackboard, together with the time points of occur-
ring events, allow to keep track on how the rule is impacted by the changes. In
addition to the activation matrix introduced in Equation 5, each rule must be
associated with a blackboard counter matrix in which the evolution of the black-
board will be reflected. The initial structure of the blackboard counter matrix is
the following:

CMn×m =

⎧⎪⎨⎪⎩
cmi,j = 0, if1 ≤ i, j ≤ n and ∃ in(bi, ui, tj) ∈ LHS

cmi,j = 0, ifn+ 1 ≤ i, j ≤ m and ∃ nin(bi, ui, tj) ∈ LHS

cmi,j = ⊥, if1 ≤ i, j ≤ m in the remaining positions

(6)
Whenever a tell primitive puts a tuple ui on blackboard bi at the right moment

ti, the corresponding element of the matrix, cmi,i is incremented (1 ≤ i ≤ m).
Symmetrically, successful get primitives and expired tuples removed from the
blackboard will decrement the counter. We define the maximum value for the
time points given in the LHS of the rule as tmax = max(t1, . . . , tm). Once
tmax is reached, the rule can be evaluated for possible activation by verifying
the requirements: {

cmi,j ≥ ami,j if1 ≤ i, j ≤ n,

cmi,j = 0 ifn+ 1 ≤ i, j ≤ m.

In terms of time representation, absolute or relative values may be used. For
absolute values we refer to a standard date-time point and it would be fair to
say that the underlying system provides the functionalities to obtain it. The
downside, however, is that absolute time points occur only once, thus the rule

150 J.-M. Jacquet, I. Linden, and M.-O. Staicu

AM =

⎛
⎝ 1 . . . 1 0 . . . 0
t1,1 . . . tn,1 tn+1,1 . . . tm,1

t1,2 . . . tn,2 tn+1,2 . . . tm,2

⎞
⎠

(a) Activation matrix

CM =

⎛
⎝bc1 . . . bcn bcn+1 . . . bcm
fi1 . . . fin fin+1 . . . fim
li1 . . . lin lin+1 . . . lim

⎞
⎠

(b) Blackboard counter matrix

Fig. 2. Absolute time approach

can be triggered at most once. For usage scenarios where repetitive actions are
required, a relative representation might be more desirable. This is achieved by
specifying the temporal offsets between the moments when the desired tuples
should be present or absent from the blackboard.

4 Continuous Time Intervals

The discrete time approach seems to be very rigid and gives rise to questions
like: how can we be sure that the system will capture the event at the right time
with pin-point accuracy? Can we a-priori predict with precision when pieces of
information become available? In real life scenarios, depending on the application
domain, some degree of flexibility should be provided. To accommodate for such
requirements we make two propositions, in an absolute and relative time fashion.

4.1 Absolute Time Approach

For these types of rules we define the time intervals in the form of absolute time
windows, having the general representation given in Equation 7. The activation
follows the intuition: for each in primitive, at least one instance of tuple ui

must be present on the respective blackboard within the [ti,1, ti,2] time interval
(1 ≤ i ≤ n), while for the nin primitives no instances of tuples uj must be present
on the respective blackboard in the [tj,1, tj,2] time interval (n+ 1 ≤ j ≤ m).

in(b, u1, [t1,1 : t1,2]), . . . , in(b, un, [tn,1 : tn,2]),

nin(b, un+1, [tn+1,1 : tn+1,2]), . . . , nin(b, um, [tm,1 : tm,2]) −→
in(bm+1, um+1, tm+1), · · · , in(bp, up, tp),

nin(bp+1, up+1, tp+1), · · · , nin(bq, uq, tq) (7)

Formally, the activation matrix for such a rule is represented in Fig. 2(a). It is
comprised of three lines: the first one contains the number of instances required
for each tuple, the second one contains the lower bound of each time interval
and the third one is composed of the upper bound of each time interval.

Keeping track on how the blackboard activity affects such a rule is achieved
with a blackboard counter matrix of the form depicted in Fig. 2(b), where, for
every 1 ≤ k ≤ m, bck is the blackboard counter corresponding to the tuple uk,
fik represents the timestamp of the first tuple uk present on the blackboard
after the adding of the rule and lik represents the timestamp of the last tuple
uk added on the blackboard after the adding of the rule.

Time in Distributed Blackboard Rules 151

AM =

(
1 . . . 1 0 . . . 0
d1 . . . dn dn+1 . . . dm

)

(a) Activation matrix

CM =

⎛
⎝bc1 . . . bcn bcn+1 . . . bcm
fi1 . . . fin fin+1 . . . fim
li1 . . . lin lin+1 . . . lim

⎞
⎠

(b) Blackboard counter matrix

Fig. 3. Relative time approach

The activation of the rule is achieved when all of the following conditions are
met: ⎧⎪⎪⎪⎨⎪⎪⎪⎩

cm1,i ≥ am1,i, if 1 ≤ i ≤ n,

cm1,j = 0 , n+ 1 ≤ j ≤ m,

cm2,k ≥ am2,k, if 1 ≤ k ≤ m,

cm3,l ≤ am3,l, if ≤ l ≤ m.

Furthermore, the activation can occur only in a fixed time frame [tmin, tmax],
where:

tmin = min(t1,1, t1,2, . . . , tn,1, tn,2, tn+1,1, tn+1,2, . . . , tm,1, tm,2)
tmax = max(t1,1, t1,2, . . . , tn,1, tn,2, tn+1,1, tn+1,2, . . . , tm,1, tm,2)

4.2 Relative Time Approach

For these types of rules we define the time intervals in the form of relative
durations, having the general representation given in Equation 8. The activation
follows the intuition: for each in primitive, at least one instance of tuple ui must
be added to the blackboard within a di time frame for every 1 ≤ i ≤ n, while for
the nin primitives no instances of tuples uj must be present on the blackboard
within a dj time frame, for every n+1 ≤ j ≤ m. The semantic is that the relative
durations imply that there exists a time point within that given time frame in
which the information must be detected as present or absent.

in(b, u1, d1), . . . , in(b, un, dn), nin(b, un+1, dn+1), . . . , nin(b, um, dm)

−→ in(bm+1, um+1), · · · , in(bp, up), nin(bp+1, up+1), · · · , nin(bq, uq) (8)

Formally, the activation matrix for such a rule is represented in Fig. 3(a). It
is comprised of two lines: the first one contains the number of instances required
for each tuple and the second represents the minimum duration in which a tuple
must be present respectively absent from the blackboard.

Keeping track on how the blackboard activity affects such a rule is achieved
with a blackboard counter matrix of the form depicted in Fig. 3(b), where, for
every 1 ≤ k ≤ m, bck is the blackboard counter corresponding to the tuple uk,
fik represents the timestamp of the first tuple uk present on the blackboard
after the adding of the rule and lik represents the timestamp of the last tuple
uk added on the blackboard after the adding of the rule.

152 J.-M. Jacquet, I. Linden, and M.-O. Staicu

The activation of the rule is achieved when all of the following conditions are
met: ⎧⎪⎨⎪⎩

cm1,i ≥ am1,i, for 1 ≤ i ≤ n,

cm1,j = 0, for n+ 1 ≤ j ≤ m,

cm3,k − cm2,k ≥ am2,k, for 1 ≤ k ≤ m.

As opposed to the absolute timed rules, the relative timed ones may wait
indefinitely for their activation and are not bound to a fixed interval.

5 Implementation

Following the ideas presented in Section 4, the continuous time approach presents
several practical advantages over the discrete one. First of all, expecting events
to happen at very precise moments in time is rather hard to predict. Second of
all, single time points may be considered as a particular case of time interval
in which the lower bound is identical to the upper bound. Consequently, for
our current implementation, we have chosen the variant of absolute continuous
time. Furthermore, the relative time may be easily translated into absolute one
by adding a proper time offset.

5.1 General Principles

As a language designed for distributed systems, Bach has been implemented in
a client-server fashion, but only in terms of the architecture. Each device acts
independently and is responsible for establishing connections with neighboring
devices and no devices are designated as central managers. No hypothesis is
made on a-priori knowledge of the network architecture. The server-side and the
client-side represent just a separation of concepts and tasks.

The server-side component is responsible for handling the communication,
the blackboard and its operations, a rule space for containing the reaction rules
associated with the blackboard, a request space for the agents that need to
be processed and a solved request space for storing the results of the agents
execution. The client-side handles the parsing of string representations of agents,
dispatches requests to a local or remote blackboard depending on needs and
receives the replies. Parsing an agent returns a tree-like structure with the nodes
consisting of the composition operators that link the primitives, which are stored
in the leaves. The processing of the tree begins at the root node with the recursive
creation of sub-agents until the leaves are reached, moment at which requests
are formed towards the server.

5.2 Implementation Techniques

The activation condition of a rule represents a context defined on multiple black-
boards. However, a full implementation of that general rule would involve a costly
mechanism and heavy network loading in order to check whether the condition

Time in Distributed Blackboard Rules 153

becomes active or not. In this hypothesis, in accordance with the results in [17],
the wise choice is to restrict the context definition to only one blackboard. We
do not restrict in any way the actions to be taken upon the rule’s activation
since they translate into remote calls to local or distant blackboards.

In order to handle the timing aspects, we enrich the tuples with an additional
attribute in which to store the timestamp of their arrival on the blackboard.
The blackboard rules are implemented as a structure comprised of two ordered
arrays, one for the LHS and one for the RHS, to store the sets of in and nin
primitives.

In order to define the activation condition of a rule, it is not mandatory to
have a context composed solely of different tuples. Depending on the needs,
several instances of the same tuple may be required. This would translate by
placing a sequence of in(b, u) primitives in the condition. In order to avoid writing
repeatedly one in primitive for each needed instance of the tuple u we provide
a syntactic shortcut allowing to add an index to specify the total number of
instances. Subsequently, inc(b, u) states that a total of c instances of tuple u are
required on blackboard b. Testing the absence of a tuple amounts to having 0
instances on the blackboard. By complementing Equation 7 with this notation
we obtain the following:

inc1(b, u1, [t1,1 : t1,2]), . . . , incn(b, un, [tn,1 : tn,2]),

nin(b, un+1, [tn+1,1 : tn+1,2]), . . . , nin(b, um, [tm,1 : tm,2]) −→
in(bm+1, um+1, tm+1), · · · , in(bp, up, tp),

nin(bp+1, up+1, tp+1), · · · , nin(bq, uq, tq) (9)

Consequently, to accommodate this syntactic shortcut, the activation matrix
depicted in Fig. 2(a) becomes:

AM =

⎛⎝ c1 . . . cn 0 . . . 0
t1,1 . . . tn,1 tn+1,1 . . . tm,1

t1,2 . . . tn,2 tn+1,2 . . . tm,2

⎞⎠ (10)

At the same time, each rule must keep track of the changes occurring on the
blackboard. With the execution of tell or get primitives, tuples are respectively
added or removed. By supervising the tuples that transit the blackboard it is
possible to determine the moment when the context is met for the rule to become
active. To this purpose, we reduce the blackboard matrix represented in Fig. 2(b)
to a vector having the form:

CM =
(
dict1 . . . dictn dictn+1 . . . dictm

)
The elements dicti(1 ≤ i ≤ m) are dictionary-like objects, in which the entries
have a key represented by the tuple identifier of the instance that concerns the
respective in or nin primitive and a value represented by the instance timestamp
of its adding to the blackboard:

dicti = {< instance1, timestamp1 >, . . . , < instance last, timestamp last >}

154 J.-M. Jacquet, I. Linden, and M.-O. Staicu

Due to the time constraints, only a selection of these tuples may participate to
the activation of the rule. The total number, denoted bci, is obtained in a SQL-
like fashion: select and count all the instances instancei where their timestamp
timestampi is present in the interval [ti,1, ti,2].

The total number of times a rule’s context may be expressed using the content
of the blackboard represents the maximum triggering counter for the respective
rule and is given by the combinatorial formula:

n∏
k=1

(
bctk
ck

)
As advocated in the beginning of the section, the continuous time implemen-

tation is flexible and generic enough to accommodate the discrete time approach
described in Section 3. Indeed, by abuse of notation, a time point ti is equivalent
to the time interval [ti,1, ti,2] iff ti,1 = ti,2. As such, the activation matrix in 10
will have its third line identical to the second.

6 Related Work

Let us now offer a bird’s eye-view over existing lines of research related to the
idea of reactivity and timed extensions and see how they are placed with respect
to our proposal.

6.1 Chemical Models

The road of reactivity was paved by the GAMMA model [1] which introduced
the idea of transforming multi-sets of data by means of mechanisms inspired
by chemistry. Accordingly, the multi-set is metaphorically seen as a chemical
solution on top of which different reaction rules are defined. The multi-set evolves
as long as the reaction condition is met, after which a stable point is reached.

Timed-Gamma [21] addresses the time issue from a performance-related per-
spective, in particular the computation time. To this aim, the rules are enriched
with timing specifications denoting either finite or infinite durations. The pro-
posed timed-computation is decomposed as a three stage process: scheduling,
computation and commitment.

As an extension of GAMMA, the chemical abstract machine [2] added the no-
tions of membranes and airlocks. Membranes act as containers for sub-solutions,
thus enforcing local reactions. Airlocks enable the communication between these
enclosed sub-solutions and their containing environment.

More recent developments of the chemical metaphor are those related to bio-
chemical tuple spaces [29], service competition or service composition [30] and
pervasive ecosystems [31]. Such propositions are similar to our current one from
the point of view of declarative transformations. However, these eco-laws rely
on an underlying framework covering the global space of neighbor devices. In
our approach, rules are stored on the blackboards themselves, and connect them
without other middleware.

Time in Distributed Blackboard Rules 155

Compared to these pieces of work, our proposal keeps the same idea of reactiv-
ity. However, it refines it by enhancing the patterns of the rules in distinguishing
the presence or absence of information on both sides at given points in time or
within given time frames and by providing an efficient implementation. We pro-
vide no counterpart for probabilistic reasonings, but consider this as orthogonal
to our work. As a result, ideas from [29, 30] can be introduced directly in our
work. Such ideas will be the subject of future work.

6.2 Reactive Models

In another line of research, the articles [4,13] explore models relying on the idea
of reactive tuple spaces. Among others, they are used for the coordination of
mobile agents. This has also been treated in a series of work, such as: MARS [5],
TuCSoN [25], ReSpecT [8, 9], LIME [22, 26].

More concretely, theMARSmodel proposes reactions in the form of a four com-
ponents set consisting of: the reaction type, the tuple wild-card to be matched, the
type of operation on the tuple space that should bemonitored, the agent’s identity.
This mechanism is very flexible and is able to express a wide range of scenarios:
the most general situation occurs when only the reaction type is specified and is
rendered more precise by adding values to the other components.

In TuCSoN, the approach is to define programmable logic tuple centers which
consist of a tuple space enhanced by the notion of behavior specification. Such
specifications are defined with the ReSpecT language, which implements the
reactions in the form of two special types of tuples. The first represents an as-
sociation between a communication primitive and a logical event, allowing for
groups of primitives to be connected to one identical logical event or for one
primitive to generate several events. The second is an association between the
logical events and the actual reaction body, which consists of either state prim-
itives, term predicates or primitives of the tuple space. The timed extension,
introduced in [24], is twofold: dedicated predicates are introduced to access the
tuple-center or event time and reactions may be scheduled before/after given
times or within intervals. The paper [23] augments the language with the intro-
duction of a guard, that may enforce additional requirements for an event, such
as its source, destination or trigger time.

The multiple blackboard approach for ReSpecT has been explored in [19] by
studying its interactions with LogOp, introduced in [28] and later refined in [20].
LogOp presents itself as an extension of LINDA for the management of multiple
tuple space environments. The execution of primitives in such a hypothesis is
supported by the introduction of composed tuple spaces in their definition. A
dedicated logOp tuple center uses the ReSpecT language to react to LogOp
primitives and form requests for each tuple center forming the composition. It
also receives the replies and forms the final answer.

Offering a different perspective from the previous models, LIME associates
reactions to the context of the tuple space rather than the set of primitives
executed on it. Reactions are triggered by matching tuples on the tuple space
with given patterns, thus defining specific contexts.

156 J.-M. Jacquet, I. Linden, and M.-O. Staicu

To sum up, the main characteristics of related work are fourfold: (i) the reac-
tion condition is expressed only in terms of data being present on the blackboard,
(ii) some reactions are triggered on the execution of primitives, (iii) the reaction
rules mostly concern a single blackboard, (iv) the timing of the rules is done in
a schedule like fashion.

In our approach we provide a finer control over the reaction conditions, which
can be defined in terms of data presence (by means of the in primitive) and data
absence (by means of the nin primitive). This allows the specification of more
precise and strict contexts, not possible in other pieces of work. In addition,
our rule mechanism is designed to be used also in multi-blackboard systems. In
terms of temporal aspects, our focus is not on specifying when a rule should be
activated but on providing a time axis for the context in which a rule becomes
active.

6.3 Final Remarks

In summary, as may be appreciated by the reader, our work presents significant
differences with respect to related work. In addition to the chemical models,
our approach allows the definition of more complex contexts consisting not only
of information that needs to be present, but also of information that needs to
be absent. In the terms of the chemical metaphor, our proposition offers the
possibility to model the idea of an inhibitor, a substance capable of stopping or
retarding a chemical reaction. By means of the nin primitive it is possible to
express reactions which occur in the absence of given inhibitors.

With respect to the reactive models, in which the main focus is put on reacting
to the execution of atomic primitives, our declarative approach, offers advantages
in terms of flexibility and expressiveness for expressing context-awareness.

7 Conclusions

In this paper, we propose a solution for coordination by means of declarative
timed rules. The focus is oriented on introducing time in the process of context
detection. We have shown how one set of pieces of information may be inter-
preted differently depending on when the pieces become available. We find this
perspective to be different from that or related pieces of work in which the ac-
cent is put on rule scheduling. Certainly, the idea of rules and reactivity is not
a novelty to coordination models. However, we have introduced new variants
based on a declarative reading which we have shown to be expressive, yet being
efficiently implementable. Taking an incremental approach on the computation
bypasses the need for a transactional mechanism, since keeping track of how the
blackboard content is reflected on the rule’s activation condition there is no need
to reevaluate it after each primitive execution.

For future work we aim at introducing dedicated mechanisms to specify the
triggering counter for a rule. This would overwrite the default behavior and
give the user more flexibility in modelling his needs. By exploiting the rules
mechanism we also aim to obtain capabilities for complex event processing.

Time in Distributed Blackboard Rules 157

References

1. Banâtre, J.-P., Coutant, A., Métayer, D.L.: A Parallel Machine for Multiset Trans-
formation and its Programming Style. Future Generation Computer Systems 4(2),
133–144 (1988)

2. Berry, G., Boudol, G.: The Chemical Abstract Machine. In: Proceedings of the 17th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 1990, pp. 81–94. ACM, New York (1990)

3. Berry, G., Gonthier, G.: The ESTEREL Synchronous Programming Language:
Design, Semantics, Implementation. SCP 19(2), 87–152 (1992)

4. Bosschere, K.D., Jacquet, J.-M.: μ2Log: Towards Remote Coordination. In: Han-
kin, C., Ciancarini, P. (eds.) COORDINATION 1996. LNCS, vol. 1061, pp. 142–
159. Springer, Heidelberg (1996)

5. Cabri, G., Leonardi, L., Zambonelli, F.: Reactive Tuple Spaces for Mobile Agent
Coordination. In: Rothermel, K., Hohl, F. (eds.) MA 1998. LNCS, vol. 1477, pp.
237–248. Springer, Heidelberg (1998)

6. Caspi, P., Pilaud, D., Halbwachs, N., Plaice, J.: LUSTRE: A Declarative Language
for Real-time Programming. In: Proceedings of the 14th ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages, POPL 1987, pp. 178–188.
ACM, New York (1987)

7. Chourabi, H., Nam, T., Walker, S., Gil-Garcia, J., Mellouli, S., Nahon, K., Pardo,
T., Scholl, H.: Understanding Smart Cities: An Integrative Framework. In: Pro-
ceedings of the 2012 45th Hawaii International Conference on System Sciences,
HICSS 2012, pp. 2289–2297. IEEE Computer Society, Washington, DC (2012)

8. Denti, E., Natali, A., Omicini, A.: On the Expressive Power of a Language for
Programming Coordination Media. In: Proceedings of the 1998 ACM Symposium
on Applied Computing, SAC 1998, pp. 169–177. ACM, New York (1998)

9. Denti, E., Omicini, A.: Designing Multi-agent Systems around an Extensible Com-
munication Abstraction. In: Meyer, J.-J.C., Schobbens, P.-Y. (eds.) ModelAge-WS
1997. LNCS (LNAI), vol. 1760, pp. 90–102. Springer, Heidelberg (2000)

10. Fischer, G.: Context-Aware Systems: The ‘Right’ Information, at the ‘Right’ Time,
in the ‘Right’ Place, in the ‘Right’ Way, to the ‘Right’ Person. In: Proceedings of
the International Working Conference on Advanced Visual Interfaces, AVI 2012,
pp. 287–294. ACM, New York (2012)

11. Freeman, E., Arnold, K., Hupfer, S.: JavaSpaces Principles, Patterns, and Practice,
1st edn. Addison-Wesley Longman Ltd., Essex (1999)

12. Harel, D.: Statecharts: A Visual Formalism for Complex Systems. SCP 8(3), 231–
274 (1987)

13. Jacquet, J.-M., Bosschere, K.D.: Blackboard Relations in the μLog Coordination
Language. New Generation Computing (19), 23–56 (2001)

14. Jacquet, J.-M., De Bosschere, K., Brogi, A.: On Timed Coordination Languages.
In: Porto, A., Roman, G.-C. (eds.) COORDINATION 2000. LNCS, vol. 1906, pp.
81–98. Springer, Heidelberg (2000)

15. Jacquet, J.-M., Linden, I.: On the Expressiveness of Absolute-Time Coordination
Languages. In: De Nicola, R., Ferrari, G.-L., Meredith, G. (eds.) COORDINATION
2004. LNCS, vol. 2949, pp. 232–247. Springer, Heidelberg (2004)

16. Jacquet, J.-M., Linden, I.: Coordinating Context-aware Applications in Mobile Ad
Hoc Networks. In: Proceedings of the First ERCIM Workshop on eMobility (2007)

158 J.-M. Jacquet, I. Linden, and M.-O. Staicu

17. Jacquet, J.-M., Linden, I., Staicu, M.-O.: Blackboard Rules for Coordinating
Context-aware Applications in Mobile Ad Hoc Networks. In: Proceedings 11th
International Workshop on Foundations of Coordination Languages and Self Adap-
tation. EPTCS, vol. 91, pp. 63–78. Open Publishing Association (2012)

18. Linden, I., Jacquet, J.-M., Bosschere, K.D., Brogi, A.: On the Expressiveness of
Relative-Timed Coordination Models. ENTCS 97, 125–153 (2004)

19. Menezes, R., Omicini, A., Viroli, M.: Have ReSpecT for LogOp. In: De Paoli, F.,
Manzoni, S., Poggi, A. (eds.) AI*IA/TABOO Joint Workshop “Dagli Oggetti Agli
Agenti: Dall’informazione Alla Conoscenza”. Pitagora Editrice Bologna (2002)

20. Menezes, R., Omicini, A., Viroli, M.: On the Semantics of Coordination Models
for Distributed Systems: The LogOp Case Study. ENTCS 97, 97–124 (2004)

21. Mousavi, M., Basten, A., Reniers, M., Chaudron, M.: Timed-Gamma and its co-
ordination language. Nordic Journal of Computing (2013)

22. Murphy, A.L., Picco, G.P., Roman, G.-C.: LIME: A Coordination Model and
Middleware Supporting Mobility of Hosts and Agents. ACM Trans. Softw. Eng.
Methodol. 15(3), 279–328 (2006)

23. Omicini, A.: Formal ReSpecT in the A&A perspective. ENTCS 175(2), 97–117
(2007)

24. Omicini, A., Ricci, A., Viroli, M.: Time-Aware Coordination in ReSpecT. In:
Jacquet, J.-M., Picco, G.P. (eds.) COORDINATION 2005. LNCS, vol. 3454, pp.
268–282. Springer, Heidelberg (2005)

25. Omicini, A., Zambonelli, F.: Tuple Centres for the Coordination of Internet Agents.
In: 1999 ACM Symposium on Applied Computing, SAC 1999, San Antonio, TX,
USA, pp. 183–190. ACM (1999)

26. Picco, G.P., Murphy, A.L., Roman, G.-C.: LIME: Linda Meets Mobility. In: Pro-
ceedings of the 21st International Conference on Software Engineering, ICSE 1999,
pp. 368–377. ACM, New York (1999)

27. Schilit, B., Theimer, M.: Disseminating Active Map Information to Mobile Hosts.
IEEE Network 8, 22–32 (1994)

28. Snyder, J., Menezes, R.: Using Logical Operators as an Extended Coordination
Mechanism in Linda. In: Arbab, F., Talcott, C. (eds.) COORDINATION 2002.
LNCS, vol. 2315, pp. 317–331. Springer, Heidelberg (2002)

29. Viroli, M., Casadei, M.: Biochemical Tuple Spaces for Self-organising Coordination.
In: Field, J., Vasconcelos, V.T. (eds.) COORDINATION 2009. LNCS, vol. 5521,
pp. 143–162. Springer, Heidelberg (2009)

30. Viroli, M., Casadei, M.: Chemical-inspired Self-composition of Competing Services.
In: Proceedings of the 2010 ACM Symposium on Applied Computing, SAC 2010,
pp. 2029–2036. ACM, New York (2010)

31. Viroli, M., Pianini, D., Montagna, S., Stevenson, G.: Pervasive Ecosystems: a Co-
ordination Model Based on Semantic Chemistry. In: Proceedings of the 2012 ACM
Symposium on Applied Computing, SAC 2012, pp. 295–302. ACM, New York
(2012)

32. Wyckoff, P., McLaughry, S.W., Lehman, T., Ford, D.: T spaces. IBM Syst. J. 37(3),
454–474 (1998)

Data Abstraction in Coordination Constraints�

José Proença1,2 and Dave Clarke2

1 HASLab / INESC TEC, Universidade do Minho, Portugal
2 iMinds-DistriNet, Dep. Computer Science, KU Leuven, Belgium

{jose.proenca,dave.clarke}@cs.kuleuven.be

Abstract. This paper studies complex coordination mechanisms based
on constraint satisfaction. In particular, it focuses on data-sensitive con-
nectors from the Reo coordination language. These connectors restrict
how and where data can flow between loosely-coupled components taking
into account the data being exchanged. Existing engines for Reo provide
a very limited support for data-sensitive connectors, even though data
constraints are captured by the original semantic models for Reo.

When executing data-sensitive connectors, coordination constraints
are not exhaustively solved at compile time but at runtime on a per-need
basis, powered by an existing SMT (satisfiability modulo theories) solver.
To deal with a wider range of data types and operations, we abstract data
and reduce the original constraint satisfaction problem to a SAT problem,
based on a variation of predicate abstraction. We show soundness and
completeness of the abstraction mechanism for well-defined constraints,
and validate our approach by evaluating the performance of a prototype
implementation with different test cases, with and without abstraction.

1 Introduction

Coordination languages describe how data can be exchanged among components,
focusing on the glue code and abstracting away the computations performed by
components. An ongoing trend for these languages over the last years leans to-
wards more expressive coordination models, aiming at more compact and man-
ageable representations of complex behaviour than basic models such as Linda.

This paper focuses on coordination models whose glue code is given by con-
nectors, expressed as logical constraints. Using constraints to describe how data
flows in a connector has been investigated, for example, for the BIP [3,4] and the
Reo [1,7,15] coordination languages. Constraints have also been used to describe
desirable properties of process algebras, such as Bruni’s et al.’s compensable
processes [5]. In order to keep the problem of producing and executing connec-
tors tractable, only properties that bear no computation are captured by the
constraints. These are then analysed using off-the-shelf constraint solvers.

Engines for BIP and Reo have incorporated various properties into their coor-
dination constraints, such as history of the connector, some notions of priority,
and simple data restrictions. These coordination-related properties are encoded
� This research is supported by the FCT grant SFRH/BPD/91908/2012.

C. Canal and M. Villari (Eds.): ESOCC 2013, CCIS 393, pp. 159–173, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

160 J. Proença and D. Clarke

15◦C @ 8:35am Display
getT

ime

getTemp

F2C

¬night

isF

isC

Fig. 1. Filtering communication between a sensor and a display based on data

as boolean formulas or as formulas over a decidable theory, which can be anal-
ysed by a given off-the-shelf constraint solver. An implementation of BIP [4]
relies on BDD libraries for constraint solving, and some Reo implementations
rely on SAT solvers [7] and on Computer Algebra Systems [6]. Using constraint
solvers to execute connectors brings more flexibility than compiling them into
state machines that list all coordination patterns, since it supports larger con-
nectors, and changes to the system have a low impact on performance.

This paper exploits the usage of constraints to describe coordination patterns
that use complex (and possibly undecidable) data predicates. This is achieved by
decoupling the evaluation of complex data predicates from the constraint solving
problem. We propose a method that encodes formulas over data structures into
a boolean formula, by incorporating in the final formula the results of operations
over data that influence coordination. We show that this method is sound and
complete with respect to a class of constraints that covers all Reo connectors
over data that we encountered in the literature. An earlier version of this work
with the detailed proofs can be found in a companion technical report [16]. Our
technique has been recently exploited to introduce interaction between the solver
and external components during constraint solving [15]. More generally, our ap-
proach falls within the implicit programming paradigm [14], wherein constraints
specify the computation and SAT and SMT solvers perform the computation.
Our contribution to this field is the use of constraint satisfaction to implement
coordination patterns. More specifically, this paper deals with the problem of
increasing the complexity of data used to coordinate components.

We use the Reo coordination language as the source of coordination con-
straints, based on our previous work [7]. Reo is a synchronous graph-based visual
language wherein complex connectors are built out of simpler primitive connec-
tors. Each primitive connector imposes restrictions on how and where data can
flow, and the behaviour of a composite connector is given by the composition
of the constraints of all primitives involved. A connector evolves on a per-round
basis, and in each round data flows atomically through some of the ports of this
connector, based on its combined constraints. After each round the state of the
connector may change, resulting in new constraints.

The Reo connector depicted in Fig. 1 has a data producer and a data consumer
that displays a given temperature value. The data producer tries to publish a
temperature value of 15◦C, measured at 8:35am. This producer is connected to
two transformer channels, depicted with a triangle, that extract the time and

Data Abstraction in Coordination Constraints 161

the temperature attributes from the data. These values are then filtered by filter
channels, depicted with zig-zag lines, that allow data to flow if the associated
predicate holds for the data flowing. For example, isF checks if the temperature
is measured in Fahrenheit degrees. The result from the ¬night filter acts as a
barrier to the temperature value, allowing data to flow to the display only if it
is daytime. The connector evolves atomically, in the sense that data only flows
from the producer to the consumer if it is daytime, if the temperature is in
Fahrenheit or in Celsius, and if the display accepts data. If the predicates ¬night
and isC hold but the display cannot receive data, then the producer is not allowed
to publish the value. This reflects the role of data-constraints for coordination,
where the mere attempt to send data influences dataflow.

Summarizing, we model and execute synchronous connectors where arbitrary
data operations can influence dataflow—even when these cannot be handled by
SMT solvers—, by using a SAT solver after a pre-analysis of the coordination
constraints. These data operations can be described, for example, using Java
methods. We show that our approach is sound and complete, and we compare
the overhead cost of decoupling the data analysis against more traditional ap-
proaches where the data constraints are directly solved by an SMT solver. Our
small benchmark shows that using data values and operations that can be en-
coded into complex integer calculations can be more efficiently handled using
our methodology. However, when they can be encoded with simple integer ex-
pressions the performance of using the SMT solver directly is sometimes similar
or better than our approach, depending on the number of new boolean variables
introduced during the encoding into a boolean formula.

The rest of this paper is organised as follows. Section 2 motivates our ap-
proach. Section 3 presents a constraint-based semantics for Reo. Section 4 de-
scribes predicate abstraction. Section 5 evaluates the performance of abstracting
over data. Section 6 discusses related work and Section 7 concludes our paper.

2 Motivation

When viewing coordination as constraints, the decision of what and where data
can flow is made using constraint solving techniques. More precisely, a connector
imposes a set of constraints, which evolve during the lifetime of the connector,
whose solutions describe the dataflow through the connector. Finding these so-
lutions is an NP problem, wich can be solved using off-the-shelf SAT and SMT
solvers. By doing this the expressivity of coordination constraints becomes tighly
coupled with the expressivity of the constraint solver. For example, if a connec-
tor wants to filter all time references based on a predicate night, the constraint
solver needs to represent constraints over time references. This paper proposes
an approach that allows operations over data values to be performed outside the
underlying constraint solver, allowing functions and predicates to be defined in
a more conventional programming language such as Java.

The main challenge when implementing an engine that executes connectors
such as the one in Fig. 1 is to decide which data should flow in each of the ports,

162 J. Proença and D. Clarke

taking into account operations over arbitrary data types, including temperature
values and time references. We consider two main approaches to this challenge:

SMT. The time references and temperature values are represented as integers
that are used by an off-the-shelf SMT solver to find a solution. This encoding
into integers can be done, for example, by representing the time in minutes
and combining it with the value of the temperature using simple arithmetic
operations. This restricts the expressivity of the constraints to the language
of the SMT solver.

SAT. The data constraints are reduced to a simpler constraint over boolean
variables using an abstraction technique, and solved using an off-the-shelf
SAT solver. The actual values flowing through the ports are calculated based
on solutions from the SAT solver. In our example a possible boolean solution
could say that only the predicates ¬night and isC hold, and that there is flow
in all three ports. Based on this solution we can infer that the value 8:35am
flows on the port connected to the display.

Not all solutions to an abstract constraints are guaranteed to produce a so-
lution to the original constraints. Therefore we focus on a subset of constraints
that provide this guarantee. For example, we consider the connector from Fig. 1
to be ill-defined without the data producer, since a solution for the abstract
constraints would not clearly map to a solution in the original formula.

3 Coordination as Constraints

Connectors are viewed as a set of constraints representing valid coordination
patterns, following our previous work [7]. Each port has a boolean variable x ∈ X
indicating presence of dataflow and a data variable x̂ ∈ X̂ indicating what data
flows. Coordination evolves in rounds: in each round the coordinated components
contribute to the constraints of the connector, a solution for these constraints is
found, and both the connector and components are updated accordingly.

3.1 Guarded Commands

When compared with the original formulation of coordination constraints for
Reo [7], we use an (asymmetric) attribution operator for data variables instead
of equality, and we allow attributions to be only in positive positions (they can
never be negated). The resulting data causality is exploited in our abstraction
technique and in the definition of well-defined connectors, but it is does not mod-
ify the semantics of connectors. The requirement of having assignments in posi-
tive positions facilitates the analysis of connectors, while reflecting the concept
of connectors as structures where data flows through. Formulas are represented
by Dijkstra’s guarded commands [8].

ψ ::= φ→ s | ψ1 ψ2 | � (formulas)
φ ::= x (∈ X) | P (x̂) | φ1 ∧ φ2 | ¬φ (guards)
s ::= φ | s1 ∧ s2 | x̂ := d (∈ D) | x̂ := ŷ | x̂ := f(ŷ) (statements)

Data Abstraction in Coordination Constraints 163

Table 1. Channel Encodings

Channel Representation Constraints Channel Representation Constraints

Sync a b
a ↔ b

b → b̂ := â
LossySync a b

b → a

b → b̂ := â

SyncDrain a b a ↔ b FIFO-E a b ¬b

SyncSpout a b a ↔ b FIFO-F(d) a bd
¬a

b → b̂ := d

Merger ca
b

c ↔ (a ∨ b)
¬(a ∧ b)

a → ĉ := â

b → ĉ := b̂

Replicator a b
c

a ↔ b
a ↔ c

a → b̂ := â∧
ĉ := â

Filter(P) a b
P b ↔ (a ∧ P (â))

b → b̂ := â
Transf(f) a b

f a ↔ b

b → b̂ := f(â)

Writer(d) W(d) a a → â := d Reader R a 	

Synchronous variables x ∈ X range over booleans and data variables in X̂ =
{x̂ | x ∈ X} range over a global data set D. Each synchronous variable corre-
sponds to exactly one port of a Reo connector. � is true, P ∈ P is a unary
predicate over data variables, and f ∈ F is a unary total function. A guarded
command φ → s is interpreted as ¬φ ∨ s, ψ ψ′ as ψ ∧ ψ′, and x̂ := ŷ as x̂ = ŷ.
The other logical connectives for guards can be encoded as usual.

Definition 1 (solution). A solution to a formula ψ defined over ends X is a
mapping σ from X to {�,⊥}, and from X̂ to data values D, such that σ satisfies
ψ, regarded as a boolean expression, according to the satisfaction relation σ |= ψ
defined below. Each predicate symbol P and function symbol f have an associated
interpretation, denoted by I(P) and I(f), such that I(P) ⊆ D and I(f) ⊆ D2.

σ |= � always σ |= x iff σ(x) = �
σ |= x̂ := d iff σ(x̂) = d σ |= ¬ψ iff σ � ψ
σ |= x̂ := ŷ iff σ(x̂) = σ(ŷ) σ |= ψ1 ∧ ψ2 iff σ |= ψ1 and σ |= ψ2

σ |= x̂ := f(ŷ) iff (σ(ŷ), σ(x̂)) ∈ I(f) σ |= P (x̂) iff σ(x̂) ∈ I(P)

3.2 Reo as Constraints

Table 1 presents the formulas of some of the most common Reo primitives [7].
It includes a writer that produces a data value d and reader that receives any
data value, which are used to abstract away the behaviour of more complex com-
ponents. We write ψc to denote the current formula imposed by a connector c.
Composition of a connector is simply given by the conjunction of their formulas.

The formula ψni below constrains the connector on the left of Fig. 2, a sim-
plified version of the connector in Fig. 1.

164 J. Proença and D. Clarke

x→ x̂ := 8:35am x↔ y y → ŷ := DST(x̂) (y ∧ ¬night(ŷ))↔ z z → ẑ := ŷ

A possible solution for ψni is {x, y, z �→ �; x̂ �→ 8:35am; ŷ, ẑ �→ 9:35am}, assum-
ing DST adds one hour, and that ¬night(9:35am) holds. This solution states that
x, y, z have dataflow, 8:35am flows through x, and 9:35am flows throw y and z.

3.3 Well-Defined Formulas

A well-defined formula is a formula to which our predicate abstraction can be
applied. More precisely, a well-defined formula must have solutions that produce
only well-defined routes, where each route is a set of data assignments derived
from a given solution. Well-definedness of a route reflects (1) the absence of
loops, (2) the absence of multiple assignments to a single variable, and (3) the
existence of a data value at the end of each tree of assignments. For example,
the following two formulas are ill-defined: (a ∧ b) → â := b̂ a → â := 5 and
a→ (â := b̂ ∧ b̂ := â). The first assigns â to b̂ and to 5 when a ∧ b holds, which
could be fixed by replacing the second guard by a ∧ ¬b. The second assigns â
and b̂ to each other, creating a loop of data assignments. Both formulas have
routes that violate condition (3), which could be fixed by extending them with
the guarded command � → b̂ := 7.

Definition 2 (route). A route r of a formula ψ is a set of assignments asso-
ciated to a solution σ |= ψ, given by routeσ(ψ) defined below.

routeσ(φ→ s) =

{
routeσ(s) if σ∗(g)
∅ otherwise

routeσ(ψ1 ψ2) = routeσ(ψ1) ∪ routeσ(ψ2)
routeσ(φ) = ∅
routeσ(x̂ := d) = {x̂ �→ d}
routeσ(x̂ := ŷ) = {x̂ �→ ŷ}
routeσ(x̂ := f(ŷ)) = {x̂ �→ ŷ}
routeσ(s1 ∧ s2) = routeσ(s1) ∪ routeσ(s2)

where:
σ∗(x) = σ(x)
σ∗(¬φ) = ¬(σ∗(φ))
σ∗(φ1 ∧ φ2) = σ∗(φ1) ∧ σ∗(φ2)
σ∗(P (x̂)) = σ(x̂) ∈ I(P)

Notation. routes(ψ) represents the set of all routeσ(ψ) for any σ, and route�(ψ)
the set of all assignments in ψ. Then for every r ∈ routes(ψ), r ⊆ route�(ψ).

Definition 3 (well-definedness). A route r is well-defined if the conditions
below hold. A formula ψ is well-defined if all its routes are well-defined.

1. The transitive closure of r is not reflexive (no loops).
2. Each variable x̂ is assigned at most once in r (single assignment).
3. If (x̂ �→ t) ∈ r, then t ∈ D or exists t′ such that (t �→ t′) ∈ r (data source).

Given a well-defined route it is always possible to calculate the data values
flowing on this route. This is intuitively done by copying data starting from the
data values, and using the functions extracted from guarded commands with

Data Abstraction in Coordination Constraints 165

guards that evaluate to true. In the formula ψni defined in Section 3.2, and
using the solution σ presented there, routeσ(ψni) returns {ẑ �→ ŷ ; ŷ �→ x̂ ; x̂ �→
8:35am}. This route can be used to retreive back the values of ŷ and ẑ, knowing
that ŷ := DST(x̂), which can be inferred from ψni and σ.

In practice, connectors with well-defined formulas need to explicitly mention
what data values can be sent by producers; data cannot “created” during con-
straint solving. Two concerns emerge from this formulation of well-definedness.
First, it seems unnatural to build a route from a given solution σ, and to use
this route later to discover what values should flow through the route, since this
is already given by σ. Second, checking well-definedness (as it is) requires iter-
ating over all solutions. Our first observation is that routeσ(·) does not use the
values flowing on the ports: only the synchronisation variables and the validity
of the predicates. The abstraction technique described later will provide exactly
this information. Regarding the cost of verifying well-definedness, we chose to
test sufficient (yet not necessary) conditions for being well-defined. We dedicate
the next subsection to this. Furthermore, our data abstraction technique (cf.
Section 4) will not produce invalid behaviour from ill-defined connectors; in the
worse case it may fail to find the next step.

3.4 Verifying Well-Definedness

We provide a simple procedure to guarantee well-definedness, which does not
cover all well-defined formulas. We address each of the three conditions in
Definition 3 separately, and informally discuss the correctness of our procedure.

Loop Free. Instead of searching for loops in routes from routes(ψ), we do so
in route�(ψ). Since every route is a subset of route�(ψ), these will also be loop
free. An example of a loop-free formula that will be wrongly identifed as having
loops is a→ b̂ := ĉ ¬a→ ĉ := b̂, since the mutual data dependency between b̂
and ĉ is guarded by a variable a that guarantees that the loop never occurs.

When considering formulas from traditional Reo primitive connectors, the
direction of dataflow is fixed. It is still possible to create Reo connectors that
yield wrongly identifed loops, but we find these to be complex and unnatural.

Single Assignment. We guarantee each variable to be uniquely assigned by
construction. More precisely, we provide a condition that guarantees that the
composition (conjunction) of two formulas preserves the single-assignment prop-
erty. Intuitively two formulas are pluggable if they assign different variables.

Definition 4 (read and write variables, pluggable). We say x̂ is a read
variable in ψ if either (ŷ := x̂) ∈ route�(ψ) or (ŷ := f(x̂)) ∈ route�(ψ), and is
a write variable in ψ if (x̂ := t) ∈ route�(ψ), for some f , ŷ, and t. Write ?ψ
and !ψ to denote all read and write variables of ψ, respectively. Two formulas
ψ1 and ψ2 are pluggable if:

!ψ1 ∩ !ψ2 = ∅.

166 J. Proença and D. Clarke

3

4

5

2

1

a
b

c
d e

23◦C Dsp
x y z

9:35pm Dsp
isF

isC

F2X

C2X

isValidDST ¬night

Fig. 2. Calculating dependencies of predicates; DST updates the time according to the
daylight saving time, and F2X and C2X create a structure X that it verified by isValid

By composing only pluggable formulas the effort of verifying the
single-assignment property is restricted to only smaller formulas of primitive
connectors. All formulas from Table 1 obey the single-assignment property.

Data Source. We guarantee routes of a formula to always end up in a data
value also by construction, by requiring (1) formulas to be pluggable and (2) each
primitive formula ψp to use only data variables with dataflow. More precisely,
every solution σ |= ψp must obey x̂ ∈ var(routeσ(ψp)) ⇒ σ(x), where var(·)
returns the variables present in a route. Finally, we also require (3) all read
variables to be write variables in the global formula ψ, that is, x̂ ∈ ?ψ ⇒ x̂ ∈ !ψ.

All formulas in Table 1 obey requirement (2): in all solutions of these formulas
if a variable x̂ is written or read then x is set to true. Dropping the guard b in
the formula of the Sync channel, for example, would break this property, since
b̂ could be read even when b is false. The third requirement is violated every
time the SyncSpout is connected to a channel via a shared port x, since x̂ will
be a read variable but not a write variable. This can be solved without violating
other requirements simply by using a variation of the SyncSpout channel that
always outputs a constant value. In fact, we do not know any system modelled
in Reo that uses the data value produced by the SyncSpout channel.

4 Data Abstraction

This section describes how to encode formulas over data into boolean formulas.
This is done in two phases: (1) the dependencies for each predicate are calculated
by tracing back the provenience of data, and (2) new boolean variables replace
the existing data variables, used to dictate which predicates hold.

Fig. 2 illustrates the dependency analysis for predicates. From trace 3, for ex-
ample, we deduce that isValid depends on the evaluation of isValid(F2X(23◦C)).
By evaluating the traces 1 to 5 the data values are no longer needed when search-
ing for valid solutions. This section will describe how to transform formulas—
such as the one in Section 3.2—into formulas over booleans—such as the one be-
low. The expression within square brackets is replaced by its evaluation. Observe
that z does not have any data variable, since it does not affect any predicate.

x→ x̂ni.dst := [night(DST(8:35am))] x↔ y y → ŷni := x̂ni.dst (y ∧ ¬ŷni)↔ z

Data Abstraction in Coordination Constraints 167

4.1 Precomputed Domain Invariants

Write P.f1.f2 . . . fn to denote a predicate P ∈ P with an associated sequence of
functions that have to be evaluated before the predicate. Define:

(P.f1. · · · .fn) ◦ f =

{
Error if f ∈ {f1, . . . , fn}
P.f1. · · · .fn.f otherwise

and write {P1, . . . ,Pn} ◦ f to denote {P1 ◦ f, . . . ,Pn ◦ f} \ {Error}. Note that
every function in a connector is considered unique.

For each port x ∈ X in a formula ψ we define its domain invariant Dx as the
set of predicates and functions that can be reachable, intuitively captured by
the 5 traces in Fig. 2. More precisely, each Dx is the smallest set of predicates
such that ρ(ψ) holds, where ρ(·) is defined as:

ρ(P (x̂)) = Dx ⊇ {P} ρ(φ → s) = ρ(φ) ∧ ρ(s) ρ(ψ1 ψ2) = ρ(ψ1) ∧ ρ(ψ2)

ρ(x̂ := ŷ) = Dy ⊇ Dx ρ(φ1 ∧ φ2) = ρ(φ1) ∧ ρ(φ2) ρ(¬ψ) = ρ(ψ)

ρ(x̂ := f(ŷ)) = Dy ⊇ (Dx ◦ f) ρ(s1 ∧ s2) = ρ(s1) ∧ ρ(s2) ρ(_) = true .

Domain invariants are always finite sets because the definition of ◦ prevents the
application of the same function twice. Well-definedeness does not prevent this
duplication because it relies on routes(·), while ρ(·) relies on all assignments.

The formula ψni for the left connector of Fig. 2, presented in Section 3.2,
yields the following domain invariants.

Dx = {ni.dst} Dy = {ni} Dz = ∅

We write ni and dst as shorthands for night and DST, respectively. These domain
invariants are indeed the smallest solution for the constraints given by ρ(ψni),
namely Dx ⊇ (Dy ◦ dst) and Dy ⊇ {ni}. Applying the same reasoning for the
connector on the right of Fig. 2 we can conclude that Da = {isF,F2X.isValid,C2X.
isValid, isC}. The remaining domain invariants can be calculated in a similar way.

4.2 Predicate Abstraction

This subsection formalises the encoding from a formula ψ into a new boolean
formula, such as the one exemplified right before Section 4.1.

Let [P.f1. · · · .fn(d)] = P (f1(. . . (fn(d)))), where n ≥ 0 and d ∈ D.1 The
function [·], defined below, receives a formula ψ over arbitrary data types in D
and returns a new formula over booleans, i.e., data variables in [ψ] range over
booleans. This transformation is a variant of predicate abstraction [9].

[φ→ s] = [φ]→ [s] [x] = x [P (x̂)] = x̂P [¬ψ] = ¬[ψ]
[ψ1 ψ2] = [ψ1] [ψ2] [x̂ := d] =

∧
P∈Dx

x̂P := [P (d)]

[φ1 ∧ φ2] = [φ1] ∧ [φ2] [x̂ := ŷ] =
∧

P∈(Dx∩Dy)
x̂P := ŷP

[s1 ∧ s2] = [s1] ∧ [s2] [x̂ := f(ŷ)] =
∧

P∈Dx,(P◦f)∈Dy
x̂P := ŷP◦f

1 More precisely, [P.f1. · · · .fn(d)] iff (n = 0) ∧ (d ∈ I(P)) or ∃d1,...,dn∈D · (d1 ∈
I(P)) ∧ (∀i∈{1,...,n} · (di+1, di) ∈ I(fi)), where dn+1 = d.

168 J. Proença and D. Clarke

Predicates and functions are computed during the encoding of data assign-
ments x̂ := d. Each of these assignments originates a new variable x̂P for every
P ∈ Dx given by the domain invariants, explained before, such that x̂P ↔ P (x̂).
Hence the number of new variables depends on the size of the domain invariants.
Ports with an empty domain invariant will not have variables in the abstract for-
mula, and ports that can affect n predicates will have at least n new variables.

4.3 Soundness and Completeness

Our main claim is that every solution for a well-defined formula ψ can be found
by finding a solution for its predicate abstraction [ψ]. This requires the abstrac-
tion function [·] to be sound and complete. Soundness means that every solution
σ of ψ must also be a solution of [ψ], after mapping each data assignment to the
assignments of the new data variables as follows.

[σ] = {x̂P �→ [P (σ(x̂))] | x̂ ∈ dom(σ) ∩ X̂ , P ∈ Dx}
∪ {x �→ σ(x) | x ∈ dom(σ) ∩ X}

Completeness means that every solution of [ψ] must be the abstraction of at
least one solution in ψ. Both proofs of soundness and completeness rely on the
definition of ρ(·) and [·], and completness requires formulas to be well-defined.

Theorem 1 (Soundness). σ |= ψ ⇒ [σ] |= [ψ].

Proof. Start by fixing the domain invariant of every port. The proof follows by
induction on the structure of formulas, applied to guards, statements, and to
guarded commands. Soundness of the conjunction of guarded commands follows
directly from the soundness of guarded commands and the definition of |=. �

Theorem 2 (Completeness).
ψ is well-defined and σ′ |= [ψ] ⇒ ∃σ · (σ |= ψ) ∧ (σ′ = [σ]).

Proof. We build a solution σ for ψ based on σ′, knowing that ψ is well defined.

1. Start with the smallest σ such that ∀x ∈ (dom(σ′) ∩ X) · σ(x) = σ′(x).
2. Assume (so far) that, for every x̂P ∈ dom(σ′), σ′(x̂P) = � ⇒ σ(x̂) ∈ I(P).

Calculate r = routeσ′(ψ) using the assumption above to resolve σ∗(P (x̂)).
3. The route r is well-defined (based on the assumption mentioned above),

hence it is possible to calculate the data flowing in every port along these
routes. Starting from each data value in r, apply the assignments and func-
tions induced by r to calculate these data values.

Observe that not all x and x̂ need to have a value assigned by σ. Extending σ
with assignments of variables not in σ will not modify σ |= ψ, since the validity
of the route is enough to guarantee satisfaction.

The assumption introduced in (2) can be shown based on the the construction
of σ and on the routes induced by σ′ on both ψ and its abstraction. �

Data Abstraction in Coordination Constraints 169

5 Evaluation

We validate our approach by applying predicate abstraction to five connectors
with varying sizes. All but the last connector use integers as the data domain,
allowing us to compare the performance of our techniques against the direct
usage of an SMT solver. The goal of this evaluation is to understand the overhead
of pre-computing the operations over data before invoking a SAT solver, possibly
introducing a larger number of variables. The last connector uses a Java data
structure instead of integers, showing that the performance is not compromised
when dealing with other data domains, and to emphasise that our abstraction
technique supports more expressive data-sensitive connectors.

Our prototype implementation uses the Z3 SMT solver2 to solve expressions
with booleans and integers. Z3 is a high-performance theorem prover with an
incorporated SMT solver being developed by Microsoft. In our experiments we
use only integer arithmetic, although Z3 supports many other theories.

We evaluate our test cases using the following solver configurations.

Z3 Z3 is used to solve the original data constraints.
[Z3] The original constraints are encoded into boolean constraints using pred-

icate abstraction, and solved with Z3; and a solution for the original con-
straint is produced.

Our prototype implementation is developed using the Scala language,3 which
produces Java binary classes, can import Java libraries, and supports functional
programming. The source code and our benchmarks can be found online.4 To
integrate Z3 with Scala we use the ScalaˆZ3 libraries developed at EPFL [13].

5.1 Test Cases

Our approach is evaluated using five test cases: the temperature connector from
our motivating example, a set of transactional functions in sequence and in
parallel, and two variants of an approval system.

Temperature. This connector (Fig. 3) is based on our motivating example from
Section 1. The data value is regarded as an integer, the transformer channels per-
form simple arithmetic operations, and the predicates use simple inequalities.

Transactional functions We define a transactional function to be a tuple〈
pre, f, f−1, post

〉
, where f is the main function, f−1 is a compensation that must

be applied to undo f, and pre and post are pre- and post-conditions of f. The test
cases consist of the sequential and parallel composition of transactional functions
(Fig. 4). Data enters the connector via the in port and exits either via out if both
conditions hold, or via stopped otherwise. The stop port propagates the stopping
signal in the sequential composition. Predicates and functions use again simple
arithmetic operations and inequalities, and are setup so that all transactions
succeed except the last transaction in the sequence.
2 http://research.microsoft.com/projects/z3
3 http://www.scala-lang.org
4 http://is.gd/reopp

http://research.microsoft.com/projects/z3
http://www.scala-lang.org
http://is.gd/reopp

170 J. Proença and D. Clarke

15◦C @ 8:35am
getT

ime

getTemp

F2C

¬night

isF

isC

...
n

Fig. 3. Temperature connector connected to n outputs

Ti
out

stop

in

stopped

prei fi posti

¬prei ¬postif−1
i

W T1 T2 Tn· · ·

W T1 T2 Tn· · ·

Fig. 4. Connectors with transactional functions

Approval System. The approval system (Fig. 5) captures the merging from
several applicants, each publishing their classification. Each applicant provides
a tuple of 5 integers, consisting of a unique identifier and 4 classifications from
0 to 20. The predicates isApproved and isDenied check if these ratings are within
a certain thresholds, encoded in two variants: (1) as expressions that require
arithmetic operations to convert back and forward tuples (based on conversions
to and from base 21), and (2) as Java methods over tuples of elements.

5.2 Results and Discussion

The constraints for our test cases are solved using a 8-core 2.4 GHz Intel Xeon
desktop with 16 GB RAM running Ubuntu Linux. Each measurement was per-
formed 10 times, and the average was used (Fig. 6). The time covers the building
of formulas, the solving of constraints, and the calculation of the dataflow, per-
formed at runtime. In the first and last two graphs a log-log scale is used.

Z3 uses SAT solving to iteratively search for solutions to more complex the-
ories, in our case the theory of integers. Our abstraction also reduces a more
complex problem to a SAT problem. Probably due to internal optimisations in
Z3, and the usage of more efficient memory operations, its performance is in
some cases similar or better than predicate abstraction.

The transactional functions running in parallel exhibit the best results for
predicate abstraction compared to Z3. This is partially justified by the small

...

A1

A2

An

Approved

Denied

ToRevise

isApproved

isDenied

¬isApproved ∧ ¬isDenied

Fig. 5. Approval n-ary connector

Data Abstraction in Coordination Constraints 171

5 50 500 5000

1
10

10
00

Temp − Size

T
im

e
(m

ill
is

ec
on

ds
) Z3

[Z3]

10 20 30 40 50

0
20

00
50

00

SeqT − Size

Z3
[Z3]

50 100 200

0
40

00
10

00
0

ParT − Size

Z3
[Z3]

1 2 5 10 50

1
10

10
00

ApprInt − Size

T
im

e
(m

ill
is

ec
on

ds
)

Z3
[Z3]

1 2 5 10 50

1
10

10
00

ApprData − Size

[Z3]

Fig. 6. Performance evaluation of our five parameterised test case connectors

number of variables added during predicate abstraction, and because pre-com-
pilation of the predicates is not more expensive since all predicates need to
be evaluated also for Z3. Conversely, the number of variables in the sequence
of transactional functions is very high, reducing the performance of [Z3]. The
unexpected variations of time for Z3 in the approval system are probably a
consequence of the complexity of its predicates and of the high valued integers
involved.5 This complexity has little impact when using predicate abstraction,
which performs faster and more consistently. Furthermore abstraction allows the
usage of Java data structures and operations, allowing a reimplementation of the
approval system in a more structured way and without loss of performance.

Summarising, we conjecture that scenarios with complex data functions and
predicates benefit from our predicate abstraction mechanism, scenarios with a
large number of simple functions and predicates and no complex calculations
benefit from using SMT solvers, and in scenarios with a smaller number of data
operations the difference of performance is small. Using predicate abstraction can
also be beneficial in scenarios with a large number of predicates and functions,
provided the encoding does not produce a large number of variables, as in ParT.

6 Related Work

A recent attempt to coordinate Erlang actors uses special actors with associ-
ated Reo connectors [11]. That work illustrates the need to support data con-
straints, since there was no automatic tool to generate coordination code from
5 A number of runs for Z3 timed out after 5 min and were left out of this benchmark.

172 J. Proença and D. Clarke

Reo connectors. From the verification perspective, model checking techniques
for Reo connectors exist based on mCRL2 and on its representation of data
structures [12]. Regarding implementations of Reo, Changizi et. al [6] extended
the automata-based compilation approach with filters and transformers. These
are handled by a SAT/SMT solver, though the choice of filters and transformers
is limited to those expressible in the language of the solver. Their process of
building an automaton searches for all solutions for all states. Our work is more
flexible by considering only one state and solution at a time during execution, and
it supports formulas with data operations outside the underlying solver. Jong-
mans et al.[10] orchestrated web services based on Reo, and integrated external
functionality by generating Java code corresponding to the automata-with-data-
constraints model of Reo. The resulting code has an exponential number of
formulas, without data transformations, that are checked sequentially. Our ap-
proach improved on these implementations by exploiting the flexibility of con-
straints, not limited by the expressivity of the underlying constraint solver, and
by identifying a suitable set of connectors for our abstraction techniques.

Predicate abstraction is a technique used to reduce complex problems to sim-
pler ones while preserving some relevant properties [9]. This technique is com-
monly used for model checking [2], where concrete states of a system are mapped
to a smaller set of abstract states based on a set of predicates. New predicates
can be added to expand the set of abstract states, in a process called abstraction
refinement. Our variation of predicate abstraction modifies an original system by
replacing operations over data by boolean variables that reflect properties over
this data. Instead of refining the abstraction until a solution is found (also exper-
imented outside this paper), we identify systems that do not require abstraction
refinement.

Our work falls within the implicit programming paradigm. Köksal et al. pro-
posed to integrate the power of SAT/SMT solvers non-intrusively into sequen-
tial, imperative programs [14]. In contrast, our approach targets coordination
languages, and addresses the expressivity of data-sensitive synchronous systems.

7 Conclusions

This paper explores an execution model for data-sensitive connectors based on
predicate abstraction. We exploit the fact that the vast majority of connectors
includes concrete data values to precompute the predicates used by the connec-
tor before solving the data constraints. A simple analysis of the constraints yields
which predicates should be computed for each variable, and the original predi-
cates are abstracted to boolean variables holding the precomputed results. Our
approach is shown to be sound and complete for well-defined connectors. As a
result, one can specify and run the coordination layer between components using
high-level constraints that inspect and manipulate data offered by producers.

This abstraction technique has been exploited to investigate new interaction
mechanisms between the solver and external components during constraint solv-
ing, by using functions and predicates that perform interaction [15]. An interest-
ing direction for future work is to encode generic data constraints into formulas

Data Abstraction in Coordination Constraints 173

over simple theories, instead of boolean formulas, making a tradeoff between re-
lying on more powerful solvers and avoiding the potential increase of variables.

References

1. Baier, C., Sirjani, M., Arbab, F., Rutten, J.J.M.M.: Modeling component con-
nectors in Reo by constraint automata. Science of Computer Programming 61(2),
75–113 (2006)

2. Ball, T., Podelski, A., Rajamani, S.K.: Relative completeness of abstraction re-
finement for software model checking. In: Katoen, J.-P., Stevens, P. (eds.) TACAS
2002. LNCS, vol. 2280, pp. 158–172. Springer, Heidelberg (2002)

3. Bliudze, S., Sifakis, J.: Synthesizing Glue Operators from Glue Constraints for the
Construction of Component-Based Systems. In: Apel, S., Jackson, E. (eds.) SC
2011. LNCS, vol. 6708, pp. 51–67. Springer, Heidelberg (2011)

4. Bozga, M., Jaber, M., Maris, N., Sifakis, J.: Modeling dynamic architectures using
dy-bip. In: Gschwind, T., De Paoli, F., Gruhn, V., Book, M. (eds.) SC 2012. LNCS,
vol. 7306, pp. 1–16. Springer, Heidelberg (2012)

5. Bruni, R., Ferreira, C., Kauer, A.K.: First-order dynamic logic for compensable
processes. In: Sirjani [17], pp. 104–121

6. Changizi, B., Kokash, N.: Arbab. A constraint-based method to compute semantics
of channel-based coordination models. In: International Conference on Software
Engineering Advances (2012)

7. Clarke, D., Proença, J., Lazovik, A., Arbab, F.: Channel-based coordination via
constraint satisfaction. Science of Computer Programming 76 (2011)

8. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of pro-
grams. Commun. ACM 18(8), 453–457 (1975)

9. Graf, S., Saïdi, H.: Construction of abstract state graphs with PVS. In: Grumberg,
O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)

10. Jongmans, S.-S.T.Q., Santini, F., Sargolzaei, M., Arbab, F., Afsarmanesh, H.: Au-
tomatic code generation for the orchestration of web services with Reo. In: De
Paoli, F., Pimentel, E., Zavattaro, G. (eds.) ESOCC 2012. LNCS, vol. 7592, pp.
1–16. Springer, Heidelberg (2012)

11. Khosravi, R., Sabouri, H.: Using coordinated actors to model families of distributed
systems. In: Sirjani [17], pp. 74–88

12. Kokash, N., Krause, C., de Vink, E.P.: Reo + mCRL2: A framework for model-
checking dataflow in service compositions. Formal Aspects of Computing 24(2),
187–216 (2012)

13. Köksal, A.S., Kuncak, V., Suter, P.: Scala to the power of Z3: Integrating SMT
and programming. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011.
LNCS, vol. 6803, pp. 400–406. Springer, Heidelberg (2011)

14. Köksal, A.S., Kuncak, V., Suter, P.: Constraints as control. SIGPLAN Not. 47(1),
151–164 (2012)

15. Proença, J., Clarke, D.: Interactive interaction constraints. In: De Nicola, R.,
Julien, C. (eds.) COORDINATION 2013. LNCS, vol. 7890, pp. 211–225. Springer,
Heidelberg (2013)

16. Proença, J., Clarke, D.: Solving data-sensitive coordination constraints. CW Re-
ports CW637, Department of Computer Science, KU Leuven (February 2013)

17. Sirjani, M. (ed.): COORDINATION 2012. LNCS, vol. 7274. Springer, Heidelberg
(2012)

Global Consensus through

Local Synchronization

Sung-Shik T.Q. Jongmans and Farhad Arbab

Centrum Wiskunde and Informatica, Amsterdam, Netherlands
{jongmans,farhad}@cwi.nl

Abstract. Coordination languages have emerged for the specification
and implementation of interaction protocols among concurrent entities.
Currently, we are developing a code generator for one such a language,
based on the formalism of constraint automata (CA). As part of the com-
pilation process, our tool computes the CA-specific synchronous product
of a number of CA, each of which models a constituent of the protocol
to generate code for. This ensures that implementations of those CA at
run-time reach a consensus about their global behavior in every step.
However, using the existing product operator on CA can be practically
problematic. In this paper, we provide a solution by defining a new, local
product operator on CA that avoids those problems. We then identify a
sufficiently large class of CA for which using our new product instead of
the existing one is semantics-preserving.

1 Introduction

Context. Coordination languages have emerged for the specification and imple-
mentation of interaction protocols among concurrent entities (services, threads,
etc.). This class of languages includes Reo [1,2], a graphical dataflow language for
compositional construction of connectors : communication media through which
entities can interact with each other. Figure 1 shows example connectors in
their usual graphical syntax. Briefly, connectors consist of one or more channels,
through which data items flow, and a number of nodes, on which channel ends
coincide. Through connector composition (the act of gluing connectors together
on their common nodes), users can construct arbitrarily complex connectors.

To implement and use connectors in real applications, one must derive im-
plementations from their graphical specification [3,4,5,6,7,8,9], as precompiled
executable code or using a run-time interpretation engine. Roughly two imple-
mentation approaches currently exist. In the distributed approach, one imple-
ments the behavior of each of the k constituents of a connector and runs these
k implementations concurrently as a distributed system; in the centralized ap-
proach, one computes the behavior of a connector as a whole, implements this
behavior, and runs this implementation sequentially as a centralized system.

Currently, we are developing a Reo-to-Java code generator using the central-
ized approach based on the formalism of constraint automata (ca) [10]. On input
of a graphical connector specification (as an Xml file), our tool automatically

C. Canal and M. Villari (Eds.): ESOCC 2013, CCIS 393, pp. 174–188, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Global Consensus through Local Synchronization 175

A B

C

A B

C D

A B

C

d

A B

C D

E

Fig. 1. Four example connectors. Open circles represent boundary nodes, on which
entities perform i/o-operations; filled circles represent nodes for internal routing. Ev-
ery connector in this figure consists of two primitives (i.e., minimal subconnectors);
the pairs of primitives in the first, third, and fourth connector have one common
node.

generates code in four steps. First, it extracts from the specification a list of
the channels constituting the specified connector. Second, it consults a database
to find for every channel in the list a “small” ca that formally describes the
behavior of that particular channel. Third, it computes the product of the ca in
the constructed collection to obtain one “big” ca describing the behavior of the
whole connector. Fourth, it feeds a data structure representing that big ca to a
template. Essentially, this template is an incomplete Java class with “holes” that
need be “filled” (with information from the data structure). The class generated
in this way implements Java’s Runnable interface. This means that a Java vir-
tual machine can execute the implemented run method (declared in Runnable

and generated by our tool), which simulates the big ca computed in the third
step, sequentially in a separate thread (details appear elsewhere [4]).

Problem. Computing one big ca (the third step of the centralized approach)
and afterward translating it to sequential code (the fourth step) can be prob-
lematic: at run-time, the generated implementation may unnecessarily restrict
parallelism among independent transitions.1 The problem is implementing such
a big ca using exactly one thread: single-threaded programs cannot execute
multiple independent transitions simultaneously, but instead, they force those
transitions to execute one after the other (see Section 2 for details). Conse-
quently, although formally sound, the generated implementation may run overly
sequentially (e.g., if the first transition to execute takes a long time to complete,
while other transitions could have fired manifold during that time).

One approach to this problem is to not compute one big ca but generate code
directly for each of the small ca instead, essentially moving from the centralized
approach to the distributed approach: the implementations of the small ca com-
pute the product operators between them at run-time instead of at compile-time.
Although this approach solves the stated problem—independent transitions can
execute simultaneously—the necessary distributed algorithms for run-time prod-
uct computation may inflict a substantial amount of overhead.

1 Independent transitions cannot disable each other by firing.

176 S.-S.T.Q. Jongmans and F. Arbab

α = β = γ = δ = ε = ζ =

{A , B} {B , C} {C , D}

{B}

{C}

{A , C , E} {B , D}

{E , D}

Fig. 2. Port automata, denoted by α, β, γ, δ, ε, and ζ, describing the behavior of
the primitives constituting the example connectors in Figure 1: α and β model the
primitives in the first connector, α and γ the primitives in the second, α and δ the
primitives in the third, and ε and ζ the primitives in the fourth.

Contribution. This paper provides a better solution to the stated problem by of-
fering a middle ground between centralized and distributed approaches, wherein
some subsets of the constituent automata are statically composed to comprise a
distributed system of locally centralized automata. Typically, each locally cen-
tralized automaton interacts/synchronizes with few other such automata for its
transitions, while it represents the composition of a subset of the constitutent
automata that interact/synchronize with each other relatively heavily.

Taking the purely distributed approach as our starting point, we define a
new product operator whose computation at run-time requires only relatively
simple distributed algorithms—ca need to communicate only locally (i.e., with
“neighbors”) instead of globally (i.e., with everybody)—while allowing indepen-
dent transitions to execute simultaneously. We then characterize a class of prod-
uct automata where substituting the existing product operator with our new
product operator is semantics-preserving. This class includes product automata
whose constituents communicate only asynchronously with each other, and so,
the optimization technique based on the identification of synchronous and asyn-
chronous regions of connectors can be combined with our results [8].

Although inspired byReo,we can express ourmain results in a purely automata-
theoretic setting.We therefore skip an introduction to Reo; interested readersmay
consult [1,2].

2 Preliminaries: Port Automata

Many formalisms exist for mathematically defining the semantics of connec-
tors [11]; our code generator, for instance, relies on constraint automata (ca).
In this paper, however, we adopt a simplification of ca, called port automata
(pa) [12]. We prefer pa, because they allow us to focus on the core of our problem
(synchronization of communication) without getting distracted by those details
of ca (the data exchanged in communication) irrelevant to our present purpose.
The results in this paper straightforwardly carry over from pa to ca.

A pa consists of a finite set of states and transitions between them, each of
which has a set of ports as label. A transition represents an execution step of a

Global Consensus through Local Synchronization 177

connector, from one internal configuration to the next, where synchronous inter-
action occurs on the ports labeling that transition. Let Port and State denote
global sets of ports and states (see [13, Appendix A] for formal definitions).

Definition 1 (Universe of port automata). The universe of pa, denoted by
Pa and typically ranged over by α, β, or γ, is the largest set of tuples (Q , P ,
−→ , ı) where:2

– Q ⊆ State; (states)
– P ⊆ Port; (ports)
– −→ ⊆ Q × ℘(P)×Q; (transitions)
– and ı ∈ Q. (initial state)

Figure 2 shows example pa. For instance, the {A , B}-transition of α describes
the only (infinitely repeated) execution step of the horizontal primitive, say Prim,
of the first connector in Figure 1. In that execution step, Prim has synchronous
interaction on nodes A (a write of data d by the environment) and B (the flow
of a copy of d from the horizontal to the vertical primitive). Similarly, the {A ,
C , E}-transition of ε means that the left-hand primitive of the fourth connector
in Figure 1 has synchronous interaction on nodes A (a write of data d by the
environment), C (a take of a copy of d by the environment), and E (the flow of
another copy of d from the left-hand to the right-hand primitive).

If α denotes a pa, let State(α), Port(α), and init(α) denote its states, ports,
and initial state (see [13, Appendix A] for formal definitions).

We adopt strong bisimilarity on pa as behavioral equivalence [12]: if α and β
are bisimilar, denoted by α ≈ β, α can “simulate” every transition of β in every
state and vice versa (see [13, Appendix A] for a formal definition).

Individual pa describe the behavior of individual connectors; the application
of the existing product operator to such pa models connector composition [12].
We define this operator in two steps.3 First, we introduce a relation that defines
when a transition of one pa, say Alice, and a transition of another pa, say Bob,
represent execution steps in which Alice and Bob weakly agree on their behavior.
In that case, Alice and Bob agree on which of their common ports to fire while
allowing each other to simultaneously fire other ports. In the following definition,
we represent a transition of Alice as a pair of port-sets: one for all Alice’s ports
(Pα) and one that labels a particular transition of hers (Pα). Likewise for Bob.

Definition 2 (Weak agreement relation). The weak agreement relation, de-
noted by ♦, is the relation on ℘(Port)2 × ℘(Port)2 defined as:

(Pα , Pα) ♦ (Pβ , Pβ) iff

[
Pα ⊆ Pα and Pβ ⊆ Pβ

and Pα ∩ Pβ = Pβ ∩ Pα

]
Next, we define the existing product operator on pa in terms of ♦.

2 Let ℘() denote the power set operator.
3 This simplifies relating this product operator to the product operator of Section 3.

178 S.-S.T.Q. Jongmans and F. Arbab

α� β = α � γ = α� δ = ε� ζ =

{A , B , C} {A , B}

{C , D}

{A , B , C , D}

{A , B}

{C}

{B , D}

{A , C , E , D}

Fig. 3. Port automata describing the behavior of the example connectors in Figure 1,
constructed using � (α, β, γ, δ, ε, and ζ denote the pa in Figure 2).

Definition 3 (Product operator). The product operator, denoted by � , is
the operator on Pa× Pa defined by the following equation:

α� β = (State(α) × State(β) , Port(α) ∪ Port(β) , −→ , (init(α) , init(β)))

where −→ denotes the smallest relation induced by:

qα
Pα−−→α q′α and qβ

Pβ−−→β q′β and (Port(α) , Pα) ♦ (Port(β) , Pβ)

(qα , qβ)
Pα∪Pβ−−−−→ (q′α , q′β)

(WkAgr)

qα
Pα−−→α q′α and qβ ∈ Qβ

and Pα ∩ Port(β) = ∅

(qα , qβ)
Pα−−→ (q′α , qβ)

(IndepA)

qβ
Pβ−−→β q′β and qα ∈ Qα

and Pβ ∩ Port(α) = ∅

(qα , qβ)
Pβ−−→ (qα , q′β)

(IndepB)

The previous definition reformulates the product of pa in [12], which is a simpli-
fication of the product of ca in [10]. Figure 3 shows examples of the application
of �. The {A , B , C , D}-transition in the second pa results from applying rule
WkAgr to disjoint sets of ports. This models that two independent transi-
tions coincidentally can happen simultaneously (true concurrency). The follow-
ing lemma states that bisimilarity is a congruence. See [12, Theorem 1] for a
proof.

Lemma 1.
[
α ≈ β and γ ≈ δ

]
implies α� γ ≈ β � δ

Furthermore, � is associative and commutative.
Interestingly, � “transitively” propagates synchrony over successive applica-

tions. We explain what this means with an example. Suppose Alice knows about
ports {A , B} and has one transition in which she fires exactly those ports. Simi-
larly, suppose Bob knows about ports {B , C} and has one transition in which he
fires exactly those ports. Because these two transitions satisfy ♦, the product of
Alice and Bob has one transition labeled by {A , B , C}. This means that Alice
and Bob always synchronize on their common port B: Alice can perform her
transition (i.e., is willing to fire B) only if Bob can perform his (i.e., is ready to
fire B) and vice versa. Now, suppose Carol knows about ports {C , D} and has

Global Consensus through Local Synchronization 179

one transition in which she fires exactly those ports. By the same reasoning as
before, the product of

[
the product of Alice and Bob

]
4 and Carol has one tran-

sition labeled by {A , B , C , D}. Thus, in the product of Alice, Bob, and Carol,
Alice “transitively” synchronizes with Carol, through Bob.5

The problem addressed in this paper is that code generators using the cen-
tralized approach produce connector implementations that may unnecessarily
restrict parallelism. To illustrate this problem, suppose Dave knows about ports
{E , F} and has one transition in which he fires exactly those ports. The prod-
uct of Alice, Bob, Carol, and Dave computed by a tool using the centralized
approach has three transitions: one labeled by {A , B , C , D} (Alice, Bob, Carol
make a transition), another labeled by {E , F} (Dave makes a transition), and
yet another labeled by {A , B , C , D , E , F} (Alice, Bob, Carol and Dave coinci-
dentally make a transition at the same time by true concurrency). At run-time,
in every iteration of its main loop, the thread simulating this big automaton
nondeterministically picks one of those transitions, checks it for enabledness (in
which case all ports are ready to fire), and if so, executes it. By this scheme, as
soon as the automaton thread has selected the transition labeled by {A , B , C ,
D}, the transition labeled by {E , F} has to wait for the next iteration, even if it
is enabled already in the current iteration. In other words, Dave cannot execute
at its own pace despite being independent of Alice, Bob, and Carol.

Although the centralized approach may unnecessarily restrict parallelism, it
guarantees high throughput compared to the alternative, distributed approach of
generating code for Alice, Bob, Carol, and Dave individually. The problem with
the distributed approach is the communication necessary for computing� at run-
time. To see this, suppose that we indeed have separate threads simulating the
automata of Alice, Bob, Carol, and Dave. Now, if Alice at some point becomes
willing to execute her {A , B} transition, she must ask Bob if he is ready to
execute his {B , C} transition. Before he can answer Alice’s question, however,
Bob in turn must ask Carol if she is ready to execute her {C , D} transition. All
this communication negatively affects throughput: it takes much longer for Alice,
Bob, and Carol to agree on synchronously executing their individual transitions
than for one big automaton to make and carry out such a decision by itself.
Nevertheless, the distributed approach enhances parallelism: Dave can execute
his transition while Alice, Bob, and Carol communicate to come to an agreement.

3 A New Local Product Operator

The approaches of the previous section force one to choose between two desirable
properties: high throughput between interdependent port automata (pa), at the
cost of parallelism, and maximal parallelism between independent ones, at the
cost of throughput. We need to find a middle ground between the purely cen-
tralized and fully distributed approaches that has both these desirable qualities.

4 Square brackets for readability.
5 This property of � models an important feature of Reo: compositional construction
of globally synchronous protocol steps out of locally synchronous parts.

180 S.-S.T.Q. Jongmans and F. Arbab

Working toward such an approach, we start from the purely distributed ap-
proach of computing � at run-time through global, transitive communication
between automaton threads (e.g., Alice talks to Bob, who in turn talks to Carol,
etc.). The idea is to bound this transitivity: generally, when some Alice asks some
Bob if he is ready to fire a transition involving common ports, Bob should im-
mediately answer without engaging others. By doing so, Alice and Bob achieve a
higher throughput, while independent others can still execute at their own pace.

In the proposed approach, automaton threads no longer compute �: instead,
they compute a new product operator whose run-time computation requires only
local communication. Problematically, however, computing that new product op-
erator instead of � can be unsound or incomplete, sometimes to the extent of
deadlock. Which of those two happens depends on how Bob immediately answers
Alice in cases where he actually should have consulted Carol (and possibly oth-
ers). If Bob replies being ready, the firing of Alice’s ports (including her ports
common with Bob) incorrectly introduces asynchrony between Bob’s two ports.
However, if Bob always replies not being ready, he and Alice never interact on
their common ports. In the rest of this section, we formalize the new product
operator and make a first effort at studying under which circumstances substi-
tuting � with the new product operator is semantics-preserving.

First, we introduce a relation that defines when transitions of Alice and Bob
represent execution steps in which they strongly agree on their behavior (cf.
Definition 2 of ♦). In that case, they agree on which of their common ports to
fire (possibly none), and either Alice forbids Bob to simultaneously fire any other
port or vice versa. Afterward, we define our new product operator on pa.

Definition 4 (Strong agreement relation). The strong agreement relation,
denoted by �, is the relation on ℘(Port)2 × ℘(Port)2 defined as:

(Pα , Pα) � (Pβ , Pβ) iff

⎡⎢⎣ Pα ⊆ Pα and Pβ ⊆ Pβ and[
Pα = Pα ∩ Pβ or Pβ = Pβ ∩ Pα

or Pα ∩ Pβ = ∅ = Pβ ∩ Pα

]⎤⎥⎦
Definition 5 (Local product operator, l-product). The local product op-
erator, l-product, denoted by � , is the operator on Pa × Pa defined by the
following equation:

α� β = (State(α) × State(β) , Port(α) ∪ Port(β) , −→ , (init(α) , init(β)))

where −→ denotes the smallest relation induced by IndepA, IndepB, and:

qα
Pα−−→α q′α and qβ

Pβ−−→β q′β and (Port(α) , Pα) � (Port(β) , Pβ)

(qα , qβ)
Pα∪Pβ−−−−→ (q′α , q′β)

(StAgr)

Figure 4 shows examples of the application of �. The following lemma states
that bisimilarity is a congruence. See [13, Appendix D] for a proof.

Lemma 2.
[
α ≈ β and γ ≈ δ

]
implies α� γ ≈ β � δ

Global Consensus through Local Synchronization 181

α� β = α � γ = α� δ = ε� ζ =

{A , B}

{C , D}

{A , B , C , D}

{A , B}

{C}

Fig. 4. Port automata constructed using � (α, β, γ, δ, ε, and ζ denote the pa in
Figure 2).

Furthermore, � is commutative but generally not associative. This makes us-
ing � for modeling purposes nontrivial. We address this issue in Section 5. To
minimize numbers of parentheses in our notation, we assume right-associativity
for �. For instance, we write α� β � γ � δ for α� (β � (γ � δ)).

As informally explained earlier, substituting � with � is not always seman-
tics-preserving. It is, for instance, for the two l-products in the middle of Figure 4
(cf. the two products in the middle of Figure 3) but not for the l-products on
the sides. To determine when substituting � with � is semantics-preserving, we
first define when Alice is a subautomaton of Bob. In that case, Bob has at least
every transition that Alice has.

Definition 6 (Subautomaton relation). The subautomaton relation, denoted
by �, is the relation on Pa× Pa defined as:

(Q , P , −→α , ı) � (Q , P , −→β , ı) iff −→α ⊆ −→β

The following proposition follows directly from the previous definition. In the
rest of this section, we investigate under which circumstances its premise holds.

Proposition 1.
[
α � β and β � α

]
implies α = β

Before showing that the l-product of Alice and Bob is a subautomaton of their
product, the next lemma states that strong agreement implies weak agreement:
if Alice fires exactly those common ports that Bob fires or vice versa, Alice and
Bob agree on their common ports. See [13, Appendix D] for a proof.

Lemma 3. (Pα , Pα) � (Pβ , Pβ) implies (Pα , Pα) ♦ (Pβ , Pβ)

The next lemma states that the l-product of Alice and Bob is a subautomaton
of their product: the product of Alice and Bob can do at least the same as their
l-product. See [13, Appendix D] for a proof (which uses Lemma 3).

Lemma 4. α� β � α� β

The product of Alice and Bob is not necessarily a subautomaton of their l-
product: if Alice and Bob agree on which of their common ports to fire, this does
not necessarily mean that they fire no other ports. To characterize the cases in

182 S.-S.T.Q. Jongmans and F. Arbab

which they do, we define conditional strong agreement as a relation “in between”
of � and ♦ (and lifted from transitions to pa): Alice and Bob conditionally
strongly agree iff, for each of their transitions, their weak agreement on which
of their common ports to fire implies their strong agreement.

Definition 7 (Conditional strong agreement relation). The conditional
strong agreement relation, denoted by ♦�, is the relation on Pa× Pa defined as:

(Qα , Pα , −→α , ıα)
♦� (Qβ , Pβ , −→β , ıβ)

iff

⎡⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎣
[
qα

Pα−−→α q′α and qβ
Pβ−−→β q′β and

(Port(α) , Pα) ♦ (Port(β) , Pβ)

]
implies (Port(α) , Pα) � (Port(β) , Pβ)

⎤⎥⎥⎦
for all qα , qβ , q

′
α , q′β , Pα , Pβ

⎤⎥⎥⎥⎥⎥⎦
The next lemma states that if Alice and Bob conditionally strongly agree,
their product is a subautomaton of their l-product (cf. Lemma 4). See [13, Ap-
pendix D] for a proof.

Lemma 5. α ♦� β implies α� β � α� β

We end this section with the following theorem: if Alice and Bob conditionally
strongly agree, substituting � with � is semantics-preserving (in fact, not just
under bisimilarity but even under structural equality). See [13, Appendix D] for
a proof (which uses Proposition 1 and Lemmas 4, 5).

Theorem 1. α ♦� β implies α� β = α� β

4 Substituting � with �, a Cheaper Characterization

To test if Alice and Bob conditionally strongly agree, one must pairwise com-
pare their transitions. This can be computationally expensive (i.e., O(n1n2),
where n1 and n2 denote the numbers of transitions), and it makes the ♦�-based
characterization, although (conjectured to be) complete, hard to apply in prac-
tice. In this section, we therefore study a cheaper characterization of (a subset
of) conditionally strongly agreeing port automata (pa) without restricting the
applicability of � for our present purpose.

In Section 2, we explained reduction of parallelism in terms of independent
pa. Therefore, substituting � with � should be semantics-preserving at least
when applied to such pa. We start by formally defining when Alice and Bob are
independent: in that case, they have no common ports.

Definition 8 (Independence relation). The independence relation, denoted
by #, is the relation on Pa× Pa defined as:

α # β iff Port(α) ∩ Port(β) = ∅

The next lemma states that if Alice and Bob are independent, they conditionally
strongly agree (because their independence means that Alice and Bob have no
common ports). See [13, Appendix D] for a proof.

Global Consensus through Local Synchronization 183

Lemma 6. α # β implies α ♦� β

Lemma 6 and Theorem 1 imply that substituting � with � is semantics-preserv-
ing, if their operands satisfy the independence relation. Moreover, checking #
costs less than checking whether pa conditionally strongly agree: O(1) versus
O(n1n2). The next lemma states another important property, namely that �
preserves independence: if Alice is independent of Bob and Carol individually,
she is independent of Bob and Carol together. See [13, Appendix D] for a proof.

Lemma 7.
[
α # β and α # γ

]
implies α # β � γ

Although checking pa for independence is cheap, the result implied by Lemma 6
and Theorem 1 in its present form has limited practical value: total indepen-
dence is a condition rarely satisified by the pa encountered in code generation
of a composite system. To get a more useful similar result, we now introduce
the notion of slavery and afterward combine it with independence. We start by
formally defining when Bob is a slave of Alice: in that case, every transition of
Bob that involves some ports common with Alice, involves only ports common
with Alice. In other words, if common ports are involved, Alice completely dic-
tates what Bob does. Our notion of slavery does not prevent Bob from freely
executing transitions involving only ports that Alice does not know about.

Definition 9 (Slave relation). The slave relation, denoted by �→, is the rela-
tion on Pa× Pa defined as:

(Qβ , Pβ , −→β , ıβ)
�→ α

iff

⎡⎢⎢⎣
[[qβ

Pβ−−→ q′β and

Pβ ∩ Port(α) �= ∅

]
implies Pβ ⊆ Port(α)

]
for all qβ , q

′
β , Pβ

⎤⎥⎥⎦
The next lemma states that if Bob is a slave of Alice, they conditionally strongly
agree (i.e., Alice forces her will upon Bob). See [13, Appendix D] for a proof.

Lemma 8. β �→ α implies β ♦� α

Lemma 8 and Theorem 1 imply that substituting � with � is semantics-preserv-
ing, if their operands satisfy the slave relation. Moreover, checking �→ costs less
than checking whether pa conditionally strongly agree: O(n1) versus O(n1n2).
The next lemma states another important property, namely that � preserves
slavery: if Bob is a slave of Alice, he is a slave of Alice and Carol together. See
[13, Appendix D] for a proof.

Lemma 9. β �→ α implies β �→ α� γ

By combining independence and slavery, we obtain the notion of conditional slav-
ery: Bob is a conditional slave of Alice iff Alice and Bob not being independent
implies that Bob is a slave of Alice.

184 S.-S.T.Q. Jongmans and F. Arbab

Definition 10 (Conditional slave relation). The conditional slave relation,
denoted by #�→, is the relation on Pa× Pa defined as:

β #�→ α iff
[
β # α or β �→ α

]
The next lemma states that if Bob is a conditional slave of Alice, they condi-
tionally strongly agree (i.e., Alice and Bob are independent or Alice forces her
will upon Bob). See [13, Appendix D] for a proof (which uses Lemmas 6, 8).

Lemma 10. β #�→ α implies β ♦� α

The combination of Lemma 10 and Theorem 1 implies that substituting � with�
is semantics-preserving, if the pa involved satisfy the conditional slave relation.
Moreover, checking the conditional slave relation costs the same as checking the
slave relation (i.e., less than checking whether pa conditionally strongly agree).
The next lemma states another important property, namely that � preserves
conditional slavery: if Bob is a conditional slave of Alice and Carol individually,
he is a conditional slave of Alice and Carol together. The corollary following this
lemma generalizes this result from 2 to k individuals. See [13, Appendix D] for
a proof (which uses Lemmas 7, 9).

Lemma 11.
[
β #�→ α and β #�→ γ

]
implies β #�→ α� γ

Corollary 1.
[
β #�→ α1 and · · · and β #�→ αk

]
implies β #�→ (α1 � · · ·� αk)

With conditional slavery, in contrast to independence alone, one can characterize
a sufficiently large class of pa that satisfies the premise of Theorem 1 (i.e., for
which substituting � with � is semantics-preserving), as follows. Suppose that
we have a list of k pa such that every i-th pa in the list is a conditional slave
of all pa in a higher position. Then, the l-product of all pa in this list, starting
from the ones with the highest positions and working our way down, is in the
class. The following definition formalizes this (recall that � is right-associative).

Definition 11. A denotes the smallest set induced by the following rule:[
i �= j implies αi #�→ αj

]
for all 1 ≤ i < j ≤ k

α1 � · · ·� αk ∈ A

Strictly, A contains terms over (Pa , �), which represent pa, rather than actual
elements from Pa. Nevertheless, we often call the elements from A “pa” for
simplicity. Also, instead of writing α1 � · · ·� αk, we sometimes write α1 · · ·αk.

The following theorem states that for every pa in A, substituting � for � is
semantics-preserving. See [13, Appendix D] for a proof (which uses Lemma 10
and Corollary 1).

Theorem 2. α1 � · · ·� αk ∈ A implies α1 � · · ·� αk = α1 � · · ·� αk

Although α1�· · ·�αk = α1�· · ·�αk generally does not imply α1�· · ·�αk ∈ A,
it does for the examples considerd in this paper. For instance, Figures 3, 4 show

Global Consensus through Local Synchronization 185

that β�δ = β�δ (Figure 2 defines β and δ). By the commutativity of � and �,
we have also δ � β = δ � β. Now, because δ is a slave of β, we conclude that
δ�β is an element of A: indeed, if δ makes a transition involving ports common
with β (only B), it fires no other ports (β, in contrast, does fire another port in
that case, namely C).

Previously, we claimed that the subclass of pa characterized in this section
(i.e., A in Definition 11) does not restrict the applicability of � for our purpose.
We end this section by substantiating that claim. We start by introducing a
further restricted class of pa with a more natural interpretation in our context.

Definition 12. B denotes the smallest set induced by the following rule:[[
i1 �= i2 implies αi1 #�→ αi2

]
for all 1 ≤ i1 , i2 ≤ k

]
and[[

j1 �= j2 implies βj1 # βj2

]
for all 1 ≤ j1 , j2 ≤ l

]
and[

αi #�→ βj for all 1 ≤ i ≤ k , 1 ≤ j ≤ l
]

α1 � · · ·� αk � β1 � · · ·� βl ∈ B

The following proposition follows directly from the previous definition.

Proposition 2. B ⊆ A

The combination of Proposition 2 and Theorem 2 implies that substituting �
with � is semantics-preserving for every pa in B.

Informally, every pa in B is the l-product of (i) k pa that are conditional slaves
of all other pa in the term and (ii) l pairwise independent pa that are “masters”
of the k conditional slaves. The masters, being pairwise independent, do not
directly communicate with each other. However, when two or more masters share
the same slave (the definition of B allows this), communication between those
masters occurs indirectly through that slave. Such indirect communication is
always asynchronous: if it were synchronous, the slave involved would fire ports
of more than one of its masters in the same transition, which slavery forbids.

The previous interpretation of masters and slaves corresponds exactly to the
notion of synchronous and asynchronous regions in the Reo literature [5,8].
Roughly, one can always split a connector into subconnectors—the regions—
such that firings of ports in such a subconnector are either purely independent
(i.e., always, only one port fires at a time) or require some synchronization (i.e.,
at least once, more than one port fires). Furthermore, the synchronous regions
of a connector are maximal in the sense that no two synchronous regions have
common ports: all synchronous regions are, by definition, pairwise independent.
Consequently, the pa describing the l synchronous regions of a connector can
act as the l masters in a pa term from B.

To actually obtain those pa, for every synchronous region, a code generator
during compilation computes the existing product of the pa describing the con-
stituents of that particular region (finding the synchronous regions of a connector
is trivial). At compile-time, this resembles the purely centralized approach, while
at run-time, it ensures high throughput between interdependent “small” pa for
constituents of the same synchronous region (i.e., no run-time computation of

186 S.-S.T.Q. Jongmans and F. Arbab

product operators within synchronous regions). The asynchronous regions then
form the “glue” between the synchronous regions: the pa for every asynchronous
region has the same shape as δ in Figure 2,6 and consequently, they can act as
the k conditional slaves in a pa term from B. Finally, at run-time, the automaton
threads executing the generated code compute the l-product operators.

In summary: a code generator can always process the set of pa describing a
connector to a form that satisfies B, by computing � between interdependent
pa belonging to the same synchronous region at compile-time (for the sake of
throughput), and by computing � between the resulting “medium” pa plus
the pa for the asynchronous regions at run-time (for the sake of parallelism).
Proposition 2 and Theorem 2 ensure that this is semantics-preserving.

5 Note on Associativity

The associativity of � plays a role in the centralized approach and is even more
important in the distributed approach. In the centralized approach, it guarantees
that it does not matter in which particular order a code generator computes the
product of the port automata (pa) for the constituents of a connector—all have
the same semantics. In the distributed approach, it guarantees that it does not
matter in which order pa threads communicate with each other: the pa term
corresponding to a particular communication order is always bisimilar to the
original (because one can freely move parentheses).

Now, recall from Section 3 that � is generally not associative. The structure of
the pa terms from A also reflects this (and the proof of Theorem 2 exploits this
structure). This means that the pa constituting such terms must communicate in
a particular order at run-time for the substitution of � with � to be semantics-
preserving. This can kill performance and seems a serious practical problem. For
reasons of space, we postpone a full exposition of our solution to this problem
to a future paper; interested readers may consult [13].

6 Related Work and Conclusion

Related work. Closest to ours is the work on splitting connectors into (a)synchro-
nous regions for better performance. Proença developed the first implementation
based on these ideas, demonstrated its merit through benchmarks, and invented
an automaton model—behavioral automata—to reason about split connectors
in his PhD thesis and associated publications [7,8,9]. Furthermore, Clarke and

6 Port automaton δ in Figure 2 describes the behavior of an asynchronous Reo prim-
itive, called Fifo [1,2], with a buffer (of capacity 1) that accepts data on one port
(i.e., B), buffers it, and at a later time dispenses that same data on another port
(i.e. C). Of the currently common Reo primitives, only Fifo is asynchronous, and so,
only Fifo instances induce asynchronous regions in the current practice. In general,
a pa modeling an asynchronous region can have more than two states or ports but,
crucially, each of its transitions has a singleton set of ports as label (as does δ), which
guarantees that that pa can act as a conditional slave in a B-term.

Global Consensus through Local Synchronization 187

Proença explored connector splitting in the context of the connector coloring
semantics [3]. They discovered that the standard version of that semantics has
undesirable properties in the context of splitting: some split connectors that
intuitively should be equivalent to the original connector are not equivalent under
the standard version. To address this problem, Clarke and Proença propose
a new variant—partial connector coloring—which allows one to better model
locality and independencies between different parts of a connector. Recently,
Jongmans et al. studied a formal justification of connector splitting in a process
algebraic setting [5]. Although, as shown in Section 4, one can use the notion of
(a)synchronous regions to apply our results to code generation for connectors,
our results go beyond that. (They can, for instance, also be applied to code
generation for Web service proxies in Reo-based orchestrations [6].)

Also related to the work presented in this paper is the work of Kokash et
al. on action constraint automata (aca) [14]. Kokash et al. argue that ordinary
port/constraint automata describe the behavior of Reo connectors too coarsely,
which makes it impossible to express certain fine parallel behavior. In contrast,
aca have more flexible transition labels which, for instance, allow one to ex-
plicitly model the start and end of interaction on a particular port (one cannot
make this distinction using port/constraint automata). Consequently, aca bet-
ter describe the behavior of existing connector implementations (under certain
assumptions). However, the increased granularity of aca comes at the price of
substantially larger models. This makes them less suitable for code generation.

Conclusion. Existing approaches to implementing connectors force one to make
a choice between high throughput (at the cost of parallelism) and maximal par-
allelism (at the cost of throughput). In this paper, we proposed a formal ba-
sis to support a solution for this problem. We found and formalized a middle
ground between those approaches by defining a new product operator on port
automata (pa) and by showing that in all practically relevant cases (with re-
spect to code generation for connectors), one can use this new operator instead
of the existing one to get both high throughput and maximal parallelism in a
semantics-preserving way.

Although we developed our results for pa, they generalize straightforwardly
to the more powerful constraint automata (ca) [10]. See [13] for more details.

While inspired by Reo, our results apply to every language whose programs
can be described by automata satisfying the characterizations in Section 4. For
instance, a possible application of our results outside Reo is projection in chore-
ography languages [15,16,17,18,19,20]. See [13] for more details.

References

1. Arbab, F.: Reo: a channel-based coordination model for component composition.
MSCS 14(3), 329–366 (2004)

2. Arbab, F.: Puff, The Magic Protocol. In: Agha, G., Danvy, O., Meseguer, J. (eds.)
Formal Modeling: Actors, Open Systems, Biological Systems. LNCS, vol. 7000, pp.
169–206. Springer, Heidelberg (2011)

188 S.-S.T.Q. Jongmans and F. Arbab

3. Clarke, D., Proença, J.: Partial Connector Colouring. In: Sirjani, M. (ed.) COOR-
DINATION 2012. LNCS, vol. 7274, pp. 59–73. Springer, Heidelberg (2012)

4. Jongmans, S.S., Arbab, F.: Modularizing and Specifying Protocols among Threads.
In: Proceedings of PLACES 2012. EPTCS. CoRR, vol. 109, pp. 34–45 (2013)

5. Jongmans, S.S., Clarke, D., Proença, J.: A Procedure for Splitting Processes and its
Application to Coordination. In: Proceedings of FOCLASA 2012. EPTCS. CoRR,
vol. 91, pp. 79–96 (2012)

6. Jongmans, S.S., Santini, F., Sargolzaei, M., Arbab, F., Afsarmanesh, H.: Automatic
Code Generation for the Orchestration of Web Services with Reo. In: De Paoli,
F., Pimentel, E., Zavattaro, G. (eds.) ESOCC 2012. LNCS, vol. 7592, pp. 1–16.
Springer, Heidelberg (2012)

7. Proença, J., Clarke, D., De Vink, E., Arbab, F.: Dreams: a framework for dis-
tributed synchronous coordination. In: Proceedings of SAC 2012, pp. 1510–1515.
ACM (2012)

8. Proença, J.: Synchronous Coordination of Distributed Components. PhD thesis,
Leiden University (2011)

9. Proença, J., Clarke, D., De Vink, E., Arbab, F.: Decoupled execution of syn-
chronous coordination models via behavioural automata. In: Proceedings of FO-
CLASA 2011. EPTCS. CoRR, vol. 58, pp. 65–79 (2011)

10. Baier, C., Sirjani, M., Arbab, F., Rutten, J.: Modeling component connectors in
Reo by constraint automata. SCP 61(2), 75–113 (2006)

11. Jongmans, S.S., Arbab, F.: Overview of Thirty Semantic Formalisms for Reo.
SACS 22(1), 201–251 (2012)

12. Koehler, C., Clarke, D.: Decomposing Port Automata. In: Proceedings of SAC
2009, pp. 1369–1373. ACM (2009)

13. Jongmans, S.S., Arbab, F.: Global Consensus through Local Synchronization
(Technical Report). Technical Report FM-1303, CWI (2013)

14. Kokash, N., Changizi, B., Arbab, F.: A Semantic Model for Service Composition
with Coordination Time Delays. In: Dong, J.S., Zhu, H. (eds.) ICFEM 2010. LNCS,
vol. 6447, pp. 106–121. Springer, Heidelberg (2010)

15. Bravetti, M., Zavattaro, G.: Towards a Unifying Theory for Choreography Con-
formance and Contract Compliance. In: Lumpe, M., Vanderperren, W. (eds.) SC
2007. LNCS, vol. 4829, pp. 34–50. Springer, Heidelberg (2007)

16. Bravetti, M., Zavattaro, G.: Contract Compliance and Choreography Conformance
in the Presence of Message Queues. In: Bruni, R., Wolf, K. (eds.) WS-FM 2008.
LNCS, vol. 5387, pp. 37–45. Springer, Heidelberg (2009)

17. Fu, X., Bultan, T., Su, J.: Conversation protocols: a formalism for specification
and verification of reactive electronic services. TCS 328(1-2), 19–37 (2004)

18. Fu, X., Bultan, T., Su, J.: Realizability of Conversation Protocols with Message
Contents. IJWSR 2(4), 68–93 (2005)

19. Carbone, M., Honda, K., Yoshida, N.: Structured Communication-Centered Pro-
gramming for Web Services. TOPLAS 34(2), 8:1–8:78 (2012)

20. Honda, K., Yoshida, N., Carbone, M.: Multiparty Asynchronous Session Types. In:
Proceedings of POPL 2008, pp. 273–284. ACM (2008)

On Density in Coordination Languages

Jean-Marie Jacquet1, Isabelle Linden2, and Denis Darquennes1

1 Faculty of Computer Science,
University of Namur, Belgium

{jean-marie.jacquet,denis.darquennes}@unamur.be
2 Business Administration Department,

University of Namur, Belgium
isabelle.linden@unamur.be

Abstract. Coordination languages have been proved very suitable for
modeling and programming service-oriented applications. In particular,
those based on tuple spaces offer an elegant way of making different
components of such applications interact smoothly through the deposit
and retrieval of tuples in a shared space. However, in their basic form,
these languages only allow one tuple to be put at a time and, when
more than one tuple matches a required one, the selection is made non
deterministically. This is obviously too weak to capture popularity or
quality measures, which are nevertheless central in service oriented ap-
plications. To that end, we propose an extension of a Linda-like language
aiming at promoting the notion of density and, based on De Boer and
Palamidessi’s notion of modular embedding, establish that it strictly in-
creases the expressiveness of Linda. Following our previous work, we also
study the hiearchy of the sublanguages induced by considering subsets
of tuple primitives.

Keywords: coordination languages, service oriented applications,
density, expressivity.

1 Introduction

Service-oriented applications have become more and more available on Internet.
The rapid evolution of their demand induces a concurrency between them, re-
quiring a huge adaptive capacity. Their ability to measure their popularity and
quality of services are then crucial for their evolution, as well as their survival
on Internet.

Besides, coordination languages have been proved very suitable for modeling
and programming service-oriented applications (see eg [4,12,20]). Among them,
those based on tuple spaces offer an elegant way of making different components
of such applications interact smoothly through the deposit and retrieval of tuples
in a shared space. However their basic form does only allow one tuple to be put
at a time and, when more than one tuple matches a required one, the selection
is made non-deterministically.

C. Canal and M. Villari (Eds.): ESOCC 2013, CCIS 393, pp. 189–203, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

190 J.-M. Jacquet, I. Linden, and D. Darquennes

Previous pieces of work [5–7,16–18,21] have considered a global perception of
the tuple space. They consider the multiset-based language Gamma or the non
blocking bulk primitives collect or copy-collect developped for accessing globally
the tuple space. In this paper, following the chemical model, we regard tuple
spaces as chemical solutions mixing elements of possibly different nature, each
being characterised by a certain density in the solution. Based on this metaphor,
this paper enriches traditional data-based coordination languages by associating
such a density to tuples.

In doing so, we believe that many applications may take advantage of densities
associated to information. The intuition is that the more a tuple is present on
the tuplespace, the more likely it will be discovered to provide an answer to an
interest or quality request. Moreover, by requiring tuples with a minimum level
of density, one may make sure that only those with a sufficient recognition will
be selected. Within this context, for recommendation systems, like Amazon or
the auction selling web site Ebay, it will be posible to measure the number of
positive (or negative) advices on an auction selling web sites, or the measure of
popularity of a service providers through the number of advertisements having
effectively been read.

The aim of this work is to focus on theoretical issues by presenting an abstract
language and establishing that it strictly enhances the expressiveness of Linda-
like languages. More concretely, our extension is formulated in a dialect of Linda,
developed at the University of Namur, and named Bach (see [11]). This language
is based on four primitives accessing a tuplespace, also named subsequently store,
as follows. A tell(t) primitive puts an occurrence of the tuple t on the store. An
ask(t) primitive checks the presence of the tuple t on store while a nask(t)
primitive checks its absence. Finally a get(t) primitive removes an occurrence of
the tuple t on the store. It is worth noting that the tell primitive always succeeds
whereas the last three primitives suspend as long as the presence/absence of the
tuple t is not met. Moreover, the store is seen as a multiset of tuples, which
naturally leaves room for multiple occurrences and subsequently a notion of
density relying on counting this multiplicity.

Since our purposes are of a theoretical nature and for the sake of simplicity,
we shall actually consider a simplified version where tuples are taken in their
simplest form of flat and unstructured tokens. Nevertheless, it is easy to observe
that our results extend directly to more general tuples.

This paper complements work already done by some of the authors: [6,7,13–
15]. We shall subsequently follow the same lines of research and employ De Boer
and Palamidessi’s modular embedding to test the expressiveness of languages.
As a result, the rest of this paper is organized as follows. Section 2 presents
our extended coordination language, called Dense Bach. Then, after having re-
minded the reader with the notion of modular embedding introduced in [10], we
proceed in section 3 with an exhaustive comparison of the relative expressive
power of the languages Bach and Dense Bach. Finally, section 4 compares our
work with related work, draws our conclusions and presents the expectations for
future work.

Density in Coordination Languages 191

2 Dense Bach

2.1 Language Definition

As stated in the introduction, the language under study in this paper relies on
tokens and attaches to them a density, seen as their multiplicity of occurrences.
This is formally defined as follows.

Definition 1. Let Stoken be an enumerable set, the elements of which are sub-
sequently called tokens and are typically represented by the letters t and u. Define
the association of a token t and a strictly positive number n ∈ N0 as a dense to-
ken. Such an association is typically denoted as t(n). Define then the set of dense
tokens as the set SDtoken. Note that since Stoken and N are both enumerable,
the set SDtoken is also enumerable.

Intuitively, a dense token t(m) represents the simultaneous presence of m
occurrences of t. As a result, {t(m)} is subsequently used to represent the multiset
{t, · · · , t} composed of these m occurrences. Moreover, given two multisets of
tokens σ and τ , we shall use σ ∪ τ to denote the multiset union of elements of σ
and τ . As a particular case, by slightly abusing the syntax in writing {t(m), t(n)},
we have {t(m)} ∪ {t(n)} = {t(m), t(n)} = {t(m + n)}. Finally, we shall use
σ�{t(m)} to denote, on the one hand, the multiset union of σ and {t(m)}, and,
on the other hand, the fact that t does not belong to σ.

The primitives of the language under consideration extend to dense tokens the
primitives of the Bach language recalled in section 1. As a result, tell(t(m)) atom-
ically puts m occurrences of t on the store. Similarly, ask(t(m)) and get(t(m))
require the presence of at least m occurrences of t with the latter removing m
of them. Dually, nask(t(m)) verifies that there are less than m occurrences of
t. We subsequently formally defined these primitives as well as, for completion
purposes, those of the Bach language.

Definition 2. Define the set T of the token-based primitives as the set of prim-
itives T generated by the following grammar:

T ::= tell(t) | ask(t) | get(t) | nask(t)

where t represents a token.

Definition 3. Define the set of dense token-based primitives Td as the set of
primitives Td generated by the following grammar:

Td ::= tell(t(m)) | ask(t(m)) | get(t(m)) | nask(t(m))

where t represents a token and m a positive natural number.

The statements of the languages, also called agents, are defined from these
primitives by possibly combining them by the classical choice operator +, parallel
operator (denoted by the || symbol) and the sequential operator (denoted by
the ; symbol). The formal definition is as follows.

192 J.-M. Jacquet, I. Linden, and D. Darquennes

(Td)
m ∈ N0

〈 tell(t(m)) | σ 〉 −→ 〈 E | σ ∪ {t(m)} 〉

(Ad)
m ∈ N0

〈 ask(t(m)) | σ ∪ {t(m)} 〉 −→ 〈 E | σ ∪ {t(m)} 〉

(Gd)
m ∈ N0

〈 get(t(m)) | σ ∪ {t(m)} 〉 −→ 〈 E | σ 〉

(Nd)
n < m

〈 nask(t(m)) | σ � {t(n)} 〉 −→ 〈 E | σ � {t(n)} 〉

Fig. 1. Transition rules for dense token-based primitives (Dense Bach)

Definition 4. Define the Bach language LB as the set of agents A generated by
the following grammar:

A ::= T | A ; A | A || A | A + A

where T represents a token-based primitive. Define then the Dense Bach language
LDB similarly but by taking dense token-based primitives Td:

A ::= Td | A ; A | A || A | A + A

Subsequently, we shall consider sublanguages formed similarly but by considering
only subsets of these primitives. In that case, if H denotes such a subset, then
we shall write the induced sublanguages as LB(H) and LDB(H), respectively.

2.2 Transition System

We are now in a position to define a transition system. Our configuration con-
sists of agents (summarizing the current state of the processes running on the
blackboard) and a multi-set of tokens (denoting the current state of the tuple
space). In order to express the termination of the computation of an agent of
LDB, we extend the set of agents by adding a special terminating symbol E that
can be seen as a completely computed agent. For uniformity purpose, we abuse
the language by qualifying E as an agent. To meet the intuition, we shall always
rewrite agents of the form (E;A), (E || A) and (A || E) as A. This is technically
achieved by defining the extended set of agents as LDB ∪ {E} and by justifying
the simplifications by imposing a bimonoid structure.

The rules of the transition systems are listed in Figures 1 to 2(b). Figure 1
provides the transitions for the dense token-based primitives. Rule (Td) states
that for any store σ and any token t with densitym, the effect of the tell primitive
is to enrich the current set of tokens by m occurrences of token t. Note that ∪
denotes multi-set union. Rules (Ad) and (Gd) specify the effect of ask and get
primitives, both requiring the presence of at least m occurrences of t, but the

Density in Coordination Languages 193

(T) 〈 tell(t) | σ 〉 −→ 〈 E | σ ∪ {t} 〉

(A) 〈 ask(t) | σ ∪ {t} 〉 −→ 〈 E | σ ∪ {t} 〉

(G) 〈 get(t) | σ ∪ {t} 〉 −→ 〈 E | σ 〉

(N)
t �∈ σ

〈 nask(t) | σ 〉 −→ 〈 E | σ 〉

(a) Token-based primitives (Bach)

(S)
〈A | σ〉 −→ 〈A′ | σ′〉

〈A ; B | σ〉 −→ 〈A′ ; B | σ′〉

(P)
〈A | σ〉 −→ 〈A′ | σ′〉

〈A || B | σ〉 −→ 〈A′ || B | σ′〉
〈B || A | σ〉 −→ 〈B || A′ | σ′〉

(C)
〈A | σ〉 −→ 〈A′ | σ′〉

〈A + B | σ〉 −→ 〈A′ | σ′〉
〈B + A | σ〉 −→ 〈A′ | σ′〉

(b) Operators

Fig. 2. Transition rules

latter also consuming them. Rule (Nd) defines the nask primitive, which tests
for the absence of m occurrences of t.

For the sake of completeness, Figure 2(a) recalls the transition rules for the
Bach language. As easily observed, they amount to the rules of Figure 1 where
the density m is taken to be 1, and union symbol interpreted on multi-sets. Fig-
ure 2(b) details the usual rules for sequential composition, parallel composition,
interpreted in an interleaving fashion, and CCS-like choice.

2.3 Observables and Operational Semantics

We are now in a position to define what we want to observe from the compu-
tations. Following previous work by some of the authors (see eg [6, 7, 13–15]),
we shall actually take an operational semantics recording the final state of the
computations, this being understood as the final store coupled to a mark indi-
cating whether the considered computation is successful or not. Such marks are
respectively denoted as δ+ (for the successful computations) and δ− (for failed
computations).

Definition 5.

1. Define the set of stores Sstore as the set of finite multisets with elements
from Stoken.

2. Let δ+ and δ− be two fresh symbols denoting respectively success and failure.
Define the set of histories Shist as the cartesian product Sstore× {δ+, δ−}.

3. Define the operational semantics O : LB ∪LDB → P(Shist) as the following
function: for any agent A ∈ LB ∪ LDB

O(A) = {(σ, δ+) : 〈A|∅〉 →∗ 〈E|σ〉}
∪{(σ, δ−) : 〈A|∅〉 →∗ 〈B|σ〉�, B �= E}

194 J.-M. Jacquet, I. Linden, and D. Darquennes

L′

L

O′
s

Os

C

S′

D

S

Fig. 3. Basic embedding

3 Comparisons of Bach and Dense Bach

3.1 Modular Embedding

A natural way to compare the expressive power of two languages is to determine
whether all programs written in one language can be easily and equivalently
translated into the other language, where equivalent is intended in the sense of
conserving the same observable behaviors.

According to this intuition, Shapiro introduced in [19] a first notion of embed-
ding as follows. Consider two languages L and L′. Assume given the semantics
mappings (Observation criteria) S : L → Os and S ′ : L′ → O′

s, where Os and
O′

s are on some suitable domains. Then L can embed L′ if there exists a mapping
C (coder) from the statements of L′ to the statements of L, and a mapping D
(decoder) from Os to O′

s, such that the diagram of Figure 3 commutes, namely
such that for every statement A ∈ L′ : D(S(C(A))) = S ′(A).

This basic notion of embedding turns out however to be too weak since, for in-
stance, the above equation is satisfied by any pair of Turing-complete languages.
De Boer and Palamidessi hence proposed in [10] to add three constraints on the
coder C and on the decoder D in order to obtain a notion of modular embedding
usable for concurrent languages:

1. D should be defined in an element-wise way with respect to Os, namely for
some appropriate mapping Del

∀X ∈ Os : D(X) = {Del(x) | x ∈ X} (P1)

2. the coder C should be defined in a compositional way with respect to the
sequential, parallel and choice operators:

C(A ; B) = C(A) ; C(B)
C(A || B) = C(A) || C(B)
C(A + B) = C(A) + C(B)

(P2)

3. the embedding should preserve the behavior of the original processes with
respect to deadlock, failure and success (termination invariance):

∀X ∈ Os, ∀x ∈ X : tm′(Del(x)) = tm(x) (P3)

where tm and tm’ extract the termination information from the observables
of L and L′, respectively.

Density in Coordination Languages 195

LB(nask, get, tell)
LB(ask, nask, get, tell)

LB(ask, nask, tell)
LB(get, tell)

LB(ask, get, tell)

LB(nask, tell) LB(ask, tell)

LB(tell)

(a) Bach Languages

LDB(nask, get, tell)
LDB(ask, nask, get, tell)

LDB(ask, nask, tell)
LB(nask, get, tell)

LB(ask, nask, get, tell)
LDB(get, tell)

LDB(ask, get, tell)

LDB(nask, tell) LB(ask, nask, tell)
LB(get, tell)

LB(ask, get, tell)
LDB(ask, tell)

LB(nask, tell) LB(ask, tell)

LB(tell)
LDB(tell)

(b) Bach and Dense Bach Languages

Fig. 4. Embedding hierarchy

An embedding is then called modular if it satisfies properties P1, P2, and P3.
The existence of a modular embedding from L′ into L is subsequently denoted
by L′ ≤ L. It is easy to prove that ≤ is a pre-order relation. Moreover if L′ ⊆ L
then L′ ≤ L that is, any language embeds all its sublanguages. This property
descends immediately from the definition of embedding, by setting C and D equal
to the identity function.

3.2 Summary of Results

We now proceed to an exhaustive comparison of the relative expressive power of
the languages Bach and Dense Bach. In both case, we focus on the non-trivial
sublanguages, namely on those sublanguages containing the tell operation.

The expressive power of the different sublanguages of Bach has been studied
in [5–7] from which the expressiveness hierarchy of Figure 4(a) can be established.
Building upon these results, Figure 4(b) summarizes the embedding relations
between the different sublanguages of Bach and Dense Bach, as well as those
relations between the different sublanguages of Dense Bach alone. This figure
results from a series of propositions, proved in the next subsection.

In both figures, an arrow from a language L1 to a language L2 means that L2
embedsL1, that isL1 ≤ L2.When an arrow fromL1 toL2 has no counterpart from
L2 to L1, then L1 is strictly less expressive than L2, that is L1 < L2. If L1 ≤ L2
and L2 ≤ L1 then L1 and L2 are equivalent, that is L1 = L2. In that case, they
are depicted together. If L1 �≤ L2 andL2 �≤ L1 thenL1 andL2 are not comparable
with each other. Thanks to the transitivity, both figures contain only a minimal
amount of arrows. Apart from these induced relations, no other relation holds.

It is worth noting that the hierarchy relations presented in Figure 4(a) appear
in the center of Figure 4(b). This reflects the fact that Bach is a special case of
Dense Bach. Moreover, the hierarchy of the Dense Bach sublanguages resembles
that of the Bach sublanguages. This intuitively results from the very nature of
the ask, nask and get primitives, which are not altered by the density of tokens.

196 J.-M. Jacquet, I. Linden, and D. Darquennes

Nevertheless, except for the sublanguage reduced to a tell primitive, it is worth
observing that the dense sublanguages are strictly more expressive than their
Bach counterparts. This highlights the fact that Dense Bach is an extension of
Bach bringing more expressiveness.

3.3 Formal Propositions and Proofs

Let us now turn to the formal proofs. Due to space limits, we shall only give
sketches of the easiest ones. However, the complete ones can be obtained upon
request to the authors. As a first result, thanks to the fact that any language
contains its sublanguages, a number of modular embeddings are directly estab-
lished. In subsequent proofs, this is referred to by language inclusion.

Proposition 1. LDB(ψ) ≤ LDB(χ), for any subsets of ψ, χ of primitives such
that ψ ⊆ χ.

A second observation is that Bach primitives are deduced from the primi-
tives of Dense Bach by taking single occurrences, namely a density of 1. As a
result Bach sublanguages are embedded in the corresponding Dense Bach sub-
languages.

Proposition 2. LB(χ) ≤ LDB(χ), for any subset of χ of primitives.

By coding any tell(t(m)) primitive asm successive tell(t) primitives, LDB(tell)
and LB(tell) appear to be equivalent. Moreover, as a result of the expressiveness
hierarchy [5] (see figure 4(a)), it also comes that both languages LB(ask,tell)
and LB(nask,tell) are strictly more expressive than LDB(tell) since both have
been established strictly more expressive than LB(tell). Let us now compare
LB(ask,tell) with its dense counterpart.

Proposition 3. LB(ask,tell) < LDB(ask,tell)

Proof. On the one hand, LB(ask,tell) ≤ LDB(ask,tell), by proposition 2. On
the other hand, LDB(ask,tell) �≤ LB(ask,tell) is established by contradiction
by considering A = tell(t(1)); ask(t(2)). Indeed as O(A) = {({t(1)}, δ−)}, any
computation of C(A) fails whereas it is possible to construct a successful compu-
tation. To that end, let us observe that as O(tell(t(1)) ; tell(t(1)) ; ask(t(2))) =
{({t(2)}, δ+)}, any computation of A = C(tell(t(1)); tell(t(1)); ask(t(2))) start-
ing on the empty store is successful, and hence so does any computation of
C(tell(t(1))). Consider such a computation and let σ denote the final store.
Given that C(tell(t(1)) is composed of ask and tell primitives, it is possible
to repeat the computation in order to deliver a successful computation for
C(tell(t(1)) ; tell(t(1))) ending in σ ∪ σ as final store. In view of agent A, this
computation can be continued by a successful computation for C(ask(t(2))).
However, as C(ask(t(2))) is composed of ask and tell primitives only, this con-
tinuation succeeds also starting on σ (instead of σ∪σ), which induces a successful
computation for C(tell(t(1)); ask(t(2))). �

Symmetrically, LB(nask,tell) is strictly less expressive than LDB(nask,tell).

Density in Coordination Languages 197

Proposition 4. LB(nask,tell) < LDB(nask,tell).

Proof. On the one hand, LB(nask,tell) ≤ LDB(nask,tell) holds by proposition 2.
On the other hand, LDB(nask,tell) �≤ LB(nask,tell) is establisehd by contradic-
tion by using the same reasoning as in the proof of proposition 3 but for A =
(C(tell(t(1)) ; C(nask(t(2))).

LDB(nask,tell) and LB(ask,tell) are not comparable with each other, as well
as LDB(ask,tell) with regards to LB(nask,tell).

Proposition 5.

(i) LDB(nask,tell) �≤ LB(ask,tell)
(ii) LB(ask,tell) �≤ LDB(nask,tell)

(iii) LDB(ask,tell) �≤ LB(nask,tell)
(iv) LB(nask,tell) �≤ LDB(ask,tell)

Proof. (i) Otherwise we have LB(nask,tell) ≤ LB(ask,tell) which has
been proved impossible in [7]. (ii) By contradiction, by considering A =
tell(t) ; ask(t)). (iii) Otherwise we would have LB(ask,tell) ≤ LB(nask,tell)
which has been proved impossible in [7]. (iv) By contradiction, by considering
A = tell(t) ; nask(t)). �

LDB(nask,tell) and LDB(ask,tell) are not comparable with each other, as well
as LDB(nask,tell) with regards to LB(ask,nask,tell).

Proposition 6.

(i) LDB(nask,tell) �≤ LDB(ask,tell)
(ii) LDB(ask,tell) �≤ LDB(nask,tell)

(iii) LB(ask,nask,tell) �≤ LDB(nask,tell)
(iv) LDB(nask,tell) �≤ LB(ask,nask,tell)

Proof. (i) Otherwise LB(nask,tell) ≤ LDB(ask,tell), which contradicts proposi-
tion 5(iv). (ii) and (iii) Otherwise LB(ask,tell) ≤ LDB(nask,tell), which contra-
dicts proposition 5(ii). (iv) The proof proceeds as in proposition 4(ii). �

Symmetrically, LB(get,tell) and LDB(ask,tell) are not comparable with each
other.

Proposition 7. (i) LB(get,tell) �≤ LDB(ask,tell) and
(ii) LDB(ask,tell) �≤ LB(get,tell)

Proof. (i) By contradiction, by considering tell(t) ; get(t) which induces
successful computations for C(tell(t)) ; C(get(t)) and consequently for
C(tell(t)) ; C(get(t)) ; C(get(t)), as C(get(t)) is composed of ask and tell primitives
only. (ii) Let first observe that O(tell(t(1)) ; tell(t(1)) ; ask(t(2))) succeeds.
Therefore by P3 any computation of B = C(tell(t(1)) ; tell(t(1)) ; ask(t(2)))
starting on the empty store is successful, and so does any computation of
C(tell(t(1))). Consider such a computation C and let σ denote the final store.
Given that C(tell(t(1))) is composed of get and tell primitives, it is possible
to repeat the computation in order to deliver a successful computation for
C(tell(t(1)) ; tell(t(1))) ending in σ ∪ σ as final store. In view of agent B

198 J.-M. Jacquet, I. Linden, and D. Darquennes

above, this computation can be continued by a successful computation C′ for
C(ask(t(2))). The first step s of C′ is either a (single) tell which always suc-
ceeds or a (single) get which also succeeds on σ ∪ σ, and therefore on σ. This
leads to a first successful step s of C(ask(t(2))) after the computation C. As
(tell(t(1)) ; ask(t(2))) fails, this computation prefix C.s has only failing compu-
tation. Nevertheless, C.s is a computation prefix of C(tell(t(1)) ; (ask(t(2)) +
tell(t(1)))), which leads to a failure and to the contradiction. �

Let us now include the get primitive in the Dense Bach language. We first
prove that LDB(get,tell) and LDB(ask,get,tell) are equivalent.

Proposition 8. LDB(get,tell) = LDB(ask,get,tell)

Proof. Direct by coding ask(t(m)) as get(t(m)) ; tell(t(m)). �.

Proposition 9. LB(get,tell) < LDB(get,tell)

Proof. On the one hand, LB(get,tell) ≤ LDB(get,tell) holds by proposition 2.
On the other hand, LDB(get,tell) �≤ LB(get,tell) may be proved exactly as in
proposition 7(ii), where we replace any occurrence of ask(t(2)) by get(t(2)). �
Proposition 10.

(i) LDB(ask,tell) ≤ LDB(get,tell)
(ii) LDB(get,tell) �≤ LDB(ask,tell)

(iii) LDB(ask,tell) �≤ LB(nask,get,tell)
(iv) LB(nask,get,tell) �≤ LDB(ask,tell)

Proof. (i) Immediate by coding ask(t(1)) as get(t(1)) ; tell(t(1)). (ii) The proof
proceeds as in proposition 7(i), by considering A = tell(t(1)) ; get(t(1)).

We can now prove that LDB(get,tell) is not comparable with respec-
tively LB(nask,tell), LDB(nask,tell), LB(nask,get,tell),LB(ask,nask,tell) and
LDB(ask,nask,tell).

Proposition 11.

(i) LDB(get,tell) �≤ LB(nask,tell)
(ii) LB(nask,tell) �≤ LDB(get,tell)
(iii) LDB(get,tell) �≤ LDB(nask,tell)
(iv) LDB(nask,tell) �≤ LDB(get,tell)
(v) LDB(get,tell) �≤ LB(nask,get,tell)

(vi) LB(nask,get,tell) �≤ LDB(get,tell)
(vii) LDB(get,tell) �≤ LDB(ask,nask,tell)
(viii) LDB(ask,nask,tell) �≤ LDB(get,tell)
(ix) LDB(get,tell) �≤ LB(ask,nask,tell)
(x) LB(ask,nask,tell) �≤ LDB(get,tell)

Proof. (i) Indeed, otherwise we have LDB(ask,tell) ≤ LDB(nask,tell) which
contradicts proposition 6(ii). (ii) The proof proceeds as in proposition 5(iv).
(iii) Otherwise we have LB(ask,tell) ≤ LDB(nask,tell) which contradicts
proposition 5(ii). (iv) Otherwise we have LB(nask,tell) ≤ LDB(get,tell)
which contradicts (ii) above. (v) Otherwise by proposition 10(i) we have
LDB(ask,tell) ≤ LB(nask,get,tell) which contradicts proposition 10(iii). (vi)
Otherwise LB(nask,tell) ≤ LDB(get,tell) which contradicts (ii) above. (vii) The
proof proceeds as in proposition 7(i), by considering O(tell(t(1)) ; get(t(1))) =
{(∅, δ+)} and by constructing (C(get(t(1))) || C(get(t(1))))). (viii) Otherwise
LDB(nask,tell) ≤ LDB(get,tell) which contradicts proposition (iv) above. (ix)
Otherwise LDB(get,tell) ≤ LDB(ask,nask,tell) which contradicts (vii) above. (x)
Otherwise LB(nask,tell) ≤ LDB(get,tell) which contradicts (ii) above. �

Density in Coordination Languages 199

Let us now establish that LDB(nask,tell) and LB(ask,nask,tell) are strictly
less expressive than LDB(ask,nask,tell).

Proposition 12. (i) LDB(nask,tell) < LDB(ask,nask,tell) and
(ii) LB(ask,nask,tell) < LDB(ask,nask,tell).

Proof. (i) By sublanguage inclusion and by proposition 6(ii). (ii) By proposi-
tion 2 and by using a reasoning similar to that of proposition 3(ii).

LDB(ask,tell) is strictly less expressive than LDB(ask,nask,tell).

Proposition 13. LDB(ask,tell) < LDB(ask,nask,tell)

Proof. By language inclusion and by proposition 6(i). �

Symmetrically to proposition 10(iii) and 10(iv), LB(nask,get,tell) is not com-
parable with LDB(nask,tell).

Proposition 14. (i) LB(nask,get,tell) �≤ LDB(nask,tell) and
(ii) LDB(nask,tell) �≤ LB(nask,get,tell)

Proof. (i) Otherwise, LB(ask,tell) ≤ LDB(nask,tell) which contra-
dicts proposition 5(ii). (ii) By contradiction, consider T 2NoT =
(tell(t(1)) || tell(t(1))) ; (nask(t(2)) + tell(t(1))), which has one suc-
cessful computation and for which, we shall nevertheless construct a failing
one for its coder. To that end, consider T = C(tell(t(1))). Given that tell(t(1))
succeeds, its coder T has only successful computations starting on the empty
store. Consider one of them, say C, ending in the store σ. By repeating in turn
each of its steps, it is possible to construct a successful computation, say CC,
for C(tell(t(1)) || tell(t(1))) ending in the store σ ∪ σ. Consider now

T 2N = C((tell(t(1)) || tell(t(1))) ; nask(t(2)))
= (C(tell(t(1))) || C(tell(t(1)))) ; C(nask(t(2)))

As tell(t(1)) ; nask(t(2)) succeeds, the computation C of C(tell(t(1))) can
be continued by a successful computation for C(nask(t(2))). Consider such a
computation and let s denote its first step. As C ends in the store σ, step s
can also be successfully performed after CC, which ends in store σ ∪ σ. How-
ever, CC.s is a computation prefix for T 2N , which, in view of the fact that
(tell(t(1)) || tell(t(1))) ; nask(t(2)) fails, can only be continued by failing com-
putations. However, these computations are also computations of T 2NoT , which,
thus provide the announced failing computation. �

LB(nask,get,tell) is not comparable with LDB(ask,nask,tell).

Proposition 15.
(i) LDB(ask,nask,tell) �≤ LB(nask,get,tell)
(ii) LB(nask,get,tell) �≤ LDB(ask,nask,tell)

(iii) LB(ask,nask,tell) �≤ LDB(ask,tell)
(iv) LDB(ask,tell) �≤ LB(ask,nask,tell)

200 J.-M. Jacquet, I. Linden, and D. Darquennes

Proof. (i) Otherwise, LDB(ask,tell) ≤ LB(nask,get,tell) which contradicts
proposition 10(iii). (ii) The proof proceeds as in proposition 7(i), by considering
(C(get(t(1))) || C(get(t(1))))). (iii) Otherwise, LB(nask,tell) ≤ LDB(ask,tell)
which contradicts proposition 5(iv). (iv) Otherwise, LDB(ask,tell) ≤
LB(nask,get,tell) which contradicts (i) above. �

LDB(nask,get,tell) and LDB(ask,nask,get,tell) are equivalent.

Proposition 16. LDB(nask,get,tell) = LDB(ask,nask,get,tell)

Proof. On the one hand, LDB(nask,get,tell) ≤ LDB(ask,nask,get,tell)
is established by language inclusion. On the other hand, to establish
LDB(ask,nask,get,tell) ≤ LDB(nask,get,tell) we shall provide a coder such that
the coding of the primitives ask(t(n)) and nask(t(n)) manipulate different to-
kens. To that end, as the set of tokens is enumerable, it is possible to associate
each of them, say t(n), to a pair (t1(n), t2(n)). Given such a coding of tokens,
we define the compositional coder C as follows:

C(ask(t(n))) = get(t2(n)) ; tell(t2(n))
C(nask(t(n))) = nask(t1(n))

C(get(t(n))) = get(t2(n)) ; get(t1(n))
C(tell(t(n))) = tell(t1(n)) ; tell(t2(n))

The decoder D is defined as follows: Del((σ, δ)) = (σ, δ), where σ is composed of
the tokens t(n) for which t1(n) and t2(n) are in σ, the multiplicity of t(n) being
that of pairs (t1(n), t2(n)) in σ. �

LDB(ask,nask,tell) is strictly less expressive than LDB(ask,nask,get,tell), and
then from LDB(nask,get,tell), by proposition 16.

Proposition 17. LDB(ask,nask,tell) < LDB(ask,nask,get,tell)

Proof. By language inclusion and proposition 11(vii).

LDB(get,tell) is strictly less expressive than LDB(nask,get,tell).

Proposition 18. LDB(get,tell) < LDB(nask,get,tell)

Proof. On the one hand, LDB(get,tell) ≤ LDB(nask,get,tell) results from lan-
guage inclusion. On the other hand, LDB(nask,get,tell) �≤ LDB(get,tell) is es-
tablished as in proposition 5(iv), by considering A = tell(t(1)) ; nask(t(1)).

Finally, LB(ask,nask,get,tell) can be proved strictly less expressive than
LDB(ask,nask,get,tell).

Proposition 19. LB(ask,nask,get,tell) < LDB(ask,nask,get,tell)

Proof. By propositions 2 and 11(v). �

Density in Coordination Languages 201

4 Conclusion

This paper has presented an extension aiming at introducing a notion of density
to tuples with the intuition that the more a tuple appears on a tuple space, the
more it is of interest and, dually, that tuples are of interest for the test of their
presence or absence only if they appear in a sufficient number of occurrences. This
is technically achieved by associating a number of occurrences to the arguments
of the Bach primitives of [11], this resulting in a new language, named Dense
Bach.

Our work builds upon previous work by some of the authors [6, 7, 13–15].
We have essentially followed the same lines and in particular have used De
Boer and Palamidessi’s notion of modular embedding to compare the families of
sublanguages of Bach and Dense Bach. Accordingly, we have established a gain
of expressivity, namely that Dense Bach is strictly more expressive than Bach.
We have also shown that the very nature of the tell, ask, nask and get primitives
of Bach is not altered by the introduced notion of density. In other terms, the
expressiveness relations of the sublanguages of Dense Bach produce an hierarchy
similar to that of the Bach sublanguages. Our main contribution with respect
to [6, 7, 13–15] is to have demonstrated how the techniques used in these pieces
of work can be adapted to Dense Bach.

Our work has similarities but also differences with several work on the expres-
siveness of Linda-like languages. Compared to [22] and [23], it is worth observing
that a different comparison criteria is used to compare the expressiveness of lan-
guages. Indeed, in these pieces of work, the comparison is performed on (i) the
compositionality of the encoding with respect to parallel composition, (ii) the
preservation of divergence and deadlock, and (iii) a symmetry condition. More-
over, we have taken a more liberal view with respect to the preservation of
termination marks in requiring these preservations on the store resulting from
the execution from the empty store of the coded versions of the considered agents
and not on the same store. In particular, these ending stores are not required to
be of the form σ ∪ σ unions) if this is so for the stores resulting from the agents
themselves.

In [1], nine variants of the LB(ask,nask,get,tell) language are studied. They are
obtained by varying both the nature of the shared data space and its structure.
Rephrased in the setting of [10], this amounts to considering different operational
semantics. In contrast, in our work we fix an operational semantics and compare
different languages on the basis of this semantics. In [9], a process algebraic
treatment of a family of Linda-like concurrent languages is presented. Again,
different semantics are considered whereas we have sticked to one semantics and
have compared languages on this basis. In [8], a study of the absolute expressive
power of different variants of Linda-like languages has been made, whereas we
study the relative expressive power of different variants of such languages (using
modular embedding as a yard-stick and the ordered interpretation of tell).

It is worth observing that [1, 8, 9, 22, 23] do not deal with a notion a density
attached to tuples. In contrast, [2] and [3] decorate tuples with an extra field
in order to investigate how probabilities and priorities can be introduced in the

202 J.-M. Jacquet, I. Linden, and D. Darquennes

Linda coordination model. Different expressiveness results are established in [2]
but on an absolute level with respect to Turing expressiveness and the possibility
to encode the Leader Election Problem. Our work contrast in several aspects.
First, we have established relative expressiveness results by comparing the sub-
languages of two families. Moreover, some of these sublanguages incorporate the
nask primitives, which, as can be appreciated from Figure 4(b), strictly increases
the expressiveness. Finally, the introduction of density resembles but is not iden-
tical to the association of weights to tuples. Indeed, in contrast with [2,3] we do
not modify the tuples on the store and do not modify the matching function so
as to retrieve the tuple with the highest weight. In contrast, we modify the tuple
primitives so as to be able to atomically put several occurrences of a tuple on the
store and check for the presence or absence of a number of occurrences. As can
be appreciated by the reader through the comparison of Bach and Dense Bach,
this facility of handling atomically several occurrences produces a real increase
of expressiveness. One may however think of encoding the number of occurrences
of a tuple as an additional weight-like parameter. It is nevertheless not clear how
our primitives tackling at once several occurrences can be rephrased in Linda-
like primitives and how the induced encoding would still fulfills the requirements
of modularity. This will be the subject for future research.

In [21], Viroli and Casadei propose a stochastic extension of the Linda frame-
work, with a notion of tuple concentration, similar to the weight of [2] and [3]
and our notion of density. The syntax of this tuple space is modeled by means
of a calculus, with an operational semantics given as an hybrid CTMC/DTMC
model. This semantics does however not consider nask like primitives. Moreover,
no expressiveness results are established.

These three last pieces of work tackle probabilistic extensions of Linda-like
languages. As a further and natural step in our research, we aim at studying how
our notion of density can be the basis of such probabilistic extensions. As our
work also relies on the possibility to atomically put several occurrences of tokens
and test for their presence or absence, we will also examine in future work how
Dense Bach compares with the Gamma language.

References

1. Bonsangue, M.M., Kok, J.N., Zavattaro, G.: Comparing coordination models based
on shared distributed replicated data. In: ACM Symposium on Applied Computing
(1999)

2. Bravetti, M., Gorrieri, R., Lucchi, R., Zavattaro, G.: Quantitative Information in
the Tuple Space Coordination Model. TCS 346(1) (2005)

3. Bravetti, M., Gorrieri, R., Lucchi, R., Zavattaro, G.: Probabilistic and Prioritized
Data Retrieval in the Linda Coordination Model. In: De Nicola, R., Ferrari, G.-L.,
Meredith, G. (eds.) COORDINATION 2004. LNCS, vol. 2949, pp. 55–70. Springer,
Heidelberg (2004)

4. Bravetti, M., Zavattaro, G.: Service Oriented Computing from a Process Algebraic
Perspective. Journal of Logic and Algebraic Programming 70(1) (2007)

5. Brogi, A., Jacquet, J.-M.: On the Expressiveness of Linda-like Concurrent Lan-
guages. ENTCS 16(2) (1998)

Density in Coordination Languages 203

6. Brogi, A., Jacquet, J.-M.: On the Expressiveness of Coordination Models. In: Cian-
carini, P., Wolf, A.L. (eds.) COORDINATION 1999. LNCS, vol. 1594, pp. 134–149.
Springer, Heidelberg (1999)

7. Brogi, A., Jacquet, J.-M.: On the Expressiveness of Coordination via Shared Datas-
paces. Science of Computer Programming 46(1-2) (2003)

8. Busi, N., Gorrieri, R., Zavattaro, G.: On the Turing equivalence of Linda coordi-
nation primitives. ENTCS 7 (1997)

9. Busi, N., Gorrieri, R., Zavattaro, G.: A Process Algebraic View of Linda Coordi-
nation Primitives. TCS 192 (1998)

10. de Boer, F., Palamidessi, C.: Embedding as a Tool for Language Comparison.
Information and Computation 108(1), 128–157 (1994)

11. Jacquet, J.-M., Linden, I.: Coordinating Context-aware Applications in Mobile Ad-
hoc Networks. In: Proceedings of the First ERCIM workshop on eMobility, The
University of Bern (2007)

12. Jongmans, S.-S.T.Q., Santini, F., Sargolzaei, M., Arbab, F., Afsarmanesh, H.: Au-
tomatic Code Generation for the Orchestration of Web Services with Reo. In: De
Paoli, F., Pimentel, E., Zavattaro, G. (eds.) ESOCC 2012. LNCS, vol. 7592, pp.
1–16. Springer, Heidelberg (2012)

13. Linden, I., Jacquet, J.-M.: On the Expressiveness of Absolute-Time Coordination
Languages. In: De Nicola, R., Ferrari, G.-L., Meredith, G. (eds.) COORDINATION
2004. LNCS, vol. 2949, pp. 232–247. Springer, Heidelberg (2004)

14. Linden, I., Jacquet, J.-M.: On the Expressiveness of Timed Coordination via Shared
Dataspaces. ENTCS 180(2) (2007)

15. Linden, I., Jacquet, J.-M., Bosschere, K.D., Brogi, A.: On the Expressiveness of
Relative-Timed Coordination Models. ENTCS 97 (2004)

16. Butcher, P., Wood, A., Atkins, M.: Global Synchronisation in Linda. Concurency:
Practice and Experience 6(6), 505–516 (1994)

17. Rowstron, A., Wood, A.: Solving the Linda multiple rd problem. In: Hankin,
C., Ciancarini, P. (eds.) COORDINATION 1996. LNCS, vol. 1061, pp. 357–367.
Springer, Heidelberg (1996)

18. Rowstron, A., Wood, A.: Bonita: A Set of Tuple Space Primitives for Distributed
Coordination. In: Proceedings of the 30th Hawaii International Conference on Sys-
tem Sciences, vol. 1. IEEE Computer Society Press. Springer (January 1997)

19. Shapiro, E.: Embeddings Among Concurrent Programming Languages. In: Cleave-
land, W. (ed.) Proceedings of COORDINATION 1992. LNCS, Springer (1992)

20. Tolksdorf, R.: Laura - A Service-Based Coordination Language. Science of Com-
puter Programming 31(2-3), 359–381 (1998)

21. Viroli, M., Casadei, M.: Biochemical Tuple Spaces for Self-organising Coordination.
In: Field, J., Vasconcelos, V.T. (eds.) COORDINATION 2009. LNCS, vol. 5521,
pp. 143–162. Springer, Heidelberg (2009)

22. Zavattaro, G.: On the incomparability of Gamma and Linda. In: Electronic Trans-
actions on Numerical Analysis (1998)

23. Zavattaro, G.: Towards a Hierarchy of Negative Test Operators for Generative
Communication. ENTCS 16 (1998)

A Tag Contract Framework for Heterogeneous Systems

Thi Thieu Hoa Le1, Roberto Passerone1, Uli Fahrenberg2, and Axel Legay2

1 DISI, University of Trento, Italy
2 INRIA/IRISA, Rennes, France

Abstract. In the distributed development of modern IT systems, contracts play a
vital role in ensuring interoperability of components and adherence to specifica-
tions. The design of embedded systems, however, is made more complex by the
heterogeneous nature of components, which are often described using different
models and interaction mechanisms. Composing such components is generally
not well-defined, making design and verification difficult. Several frameworks,
both operational and denotational, have been proposed to handle heterogeneity
using a variety of approaches. However, the application of heterogeneous op-
erational models to contract-based design has not yet been investigated. In this
work, we adopt the operational mechanism of tag machines to represent hetero-
geneous systems and construct a full contract model. We introduce heterogeneous
composition, refinement and dominance between contracts, altogether enabling a
formalized and rigorous design process for heterogeneous systems.

1 Introduction

Modern computing systems are increasingly being built by composing components
which are developed concurrently by different design teams. In such a paradigm, the
distinction between what is constrained on environments, and what must be guaranteed
by a system given the constraint satisfaction, reflects the different roles and responsibil-
ities in the system design procedure. Such distinction can be captured by a component
model called contract [1]. Formally, a contract is a pair of assumptions and guaran-
tees, which intuitively are properties that must be satisfied by all inputs and outputs of a
design, respectively. The separation between assumptions and guarantees supports the
distributed development of complex systems and allows subsystems to synchronize by
relying on associated contracts.

In the particular context of embedded systems, heterogeneity is a typical character-
istic since these systems are usually composed from parts developed using different
methods, time models and interaction mechanisms. To deal with heterogeneity, several
modeling frameworks have been proposed oriented towards the representation and sim-
ulation of heterogeneous systems, such as the Ptolemy framework [2], or towards the
unification of their interaction paradigms, such as those based on tagged events [3]. The
latter can capture different notions of time, e.g., physical time, logical time, and relate
them by mapping tagged events over a common tag structure [4]. However, due to the
significant inherent complexity of heterogeneity, there have been only very few attempts
at addressing heterogeneity in the context of contract-based models. For instance, the
HRC model from the SPEEDS project1 was designed to deal with different viewpoints

1 www.speeds.eu.com

C. Canal and M. Villari (Eds.): ESOCC 2013, CCIS 393, pp. 204–217, 2013.
© Springer-Verlag Berlin Heidelberg 2013

www.speeds.eu.com

A Tag Contract Framework for Heterogeneous Systems 205

(functional, time, safety, etc.) of a single component [5,6]. However, the notion of het-
erogeneity in general is much broader than that between multiple viewpoints, and must
take into account diverse interaction paradigms. Meanwhile, heterogeneous modeling
frameworks have not been related to contract-based design flows. This has motivated
us to study a methodology which allows heterogeneous systems to be modeled and
interconnected in a contract-based fashion.

Our long term objective is to develop a modeling and analysis framework for the
specification and verification of both heterogeneous components and contracts. In or-
der to support formal correctness proofs, the framework must employ an underlying (or
intermediate) semantically sound model that can be used to represent different compu-
tation and interaction paradigms uniformly. Because simulation is an essential design
activity, the model must also be executable. At the same time, the semantic model must
be able to retain the individual features of each paradigm to avoid losing their specific
properties. In particular, the framework must interact with the user through a front end
that exposes familiar models that feel native and natural. In this paper we focus on
the intermediate semantic model and defer the discussion on how specific front ends
may be constructed to our future work. To this end, we advocate the use of heteroge-
neous Tag Machines (TMs) as a suitable semantic model for system specification. The
expressive power of TMs has been demonstrated though various concurrency models
such as asynchronous, synchronous reactive, causality [7] as well as in job-shop mod-
eling and specification [8]. In our previous work we have proposed and studied the
compositional properties of heterogeneous Tag Machines (TMs) for component spec-
ification [9]. Here, we instead discuss their extension to a contract model, and define
a full set of operations and relations such as contract satisfaction, contract refinement
and contract dominance. To do this, we rely on a generic meta-framework [10] that we
extend with tags and mapping between tags to define model interactions. In this paper,
we shall discuss extensively the technical difficulties in making such an extension.

The rest of the paper is organized as follows. In Sect. 3, we recall basic notions
of tag behaviors and tag machines. Section 4 presents our tag contract methodology
for heterogeneous systems built on top of TM operations such as composition, quo-
tient, conjunction and refinement. In the same section, we discuss an application of our
methodology to a simplified water control problem and model it using incrementing
TMs. Finally we conclude in Sect. 5.

2 Related Work

The notion of contract was first introduced by Bertrand Meyer in his design-by-contract
method [1], based on ideas by Dijkstra [11], Lamport [12], and others, where systems
are viewed as abstract boxes achieving their common goal by verifying specified con-
tracts. De Alfaro and Henzinger subsequently introduced interface automata [13] for
documenting components and established a more general notion of contract, where
pre-conditions and post-conditions, which originally appeared in the form of predicates,
are generalized to behavioral interfaces. The differentiation between assumptions and
guarantees, which is implicit in interface automata, is made explicit in the trace-based
contract framework of the SPEEDS HRC model [5,14]. The relationship between spec-
ifications of component behaviors and contracts is further studied by Bauer et al. [10]

206 T.T. Hoa Le et al.

where a contract framework can be built on top of any specification theory equipped
with a composition operator and a refinement relation which satisfy certain proper-
ties. The mentioned trace-based contract theories [5,14] are also demonstrated to be
instances of such framework. We take advantage of this formalization in this work to
construct our tag contract theory. Assume-guarantee reasoning has also been applied
extensively in declarative compositional reasoning [15] to help prove properties by de-
composing the process into simpler and more manageable steps. Our objective is con-
ceptually different: assumptions specify a set of legal environments and are used to
prove (or disprove) contract satisfaction. In contrast, classical assume-guarantee rea-
soning uses assumptions as hypotheses to establish whether a generic property holds.
Naturally, this technique can be used in contract models, as well.

Heterogeneity theory has been evolving in parallel with contract theory, to assist de-
signers in dealing with heterogeneous composition of components with various Mod-
els of Computation and Communication (MoCC). The idea behind these theories and
frameworks is to be able to combine well-established specification formalisms to enable
analysis and simulation across heterogeneous boundaries. This is usually accomplished
by providing some sort of common mechanism in the form of an underlying rich seman-
tic model or coordination protocol. In this paper we are mostly concerned with these
lower level aspects. One such approach is the pioneering framework of Ptolemy II [2],
where models, called domains, are combined hierarchically: each level of the hierar-
chy is homogeneous, while different interaction mechanisms are specified at different
levels in the hierarchy. In the underlying model, intended for simulation, each domain
is composed of a scheduler (the director) which exposes the same abstract interface
to a global scheduler which coordinates the execution. This approach, which has clear
advantages for simulation, has two limitations in our context. First, it does not provide
access to the components themselves but only to their schedulers, limiting our ability
to establish relations to only the models of computation, and not to the heterogeneous
contracts of the components. Secondly, the heterogeneous interaction occurs implicitly
as a consequence of the coordination mechanism, and can not be controlled by the user.
The metroII framework [16] relaxes this limitation, and allows designers to build di-
rect model adapters. However, metroII treats components mostly as black boxes using
a wrapping mechanism to guarantee flexibility in the system integration, making the
development of an underlying theory complex. These and other similar frameworks are
mainly focused on handling heterogeneity at the level of simulation.

Another body of work is instead oriented towards the formal representation, verifi-
cation and analysis of these system. The BIP framework uses the notion of connector,
on top of a state based model, to implement both synchronous and asynchronous in-
teraction patterns [17]. Their relationship, however, can not be easily altered, and the
framework lacks a native notion of time. Benveniste et al. [4] propose a heterogeneous
denotational semantics inspired by the Lee and Sangiovanni-Vincentelli formalism of
tag signal models [3], which has been long advocated as a unified modeling framework
capable of capturing heterogeneous MoCC. In both models, tags play an important role
in capturing various notions of time, where each tag system has its own tag structure ex-
pressing an MoCC. Composing such system is thus done by applying mappings between
different tag structures. TMs [7] are subsequently introduced as finite representations

A Tag Contract Framework for Heterogeneous Systems 207

of homogeneous tag systems. We have chosen to use this formalism for our work, as
it provides an operational representation based on rigorous and proven semantics, and
extended their definition to encompass heterogeneous components [9]. TMs are quite
expressive, and ways to map traditional interaction paradigms have been reported in the
literature [7]. TMs have also been applied to model a job-shop specification [8] where
any trace of the composite tag machine from the start to the final state results in a valid
job-shop schedule. Alternatively, tag systems can be represented by functional actors
forming a Kleene algebra [18]. The approach is similar to that of Ptolemy II in that both
use actors to represent basic components.

3 Background

We consider a component to be a set of behaviors in terms of sets of events that take
place at its interface, intended as a collection of visible ports. Tags, which are associ-
ated to every event, characterize the temporal evolution of the behaviors. By changing
the structure of tags, one can choose among different notions of time. Formally, a tag
structure T is a pair (T,≤) where T is a set of tags and ≤ is a partial order on the tags.
The tag ordering is used to resolve the ordering among events at the system interface.

3.1 Tag Behaviors

Events occur at the interface of a component. A component exposes a set V of variables
(or ports) which can take values from a set D. An event is a snapshot of a variable state,
capturing the variable value at some point in time. Formally, an event e on a variable
v ∈ V is a pair (τ, d) of a tag τ ∈ T and a value d ∈ D. The simplest way of
characterizing a behavior is as a collection of events for each variable. To construct
behaviors incrementally, the events of a variable are indexed into a sequence, with the
understanding that events later in the sequence have larger tags [4]. A behavior for a
variable v is thus a function N �→ (T × D). A behavior σ for a component assigns
a sequence of events to every variable in V , i.e. σ ∈ V �→ (N �→ (T × D)). Each
event of behavior σ is identified by a tuple (v, n, τ, d), capturing the n-th occurrence of
variable v as a pair of a tag τ and a value d. In the following, we denote with Σ(V, T)
the universe of all behaviors over a set of variables V and tag structure T .

Combining behaviors σ1 and σ2 on the same tag structure, or homogeneous be-
haviors, amounts to computing their intersection provided that they are consistent, or
unifiable, written σ1 �� σ2, with each other on the shared variables, i.e. σ1|V1∩V2 =
σ2|V1∩V2 , where σ|W denotes the restriction of behavior σ to the variables in set W .
We may then construct a unified behavior σ = σ1 & σ2 on the set of variables V1 ∪ V2

where σ(v) = σ1(v) for v ∈ V1 and σ(v) = σ2(v) for v ∈ V2. When behaviors are de-
fined on different tag structures, before unifying them, the set of tags must be equalized
by mapping them onto a third tag structure that functions as a common domain. The
mappings are called tag morphisms and must preserve the order.

Definition 1 ([4]). Let T and T ′ be two tag structures. A tag morphism from T to T ′

is a total map ρ : T �→ T ′ such that ∀τ1, τ2 ∈ T : τ1 ≤ τ2 ⇒ ρ(τ1) ≤ ρ(τ2).

208 T.T. Hoa Le et al.

(a) System diagram (b) A tank (σ1) and controller (σ2) behavior

Fig. 1. Water controlling system

Here, the tag orders must be taken on the respective domains. Using tag morphisms, we
can turn a T -behavior σ ∈ V �→ (N �→ (T × D)) into a T ′-behavior σ ◦ ρ ∈ V �→
(N �→ (T ′ ×D)) by simply replacing all tags τ in σ with the image ρ(τ). Unification
of heterogeneous behaviors can be done on the common tag structure. Let ρ1 : T1 �→ T
and ρ2 : T2 �→ T be two tag morphisms into a tag structure T . Two behaviors σ1 and
σ2 defined on T1 and T2 respectively are unifiable in the heterogeneous sense, written
σ1 ��ρ1 ρ2

σ2, if and only if (σ1 ◦ ρ1) �� (σ2 ◦ ρ2). The unified behavior σ over T is
then σ = (σ1 ◦ ρ1) & (σ2 ◦ ρ2). It is convenient, however, to retain some information
of the original tag structures in the composition, since they are often referred to in the
heterogeneous composition, as we will see in the sequel. To do so, we construct the
behavior composition over the fibered product [4] T1 ×ρ1 ρ2

T2 = (T1 ×ρ1 ρ2
T2,≤) of

the original tag structures, extending the order component-wise: (τ1, τ2) ≤ (τ ′1, τ
′
2)

⇐⇒ τ1 ≤ τ ′1 ∧ τ2 ≤ τ ′2, where T1 ×ρ1 ρ2
T2 = {(τ1, τ2) ∈ T1×T2 : ρ1(τ1) = ρ2(τ2)}.

Example 1. We consider a simplified version of the water controlling system proposed
by Benvenuti et al. [14]. It consists of two components: a water tank and a water level
controller, connected in a closed-loop fashion, c.f. Fig. 1. We assume that the water
level x(t) is changed linearly as follows:

x(t)
def
=

{
Δt ∗ (fi − fo) when command is Open
h−Δt ∗ fo when command is Close

(1)

where fi and fo denote the constant inlet and outlet flow respectively, h denotes the
height when the tank is full of water and Δt denotes the time elapsed since t0 at which
the tank reaches the maximum/minimum water level H, i.e., Δt = t−t0. Let ε1 = ε2 =
−∞, the tank behaviors are naturally defined on tag structure T1 = (R+∪{ε1},≤) and
the controller behaviors on T2 = (N ∪ {ε2},≤) representing continuous and discrete
time respectively. In addition, both components contain behaviors for two system vari-
ables, namely the command variable m and the water level x, thus V1 = V2 = {m,x}.
The command values can be Open (p) or Close (l) and the water level is of positive
real type and between 0 and h, i.e., Dm = {p, l} and Dx = [0,h].

Consider the tank behavior σ1 and the controller behavior σ2 described in Fig. 1(b),
where σ(v, n) is described when the parameter setting is fi = 2, fo = 1,h = 1. These
are different behaviors whose composition is only possible under the presence of mor-
phisms such as ρi : Ti �→ T1 given by ρ1(τ1) = τ1, ρ2(τ2) = 0.5 ∗ τ2.

Our interest in this system is to construct the contracts of these components which
will be provided later in this paper. Intuitively, the tank contract guarantees a linear
evolution of the water level x(t) upon the reception of in-time commands. Meanwhile,

A Tag Contract Framework for Heterogeneous Systems 209

the controller contract only assumes the initial emptiness of the tank and guarantees to
send proper commands upon detecting its emptiness or fullness.

3.2 Operational Tag Machines

TMs were first introduced to represent sets of homogeneous behaviors [7] and have been
recently extended to encompass the heterogeneous context [9]. To construct behaviors,
the TM transitions must be able to increment time, i.e., to update the tags of the events.
An operation of tag concatenation on a tag structure is used to accomplish this.

Definition 2 ([7]). An algebraic tag structure is a tag structure T = (T,≤, ·) where · is
a binary operator on T called concatenation, such that:

1. (T, ·) is a monoid with identity element ı̂T
2. ∀τ1, τ ′1, τ2, τ ′2 ∈ T : τ1≤τ ′1 ∧ τ2≤τ ′2 ⇒ τ1 · τ2 ≤ τ ′1 · τ ′2
3. ∃εT ∈ T : ∀τ ∈ T : εT ≤ τ ∧ εT · τ = τ · εT = εT

Tags can be organized as tag vectors τ = (τv1 , . . . , τvn), where n is the number of
variables in V . During transition, tag vectors evolve according to a matrix μ:V ×V �→ T

called a tag piece [7]. The new tag vector is τμ
def
= τ · μ where τviμ

def
= max(τu ·

μ(u, vi))
u∈V and the maximum is taken with respect to the tag ordering. As the order

is partial, the maximum may not exist, in which case the operation is not defined.
Intuitively, a tag piece μ represents increments in all variable tags over a transition

and provides a way to operationally renew them. To represent also changes in variable
values, μ can be labeled with a partial assignment ν : V → D, which assigns new
values to the variables. A labeled tag piece μ thus specifies events for all variables for
which ν is defined. In the following, we denote by dom(ν) the domain of ν and by
L(V, T) the universe of all labeled tag pieces, or simply labels, over a variable set V
and tag structure T . By abuse of notation, we assume that every tag piece μ has an
associated assignment ν.

Example 2. The algebraic tag structure (N ∪ {−∞},≤,+), where + is the concatena-
tion operator, can be used to capture logical time by structuring tag pieces μ to represent
an integer increment of 1. For instance, [1 3] ·

[
0 1

−∞ 1

]
= [1 4]. The tag of the second

variable is increased by 1 while that of the first variable remains the same since the least
element−∞ = ε is used to cancel the contribution of an entry in the tag vector.

A tag machine M is a finite automaton where transitions are marked by labels.

Definition 3 ([9]). A tag machine is a tuple (V, T , S, s0, F, E) where:

– V is a set of variables,
– T is an algebraic tag structure,
– S is a finite set of states and s0 ∈ S is the initial state,
– F ⊆ S is a set of accepting states,
– E ⊆ S × L(V, T)× S is the transition relation.

A TM run r is a sequence of states and transitions r : s0
μ0→ s1

μ1→ s2 . . . sm−1
μm−1→ sm

such that sm ∈ F and for all i, 1 ≤ i ≤ m, (si−1, μi−1, si) ∈ E. Intuitively, a

210 T.T. Hoa Le et al.

TM is used to construct a behavior (as defined in Sect. 3.1) by following its labeled
transitions over a run, and concatenating the tag pieces sequentially to the initial tag
vector τ = (̂ıT , . . . , ı̂T). A new event is added to the behavior whenever a new value is
assigned by the label function νi. Run r is valid if the concatenation is always defined
along the run and sm ∈ F . The language L(M) of tag machine M is given by the
behaviors of all its valid runs.

3.3 Tag Machine Composition

As TMs are used to represent sets of behaviors, combining TMs amounts to considering
only behaviors which are consistent with every TM. In particular, over every transition,
the TMs involved in the composition must agree on the tag increment and the value of
the shared variables, i.e., their labels are unifiable. While TMs defined on the same tag
structure, or homogeneous TMs, can always be composed, TMs on different tag struc-
tures, or heterogeneous TMs, can be composed if there exists a pair of algebraic tag
morphisms mapping the tag structures T1, T2 to a common tag structure T and preserv-
ing the concatenation operator. The homogeneous composition can thus be regarded
as a special case of the heterogeneous one when tag morphisms are identity functions
mapping a tag to itself.

Definition 4 ([9]). A tag morphism ρ :T �→ T ′ is algebraic if ρ(̂ıT) = ı̂T ′ and ρ(εT) =
εT ′ and ρ(τ1 · τ2) = ρ(τ1) · ρ(τ2) for all τ1, τ2 ∈ T .

The newly-composed TM will be defined on a unified tag structure and a unified label
set. Referring to the previous notation, two labels μ1 and μ2 are unifiable under mor-
phisms ρ1 and ρ2, written μ1 ��ρ1 ρ2

μ2, whenever a) ρ1(μ1(w, v)) = ρ2(μ2(w, v)),
and b) ν1(v) = ν2(v), for all pairs (w, v) ∈ W × W where W = V1 ∩ V2. Their
unification μ = μ1 &ρ1 ρ2

μ2 is defined over T1 ×ρ1 ρ2
T2 and is any of the members of the

unification set of pieces given by

μ(w, v) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(μ1(w, v), μ2(w, v)) if (w, v) ∈ W ×W
(μ1(w, v), τ2) if w ∈ V1, v ∈ V1 \ V2

(μ1(w, v), τ2) if w ∈ V1 \ V2, v ∈ V1

(τ1, μ2(w, v)) if w ∈ V2 \ V1, v ∈ V2

(τ1, μ2(w, v)) if w ∈ V2, v ∈ V2 \ V1

(εT1 , εT2) otherwise

where τ2 ∈ T2 is such that ρ2(τ2) = ρ1(μ1(w, v)), and similarly τ1 ∈ T1 is such that
ρ1(τ1) = ρ2(μ2(w, v)). The unified labeling function agrees with individual functions
on the shared variables:

ν(v) =

{
ν1(v) if v ∈ V1

ν2(v) if v ∈ V2

The composition M = M1 ‖ρ1 ρ2
M2 of heterogeneous TMs can then be defined

over the unification of heterogeneous tag structures and labels.

Definition 5 ([9]). The composition of M1 and M2 under algebraic tag morphisms ρ1
and ρ2 is the tag machine M = M1 ‖ρ1 ρ2

M2 = (V, T1 ×ρ1 ρ2
T2, S, s0, F, E) such that

A Tag Contract Framework for Heterogeneous Systems 211

– V = V1 ∪ V2,
– S = S1 × S2, s0 = (s01, s02), F = F1 × F2,
– E = {((s1, s2), μ1 &ρ1 ρ2

μ2, (s
′
1, s

′
2)) : μ1 ��ρ1 ρ2

μ2 ∧ (si, μi, s
′
i) ∈ Ei, i = 1, 2}

where μ1 &ρ1 ρ2
μ2 extends to all the members of the unification set.

As homogeneous composition is a special case of the heterogeneous one with identity
morphisms, we shall omit the morphisms in the homogeneous notations in the sequel.

4 A Contract Framework for Heterogeneous Systems

Our goal is to use TMs as an operational means for modeling heterogeneous systems in
contract-based design flows. To this end, we equip TMs with essential binary operators
such as composition to combine two TMs [9] and refinement, quotient and conjunction
to relate their sets of behaviors (Sect. 4.1). Moreover, we limit TMs to their determin-
istic form where labeled tag pieces annotated on transitions going out of a state are
all different. On top of these TM operators, we propose a heterogeneous contract the-
ory for TM-based specifications with universal contract operators such as composition,
refinement and dominance (Sect. 4.2).

4.1 Tag Machine Operators

Two TMs can be related in a refinement relation when the behavior set of one machine
is included in that of the other under the morphisms. In the operational point of view,
the refined TM can always take a transition unifiable with that taken by the refining TM.
Let Mi = (Vi, Ti, Si, s0i, Fi, Ei) be TMs and ρi : Ti �→ T be algebraic tag morphisms,
where i ∈ {1, 2}. The TM refinement is defined as follows.

Definition 6. M1 refines M2, written M1 *ρ1 ρ2
M2, if there exists a binary relation

R ⊆ S1 × S2 such that (s01, s02) ∈ R and for all (s1, s2) ∈ R and (s1, μ1, s
′
1) ∈ E1 :

∃(s2, μ2, s
′
2) ∈ E2 : μ1 ��ρ1 ρ2

μ2 ∧ (s′1, s
′
2) ∈ R ∧ (s′1 ∈ F1 ⇒ s′2 ∈ F2)

The following theorem shows that our TM theory supports (homogenous) independent
implementability: refinement is preserved when composing components.

Theorem 1. Let M ′
i be TMs defined on Ti and Vi :

(M1 *M ′
1) ∧ (M2 *M ′

2)⇒ (M1 ‖ρ1 ρ2
M2) * (M ′

1 ‖ρ1 ρ2
M ′

2).

We remark that Theorem 1 only holds for homogenous TM refinement, and note that
heterogeneous refinement in general is not preserved even by homogeneous composi-
tion. The reason is that the morphisms involved in the former are generally many-to-one
functions and can map two different tags into the same tag.

Example 3. We consider an example where:

– T1 = {τ1}, T2 = {τ2, τ ′2}
– V1 = V2 = {z}, Dz = {�}
– ρ1(τ1) = ρ2(τ2) = ρ2(τ

′
2) = τ

212 T.T. Hoa Le et al.

Let Mi,M
′
i be defined on Ti and Vi where i ∈ {1, 2}. For the sake of simplicity, assume

all TMs have a single state which is both initial and accepting state. In addition, there is
only one self-loop at this state annotated with μi for machineMi and μ′

i for machineM ′
i

such that μ1 = μ′
1 = [τ1], μ2 = [τ2], μ

′
2 = [τ ′2], ν1(z) = ν′1(z) = ν2(z) = ν′2(z) = �.

It is easy to see that M1 *ρ1 ρ2
M2 since μ1 ��ρ1 ρ2

μ2 and M ′
1 *ρ1 ρ2

M ′
2 since

μ′
1 ��ρ1 ρ2

μ′
2. However, (M1 ‖M ′

1) �ρ1 ρ2
(M2 ‖M ′

2) since the right composition is
empty while the left is not.

While the refinement operator enables us to compare two TMs in terms of sets of be-
haviors, the composition and quotient operators allow us to synthesize specifications.
The TM composition computes the most general specification that retains all unifiable
behaviors of two TMs. The dual operator to TM composition is TM quotient which
computes the maximal specification as follows.

Definition 7. The quotient M1 /ρ1 ρ2
M2 is a machine M = (V, T12, S, s0, F, E), where

– V = V1 ∪ V2, T12 def
= T1 ×ρ1 ρ2

T2, s0 = (s01, s02),
– S = (S1 × S2) ∪ {u}, where u is a new universal state,
– F = ((S1×S2) \ ((S1 \F1)×F2))∪ {u} = (F1 ×F2)∪ (S1× (S2 \F2))∪ {u},

E = {((s1, s2), μ1 &ρ1 ρ2
μ2, (s

′
1, s

′
2)) |

(μ1 ��ρ1 ρ2
μ2) ∧ ((s1, μ1, s

′
1) ∈ E1) ∧ ((s2, μ2, s

′
2) ∈ E2)}

∪{((s1, s2), μ1 &ρ1 ρ2
μ2, u) |

(∀s′2 ∈ S2 : (s2, μ2, s
′
2) /∈ E2) ∧ (∃μ1 ∈ L(V1, T1) : μ1 ��ρ1 ρ2

μ2)}
∪{(u, μ, u) |μ ∈ L(V, T12)}.

We give an example of a quotient construction in Fig. 4. The dual relation between
composition and quotient is presented in the next theorem.

Theorem 2. The quotient M satisfies refinement (M2 ‖id2 proj2
M) *proj′1 id1

M1 where:

∀i ∈ {1, 2}, ∀τi ∈ Ti : idi(τi) = τi

∀i ∈ {1, 2}, ∀(τ1, τ2) ∈ T12 : proji((τ1, τ2)) = τi

∀(τ2, τ12) ∈ T2 ×id2 proj2
T12 : proj′1((τ2, τ12)) = proj1(τ12)

∀(τ1, τ12) ∈ T1 ×id1 proj1
T12 : proj′2((τ1, τ12)) = proj2(τ12)

Moreover, for M ′ defined on T12 and V : (M2 ‖id2 proj2
M ′) *proj′1 id1

M1 ⇒M ′ *M .

Thus, the quotient M is the greatest, in the (homogeneous) refinement preorder, of
all TMs M ′ defined in Theorem 2. This universal property is generally expected of
quotients [10], and it alone implies that the quotient is uniquely defined up to two-sided
homogeneous refinement [19]. As an example, Fig. 3(c) shows a homogeneous quotient
and Fig. 4(a) shows a heterogeneous quotient using the morphisms of Example 1.

Finally, the operator of heterogeneous conjunction, denoted ρ1�ρ2 , is defined as the
greatest lower bound of the refinement order. Conjunction, thus, amounts to computing
the intersection of the behavior sets, in order to find the largest common refinement.
Thus, for tag machines, conjunction can be computed similarly to composition. The two
operators, however, serve very different purposes, and must not therefore be confused.

A Tag Contract Framework for Heterogeneous Systems 213

4.2 Tag Contracts

We use the term tag contract to mean that in our framework each contract is coupled
with an algebraic tag structure, thereby allowing the contract assumption and guarantee
to be represented as TMs.

Definition 8. A tag contract is a homogeneous pair of TMs (MA,MG) where MA -
the assumption and MG - the guarantee are TMs defined over the same tag structure T
and variable set V .

Example 4. We consider the simplified water controlling system in Example 1 and
present a contract for each component. To simplify the behavioral construction, we
rely on a special clock inc added to the variable set of both components. Tag pieces μ
are then structured to represent an increment of δ by always assigning δ to μ(inc, inc)
and assigning δ to all entries μ(inc, v) where v ∈ dom(μ), and the least element −∞
to other entries. The tags of x and m are thus renewed to the tag of clock inc over every
transition. To keep the figures readable we represent tag pieces as [δ]. In addition, the
clock value is always equal to its tag and thus is omitted from the labeling function.

(a) MAt (b) MGt

Fig. 2. The tank contract

Figure 2 depicts the tank contract Ct = (MAt ,MGt) which guarantees a linear evo-
lution of the water level x(t) (Fig. 2(b)) given the assumption satisfaction (Fig. 2(a)).
That is, the water level will evolve linearly as specified in Example 1, provided that the
controlling command is received at the right time (i.e., open when the tank is empty
and close when it is full). For the sake of simplicity, the events described by the tank
contract are timestamped periodically every 0.5 time unit.

(a) MAc (b) MGc (c) MGc/MAc

Fig. 3. The controller contract

214 T.T. Hoa Le et al.

The controller contract is shown Fig. 3, where it assumes the tank to be empty ini-
tially (Fig. 3(a)), i.e., x = 0 and places no requirement on its output which is the
command signal. As long as such assumption is satisfied, the controller guarantees
(Fig. 3(b)) to send a proper command upon knowing of the tank emptiness or full-
ness. Intuitively, the controller behaviors ensure timely control over the water evolution
while the tank behaviors accept untimely control and allow water spillages or shortages.
While the tank system uses physical time to stamp its behaviors, the controller system
instead timestamps its events logically, which can be described by the integer tag set
N. In both figures, the initial states are marked with short arrows arriving at them and
all states are accepting states. For the sake of expressiveness, some of the labeled tag
pieces can be represented symbolically. For example, to capture any event of variable x
happening at a specific time point within an interval, we label with the tag piece expres-
sions such as x ∈ (0, 1), meaning that in such an event x can take any value between 0
and 1. Similarly, m ∈ {p, l,−} means the command value can either be open, close or
undefined. In addition, we use μt

0 to denote the universe set of labels L(V1, T1) and μc
0

the set of labels L(V2, T2).
The tag contract semantics is subsequently defined through the notions of contract en-
vironments and implementations. Let MI and ME be TMs defined over tag structure
T and variable set V in Def. 8. We call ME an environment of contract C when ME
refines MA. Let [[C]]e be the set of all such environments, we call MI an implementa-
tion of contract C, if it holds that ∀ME ∈ [[C]]e : MI ‖ME * MG ‖ME . The set of
implementations is similarly denoted by [[C]]p. Hence, the implementation checking is
done based on instantiating all possible environments of a contract. When the contract
is normalized, such a check can be done independently of the assumption instantiation.

Definition 9. A tag contract C = (MA,MG) is in normalized form if and only if:

∀MI : MI ∈ [[C]]p ⇔MI *MG .

The following theorem states the preservation of tag contract semantics under the nor-
malization operation: whenever a tag contract is in a normalized form, checking contract
satisfaction is reduced to finding a refinement relation between two TMs.

Theorem 3. Tag contract (MA,MG/MA) is in normalized form and has the same se-
mantics as C = (MA,MG) does.

Example 5. We use the tag contracts in Example 4 and perform the quotient between
the guarantees and assumptions in order to normalize them. Since the tank assumption
is the universe of all possible behaviors, i.e., Σ(V1, T1), normalizing the tank guarantee
adds no more behaviors to the guarantee, i.e., MGt/MAt = MGt . Figure 3(c), on the
other hand, shows the normalized controller guarantee having more behaviors than the
un-normalized one. It is easy to see that the behavior σ1 in Example 1 is included in
MGt and σ2 is in MGc/MAc .

As we will see later, working with normalized tag contracts can simplify the formaliza-
tion of contract operators (e.g. contract refinement and dominance) as well as provide
a unique representation for equivalent contracts, thus we will often assume contracts to
be in normalized form hereafter.

A Tag Contract Framework for Heterogeneous Systems 215

Tag Contract Refinement. The refinement relation between two tag contracts is sub-
ject to the tag morphisms and is determined by that between their sets of implementa-
tions and environments as follows. Let Ci = (MAi ,MGi) be tag contracts defined on Ti
and Vi and ρi : Ti �→ T be algebraic tag morphisms where i ∈ {1, 2}

Definition 10. Contract C1 refines contract C2 under morphisms ρ1 and ρ2, written
C1 *ρ1 ρ2

C2, if the following two conditions hold:

1. ∀ME2 ∈ [[C2]]e : ∃ME1 ∈ [[C1]]e : ME2 *ρ2 ρ1
ME1

2. ∀MI1 ∈ [[C1]]p : ∃MI2 ∈ [[C2]]p : MI1 *ρ1 ρ2
MI2

The following theorem shows that for two normalized tag contracts, checking refine-
ment can be done at the syntactic level, i.e., by finding a TM refinement relation be-
tween their assumptions and guarantees.

Theorem 4. C1 *ρ1 ρ2
C2 ⇔ (MA2 *ρ2 ρ1

MA1) ∧ (MG1 *ρ1 ρ2
MG2)

Tag Contract Composition and Dominance. In composing two heterogeneous tag
contracts, it is essential to guarantee that composing implementations of each contract
results in a new implementation of the composite contract. In addition, every environ-
ment of the composite contract should be able to work with any implementation of an
individual contract in a way that their composition does not violate the other contract as-
sumption. In fact, there exists a class of contracts, including the composite contract, able
to provide such desirable consequences. We refer to them as dominating contracts [10].

Definition 11. A contract C = (MA,MG) is said to dominate the tag contract pair
(C1, C2) under morphisms ρ1 and ρ2 if :

1. C is defined over tag structure T12 def
= T1 ×ρ1 ρ2

T2 and variable set V = V1 ∪ V2

2. ∀MI1 ∈ [[C1]]p, ∀MI2 ∈ [[C2]]p : MI1 ‖ρ1 ρ2
MI2 ∈ [[C]]p

3. ∀ME ∈ [[C]]e :

{
∀MI1 ∈ [[C1]]p : (MI1 ‖id1 proj1

ME) *proj′2 id2
MA2 ∧

∀MI2 ∈ [[C2]]p : (MI2 ‖id2 proj2
ME) *proj′1 id1

MA1

where the morphisms are defined as in Theorem 2.

The composition of heterogeneous tag contracts can then be defined as follows.

Definition 12. The composition of tag contracts C1 and C2, written C1 ‖ρ1 ρ2
C2, is

another tag contract ((MA1 /ρ1 ρ2
MG2)�(MA2 /ρ2 ρ1

MG1)swap,MG1 ‖ρ1 ρ2
MG2) where

swap : T2 ×ρ2 ρ1
T1 �→ T1 ×ρ1 ρ2

T2 is such that swap((τ2, τ1)) = ((τ1, τ2)) and Mswap is
M where all pieces μ are replaced with μ ◦ swap.

Let C′i be normalized tag contracts defined on Ti and Vi such that C′i * Ci where
i ∈ {1, 2}. The following theorem states important results: the composition of two
normalized contracts dominates the individual contracts and is the least, in the homo-
geneous refinement order, of all contracts dominating them under the same morphisms.

216 T.T. Hoa Le et al.

Theorem 5. Let C = C1 ‖ρ1 ρ2
C2, then:

1. C dominates the contract pair (C1, C2) under morphisms ρ1 and ρ2.
2. If C′ dominates (C1, C2) under morphisms ρ1 and ρ2 then C * C′.

The next theorem is another of independent implementability: homogeneous tag con-
tract refinement is preserved under the heterogeneous contract composition.

Theorem 6. Let C = C1 ‖ρ1 ρ2
C2, then:

1. If C dominates (C1, C2) under morphisms ρ1 and ρ2 then it also dominates (C′1, C′2)
under the same morphisms.

2. (C′1 ‖ρ1 ρ2
C′2) * (C1 ‖ρ1 ρ2

C2).

(a) MAt /ρ1 ρ2MGc (b) (MAc /ρ2 ρ1MGt)swap

Fig. 4. Quotient components of the composite assumption of C1 ‖ρ1 ρ2 C2

5 Conclusions

We have presented a modeling methodology based on contracts for designing hetero-
geneous distributed systems. Heterogeneous systems are usually characterized by their
heterogeneity of components which can be of very different nature, e.g. real-time com-
ponent or logical control component. Without a heterogeneous mechanism, modeling
the interaction between components may not be feasible, thereby making it difficult to
do verification and analysis based on the known properties of the components. This
problem is further complicated for distributed systems where components are devel-
oped concurrently by different design teams and are synchronized by relying on their
associated contracts. To deal with such problem, we adopt the TM formalism [7,9] for
specifying components in terms of operational behaviors. We subsequently propose a
contract methodology for synchronizing heterogeneous components based on a set of
useful operations on TMs such as composition, quotient and refinement. Our next step
is to demonstrate our methodology through a prototype tool and validate it through case
studies. The development of such a tool is therefore included in our future work.

References

1. Meyer, B.: Applying “Design by contract”. Computer 25(10), 40–51 (1992)
2. Eker, J., Janneck, J.W., Lee, E.A., Liu, J., Liu, X., Ludvig, J., Neuendorffer, S., Sachs, S.,

Xiong, Y.: Taming heterogeneity - the ptolemy approach. In: Proceedings of the IEEE, pp.
127–144 (2003)

A Tag Contract Framework for Heterogeneous Systems 217

3. Lee, E., Sangiovanni-Vincentelli, A.: A framework for comparing models of computation.
IEEE Trans. CAD of Integ. Circ. and Systems 17(12), 1217–1229 (1998)

4. Benveniste, A., Caillaud, B., Carloni, L.P., Caspi, P., Sangiovanni-Vincentelli, A.L.: Com-
posing heterogeneous reactive systems. ACM Trans. Embed. Comput. Syst. 7(4), 43:1–43:36
(2008)

5. Benveniste, A., Caillaud, B., Ferrari, A., Mangeruca, L., Passerone, R., Sofronis, C.: Multiple
viewpoint contract-based specification and design. In: de Boer, F.S., Bonsangue, M.M., Graf,
S., de Roever, W.-P. (eds.) FMCO 2007. LNCS, vol. 5382, pp. 200–225. Springer, Heidelberg
(2008)

6. Damm, W., Hungar, H., Josko, B., Peikenkamp, T., Stierand, I.: Using contract-based com-
ponent specifications for virtual integration testing and architecture design. In: Proceedings
of the Conference on Design, Automation and Test in Europe, Grenoble, France (2011)

7. Benveniste, A., Caillaud, B., Carloni, L.P., Sangiovanni-Vincentelli, A.: Tag machines. In:
Proceedings of the International Conference on Embedded Software, pp. 255–263. ACM
(2005)

8. Dey, S., Sarkar, D., Basu, A.: A tag machine based performance evaluation method for job-
shop schedules. IEEE Trans. CAD of Integ. Circ. and Systems 29(7), 1028–1041 (2010)

9. Le, T.T.H., Passerone, R., Fahrenberg, U., Legay, A.: Tag machines for modeling hetero-
geneous systems. In: Proceedings of the 13th International Conference on Application of
Concurrency to System Design, ACSD 2013, Barcelona, Spain, July 8-10 (2013)

10. Bauer, S.S., David, A., Hennicker, R., Guldstrand Larsen, K., Legay, A., Nyman, U., Wą-
sowski, A.: Moving from specifications to contracts in component-based design. In: de Lara,
J., Zisman, A. (eds.) FASE 2012. LNCS, vol. 7212, pp. 43–58. Springer, Heidelberg (2012)

11. Dijkstra, E.W.: Guarded commands, non-determinancy and a calculus for the derivation of
programs. In: Bauer, F.L., Samelson, K. (eds.) Language Hierarchies and Interfaces. LNCS,
vol. 46, pp. 111–124. Springer, Heidelberg (1976)

12. Lamport, L.: win and sin: Predicate transformers for concurrency. ACM Trans. Program.
Lang. Syst. 12(3), 396–428 (1990)

13. de Alfaro, L., Henzinger, T.A.: Interface automata. SIGSOFT Softw. Eng. Notes 26, 109–120
(2001)

14. Benvenuti, L., Ferrari, A., Mangeruca, L., Mazzi, E., Passerone, R., Sofronis, C.: A contract-
based formalism for the specification of heterogeneous systems. In: Proceedings of the Fo-
rum on Specification, Verification and Design Languages, Stuttgart, pp. 142–147 (2008)

15. de Roever, W.P.: The quest for compositionality—a survey of assertion-based proof systems
for concurrent programs, part i: Concurrency based on shared variables. In: Proc. of the IFIP
Working Conference “The role of Abstract Models in Computer Science” (1985)

16. Davare, A., Densmore, D., Guo, L., Passerone, R., Sangiovanni-Vincentelli, A.L., Simalatsar,
A., Zhu, Q.: metroII: A design environment for cyber-physical systems. ACM Transactions
on Embedded Computing Systems 12(1s), 49:1–49:31 (2013)

17. Bliudze, S., Sifakis, J.: The algebra of connectors: Structuring interaction in BIP. IEEE Trans-
actions on Computers 57(10), 1315–1330 (2008)

18. Dey, S., Sarkar, D., Basu, A.: A Kleene algebra of tagged system actors. IEEE Embedded
Systems Letters 3(1), 28–31 (2011)

19. Fahrenberg, U., Legay, A., Wąsowski, A.: Vision paper: Make a difference (Semantically).
In: Whittle, J., Clark, T., Kühne, T. (eds.) MODELS 2011. LNCS, vol. 6981, pp. 490–500.
Springer, Heidelberg (2011)

Matching Cloud Services with TOSCA�

Antonio Brogi and Jacopo Soldani

Department of Computer Science, University of Pisa, Italy

Abstract. The OASIS TOSCA specification aims at enhancing the por-
tability of cloud-based applications by defining a language to describe
and manage service orchestrations across heterogeneous clouds. A ser-
vice template is defined as an orchestration of typed nodes, which can
be instantiated by matching other service templates. In this paper, after
defining the notion of exact matching between TOSCA service templates
and node types, we define three other types of matching (plug-in, flexible
and white-box), each permitting to ignore larger sets of non-relevant syn-
tactic differences when type-checking service templates with respect to
node types. We also describe how service templates that plug-in, flexibly
or white-box match node types can be suitably adapted so as to exactly
match them.

1 Introduction

How to deploy and manage, in an efficient and adaptive way, complex multi-
service applications across heterogeneous cloud environments is one of the prob-
lems that have emerged with the cloud revolution. Currently, migrating (parts
of) an application from one cloud to another is still a costly and error-prone
process. As a result, cloud users tend to end up locked into the cloud platform
they are using since it is practically infeasible for them to migrate (parts of)
their application across different clouds platforms [16].

In this scenario, OASIS recently created a Technical Committee on Topology
and Orchestration Specification for Cloud Application (TOSCA), whose goal is
to ease the portability of cloud-based applications by defining a language to
describe and manage service orchestrations across heterogeneous clouds. The
first specification of TOSCA [14] defines a XML-based language that permits to
specify —in a vendor-agnostic way— topology and behaviour of complex multi-
cloud applications as service templates that orchestrate typed nodes.

As stated in the TOSCA primer ([15], page 35): “node types can be made
concrete by substituting them by a service template”. However, while the match-
ing between service templates and node types is mentioned with reference to an
example (“service template ST may substitute node type N because the boundary
of ST matches all defining elements of N”), no formal definition of matching is
given either in [14] or in [15]. A definition of matching is employed in [17] to
merge TOSCA services by matching entire portions of their topology templates.

� Work partly supported by EU-FP7-ICT-610531 SeaClouds project.

C. Canal and M. Villari (Eds.): ESOCC 2013, CCIS 393, pp. 218–232, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Matching Cloud Services with TOSCA 219

The definition of matching employed in [17] is however very strict, as two ser-
vice components are considered to match only if they expose the same qualified
name.

The objective of our work is to contribute to the TOSCA specification by first
providing a formal definition of the notion of exact matching between TOSCA
service templates and node types, and by then extending such definition in order
to provide three other types of matching (plug-in, flexible and white-box), each
permitting to ignore larger sets of non-relevant syntactic differences when type-
checking service templates with respect to node types. To allow exploiting the
new notions of matching not only during type-checking but also for node instan-
tiation, we describe how a service template that plug-in, flexibly or white-box
matches a typed node can be suitably adapted so as to exactly match it.

The results presented in this paper intend to contribute to the formal def-
inition of TOSCA. The different types of matching defined in this paper can
be fruitfully integrated in the TOSCA implementations that are currently un-
der development in order to enhance their type-checking capabilities. More in
general, the definitions of matching presented in this paper can be exploited
to implement type-checking mechanisms over service descriptions by taking into
account, beyond functional features, also requirements, capabilities, policies, and
properties.

The rest of paper is organised as follows. The main notions of TOSCA are in-
troduced in Sect. 2. The notion of exact matching between a service template and
a node type is defined in Sect. 3, where three other notions of matching (plug-in,
flexible and white-box) are introduced, along with the corresponding adaptation
techniques. Related work is discussed in Sect. 4, while some concluding remarks
are drawn in Sect. 5.

2 Background: TOSCA

In this section we briefly recall the main notions of the Topology and Orchestra-
tion Specification for Cloud Application (TOSCA) [14] which will be used in the
rest of the paper1.

The main aim of TOSCA is to enhance the portability of multi-cloud applica-
tions by enabling an interoperable description of application and infrastructure
cloud services, of the relationships between service parts, and of the operational
behaviour of services, independently of the supplier creating the service and of
any particular cloud provider or hosting technology.

Syntactically speaking, TOSCA is an XML-based language for describing ser-
vice templates. All definitions are contained in the XML Definitions element (the
root of a TOSCA XML document). The ServiceTemplate element defines all the
topological and management aspects of a service by means of TopologyTemplate
and Plans elements (Fig. 1). A TopologyTemplate specifies the topological struc-
ture of a service as a directed graph, whose nodes are NodeTemplates and whose

1 More information on TOSCA can be found in the TOSCA specification [14] as well
as in the TOSCA primer [15].

220 A. Brogi and J. Soldani

arcs are RelationshipTemplates. Plans contains Plan elements that specify how
to manage the associated service template during its whole lifetime. Boundary-
Definitions can be used to specify which internal nodes, relationships and other
features are externally exposed by a ServiceTemplate.

NodeTemplates are typed by means of NodeTypes, which define the struc-
ture of the service features whose values are specified in a NodeTemplate. Such
features include properties, interfaces, requirements, capabilities, and policies.
While properties and interfaces can be defined internally, requirements and ca-
pabilities must be typed by referring to external RequirementTypes and Ca-
pabilityTypes. Finally, NodeTemplates and ServiceTemplates can declare QoS
information by exposing Policy elements, which must be typed by referring to
PolicyTypes. A PolicyType defines the structure of policy, while a Policy assigns
actual policy values.

Fig. 1. TOSCA ServiceTemplate

3 Matching Service Templates with Node Types

As stated in the TOSCA primer ([15], page 35): “node types can be made con-
crete by substituting them by a service template”. While the matching between
ServiceTemplates and NodeTypes is mentioned with reference to an example, no
definition of matching is given either in [14] or in [15].

In this section we formally define four ways in which a ServiceTemplate can
match a NodeType: exact (≡), plug-in (-), flexible (∼), and white-box (�). Each
definition of matching relaxes the previous one (viz., ≡⊂-⊂∼⊂ �) in order to
identify larger sets of ServiceTemplates that can be adapted so as to (exactly)
match a NodeType.

3.1 Exact Matching

In this section we formalize the definition of exact matching between a Ser-
viceTemplate and a NodeType, which mirrors the definition of exact matching

Matching Cloud Services with TOSCA 221

between a NodeTemplate and a NodeType discussed in [14]. The following defi-
nition specifies when a ServiceTemplate ST exactly matches a NodeType N in
terms of the requirements (Reqs), capabilities (Caps), policies (Pols), properties
(Props) and interfaces (Ints) of ST and N2.

Definition 1. A ServiceTemplate ST exactly matches a NodeType N (ST ≡
N) if and only if:

(1) Reqs(ST) ≡R Reqs(N) and
(2) Caps(ST) ≡C Caps(N) and
(3) Pols(ST) ≡PO Pols(N) and
(4) Props(ST) ≡PR Props(N) and
(5) Ints(ST) ≡I Ints(N).

Requirements must have the same name and type, and they must be in a one-
to-one correspondence. The same holds for capabilities.

Definition 2. Let N be a NodeType and let ST be a ServiceTemplate. Then:

Reqs(ST) ≡R Reqs(N) iff
∀x ∈ Reqs(ST) ∃!y ∈ Reqs(N) : name(x) = name(y) ∧ type(x) = type(y), and
∀y ∈ Reqs(N) ∃!x ∈ Reqs(ST) : name(x) = name(y) ∧ type(x) = type(y).

Caps(ST) ≡C Caps(N) iff
∀x ∈ Caps(ST) ∃!y ∈ Caps(N) : name(x) = name(y) ∧ type(x) = type(y), and
∀y ∈ Caps(N) ∃!x ∈ Caps(ST) : name(x) = name(y) ∧ type(x) = type(y).

According to [14], a policy can be associated with a set of NodeTypes to which it
is applicable3. The type of each policy of ST must therefore be one of the policy
types applicable to N . As far as properties are concerned, since a NodeType only
specifies the XML schema of its observable properties (while ServiceTemplates
specify actual values of properties), property matching reduces to comparing
XML types.

Definition 3. Let N be a NodeType and let ST be a ServiceTemplate. Then:

Pols(ST) ≡PO Pols(N) iff ∀x ∈ Pols(ST) : type(x) ∈ Pols(N).
Props(ST) ≡PR Props(N) iff XMLtype(Props(ST)) = XMLtype(Props(N)).

Finally, interfaces must have the same name and must be in a one-to-one corre-
spondence. The same holds for interface operations and for operation parameters.
Operation parameters must also have the same type.

Definition 4. Let N be a NodeType and let ST be a ServiceTemplate. Then:

Ints(ST) ≡I Ints(N) iff
∀x ∈ Ints(ST) ∃!y ∈ Ints(N) : name(x) = name(y) ∧

2 Strictly speaking, the definition relates the Requirements of ST with the Require-
mentDefinitions of N , the Capabilities of ST with the CapabilityDefinitions of N ,
the policies exposed by ST with the policy types applicable to N , and the Properties
exposed by ST with the PropertyDefinitions declared by N .

3 We assume that a policy is applicable to all NodeTypes if not specified otherwise.

222 A. Brogi and J. Soldani

∀ox ∈ Ops(x) ∃!oy ∈ Ops(y) : ox ≡o oy and
∀y ∈ Ints(N) ∃!x ∈ Ints(ST) : name(x) = name(y) ∧

∀oy ∈ Ops(y) ∃!ox ∈ Ops(x) : ox ≡o oy
where Ops(.) denotes the set of operations of an interface and where
ox ≡o oy if and only if name(ox) = name(oy) and
∀a ∈ I(ox), ∃!b ∈ I(oy) : name(a) = name(b) ∧ type(a) = type(b), and
∀b ∈ I(oy), ∃!a ∈ I(ox) : name(a) = name(b) ∧ type(a) = type(b), and
∀a ∈ O(ox), ∃!b ∈ O(oy) : name(a) = name(b) ∧ type(a) = type(b), and
∀b ∈ O(oy), ∃!a ∈ O(ox) : name(a) = name(b) ∧ type(a) = type(b)

where I(o) and O(o) denote the input and output parameters of operation o.

It is easy to observe that the notion of exact matching is quite strict, as illustrated
by the following example.

Example 1. Consider NodeTypes N1 and N2 and ServiceTemplate ST of Fig. 2,
where C and Csup denote sets of capabilities, R and Rsub denote sets of re-
quirements, pj a property, ij an interface, oj an operation, and where policies
and operation parameters are omitted for readability. Suppose that ST exactly
matches N1 (viz., ST ≡ N1) and that N2 differs from N1 since it exposes
“more” requirements than N1 and “less” capabilities, properties and operations
than N1. While, according to Defs. 1—4, ST cannot exactly match N2 (viz.,
ST �≡ N2), a less strict definition of matching should allow ST to match also
N2, as we are going to discuss in the next section. 0&

Fig. 2. Exact matching examples

3.2 Plug-in Matching

Intutively speaking, a ServiceTemplate plug-in matches a NodeType if the former
“requires less” and “offers more” than the latter. As in Def. 1, the following
definition specifies when a ServiceTemplate ST plug-in matches a NodeType
N in terms of the requirements, capabilities, policies, properties and interfaces
of ST and N . As NodeTypes do not specify concrete policies (just applicable
policies), the matching of policies (≡PO) is unchanged.

Definition 5. A ServiceTemplate ST plug-in matches a NodeType N (ST -
N) if and only if:

(1) Reqs(ST) -R Reqs(N) and
(2) Caps(ST) -C Caps(N) and
(3) Pols(ST) ≡PO Pols(N) and
(4) Props(ST) -PR Props(N) and
(5) Ints(ST) -I Ints(N).

Matching Cloud Services with TOSCA 223

Intutively speaking, a ServiceTemplate must expose “less” requirements than a
NodeType. According to [14], names of requirements can be ignored, and types
do not need to strictly coincide. In the following we write t′ ≥ t when type t′

extends4 or is equal to t.

Definition 6. Let N be a NodeType and let ST be a ServiceTemplate. Then:
Reqs(ST) -R Reqs(N) iff ∀x ∈ Reqs(ST) ∃y ∈ Reqs(N) : type(y) ≥ type(x).

Dually, a ServiceTemplate must expose “more” capabilities and properties of a
NodeType. According to [14], names of capabilities can be ignored, and types do
not need to strictly coincide.

Definition 7. Let N be a NodeType and let ST be a ServiceTemplate. Then:
Caps(ST) -C Caps(N) iff ∀y ∈ Caps(N) ∃x ∈ Caps(ST) : type(x) ≥ type(y).
Props(ST) -PR Props(N) iff XMLtype(Props(ST)) ≥ XMLtype(Props(N)).

Finally, a ServiceTemplate must expose all the operations exposed by a Node-
Type. The matching can focus on operations and abstract from (names of) in-
terfaces.

Definition 8. Let N be a NodeType and let ST be a ServiceTemplate. Then:
Ints(ST) -I Ints(N) iff ∀y, oy : y ∈ Ints(N) ∧ oy ∈ Ops(y)

∃x, ox : x ∈ Ints(ST) ∧ ox ∈ Ops(x) : ox ≡o oy.

It is worth noting that when a ServiceTemplate ST plug-in matches a NodeType
then ST can be easily adapted into a new ServiceTemplate ST ′ that exactly
matches that NodeType. Such ST ′ is built by creating a new ServiceTemplate
having ST as its only node, and by simply exposing (via the BoundaryDefini-
tions) the capabilities, policies, properties, and interfaces of the NodeType to
be matched. If requirements plug-in match (but do not exactly match) then a
dummy echo node is introduced to (artificially) extend the set of requirements
of ST so as to expose the same requirements of the NodeType to be matched.

Example 2. Example 1 illustrated a ServiceTemplate ST that cannot exactly
match a NodeType N2 since the latter exposes “more” requirements and “less”
capabilities, properties and operations than the former. Since ST exposes one
property (p2) and one operation (o4) more thanN2, we have that Props(ST) -PR

Props(N) and Ints(ST) -PR Ints(N) by Defs. 7 and 8, respectively. Therefore, if
R -R Rsub and C -R Csup hold too, then ST plug-in matches N2 (ST - N2).
Figure 3 illustrates how ServiceTemplate ST can be adapted so as to exactly
match NodeType N2.

Consider now NodeType N3 of Fig. 3, which differs from N2 only since it
exposes property pA instead of property p1. While, according to Def. 7, ST
cannot plug-in match N3 (ST �- N3), if p1 and pA were (syntactically) different
names for the same property and if the type of p were “compatible” with the
type of pA, then a less strict definition of matching should allow ST to match
also N3, as we are going to discuss in the next section. 0&
4 More precisely, if t and t′ are TOSCA elements then t′ extends t if t′ is (directly
or undirectly) DerivedFrom t. If t and t′ are instead XML types then the standard
notion of XML extension applies.

224 A. Brogi and J. Soldani

Fig. 3. Plug-in matching examples

3.3 Flexible Matching

We now further extend the definition of matching of a ServiceTemplate with a
NodeType in order to ignore non-relevant syntactic differences between names of
features. Since the semantics of requirements, capabilities and policies depends
only on types, the following definition extends Def. 5 only on properties and
interfaces.

Definition 9. A ServiceTemplate ST flexibly matches a NodeType N (ST ∼
N) if and only if:

(1) Reqs(ST) -R Reqs(N) and
(2) Caps(ST) -C Caps(N) and
(3) Pols(ST) ≡PO Pols(N) and
(4) Props(ST) ∼PR Props(N) and
(5) Ints(ST) ∼I Ints(N).

We assume cloud services to be equipped with ontology-based descriptions of
their functionalities [13]. In particular we assume NodeTypes and ServiceTem-
plates to include ontology-based annotations associated with the names of their
properties and operations. We use the notation n �� n′ to denote that a name n
is semantically equivalent5 to a name n′.

A ServiceTemplate must expose all properties of aNodeType. Names of properties
can be semantically equivalent, and types of properties do not need to stricly
coincide.

Definition 10. Let N be a NodeType and ST a ServiceTemplate. Then:

Props(ST) ∼PR Props(N) iff ∀y ∈ Props(N) ∃x ∈ Props(ST):
name(x) �� name(y) ∧ type(x) ≥ type(y).

A ServiceTemplate must also expose all the operations exposed by a NodeType.
Names of operations can be ignored, while names of operation parameters can
be semantically equivalent and their types do not need to strictly coincide.

5 In this paper we abstract from a specific implementation of (cross) ontology match-
making (like, e.g., [8] or [11]).

Matching Cloud Services with TOSCA 225

Definition 11. Let N be a NodeType and let ST be a ServiceTemplate. Then:

Ints(ST) ∼I Ints(N) iff ∀y, oy : y ∈ Ints(N) ∧ oy ∈ Ops(y)
∃x, ox : x ∈ Ints(ST) ∧ ox ∈ Ops(x) : ox ∼o oy.

where ox ∼o oy if and only if
|I(ox)| = |I(oy)| and
|O(ox)| = |O(oy)| and
∀a ∈ I(ox), ∃!b ∈ I(oy) : name(a) �� name(b) ∧ type(b) ≥ type(a) and
∀b ∈ O(oy), ∃!a ∈ O(ox) : name(a) �� name(b) ∧ type(a) ≥ type(b).

In Sect.3.2 we illustrated how a ServiceTemplate ST that plug-in matches a
NodeType can be easily adapted so as to exactly match that NodeType. The
same holds for flexible matching, that is, a ServiceTemplate ST that fexibly
matches a NodeType can be easily adapted into a new ServiceTemplate ST ′ that
exactly matches that NodeType. As for the case of plug-in matching, ST ′ is built
by creating a new ServiceTemplate having ST as its only node, and by simply
exposing (via the BoundaryDefinitions) the capabilities, policies, properties, and
interfaces of the NodeType to be matched. If requirements flexibly match (but
do not exactly match) then a dummy echo node is introduced to (artificially)
extend the set of requirements of ST so as to expose the same requirements of
NodeType to be matched. Moreover, differently from plug-in adaptation, flexible
adaptation may rename properties as well as interfaces, operations, and opera-
tion parameters.

Example 3. Example 2 illustrated a ServiceTemplate ST that cannot plug-in
match a NodeType N3 since ST exposes a property p1 different from property
pA exposed by N3. It is easy to see that Def. 10 permits ST to flexibly match
N3 (viz., ST ∼ N3) if the type of p1 extends or is equal to the type of pA
and if p1 and pA —even if syntactically different—refer to the same property
(viz., name(p1) �� name(pA)). Figure 4 illustrates how ST can be adapted so as
to exactly match N3, by letting the new ServiceTemplate ST ′ expose also the
renamed property pA. 0&

Fig. 4. Flexible matching example

Example 4. Suppose that a cloud application developer needs to emply aWeather-
AppType NodeType (Fig. 5), whose interface getTemp exposes a homonym op-
eration with country and city as input parameters, and perceivedTemperature as
output parameter: getTemp: {country,city} → {perceivedTemperature}. Suppose

226 A. Brogi and J. Soldani

also that a ServiceTemplate ST is available, and that it exhibits an interface
GetWeather which exposes the operations:

– TemperatureAndHumidity: {country,city} → {temperature, humidity}
– Wind : {country,city} → {windSpeed}
– Weather : {country,city} → {sky, temperature, humidity, windSpeed}
– ComputePerceived : {temperature, humidity, windSpeed} → {perceivedTemp}

with perceivedTemp �� perceivedTemperature6.

Fig. 5. ServiceTemplate that cannot flexibly match a NodeType

It is easy to see that while ST capabilities exactly match WeatherAppType ca-
pabilties, ST properties and interfaces cannot flexibly matchWeatherAppType’s
ones sinceWeatherAppType is exposing one property more (Name) than ST and
since ST does not offer operation getTemp exposed by WeatherAppType. Still,
one may observe that property Name may correspond to one of the properties
of an internal node of ST and that operation getTemp might be offered by ST
by suitably combing (some of) its operations. This suggests that a “white-box”
definition of matching could allow ST to match WeatherAppType, as we are go-
ing to discuss in the next section. 0&

3.4 White-Box Matching

When a ServiceTemplate ST cannot flexibly match a NodeType because of some
missing requirement, capability, policy, or operation, ST may include such miss-
ing elements internally, wihout exposing them on its boundaries.

As for the previous definitions of matching, the following definition specifies
when a ServiceTemplate ST white-box matches a NodeType N in terms of the

6 For the sake of simplicity in this example we assume that name(x) �� name(y)
implies type(x) = type(y).

Matching Cloud Services with TOSCA 227

requirements, capabilities, policies, properties and interfaces of ST andN . As we
already observed in Sect.3.2, intuitively speaking, a ServiceTemplate ST must
expose “less” requirements than a NodeType. Moreover, NodeTypes do not spec-
ify concrete policies. For these reasons, the following definition extends Def. 9
only on capabilities, properties and interfaces.

Definition 12. A ServiceTemplate ST white-box matches a NodeType N
(ST�N) if and only if:

(1) Reqs(ST) -R Reqs(N) and
(2) Caps(ST) �C Caps(N) and
(3) Pols(ST) ≡PO Pols(N) and
(4) Props(ST) �PR Props(N) and
(5) Ints(ST) �I Ints(N).

The following definition extends the matching of capabilities and properties
(Defs. 7 and 10) to consider also the internal nodes of a ServiceTemplate. We
denote by ST → elem the fact that elem is an internal element of ST .

Definition 13. Let N be a NodeType and let ST be a ServiceTemplate. Then:

Caps(ST)�CCaps(N) iff ∀y ∈ Caps(N) ∃x :
(x ∈ Caps(ST)
∨
(∃E : ST → E ∧ E is NodeTemplate∧ x ∈ Caps(E)))
∧
(type(x) ≥ type(y)).

Props(ST)�CProps(N) iff ∀y ∈ Props(N) ∃x :
(x ∈ Props(ST)
∨
(∃E : ST → E ∧ (E is NodeTemplate or RelationshipT emplate)

∧ x ∈ Props(E)))
∧
(name(x) �� name(y) ∧ type(x) ≥ type(y)).

The following definition extends the matching of operations (Def. 11) to consider
also operations that a ServiceTemplate can feature by combining its operations
in a suitable plan.

Definition 14. Let N be a NodeType, let ST be a ServiceTemplate, and let
Π(ST) the set of all possible plans combining ST operations. Then:

Ints(ST)�I Ints(N) iff ∀y, oy : y ∈ Ints(N) ∧ oy ∈ Ops(y):
(∃x, ox : x ∈ Ints(ST) ∧ ox ∈ Ops(x) ∧ ox ∼o oy)
∨
(∃p : p ∈ Π(ST) ∧ [p] ∼o oy)

where [p] is the operation modelling the overall input-output behaviour of plan p.

228 A. Brogi and J. Soldani

FindOperations(Ops, op, selectedOperations, needed, available) {
1 needed = {x | x ∈ needed ∧ � ∃y ∈ available : y x};
2 if needed = ∅
3 then return selectedOperations;
4 else {
5 c = choose(needed);
6 needed = needed \ {c};
7 opSet = {o ∈ Ops | ∃d ∈ O(o) : d c};
8 if opSet = ∅
9 then fail;
10 else foreach o ∈ opSet do {
11 selectedOperations = selectedOperations∪ {o};
12 if nonMinimal(selectedOperations, op)
13 then fail;
14 else {
15 available = available ∪O(o);
16 needed = needed ∪ I(o);
17 FindOperations(Ops, op, selectedOperations, needed, available)
18 }
19 }
20 }
21 }

Fig. 6. Algorithm to discover sets of operations that can be composed into plans
featuring the input-output behaviour of a given operation

The existence of a plan that suitably combines a set of operations into an
input-output behaviour equivalent to a given operation can be determined by
adapting the ontology-aware discovery algorithm of [3].

The FindOperations algorithm (Fig. 6), given a set of available operations
Ops, returns a set of selectedOperations ⊆ Ops that can be composed into a
plan featuring the input-output behaviour of a given operation op. The algorithm
inputs a set of available operations Ops, the operation op to be simulated, a (ini-
tially empty) set of selectedOperations, the set needed of outputs to be generated
(initially the outputs O(op) of op), and the set of available outputs (initially the
inputs I(op) of op). First, if the set of available outputs includes an output “equal
to or more general than” some needed output z, then z is removed from the set
of needed outputs (line 1). The notation y � x stands for name(y) �� name(x)
and type(y) ≥ type(x). Then, if there are no missing outputs to be generated
the current set of selectedOperations is returned (lines 2-3). Otherwise, a missing
output c is nondeterministically chosen7 and removed from the set of missing
outputs (lines 5 and 6). The algorithm then checks (lines 7 and 8) whether there
is at least one operation in Ops that produces an output equal to or more general
than c. If there is no such operation then (the instance of) the algorithm fails

7 Execution of choose forks a new instance of the algorithm for each possible choice.

Matching Cloud Services with TOSCA 229

(line 9). Otherwise for each operation o in Ops producing an output equal to
or more general than c, o is added to the current set of selectedOperations (line
11). If the obtained set of selectedOperations is not minimal8 then (the instance
of) the algorithm fails (lines 12 and 13). Otherwise the set of available outputs
is extended with the outputs of o (line 15), and the set of needed outputs is
extended (line 16) with the inputs of o. Finally, the algorithm recurs (line 17)
on the new set of selectedOperations, and of needed and available outputs.

It is worth noting that when a ServiceTemplate ST white-box matches a
NodeType N then ST can be adapted into a new ServiceTemplate ST ′ that
exactly matches that NodeType. Differently from the cases of plug-in and flex-
ible matching, the BoundaryDefinitions of ST are first extended in order to
expose the capabilities, properties or plans internal to ST that were detected by
the white-box matching. The obtained ServiceTemplate STtemp flexibly matches
NodeType N , and the adaptation described in Sect. 3.3 can be now applied to
build a ServiceTemplate ST ′ having STtemp as its only node, and by simply ex-
posing (via the BoundaryDefinitions) the capabilities, policies, properties, and
interfaces of the NodeType N to be matched. If requirements plug-in match (but
do not exactly match) then a dummy echo node is introduced to (artificially)
extend the set of requirements of ST so as to expose the same requirements of
the NodeType to be matched.

Example 5. Example 4 illustrated a ServiceTemplate ST that cannot flexibly
match a WeatherAppType NodeType since the latter exposes one property more
(Name) than the former, and since ST does not offer operation getTemp. We
observe that Def. 12 permits ST to white-box match WeatherAppType (viz.,
ST�WeatherAppType) if, for instance, property HostName of node AppServer
of ST is semantically equivalent to property Name of WeatherAppType, and
if there exists a plan p combining some ST operations, whose input-output
behaviour simulates operation getTemp (viz., [p] ∼o getT emp). It is easy to
observe that algorithm findOperations returns two minimal sets of operations
of ST that can simulate getTemp, namely {TemperatureAndHumidity, Wind,
ComputePerceived} and {Weather, ComputePerceived}, which can be used to
build three plans that simulate the input-output behaviour of operation getTemp:

p1 =TemperatureAndHumidity.Wind.ComputePerceived
p2 =Wind.TemperatureAndHumidity.ComputePerceived
p3 =Weather.ComputePerceived

Figure 7 illustrates the adaptation of ST . The BoundaryDefinitions of ST are
first extended to expose property HostName of node AppServer as property
Name, and to expose one of the plans p1, p2 or p3 as operation getTemp. Then, the
resulting ServiceTemplate ST ′′ is incapsulated into a new ServiceTemplate ST ′

8 Because of space limitations, we do not include here the definition of the nonMinimal
function, which can be found in [3]. Following [3], a set S of operations can simulate
the input-output behaviour of an operation op iff (1) ∀x ∈ O(op)∃y ∈ ⋃

o∈S O(o) :
y x, and (2) ∀y ∈ ⋃

o∈S I(o)∃x ∈ (
⋃

o∈S O(o) ∪ I(op)) : x y. A set S of operations
that can emulate an operation op is minimal iff � ∃S′ ⊂ S that can emulate op.

230 A. Brogi and J. Soldani

Fig. 7. White-box adaptation of a ServiceTemplate

so as to expose only the capabilities, properties, and interfaces of the Weather-
AppType NodeType to be matched. 0&

4 Related Work

As we mentioned at the beginning of Sect. 3, our work started from the ob-
servation that while the matching between ServiceTemplates and NodeTypes is
indicated in [15] as a way to instantiate abstract TOSCA NodeTypes, no defini-
tion of matching is given in either [14] or [15]. A concrete definition of matching
for TOSCA is used [17] to define a way to merge TOSCA services by matching
entire portions of their topology templates. The definition of matching of single
service components employed in [17] is however very strict, as two service com-
ponents are considered to match only if they expose the same qualified name.
Our work aims to contribute to the TOSCA specification by proposing four def-
initions of matching between ServiceTemplates and NodeTypes, each identifying
larger sets of ServiceTemplates that can be adapted so as to (exactly) match a
NodeType.

The problem of how to match (Web) services has been extensively stud-
ied in recent years. Many approaches are ontology-aware [13], like for instance
the ontology-aware matchmaker for OWL-S services described in [8]. Other ap-
proaches are behaviour-aware, like the (ontology-aware) trace-based matching of
YAWL services defined in [4], the (ontology-aware) behavioural congruence for
OWL-S services defined in [2], or the graph transformation based matching de-
fined in [5] and the heuristic black-box matching described in [7] for WS-BPEL
processes. The main difference between the aforementioned approaches and ours

Matching Cloud Services with TOSCA 231

is the type of information considered when matching single nodes. The matching
levels considered for instance in [8] and [7] are all defined in terms of input and
output data, while we consider also technology requirements and capabilities,
properties and policies.

On the other hand, many proposals of QoS-aware service matching have
been developed, like for instance [10] or [12]. Generally speaking, the notion
of matching defined in the present paper differs from most QoS-aware matching
approaches since it compares types rather than actual values of extra-functional
features like QoS. A type-based definition of matching is defined in [6] to type
check “stream flows” for interactive distributed multimedia applications. While
the context of [6] is different from ours, two of the matching conditions consid-
ered in [6] resemble our notions of exact and plug-in matching, even if for simpler
service abstractions.

Summing up, to the best of our knowledge, our definition of matching is the
first definition of (TOSCA) node matching to take into account both functional
and extra-functional features, by relying both on types and on ontologies to
overcome non-relevant syntactic information.

5 Concluding Remarks

In this paper, after defining the notion of exact matching between TOSCA Ser-
viceTemplates and NodeTypes, we have defined three other types of matching
(plug-in, flexible and white-box), each permitting to ignore larger sets of non-
relevant syntactic differences when type-checking ServiceTemplates with respect
to NodeTypes. To allow exploiting the new notions of matching not only for
type-checking but also for node instantiation, we have also described how a
ServiceTemplate that plug-in, flexibly or white-box matches a NodeType can be
suitably adapted so as to exactly match it.

As we already mentioned in Sect. 1, the results presented in this paper in-
tend to contribute to the formal definition of TOSCA. We already developed a
proof-of-concept implementation of exact and plug-in matching. Furthermore,
the different types of matching defined in this paper can be fruitfully integrated
in the TOSCA implementations that are currently under development — such
as the Winery editor [9] and the OpenTOSCA IDE [1] — in order to enhance
their type-checking capabilities.

The definitions of matching presented in this paper can be extended to take
into account, besides types, also actual values of policies and properties, so as
to allow verifying also the compliance of a ServiceTemplate with NodeTemplates
that instantiate a matching NodeType. This is actually the scope of our imme-
diate future work.

References

1. Binz, T., Breitenbücher, U., Haupt, F., Kopp, O., Leymann, F., Nowak, A., Wag-
ner, S.: OpenTOSCA – A Runtime for TOSCA-based Cloud Applications. In:
Proceedings of ISCOC 2013. Springer (2013)

232 A. Brogi and J. Soldani

2. Bonchi, F., Brogi, A., Corfini, S., Gadducci, F.: A Net-based Approach to Web
Services Publication and Replaceability. Fundam. Informaticae 94(3-4), 205–309
(2009)

3. Brogi, A., Corfini, S.: Behaviour-aware discovery of Web service compositions. In-
ternational Journal of Web Service Research 4(3), 1–25 (2007)

4. Brogi, A., Popescu, R.: Service Adaptation through Trace Inspection. International
Journal of Business Process Integration and Management 2(1), 9–16 (2007)

5. Corrales, J.C., Grigori, D., Bouzeghoub, M.: BPEL processes matchmaking for
service discovery. In: Meersman, R., Tari, Z. (eds.) OTM 2006. LNCS, vol. 4275,
pp. 237–254. Springer, Heidelberg (2006)

6. Eliassen, F., Mehus, S.: Type Checking Stream Flow Endpoints. In: Middleware
1998, pp. 305–320 (1998)

7. Eshuis, R., Grefen, P.: Structural Matching of BPEL Processes. In: Proceedings
of the Fifth European Conference on Web Services (ECOWS 2007), pp. 171–180
(2007)

8. Klusch, M., Fries, B., Sycara, K.: OWLS-MX: A hybrid Semantic Web service
matchmaker for OWL-S services. Web Semantics: Science, Services and Agents on
the World Wide Web archive 7(2), 121–133 (2009)

9. Kopp, O., Binz, T., Breitenbücher, U., Leymann, F.: Winery – Modeling Tool
for TOSCA-based Cloudq Applications. In: Proceedings of ISCOC 2013. Springer
(2013)

10. Mahdikhani, F., Hashemi, M.R., Sirjani, M.: QoS Aspects in Web Services Com-
positions. In: Proceedings of IEEE SOSE 2008, pp. 239–244 (2008)

11. Martinez-Gil, J., Navas-Delgado, I., Aldana-Montes, J.F.: MaF: An Ontology
Matching Framework. Journal of Universal Computer Science 18(3), 194–217
(2012)

12. Mokhtar, S.B., Preuveneers, D., Georgantas, N., Issarny, V., Berbers, Y.: EASY:
Efficient semAntic Service discoverY in pervasive computing environments with
QoS and context support. Journal of Systems and Software 81(5), 785–808 (2008)

13. O’Sullivan, D., Lewis, D.: Semantically driven service interoperability for pervasive
computing. In: Proceedings of ACM MobiDE 2003, pp. 17–24 (2003)

14. OASIS TOSCA TC. Topology and Orchestration Specification for Cloud Applica-
tions Version 1.0 (2013),
http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.pdf

15. OASIS TOSCA TC. Topology and Orchestration Specification for Cloud Ap-
plications (TOSCA) Primer Version 1.0 (2013), http://docs.oasis-open.org/

tosca/tosca-primer/v1.0/tosca-primer-v1.0.pdf

16. Petcu, D., Macariu, G., Panica, S., Craciun, C.: Portable Cloud Applications -
From Theory to Practice. Future Generation Computer Systems 29(6), 1417–1430
(2012)

17. Weiss, A.: Merging of TOSCA Cloud Topology Templates. Master thesis, Institute
of Architecture of Application Systems, University of Stuttgart (2012), http://
elib.uni-stuttgart.de/opus/volltexte/2012/7932/pdf/MSTR 3341.pdf

http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.pdf
http://docs.oasis-open.org/tosca/tosca-primer/v1.0/tosca-primer-v1.0.pdf
http://docs.oasis-open.org/tosca/tosca-primer/v1.0/tosca-primer-v1.0.pdf
http://elib.uni-stuttgart.de/opus/volltexte/2012/7932/pdf/MSTR_3341.pdf
http://elib.uni-stuttgart.de/opus/volltexte/2012/7932/pdf/MSTR_3341.pdf

First Hand Developer Experiences

of Social Devices

Niko Mäkitalo, Timo Aaltonen, and Tommi Mikkonen

Department of Pervasive Computing
Tampere University of Technology, Tampere, Finland

PL 553, 33101 Tampere, Finland
{niko.makitalo, timo.aaltonen, tommi.mikkonen}@tut.fi

Abstract. Contemporary Internet connected devices, such as tablets
and mobile phones, have excellent computing power, which creates a
possibility for complex, cooperative multi-device platforms. We have in-
troduced a concept of Social Devices and its reference implementation
Social Devices Platform. The system offers an intuitive way to build in-
teractions between co-located people and their devices, and then trigger
these when people meet face-to-face. In this paper we study how develop-
ers experience the concept and the platform. We hired a four-person team
to design and implement a multiplayer game, and afterwards interviewed
the team members about their experiences. Based on their feedback we
evaluate the system. Moreover, we raise some open questions that require
attention and more research in the future.

1 Introduction

Custom-built native apps have become one of the dominant ways people use
software. In the mobile space, the time span of the users’ actions is usually sig-
nificantly shorter than in the desktop space; the users wish to perform rapid,
focused actions instead of long-lasting sessions; actions must be simple yet fo-
cused, and they must be accomplished with ease, using only a minimal number
of keystrokes or finger presses, often while the user is walking, driving a car or is
somehow otherwise distracted by other activities. The different usage modalities
and smaller screen sizes have a significant impact on application design; generic
web pages geared towards laptop or desktop computer users are not usually ideal
for mobile use.

While numerous apps for mobile devices are meant to be social – think about
mobile Facebook and Twitter clients, Instagram, and Foursquare – the actual
means for programming follow the traditional device centric development ap-
proach. For instance, in the context of iPhone, apps are defined as individual
applications that are separately activated by the user, and communication pat-
terns follow the practices that have been developed for conventional networking.

The benefits of using an already established application model are many.
Users are accustomed to installing and activating applications, and appear to
be willing to do so. From the developer perspective, development tools and the

C. Canal and M. Villari (Eds.): ESOCC 2013, CCIS 393, pp. 233–243, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

234 N. Mäkitalo, T. Aaltonen, and T. Mikkonen

programming model are already familiar, and although at times some of the
design details appear cumbersome and impractical, the fact that these issues are
similar in most settings have taught us to circumvent them in designs.

However, smart devices have excellent computing power and connectivity and
at the same time are used for various purposes. Moreover, we have learned to
accept that mobile devices play more and more proactive role in daily activi-
ties. This creates the possibility for complex, cooperative multi-device programs,
for which current programming paradigms are not well-suited. Hence, we have
tackled the above problem by introducing a new paradigm: an action-oriented
programming model for pervasive computing [1]. Actions are proactively ini-
tiated pieces of functionality, which synchronize and coordinate joint behavior
of several devices. The action-oriented programming model is realized within
the cloud-based Social Devices Platform. So far, the technical feasibility of the
approach has been demonstrated in our earlier papers [3], together with the de-
scription of applications that have been developed using our platform. However,
the developer perspective has not been addressed. At the same time, the devel-
oper experience is a key issue in obtaining a large number of applications that
are available for end users.

In this paper, we present experiences gathered from outside developers who
have been using the platform to develop an application during Spring 2013. The
paper includes both the developers’ opinion about the concept as well as expe-
riences in programming using it. The application was developed in cooperation
with Demola1, an innovation instrument targeted for fostering innovation and
experimenting with radical ideas.

The rest of this paper is structured as follows. In Section 2, we discuss the
background of this work. In Section 3 we introduce the developer team and their
application. In Section 4 we present the results regarding developer experience,
and list claims regarding the way of developing applications with the Social
Devices platform. In Section 5 we briefly address related work, and in Section 6
we pinpoint some open issues. In Section 7, we draw some final conclusions.

2 Background

The concept of Social Devices and its reference implementation Social Devices
Platform (SDP) was first introduced in [3]. The aim of Social Devices is to
increase, facilitate, and enrich social interactions between people in various kinds
of co-located and face-to-face situations. For example, when people meet, the
devices can greet each other aloud to help people to remember each others’
names, or the devices can automatically chance contact information when a
group of businessmen meets. Also device-to-device interaction can be enriched:
Social Devices can make otherwise invisible device interaction explicit to users.
For instance, a mobile phone can say aloud to a car navigator where to go in
addition to setting the destination based on a calendar entry. Moreover, Social
Devices can be used for suggesting and proactively initiating social multiuser

1 http://www.demola.fi

http://www.demola.fi

First Hand Developer Experiences of Social Devices 235

applications when like-minded are nearby. For example, when friends meets in
cafeteria Social Devices can proactively suggest them to view photos if one of
the friends has added a new album to Flickr and enabled photo sharing feature
on her phone. Another obvious example of social applications are games that
can be suggested for co-located people, for instance when people are traveling
by the same bus or are in the same bar.

The Social Devices Platform currently runs in Amazon cloud, consisting a
number of cloud services, as can be seen in Figure 1. The client side currently
consists of Android devices and Python capable devices, such as Linux laptops
and MeeGo phones. As the system infrastructure is cloud based, it abstracts the
differences of the devices. However, instead of hiding or ignoring the different
resources of each device, Social Devices accents the differences by regarding them
as capabilities, which describe what a device can do. For instance, the device may
have a TalkingDevice capability meaning that the device is equipped with text
to speech translator. In addition to the existing capabilities, the platform allows
developers to create their own new types of capabilities, which other users can
then install in their devices.

The interactions between devices are defined in terms of Actions, which is
a novel modular unit for describing how several co-located devices operate to-
gether. The Actions are defined with classes of Python programming language,
and they contain a precondition and a body methods. The precondition is used
for defining when the Action can actually take place and what is required from
the participating devices. The body part is used for defining the device coor-
dination logic with the help of device capabilities. Naturally, the platform also
offers an easy way for developers to define their own Actions.

3 Experiment

To get input from developers who have no previous experience regarding the
concept of Social Devices, we hired a four-person developer team from Demola.
The team had a project manager, a graphic designer, and two software develop-
ers. The project manager and the graphic designer had only limited knowledge
about software development, and also the two developers had no previous ex-
perience of pervasive system or mobile cloud development. The team was given
free hands to develop what they wanted, and they came up with an idea about
a set of mini Olympic Games, where users’ avatars are zombies. Each zombie
comes from different country, and hence has its stereotypic characteristics. The
game was named as Apocalympics. See demo2.

An example setting for a gaming scenario could be as follows: Alice and Bob
don’t know each other, although they travel daily by the same bus. Bob is inter-
ested in playing games and also likes zombie splatter movies. Alice also likes to
play some games every now and then. Now, when Alice gets bored in the bus, she
can indicate this to Social Devices Platform: By pressing a ZombieGame icon on
her phone, she can challenge someone nearby to play with her. The Social Devices

2 http://youtu.be/ZzhUiwO-vl4

http://youtu.be/ZzhUiwO-vl4

236 N. Mäkitalo, T. Aaltonen, and T. Mikkonen

Fig. 1. The SDP architecture and work flow in Zombie game scenario

Client then sends a ZombieGameTrigger to Controller component (see phase #1,
in Figure 1). The system knows what other Social Devices are near Alice as the
clients gather proximity information that is based on Bluetooth signal strengths
(RSSI), and periodically report this and other device state information to the
Context Server.

The Controller component uses the proximity and state information, while it
tries to find participants for the Action (see phase #2). As Bob happens to be in
the same bus and has several likes of zombie movies in Facebook, the Controller
chooses him as one of the players. Carol, who is also in the bus, is not selected
to participate as her battery is almost dry. After collecting the players, the
ZombieGameTrigger with the participants is send to the Orchestrator component
(see phase #3). The Orchestrator fetches the Action body (see phase #4), and
then allocates the devices for the ZombieGame action (see phase #5). Finally, it
starts coordinating the devices (see phase 6). Now, if Bob wants he can of course
decline from the gaming challenge.

Figure 2 shows how the team defined the game with the terms of Action. The
total number of code lines was 240, but from Figure 2 some boilerplate code was
omitted for brevity. The omitted parts mainly contained capability method calls
that were related to the game initialization on the devices, such as selecting the
country for the avatar. Also code for showing the winning screens and game se-
lection were omitted, as well as three developer defined classes: Player, Game and
Constant.

First Hand Developer Experiences of Social Devices 237

c l a s s Apoca lymbics (Act i on) :
Playe r , Game and Constant c l a s s d e i f i n i t i o n s om i t t ed (11 rows)

@a c t i o n p r e co nd i t i o n
5 def p r e c o n d i t i o n (s e l f , p l a y e r s) :

r e tu r n p r o x im i t y (p l a y e r s , 1 5 . 0) and\
haveFacebookL i ke s (p l a y e r s , [’ Gaming ’ , ’ Zombies ’])

@act ionbody
10 def body (s e l f , p l a y e r s) :

i n i t i a l i z a t i o n s , game and coun t r y s e l e c t i o n omi t t ed (66 rows)

Mainloop e x i s t s u n t i l l e s s tha t 2 p l a y e r s
wh i l e (l e n (p l a y e r s) > 1) :

15 # Min i Game i n i t i a l i z a t i o n s omi t t ed (14 rows)

GAME PLAY LOOP FOR EACH MINI GAME STARTS HERE
i f game == Game . gameSkul lThrow :

random . s h u f f l e (p l a y e r s)
20

f o r round i n range (3) :
f o r p l a y e r i n p l a y e r s :

p l a y e r . d e v i c e . zombieGame . s ta r tRound (round)

25 # Loop ev e r y p l a y e r ’ s tu rn o f c u r r e n t round
f o r c u r r e n tP l a y e r i n p l a y e r s :
In fo rm c l i e n t s which p l a y e r i s i n tu rn
f o r p l a y e r i n p l a y e r s :

p l a y e r . d e v i c e . zombieGame . updateTurn (c u r r e n t P l a y e r . number)
30

Get p l a y e r ’ s throw l en g t h
c u r r e n t P l a y e r . throwAngle = Constant . u n i n i t i a l i z e d
wh i l e (c u r r e n t P l a y e r . throwAng le == Constant . u n i n i t i a l i z e d) :

c u r r e n t P l a y e r . throwAng le = cu r r e n t P l a y e r . d e v i c e .\
35 zombieGame . getThrowAngle ()

In fo rm eve r yone how f a r the p l a y e r managed to throw
f o r p l a y e r i n p l a y e r s :

p l a y e r . d e v i c e . zombieGame . showThrow(c u r r e n t P l a y e r . number ,\
40 c u r r e n t P l a y e r . throwAng le)

Wait u n t i l e v e r y c l i e n t has shown the throw
f o r p l a y e r i n p l a y e r s :

r eady = Fa l s e
45 wh i l e not r eady :

r eady = p l a y e r . d e v i c e . zombieGame . i sReady ()

Winner Sc r een and next game choos i ng omi t ted (32 rows)

50 # Game ends

Fig. 2. The definition of the Apocalympics Action

The precondition (lines 5-7) shows that the Action can take place if the partic-
ipating players are less than 15 meters apart from each other, and that they have
liked Gaming and Zombies on Facebook. The server side game and coordination
logic is defined in the body part of the Action (lines 9-50). For example, on lines
22-23 each player’s device is commanded to start a new round on SkullThrow
mini game. On lines 32-35 the game waits until the player in turn has thrown the
skull, and on lines 39-40 this throw is then shown to other players. The commu-
nication behind the capability calls is taken care by the Orchestrator component,
and developers don’t need to care about its dirty details.

238 N. Mäkitalo, T. Aaltonen, and T. Mikkonen

4 Developer Experiences

In this section we review the experiences of the hired team, and evaluate the
Social Devices concept and platform based on the team’s feedback. The study
was conducted by interviewing the team members after the project. The het-
erogeneous background of the members gave us an opportunity to get insight
from different perspectives. With the project manager and the graphic designer
we focused more on general and concept level questions. With the two software
developers we focused more on the technical details, and tried to find out their
understanding about Social Devices Platform development aspects.

4.1 Understandablity

The team was given a short five minute introduction of the Social Devices concept
and platform in the first meeting. All members of the team agreed that the
overall idea was easy to grasp. Everyone also agreed the the system was easy to
explain for other people as well, for example in their networking pitch. However,
the level of understanding seemed to vary between the members. On the one
hand, it seems that the project manager and designer did not grasp all of the
technical details of the system. On the other, it seems that this kind of technically
detailed understanding was not even needed by them, as the concept seems to
offer enough higher level abstractions. The developers, on the contrary, agreed
that the system was also technically easy to grasp after we gave them a ten-
minute presentation of the development aspects and technical details. One thing
supports this claim is that the developers managed start implementing the game
for Android phone almost immediately after the technical introduction, and on
the following day had starting screen implemented. Moreover, the developers
didn’t have experience on Android development, and it follows that most of
their time was spent on studying these things.

Claim 1: Social Devices offers appropriate abstractions for developers.

4.2 Acceptability

When asking from the team about the social acceptability of interactions that
start proactively, the members agree that there might be some ”shyness” among
people, and add that probably people would start using proactive applications
first with their family and friends. Based on their feedback, it seems that games
would be an easily acceptable starting point for this type of proactive applica-
tions since they are not too serious, and many people also very willingly want to
try out new types of games. They also say that applications that automatically
and proactively help working in group (e.g. sharing schedules and notes) would
be something that they would personally want to use.

The team had gotten enthusiastic feedback from other people while they had
been introducing the system for third parties. People had generally liked the idea

First Hand Developer Experiences of Social Devices 239

about using Bluetooth for detecting proximity of others, but some had also been
a bit worried about their battery lives. According to the project manager some
of his contacts want to hear about how the concept is handled in the future, and
gave us contact information of a game studio that had gotten interested in our
platform. The overall acceptability of the Social Devices concept is not in the
scope of this paper, but instead will be reported separately based on our ongoing
research3.

Claim 2: Social Devices is a socially inspiring concept.

4.3 Coordination Aspects

According to the developers it was straight forwarded to coordinate the devices
with the help of Social Devices platform and communication with the devices
was made very easy. The developers also believe that the this kind of approach
to coordinate the devices can be utilized in several other systems, in which a
centralized communication point is needed to coordinate devices. However, they
point out that a need for fast communication may limit the cases where the
current implementation of the system can be utilized. In fact, the latency in
communication was one of the reasons why the team chose to create turn–based
game.

Currently the latency in device coordination is due to the cloud–based coor-
dination paradigm. To reduce this lag we have considered complementing the
system with Personal Network Area based coordination paradigm, which could
be implemented on top of Bluetooth protocol for instance. In this paradigm one
of the participating devices would be selected as a coordinator, which then would
coordinate the other participants as well at itself. However, this would require
support for Bluetooth or some other PAN protocol from the device, which all of
the Social Devices don’t necessarily have.

Claim 3: Social Devices and Action–Oriented Programming Model
offer appropriate means for coordinating functionalities in several
devices.

4.4 Programmability

Generally the developers liked the methods that Social Devices offers for im-
plementing interactions. The concept of Action was described clear and the
developers seemed to understand its purpose and features well. Constructing
a similar application from scratch would have required concentrating on difficult
connectivity and synchronization issues, whereas now, these are hidden by the
concepts of the programming model.

The device capabilities also seemed to make sense as a unit of modularity. One
of the developers describes them: ”The capabilities are pretty flexible and easy

3 http://www.cs.tut.fi/ihte/projects/CoSMo

http://www.cs.tut.fi/ihte/projects/CoSMo

240 N. Mäkitalo, T. Aaltonen, and T. Mikkonen

way for anyone to quickly enable games, applications, features etc. from available
interfaces. It’s like having a little library of things inside an application”.

Moreover, during their project the developers had couple of ideas how the
concept of Action could be complemented. The first idea was that new devices
could join in the Action during its execution. As we have had similar ideas, we
would have wanted to implement this feature for the platform already during
the project. Unfortunately, this wasn’t possible due to timing reasons and thus
remains as future work. The second idea was to complement the concept so
that it would support concurrency inside Action processes: the body part of
the Action could then contain multiple threads from which the devices could be
coordinated parallel with other threads. The idea is intriguing but still requires
further research. The downside of this kind of support for concurrency is that
defining device coordination could become more complex.

Claim 4: Social Devices’ programming concept action is a clear unit
of modularity.

Claim 5: Social Devices’ programming concept capability is a ”flex-
ible and easy way for anyone to quickly enable games, applications,
features”.

4.5 Reusability of Code

Based on our own experiences and also what can be seen from the team’s ap-
proach to implement the game, it is hard to design generic capabilities that
can be utilized in several different kinds of actions. For example the developed
ZombieGame capability can only be utilized in different variants of the current
game since so much of the game logic is implemented inside the capability, and
not inside the Action. In future we try to research how the capabilities could be
designed to be more generic.

4.6 Deployment Aspects

In the current implementation of the Social Devices Android client the capabil-
ities can be dynamically loaded during the run time and enabled by the user’s
choices. The developers regarded the idea of loading the capabilities dynamically
very good. However, they eventually encountered difficulties in using this feature
which were mainly related to the limitations of Android platform: Android re-
quires defining its Activities in Manifest-file before the application is compiled.
This prevents defining and creating new interaction windows from capability
code on runtime. Our own experiences are very similar to theirs, and hence this
aspect requires also further research. This feature would also cause problems on
other more closed platforms, like iOS and Windows Phone for instance.

The heterogeneity of devices also caused some problems. With cheap low–end
devices the lack of memory caused their game to crash at times, but the devel-
opers were unanimous that this problem was not related to the Social Devices

First Hand Developer Experiences of Social Devices 241

platform. They had also encountered problems with some 10” Android tablet
which they were unable to solve. With other Android tablets and smart phones
the game seems to work fine.

5 Related Work

Previously, the approaches to coordinate multiple devices have focused mainly
on information presentation techniques (e.g., [2,4,5]), and multimedia synchro-
nization (e.g., [6,5]). However, the approach in our work is different as we are not
focusing on automating services in pre-defined locations, like in smart spaces for
instance, but rather at coordinating devices wherever they are in near proximity
of each other. We are also not focusing on generating user interfaces and coordi-
nating them on devices as [2,4]. Instead, our focus is to make the devices interact
and socialize independently, and to inform users about the ongoing operations.

6 Open Questions

In this section we raise some open questions of the Social Devices concept and
current implementation of the system. The aspects raised here require more
research and will remain as future work.

Question 1: How Should Joint Behavior of Devices be Programmed?

Action has proven to be an excellent abstraction for coercing multi-party ap-
plications. However, still some aspects require more studying. How should the
triggering condition be described; Is the current precondition decent or should
there be a more easily computable function? What about body: Should there be
threads? Is there a need for dynamic number of participants? How should the
Action be modified to enable it? Does introducing a dynamic number of partic-
ipants lead to a need for merging two running Actions to one (for example, two
zombie games could be merged).

Question 2: What Would be a Sufficient Set of Device Capabilities
for Developers?

Capability describes a functionality that a device has. Our goal is to develop
universal capabilities which can be utilized in many Actions. What would be
a sufficient set of capabilities for developers? For example, the zombie game
has been developed based on a single dedicated capability: ZombieGame. Which
universal capabilities could it be based on?

Question 3: How Should an Automatic Triggering of Apps be Carried
Out?

Triggering is carried out half manually in the example. User simply pushes a
button on her device, then the system uses proximity and state information to
find possible participants for the Action. How much of this could be automated?
What kind of strategies could be used for retrying to trigger the Action?

242 N. Mäkitalo, T. Aaltonen, and T. Mikkonen

Question 4: What are the Contexts Where the Apps can be
Triggered?

Social Devices applications are meant to be triggered in various kind of social
contexts. How to define an appropriate one for each Action to take a place? What
kind of different contexts there exists where the Actions could be triggered? How
to deduce the context, and how to protect users’ privacy?

Question 5: How to Evaluate and Measure the Quality of Apps?

The goal of the Social Devices Platform is to offer easy manner for developers
to create new applications. On the other hand, the quality of application is very
important thing to consider when proactively triggering applications for users.
What aspects need to be considered when measuring the quality of the developed
SDP applications?

Furthermore, we plan to test the system in a code camp with students, and
hence need to set some kind of criteria for evaluating their applications. What
aspects needs to be taken into account in this evaluation process? For example,
is reusability of the capabilities relevant aspect? Should the amount of features
(and the code) implemented on server side (in Action) versus the client side (in
capabilities) be taken into account in the evaluation? Or should the applica-
tions be evaluated more like regular mobile applications, and try to conceal the
distribution and platform specific aspects totally from the developers?

7 Conclusions

Instead of reflecting the interactive capabilities between different devices, the
development of mobile apps follows the conventional development fashion. How-
ever, there are also different programming models that allow focusing on interac-
tions, as we have demonstrated with our earlier work [3]. In this paper, we listed
experiences from developers who were new to our platform to gather feedback
on the feasibility of the model as well as the maturity of our platform.

In the future, we plan to execute a more excessive experiment in the form of
a one-week code camp with students. The data reported in this paper will be
used to improve the platform as well as the instructions that will be given to the
participants. In addition, we plan to work on improving the methodology used
for the evaluation process.

Acknowledgements. We thank the demola team: Trent Pancy, Mikko Järvelä,
Teemu Avellan and Sonja-Maria Juslin. The research was funded by Academy
of Finland4 (264422).

4 http://www.aka.fi/en-GB/A/

http://www.aka.fi/en-GB/A/

First Hand Developer Experiences of Social Devices 243

References

1. Aaltonen, T., Myllärniemi, V., Raatikainen, M., Mäkitalo, N., Pääkkö, J.: An
Action-Oriented Programming Model for Pervasive Computing in a Device Cloud.
In: Asia-Pacific Software Engineering Conference (APSEC) (to appear, 2013)

2. Elting, C.: Orchestrating output devices: planning multimedia presentations for
home entertainment with ambient intelligence. In: Proceedings of the 2005 Joint
Conference on Smart Objects and Ambient Intelligence: Innovative Context-Aware
Services: Usages and Technologies, sOc-EUSAI 2005, pp. 153–158. ACM, New York
(2005)

3. Mäkitalo, N., Pääkkö, J., Raatikainen, M., Myllärniemi, V., Aaltonen, T., Leppänen,
T., Männistö, T., Mikkonen, T.: Social Devices: Collaborative Co-Located Interac-
tions in a Mobile Cloud. In: Proceedings of the 11th International Conference on
Mobile and Ubiquitous Multimedia, MUM 2012, pp. 10:1–10:10. ACM, New York
(2012)

4. Myers, B.A., Nichols, J., Wobbrock, J.O., Miller, R.C.: Taking handheld devices to
the next level. Computer 37(12), 36–43 (2004)

5. Rekimoto, J.: Multiple-computer user interfaces: ”beyond the desktop” direct ma-
nipulation environments. In: CHI 2000 Extended Abstracts on Human factors in
Computing Systems, CHI EA 2000, pp. 6–7. ACM, New York (2000)

6. Xing, B., Seada, K., Venkatasubramanian, N.: Proximiter: Enabling mobile
proximity-based content sharing on portable devices. In: Proceedings of the 2009
IEEE International Conference on Pervasive Computing and Communications,
PERCOM 2009, pp. 1–3. IEEE Computer Society, Washington, DC (2009)

Social Index: A Content Discovery Application
for Ad Hoc Communicating Smart Phones

Janne Kulmala, Mikko Vataja, Saku Rautiainen,
Teemu Laukkarinen, and Marko Hännikäinen

Tampere University of Technology, Department of Pervasive Computing,
PO BOX 553, FI-33101 Tampere

janne.t.kulmala@iki.fi,
{mikko.vataja,saku.rautiainen,teemu.laukkarinen,marko.hannikainen}@tut.fi

Abstract. A modern smart phone contains detailed information about
the owner through the phone book, music lists, and social media inte-
gration, which can be used to recommend new interesting content to
the user. Combining this information with ad hoc peer-to-peer commu-
nication of the smart phones allows users to find new interesting content
and persons in the proximity and exchange messages. Social Index allows
users to anonymously find interesting new content in the proximity. The
prototype Social Index application was tested with a simulator running
anonymized Facebook profiles, and with real test users. All the test users
found interesting people using the simulator.

Keywords: social application, smart phone, interest graph.

1 Introduction

A modern smart phone contains detailed personal information of the owner.
Tight integration with Facebook, LinkedIn, Twitter and other social media al-
low mobile recommending applications that react depending on the context and
the location of the owner. E.g., an application can recommend a nearby restau-
rant that concentrates on sea food and plays medieval music to a person, who
prefers fish and is a medieval enthusiast. Also, ad hoc communication methods
allow smart phones to discover each other and communicate directly from device
to device without any centralized infrastructure [1]. When this communication
scheme is combined with the available personal information, a new social me-
dia is formed: smart phone users can discover interesting new content and new
people with the same interests in the proximity. Forming and mining an interest
graph for the user allows application to hilight encountered content and persons
that might be interesting ones.

This paper presents a novel Social Index concept for any ad hoc communi-
cating smart phone. Social Index evaluates automatically an anonymized profile
(called an index) for the smart phone user according to the interests, current
context, and user feedback. Interests are mined from the globally unique social
objects found from the mobile phone. The indexes are shared through the ad hoc

C. Canal and M. Villari (Eds.): ESOCC 2013, CCIS 393, pp. 244–253, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Social Index: A Content Discovery Application 245

communication and used to discover new interesting content from the physical
world while preserving privacy. To name a few the content can be other people
with same interests, a restaurant, an event, or an upcoming gig of the user’s
favorite band in a nearby event venue. The user provides feedback of the discov-
eries to the engine through the user interface, and the feedback is used to refine
the index to provide more interesting discoveries. The user can interact with the
new content via the Social Index user interface, e.g. share a contact card or chat
with other users.

A prototype of Social Index was developed for the Nokia N9 mobile devices,
and it uses an experimental WLAN mesh communication implemented by Nokia
Research Center [2]. The prototype was tested with a social network simulator
developed by the authors. 900 anonymous Facebook profiles were mined and
used as an input for the simulations. Real persons were recruited for the user
tests to use Social Index prototype in the simulations to find out user experiences
and insights of using such application.

Social Index concept is a continuum to our previous work, where ad hoc
communication software was tested with 250 Nokia N900 devices with real people
[3]. The idea for the Social Index concept was realized from the results of this
large user experience.

The paper is constructed as follows. Section 2 discusses the related work.
Section 3 presents the design of Social Index. The simulator is presented in
Section 4 and the user tests and their results are presented in following Section
5. Section 6 discusses the user privacy issues. Open issues are discussed in Section
7. Finally, Section 8 concludes the paper.

2 Related Work

Social Index differs from the related work in two major areas. First, Social Index
concentrates on the interest, learning, and discovering new interesting content
without constant harassment of the user or specifying to a single interest group.
There are similar proposals, but they lack the automated mining and learning
of the user. E.g. MobiSoft [7] requires that user teaches the system and gives
privilege to newly encountered person to mine his profile in the beginning. Simi-
larly, MobiClique [9] allows users to discover each other, friendify, and exchange
messages, but it does not mine interesting content on the background.

Second, Social Index works without any central infrastructure. It ensures pri-
vacy by only disseminating interest hashes and it provides security using the
interest hashes common between communication parties as encryption keys with-
out any centralized public key database etc. Related proposals either use central
server, omit the privacy/security, or use central trusted party. E.g. Serendipity
[6], Hocman [5], WhozThat [8], and Musubi [10] all require either central server
or connection to the Internet to retrieve social media/network data.

Compared to related work, Social Index is completely decentralized during
use. All information is mined from the mobile phone and exchanged using the
local wireless connection. We emphasize the privacy and security of the identities

246 J. Kulmala et al.

User feedback

Secret discovery
protocol

Social Index Engine

Online
services

• User interfaces
• Other apps

Location

Context

Bob

Verify A [state: empty]

Verify [state: A]

Verify B [state: A]

Verify B C [state: A]C [state: A]

Verify [state: A B C]

Interest
database

Contacts/media
on device

Social Index
Ad hoc
communication
and discovery

Fig. 1. The Social Index concept

without any centralized trusted party which is missing from related work. Such
party is a security and privacy risk for the user, since he/she cannot know, if the
security of the party is compromised. Therefore, Internet connectionless function
ensures that the user cannot be continuously and remotely monitored by a 3rd
party or a central server attacker. There is no 3rd party accessible trace of the
user locations except the data exchanged between Social Index devices.

3 Social Index Design

The Social Index design (Fig. 1) consists of an analysis engine, a database for
storing interests of the user, inputs that feed interests, a discovery protocol, and
an user interface. The user interface provides feedback to the Social Index engine
based on user actions.

Input components extract interest information and store it in the database.
Interests are distinct objects that identify the user’s preferences and can be used
to find matches between users. The presentation for the interests is independent
from the source to make processing the information easier. Social media interests
(likes, connections, groups etc.), phone numbers, music and other media files,

Social Index: A Content Discovery Application 247

email addresses, visited places, and bookmarked web pages are examples of the
sources for the interests.

The interests are connected together with links to form social interest graph,
which is needed in order to understand relations in the analysis engine. Each
information source needs its own extraction component, such as titles of songs
from the media player in the device or taking a list of friends from an online
service (e.g. Facebook).

Social Index engine uses a patented discovery protocol to find connection
between devices in the background. The protocol is designed to cause minimum
amount of traffic and to be secure against passive and active attacks by malicious
users. It allows establishing an encrypted channel between people that have not
previously encountered by only using the common interests. Basically, a hash
is calculated for each interest periodically with a changing salt. If two users
share the same interest from the same source, the hashes match. E.g. a common
friend in Facebook is a source and a hash pair, or “fb:1234567”. The hash can
be then used to encrypt the message transferred between the users. It should be
emphasized that the origins of the interest hashes remain secret for those in the
proximity, who do not have the same origin interest.

When Social Index engine finds another user or new shared content, it uses
an evaluation algorithm to determine how interesting the event might be to the
user (Fig. 2). The algorithm uses the current context and preferences learned
from the user. Each interest has associated learned information, which is stored
in the interest database and adjusted as the user gives feedback through the
Social Index application. The context consists of the current location and what
is currently present in the network. The location is important because, finding
somebody from the same university is more interesting in Honolulu than on
the university campus. The actual GPS position of the device is not needed, as
locations are identified by visible WLAN access points and cell IDs.

The evaluation results in a numeric Social Index value, which can be also
presented to the user. When the value gets above a defined threshold the device
notifies the user by vibrating or making sound and displays a message (Fig.
2). The user reacts to the notifications by responding either ’Like’, which is
positive feedback, or ’Not Interesting’, which is used as negative feedback for
learning. A learning algorithm is used to adjust the learning information stored
in the interest database. Clicking ’Like’ also sends a notification to the other
device, which provides a lower “barrier” communication with interesting person
than sending a chat message. A curious user can choose to see everything in the
network by using the radar view as shown in Fig. 2. The user can also go further
and use chat or exchange contact details over the network. For example, users
can add each other as Facebook friends and from there on, the radar can show
that friend’s name. Obviously, users in the proximity can try to find each other
physically through traditional communication methods, such as waving hands
or yelling.

As a result Social Index can create such connection as, “two person have been
in the same place”, “two persons have a common friend”, “there is a friend from

248 J. Kulmala et al.

N9 device
Operating System

Ad hoc communication stack

Social Index UI
Radar view of
interesting content
in the proximity:

Notification view
and feedback
options: Social Index Engine

Social Index architecture:

User / content in network

Evaluation
algorithm

Interest
database

Learning
algorithm

Notifications Feedback

User behaviour
model

Security through interest hashes

M
essages

Fig. 2. The Social Index architecture consists of an engine and a user interface

Facebook in the proximity”, “a nearby person is listening same kind of music”,
“two persons follow the same Twitter account”, “a nearby person follows you in
Twitter”, “a nearby person knows same phone number than you”, and “a nearby
person is in your phone book”.

4 Social Index Simulator

A network simulator was developed for testing Social Index concept so that
the Nokia N9 Social Index prototype implementation can be connected to the
simulator. The simulator models the network behavior and the movement of
a large population in an urban environment, where each person has a daily
schedule and a number of visits to different places. We use points of interests
and road network from OpenStreetMap [11]. Fig. 3 shows the graphical user
interface which displays a real time map view. The simulations can have tens of
thousands of nodes and can be distributed to multiple processors and servers.
We have used anonymized profiles from Facebook and Twitter as testing data.

5 User Tests with Social Index Simulator

Social Index was tested using the simulator with real test persons. The purpose
of the tests was to find out if Social Index was an interesting concept to a real
person. The simulator runs 900 anonymized random Tampere related Facebook
profiles as simulated Social Index users on central area of Tampere. The test
person imported his Facebook profile to one Social Index application that was
run on the simulator in the simulated environment. One two hour test simu-
lated five days and the test person interacted with the Social Index application

Social Index: A Content Discovery Application 249

Fig. 3. The user interface of the Social Index network simulator

whenever there was an interesting encounter (e.g. person with similar likes). In
addition to logging the simulation and the user inputs, the test persons answered
to a questionnaire that concentrated on the features of the Social Index appli-
cation, privacy issues, usability, and the Social Index concept. Nine test persons
completed the questionnaire, and five test persons managed to complete the sim-
ulation. The test persons were recruited from the university and they represent
typical young social media users.

Finding new people was found out to be the most interesting concept of the
Social Index application by seven of the test persons. Only two persons were
worried about privacy of the Social Index application. However, three persons
thought “leaking personal information” was the worst case scenario when using
the Social Index application. Nine of the test persons shared their Facebook data
only with friends and certain groups. A few test persons reported that there was
too much interesting content on the radar view at the same time. Thus, a precise
threshold for presenting found content needs to be further explored.

Table 1 presents the logged data for those simulations that were completed
in the reserved time. Total Meetings is the total number of encounters with
simulated users. Unique Users Seen is a counter for meeting unique simulated
Social Index users, and Meaningful Users Seen is a counter for meeting unique
simulated user that share common interests with the test person. If the test
person liked, chatted or shared a contact with some encountered simulated user,

250 J. Kulmala et al.

a score was added to the equivalent field. All the test persons had similar amount
of meetings, but the different levels of likes etc. in Facebook resulted in varying
amount of meaningful meetings. All the test persons found some interesting
people and liked them. Chatting and sharing a contact was used rarely by A,
B, and C, which may be due to the simulation of the test: it is not interesting
to chat with a simulated person. However, the personality of the test persons
was not considered. Therefore, it is difficult to analyze, if persons D and E were
more social by nature or more interested to test this kind of technology.

Table 1. Data gathered from the user tests with completed five day simulation

Test person A B C D E

Total Meetings 4431 3003 5052 5122 5175
Unique Users Seen 343 282 360 361 361
Meaningful Users Seen 55 101 79 103 122
Liked 10 39 34 35 61
Chatted 0 0 1 30 18
Shared a contact 0 4 1 26 30

Table 2 presents user actions after meaningful meetings. The same user might
have been encountered several times, therefore, the total number of actions is
higher than in Table 1. Overall, Social Index manages to discover and present
interesting people to the user, since See More and Later actions were preferred
over Not Interesting.

6 Privacy

Privacy, security and trust are wide research problem in Social Index and alike
social ad hoc applications. Although test persons in our tests were not partic-
ularly concerned about the privacy, they did not share publicly anything on
Facebook and the leaking of private information while using Social Index was
concerning to some of the test persons. Therefore, we concentrate on describ-
ing how Social Index achieves privacy and what are the possible attacks on the
presented privacy scheme.

Unlinkability means that it is not possible to distinguish whether two subjects
are related. The prototype of Social Index uses WLAN with MAC addresses,
which can be used to link different messages to the same user. Linking could be
harder if the MAC address would be changed periodically, but the linkability
remains during the same MAC address period. The same issue remains with all
the ad hoc communication methods that utilize fixed device specific addresses
at the medium access control layer. Social Index is usable with any ad hoc com-
munication method that supports some underlying addressing, e.g. Bluetooth.
Further, Social Index periodically rehashes interests with a new salt. This en-
sures that plain passive listening, recording of hashes, and comparing recorded

Social Index: A Content Discovery Application 251

Table 2. User actions after meaningful meeting

Test person A B C D E

See More 58 147 88 103 130
Later 90 226 207 290 228
Not interesting 62 103 28 133 39

hashes is not a sufficient attack to link user. Similar to dictionary attack against
hashed passwords, the attacker would need a large database of possible interests
for the comparison to link users. Still, this attack would require attacker to be
in the proximity to listen the ad hoc communication.

Social Index itself provides anonymity, since only hashed interests are pub-
lished. However, since the sender is in proximity, identity may be acquired with
physical observation or another application using the same network might leak
the identity. Pseudonymity is not interesting in the Social Index context since
new encounters are with unknown users.

An attacker could detect that a query or a response message was sent in Social
Index. The content is indistinguishable for the attacker, if the attacker does not
know the set of shared interests between the Social Index users, since the content
is decrypted using the hash of common interests as a decryption key. This also
provides confidentiality, as long as the attacker does not know the interest.

7 Open Issues and Future Work

The usage of the interest graphs is a major research area in future social applica-
tions, where unknown people with same interests are attempted to be socialized.
Determining the evaluation method for the strength between two persons is
an open issue and currently there is not much research going on compared to
the social graphs. Also, utilizing the feedback and learning are open for new
proposals.

Another key question is the usage of Social Index like applications. Meeting
new people is an obvious use case for Social Index, but more use cases would
make Social Index like applications more appealing to the user. In our user tests,
one person thought that he/she does not need new friends and therefore the
application is useless. This kind of user attitude does not improve user experience
for those, who might want to find similar people. Thus, some other intensive
usage hook is needed for, so that even those who are not interested to seek new
friends, would still be users and discoverable by others.

Social Index devices could exchange learned data and interest graphs could
be expanded with correlated data. For example, if several persons like whip
cream and strawberries, liking whip cream would also increase the weight of
the connection to strawberries. However, finding such correlations and their true
meaning is open for proposals.

252 J. Kulmala et al.

The Social Index engine could be generalized as a platform to enable more
advanced use in the mobile phone. E.g. when the index threshold is exceed for
a multiplayer game that both persons play, the mobile phone could notify that
there is a potential gamer available in the proximity. This would allow developing
games that are based on the proximity of anonymous players.

The Social Index simulator could be improved by incorporating real public
transportation routes and timetables to the movement model, since urban people
often use public transportation. Incorporating social networks to the movement
model would also improve the simulator. People often see their friends and hobby
peers in certain locations. Mining these from crawled Facebook profiles is an
interesting future task.

8 Conclusions

This paper presented Social Index, an architecture that allows mobile phone
users to find new interesting content and people in their proximity. The com-
munication happens automatically in an ad hoc manner without any centralized
infrastructure. The user can exchange messages, contact cards, or endorse peo-
ple in the application. A simulated use of the Social Index was used to examine
real test person reactions to this kind of application. Generally, Social Index
provided new interesting people to all of the test persons. Finally, the privacy of
the Social Index was discussed.

Acknowledgments. The authors would like to thank Nokia Research Center
for supporting this work.

References

1. Ahtiainen, A., Kalliojarvi, K., Kasslin, M., Leppanen, K., Richter, A., Ruuska,
P., Wijting, C.: Awareness networking in wireless environments. IEEE Vehicular
Technology Magazine 4(3), 48–54 (2009)

2. Nokia Conversations, Nokia instant community gets you social (2013),
http://conversations.nokia.com/2010/05/25/
nokia-instant-community-gets-you-social/

3. Väänänen-Vainio-Mattila, K., Saarinen, P., Wäljas, M., Hännikäinen, M., Orsila,
H., Kiukkonen, N.: User experience of social ad hoc networking: Findings from a
large-scale field trial of twin. In: Proceedings of the 9th International Conference
on Mobile and Ubiquitous Multimedia, MUM 2010, pp. 10:1–10:10. ACM, New
York (2010)

4. Terry, M., Mynatt, E.D., Ryall, K., Leigh, D.: Social net: using patterns of physical
proximity over time to infer shared interests. In: CHI 2002 Extended Abstracts on
Human Factors in Computing Systems, ser. CHI EA 2002, pp. 816–817. ACM, New
York (2002)

5. Esbjörnsson, M., Juhlin, O., Östergren, M.: The hocman prototype: Fast motor
bikers and ad hoc networks. In: Proceedings of MUM, Oulu, Finland, pp. 91–98
(2002)

http://conversations.nokia.com/2010/05/25/nokia-instant-community-gets-you-social/
http://conversations.nokia.com/2010/05/25/nokia-instant-community-gets-you-social/

Social Index: A Content Discovery Application 253

6. Eagle, N., Pentland, A.: Social serendipity: Mobilizing social software. IEEE Per-
vasive Computing 4, 28–34 (2005)

7. Kern, S., Braun, P., Rossak, W.: MobiSoft: An agent-based middleware for social-
mobile applications. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM 2006 Work-
shops. LNCS, vol. 4277, pp. 984–993. Springer, Heidelberg (2006)

8. Beach, A., Gartrell, M., Akkala, S., Elston, J., Kelley, J., Nishimoto, K., Ray, B.,
Razgulin, S., Sundaresan, K., Surendar, B., Terada, M., Han, R.: WhozThat? evolv-
ing an ecosystem for context-aware mobile social networks. IEEE Network 22(4),
50–55 (2008)

9. Pietiläinen, A.-K., Oliver, E., LeBrun, J., Varghese, G., Diot, C.: Mobiclique: Mid-
dleware for mobile social networking. In: WOSN 2009: Proceedings of ACM SIG-
COMM Workshop on Online Social Networks (August 2009)

10. Vo, I., Purtell, T.J., Dodson, B., Cannon, A., Lam, M.S.: Musubi: A mobile privacy-
honoring social network (September 2011),
http://mobisocial.stanford.edu/papers/musubi.pdf

11. OpenStreetMap contributors. OpenStreetMap (2012),
http://www.openstreetmap.org/

http://mobisocial.stanford.edu/papers/musubi.pdf
http://www.openstreetmap.org/

C. Canal and M. Villari (Eds.): ESOCC 2013, CCIS 393, pp. 254–265, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Mobile Web Service Infrastructure Supporting
Successful Aging

Marc Jansen, Oliver Koch, and Michael Schellenbach

Computer Science Institute
University of Applied Sciences Ruhr West

Bottrop, Germany
{marc.jansen,oliver.koch,michael.schellenbach}@hs-ruhrwest.de

Abstract. One of the most stressing challenges in our culture is the demograph-
ic change. On the one hand, people become older and older, at the same time
less young people are available in order to support the elderly. Currently, this
fact already provides a number of social impacts that need to be solved in the
near future. This paper concentrates on the integration of mobile devices in sce-
narios that allow elderly people to age successfully. Here, the term “aging suc-
cessfully” refers to broad range of aspects from health to social life of elderly
people. A special focus of this paper lies in the question whether services dep-
loyed to a mobile device provide advantages in the area of aging successfully.
In order to answer this question, both technical challenges are explained and
solved by example architectures, and scenarios that benefit from services dep-
loyed to mobile devices are explained.

Keywords: mobile devices, ageing, web services, sensing, mobile web service.

1 Introduction

Due to the demographic change that currently happens worldwide, the growing popu-
lation of elderly people demands for stronger support for aging well. On the other
hand the amount of younger people is decreasing due to decreasing birth rates, at least
in industrial countries. In order to prevent the social systems to collapse, the next
decades will have to find answers to this problem. Therefore, this paper describes a
technology that allows to participate in a number of solutions, helping us to deal with
the before mentioned problem of demographic change. The major idea that is de-
scribed in this paper, is to make use of mobile devices like smart phones in order to
actively participate elderly people in the society, and by this, allow what we call in
this context successful aging. Here, successful aging on the one hand relates to health
status of elderly people but also to their social integration. Both aspects could not be
seen separately since they influence each other tremendously.

In order to support the goal of aging successfully we provide a technology that al-
lows for a better integration of mobile devices into the everyday life of elderly people
and support their needs in an improved way. Key to the presented ideas is a technolo-
gy known as mobile Web Services that allows deploying standardized Web Services

 Mobile Web Service Infrastructure Supporting Successful Aging 255

to mobile devices. The provision of such services (in contrast to just consuming these
kinds of services) provides, from an abstract point of view, the benefit of a much rich-
er and more direct contextualization of a user of a mobile device, in our case, of the
elderly. Furthermore, from a more technical point of view, this technology allows to
provide a loose coupling between the provided service running on a mobile
device and the service consumer that accesses the data provided by the mobile device
and its user.

In order to achieve the description, this paper is organized as follows: the next sec-
tion describes the state of the art in the context of this paper. Afterwards, the technical
architecture is presented, both, with respect to a new perspective for mobile Web
Services (in contrast to the traditional view of Web Services running in big data cen-
ters) and technical details of the implementation of mobile Web Services are pre-
sented. Followed by the architectural description, an example scenario in which mo-
bile Web Services are utilized, is described in detail. Finally, this paper closes by a
description of the outlook for this technology and the planned future work.

2 State of the Art

From a technical point of view, Web Services on mobile devices are nowadays usual-
ly limited to the consumption of Web Services deployed to large data centers. Never-
theless, the power of mobile devices as Web Service providers is not much focused so
far. Furthermore, there is not much work done yet with respect to a change perspec-
tive for Web Services deployed to mobile devices.

On the other hand, from a scenario point of view, during all phases of life, human
development unfolds within the range of opportunities and constraints that biological,
psychological, and contextual characteristics provide. Such opportunities and con-
straints for development can be subsumed under the general notion of resources. Indi-
viduals differ in their access to resources. Moreover, within a given individual, quantity
and quality of resources undergo fundamental changes throughout life. In contrast
to earlier phases of life, development in late adulthood and old age is characterized by
a shift in directions of less resource gains and more resource losses [1]. Individuals
might continue to gain, e.g., in social status, material belongings, knowledge, and
professional expertise. However, other resources such as physical fitness, health, sen-
sory acuity, multi-tasking ability, and functional brain efficacy decrease throughout
adulthood. Therefore one interesting approach to maintain abilities of elderly people
is physical activity because it has the potential to improve cognitive performance as
well [2], The advances can be generalized to untrained tasks and can also be retained
for months after the training has concluded [3], suggesting that physical activity im-
proves more general cognitive processes rather than specific stimulus-response asso-
ciations [4]. Context-aware systems promoting physical activity are frequently
used with obese patients, but not the elderly. Moreover, most research focuses on a
representation of external context, disregarding the importance of a user’s cognitive

256 M. Jansen, O. Koch, and M. Schellenbach

situation. According to Hong et al. [5], cognitive context information will be key to
providing satisfying personalized services. By making use of such intelligent and
assistive technology, individuals of all ages, and aging individuals in particular, can
delegate control over certain aspects of their everyday lives to technology while con-
tinuing to exert direct control in others.
3 Architecture

This section describes challenges, and technical solutions to these challenges, that
occur by deploying standardized Web Services to mobile devices. The section starts
by defining a new perspective to Web Services deployed to mobile devices. After-
wards, technical challenges for the implementation of such an approach are outlined
and, last but not least, a technical infrastructure is described that allows overcoming
the outlined challenges.

Different Perspective for Mobile Web Services
The view on traditional Web Services, independent of ReST [6] or SOAP/WSDL [7]
based Web Services, describes different scenarios in which such Web Services can be
used. The major idea is always, that Web Services are utilized in order to extend limi-
tations of a certain computational device with respect to the computational power of
the device, e.g., the number of CPU’s of the system or the performance of the single
CPU’s.

Furthermore, other limitations that could be extended either refer to the non-
persistent random access memory (RAM) of the device or the persistent memo-
ry/storage.

Additionally, traditional Web Services can also be implemented in order to provide
access to data that would otherwise not be available on the particular device.

Therefore, Web Services allow a broad range of possibilities for the extension of
limitations of a local device, if the device itself is able to consume Web Services. Tak-
ing another step of abstraction, with all the before mentioned examples, any traditional
Web Service could be understood as a mean for extending limitations of a usual com-
putational device. This could be visualized as shown in Figure 1 together with some
examples of prominent Web Services.

Fig. 1. Traditional perspectives to Web Services

 Mobile Web Service Infrastructure Supporting Successful Aging 257

Additionally, one major aspect that Web Services have in common is the fact that
their implementations remain transparent for the service consumer.

Obviously, for a number of different reasons, the traditional view to Web Services
does not work with respect to Web Services deployed to mobile devices. While mobile
devices became more and more powerful in recent years, they are still not as powerful
as a usual laptop or a stationary workstation, which are themselves not as powerful as
modern server systems deployed in large data centers. Therefore, mobile devices could
be seen as the least powerful computational devices we are currently using (beside very
specialized systems usually running with microcontrollers). Therefore, using these kind
of devices for the extension of limitations that exist with other devices, does not make
sense. Nevertheless, mobile devices provide two major benefits in comparison to lap-
tops, stationary workstations and large server systems: they are (by definition) mobile
and they provide a large variety of sensors! Taking these two facts into account, a
modified perspective to Web Services deployed to mobile devices could be developed,
in which the provision of this kind of services makes perfect sense.

For example, having a look at the sensors of a mobile device, the sensors could of
course be used in order to provide a certain assistance/source of information to the user
of a mobile device, and by using mobile Web Services data and information provided
by these different sensors could be made available to outside software components.
Thus, with respect to the different abstraction layers presented previously, mobile Web
Services could again be understood as a mean for providing data that would otherwise
not be available: here, contextualized data of the user provided by the sensors of a
mobile device.

Additionally, mobile Web Services also allow accessing these devices directly via a
well-defined interface.

Therefore, with respect to the formerly described abstraction layers, it could be said
that mobile Web Services extend the abstraction layer that allowed to access data that
otherwise would not be available by providing access to the data provided by the sen-
sors of a mobile device. Utilizing standardized Web Service protocols for these kinds
of services on mobile devices, allows the easy integration of such services into any
other software component. Furthermore, by allowing services that provide the possibil-
ity to directly access a mobile device mobile Web Services add a completely new ab-
straction layer. This change for the perspectives of mobile Web Services is shown in
Figure 2, together with some examples of both scenarios in which this technology can
be used and typical data provided by mobile devices.

Fig. 2. Extension of traditional perspectives by mobile Web Services

258 M. Jansen, O. Koch, and M. Schellenbach

Summing up, it could be said that also mobile Web Services extend limitations of
current devices, and thus they support also the second level of abstraction described
formerly. Also the characteristics of traditional Web Services providing a transparen-
cy about their implementation, holds for mobile Web Services.

Technical Challenges
While trying to implement Web Services for mobile devices, a number of technical
challenges occur [8]. These technical challenges become obvious by taking the mobil-
ity and the usual use-cases of mobile devices into consideration. The following three
challenges provide a good starting point from which a further analysis of technical
affordances for the support of mobile Web Services is possible:

─ Since mobile devices are per definition mobile, one of the crucial facts for dep-

loying any service, that should be reachable by someone else, is that mobile
devices constantly change their IP address. For example, at home the user is
usually connected to his local WiFi network. On his way to work, he/she gets
connected to the Internet via the mobile network of his/her telecommunication
company, and at work he might be connected to the local WiFi network of
his/her employer. Therefore, the services deployed to his/her mobile device
would not be available under a fixed network address, which makes it hard for a
service consumer to (re-)find the service.

─ Furthermore, the IP addresses used (in the formerly mentioned different net-
works) are usually not publicly available, but are IP addresses that are routed
according to the rules of Network Address Translation (NAT). Therefore, a ser-
vice deployed to a mobile device will usually not be available for a third party
service consumer from outside the current network.

─ Last but not least, mobile devices might not be connected at all to a network.
This regularly happens in areas where the network connectivity of the mobile
telecommunications company is so well established. Therefore, services dep-
loyed to a mobile device that is currently not connected to a network at all,
would not be available for a potential service consumer. This is also the case if
the mobile device is switched off at all.

These examples show that deploying Web Services to mobile devices provide a
number of different challenges, which need to be faced in order to allow the provision
of reliable Web Services on mobile devices. Here, especially with respect to the social
impacts described later in this paper by the examples of aging successfully, a reliable
availability of the services deployed to mobile devices is crucial.

Architecture for Mobile Web Services
Since providing Web Services on mobile devices provides challenges, as described in
the previous section, we implemented an architecture that allows solving them [9].
The major idea of the provided solution is to implement a central proxy infrastructure
that acts as a façade (both according to the proxy and the façade design pattern [10])

 Mobile Web Service Infrastructure Supporting Successful Aging 259

to the Web Service running on a mobile device. A sequence diagram that shows the
process for a service consumer to perform a request to a Web Service running on a
mobile device is shown in Figure 3.

Fig. 3. Flow of method calls for a service consumer to perform a request to a mobile Web Service

First of all, the mobile Web Service provider, seen on the right hand side of Figure

3 needs to register the according Web Service with the Web Service proxy (in the
middle of Figure 3). Afterwards, a consumer, as seen on the left hand side of Figure 3,
of the mobile Web Service can perform a service request (technically, to the proxy of
the Web Service). After the proxy has received the Web Service request, it can store
certain metadata of the request in a database and inform the mobile Web Service
about the new service request. This information to the mobile Web Service about a
new service request could be implemented differently:

─ First of all, techniques like GCM1 (Google Cloud Messaging) or APNS2 (Apple

Push Notification Service) could be used in order to directly inform the mobile
Web Service about a new service request. These techniques do not allow trans-
ferring a large payload of data (so that usually not all of the necessary informa-
tion for the service request could be transferred, but only a notification about the
new service request) and furthermore, they are limited to Android and iOS
based mobile devices.

1 http://developer.android.com/google/gcm/index.html, last visited

05.06.2013
2 http://developer.apple.com/library/mac/#documentation/

NetworkingInternet/Conceptual/RemoteNotificationsPG/
ApplePushService/ApplePushService.html, last visited 05.06.2013

260 M. Jansen, O. Koch, and M. Schellenbach

─ For other mobile devices, the infrastructure allows to make use of a polling
based approach in which the mobile device regularly contacts the Web Service
proxy in order to check whether new service requests are available.

Storing information about the service request in a database, allows solving the

problem mentioned in the previous section that a mobile device might not be availa-
ble, either because of a bad network infrastructure or the device itself being switched
off. At the same time, the proxy allows to overcome the challenges that occur because
of the other challenges described in the previous section, like the constantly changing
networks and the not publicly available IP addresses.

After the information about the service request is sent to the mobile Web Service,
the mobile Web Service could be executed and the result could be transferred back to
the centralized Web Service proxy, where it could also be stored in the database and
transferred back to the Web Service consumer.

In order for the information about the service request to be transferred to the mo-
bile Web Service, the mobile Web Service needs to explicitly ask for this information,
either after receiving a notification about a new service request, or within the perma-
nent polling intervals.

The reason for storing the result of the mobile Web Service beside the information
about the service request in the database is, that this approach allows the proxy to
perform usual tasks for a proxy, e.g., direct answers to similar service requests.

4 Scenario Description

Mobile Web Services are made available in aging well scenarios usually via smart-
phones. Smartphones are inferior to the current standard server systems and desktop
pcs / laptops with respect the technical performance significantly. Their strength lies
in the fact, that they have a number of built in sensor components (localization (GPS),
acceleration, earth's magnetic field, sound, tactile sensors).

This offers the opportunity to characterize the smartphone user's context combined
with times a good deal more precise than server systems or PCs could achieve.
Furthermore a growing number of providers have specialized on pluggable sensor
modules (e.g. vital parameters, RFID) to extend smartphone functionality towards
telemedical Web Services.

Context information of elderly people such as location, time, persons nearby or the
person's velocity facilitate an adequate selection of mobile Web Services designed to
support people to grow old in an healthy and autonomous way.

The following scenario description aims to highlight the potential benefits of mobile
Web Services for aging well: Ms. Miller, a 70-year-old widow, lives in her own apart-
ment in a small town. Her family consists of two sons and their families. Ms. Miller is
mentally fit and has no intention of giving up her apartment. A few years ago she devel-
oped hypertension and a few months ago she additionally suffered a stroke, she survived
without sequelae. Her doctor suggested her to continuously monitor her blood sugar
levels and weight and to adhere strictly to her drug therapy. In addition, Ms. Miller
should incorporate as many physical activities into her daily routines as possible.

 Mobile Web Service Infrastructure Supporting Successful Aging 261

On last Christmas, she receives a smartphone from one of her sons. The device
looks like a mobile phone and can be used as such. Ms. Miller has been using mobile
phones for several years, and starts using the smartphone for this purpose, taking it
with her on all errands. In addition to serving as a mobile phone, the new device also
has other capabilities: it is equipped with all kinds of Sensors, e.g., GPS, a large and
well-lit display and a movement sensor.

The day of Ms. Miller always starts with the same routine. Before breakfast, she
measures her blood pressure and blood sugar as well as her weight via the pluggable
vital parameter modules of her smart phone. The measured data is than available to
the telemedical via the mobile Web Service running on her smart phone. The telemed-
ical service reviews these values regularly by alert listener. If necessary, an alert is
triggered and a doctor will contact her by video call. The telemedical web service
doesn't only monitor short-term critical values, but also long-term processes, e.g. con-
tinuous increase in weight or blood pressure and blood sugar levels.

Beside the "objective" sensor data Ms. Miller additionally inputs subjective as-
sessment information about her health status (smiley scale) that is also available via a
mobile Web Service deployed to her smart phone.

Ms. Miller starts with breakfast. A balanced nutrition is very important for her
health. She receives assistance from a Nutrition Manager service on her smart phone
that gives her recommendations for healthy snacks as well as smaller and larger
dishes depending on the time of day and her fridge contents. The nutrition manager
automatically creates shopping lists and recommends alternative (healthier) products
during her visit of a grocery store. The GPS-component is able to calculate her coor-
dinates and based on this, whether she is located in a grocery store, all this data about
her current context is made available, again, via the mobile Web Service running on
her smart phone. Should a product she is looking for not be available, she gets a map-
based recommendation for a shop nearby who have the product in stock.

After her healthy breakfast Ms. Miller is planning a museum visit. She needs to
drive to the next town by her car. Her smart phone navigates her to the next park and
ride parking in the neighboring town. Traffic jams and delays are automatically by-
passed. Just before arriving at the Park & Ride she receives a voice message from her
smart phone when the next bus to the city center departs.

Since Ms. Miller has moved only a little so far the Physical Activity monitor ser-
vice coupled to the motion sensor of her smartphones recommends her to cover the
distance from the bus stop to the Museum (1000 m) by foot.

Ms. Miller provides all the data about her physical activities via another mobile
Web Service deployed to her mobile phone, in order to make it available to other
external service. This data includes, e.g., calories burned and distance travelled.

In her stroke Ms. Miller has learned that every minute can matter. Therefore her
smart phone has an "emergency" button. If Ms. Miller presses this button the nearest
doctor or hospital gets an alert based on her GPS-coordinates. At that her current
medical records and the latest data from the telemedicine are communicated automat-
ically to the doctor in charge. Additionally, this doctor can also receive the latest in-
formation about the context of Ms. Miller from the mobile Web Services deployed to
Ms. Millers’ smart phone. As a result Ms. Miller feels save and is willing to walk long
distances by foot. On her way to the museum, her smart phone logs on again.

262 M. Jansen, O. Koch, and M. Schellenbach

Her Social Community Service has detected (with the help of other current context
information) that a good friend of her is staying very close and offers to make a phone
connection. Ms. Miller accepts this offer. Although her friend has no time for a lei-
surely visit to the museum, she suggests meeting for coffee with her after her museum
visit. Ms. Miller agrees. This planned meeting is stored in Ms. Millers’ context infor-
mation and therefore made available through the mobile Web Service.

The smart phone automatically detects, that she has reached the museum. She pays
the entrance fee by NFC-based micropayment. Her smart phone offers to take over a
guided museum tour and to provide additional information about the artifacts.

About 10 minutes before the end of her 2 ½ hour guided tour her smart phone in-
forms her friend and suggests a restaurant nearby, which fits to Ms. Millers and her
friends preferences. The preferences are stored in her personal profile that she also
made available through the mobile Web Service.

Arrived at the restaurant her nutrition organizer gives advice, which dishes are par-
ticularly recommendable. After eating Ms. Miller and her friend log in to a cloud
service and view photos of the last visit of Ms. Miller's grandchildren on her smart
phone. Afterwards, Ms. Miller says goodbye to her friend and makes his way back.

Before her way back to the Park & Ride her Physical Activity Monitor has found
through communication with a weather service that a bad weather front is approach-
ing. Instead suggesting walking the system shows the position of the next bus stop
including departure times and navigates her to this position.

After this intense day Ms. Miller wishes to have a relaxing bath at home. She starts
her Smart Living Service app and "orders" a relaxing bath via voice control of her
smart phone. Based on her GPS-Position (provided by the mobile Web Service) the
housing technology system detects that Ms. Miller will arrive at home in about 20
minutes and starts to let the water in tub.

Due to the described mobile Web Services nothing stands in Ms. Miller’s way to
age well.

5 Implementation

Based on the architecture for providing Web Services on mobile devices, the de-
scribed scenario could be implemented with a set of mobile Web Services. The over-
all architecture of this implementation could be seen in Figure 4. This figure shows
the mobile device of Ms. Miller and the services deployed to her device. Additionally,
some external services are also shown that utilize the service deployed to Ms. Millers’
mobile phone in order to provide higher level services that increase Ms. Millers’ qual-
ity of life. Since Figure 4 only provides a first overview about the mobile Web Ser-
vices along with the higher level services that utilize these mobile Web Services, not
all of the higher level services described in the scenario above are shown and of
course not all of the Web Services deployed to Ms. Millers’ mobile phone are already
used by the higher level services.

 Mobile Web Service Infrastructure Supporting Successful Aging 263

Fig. 4. Overview about an implementation that makes use of Web Service deployed to mobile
devices

In detail the Web Services deployed to Ms. Millers’ mobile phone provide the fol-
lowing functionality via standardized interfaces:

• Acc. service: provides access to the acceleration sensor of Ms. Millers’

mobile phone, e.g., to receive information if Ms. Miller is currently mov-
ing

• GPS service: provides access to the geo location of Ms. Miller
• Vital par. service: provides access to some of Ms. Millers’ vital parame-

ters measured by additional sensors connected to her mobile device, e.g.,
blood pressure, pulse rate, …

• Tactile service: provides information from the tactile sensors of Ms. Mil-
lers’ mobile device, e.g., for receiving information if Ms. Miller is cur-
rently working with the device

• EMF service: provides information from the earth magnetic field sensor,
e.g., for a further contextualization of Ms. Millers’ current position, along
with the information provided by the GPS service

The higher level services provided in this example implementation are just exam-

ples and not to provide all the services mentioned in the scenario description above.
Still, they show the basic idea of how the integration of Web Services deployed to
mobile devices could be used in order to enrich the scenario described before.

6 Opportunities and Challenges

As described before a lot of supporting services for successful aging are possible. The
mobile web service architecture provides new opportunities how information can be
transmitted and where the personal data can be stored. Here the elderly have full con-
trol of their personal data e.g. by storing them on their personal device and just allow
decentralized access without any third party infrastructure. So, in our view the mobile
web services have potential to challenge open issues in the area of data security. In

264 M. Jansen, O. Koch, and M. Schellenbach

addition the concept of mobile web services also gives the opportunity to separate the
user interface and the sensor and information layer and therefore allows for an easy
and solid way to adapt the user interface during aging or to detach the user interface
to additional devices if needed. So, based on this technical benefit the concept offers
the chance to build an assistive service platform with a lifelong individual adapting
user interface.

7 Future Work and Outlook

First of all, the described scenarios demonstrate the strength of mobile Web Services
in order to support aging well. Furthermore, similar mobile Web Services to the ones
mentioned above have the power to increase a number of other scenarios, too. These
are partially already identified and include, e.g., voting systems, crowd sourcing, mo-
bile learning and other scenarios in which the contextualization of a mobile user pro-
vides some benefit. Still there is not much work done with respect to data security and
especially the question of who should have access to mobile Web Services (such as
mentioned above) and how the necessary security restrictions could be handled, re-
mains unanswered today. Therefore, one of the points for future work will be to con-
centrate on these security issues.

From a scenario point of view, an evaluation of the described scenario is one of the
points on our to-do list. Additionally, new sensors will be integrated in the scenario
and the integration of the mentioned services in a complete Service-Oriented Archi-
tecture (SOA) strategy is another goal for future work.

References

1. Baltes, P.B.: Theoretical propositions of lifespan developmental psychology: on the dy-
namics between growth and decline. Developmental Psychology 23(5), 611–626 (1987)

2. Kramer, A.F., Willis, S.L.: Enhancing the cognitive vitality of older adults. Current Direc-
tions in Psychological Science 11(5), 173–177 (2002)

3. Ball, K., Berch, D., Helmers, K., Jobe, J., Leveck, M., Marsiske, M.: Effects of cognitive
training interventions with older adults - a randomized controlled trial. JAMA 288(18),
2271–2281 (2002)

4. Erickson, K.I., Colcombe, S.J., Wadhwa, R., Bherer, L., Peterson, M.S., Scalf, P.E., Kim,
J.S., Alvarado, M., Kramer, A.F.: Training-induced plasticity in older adults: Effects of
training on hemispheric asymmetry. Neurobiology of Aging 28(2), 272–283 (2007)

5. Hong, J., Suh, E., Kim, S.: Context-aware systems: A literature review and classification.
Expert Systems with Applications 36(4), 8509–8522 (2009)

6. Fielding, R.T., Taylor, R.N.: Architectural styles and the design of network-based software
architectures, University of California, Irvine (2000)

7. Curbera, F., Duftler, M., Khalaf, R., Nagy, W., Mukhi, N., Weerawarana, S.: Unraveling
the Web Services Web: An Introduction to SOAP, WSDL, and UDDI. IEEE Internet
Computing 6(2), 86–93 (2002)

 Mobile Web Service Infrastructure Supporting Successful Aging 265

8. Svensson, D.: Assemblies of Pervasive Services. Dept. of Computer Science, Institutional
Repository – Lund University (2009)

9. Jansen, M.: Evaluation of an Architecture for Providing Mobile Web Services. Interna-
tional Journal on Advances in Internet Technology 6(1&2), 32–41 (2013)

10. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Pattern – Elements of Reusable
Object-Oriented Software. Addison-Wesley (1995)

C. Canal and M. Villari (Eds.): ESOCC 2013, CCIS 393, pp. 266–276, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Cloud and Web Services Integration for mHealth
 Telerehabilitation Support

Angel Ruiz-Zafra1, Manuel Noguera1, Kawtar Benghazi1, José Luis Garrido1,
Gustavo Cuberos Urbano2, and Alfonso Caracuel3

1 Dpto. Lenguajes y Sistemas Informáticos, Granada, Spain
{angelr,mnoguera,benghazi,jgarrido}@ugr.es

2 Dpto. Personalidad, Evaluación y Tratamiento Psicológico, Granada, Spain
gcuberos@ugr.es

3 Dpto. Psicología Evolutiva y de la Educación, Granada, Spain
acaracuel@ugr.es

Abstract. Cloud Computing and mobile technology have become an integral
part of society, changing how we interact with devices and each other. In this
context, users are able to connect with other users/devices anywhere and any-
time, taking advantage of endless possibilities in different areas. One of these
areas is healthcare, where cloud features can cover important healthcare re-
quirements such as information exchange, security, privacy and scalability of
solutions to support users’ needs. In this paper we introduce a Cloud-supported
e-Rehabilitation platform for Brain-Injured patients and health professionals.
The goal of the platform is the improvement of the quality of life of patients,
providing asynchronous remote interaction between health professionals and
patients.

Keywords: Brain-injured, cloud computing, remote interaction, e-
Rehabilitation, mobile devices, telerehabilitation.

1 Introduction

The Cloud Computing is the convergence and evolution of several concepts like vir-
tualization, distributed storage, grid and automation management with the goal of
providing a flexible approach for deploying and scaling applications through a large
group of interconnected computers [1].

The service delivery model of the cloud consists in three different layers: Infra-
structure as a Service (IaaS), Platform as a Service (PaaS) and Software as a Service
(SaaS) [2]. Cloud-based solutions present different attributes or characteristics such
as: on-demand self service, broad network access, resource pooling, rapid elasticity
and measured service [3].

These features provide a set of benefits as the delocalized access to resources
through Internet anywhere and at any time, pay-per-use business models and simple
data sharing. This makes cloud computing a very efficient paradigm to the
deployment of applications. Another key advantage of cloud computing is that cloud

 Cloud and Web Services Integration for mHealth Telerehabilitation Support 267

services are updated by the provider, which means that users and devices that use
these services are always working with the latest platform version and do not need to
worry about upgrades.

Thanks to these features, new technologies with scarce resources, as mobile devic-
es, have grown over the last years, especially by the delocalized use of services
through the Internet and the possibility to run heavy tasks out of these devices (cloud
servers).

Healthcare cloud-supported has many advantages. For health professionals, cloud
computing can be a useful tool to exchange medical information between different
medical centers and departments at any time and anywhere.

This collaborative information exchange improves the efficiency in the use of med-
ical resources [4] in comparison to the classical methods, where two different organi-
zations change patient’s records or medical information using their own standards or
infrastructures.

Health professionals also seek for the improvement of care and support to patients,
with the aim of the improvement their quality of life. By using cloud technology,
health professional and patients can have an asynchronous social and remote interac-
tion unlike the classical face-to-face interaction. This social interaction through the
cloud enables continuous monitoring of patients, being this information accessible to
the health professionals anywhere and at any time, with low-cost by reducing dis-
placement of patients. In this way, the health professional can have a better interaction
or social relation with their patients, maximize the use of medical resources, the quali-
ty of life of the patients and their evolution.

This fact is particularly important in some rehabilitation contexts, like Brain Injury
Rehabilitation processes, where the evolution of patient strongly depends on how they
perform the exercises. In the rehabilitation programs health professionals usually
supervise several patients at the same time so some details about the performance of
the rehabilitation exercise can be unnoticed. The possibility to store the performance
of the rehabilitation exercise and the asynchronous and delocalized access to this
performance can ensure that professionals can review the rehabilitation exercise to
check if the rehabilitation exercise was performed correctly, detect mistakes, etc.

Therefore, cloud features like interoperability or unlimited storage perfectly fit
with the set of requirements of a rehabilitation system. In addition, other cloud fea-
tures like scalability and robustness make the cloud paradigm a more efficient solu-
tion than classical client-server architectures.

In this paper, we introduce CloudRehab, a cloud-supported mobile Rehabilitation
platform for brain-injured patients that shows how the rehabilitation through the cloud
can improve the rehabilitation progress of the patients over the time, due to the full
time asynchronous social interaction between health professionals and patients. The
paper is organized as follows:.CloudRehab, is described in detail in the Section 2.
Section 3 describes the related work, some cloud-supported systems/applications and
Conclusions and future work are presented in Section 4.

268 A. Ruiz-Zafra et al.

2 CloudRehab

2.1 Approach

Brain-injured patients have to perform periodically rehabilitation exercises designed
by health professionals to regain their motor, language, cognitive and/or daily living
skills. This approach usually entails patients to move to the hospital to perform the
exercise, which represents an important drawback for this kind of patients.

Likewise, health professionals have to supervise the rehabilitation sessions to en-
sure correct rehabilitation exercises performance. This social relation based on a face-
to-face supervision implies that health professionals must be in the same place where
the patient is.

Unlike these classic rehabilitation programs, home-based rehabilitation programs
by remote supervision of exercises have proven to reduce the need for face-to-face
rehabilitation sessions with health professionals and patients and keep or improve
their relation using new technologies like cloud computing. This technology may
reduce displacements of patients to the hospital, some premature discharges of pa-
tients and health-care costs. Likewise, some devices allow a proper monitoring of
patient’s performance of activities of daily living (ADL). Although home-based
rehabilitation could reduce final rehabilitation costs, there is a requirement for effec-
tiveness; it must be assured the correct performance of the rehabilitation exercises
without a direct supervision, just using medical feedback.

2.2 Platform Overview

The proposal presented in this paper to keep and/or improve the social relations be-
tween patients and health professionals using cloud technology is called CloudRehab
[17].

CloudRehab is a customizable home-based e-rehabilitation platform for brain-
injured patients that makes use of mobile devices, commercial heart rate sensors, Web
and Cloud Computing technologies, which has been validated with several patients.

One of the main aims of CloudRehab is to provide a remote supervision platform
for health professionals (doctors, occupational therapists, physiologists) who can use
the platform to train daily activities, increase independence and reduce patient dis-
placements. To achieve this, professionals design training sessions and help patients
to learn how to perform them, which is stored in a video file.

In each training session different information is stored: the performance of the ex-
ercise (video recorded by means of the frontal camera of the mobile device) together
with the heart rate values obtained from a chest strap Bluetooth sensor [13]. This in-
formation is simultaneously stored in the mobile device and in a remote cloud. This
way, the video sessions and the heart rate values recorded can be accessed anywhere
and anytime. This is an important feature, since it enables asynchronous interaction
and work with the platform of patients and health professionals, which in turn, permit
that certain activities, such as eating, can be performed fitting the usual schedule of
the patient.

 Cloud and Web Services Integration for mHealth Telerehabilitation Support 269

This asynchronous interaction as requirement is the main reason for using cloud
technology. The interaction is supported by different healthcare services implemented
as web services and supported by cloud technology, ensuring the correct exchange
of information, management of the patient information providing different
disseminations, etc.

Fig. 1. CloudRehab Platform Overview

Only a mobile device with Bluetooth and a frontal camera, as well as Internet con-
nection (for real-time monitoring and cloud storage of session information) is needed.
Figure 1 provides an overview of the platform. Figure 1 shows an overview of Clou-
dRehab.

2.3 Functionalities

CloudRehab platform uses a mobile based-component architecture called Zappa,[14].
The different components of the platform have been designed to manage the different
concerns involved in the healthcare area such as the management of the information,
allowing the easy management of patients, management of the different communica-
tion protocols like Bluetooth or Wifi enabling the easy connectivity with medical
devices based on this kind of communication protocols like commercial heart rate
sensors or even Arduino board.

In addition, and specifically for this project, a new component to work with cloud
technology was developed. The component, which is integrated in the Zappa plat-
form, allows work with cloud technology easily.

In this way, the component allows, among other features:

─ The use of any service supported by cloud technology and the automatic transfor-
mation of cloud dissemination to custom objects (source code). This is possible
defining and creating a custom bean object at execution time with the specific fea-
tures of the result of the cloud service.

270 A. Ruiz-Zafra et al.

─ The component has a internal petition stack allowing that cloud unprocessed peti-
tions due to connectivity problems, server problem, etc. run when its possible.

─ The possibility to upload and download any type of file to the cloud.
─ The execution of cloud tasks, allowing that heavy tasks can be performed in the

cloud instead of the mobile device.
─ The component is able to launch a service (background process) to support the

real-time cloud interaction even when the application is closed. This allows that
patients can receive notifications or other kind of information anytime.

The use of a component-based solution ensures that changes in one component or
add and remove new components do not alter the behavior and operation of the sys-
tem.

In the cloud server context, specific services have been developed to manage all
the information of the platform: get specific information of patient, register new pa-
tient, update information patient, create rehabilitation sessions, upload or download
file, register into the system a new health professional, etc. Each action in the cloud
server is supported by a service. These services are used, so far, by the mobile appli-
cation and the web platform.

Fig. 2. CloudRehab Architecture

One of the main functionalities of the platform is the video and audio management.
This is supported by complex processes for which two different cloud-supported tasks
have been developed. When the patients upload, through the mobile device, the zip
file that contains the video files recorded in the rehabilitation session one of the task

 Cloud and Web Services Integration for mHealth Telerehabilitation Support 271

decompress the zip file, convert the different video files (mp4) to WebM video files
and merge all the different files into one. In the same way, when the health profes-
sionals upload a video or audio file in any file extension or video-audio codec, the
task management this files to convert to WebM (video) and OGG (audio) using a
open-source library [16]. In this way, audio and video files could be reproduced using
the web player of HTML5, avoiding the use of Flash or other weight technologies
that, usually, are not compatible with mobile devices. Fig.2 shows the architecture of
the system.

2.4 Architecture

CloudRehab encompasses three main components:

Mobile Application
Based on Android OS (at least 2.2) and used by patients, the mobile application uses
different services and task of the cloud, components of the Zappa platform and open-
source libraries to provide different functionalities such as real-time data storage
(cloud server and mobile device), medical device management (heart rate sensor),
statistics charts and mobile device camera recording, among others.

Web Application
The administrative tool is a web application developed using different technologies
such as: HTML5, JavaScript, Ajax, CSS3 and open-source frameworks. The web
application, through AJAX, uses different services and tasks of the cloud to provide
different functionalities as the data management and representation, video, audio and
images management or real-time monitoring.

Cloud Technology
The Cloud Technology used to support CloudRehab is called G, a novel technology
designed and developed by Gnubila [15].

G is a cloud native platform based on open standards and composed by an applica-
tions server, databases, BPM and middleware technologies combined with a set of
tools which enabling the development, deployment and running of applications and
services. G could be deployed in publics or private servers, creating hybrids clouds.

About the service delivery model, G is independent of the IaaS so can be used with
Amazon EC2, VMWare, Windows Azure or FlexIT, among others. In the PaaS layer,
G provides a custom PaaS platform called GPaaS.

GPaaS is a platform for the development, deployment and running of applications
which core is a multitenant applications and databases server. This platform provides
functionalities such as management and data federation, management of multimedia
contents, applications integration, metadata management, etc. Over this layer, the
developers could deploy or create new applications with Multilanguage support (PHP,
Ruby, Perl, Java, Python, etc) using a useful web development environment that
provides services over the SaaS layer.

272 A. Ruiz-Zafra et al.

The data storage in G is supported by a NoSQL graph-oriented database. The in-
formation is stored as objects, which at the same time could be grouped into types.
The structure of each object (attributes) could be different, enabling that G manage
the information using different models as relational, hierarchical, analytical or net-
work. Although the information is stored in a NoSQL database, the GPaaS layer al-
lows to developers the use of SQL queries.

For this project, G has been deployed in a custom Linux installation (CentOS 6.0)
and the GPaaS web development environment has been used to generate the applica-
tion which provide the different services used by web and mobile application. The
programming language used is Perl.

2.5 Platform Applications

The platform includes two end-user applications.

CloudRehab Administrative Tool
It consists of a web application that can be used by any user of the system (health
professionals, patient’s relatives and patients). Although all of them use the same web
application, each type of user has its own interface and restricted access to different
sets of functionalities. The different functionalities provided are:

─ Manage patient information: A health professional can register into the system
his/her owns patients and define the medical and personal information.

─ Manage session’s patient: One session is made up of a training video of a patient
performing an activity in a training process, a set of audio and image files used
when the heart rate value of the patient reach a certain value, the recorded video of
the session, the heart rate values, and alerts to be triggered, among others. The pro-
fessional can define new sessions with new training activities and, once the patient
has completed them, review session information to evaluate patient progress.

─ Review information generated by the patient such as completed sessions (recording
video, recording audio, heart rate records) (Fig. 3), heart rate between two different
dates or charts (sectors, bars) of the patient’s progress over time.

Fig. 3. Information of Completed Rehabilitation Session

 Cloud and Web Services Integration for mHealth Telerehabilitation Support 273

CloudRehab Mobile Application
A mobile application that allows the training session of an exercise to be played and
recorded while obtaining heart rate using a chest strap sensor [13] to monitor patient’s
stress level.

The application divides the device screen into two different parts. The upper part
shows the images captured by the frontal camera, while the bottom part of the screen
displays the training video previously recorded with the supervision of a therapist
(Fig. 4 – Left). This provides to the patient a useful real-time feedback about how to
perform the exercise correctly and how he/she is approaching to the intended model.

If the application detects that the heart rate signal of the patient has reached the
threshold defined by the professionals, the application plays an information sound and
shows a pop-up dialog with different options (i.e., review the video session by steps,
play custom help audio or view relaxing images) in order to aid the patient to reduce
his/her stress level (Fig.4 – Center).

The mobile application also provides other functionalities such as real-time heart
rate sensor detection, change screen mode (only video, camera and video or only
camera mode) and statistical information display (Fig. 4 right), among others.

Fig. 4. CloudRehab Mobile Application

3 Related Work

Different cloud-supported systems and applications in different fields/areas have ap-
peared over the last years. These systems, which in most cases make use mobile devic-
es, are examples of how cloud computing paradigm has changed the way we interact.

There are many fields such as online gamming, e-Learning, social networks or data
storage which has been supported by cloud technology. The most representative
cloud-supported systems that show how the cloud changes our social relations are
instant messaging systems (WhatsApp, LINE), the social networks (Facebook, Twit-
ter) or data storage (Dropbox).

In other areas, cloud-supported systems that provide a new way of social commu-
nication have appeared with the main goal of the improvement of users experience,
like CloudMov. CloudMov is a novel mobile social TV system, which can effectively

274 A. Ruiz-Zafra et al.

utilize the cloud computing paradigm to offer a living-room experience of video
watching to disparate mobile users with spontaneous social interactions [5].

The work presented in [6] shows a mobile application, which uses Facebook API,
cloud computing and social networking services to help people to prepare for
emergencies and obtain support from friends and relatives in the aftermath. The work
presented in [7] that is related with educational field and show the Scholar-Oriented
Social Network Cloud (SOSN) extract academic information from various web
sources on the Internet and provides an application model for the social interaction
through the cloud.

Other works, as the one presented in [8] are most focused in the security of archi-
tectures or environment supported by the cloud, such as e-Commerce, where the users
execute e-transactions with real money and the security is absolutely essential.

In the field related with this paper, healthcare, have appeared many systems or ap-
plications, which are supported by cloud technology. Due to the dynamic and exten-
sive healthcare systems nature, they fall into different categories such as: Emergency
Medical Systems (EMS), Health Cloud Exchange, Digital Image and Communica-
tions in Medicine or HealthCloud [8].

In each category there are many cloud-supported systems/applications that shows
how the cloud computing applied in healthcare field could improve the social rela-
tions, and therefore, the medical results. A good example is the work shown in [9], an
emergency medical system that provides access to personal health records of patients
and is used by different group of users (Ambulance Paramedics, Emergency Depart-
ment of Physicians and Nurses).

The system presented in [10] is a distributed web interactive system that provides a
private cloud-based data sharing service allowing information exchange between
different Electronic Health Record systems. In this way, two different systems with
different standards can share information due to the cloud computing paradigm, in-
creasing and improving the social relations.

Other work, more related with the approach of the work presented in this paper, is
the system presented in [11], called BioTrack Home. This system, which is part of the
project TEREHA [12], is e-Rehabilitation system for brain-injured patients developed
by the Polytechnic University of Valencia (LabHuman-I3BH), health professionals
from the NeuroRehabilitation Deparments of Nisa del Mar and Sevilla Aljarafe Hos-
pital and Bienetc company. BioTrack, which is based in virtual reality and cloud
technology, allows patients to perform the rehabilitation session at home. The pa-
tients’ record themselves performing the rehabilitation sessions using a camera like
Kinect connected to TV, a motion-tracking platform as Wii Balance Board and a
laptop or PC. When the patient finished the performance of the session, all the infor-
mation generated is sent to a cloud server. In this way, this information is being ac-
cessible by health professionals, who can evaluate the results of sessions and improve
the diagnoses.

Other works [18] based in the concept of mobile cloud computing (decentralized
architecture – peer to peer) have appeared lately, making possible that each mobile
device can work as service provider. This concept applied to the healthcare area or
rehabilitation context could ensure the security and privacy of patient’s information

 Cloud and Web Services Integration for mHealth Telerehabilitation Support 275

because professionals, who want to get information about a patient, have to consume
the services of patients. However, if professionals can list different information about
several patients have to consume services from each patient, which can be a heavy
task, so the cloud-mobile as solution in this context is not efficient. Moreover, in
some cases where patients have the mobile phone off or without Internet connection
the services are not accessible, so this solution could be inadequate or useless for a
healthcare system. The platform presented in this paper, called CloudRehab, not only
provides access to personal health records/information of patients as other systems
[9], it provides a useful rehabilitation performance based on video recording and the
transparent cloud support to the user. This rehabilitation process using video files
ensures that health professionals can review the rehabilitation exercise without losing
any detail of the performance.

With this platform the health professionals and patients have a remote and asyn-
chronous interaction during all the rehabilitation process thanks to cloud technology,
where unlike other systems, and as far as we know, these systems only use the cloud
technology to data storage but not as communication tool [11] [12]. In addition, Clou-
dRehab allows to health professionals the management of the rehabilitation sessions,
customizing each of them.

4 Conclusions and Future Work

This paper describes CloudRehab, a cloud-supported e-Rehabilitation platform for
brain-injured patients. The aim of CloudRehab is to improve of the quality of life and
the effectiveness of rehabilitation of patients, providing useful cloud-supported appli-
cations and healthcare cloud services by enabling remote, asynchronous, continuous
and at home monitoring of rehabilitation exercises. Thanks to these services, patients
can perform his/her rehabilitation sessions at home and health professionals can
monitor the patient’s outcomes asynchronously. This new way of interaction between
patients and health professionals through the cloud has been tested with different
patients and with satisfactory results.

As future work we are currently working in the design and development of new
functionalities such as the use of face or shape recognition to automatically check the
correct performance of the rehabilitation exercises, the integration of CloudRehab
with information systems and processes of the public health service of our country.

In addition, new functionalities for Zappa Platform are currently under develop-
ment, such as the automatic management (detection, synchronization and pairing) of
any device with any communication protocol in order to enable to interoperate with
any device (medical device, other mobile devices, etc.), as well as cloud PaaS
platforms (GAE, Azure, EC2).

Acknowledgments. This research work has been funded by the CEI BioTIC Granada
(20F12/36), Innovation Office from the Andalusian Government (TIN-6600) and the
Spanish Ministry of Economy and Competitiveness (TIN2012-38600).

276 A. Ruiz-Zafra et al.

References

[1] Ullah, S., Xuefeng, Z.: Cloud Computing: a Prologue. International Journal of Ad-
vanced Research in Computer and Communication Engineering 1(1) (March 2012)

[2] Scott, K.: The Basics of Cloud Computing. White Paper (November 2010)
[3] Mell, P.: The NIST Definition of Cloud Computng. Special Publication 800-145 (2011)
[4] Meglic, M., et al.: Feasibilty of and eHealth Service to Support Collabora-tive Depres-

sion Care: Results of a Pilot Study
[5] Wu, Y., Zhang, Z., Wu, C., Li, Z., Lau, F.C.M.: CloudMoV: Cloud-Based Mobile So-

cial TV. IEEE Transactions on Multimedia 15(4) (June 2013)
[6] Greer Jr., M.B., Ngo, J.W.: Personal Emergency Preparedness Plan (PEPP) Facebook

App: Using Cloud Computing, Mobile Technology, and Social Networking Services to
Decompress Traditional Channels of Communication during Emergencies and Disas-
ters. In: 2012 IEEE Ninth International Conference on Services Co., pp. 494–498 (2012)

[7] Li, J., Zhao, G., Rong, C., Tang, Y.: Semantic description of scholar-oriented social
network cloud. J. Supercomput., 410–425 (2013)

[8] Wooten, R., Klink, R., Sinek, F., Bai, Y., Sharma, M.: Design and Implementation of a
Secure Healthcare Social Cloud System. In: 12th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing (2012)

[9] Koufi, V., et al.: Ubiquitous access to cloud emergency medical services. In: The Pro-
ceedings of 10th IEEE International Conference on Information Technol-ogy and Ap-
plications in Biomedicine (ITAB), Corfu, Greece, pp. 1–4 (November 2010)

[10] Mohammed, S., et al.: HCX: A Distributed OSGi Based Web Interaction Sys-tem for
Sharing Health Records in the Cloud. In: The Proceedings of 2010 IEEE/WIC/ACM In-
ternational Conference on Web Intelligence and Intelligent Agent Technology (WI-
IAT), Toronto, Canada, vol. 3, pp. 102–107 (September 2010)

[11] http://www.biotracksuite.com
[12] http://www.everis.com/global/en-US/press-room/news/

Paginas/tereha-integrated-tele-rehabilitation.aspx
[13] http://www.polar.com/en/products/accessories/Polar_WearLink

_transmitter_with_Bluetooth
[14] Ruiz-Zafra, Á., Benghazi, K., Noguera, M., Garrido, J.L.: Zap-pa: An Open Mobile

Platform to Build Cloud-based m-Health Systems. In: Ambient Intelligence-Software
and Applications, pp. 87–94. Springer International Publishing (2013)

[15] http://www.gnubila.com
[16] http://www.ffmpeg.org/
[17] Ruiz-Zafra, A., Noguera, M., Benghazi, K., Garrido, J.L., Cuberos Urbano, G.-V., Ca-

racuel, A.: A Mobile Cloud-Supported e-Rehabilitation Plaform for Brain-Injured Pa-
tients. In: PervasiveHealth 2013. Re-hab Workshop (2013)

[18] Srirama, S.N., Paniagua, C., Flores, H.: Social group information with mobile cloud
services. Service Oriented Computing and Applications 6(4), 351–362 (2012)

Architecting Infrastructures for Cloud-Enabled

Mobile Devices

Javier Miranda1, Joaqúın Guillén1, Javier Berrocal2, Jose Garcia-Alonso2,
Juan Manuel Murillo2, and Carlos Canal3

1 Gloin, Calle de las Ocas 2, Cáceres, Spain
{jmiranda,jguillen}@gloin.es

2 Department of Information Technology and Telematic Systems Engineering,
University of Extremadura, Spain

{jberolm,jgaralo,juanmamu}@unex.es
3 Department of Computer Science, University of Málaga, Spain

canal@lcc.uma.es

Abstract. The slow adoption of cloud computing by the industry has
collapsed the initial expectations of everything shifting rapidly to the
cloud. Big and complex services are either postponing their migration
to the cloud, or have simply not considered it as an option. The real
success is coming from small services which exploit the elasticity and
availability of cloud resources to become available to hundreds and mil-
lions of users, many of which are using mobile devices. However, little or
no progress has been made in developing new architectures that exploit
the capabilities offered by cloud and mobile computing. In this paper, the
cloud-enabled mobile devices concept is defined, making an overview of
the related fields. People-as-a-Service is proposed as a new service model
based on that concept, describing a high level architecture to support
it, and presenting a business application based on this technology. As a
result, cloud-enabled mobile devices promote the emergence of new sce-
narios and mobile applications based on new architectures where devices
can act both as clients and servers.

Keywords: mobile, cloud, social, software, applications.

1 Introduction

The cloud paradigm has meant a revolution in the way in which computational
resources are offered and consumed. It has contributed in the development of
new service models which offer a set of desirable features like elasticity in the
provisioning of resources, energy efficiency improvements, and enhanced costs
control by using pay-as-you-go billing models [15].

Although this provide a favourable scenario for the adoption of cloud by the
industry, such expectations are not being met [13]. Its major success is not
currently coming from the biggest and most complex software systems, but the
massively consumption of basic services by millions of users.

C. Canal and M. Villari (Eds.): ESOCC 2013, CCIS 393, pp. 277–287, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

278 J. Miranda et al.

Additionally, the use of these services from mobile devices like smartphones
and tablets is currently growing. This has led to the adoption of cloud computing
as the perfect matching piece of the puzzle in order to support the heavy-load
processes of those applications and services which have been designed to be con-
sumed from mobile devices. Cloud-based servers are perfectly suited for deploy-
ing the back-end components of a mobile-oriented application, since cloud offers
several mechanisms for scaling and adapting the computing resources which are
dedicated to the application depending on the user’s demand [10]. Addition-
ally, the cloud-based model solves the data ubiquity problem providing almost-
unlimited storage capacity and transparent syncing mechanisms for accessing to
the same information anywhere, and from any device.

In contrast, mobile applications and services are currently based on very sim-
ple architectures where the role of mobile devices is always defined as client.
However, the current improvements on mobile devices features and capabilities
allows us to start thinking about more advanced architectures which could make
a different use of mobile resources, enabling smartphones and tablets to act
not only as service consumers but also providers, leading to P2P architectures
between mobile devices. In such context, this paper firstly present and approxi-
mation of the cloud-enabled mobile devices concept, following with a review of
it contribution from different related fields, and finishing with an specific im-
plementation of the proposed service model as a real industrial application of
it.

The paper is structured as follows. In section 2, we define the concept of cloud-
enabled mobile devices as we understand it, and we also present a set of related
fields where the application of such concept could make some contribution. Based
on that concept, section 3 describes the PeaaS approach, introducing a definition
of the term, presenting the proposed architecture of such model, and describing
nimBees R©, a business application that makes use of the PeaaS paradigm. Finally
the conclusions and future lines of work are described in section 5.

2 Cloud-Enabled Mobile Devices

In this section, we introduce the definition of the cloud-enabled mobile devices
concept.

Due to the mobile’s increasingly level of incursion in society, it begins to be
a daily life’s element whose impact in several social-related aspects becomes to
be an interesting fact to be considered. Because of the personal nature of mo-
bile phones, they can be understood as the digital mirror of its owner identity,
containing representative information about its relationships, preferences, activ-
ities and behavior. Also, from a more social perspective, every device contains
a huge amount of information and resources which can be used, processed and
shared with other people, making use of the proper services and available appli-
cations. Additionally, from a computational perspective, mobile devices conform
a complex network of distributed nodes with high processing capabilities, where
each of them can collect information from its sensors about the surrounding
environment.

Architecting Infrastructures for Cloud-Enabled Mobile Devices 279

In this context, mobile devices as a whole could be considered as a big ‘cloud’
environment of computational and information resources. As result, the con-
cept of cloud-enabled mobile devices emerges from those factors, and it can be
summarized with the following ideas:

– Mobile devices can act as service providers. Far from considering
mobile devices as fool terminals for consuming services, the cloud-enabled
mobile devices concept implies the service provider role of such devices. Cur-
rent state-of-art allows the development and deployment of service providing
applications in mobile environments, using technologies based on the most
common web-services protocols like SOAP or REST for providing standard-
based service interfaces.

– Services deployed in mobile devices consume available resources
and information. The deployment and execution of services in cloud-
enabled mobile devices treat the information and available mobile resources
as sources of data that could be consumed and conveniently served.

– Resources, information and patterns of use of mobile devices can
be understood as the digital identity of their owners. The manner
in which people use their mobile phones can define accurately their social
profile. These devices are increasingly used for reading and answering e-
mails, taking photos, messaging, interacting in social networks, or browsing
the web. How, when, and where is all this activity done is logged in the
device, and such information, that represents the virtual behavior of each
owner, could be exploited by new social-oriented mobile applications and
services.

Having all the above in mind, cloud-enabled mobile devices (CEMD) could be
defined as a conceptual perspective of mobile computing that highlights smart-
phones as the digital extension of their owners, and as unique devices able to
depict the social profiles of their users, capable enough to provide and consume
services and resources between them in a not necessarily centralized way of con-
nection.

Based on this concept, we have compiled an initial set of related fields in where
the CEMD concept can bring new ideas for the opening of new researching lines.

In the following subsections, a briefly review of such related fields is conducted.

2.1 Service Deployment Technology on Mobile Devices: CMED as
Servers

Since mobile devices are enough capable of running complex processes, the use
cases of that devices started to be closer to those of desktop systems. Today’s
differences are not so related with performance but has to be with the acces-
sibility peripherals constraints like screen and keyboard sizes, and the battery
draining issues. Consequently, the idea of considering mobile devices as servers
has been explored by literature for a long time.

In [5], the WSAMI middleware is presented as a solution for developing mobile
computing components based on Web-services, taking into account the network

280 J. Miranda et al.

environment requirements in the definition of the component model. This so-
lution uses a SOAP-based core broker and the CSOAP container, a compact
container for Web-services adapted for allowing service deployments in mobile
environments. In [6], an approach that allows mobile devices to behave as cloud
service providers is presented. An implementation based on the JavaScript lan-
guage is chosen, which aims to execute tasks as mobile-based Web Services.
A mobile-based hosting and serving architecture is proposed in [11] in order
to eliminate the common cloud-based hosting of the content being shared. This
work proposes a server-based architecture where the meta-information about the
connected devices is managed, acting also as a proxy for bandwidth optimiza-
tion and offline content delivering. There are also some related projects working
on the development of mobile-based web servers, like i-Jetty1 and kWS2 for the
Android platform, and CocoaHTTPServer3 for iOS platform.

The idea of cloud-enabled mobile devices is completely aligned with the tar-
get of the cited works. Probably, current technologies are scattered solutions
which solve the main problem individually focused on different application ar-
eas. Maybe the pooling of the common requirements and its abstraction in order
to build a more generic platform or framework could help in the evolution of
the current mechanisms towards an standardized technology for mobile services
provisioning and deployment.

2.2 CEMD as an Alternative to Client/Server Mobile Architectures

As exposed in the previous section, the current capabilities of mobile devices
allow scenarios where mobile applications are functionally self-sufficient, in con-
trast with traditional full back-ended (and still partially back-ended) mobile
applications. Current mobile performance and energy management allows begin
to develop applications which can dispense with the server part that makes the
heavy-load work. This starts to open ideas about designing novel architectures
which differ from traditional client/server approaches, motivating alternatives
like Mobile P2P.

In such context, [2] proposes the architectural principles enabling Mobile P2P.
[7] presents an adaptation of traditional Peer-to-Peer network architecture for
mobile devices and mobile networks using an XML-based protocol. [8] proposes
an intelligent agent mediated peer-to-peer service-oriented-architecture (SOA)
based on a Hybrid P2P architecture. In [9] an efficient Mobile P2P architecture
wireless-centered approach is described, presenting performance enhancements
from existing Mobile P2P schemes based on a hierarchical classification using
clustering mobile peers.

Mobile Peer-to-Peer architectures perfectly fit with the proposed support en-
vironment for the cloud-enabled mobile devices concept. Such architecture model

1 i-Jetty - http://code.google.com/p/i-jetty/
2 kWS for Android -http://play.google.com/store/apps/details?id=
org.xeustechnologies.android.kws

3 CocoaHTTPServer - http://github.com/robbiehanson/CocoaHTTPServer/wiki

http://code.google.com/p/i-jetty/
http://play.google.com/store/apps/details?id=org.xeustechnologies.android.kws
http://play.google.com/store/apps/details?id=org.xeustechnologies.android.kws
http://github.com/robbiehanson/CocoaHTTPServer/wiki

Architecting Infrastructures for Cloud-Enabled Mobile Devices 281

and its communication protocols could be enriched in order to include extra prop-
erties or attributes in node descriptions related with the nature of the services
which are exposed on each one.

2.3 CEMD Supporting the Distributed Processing of Individual
Social Profiles

This field, more social-related than technical-based, includes techniques, works
and mechanisms for the treatment of individual social profiles based on the
mobile-resident information. In such multidisciplinary area we want to under-
score works like [3], where a system for sensing complex social systems with
data collected from mobile phones over a long time is described. Also, the work
highlight mobile phones as wearable sensors and their particularly usefulness as
measuring human behavior. We can also cite [12], where authors argue that the
technological and social characteristics of this device make it a useful tool in
social science for allowing automatic observations and studies.

The cloud-enabled mobile devices concept contributes posing the basis for
the development of novel applications and services which could make use of an
underlying platform for getting an snapshot of the collectivism and social trends.

2.4 CEMD Towards Privacy Awareness

Following the previous subsection, the social trends and behavior measurement
must be done in a secure and trusted environment. The cloud-enabled mobile
devices concept implies the privacy-friendly treatment of the personal informa-
tion, encouraging a service model based on the distributed processing of the
information, avoiding its centralized storage. This idea promote the develop-
ment of applications oriented to query the available resources and information
inside the mobile environment, extracting raw data but keeping the information
source on it.

2.5 CEMD as the ‘Digital Interface’ of Users

The information gathered by the different social networks about their users
trends to be unified by such users in a kind of unique profile by allowing each
social network to access the information of the others through their integration
APIs. This allows make use of a variety of services using, for example, Twitter
or Facebook credentials to log-in in them.

Growth of social networks and social applications consumption from mobile
devices turns them as the key and the visible face of their owners from the
other user’s perspective. Mobile devices gather enough information about their
owners to become as the digital representation of them in the virtual society.
Could novel applications and services emerge, based on the cloud-enabled mobile
devices concept, for extending such representation from social network avatars
to real fields of society like healthcare or e-governance?

282 J. Miranda et al.

As a summary, there are several fields where the proposed cloud-enabled mo-
bile devices concept can be understood as an additional motivation, inspiration
or questionable perspective for considering different approaches for developing
novel social-oriented mobile-based applications and services. The following sec-
tion introduces our particular implementation of a service model based on this
concept, proposing a high-level conceptual architecture to support that model,
and an industrial application based on it.

3 People-As-A-Service

PeaaS is a mobile service model based on a cloud-enabled mobile devices plat-
form. This platform is built on a cloud-inspired technological infrastructure that
considers each subscribing mobile device as a provider in which multiple services
can be deployed, instantiated and executed.

3.1 Description

The People-as-a-Service model relies on four basic principles:

– Growing capabilities of mobile devices. The capabilities of current
smartphones and tablets are more than sufficiently advanced for them to
assume the role of service providers beyond mere service consumers.

– Cloud-enabled mobile devices. Understanding a mobile device as a ser-
vice provider introduces smartphones and tablets as new potential players
in the resource provision battleground. PeaaS shifts the concept of an appli-
cation server and a service deployment to the mobile device scenario, in a
similar way as it is done by the PaaS model in cloud computing.

– Personal mobile devices. Mobile devices are highly personal, and they
can be considered more than a technological infrastructure where applica-
tions and services are executed. Some works, such as [14], have even defined
them as a combination of person plus technology, such that neither of them
can stand alone. The way in which people make use of their smartphones
today commonly implies the storing their personal information, contacts,
relationships and preferences inside the device. Therefore, mobile devices
are a virtual representation of their owners, including their location, trends,
leadership capabilities, and behaviour.

– Privacy-friendly. The PeaaS model must have a highly-secure set of mech-
anisms to ensure the privacy policies established by the owner of each device.

These four pillars summarize the fundamentals of the PeaaS model. In order
to provide the basis for creating and deploying new mobile services based on the
described features, the PeaaS model should have the following capabilities:

– Execution environment for services. The PeaaS-based mobile services
are deployed and run in a common execution environment that is platform-
independent. Such environment provides an homogeneous access to the mo-
bile device’s resources, including the network, thereby allowing deployed

Architecting Infrastructures for Cloud-Enabled Mobile Devices 283

services to communicate with other services or even instances of itself dis-
tributed across other mobile devices.

– Networks of mobile devices. The PeaaS model provides mechanisms for
implementing private or public networks of mobile devices that may require
any of the devices to be authenticated prior to accessing services in certain
networks.

– Discovery service. The PeaaSmodel has a mechanism for discovering other
connected devices which are supplying PeaaS-based services.

– Device permission control. The service execution environment allows
device owners to define access policies to the device’s resources for each of
the deployed services.

– Device-to-device communications.The PeaaSmodel allows peer-to-peer
communication between services deployed in different mobile devices.

– Crowd-oriented services. People’s responsiveness to stimuli like ques-
tions or surveys sent to them through their mobile device is another form
of service, with a strong social connotation, that is also considered in the
PeaaS model. The aggregation of results extracted from the execution of
crowd-oriented services (e.g. public opinion research surveys) is one of the
possibilities tackled by the PeaaS model.

3.2 Architecture

A high-level conceptual architecture is proposed in order to support the previ-
ously described features and capabilities of the PeaaS model. Such architecture,
inspired by similar solutions which have been developed in other fields like dis-
tributed services[4] or multi-agent systems[1], is composed by two basic elements:
a mobile service environment and a catalogue server.

The catalogue server is a non-mobile element with a fixed and well defined
service entrypoint where every new mobile device added to the PeaaS network
must be connected, in order to authenticate and provide information about itself,
and to retrieve information about the rest of connected devices. The mobile
service environments are basically mobile applications that must be installed
on every mobile device that wants to be part of a PeaaS network, providing
an execution platform in which PeaaS-designed services can be deployed and
executed. The mobile service environment is divided in four layers of abstraction,
as illustrated in the PeaaS Architecture side of Figure 1:

– Service Manager. The service manager layer constitutes the core of the
mobile service environment. It provides the capabilities required for deploy-
ing, removing, running or stopping services in the service container, and a
basic communication interface to establish a link with the catalogue server.
It also provides an interface to the user of the device to configure the mobile
service environment properly.

– Service Container. This layer provides the execution environment where
the PeaaS-based services are allocated, similar to a virtualization engine.
The lifecycle of the allocated services is managed by the service manager
layer.

284 J. Miranda et al.

– Permission Control Layer. The access permissions to the resources and
services provided by the mobile device are verified by this layer, thereby
avoiding accesses to certain resources by unauthorized services.

– Resources Access Layer. This layer abstracts PeaaS-based services from
platform-specific implementations of each resource and service offered by
mobile devices, providing a standard interface to be used homogeneously by
the services.

3.3 nimBeesR©

As a result of transferring the research carried out on the PeaaS model towards
the industry, a new mobile advertising product based on this service model is
currently being developed by Gloin, a Spanish start-up, in order to be exploited
commercially. The product is being launched commercially under the name of
nimBeesR©.

The nimBees R© architecture, illustrated in Figure 1, is a specialization of the
one defined for the PeaaS model. Hence, the server and mobile architectures are
designed as follows:

Fig. 1. nimBeesR© implementation of PeaaS architecture

– Catalogue server. Based on the concept of the catalogue server, the
nimBees R© platform is managed by a centralized server system that we call
the Hive. Such server behaves as an index of connected devices, that car-
ries out authentication processes, service participation monitoring, service
launching and devices discovering tasks, amongst others.

Architecting Infrastructures for Cloud-Enabled Mobile Devices 285

– Mobile service environment. The mobile application of nimBees R© is
based on the layered structure defined for the PeaaS model. According to
this structure, the application can be sliced into the following layers:
• Service Manager. This layer is represented by the core functions of
the application. Such functions include the notification management (for
messages, adverts or surveys), the user interface that allows users inter-
act with the application, the communication and coordination functions
with the Hive, and the background processes in charge of managing the
deployment and the execution of services in the service container layer.
Additionally, the inference engine is also included in this level. It con-
sists on a component that monitors user activity to extract behavioural
patterns that enrich the personal information profile. The information
generated by this component is used to determine whether the owner
matches the user profile required by the advertiser for a certain service
execution.
• Service Container. This layer has been implemented as a scripting
engine that provides an execution environment in which to run the
nimBees R© services, which are written using our own scripting language.
• Permission Control Layer. The access to resources by the scripting
engine and, consequently, by the deployed services is subject to the pri-
vacy settings and access policies established by the user. Thus, users can
block the access to certain resources or information at every moment
and for any service.
• Resources Access Layer. Access to the device’s resources is provided
to the deployed services in form of ”sources of information”. Such source
can be accessed by the scripting language with the proper syntax.

4 Discussion

In this paper we have introduced our definition of the cloud-enabled mobile
devices concept based on the increasing personal role that mobile devices are
taking in society and the new possibilities opened up by the growing process-
ing capabilities of such devices for designing more complex applications and
architectures. Based on that concept, a new mobile service model have been
described as a reference model for depicting, serving and consuming personal
profiles within mobile devices, including a reference architecture of the model.
Finally, an industrial case based on the proposed architecture has been imple-
mented and briefly described as a proof of concept. Notwithstanding, we have
identified some challenges and open issues that have not been addressed yet, but
for which we present some routes of possible solutions.

On one hand, there remains the search for scenarios in which the use of the ar-
chitecture proposed in this paper is an indispensable requirement, and not an op-
tion. As a part of an initial set of such scenarios we point to environments where
the traditional workflow for downloading and installing mobile applications is
inverted, allowing trusted sources of software to install updates or components

286 J. Miranda et al.

in the mobile devices without user intervention. We also include scenarios in
which the collective information processing cannot be done centrally, but only
distributively. An additional candidate environment where those scenarios could
be found is the development of applications for social-oriented interactions using
device-to-device communications that are context-aware and proximity-aware.
For instance, these applications may establish a kind of dialogue with surround-
ing devices automatically, accessing to the social profile of the device’s owners
in a peer-to-peer way, in order to find matches about likes (based on the pri-
vacy preferences of each user). In such scenarios, this approach may provide an
efficient mechanism for offering and consuming context-aware personal profile
information without storing it in third-party servers.

On the other hand, the role of the inference engine as a critical element for
profiling the owners of mobile devices is another open issue to be considered.
A deeper analysis of the heterogeneous sources of information from where the
inference engine is fed and how could they be optimally used taking into account
the limitations due to mobile environments are some the current open challenges
in this line. In this sense, the resource-related efficiency of the approach is con-
sidered as an additional challenge to be addressed. We encouraged the use of
battery friendly mechanisms like notifications-based protocols to bring alive the
application execution process on demand instead of the traditional backgrounded
polling-based protocols that could drain the device battery life.

5 Conclusions and Future Work

The increasing number of mobile devices and their growing performance capa-
bilities provide a reasonable basis for designing and developing complex services
which could be deployed over the proposed cloud-enabled mobile devices infras-
tructure.

This work attempts to make and advance in the opportunities that can be
faced in the field of service provisioning in mobile devices, proposing a new service
model that treats personal information, inherent to smartphones, as a new kind
of content that can be served by mobile devices to other ones, conforming the
PeaaS model.

nimBees R© is a specific PeaaS implementation, that can be taken as an exam-
ple of the potential capabilities of this model. Future lines of work include the
application of the PeaaS model to other environments, the definition of collec-
tive intelligence services, and the inclusion of information from external sensors
connected to the mobile phone, as well as the integration of the model into the
Internet of Things paradigm.

Acknowledgements. This work has been partially funded by the former Span-
ish Ministry of Science and Innovation under Project TIN2012-34945 and the
C.I.C.Y.T Project TIN2012-35669, and the current Spanish Ministry of Econ-
omy and Competitiveness. It has also been funded by the Government of Ex-
tremadura and FEDER funds.

Architecting Infrastructures for Cloud-Enabled Mobile Devices 287

References

1. Athanasopoulos, D., Zarras, A.V., Issarny, V., Pitoura, E., Vassiliadis, P.: Cowsami:
Interface-aware context gathering in ambient intelligence environments. Pervasive
and Mobile Computing 4(3), 360–389 (2008)

2. Charas, P.: Peer-to-peer mobile network architecture. In: Proceedings First Inter-
national Conference on Peer-to-Peer Computing, pp. 55–61 (2002)

3. Eagle, N., Pentland, A.(S.): Reality mining: sensing complex social systems. Per-
sonal and Ubiquitous Computing 10(4), 255–268 (2005)

4. Gu, T., Qian, H.C., Yao, J.K., Pung, H.: An architecture for flexible service dis-
covery in octopus. In: ICCCN 2003, pp. 291–296 (2003)

5. Issarny, V., Tartanoglu, F., Liu, J., Sailhan, F.: Software Architecture for Mobile
Distributed Computing. In: WICSA 2004, Oslo, Norvège, pp. 201–210 (2004)

6. Jansen, M.: About using mobile devices as cloud service providers. In: CLOSER
2012, pp. 147–152 (2012)

7. Kato, T., Ishikawa, N., Sumino, H., Hjelm, J.: A platform and applications for
mobile peer-to-peer communications. Emerging Applications (2003)

8. Leong, P., Miao, C., Lim, B.: Agent mediated peer-to-peer mobile service-oriented
architecture. In: DEST 2007, pp. 414–419 (2007)

9. Li, H., Bok, K., Park, Y., Yoo, J.: An efficient mobile peer to peer architecture in
wireless ad hoc network. Convergence and Hybrid Information, 1–8 (2011)

10. Qi, A.H., Gani: Research on mobile cloud computing: Review, trend and perspec-
tives. In: DICTAP 2012, pp. 195–202 (2012)

11. Raatikainen, M., Mikkonen, T., Myllarniemi, V., Makitalo, N., Mannisto, T.,
Savolainen, J.: Mobile content as a service a blueprint for a vendor-neutral cloud
of mobile devices. IEEE Software 29(4), 28–32 (2012)

12. Raento, M., Oulasvirta, A., Eagle, N.: Smartphones: An Emerging Tool for Social
Scientists. Sociological Methods & Research 37(3), 426–454 (2009)

13. RedShift research. Adoption, Approaches & Attitudes. The future of Cloud Com-
puting in the Publicand Private Sectors. Technical report, AMD & RedShift re-
search (2011),
http://www.amd.com/us/Documents/Cloud-Adoption-Approaches-

and-Attitudes-Research-Report.pdf

14. Roure, D.D.: Research on the web - the rise of new digital scholarship. In: WEBIST
2012, p. 5 (2012)

15. Zhang, Q., Cheng, L., Boutaba, R.: Cloud computing: state-of-the-art and research
challenges. Journal of Internet Services and Applications 1(1), 7–18 (2010)

http://www.amd.com/us/Documents/Cloud-Adoption-Approaches-and-Attitudes-Research-Report.pdf
http://www.amd.com/us/Documents/Cloud-Adoption-Approaches-and-Attitudes-Research-Report.pdf

Improving Security Assurance of Services

through Certificate Profiles

Marioli Montenegro, Antonio Maña, and Hristo Koshutanski

Escuela Técnica Superior de Ingenieŕıa Informtica
Universidad de Málaga, Spain

{marioli,amg,hristo}@lcc.uma.es

Abstract. Cloud and Web Services technologies offer a powerful cost-
effective and fast growing approach to the provision of infrastructure,
platform and software as services. However, these technologies still raise
significant concerns regarding security assurance and compliance of data
and software services offered. A new trend of a service security certifica-
tion has been recently proposed to overcome the limitations of existing
security certificates by representing security certification in a structured,
machine-processable manner that will enable automated reasoning for
certified security features in security-critical domains. However, the rich-
ness and flexibility of the underlying certificate models and languages
comes with the price of increased complexity in processing and com-
paring those certificates and related security claims in practice. In this
paper, we propose the concept of certificate profile to provide a mech-
anism to address processability and interoperability of service security
certificates. We present a conceptual model and a concrete realization of
the model within the context of the European project ASSERT4SOA.

1 Introduction

Service Oriented Computing (SOC) has facilitated a paradigm shift in software
provisioning models, such as Software as a Service (SaaS), Platform as a Service
(PaaS), Infrastructure as a Service (IaaS), providing enormous benefits [1]. How-
ever, lack of security assurance of third-party services is hampering their wider
adoption in business- and security-critical domains. In traditional software pro-
visioning models, security certification of software by trusted third party entities
is used to provide security assurance to consumers. Certification schemes such
as Common Criteria [2] are well established and quite successful in providing the
required security assurance to consumers. Thus, software compliance to estab-
lished security certification criteria will provide certain guarantees on security
assurance of that software.

However, applying security certification as is to SOC is infeasible. A key ob-
stacle being the natural language representation of the certificates, that requires
manual inspection, preventing their usage in typical SOC scenarios like service
discovery, selection, and composition. To overcome the limitations of existing
security certificates, and facilitate adoption of security certification in security-
critical domains, the concept of service security certification has been proposed

C. Canal and M. Villari (Eds.): ESOCC 2013, CCIS 393, pp. 288–302, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Improving Security Assurance of Services through Certificate Profiles 289

[3,4,5]. Consequently, an outcome of a service security certification is a security
certificate of a service. A security certificate is realized by a language that enables
the representation of a certificate in a structured, machine processable manner
that would enable automated reasoning to be performed on them and thus make
it feasible for certified security features to be part of any SOC scenario [6].

Given the complexity of the service provisioning models, the languages de-
scribing security certificates are expected to cover a rich set of fields and struc-
tures that enables the representation of processes and results of different services
security certification activities. For example, representing certification artefact
for cloud-based services would require complex and rich representation of under-
line security properties and evidences supporting those properties. Therefore,
languages provide users with different representation alternatives and structural
choices that are necessary to accommodate the heterogeneity of the processes
and results of certification.

However, this flexibility and expressiveness comes with the price of an in-
creased difficulty in determining the semantic soundness of a certificate with re-
spect to the certification that is the origin of such certificate, and places higher
complexity on the process of comparing certificates. As a side effect, security
assurance of services provided by certification activities may not face expected
adoption and success given the complexity in processing and comparing security
certificates, thus making impractical any sort of automated reasoning to be per-
formed on them, and consequently neglect an adequate scalability of any service
selection based on certified security features.

For service consumers, the possibility to compare the certified security fea-
tures of a service with their security requirements is an important aspect during
service discovering, selection and composition process. The integration of non-
functional security aspects of services with other non-functional properties (such
as performance and scalability) can be well handled on the level of service query
language and the corresponding service selection logic [7].

We propose the use of a concept of certificate profile to provide a mechanism to
address processability and interoperability of service security certificates. There
are three main use cases where the certificate profile plays a key role:

(i) Facilitate comparison among security certificates. Given the flexibility and
richness of certificate languages and ability to express similar security as-
sertions in a different way, a certification authority may wish to define a
certificate profile (e.g., by defining various certificate structure and content
mandatory) to enforce uniformity of content of certificates when issued by
accredited entities.

(ii) Facilitate production of security certificates compliant to specific certification
criteria. Given that a certificate language can support various certification
schemes, a certification authority has to define its certification criteria in a
certificate profile, so that all issued security certificates will conform to the
criteria defined by the certificate profile.

(iii) Enable consumers to specify their security requirements for the services.
Similarly to CC-PP [8], the consumers or consumer groups may wish to

290 M. Montenegro, A. Maña, and H. Koshutanski

define a certificate profile with domain-specific security requirements (crite-
ria). When services conform to such certificate profiles, it eases the decision
making process for the consumers as the conformance to a profile implies
that their requirements are met by the service.

The rest of the paper is organized as following. Section 2 presents related
work on security certification of services. Section 3 introduces the concept of
certificate profile and its structure. Section 4 presents the core of profile-based
management of security certificates. Section 5 describes a proof-of-concept real-
ization of certificate profile within a European project ASSERT4SOA. Section
6 concludes the paper and outlines future work.

2 Related Work

Security Certification Schemes: There are quite a few established and suc-
cessful schemes such as Common Criteria for Information Security (CC), Com-
mercial Product Assurance (CPA) and so on. Security certification schemes can
be broadly classified based on the domains that they are applicable in, the recog-
nition of the certification schemes, the descriptive or normative character of the
issued certificates and so on. Among the existing schemes, CC is a widely rec-
ognized, used descriptive certification scheme. The CC scheme avoids an all or
nothing benchmark, by providing security assurance at varying levels, called
Evaluation Assurance Levels (EAL). This provides flexibility for product ven-
dors to get their product certified at lower assurance levels and improve the EAL
over time. The CC scheme is primarily “claims” based, where the vendor makes
claims about the security functionalities in the product in a document called
“Security Target” (CC-ST) [2]. However, consumers can specify their require-
ments in a document called “Protection Profile” (CC-PP), and vendors can build
products that conform to a CC-PP (and claim conformance in the CC-ST).

However, in practice, the comparison of products having different “claims”
can be very hard. This is due to the representation of the CC-related documents
(CC-PP, CC-ST) in natural language, which is often filled with legalese and
heavy security jargon making it rather complex to understand for non-security
experts. Hence, it becomes quite difficult to determine if a particular product
satisfies a consumer’s security requirements and to compare different products
against their requirements.

Digital Security Certificates: The resulting security certificates from current
security certification schemes are not represented in a digital format. Though
there are a few “digital security seals” such as the TRUSTe privacy seal [9],
McAfee SECURE seal [10] and so on. These seals are normative statements
regarding the security feature of an entity, which can be seen as a step towards
digital security certificates, but cannot provide any meaningful assurance to
consumers as they do not contain any information regarding the certified entity.

There are several digital certificate standards for identity and authorization
management used in SOC, such as X.509 [11] and SAML [12]. Both standards

Improving Security Assurance of Services through Certificate Profiles 291

support public-key (identity) certificates and attribute certificates for purposes
of user authentication and authorization. These certificates are used as a means
to gain a security functionality (such as authentication and authorization) and
are quite different from the notion of digital security certificates used to provide
security assurance.

Security Certification of Web Services: The wide spread adoption of Service-
Oriented Architectures (SOAs) and Software-as-a-Service (SaaS) provisioning
model enables large-scale heterogeneous ICT infrastructures be dynamically
built from loosely coupled, well-separated services, where key non-functional
properties like security, privacy, and reliability are of increased and critical im-
portance. In such scenarios, certifying service’s security properties will be cru-
cial. Today’s certification schemes do not provide, from an end-user perspective,
a reliable way to assess the trustworthiness of composite services in the context
where (and at the time when) these will be actually consumed.

ASSERT4SOA project [5] is filling this gap by producing novel techniques
and tools fully integrated within the SOA lifecycle for expressing, assessing
and certifying security properties for complex service-oriented applications. The
purpose of ASSERT4SOA is to provide a framework for handling Advanced Secu-
rity Service Certificates, called ASSERTs. The originality of these new ASSERT
certificates resides in the embedded abstractions security properties, targets
of certification, evaluation-specific results (such as formal model-based, or test-
based), validation algorithms, and service binding mechanisms.Therefore, when
an ASSERT certificate is bound to a service, the service consumer will benefit
from an insight on the security capabilities of the service, going well beyond the
information conveyed by existing digital certificates (refer also to Section 5).

Security Certification of Cloud Services: Cloud technology offers a power-
ful and fast growing approach to the provision of infrastructure (IaaS), platform
(PaaS) and software (SaaS) as services. However, despite its appeal, cloud tech-
nology still raises significant concerns regarding the security, privacy, governance
and compliance of data and software services offered through it. Such concerns
arise from the difficulty to verify security properties of the different types of
services available through clouds and the uncertainty of the owners and users of
such services about the security of their services once the services are uploaded
and offered through a cloud. This difficulty stems from the fact that the provi-
sion and security of a cloud service is sensitive to potential interference between
the features and behaviors of all the inter-dependent services in all layers of the
cloud stack, as well as dynamic changes in them.

CUMULUS project [4] proposes a research program whose aim is to address
these limitations by developing an integrated framework of models, processes and
tools supporting the certification of security properties of infrastructure (IaaS),
platform (PaaS) and software application layer (SaaS) services in cloud using
multiple types of evidences regarding security, such as service testing, monitoring
and trusted computing proofs, and based on models for hybrid, incremental and
multi-layer security certification.

292 M. Montenegro, A. Maña, and H. Koshutanski

Service Security Certification and SLAs: The concept of Service Level
Agreement (SLA) was introduced with an objective similar to the one of our
proposal. SLAs provide means for service providers to declare explicitly claims
about “quality” aspects of their services. SLAs can be used to inform users about
different aspects of a service such as performance, limitations of use, security,
etc. There are many scenario in which these provider-backed claims are enough
for clients. However, there are also other scenarios in which clients need addi-
tional assurance provide by trusted external entities. In these cases, SLAs do
not suffice and other mechanism are required in order to establish the necessary
trust between elements and services. It is important to note that our proposal
is not an alternative to SLAs, but much more a complement. In fact, an im-
portant application of security service certificate is their use in conjunction with
SLAs. For example, by using WS-Agreement [13], a widely used SLA standard, a
service provider can provide (claims) non-functional security properties to poten-
tial consumers described via an agreement template specifying the service and its
guarantees including the security properties provider’s services are certified for.
Thus, service consumers will gain additional level of security assurance provided
by the service security certificates to the trust in the claims stated by the service
provider on the security aspects of his services. Other approaches define SLAs
to enable specification of trust relationships used to derive service interactions
enriched with security functionality such as authentication and non-repudiation
[14]. These approaches focus on specifying security functionality of services but
not on specifying security assurance of services.

3 Certificate Profile

The main goal of a certificate profile is to provide suitable means for creation
of certificates by ensuring semantic uniformity of certificates for a specific (do-
main of) certification capturing any certification scheme of expertise, evaluation
specific expertise, products certified, specific vocabulary of use for expressing
security aspects of certified products, and other certification artefacts relevant
to defining the semantics of certificates.

3.1 Profile Structure

A certificate profile is a mechanism to specify the contents and semantics of a
class of security certificates. A certificate profile is composed of three parts: (i)
Certificate Template: specification of the common structure and the values of
specific fields mandatory for a given certificate class, (ii) Semantic Rules : speci-
fication of the semantics of the certificate class in the form of semantic rules, and
(iii) Vocabulary: specification of vocabulary terms (ideally ontology-referenced
terms) providing restrictions on use of vocabulary for language artefacts of se-
curity certificates of the given certificate class.

Figure 1 shows the abstract structure of the certificate profile. The three pro-
file components provide certificates content uniformity in three different dimen-
sions: certificate template ensures structural uniformity; semantic rules ensure

Improving Security Assurance of Services through Certificate Profiles 293

Certificate Profile

Template Vocabulary Semantic Rules

Fig. 1. Certificate Profile Structure

integrity of intended semantics of certification; while certificate vocabulary en-
sures common ontology-based ground of terms and ranges of possible values of
certification (in a given domain).

Certificate Template. The certificate template is a partially filled certificate
that establishes the common structure and content of all certificates created
based on a certificate profile. Therefore, any certificate conformant to a profile
must include the fields, structure and values defined in the template of the
profile. A certificate template specifies an incomplete certificate structure with
respect to a given certificate syntax (e.g., XML schema). It is used as baseline
for creating new certificates.

Alternatively, a certificate template can be considered as a set of implicit
(semantic/integrity) rules. These rules are simple and easy to understand. For
this reason, it is not required to represent a template as a set of rules, but used as
a certificate template - a more intuitive notion for expressing predefined structure
and values of profile elements. We have defined some high-level interpretation
rules for any certificate template structure:

(i) If a template defines a certificate artefact instance but with an empty content
(value), the resulting certificate must have the identified artefact as part if its
structure with possibly any (syntactically valid) structure or content inside.

(ii) If a template defines a certificate artefact instance but with certain content
(value), the resulting certificate must have the identified artefact instance
as part if its structure and the same value determined by the template.

(iii) If a template defines N number instances of a specific certificate artefact (if
certificate syntax allows) where each instance with specific structure and
content, the resulting certificate must have at least the same number of the
certificate artefact instances each one with the same structure and content
as defined in the template.

If we want to enforce the existence of a certificate artefact but with an empty
structure one can achieve that by using rule (i) defining the artefact with empty
content in a template, and by using a semantic rule that enforces, restricts or
checks whether the given artefact has an empty content (value) in a resulting
certificate structure.

The goal of rule (iii) is to allow a template to predefine multiple instances of
a certificate artefact each one with specific structure and content. For example,
a template may define two instances of a certificate artefact TypeSpecificEval-
uation, the first one defining some specific structure and content of test-based
service evaluation with mandatory test cases, while the second instance defining
formal model based service evaluation under a specific formal model language.

294 M. Montenegro, A. Maña, and H. Koshutanski

Semantic Rules. The Semantic Rules define semantic constraints and depen-
dencies between content of certificate artefacts within a given class of certifi-
cates. While the implicit rules defined by the certificate template are enough for
structure-wise restrictions (requiring an optional element be mandatory, con-
straining specific structure or content of certificate artefacts, etc.), there are
cases where more complex restrictions are needed. Some examples of more com-
plex rules can be (but not limited to):

(i) Artefact dependencies: define presence or content of an artefact depending
on the presence or content of another artefact.

(ii) Artefact content constraints: restrict an artefact content within a range of
acceptable values, or restrict artefact content as a function of the content of
other artefacts.

Semantic rules represent a solution, allowing to formulate rules to ensure
integrity of an intended semantics of a given certificate class, i.e., preserving
specific semantics of certification artefacts. Semantic rules can be formulated
in rule based languages (such as Schematron [15] or variants of OCL [16]) or
imperative languages (such as Java or Javascript) in function of the underlying
certificate language and supported implementation. The choice of a language
for expressing semantic rules has an important implication to achieve machine
processability and reasoning of the rules. The language should allow rich fine-
grained expression of patterns over certificates content and structure.

Some examples of rules are the following:

(i) The content of an artefact TargetOfCertification must be of type one of
“Software-as-a-service” or “Platform-as-a-service”;

(ii) A security property definition artefact and the property formal model defini-
tion artefact of model-based evaluation must use the same abstract security
property category (e.g., “Confidentiality”);

(iii) Restrict the certification of security mechanisms to a pre-defined set of
mechanisms for a given application domain. For example, in the domain
of eHealth a profile can define by semantic rules that all confidentiality
properties on storage services must be certified based on the evaluation of
the use of AES block cipher [17] with the approved modes of operation [18].

Certificate Vocabulary The certificate vocabulary part of the profile provides
a means to define and restrict use of vocabularies on different certificate arte-
facts. One of the goals of the vocabulary part is to enable specific per profile
(i.e., per a class of certificates) integration of the underlying certificate language
with different ontology terms coming from different domains of knowledge. In
that way, ontology integration will enhance the semantic robustness among all
certificates conformant to a given profile and even among certificates conformant
to different profiles, which have been diminished by flexibility and openness of
security certificate languages (models). Ontologies provide not only a source of
semantically defined terms but also provide means to define relations between

Improving Security Assurance of Services through Certificate Profiles 295

terms, and equivalences between different terms. That gives us a powerful way
to query ontologies for different aspects of certification and related semantics.

Restricting the range of values of certificate artefacts to terms defined in
ontology will make all certificates conforming to the given profile processable
and comparable on those artefacts, as their values are ontology terms with de-
fined semantics and relations among them. For example, a vocabulary used for
a certificate artefact named AbstractSecurityProperty can be restricted to one
of “Confidentiality”, “Integrity” or “Availability” (also known as CIA triad of
core attributes of information security), and other properties could be ontology-
modeled using meta-data or relationships between information. For example,
non-repudiation can be viewed as a property related to integrity of relationship
between information and information issuer.

Similarly to the certificate template and semantic rules, one can see the certifi-
cate vocabulary section of the profile as a set of implicit rules each one restricting
use of vocabulary for certificate artefacts. However, by defining explicit vocab-
ulary section we have, first a more intuitive notion for expressing vocabulary
restrictions and, second enable the use of dynamic values based on queries over
ontologies, which otherwise would be difficult to achieve as semantic rules.

The certificate vocabulary section enables the use of static or dynamic vocab-
ularies. A static vocabulary defines actual terms inside a profile. It is suitable
for offline processing, but could be out-dated by an ontology evolution/update.
In contrast, a dynamic vocabulary defines actual terms by means of a query
over ontology, which requires Internet connection for online processing. Ontol-
ogy queries will be executed at the time of use of a given profile, i.e., the actual
terms (values) will be dynamically retrieved from ontology when the profile is
used. Static vocabulary provides a means to define ontology terms or just terms
without any ontology context to be used statically without subject to further
refinements/changes.

By the time being, we limit the use of either static or dynamic type vocab-
ularies per certificate artefact, but not both types. Our main motivation is to
provide a consistent vocabulary solution across all certificates during the life-
time of a certificate profile. If one specifies both types vocabulary per artefact,
assuming dynamic vocabulary takes precedence over static vocabulary, there
could be a case where ontology evolves (e.g., removing some terms or redefining
those) in a way that makes the static part of the vocabulary inconsistent with
respect to the actual values in ontology. Then, in the case of offline use of the
profile, certificates will be created considering the static vocabulary, which will
be inconsistent with those certificates created based on the dynamic vocabulary.
This aspect may significantly decrease processability of certificates conformant
to the profile given that the ontology of the dynamic vocabulary gives the seman-
tics (interpretation/reasoning) of the vocabulary terms when used to process or
compare the corresponding certificate artefacts.

It is the responsibility of the issuer of a certificate profile to ensure that
any domain ontology used as part of the certificate profile is consistent with

296 M. Montenegro, A. Maña, and H. Koshutanski

the overall vocabulary of the profile. We assume that certification authorities
produce well-formed certificate profiles with consistent vocabulary definitions.

An issuer of a profile may decide to enforce or not the use of vocabularies.
When a vocabulary specification is defined mandatory the referenced language
artefact must have a value from the vocabulary. If a vocabulary is optional the
referenced language artefact should have a value from the vocabulary.

4 Profile-Based Certificate Management

We will describe two core certificate management operations based on profiles:
profile-based creation of certificates, and the opposite one, profile conformance
verification of certificates. The former facilitates certification authorities, certifi-
cate issuers or even service providers/owners (in case of self-signed certificates)
in creation of certificates conformant to a profile, while the latter operation
will facilitate service consumers be that developers or system designers during a
service-based system development lifecycle.

For example, during system design to discover relevant services a client can
query a service repository for functional and non-functional security aspects for
services of interests [7]. However, given the openness and flexibility of certifi-
cate language artefacts in expressing security properties and related evidences
supporting those, the client would be much more interested in referring to a
certificate profile along the query to the repository in order to restrict (not use
the entire variety of) security assertions to a limited subset of those specified by
a certificate profile. In that way, certificate profiles enable much more effective
and practical comparison of security aspects of services during a service discov-
ery phase, where matching and discovery of non-functional security aspects is
reduced to matching within those services with security certificates conformant
to a profile. Certificate profiles provide an important step towards a fully auto-
mated security assessment of non-functional security aspects of certified services.

There are also other relevant aspects of profile-based certificate management
that can occur during a service composition phase and during runtime system
adaptation, where service replacement is achieved not only based on functional
service aspects but also if non-functional security properties are preserved by
the new service [19]. In this case, certificate profiles can be well used to verify
if the new replaced service is certified conforming to a given certificate profile
specifying the required security assertions.

4.1 Profile-Based Creation of Certificates

Given that a certificate language can support various certification schemes,
profile-based certificate creation process will facilitate production of security
certificates compliant to specific certification criteria. Figure 2(a) shows the
profile-based creation process. Prerequisite to the creation process is the dis-
covery or selection of a certificate profile specifying domain specific security
aspects relevant to the certification process a service has to undergone. Once the

Improving Security Assurance of Services through Certificate Profiles 297

Certificate Profile

Semantic Rules

1) Duplicate
Template

2) Edit Certificate/
Use Vocabulary

Certificate Profile

Certificate
Instance

A) Structure
validation

B) Vocabulary
conformance
verification

Certificate
Instance

3) Conformance
Verification

1) Duplicate
Template

C

2) Edit Certif
Use Vocabu

t

3)
V

) Structure
validation

B) Vocabul
conforman
verificatio

C) Rules
conformance
verification

Template Vocabulary Template Vocabulary Semantic Rules

(a) Profile-based Certificate Creation (b) Profile Conformance Verification

Fig. 2. Profile-based Certificate Management

profile is selected and loaded, all dynamic vocabulary specifications (e.g., ontol-
ogy queries) are processed. If some dynamic vocabulary specifications depend
on other artefacts and values in order to be processed, these vocabularies should
be processed at the time when the issuer creates the corresponding artefacts.

Once the profile is processed, first a duplicate of certificate template is done,
and a certificate instance is created with an initial structure and content of
the duplicated template data. Next step is the actual process of editing the
certificate artefacts and creation of new artefacts as needed by the issuer. This
step heavily relies on the use of certificate vocabulary defined in the profile.
When an artefact’s vocabulary is specified as mandatory, the process should
enforce the choice of the vocabulary terms. Otherwise, if optional, the process
should recommend, suggest a choice of terms but leaving the issuer to specify
own terms when he finds necessary. Third step of certificate creation process, the
final certificate instance is verified for conformance to the profile (presented in the
next subsection). All non-properly used artefacts and corresponding vocabularies
will be reported. Step 3 will give a feedback to redo step 2 of the creation process
by repeating it until the certificate instance conforms to the profile.

4.2 Profile Conformance Verification of Certificates

The conformance verification process described can be generally used to verify
a certificate for profile conformance, and not only as part of the certificate cre-
ation process. Figure 2(b) shows the three main steps of conformance verification
process. There is always a validation step taking place before the conformance
verification process, validating if the certificate instance conforms to the syntax
of a given certificate model, that is, if the certificate instance is a syntactically
valid certificate. Otherwise, the verifier should not proceed with the verification
process. If the certificate instance is a valid certificate, the first step of confor-
mance verification is a certificate structure validation against the template part
of the given profile. The certificate structure is validated if it contains all the
required artefacts and artefacts’ content as defined in the template.

If structure validation succeeds, the second step is vocabulary conformance
verification. Prerequisite to this step is to first process all dynamic vocabularies.

298 M. Montenegro, A. Maña, and H. Koshutanski

That is, retrieving all certificate artefacts’ vocabulary terms from the corre-
sponding ontologies by executing the queries. Once dynamic vocabularies are
instantiated, all certificate artefacts’ vocabulary terms within the vocabulary
part are checked against the corresponding artefacts’ content in the certificate
instance. All certificate artefacts defined to have an optional (non-mandatory)
vocabulary will not be verified for conformance.

If vocabulary conformance succeeds, the third step is the semantic rules con-
formance verification. All semantic rules are processed, checked if satisfied by
the certificate structure and content. Since the semantic rules of the profile may
depend on the actual content (vocabulary) of a certificate artefacts in order to
determine the semantic integrity of the certificate content, it is important to
verify vocabulary conformance first, and then the semantic rules conformance.

We note that the vocabulary section of the profile does not enforce mandatory
use of certificate artefacts. An optional certificate artefact can be forced to be
mandatory either by the template part of the profile or by the semantic rules.

5 Proof-of-Concept Realization

We will present a realization of the concept of security profile within the Eu-
ropean project ASSERT4SOA. The project has developed a concept of a dig-
ital security certificate for services, called ASSERT. An ASSERT certificate is
realised by an XML-based language which enables representation of a service
security features in a structured, machine processable manner [6].

5.1 ASSERT Certificate

An ASSERT security certificate consists of the following main parts: ASSERT-
Core and ASSERTTypeSpecific. An ASSERTCore artefact defines the common
aspects of a certificate, which are evaluation independent, such as certifica-
tion process-specific information, target of certification, security property, se-
curity problem definition, service binding information, ASSERT issuer, etc. A
TargetOfCertification artefact, part of the ASSERTCore, provides details about
the service and its underlying architecture. Services can be of different types,
such as SaaS, PaaS, or IaaS. It is important to define the TOC type in order
to analyse if the certified properties are sufficient for a particular service type.
A SecurityProperty artefact, part of the ASSERTCore, provides consumers with
information on what property is certified and how the security property is re-
alized by the service. Defines varying levels of abstraction such as an abstract
security property, property context, assets being protected, etc.

An ASSERTTypeSpecific artefact defines the representation of details and
results of a service evaluation process supporting the certified security prop-
erty. Three evaluation categories are defined: Evaluation through testing, called
ASSERT-E [20], Evaluation through formal analysis, called ASSERT-M [21], and
Evaluation through ontology-based analysis, called ASSERT-O [22]. A Property

Improving Security Assurance of Services through Certificate Profiles 299

[1..*]

[0..1]

[0..1]

[0..1]

[0..1]

[0..1]

[0..1]

[1..*] [1..*]

<choice>

1]1]

>>

<choice>

<choice>

>>>

>>

<<

<<

[0..1]

[0..1]

<choice>

Fig. 3. ASSERT Profile Structure

artefact, part of the ASSERTTypeSpecific, defines type-specific property speci-
fication facilitating advanced reasoning such as comparison/ordering of security
properties among services of same type evaluation.

5.2 ASSERT Profile

We have defined the structure of a certificate profile as an XML scheme, shown
in Figure 3, and called the new structure an ASSERT Profile. For the sake of
presentation, we show the profile structure in a rather informal way abstracting
away some irrelevant XML schema details to better focus on the actual structure.

We will go through the main elements. The certificate template is called AS-
SERTTemplate. An ASSERTTemplate contains one element of type ASSERT
certificate. Thus, an ASSERTTemplate contains an incomplete XML instance of
an ASSERT certificate (according to the ASSERT XML schema). The semantic
rules are implemented in Schematron [15]. Thus, semantic rules contain a set of
SchematronRule elements. Schematron is an ISO standard rule-based validation
language expressed in XML. Using Schematron, it is possible to make assertions
about the presence or absence of patterns in XML trees.

The certificate vocabulary is called ASSERTVocabulary, which contains a set
of Vocabulary elements each defining a specific vocabulary per an artefact (or set
of artefacts) of ASSERT certificates. An ASSERTElement, part of the Vocab-
ulary, identifies the ASSERT field(s) where specific vocabulary will be applied.
Currently, we support the use of XPath [23] as a query language to identify nodes
of ASSERT certificates where the vocabulary is to be applied. There is a choice
of Enumeration or Range type of a Vocabulary. The former defines an explicit
set of values, while the latter instead defines a range of values as From and To
boundaries, such as integer range, double range (e.g., percentage), date range,
etc. Each of the Enumeration and Range types are further defined as a choice
of DynamicValues or StaticValues with an attribute field Mandatory indicating
mandatory or optional use of the vocabulary data.

The DynamicValues artefact defines an OntologyURI of how to retrieve the
ontology; OntologySyntax specifies the ontology syntax; QueryType identifies

300 M. Montenegro, A. Maña, and H. Koshutanski

<ASSERTProfile>
 <ASSERTTemplate>
 <ASSERT>
 <ASSERTCore>
 <ASSERTIssuer>O=University of Malaga,OU=Computer Science Department,C=ES</ASSERTIssuer>
 <TargetOfCertification Type="http://assert4soa.eu/ontology/a4s-language#Platform-as-a-service"/>
 </ASSERTCore>
 <ASSERTTypeSpecific>
 <ASSERT-E/>
 </ASSERTTypeSpecific>
 </ASSERT>
 </ASSERTTemplate>
 <SemanticRules>
 <sch:schema queryBinding="xslt" xmlns:sch="http://purl.oclc.org/dsdl/schematron">
 <sch:pattern>
 <sch:rule context="ASSERT/ASSERTTypeSpecific/ASSERT-E/Property/PropertyName">
 <sch:assert test="//ASSERT/ASSERTCore/SecurityProperty[@PropertyAbstractCategory=current()]">
 [Property E and property Core integrity check] SecurityProperty.PropertyAbstractCategory
 has to match the same value of ASSERT.ASSERTTypeSpecific.ASSERT-E.Property.PropertyName
 </sch:assert>
 </sch:rule>
 </sch:pattern>
 </sch:schema>
 </SemanticRules>
 <ASSERTVocabulary>
 <Vocabulary>
 <ASSERTElement Type="XPATH">//ASSERT/ASSERTCore/SecurityProperty/@PropertyAbstractCategory</ASSERTElement>
 <Enum Mandatory="true">
 <DynamicValues OntologyURI="http://assert4soa.eu/ontology/security.owl" OntologySyntax="RDF/XML" QueryType="SPARQL">
 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
 SELECT ?subClass WHERE { ?subClass rdfs:subClassOf
 <http://assert4soa.eu/ontology/security#AbstractSecurityProperty>. }
 </DynamicValues>
 </Enum>
 </Vocabulary>
 <Vocabulary>
 <ASSERTElement Type="XPATH">//ASSERT/ASSERTCore/SecurityProperty/@PropertyContext</ASSERTElement>
 <Enum Mandatory="false">
 <StaticValues>
 <StaticValue> http://assert4soa.eu/ontology/a4s-language#PersistentStorage</StaticValue>
 <StaticValue> http://assert4soa.eu/ontology/a4s-language#TemporalStorage</StaticValue>
 <StaticValue> http://assert4soa.eu/ontology/a4s-language#Transit</StaticValue>
 <StaticValue> http://assert4soa.eu/ontology/a4s-language#Usage</StaticValue>
 </StaticValues>
 </Enum>
 </Vocabulary>
 </ASSERTVocabulary>
</ASSERTProfile>

Fig. 4. ASSERT Profile Example

the query language used to encode the query; and the actual query value. We
currently support the use of SPARQL [24] as an RDF query language to retrieve
information and manipulate data store in RDF format. The StaticValues artefact
defines a set of vocabulary terms as a simple list of values, or in case of a Range
type a single vocabulary term.

5.3 ASSERT Profile Example

An example of an ASSERT profile structure shown in Figure 4 defines the
following class of ASSERT certificates. The ASSERTTemplate defines all AS-
SERTs conformant to this profile must: (i) Be for software-as-a-service (SaaS)
model services, i.e., all ASSERTs must have TargetOfCertification element with
an attribute Type qualified as “http://assert4soa.eu/ontology/a4s-language#
Platform-as-a-service”; (ii) Be issued by the University of Malaga as author-
ity, i.e., all ASSERTs must have an ASSERTIssuer element with the defined
value structure; (iii) Be produced by a test-based certification process, i.e. must
contain ASSERT-E type-specific structure, but without defining any particular
content for ASSERT-E. This means that ASSERTs conformant to the profile
can contain any specific ASSERT-E content.

Improving Security Assurance of Services through Certificate Profiles 301

The SemanticRules define one Schematron rule which forces the security prop-
erty abstract category value as defined in the SecurityProperty element in the
ASSERTCore of the ASSERT be the same value with that of the Property-
Name of Property definition of ASSERT-E. The ASSERTVocabulary defines two
vocabularies one for the PropertyAbstractCategory attribute of the SecurityProp-
erty element and another for the PropertyContext attribute again of the Secu-
rityProperty element. The first vocabulary defines dynamic values encoded as a
SPARQL query marking those as mandatory. These terms are defined as subClas-
sOf of the ontology class “http://assert4soa.eu/ontology/security#Abstract-
SecurityProperty”. The second vocabulary defines static values for the artefact
PropertyContext as terms within an ontology-specific definition.

6 Conclusions and Future Work

We have presented the concept of certificate profile to provide a mechanism to
address processability and interoperability of service security certificates. We
have presented the conceptual model and a concrete realization of the model
within the context of the European project ASSERT4SOA. Validation of the
use of security certificates and certificate profiles under specific criteria have
been conducted and results reported in [25].

A direction of future work will focus on using certificate profiles to express
certificate issuer competence (accreditation). This is an important aspect for
end-users when they receive a security certificate of a service but wishes to know
if the issuer of the security certificate does have the competence, expertise for
the certified security claims. Our initial idea is to use attribute certificates (e.g.,
X.509) to encapsulate so-called “competence” profiles so that a certificate issuer
can attach or provide his accreditation along the issued security certificates.
The verification of such issuer competence will follow the same lines of profile
conformance verification, i.e., if a security certificate issued by a given issuer
conforms to the issuer’s competence profile then the security certificate is verified
to be issued by an accredited issuer.

Acknowledgments. This work was supported by the European funded projects
ASSERT4SOA (grant no. 257361) and CUMULUS (grant no. 318580) of Frame-
work Programme 7.

References

1. Gartner: Forecast overview: Public cloud services. report G00234817 (2012)
2. Common Criteria: Common criteria part 1: introduction and general model (2012),

http://www.commoncriteriaportal.org/files/ccfiles/CCPART1V3.1R4.pdf

3. Sunyaev, A., Schneider, S.: Cloud services certification. Commun. ACM 56(2), 33–
36 (2013)

4. Spanoudakis, G., Damiani, E., Maña, A.: Certifying services in cloud: The case
for a hybrid, incremental and multi-layer approach. In: 14th IEEE International
Symposium on High-Assurance Systems Engineering (HASE), pp. 175–176 (2012)

http://www.commoncriteriaportal.org/files/ccfiles/CCPART1V3.1R4.pdf

302 M. Montenegro, A. Maña, and H. Koshutanski

5. Anisetti, M., Ardagna, C.A., Guida, F., Gürgens, S., Lotz, V., Maña, A., Pandolfo,
C., Pazzaglia, J.-C., Pujol, G., Spanoudakis, G.: ASSERT4SOA: Toward security
certification of service-oriented applications. In: Meersman, R., Dillon, T., Herrero,
P. (eds.) OTM 2010. LNCS, vol. 6428, pp. 38–40. Springer, Heidelberg (2010),
http://dx.doi.org/10.1007/978-3-642-16961-8_11

6. Paul, S., Koshutanski, H., Cerbo, F.D., Kaluvuri, A.M.: Security assurance of ser-
vices through digital security certificates. In: 20th IEEE International Conference
on Web Services, ICWS 2013 (2013)

7. Mahbub, K., Pino, L., Foster, H., Spanoudakis, G., Maña, A., Pujol, G.: D2.1 -
ASSERTs aware service query language and discovery engine. Technical report,
ASSERT4SOA Project (2011), http://assert4soa.eu/deliverable/D2.1.pdf

8. Ramli, N.A.: Protection profile, a key concept in the common criteria. In: SANS
Institute InfoSec Reading Room (2003)

9. Benassi, P.: TRUSTe: an online privacy seal program. Commun. ACM 42(2), 56–59
(1999)

10. McAfee: Mcafee secure (2007),
http://www.mcafee.com/us/mcafeesecure/index.html

11. X.509: The directory: Public-key and attribute certificate frameworks, ITU-T Rec-
ommendation X.509:2005 | ISO/IEC 9594-8:2005 (2005)

12. SAML: SAML v2.0 (2005), http://saml.xml.org/saml-specifications
13. Andrieux, et al.: Web services agreement specification (ws-agreement), OGF - Grid

Resource Allocation Agreement Protocol WG, v. gfd-r.192 (2011)
14. TAPAS Project: Trusted and QoS-Aware Provision of Application Services,

http://tapas.sourceforge.net

15. Schematron: ISO/IEC 19757-3 (2006) http://www.schematron.com
16. Object Constraint Language: ISO/IEC 19507: 2012 (2012)

http://www.omg.org/spec/OCL

17. FIPS-197: Advanced encryption standard (2001),
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

18. NIST-SP-800-38A: Recommendation for block cipher modes of operation (2001),
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf

19. Pino, L., Spanoudakis, G.: Constructing secure service compositions with patterns.
In: 8th IEEE World Congress on Services, SERVICES 2012 (2012)

20. ASSERT4SOA Project Consortium: D4.1 - Design and description of evidence-
based certificates artifacts for services. Technical report, ASSERT4SOA Project
(2011), http://www.assert4soa.eu/deliverable/D4.1.pdf

21. Fuchs, A., Gürgens, S.: D5.1 Formal models and model composition. Technical
report, ASSERT4SOA Project (2011),
http://www.assert4soa.eu/deliverable/D5.1.pdf

22. D’Agostini, S., Giacomo, V.D., Pandolfo, C., Presenza, D.: An Ontology for run-
time Verification of Security Certificates for SOA. In: Proc. of the 1st International
Workshop on Security Ontologies and Taxonomies, SecOnt 2012 (2012)

23. XPath: XML path language W3C, http://www.w3.org/TR/xpath/
24. SPARQL: SPARQL query language for RDF, W3C (2008),

http://www.w3.org/TR/rdf-sparql-query/

25. ASSERT4SOA Project Consortium: D7.3 - Validation of the ASSERT4SOA frame-
work based on the study case. Technical report, ASSERT4SOA Project (2013)

http://dx.doi.org/10.1007/978-3-642-16961-8_11
http://assert4soa.eu/deliverable/D2.1.pdf
http://www.mcafee.com/us/mcafeesecure/index.html
http://saml.xml.org/saml-specifications
http://tapas.sourceforge.net
http://www.schematron.com
http://www.omg.org/spec/OCL
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
http://www.assert4soa.eu/deliverable/D4.1.pdf
http://www.assert4soa.eu/deliverable/D5.1.pdf
http://www.w3.org/TR/xpath/
http://www.w3.org/TR/rdf-sparql-query/

A Domain-Specific Model for Data Quality

Constraints in Service Process Adaptations

Claus Pahl1, Neel Mani1, and Ming-Xue Wang2

1 CNGL, School of Computing, Dublin City University
Dublin 9, Ireland

2 Network Management Lab, Ericsson Ireland
Ericsson Software Campus, Athlone, Ireland

Abstract. Service processes are often enacted across different bound-
aries such as organisations, countries or even languages. Specifically, look-
ing at the quality and governance of data or content processed by services
in this context is important to control different constraints in this cross-
boundary processing. In order to provide a context-aware solution that
takes into account data and data processing requirements, a rule-based
constraints specification and adapation of processes shall be proposed. A
domain ontology shall capture the key data/content data types, activities
and constraints, which forms the basis of a rule-based policy monitoring
solution. A provenance model is at the core of this ontology solution. The
key contribution is a domain-specific model and specification template
for constraint policy definition, which can be applied to adapt service
processes to domain-specific needs.

Keywords: Service Process, Process Adaptation, Content Services, Con-
straint Monitoring, Quality and Governance, Domain-Specific Model,
Provenance.

1 Introduction

Digital content and data is increasingly processing in distributed settings by dif-
ferent agents - human and/or software. As a consequence, maintaining quality
across a boundary-crossing service process is a challenge. The focus of this paper
is content and data quality in domain-adapted content processes. While work
on quality in service processes has been covered widely, our focus is on domain-
specific processes and here specifically those centering on content and data pro-
cessing. We take on board approaches for constraints specification through rule
and policy languages

We aim to, firstly, enable domain-specific service processes for content manip-
ulation and change based on a formalised content model, which requires a layered
content model. This layered model consists of the bottom layer with core con-
tent (in a formal representation), the states and stages of processing on top of
that, and a provenance layer linking content and processing to their origins and
dates as the third layer. The provenance model [18] will turn out the solution

C. Canal and M. Villari (Eds.): ESOCC 2013, CCIS 393, pp. 303–317, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

304 C. Pahl, N. Mani, and M.-X. Wang

to the need to link content/data into the process. An activities and operations
framework that defines the processing and manipulation activities on content in
the context of provenance data. The W3C provenance model [18] plays again a
pivotal role here for logging process activities, but also as a metadata framework
for constraints and rules.

The second aim is to translate this into a dynamic environment. We aim to
define a content and data-centric quality assurance and adaptation framework
that allows quality requirements to be defined as constraints to be monitored and
managed dynamically. This results in the definition of an inclusive framework
for the definition, adaptation, monitoring and handling of quality concerns as
dynamic constraints. Particular problems are, firstly, the domain-specific cate-
gorisation of constraints into policies and, secondly, a rule-based policy definition
and process adaptation based on constraints. While constraints monitoring in
service processes has been widely covered [3,13,20,24], our solution provides novel
contributions in the form of an ontology-driven policy constraints configuration
framework.

Our contribution is a domain-specific model for content modelling, covering
content, operators and constraints. Our exploration of quality management for
content processes, i.e., to define, monitor and analyse, focuses on model aspects
here, with the aim of addressing integration and interoperability problems at
description level. In a wider sense, this is a governance concern. Our solution
specifically extends process adaptation and customisation techniques [1,7], e.g.,
generic policy adaptation for service processes [21,20], by a domain-specific con-
figuration solution.

We first provide some background on text content processing in service pro-
cesses in Section 2 and outline challenges and analyse a use case in detail in order
to elicit specific requirements. Section 3 defines the domain-specific model for
content quality constraints. The rule language we used for quality constraints
is then introduced and explained in terms of its utilisation here in Section 4.
We describe our implementation in Section 5 where we show how this domain
constraints definition approach can be implemented using an existing, generic
service policy customisation solution. We end with a discussion of related work
in Section 6 and some conclusions in Section 7.

2 Scenario – Service-Based Content Processing

2.1 Scenario Introduction

Service-base content processing is a distributed problem. Content is created,
searched, manipulated (translated, localised, adapted and personalised) and in-
tegrated across different processing agents, exposed as services. We refer to this
as intelligent content (IC), if the quality is automatically maintained. A process
model for this content path is modelled in Fig. 1. This iterative process consists
of a number of content processing activities, such as creation, search, transla-
tion or adaptation. This process is specific to text-based content and data as an
application domain. Management and quality assurance concerns are specific to

A Domain-Specific Model for Data Quality in Service Process Adaptations 305

Embedded

Intelligence

Crea
tion Interac

tion

Fig. 1. Application Domain: Intelligent Content Processing for Text-based Content

this context. For instance, translatable text is capture in specific formats (e.g.
XLIFF) and quality concerns are subject specific.

This challenges quality assurance across the lifecycle of content in distributed
service processes. The starting point for the implementation of content quality
assurance is an integrated content service process enabled by a content service
bus, into which the different processing, integration and management applica-
tions are plugged into, see Fig. 2. This scenario defines our wider objective and
context beyond this paper. Our aim here is to configure the quality component
of this bus by a domain-specific constraints policy language [19]. The provenance
model PROV [18] forms the abstract constraints layer. PCPL, the Process Cus-
tomisation Policy Language [21], is part of the process platform and controls the
process adaptation through its policy engine.

In order to facilitate an interoperable content and constraints notation, we as-
sume a core RDF content metadata model (basis of a domain ontology). The data
manipulation services and notification trigger functions for constrained process-
ing activities and governance can be defined based on SPARQL query templates
over the content and meta-data entities. A possible implementation through
synchronous, functional granularity patterns of WSDL/BPEL needs to take this
into account, i.e., a mapping to query and data model profiles would need to be
considered rather than solely mappings to operations and parameters.

2.2 Challenges and Scenario Analysis

This context description allows us to extract the following research challenges:

– Process model: firstly, to define standard activities and process composition
constructs; secondly, to select a host process language to realise the con-
tent quality constraints description and monitoring; and, thirdly, to define
integration of constraints into processes through a weaving technique [21].

306 C. Pahl, N. Mani, and M.-X. Wang

1 Translate 2 Post-Edit 3 Analyse &
Rate

Content
Service Bus

IC Metadata
 Model

Content
1a

Content
1b

Marked up with

Constraint
Rules Engine

XACML

1

Consumes
markup

IC Bus Connector
(Meta-data

transformer)

App 2 Meta-data
Model/syntax

(input)

Content
Z

App 2 Meta-data
Model/syntax

(output) IC Bus
Connector

markup
PROV
Model

ROV
l

Fig. 2. Content Process Interoperability Infrastructure - Service Bus Architecture

– Content model: the definition of a content model consisting of content struc-
ture (in terms of standard format such as XML or RDF, but also more
specific formats such as XLIFF [15] for content subject to translation) and
its link to provenance data [18] that enables tracking and analysis.

– Quality constraints model: a rule language that allows individual constraints
(conditions and processing) to be combined into policies and enforced on
processes, thus requiring an adaptation and extension of normally service-
centric policy languages to deal with quality concerns in a process context.

Obviously, the three individual elements are interlinked. The first step is an
empirical determination of detailed requirements for quality management DSL.

A use case shall allow the elicitation of detailed requirements in order to
further define the research solution. This documented requirements elicitation
process is part of the DSL definition process. This elicitation results in a domain
ontology, which will then form the basis of the constraints policy definition.

A sample text localisation process describes the translation of text content
through a sequence of services, Fig. 3, where the corresponding provenance model
gives context. The provenance model accompanies a localisation process model,
consisting of the following steps:

1. Translate(SRV-TR): Text being machine translated (node 15601)
2. PostEdit(CS-PE): The machine-translated text now being posted-edited

(crowd-sourced) resulting in a revised string (node 15709)
3. QA-Rate(CS-ANT): Further crowd-sourced effort is then utilised the anno-

tate the translated string with a translation rating (node 15771)
4. Translate(EXP-TR): Given that the crowd-sourced post-editing of the ma-

chine translation produced poor results, it is decided to opt for a professional
human translation (node 16723)

5. TextAnalytics(SRV-ANL): A text analytics service is then used to compare
the style of the translation to a corpora in the desired style (node 16727)

6. QA-Rate(EXP-ANL): Due to poor ratings, execute human QA (node 16734).

A Domain-Specific Model for Data Quality in Service Process Adaptations 307

12401 “I am a string” value

2010-02-09T12:30:00

j.doe wasGeneratedBy

wasGeneratedAt

was

G

wMachine
Trans

wasControlledBy

15601

“Je suis un string”

wasTranslatedFrom

value

value

15790

“Je suis une string”

2010-02-13T10:07:00
wasGeneratedAt

CrowdP
E

wasGeneratedBy

d.jones
wasControlledBy

wasRevisedFrom
fr-FR

xml:lang
wasTranslatedFrom

value

“Je suis un phrase”
2010-02-14T10:30:00

wasGeneratedAt

Prof
trans

wasGeneratedBy
c3po

wawawaswawawaswww
16723

16740m
s

expended
16727

2010-02-14T14:05:00

l.jfinn

wasGeneratedAt G

Text
Classify

wasControlledBy wasGeneratedBy

anomolous

value

wasAnnotatedWith

16734

2010-02-14T13:21:00

s.curran

wasGeneratedAt

Trans QA

wasControlledBy
wasGeneratedBy

pass

value

wasAnnotatedWith

15771

wasAnnotatedWith

2010-02-12T13:17:00

m.bean

wasGeneratedAt G

Crowd
rate

wasControlledBy wasGeneratedBy

“Poor”

value

Fig. 3. Provenance Model Localisation/Translation of Text Content

In an abstracted form, this is content life-cycle change or evolution that is en-
abled through the service process and recorded using PROV [11]. In the process
description, we have added two domain-specific categorisations. Activities are the
first – we distinguish standard activities in a specific domain, here text transla-
tion. Translation, post-editing, or analysis are sample core activities. Roles are
the second – we distinguish three service roles in this example: software services
(SRV), individual human experts (EXP) and crowds (CS).

The node references in the process refer to the provenance model, Fig. 3. This
RDF graph may be build up using the provenance model as the text passes
through the process to create an abstract process activity log. Some core ac-
tivities have been singled out, like translate or post-edit. The process can be
formalised by identifying a range of standard content processing operations: ex-
traction, segmentation, curation, text analysis, terminology extraction, transla-
tion, post-editing, translation QA and reassembly. In addition to the operation,
we can distinguish a core set of actors like EXP - human expert, CS - crowds
for crowd-sourced activities and SRV - automated services. The roles can be
annotated by activities, e.g. SRV-TR, if translation is the concern, or SRV-ANL
for automated text analytics. These annotations are part of the domain model.

A remaining question concerns the quality aspects. We can identify the fol-
lowing concerns for process and content quality and process governance. The
quality aspects shall be distinguished into four high-level constraint categories,
which we try to motivate here through specific concerns:

– Authorisation/access control:
• Restricting access to content, following classical access control specifica-
tions (subject, access operation, object)

308 C. Pahl, N. Mani, and M.-X. Wang

• Managing resource assignment as a mapping between content and agents

• Location-dependent storage and content access in distributed processing

– Accountability/audit/tracing:

• Storage/Backup/Secrecy: decide and control where are data is kept

– Workflow governance:

• Workflow status (untranslated, postedited, etc.) ensuring that required
stages of the content process are reached

• Containment as a subprocess, e.g. audit tracking to be included

– Quality for content/process:

• Rating of content quality (poor, sufficient)

• Performance as a rating of process quality (slow, satisfactory, etc.)

• Responsibility assignment and tracking as an accountability concern

The constraint format needs to take into account the PROV structure: (i) single
element type, e.g., PROV Timestamps (start/end or interval constraints) or
Rating (liveness constraints: should always be ’satisfactory’ or better; safety
constraints: should never be ’poor’) and (ii) multi-element type, e.g., access
control in terms of PROV (agent, activity, entity), status (entity, ’generatedBy’,
activity) or governance (entity, ’controlledBy’, agent).

3 Domain-Specific Model for Quality Constraints

The different formats involved, based on the research concerns, are:

– Content: RDF as the canonical meta-format, which facilitates controlled ac-
cess to RDF stores as the targeted storage infrastructure and modelling of
different content types, such as terminology, translation memory, text (to be
translated), including XLIFF where required.

– Process: For process modelling, BPEL could be assumed as a textual nota-
tion or a graphical format such as BPMN, which if complemented by jBPM
and Java process engines for execution, could also be considered). Providing
a runtime process execution environment is essential here.

– Constraints: PCPL [21], a process customisation policy language adapted
from [14], provides a generic policy notion, extended to a process framework
(similar to XACML policy language extension for service processes [20,21]).
Here, an integration with BPMN shall be implemented, following similar
work on BPMN constraint extensions [2,22].

What is needed is a domain-specific model that can be captured as a domain-
specific constraints ontology with the following main concepts. Content is of spe-
cific types, based on RDF/XML, but often specifically XLIFF for translatable
material. Processing activities are content processing oriented. The categorisa-
tion of constraints is specific to the different types of quality and governance
constraints for content processing.

A Domain-Specific Model for Data Quality in Service Process Adaptations 309

3.1 Content

The content notations involved are XLIFF to capture text and its translation
with associated meta-data [15] and PROV to capture objects with origins (ac-
tors) and operations (creation and manipulation) [18]. RDF is the core format
in which all data is stored and processed. Content formats are assumed to be
given for this research.

A layered domain model based on content, process and provenance ontology
data to support constraints shall be proposed. Some questions in relation to this
model organisation have to be considered, in particular since the solution serves
as the basis of a wider analytics framework for a content processing implemen-
tation. The objective here should be modularity and separation of concerns.

3.2 Provenance

A provenance model can be maintained with the processing of content. In the
provenance model (RDF linked data), the following is reflected (Fig. 3).

Firstly, change operators are activities, such as GeneratedBy, TranslatedFrom,
AnnotatedWith. These can be aligned to the standard content processing oper-
ations defined earlier.

Secondly, actors/participants are agent, such as m.bean, j.doe. These are
named service providers that can be classified by our role categorisation scheme,
e.g., the next expression j.doe:EXP→Translate links a service to an agent in
charge of its execution.

Thirdly, objects are entities, such as text being translated (in XLIFF in this
case, as a reflection of a specific content type).

3.3 Process

The provenance model can be presented as a process of change operations [11].
This results in a 3-layered architecture (Fig. 4). The upper layer (based on
W3C PROV) is made up by the provenance model (extended state-by-state for
changes). The middle layer (based on BPMN/BPEL service process descritpions)
is a process model based on PROV activities (the changes themselves). Finally,
the bottom layer (based on formats such as XLIFF or RDF captures the content
aspect. (processed by change operations). BPMN is used here for the modelling
of business processes. This can include production processes such as the content
process across different participants.

Our aim is to allow a process to be adapted to domain-specific constraints.
Two principle solutions to deal with policy constraints can be distinguished. A
minimal invasive one weaves quality constraints into a process, where all con-
straints are monitored and managed by external services. An explicit extension
of BPMN models constraints within the language itself and to map quality con-
straints into this BPMN extension [22,2]. Regarding the second option, BPMN

310 C. Pahl, N. Mani, and M.-X. Wang

translate post-edit

1423

20/05/2013 myText
PROVENANCE

PROCESS

in out out’ DATA

value generatedAt

Fig. 4. Sample 3-Layered Service Process Model

constraints have been proposed as a BPMN extension. Three types of constraints
are distinguished: containment, authorisation and resource assignment. Contain-
ment means, for instance, that the activity of managing a shopping cart is a sub-
process which contains an activity of removing products from the cart. While
we adopt their constraints classification to some extent, our implementation will
favour the less invasive solution [21] in order to achieve interoperability.

4 Constraints and Rules

Quality constraints and their formulation as policy rules are at the core.

4.1 Requirements and Examples

The first problem to be addressed is the identification of all relevant constraint
types. We have already provided a classification of several quality and governance
concerns: authorisation, accountability, workflow governance and quality, which
takes the BPMN constraints extension into account. The objectives of rule-based
process quality constraints for domain-specific process adaptation and monitor-
ing are twofold: firstly, optimisation, i.e., to improve quality of content and the
process (by looking at ratings or performance measures) and, secondly, gover-
nance, i.e., to enforce access control and privacy rules (user defined policies or
legal requirements).

Constraints are technically conditions on concerns. A rule associates an action
related to a condition in the Event-Condition-Action (ECA) format, that checks
on an event the correctness of a condition and triggers the execution of an action,
if required by the condition. Thus, based on the four constraint types, we define
four rules types to link conditions and actions (illustrated by some examples):

– Authorisation/access control – example: to restrict content in data stores
– Accountability/audit/tracing – example: where are records/copies kept
– Workflow governance – example: status = untranslated → translate(..) or

status = translated → crowdsource-PostEdit(..)

A Domain-Specific Model for Data Quality in Service Process Adaptations 311

– Quality for content/process – example content rating: automatedQA = poor
→ humanQA(); or for process performance: time(translation) > t → alert

4.2 Formalisation

A number of rule and policy and rule languages exist that would allow con-
straints to be specified. Examples are XACML, which allows security policies
to be defined, or rule languages such as RuleML or SWRL. While these generic
language are in prinicpal suitable, we need a platform, not only a language. This
platform needs to allow remote constraints definition, coordination and weaving
betweem service clients and providers. We follow [21] and use the PCPL policy
language and its supporting platform for process customisation [19,14] to imple-
ment PROV-based constraint policies based on individual rules. PCPL serves as
a policy engine for PROV constraints. The generic PCPL is utilised here for a
specific context. It controls content process adaptation. Process constrains are
defined in the process adaption policy. Provenance constrains can be integrated
in the process constrains as parts of conditions (XPath or SPARQL queries).
PCPL policies consist of the following notational elements:

– Objects: here content defined in terms of XLIFF and XML text, processed
by activities like translate or post-edit

– Activity states: capturing processing state and quality assurance state based
on the domain activities

– Conditions covering the content context (owner, format etc.), the activity
context (service price, failure rate etc.) or provenance/log data (authorisa-
tion, state etc.):
• Performance/Time for processing, includes manual effort (asynchronous)
and execution time of service (synchronous)
• Authorisation: who can process/access content including the location of
objects (e.g. no externalisation/outsourcing allowed as a condition)
• Existence of entity/object in a state: e.g. translated (in XLIFF) as a
workflow stage

– Actions: process adaptation decisions, which cover the constraint violation
handing strategies

– Fault handlers: adaption policy execution fault handler
– Algorithms: configurations of the policy execution behaviours, such as policy

conflicts

The policy model is designed for a generic process. The PCPL example below
illustrates this policy definition: a document must be post-edited before sent for
QA-Rating:

<p1:Policy policyId="QA-Rate-policy1" priority="0">

<p1:Objects>

<p1:ObjectsAnyOf>

<p1:ObjectsAllOf>

<p1:Activity>

<Name>QA-Rate crowd-sourced</Name>

312 C. Pahl, N. Mani, and M.-X. Wang

</p1:Activity>

</p1:ObjectsAllOf>

</p1:ObjectsAnyOf>

</p1:Objects>

<p1:ActivityStates>

<p1:ActivityState>Validating-Pre</p1:ActivityState>

</p1:ActivityStates>

<p1:Rule priority="0" ruleId="constraintRule-QA-Rate">

<p1:Conditions>

<p1:ConditionExpression type="Provenance-Context">

<p1:Para>//Document/ID</p1:Para>

<p1:Expr>constraintRule-QA-Rate_query.sparql</p1:Expr>

</p1:ConditionExpression>

</p1:Conditions>

<p1:Actions>

<p1:Pa-Violate>

<p1:Violation>

<Type>Functional:Protocol</Type>

</p1:Violation>

</p1:Pa-Violate>

</p1:Actions>

<p1:FaultHandler>

<p1:Ca-Log level="5"> </p1:Ca-Log>

</p1:FaultHandler>

</p1:Rule>

<p1:ConstraintCombiningAlgorithm type="Pa-Validate-Unless-Pa-Violate-TA"/>

<p1:RemedyCombiningAlgorithm type="Pa-Cancel-Unless-Defined-Sequence-TA">

<DefinedSequenceElement>Pa-Cancel</DefinedSequenceElement>

<!-- more DefinedSequenceElement ... -->

</p1:RemedyCombiningAlgorithm>

<p1:SequencingAlgorithm type="Ordered"/>

</p1:Policy>

The policy has one constrain rule and a fault rule (the fault rule is skipped
in the code). The policy targets the ”QA-Rate crowd-sourced” activity before
its be exceuted. The constraint rule has a condition on the provenance context
or the document history. A parameterized SPARQL query checks if the current
document (using the document ID as parameter) has NOT been post-edited.
If the condition is true, the rule results in a functional:Protocol violation, see
[21,20] where protocol violation refers to faults related to the consistent exchange
of messages between services involved in a service composition to achieve their
goals. A fault rule can be defined for handling the violation. The policy will
cancel the current process based the defined RemedyCombiningAlgorithm, if no
remedy action was found in the fault rule for violation handling.

At a pre post-editing stage (i.e., before post-editing starts for a document
translation), a request must be made for post-editing to take place, in this case
through crowd-sourcing (CS). A quality rating condition could be violated, re-
sulting in different handling actions to take place (Cancel and Skip, in Sequence).
We assume respective handling algorithms to be defined.

A Domain-Specific Model for Data Quality in Service Process Adaptations 313

Fig. 5. Constraints Implementation architecture

5 Implementation – Policy Definition and Adaptation

In this section, we outline a suitable architecture for constraints definition and
process adaptation, see Fig. 5. The main components are a policy definition
editor, a process engine, a monitoring system and a policy engine. The diagram
details the interaction between the rule engine and the process from Fig. 2. The
rule engine from Fig. 2 is here decomposed into policy definition, monitoring
and policy validation engine. The implementation platform is here assumed to
be a BPEL engine. This engine needs to be combined with constraint weaving to
allow the quality constraints to be automatically added to a business or technical
process as a adaptation.

Enhanced, flexible adaptivity is a key concern, which is addressed by the
architecture. This architecture allows the policies to be defined locally at the
client side and then the process adapted to client domain needs and enacted
by a central process engine. Thus, it allows easy adaptation to specific domains
and user needs. More details about the generic architecture without the domain
extension are provided in [21], which presents the two major components. This
is firstly the policy language to define the constraints and secondly a coordi-
nation framework based on WS-COORDINATION, which allows the client-side
specified constraints to be communicated and woven into the server-side process.

The following components for service processing describe the currently im-
plemented service process customisation and adaptation prototype illustrated
in Fig. 5: Jersey, Tomcat, PostgreSQL, jBPM and Eclipse. This prototype is a
generic processes adaptation infrastructure, described in detail in [21]. It support
the generic PCPL language.

Here, we utilise this generic infrastructure for service processes to configure
user-specific domain constraints following the domain model approach above.

314 C. Pahl, N. Mani, and M.-X. Wang

Thus, the solution here is an extension of the generic policy management in-
frastructure for domain-specific customisation. Consequently, in this paper, the
focus has been on notational rather than infrastructure aspects. Future work
in the implementation context will concentrate on domain-specific implementa-
tions. For instance, a focus will be on the translation activity, where content
is marked up in the XML-based XLIFF format and respective processing and
quality constraints (such as isPostEdited) are implemented.

6 Related Work

Current open research concerns for service computing include customisation of
governance and quality policies and the non-intrusive adaptation of processes
with policies [19,20,14,7,17,25]. Service management and monitoring techniques
are combinations of rule or policy-based modelling languages that can be en-
forced at runtime. Today, one-size-fits-all service monitoring techniques exist
and provide support for software systems in classical sectors such as finance and
telecommunications [3]. However, their inherent structural inflexibility makes
constraints difficult to manage, resulting in significant efforts and costs to adapt
to individual domains needs.

We discuss related work in the field of constraints and policy definition and
adaptive BPEL processes. While we have also refered to BPMN, there is more
work on WS-BPEL in our context, which we discuss here. These approaches can
be classified into two categories.

– In the first category are BPEL process extensions that are designed to re-
alize platform-independence. [23] and [24] allow BPEL specifications to be
extended with fault policies. Exception handling policies are bound into pro-
cess schemas as a BPEL extension. The SRRF approach [13] generates BPEL
processes based on the defined policies. However, binding domain-specific
policies into business processes directly are not an option for our objective,
as it is difficult to support user/domain-specific adaptation needs adequately.

– In a second category, BPEL engines can also be modified, but the solu-
tion is platform-dependent. The limitation of the Dynamo project [3] is that
BPEL event handlers must be statically embedded into the process prior
to deployment, i.e. the recovery logic is fixed and can only be customised
through the event handler itself [3]. This approach does neither support dy-
namic policies nor a customisation and adaptation environment. The PAWS
framework [1] extends ActiveBPEL to provide a flexible process that can
change its behaviour dynamically, according to variable execution contexts
and constraints.

Furthermore, process-centricity is a concern. Recently, business-processes-as-a-
service is discussed. While not addressed here, this perspective needs to be fur-
ther complemented by an architectural style for its implementation [21].

We now address specific constraints and provenance aspects. We have pro-
posed a classification of several quality and governance concerns: authorisation,

A Domain-Specific Model for Data Quality in Service Process Adaptations 315

accountability, workflow governance and quality. This takes the BPMN con-
straints extensions [22,2] that suggest containment, authorisation and resource
assignment as categories into account, but realises these in a less intrusive, less
invasive process adaptation solution.

Some provenance-enabled workflow systems have been developed [8,6]. These
workflow systems monitor workflow or process executions and record task names,
execution durations or parameters as provenance information. Other work has
focused on data [10,9], recording owner or creation and modification time for
provenance. Various query mechanisms such as SQL, SPARQL, and proprietary
APIs are supported for different provenance data storage solutions. However, for
a document or content-centric service process system where the activities of pro-
cesses are responsible for content manipulations and changes, a domain-specific
should be defined in a content-centric way to capture provenance information at
process level and, thus, to support provenance-based process adaptation. Work in
[12] focuses on using PROV to collect and analyse data in change processes. Our
system is a hybrid approach, which supports both data-oriented and process-
oriented provenance requirements, such as content and process activity access
control. Moreover, the provenance query is integrated into a process customiza-
tion policy model to enable provenance-based process adaptation.

7 Conclusions

We have proposed a notation for the description of quality and governance con-
straints for adaptive content processes. This is a domain-specific data/content
constraints model, here applied to translatable text content. The content is of
specific types, based on RDF/XML, but often specifically XLIFF for translatable
material. Processing activities are content processing and translation oriented.
The categorisation of constraints is specific to the different types of quality and
governance constraints for content processing. A layered, modular information
model covering content, processes and constraints facilitates its implementation
in a wider interoperable content integration system. Interoperability is a criti-
cal driver in the application context. PROV has played a critical role, for the
monitoring and recording as well as supporting the adaptivity for domains (here
localisation workflow processes). Mappings between solution technologies and
interoperable platforms need to be considered. This application serves as a tem-
plate for domain-specific constraints and policy definition. Together with the
user-based customisation architecture, service processes can be adapted to meet
domain-specific needs (e.g., for the translation industry).

As part of our future work, an exploration of RDF-based SWRL rules and
SPARQL queries as more RDF-interoperable notations shall be conducted that
extent the PCPL approach taken so far. Also, PROV can possibly play a more
central role as the process analytics model. For the exploration of the concept
in this paper, the domain ontology has not been fully formalised. This would
need to be done for a comprehensive evaluation. An implementation within
PROV/XLIFF-based workflow system can be considered as a more targeted

316 C. Pahl, N. Mani, and M.-X. Wang

domain system. We have already mentioned the translation focus in the imple-
mentation section.

Acknowledgements. This material is based upon works supported by the Sci-
ence Foundation Ireland under Grant No. 07/CE/I1142 as part of the Centre for
Next Generation Localisation (www.cngl.ie) at Dublin City University (DCU).

References

1. Ardagna, D., Comuzzi, M., Mussi, E., Pernici, B., Plebani, P.: Paws: a framework
for executing adaptive web-service processes. IEEE Software 24(6), 39–46 (2007)

2. Awad, A., Grosskopf, A., Meyer, A., Weske, M.: Enabling resource assignment
constraints in BPMN. Technical report, Business Process Tech. HPI (2009)

3. Baresi, L., Guinea, S.: Self-supervising bpel processes. IEEE Transactions on Soft-
ware Engineering 37(2), 247–263 (2011)

4. Baresi, L., Guinea, S., Plebani, P.: Policies and aspects for the supervision of bpel
processes. In: Intern. Conf. on Adv. Information Systems Engineering (2007)

5. Barrett, R., Patcas, L.M., Murphy, J., Pahl, C.: Model Driven Distribution Pattern
Design for Dynamic Web Service Compositions. In: International Conference on
Web Engineering ICWE 2006, pp. 129–136. ACM Press, Palo Alto (2006)

6. Davidson, S.B., Freire, J.: Provenance and Scientific Workflows: Challenges and
Opportunities. In: ACM SIGMOD Intl. Conference on Management of Data (2008)

7. Erradi. A.: Policy-Driven Framework for Manageable and Adaptive Service-
Oriented Processes. PhD thesis. The University of New South Wales (2008)

8. Freire, J., Koop, D., Santos, E., Silva, C.T.: Provenance for Computational Tasks:
A Survey. Computing in Science and Engineering 10(3), 11–21 (2008)

9. Glavic, B., Dittrich, K.R.: Data Provenance: A Categorization of Existing Ap-
proaches. In: 12th GI Conference on Database Systems in Business (2007)

10. Hartig, O.: Provenance Information in the Web of Data. In: Workshop on Linked
Data on the Web (2009)

11. Javed, M., Abgaz, Y.M., Pahl, C.: A pattern-based framework of change operators
for ontology evolution. In: Meersman, R., Herrero, P., Dillon, T. (eds.) OTM 2009
Workshops. LNCS, vol. 5872, pp. 544–553. Springer, Heidelberg (2009)

12. Javed, M.: Operational Change Management and Change Pattern Identification
for Ontology Evolution. Ph.D. Thesis. Dublin City University (2013)

13. Kareliotis, C., Vassilakis, C., Panayiotis, G.: Enhancing bpel scenarios with dy-
namic relevance-based exception handling. In: Intl. Conf. on Web Services (2007)

14. OASIS: Extensible access control markup language (xacml) 3.0 (2010),
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-cs-01-en.html

15. OASIS: XLIFF (XML Localisation Interchange File Format) (2013),
http://docs.oasis-open.org/xliff/xliff-core/xliff-core.html

16. Pahl, C., Giesecke, S., Hasselbring, W.: An Ontology-Based Approach for Mod-
elling Architectural Styles. In: Oquendo, F. (ed.) ECSA 2007. LNCS, vol. 4758,
pp. 60–75. Springer, Heidelberg (2007)

17. Riegen, M., von, H.M., Fink, S., Ritter, N.: Rule-based coordination of distributed
web service transactions. IEEE Trans. on Serv. Comp. 3(1), 60–70 (2010)

18. W3C: PROV-O: The PROV Ontology (2013), http://www.w3.org/TR/prov-o/
19. W3C web services policy 1.2 - framework (ws-policy),

http://www.w3.org/Submission/WS-Policy

http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-cs-01-en.html
http://docs.oasis-open.org/xliff/xliff-core/xliff-core.html
http://www.w3.org/TR/prov-o/
http://www.w3.org/Submission/WS-Policy

A Domain-Specific Model for Data Quality in Service Process Adaptations 317

20. Wang, M.X., Bandara, K.Y., Pahl, C.: Process as a Service - Distributed Multi-
tenant Policy-based Process Runtime Governance. In: IEEE International Confer-
ence on Services Computing SCC 2010. IEEE Press (2010)

21. Wang, M.X.: A Policy-based Governance Framework for Cloud Service Process
Architectures. Ph.D. Thesis. Dublin City University (2012)

22. Wolter, C., Schaad, A.: Modeling of task-based authorization constraints in BPMN.
In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp.
64–79. Springer, Heidelberg (2007)

23. Wu, Y., Doshi, P.: Making bpel flexible and adapting in the context of coordination
constraints using ws-bpel. In: Intl. Conf. on Services Computing (2008)

24. Zeng, L., Lei, H., Jeng, J.J., Chung, J.Y., Benatallah, B.: Policy-driven exception-
management for composite web services. In: IEEE Intl. Conf. on E-Commerce Tech.
(2005)

25. Zhou, Y.C., Liu, X.P., Wang, X.N., Xue, L., Tian, C., Liang, X.X.: Context model
based soa policy framework. In: IEEE Intern. Conf. on Web Services (2010)

C. Canal and M. Villari (Eds.): ESOCC 2013, CCIS 393, pp. 318–330, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Run-Time Verification of Behaviour-Aware Mashups
in the Internet of Things

Laura González1, Javier Cubo2, Antonio Brogi3, Ernesto Pimentel2, and Raúl Ruggia1

1 Instituto de Computación, Facultad de Ingeniería, Universidad de la República, Uruguay
{lauragon,ruggia}@fing.edu.uy

2 Department of Computer Science, University of Málaga, Spain
{cubo,ernesto}@lcc.uma.es

3 Department of Computer Science, University of Pisa, Italy
brogi@di.unipi.it

Abstract. With the new vision of the Internet of Things, physical world entities
are integrated into virtual world things. Then, the Internet of Things could
benefit from the Web Service architecture like today’s Web does; so Future
service-oriented Internet things will offer their functionality via service-enabled
interfaces. As demonstrated in previous work, there is a need of considering the
behaviour of things to develop applications in a more rigorous way. We pro-
posed a lightweight model for representing such behaviour based on the ser-
vice-oriented paradigm and extending the standard DPWS profile to specify the
order with which things can receive messages. To check whether a mashup of
things respects the behaviour, specified at design-time, we proposed a static ve-
rification. However, at run-time a thing may change its behaviour or receive re-
quests from instances of different mashups. Then, it is required to check and detect
dynamically possible invalid invocations provoked by changes of behaviour. Here,
we extend our static verification with an approach based on mediation techniques
and complex event processing to detect and inhibit invalid invocations. The solu-
tion automatically generates the required elements to perform run-time validation
of invocations. It may be extended to validate other issues.

Keywords: Composition, Mashup, Run-Time Verification, Mediation Patterns,
Complex Event Processing, Behaviour, Thing as a Service, Internet of Things.

1 Introduction

With the new vision of the Internet of Things (IoT), physical world entities are inte-
grated into virtual world things. Future service-oriented Internet devices will offer
their functionality via service-enabled interfaces adopting the vision of the Web of
Things (WoT) (inspired from the IoT), via SOAP-based Web Services or RESTful
APIs [1,2]. The IoT, including the mass of resource-constrained devices, could benefit
from the Web Service architecture. Recent work [3,4] has focused on applying the
paradigm of Service-Oriented Architecture (SOA) [5], in particular Web Services
standards, directly on devices. In general, applying SOA to networked systems is a
crucial solution to achieve reusability and interoperability of heterogeneous and

 Run-Time Verification of Behaviour-Aware Mashups in the Internet of Things 319

distributed things. The goal is to provide the functionality of each thing as a Web Ser-
vice in an interoperable way that can be used by other entities such as enterprise appli-
cations or even other devices. However, adapting a given device to SOA is not a trivial
problem. It is required to implement efficiently the things, and efforts are still needed
to handle composition and interaction of things from diverse sources. Several SOA
initiatives (OSGi, UPnP, Jini) have evolved to interconnect heterogeneous devices
and services. Not all of them can equally adapt to the others using the same hood.
And the lack of standardization makes programming for devices an arduous task.

The emergent OASIS standard Devices Profile for Web Services (DPWS)1 has
been designed as a set of guidelines based on WS-* specifications to provide interope-
rability among different devices and services in a networked environment: a printer, a
smartphone, a sensor or other new devices can detect DPWS-enabled devices on a
network. Some convincing points in favor of DPWS are that it is an OASIS standard,
it employs a Web Service mode being built on the standard W3C Web Service archi-
tecture, and it is natively integrated into from Windows Vista. In DPWS, every device
is abstracted as a service where features of the device are exhibited as hosted services.
The comparison between the important properties of reuse and research challenges of
Web Services shows a gap in the use of DPWS in the future focused on reusability
[6]. DPWS shows, for example, those topics like business processes, context depen-
dencies or quality factors have to get more focus in order to increase the reuse of
DPWS devices and use this standard more easily in the area of software engineering.

In [7], we detected the need to explicitly represent the (implicit) behaviours of
things to develop applications in a more rigorous way. We promoted the usage of
WS-* technologies to specify service interfaces of things by extending the standard
DPWS with behavioural descriptions, in order to facilitate to developers the imple-
mentation of DPWS-compliant things (or devices) that host services by considering
their behaviour in terms of the (partial) order in which the actions visible at the inter-
face level are performed. We proposed a static verification technique to check wheth-
er or not a mashup of things respects the behaviour of the composed things specified
at design-time. However, at run-time a thing may change its behaviour or receive
requests from instances of different mashups. Then, it is required to check and detect
dynamically possible invalid invocations provoked by the behaviour’s changes.

In this work, taking as starting point our first attempt presented in [8], we extend
our static verification with an approach based on mediation techniques and Complex
Event Processing (CEP) [9] to detect and inhibit invalid invocations, checking that
things only receive requests compatible with their behaviour. Our proposal consists in
processing invocations of services hosted in devices through a mediation platform, in
order to detect and block the invalid ones using CEP techniques. As main contribu-
tion, the solution automatically generates the required elements to perform the run-
time validation of invocations, and it may be easily extended to validate other issues.
Here, we have also dealt with quality of service (QoS) and temporal restrictions.

This paper is organized as follows. In Section 2, we motivate and list the contribu-
tions of our proposal. Section 3 describes our proposal to perform run-time verifica-
tion of mashups of things, and we discuss advantages, deployment alternatives and

1 http://docs.oasis-open.org/ws-dd/ns/dpws/2009/01

320 L. González et al.

comparison of this solution with our previous one. In Section 4, we compare our ap-
proach to related work. Section 5 draws conclusions and outlines future work.

2 Motivating Our Approach

This section motivates our proposal, describing the problem statement as regards the
model we have proposed in our previous work based on extending DPWS to support
the behavior of things. Then, we introduce CEP, mediation patterns and discovery
proxy, which we use to tackle the run-time verification of the behaviour-aware com-
position of things. Finally, we give an overview of our approach to detect and manage
invalid invocations at run-time during the composition of things.

2.1 Problem Statement: Static Verification of Behaviour-Aware Mashups

DPWS uses the primitives of the Web Services Architecture to create a framework for
interoperable and standardized communication between embedded devices. In DPWS,
every device is abstracted as a service where features of the device are exhibited as
Web Services. Some of the specifications in which DPWS is based are: (i) WSDL for
describing messages each hosted service may send and receive, (ii) SOAP for trans-
porting the messages, (iii) WS-Discovery and SOAP-over-UDP for device discovery,
or (iv) WS-Transfer / WS-MetadataExchange for device and service description. In
[7] we motivated the necessity of extending DPWS to facilitate the implementation of
a device (or thing) as a full-service considering that its WSDL description should
specify not only signature, but also the behaviour with the order in which input and
output actions are performed while the networked system interacts with its environ-
ment. Input actions model methods that can be called, or the end of receiving messag-
es from communication channels, as well as the return values from such calls. Output
actions model method calls, message transmission via communication channels, or
exceptions that may occur during methods execution. In order to include this exten-
sion in the DPWS profile, in our previous proposal we applied rigorous and
lightweight methodologies to develop things by promoting WS-* technologies, to
specify interfaces of things, and adding the behaviour of things to the DPWS profile.
This extended DPWS specification will facilitate to the developers the implementa-
tion of DPWS-compliant things (or devices) that host services by taking into account
their behaviour (using constraints or finite state machines) in terms of the order in
which actions, visible at the interface level, are performed while things are composed.

- Constraints. When only a partial order of the behavior of things is required, we
propose to use three types of behavioural constraints to be added to the guidelines
(statements) exposed by DPWS:

{bi}afterAll{ai}, {bi}afterSome{ai}, onlyOneOf{ai}

 where {bi} and {ai} are actions of a service hosted in a device. The afterAll
constraint is used to specify that any action {bi} only can be executed if all the ac-
tions {ai} have been previously executed. The afterSome constraint is less
restrictive than afterAll, since any action {bi} can be executed whether some
action {ai} have been already executed. The onlyOneOf constraint means that
only one of the sets of actions {ai} can be executed in an interaction session.

 Run-Time Verification of Behaviour-Aware Mashups in the Internet of Things 321

Fig. 1. FSM for Complex Behaviour

- Finite State Machines. In those cases where it is required to specify not only the
partial order, but also the ordered full-sequence among operations with the corres-
ponding states changes according to the messages execution, we propose to use
Finite State Machines (FSMs) [10] as a simple and user-friendly graphic solution
to represent the complex relationships between messages.

Running Example. To illustrate this model, we considered in [7] a complex real-
world example: an airport surveillance system composed by heterogeneous devices
hosting services (a motion detector, and a surveillance camera – hosting a record con-
trol service – located in a specific area in the airport, and a video device – hosting a
video streaming service and a media ejection service – located in a control center –
and people (using other devices), everything interconnected.

We focus on a scenario where a security guard connects, by means of an applica-
tion installed within a mobile device to a new motion sensor and a new camera, both
installed in a specific area of the airport. The behaviour of the system is the following:
once Bob finds the new devices, when a non-expected motion is detected, Bob is
notified with the exact position of the movement detected. He logins to access the
camera, and after he can perform three actions: (i) move the camera to the desired
position, (ii) start to record, and/or (iii) make a zoom. If Bob considers there is an
emergency situation, then he sends a command to warn the control center to start the
streaming at real-time of the video being recorded by the camera. After this, the con-
trol center staff may reproduce and analyze the video, while it is recorded concurrent-
ly, and act accordingly. When monitoring and surveillance of the concrete situation is
complete, then Bob can finish recording.

In this scenario it is required the handling of the behaviour of the hosted services
into the heterogeneous and distributed devices, not only to achieve a correct, but also
to get appropriate specifications of every behaviour-aware service and application.

- Constraints. The behaviour of the service record control hosted in the device
camera, with actions such as auth, move, record, or halt, can be specified by
means of the following constraints:

C1: {move, record} afterAll {auth}; C2: {halt} afterSome {move, record}
- Finite State Machines. The behaviour

of the service video streaming, hosted in
the device video, requires a considera-
ble number of exchanged messages (on,
play, pause, stop, rewind, fast-forward,
and off) in a concrete order (as detailed
in [7]), so its handling may require of a
more complicated model as provided by
the FSMs. Fig. 1 depicts the control of
the message full-sequence of this ser-
vice using FSM representation.

The explicit specification of the beha-
viour of things by means of constraints or
full-sequences with FSMs is the foundation
to develop behaviour-aware compositions of

322 L. González et al.

things. These compositions will create applications generated in form of mashups
with new functionalities to be remotely accessed (e.g., as Software-as-a-Service -
SaaS, or Mashups-as-a-Service). But it is required to check whether a composition of
things fulfills or violates their behaviour, so we proposed a simple and efficient veri-
fication technique at design-time. Therefore, we defined a checker function in order to
perform the static verification, analysing traces and actions executed of the orchestra-
tion specified by the user, according to a sets of constraints and/or finite state ma-
chines, both determining the behaviour of the things.

However, as aforementioned, a thing may change its behaviour at run-time. Then, a
change in the behaviour of a thing may cause that various compositions do not fulfill
its behaviour anymore. Although compositions could be redesigned to comply with
the new behavior, it would be appropriate to design run-time verifications techniques
to react when this situation occurs. Moreover, given that a thing can receive at run-
time requests from instances of different mashups, these requests could violate the
behaviour of that thing, even though each mashup fulfills such behaviour, because of
the state’s change of the thing. This kind of situations cannot be detected at design-
time, so run-time mechanisms are required to become aware of it and act accordingly.

2.2 Background

Here we present background information on the technologies used: (i) complex event
processing, (ii) integration and mediation patterns, and (iii) WS-Discovery.

Complex Event Processing (CEP). CEP refers to methods, techniques, and tools for
processing events while they occur. It allows deriving relevant higher-level events
(i.e. complex events) from a combination of lower-level events, in a timely fashion
and permanently [11]. To this end, event queries are continuously monitoring incom-
ing streams of simple events. These queries are used to specify situations as a combi-
nation of simple events occurring, or not occurring, over time.Various products (e.g.
Drools Fusion) rely on the production rules approach to implement event queries [11].
In this case, whenever an event occurs a corresponding fact must be created in the so-
called working memory and rules specify actions to be executed when certain states
are entered. These states are detected through event queries expressed as conditions
over these facts. CEP platforms provide support for various types of event patterns,
which allow specifying combinations of events. Some of those types are logical oper-
ator patterns, subset selection patterns, temporal patterns and spatial patterns [12].

Integration and Mediation Patterns. Integration and mediation solutions are usually
based on probed and well-known patterns, which have also been documented in the
literature [13,14,15]. This section reviews the relevant patterns for our proposal.

Service virtualization patterns take an existing service and deploy a new virtual
service in a mediation platform. These patterns introduce a point of mediation which
can be used to validate, route, transform or normalize requests, among others [13].

The VETO pattern [14], which consists in applying a sequence of mediation
mechanisms: validate, enrich, transform and operate, is a frequently applied mediation
pattern that can be used in conjunction with the previous one. The validate

 Run-Time Verification of Behaviour-Aware Mashups in the Internet of Things 323

mechanism checks incoming requests and blocks invalid ones. The enrich mechanism
adds additional data to a request. The transform mechanism converts the request to
the required target format. The operate mechanism invokes the target service.

Event-driven integration patterns deal with distribution of events in real time and
integration with CEP engines. The event extractor pattern monitors interactions across
a mediation platform and passes relevant events to a CEP engine. The event reactor
pattern extends the previous one by supporting a synchronous interaction with a CEP
engine to check if the latest event has triggered a complex event [13].

WS-Discovery. DPWS leverages WS-Discovery for discovering devices [16]. WS-
Discovery supports both an ad-hoc discovery and a managed discovery mechanism.
Using the ad-hoc mechanism the client sends multicast Probe messages to discover
devices on the local network. This mechanism has some limitations: the network
range of multicast messages is limited and multicast messages increase network traf-
fic [16]. To deal with these limitations, WS-Discovery also supports a managed dis-
covery mechanism where a specialized component, a discovery proxy, is used. This
proxy usually stores the network address of services that are present on the local sub-
net and on a wider network. In such a way, clients may directly communicate with the
discovery proxy to discover devices avoiding the generation of multicast traffic [16].

2.3 Approach and Contribution

The main idea of our proposal is to process, through a mediation platform, the interac-
tions between clients (e.g. mashups) and devices in order to validate the requests that
are sent to hosted services. Our platform handles the invocations of services hosted in
devices to detect and block the invalid invocations using CEP techniques. In this way,
devices only receive requests which are compatible with their behaviour.

The platform can be placed as a specialized device within the same network where
devices are located. Fig. 2 presents the high level architecture of the proposal and the
interactions that take place between the different components.

Fig. 2. High Level Architecture of the Proposal

Following the Virtual Services mediation pattern, devices and hosted services are
exposed through the mediation platform via Virtual Devices and Virtual Services,
respectively. These virtual elements are automatically configured when devices

324 L. González et al.

advertise themselves in the platform (via WS-Discovery) or when the platform rece-
ives the metadata of hosted services (via WS-MetadataExchange).

In order to intercept the interactions that take place during the discovery process
(WS-Discovery interactions), the platform includes a Discovery Proxy. This compo-
nent sends to clients the proper information (i.e. network addresses) so that the subse-
quent WS-Transfer/WS- MetadataExchange interactions, between clients and devices,
are processed through the platform via Virtual Devices. This allows that the metadata
obtained from the devices can be modified in a way that clients receive the network’s
addresses of Virtual Services instead of the ones of Hosted Services. Thus, service
requests are processed by the platform and they can be validated, and even blocked,
before reaching the services. Run-time validation of invocations is performed leverag-
ing CEP: production rules are automatically generated and deployed in the platform,
according to the behaviour of the devices, so that the requests can be validated against
them. The main contributions of the platform we propose are the following:

1. Detecting and blocking invalid invocation at run-time.
2. Validating behaviour with automatically generated rules.
3. Dealing with temporal constraints and quality of service.

3 Run-Time Verification of Mashups of Things

3.1 Detecting and Blocking Invalid Invocations at Run-Time

To detect and block invalid invocations, the platform uses a combination of mediation
and CEP techniques. Fig. 3 shows how a service invocation is processed by the plat-
form and the components that allow the runtime verification of the invocations.

Fig. 3. Detecting and Blocking Invalid Invocations

As stated before, hosted services are invoked through virtual services deployed in
the platform, tag (1) in Fig. 3, following the Virtual Services pattern. Virtual services
consist of a mediation flow, which is a simplification of the VETO pattern, and com-
prises two mediation steps: validate and operate. The validate step synchronously
interacts with a CEP Engine (2), following the event reactor pattern, to check if the
invoked operation is invalid. If so, a complex event is triggered (3) and the invocation
is blocked. Otherwise, the operate step is executed (4) which invokes the target opera-
tion in hosted service (5). Lastly, the response is returned to the client (6), (7) and (8).

 Run-Time Verification of Behaviour-Aware Mashups in the Internet of Things 325

In order to specify when a given invocation is invalid for a device, a set of produc-
tion rules has to be deployed on the CEP Engine. These rules can be automatically
generated based on the specified behaviour of each device, which is obtained by the
platform from the metadata of the hosted services (see details in Section 3.2).

Also, when the platform receives an invocation a new event is generated and sent
to the engine. These events and the deployed rules constitute the basic elements to
trigger a complex event when an invalid invocation for a service is received, allowing
the platform to detect this situation and act accordingly (e.g. block the invocation).

3.2 Validating Behaviour with Automatically Generated Rules

In order to validate the interactions between clients and devices, the platform includes
a set of modules which automatically generate rules based on the specified behaviour
of devices. For example, the platform includes modules which automatically generate
rules based on constraints and FSM. Also, the platform can be extended with other
modules to generate rules based on other information (e.g. regarding QoS).

This section describes how production rules can be used to detect invalid invoca-
tions according to the behaviour of devices and how these rules can be automatically
generated based on those behaviours, which can be specified through constraints or
FSMs. Drools Rule Language (DRL)2 is used to exemplify our proposal over the
running example (though this kind of rules can be specified in other languages like
Jess).

Behaviour specified with Constraints. When the behaviour of a device is specified
with constraints, one or more rules are required to perform the run-time validation.
Giving the temporal support that CEP technologies provide, in most of the cases rules
can be specified in a very intuitive way. For instance, the rule depicted in Fig. 4
detects invalid invocations for the constraint C1 presented in Section 2.1. More pre-
cisely, it detects when a “move” or “record” operation is received and an “auth”
operation was not received before, in the context of the same mashup’s instance.

Fig. 4. A DRL Rule to Check the Constraint C1

Each afterAll constraint leads to a rule with the overall structure of the pre-
vious one. Indeed, given a specific constraint, the corresponding rules can be automat-
ically generated with the Freemarker3 template engine.

2 http://www.jboss.org/drools/
3 http://freemarker.org/

326 L. González et al.

Behaviour specified with FSMs. When the behaviour of a device is specified by
means of FSMs, the run-time interactions can also be validated with rules. In this
sense, our approach builds rules which handle the state of a device and detect when
invalid operations are invoked for the current state. Concretely, for each operation of
a hosted service two rules have to be created. One of them detects when the operation
is received in an invalid state and trigger a complex event to inform this situation. The
other one detects when the operation is received in a valid state and, if needed, up-
dates the current state of the device. Fig. 5 presents the first one of these rules, speci-
fied with DRL, for the operation “on” of the example presented in Section 2.1.

Fig. 5. A DRL Rule for the “on” Operation

As with constraints, the overall structure of the rules is the same for any behaviour
specified using FSMs, so they can be automatically generated given a specific FSM.

3.3 Dealing with Temporal Constraints and Quality of Service

Considering the proposal is based on mediation and CEP techniques, it provides a
suitable infrastructure to deal with QoS issues and to handle temporal constraints. For
example, regarding QoS, if a hosted service specifies the maximum number of invo-
cations it can handle in a specific period of time, a rule can detect when this maxi-
mum is reached. On the other side, given the built-in support of temporal patterns in
CEP solutions, the platform is able to handle temporal constraints. For instance, if the
behaviour of a device allows specifying a maximum period of time between opera-
tions in the same session, a rule can be created so that if an operation is not received
within this period of time the device returns to the initial state.

3.4 Further Discussion

We envision three main deployment alternatives for the platform: intra-organization,
gateway and “as a service”. The intra-organization alternative can be used to validate
the interactions between devices and clients located within an organization. The
gateway approach can be used to deliver the functionalities of the devices to other
organizations. In these cases, the platform is a specialized hardware/software infra-
structure located in the same network where the other devices are. Finally, the “as a
service” alternative can be used to deliver the functionalities of the devices to other
organizations but delegating the validation of invocations to an external entity which,
for example, can be located within a cloud infrastructure. One of the advantages of
the proposed solution is the agility to respond to changes in the behaviour of things

 Run-Time Verification of Behaviour-Aware Mashups in the Internet of Things 327

(i.e. rules are automatically generated and deployed when the behaviour of a thing
changes). Also, given that the solution verifies invocations before reaching the devic-
es, it presents several other advantages: it prevents devices from being saturated with
invalid invocations, it reduces network traffic arriving to devices and, when invalid
invocations are received, it provides a suitable place to perform compensation actions.
On the other side, the main disadvantage of the proposed solution is the time overhead
in the invocations: they have to pass through the mediation platform where there is
always a synchronous interaction with the CEP engine. Thus, although CEP engines
are well known by supporting high throughputs per second with low latency [17], the
proposed solution has an impact in performance. As well, the main limitation of the
proposed solution is that it detects invalid invocations when mashups are already
being executed, not before. Also, the solution still does not provide mechanisms to
handled invalid invocations according to different situations (e.g. an incompatible
change in a thing while a mashup, which uses that thing, is being executed). Com-
pared with the static verification approach presented in our previous work, the pro-
posed run-time verification solution provides complementary mechanisms. These
mechanisms are required to be able to deal with changes at run-time in the behaviour
of the devices once mashups have already been designed and deployed. There are also
different situations that cannot be detected with static verification techniques like
temporal related issues, QoS aspects and the concurrent execution of mashups. On the
other side, the run-time verification solution detects problems as they occur, while the
static verification mechanisms allow detecting that a mashup does not comply with
the behaviour of devices at design time. Thus, we believe that both approaches have
to be used in conjunction to provide an integral verification solution for the beha-
viour-aware mashups in the Web of Things paradigm.

4 Related Work

In this section, we analyze different approaches focused on the run-time verification
of things in the context of service-oriented and event-based solutions. Mainly, we
compare our proposal to works using CEP and mediation techniques for the WoT.

With the rise of the Future Internet as a reality, there exists the necessity of consi-
dering contents, devices, sensors, and things included in the new challenges of the
service-oriented computing. Thus, some works have proposed service-oriented solu-
tions for Home Network System [18] or Smart Home [19]. The former presents a
sensor mashup platform which allows the dynamic composition of the existing sensor
services. They mainly focus on helping non-expert developers to create context-aware
services within the home network system, but their framework does not offer a guide
to control the behaviour of the system, only messages are exchanged by using WSDL
and REST/SOAP. The latter is closer to our approach. Authors propose an application
logic distribution where devices in a smart home incorporate a set of rules than can
govern their behaviour, following ECA (Event-Condition-Action) rules: they listen to
external messages (notifications coming from other services) and, according to some
conditions defined in these rules, they decide to perform their own actions. In

328 L. González et al.

comparison to our approach, this mechanism is not lightweight and rules may be not
enough to determine the correct order among operations of a service. Therefore, we
propose not only to define rules from the scratch, but to generate them to check the
invocations at run-time, based on the specified behavior of each device.

CEP and mediation techniques are being increasingly used for run-time monitor-
ing, verification and adaptation in service-oriented and event-based solutions. In [17]
the authors describe an approach to deal with differences between Web Services pro-
tocols, by using CEP to adapt their interactions and resolve conflicts. Compared to
our approach, message consumption and transmission are modeled as events, and
adaptation is specified using automata and deployed as CEP adapters. In [20] an
event-based approach to verify the compliance of the overall sequence of inter-
organizational choreography operations is presented. Each message received or sent
by an organization is associated to an event and CEP is used to verify whether the
participating parties have performed their tasks according to the choreography. In [21]
the authors propose an integrated solution for run-time compliance governance in
SOA, focusing on QoS, security and licensing issues. In a similar way to our propos-
al, this solution uses CEP to monitor the compliance of business processes during
their execution. However, although these proposals leverage CEP and mediation
techniques for run-time verification, none of them focus neither in the field of the
WoT nor in verifying the compliance of invocations according services’ behaviour.

Nevertheless, recently, CEP techniques and mediation solutions have been applied
and considered relevant in the field of the WoT in a separate way. On the one hand, as
regards CEP applied to the things world, in [22] the authors propose a solution to deal
with imprecise timestamps and events order in this highly distributed context. Also, in
[23] a solution to solve the integration of heterogeneous event information resources
is proposed. However, none of these solutions uses CEP techniques for the run-time
verification of invocations. On the other hand, mediation solutions have been also
proposed in the field of the Web of Things. In [3] a middleware infrastructure focused
on enabling an efficient collaboration between device-level services and enterprise
applications is presented. To this end, the infrastructure includes mediation capabili-
ties to provide connectivity with non-DPWS enabled devices. In turn, DPWS enabled
devices can directly interact with enterprise applications or they can be accessed
through the infrastructure to get more advanced features (e.g. asynchronous invoca-
tions). In [24] the authors propose the concept of Gateway as a Service: a cloud
computing framework for the WoT, focused on integrating devices into service
compositions and business processes. Also, in [25] an integrated development and
run-time environment for the future Internet is proposed, which include a Light Ser-
vice Bus to address the access to things considering their resource constraints and
leveraging DPWS. All these proposals focus on using mediation capabilities to enable
the connectivity to heterogeneous things; but unlike our proposal, they do not provide
mechanisms to detect invalid invocations to things according their behaviour.

Therefore, to the best of our knowledge there is not any effort in the field of the
Web of Things that uses both CEP and mediation techniques jointly to address the
run-time verification of the behaviour of things.

 Run-Time Verification of Behaviour-Aware Mashups in the Internet of Things 329

5 Concluding Remarks

In this paper, we have presented an approach to detect and inhibit invalid invocations
at run-time while things are composed, by using mediation techniques and CEP, as
well as a discovery proxy. We complement our previous static verification mechan-
ism by automatically generating required elements to perform run-time validation of
invocations of things, in order to check things only receive requests compatible with
their behavior. Our approach may be easily extended to validate other issues, such as
QoS and temporal restrictions. We have illustrated it applying and generating produc-
tion rules for a service-based (airport surveillance) system with both behavioural con-
straints and FSMs, and deploying them in a particular CEP engine. We plan to extend
the general architecture with an IDE as Mashup Editor to specify the orchestration
corresponding to mashups and a Mashups Execution Environment to deploy the gen-
erated mashups. In addition, we are considering studying the inclusion of some recov-
ery strategy in case an invalid invocation occurs. We are also planning to perform the
evaluation of potential performance issues in scenarios with a big number of things.

Acknowledgements. Work supported by projects TIN2008-05932, TIN2012-35669,
CSD2007-0004 funded by Spanish Ministry MINECO & FEDER; P11-TIC-7659 by
Andalusian Gov; Univ. Málaga, Campus Exc. Int. Andalucía Tech.

References

1. Guinard, D., Ion, I., Mayer, S.: In Search of an Internet of Things Service Architecture:
REST or WS-*? A Developers’ Perspective. In: Puiatti, A., Gu, T. (eds.) MobiQuitous
2011. LNICST, vol. 104, pp. 326–337. Springer, Heidelberg (2012)

2. Pautasso, C., et al.: RESTful Web Services vs. “big” Web Services: Making the Right
Architectural Decision. In: Proc. of WWW 2008, pp. 805–814. ACM (2008)

3. de Souza, L.M.S., Spiess, P., Guinard, D., Köhler, M., Karnouskos, S., Savio, D.:
SOCRADES: A Web Service Based Shop Floor Integration Infrastructure. In: Floerkemei-
er, C., Langheinrich, M., Fleisch, E., Mattern, F., Sarma, S.E. (eds.) IOT 2008. LNCS,
vol. 4952, pp. 50–67. Springer, Heidelberg (2008)

4. Jammes, F., Smit, H.: Service-Oriented Paradigms in Industrial Automation. IEEE Trans.
Ind. Informatics 1(1), 62–70 (2005)

5. Erl, T.: Service-Oriented Architecture: Concepts, Technology, and Design. Prent Hall
(2005)

6. Zinn, M., et al.: Device Services as Reusable Units of Modelling in a Service-Oriented
Environment-An Analysis Case Study. In: Proc. of ISIE 2010, pp. 1728–1735. IEEE CS
(2010)

7. Cubo, J., Brogi, A., Pimentel, E.: Behaviour-Aware Compositions of Things. In: Proc. of
iThings 2012 in conjunction with GreenCom 2012, pp. 1–8. IEEE CS (2012)

8. Cubo, J., González, L., Brogi, A., Pimentel, E., Ruggia, R.: Towards Run-Time Verifica-
tion of Compositions in the Web of Things using Complex Event Processing. In: Proc. of
JCIS 2013 in Conjunction with CEDI 2013, pp. 147–154 (2013)

9. Luckham, D.: The Power of Events: An Introduction to Complex Event Processing in Dis-
tributed Enterprise Systems. Addison-Wesley (2002)

330 L. González et al.

10. Brand, D., et al.: On Communicating Finite-State Machines. J. ACM 30(2), 323–342
(1983)

11. Eckert, M., Bry, F., Brodt, S., Poppe, O., Hausmann, S.: A CEP Babelfish: Languages for
Complex Event Processing and Querying Surveyed. In: Helmer, S., Poulovassilis, A., Xha-
fa, F., et al. (eds.) Reasoning in Event-Based Distributed Systems. SCI, vol. 347, pp. 47–
70. Springer, Heidelberg (2011)

12. Etzion, O., Niblett, P.: Event Processing in Action. Manning Publications (2010)
13. Wylie, H., Lambros, P.: Enterprise Connectivity Patterns: Implementing integration solu-

tions with IBM’s Enterprise Service Bus products. Accessible at IBM website
14. Chappell, D.: Enterprise Service Bus: Theory in Practice. O’Reilly Media (2004)
15. Hohpe, G., Woolf, B.: Enterprise Integration Patterns: Designing, Building, and Deploying

Messaging Solutions. Addison-Wesley Professional (2003)
16. Jeyaraman, R., Modi, V., Driscoll, D., Bullen, G., Nixon, T.: Understanding Devices Pro-

file for Web Services, WS-Discovery, and SOAP-over-UDP. Microsoft (2008)
17. Taher, Y., Parkin, M., Papazoglou, M.P., van den Heuvel, W.-J.: Adaptation of Web Ser-

vice Interactions Using Complex Event Processing Patterns. In: Kappel, G., Maamar, Z.,
Motahari-Nezhad, H.R. (eds.) Service Oriented Computing. LNCS, vol. 7084, pp. 601–
609. Springer, Heidelberg (2011)

18. Nakamura, M., et al.: Application Framework for Efficient Development of Sensor as a
Service for Home Network System. In: Proc. of SCC 2011, pp. 576–583. IEEE CS (2011)

19. Parra, J., et al.: Flexible Smart Home Architecture using Device Profile for Web Services:
A Peer-to-Peer Approach. International Journal of Smart Home 3, 39–55 (2009)

20. Baouab, A., et al.: An Event-Driven Approach for Runtime Verification of Inter-
Organizational Choreographies. In: Proc. of SCC 2011, pp. 640–647. IEEE CS (2011)

21. Birukou, A., D’Andrea, V., Leymann, F., Serafinski, J., Silveira, P., Strauch, S., Tluczek,
M.: An Integrated Solution for Runtime Compliance Governance in SOA. In: Maglio, P.P.,
Weske, M., Yang, J., Fantinato, M., et al. (eds.) ICSOC 2010. LNCS, vol. 6470, pp. 122–
136. Springer, Heidelberg (2010)

22. Fengjuan, W., Xiaoming, Z., Yongheng, W., Kening, C.: The Research on Complex Event
Processing Method of Internet of Things. In: Proc. ICMTMA 2013, pp. 1219–1222 (2013)

23. Wang, W., Guo, D.: Towards Unified Heterogeneous Event Processing for the Internet of
Things. In: Proc. of IOT 2012, pp. 84–91 (2012)

24. Wu, Z., et al.: Gateway as a Service: A Cloud Computing Framework for Web of Things.
In: Proc. of ICT 2012, pp. 1–6 (2012)

25. Ben Hamida, A., Kon, F., Ansaldi Oliva, G., Dos Santos, C.E.M., Lorré, J.-P., Autili, M.,
De Angelis, G., Zarras, A., Georgantas, N., Issarny, V., Bertolino, A.: An Integrated De-
velopment and Runtime Environment for the Future Internet. In: Álvarez, F., et al. (eds.)
FIA 2012. LNCS, vol. 7281, pp. 81–92. Springer, Heidelberg (2012)

C. Canal and M. Villari (Eds.): ESOCC 2013, CCIS 393, pp. 331–345, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Designing a Service Platform for Sharing Internet
Resources in MANETs

Gabriel Guerrero-Contreras, José Luis Garrido,
Carlos Rodríguez-Domínguez, Manuel Noguera, and Kawtar Benghazi

Software Engineering Department
University of Granada

Avenida del Hospicio S/N
18071 Granada, España

zahara@correo.ugr.es,
{benghazi,jgarrido,carlosrodriguez,mnoguera}@ugr.es

Abstract. Nowadays, there is great interest to develop future Internet applica-
tions supporting resource sharing in mobile networks. This usually entails
maintaining the consistency of those shared resources, that is, between different
replicas of the resources. Moreover, mobile networks are characterized by vary-
ing capacity, in part, caused by their mobility, which also derives in frequent
networking disconnections and network partitions. Therefore, to ensure the con-
sistency of replicated resources being shared in a mobile network is more com-
plicated that in networks with infrastructure support, as it requires to process
events associated with the use of the resources themselves as well as those re-
lated with the state of the network. In response, in this paper an event-driven
platform consisting of two services (monitoring and synchronization) and an
underlying middleware has been designed in order to address the consistency of
shared Internet resources in mobile networks in a simple way. The synchroniza-
tion service only needs to be specialized to adapt the resource, depending on its
type, to the required use in a particular system. The proposal is illustrated
through the example of a collaborative document editor.

Keywords: Service Oriented Architecture, Event-driven Architecture,
MANET, Future Internet, Resource Consistency.

1 Introduction

Nowadays, there is great interest to develop future Internet applications supporting
human collaboration in mobile networks. These networks are characterized by fea-
tures such as localized scalability and uneven conditioning [1]. Localized scalability
is defined as “a good system design has to achieve scalability by severely reducing
interactions between distant entities” [1]. It avoids network congestion. Uneven con-
ditioning is the difference between devices capacities or the difference between dif-
ferent environments (e.g. GPS is not available indoors) [1]. These features have a

332 G. Guerrero-Contreras et al.

direct relation with the quality properties associated to the network, like performance.
More recently, in highly dynamic environments Mobile ad-hoc Networks (MANET)
[2] are being imposed. One key aspect of these networks is that they self-configure
their infrastructure, according to the nearby, available devices at a given time. That is,
MANETs do not have a static communication scheme and, therefore, the management
of shared data becomes more complicated. Furthermore, more and more services are
offered in the “cloud” [3]. Since the term was coined by George Gilder [4] the cloud
has expanded enormously, in particular software as a service model (e.g. Google or
Amazon) [5].

In this networks type, replication is a useful design technique to achieve some ob-
jectives, such as localized scalability. Data replication is recommendable in order to
obtain high-availability and good performance in a system. As the number of replicas
increases, the probability of being able to reach at least a replica of a resource in-
creases. However, to obtain these benefits it is necessary maintain the correctness of
the data. In replicated data, one key aspect of correctness is mutual consistency, that
is, that "all copies of the same logical data item must agree on exactly one current
value for the data item" [6].

Maintaining the correctness of the shared data is not a simple task, particularly in
environments where network disconnections are frequent. To overcome this issue,
there are different solutions which can be classified in two dimensions: pessimistic
strategies, which consist in preventing inconsistencies; and optimistic strategies,
which do not prevent inconsistencies, but allow them to happen, and when they are
detected, they are resolved.

Nowadays, some research initiatives proposed solutions based on a peer-to-peer
(p2p) architecture [7, 8, 9]. Nevertheless, these initiatives are focused in resource
location and utilization and don’t pay attention to the consistent management of re-
sources when accessed concurrently under frequent disconnections. In this paper an
event-driven, SOA-based (Service Oriented Architecture) [10] platform consisting of
two services (monitoring and synchronization), and an underlying middleware, is
presented. This platform has been designed to facilitate the consistent management of
shared resources in mobile systems. The developer will only need to specialize the
synchronization service to be adapted to each resource, depending on its type and the
required use in a particular system. The aim is to be able to integrate advanced appli-
cations and heterogeneous systems using standard protocols in the business field
(business processes) and notably in the Web (web services) [11, 12].

The rest of this paper is organized as follows. Section 2 presents related works for
the management of shared data in mobile networks; Section 3 describes the proposed
service platform intended to support resource sharing in future Internet applications
taking into consideration the use of mobile networks; Section 4 presents the real ex-
ample of a collaborative document editor to illustrate the proposal; Section 5 dis-
cusses the proposal; and finally, conclusions and future work are summarized.

 Designing a Service Platform for Sharing Internet Resources in MANETs 333

2 Related Work

MANETs networks have proved its usefulness in fields such as automobile (Vehicular
Ad-Hoc Network) [13, 14, 15]; disaster management, when the communication
network is not available [16, 17, 18]; and sensors networks [19]. However, MA-
NETs networks present a series of challenges such as [20]: knowledge representation,
is a key issue in MANETs networks due to heterogeneous nature of these networks;
knowledge discovery, MANETs networks are highly dynamics, thus find resources
available in other hosts effectively is a fundamental task; caching, the use of cache
data allows offline operations, but it complicates the task of maintain the shared re-
sources consistent; replication, is another strategy to optimize the data management
process and it allows brings closer the data to user; query processing, this issue is
important because the applications that run in MANETs networks are context aware
;and security, with regard this, security is an important and complicated task due to
are the device themselves the network infrastructure, and it changes constantly with a
high numbers of connections and disconnections. In response, in recent years some
research initiatives proposed solutions to shared resources management in MANETs,
like DRIVE [7], MoGATU [8] and CHaMeLeoN [9].

DRIVE (Dissemination of Resource Information in Vehicular Environments) is a
software platform designed to deploy in vehicles, PDAs, sensors or any device with
wireless capabilities. The platform uses a p2p approach to data sharing and it is based
in a layered model. The model is made up of three layers (from bottom to top): data
layer, support layer and utility layer. The data layer implements the data model; the
support layer defines how queries are processed and how the data is disseminated; and
finally, the utility layer contains the modules to access at the different resources.
Some aspects of the platform can be highlighted, such as its economic model to guar-
antee the dissemination of the information to the largest possible audience. With this
model a node of the network will transmit the information even if it is not interested
in the particular data.

MoGATU proposes a model to share data in MANETs trough p2p approach. Like
DRIVE, it proposes a layered model with three layers and two intermediate sub-
layers. MoGATU uses a main storage system out of MANET network, however, if a
device lost connection or a network partition occurs, MoGATU uses caching and
replication. Besides, it defines its own transaction model, called NC-Transaction.
With this model, MoGATU increases the number of successful transactions, however,
this model not guarantee the global consistency of the shared data.

The main purpose of CHaMeLeoN is exchange multimedia data in a MANET net-
work, including in streaming. CHaMeLeoN’s philosophy is adapting the application
to user and the user’s context. Moreover, CHaMeLeoN implements motion prediction
algorithms, in order to anticipate possible disconnections. This allows to place re-
source's replicas within the network efficiently.

The exposed software platforms are complete platforms to address resource man-
agement in MANET networks. However, these platforms are focused in resource
location and utilization and don’t pay attention to the consistent management of
resources.

334 G. Guerrero-Contreras et al.

The work presented in [21] is based on a SOA approach to manage the data consis-
tency in heterogeneous systems. In that context, there are several applications with
different local data models. The models are different but they refer to the same
data. The main objective of the work is that the modifications in a local model
automatically disseminate to the remainder local models. The proposed architecture is
based on a synchronization service and a directory service. The directory service link-
ing local models between them and the synchronization service solves possible incon-
sistencies. This solution presents two main limitations: first, it does not cover the
possibility of disconnections or network partitions; and second, it is an ad-hoc
solution.

With reference to collaborative systems in mobile environments, these are being
greatly accepted in areas such as health [22, 23] and education [24, 25]. Environ-
ments such as hospitals and schools have the advantage of a static infrastructure that
can facilitate the shared data management, e.g. servers and storage systems, and there-
fore facilitate collaborative applications develop.

3 Service Platform Design

This section presents an event-driven, SOA-based proposal in order to address the
consistent management of shared Internet resources in mobile networks in a simpler
way. On the one hand, the SOA approach is used as it provides some benefits such
as reuse, interoperability, scalability and ease of maintenance. On the other hand,
event-driven architecture provides benefits such as broadcast communications, asyn-
chrony and timeliness. Besides, both of these approaches reduce the coupling between
the different system’s components and platforms. Furthermore, this proposal is in-
tended to be a generic solution that can be adapted to any resource type, as discussed
below.

Figure 1 shows a general architecture of the service platform. The main component
is the synchronization service. This service maintains the consistency of shared re-
sources. The shared resources can be modified by several users concurrently. The
synchronization service is a high-level service based on monitoring service. The latter
is a basic service which stores all kind of information about changes on shared data.
Both services can be replicated in order to improve the availability, e.g. when the
network becomes partitioned.

Moreover in order to provide a complete development platform, these services
have been deployed on a communication middleware for ubiquitous systems:
BlueRose [26, 27]. The middleware notifies events occurring in the system under a
publish/subscribe paradigm. This feature is interesting in mobile systems, with a hete-
rogeneous communication environment, due to it reduces coupling between interfac-
es. The presented services are exposed through WSDL interfaces and are accessed
remotely using SOAP. However, due to event-driven approach, they also can generate
or receive events. In the next subsections the platform components are described in
more detail.

 Designing a Service Platform for Sharing Internet Resources in MANETs 335

Fig. 1. General scheme of the platform to synchronizing shared resources in mobile networks.

3.1 Monitoring Service

Monitoring is a basic service which stores all kind of information about changes on
shared data. This information can fulfill several purposes, e.g. version control, securi-
ty control or system debug. In the synchronization service case, this information will
be required when it will be needed to apply synchronization algorithms. In a device
disconnection case, this information is fundamental to allow offline operations in the
system.

Monitoring service supports different configurations in the system. It can be ac-
cessed from other system component to store some event, for example from the Syn-
chronization service; or it can work as a subscriber too. With this last, the monitoring
service can have different replicas which are subscribed to different events. This al-
lows an efficient monitoring, due to the monitoring work can be divided between
different replicas.

As has been mentioned, this solution expects to be a generic solution, not an ad-
hoc solution. Therefore the monitoring service is designed to monitor any resource
type. This is possible because in the platform all actions performed on shared re-
sources are represented by events. The middleware BlueRose allows represent any
information through resources and the monitoring service can monitor any event.
Consequently the monitoring service is completely reusable and no need to modify its
code.

Furthermore, the monitoring service uses a storage service as Figure 1 shows. This
storage service can be replicated and/or distributed. Besides, the storage service can
be in the cloud, with all the benefits that this entails. Also, if more control over data is
desired monitoring service can uses a local storage service. Concerning the DBMS, a
NoSQL system has been chosen in order to provide an efficient and flexible system to
store events. Flexibility is needed owing to the structure of the events is unknown a
priori.

336 G. Guerrero-Contreras et al.

3.2 Synchronization Service

The main service of the proposed platform is the synchronization service. This service
is based on the monitoring service. Thus, with the information that monitoring service
provides, the synchronization service can overcome the challenges of mobile net-
works (disconnections and network partitions) and it allows users working without
connection.

In the case of a user disconnection (Figure 2), the user can continues working with
cache data. While the connection is lost the generated events must be stored locally.
When it recovers the connection, the first step is synchronizing the changes with the
rest of the system through the synchronization service. For this, the synchronization
service requires: local events of the device, disconnection interval and generated
events in the system in this interval. Hence, the monitoring service is fundamental for
the synchronization. Otherwise, if the synchronization service has not the generated
events in the system in the interval disconnection, it cannot compare local events of
the user and it cannot detect the possible conflicting changes with the remainder us-
ers. As mentioned above, cache is necessary to allow offline operations. Consequent-
ly, the client application must store the necessary data for user to continue working in
disconnection case.

Fig. 2. A device working offline

 Designing a Service Platform for Sharing Internet Resources in MANETs 337

The monitoring service is a general service, however, this is not possible for the
synchronization service as the synchronization algorithms are dependent of the re-
source type. That is, synchronize images is not the same as synchronize text, because
how to solve possible inconsistencies is distinct for each case. For this reason and
with the goal of providing a reusable service, the synchronization service is a general
service that must be specialized according to resource to synchronize. In this way, the
common part related to manage the resource synchronization is identified and solved
in the service, and the issues related with particular requirements of resources are
addressed in service specialization. In this way, the proposal is intended to be appli-
cable to any type of shared resource.

Another important issue is how the synchronization service can obtain the correct
sequence of events. This is an important issue because the service is working in a
distributed system where the clock values may differ. To resolve it, first is necessary
adding a timestamp to event definition and use a time server to provide the same
clock value to all devices of the network. Owing to different networks can interope-
rate (thought service replicas) Lamport’s algorithm [28] to determine the order of
events in a distributed computer system has been implemented.

It is especially necessary to take into account that offline operations are permitted
and network partitions can occur. For these cases, when the time server is inaccessi-
ble, it will acts as follow. When the device lost connection and it starts to generate
local events, it uses its clock value to generate a relative timestamp for local events.
When this device recovers connection, before to connect with the synchronization
service, it gets clock value from time server. With this value, it calculates the differ-
ence between its clock and the clock of time server and it recalculates the timestamp
of local events. In this way, the correct sequence of events to the synchronization
service is guaranteed and therefore it can apply synchronization algorithms correctly.

Fig. 3. Possible services deployments within platform architecture

338 G. Guerrero-Contreras et al.

3.3 Deployment

Regarding the deployment of services, they support different configurations, thus the
platform can be adapted to requirement of a specific application. The possible confi-
gurations are:

• Services within the communication middleware (Figure 3, point A). They are dis-
posed inside of middleware in order to obtain efficiency, regardless middleware
overload is increased with each service added to it.

• Services disposed over the middleware (Figure 3, point B). This configuration
matches when exists a high computational performance device in the network
working as a server. Other devices benefits of decreased computational load of-
fered by the dedicated server device.

• Services on cloud infrastructure [3] (Figure 3, point C). Cloud benefits are accessi-
bility and scalability. The information or service are available wherever an Internet
connection exists and resources could be increased or decreased as needed.

A possible system deployment is depicted in Figure 4. Figure 4 shows three
MANET networks, these networks are not directly connected, however, they interope-
rate through services proposed above. To make this possible some replication proto-
col [29, 30] must be used to keep the service replicas updated and consistent. Repli-
cating not only improves service availability, moreover, it helps to achieve localized
scalability due to it reduces network traffic. This is possible owing to replicating al-
lows devices use the nearest replica, as Figure 4 shows.

Fig. 4. A possible configuration of services in several MANET networks

4 Example: Collaborative Document Editor

As mentioned above, the synchronization service is a generic service that must be
specialized with concrete synchronization algorithms of the shared resource to

 Designing a Service Platform for Sharing Internet Resources in MANETs 339

manage. To test the validity of the service platform proposed, the synchronization
service has been specialized into a document repository service. In this case, shared
resources are text documents.

The system displays the following behavior (see Figure 5). The repository service
keeps the full set of documents in the system. While users are online they are working
with the documents of repository service. Users make changes to documents, these
changes can be modified created or deleted a document. Moreover, these changes
can be done concurrently and users who are working with same document can see
these changes in real time.

The repository service, it is a specialization of the synchronization service, is re-
sponsible to integrate these changes consistently in documents set. Besides, the
client application must have a cache copy of documents with which user is working,
since it is not possible to foresee a disconnection. The number of files in cache is
determined by several factors, such as disconnection frequency. To solve this, there
are different approaches to caching in mobile environments [31].

Meanwhile, the monitoring service stores all generated events in the system. These
events contain information about changes over documents and they are notified under
a publish/subscribe paradigm.

When a client device disconnection occurs (User 1 in Figure 5), the client applica-
tion starts working with cache documents copy. Besides, the client application starts
storing generated events by user locally (Figure 5, step 1). These local events will be
necessary to synchronize when connection is re-established. The client application
can continue working offline with the unique limitation about the memory capacity of
the device to store all the events that can be generated.

When connection is re-established, the client application first re-adjusts the events’
timestamps generated offline (see section 3.2). Then it requests be synchronized
with the system through the synchronization service (Figure 5, step 2). With this pur-
pose, the application provides to synchronization service the disconnection interval
and the generated events locally. This is the client application notifies to the synchro-
nization service the changes that user has made on shared documents while the device
was offline.

The repository service receives this request and it requests to monitoring service
the modifications made by system users on shared documents during disconnection
interval. The monitoring service queries the storage service for events set generated
within the disconnection interval (Figure 5, step 3). When the monitoring service gets
response, it sends the events set to the synchronization service (Figure 5, step 4).
When the synchronization service has the generated events in the system and the gen-
erated events of the disconnected user, it can apply the synchronization algorithms
and it can apply the resulting changes on documents repository (Figure 5, step 5). In
this case (shared document), when the synchronization algorithm is appliqued the
following cases can occur:

• The document that has been modified by offline user has not been modified by
another user in the system. In this case, the changes can be applied directly.

340 G. Guerrero-Contreras et al.

• The document that has been modified by offline user also has been modified by
other user. But there are not conflicting changes. In this case, the repository ser-
vice automatically integrates both changes in the document. We have deemed that
a conflictive change is when two or more users modify the same position of the
document (the same byte). There are other options, such as consider conflictive
modify the same word or phrase. Due to if two users modify the same phrase un-
knowingly the resulting phrase would be probably inconsistent.

• The document that has been modified by offline user also has been modified by
other user. There are conflicting changes. In this situation, the repository service
creates a parallel version of the document with the changes of the disconnected us-
er. Thus, two or more versions of the documents are maintaining. The users them-
selves are responsible to resolve the conflict. The repository service only has the
responsibility to ensure that do not miss a single user’s change.

Fig. 5. Behavior of repository service when a reconnection occurs

This way, the consistency can be guaranteed, due to if there are conflicting mod-
ifications, these are saved in different versions of the document and none modification
is lost. There are other strategies to maintain the consistency of shared documents
when there are multiple writers [32]. For example, lock a document when there is a
writer. This approach is simpler to implement, however, a tool that implements this
approach really is not a collaborative tool, because users cannot write collaboratively
in real time. Other derived approaches are interesting. For example, only some parts
of a document can be locked. A weakness of this approach is that a disconnected user
cannot lock the document, but even so it could uses this approach combined with
others.

 Designing a Service Platform for Sharing Internet Resources in MANETs 341

With regard to the repository service, we must note that the implemented synchro-
nization algorithms are independent of client editor application. Consequently, the
repository service can be used in any text editor conforming to the adopted event
model. For last, underscore that it has not been necessary modify the monitoring ser-
vice (see section 3.1), this service is sufficiently flexible to adapt to any shared re-
source. On the contrary, the synchronization service has been extended, through inhe-
ritance, to adapt to the shared resources of the case, text documents.

5 Discussion

With the objective of obtaining a higher acceptance in the use of advanced applica-
tions in MANET networks, the service platform presented in this paper intends to
address the following requirements:

• Interoperability. As shows Figure 3, though the networks are not directly con-
nected however, they can interoperate through services proposed due to service
replicas.

• Adaptability. The designed services are not an ad-hoc solutions, the proposal is a
generic solution that can be adapted to any shared resource type. On one hand, for
the monitoring service this is possible due to event-driven approach (see section
3.1). On the other hand, for the synchronization service this is not possible. In this
case, the synchronization service is designed as a generic service that can be ex-
tended through inheritance to adapt it to any shared resource type (see section 3.2).

• Platform-independent. Owing to use a SOA-based approach and to standards of
publications, communications and access, the services implemented are platform-
independent.

• Offline operations. As it has been explained above, this proposal is specially
oriented to allow offline operations. This is particularly interesting in environments
with problems maintaining connections, where disconnection of devices and net-
work partitions are frequent. This feature is achieved owing to replication tech-
niques, caching and the designed protocols to obtain ordered events.

However, some problems could be found such as network congestion, for instance,
in collaborative document editing (see section 4). In this case, due to the synchroniza-
tion is at low level (character/byte), each time that a character is introduced or deleted
an event is generated and published. In a case with many users and many modifica-
tions, would be possible generate and transmit too many events. To solve this prob-
lem, would be possible synchronize at word level or study other possibilities such as
partly block the documents when a writer is present in a particular document area.
This will reduce the events generated in the system.

Moreover, use a SOA-based approach entails some issues to consider [33], particu-
larly in large systems. Amongst other issues, it should be taken into consideration that
when a service is integrated and working in a large system, before to modify it an
impact study is necessary. This may limit system evolution, besides, as the system
grows could be more complicated conforming to all standards of SOA approach.

342 G. Guerrero-Contreras et al.

6 Conclusions and Future Work

The service platform presented in this paper is a combination of a distributed compu-
tation techniques and event-driven and service-based architectures. The platform is
composed of an underlying event-driven communication middleware which provides
a publish/subscribe service to propagate the events. Over this middleware two servic-
es are disposed: the monitoring service, a basic service, which monitors and stores
any event of the system and the synchronization service which process these events
(provided them by monitoring service) in order to synchronize the replicas of shared
resources. Besides, these services have been developed with the aim of being generic
services. The monitoring service is reusable and it can be used with any resource type
and no need to modify its code. However, the synchronization service needs to be
adapted to the resource, depending on its type and the required use in a particular
system. This is due to the synchronization algorithms are dependent of the resource
type. Therefore, the common part related to manage the resource synchronization is
identified and solved in the service, and the issues related with particular requirements
of resources are addressed in service specialization.

The proposal presented especially addresses the case of systems that exhibit dis-
continuous operation. For this reason, the platform has been designed to make sure
that synchronization service always gets the right events sequence. Even with the
possibility of some devices are working offline or with network partitions. This is
achieved, in particular, using a time server, adding timestamps to events and using
Lamport’s algorithm [28] to determine the order of events in the distributed computer
system.

Besides, replication and caching techniques have been used in order to achieve lo-
calized scalability and high availability of the proposed services. Additionally, to get
a better fulfillment of the applications requirements, the services have been designed
for they can be deployed within the middleware, in order to obtain efficiency, regard-
less middleware overload is increased; on the middleware, when exists device in the
network working as a server; or in a cloud infrastructure, in order to provide benefits
such as accessibility and scalability. This way, flexibility of the platform is increased
and it can provide greater adaptation of the system to the requirements of a particular
application.

Moreover, for validity purposes of the proposal, the synchronization service has
been specialized into a document repository service. The repository service imple-
ments application-independent algorithms to synchronize consistently text documents
in collaborative environments. Consequently, the repository service can be used in
any text editor conforming to the adopted event model. Besides, there are no restric-
tions about maximum disconnection time, while the user device has space to store
local events, the user can continue working. With the use of the resulting repository
service, users can edit document collaboratively in real time when they have connec-
tion with the system, and also they can edit the documents when they are offline.
These documents will be synchronized when the connection recovers.

 Designing a Service Platform for Sharing Internet Resources in MANETs 343

For last, the proposal platform seeks for benefits such as reusability, scalability,
availability, interoperability, low coupling with platforms and its design facilitates
offline operations.

Regarding future work, a depth study of the specific synchronization requirements
of certain applications will be carried out, in order to provide synchronizations algo-
rithms and assess adaptability and performance of the proposed platform. Additional-
ly, a performance study of system is foreseen.

Moreover, the proposed platform will applied in ambits such as context in-
formation management; and semantic annotation tools for web, under which a high
level of collaborative capabilities is desirable. Finally, the platform will integrate
other high levels services, such as a location service [34], in a largest platform for
context-aware and ubiquitous systems.

Acknowledgments. This research work has been funded by the Ministry of Economy
and Competitiveness of the Spanish Government under the Research Project
TIN2012-38600 and by the Vice-Rector's for Scientific Policy and Research of the
University of Granada.

References

1. Satyanarayanan, M.: Pervasive computing: Vision and challenges. IEEE Personal Com-
munications 8(4), 10–17 (2001)

2. Bansal, M., Rajput, R., Gupta, G.: Mobile ad hoc networking (MANET): Routing protocol
performance issues and evaluation considerations (1999)

3. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Zaharia, M.: A
view of cloud computing. Communications of the ACM 53(4), 50–58 (2010)

4. Gilder, G.: The information factories. Wired 14(10) (2006)
5. Cusumano, M.: Cloud computing and SaaS as new computing platforms. Communications

of the ACM 53(4), 27–29 (2010)
6. Davidson, S.B., Garcia-Molina, H., Skeen, D.: Consistency in a partitioned network: a sur-

vey. ACM Computing Surveys (CSUR) 17(3), 341–370 (1985)
7. Xu, B., Wolfson, O.: Data management in mobile peer-to-peer networks. In: Ng, W.S.,

Ooi, B.-C., Ouksel, A.M., Sartori, C. (eds.) DBISP2P 2004. LNCS, vol. 3367, pp. 1–15.
Springer, Heidelberg (2005)

8. Perich, F., Joshi, A., Chirkova, R.: Data Management for Mobile Ad-Hoc Networks. In:
Enabling Technologies for Wireless E-Business, pp. 132–176. Springer, Heidelberg (2006)

9. Ghandeharizadeh, S., Helmy, A., Krishnamachari, B., Bar, F., Richmond, T.: Data Man-
agement Techniques for Continuous Media in Ad-Hoc Networks of Wireless Devices. In:
Furht, B. (ed.) Encyclopedia of Multimedia. Springer, Heidelberg (2008)

10. MacKenzie, C.M., Laskey, K., McCabe, F., Brown, P.F., Metz, R., Hamilton, B.A.: Refer-
ence model for service oriented architecture 1.0.OASIS Standard, 12 (2006)

11. Pasley, J.: How BPEL and SOA are changing Web services development. IEEE Internet
Computing 9(3), 60–67 (2005)

12. Schroth, C., Janner, T.: Web 2.0 and SOA: Converging concepts enabling the internet of
services. IT Professional 9(3), 36–41 (2007)

344 G. Guerrero-Contreras et al.

13. Zeadally, S., Hunt, R., Chen, Y.S., Irwin, A., Hassan, A.: Vehicular ad hoc networks
(VANETs): status, results, and challenges. Telecommunication Systems 50(4), 217–241
(2012)

14. Studer, A., Shi, E., Bai, F., Perrig, A.: TACKing together efficient authentication, revoca-
tion, and privacy in VANETs. In: 6th Annual IEEE Communications Society Conference
on Sensor, Mesh and Ad Hoc Communications and Networks, SECON 2009, pp. 1–9.
IEEE (2009)

15. Godbole, V.: Intelligent Driver Mobility Model and Traffic Pattern Generation based Op-
timization of Reactive Protocols for Vehicular Ad-hoc Networks. International Journal of
Information and Network Security (IJINS) 2(3), 207–215 (2013)

16. Reina, D.G., Toral, S.L., Barrero, F., Bessis, N., Asimakopoulou, E.: Evaluation of ad hoc
networks in disaster scenarios. In: 2011 Third International Conference on Intelligent
Networking and Collaborative Systems (INCoS), pp. 759–764. IEEE (November 2011)

17. Reina, D.G., MaríN, S.L., Bessis, N., Barrero, F., Asimakopoulou, E.: An evolutionary
computation approach for optimizing connectivity in disaster response scenarios. Applied
Soft Computing (2012)

18. Reina, D.G., Toral, S.L., Barrero, F., Bessis, N., Asimakopoulou, E.: Modelling and as-
sessing ad hoc networks in disaster scenarios. Journal of Ambient Intelligence and Huma-
nized Computing, 1–9 (2012)

19. Cordeiro, C.D.M., Agrawal, D.P.: Ad hoc and sensor networks: theory and applications.
World Scientific (2011)

20. Islam, N., Shaikh, Z.: A survey of data management issues & frameworks for mobile ad
hoc networks. In: 2011 International Conference on Information and Communication
Technologies (ICICT), pp. 1–5. IEEE (July 2011)

21. Svensson, E., Vetter, C., Werner, T.: Data consistency in a heterogeneous IT landscape: a
service oriented architecture approach. In: Proceedings of the Eighth IEEE International
Enterprise Distributed Object Computing Conference, EDOC 2004, pp. 3–8. IEEE (Sep-
tember 2004)

22. Selanikio, J.D., Kemmer, T.M., Bovill, M., Geisler, K.: Mobile computing in the humani-
tarian assistance setting: an introduction and some first steps. Journal of Medical Sys-
tems 26(2), 113–125 (2002)

23. Rahbar, A.: An E-Ambulatory Healthcare System Using Mobile Network. In: 2010 Se-
venth International Conference on the Information Technology: New Generations (ITNG),
pp. 1269–1273. IEEE (April 2010)

24. Sancristobal, E., Martin, S., Gil, R., Orduna, P., Tawfik, M., Pesquera, A., Castro, M.:
State of art, Initiatives and New challenges for Virtual and Remote Labs. In: 2012 IEEE
12th International Conference on Advanced Learning Technologies (ICALT), pp. 714–
715. IEEE (July 2012)

25. Kahiigi, E., Ekenberg, L., Hansson, M.: Exploring the e-Learning State of art. In: Confe-
rence on E-Learning, Academic Conferences Limited, pp. 349–368 (2007)

26. Rodríguez-Domínguez, C., Benghazi, K., Garrido, J.L., Valenzuela, A.: A platform sup-
porting the development of applications in ubiquitous systems: the collaborative applica-
tion example of mobile forensics. In: Proceedings of the 13th International Conference on
Interacción Persona-Ordenador, p. 41. ACM (2012)

27. Rodríguez-Domínguez, C., Benghazi, K., Noguera, M., Garrido, J.L., Rodríguez, M.L.,
Ruiz-López, T.: A Communication Model to Integrate the Request-Response and the Pub-
lish-Subscribe Paradigms into Ubiquitous Systems. Sensors 12(6), 7648–7668 (2012)

28. Lamport, L.: Time, clocks, and the ordering of events in a distributed system. Communica-
tions of the ACM 21(7), 558–565 (1978)

 Designing a Service Platform for Sharing Internet Resources in MANETs 345

29. Hara, T.: Effective replica allocation in ad hoc networks for improving data accessibility.
In: Proceedings of the IEEE Twentieth Annual Joint Conference of the IEEE Computer
and Communications Societies, INFOCOM 2001, vol. 3, pp. 1568–1576. IEEE (2001)

30. Karumanchi, G., Muralidharan, S., Prakash, R.: Information dissemination in partitionable
mobile ad hoc networks. In: Proceedings of the 18th IEEE Symposium on Reliable Distri-
buted Systems, pp. 4–13. IEEE (1999)

31. Barbará, D., Imieliński, T.: Sleepers and workaholics: caching strategies in mobile envi-
ronments. ACM Sigmod Record 23(2), 1–12 (1994)

32. Posner, I.R., Baecker, R.M.: How people write together [groupware]. In: Proceedings of
the Twenty-Fifth Hawaii International Conference on System Sciences, vol. 4, pp. 127–
138. IEEE (1992)

33. Lewis, G.A., Morris, E., Simanta, S., Wrage, L.: Common misconceptions about service-
oriented architecture. In: Sixth International IEEE Conference on Commercial-off-the-
Shelf (COTS)-Based Software Systems, ICCBSS 2007, pp. 123–130. IEEE (February
2007)

34. Ruiz-López, T., Rodríguez-Domínguez, C., Noguera, M., Garrido, J.L.: Towards a Reusa-
ble Design of a Positioning System for AAL Environments. In: Chessa, S., Knauth, S.
(eds.) EvAAL 2011. CCIS, vol. 309, pp. 65–79. Springer, Heidelberg (2012)

A Model-Driven Approach for Web Service
Adaptation Using Complex Event Processing

Yéhia Taher1, Juan Boubeta-Puig2, Willem-Jan van den Heuvel1,
Guadalupe Ortiz2, and Inmaculada Medina-Bulo2

1 European Research Institute for Service Science,
Tilburg University, The Netherlands

{y.taher,wjheuvel}@uvt.nl
2 Department of Computer Science and Engineering, University of Cádiz,

C/ Chile 1, 11002 Cádiz, Spain
{juan.boubeta,guadalupe.ortiz,inmaculada.medina}@uca.es

Abstract. Web Services are often developed independently and fol-
low different standards or approaches in constructing their interfaces.
Therefore, it is likely that most Web Services will be incompatible since
many services will not support the same interface. In order to solve it,
a model-driven approach is defined in this paper to automatically gen-
erate adapters between incompatible web service interfaces. In concrete,
a graphical modeling editor is developed to detect such incompatibili-
ties, create the adapters between the modeled interfaces and transform
these adapters into code. This code will be deployed into a complex
event processing engine, the software which will perform the web ser-
vice adaptation. We illustrate this approach through a case study for
two web services with incompatible interfaces. Results confirm that this
approach provides a suitable solution for web service adaptation using
complex event processing.

Keywords: Web Service adaptation, model-driven development, com-
plex event processing.

1 Introduction

Web Services (WS) provide a solution to the integration of distributed software
through the standardization of data format, interface definition language, trans-
port mechanism and other interoperability aspects such as security and quality
of service. The Web Service Description Language (WSDL) defines a WS inter-
face as a document in XML format, and a service as a set of endpoints which
operate on messages containing either document-oriented or procedure-oriented
information. The interface document provides a contract between the provider
of a service and its users, and allows some flexibility for the service provider as
it hides the implementation details.

WS interfaces define the messages and protocol which should be used to com-
municate with the service [15]. However, if two services wish to interact suc-
cessfully, they must both support the same messages and protocol through the

C. Canal and M. Villari (Eds.): ESOCC 2013, CCIS 393, pp. 346–359, 2013.
© Springer-Verlag Berlin Heidelberg 2013

A Model-Driven Approach for Web Service Adaptation 347

implementation of compatible WSDL documents. Unfortunately, this is difficult
to achieve in practice: WS are often developed independently and follow differ-
ent standards or approaches in constructing their interfaces. Furthermore, WS
compositions will often use services in ways that were not foreseen in their orig-
inal design and construction [9,11]. Therefore, it is likely that most WS will be
incompatible since many services will not support the same interface.

In order to solve such problems, adapters can be created between WS in-
terfaces. It is important to mention that the process for building these adapters
will require incompatibility identification, adaptation rules encoding and execute
code generation. However, if this process was manual then it would be extensive,
expensive and error-prone.

For that reason, Taher et al. [18] propose an approach to automate this adapter
generation process. Firstly, they define an algorithm for detecting WS incom-
patibilities. In concrete, it compares two different WS interfaces represented as
automatons, and determines what are the existing incompatibilities by means of
specific “incompatibility patterns”, defined by Li et al. [11] for detecting protocol
mismatches. Afterwards, the authors propose an algorithm for constructing such
adapters which transforms every recognized incompatibility pattern into one of
their proposed operators (“resolution patterns”) to solve both signature and pro-
tocol incompatibilities. Notice that these operators can be applied individually
or in combination to incoming messages to achieve a transformation in both the
structure, type and number of messages sent to the destination. Finally, they de-
scribe a method to run these adapters into a Complex Event Processing (CEP)
engine to execute the resolution operations.

Basically, CEP [12] is a technology that can process and analyze large amounts
of events and correlate them to detect and respond to relevant situations in real
time, making possible the creation of new events, known as “complex events”
(relevant situations), which summarize other events. In the context of WS, events
occur when SOAP messages are sent and received.

To our knowledge, there are not user-friendly enough modeling editors that
help end users to take an active part in the process of the adaptation of Web
Service using CEP. In this paper, we propose a model-driven approach which
enables end users a user-friendly visualization of the provider and client service
interfaces, the incompatibility patterns and the adapters automatically gener-
ated by such Taher’s algorithms. These patterns and adapters will be represented
as models in our approach.

Some of the main advantages of using a model-driven approach is that these
incompatibility patterns and adapters models can be validated conforming to
our defined metamodel as well as transformed into Continuous Computational
Queries (CCQ), making use of model-to-code transformations. Then, these CCQs,
written in a Continuous Computation Language (CCL), will be deployed into
a CEP engine in runtime to execute the resolution operations which will make
the WS adaptation. Furthermore, experts on WS adaptations will be able to
modify such models, from their experience, later on causing the generation of

348 Y. Taher et al.

new CCQs according to the changes introduced by these experts. Therefore, the
code of adaptation rules will be automatically created.

The rest of this paper is organized as follows. Section 2 describes the types
of incompatibilities that may exist between WS interfaces and the operators to
resolve these incompatibilities; in addition, a definition of complex event process-
ing is given. Section 3 describes a metamodel for defining the provider and client
service interfaces, the incompatibility patterns and the adapters. Afterwards,
Section 4 presents a model-driven approach for WS adaptation using CEP. Sec-
tion 6 compares related work. Finally, conclusion and future work are described
in Section 7.

2 Background

The types of incompatibilities that may exist between WS interfaces and the
operators to resolve these incompatibilities are described in this section. Fur-
thermore, the CEP technology is explained.

2.1 Web Service Incompatibilities

Incompatibilities between WS protocols can be classified as either [9,11]:

Signature Incompatibilities arise due to the differences between services in
expected message structure, content and semantics. In WS, XML schema
provides a set of “built-in” types to allow the construction of complex input
and output message types from these primitives. This flexibility in construct-
ing message types in XML often means that a message from one WS will
not be recognized by another. Therefore, there is a requirement to provide
some function that maps the schema of one message to another [13].

Protocol Incompatibilities are found when WS wish to interact but are in-
compatible because they support different message exchange sequences. For
example, if two services perform the same function, e.g., accept purchase
orders, but Service A requires a single order containing one or more items
while Service B expects an order message for each item, there is a mismatch
in their communication protocols that must be resolved in order for them to
interoperate. To solve these incompatibilities, there are two approaches: a)
to force one of the parts to support the other’s interface, or b) to build an
adapter that receives messages, converts them to the correct sequence and/or
maps them into a desired format and sends them to their destination.

2.2 Adaptation Operators

Li et al. [11] describe five basic transformation patterns that can reconcile pro-
tocol mismatches. In our previous work [19], we have developed an operator for
each of these patterns that can be applied individually or in combination to
incoming messages to achieve a transformation in both the structure, type and

A Model-Driven Approach for Web Service Adaptation 349

number of messages sent to the destination —i.e., to resolve both signature and
protocol incompatibilities.

The operators developed for each of the transformation patterns are:

– Match-Make: it translates one message type to another, solving the One-To-
One transformation.

– Split : a solution for the One-To-Many pattern, which separates one message
sent by the source into two or more messages to be received separately.

– Merge: the opposite of the Split operator —i.e., it performs a Many-To-One
transformation. It combines two or more messages into a single message.

– Aggregation: it is used when two or more of the same message from the
source service interface correspond to one message at the target service and
it is a solution for the One*-To-One transformation.

– Disaggregation: it performs the opposite function to Aggregation operator.

2.3 Complex Event Processing

CEP is a technology which can discover relationships between events through
the analysis and correlation of multiple events, and trigger and take actions (e.g.,
generate new events) from these observations. CEP platforms allow streams of
data to run through them to detect conditions that match CCQs —written in
a CCL— as they occur. As a result, CEP has an advantage in performance and
capacity compared to traditional approaches [8].

As was mentioned before, in the context of WS, events occur when SOAP
messages are sent and received. Therefore, CEP adaptation requires the plat-
form to consume incoming messages, process them and send the result to its
destination. To offer a universal solution and a scalable method for WS protocol
adaptation, we automate the generation and deployment of CCQs to transform
incoming message(s) into the required output message format(s) using the adap-
tation operators previously described.

3 Adaptation Metamodel

In this section, we propose and define a metamodel which has as main objective
the modeling of the provider and client service interfaces, the incompatibility
patterns and the adapters generated automatically by such Taher’s algorithms
for solving both signature and protocol incompatibility problems that may exist
between WS protocols. Furthermore, experts on WS adaptations will be able
to modify from their experience the models conformed to this metamodel and
obtained from these algorithms.

This metamodel, represented using UML class diagram, is sketched in Fig-
ure 1, where class attributes are not shown for clarity reason. These attributes
are described below:

– Service → s := (name : String, type : ServiceType), where ServiceType ∈
{Consumer, Provider}.

350 Y. Taher et al.

F
ig.1.

W
eb

Service
adaptation

m
etam

odel

A Model-Driven Approach for Web Service Adaptation 351

– ServiceElement → (name : String)
– Component → (name : String)
– IncompatibilityPatterns → i := (name : String)
– PatternBasedAdapter → p := (name : String)

Notice that ServiceElement, StandardActivity, Component, IncompatibilityPat-
tern and Operator are abstract classes.

The WebServiceAdaptation class is the core element of this metamodel which
is composed of some provider or consumer services (0..* Service) and can have one
incompatibility patterns (0..1 IncompatibilityPatterns) and one pattern based
adapter (0..1 PatternBasedAdapter). In the following subsections, these elements
will be described in detail.

3.1 Service

The Service class represents a provider or consumer service which may interact
with another service. It has two attributes: name, a string that defines service’s
name, and type, an enum type that allows to specify if the service is a consumer
or provider.

This class is composed of some service elements (0..* ServiceElement). The
abstract ServiceElement class has a string attribute to specify the name of this
element and is specialized into two classes: Activity and ActivityLink. These
classes will be used for defining the service interfaces by means of simplified
UML activity diagrams.

We have adopted activity diagram instead of automata diagram because we
consider the former is a better user-friendly representation to define service inter-
faces. Activity diagrams are graphical representations of actions and activities.
In our context, activities represent different phases a service may go through
during its interaction with clients. Each interaction is considered as an action.
When a message is sent or received, the corresponding action is fired.

The ActivityLink class represents the link between two activities: the source
activity (1..1 sourceActivity) and the target activity (1..1 targetActivity). Each
of these activities may have some inbound links (0..* inboundLink) and out-
bound links (0..* outboundLink).

The Activity class is the generalization of the following four classes: StartAc-
tivity, EndActivity, DecisionActivity and StandardActivity. StartActivity repre-
sents the initial state to begin the definition of the service interface. EndActivity
specifies the final state of the definition of the service interface. DecisionActivity
presents alternatives between activities. Finally, StandardActivity is an abstract
class which is sub-divided into two activity sub-classes: SendActivity and Re-
ceiveActivity. SendActivity specifies a message which will be sent to another
service while ReceiveActivity defines the message which will be received from
another service.

Moreover, the StandardActivity class can link to some Component class (0..*
ActivityToComponent) and vice versa, the StandardActivity can be linked by
none or more Component class (0..* ComponentToActivity). Component is an

352 Y. Taher et al.

abstract class which has a name attribute and is the generalization of Incompat-
ibilityPattern and Operator classes. These classes will be discussed in detail in
the subsequent subsections.

3.2 Incompatibility Patterns

IncompatibilityPatterns class is composed of the patterns which are used for
representing the incompatibilities between messages of different services (0..*
IncompatibilityPattern). This abstract class is sub-divided into the following
sub-classes, namely OneToOne, OneToMany, ManyToOne, OnePlusToOne and
OneToOnePlus. The meaning of these sub-classes is described in Section 2.2.

Notice that IncompatibilityPattern is a specialized class of the Component
class, so it can be linked to StandardActivity class.

3.3 Pattern-Based Adapter

PatternBasedAdapter class is composed of the operators which are used for re-
solving both signature and protocol incompatibilities (0..* Operator). This ab-
stract class is sub-divided into the following sub-classes, namely MatchMake,
Split, Merge, Aggregation and Disaggregation (see Section 2.2 for further infor-
mation about the definition of these sub-classes and their relationships with
incompatibility patterns).

Operator is a specialized class of the Component class. It can also be linked
to StandardActivity class in order to establish such incompatibilities.

4 Model-Driven Approach for Web Service Adaptation

In this section, we propose a model-driven approach for adaptation of WS us-
ing CEP. As a result, a graphical modeling editor for WS adaptation has been
implemented using Epsilon [1], a family of interoperable task-specific program-
ming languages which allows to perform common Model-Driven Development
(MDD) [16] tasks such as model validation, model-to-model transformation and
code generation, among others. The use of a graphical modeling editor provides
some advantages like domain-specific graphical elements in the modeling palette
and domain-specific modeling constraints for preventing semantically incorrect
models.

4.1 Overview

This approach comprises the following main functionalities (see Figure 2): service
interface modeling, compatibility test and incompatibibility detection, adapter
generation and CCL code generation and deployment.

A Model-Driven Approach for Web Service Adaptation 353

Fig. 2. Model-Driven Approach for Web Service Adaptation

Service Interface Modeling. This functionality aims to model the structural
interfaces described in WSDL of both the services which interact with each other.
To this end, we have created a module which will transform the WSDL code into
the XML code (model) corresponding to the activity diagrams representing such
WS interfaces in a user-friendly way. It has been possible making use of XSLT
(Extensible Stylesheet Language Transformations).

One of the advantages of our approach is that end users will be able to modify
the model of these interfaces which is conformed to our metamodel described
in Section 3. If they introduce any changes, then the constraints defined on the
metamodel using Epsilon Validation Language (EVL) will be checked. These
constraints will allow to validate if the updated models continue to be conformed
to the metamodel.

Compatibility Test and Incompatibility Detection. Once the service in-
terfaces have been modeled as activity diagrams, making them more understand-
able for end users, the obtained model will be transformed into automatons which
will received by the Taher’s algorithm to check if there are any incompatibilities
between them. If so, the model of service interfaces will be transformed into

354 Y. Taher et al.

another model containing the incompatibility patterns returned by this algo-
rithm. The model-to-model transformation is done by using Epsilon Transfor-
mation Language (ETL).

Notice that the detection of incompatibilities is formalized by specifying the
set of incompatibility patterns described in Section 2.2 —One-To-One, One-To-
Many, Many-To-One, One*-To-One and One-To-One*.

Adapter Generation. As previously mentioned, adapters are the components
which solve sets of incompatibilites found between two services. Furthermore,
these adapters are aggregations of predefined operators whose purpose is to
solve individual and specific incompatibilities.

Once the incompatibility patterns have been modeled, then they will be used
by the another Taher’s algorithm for constructing such adapters, transforming
every recognized incompatibility pattern into one of the adaptation operators
(see Section 2.2) to solve both signature and protocol incompatibilities. After-
wards, the model containing incompatibility patterns will be transformed into
another model with the adaptation operators returned by this algorithm.

Notice that the adapter generation relies on the configuration and composition
of the set of adaptation patterns described in Section 2.2 —Match-Make, Split,
Merge, Aggregation and Disaggregation.

CCL Code Generation and Deployment. Finally the model, which contains
the adapter automatically generated to solve the adaptation between WS, will
be transformed into CCL code. Then, this code will be deployed into the CEP
engine in runtime. This model-to-code transformation is done by using Epsilon
Generation Language (EGL).

As previously described, if end users introduce some changes into such model,
then the editor will be able to obtain a new CCL code corresponding the updated
model, deploying it into the CEP engine again. Further information about how
the CEP engine will work and manage this CCL code can be found in [19].

4.2 Graphical Modeling Editor

Figure 3 illustrates a screen view of the implemented graphical modeling editor.
As can be seen, there are three relevant elements in the editor: menu bar, palette
and canvas.

The menu bar has been extended with a new menu called “Canvas tools”,
which has the following functionalities:

– Importing provider and client service interfaces from WSDL files.
– Running the algorithm which compares services and detecting if there are

some incompatibilities between them.
– Exporting the results of incompatibility detection in XML format.
– Constructing adapters from the modeled services.
– Exporting the generated adapter in XML format.
– Deploying the generated CCL code into the CEP engine.

A Model-Driven Approach for Web Service Adaptation 355

The palette has also been customized, its elements have been classified into
the following five categories. Connections category contains elements for linking
activity to activity, activity to component (i.e., incompatibility pattern, or op-
erator), and component to activity. Pattern elements groups the main compart-
ments: service, incompatibility patterns and pattern-based adapter (see Section 3
for further information about these elements). Activities category integrates all
activities which allow to define services by means of activity diagrams. Finally,
Incompatibility Patterns and Operators categories present the patterns and op-
erators described in Section 2.2, respectively.

The canvas is the editor area where palette’s elements can be inserted in a
drag-and-drop fashion to modify models which conform to the metamodel de-
scribed in Section 3. These elements’ attributes may be set from the application’s
properties view.

5 Case Study

In this section, the model-driven approach defined for WS adaptation using CEP
in Section 4 is demonstrated making use of the implemented graphical editor.

5.1 Description

This case study consists of two web services. Basically, one service (the provider)
is intended to offer goods for sale and the other service (the consumer) is meant to
place orders against the provider. This provider obtains the consumer’s details,
the delivery address and returns the total price. Finally, the consumer proceeds
the online payment with his credit card.

Concretely, the provider service starts waiting that the consumer places an
order. To do this, the consumer has to send as many messages as items to be
ordered. To end an order, the consumer sends a specific message. Then, the
provider is able to calculate the total price. If the consumer agrees, it is now
required to get the consumer’s details, as well as the delivery address. The “con-
versation” is completed when the payment with credit card has been proceeded.

5.2 Evaluation

In this case study, the interfaces of both consumer and provider services are not
compatible. Particularly, the provider service starts waiting an item order list
with consumer’s complete order, instead of a message by item to be ordered.
On the other hand, the provider is waiting for a unique message that contains
delivery address and credit card number, while the consumer is sending this
information splitted into two messages. For this reason, interactions between
these services will fail.

First of all, our graphical editor will be used to automatically detect if the
interfaces of such imported two services are compatible. As a result, Figure 3

356 Y. Taher et al.

Fig. 3. Incompatibility detection

Fig. 4. Adapter generation

shows a set of incompatibility patterns detected between these service interfaces,
which are modeled as activity diagrams.

Next, the editor will generate the adapter for these interfaces. Figure 4 shows
the pattern-based adapter which sketches out the adapter behaviour which should
sit between the two services to solve their detected incompatibilities at runtime.
In particular, One*-To-One pattern has beed replaced by Aggregation, One-To-
One has been replaced by Match-Make and Many-To-One has been replaced by
Merge.

A Model-Driven Approach for Web Service Adaptation 357

Finally, the editor will be able to generate the CCL code from the model
which contains the pattern-based adapter. Then, this code will be deployed into
the Sybase engine [17], thanks to its API which allows to create, compile and
deploy CCQs in runtime.

6 Related Work

In this section, we position our work with respect to other papers about WS
incompatibilities and existing tools for WS adaptation. These tools are classified
into commercial and academic categories.

Academic research exists in resolving signature incompatibilities through the
use of semantic web technology (i.e., OWL), such as that described in [14] which
presents a context-based mediation approach to the semantic heterogeneities be-
tween composed WS. Besides, Web Service Modeling Ontology (WSMO) speci-
fication [5] provides a foundation for common descriptions of WS behavior and
operations. However, this research does not attempt to resolve the associated
problem of protocol incompatibility.

On the other hand, active research is also being performed into the adap-
tation of WS protocols, although all work we have surveyed does not tackle
both problems of signature and protocol incompatibility, and uses different ap-
proaches to our CEP-based technique. For example, although [11] presents me-
diation patterns together with corresponding BPEL templates, a technique and
engineering approach for semi-automatically identifying and resolving identify-
ing protocol mismatches and a prototype implementation (the Service Mediation
Toolkit), it does not solve the signature adaptation problem. Moreover, Brogi
and Popescu [7] propose a methodology for the automated generation of adapters
allowing to solve behavioral mismatches between BPEL processes; however, their
approach fails with signature mismatches. Similarly, [9] discusses the notion of
protocol compatibility between WS and [5] again only focusses on the protocol
mismatches, leaving data mismatches apart. Therefore, all these authors present
solutions to protocol mismatches but do not tackle the associated problem of
signature incompatibility, while our chosen approach solves both signature and
protocol incompatibilities.

According to Li et al. [11], there are many commercial tools to achieve WS
signature mediation and solve signature incompatibilities, including: Microsoft’s
Biztalk mapper [2], Altova’s MapForce [3] and Stylus Studio’s XML Mapping [4].

Regarding the existing academic tools, Aumueller et al. [6] implement a schema
matching tool called COMA++, which assists the developer to adapt new version
of existing WS; however, the generation of the mismatch tree to solve protocol
incompatibilities is not automatic. There are other tools for WS adaptation,
such as [10] and [13]. Nevertheless, in our opinion, our graphical modeling editor
improves such tools, regarding its user-friendly and usability features.

358 Y. Taher et al.

7 Conclusion and Future Work

In this paper we have proposed a model-driven approach which makes possi-
ble the automatic generation of adapters which can be created between WS
interfaces to solve their both signature and protocol incompatibility problems.
Particularly, this approach tackles four main functionalities: service interface
modeling using activity diagrams, compatibility test and incompatibility detec-
tion, adapter generation, and CCL code generation and deployment into CEP
engines.

We have used model-driven development because it hides the complexity
of languages, libraries and frameworks, and offers some degree of platform-
independence, among others. In particular, Epsilon family languages have been
used to develop this approach.

In order to show its usefulness, the implemented editor has been applied to
a case study about two web services which have incompatible interfaces. In
concrete, a service provider offering goods for sale and a client placing orders
against the provider. We can confirm that our editor, and thereby our approach,
allow the adaptation of WS using CEP in a user-friendly manner.

In our future work, we plan to apply and validate our editor on various empir-
ical experiments and real-world case studies. This will allow us to measure the
performance of adapter generation CEP-based approach as compared to other
WS adaptation approaches.

Acknowledgments. This work was partially funded by the Spanish Ministry of
Science and Innovation under the National Program for Research, Development
and Innovation, project MoD-SOA (TIN2011-27242). Juan Boubeta-Puig thanks
the hospitality received at the European Research Institute for Service Science at
Tilburg University when visiting them, where part of this work was developed.

References

1. Epsilon (2013),
http://www.eclipse.org/epsilon/

2. Microsoft BizTalk Server (2013),
http://www.microsoft.com/biztalk/en/us/default.aspx

3. Web Services Mapping (2013),
http://www.altova.com/mapforce/web-services-mapping.html

4. XML Mapping (2013),
http://www.stylusstudio.com/xml_mapper.html

5. Ardissono, L., Furnari, R., Petrone, G., Segnan, M.: Interaction Protocol Media-
tion in Web Service Composition. International Journal of Web Engineering and
Technology 6(1), 4–32 (2010)

6. Aumueller, D., Do, H., Massmann, S., Rahm, E.: Schema and Ontology Matching
with COMA++. In: Proceedings of the International Conference on Management
of Data, pp. 906–908. ACM, New York (2005)

7. Brogi, A., Popescu, R.: Automated Generation of BPEL Adapters. In: Dan, A.,
Lamersdorf, W. (eds.) ICSOC 2006. LNCS, vol. 4294, pp. 27–39. Springer, Heidel-
berg (2006)

http://www.eclipse.org/epsilon/
http://www.microsoft.com/biztalk/en/us/default.aspx
http://www.altova.com/mapforce/web-services-mapping.html
http://www.stylusstudio.com/xml_mapper.html

A Model-Driven Approach for Web Service Adaptation 359

8. Chandy, K.M., Schulte, W.R.: Event Processing: Designing IT Systems for Agile
Companies. McGraw-Hill, USA (2010)

9. Dumas, M., Benatallah, B., Nezhad, H.: Web Service Protocols: Compatibility and
Adaptation. IEEE Data Engineering Bulletin 31, 40–44 (2008)

10. Kongdenfha, W., Motahari-Nezhad, H., Benatallah, B., Casati, F., Saint-Paul, R.:
Mismatch Patterns and Adaptation Aspects: A Foundation for Rapid Development
of Web Service Adapters. IEEE Transactions on Services Computing 2(2), 94–107
(2009)

11. Li, X., Fan, Y., Madnick, S., Sheng, Q.Z.: A Pattern-Based Approach to Proto-
col Mediation for Web Services Composition. Information and Software Technol-
ogy 52(3), 304–323 (2010)

12. Luckham, D.C.: The Power of Events: An Introduction to Complex Event Process-
ing in Distributed Enterprise Systems. Addison-Wesley, USA (2001)

13. Motahari Nezhad, H.R., Benatallah, B., Martens, A., Curbera, F., Casati, F.: Semi-
Automated Adaptation of Service Interactions. In: Proceedings of the 16th Inter-
national Conference on World Wide Web, pp. 993–1002. ACM, New York (2007)

14. Mrissa, M., Ghedira, C., Benslimane, D., Maamar, Z., Rosenberg, F., Dustdar, S.:
A Context-Based Mediation Approach to Compose Semantic Web Services. ACM
Transactions on Internet Technology 8(1) (November 2007)

15. Papazoglou, M.: Web Services: Principles and Technology. Pearson Education
(2008)

16. Stahl, T., Voelter, M.: Model-Driven Software Development: Technology, Engineer-
ing, Management, 1st edn. Wiley (May 2006)

17. Sybase: SAP Sybase Event Stream Processor (2013),
http://www.sybase.com/products/financialservicessolutions/
complex-event-processing

18. Taher, Y., Ait-Bachir, A., Fauvet, M., Benslimane, D.: Diagnosing Incompatibili-
ties in Web Service Interactions for Automatic Generation of Adapters. In: Inter-
national Conference on Advanced Information Networking and Applications, pp.
652–659 (May 2009)

19. Taher, Y., Parkin, M., Papazoglou, M.P., van den Heuvel, W.-J.: Adaptation of
Web Service Interactions Using Complex Event Processing Patterns. In: Kap-
pel, G., Maamar, Z., Motahari-Nezhad, H.R. (eds.) Service Oriented Computing.
LNCS, vol. 7084, pp. 601–609. Springer, Heidelberg (2011)

http://www.sybase.com/products/financialservicessolutions/complex-event-processing
http://www.sybase.com/products/financialservicessolutions/complex-event-processing

C. Canal and M. Villari (Eds.): ESOCC 2013, CCIS 393, pp. 360–369, 2013.
© Springer-Verlag Berlin Heidelberg 2013

An ESB-Based Infrastructure for Event-Driven
Context-Aware Web Services

Laura González1 and Guadalupe Ortiz2

1 Instituto de Computación, Facultad de Ingeniería,
Universidad de la República, Uruguay

lauragon@fing.edu.uy
2 UCASE Software Engineering Group,

University of Cádiz, C/ Chile, 1.11002 Cádiz, Spain
guadalupe.ortiz@uca.es

Abstract. Web services are nowadays one of the preferred technologies to im-
plement service-oriented architectures and to communicate distributed applica-
tions. On the other hand, context-awareness is highly demanded for distributed
applications. However, even though there are excellent tools and frameworks
for service development, getting services to be context-aware is still under
investigation. In turn, an Enterprise Service Bus (ESB) is a standards-based in-
tegration platform, which provides mediation capabilities (e.g. routing, trans-
formation). ESBs are being increasingly used in conjunction with Complex
Event Processing (CEP) engines to support event-driven architectures scenarios.
In this regard, this paper proposes an ESB-based infrastructure which, leverag-
ing its mediation capabilities and a CEP engine, allows the construction of con-
text-aware web services. Concretely, CEP techniques are used to detect the
complex situations that may affect services and mediation mechanisms are used
to adapt service requests and responses to make them context-aware.

Keywords: web services, context-awareness, complex event processing, enter-
prise service bus.

1 Introduction

Thanks to the use of XML-based protocols for interface description –WSDL- and
message exchange –SOAP-, among other facts, web services provide us with a loose-
ly-coupled and platform-independent communication among distributed systems. This
is why they have become an efficient solution for the implementation of distributed
systems in which modularity and communication among third parties are key factors.

On the other hand, context-aware software solutions have hugely increased in pop-
ularity and are highly demanded, especially by mobile users. The great amount of de-
vices and their continuous use clearly illustrate the importance of access not only to
desktop services but also to mobile ones. It is important to mention that, even though
context awareness seems to be strongly associated with mobile applications, many
users start to demand desktop context-aware applications, therefore both markets are
relevant for software developers.

 An ESB-Based Infrastructure for Event-Driven Context-Aware Web Services 361

Even though there are excellent tools and frameworks for service development, their
adaptation to context has not been properly focused on to date. This is an emerging
field in which many industry and scientific community are starting to provide their
proposals. However there are not clear solutions in the scope of web services. In the
past, we proposed a method for adapting services to the invoking device [1] as well as
to adapt them to the client-specific context [2]; in this paper, we will go one step fur-
ther setting the basis in order to tackle their adaptation also to the external context
making use of an Enterprise Service Bus (ESB) and Complex Event Processing (CEP)
according to the envisaged architecture presented in [3]. In this regard, first of all, the
proposed solution leverages well-known ESB mediation patterns (e.g. transformation)
in order to adapt services to context transparently, not only for the final user but also
for the service developer. Secondly, complex event processing has been used to
analyze the events received from external sources to detect relevant situations for the
context of the service in question. Finally, a context reasoner which provides the trans-
formations to be done depending on the context events has been provided.

The rest of the paper is organized as follows: Section 2 provides background on
context-awareness, complex event processing, ESB patterns and an adaptive ESB in-
frastructure. Then, Section 3 explains the proposed infrastructure which makes use of
the ESB and the CEP engine. Afterwards, Section 4 outlines main related work. Final-
ly, conclusions and future work are provided in Section 5.

2 Background

This section provides background on context-awareness, CEP, ESB patterns and on
an Adaptive ESB. These concepts and solutions are the basis for our proposal.

2.1 Context-Awareness

Abowd et al.’s context definition in [4] is specially well-known –page 3, section 2.2:
“Context is any information that can be used to characterize the situation of an entity.
An entity is a person, place, or object that is considered relevant to the interaction
between a user and an application, including the user and applications themselves”.

In this regard, a system is context-aware if it uses the context to provide relevant
information or services to the user, adapting the system behavior to the particular
needs of a specific user.

A context-classification can be found at [5]; in this paper we will focus on the en-
vironmental context, which describes the environmental conditions of both user and
services. Sensors or specific services are normally used in order to provide such kind
of information as location, weather, noise, social events, etcetera. This type of context
will imply adapting the information sent to the client; for instance, if the user is in a
location where it is raining when searching for cultural activities, outdoors ones will
be avoided.

362 L. González and G. Ortiz

2.2 Complex Event Processing

CEP [6] is a technology that provides a set of techniques to help discover complex
events by analyzing and correlating other basic and complex events. Therefore, CEP
allows the detection of complex and meaningful events, known as situations, and
inferring valuable knowledge for end users.

In order to detect complex events, event queries have to continuously monitor
incoming streams of simple events [7]. These queries specify situations as a combina-
tion of simple events occurring, or not occurring, over time. One approach to imple-
ment event queries is by using production rules. This approach is followed by various
well-known products like Drools Fusion1, which is the component of the Drools plat-
form providing CEP support.

These events will help make decisions when necessary and will ensure that servic-
es do not only exchange messages between them, but also publish events and receive
event notifications from others. For this purpose, an Enterprise Service Bus (ESB)
will be necessary to process, enrich and route messages between services of different
applications. Further information on the integration of CEP with SOA in other scena-
rios can be found at [9].

2.3 ESB Patterns

ESB behavior has been characterized through different patterns. This section reviews
the relevant connectivity and mediation patterns for this work.

Connectivity patterns specify high level integration styles for ESB-based solu-
tions [10]. For example, service virtualization patterns take an existing service and
deploy a new virtual service in the ESB. These patterns introduce a point of mediation
in the ESB, between the client and target service, which can be used to route and
transform messages, among others. Gateway patterns are used to apply a common set
of mediations to all incoming and/or outgoing messages (e.g. security related media-
tions). Event-driven integration patterns deals with distribution of events through the
ESB and the integration with CEP engines. In particular, the event distributor pattern
allows the distribution of events to multiple interested parties, the event extractor
pattern monitors interactions across the ESB and passes relevant events to a CEP
engine, and the event reactor pattern extends the previous one by synchronically inte-
racting with a CEP engine to be informed if the latest event has triggered a complex
event.

Mediation patterns specify families of mediation operations that can be per-
formed over messages passing through the ESB [11][12]. Two commonly supported
types of mediation operations are routing and transformation. Routing patterns dy-
namically determines the message path according to different factors. For example,
the content-based routing pattern determines the message path based on its content

1 http://www.jboss.org/drools/drools-fusion.html

 An ESB-Based Infrastructure for Event-Driven Context-Aware Web Services 363

and the itinerary-based routing determines the message destination based on an itine-
rary included in the message itself [13]. Transformation patterns deal with the runtime
transformation of messages [14]. In particular, the content transformation pattern deal
with data transformation (e.g. data model transformation, data format transformation
[15]), the content enrichment pattern consists of complementing the message content
with data obtained from other sources and the content filter patterns consist of remov-
ing unimportant data items from messages.

2.4 Adaptive ESB Infrastructure

This section describes the Adaptive ESB Infrastructure proposed in [16], which has
the goal of dynamically and automatically dealing with adaptation requirements in
service based systems at runtime.

The proposed adaptive solution assumes that services communicate by sending
messages through the ESB, applying service virtualization patterns. The approach to
achieve adaptation at runtime is to intercept all incoming ESB messages and, if an
adaptation is required for the invoked service, drive them through adaptation flows.
These flows include all the mediations steps (e.g. transformations, routings) required
to carry out a specific adaptation strategy (e.g. invoke an equivalent service). In order
to know if an adaptation is required for a specific service, the infrastructure maintains
a table with adaptation directives for each service. These directives are generated
based on monitored service properties and service level requirements.

In order to show the general operation of the infrastructure, Fig. 1 presents an ex-
ample of an adaptation flow which consists of applying a transformation before in-
voking the target service.

Fig. 1. Adaptive ESB Infrastructure

First, the client sends a message through the ESB (1) to invoke the target service.
The message is intercepted by an adaptation gateway following the gateway pattern.
Given that there is an adaptation directive for the invoked service, the adaptation ga-
teway attaches an adaptation flow to the message and routes it to the first step in the
flow (2), following the itinerary-based routing pattern. After the required transforma-
tion (also specified in the message) is performed, the message is routed to the next
step in the flow (3) which finally invokes the target web service (4).

364 L. González and G. Ortiz

3 The Proposed ESB-Based Infrastructure

This section presents the proposed solution which, leveraging ESB and CEP capabili-
ties, allows the construction of context-aware web services. The examples in this
section are an adaptation of the ones presented in [17].

3.1 General Description

The approach consists of applying service virtualization patterns to build and expose
context-aware services through the ESB, based on services which are not necessarily
context-aware. The context-aware adaptation logic is executed within the ESB, using
its mediation capabilities, and it is automatically generated according to the situations
in which the invoking users are. These situations are detected, thanks to their previous
definition in the CEP engine, as complex events that are triggered based on the con-
textual data arriving to the ESB from different sources. Fig. 2 presents a high level
view of the proposed architecture.

Fig. 2. General Architecture

Contextual data producers provide different type of contextual data to the ESB in
the form of events. The CEP Engine receives contextual data through the ESB (event
distributor pattern) and, based on rules deployed in the engine, detects the complex
situations in which users are. The Context Reasoner receives these situations and
automatically generates the required adaptations for each configured service. Finally,
the ESB receives these adaptations for each pair (user, service) and, when an invoca-
tion arrives, applies these adaptations leveraging the ESB mediation capabilities.

3.2 Receiving Contextual Data

Contextual data are obtained from the providers as events, configuring the built-in
connectivity capabilities that ESBs offer. The received events are then passed to the
CEP Engine. Table 1 presents different examples for types of contextual data.

 An ESB-Based Infrastructure for Event-Driven Context-Aware Web Services 365

Table 1. Examples of Contextual Data

Contextual Data Description Structure Example

Weather in City It specifies the weather condi-
tions in a city.

 [city, temp, rain?] (Madrid, 17°C, true)

User Location It specifies the current geo-
graphic coordinates of a user.

 [userId, lat, long] (jsmith, 40.41, -3.71)

3.3 Detecting Situations

Situations are detected as complex events by the CEP Engine. In order to specify
when a user is in a particular situation, a set of rules have to be deployed within the
engine for each situation. These rules can be based on: the received contextual data,
other detected situations and utility functions. Table 2 shows some situations that can
be detected using the examples of contextual data presented in section 3.2 and the
required elements in order to detect them.

Table 2. Examples of Situations

Situation Description Elements to Detect the Situation

InCity The user is in a specific city. Contextual Data: User Location

Utility Function: getCityFromCoords (lat, long)

InCityRaining The user is in a city where it
is raining.

 Contextual Data: Weather in City

Situations: InCity

In order to specify the rules to detect these situations, many languages can be used.

In the following examples, the Drools Rule Language (DRL) is used to exemplify.
Fig. 3 presents a DRL Rule to trigger the InCity situation. Concretely, whenever user
location data are received, the utility function getCityFromCoords is used to get the
current city of the user and trigger an InCity event with this information.

Fig. 3. DRL Rule to Trigger the InCity Situation

366 L. González and G. Ortiz

3.4 Configuring Context-Aware Adaptations

In order to adapt services according to the situations in which the invoking users are,
the following data have to be configured in the Context Reasoner: i) the situations
which affect each service; ii) the adaptations to be applied in each case; iii) the mo-
ment to apply these adaptations (i.e. in the service request or response).

As an example, consider an Attractions service with an operation named getAttrac-
tions which optionally receives the name of a city and returns a list of attractions. For
each attraction the following data is returned: name, short description, long descrip-
tion and a Boolean value indicating if the attraction involves outdoor activities. Table
3 presents some adaptations that can be configured for this service, according to the
situations presented in Section 3.3, and the required mediation patterns to implement
these adaptations.

Table 3. Configuration of Adaptations

Situation Adaptation / Moment Pattern

InCity Add to the request the optional parameter to
specify the city.

 Content Enrichment

InCityRaining Remove from the response the attractions in-
volving outdoor activities.

 Content Filter

In order to implement the adaptations, the mediation patterns which are used in

each one of them have to be configured with all the required information. For in-
stance, in the first adaptation of Table 3, an XSLT transformation can be specified for
the content enrichment pattern so that SOAP request messages can be transformed by
adding the city parameter. Note that these adaptations are not going to be completely
specified until a specific situation is detected for a user, i.e., in the aforesaid XSLT
transformation the concrete city is not specified at this time.

An ESB can provide different implementations for a given mediation pattern. For
instance, the content transformation pattern is usually implemented through XSLT
transformations or template engines. Also, ESBs are designed to be easily extended,
for example, with new mediation patterns and new implementations for them. In this
way, if a complex transformation logic is required (e.g. language translation) the
proper implementation (e.g. using an external translation service) can be set up in the
ESB using its extensibility mechanisms.

Finally, the adaptations for each service have to be prioritized so that the ESB
knows which one applies first, in case more than one has to be performed.

3.5 Adapting Services within the ESB

After configuring the adaptations for each service, when the Context Reasoner rece-
ives information regarding the situation of a user, it can automatically generate the
required adaptation logic to be performed for the pair (user, service) and communicate

 An ESB-Based Infrastructure for Event-Driven Context-Aware Web Services 367

it to the ESB. For example, assuming that the Context Reasoner was informed that the
users “jsmith” and “awright” are in Madrid and London, respectively, Table 4
presents two different concrete adaptations, to be sent to the ESB, resulting from the
first adaptation of Table 3.

Table 4. Adaptations to be Applied in the ESB

Service / Operation User Adaptation

AttractionsService / getAttractions jsmith XSLT transformation adding the Madrid value, for
the city parameter, in the SOAP request.

AttractionsService / getAttractions awright XSLT transformation adding the London value,
for the city parameter, in the SOAP request.

This way, users receive different results from the Attractions service according to

their specific situation, in this case, the city where they currently are.
In order to dynamically apply these adaptations within the ESB, the Adaptive ESB

Infrastructure presented in Section 2.4 is used. Concretely, the information which is
sent to the ESB is treated as adaptation directives to be applied to the invocations to
the Attractions service coming from the specified users. To this end, the Adaptive
ESB Infrastructure was enhanced to consider users information in the requests.

4 Related Work

This section highlights the main research on the use of complex-event processing for
context-awareness and approaches for context-aware service implementation.

Most of the work found in the context adaptation area specially focuses on client
side adaptation. We can mention, for instance, the paper from Laakko and Hiltunen
[18] where content adaptation is done through a proxy. They focus on adapting
XHTML (Extensible Hypertext Markup Language) with XHTML MP (XHTML mo-
bile profile) and WML (Wireless Markup Language). Another example is URICA
[19]: a technique for automatic content adaptation for mobile devices presented by
Mohomed et al. The system can learn through interaction with the user, identifying
the most relevant context for the latter. It is very interesting work, but it overheads the
client computation.

The paper from Gilman et al [20] also deserves special mention. They provide a
framework for adapting services to context through a complex architecture composed
of several components, among them a context-reasoner, context discoverer and ob-
servers, handlers and managers. There are also systems based on multi-agents, such as
the one presented by Fraile et al [21], which uses them for implementing context-
aware computing for home care. Sheng et al [22] proposes ContextUML: a modeling
language for context-aware model-driven web services. Several years later they im-
proved their proposal supplying [23] a platform for developing context-aware web
services. This platform, named ContextServ, is based on ContextUML and provides

368 L. González and G. Ortiz

an integrated environment where developers can specify and deploy context-aware
services as well as generating BPEL code. The main drawback of this proposal is the
rather complex way in which context has to be modeled; it requires a high learning
curve and it does not seem to be intuitive for a software developer. Follow-ups on the
project are more focused on BPEL compositions [24], or user personalization [25]. In
any case, none of these works takes advantage of the use of the ESB and CEP, which
leverages the context-aware system usability and maintenance. A thorough analysis of
context-awareness related work can be found in [5].

To sum up, our proposal mainly differs from others in benefiting from the advan-
tages of the use of CEP and an ESB to adapt services to context information in a de-
coupled way, where the context can be automatically detected through real time
events.

5 Conclusions

Even though context-awareness is an important capability in current distributed sys-
tems, solutions to provide context-aware web services are still under investigation.
This paper addresses this issue by proposing an ESB-based infrastructure which, leve-
raging its mediation capabilities and a CEP engine, allows the construction of context-
aware web services. CEP techniques are used to detect complex situations that may
affect services and mediation mechanisms are used to adapt services requests and
responses to make them context-aware. The proposal benefits from a transparent
adaptation of services and from the ability of processing several context sources in-
formation thanks to the use of CEP.

Acknowledgments . G. Ortiz acknowledges the support from Ministerio de Ciencia e
Innovación (TIN2011-27242)

References

1. Ortiz, G., Garcia de Prado, A.: Improving Device-Aware Web Services and their Mobile
Clients through an Aspect-Oriented, Model-Driven Approach. Information and Software
Technology Journal 52(10), 1080–1093 (2010)

2. Ortiz, G., Garcia de Prado, A.: Web Service Adaptation: A unified approach versus mul-
tiple methodologies for different scenarios. In: 5th International Conference on Internet
and Web Applications and Services, pp. 569–572. IEEE CS Press, California (2010)

3. Ortiz, G., Boubeta-Puig, J., García de Prado, A., Medina-Bulo, I.: Towards Event-Driven
Context-Aware Web Services. In: Adaptive Web Services for Modular and Reusable
Software Development: Tactics and Solutions, pp. 148–159. IGI Global (2012)

4. Abowd, G.D., Dey, A.K.: Towards a Better Understanding of Context and Context-
Awareness. In: Gellersen, H.-W. (ed.) HUC 1999. LNCS, vol. 1707, pp. 304–307. Sprin-
ger, Heidelberg (1999)

5. García de Prado, A., Ortiz, G.: Context-Aware Services: A Survey on Current Proposals.
In: 3rd International Conferences on Advanced Service Computing, pp. 104–109. Xpert
Publishing Services, Italy (2011)

 An ESB-Based Infrastructure for Event-Driven Context-Aware Web Services 369

6. Luckham, D.: The Power of Events: An Introduction to Complex Event Processing in Dis-
tributed Enterprise Systems. Addison-Wesley, MA (2002)

7. Eckert, M., Bry, F., Brodt, S., Poppe, O., Hausmann, S.: A CEP Babelfish: Languages for
Complex Event Processing and Querying Surveyed. In: Helmer, S., Poulovassilis, A., Xha-
fa, F., et al. (eds.) Reasoning in Event-Based Distributed Systems. SCI, vol. 347, pp. 47–
70. Springer, Heidelberg (2011)

8. Sosinsky, B.: Cloud Computing Bible. Wiley, Indiana (2011)
9. Boubeta, J., Ortiz, G., Medina, I.: An Approach of Early Disease Detection using CEP and

SOA. In: 3rd International Conferences on Advanced Service Computing, pp. 143–148.
Xpert Publishing Services, Italy (2011)

10. Wylie, H., Lambros, P.: Enterprise Connectivity Patterns: Implementing integration solu-
tions with IBM’s Enterprise Service Bus products,
http://www.ibm.com/developerworks/library/
ws-enterpriseconnectivitypatterns/index.html

11. Hérault, C., Thomas, G., Fourier, U.J.: Mediation and Enterprise Service Bus: A position
paper. In: Proceedings of the First International Workshop on Mediation in Semantic Web
Services, MEDIATE (2005)

12. Schmidt, M.-T., Hutchison, B., Lambros, P., Phippen, R.: The enterprise service bus: mak-
ing service-oriented architecture real. IBM Syst. J. 44, 781–797 (2005)

13. Chappell, D.: Enterprise Service Bus: Theory in Practice. O’Reilly Media (2004)
14. Hohpe, G., Woolf, B.: Enterprise Integration Patterns: Designing, Building, and Deploying

Messaging Solutions. Addison-Wesley Professional (2003)
15. Erl, T.: SOA Design Patterns. Prentice Hall PTR (2009)
16. González, L., Ruggia, R.: Adaptive ESB Infrastructure for Service Based Systems. In: Or-

tiz, G., Cubo, J. (eds.) Adaptive Web Services for Modular and Reusable Software Devel-
opment: Tactics and Solutions, pp. 1–32 (2013)

17. Kapitsaki, G.M., Prezerakos, G.N., Tselikas, N.D., Venieris, I.S.: Context-aware service
engineering: A survey. Journal of Systems and Software 82, 1285–1297 (2009)

18. Laakko, T., Hiltunen, T.: Adapting Web Content to Mobile User Agents. IEEE Internet
Computing 9(2), 46–53 (2005)

19. Mohomed, I., Cai, J.C., Chavoshi, S., de Lara, E.: Context-aware interactive content adap-
tation. In: Proceedings of the 4th International Conference on Mobile Systems, Applica-
tions and Services, New York, NY, USA, pp. 42–55 (2006)

20. Gilman, E., Su, X., Davidyuk, O., Zhou, J., Riekki, J.: Perception framework for support-
ing development of context-aware web services. International Journal of Pervasive Com-
puting and Communications 7(4), 339–364 (2011)

21. Fraile, J.A., Paz, Y., Bajo, J., Paz, J.F., Pérez-Lancho, B.: Context-aware multiagent sys-
tem: Planning home care tasks. Knowledge and Information Systems (May 2013)

22. Sheng, Q.Z., Benatallah, B.: ContextUML: a UML-based modeling language for model-
driven development of context-aware web services. In: International Conference on Mo-
bile Business, ICMB 2005, pp. 206–212 (2005)

23. Sheng, Q.Z., Pohlenz, S., Yu, J., Wong, H.S., Ngu, A.H., Maamar, Z.: ContextServ: A
platform for rapid and flexible development of context-aware Web services. In: IEEE 31st
International Conference on Software Engineering, ICSE 2009, pp. 619–622 (2009)

24. Yahyaoui, H., Mourad, A., Almulla, M., Yao, L., Sheng, Q.Z.: A synergy between con-
text-aware policies and AOP to achieve highly adaptable Web services. Service Oriented
Computing and Applications 6, 379–392 (2012)

25. Yu, J., Han, J., Sheng, Q.Z., Gunarso, S.O.: PerCAS: An Approach to Enabling Dynamic
and Personalized Adaptation for Context-Aware Services. In: Liu, C., Ludwig, H., Tou-
mani, F., Yu, Q. (eds.) Service Oriented Computing. LNCS, vol. 7636, pp. 173–190.
Springer, Heidelberg (2012)

Author Index

Aaltonen, Timo 233
Arbab, Farhad 174

Beal, Jacob 114
Bellavista, Paolo 94
Benghazi, Kawtar 266, 331
Berrocal, Javier 277
Boubeta-Puig, Juan 346
Brogi, Antonio 218, 318
Bruneo, Dario 71

Canal, Carlos 277
Caracuel, Alfonso 266
Celesti, Antonio 25, 83
Cirani, Simone 13
Clarke, Dave 159
Corradi, Antonio 94
Cremer, Lionel 37
Cuberos Urbano, Gustavo 266
Cubo, Javier 318

Damiani, Ferruccio 114
Darquennes, Denis 189
Di Modica, Giuseppe 1
Distefano, Salvatore 37

Fahrenberg, Uli 204
Fazio, Maria 25
Formisano, Ciro 59
Foschini, Luca 94
Friedrich, Martin 47

Garcia-Alonso, Jose 277
Garrido, José Luis 266, 331
González, Laura 318, 360
Guerrero-Contreras, Gabriel 331
Guillén, Joaqúın 277

Hadas, David 71
Hännikäinen, Marko 244
Hoa Le, Thi Thieu 204

Jacquet, Jean-Marie 144, 189
Jaeger, Michael C. 106

Jansen, Marc 254
Jongmans, Sung-Shik T.Q. 174

Koch, Oliver 254
Kolodner, Elliot K. 59
Kolodner, Hillel 71
Koshutanski, Hristo 288
Kulmala, Janne 244

Laukkarinen, Teemu 244
Legay, Axel 204
Linden, Isabelle 144, 189
Longo, Francesco 71

Mäkitalo, Niko 233
Maña, Antonio 288
Mani, Neel 303
Medina-Bulo, Inmaculada 346
Merlino, Giovanni 37
Mikkonen, Tommi 233
Miranda, Javier 277
Montenegro, Marioli 288
Müller, Richard 129
Murillo, Juan Manuel 277

Noguera, Manuel 266, 331

Ortiz, Guadalupe 346, 360

Pahl, Claus 303
Pantano, Francesco 1
Passerone, Roberto 204
Pernafini, Alessandro 94
Picone, Marco 13
Pimentel, Ernesto 318
Proença, José 159
Puliafito, Antonio 37, 83

Quellmalz, Maximilian 47

Rautiainen, Saku 244
Rodŕıguez-Domı́nguez, Carlos 331
Ruggia, Raúl 318
Ruiz-Zafra, Angel 266

372 Author Index

Schellenbach, Michael 254
Schill, Alexander 47
Shulman-Peleg, Alexandra 59
Soldani, Jacopo 218
Spillner, Josef 47
Stahl, Christian 129
Staicu, Mihail-Octavian 144

Taher, Yéhia 346
Tomarchio, Orazio 1
Tusa, Francesco 83

van den Heuvel, Willem-Jan 346

Vataja, Mikko 244

Veltri, Luca 13

Vernik, Gil 59

Villari, Massimo 25, 59, 83

Viroli, Mirko 114

Vogler, Walter 129

Wang, Ming-Xue 303

	Preface
	Organization
	Table of Contents
	CLIoT Workshop Papers
	SNPS: An OSGi-Based Middleware for Wireless Sensor Networks
	1 Introduction
	2 Related Work
	3 The SNPS Middleware
	3.1 Core and Related Components
	3.2 Sensor Layer Integration
	3.3 Web Service Integration

	4 SNPSDataModel
	5 Building and Composing Virtual Sensors
	6 Conclusion
	References

	CoSIP: A Constrained Session Initiation Protocol for the Internet of Things
	1 Introduction
	2 Related Work
	3 CoSIP
	4 IoT Application Scenarios
	4.1 CoAP Service Discovery
	4.2 Session Establishment
	4.3 Subscribe/Notify Applications

	5 Protocol Evaluation
	6 Conclusions
	References

	Design of a Message-Oriented Middleware for Cooperating Clouds
	1 Introduction
	2 Related Works
	3 Motivation
	4 Service Provisioning: A Planetary System Model
	4.1 Design Overview
	4.2 Cloud Utility Combinations with MOM4C: The Cloud Facility

	5 MOM4CArchitecture
	5.1 Two-Layer Architecture
	5.2 Communication System

	6 Conclusion
	References

	The Core Approach of SAaaS in Action: The Planning Agent
	1 Introduction and Motivations
	2 Background and RelatedWork
	2.1 SAaaS
	2.2 OGC: Sensor Web Enablement
	2.3 State of the Art

	3 Overview of the Hypervisor
	4 Planning Agent
	5 The Implementation
	6 Conclusions
	References

	CLOUSO Workshop Papers
	peaCS-Performance and Efficiency Analysis for Cloud Storage
	1 Motivation
	2 Overview about Multiplexing Cloud Storage Controllers and Libraries
	2.1 Controllers, Integrators, Gateways and Filesystems
	2.2 Data Pre-processing Libraries

	3 The peaCS Test Framework
	3.1 peaCS Architecture
	3.2 Performance Determination
	3.3 Efficiency Determination
	3.4 Functional Testing and Calculations
	3.5 Test Run Examples

	4 Related Research
	5 Conclusion
	References

	Delegation for On-boarding Federation Across Storage Clouds
	1 Introduction
	2 Related Work
	2.1 Access Control in a Federation

	3 Vision Cloud at a Glance
	4 On-boarding
	5 Identity and Access Management Systems for Access Control
	5.1 Concept of Delegation
	5.2 Difference between Web Single Sign On (SSO) and Web Delegation

	6 A Brief Presentation of OAuth 2.0 and SAML2Del
	6.1 SAML2Del
	6.2 Comparison of SAML2Del Versus OAuth 2.0

	7 Delegation Solution for On-boarding in VISION Cloud
	8 Conclusions and Future Work
	References

	Availability Assessment of a Vision Cloud Storage Cluster
	1 Introduction
	2 The VISION Cloud Storage Environment
	2.1 The Proposed Storage Cloud Environment
	2.2 GPFS-SNC as Underlying Distributed File System

	3 Problem Formulation
	4 The Model
	5 Results
	6 Conclusions
	References

	Data Reliability in Multi-provider Cloud Storage Service with RRNS
	1 Introduction
	2 Related Work
	3 Redundant Residue Number System
	4 Data Availability and Confidentiality in a Multi-provider Cloud Storage Providers
	5 Performance Evaluation
	6 Conclusion and Future Work
	References

	Automated Provisioning of SaaS Applications over IaaS-Based Cloud Systems
	1 Introduction
	2 Related Works
	3 Background
	3.1 OpenStack
	3.2 Juju
	3.3 BPEL

	4 Architecture
	5 Implementation Details
	6 Conclusion and Future Works
	References

	Open Source Issues with Cloud Storage Software
	1 Introduction
	2 License Issues
	3 Open Source Project Quality
	4 Conclusions
	References

	FOCLASA Workshop Papers
	A Calculus of Computational Fields
	1 Introduction
	2 Computational Fields
	3 From Global to Local
	4 The Computational Field Calculus
	5 Properties
	6 Conclusion, Related and Future Work
	References

	Trace- and Failure-Based Semantics for Bounded Responsiveness
	1 Introduction
	2 Preliminaries
	2.1 Petri Nets
	2.2 Open Nets and Environments

	3 Bounded Responsiveness
	3.1 A Trace-Based Semantics for Bounded Responsiveness
	3.2 Deriving the Coarsest Precongruence for Bounded Responsiveness
	3.3 Decidability of F+b -Refinement

	4 Final Bounded Responsiveness
	5 Conclusion
	References

	On the Introduction of Time in Distributed Blackboard Rules
	1 Introduction
	2 Timing Context-Awareness
	3 Discrete Time Points
	4 Continuous Time Intervals
	4.1 Absolute Time Approach
	4.2 Relative Time Approach

	5 Implementation
	5.1 General Principles
	5.2 Implementation Techniques

	6 Related Work
	6.1 Chemical Models
	6.2 Reactive Models
	6.3 Final Remarks

	7 Conclusions
	References

	Data Abstraction in Coordination Constraints
	1 Introduction
	2 Motivation
	3 Coordination as Constraints
	3.1 Guarded Commands
	3.2 Reo as Constraints
	3.3 Well-Defined Formulas
	3.4 Verifying Well-Definedness

	4 Data Abstraction
	4.1 Precomputed Domain Invariants
	4.2 Predicate Abstraction
	4.3 Soundness and Completeness

	5 Evaluation
	5.1 Test Cases
	5.2 Results and Discussion

	6 Related Work
	7 Conclusions
	References

	Global Consensus through Local Synchronization
	1 Introduction
	2 Preliminaries: Port Automata
	3 A New Local Product Operator
	4 Substituting � with �, a Cheaper Characterization
	5 Note on Associativity
	6 Related Work and Conclusion
	References

	On Density in Coordination Languages
	1 Introduction
	2 DenseBach
	2.1 Language Definition
	2.2 Transition System
	2.3 Observables and Operational Semantics

	3 Comparisons of Bach and Dense Bach
	3.1 Modular Embedding
	3.2 Summary of Results
	3.3 Formal Propositions and Proofs

	4 Conclusion
	References

	A Tag Contract Framework for Heterogeneous Systems
	1 Introduction
	2 Related Work
	3 Background
	3.1 Tag Behaviors
	3.2 Operational Tag Machines
	3.3 Tag Machine Composition

	4 A Contract Framework for Heterogeneous Systems
	4.1 Tag Machine Operators

	5 Conclusions
	References

	Matching Cloud Services with TOSCA
	1 Introduction
	2 Background: TOSCA
	3 Matching Service Templates with Node Types
	3.1 Exact Matching
	3.2 Plug-in Matching
	3.3 Flexible Matching
	3.4 White-Box Matching

	4 Related Work
	5 Concluding Remarks
	References

	MoCSoP Workshop Papers
	First Hand Developer Experiencesof Social Devices
	1 Introduction
	2 Background
	3 Experiment
	4 Developer Experiences
	4.1 Understandablity
	4.2 Acceptability
	4.3 Coordination Aspects
	4.4 Programmability
	4.5 Reusability of Code
	4.6 Deployment Aspects

	5 Related Work
	6 Open Questions
	7 Conclusions
	References

	Social Index: A Content Discovery Application for Ad Hoc Communicating Smart Phones
	1 Introduction
	2 Related Work
	3 Social Index Design
	4 Social Index Simulator
	5 User Tests with Social Index Simulator
	6 Privacy
	7 Open Issues and Future Work
	8 Conclusions
	References

	Mobile Web Service Infrastructure Supporting Successful Aging
	1 Introduction
	2 State of the Art
	3 Architecture
	4 Scenario Description
	5 Implementation
	6 Opportunities and Challenges
	7 Future Work and Outlook
	References

	Cloud and Web Services Integration for mHealth Telerehabilitation Support
	1 Introduction
	2 CloudRehab
	2.1 Approach
	2.2 Platform Overview
	2.3 Functionalities
	2.4 Architecture
	2.5 Platform Applications

	3 Related Work
	4 Conclusions and Future Work
	References

	Architecting Infrastructures for Cloud-Enabled Mobile Devices
	1 Introduction
	2 Cloud-Enabled Mobile Devices
	2.1 Service Deployment Technology on Mobile Devices: CMED as Servers
	2.2 CEMD as an Alternative to Client/Server Mobile Architectures
	2.3 CEMD Supporting the Distributed Processing of Individual Social Profiles
	2.4 CEMD Towards Privacy Awareness
	2.5 CEMD as the ‘Digital Interface’ of Users

	3 People-As-A-Service
	3.1 Description
	3.2 Architecture
	3.3 nimBees

	4 Discussion
	5 Conclusions and Future Work
	References

	WAS4FI Workshop Papers
	Improving Security Assurance of Services through Certificate Profiles
	1 Introduction
	2 Related Work
	3 Certificate Profile
	3.1 Profile Structure

	4 Profile-Based Certificate Management
	4.1 Profile-Based Creation of Certificates
	4.2 Profile Conformance Verification of Certificates

	5 Proof-of-Concept Realization
	5.1 ASSERT Certificate
	5.2 ASSERT Profile
	5.3 ASSERT Profile Example

	6 Conclusions and Future Work
	References

	A Domain-Specific Model for Data Quality Constraints in Service Process Adaptations
	1 Introduction
	2 Scenario – Service-Based Content Processing
	2.1 Scenario Introduction
	2.2 Challenges and Scenario Analysis

	3 Domain-Specific Model for Quality Constraints
	3.1 Content
	3.2 Provenance
	3.3 Process

	4 ConstraintsandRules
	4.1 Requirements and Examples
	4.2 Formalisation

	5 Implementation – Policy Definition and Adaptation
	6 Related Work
	7 Conclusions
	References

	Run-Time Verification of Behaviour-Aware Mashups in the Internet of Things
	1 Introduction
	2 Motivating Our Approach
	2.1 Problem Statement: Static Verification of Behaviour-Aware Mashups
	2.2 Background
	2.3 Approach and Contribution

	3 Run-Time Verification of Mashups of Things
	3.1 Detecting and Blocking Invalid Invocations at Run-Time
	3.2 Validating Behaviour with Automatically Generated Rules
	3.3 Dealing with Temporal Constraints and Quality of Service
	3.4 Further Discussion

	4 Related Work
	5 Concluding Remarks
	References

	Designing a Service Platform for Sharing Internet Resources in MANETs
	1 Introduction
	2 Related Work
	3 Service Platform Design
	3.1 Monitoring Service
	3.2 Synchronization Service
	3.3 Deployment

	4 Example: Collaborative Document Editor
	5 Discussion
	6 Conclusions and Future Work
	References

	A Model-Driven Approach for Web Service Adaptation Using Complex Event Processing
	1 Introduction
	2 Background
	2.1 Web Service Incompatibilities
	2.2 Adaptation Operators
	2.3 Complex Event Processing

	3 Adaptation Metamodel
	3.1 Service
	3.2 Incompatibility Patterns
	3.3 Pattern-Based Adapter

	4 Model-Driven Approach for Web Service Adaptation
	4.1 Overview
	4.2 Graphical Modeling Editor

	5 Case Study
	5.1 Description
	5.2 Evaluation

	6 Related Work
	7 Conclusion and Future Work
	References

	An ESB-Based Infrastructure for Event-Driven Context-Aware Web Services
	1 Introduction
	2 Background
	2.1 Context-Awareness
	2.2 Complex Event Processing
	2.3 ESB Patterns
	2.4 Adaptive ESB Infrastructure

	3 The Proposed ESB-Based Infrastructure
	3.1 General Description
	3.2 Receiving Contextual Data
	3.3 Detecting Situations
	3.4 Configuring Context-Aware Adaptations
	3.5 Adapting Services within the ESB

	4 Related Work
	5 Conclusions
	References

	Author Index

