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Brian Kingsbury, Stephen Chu, and Fadi Biadsy

13.1 Introduction

In this chapter we describe techniques to build a high performance speech rec-
ognizer for Arabic and related languages. The key insights are derived from our
experience in the DARPA GALE program, a 5-year program devoted to enhancing
the state-of-the-art in Arabic speech recognition and translation. The most important
lesson is that general speech recognition techniques work very well also on Arabic.
An example is the issue of vowelization: short vowels are often not transcribed
in Arabic, Hebrew, and other Semitic languages. Semi-automatic vowelization
procedures, specifically designed for the language, can improve the pronunciation
lexicon. However, we also can simply choose to ignore the problem at the lexicon
level, and compensate for the resulting pronunciation mismatch with the use of
discriminative training of the acoustic models. While we focus on Arabic, in this
chapter, we speculate that the vast majority of the issues we address here will
completely carry over to other Semitic languages. We have tested the approaches
discussed in this chapter only on Arabic, as that is the Semitic language with
the most resources. Our experimental results demonstrate that such language-
independent techniques can solve language-specific issues at least to a large extent.
Another example is morphology, where we show that a combination of language-
independent techniques (an efficient decoder to deal with large vocabulary and
exponential language models) and language-specific techniques (a neural network
language model that uses morphological and syntactic features) lead to good results.
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Fig. 13.1 Block diagram of an automatic speech recognition system

For these reasons we describe in the text a list of both language-independent and
language-specific techniques. We describe also a full-fledged LVCSR system for
Arabic that makes best use of all the techniques. We also demonstrate how this
system can be used to bootstrap systems for related Arabic dialects and Semitic
languages.

13.1.1 Automatic Speech Recognition

Modern speech recognition systems use a statistical pattern recognition approach to
the problem of transforming speech signals to text. This approach is data-driven:
to build a speech recognition system, practitioners collect speech and text data
that are representative of a desired domain (e.g., news broadcasts or telephone
conversations), use the collected data to build statistical models of speech signals
and text strings in the target domain, and then employ a search procedure to find the
best word string corresponding to a given speech signal, where the statistical models
provide an objective function that is optimized by the search process. A high-level
block diagram of such a speech recognition system is given in Fig. 13.1.

More precisely, in the statistical framework, the problem of speech recognition
is cast as

bW D argmax
W

P.WjXI �/
(13.1)

where W is a word sequence, bW is the optimal word sequence, X is a sequence of
acoustic feature vectors, and � denotes model parameters.

Solving this problem directly is challenging, because it requires the integration of
knowledge from multiple sources and at different time scales. Instead, the problem
is broken down by applying Bayes’ rule and ignoring terms that do not affect the
optimization, as follows:
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bW D argmax
W

P.WjXI �/
(13.2a)

D argmax
W

P.XjWI �/P.WI �/

P.XI �/
(13.2b)

D argmax
W

P.XjWI �/P.WI �/
(13.2c)

Referring back to Fig. 13.1, we can identify different components of a speech
recognition system with different elements of Eq. (13.2). The feature extraction
module (Sect. 13.2.1) computes sequences of acoustic feature vectors, X, from audio
input. The acoustic model (Sect. 13.2.1) computes P.XjWI �/: the probability of
the observed sequence of acoustic feature vectors, X, given a hypothesized sequence
of words, W. The language model (Sect. 13.3.1) computes P.WI �/, the prior
probability of a hypothesized sequence of words. The search process (Sect. 13.3.2)
corresponds to the argmax operator.

13.1.2 Introduction to Arabic: A Speech Recognition
Perspective

An excellent introduction to the Arabic language in the context of ASR can be found
in Kirchhoff et al. [27]. Here we describe only a couple of special characteristics
of Arabic that may not be familiar to non-Arabic speakers: vowelization and
morphology.

1. Vowelization
Short vowels and other diacritics are typically not present in modern written Ara-
bic text. Thus a written word can be ambiguous in its meaning and pronunciation.
An Arabic speaker can resolve the ambiguity based on human knowledge and
various contextual cues, such as syntactic and semantic information. Although
Arabic automatic diacritizaion has received considerable attention by NLP
researchers, the proposed approaches are still error-prone, especially on non-
formal texts. When designing an ASR system, we therefore need to consider
whether to represent words in the vowelized or un-vowelized form for the
language model. Another consideration is whether the pronunciation model or
dictionary should contain information derived from the diacritics, such as short
vowels.

2. Morphology
Arabic is a morphologically rich language. In Arabic morphology, most mor-
phemes are comprised of a basic word form (the root or stem), to which affixes
can be attached to form whole words. Arabic white-space delimited words may
be then composed of zero or more prefixes, followed by a stem and zero or more
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suffixes. Because of the rich morphology, the Arabic vocabulary for an ASR
system can become very large, on the order of one million words, compared
with English which typically has a vocabulary on the order of one hundred
thousand words. The large vocabulary exacerbates the problem of data sparsity
for language model estimation.

Arabic is the only Semitic language for which we have a sufficient amount of
data, through the DARPA GALE program; therefore we have decided to focus
on developing and testing our ASR techniques only for Arabic. We will describe
how our design decisions helped us to successfully overcome some of the Arabic-
dependent issues using new sophisticated language-dependent and independent
modeling methods and good engineering.

It is important to note that the majority of the modeling techniques and algorithms
outlined in this chapter have already been tested on a set of languages such
as English, Mandarin, Turkish and Arabic. While we only discuss these ASR
approaches for Arabic in this chapter, there is no reason to believe that these
approaches would not work for other Semitic languages. The fundamental reason
for this is that we were able to tackle language-specific problems with language-
independent techniques. As an illustration, we also discuss in this chapter the
similarities between the two Semitic languages Arabic and Hebrew. We speculate
that the same language-dependent techniques used to address the challenges of
Arabic ASR, such as the morphological richness of the language and diacritization
would also work for Hebrew.

13.1.3 Overview

This chapter is organized as follows. In the first two sections, we describe the
two major components for state-of-the-art LVCSR: the acoustic model and the
language model. For each model, we distinguish between language-independent
and language-specific techniques. The language-specific techniques for the acoustic
models include vowelization and modeling of dialects in decision trees. The
language-specific parts of the language model include a neural network model
that incorporates morphological and syntactic features. In Sect. 13.4, we describe
how all these techniques are used to build a full-fledged LVCSR system that
achieves error rates below 10 % on an Arabic broadcast news task. In Sect. 13.5, we
describe techniques that allow us to port Modern Standard Arabic (MSA) models
to other dialects, in our case to Levantine. We describe a dialect recognizer and
how this can be used to identify relevant training subsets for both the acoustic and
language model. We describe a decoding technique that allows us to use a set of
dialect-specific models simultaneously during run-time for improved recognition
performance. Section 13.6 describes the various data sets we used for system
training, development, and evaluation.
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13.2 Acoustic Modeling

13.2.1 Language-Independent Techniques

Feature Extraction

The goal of the feature extraction module is to compute a representation of the audio
input that preserves as much information about its linguistic content as possible,
while suppressing variability due to other phenomena such as speaker characteristics
or the acoustic environment. Moreover, this representation should be compact
(typically generating about 40 parameters for every 10 ms of audio) and should
have statistical properties that are compatible with the Gaussian mixture models
most often used for acoustic modeling. A very common form of feature extraction
is Mel frequency cepstral coefficients (MFCCs) [16], and most other approaches to
feature extraction, such as perceptual linear prediction (PLP) coefficients, employ
similar steps to MFCCs, so we describe their computation in detail below.

The steps for computing MFCCs are as follows.

1. The short-time fast Fourier transform (FFT) is used to compute an initial time-
frequency representation of the signal. The signal is segmented into overlapping
frames that are usually 20–25 ms in duration, with one frame produced every
10 ms, each frame is windowed, and a power spectrum is computed for the
windowed signal.

2. The power spectral coefficients are binned together using a bank of triangular
filters that have constant bandwidth and spacing on the Mel frequency scale, a
perceptual frequency scale with higher resolution at low frequencies and lower
resolution at high frequencies. This reduces the variability of the speech features
without severely impacting the representation of phonetic information. The filter
bank usually contains 18–64 filters, depending on the task, while the original
power spectrum has 128–512 points, so significant data reduction takes place
here.

3. The dynamic range of the features is reduced by taking the logarithm. This
operation also means that the features can be made less dependent on the
frequency response of the channel and on some speaker characteristics by
removing the mean of the features over a sliding window, on an utterance-by-
utterance basis, or for all utterances attributed to a given speaker.

4. The features are then decorrelated and smoothed by taking a low-order discrete
cosine transform (DCT). Depending on the task, 13–24 DCT coefficients are
retained.

In order to remove the effect of channel distortions, the cepstral coefficients are
normalized so that they have zero mean and unit variance on a per utterance or a per
speaker basis. The final feature stream includes the local temporal characteristics of
the speech signal because these convey important phonetic information. Temporal
context across frames can be incorporated by computing speed and acceleration
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Fig. 13.2 Frontend pipeline

Fig. 13.3 Graphical model representation of a hidden Markov model

coefficients (or delta and delta-delta coefficients) from the neighboring frames
within a window of typically ˙4 frames. These dynamic coefficients are appended
to the static cepstra to form the final 39-dimensional feature vector. A more modern
approach is to replace this ad-hoc heuristic with a linear projection matrix that maps
a vector of consecutive cepstral frames to a lower-dimensional space. The projection
is estimated to maximize the phonetic separability in the resulting subspace. The
feature vectors thus obtained are typically modelled with diagonal covariance
Gaussians. In order to make the diagonal covariance assumption more valid, the
feature space is rotated by means of a global semi-tied covariance transform. This
sequence of processing steps is illustrated in Fig. 13.2.

Acoustic Modeling

Speech recognition systems model speech acoustics using hidden Markov models
(HMMs), which are generative models of the speech production process. A graph-
ical model representation of an HMM is given in Fig. 13.3. An HMM assumes
that a sequence of T acoustic observations X D x1; x2; : : : ; xT is generated by an
underlying discrete-time stochastic process that is characterized by a single, discrete
state qt taking on values from an alphabet of N possible states. The state of the
generative process is hidden, indicated by the shading in Fig. 13.3. The HMM also
makes two important conditional independence assumptions. The first is that the
state of the generating process at time t , qt , is conditionally independent of all
states and observations, given the state at the previous time step, qt�1. The second
assumption is that the acoustic observation at time t , xt , is conditionally independent
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of all states and observations, given qt . These conditional independence assumptions
are denoted by the directed edges in Fig. 13.3.

An HMM is specified by four elements: an alphabet of N discrete states for
the hidden, generative process; a prior distribution over q0, the initial state of the
generative process; P.qt jqt�1/, an N �N matrix of state transition probabilities; and
fP.xt jqt /g, a family of state-conditional probability distributions over the acoustic
features. In most large-vocabulary speech recognition systems, the distribution of
initial states is uniform over legal initial states. Similarly, the state transition matrix
only allows a limited number of possible state transitions, but the distribution over
allowable transistions is taken as uniform. Remaining are the methods used to
define the state alphabet, which will be described in detail later in this section, and
fP.xt jqt /g, the observation probability distributions.

The standard approach to modeling the acoustic observations is to use Gaussian
mixture models (GMMs)

P.xt jqj / D
M
X

mD1

wmj.2�/� k
2 j˙ mjj� 1

2 e� 1
2 .xt ��mj/

T ˙ �1
mj .xt ��mj / (13.3)

where state qj has M k-dimensional Gaussian mixture components with means
�mj and covariance matrices ˙ mj, as well as mixture weights wmj such that
P

m wmj D 1. Note that in most cases the covariance matrices are constrained to be
diagonal. GMMs are a useful model for state-conditional observation distributions
because they can model in a generic manner variability in the speech signal due to
various factors, because their parameters can be estimated efficiently using the EM
algorithm, and because their mathematical structure allows for forms of speaker and
environmental adaptation based on linear regression.

To understand how the HMM state alphabet is defined, it is necessary to
understand how words are modeled in large-vocabulary speech recognition systems.
Speech recognition systems work with a finite, but large-vocabulary (tens to
hundreds of thousands) of words that may be recognized. Words are modeled as
sequences of more basic units: either phonemes or graphemes. Phonemes are the
basic sound units of a language, and are thus a very natural compositional unit for
word modeling. However, using phonemes entails a significant amount of human
effort in the design of the speech recognition dictionary: somebody has to produce
one or more phonetic pronunciations for every word in the dictionary. This cost
has driven the use of graphemic dictionaries, in which words are modeled directly
as sequences of letters. While this approach works well for some languages, such
as Finnish, that have essentially phonetic spellings of words, it works less well for
other languages. For example, consider the pair of letters “GH” in English, which
can sound like “f” as in the word “enough,” like a hard “g” as in the word “ghost,”
or can be silent as in the word “right.”

To characterize the temporal structure of the basic speech units (phonemes
or graphemes), each unit is modeled with multiple states. A popular choice for
modeling is illustrated in Fig. 13.4, where the HMM topology is strictly left-to-right
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Fig. 13.4 A typical 3-state, left-to-right HMM, drawn as a finite-state machine. The beginning (b),
middle (m), and end (e) of a basic speech unit are modeled separately to characterize the temporal
structure of the unit

with self loops on the states. The 3-state model shown can have separate observation
distributions for the beginning, middle, and end of the unit. If different units have
different durations, these may be represented by allocating a greater or fewer
number of states to different units.

A final, key ingredient in modeling of speech acoustics is the concept of context
dependence. While phonemes are considered to be the basic units of speech,
corresponding to specific articulatory gestures, the nature of the human speech
apparatus is such that the acoustics of a phoneme are strongly and systematically
influenced by the context in which they appear. Thus, the “AE” sound in the word
“man” will often be somewhat nasalized because it is produced between two nasal
consonants, while the “AE” in “rap” will not be nasalized. Context-dependence can
also help with the ambiguity in going from spelling to sound in graphemic systems.
Returning to the “GH” example from above, we know for English that a “GH” that
occurs at the end of a word and is preceded by the letters “OU” is likely to be
pronounced “f”.

Although it produces more detailed acoustic models, context-dependence
requires some form of parameter sharing to ensure that there is sufficient data to train
all the models. Consider, for example, triphone models that represent each phone
in the context of the preceding and following phone. In a naive implementation that
represents each triphone individually, a phone alphabet of 40 phones would induce
a triphone alphabet of 403 D 64;000 triphones. If phones are modeled with 3-state,
left-to-right HMMs as shown above, this would lead to 3 � 64;000 D 192;000

different models. Due to phonotactic constraints, some of these models would not
occur, but even ignoring those, the model set would be too large to be practical.

The standard solution to this explosion in the number of models is to cluster the
model set using decision trees. Given an alignment of some training data, defined
as a labeling of each frame with an HMM state (e.g., the middle state of “AE”), all
samples sharing the same label can be collected together and a decision tree can
be grown that attempts to split the samples into clusters of similar samples at the
leaves of the tree. The questions that are asked to perform the splits are questions
about the context of the samples: the identities of the phonetic or graphemic units
to the left and right; the membership of the neighboring units in classes such as
“vowels,” “nasals,” or “stops;” and whether or not a word boundary occurs at some
position to the left or right. A popular splitting criterion is data likelihood under
a single, diagonal-covariance Gaussian distribution. In this case, the decision trees
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can be trained efficiently by accumulating single-Gaussian sufficient statistics for
each context-dependent state, and then growing the decision trees. Once a forest
of decision trees has been grown for all units, they are pruned to the desired size.
Typically, a few thousand to ten thousand context-dependent states will be defined
for a large-vocabulary speech recognition system.

The training process for speech recognition systems is usually iterative, begin-
ning with simple models having few parameters, and moving to more complex
models having a larger number of parameters. In the case of a new task, where
there are no existing models that are adequately matched to it, speech recognition
training begins with a flat start procedure. In a flat start, very simple models with no
context-dependence and only a single Gaussian per state are initialized directly from
the reference transcripts as follows. First, each transcript is converted from a string
of words to a string of phones by looking up the words in the dictionary. If a word
has multiple pronunciations, a pronunciation is selected at random. This produces
a sequence of N phones. Next, the corresponding sequence of acoustic features is
divided into N equal-length segments, and sufficient statistics for each model are
accumulated from its segments. Once the models are initialized, they are refined by
running the EM algorithm, and the number of Gaussian mixture components per
state is gradually increased.

The models that are produced by a flat start are coarse, and usually have poor
transcription accuracy; however, they are sufficient to perform forced alignment of
the training data. In the forced alignment procedure, the reference word transcripts
are expanded into a graph that allows for the insertion of silence between words and
the use of the different pronunciation variants in the dictionary, and then the best
path through the graph given an existing set of models and the acoustic features for
the utterance is found using dynamic programming. The result of this procedure is
an alignment of the training data in which every frame is labeled with an HMM state.
Given an alignment, it is possible to train context-dependent models, as described
above. Typically, for a new task, several context-dependent models of increasing
size (in terms of the number of context-dependent HMM states and the total number
of Gaussians) will be trained in succession, each relying on a forced alignment from
the previous model.

For ASR systems we are interested in the optimality of the recognition accuracy
however, and we aim to train the acoustic model discriminatively so as to achieve the
lowest word error rate on unseen test data. Directly optimizing the word error rate
is hard because it is not differentiable. Alternative approaches look at optimizing
smooth objective functions related to word error rate (WER) such as minimum
classification error (MCE), maximum mutual information (MMI) and minimum
phone error (MPE) criteria. Discriminative training can be applied either to the
model parameters (Gaussian means and variances) or to the feature vectors. The
latter is done by computing a transformation called feature-space MPE (fMPE)
that provides time-dependent offsets to the regular feature vectors. The offsets
are obtained by a linear projection from a high-dimensional space of Gaussian
posteriors which is trained such as to enhance the discrimination between correct
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and incorrect word sequences. Currently, the most effective objective function
for model and feature-space discriminative training is called boosted MMI and is
inspired by large-margin classification techniques.

Speaker Adaptation

Speaker adaptation aims to compensate for the acoustic mismatch between training
and testing environments and plays an important role in modern ASR systems.
System performance is improved by conducting speaker adaptation during training
as well as at test time by using speaker-specific data. Speaker normalization
techniques operating in the feature domain aim at producing a canonical feature
space by eliminating as much of the inter-speaker variability as possible. Examples
of such techniques are: vocal tract length normalization (VTLN), where the goal
is to warp the frequency axis to match the vocal tract length of a reference
speaker, and feature-space maximum likelihood linear regression (fMLLR), which
consists in affinely transforming the features to maximize the likelihood under the
current model. The model-based counterpart of fMLLR, called MLLR, computes a
linear transform of the Gaussian means such as to maximize the likelihood of the
adaptation data under the transformed model.

13.2.2 Vowelization

One challenge in Arabic speech recognition is that there is a systematic mismatch
between written and spoken Arabic. With the exception of texts for beginning
readers and important religious texts such as the Qur’an, written Arabic omits eight
diacritics that denote short vowels and consonant length:

1. fatha /a/,
2. kasra /i/,
3. damma /u/,
4. fathatayn (word-ending /an/),
5. kasratayn (word-ending /in/),
6. dammatayn (word-ending /un/),
7. shadda (consonant doubling), and
8. sukun (no vowel).

There are two approaches to handling this mismatch between the acoustics and
transcripts. In the “unvowelized” approach, words are modeled graphemically, in
terms of their letter sequences, and the acoustics corresponding to the unwritten
diacritics are implicitly modeled by the Gaussian mixtures in the acoustic model.
In the “vowelized” approach, words are modeled phonemically, in terms of their
sound sequences, and the correct vowelization of transcribed words is inferred
during training. Note that even when vowelized models are used the word error rate
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calculation is based on unvowelized references. Diacritics are typically not ortho-
graphically represented in Arabic texts. Diacritization is generally not necessary to
make the transcript readable by Arabic literate readers. Thus, Arabic ASR systems
typically do not output fully diacritized transcripts. Therefore, the vowelized forms
are mapped back to unvowelized forms in scoring – it is also the NIST scoring
scheme. In addition, the machine translation systems we use currently require
unvowelized input. An excellent discussion of the Arabic language and automatic
speech recognition can be found in Kirchhoff et al. [27].

One of the biggest challenges in building vowelized models is initialization:
how to obtain a first set of vowelized models when only unvowelized transcripts
are available. One approach is to have experts in Arabic manually vowelize a
small training set [33]. The obvious disadvantage is that this process is quite labor
intensive, which motivates researchers to explore automated methods [2]. Following
the recipe in [2], we discuss our bootstrap procedure and some issues related to
scaling up to large vocabularies.

Pronunciation Dictionaries

The words in the vocabulary of both the vowelized and unvowelized systems are
assumed to be the same, and they do not contain any diacritics, just as they appear
in most written text. In the unvowelized system, the pronunciation of a word is
modeled by the sequence of letters in the word. For example, there is a single
unvowelized pronunciation of the word Abwh.

Abwh(01) A b w h

The short vowels are not explicitly modeled, and it is assumed that speech associated
with the short vowels will be implicitly modeled by the adjacent phones. In other
words, short vowels are not presented in our phoneme set; acoustically, they will be
modeled as part of the surrounding consonant acoustic models.

In the vowelized system, however, short vowels are explicitly modeled in both
training and decoding. We use the Buckwalter Morphological Analyzer (Version
2.0) [7], and the Arabic Treebank to generate vowelized variants of each word.
The pronunciation of each variant is modeled as the sequence of letters in the
diacriticized word, including the short vowels. For shadda (consonant doubling),
an additional consonant is added, and for sukun (no vowel), nothing is added. For
example, there are four vowelized pronunciations of the written word Abwh.

Abwh(deny/refuse/CtheyCit/him) A a b a w o h u
Abwh(desire/aspire/CtheyCit/him) A a b b u w h u
Abwh(fatherCits/it) A a b u w h u
Abwh(reluctant/unwillingChis/its) A b u w h u
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Table 13.1 Comparison
of different initialization
methods for vowelized
models

Training method WER (RT-04)

Flat-start 23.0 %
Bootstrap 22.8 %

The vowelized training dictionary has 243,368 vowelized pronunciations, cov-
ering a word list of 64,496 words. The vowelization rate is about 95 %. For the
remaining 5 % of words that are not covered, we back off to unvowelized forms.

In the following subsections, we focus on the vowelized system. Since written
transcripts of audio data do not usually contain short vowel information, how does
one train the initial acoustic model? One could use a small amount of data with
manually vowelized transcripts to bootstrap the acoustic model. Alternatively, one
could perform flat-start training.

Flat-Start Training vs. Manual Transcripts

Our flat-start training procedure initializes context-independent HMMs by dis-
tributing the data equally across the HMM state sequence. We start with one
Gaussian per state, and increase the number of parameters using mixture splitting
interleaved within 30 forward/backward iterations. Now, the problem is that we
have 3.8 vowelized pronunciations per word on average, but distributing the data
requires a linear state graph for the initialization step. To overcome this problem,
in the first iteration of training we randomly select pronunciation variants. All
subsequent training iterations operate on the full state graph representing all possible
pronunciations.

We compare this approach to manually vowelized transcripts where the correct
pronunciation variant is given. BBN distributed 10 h of manually vowelized devel-
opment data (BNAD-05, BNAT-05) that we used to bootstrap vowelized models.
These models are then used to compute alignments for the standard training set
(FBISCTDT4). A new system is then built using fixed alignment training, followed
by a few forward/backward iterations to refine the models. The error rates in
Table 13.1 suggest that manually vowelized transcripts are not necessary. The
fully automatic procedure is only 0.2 % worse. We opted for the fully automatic
procedure in all our experiments, including the evaluation system.

Short Models for Short Vowels

We noticed that the vowelized system performed poorly on broadcast conversational
speech. It appeared that the speaking rate is much faster, and that the vowelized state
graph is too large to be traversed with the available speech frames. The acoustic
models do not permit state skipping. One solution is to model the three short
vowels with a shorter, 2-state HMM topology. The results are shown in Table 13.2.
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Table 13.2 Comparison
of different HMM topologies
for short vowels

Topology RT-04 BCAD-05

3-state 19.0 % 28.9 %
2-state 18.5 % 27.4 %

Table 13.3 OOV/WER ratio
for an unvowelized system on
RT-04

Vocabulary OOV rate WER

129k 2.9 % 20.3 %
589k 0.8 % 19.0 %

Table 13.4 OOV/WER ratio for a vowelized system on RT-04

Vocab. Variants Vowel. rate OOV rate WER

129k 538k 90.4 % 2.9 % 19.8 %
589k 1967k 72.6 % 0.8 % 18.3 %

The improvements on RT-04 (broadcast news) are relatively small; however, there
is a 1.5 % absolute improvement on BCAD-05 (broadcast conversations).

Vowelization Coverage of the Test Vocabulary

As mentioned before, we back off to unvowelized forms for those words not covered
by Buckwalter and Arabic Treebank. The coverage for the training dictionary is
pretty high at 95 %. On the other hand, for a test vocabulary of 589k words, the
vowelization rate is only 72.6 %. The question is whether it is necessary to manually
vowelize the missing words, or whether we can get around that by backing off to
the unvowelized pronunciations. One way to test this – without actually providing
vowelized forms for the missing words – is to look at the OOV/WER ratio. The
assumption is that the ratio is the same for a vowelized and an unvowelized system if
the dictionary of the vowelized system does not pose any problems. More precisely,
if we increase the vocabulary and we get the same error reduction for the vowelized
system, then, most likely, there is no fundamental problem with the vowelized
pronunciation dictionary.

For the unvowelized system, when increasing the vocabulary from 129k to 589k,
we reduce the OOV rate from 2.9 % to 0.8 %, and we reduce the error rate by 1.3 %
(Table 13.3). For the vowelized system, we see a similar error reduction of 1.5 %
for the same vocabulary increase (Table 13.4). The system has almost 2 million
vowelized pronunciations for a vocabulary of 589k words. The vowelization rate
is about 72.6 %. In other words, 17.4 % of our list of 589k words are unvowelized
in our dictionary. Under the assumption that we can expect the same OOV/WER
ratio for both the vowelized and unvowelized system, the results in Table 13.3 and
Table 13.4 suggest that the back-off strategy to the unvowelized forms is valid for
our vowelized system.
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Table 13.5 Effect
of pronunciation probabilities
on WER

System RT-04 BCAD-05

Unvowelized 17.0 % 25.4 %
Vowelized 16.0 % 26.0 %
C Pron. prob 14.9 % 25.1 %

Table 13.6 Comparison
of vowelized and
unvowelized models at
various adaptation passes, no
pronunciation probabilities.
RT-04 test set

Decoding pass Unvowelized Vowelized

SI 29.5 % 25.0 %
VTLN 26.2 % 23.1 %
FMLLR 23.0 % 21.1 %
MLLR 22.1 % 20.4 %

Pronunciation Probabilities

Our decoding dictionary has about 3.3 pronunciations per word on average. There-
fore, estimating pronunciation probabilities is essential to improve discrimination
between the vowelized forms. We estimated the pronunciation probabilities by
counting the variants in the 2,330-h training set.

The setup consists of ML models, and includes all the adaptation steps (VTLN,
FMLLR, MLLR). The test sets are RT-04 (Broadcast News) and BCAD-05 (Broad-
cast Conversations). Adding pronunciation probabilities gives consistent improve-
ments between 0.9 % and 1.1 % on all test sets (Table 13.5). Also, pronunciation
probabilities are crucial for vowelized models; they almost double the error
reduction from vowelization. We investigated several smoothing techniques and
longer word contexts, but did not see any further improvements over simple unigram
pronunciation probabilities.

Vowelization, Adaptation, and Discriminative Training

In this section, we summarize additional experiments with vowelized models. One
interesting observation is that the gain from vowelization decreases significantly
when more refined adaptation and training techniques are used. Table 13.6 shows
the error rate of unvowelized and vowelized models with and without adaptation.
The relative improvement from vowelization is more than 15 % at the speaker-
independent level. However, after applying several normalization and adaptation
techniques, the gain drops to 7.7 % at the MLLR level.

An even more drastic reduction of the vowelization gain is observed after
discriminative training (Table 13.7). The vowelized setup includes the 2-state
HMMs for short vowels and pronunciation probabilities. While discriminative
training reduces the error rate by 4.9 % for the unvowelized setup, we observed
an error reduction of only 3.4 % for the vowelized models.

It seems that standard adaptation and discriminative techniques can at least
partially compensate for the invalid model assumption of ignoring short vowels,
and the improvements from vowelization are subsequently reduced when using
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Table 13.7 Comparison of vowelized and unvowelized models before and after discriminative
training. Vowelized system uses pronunciation probabilities and 2-state HMMs for short vowels.
Both systems use speaker adaptation: VTLN, FMLLR, and MLLR. DEV-07 test set

Models Unvowelized Vowelized

ML 17.1 % 14.8 %
fMPE C MPE 12.2 % 11.4 %

Table 13.8 Acoustic models
trained without and with
additional TRANSTAC data

Acoustic model WER (DEV-07)

2330h GALE 19.2 %
C 500h TRANSTAC 19.6 %

better adaptation and training techniques. Thus, well-engineered speech recognition
systems using only language-independent techniques can perform almost as well as
systems using language-specific methods.

13.2.3 Modeling of Arabic Dialects in Decision Trees

As shown in Table 13.28, the training data comes from a variety of sources, and there
are systematic variations in the data, including dialects (Modern Standard Arabic,
Egyptian Arabic, Gulf Arabic, etc.), broadcasters (Al Jazeera, Al Arabiya, LBC,
etc.), and programs (Al Jazeera morning news, Al Jazeera news bulletin, etc.).

The problem we face is how to build acoustic models on diverse training data.
Simply adding more training data from a variety of sources does not always
improve system performance. To demonstrate this, we built two acoustic models
with identical configurations. In one case, the model was trained on GALE data
(2,330 h, including unsupervised BN-03), while in the second case we added 500 h
of TRANSTAC data to the training set. TRANSTAC data contains Iraqi Arabic
(Nadji spoken Arabic and Mesopotamian Arabic). Both GALE and TRANSTAC
data are Arabic data, but they represent very different dialects and styles. The model
trained on additional TRANSTAC data is 0.4 % worse than our GALE model (see
Table 13.8).

Both acoustic models used 400k Gaussians, a comparatively large number that
should be able to capture the variability of different data sources. Furthermore,
we did not find that increasing the number of Gaussians could offset the reduced
performance caused by the addition of unmatched training data.

Because adding more training data will not always improve performance, we
need to find which part of the training data is relevant. Training separate models
for each category or dialect requires sufficient training data for each category,
significantly more human and computational effort, and algorithms that reliably
cluster training and test data into meaningful categories. We propose instead to
model dialects directly in the decision trees: a data-driven method for building
dialect-specific models without splitting the data into different categories.
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Similiar approaches using additional information in decision trees can be found
in the literature. Reichl and Chou [37] used gender information to specialize
decision trees for acoustic modeling. Speaking rate, SNR, and dialects were used
in [19], and questions about the speaking mode were used in [45] to build models
for hyperarticulated speech.

Decision Trees with Dialect Questions

We extend our regular decision tree algorithm by including non-phonetic questions
about dialects. The question set contains our normal phonetic context questions,
as well as dynamic questions regarding dialect. Dialect questions compete with
phonetic context questions to split nodes in the tree. If dialect information is
irrelevant for some phones, it will simply be pruned away during tree training.

The training of dialect-specific trees and Gaussian mixture models is straight-
forward. The decision tree is grown in a top-down clustering procedure. At each
node, all valid questions are evaluated, and the question with the best increase in
likelihood is selected. We use single Gaussians with diagonal covariances as node
models. Statistics for each unclustered context-dependent HMM state are generated
in one pass over the training data prior to the tree growing. Dialect information is
added during HMM construction by tagging phones with additional information.
The additional storage cost this entails is quite significant: the number of unique,
unclustered context-dependent HMM states increases roughly in proportion to the
number of different tags used.

The questions used for tree clustering are written as conjugate normal forms.
Literals are basic questions about the phone class or tag for a given position.
This allows for more complex questions such as Is the left context a vowel and is
the channel Al Jazeera (�1 D Vowel && 0 D AlJazeera). Similarly, more complex
questions on the source may be composed. For example, to ask for Al Jazeera, one
would write (0 D AlJazeeraMorning or 0 D AlJazeeraAfternoon). The idea is to
allow a broad range of possible questions, and to let the clustering procedure select
the relevant questions based on the training data. The questions cover all the channel
and dialect information available from the audio filenames.

We used this technique to build a dialect-dependent decision tree for the acoustic
models trained on the combined GALE and TRANSTAC data. We generated a tree
with 15,865 nodes, and 8,000 HMM states. Approximately 44 % of the states depend
on the dialect tag, so the remaining 56 % of the models are shared between two very
different data sources: GALE and TRANSTAC.

Building Static Decoding Graphs for Dynamic Trees

Training dialect-specific models is relatively easy; however, decoding with such
models is more complicated if a statically compiled decoding graph is used. The
problem is that the decision tree contains dynamic questions that can be answered
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−1 = Vowel

A−b−3A−b−1 A−b−2

+2 = SIL

A−b−0

0 = MSA

Fig. 13.5 Decision tree with dialect questions. Each question is of the format ContextPosi-
tion D Class. Leaves are marked with HMM states A-b-0,. . . (phone /A/, begin state)

0 = MSA

+2 = SIL

A−b−2 A−b−3

0 = MSA

A−b−1 +2 = SIL

A−b−2 A−b−3

−1 = Vowel

A−b−0

Fig. 13.6 Decision tree after one transformation step. The original root 0 D MSA was replaced by
the left child �1 D Vowel, and a new copy of 0 D MSA was created

else   : A−b−0

MSA : A−b−2

−1 = Vowel

+2 = SIL +2 = SIL

Virtual−0 Virtual−1 Virtual−2 Virtual−3

else   : A−b−0

MSA : A−b−2MSA : A−b−3

else   : A−b−1 else   : A−b−1

MSA : A−b−3

Fig. 13.7 Reordered decision tree. Dynamic questions are replaced by virtual leaves

only at run-time, and not when the graph is compiled. The solution for this
problem is to separate the decision tree into two parts: a static part containing only
phonetic questions, and a dynamic part for the dialect questions. The decision tree
is reordered such that no dynamic question occurs above a static question. The static
part of the decision tree can be compiled into a decoding graph as usual, while the
dynamic part of the tree is replaced by a set of virtual leaves. The decoder maintains
a lookup table that transforms each virtual leaf to a corresponding dialect-specific
leaf at run-time.

In the following we explain how to reorder the decision tree such that dynamic
questions do not occur above static questions. Figures 13.5–13.7 illustrate the
process. In this example, the root of the tree is marked with the question 0 D MSA.
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Table 13.9 Reordered tree
statistics
for GALE C TRANSTAC
setup

Number of nodes 15,865
Number of leaves 8,000
Dialect-dependent leaves 44.3 %
Number of reordered nodes 29,137
Number of virtual leaves 7,085

If the center phone is marked as Modern Standard Arabic (MSA), the right branch
will be chosen, otherwise the left branch.

The reordering algorithm consists of a sequence of transformation steps. In each
step, a dynamic question node is pushed down one level by replacing it with one
of its children nodes. Figure 13.6 shows the tree after applying one transformation
step. In each transformation step, the selected dynamic question node is duplicated
together with one of its branches. In this example, the right branch starting with
C2 D SIL is duplicated. The node to be moved up (promoted) (�1 D Vowel in
Fig. 13.6) is separated from its subtrees and moved up one level, with the duplicated
subtrees becoming its children. The subtrees that were originally children of the
promoted node become its grandchildren. The resulting tree is equivalent to the
original tree, but the dynamic question is now one level deeper.

The reordering procedure terminates when no transformation step can be applied.
In the worst case, this procedure causes the decision tree’s size to grow expo-
nentially; however, in practice we observe only moderate growth. Table 13.9
summarizes the tree statistics after reordering. The number of internal nodes grew
by only a factor of 2, which is easily managed for decoding graph construction.

The last step is to separate the static and dynamic tree parts. The dynamic
question nodes are replaced by virtual leaves for the graph construction. The
virtual leaves correspond to lookup tables that map virtual leaves to physical HMM
states at run-time. The static decoding graph can now be constructed using the
tree with virtual leaves. At run-time, dialect information is available,1 and virtual
leaves can be mapped to the corresponding physical HMM states for acoustic score
computation.

Experiments

We use our vowelized Arabic model as a baseline in our experiments. The
vocabulary has about 737,000 words, and 2.5 million pronunciations. The language
model is a 4-gram LM with 55M n-grams. Speaker adaptation includes VTLN
and FMLLR. All models are ML trained. In addition to the GALE EVAL-06 and
DEV-07 test sets, we also used a TRANSTAC test set comprising 2 h of audio.

1This can be done via a separate dialect ID tool, as described in Sect. 13.5.1, selecting the dialect
with the best likelihood, or other sources of information.
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Table 13.10 Comparison
of regular tree and tree with
dialect questions. GALE
DEV-07 test set

Acoustic model Regular tree Dialect tree

2330h GALE 19.2 % 18.6 %
C 500h TRANSTAC 19.6 % 18.7 %

Table 13.11 Comparison
of regular tree and tree with
dialect questions.
TRANSTAC test set

Acoustic model Regular tree Dialect tree

2330h GALE 35.9 % –
C 500h TRANSTAC 25.9 % 24.7 %

Table 13.12 Comparison of regular tree and tree with dialect questions with unsupervised training
data. GALE EVAL-06 and DEV-07 test sets

Test set Regular tree Dialect tree

EVAL-06 30.2 % 29.6 %
DEV-07 20.3 % 19.5 %

The dialect labels are derived from the audio file names. The file names encode TV
channel and program information.

In the first experiment we train four acoustic models. Each model has 8,000 states
and 400,000 Gaussians. The models are trained on either 2,330 h of GALE data or
on the GALE data plus 500 h of TRANSTAC data. For each training set, we train
one model using the regular (phonetic context only) question set and one using
phonetic and dialect questions. The test set is DEV-07. The results are summarized
in Table 13.10. For the GALE model, we see an improvement of 0.6 % WER. The
improvement for the GALE C TRANSTAC training set is slightly higher, 0.9 %.
The results suggest that the decision tree with dialect questions can better cope with
diverse, and potentially mismatched, training data.

In the second experiment (Table 13.11), we use the same set of acoustic models
as before, but the vocabulary and language model are now TRANSTAC-specific and
the test set is drawn from TRANSTAC data. Adding TRANSTAC data improves the
error rate from 35.9 to 25.9 %. Adding the dialect-specific questions to the tree-
building process improves the error rate by an additional 1.2 %. We did not test the
dialect tree trained on GALE data only. The tree does not contain any TRANSTAC-
related questions, since the models were trained on GALE data only.

In the final experiment, we use a large amount of unsupervised training data from
our internal TALES data collection. The acoustic model was trained on 2,330 h of
GALE data plus 5,600 h of unsupervised training data. The results are shown in
Table 13.12. The dialect-dependent decision tree reduces the error rate by 0.6 %
on EVAL-06 and 0.8 % on DEV-07. While adding more unsupervised training data
does not help if large amounts of supervised training data are available, we observe
that the dialect tree is able to compensate for adding “unuseful” data (Table 13.12).
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13.3 Language Modeling

13.3.1 Language-Independent Techniques for Language
Modeling

Base N -Grams

The standard speech recognition model for word sequences is the n-gram language
model. To see how an n-gram model is derived, consider expanding the joint
probability of a sequence of M words in terms of word probabilities conditioned
on word histories:

P.wM ; wM�1; : : : ; w3; w2; w1/ D P.w1/ � P.w2jw1/ � P.w3jw2; w1/ � � � � �
P.wM jwM�1; : : : ; w3; w2; w1/

(13.4)

Given that the words are drawn from a dictionary containing tens to hundreds of
thousands of words, it is clear that the probability of observing a given sequence of
words becomes vanishingly small as the length of the sequence increases. The solu-
tion is to make a Markov assumption that the probability of a word is conditionally
independent of previous words, given a history of fixed length h. That is,

P.wM ; wM�1; : : : ; w3; w2; w1/ Ñ P.w1/ � P.w2jw1/ � P.w3jw2; w1/ � � � � �
P.wM jwM�1; wM�2/

(13.5)

A model that makes a first-order Markov assumption, conditioning words only
on their immediate predecessors, is called a bigram model, because it deals with
pairs of words. Likewise, a model that makes a second-order Markov assumption is
called a trigram model because it deals with word triplets: two-word histories and
the predicted word. Equation (13.5) illustrates a trigram model.

N-gram language models are trained by collecting a large amount of text and
simply counting the number of times each word occurs with each history. However,
even with the n-gram assumption, there is still a problem with data sparsity: a
model based only on counting the occurrences of words and histories in some
training corpus will assign zero probability to legal word sequences that the speech
recognition system should be able to produce. To cope with this, various forms of
smoothing are used on language models that reassign some probability mass from
observed events to unobserved events. The models described below generally use
modified Kneser–Ney smoothing [1, 13].



13 Automatic Speech Recognition 429

Model M

Model M [11] is a class-based n-gram model; its basic form is as follows:

p.w1 � � � wl / D
lC1
Y

j D1

p.cj jcj �2cj �1; wj �2wj �1/p.wj jwj �2wj �1cj / (13.6)

It is composed of two submodels, a model predicting classes and a model
predicting words, both of which are exponential models. An exponential model
p�.yjx/ is a model with a set of features ffi .x; y/g and equal number of parameters
� D f�i g where

p�.yjx/ D exp.
P

i �i fi .x; y//

Z�.x/
(13.7)

and where Z�.x/ is a normalization factor defined as

Z�.x/ D
X

y0

exp.

F
X

iD1

�i fi .x; y0// (13.8)

Let png.yj!/ denote an exponential n-gram model, where we have a feature
f!0 for each suffix !0 of each !y occurring in the training set; this feature has the
value 1 if !0 occurs in the current event and 0 otherwise. For example, the model
png.wj jwj �1cj / has a feature f! for each n-gram ! in the training set of the form
wj , cj wj , or wj �1cj wj . Let png.yj!1; !2/ denote a model containing all features in
png.yj!1/ and png.yj!2/. Then, the distributions in Eq. (13.6) are defined as follows
for the trigram version of Model M:

p.cj jcj �2cj �1; wj �2wj �1/ � png.cj jcj �2cj �1; wj �2wj �1/ (13.9)

p.wj jwj �2wj �1cj / � png.wj jwj �2wj �1cj / (13.10)

To smooth or regularize Model M, it has been found that `1 C `2
2 regularization

works well; i.e., the parameters � D f�i g of the model are chosen to minimize

O`1C`2
2
.�/ D log PPtrain C ˛

Ctot

X

i

j�i j C 1

2�2Ctot

X

i

�2
i (13.11)

where PPtrain denotes training set perplexity and where Ctot is the number of words
in the training data. The values ˛ and � are regularization hyperparameters, and
the values .˛ D 0:5; �2 D 6/ have been found to give good performance for a
wide range of operating points. A variant of iterative scaling can be used to find the
parameter values that optimize Eq. (13.11).
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Neural Network Language Model

The neural network language model (NNLM) [3, 17, 44] uses a continuous rep-
resentation of words, combined with a neural network for probability estimation.
The model size increases linearly with the number of context features, in contrast
to exponential growth for regular n-gram models. Details of our implementation,
speed-up techniques, as well as the probability normalization and optimal NN
configuration, are described in [18].

The basic idea behind neural network language modeling is to project words into
a continuous space and let a neural network learn the prediction in that continuous
space, where the model estimation task is presumably easier than the original
discrete space [3, 17, 44]. The continuous space projections, or feature vectors, of
the preceding words (or context features) make up the input to the neural network,
which then will produce a probability distribution over a given vocabulary. The
feature vectors are randomly initialized and are subsequently learned, along with the
parameters of the neural network, so as to maximize the likelihood of the training
data. The model achieves generalization by assigning to an unseen word sequence
a probability close to that of a “similar” word string seen in the training data. The
similarity is defined as being close in the multi-dimensional feature space. Since the
probability function is a smooth function of the feature vectors, a small change in
the features leads to only a small change in the probability.

To compute the conditional probability P.yjx1; x2; � � � ; xm/, where xi 2 Vi

(input vocabulary) and y 2 Vo (output vocabulary), the model operates as follows:
First for every xi ; i D 1; � � � ; m, the corresponding feature vector (continuous
space projection) is found. This is simply a table lookup operation that associates
a real vector of fixed dimension d with each xi . Secondly, these m vectors are
concatenated to form a vector of size m � d . Finally this vector is processed by the
neural network which produces a probability distribution P.:jx1; x2; � � � ; xm/ over
vocabulary Vo at its output.

Note that the input and output vocabularies Vi and Vo are independent of
each other and can be completely different. Training is achieved by searching for
parameters ˚ of the neural network and the values of feature vectors that maximize
the penalized log-likelihood of the training corpus:

L D 1

T

X

t

logP.yt jxt
1; : : : ; xt

mI ˚/ � R.˚/ (13.12)

where superscript t denotes the t th event in the training data, T is the training data
size and R.˚/ is a regularization term, which in our case is a factor of the L2 norm
squared of the hidden and output layer weights.

The model architecture is given in Fig. 13.8 [3,17,44]. The neural network is fully
connected and contains one hidden layer. The operations of the input and hidden
layers are given by:
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outputhidden layer
input layer

L S

tanh softmax

y

x 1

x 2

xm

Fig. 13.8 The neural network architecture

f D .f1; : : : ; fd �m/ D .f.x1/; f.x2/; � � � ; f.xm//

gk D tanh .
P

j fj Lkj C B1
k/ k D 1; 2; : : : ; h

where f.x/ is the d -dimensional feature vector for token x. The weights and biases
of the hidden layer are denoted by Lkj and B1

k respectively, and h is the number of
hidden units.

At the output layer of the network we have:

zkDP

j gj Skj CB2
k kD1;2;:::;jVoj

pk D ezk

P

j ezj
k D 1; 2; : : : ; jVoj (13.13)

with the weights and biases of the output layer denoted by Skj and B2
k respectively.

The softmax layer (Eq. (13.13)) ensures that the outputs are valid probabilities and
provides a suitable framework for learning a probability distribution.

The kth output of the neural network, corresponding to the kth item yk of
the output vocabulary, is the desired conditional probability: pk D P.yt D
ykjxt

1; : : : ; xt
m/.

The neural network weights and biases, as well as the input feature vec-
tors, are learned simultaneously using stochastic gradient descent training via
back-propagation algorithm, with the objective function being the one given in
Eq. (13.12). Details of the implementation, speed-up techniques, as well as the
probability normalization and optimal NN configuration, are described in [18].

Given the large vocabulary of the Arabic speech recognition system, data
sparsity is an important problem for conventional n-gram LMs. Our experience is
that NNLM significantly reduces perplexity as well as word error rate in speech
recognition. Results will be presented later together with those of an NNLM that
incorporates syntactic features.
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13.3.2 Language-Specific Techniques for Language Modeling

In this section, we describe a language model that incorporates morphological and
syntactic features for Arabic speech recognition [29, 30]. This method is language
specific in the sense that certain language-specific resources are used, for example,
an Arabic parser.

With a conventional n-gram language model, the number of parameters can
potentially grow exponentially with the context length. Given a fixed training set,
as n is increased, the number of unique n-grams that can be reliably estimated is
reduced. Hence in practice, a context no longer than three words (corresponding to
a 4-gram LM) is used.

This problem is exacerbated by large vocabularies for morphologically rich
languages like Arabic. Whereas the vocabulary of an English speech recognition
system typically has under 100k words, our Arabic system has about 800k words.
The idea of using rich morphology information in Arabic language modeling has
been explored by several researchers. The most common idea has been to use
segments, which are the result of breaking an inflected word into parts, for better
generalization when estimating the probabilities of n-gram events [28]. As an
example, the white-space delimited word tqAblhm (she met them) is segmented into
three morphs: prefix t (she), followed by stem qAbl (met) and suffix hm (them).

Compared to a regular word n-gram model, a segmented word n-gram model has
a reduced context. To model longer-span dependencies, one may consider context
features extracted from a syntactic parse tree such as head word information used in
the Structured Language Model (SLM) [10]. Syntactic features can be useful in any
language. Here is an example in English:

The girl who lives down the street searched the bushes in our neighbor’s backyard for her
lost kitten.

Through a parse tree, one can relate the words girl, searched, and for. Such long-
span relationships cannot be captured with a 4-gram language model. Various types
of syntactic features such as head words, non-terminal labels, and part-of-speech
tags, have been used in a discriminative LM framework as well as in other types of
models [15].

Using many types of context features (morphological and syntactic) makes it
difficult to model with traditional back-off methods. Learning the dependencies
in such a long context is difficult even with models such as factored language
models [28] due to the large number of links that need to be explored. On the other
hand, the neural network language model (NNLM) [3, 17, 44] is very suitable for
modeling such context features. The NNLM uses a continuous representation of
words, combined with a neural network for probability estimation. The model size
increases linearly with the number of context features, in contrast to exponential
growth for regular n-gram models. Another advantage is that it is not required to
define a back-off order of the context features. The model converges to the same
solution no matter how the context features are ordered, as long as the ordering is
consistent.
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Table 13.13 WER results of NNLM using word and syntactic features

LM EVAL08U BN BC

4-gram 9.4 % 6.9 % 12.5 %
4-gram C word NNLM 9.1 % 6.5 % 12.1 %
4-gram C word NNLM C syntax NNLM 8.6 % 6.2 % 11.5 %

The following text processing steps are used to extract morphological and
syntactic features for context modeling with an NNLM. Arabic sentences are
processed to segment words into (hypothesized) prefixes, stems, and suffixes, which
become the tokens for further processing. In particular, we use Arabic Treebank
(ATB) segmentation, which is a light segmentation adopted to the task of manually
writing parse trees in the ATB corpus [32]. After segmentation, each sentence is
parsed, and syntactic features are extracted. The context features used by the NNLM
include segmented words (morphs) as well as syntactic features such as exposed
head words and their non-terminal labels.

Table 13.13 shows the WER results of using NNLMs, with word features only or
with morphological and syntactic features. The results are given for an evaluation
set EVAL08U, with a breakdown for the broadcast news (BN) and broadcast
conversations (BC) portions. An NNLM with word features reduced the WER by
about 3 % relative, from 9.4 to 9.1 %. Using morphological and syntactic features
further reduced the WER by 5 % relative, from 9.1 to 8.6 %. It is seen that syntactic
features are helping both BN and BC. Specifically, through the use of syntactic
features, for BN, the WER improved by 4.6 % (6.5–6.2 %) and for BC, the WER
improved by 5.0 % (12.1–11.5 %).

Although the modeling methodology behind the syntax NNLM is language
independent, when a new language or dialect is encountered, certain resources such
as a segmenter and parser may have to be developed or adapted. In our experiments,
even though the syntax NNLM was trained on only 12 million words of data, two
orders of magnitude less than the text corpora of over 1 billion words used to train
the n-gram LM, it was still able to provide significant improvements to the WER.
For a new language with little data available to train the n-gram LM, the syntax LM
is likely to help even more.

Search

The search space for large-vocabulary speech recognition is both enormous and
complex. It is enormous because the number of hypotheses to consider grows
exponentially with the length of the hypothesized word strings and because the
number of different words that can be recognized is typically in the tens to hundreds
of thousands. The search space is complex because there is significant structure
induced by the language model, the dictionary, and the decision trees used for
HMM state clustering. One approach to search, the static approach, represents the
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components of the search space (the language model, dictionary, and decision trees)
as weighted finite-state transducers (WFSTs), and then uses standard algorithms
such as WFST composition, determinization, and minimization to pre-compile a
decoding graph that represents the search space. The search process then simply
reads in this graph and performs dynamic programming search on it, given a
sequence of acoustic feature vectors, to perform speech recognition. Such static
decoders can be very efficient and can be implemented with very little code because
all of the complexity is pushed into the precompilation process. However, the size of
the language models that can be used with static decoders is limited by what models
can successfully be precompiled into decoding graphs. An alternative approach,
dynamic search, constructs the relevant portion of the search space on the fly. Such
decoders can use much larger language models, but are also significantly more
complicated to write.

13.4 IBM GALE 2011 System Description

In this section we describe IBM’s 2011 transcription system for Arabic broadcasts,
which was fielded in the GALE Phase 5 machine translation evaluation. Like most
systems fielded in competitive evaluations, our system relies upon multiple passes
of decoding, acoustic model adaptation, language model rescoring, and system
combination to achieve the lowest possible word error rate.

13.4.1 Acoustic Models

We use an acoustic training set composed of approximately 1,800 h of transcribed
Arabic broadcasts provided by the Linguistic Data Consortium (LDC) for the GALE
evaluations.

Unless otherwise specified, all our acoustic models use 40-dimensional features
that are computed by an LDA projection of a supervector composed from 9
successive frames of 13-dimensional mean- and variance-normalized PLP features
followed by diagonalization using a global semi-tied covariance transform [20], and
use pentaphone cross-word context with a “virtual” word-boundary phone symbol
that occupies a position in the context description, but does not generate an acoustic
observation. Speaker-adapted systems are trained using VTLN and fMLLR. All the
models use variable frame rate processing [14].

Given that the short vowels and other diacritic markers are typically not
orthographically represented in Arabic texts, we have a number of choices for
building pronunciation dictionaries: (1) unvowelized (graphemic) dictionaries in
which the short vowels and diacritics are ignored, (2) vowelized dictionaries
which use the Buckwalter morphological analyzer [7] for generating possible
vowelized pronunciations and (3) vowelized dictionary which uses the output of
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a morphological analysis and disambiguation tool (MADA) [23]; the assignment of
such diacritic markers is based on the textual context of each word (to distinguish
word senses and grammatical functions).2 Our 2011 transcription system uses the
acoustic models described below.

• SI A speaker-independent, unvowelized acoustic model trained using model-
space boosted maximum mutual information [35]. The PLP features for this
system are only mean-normalized. The SI model comprises 3k states and 151k
Gaussians.

• U A speaker-adapted, unvowelized acoustic model trained using both feature-
and model-space BMMI. The U model comprises 5k states and 803k Gaussians.

• SGMM A speaker-adapted, Buckwalter vowelized subspace Gaussian mixture
model [36,43] trained with feature- and model-space versions of a discriminative
criterion based on both the minimum phone error (MPE) [34] and BMMI criteria.
The SGMM model comprises 6k states and 150M Gaussians that are represented
using an efficient subspace tying scheme.

• V A speaker-adapted, Buckwalter vowelized acoustic model trained using the
feature-space BMMI and model-space MPE criteria. The changes in this model
compared to all the other models are: (1) the “virtual” word boundary phones
are replaced with word-begin and word-end tags, (2) it uses a dual decision tree
that specifies 10k different Gaussian mixture models, but 50k context-dependent
states, (3) it uses a single, global decision tree and (4) expands the number of
phones on which a state can be conditioned to ˙3 within words. This model has
801k Gaussians.

• BS A speaker-adapted, unvowelized acoustic model using Bayesian sensing
HMMs where the acoustic feature vectors are modeled by a set of state-dependent
basis vectors and by time-dependent sensing weights [40]. The Bayesian formu-
lation comes from assuming state-dependent Gaussian priors for the weights and
from using marginal likelihood functions obtained by integrating out the weights.
The marginal likelihood is Gaussian with a factor analyzed covariance matrix
with the basis providing a low-rank correction to the diagonal covariance of the
reconstruction error [42]. The details of this model are given in Sect. 13.4.1.

• M A speaker-adapted system, MADA vowelized system, with an architecture
similar to V. The details of this model are given in Sect. 13.4.1.

• NNU, NNM Speaker-adapted acoustic models which use neural network fea-
tures. They were built using either the unvowelized lexicon (NNU) or the MADA
one (NNM). Section 13.4.1 describes these models in more detail.

2MADA operates by examining a list of all possible Buckwalter morphological analyses for each
word, and then selecting the analysis that matches the current context best using SVM classifiers.
MADA uses 19 distinct weighted morphological features. The selected analyses carry complete
diacritic, lexemic, glossary and morphological information; thus all disambiguation decisions are
made in one step. See [23] for more details.
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Bayesian Sensing HMMs (BS)

Model Description

Here, we briefly describe the main concepts behind Bayesian sensing hidden
Markov models [40]. The state-dependent generative model for the D-dimensional
acoustic feature vectors xt is assumed to be

xt D ˚i wt C �t (13.14)

where ˚i D Œ�i1; : : : ; �iN � is the basis (or dictionary) for state i and wt D
Œwt1; : : : ; wtN �T is a time-dependent weight vector. The following additional assump-
tions are made: (1) when conditioned on state i , the reconstruction error is zero-
mean Gaussian distributed with precision matrix Ri , i.e. �t jst D i � N .0; R�1

i /

and (2) the state-conditional prior for wt is also zero-mean Gaussian with precision
matrix Ai , that is wt jst D i � N .0; A�1

i /. It can be shown that, under these
assumptions, the marginal state likelihood p.xt jst D i/ is also zero-mean Gaussian
with the factor analyzed covariance matrix [42]

Si
�D R�1

i C ˚i A
�1
i ˚T

i (13.15)

In summary, the state-dependent distributions are fully characterized by the param-
eters f˚i ; Ri ; Ai g. In [40], we discuss the estimation of these parameters according
to a maximum likelihood type II criterion, whereas in [41] we derive parameter
updates under a maximum mutual information objective function.

Automatic Relevance Determination

For diagonal Ai D diag.˛i1; : : : ; ˛iN/, the estimated precision matrix values ˛ij

encode the relevance of the basis vectors �ij for the dictionary representation of xt .
This means that one can use the trained ˛ij for controlling model complexity. One
can first train a large model and then prune it to a smaller size by discarding the basis
vectors which correspond to the largest precision values of the sensing weights.

Initialization and Training

We first train a large acoustic model with 5,000 context-dependent HMM states
and 2.8 million diagonal covariance Gaussians using maximum likelihood in a
discriminative FMMI feature space. The means of the GMM for each state are then
clustered using k-means. The initial bases are formed by the clustered means. The
resulting number of mixture components for the Bayesian sensing models after
the clustering step was 417k. The precision matrices for the sensing weights and the
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reconstruction errors are assumed to be diagonal and are initialized to the identity
matrix.

The models are trained with six iterations of maximum likelihood type II
estimation. Next, we discard 50 % of the basis vectors corresponding to the largest
precision values of the sensing weights and retrain the pruned model for two
additional ML type II iterations. We then generate numerator and denominator
lattices with the pruned models and perform four iterations of boosted MMI
training of the model parameters as described in [41]. The effect of pruning and
discriminative training is discussed in more details in [42].

MADA-Based Acoustic Model (M)

This acoustic model is similar to the V model. It uses a global tree, word position
tags, and a large phonetic context of ˙3 . While the MADA-based model uses
approximately the same number of Gaussians, the decision tree uses only one level,
keeping the number of HMM states to 10;000. Since the MADA-based model uses a
smaller phone set than the Buckwalter vowelized models, we were able to reuse the
vowelized alignments and avoid the flat-start procedure. In this section we describe
the strategy used for constructing training and decoding pronunciation dictionaries,
the main difference between this system and the V system. Both pronunciation
dictionaries are generated following [5] with some slight modification.

Training Pronunciation Dictionary

Here we describe an automatic approach to building a pronunciation dictionary
that covers all words in the orthographic transcripts of the training data. First, for
each utterance transcript, we run MADA to disambiguate each word based on its
context in the transcript. MADA outputs all possible fully-diacritized morphological
analyses for each word, ranked by their confidence, the MADA confidence score.
We thus obtain a fully-diacritized orthographic transcription for training. Second,
we map the highest-ranked diacritization of each word to a set of pronunciations,
which we obtain from the 15 pronunciation rules described in [5]. Since MADA may
not always rank the best analysis as its top choice, we also run the pronunciation
rules on the second best choice returned by MADA, when the difference between
the top two choices is less than a threshold determined empirically (in our imple-
mentation we chose 0.2). The IBM system is flexible enough to allow specifying
multiple diacritized word options at the (training) transcript level. A sentence can be
a sequence of fully diacritized word pairs as opposed to a sequence of single words.
This whole process gives us fully disambiguated and diacritized training transcripts
with more than one or two options per word.
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Decoding Pronunciation Dictionary

For building the decoding dictionary we run MADA on the transcripts of the speech
training data as well as on the Arabic Gigaword corpus. In this dictionary, all pro-
nunciations produced (by the pronunciation rules) for all diacritized word instances
(from MADA first and second choices) of the same undiacritized form are mapped
to the undiacritized and normalized word form. Word normalization here refers to
removing diacritic markers and replace Buckwalter normalized Hamzat-Wasl ({), <,
and > by the letter ‘A’. Note that it is standard to produce undiacritized transcripts
when recognizing MSA. Diacritization is generally not necessary to make the
transcript readable by Arabic-literate readers. Therefore, entries in the decoding
pronunciation dictionary need only to consist of undiacritized words mapped to a
set of phonetically-represented diacritizations.

A pronunciation confidence score is calculated for each pronunciation. We
compute a pronunciation score s for a pronunciation p as the average of the
MADA confidence scores of the MADA analyses of the word instances that this
pronunciation was generated from. We compute this score for each pronunciation
of a normalized undiacritized word. Let m be the maximum of these scores. Now,
the final pronunciation confidence score for p is �log10.c=m/. This basically means
that the best pronunciation receives a penalty of 0 when chosen by the ASR decoder.
This dictionary has about 3.6 pronunciations per word when using the first and
second MADA choices.

Neural Network Acoustic Models (NNU and NNM)

The neural network feature extraction module uses two feature streams computed
from mean and variance normalized, VTLN log Mel spectrograms, and is trained
in a piecewise manner, in which (1) a state posterior estimator is trained for each
stream, (2) the unnormalized log-posteriors from all streams are summed together
to combine the streams, and (3) features for recognition are computed from the
bottleneck layer of an autoencoder network. One stream, the lowpass stream, is
computed by filtering the spectrograms with a temporal lowpass filter, while the
other stream, the bandpass stream, is computed by filtering the spectrograms with a
temporal bandpass filter. Both filters are 19-point FIR filters. The lowpass filter has
a cutoff frequency of 24 Hz. The bandpass filter has a differentiator-like (gain pro-
portional to frequency) response from 0 to 16 Hz and a high-pass cutoff frequency
of 27 Hz. The posterior estimators for each stream compute the probabilities of 141
context-independent HMM states given an acoustic input composed from 19 frames
of 40-dimensional, filtered spectrograms. They have two 2048-unit hidden layers,
use softsign nonlinearities [21] between layers, and use a softmax nonlinearity at
the output. The softsign nonlinearity is y D x=.1 C jxj/. Initial training optimizes
the frame-level cross-entropy criterion. After convergence, the estimators are further
refined to discriminate between state sequences using the minimum phone error
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criterion [24, 34]. Stream combination is performed by discarding the softmax
output layer for each stream posterior estimator, and summing the resulting outputs,
which may be interpreted as unnormalized log-posterior probabilities. We then
train another neural network, containing a 40-dimensional bottleneck layer, as
an autoencoder, and use the trained network to reduce the dimensionality of the
neural network features. The original autoencoder network has a first hidden layer
of 76 units, a second hidden layer of 40 units, a linear output layer, and uses
softsign nonlinearities. The training criterion for the autoencoder is the cross-
entropy between the normalized posteriors generated by processing the autoencoder
input and output vectors through a softmax nonlinearity. Once the autoencoder is
trained, the second layer of softsign nonlinearities and the weights that expand
from the 40-dimensional bottleneck layer back to the 141-dimensional output are
removed. Details of this NN architecture are described in [39].

Once the features are computed, the remaining acoustic modeling steps are
conventional, using 600k 40-dimensional Gaussians modeling 10k quinphone
context-dependent states, where we do both feature- and model-space discriminative
training using the BMMI criterion. Two acoustic models were trained using the
neural-net features: one (NNM) used a MADA-vowelized lexicon, while the other
(NNU) used an unvowelized lexicon. Note that the posterior estimators used in
feature extraction were trained with MADA-vowelized alignments.

13.4.2 Language Models

For training language models we use a collection of 1.6 billion words, which
we divide into 20 different sources. The two most important components are the
broadcast news (BN) and broadcast conversation (BC) acoustic transcripts (7.5
million words each) corresponding to 1,800 h of speech transcribed by LDC for
the GALE program. We use a vocabulary of 795,000 words, which is based on
all available corpora, and is designed to completely cover the acoustic transcripts.
To build the baseline language model, we train a 4-gram model with modified
Kneser–Ney smoothing [13] for each source, and then linearly interpolate the 20
component models with the interpolation weights chosen to optimize perplexity on
a held-out set. We combine all the 20 components into one language model using
entropy pruning [48]. By varying the pruning thresholds we create (1) a 913 million
n-gram LM (no pruning) to be used for lattice rescoring (Base) and (2) a 7 million
n-gram LM to be used for the construction of static, finite-state decoding graphs.

In addition to the baseline language models described above, we investigated
various other techniques which differ in either the features they employ or the
modeling strategy they use. These are described below.

• ModelM A class-based exponential model [11]. Compared to the models used in
the previous evaluation, we use a new enhanced word classing [12]. The bigram
mutual information clustering method used to derive word classes in the original
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Model M framework is less than optimal due to mismatches between the classing
objective function and the actual LM, so the new method attempts to address this
discrepancy. Key features of the new method include: (a) a class-based model that
includes word n-gram features to better mimic the nature of the actual language
modeling, (b) a novel technique for estimating the likelihood of unseen data for
the clustering model, and (c) n-gram clustering compared to bigram clustering in
the original method. We build Model M models with improved classing on 7 of
the corpora with the highest interpolation weights in the baseline model.

• WordNN A 6-gram neural network language model using word features.
Compared to the model used in the P4 evaluation [25], we train on more data (44
million words of data from BN, BC and Archive). We also enlarge the neural
network architecture (increased the feature vector dimension from 30 to 120 and
the number of hidden units from 100 to 800) and normalize the models. We create
a new LM for lattice rescoring by interpolating this model with the 7 ModelM
models and Base, with the interpolation weights optimized on the held-out set.
In the previous evaluation we did not get an improvement by interpolating the
WordNN model with model M models, but the changes made this year result in
significant improvements.

• SyntaxNN A neural network language model using syntactic and morphological
features [29]. The syntactic features include exposed head words and their non-
terminal labels, both before and after the predicted word. For this neural network
model we used the same training data and the same neural network architecture
as the one described for WordNN. This language model is used for n-best
rescoring.

• DLM A discriminative language model trained using the minimum Bayes risk
(MBR) criterion [31]. Unlike the other LMs, a DLM is trained on patterns
of confusion or errors made by the speech recognizer. Our potential features
consist of unigram, bigram, and trigram morphs, and we used the perceptron
algorithm to select a small set of useful features. With the selected features, we
trained the DLM using an MBR-based algorithm, which minimizes the expected
loss, calculated using the word error information and posterior probabilities of
the N-best hypotheses of all the training sentences. To prepare data for DLM
training, we used a Phase 3 unvowelized recognizer trained on 1,500 h of acoustic
data to decode an unseen 300 h set. This unseen training set was provided in
Phase 4, but adding this data to acoustic or language model training did not
improve the system, so it is an ideal set for DLM training. During the evaluation,
a single MBR DLM thus trained was used to rescore the N-best hypotheses
from all the systems. Although there is a mismatch between training and test
conditions, improvements were still observed. Details of these experiments as
well as post-eval experiments are presented in [31].

Having many diverse language models, the challenge is to be able to combine
them while achieving additive gains, and Sect. 13.4.4 describes our strategy.
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13.4.3 System Combination

We employ three different techniques for system combination. The first technique
is cross-adaptation (�), where the fMLLR and MLLR transforms required by a
speaker-adapted acoustic model are computed using transcripts from some other,
different speaker-adapted acoustic model. The second technique is tree-array com-
bination (C), a form of multi-stream acoustic modeling in which the acoustic scores
are computed as a weighted sum of scores from two or more models that can have
different decision trees [47]. The only requirement for the tree-array combination
is that the individual models are built using the same pronunciation dictionary. The
third technique is hypothesis combination using the nbest-rover [50] tool from
the SRILM toolkit [49]. In all these combination strategies, the choice of systems to
combine was based on performance on a variety of development sets.

13.4.4 System Architecture

IBM’s 2011 GALE Arabic transcription system is a sequence of multiple passes
of decoding, acoustic model adaptation, language model rescoring, and system
combination steps. In this section, we show how all the models described in the
previous sections are combined to generate the final transcripts. We report results
on several data sets: DEV’07 (2.5 h); DEV’09 (2.8 h); EVAL’09, the unsequestered
portion of the GALE Phase 4 evaluation set (4.2 h); and EVAL’11, the GALE Phase
5 evaluation set (3 h). EVAL’11 is unseen data on which no tuning was done. In our
2011 evaluation system we have the following steps.

1. Cluster the audio segments into hypothesized speakers.
2. Decode with the SI model.
3. Compute VTLN warp factors per speaker using transcripts from (2).
4. Decode using the U model cross-adapted on SI.
5. Decode using the SGMM model cross-adapted on (4).
6. Compute best frame rates per utterance using transcripts from (5).
7. Decode using the SGMM model cross-adapted on U and frame rates from (6).
8. a. Using the U model and transcripts from (5), compute fMLLR and MLLR

transforms.
b. Using the BS model and transcripts from (5), compute fMLLR and MLLR

transforms.
c. Using the NNU model and transcripts from (5), compute fMLLR and MLLR

transforms.
d. Decode and produce lattices using a tree-array combination of the U model

with transforms from (8a), the BS model with transforms from (8b) and
NNU with transforms from (8c).

9. a. Using the M model and transcripts from (5), compute fMLLR and MLLR
transforms.
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Table 13.14 Word error rates for the final three combined models before and after adding LM
rescoring passes

Step Decoding pass DEV’09 EVAL’09 EVAL’11

(8d) .U C BS C NNU/ � SGMM � U 12.6 % 9.5 % 8.9 %
(9c) .M C NNM/ � SGMM � U 13.3 % 9.8 % 9.2 %
(10) V � SGMM � U 13.5 % 9.8 % 9.5 %
(14a) (8d) C simplex 11.4 % 8.4 % 7.8 %
(14b) (9c) C simplex 11.9 % 8.6 % 8.1 %
(14c) (10) C simplex 12.5 % 9.2 % 8.4 %
(15) (14a) C (14b) C (14c) 11.1 % 8.1 % 7.4 %

b. Using the NNM model and transcripts from (5), compute fMLLR and
MLLR transforms.

c. Decode and produce lattices using a tree-array combination of the M model
with transforms from (9a) and the NNM model with transforms from (9b).

10. Decode and produce lattices using the V model, frame rates from (6) and
fMLLR and MLLR transforms computed using transcripts from (5).

11. Using an interpolation of Base, 7 ModelM and one WordNN language
models

a. Rescore lattices from (8d), extract 50-best hypotheses
b. Rescore lattices from (9c), extract 50-best hypotheses
c. Rescore lattices from (10), extract 50-best hypotheses.

12. Parse the 50-best lists from (11) and score them with a SyntaxNN language
model; produce new language model scores for each hypothesis.

13. Score the 50-best lists from (11) with a discriminative language model and
produce new language model scores for each hypothesis.

14. Combine acoustic scores, language model scores from (11), syntax LM scores
from (12) and discriminative LM scores from (13) using simplex

a. Add the new scores to the hypotheses from (11a)
b. Add the new scores to the hypotheses from (11b)
c. Add the new scores to the hypotheses from (11c).

15. Combine the hypotheses from (14a), (14b), and (14c) using the nbest-rover
tool from the SRILM toolkit [49]. This constitutes the final output
(Table 13.14).

Table 13.15 shows the word error rates obtained after adding new language
models either for lattice or n-best rescoring for the (8d) system. It can be seen
that each additional rescoring pass improves the performance, and that the total
improvement from language modeling rescoring is 1.1–1.2 % absolute on all the
sets. Similar improvements have been obtained on the other two systems that are
part of the final system combination ((9c) and (10)).
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Table 13.15 Word error rates for different LM rescoring steps on the .UCBSCNNU/�SGMM�
U:vfr (8d) set of lattices

Step Language model DEV’09 EVAL’09 EVAL’11

(8d) Base 12.6 % 9.5 % 8.9 %
(11) C ModelM and WordNN 11.7 % 8.8 % 8.2 %
(12) C SyntaxNN 11.6 % 8.6 % 7.9 %
(13) C DLM 11.5 % 8.6 % 8.0 %
(14) C SyntaxNN and DLM 11.4 % 8.4 % 7.8 %

13.5 From MSA to Dialects

One of the key challenges in Arabic speech recognition research is how to handle
the differences between Arabic dialects. Most recent work on Arabic ASR has
addressed the problem of recognizing Modern Standard Arabic (MSA). Little
work has focused on dialectal Arabic [26, 51]. Arabic dialects differ from MSA
and each other in many dimensions of the linguistic spectrum, morphologically,
lexically, syntactically, and phonologically. What makes Arabic dialect challenging
in particular is the lack of a well-defined spelling system, resources (i.e., acoustic
and LM training data) as well as tools (such as morphological analyzers and
disambiguation tools).

In this section, we report a series of experiments about how we can progress from
Modern Standard Arabic (MSA) to Levantine ASR, in the context of the GALE
DARPA program. While our GALE models achieved very low error rates, we still
see error rates twice as high when decoding dialectal data. We make use of a state-
of-the-art Arabic dialect recognition system to automatically identify Levantine and
MSA subsets in mixed speech of a variety of dialects including MSA. Training
separate models on these subsets, we show a significant reduction in word error rate
over using the entire data set to train one system for both dialects. During decoding,
we use a tree array structure to mix Levantine and MSA models automatically using
the posterior probabilities of the dialect classifier as soft weights. This technique
allows us to mix these models without sacrificing performance for either variety.
Furthermore, using the initial acoustic-based dialect recognition system’s output,
we show that we can bootstrap a text-based dialect classifier and use it to identify
relevant text data for building Levantine language models.

13.5.1 Dialect Identification

As mentioned above, we are interested in building Levantine-specific models using
the available GALE data. Recall that this data contains a mix of dialects in addition
to MSA and that this data has no specific dialect annotations. To build a Levantine-
specific ASR system, we need dialect annotations for each utterance since Arabic
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speakers, in broadcast conversations (BC), tend to code mix/switch between MSA
and their native dialects across utterances and even within the same utterance.3 In
this work, we build a dialect recognition system to identify dialects at the utterance
level.

Biadsy et al. [4, 6] have previously shown that a dialect recognition approach
that relies on the hypothesis that certain phones are realized differently across
dialects achieves state-of-the-art performance for multiple dialect and accent tasks
(including Arabic). We make use of this system (described next) to annotate some
of our Arabic GALE data.

Phone Recognizer and Front-End

The dialect recognition approach makes use of phone hypotheses. Therefore, we
first build a triphone context-dependent phone recognizer. The phone recognizer
is trained on MSA using 50 h of GALE speech data of broadcast news and
conversations with a total of 20,000 Gaussians. We use one acoustic model for
silence, one for non-vocal noise and another to model vocal noise. We utilize a
unigram phone model trained on MSA to avoid bias for any particular dialect.4

We also use FMLLR adaptation using the top CD-phone sequence hypothesis. Our
phone inventory includes 34 phones, 6 vowels and 28 consonants.

Phone GMM-UBM and Phonetic Representation

The first step in the dialect recognition approach is to build a ‘universal’acoustic
model for each context-independent phone type. In particular, we first extract
acoustic features (40d feature vectors after CMVN and FMLLR) aligned to each
phone instance in the training data (a mix of dialects). Afterwards, using the frames
aligned to the same phone type (in all training utterances), we train a Gaussian
Mixture Model (GMM), with 100 Gaussian components with diagonal covariance
matrices, for this phone type, employing the EM algorithm. Therefore, we build 34
GMMs. Each phone GMM can be viewed as a GMM-Universal Background Model
(GMM-UBM) for that phone type, since it models the general realization of that
phone across dialect classes [38]. We call these GMMs phone GMM-UBMs.

Each phone type in a given utterance (U ) is represented with a single MAP
(Maximum A-Posteriori) adapted GMM. Specifically, we first obtain the acoustic
frames aligned to every phone instance of the same phone type in U . Then these
frames are used to MAP adapt the means of the corresponding phone GMM-UBM

3In this work, we do not attempt to identify code switching points; we simply assume that an
utterance is spoken either in MSA or in purely a regional dialect.
4We use true phonetic labels here by generating pronunciation dictionaries using MADA, following
[4].
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using a relevance factor of r D 0:1. The resulting GMM of phone type 	 is called the
adapted phone-GMM (f	). The intuition here is that f	 ‘summarizes’ the variable
number of acoustic frames of all the phone instances of a phone-type 	 in a new
distribution specific to 	 in U [6].

A Phone-Type-Based SVM Kernel

Now, each utterance U can be represented as a set SU of adapted phone-GMMs,
each of which corresponds to one phone type. Therefore, the size of SU is at most
the size of the phone inventory (j˚ j). Let SUa D ff	g	2˚ and SUb

D fg	g	2˚ be the
adapted phone-GMM sets of utterances Ua and Ub , respectively. Using the kernel
function in Eq. (13.16), designed by Biadsy et al. [6] which employed the upper
bound of KL-divergence-based kernel (13.17), proposed by Campbell et al. [9], we
train a binary SVM classifier for each pair of dialects. This kernel function compares
the ‘general’ realization of the same phone types across a pair of utterances.
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	2˚

K	.f 0
	; g0

	/ (13.16)

where f 0
	 is the same as f	 but we subtract from its Gaussian mean vectors the

corresponding Gaussian mean vectors of the phone GMM-UBM (of phone type 	).
g0

	 is obtained similarly from g	 . The subtraction forces zero contributions from
Gaussians that are not affected by the MAP adaptation. And,
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where, !	;i and ˙	;i respectively are the weight and diagonal covariance matrix of

Gaussian i of the phone GMM-UBM of phone-type 	; 

f
i and 


g
i are the mean

vectors of Gaussian i of the adapted phone-GMMs f	 and g	 , respectively.
It is interesting to note that, for (13.16), when K	 is a linear kernel, such as the

one in (13.17), each utterance SUx can be represented as a single vector. This vector,
say Wx , is formed by stacking the mean vectors of the adapted phone-GMM (after

scaling by
p

!	˙
� 1

2

	 and subtracting the corresponding 
	) in some (arbitrary)
fixed order, and zero mean vectors for phone types not in Ux . This representation
allows the kernel in (13.16) to be written as in (13.18). This vector representation
can be viewed as the ‘phonetic fingerprint’ of the speaker. It should be noted that,
in this vector, the phones constrain which Gaussians can be affected by the MAP
adaptation (allowing comparison under linguistic constraints realized by the phone
recognizer), whereas in the GMM-supervector approach [8], in theory, any Gaussian
can be affected by any frame of any phone.
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Table 13.16 F-Measure
for each dialect class using
the four-way classifier with
30 s cuts

Dialect F-measure

Levantine 90.7 %
Iraqi 86.7 %
Gulf 87.1 %
Egyptian 98.6 %

13.5.2 ASR and Dialect ID Data Selection

As noted above, the GALE data is not annotated based on dialects. Moreover, to the
best of our knowledge, there is no Arabic dialect corpus of similar domain and/or
acoustic condition as broadcast conversations. Fortunately, there are telephone
conversation corpora available from the LDC for four Arabic dialects (Egyptian,
Levantine, Gulf, and Iraqi). To address the acoustic recording and domain issues we
build two systems.

In our first system, we train our dialect recognition on dialect data taken from
spontaneous telephone conversations from the following Appen corpora: Iraqi
Arabic (478 speakers), Gulf (976), and Levantine (985). For Egyptian, we use
the 280 speakers in CallHome Egyptian and its supplement. Using the kernel-
based approach describe above, we train a binary SVM classifier for each pair of
dialects on 30 s cuts of 80 % of the speakers (of each corpus). Each cut consists
of consecutive speech segments totaling 30 s in length (after removing silence).
Multiple cuts are extracted from each speaker.5 As a result, we obtain six binary
classifiers for the four broad Arabic dialects.

To label utterances with dialect ID tags, we need a single four-way classifier
to classify the dialect of the speaker to one of the four dialects. To build such a
classifier, we first run the six SVM binary classifiers on the remaining 20 % held-
out speakers. Every SVM binary classifier provides a posterior probability P.C1jx/

for each test sample x of belonging to class C1. We use these posteriors as features to
train a four-way logistic regression on the 20 % set. The 10-fold cross validation of
this classifier is 93.3 %; the F-measure of each dialect class is shown in Table 13.16.

We run this system to annotate a portion of our GALE BC data (after down-
sampling to 8 Khz). The dialect recognition system classified 54 h of Levantine
speech with a relatively high confidence. Since the dialect ID system is trained on
telephone conversations as opposed to broadcast conversations, we asked the LDC
to validate/filter the output of the system. We find that about 36 h out of 54 h are
tagged as “mostly Levantine”, a 10 h set contains code switching between MSA and
Levantine at the utterance level, and an 8 h set contains either other dialects or MSA.
Recall that our system is not trained to identify MSA.

We extract a 4 h test set (LEV_4h) to be used for reporting results in all the
Levantine ASR experiments. From the remaining 32 h we extract all the utterances

5The equal error rate reported by Biadsy et al. [6] of this dialect recognition system on the
remaining 20 % held-out speakers is 4 %.
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Table 13.17 MADA AM used for dialect ID, WER test

System WER on DEV-07

50k Gaussians, 1k states, ML 16.8 %
200k Gaussians, 5k states, ML 15.4 %
200k Gaussians, 5k states, fBMMI C BMMI 12.5 %

longer than 20 s, this yields approximately 10 h of data (LEV_10). Part of the
transcripts released by LDC for the GALE program have “non-MSA” annotations.
This allows us to select a 40 h MSA corpus by choosing speakers whose utterances
have no such markings. From this set we select 4 h for our MSA ASR experiments
(MSA_4h). From the remining data, we further select a 10 h set with utterances
longer than 20 s (MSA_10).

13.5.3 Dialect Identification on GALE Data

Given that now we have gold standard BC MSA and Levantine data (MSA_10
and LEV_10), we can train another dialect recognition system to distinguish MSA
vs. Levantine for BC acoustic conditions. We divide LEV_10 into 9 h for training
and 1 h for testing our dialect recognition system. Similarly MSA_10 is divided into
9 h for training and 1 h for testing. Note that this amount of acoustic data is typically
not sufficient to train dialect identification systems; however, we are interested in
making use of the rest of the data for other experiments.

As described in Sect. 13.5.1, for the dialect identification system we need a phone
decoder; therefore we carry out a number of experiments to find the best strategy
for building it. We train three MADA Vowelized (i.e., a true phonetic-based system)
triphone acoustic models in which we vary the number of Gaussians and the number
of states, using either ML or discriminative training. First, we test these models for
word recognition with our unpruned 4-gram LM. Table 13.17 shows the word error
rates on the DEV-07 set.

In the next test, we use the triphone models to decode phone sequences with
different phone language models. For each phone decoder we build a dialect
classification system using the SVM-Kernel approach described in Sect. 13.5.1.
We train the models on 9 h of Levantine data and 9 h of MSA data, and evaluate
the results on a test set which contains 1 h of Levantine and 1 h of MSA data.
Table 13.18 shows the dialect classification rates for the different acoustic model and
phone language model combinations. Based on these results we decided to use the
smallest, simplest model (50k Gaussians ML model with unigram phone language
model) for the subsequent experiments.
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Table 13.18 Dialect
classification performance

System/features Classification accuracy

50k ML 1-gram phone LM 85.1 %
50k ML 3-gram phone LM 84.5 %
200k ML, 3-gram phone LM 84.9 %
200k fBMMI C BMMI, 3-gram 83.0 %

Table 13.19 300 h AM tested on DEV-07

System Unvowelized BW vowelized MADA vowelized

ML 16.6 % 14.2 % 13.9 %
fBMMI C BMMI 12.7 % 11.8 % 11.7 %

13.5.4 Acoustic Modeling Experiments

Comparing Vowelizations

We select a 300-h subset from our entire GALE training set and train speaker
adaptive acoustic models for all three lexical setups. The decoding setup includes
VTLN, FMLLR, and MLLR and we use an unpruned 4-gram LM with a 795k
vocabulary. First, we test the models on one of our standard GALE development
sets, DEV-07, shown in Table 13.19. Pronunciation probabilities are used for both,
Buckwalter and MADA systems. Buckwalter and MADA vowelizations perform
similarly, while the unvowelized models are 2:7 % worse at the ML level. However,
we want to note that the difference is only 1 % after discriminative training. This
indicates that discriminative training of context-dependent (CD) GMM models is
able to compensate for the lack of (knowledge based) pronunciation modeling to a
large degree.

In the next comparison, we test the models on a newly defined MSA test set.
The reason behind this set is that we want to use the same methodology for
defining/selecting a test set for both Levantine and MSA. We would like to analyze
the difficulty of Levantine when compared to MSA under exactly same conditions.
We are basically reducing effects related to how and from where the test sets are
chosen. DEV-07, for example, is a test set defined by LDC which consists of mostly
very clean broadcast news data. This is very likely the reason behind our very low
error rates. The MSA_4h test set is selected randomly from broadcast conversations
of our training set and labeled as MSA by our dialect classifier. The reason to select
the data from broadcast conversations is to match the conditions of the Levantine
test set. All of the Levantine data comes from BC as well. The error rates on this
MSA test set (Table 13.20) is almost twice as high as the error rates on DEV-07
(Table 13.19), although both are non-dialectal (MSA) test data. We also see that all
three models perform at a similar level (21.2–21.8 %) after discriminative training.

We now compare the models on Levantine data (LEV_4). Recall that this
Levantine test set is part of the GALE corpus identified automatically by our
dialect classifier and manually verified by LDC (see Section above). The same
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Table 13.20 300 h AM tested on MSA_4h

System Unvowelized BW vowelized MADA vowelized

ML 28.6 % 27.0 % 25.7 %
fBMMI C BMMI 21.8 % 21.7 % 21.2 %

Table 13.21 300 h AM tested on LEV_4h

System Unvowelized BW vowelized MADA vowelized

ML 48.2 % 50.3 % 48.1 %
fBMMI C BMMI 39.7 % 42.1 % 40.8 %

methodology for selecting the test data is used for MSA_4h and LEV_4h. Both
MSA_4h and LEV_4h test sets are excluded from the training of the acoustic and
language models. Looking at Tables 13.20 and 13.21, we observe two main points:

1. The error rate for Levantine is almost twice as high as for MSA (39.7 vs. 21.8 %).
We compare here the Levantine error rate to MSA_4h and not to DEV-07. This
allows us to attribute the increase in error rate to dialect and not to other effects
(how the test set was chosen and how carefully the transcripts were done).

2. Another interesting observation is that the unvowelized models perform best on
Levantine (39.4 vs. 40.8 and 42.1 %). We speculate that this is due to the fact
that the Buckwalter analyzer, MADA, and the pronunciation rules are designed
for MSA – which do not work properly for Levantine words. A dialect-specific
morphological analyzer would very likely improve results, but it is unclear that it
would significantly reduce the error rate on Levantine given that the unvowelized
perform comparably well on MSA data (Table 13.20).

Selecting Dialect Data from the 300-h Training Subset

We now run the dialect recognition system on our 300-h subset of the GALE training
corpus. Out of this training set, we obtain about 37 h labeled as Levantine. This is
not sufficient to train a set of acoustic models. One option is to use a deep MLLR
regression tree or MAP training. In our experience MLLR works well for limited
domain adaptation data, but will not be able to fully utilize a large amount of domain
adaptation data. While MAP works better with more adaptation data, it is difficult
to use it in combination with feature space discriminative training.

Instead, we use a form of training with weighted statistics. The advantage
is that all components of the model (including decision trees) are trained at all
training stages (ML, DT) with the new domain data. In our case we have additional
information in the form of a dialect posterior probability for each utterance from the
dialect classifier. We use this posterior to weight the statistics of each utterance
during ML and discriminative training. The modified statistics are computed as
shown in formula (13.19).
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Table 13.22 Comparing
weighting schemes of
training statistics on LEV_4h,
300 h setup, unvowelized ML
models

Training data WER

Unweighted (300 h) 48.2 %
Hard-weighted (37 h) 48.3 %
Soft-weighted (300 h) 45.3 %

Table 13.23 300 h AM tested on LEV_4h

System Unvowelized BW vowelized MADA vowelized

ML 45.3 % 47.3 % 45.5 %
fBMMI C BMMI 38.4 % 41.4 % 39.2 %
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Table 13.22 shows a comparison of different weighting schemes. In the first row,
we simply train on all 300 h regardless whether they are Levantine or MSA. This
model gives us an error rate of 48:2 %. In the second row, we train only on the
selected Levantine subset of 37 h. The error rate is slightly higher, 48:3 %, due to
the lack of training data. In the third row, we train on the same 300 h, but weight the
statistics of each utterance individually by the posterior score of the dialect classifier.
This provides us with a smoothing of the models, avoids overtraining and we get a
2:9 % error reduction.

We apply now the soft-weighting scheme to all vowelization setups and compare
the models both after ML and fBMMI C BMMI training in Table 13.23. The
improvement from focusing on Levantine training data can be seen by comparing
Table 13.21 with Table 13.23. For example, for the unvowelized models, we obtain
2.9 % absolute error reduction at the ML level, and 1.3 % after discriminative
training. Note that we do not add training data, rather we find relevant subsets that
match our target dialect.

Tree Array Combination

When we focus the training on Levantine, we can expect the model to perform worse
on MSA data. In fact, the error rate increases from 12:7 to 15:1 % on DEV-07 when
we use the Levantine models (Table 13.24). Our toolkit allows us to combine models
with different decision trees into one single decoding graph [46]. This enables us to
combine different acoustic models in one decoding pass on the fly, without making
a hard model selection. The combined acoustic score is the weighted sum of the log
likelihoods of the combined models. In our case, we combine the MSA and LEV
unvowelized models. The results are in Table 13.24. The first two rows represent
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Table 13.24 Tree array combination of general models with Levantine models in on decoding
pass, 300-h unvowelized fBMMI C BMMI setup

Weight for MSA model Weight for LEV models DEV-07 LEV_4h

1.0 0.0 12.7 % 39.7 %
0.0 1.0 15.1 % 38.4 %
0.5 0.5 13.3 % 38.2 %
Dialect classifier soft weight 12.9 % 38.4 %

Table 13.25 Comparing
weighting schemes of
training statistics on LEV_4h,
1,800-h setup, unvowelized
ML models

Training data WER

Unweighted (1,800 h) 47.0 %
Hard-weighted (237 h) 42.3 %
Soft-weighted (1,800 h) 43.5 %

the extreme cases where either the MSA or LEV model is used exclusively. In the
third row, we weight both models equally and constant for all utterances. The error
rate on DEV-07 is 13:3 %, 0:6 % higher than when just using the MSA model, but
much better than when using the LEV models only (15:1 %). On the other hand,
we get a small improvement on the Levantine test set (38:4 % goes to 38:2 %). This
is a system combination effect. We used tree arrays in the past as an alternative to
ROVER or cross-adaptation, for example in our latest GALE evaluation. In the last
row in Table 13.24 we use the posterior of the dialect classifier as a soft weight
for model combination on a per utterance basis. This automatic strategy gives us an
error rate that is close to the optimal performance of a model selected manually.

Selecting Dialect Data from the 1,800-h Training Set

The full GALE training corpus consists of about 18;00 h. Similar to the previous
experiments, but now focusing exclusively on the unvowelized models, we generate
dialect labels for the entire training corpus. The dialect recognition system identified
about 237 h as Levantine in the GALE corpus (or 13 %). In Table 13.25, we compare
different weighting schemes for the Levantine data. In contrast to the 300 h setup
(Table 13.22), the best error rate is achieved now by training exclusively on the
237 h of Levantine data and not by using the dialect scores to weight the statistics.
The reason is simply that the amount of Levantine training data is now large enough
to train acoustic models and we do not need to add data as was the case for the
previous experiments when we had only 37 h of Levantine data.

After discriminative training (fBMMI C bMMI) of the 237 h unvowelized
Levantine models, the error rate goes down to 36:3 %. In other words, we can lower
the error rate by almost 10 % relative by focusing on relevant subsets of the training
data and the dialect classifier together with the tree array decoding technique which
allows us to use both Levantine and MSA models in one decoding pass, so the
engine can handle both dialectal and non-dialectal utterances at the same time.
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Table 13.26 Text only
dialect classification using
Levantine and MSA language
models

Test data Dialect classification

MSA_4h 86.0 %
Lev_4h 87.2 %

Table 13.27 LM rescoring
with Levantine LM

Training data WER

913m 4-gram baseline LM 36.3 %
C 3-gram Levantine LM from 238 h set 35.4 %
C 4-gram Levantine weighted LM (all text sources) 35.1 %

13.5.5 Dialect ID Based on Text Only

The experiments described in Sect. 13.5.4 demonstrate that the acoustic training
data contains relevant dialect subsets which when detected can improve the acoustic
models. In this section, we report on a similar strategy for language modeling, but
now we built a dialect classifier based on text only – no audio data is used. First,
we build a Kneser–Ney smoothed 3-gram Levantine LM on the 2 million words
corresponding to the transcripts of the 237 h of Levantine acoustic training data
(identified automatically). Similarly, we build an MSA language model from all
the utterances which are classified as MSA with more than 95 % probability by the
dialect annotator. We build a text dialect classifier which simply checks the log-
likelihood ratio of the two LMs on a given utterance. Table 13.26 shows that we can
predict the dialect reliably even when only text data is available.

Levantine LM

Our GALE language models are trained on a collection of 1.6 billion words, which
we divide into 20 parts based on the source. We train a 4-gram model with modified
Kneser–Ney smoothing [13] for each source, and then linearly interpolate the 20
component models with the interpolation weights chosen to optimize perplexity
on a held-out set. In order to build a Levantine language model, we run the text
dialect annotator described above on each of the 20 text sources and build 4-gram
language models on the 20 dialectal subparts. The new 20 dialect language models
are interpolated with the 20 original ones. We optimize the interpolation weights
of the 40 language models on a Levantine held-out set. Table 13.27 shows the
improvements obtained by adding dialect data to the original language model. Note
that the improvement from adding dialect language models is less than the one
obtained from dialect acoustic models. One reason for this is the fact that the initial
dialect data is selected from the BC part of the training data, and the BC language
model has a high weight in the baseline interpolated LM.
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Finding Levantine Words

We can identify dialectal words if we compute how many times the word occurs in
the Levantine corpus vs. the MSA one. After sorting the count ratios, we find the
following words ranked at the top of the list: Em, hyk, bdw, bdk, ylly, blbnAn, which
are in fact Levantine words. Note that identifying dialectal words can be useful
for building better pronunciation dictionaries for dialects as well as for machine
translation.

13.6 Resources

As explained in Sect. 13.1.1 a speech recogizer consists of models representing the
underlying acoustic and language characteristics. In order to build a speech rec-
ognizer, language-specific data for training these models is required. The Linguistic
Data Consortium (www.ldc.upenn.edu) is a good starting point to look for publically
available data resources. In this section we describe the available data for Arabic that
was mostly collected as part of DARPA programs.

13.6.1 Acoustic Training Data

We used the following corpora for acoustic model training in various experiments
presented here:

• 85 h of FBIS and TDT-4 audio with transcripts provided by BBN,
• 51 h of transcribed GALE data provided by the LDC for the GALE Phase 1 (P1)

evaluation,
• 700 h of transcribed GALE data provided by LDC for the Phase 2 (P2) and Phase

2.5 (P2.5) evaluations,
• 5.6 h of BN data with manually vowelized transcripts provided by BBN (BNAT-

05),
• 5.1 h of BN data with manually vowelized transcripts provided by BBN (BNAD-

05),
• 500 h of transcribed Iraqi data (TRANSTAC),
• 1,800 h of untranscribed audio from the EARS BN-03 corpus, and
• 10,000 h of untranscribed audio collected at IBM Research (TALES).

BNAT-05 and BNAD-05 were used only for a comparison of flat-start training to
manual data for the initialization of vowelized models. The TRANSTAC data was
used only for experiments on dialect modeling. The TALES data was used only for
experiments on large-scale unsupervised training, including tests of dialect models.
The evaluation system described in Sect. 13.4 was trained only on data available to
all GALE program participants: FBIS, TDT-4, GALE P1 and P2, and EARS BN-03.

www.ldc.upenn.edu
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Table 13.28 Source
variability in Arabic
broadcast training data

Source Hours

Al Arabiya 2; 455

Al Jazeera Morning News 306

Al Jazeera Midday News 326

Al Jazeera News Bulletin 975

Dubai News 27

ESC News 81

LBC (Lebanese) Flash News 88

LBC International News 161

Voice of America 184

Al Alam 47

NBN News 131

Arabic broadcast news and conversations are highly variable, coming from
many different broadcasters and containing a mixture of Modern Standard Arabic
(MSA) and dialectical Arabic. To illustrate this variability, Table 13.28 provides
a breakdown of a sample comprising 130 h of GALE transcribed data, 750 h of
untranscribed EARS BN-03 data, and 5,600 h of untranscribed TALES data by
source. Note that only the predominant sources in the sample are listed; there is
also a long tail containing many additional sources which are represented by smaller
amounts of audio.

13.6.2 Training Data for Language Modeling

We used the following resources for language modeling:

• Transcripts of the audio data released by LDC (7M words),
• The Arabic Gigaword corpus (500M words),
• News group and web log data collected by LDC (22M words),
• Web transcripts for broadcast conversations collected by CMU/ISL (100M

words), and
• web text data collected by Cambridge University and CMU (200M words).

Automatic transcripts from the unsupervised training corpus were not used for
language modeling.

13.6.3 Vowelization Resources

Besides the training data, there are other resources that are helpful to build
systems for Arabic, but not necessarly essential. Many research groups use these
tools for their Arabic LVCSR systems to generate vowelized pronunciation lexica.
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In Sect. 13.2.2 we demonstrate how these tools can be used to generate vowelized
forms for unvowelized corpora and improve the speech recognition performance.

1. Buckwalter’s morphological analyzer
The morphological analyzer [7] can be used to decompose (unvowelized) words
into morphemes and provide a list of vowelizations. It is also available from
LDC.

2. MADA (Morphological Analysis and Disambiguation for Arabic)
This tool [22] can be used to rank and refine the vowelized variants by performing
a sentence-wide analysis. It uses the results from Buckwalter’s morphological
analyzer to rerank them using an SVM classifier that uses morphological and
n-gram features.

3. Arabic Treebank
The Arabic Treebank (www.ircs.upenn.edu/arabic) consists of part-of-speech,
morphological and syntax annotations for a corpus collected as part of the
DARPA TIDES program. The corpus can be used to find vowelized forms for
pronucuation lexica.

13.7 Comparing Arabic and Hebrew ASR

The goal of this section is to describe the challenges involved in building an ASR
system for modern Hebrew. We hypothesize that most of the techniques used for
building an Arabic ASR will carry over to Hebrew as well.

Hebrew is a morphologically rich language, therefore, as in Arabic, the vocab-
ulary size can be very large, if explicit morphological modeling is not employed,
affecting the lexicon size as well as the language model. All of this may highly
likely lead to higher language model perplexity, larger decoder search space, and
large memory requirements. We have seen in this chapter how to handle these issues
for Arabic, hence the same techniques are likely to carry over. The diacritizaion
phenomenon, or so-called Niqqud in Hebrew, is almost identical to that of Arabic.
Short vowels and consonant alternation markers are written as diacritic markers
above, below or inside letters. Similar to Arabic, most modern Hebrew texts are
written with almost no Niqqud whatsoever. The same word with different Niqqud
typically changes meaning, POS, and/or pronunciations, as in Arabic.

As in Arabic, there is almost a one-to-one mapping between fully diacritized
Hebrew words to pronunciations using simple pronunciation rules. Therefore,
automatic morphology analysis and disambiguation techniques may be useful for
Hebrew to build a “vowelized” system as we have seen for Arabic. We also
hypothesize that a completely “unvowelized” system, as in Arabic, will also perform
relatively well for Hebrew. In other words, ignoring the Niqqud completely may
provide us with a relatively accurate system, particularly when discriminative
training is used. Unlike Arabic, in modern Hebrew, there is no notion of regional
dialects. This suggests that building a Hebrew ASR system is far easier than building

www.ircs.upenn.edu/arabic
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a unified Arabic ASR system. This is due to the facts that Hebrew has a single
well-defined spelling system, a single vocabulary set, a single morphological and
syntactic system and a single phonetic inventory.

13.8 Summary

We described in this chapter LVCSR techniques, both language-independent and
language-specific, to obtain high performance LVCSR systems. Our main findings
are based on our experience from the 5-year DARPA GALE program, aimed at
improving Arabic speech recognition and translations. Our main findings are:

1. Current LVCSR technology works fairly robustly on a set of different languages.
Ninety percent of the improvements in our system come from basic technology
that works across languages. It is important to get the basic techniques for
acoustic and language modeling right before addressing language-specific issues.

2. The lack of diacritics in written texts is one of the more important language-
specific issues. Short vowels are not written but spoken, creating a mismatch
between transcripts and audio files. The first solution is to use semi-automatic
vowelization procedures such as Buckwalter’s morphological analyzer. These
tools can be used to add vowelized pronunciation variants to the lexicon. Flat-
start training over pronunciation graphs can then initialize acoustic models.
Repeated system building will lead to very good vowelized acoustic models.

3. Discriminative training is able to compensate for modeling errors. Instead of
trying to model short vowels, we explore the idea of letting our acoustic models
learn to deal with modeling errors in the pronciation lexicon. Long-span phonetic
context allows decision trees to create states corresponding to effects related to
missing short vowels. Discriminative training (feature and model space boosted
MMI or MPE) trains acoustic models in a way that corrects modeling errors.
Experimental results show that unvowelized models are very competitive once
speaker adaptation and discriminative training is added.

4. The rich morphology of the Arabic language is another issue that is important for
LVCSR. The rich morphology creates two problems. The first problem is that a
lot of words are not covered by regular sized vocabularies. The second problem is
data sparsity for language modeling. One solution for these problems is to build
a morpheme-based vocabulary and language model. This approach yields very
low OOV rates while maintaining regular sized vocabularies. The downside is
a postprocessing step that converts the recognition output back to words. This
postprocessing step will create additional errors since the mapping is usually
ambiguous.

A more elegant approach, in our opinion, is to rely on careful engineering.
A well-written LVCSR decoder can easily work with very large vocabularies.
Then, we can use word-based vocabularies and simply increase the size of the
vocabulary to millions of words. No postprocessing of the recognition output
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is required and the OOV rates on standard tests are below 0:5 %. Class-based
exponential language models such as Model-M have proved to be very capable.

5. Increased data sets make language-specific techniques less important. During the
course of the GALE program the amount of training data increased from 100 h
to more than 1,300 h. We observed that improvements from vowelization were
reduced significantly when more training data became available.

6. Languages such as Arabic cover a wide variety of dialects. We presented several
methods for helping LVCSR systems cope with dialects. One approach is to
make acoustic models dialect specific. Adding dialect questions to the decision
tree is a data-driven way to generate HMM states specific to certain dialects.
Another approach is to bootstrap a dialect-specific system by leveraging MSA
models. The dialect recognition system allows us to focus on relevant training
subsets. While specialized models for Levantine perform poorly on MSA, the
tree array decoding procedure allows us to mix both models without sacrificing
performance. Also, we showed that we can build a text-only dialect classifier
that performs as well as a dialect classifier requiring audio data. The text-only
dialect classifier enables us to find relevant LM text data. Another application
is pronunciation modeling where the text-based dialect classifier can provide us
with candidate words that occur only in Levantine.

7. Diversity of acoustic models is good for system combination. Instead of relying
on either vowelized or unvowelized models, we use both models. The com-
bination can be done as cross-adapation, confusion network combination or
other methods. System combination makes LVCSR technology more robust on a
variety of test sets and improves the error rate significantly.
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