Chapter 5
Language Modeling

Ilana Heintz

5.1 Introduction

The goal of language modeling is to accurately predict the next word in a sequence
of words produced in a natural language. The history, or context, that is used to make
that prediction might be long or short, knowledge-rich or knowledge-poor. We may
base a prediction only on a single preceding word, or potentially using knowledge of
all words from the start of the passage preceding the word in question. Knowledge-
rich models can incorporate information about morphology, syntax or semantics
to inform the prediction of the next word, whereas knowledge-poor models will
rely solely on the words as they appear in the text, without pre-processing or
normalization of any kind. This chapter describes knowledge-rich and knowledge-
poor language models and how each might be useful in modeling Semitic languages.

Every language modeling technique and application must handle the issue of
data sparsity: with limited amounts of data available on which to train a model,
many parameters will be poorly estimated. In a model that estimates probabilities
for two-word sequences (bigrams), it is unclear whether a given bigram has a count
of zero because it is never a valid sequence in the language, or if it was only
by chance not included in the subset of language expressed in the training data.
As the length of the modeled sequences grows more complex, this sparsity issue
also grows. Of all possible combinations of 4-grams in a language, very few are
likely to appear at all in a given text, and even fewer will repeat often enough to
provide reliable frequency statistics. The same is true of additional information (e.g.,
morphological or syntactic tags) added to each term in the sequence; the probability
of encountering a given feature combination decreases as the complexity of the
features increases. Therefore, if the goal of language modeling is to predict the

1. Heintz (B)
Speech, Language and Multimedia, Raytheon BBN Technologies, Cambridge, MA, USA
e-mail: iheintz@bbn.com

L. Zitouni (ed.), Natural Language Processing of Semitic Languages, 161
Theory and Applications of Natural Language Processing,
DOI 10.1007/978-3-642-45358-8__5, © Springer-Verlag Berlin Heidelberg 2014

mailto:iheintz@bbn.com

162 1. Heintz

next word, the challenge is to find appropriate, reliable estimates of word sequence
probabilities to enable the prediction. Approaches to this challenge are three-fold:
smoothing techniques are used to offset zero-probability sequences and spread
probability mass across a model; enhanced modeling techniques that incorporate
machine learning or complex algorithms are used to create models that can best
incorporate additional linguistic information; and particularly for Semitic language
modeling, morphological information is extracted and provided to the models in
place of or in addition to lexical information.

The data sparsity issue is particularly intense for Semitic languages due to
their morphological richness, as is described earlier in this volume. The copious
use of affixational morphology results in a great increase in vocabulary size. For
example, the English present-tense verb “run” has the correct agreement as the
first- and second-person singular, and first-, second-, and third-person plural forms.
The same word form is also a singular noun. In the Semitic languages, different
affixes would be used to create varying word forms indicating the correct person,
number, and gender information, and the root-and-pattern morphology would be
employed to derive a different form for the noun, as well as different stems to
account for changes in tense or aspect. In order to build reliable language models,
this increase in vocabulary size must be countered by collecting more training data,
by applying morphological stemming techniques, or by employing sophisticated
modeling techniques that better handle sparse data.

Language models are used in a variety of natural language processing appli-
cations. In automatic speech recognition, language models can be used to help
choose the best sequence of words from an acoustic lattice. Similarly in machine
translation, language models help to indicate the best path through a lattice output
by a translation model. Natural-sounding phrases and sentences are produced by
natural language generation with the aid of language models, as well. Discussions
of Semitic language modeling occur predominantly in the automatic speech recogni-
tion literature, with some mention also in studies on statistical machine translation.
These studies will be cited throughout this chapter.

This chapter proceeds by describing the utility of the perplexity evaluation
of language models in Sect.5.2. This is followed by an introduction to n-gram
language modeling in Sect.5.3, and an explanation of smoothing methods in
Sect. 5.4. Understanding smoothing is necessary to understanding variations on
n-gram language models that are described in Sect.5.5. Section 5.6 comprises
a review of how morphological information is incorporated into a number of
Semitic language models. Section 5.7 summarizes and concludes the chapter with
suggestions for the most useful approaches to Semitic language modeling.

5.2 Evaluating Language Models with Perplexity

Outside of any particular application, we can compare language models by compar-
ing the likelihood that they assign to a previously unseen sequence of words. For a
given language model (LM), we might wish to calculate:

5 Language Modeling 163

PLM(WI ...Wn) (51)

This probability is an element of the cross-entropy of the text:

1
H(Pry) = _;IOgPLM(Wl CWi) (5.2)

As discussed in [36] among many other texts, cross-entropy is a measurement of
the amount of uncertainty in a probability distribution. We usually calculate the
probability of a sequence of terms as the sum of the probability of each term given
its preceding context:

1 n
H(Pryu) = - ZZOgPLM(Wi|W1 SWist) (5.3)

i=1

It is customary to measure the perplexity of a test set given the language model,
which gives the number of bits required to encode that text using the LM:

pp = 2HPun) (5.4)

A language model that encodes a test set most efficiently will do so with the
smallest number of bits. Therefore, we optimize a language model by minimizing
the perplexity of a given test set. Note that in modeling Semitic languages, the
vocabulary of the train and test set is often changed to account for morphological
properties of the language; in these cases, a variation on perplexity must be used to
compare models fairly. Section 5.3 discusses these changes to the evaluation.

Equations (5.3) and (5.4) assume that we use the entire preceding context to
calculate the probability of each term. Because that calculation is not feasible,
we replace the Ppj(w;|wi...w;—;) term with an approximation, such as the
probability of only the previous N terms, or of the previous N terms and appropriate
features.

Perplexity is an often-cited measure of the strength of a language model. It is
a measure of that model’s complexity, and serves to quantify the entropy of the
model in relation to an unseen text. Perplexity is both useful and limited because it
is a measurement of a model that is intended for use in a larger system. A language
model is normally a means to an end: speech recognition (ASR), machine translation
(MT), natural language generation (NLG), and other natural language processing
tasks all use language models in one or more steps of processing. Building
complete systems for these tasks is usually more difficult and time-consuming than
building the language model alone. Even with a stable system, testing whether
a new language model improves that system’s results can take a long time and
consume computational resources. In contrast, perplexity is simple to calculate
and easy to compare cross-model. Language models can be directly compared by
perplexity without building acoustic models, translation models, or other required

164 1. Heintz

system components. However, the measurement tells us little if anything about
how well the model will perform in context. Perplexity indicates how likely the
correct word is to follow a sequence of known words, but that likelihood usually
ignores features like acoustic confusability, semantic confusability, and syntactic
confusability, which will be the main hurdles in the tasks of ASR, MT, and NLG
respectively. Perplexity can overestimate the difficulty of choosing the right word in
some contexts, while underestimating the difficulty in others. If a particular difficult
context shows up frequently, then improvements in perplexity may turn out to be
misleading.

Most of the Semitic NLP studies cited in this chapter apply language models
to the speech recognition problem. The challenge considered in this application is
acoustic confusability, which is amplified in Modern Standard Arabic (MSA) by the
concatenative morphology of affixes. Two words that differ only in a short prefix
or suffix will be acoustically confusable, and there are many such word pairs in
MSA. A language model that incorporates syntactic or morphological information
may give differing probabilities to these words, and the reduction of perplexity may
indicate such differences. But, we do not know whether the acoustic confusability
problem is overcome unless the use of the language model in an ASR task results in
a reduction of word error rate.

In summary, due to its ease of calculation and relationship to the well-understood
property of cross-entropy, perplexity evaluations are often cited as indicators of
language modeling utility. In these cases, care must be taken to assure that models
are directly comparable in terms of their vocabulary and the vocabulary of the test
set. Incorporating the language models into a complete NLP system and evaluating
in situ, when possible, is a truer indicator of the models’ utility.

5.3 N-Gram Language Modeling

A very common, basic form of language modeling is n-gram language modeling. A
probability is assigned to each unit of language based on its frequency in a training
corpus. A “unit of language” refers to some sequence of tokens, usually words.
The order n of the language model can be single words (unigrams), or sequences
of two, three, four, or more words (bigrams, trigrams, 4-grams, etc.). The simplest
example of an n-gram model is a maximum likelihood model over unigrams, where
each word is assigned a probability based on its count in a training corpus: P(w) =

%. A maximum likelihood bigram model takes into account the previous
count (w;—1w;)

word: P(w;|wi—1) = 5 . . In theory, increased context leads to greater
weount(wi—w)

accuracy. A perfect theoretical model would base the prediction of each word on

all of the preceding context: P(w;|w...w;—1). In practice, long n-grams do not

repeat often enough to provide reliable statistics, so we estimate an imperfect n-gram

model by restricting the context to only a few preceding words.

5 Language Modeling 165

Calculating the perplexity of a test text given a bigram model only requires the
specification of Eq. (5.4) to the bigram case:

1 n

PPyigram(Wy ... wy) = 27n Zi=a logPCribi=) (5.5)

Similar formulas are derived for models with larger-order n-grams.

In using n-gram language modeling for Semitic languages, the definition of
what constitutes a word or token in the model must be carefully considered. Often,
normalization and tokenization tools are applied to the text before the language
model is calculated. Normalization refers to reducing orthographic variation, such as
changing the various forms of Arabic hamza to a single form. Tokenization methods
such as stemming are used to reduce the size of the vocabulary by separating
clitics and morphological affixes from stems. Reducing the size of the vocabulary
through normalization and tokenization has the effect of increasing the frequency
of each token, which in turn increases the reliability of the model. Normalization
and tokenization also reduce the number of out-of-vocabulary tokens - those
tokens that appear in the test text but not in the training text, and therefore may
receive a zero probability. If a language model uses tokens that are smaller than
words, then a post-processing step must be performed after decoding to return the
tokens to their original state. This is called de-tokenization. El Kholy and Habash
[20] and Al-Haj and Lavie [3] are recent studies that compare various types of
normalization, tokenization, and the reverse processes in an English-Arabic machine
translation application. Both studies find that a coarse level of tokenization, such
as using surface-level segmentation as opposed to a fine-grained morphological
segmentation, is sufficient to create useful language models, and also results in more
accurate de-tokenization.

These studies and others cited below change the vocabulary of the language
model by using morphemes or multiple words as the modeling units. Changing
the vocabulary in this way results in a situation where comparing perplexity values
is not mathematically sound; the conditions may have changed in such a way
as to bias the calculation, and the perplexity results are no longer fully inter-
pretable. Kirchhoff et al. [33] introduces a variation on the perplexity calculation
that overcomes this problem by using a consistent normalization factor across
models:

ModP Pyigram (Wi . .. wy) = 27 n i logP(wilwiz1) (5.6)

In this formulation, the normalization factor % always counts the number of words
in the test set. The number of tokens m may change from model to model
based on tokenization methods, but the number of words n remains the same
for a given test text. The average negative log probability of the test text is
calculated by removing the exponent, as in [63] and [27]. These variations on the
perplexity formula allow for a more reliable comparison of models that use differing
vocabularies.

166 I. Heintz
5.4 Smoothing: Discounting, Backoff, and Interpolation

Section 5.3 refers to the use of normalization and tokenization to counter the
problem of out-of-vocabulary (OOV) terms, and the use of smaller contexts to
increase the reliability of n-gram counts. This section discusses mathematical
approaches to solving the problems of OOV terms and unreliable counts. These
concepts are a necessary precursor to understanding the more complex types of
LMs discussed in Sect. 5.5.

Smoothing refers to three related concepts: discounting, backoff, and interpo-
lation. All three will be discussed in this section, which is modeled on the more
complete discussion in [14]. Discounting refers to the movement of probability
mass from frequent, well-modeled parameters to infrequent parameters with less
evidence. The probabilities of all parameters in an LM must always sum to one,
therefore discounting also implies normalization. Backoff is the term used to
describe the use of lower-order n-gram probabilities when the evidence for higher-
order n-grams is lacking. Higher-order (trigram, 4-gram) n-grams are preferred
because they provide greater context for the predicted word, resulting in more
accurate predictions. But this is only true when the higher-order n-grams exist in
training text, and usually only if they exist with repetition. Because lower-order
(unigram, bigram) parameters are more likely to repeat in a text, their estimates
are more reliable, even if they provide less context. Backoff is used to counter the
greater context of the high-order n-grams with the greater reliability of the low-
order n-grams. Backoff is often done in a step-wise fashion: we use a lower-order
probability where the higher-order probability is zero. Interpolation also takes into
account higher-order and lower-order parameters, but in doing so creates a smoother
distribution of probability mass than simple backoff. With interpolation, all of the
higher-order n-gram probabilities are tempered by lower-order n-gram probabilities,
regardless of their frequency.

5.4.1 Discounting

The simplest formulation for determining the probability of each n-gram requires
no discounting; it is given by the maximum likelihood (ML) model:

C(W;:—n+1)

_ 5.7
Zwi C(Wé—n—i-l))

Pur(wilwiy,) =

Such an estimate results in zero-value probabilities for any unseen n-grams, an
undesirable outcome, given that we always expect new words to occur in a text
different from that used to build the model.

This outcome can be avoided by simply adding 1, or another constant, to the
count of every n-gram. In a test condition, the unseen n-gram will be assigned

5 Language Modeling 167

exactly this constant as its count. This has been empirically shown to be ineffective
[22]. A more sophisticated technique is Good-Turing discounting, which involves
calculating the count-of-counts: for every count r, how many n-grams appear r
times? We calculate r*, the Good-Turing discounting factor, by smoothing the
count-of-counts:

Ni 11
N;

=+ 1) (5.8)

where r is the frequency of an n-gram type (its token count) and N, is the number
of n-grams (types) with that frequency. For an n-gram w; ... w;_, 4, we count its
occurrences 7, then estimate its probability using its discounted count r*:

r*

PGT(Wﬁ—nH) =

N (5.9

The probability mass that is taken away via discounting is “given back” in the
form of probability mass on unseen events: the total probability attributed to unseen
objects is %, the maximum likelihood of all singleton n-grams [23].

To understand Eq. (5.8), imagine a corpus of N tokens. We remove one token
from the corpus to create a single-token ‘held-out set’, then count the occurrences of
that type in the remaining ‘training’ set. We find that token in the training corpus one
fewer times than its actual occurrence in the full corpus. If we repeat the ‘held-out’
experiment for each token, we find that any token that appeared r times in the
training set has a true count of » 4 1. Now consider a held-out token that does not
appear in the training set. From the perspective of the training set, it is an unknown,
but we know that it in fact has a singleton count in the true corpus. This is why
we attribute approximately a singleton count to all unknown tokens. We find the
total count of all singletons: (0 + 1) /Ny, then divide that count by the number of
unknowns Ny (Eq.5.8), assigning to each unknown token an equal portion of the
total singleton count. We divide again by the token count of the training corpus to
derive the appropriate probability mass for each unseen token (Eq.5.9). The same
logic is true when we consider the discounted value of singletons, twice-appearing
types, and so on.

To calculate the Good-Turing discount, the training data must be diverse enough
to preclude any zero counts r; in particular, there must be tokens with low r counts,
including r = 1 (which is to say, we do not prune singleton tokens before estimating
the Good-Turing probabilities). At the upper ranges of r, where zero values of N,
are likely to naturally occur, the values of N, are interpolated using simple linear
regression. This step removes the zero values, and the estimates reflect a trend of
fewer items, rather than leveling off at N, = 1. In general, this method of calculating
r* results in estimated counts that are slightly less than the actual count for low
values of r, and close to the actual count for high values of r. Less probability mass
is taken from high-frequency words (and occasionally probability mass is added to
them via interpolation, due to the variability of N, for high values of r) because

168 1. Heintz

they are more trustworthy. We are more skeptical of the repetition of low-frequency
words, therefore we take more probability mass from them to apply to unseen
words.

With this estimated value of r*, Eq. (5.9) can be used to calculate the estimated
probability of each item in the training data. This discounting method is often
used to estimate n-gram probabilities in conjunction with one of the backoff or
interpolation methods discussed next.

5.4.2 Combining Discounting with Backoff

A very common form of combining backoff with discounting is known as Katz
backoff, introduced in [30]. In this algorithm, frequent n-grams are not discounted;
they are trustworthy and their estimates are not changed. Low-frequency n-grams,
already considered unreliable, lose some of their probability mass to unseen
n-grams. This discounting is done with a variation of the Good-Turing discount
factor. Furthermore, backoff weights are used to ensure that the total probability
mass of the model remains equal to 1. Formally, where c(x) indicates the count of
x and k is a frequency cutoff constant:

PmLWi_y41), ife(Wi_,qi) >k
pKatz(Wi .. .W,‘_n+1) = d’(wi—n+l)’ if 0 < C(Wi_n_H) < k
(W2)P Wiy p0) ifc(wi_,) =0
(5.10)
The discount factor d, is a variation of the Good-Turing discount factor; the
discount is modified so that the total probability mass of the model remains constant,
despite the choice to not discount high-frequency n-grams. The backoff weight
« is related to the discounting factor; in the case that we use backoff, o applies
the probability mass gained from the discounting factor evenly across the n-grams
that could result from the backoff n-gram. The exact calculation of d, and « are
specified in [30] and [14]. What is important to note is the close coordination of
backing off in the third term with the discounting in the second term — together
they are used to eliminate zero counts and obtain optimal reliability in the language
model.

5.4.3 Interpolation

In addition to providing an algorithm for combining a well-motivated discounting
factor with the benefits of backoff, the Katz algorithm also takes advantage of
interpolation. In the last step, the probability of an n-gram is calculated iteratively
by accounting for all relevant lower-order n-grams. Jelinek-Mercer smoothing [29]

5 Language Modeling 169

also takes advantage of this recursive interpolation, but does not require calculating
the Good-Turing discounting factor or backoff weights. It simply says that, for any
n-gram, its probability should be estimated by taking into account the probability
of the whole context, as well as the probability of all shorter contexts. This is
again meant to balance the accuracy gained from the greater context of a high-order
n-gram with the greater reliability of the more frequently seen low-order n-grams.
Recursive interpolation is formulated as follows, where Py, refers to the maximum
likelihood probability [10, 14]:

Pinterp(wi |W§::1+1) = Awf:rll+l PML(Wi |W§:711+1) + (1 _kwg:}’_,_l)Pinterp(Wi |W§:;11+2)

(5.11)
The interpolation parameters A determine how much each order n-gram will
contribute to the total probability. The values of each A, ;-1 can be learned via

Wi—n

the Baum-Welch algorithm, and may be calculated over word classes. Rosenfeld
[52] states that these parameters need not be specified exactly; their variance within
5 % of the best value will create little difference in the perplexity of a held-out set.
Witten-Bell smoothing [6, 67] is another recursive algorithm that interpolates
lower-order and higher-order n-gram counts. The key insight is the use of the count
of unique word types w; that follow a given prefix: [w; : ¢(wi_, +1) > 0]. This value
is used to determine the values of A in Eq. (5.11). To determine a particular A ;i—1

Vi— n—+1

we divide the type count above by the token count of all n-grams with that prefix:

ie(w! >0
1—Ay = l,lw’ Oimtr) > O : (5.12)
p——— lwi ewi_, 1) > 0] + Zwl_ cWi_,41)

This calculation is intended to answer the question, “How likely are we to see a new
unigram following this prefix?” The answer is used in determining the amount of
smoothing at each step of interpolation.

Absolute discounting is another form of interpolation. Ney and Essen [44]
and Ney et al. [45] show that using the same discounting factor for all n-grams,
regardless of order or frequency, can be effective if that discounting factor is
properly set. For instance, an empirical study [45] shows the following estimate
to be an effective constant for absolute discounting:

ni

—_— 5.13
ni +2n2 ()

Discount =

where n; and 7, indicate the number of singleton and two-count n-grams in
the corpus, respectively. Again, the algorithm is recursive so that all lower-order
n-grams contribute probability mass to an n-gram. Absolute discounting led to the
widely-used Kneser-Ney discounting [35]. In this algorithm, the concern is over
how many prefixes a given unigram follows. Put another way, how likely are we to
find a given word following a new prefix? For a given unigram, its probability mass
calculated over all prefixes will be equal to its maximum likelihood probability:

170 1. Heintz

D prn(wimiwi) = % (5.14)

wi—1

This constraint is incorporated into a model that includes an absolute discounting
factor and recursion over lower-order backoff models. The modified version pro-
posed by Chen and Goodman [14] is a fully interpolated model — all higher-order
n-gram probabilities are discounted and interpolated with lower-order probabilities.
The formula for modified Kneser-Ney smoothing, which takes into account both the
intuition of [35] regarding known n-gram prefixes and the intuition of [29] regarding
interpolation, is given in [14], along with its derivation and further motivation.

In their careful examination of many variations of the smoothing algorithms men-
tioned, [14] find that their modified Kneser-Ney algorithm is the most successful at
reducing the perplexity of a test set. This is due to its use of an absolute discounting
factor and interpolation of lower-order models over all frequencies of n-grams.

These smoothing methods are not particular to one language or another. They
are each designed to help overcome the sparse data problem, to give a non-zero
probability to unseen n-grams, and to allow the probabilities of the component
n-grams to be distributed more evenly across all parameters of the model. They are
used in combination with varying types of language models that incorporate infor-
mation about semantics and syntax, as described in Sect. 5.5. Several of the models
described in Sect. 5.5 also attempt to overcome some limitations of these smoothing
algorithms.

5.5 Extensions to N-Gram Language Modeling

While the most widely-used language model is the simple n-gram model, there
are many variations on the theme. These variations incorporate longer-distance
dependencies, syntactic information, and semantic information. The following
sections will briefly describe the seminal research for each type of model and its
existing or potential application to Semitic natural language processing.

5.5.1 Skip N-Grams and FlexGrams

The use of n-gram modeling is pervasive in natural language processing because of
its simplicity and surprising effectiveness. Despite the utility of a word’s immediate
history in predicting the probability of that word, there are many cases where a
slightly different history — not necessarily a longer history, but a different one —
may be more effective. For instance, consider the phrase “ravenous lions, voracious
tigers, and famished bears.” The appearance of the word bears is best predicted by
its two predecessors lions and tigers, but a trigram model will only be privy to the

5 Language Modeling 171

context and famished. One solution to this issue is a skip-gram model, described
in [24]. First, the usual collection of n-grams is defined. Then, the parameters are
expanded by collecting alternative histories for each word: all bigrams and trigrams
within the sentence that skip over k tokens preceding it. The number of n-grams
for a given sentence greatly increases as the number of skips allowed is increased.
An evaluation that centers on the coverage, rather than the perplexity, of a test text
is useful in this application. Indeed, coverage increases as the number of skips k
increases. When the domain of the train and test are mismatched, e.g., broadcast
news as training data and conversational speech in the test set, the coverage does not
improve as significantly. This shows that the skip trigrams are not over-generating
contexts to the point of false positives. A second evaluation shows that the use of
skip-grams can be as effective, or more so, as increasing the size of the corpus. This
result may be especially relevant for modeling low-resource Semitic languages such
as Amharic, Maltese, and Syriac.

Similarly, [69] describe the use of flexgrams to overcome the limited context
of n-grams. In this method, the history may arise from anywhere in the sentence
preceding the predicted word. This method is combined with morphological decom-
position to better model the Turkish language. A reduction in perplexity is shown
with the use of flexgrams and morphological information. Therefore, this may be a
method that is also applicable to the morphologically rich Semitic languages.

5.5.2 Variable-Length Language Models

When the required storage space and computation time of a language model need
to be minimized, variable-length language models are useful. To create the optimal
model, only the most useful parameters are kept. This can be achieved in a number
of ways, including but not limited to the following techniques:

1. Discard longer n-grams if they do not contribute to the model. Kneser [34]
shows that longer n-grams can be discarded if they do not meet a frequency
threshold, e.g. singletons n-grams, or if they do not reduce the distance between
the current LM and the optimal (full) LM. Kneser [34] provides an algorithm
for optimizing the pruning function in a computationally tractable way. Seymore
and Rosenfeld [57] compare the log probability of the full and reduced model
having removed each n-gram in turn, pruning those that do not increase the
probability by a threshhold amount. Similarly, the method in [62] prunes the LM
by measuring the relative entropy of the pruned and original models, where the
perplexity of the original training set is used to express entropy. Any n-gram
that raises the perplexity by less than a threshhold is removed, and backoff
weights of the remaining n-grams are re-calculated. Siivola [61] also perform
re-calculation of backoff weights and discount parameters after n-grams are
removed through pruning, always retaining a model that is properly smoothed
according to Kneser-Ney smoothing. This pruning algorithm has been tested

172 1. Heintz

successfully on morphologically rich languages such as Finnish, especially when
morphemes are used as the building units for the language model [60]. The
method was not as successful for Egyptian Arabic data, however this may have
been due to the small size of the corpus. The consistent result in these studies is
that the outcomes of applying pruned models vary only slightly from outcomes
using larger models, so that time and storage savings are achieved without
sacrificing too much accuracy, either in perplexity or application results. Despite
the growing use of Kneser-Ney smoothing, [13] show that when aggressive
pruning is performed, for instance pruning an LM to a mere 0.1 % of its original
size, Katz smoothing is a better choice.

2. Niesler and Woodland [47] take the opposite approach by adding more context
to shorter n-grams if they do contribute to the model. In [51], the variable-length
n-grams are modeled as a type of Probabilistic Suffix Tree. The branch of a tree
can grow only if the resulting model retains a Kullback-Liebler distance less
than some threshold from the optimal, full model. Otherwise, the smaller (fewer
parameters) model is used. This approach is also used in [61], where a consistent
modification of backoff and smoothing parameters are applied to ensure that
as the model grows, it has proper Kneser-Ney smoothing at every step. Again,
similar task results can be achieved using a more compact language model that
excludes low-impact n-grams.

3. A different approach is that of [18], which changes the very construction of
an n-gram. Rather than assuming that each unit of an n-gram is a single word
token, instead the text is first segmented using the EM algorithm to choose
the most informative segments. Collocations, for instance, can be grouped as
a single token. This reduces the number of unigrams, creating a smaller model.
Perplexity must be calculated over a text that has been segmented in the same
fashion.

The benefits of each of these methods is that they provide a more theoretically
appropriate model than a fixed-length n-gram model, as words in a sequence are
dependent on different length histories. Also, the training algorithms are such that
only as many parameters as are useful to the model are used, and the model size
can be tuned on held-out data. This is a storage savings for models that would
otherwise have size exponential in the order of the n-gram. This is perhaps less
appealing when dealing with languages that lack in data, but more appealing for
languages with explosive vocabulary growth, such as Modern Standard Arabic. The
intuitions that inspired variable length n-gram modeling are surely applicable to
language modeling in the Semitic language domain. Despite the lack of literature
that applies these models to Arabic or other Semitic languages, it is an area
that will likely produce gains in language model accuracy and utility for those
languages. In particular, the third approach could be applied after morphological
segmentation to reduce the OOV rate and supply the most reliable statistics to
the model. The techniques mentioned above could also be applied to morpheme-
based n-gram models. Even so, class-based modeling, described in the next section,
may be more useful than variable-length modeling for handling large vocabulary

5 Language Modeling 173

applications; [47] combines class-based modeling with variable-length modeling to
positive effect.

5.5.3 Class-Based Language Models

One way to reduce the sparsity issue in n-gram modeling is to assign each word to
a class. The class may be based on semantic or syntactic principles. If an unknown
word can be successfully assigned to a class, then it is easy to apply the statistics
of distribution associated with that class to the unknown word. Brown et al. [10]
introduced class-based models with the following premise: “If we can successfully
assign words to classes, it may be possible to make more reasonable predictions for
histories that we have not previously seen by assuming that they are similar to other
histories that we have seen.” Where c; represents the class that word w; is mapped
into:

pwiwiZh) = P(wile) PcileiZhy) (5.15)

Alternatively, one might sum over the classes ¢; if a word is seen as having a
distribution over classes. Rather than depend on the token history of each word, we
instead calculate the probability of the word given its class and the class history of
that word. The intention is to have histories that have been seen more often and are
therefore more reliable. There are many ways that the word classes can be derived.
In [10], a point-wise mutual information-based measure is used to group words into
semantic classes. These classes and the resulting language model can be used in
interpolation with word-based models.

As for Semitic language modeling literature, [70] use class-based modeling
for an Arabic language application. Classes are used in back-off: when wi_,
is unknown, the model backs off to w;_, ,,c(wi—,+1). Alternatively, the authors
create a hierarchy of these back-off possibilities, training a language model for each
level of the tree, and linearly interpolating the models. This allows the model to
incorporate statistics from the most accurate n-grams and the most reliable class-
based statistics.

In [32], class-based language models are developed based on Arabic morpho-
logical classes and using word clustering algorithms. These class-based models
are combined in a log-linear fashion with stem-based and root-based morpheme
models and with two word-based models. The parameters of the log-linear model
are derived automatically, and the analysis shows that the morpheme-class model
is among the more influential of the group, obtaining a high weight for interpolation.
In an ASR application, both of the class-based models bring down the word
error rate when combined with the word model, as compared to the word model
alone. This shows that interpolating class-based models with more fine-grained
information can lead to lower perplexity and improved ASR scores.

174 1. Heintz

The derivation of the class-based models and a more careful comparison to
other models, including factored language models, is explored in [33], a study
on Egyptian Colloquial Arabic speech recognition. Here, class-based models
are defined by morphological components: stems, morphs, roots, and patterns.
The models associated with each class are defined and calculated separately and
then interpolated. Kirchhoff et al. [33] uses a slightly different formulation of the
class-based language model than [10]:

P(wilwi—1) = P(wilc;)P(cilci—1) P(ci—1lwi-1) (5.16)

The class-based models fare well in the ensuing analysis, especially when
combined with stream models. Stream models replace each word with a specific
morphological component and derive an n-gram model over that morpheme stream.
This shows that for Egyptian Colloquial Arabic, very high-level and very low-level
information can be successfully combined to improve ASR scores.

5.5.4 Factored Language Models

Kirchhoff et al. [33] introduce Factored Language Models (FLMs) with an eye
towards Arabic and other Semitic languages. FLMs take into account as many
varied kinds of morphological, class, or semantic information as is available for each
word. This is an extended form of n-gram modeling where the backoff procedure
is more complex than the standard model. Typically, for a trigram model, in the
case that a particular trigram is not among the parameters, the model will back off
to the most appropriate bigram by ignoring the most distant word and applying a
backoff weight [30]. In an FLLM, rather than drop the most distant word, instead we
consider its class, part-of-speech tag, or other feature for which a reliable weight
has been derived. FLMs are formulated as follows for a trigram model, similarly for
higher-order or bigram models:

N
IO S VN [16 A DA A (5.17)

i=3

where 1 : K represent the K features annotating each of the N words. Modeling
is done over f, a group of factors, rather than a word w. When an n-gram of
complete factors is not specified in the model, backoff can proceed along many
routes, dropping any of the factors for which there is an appropriate backoff weight
in the model. Many different backoff paths can be taken, and different discounting
models integrated along those paths. For instance, one might first drop the most
specific information in a bundle, the word itself, and use Kneser-Ney discounting
to do so. If the n-gram is still not found, one might drop a syntactic tag from the
bundle, and use Good-Turing discounting at this juncture. The choice of backoff

5 Language Modeling 175

can be determined a priori if faith in the features and linguistic knowledge is
sufficient to choose a reliable path. However, given the number of possible paths,
it is recommended to use an automatic method of choosing or calculating the path.
In [33], the authors use generalized parallel backoff, which takes into account all
of the possible backoff paths via averaging, multiplication, or a smooth probability
distribution.

Alternatively, backoff paths can be chosen via genetic algorithms, as introduced
for use with FLMs in [19]. These are the preferred method, as they are able
to take into account many if not all of the possible backoff paths, choosing the
best in a motivated fashion: the genetic algorithms are trained using perplexity
of development data as the optimization criterion. The automatically chosen paths
produce a lower perplexity on a test set than n-gram models, hand-chosen backoff
models, and random models (but are not compared to generalized parallel backoff).

The benefit of FLMs is the ability to use many morphological and syntactic
characteristics of each word; these properties are plentiful in Semitic languages
when counting affixes, stems, roots, and other possible morphological categories.
The same features that give Semitic languages their ever-expanding vocabularies
and intricate complexity are those that can be used to make a more informed
language model, without suffering the sparsity problem. On the other hand, one
must have tools to produce each of these features, and such tools (especially root
finders) are not always available for the lesser-studied languages and dialects. It is
sometimes possible to adapt tools from one language to another if there is a tolerance
for error; it is unclear whether Factored Language Models are robust to such tagging
errors. Given the genetic algorithms, it may be the case that they are robust, as the
unreliable features can be dropped early in the backoff path if they do not positively
influence the perplexity of the development set (or other training criterion).

5.5.5 Neural Network Language Models

Schwenk [55] describes a method of obtaining language model probabilities in a
continuous space using neural networks. An input layer, two hidden layers, and
an output layer comprise the neural network. The input layer accepts 4-grams
extracted from a corpus. The first hidden layer projects this vocabulary of possibly
hundreds of thousands of terms into a smaller space of only 50-300 dimensions.
The second hidden layer is typical of neural network algorithms: its weights
are trained using non-linear back-propagation. The output nodes represent each
word in the vocabulary. If the input is a set of words representing a three-word
history, then the output layer contains the probability that each vocabulary word
follows that history. In training, the optimization criterion is the maximization
of the log-likelihood of development data (or minimization of the perplexity,
equivalently). These outputs are interpretable as posterior probabilities when the
softmax normalization algorithm is applied.

176 1. Heintz

Training neural networks is more time-consuming than estimating a simpler Katz
or Witten-Bell language model. To speed training, the output layer may be reduced
to only the most frequent words. Tuning the probabilities of these frequent words via
neural networks is useful simply because they will appear often in the training data;
reducing word error rate on these nodes will more drastically reduce the overall
word error rate than will reducing word error rate on rare words. To obtain the
necessary coverage of the vocabulary, the neural network models are interpolated
with traditional backoff language models.

The estimation of language model probabilities is done in a continuous or dis-
tributed space when using neural networks, as opposed to the discrete calculations
performed for traditional back-off models. Continuous probability estimation is
better understood, less ad-hoc, and presumably more accurate than discrete models.
Neural network models expand linearly with the size of the vocabulary, rather than
exponentially as is typical of traditional backoff modeling.

Schwenk [55] describes additional methods to speed training, such as allowing
multiple examples to be given as input at each training epoch, and randomly
sampling the data from multiple corpora in order to achieve the best adaptation for
different language styles. Training over large corpora can also be achieved without
great computational demands by using this randomized sampling method. Larger
n-grams can be modeled with little effect on training time, however the data sparsity
that is attendant with such models is not diminished by using the neural network
method.

These methods work well for lattice rescoring with state-of-the-art speech
recognition systems in English, French, and Spanish on texts ranging in style:
broadcast news, meetings, and conversational data.

Emami et al. [21] apply this method to Arabic data. A variety of morphological
data is included in the input layer to create a richer representation of the context,
without multiplying the number of parameters and requiring a more complex
training technique, as is the case with Factored Language Models. Maximum
entropy part-of-speech (POS) tagging, maximum entropy diacritic restoration,
and segmentation of words into multiple affixes and stem using a cascaded weighted
finite state transducer are the tools used to provide morphologically informed
features. These properties are modeled as features of the word histories that are
the input to the neural network algorithm. The features are simply concatenated to
represent each word as a collection of features. This increases the model size only
linearly with the number of features, due to the projection of the input space to a
more manageable dimensionality in the first hidden layer of the neural network.
Perplexity decreases as more informative features are added to the input, and when
the models of varying input types are interpolated. To calculate perplexities, the
small-vocabulary neural network model is interpolated with a traditional backoff
model with the full vocabulary; the backoff model probabilities are used whenever
the neural network model does not have coverage of a word.

Despite the reductions in perplexity, [21] do not show an improvement in
word error rate when morphologically-rich neural network language models are
used to rescore ASR lattices. This may well have been due to errors in the POS

5 Language Modeling 177

tagging, segmenting, or diacritic restoration of the recognized word lattices. The
work is expanded in [38], where a slightly different set of features are employed:
along with segmentation and POS tags, shallow-parse chunk labels and full-parse
headwords both preceding and following the predicted word are used as features.
The probabilities produced by the neural network language model are used to
rescore an N-best list of ASR outputs in place of lattice rescoring. In this study,
word error rate did decrease by significant amounts on both broadcast news and
conversational data, especially when the more complex syntactic features — previous
and following exposed headwords — were included in the neural network language
model.

Therefore, the incorporation of morphological and syntactic features into a
continuous-space language model has been shown to be beneficial to Semitic natural
language processing, in particular in the speech domain.

5.5.6 Syntactic or Structured Language Models

Chelba and Jelinek [12] describe a structured language model (SLM) in which a
left-to-right parsing mechanism is used to build a model that can be applied in the
first pass of speech decoding. The challenge in training and testing is to find the best
equivalence class for the history of the current word; the n-gram history is often not
sufficient or is misleading, so a syntactically-informed history is used to replace it.

The SLM builds the syntactic structure incrementally; the part-of-speech tags
are used to predict the next word as well as that word’s tag, the structure of that
portion of the parse, and the non-terminal label on the headword. There are multiple
dependencies between these parameters, all of which are learned from data in the
Penn Treebank.

The model that results is similar to a skip-gram language model, where the
number of words skipped in the history of a word depends on the context.
Alternatively, the model can be described as a kind of linear interpolation of varied-
order n-gram models. Many of the predictions made by this model are long-distance
predictions that a trigram model does not capture.

As in other studies, the language models are tested in an ASR application and
are found to bring down word error rate a small amount. The computational load of
training and applying the SLM, however, are reported to be significant. The use
of this model in conjunction with a complementary model that focuses on topical
or semantic modeling may be rewarding. Section 5.5.8 discusses a study that does
incorporate both syntactic and semantic knowledge.

The incorporation of parse trees into language modeling is, clearly, dependent
on the availability of parse trees in that language. At present, this resource and its
attendant automatic parsers are available for Modern Standard Arabic, but are in
short supply for other Semitic languages or dialects of Arabic. When the reliability
of automatic parses is of sufficient quality to merit their use in other tools, then
structured language modeling will undoubtedly be useful for Semitic languages.

178 I. Heintz
5.5.7 Tree-Based Language Models

Bahl et al. [5] introduce tree-based language models in the context of speech
recognition. In this computation-heavy algorithm, binary trees are constructed
such that at each node a yes/no question is asked. Each question regards whether
some predictor variable, such as the previous word, nth previous word, previous
headword, etc., belongs to a given class of words. The classes are also syntactically
defined, including nouns, verbs, and plurals. At the leaves of this tree are sets
of predicted words and their probability distribution. An automatic set-building
algorithm generates a good, if not optimal, model. The probabilities on the leaves
are estimated by taking the average entropy of all of the nodes leading to that leaf;
that is, the average conditional entropy of the sets of words defined by the predictors
at each node.

The resulting models have lower perplexity than trigram models and would seem
to be good complements to them in a log-linear or other combination scheme.

This type of model has not been widely applied, perhaps due to the intensive
computing described in the 1989 article. With more modern computing resources,
such a model would be less onerous to produce, and could handle a larger vocabulary
than 10K words. Future research could show that tree-based language models form
a useful complement to the other language model types described in this chapter.
The types of features used are perhaps more easily produced than those used in,
e.g., FLMs, therefore this might be an appropriate technique to use with resource-
poor languages like Maltese and Syriac. Also, that the model improves results on a
small-data application may point to its utility for the same languages.

5.5.8 Maximum-Entropy Language Models

Maximum Entropy (MaxEnt) models are used to incorporate varying kinds of infor-
mation in a single language model. They are designed to preserve all uncertainty
except where the data explicitly provides evidence for a choice. As described in [8]
and elsewhere, the MaxEnt formula takes the form:

F
exp(Y_ i fi(x, y)) (5.18)

i=1

Pa(ylx) = 70

The values of A; € A for each feature i are calculated over the training set, where
every data point x is described by F features and a class label y. Often (but not
always), the features are binary, so we can describe a certain feature f; as firing
when the feature is true and variable x belongs to class y. The general nature of
this algorithm allows the features to encompass many kinds of information. The
normalizing factor Z assures that the resulting probabilities (x, y) are a proper
probability distribution:

5 Language Modeling 179

F
Z(x) =Y exp()_ Aifilx,) (5.19)

yey i=1

Rosenfeld [52] describes the benefits of using MaxEnt models as well as a step-
by-step derivation of the basic training algorithm. In that study, maximum entropy
modeling is used to interpolate long-distance functions such as trigger words
and skip n-grams together with a baseline trigram model. Mutual information
calculations are used to develop trigger models — pairs of words in which each
word is informative about the other word’s presence in a document. Skip n-grams
form a good counterpart to traditional n-grams, incorporating more knowledge about
a word’s history without necessarily incurring the same data sparsity effects of a
higher-order model. These kinds of models can be linearly interpolated, which has
the benefit of ease of calculation. But, the theoretical grounds of each model are
lost; while each model is initially parameterized at a local level, the weights in the
interpolation algorithm (trained via EM algorithm) are parameterized on a global
level. MaxEnt learning can be used to combine these models without suffering this
loss of theoretical grounding. The constraints of each model are relaxed in a way that
allows them to interact, benefitting each other and strengthening the predictions.
With maximum entropy modeling, the probability of a given bigram will change
based on its context and on how functions from the various models handle that
context. Experiments show that combining language models via MaxEnt is superior
to linear interpolation. Not all of the long-distance models are as useful as hoped,
but the interactions are interesting and in many cases complementary. The effect of
the trigger model in particular is shown to match its theoretical benefit. The long-
distance models are ideal for adaptation from one domain to another, provided that
the adaptation training data is appropriate and that local-context models are also
incorporated.

Rosenfeld [52] describes training the weights A; using the Generalized Iterative
Scaling algorithm. Other, more effective models include Improved Iterative Scaling,
as introduced in [8], and gradient ascent. Maximum entropy modeling is used in
many tasks aside from language modeling; a review and comparison of these and
other MaxEnt training techniques is given in [41].

Sethy et al. [56] and Chen et al. [15] describe a model that uses the MaxEnt
algorithm together with class-based modeling to improve word error rates in ASR.
The introduction of class histories helps to make the model more compact and helps
to reduce the data sparsity problem that pervades n-gram modeling. Importantly,
[15] show improved scores on an Arabic ASR task using this method.

Sarikaya et al. [54] also use Maximum Entropy modeling to combine varying
features in a language model for an Iraqi Arabic ASR task. Word tokens are seg-
mented into morphemes and decorated with part-of-speech and other morphological
information. Maximum entropy modeling takes these features, designed in a tree
structure, as features to train a morphologically-informed language model. Joint
word and morpheme models are used to rescore word-based n-best lists and succeed
in reducing word error rate. The same technique, combining morphological with

180 1. Heintz

lexical information in a maximum entropy language model, is also used to get
improved results in a statistical machine translation task between English and Iraqi
Arabic in [53]. These studies show that maximum entropy modeling is a fruitful
arena for combining different kinds of linguistic information, including the kinds of
morphological information that have been shown to be useful to Semitic language
modeling.

Khudanpur and Wu [31] describe a method for combining semantic and syntactic
information in a maximum entropy language model. Semantic information is incor-
porated by building a topic-dependent language model; in contrast to other studies
where a separate LM is built for each topic and interpolated with a full-vocabulary
LM, [31] use maximum entropy modeling to create a single, fully-interpolated
model with fewer parameters. Furthermore, they derive syntactic information with
a trained parser, and incorporate the top N parses and probabilities into the same
language model, again using a maximum entropy technique. The topic and parse
data add more global information to the model, allowing it to make predictions
with a history greater than only the two previous words. The combined model is
successful in lowering word error rates on an English conversational speech ASR
task. The resources required to replicate this are significant: to build the topic-based
language model, [31] use a corpus with manually labeled topics (per conversation),
and a well-trained parser is required for the syntactic information. In performing this
task on Semitic data for which fewer resources are available, one might consider
using an alternative method for assigning topics to training data, e.g. Bayesian
topic modeling, and a simpler parsing methodology that incorporates long-range
dependencies.

5.5.9 Discriminative Language Models

Discriminative language models are an alternative to n-gram models introduced by
Roark et al. [50]. The discriminative model tries to solve the equation:

F(x) = argmax &(x,y) -« (5.20)
yeGEN(x)

In this equation, x represents the input to a model; for instance, these inputs may
be an acoustic signal of speech. The function GE N (x) produces all of the possible
outputs given this input, that is, all of the possible sequences of words given that
acoustic input. The function @(x, y) is a set of feature values over x and y, and & is
a set of weights chosen so that, when the function produces the maximum value, y
is the correct sequence of words spoken in the acoustic signal. The dual concerns of
discriminative language modeling are finding an appropriate and effective feature
vector @ and an algorithm for training the weights &. As regards feature vectors,
the technique used in [50] takes advantage of application-specific information to
build the most effective models. Regarding the training of &, the authors show

5 Language Modeling 181

how two discriminative models, the perceptron algorithm and the global conditional
log-linear model (GCLM) can be successfully applied.
The steps of the process are:

1. Build a baseline recognizer with an acoustic model and n-gram language model
that produces output in lattice format.

2. Use these baseline lattices to derive features for discriminative LM training, and
as the training data for training the weights &.

3. Use the new language model parameters to refine the decoder output in a second
pass over the lattices.

Therefore, the set of outputs GEN(x) on which the discriminative model is
trained are the sequences in the baseline lattices. There are two kinds of features
that are derived from these lattices: the log probability of the best path y (either the
correct path if it exists in the lattice, otherwise the minimum error path is found),
and the frequency of each n-gram in y. Rather than estimate probabilities for all
n-grams, only those n-grams found in the best path y are considered. This produces
great savings in training and storage for the discriminative language model.

The perceptron algorithm increases or decreases the weights of @ at each iteration
whenever the predicted output is incorrect, eventually guiding the algorithm to the
maximum number of correct answers. In order for the training to converge, the data
must be separable. This means that for each incorrect answer, its score is at least
g different than the score for the correct answer. The number of training iterations
is dependent on the value of §. To apply the perceptron algorithm for training, the
weights on all paths in the baseline lattice are initialized to zero and are adjusted
so that y receives the greatest weight. The final weights on the lattice become the
parameters &. These parameters are used both for second-pass decoding, and as the
feature set and starting point for the global conditional log-linear model (GCLM)
training algorithm.

GCLMs, in contrast, are exponential, and assign a conditional probability to each
member of GEN(x).

1
pa(ylx) = mexp(¢(x,y) @) (5.21)

The conditional distribution over the members of GE N (x) are used to calculate the
log probability of the training data, given parameters &. In GCLM, the weights on
the language model represent probability distributions over the strings. The same
features as mentioned above are used for training. The parameters of the model are
estimated from the training data and applied as a language model in a second pass
of decoding.

Both the perceptron and GCLM models are trained as weighted finite state
automatons (WFSAs). The & parameters are derived from the WFSA. The number
of features used in training can be kept to a minimum by only considering those
n-grams that appear in baseline output, which also results in only the most crucial

182 1. Heintz

parameters being included in the model. The resulting language model can be
directly combined with the baseline lattice for re-scoring.

Presumably, the same approach could be taken with machine translation and its
lattices. The refined language models will then be configured to best discriminate
between semantically, rather than acoustically, confusable terms.

Kuo et al. [37] introduce a third method of training the discriminative LM, the
minimum Bayes risk calculation. In this case, the & parameters of the model are
trained by calculating the number of errors contained in each hypothesis. The loss
associated with each hypothesis is compared to the same loss without a given feature
included; if the loss is worse without the feature, then «; associated with feature i is
positively updated, otherwise it is negatively updated. Kuo et al. [37] show that this
algorithm produces improved word error rate on ASR for Modern Standard Arabic,
especially when morphological features are used to reduce the out-of-vocabulary
rate. Additionally, the authors describe the Bayes risk metric, which allows them
to train the discriminative LM in an unsupervised way. Instead of comparing each
hypothesis to a reference transcription, each hypothesis is compared to every other
hypothesis, and the sum of the differences represents the Bayes’ risk metric:

Liylxy= > Ly.y)p(/|x) (5.22)
y'€GEN(x;)

where L(y,y’) represents the number of errors in hypothesis y as opposed to
v/, and p(y|x;) is the posterior probability of hypothesis y. The hypotheses and
probabilities are given by a baseline recognizer, rather than by hand transcription.
The hypothesis that minimizes this equation, y, is considered the gold standard for
perceptron and GCLM training. This allows the use of more training data for which
hand transcriptions are not available, and as one expects, the additional training data
improves WER scores.

Arisoy et al. [4] revisits discriminative language modeling with a Turkish ASR
application. The rich morphology of Turkish serves as a good example of how
discriminative LMs, in particular those that include morphological as well as
whole-word features, might work with similarly rich Semitic languages. In this
study, the authors experiment with features derived from word n-grams, word-
based syntactic features, morph n-grams (derived via Morfessor [17]), syntactic
features estimated over the morph sequences, and topic-based features estimated
using a tf-idf vector methodology. The results show that while morph-based features
and syntactic features (both word- and morph-based) in the discriminative LM
framework improve ASR results, the semantically-informed topic features and long-
distance morph relation features are not useful. It is also the case that unigram
features are better than higher-order n-gram features in the discriminative LM.
The discriminative modeling and morph-based features help overcome the OOV
problem and data sparsity that occur in Turkish, and the lessons may well be applied
to building language models for Arabic and other Semitic languages for ASR or
other NLP applications.

5 Language Modeling 183
5.5.10 LSA Language Models

Bellegarda [7] describes a method for integrating long-range semantic information
into the normally short-range context of n-gram models. This method first involves
calculating the Singular Value Decomposition (SVD) of a word-by-document
matrix derived from a large set of training data that is semantically similar to the
test data. The decomposed and truncated matrices derived via SVD can be used to
represent the words and documents in a clustered semantic space. In other words,
it becomes possible to compare each word to other words in the training set based
on their distribution among documents. The decomposition effectively takes into
account all word pairs and all document pairs in deriving the similarity of all words
and documents. A new document can be clustered into a semantic grouping of
similar documents from the training set by projecting it into the SVD space. In
terms of n-gram modeling, we can model the probability of each word in a document
given the semantic history of the entire preceding document. This semantic language
model prediction is interpolated with typical n-gram modeling in the following way:

| — i Ji—
pwi|wizh,) pluldi=n)

P(w,|H") = (5.23)

17(%, ‘dr 1)
) p(wi)

Zw eV p(wl |W —n+1
where w; is the current word, p(w,-lcii_l) is the LSA model probability for the
word given the semantic history, and V' is the vocabulary. H,.(f—lH) represents the
integration of the n-gram probability n with an LSA probability / for the history
of the document up until word w;. This calculation provides a natural interpolation
of long- and short-term context. The component d;_; can be smoothed by referring
to the word or document clusters rather than to the vectors of the individual words
seen in the document. Further tuning can be applied to determine how much of the
previous context should be taken into account for each word.

The experiments in [7] show good reductions in perplexity and word error rate
when incorporating the LSA history into the standard bigram and trigram model.
However, some caveats apply. The semantic type of the training data used to develop
the LSA model must be tightly coupled with that of the test data, otherwise the
effectiveness of the extra modeling is greatly diminished. Luckily, not a very large
amount of data is necessary to construct an effective model. Also, while the LSA
modeling is very useful as concerns content words, those that control the broad
semantic topics and ideas of a document, it is not effective at all in discriminating
between function words that appear in all documents. As these tend to be the words
most likely to be mis-recognized in an ASR context, the benefit of LSA may be lim-
ited for that task. However, while function word mistakes may be common, mistakes
in content words may be more harmful to actual understanding, so that the mistakes
that are avoided by using an LSA-interpolated model may outweigh the function
word mistakes in some evaluations. Furthermore, the long-distance semantic system
can also be interpolated with a near-term, syntactically trained language model.

184 1. Heintz

The Semitic NLP literature is missing reference to LSA language modeling.
This may be because a major obstacle in Semitic NLP is often the precise word
choice, i.e. choosing the right syntactic word form from among many semantically
identical ones, for which LSA modeling is not helpful. However, in natural language
generation, LSA modeling may help to provide some variation in phrase creation,
and it could also be useful in English-to-Semitic machine translation.

5.5.11 Bayesian Language Models

Two related goals motivate the language modeling work of [66]: to incorporate a
corpus-based topic model into an n-gram language model, and to do so using a
Bayesian algorithm. The large-context topic modeling serves to complement the
smaller-context n-gram modeling. The Bayesian paradigm enforces a method in
which all assumptions about the data are formulated mathematically in order to be
incorporated into the model. The work of [66] is based largely on that of [40]; the
discussion below draws from both studies.

The path to achieving both goals is found in Dirichlet modeling, which is used as
a replacement for the simpler kinds of smoothing and backoff described in Sect. 5.4.
A Dirichlet model provides a prior model of the data. Assume a matrix @ that
describes word transition probabilities over a training corpus. Each row w' of @
represents the probabilities P(w|w’). These rows make up the parameters of the
model Q. However, the parameters of Q are usually poorly estimated because of the
sparse data problem that affects all language modeling attempts. The real parameters
of the data are unknown; we can easily imagine that there are multiple possible
parameters of Q. The distribution of the possible parameters of Q is estimated
by the Dirichlet model. The parameters of the Dirichlet model — a hierarchical,
exponential model — are the hyperparameters of the corpus data. The crucial
parameters of the Dirichlet model are usually notated as « and m; « describes the
peakiness of the distribution, while m describes its mean. In most of Chap.3 of
her dissertation, Wallach replaces these with B and n, respectively, and that is the
notation that will be used in this summary. The focus here is the use of the Dirichlet
model in language and topic modeling; for a further explanation of its properties
and estimation, please see [66] and [40].

Typical bigram modeling starts with the same transition matrix @, using a
formulation like Eq.(5.24) to predict the probability of a test corpus given the
training data:

Pw®) =[] Tom (5.24)

The term ¢,,» describes the probability of the bigram w'w in the training data,
while the term N,,,s is an exponent of ¢ describing the bigram’s count in test
data. Smoothing and backoff algorithms such as those described in Sect.5.4 are

5 Language Modeling 185

usually used to enhance this formulation to account for the sparse data problem.
Those methods are replaced here with a Dirichlet prior, which counters the
sparse data problem by estimating the probability of our training data @ over the
hyperparameters 87 of the Dirichlet model:

P(@|pn) = [[Dir(w|Bn) (5.25)

When we substitute Eq.(5.25) into Eq.(5.24), we can estimate P(w|fBn), the
probability of the test corpus given the Dirichlet hyperparameters:

(5.26)

L. TNy + B0 T(B)
P(w|pn) = lw_[TNy +8) LT

I' is a function used in the estimation of the Dirichlet model. At the test stage,
we can predict the probability of word w given a previous word w’ and the estimated
model using the following formulation:

Nwhv’ + ﬁnw
Pww,w,Bn) = ————— 5.27
ol) = = (527)
NW\W’
=Awny + (1 —Ay)—— 5.28
o (1=) (528)
Equation (5.28) is meant to evoke a typical interpolation model: N/\j—‘”// is a

bigram probability; we back off to a unigram probability described by #,,,, and these
are interpolated by parameter A,/ . In the Dirichlet formulation, the concentration
(peakiness) hyperparameter B takes the place of EM-estimated A, and the n,,
hyperparameter takes the place of Good-Turing or another kind of smoothing
discounting for w. The result is a formulation of the smoothing parameters of the
bigram w'w through the calculation of a Dirichlet prior rather than through EM
estimation.

Similar intuitions are used to apply the Dirichlet prior to topic modeling. This
is known as latent Dirichlet allocation, and is also described in [9]. Earlier we
described a matrix @ in which the rows represent the probabilities of transition
from word w’ to each word w. Now we instead define @ as the probabilities of
transitioning from topic ¢ to words w. The set of topic distributions are notated as z.
Furthermore, we assume that a given document will include a subset of possible
topics, so there is a second transition matrix @ from documents to topics. The esti-
mation of each of these two matrices is again based on sparse data, and therefore it is
useful to estimate a Dirichlet prior describing their distributions. We estimate hyper-
parameters 8 and n to describe the distribution of possible matrices @, and separate
hyperparameters « and m to describe the distribution of possible matrices ©.

To estimate the probability of a word using a topic-based model, we apply the
parameters B and n:

186 1. Heintz

Nw\t + ,an
P(wlt,w,z,pn) = —L ~ =¥ (5.29)
| B T
N,
= Aoty + (1 — A) =t (5.30)

N;

The term N, refers to the distribution of all words over that topic ¢. Similarly,
to calculate the probability of a given topic given a document model, we apply the
hyperparameters o and m:

Nya +amy;
P@ld,w,z,am) = ——— 5.31
(]) Now + o (5.31)
N,
= Agm, + (1 — Ag) =1 (5.32)
Ny

The models resulting from latent Dirichlet allocation have properties in common
with those resulting from latent semantic analysis, described in Sect. 5.5.10.

Given a topic model and a bigram model, the next challenge is to find a
method to combine their predictions. When using LSA to incorporate topical
information (Sect.5.5.10), the topic models are combined with n-gram models
using linear interpolation. In contrast, to retain and extend the Bayesian properties
of the component n-gram and topic models described here, [66] calculates the
joint probability of a word given both its n-gram context and its topic context
by combining Eqgs. (5.27) and (5.29). Stepping back to the initial model of the
training corpus, the transition probability matrix @ will now have rows defined
as the probability of transition from word w’ and topic ¢ to word w: P(w|w't).
The Dirichlet hyperparameters describe the probability distribution of this jointly
estimated matrix @. If the contexts w't are modeled as strictly joint, then the
estimation is formulated as:

P(@|n) = [[[[Dir(¢w:1Bn) (5.33)

w’

The hyperparameters 8 and n are fully tied, shared between the contexts w’ and ¢.
Alternatively, the contexts w’ might be modeled separately for each topic:

P@|{Bniy/=) = [[Dir@w:|Bno) (5.34)

Here the hyperparameters capture topic-specific similarities between words. Lastly,
the distributions of # could be modeled separately over each context w':

P@[{Bnw =) = [[[[Pir@w:lBnw) (5.35)

w

5 Language Modeling 187

In this last case, the parameters capture information about common, topic-
independent bigrams.

The choice of prior as well as the choice of estimation procedure affect the
outcome, as better choices result in more interpretable topics and more informative
models. For jointly estimating word and topic contexts, [66] shows Eq. (5.34) to
be most effective; it is more effective than Dirichlet-estimated bigram or topic
models alone, and more effective than using either of the other priors (Egs. 5.33
and 5.35) to estimate the joint model.

The models are evaluated by a measure related to perplexity, differing from the
usual formulation due to the use of topic models and the alternative method of
estimating the models. The results over a small training and test set show that the
proposed algorithms are effective in reducing the information rate of the models.
Furthermore, the words comprising topic models are interpretable, showing that the
method is as useful as LSA in incorporating semantic properties of the corpus into
the language model. The differences in evaluation technique, however, preclude the
comparison of the Bayesian topic-based models in [66] to typical language model-
ing methods. Ostensibly, this method of calculating the models and of testing them
is task-independent, but no task-based evaluation is given. The questions of whether
this technique is amenable to use in speech recognition or machine translation in
terms of storage and processing requirements, and whether the information theoretic
gains extend to gains in task results, remain for further research.

As for tasks within the Semitic language realm, the usual questions apply: should
the word contexts be determined over unique tokens, or should stemming be applied
first? More generally, will using this technique for estimating smoothing parameters
be useful in solving the sparse data problem that most affects Semitic languages —
the growth of vocabulary due to morphological richness? Perhaps the incorporation
of a third kind of context, one that models morphological properties, will result in
the most useful model for Semitic language applications.

5.6 Modeling Semitic Languages

The specifics of morphological and grammatical principles of Semitic languages
are covered elsewhere in this volume. There are multiple morphological functions,
including both root-and-pattern and affixational morphology, that result in an
abundance of unique word forms. As for handling this rich morphology in automatic
processing, there are two overall devices: tokenization, which reduces the number
of unique words by separating clitics from the main semantic information, and
stemming, which reduces the number of unique word forms by arranging words
into classes by their common properties, ignoring the less semantically salient
properties that make them different. Tokenization can often be applied through
simple scripts that look for specific alphabetic sequences at word boundaries.
An information-theoretic approach to tokenization can also be taken when affix
and stem dictionaries are unavailable (e.g. Morfessor, [17]). There are multiple

188 1. Heintz

approaches to stemming, ranging from language-independent statistical methods of
deriving morphemes to linguistically complex methods such as the multi-featured,
context-sensitive classes derived through the use of parsers and part-of-speech
taggers for Factored Language Models [33]. This section will review studies that
incorporate tokenization, stemming, or both in order to improve language models
for Semitic natural language processing.

5.6.1 Arabic

Vergyri et al. [65] and Kirchhoff et al. [33] both describe the utility of incorporating
morpheme information into language models for Arabic speech recognition. Both
of these studies use Egyptian Colloquial Arabic data and Factored Language
Models (FLMs), described above in Sect. 5.5.4. Automatic means are used to derive
morphemes as well as other kinds of morphological and syntactic information.
These studies focus on how FLMs and associated technologies such as generalized
parallel backoff can be used to successfully incorporate this knowledge into a
useful language model, eventually reducing word error rate on an ASR task. One
obstacle that must be overcome is the combination of recognized morphemes into
words without generating spurious words, or words not in the original vocabulary.
Another aspect of this technology is the decision of when to incorporate the
morpheme models; if the model is too complex to be effectively incorporated
into first-pass decoding, it can still be beneficial to use morpheme and enhanced
models in a second-pass decoding of word-based lattices. The experiments in
[33] also effectively separate the aspects of morpheme-based language modeling
from the FLM technique in a useful way; it is clear in this study that the use of
the more complex FLMs indeed improves upon a more simple incorporation of
morphological knowledge into the language model.

The use of morphemes in Arabic language modeling is also discussed in [21],
discussed in Sect. 5.5.5 above. Morphemes derived via a finite state algorithm, part
of speech tags, and automatically-derived short vowel information are used as input
to a neural network language modeling tool. While the gain in word error rate is
negligible in this study, the follow-up study [38] does show that accurately derived
morphological information can be used to successfully lower word error rate when
incorporated into neural network language models.

When working with a dialectal form of Arabic, there is a tension between
using morphological information derived from the more data- and resource-replete
Modern Standard Arabic and creating new tools to work with the particular dialect,
for which there may not be adequate text for training new models. Afify et al.
[2] combine tools and knowledge from both MSA and Iraqi Arabic in creating
morpheme-based language models for the Iraqi dialect. First, a set of affixes are pre-
defined based on linguistic knowledge of the dialect. The affixes are segmented from
the words based on orthographic information. These segmentations are then refined
by applying knowledge from the Buckwalter Arabic Morphological Analyzer [11],

5 Language Modeling 189

which encodes information about legal stems in MSA. Heuristics such as setting a
minimum stem length and checking stem accuracy against the stem dictionary limit
the number of segmentations of each word. The resulting segmentations are used
to derive both the language model and pronunciation dictionaries. The morpheme
models result in a lower out-of-vocabulary rate and a lower ASR word error rate,
especially when interpolation is used to smooth the word and morpheme language
models. The interpolation allows the model to take advantage of the longer context
of word models and the greater token coverage of morpheme models.

Xiang et al. [68] use a similar method of segmentation constrained by defined
MSA stems to produce morpheme-based language models of Arabic. When auto-
matically derived phonetic information is incorporated into both these language
models and corresponding acoustic models, word error rates drop. An important
observation of this study is that words must be segmented carefully; doing so
without constraint results in models with greater acoustic confusability. Incor-
porating phonetic knowledge into the segmentation algorithm aids in producing
models that are better aligned with the challenges encountered in ASR. Constrained
segmentation of Arabic words into morphemes is also explored in [39] and [16]. In
these studies, the statistically-derived morpheme segmentations are constrained by
pre-defined affix and stem lists. The benefit of using these morphemes in language
modeling for ASR may be limited to small-vocabulary tasks [16], but in some cases
may also be useful in large-vocabulary tasks [46].

Heintz [27] uses finite state machines to identify all of the possible stems
in a word according to a set of pattern templates. Together with a set of pre-
defined affixes, the segmentation into morphemes produces a text over which useful
language models can be estimated. However, there is no significant reduction in
word error rate in either Modern Standard Arabic or Levantine Arabic speech
recognition experiments. The use of simpler techniques such as Morfessor [17] or
affix-splitting for morpheme creation is recommended.

Marton et al. [42] discusses the use of tokenization of an Arabic language model
for translation from English to Arabic. (The main thesis of this study regards
paraphrasing the source language, English, but this does not affect the language
modeling of the target language, Arabic.) Tokenization and normalization are
performed using MADA, a morphological analysis tool trained to work with Modern
Standard Arabic data. They note that the process of de-tokenization, returning the
morphemes to word status by correctly strining them back together, is a non-trivial
and important step in processing, and discuss a successful technique.

5.6.2 Amharic

In [1], bigram language models are incorporated into an Ambharic large-vocabulary
automatic speech recognition system. The system is straightforward and without
complications of morphological processing. The use of only whole words results
in a rather weak model due to data sparsity — both perplexity and the number of

190 1. Heintz

singleton words are large. The author points to the use of syllable modeling as a
useful prospect for segmenting Ambharic text; the use of syllables in the acoustic
modeling experiments, tested separately from language modeling, is shown to be
beneficial.

Tachbelie and Menzel [63] build on the work for Amharic NLP begun in [1].
In this study, the authors use the Morfessor algorithm [17] to segment the Amharic
train and test texts, greatly reducing the out-of-vocabulary rate. A comparison of
word and morpheme language models via log probability (see Sect. 5.2) shows that
the word-based model provides a better encoding of the test text. Still, reducing the
out-of-vocabulary rate should be useful for application of the model in an NLP
task, and the language-independent Morfessor algorithm is sufficient to provide
adequate segmentation for this purpose. The authors test their hypotheses further
in [64]. Here the speech recognition system developed in [1] is used to test several
morpheme-based language models in Amharic. A manual segmentation of words
into morphemes is compared to the Morfessor-derived morphs. The morpheme
models are applied by expanding word bigram lattices into morpheme-based lattices
and finding the new best path. Linguistically (manually) derived morphemes, and
trigrams in particular, are found to produce better results in this second-pass
decoding. Factored language models are also explored, with word, POS, prefix, root,
pattern and suffix features. Pre-determined and genetic algorithm backoff models
are applied in this study. FLMs, especially those that include POS information and
use genetic algorithms to find the best backoff path, produce better decoding results
than the simpler methods described above.

Pellegrini and Lamel [48] also study the application of NLP techniques to
Ambharic. Words are decomposed using the Harris algorithm, which looks for
morpheme boundaries at places where the number of possible subsequent letters
is large. Splitting words at these affix boundaries effectively reduces the size of
the vocabulary. Furthermore, ASR experiments using re-trained morpheme acoustic
models are successful in reducing the word error rate, both when morphemes
are counted as ‘words’ and when the morphemes are recombined into words.
However, it is found in later studies that this result is restricted to this experiment
with its small 2-h acoustic model training set. In [49], the word decompounding
is performed with Morfessor, modified to include a Harris probability for word
boundaries. The effect of this is to favor short morphs, which correspond better to
the kind of concatenative morphemes (affixes) that are found in Semitic languages.
Furthermore, the algorithm is enhanced with information about phonetic distinctive
features. A constraint is added to each model regarding acoustic confusability,
derived from acoustic alignment tables. This biases the algorithm to avoid creating
monosyllables that are acoustically confusable. All of the morpheme models reduce
the vocabulary size of the training set as compared to word models. In applying these
models in an ASR task, the lowest word error rate occurs with the most complex
model, which uses both morphological and phonetic constraints in its segmentation.
This study uses a 35-h training set, and finds that the use of a phonetic constraint
is required when deriving morphemes for language modeling to reduce word error
rate in Amharic ASR.

5 Language Modeling 191

5.6.3 Hebrew

Netzer et al. [43] use a trigram-model trained on 27 million Hebrew words for the
task of predicting likely words following a given context. The task envisioned in
this study is mobile device input, therefore no acoustic or translation models are
necessary. A morphological and syntactic model are incorporated to account for rich
Hebrew morphology, but in this case, results are worsened. The application is such
that only a partial sentence is used in computing and applying morphological and
syntactic information at test time, which likely accounts for the unexpected results.
It is important to have sufficient context when applying morphological and syntactic
models to modify or enhance both training and test texts.

Shilon et al. [58] is a study of Hebrew-Arabic machine translation. There is great
difficulty in building such a system, as there is no sufficient corpus of parallel
language data. Target-language LMs can be built on the available single-corpus
data, but it is also essential to incorporate linguistic rules in the decoding phase that
account for the morphological and syntactic differences that exist between Hebrew
and Arabic. A second difficulty is the fact that the lattices output by the decoder
tend to be very large, both for Hebrew and Arabic as the target language. Again,
this is due to the morphological richness of both languages, and the lack of parallel
corpora to help align and filter the output. In general, the language models are not
able to sufficiently assign accurate probabilities to all of the sequences in the lattices.
This study points to the amount of work left to be realized, both in building and
applying resources like parallel corpora and knowledge-rich language models, for
the successful application of statistical machine translation in Arabic and Hebrew.

5.6.4 Maltese

The morphological characteristics of Maltese are somewhat different than those
of the other Semitic languages discussed in this book. This impacts the kinds of
techniques that might be used in language modeling for Maltese.

As stated earlier in the book, Maltese is written with Latin text. Unlike Modern
Standard Arabic or Hebrew, all vowels are included in the orthographic form. If
vowel variation were to occur within stems as it does in the derivational morphology
of Hebrew and Arabic, this would produce a great increase in the number of word
forms in Maltese. However, it is the case that vowel harmony is not used for
morphological purposes, so vocabulary size should not increase dramatically due
to the inclusion of vowels in the orthography.

The problem of vocabulary expansion in Modern Standard Arabic and other
Semitic languages comes from the combinations of many affixes and clitics used
to encode morphological information such as gender and number agreement, case
markings, object pronouns, tense, and aspect. Maltese also uses affixes for some of
these purposes, so that the use of a stemmer may reduce the out-of-vocabulary rate.

192 1. Heintz

However, Maltese uses affixational morphology somewhat less frequently than is
seen in other Semitic languages. For instance, there is no case marking on nouns,
and some tense and aspect markers are separate particles, meaning that the amount
of vocabulary expansion will not be as great for Maltese. Therefore, larger training
sets may compensate for the growth in vocabulary due to affixational morphology
more quickly than is the case in MSA. If adequate training data is not available,
stemming techniques are likely to be useful in generating the most reliable language
models.

It is also the case that Maltese has relatively free word order. The ordering of
verb, subject, and object changes based on the topic of the sentence. This free word
order means that exact n-grams are less likely to be repeated throughout a corpus. A
modeling technique like skip n-grams or flexgrams (Sect. 5.5.1) may be especially
useful in Maltese for capturing the history of a word without relying too heavily on
word order.

5.6.5 Syriac

It is likely that the most pressing issue in language modeling for Syriac will be
the lack of training data. This issue will be exacerbated by the existence of several
forms of orthography. Therefore, a crucial step will be the normalization of the
orthography in order to take advantage of all available data.

As in MSA and Hebrew, many vowels are not normally marked in the orthog-
raphy, reducing the number of word forms that must be predicted. Affixational
morphology is used on verbs in Syriac to encode number, gender, tense, and object
pronouns, as well as possessive pronouns on nouns. Given the probable lack of
training data, stemming will be useful to decrease the out-of-vocabulary rate. The
regularity of the affixes and clitics may mean that a surface segmenter such as
Morfessor [17] will be adequate to provide useful morphemes, without resorting
to a deep morphological analysis.

5.6.6 Other Morphologically Rich Languages

Languages such as Turkish and Finnish also exhibit high degrees of morphological
complexity resulting in a quickly expanding vocabulary and high out-of-vocabulary
rate [25, 28]. Many of the techniques for dealing with the resulting data sparsity
in Semitic languages can be used to address the same problem in these other
languages, and vice versa. For instance, Sect.5.5.9 mentions the work of [4] in
which morpheme and lexical information is used in a language model to improve
the results of a Turkish ASR task. Hacioglu et al. [26] also describe a morpheme-
splitting algorithm for Turkish, where the morphemes rather than words are again
used to improve ASR. Siivola et al. [59] discuss the use of stemming in building

5 Language Modeling 193

language models for Finnish ASR. Hirsimiki et al. [28] introduced the Morfessor
algorithm for segmenting words into statistically-derived “morphs” by applying it
to Finnish data. These and other studies on morphologically rich languages can
certainly inform natural language processing work in Semitic languages.

5.7 Summary

In this chapter we have explored basic n-gram modeling and many variations on
that technique that allow the incorporation of semantic, syntactic, and even phonetic
knowledge into the models. Within Semitic language modeling, the focus has been
on how best to acquire and make use of morphological information to provide
context and knowledge for the language models. Modeling techniques that make this
incorporation simpler, in particular factored language modeling and neural network
modeling, seem most promising for Semitic applications.

The use of one model over the other will often depend not only on the task, but
also on the resources available. When working with languages for which resources
are scarce, simpler linguistic extraction methods, such as statistical segmenting,
often do a sufficiently accurate job to provide informative features to the language
models. Exploration of the simpler expanded language modeling techniques, such
as skip n-grams and flex-grams, may be of greatest use in languages like Ambharic,
Syriac, and Maltese, where corpus data and automatic tools for parsing, etc.
are difficult to acquire. These techniques have been shown to be as effective in
improving language models as adding more data — a crucial factor when very little
data is available.

When corpus data as well as automatic means for extracting part-of-speech
labels, roots, or other syntactic or morphological information are available, then
the more complex modeling methods that can incorporate this data will have an
advantage. Further study of more complex methods such as Bayesian topic-based
language modeling may be appropriate for languages such as Modern Standard
Arabic and Modern Hebrew, for which data and tools are available.

References

—

. Abate ST (2006) Automatic speech recognition for Amharic. PhD thesis, Universitidt Hamburg

2. Afify M, Sarikaya R, Kuo HKJ, Besacier L, Gao Y (2006) On the use of morphological analysis
for dialectal Arabic speech recognition. In: Proceedings of ICSLP, Pittsburgh

3. Al-Haj H, Lavie A (2012) The impact of Arabic morphological segmentation on broad-
coverage English-to-Arabic statistical machine translation. Mach Trans 26:3-24

4. Arisoy E, Saraglar M, Roark B, Shafran I (2012) Discriminative language modeling with

linguistic and statistically derived features. IEEE Trans Audio Speech Lang Process 20(2):540—

550

194

5.

6.
7.

11.

12.
13.

14.

15.

16.

17.

18.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

1. Heintz

Bahl LR, Brown PF, Souza PVD, Mercer RL (1989) A tree-based statistical language model for
natural language speech recognition. IEEE Trans Acoust Speech Signal Process 37:1001-1008
Bell T, Cleary J, Witten I (1990) Text compression. Prentice Hall, Englewood Cliffs
Bellegarda J (2000) Exploiting latent semantic information in statistical language modeling.
Proc IEEE 88(8):1279-1296

. Berger AL, Pietra SAD, Pietra VID (1996) A maximum entropy approach to natural language

processing. Comput Linguist 22(1):39-71

. Blei DM, Ng AY, Jordan MI (2003) Latent Dirichlet allocation.] Mach Learn Res 3:993-1022
. Brown P, Pietra VD, deSouza P, Lai J, Mercer R (1992) Class-based n-gram models of natural

language. Comput Linguist 18:367-379

Buckwalter T (2004) Buckwalter Arabic morphological analyzer version 2.0. http://www.ldc.
upenn.edu/Catalog/CatalogEntry.jsp?catalogld=LDC2004L02

Chelba C, Jelinek F (2000) Structured language modeling. Comput Speech Lang 14:283-332
Chelba C, Brants T, Neveitt W, Xu P (2010) Study on interaction between entropy pruning and
Kneser-Ney smoothing. In: INTERSPEECH 2010, Makuhari, Chiba, pp 2422-2425

Chen S, Goodman J (1999) An empirical study of smoothing techniques for language
modeling. Comput Speech Lang 13:359-394

Chen S, Mangu L, Ramabhadran B, Sarikaya R, Sethy A (2009) Scaling shrinkage-based
language models. In: Automatic speech recognition & understanding, Merano/Meran, pp 299—
304

Choueiter G, Povey D, Chen SF, Zweig G (2006) Morpheme-based language modeling for
Arabic LVCSR. In: Proceedings of ICASSP, Toulouse, pp 1053-1056

Creutz M, Lagus K (2007) Unsupervised models for morpheme segmentation and morphology
learning. ACM Trans Speech Lang Process 4:1-34

Deligne S, Bimbot F (1995) Language modeling by variable length sequences: theoretical
formulation and evaluation of multigrams. In: Proceedings of ICASSP, Detroit, vol 1, pp 169—
172

. Duh K, Kirchhoff K (2004) Automatic learning of language model structure. In: Proceedings

of COLING 2004, Geneva

El Kholy A, Habash N (2012) Orthographic and morphological processing for English-Arabic
statistical machine translation. Mach Trans 26:25-45

Emami A, Zitouni I, Mangu L (2008) Rich morphology based n-gram language models for
Arabic. In: Interspeech 2008, Brisbane, pp 829-832

Gale WA, Church KW (1994) What’s wrong with adding one? In: Oostdijk N, De Haan P (eds)
Corpus-based resarch into language. Rodolpi, Amsterdam

Gale WA, Sampson G (1995) Good-turing frequency estimation without tears. J Quant Linguist
22:217-37

Guthrie D, Allison B, Liu W, Guthrie L, Wilks Y (2006) A closer look at skip-gram modelling.
In: Proceedings of LREC, Genoa

Guz U, Favre B, Hakkani-Tiir D, Tur G (2009) Generative and discriminative methods using
morphological information for sentence segmentation of Turkish. IEEE Trans Audio Speech
Lang Process 17(5):895-903

Hacioglu K, Pellom B, Ciloglu T, Ozturk O, Kurimo M, Creutz M (2003) On lexicon creation
for Turkish LVCSR. In: Proceedings of Eurospeech *03, Geneva, pp 1165-1168

Heintz I (2010) Arabic language modeling with stem-derived morphemes for automatic speech
recognition. PhD thesis, The Ohio State University

Hirsiméki T, Creutz M, Siivola V, Kurimo M, Viripioja S, Pylkkoénen J (2006) Unlimited
vocabulary speech recognition with morph language models applied to Finnish. Comput
Speech Lang 20:515-541

Jelinek F, Mercer R (1980) Interpolated estimation of Markov source parameters from sparse
data. In: Proceedings of the workshop on pattern recognition in practice, Amsterdam, pp 381—
397

Katz SM (1987) Estimation of probabilities from sparse data for the language model compo-
nent of a speech recognizer. IEEE Trans Acoust Speech Signal Process ASSP-35(3):400-401

http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC2004L02
http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC2004L02

31.

32.

33.

34.

35.

36.
. Kuo HK, Arisoy E, Mangu L, Saon G (2011) Minimum Bayes risk discriminative language

37

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

S1.

52.

53.

54.

55.

Language Modeling 195

Khudanpur S, Wu J (2000) Maximum entropy techniques for exploiting syntactic, semantic,
and collocational dependencies in language modeling. Comput Speech Lang 14:355-372
Kirchhoff K, Bilmes J, Henderson J, Schwartz R, Noamany M, Schone P, Ji G, Das S, Egan M,
He F, Vergyri D, Liu D, Duta N (2002) Novel approaches to Arabic speech recognition: report
from the 2002 Johns-Hopkins summer workshop. Technical report, Johns Hopkins University
Kirchhoff K, Vergyri D, Bilmes J, Duh K, Stolcke A (2006) Morphology-based language
modeling for conversational Arabic speech recogntion. Comput Speech Lang 20:589-608
Kneser R (1996) Statistical language modeling using a variable context length. In: Proceedings
of the fourth international conference on speech and language processing, Philadelphia,
pp 494497

Kneser R, Ney H (1995) Improved backing-off for m-gram language modeling. In: Proceedings
of the IEEE international conference on acoustics, speech and signal processing, Detroit, vol 1,
pp 181-184

Koehn P (2010) Statistical machine translation. Cambridge University Press, Cambridge

models for Arabic speech recognition. In: IEEE workshop on ASRU, Waikoloa, pp 208-213
Kuo HKJ, Mangu L, Emami A, Zitouni I (2010) Morphological and syntactic features for
Arabic speech recognition. In: Proceedings of ICASSP, Dallas, pp 5190-5193

Lee YS, Papineni K, Roukos S, Emam O, Hassan H (2003) Language model based Arabic word
segmentation. In: Proceedings of the 41st annual meeting for ACL, Sapporo, vol 1, pp 399406
Mackay DJC, Bauman Peto LC (1995) A hierarchical Dirichlet language model. Nat Lang Eng
1(3):289-307

Malouf R (2002) A comparison of algorithms for maximum entropy parameter estimation. In:
Proceedings of Co-NLL, Taipei

Marton Y, el Kholy A, Habash N (2011) Filtering antonymous, trend-contrasting, and polarity-
dissimilar distributional paraphrases for improving statistical machine translation. Proceedings
of 6th workshop on statistical machine translation, Edinburgh, pp 237-249

Netzer Y, Adler M, Elhadad M (2008) Word prediction in Hebrew — preliminary and surprising
results. In: ISAAC 2008, Gold Coast. http://www.cs.bgu.ac.il/~adlerm

Ney H, Essen U (1991) On smoothing techniques for bigram-based natural language mod-
elling. In: Proceedings of the IEEE international conference on acoustics, speech and signal
processing "91, Toronto, vol 2, pp 825-829

Ney H, Essen U, Kneser R (1994) On structuring probabiliistic dependences in stochastic
language modelling. Comput Speech Lang 8:1-38

Nguyen L, Ng T, Nguyen K, Zbib R, Makhoul J (2009) Lexical and phonetic modeling for
Arabic automatic speech recognition. In: INTERSPEECH 2009, Brighton, pp 712-715
Niesler TR, Woodland P (1996) A variable-length category-based n-gram language model. In:
Proceedings of ICASSP, Atlanta

Pellegrini T, Lamel L (2006) Investigating automatic decomposition for ASR in less repre-
sented languages. In: INTERSPEECH-2006, Pittsburgh, pp 1776-1779

Pellegrini T, Lamel L (2007) Using phonetic features in unsupervised word decompounding
for ASR with application to a less-represented language. In: INTERSPEECH-2007, Antwerp,
pp 1797-1800

Roark B, Saraclar M, Collins M (2007) Discriminative n-gram language modeling. Comput
Speech Lang 21:373-392

Ron D, Singer Y, Tishby N (1996) The power of amnesia: learning probabilistic automata with
variable memory length. Mach Learn 25:117-149

Rosenfeld R (1996) A maximum entropy approach to adaptive statistical language modelling.
Comput Speech Lang 10:187-228

Sarikaya R, Deng Y (2007) Joint morphological-lexical language modeling for machine
translation. In: NAACL-Short *07 human language technologies 2007, Rochester, pp 145-148
Sarikaya R, Afify M, Gao Y (2007) Joint morphological-lexical language modeling (JMLLM)
for Arabic. In: Proceedings of ICASSP, Honolulu, pp 181-184

Schwenk H (2007) Continuous space language models. Comput Speech Lang 21(3):492-518

http://www.cs.bgu.ac.il/~adlerm

196 1. Heintz

56. Sethy A, Chen S, Ramabhadran B (2011) Distributed training of large scale exponential
language models. In: Proceedings of ICASSP, Prague, pp 5520-5523

57. Seymore K, Rosenfeld R (1996) Scalable backoff language models. In: Proceedings of ICSLP
1996, Philadelphia, pp 232-235

58. Shilon R, Habash N, Lavie A, Wintner S (2012) Machine translation between Hebrew and
Arabic. Mach Trans 26:177-195

59. Siivola V, Kurimo M, Lagus K (2001) Large vocabulary statistical language modeling for
continuous speech recognition in Finnish. In: Proceedings of the 7th European conference on
speech communication and technology, Copenhagen, pp 737-747

60. Siivola V, Creutz M, Kurimo M (2007) Morfessor and VariKN machine learning tools for
speech and language technology. In: INTERSPEECH 2007, Antwerp, pp 1549-1552

61. Siivola V, Hirsiméki T, Virpioja S (2007) On growing and pruning Kneser-Ney smoothed N-
gram models. IEEE Trans Audio Speech Lang Process 15(5):1617-1624

62. Stolcke A (1998) Entropy-based pruning of backoff language models. In: Proceedings of the
DARPA broadcast news transcription and understanding workshop, Virginia, pp 270-274

63. Tachbelie MY, Menzel W (2007) Sub-word based language modeling for Ambharic. In:
Proceedings of international conference on recent advances in NLP, Borovets, pp 564-571

64. Tachbelie MY, Abate ST, Menzel W (2009) Morpheme-based language modeling for Amharic
speech recognition. In: The 4th language and technology conference, Poznan

65. Vergyri D, Kirchhoff K, Duh K, Stolcke A (2004) Morphology-based language modeling for
Arabic speech recognition. In: Proceedings of ICSLP, Jeju Island, pp 2245-2248

66. Wallach HM (2008) Structured topic models for language. PhD thesis, University of Cam-
bridge

67. Witten I, Bell T (1991) The zero-frequency problem: estimating the probabilities of novel
events in adaptive text compression. IEEE Trans Inf Theory 37:1085-1094

68. Xiang B, Nguyen K, Nguyen L, Schwartz R, Makhoul J (2006) Morphological decomposition
for Arabic broadcast news transcription. In: Proceedings of ICASSP, Toulouse, pp 1089-1092

69. Yuret D, Bicici E (2009) Modeling morphologically rich languages using split words and
unstructured dependencies. In: Proceedings of the ACL-IJCNLP 2009 conference short papers,
Singapore, pp 345-348

70. Zitouni I, Zhou Q (2007) Linearly interpolated hierarchical n-gram language models for speech
recognition engines. In: Robust speech recognition and understanding. I-Tech, Vienna, pp 301—
318

	Chapter
5 Language Modeling
	5.1 Introduction
	5.2 Evaluating Language Models with Perplexity
	5.3 N-Gram Language Modeling
	5.4 Smoothing: Discounting, Backoff, and Interpolation
	5.4.1 Discounting
	5.4.2 Combining Discounting with Backoff
	5.4.3 Interpolation

	5.5 Extensions to N-Gram Language Modeling
	5.5.1 Skip N-Grams and FlexGrams
	5.5.2 Variable-Length Language Models
	5.5.3 Class-Based Language Models
	5.5.4 Factored Language Models
	5.5.5 Neural Network Language Models
	5.5.6 Syntactic or Structured Language Models
	5.5.7 Tree-Based Language Models
	5.5.8 Maximum-Entropy Language Models
	5.5.9 Discriminative Language Models
	5.5.10 LSA Language Models
	5.5.11 Bayesian Language Models

	5.6 Modeling Semitic Languages
	5.6.1 Arabic
	5.6.2 Amharic
	5.6.3 Hebrew
	5.6.4 Maltese
	5.6.5 Syriac
	5.6.6 Other Morphologically Rich Languages

	5.7 Summary
	References

