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Preface

Modern communication technologies, such as the television and the Internet,
have made readily available massive amounts of information in many languages.
More such data is being generated in real time, 24 h a day and 7 days a week,
aided by social networking sites such as Facebook and Twitter. This information
explosion is in the form of multilingual audio, video, and Web content. The
task of processing this large amount of information demands effective, scalable,
multilingual media processing, monitoring, indexing, and search solutions. Natural
Language Processing (NLP) technologies have long been used to address this task,
and several researchers have developed several technical solutions for it. In the last
two decades, NLP researchers have developed exciting algorithms for processing
large amounts of text in many different languages. Nowadays the English language
has obtained the lion’s share in terms of available resources as well as developed
NLP technical solutions. In this book, we address another group of interesting
and challenging languages for NLP research, that is, the Semitic languages. The
Semitic languages have existed in written form since a very early date, with texts
written in a script adapted from Sumerian cuneiform. Most scripts used to write
Semitic languages are abjads, a type of alphabetic script that omits some or all
of the vowels. This is feasible for these languages because the consonants in the
Semitic languages are the primary carriers of meaning. Semitic languages have
interesting morphology, where word roots are not themselves syllables or words,
but isolated sets of consonants (usually three characters). Words are composed out
of roots by adding vowels to the root consonants (although prefixes and suffixes
are often added as well). For example, in Arabic, the root meaning “write” has
the form k - t - b. From this root, words are formed by filling in the vowels, e.g.,
kitAb “book,” kutub “books,” kAtib “writer,” kuttAb “writers,” kataba “he wrote,”
yaktubu “he writes,” etc. Semitic languages, as stated in Wikipedia, are spoken by
more than 270 million people. The most widely spoken Semitic languages today
are Arabic (206 million native speakers), Amharic (27 million), Hebrew (7 million),
Tigrinya (6.7 million), Syriac (1 million), and Maltese (419 thousand). NLP research
applied to Semitic languages has been the focus of attention of many researchers for
more than a decade, and several technical solutions have been proposed, especially
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Arabic NLP where we find a very large amount of accomplished research. This
will be reflected in this book, where Arabic will take the lion’s share. Hebrew also
has been the center of attention of several NLP research works, but to a smaller
degree when compared to Arabic. Most of the key published research works in
Hebrew NLP will be discussed in this book. For Amharic, Maltese, and Syriac,
because of the very limited amount of NLP research publicly available, we didn’t
limit ourselves to present key techniques, but we also proposed solutions inspired
from Arabic and Hebrew. Our aim for this book is to provide a “one-stop shop” to
all the requisite background and practical advice when building NLP applications
for Semitic languages. While this is quite a tall order, we hope that, at a minimum,
you find this book a useful resource.

Similar to English, the dominant approach in NLP for Semitic languages has
been to build a statistical model that can learn from examples. In this way, a model
can be robust to changes in the type of text and even the language of text on which
it operates. With the right design choices, the same model can be trained to work
in a new domain simply by providing new examples in that domain. This approach
also obviates the need for researchers to lay out, in a painstaking fashion, all the
rules that govern the problem at hand and the manner in which those rules must be
combined. A statistical system typically allows for researchers to provide an abstract
expression of possible features of the input, where the relative importance of those
features can be learned during the training phase and can be applied to new text
during the decoding, or inference, phase. While this book will devote some attention
to cutting-edge algorithms and techniques, the primary purpose will be a thorough
explication of best practices in the field. Furthermore, every chapter describes how
the techniques discussed apply to Semitic languages.

This book is divided into two parts. Part I, includes the first five chapters and lays
out several core NLP problems and algorithms to attack those problems. The first
chapter introduces some basic linguistic facts about Semitic languages, covering
orthography, morphology, and syntax. It also shows a contrastive analysis of some
of these linguistic phenomena across the various languages. The second chapter
introduces the important concept of morphology, the study of the structure of words,
and ways to process the diverse array of morphologies present in Semitic languages.
Chapter 3 investigates the various methods of uncovering a sentence’s internal
structure, or syntax. Syntax has long been a dominant area of research in NLP.
This dominance is explained in part by the fact that the structure of a sentence is
related to the sentence’s meaning, and so uncovering syntactic structure can serve
as a first step toward “understanding” a sentence. One step beyond syntactic parsing
toward understanding a sentence is to perform semantic parsing that consists in
finding a structured meaning representation for a sentence or a snippet of text. This
is the focus of Chap. 4 that also covers a related subproblem known as semantic role
labeling, which attempts to find the syntactic phrases that constitute the arguments
to some verb or predicate. By identifying and classifying a verb’s arguments, we
come closer to producing a logical form for a sentence, which is one way to
represent a sentence’s meaning in such a way as to be readily processed by machine.
In several NLP applications, one simply wants to accurately estimate the likelihood
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of a word (or word sequence) in a phrase or sentence, without the need to analyze
syntactic or semantic structure. The history, or context, that is used to make that
estimation might be long or short, knowledge rich, or knowledge poor. The problem
of producing a likelihood or probability estimate for a word is known as language
modeling, and is the subject of Chap. 5.

Part II, takes the various core areas of NLP described in Part I and explains
how they are applied to real-world NLP applications available nowadays for several
Semitic languages. Chapters in this part of the book explore several tradeoffs
in making various algorithmic and design choices when building a robust NLP
application for Semitic languages, mainly Arabic and Hebrew. Chapter 6 describes
one of the oldest problems in the field, namely, machine translation. Automatically
translating from one language to another has long been a holy grail of NLP research,
and in recent years the community has developed techniques that make machine
translation a practical reality, reaping rewards after decades of effort. This chapter
discusses recent efforts and techniques in translating Semitic languages such as
Arabic and Hebrew to and from English.

The following three chapters focus on the core parts of a larger application
area known as information extraction. Chapter 7, describes ways to identify and
classify named entities in text. Chapter 8, discusses the linguistic relation between
two textual entities which is determined when a textual entity (the anaphor) refers
to another entity of the text which usually occurs before it (the antecedent). The
last chapter of this trilogy, Chap. 9, continues the information extraction discussion,
exploring techniques for finding out how two entities are related to each other,
known as relation extraction.

The subject of finding few documents or subparts of documents that are relevant
based on a search query is clearly an important NLP problem, as it shows the
popularity of search engines such as Bing or Google. This problem is known as
information retrieval and is the subject of Chap. 10. Another way in which we
might tackle the sheer quantity of text is by automatically summarizing it. This
is the content of Chap. 11. This problem either involves finding the sentences, or
bits of sentences, that contribute toward providing a relevant summary, or else
ingesting the text, summarizing its meaning in some internal representation, and
then generating the text that constitutes a summary. Often, humans would like
machines to process text automatically because they have questions they seek to
answer. These questions can range from simple, factoid-like questions, such as
“what is the family of languages to which Hebrew belongs?” to more complex
questions such as “what political events succeeded the Tunisian revolution?”
Chapter 12 discusses recent techniques to build systems to answer these types of
questions automatically.

In several cases, we would like our speech to be automatically transcribed so that
we can interact more naturally with machines. The process of converting speech into
text, known as Automatic Speech Recognition, is the subject of Chap. 13. Plenty of
advances have been made in the recent years in Arabic speech recognition. Current
systems for Arabic and Hebrew achieve very reasonable performance and can be
used in real NLP applications.
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As much as we hope this book is self-contained and covers most research work
in NLP for Semitic languages, we also hope that for you, the reader, it serves as the
beginning and not an end. Each chapter has a long list of relevant work upon which it
is based, allowing you to explore any subtopic in great detail. The large community
of NLP researchers is growing throughout the world, and we hope you join us in
our exciting efforts to process language automatically and that you interact with us
at universities, at research labs, at conferences, on social networks, and elsewhere.
NLP systems of the future and their application to Semitic languages are going to
be even more exciting than the ones we have now, and we look forward to all your
contributions!

Bellevue WA, USA Imed Zitouni
March 2014
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Chapter 1
Linguistic Introduction: The Orthography,
Morphology and Syntax of Semitic Languages

Ray Fabri, Michael Gasser, Nizar Habash, George Kiraz, and Shuly Wintner

1.1 Introduction

We present in this chapter some basic linguistic facts about Semitic languages,
covering orthography, morphology, and syntax. We focus on Arabic (both standard
and dialectal), Ethiopian languages (specifically, Amharic), Hebrew, Maltese and
Syriac. We conclude the chapter with a contrastive analysis of some of these
phenomena across the various languages.

The Semitic family of languages [46, 57, 61] is spoken in the Middle East and
North Africa, from Iraq and the Arabian Peninsula in the east to Morocco in
the west, by over 300 million native speakers.1 The most widely spoken Semitic
languages today are Arabic, Amharic, Tigrinya and Hebrew. The situation of Arabic

1Parts of the following discussion are based on Wintner [74].
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(and Syriac) is particularly interesting from a sociolinguistic point of view, as it
represents an extreme case of diglossia: Modern Standard Arabic (MSA) is used in
written texts and formal speech across the Arab world, but is not spoken natively.
Rather, colloquial Arabic dialects (Levantine, Yemenite, etc.) are used for everyday
conversation, but lack an agreed-upon script [53, p. 267].

The most prominent phenomenon of Semitic languages is the reliance on
root-and-pattern paradigms for word formation. The standard account of word-
formation processes in Semitic languages [59] describes words as combinations of
two morphemes: a root and a pattern.2 The root consists of consonants only, by
default three, called radicals. The pattern is a combination of vowels and, possibly,
consonants too, with ‘slots’ into which the root consonants can be inserted. Words
are created by interdigitating roots into patterns: the consonants of the root fill the
slots of the pattern, by default in linear order (see Shimron [67] for a survey).

Other morphological processes in Semitic languages involve affixation and
cliticization. The various languages discussed in this chapter exhibit prefixes,
suffixes, infixes and circumfixes; some of these affixes are sometimes referred to
as (pro- and en-) clitics; we blur the distinction between affixes and clitics [76, 77]
in the sequel.

Root-and-pattern morphology, a non-concatenative mechanism unique to Semitic
languages, is one of the main challenges for computational processing. Since
the vast majority of the morphological processes known in other languages are
concatenative, existing computational solutions often fail in the face of Semitic
interdigitation. The rich morphology of Semitic languages, coupled with deficien-
cies of the orthography of many of these languages, result in a high level of
ambiguity, another hurdle that computational processing must overcome.

This chapter aims to describe basic linguistic facets of Semitic languages,
addressing issues of orthography, morphology and syntax. We focus on five
languages: Amharic (Sect. 1.2), Arabic (both standard and dialectal, Sect. 1.3),
Hebrew (Sect. 1.4), Maltese (Sect. 1.5) and Syriac (Sect. 1.6). We conclude with
a contrastive analysis of the similarities and differences among those languages
(Sect. 1.7), a discussion that provides a backdrop for future chapters, which focus on
computational processing addressing these issues. Throughout this chapter, phonetic
forms are given between [square brackets], phonemic forms are between /slashes/
and glosses are listed between “double quotes”.

2In fact, McCarthy [59] abstracts the pattern further by assuming an additional morpheme,
vocalization (or vocalism), but we do not need this level of abstraction here. Many terms are used to
refer to the concept “pattern”. In addition to pattern and template, researchers may encounter wazn
(from Arabic grammar), binyan (from Hebrew grammar), form and measure. The term pattern is
used ambiguously to include or exclude vocalisms, i.e., vocalism-specified pattern and vocalism-
free pattern [41].
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1.2 Amharic

Amharic is the official language of Ethiopia, the first language of approximately
30 % of the population of the country, 21,631,370 people, according to the 2007
census. As the working language of the federal government and the language of
education in many regions of Ethiopia outside the Amhara region, Amharic is also
spoken by many Ethiopians as a second language. It is also the native language
of perhaps several million Ethiopian immigrants, especially in North America and
Israel.

Amharic belongs to the well-established Ethiopian Semitic (or Ethio-Semitic,
occasionally also African Semitic) branch of South Semitic. Like the 113 other
Ethiopian Semitic languages, Amharic exhibits typical Semitic behavior, in par-
ticular the pattern of inflectional and derivational morphology, along with some
characteristic Ethiopian Semitic features, such as SOV word order, which are
generally thought to have resulted from long contact with Cushitic languages.

Among the other Ethiopian Semitic languages, the most important is Tigrinya,
with approximately 6.5 million speakers. It is one of the official languages of Eritrea,
where it is spoken by more than half of the population, and the official language of
Ethiopia’s northernmost province of Tigray. Most of what appears in this section
applies to Tigrinya as well as Amharic. The most important differences are as
follows.

• Like other Semitic languages, but unlike Amharic, Tigrinya has productive
broken plurals, as well as external suffixed plurals.

• Alongside the prepositional possessive construction, as in Amharic, Tigrinya has
a possessive construction similar to the Arabic Idafa, although neither noun is
marked for “state”.

• Tigrinya has compound prepositions corresponding to the preposition-
postposition compounds found in Amharic.

• The negative circumfix may mark nouns, adjectives, and pronouns, as well
as verbs.

• The definite article is an independent word, similar to a demonstrative adjective,
rather than a noun suffix.

• Accusative case is marked with a preposition rather than a suffix.
• Yes-no questions are marked with a suffix on the word being questioned.
• There is an unusually complex tense-aspect-mood system, with many nuances

achieved using combinations of the three basic aspectual forms (perfect, imper-
fect, gerund) and various auxiliary verbs.

3Because the language boundaries are not well-defined within the Gurage dialects, there is no
general agreement on how many Ethiopian Semitic languages there are.
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1.2.1 Orthography

Unlike Arabic, Hebrew, and Syriac, Amharic is written using a syllabic writing
system, one originally developed for the extinct Ethiopian Semitic language Ge’ez
and later extended for Amharic and other Ethiopian Semitic languages [18, 65]. As
in other abugida4 systems, each character of the Ge’ez (or Ethiopic) writing system
gets its basic shape from the consonant of the syllable, and the vowel is represented
through more or less systematic modifications of these basic shapes.5

Amharic has 26 consonant phonemes, 27 if we count the /v/ that is used in
foreign loan-words, and 7 vowels. For four of the consonants (/’/, /h/, /s/, and /s’/),
the writing system makes distinctions that existed in Ge’ez but have been lost in
Amharic. There is no single accepted way to transliterate Amharic. We use the
following symbols to represent consonants (in the traditional order): h, l, m, s, r,
š, q, b, t, č, n, ň, ’, k, w, z, ž, y, d, j, g, t’, č’, p’, s’, f, p. And we use these
symbols for the vowels, again in the traditional order: @, u, i, a, e, 1, o. Thus the basic
character set consists of one character for each combination of 33 consonants and 7
vowels. There are also 37 further characters representing labialized variants of the
consonants followed by particular vowels. The complete system has 268 characters.
There is also a set of Ge’ez numerals, but nowadays these tend to be replaced by the
Hindu-Arabic numerals used in European languages.

Although the Amharic writing system is far less ambiguous than the Arabic,
Hebrew, and Syriac alphabets when these are used without vocalization diacritics,
the system does embody two sorts of ambiguity. First, as in other abugida systems,
one of the characters in each consonant set has a dual function: it represents that
consonant followed by a particular vowel, and it represents a bare consonant, that
is, the consonant as the coda of a syllable. In the Ge’ez writing system, the vowel
for these characters is the high central vowel /1/, traditionally the sixth vowel in the
set of characters for a given consonant. This ambiguity presents no serious problems
because the vowel /1/ is usually epenthetic so that its presence or absence is normally
predictable from the phonetic context.

A more serious sort of ambiguity results from the failure of the writing system to
indicate consonant gemination. Gemination is a characteristic feature of Amharic,
possible with all but two of the consonants and in all positions except initially.
Gemination has both lexical and grammatical functions and is quite common;
most words contain at least one geminated consonant, and spoken Amharic lacking
gemination sounds quite unnatural [4]. In practice, there are relatively few minimal
pairs because of redundancy but the existing minimal pairs include some very
common words, for example, al@ “he said”, all@ “there is”. Syntax must be relied on

4In fact the name abugida, representing a category of writing system with scores of exemplars,
comes from one name of the Ge’ez script as well as the pronunciations of the first four characters
of the script in one traditional ordering.
5For the actual character set, see http://en.wikipedia.org/wiki/Amharic_language#Writing_system.

http://en.wikipedia.org/wiki/Amharic_language#Writing_system
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to disambiguate these words. The fact that there are few minimal pairs differing only
in gemination means that gemination can usually be restored from the orthography,
permitting text-to-speech systems to incorporate this crucial feature [4].

1.2.2 Derivational Morphology

Lexicon

As in other Semitic languages, verb roots are the basis of much of the lexicon of
Ethiopian Semitic languages.

Alongside verbs proper, there is the category of so-called composite verbs,
a defining feature of Ethiopian Semitic languages [3]. These consist of a word
in an invariant form, the composite verb “lexeme”, followed immediately by an
inflected form of one or another of the verbs al@ “say”, ad@rr@g@ “do, make”,
or ass@ññ@ “cause to feel”. A small number of the composite verb lexemes are
monomorphemic, underived forms, for example, quč’č’ “sit”, z1mm “be quiet”, but
most are derived from verb roots (see below), for example, k1ff1tt from the root k.f.t
“open”. In combination with al@, the result is an intransitive verb; in combination
with ad@rr@g@ or ass@ññ@ a transitive verb.

Nouns, adjectives, and numerals have similar morphosyntactic properties. Nouns
are specified for definiteness, but there is no counterpart to the “status” (construct
vs. absolute) known in Arabic or Hebrew. Many nouns are derived from verb roots,
for example, n@ji “driver” from n.d.’ “drive”, t’1qs “quotation” from t’.q:.s “quote”,
m@l@t’t’@fiya “glue” from l.t’:.f “stick (together)”. Many others are not, for example,
bet “house”, sar “grass”, hod “stomach”.

The great majority of adjectives are derived from verb roots, for example, k1fu
“bad, evil” from k.f.’ “become bad, evil”, l@flafi “talkative” from l.f.l.f “talk too
much”, b1rtu “strong” from b.r.t.’ “become strong”.

Amharic has a small number of monomorphemic, underived adverbs and con-
junctions, for example, m@ce “when”, g1n “but”. However, most expressions with
adverbial or conjunctive function consist of nouns, usually with prepositional
prefixes and possibly postpositions as well, or subordinate clauses of one sort
or another, for example, m@j@mm@riya “first”, lit. “beginning (n.)”; b@g1mm1t
“approximately”, lit. “by guess”; s1l@zzih “therefore”, lit. “because of this”. Espe-
cially common are clauses with a verb in the gerund form, including composite
verbs including a gerund form of the verbs al@ or ad@rr@g@: q@ss b1lo “slowly
(3 pers.sing.masc.)”, z1mm b1yye “silently, without doing anything (1 pers.sing.)”.
Note that the gerund, like all Amharic verbs, agrees with its subject, so these
adverbials vary with the main clause subject.

Amharic has approximately nine prepositions. The one-syllable prepositions
are treated as prefixes; the two-syllable prepositions may be written as prefixes
or as separate words. Prepositions occur with and without a much larger set of
postpositions. Examples: betu “the house”, 1betu “at/in the house”, w@d@ betu “to
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the house”, 1betu w1st’ “inside the house”, k@betu w1st’ “from inside the house”,
1betu at’@g@b “next to the house”.

Root and Pattern Processes

Amharic morphology is very complex (for details, see Leslau [56] or Teferra and
Hudson [69]). As in other Semitic languages, word formation relies primarily on
root-and-pattern morphology. As an example, consider the root s.b.r, which is the
basis of many words having to do with the notion of breaking. Within the verb
system, each root appears in four different tense-aspect-mood (TAM) forms and up
to ten different forms representing various derivational categories such as causative
and reciprocal. These derivational categories correspond to the forms of Arabic and
the binyanim of Hebrew. As in the other languages, each has a rough meaning
that may or may not hold for particular roots. For example, the “passive-reflexive”
pattern denotes the passive for a root like s.b.r “break” but the transitive active for a
root like r.k.b “receive”.

Each combination of TAM and derivational category defines a particular pattern
template that combines with roots to form a verb stem. For example, the pat-
tern C1:@C2:@C3 represents the imperfect TAM and passive-reflexive derivational
category (the C’s indicate the consonant slots, and “:” indicates gemination). In
combination with the root s.b.r, this pattern yields the stem ss@bb@r “is broken”.

Nouns and adjectives are formed from a verb root through the application of other
patterns. For example, the pattern aC1:@C2aC2@C3 forms a manner noun, ass@bab@r
“way of breaking”, and the pattern m@C1C2@C3 forms the infinitive, m@sb@r “to
break”.

Most of the members of the composite verb lexeme class [3], discussed above,
are also derived from verb roots through root-pattern morphology. For sim-
ple three-consonant roots, the main patterns are C11C2:1C3:, C1@C2@C3:, and
C11C21C3C21C3:. Thus from the root s.b.r, we have s1bb1rr, s@b@rr, and s1b1rb1rr.
The meanings of these are described as “intensive”, “attenuated”, and “distributive”
respectively [3].

As in other Semitic languages, further complexity results from the possibility
of four- and five-consonant roots and from roots which may behave as though
they consist of one or two consonants because of the special treatment of certain
consonants and because of historical changes. For example, the root meaning “kiss”
was originally s.Q.m, but the pharyngeal consonants have been lost in the modern
language, resulting in a defective class with only two explicit consonants in each
root. For this class, the imperfect passive-reflexive pattern is C1:aC2, for example,
ssam “is/are kissed”.

Within the three-consonant roots, Ethiopian Semitic languages have three lexical
subclasses, traditionally referred to as the A, B, and C classes, which correspond
to different derivational patterns in other Semitic languages. The B class is
characterized by the gemination of the second root consonant in nearly all patterns,
the C class by the presence of the vowel a between the first and second consonant in
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all patterns. Membership of a root in one or another of these classes is lexical. For
example, the A root t’.b.q means “be tight”, while the B root t’.b:.q means “wait”.
In all, there are roughly 25 classes of roots, including subclasses of the A, B, and
C classes and multiple classes for four- and five-consonant roots, each with its own
set of patterns.

Other Derivational Processes

Other derivational processes are based on suffixation. For example, many adjectives
are formed from nouns through the addition of the suffixes -mma and -awi : w1ha
“water”) w1hamma “watery”, ab1yot “revolution”) ab1yotawi “revolutionary”.

1.2.3 Inflectional Morphology

Inflectional morphology consists mostly of suffixes, but sometimes of prefixes or
circumfixes, and sometimes of pattern changes.

Verbs

As noted in Sect. 1.2.2, verbs inflect for TAM through the various patterns that also
convey derivational categories such as passive and reciprocal. The four TAM cate-
gories are traditionally referred to as perfect(ive), imperfect(ive), jussive-imperative,
and gerund(ive). The perfect and imperfect forms, alone or in combination with
various auxiliary verbs, function as indicative main clause verbs and, in combination
with various prefixes, as subordinate clause verbs as well. The jussive corresponds
to one sort of subjunctive in other languages: y1mt’u “let them come”. The gerund,
also called converb or continuative, is a subordinate form used in combination with
a main clause verb (see Sect. 1.2.4).

Verbs in all four TAM categories also inflect for subject person, number, and
(in second and third person singular) gender.6 Each of the TAM categories has
its own set of suffixes and/or prefixes for person–number–gender. The affixes for
imperfect and jussive-imperative, a combination of prefixes and suffixes, are almost
identical. For perfect and gerund, the inflections are all suffixes. As an example, for
the simple derivational category, the third person plural forms for the root s.b.r are
as follows (the subject agreement affixes are in bold): perfect s@bb@ru, imperfect
y1s@bru, jussive y1sb@ru, gerund s@brew.

6In some other Ethiopian Semitic languages, such as Tigrinya, a distinction is made between
masculine and feminine in the second and third person plural as well.
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Verbs in all four TAM categories can also take object suffixes. There is a set of
direct object suffixes, and there are two sets of indirect object suffixes, distinguished
by the two prepositional suffixes -bb- and -ll- that they begin with. Examples:
s@bb@r@w “he broke it”, s@bb@r@llat “he broke (sth.) for her”. Unlike in some other
Semitic languages, only one object suffix is possible on a given verb. For more on
the function of these suffixes, see Sect. 1.2.4 below.

Verbs in the imperfect, perfect, and jussive-imperative (but not gerund) may
also take the negative circumfix (main clause indicative verbs) or prefix (subor-
dinate or jussive-imperative verbs): als@bb@r@m “he didn’t break”, att1sb@r “don’t
break (sing.masc.)!” Imperfect or perfect verbs may also take the relative prefix
y@(mm1), used for verbs in relative clauses and some other subordinate clause
types (Sect. 1.2.4): y@s@bb@r@w “(he) who broke it”, y@mm1ts@briw “which you
(sing.fem.) break”. Finally, a small set of prepositional and conjunctive prefixes
and conjunctive/adverbial suffixes is possible on imperfect and perfect verbs:
1ndatsebrut “so that you (pl.) don’t break it” bis@brewm “even if he breaks it”.

Counting the verb stem as two morphemes (root and pattern), an Amharic verb
may consist of as many as ten morphemes: l@mmayan@bbull1n1m “also for they who
do not read to us” l@-mm-a-y-{n.b.b+aC1@C2C3}-u-ll-n-m.

Nominals

Because of their similar morphosyntax, nouns, pronouns, adjectives, and numerals
are grouped together in this section.

Nouns inflect for number, case, and definiteness. There are two number cate-
gories, singular and plural. Plurals are usually formed by the suffix -očč; broken
plurals are rare and in all cases seem to be loanwords from Ge’ez. The plural
suffix is not obligatory when plurality is clear from the context: sost ast@mari/sost
ast@mariwočč “three teachers”. When it is used, the plural suffix indicates specificity
as well as plurality [52].

The definite article takes the form of a suffix; it has the masculine form -u and
the feminine form -wa or -itu. The definite suffix follows the plural suffix if there is
one. Amharic has no indefinite article.

Amharic subjects are unmarked. Definite, and some indefinite, direct objects
take the accusative suffix -n. Oblique cases are signaled by prefixed prepositions,
sometimes in combination with postpositions. Example: m@skot “window”, d1ngay
“stone”, yohann1s m@skotun b@d1ngay s@bb@r@w “Yohannis broke the window with
a stone”. Amharic nouns have no genitive form; instead genitive and possession are
indicated by the prepositional prefix y@: y@betu w@l@l “the floor of the house”.

Noun gender can best be described as flexible [56]. While there are strong
tendencies, for example, vehicles, countries, and female animals are normally
feminine, it is possible to override these tendencies for pragmatic effect. Even
male humans may be referred to with feminine pronouns, feminine demonstratives,
and feminine verb agreement affixes, when the speaker wishes to convey affection
toward the referent or attribute skillfulness or smallness to the referent.
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Nouns may also take one or another of the same set of conjunctive/adverbial
suffixes as verbs: betum “also the house”.

Demonstrative pronouns and adjectives have singular masculine, singular fem-
inine, and plural forms: ya bet “that house”, yačči k@t@ma “that city”. Other
adjectives do not inflect for gender, but they may have plural forms, especially
in headless noun phrases. Adjective plurals, unlike nouns, are often indicated by
reduplication, sometimes in combination with the plural suffix -očč: t1ll1q “big”,
t1l1ll1q betočč “big houses”. It is also possible to use plural adjectives with the
singular form of nouns: addis “new”, n@g@r “thing”, adaddis n@g@r “new things”.

Adjectives and numerals may also take the accusative suffix, the definite suffix,
and prepositional prefixes: k@t1ll1qu “from the big (one)”.

As in other Semitic languages, possessive adjectives take the form of suffixes
on the modified noun. These follow the plural suffix and precede the accusative
suffix. Examples: bete “my house”, betoččačč1n “our houses”, betoččačč@w “their
houses”.

1.2.4 Basic Syntactic Structure

Noun Phrases

An Amharic noun phrase has explicit number, case, and definiteness. The accusative
suffix appears obligatorily on definite direct objects and optionally on indefinite
direct objects. An unusual feature of the language is the placement of the mor-
phemes marking case (either the accusative suffix or one or another prepositional
prefix) and definiteness [37,55]. These are affixed to the noun itself only when it has
no modifiers. If the noun has adjective or relative clause modifiers, the morphemes
are normally affixed to the first of these. Examples: betun “the house (acc.)”,
t1ll1qun bet “the big house (acc.)”, y@g@zzawn t1ll1q bet “the big house (acc.) that
he bought”,

Headless noun phrases are common. These consist of one or more relative clauses
and adjectives. Examples: t1ll1qun “the big one (acc.)”, y@g@zzawn “the one (acc.)
that he bought”,

Clauses

Unlike in other Semitic languages, all Amharic clauses are headed by verbs. The
copula, n@w, is a defective verb with only main clause present forms. Its past is filled
by the defective verb n@bb@r, which also serves as the past of the defective verb
of existence all@. In other cases, the copula is replaced by the perfect, imperfect,
jussive-imperative, or gerund of either the verb nor@ “live” or the verb hon@
“become”.
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The basic word order of all Ethiopian Semitic languages is subject-object-verb
(SOV), a feature that probably results from contact with Cushitic languages. As
is common in SOV languages, the order of subject, object, and oblique arguments
of the verb is somewhat flexible. In particular, for pragmatic reasons the subject
can follow another argument: yohann1s m@skotun s@bb@r@w, m@skotun yohann1s
s@bb@r@w, “Yohannis broke the window”.

As in other Semitic languages, verbs agree with their subjects in person, number,
and (in second and third person singular) gender.7 Verbs also agree with definite
direct or indirect objects, but not both. As discussed in Sect. 1.2.3, there are three
sets of object agreement suffixes. This three-way split within the verbal morphology
system maps in complex ways onto explicit syntactic arguments of the verb [45].
That is, direct object verb suffixes correspond usually but not always to accusative
syntactic arguments, and indirect object verb suffixes correspond usually but not
always to explicit prepositional phrases (noun phrases with prepositional prefixes).
The -ll- indirect object suffix agrees with dative and benefactive arguments, while
the -bb- suffix agrees with locative, instrumental, and adversative arguments. Exam-
ples: l@hirut s@t’t’at “he gave (it) to Hirut” (direct object suffix (3 pers.sing.fem.)
agrees with explicit syntactic dative), l@hirut s@rrallat “he made (it) for Hirut”
(indirect object suffix agrees with explicit syntactic benefactive).

Impersonal verbs [56] complicate the picture further. The morphological subject
of these verbs is always third person singular masculine, and they take an obligatory
direct object agreement suffix that refers to the experiencer: hirut rabat “Hirut is
hungry”. The verb of possession behaves similarly; it makes use of the verb of
existence all@ with direct object suffixes referring to the possessor. The morpho-
logical subject of the verb is the possessed object or objects. hirut sost w@nd1mmočč
alluwat “Hirut has a brother” (subject agreement 3 pers.plur., object agreement 3
pers.sing.fem.)

As in other Semitic languages, pronoun subjects and pronoun objects are omitted
unless they are emphasized. This fact, in combination with the elaborate derivational
and inflectional verb morphology, means that sentences consisting of a verb alone
or a main verb and an auxiliary verb are not uncommon: alt’@yy@qnat1m “we didn’t
visit her”, laflallač1hu “shall I boil (sth.) for you (pl.)?”, awwadd@dun “they made
us like each other”.

Main clause verbs are either in the perfect or a compound imperfect formed
from the simple imperfect plus conjugated suffix forms of the defective verb of
existence all@. Subordinate clause verbs are in the perfect, simple imperfect, or
gerund. t1f@ll1giyall@š “you (fem.sing.) want”, b1tt1f@ll1gi “if you (fem.sing.) want”.

Cleft constructions are very common in Amharic [51]. Indeed for questions, cleft
constructions are probably more common that non-cleft constructions. In a cleft
sentence, the focused argument is placed first, followed by the conjugated copula,

7Some other Ethiopian Semitic languages distinguish masculine and feminine in the second and
third person plural as well.
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followed by other arguments of the original verb, followed by the verb in relativized
form: m1nd1n n@w y@s@bb@r@w “what did he break?” lit. “what is it that he broke it”.

Relative clauses make use of the relative imperfect or perfect form of the verb:
y@s@bb@r@w “that he broke”, y@mmis@br@w “that he breaks”.

Adverbial clauses are usually indicated through the use of prefix conjunctions on
the relative form of the verb (in which case the initial y@ is dropped) or the bare
imperfect: s1l@mmis@br@w “because he breaks it”, bis@br@w “if he breaks it”.

Nominalizations in Amharic take two forms. Either the verb of the nominalized
clause appears in the (conjugated) relative form with the prefix conjunction 1nd@
“that”, or the verb appears in the (unconjugated) infinitive form, with the verb’s
original subject in the form of a possessive suffix. Examples: m1n 1nd@mmig@za
alawq1m “I don’t know what he will buy”; z1g1jju m@honačč@wn g@ll@s’u “they
explained that they were ready”, lit. “they explained their being (acc.) ready”.

As is common in SOV languages, Amharic permits the chaining of a number
of clauses together in a single sentence without explicit conjunctions indicating the
relationship between the clauses. The usual interpretation is sequentiality. All verbs
but the final one appear in the gerund form. The final verb may be perfect, compound
imperfect, jussive, or imperative. All of the gerund forms agree with the subject of
the final verb. Example: 1bet t@m@ll1so rat b@lto t@ñña “He returned home, ate dinner,
and went to bed” lit. “Returning (3 pers.sing.masc.) home, eating (3 pers.sing.masc.)
dinner, he went to bed”.

1.3 Arabic

The term “Arabic language” is often used to refer collectively to Modern Standard
Arabic (MSA) and its dialects. MSA is the official language of the Arab World,
a region of 22 countries. Arabic is also an official language of Chad, Eritrea and
Israel. With a collective population of almost 300 million people, Arabic is the most
commonly spoken Semitic language.

While MSA is the primary written language of the media and education, the
dialects, which are historically related to MSA, are the truly native informal spoken
media of communication for daily life. The dialects, which vary geographically and
socially, are not taught in schools or standardized. They are the primary linguistic
form used to express modern Arab culture, songs, movies and TV shows. Although
the language-dialect situation of Arabic seems similar to many across the world, two
aspects set it apart: (a) the high degree of difference between standard Arabic and
its dialects, often compared to Latin and the Romance languages [39]; and (b) the
fact that standard Arabic is not any Arab’s native language [41]. The two varieties
of Arabic coexist along the lines of formality in what is termed a state of diglossia
[35]: formal written (MSA) versus informal spoken (dialect); there is a large mixing
area in between [5, 6]. For more information on MSA, see Holes [47].
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1.3.1 Orthography

Arabic Script

Arabic is written using the Arabic script, a right-to-left alphabet also used to write
many languages around the world which are not related to Arabic such as Persian,
Kurdish, Urdu and Pashto. Arabic dialects are by default written in Arabic script
although there are no standard dialectal spelling systems [43].

To facilitate reading of Arabic examples, we employ a romanized “translitera-
tion” scheme. Unlike the term “transcription,” which denotes an orthography that
characterizes the phonology or morpho-phonology of a language, the term “translit-
eration” denotes an orthography that uses carefully substituted orthographical
symbols in a one-to-one, fully reversible mapping with that language’s customary
orthography (in our case, Arabic script). This specific definition of transliteration
is sometimes called a “strict transliteration” or “orthographical transliteration”
[7]. While the International Phonetic Alphabet (IPA) or some variant of it may
be the best choice for phonological transcription, it is not sufficient for strict
orthographic transliteration purposes. The Buckwalter Arabic transliteration scheme
[14] is perhaps one of the most commonly used strict transliteration schemes for
Arabic. The scheme we use is the Habash-Soudi-Buckwalter (HSB) scheme [42],
which extends Buckwalter’s scheme to increase its readability while maintaining
the one-to-one correspondence with Arabic orthography as represented in standard
encodings of Arabic, such as Unicode. The HSB scheme consists of the following
symbols: (in alphabetical order) � A, �� b, �� t, �� � , �� j, � H, � x, 	 d,


	 ð, � r, 
� z,

� s, �� š,  S, 
 D, � T, 
� Ď, � & ,

� � ,


� f,
�� q, � k, � l, � m, 
� n, � h, � w, ��

y; (the Hamza and Hamzated forms) ’ �, Â
�
�, Ǎ ��, Ā

�
�, ŵ ���, ŷ ���; (the Ta-Marbuta)

„ ��8; (the Alif-Maqsura) ý �; and (the diacritics) a ��, u  �, i ��, � !�, ã "�, ũ #�, ı̃ �".
Most of the Arabic script letters are written connected to neighboring letters

with few exceptional non-connective or right-connective letters. When connected,
an Arabic letter may change its shape, sometime radically: e.g., the letter � h: � $%&
(initial-medial-final and standalone, respectively). Furthermore, some combinations
of Arabic letters join to form special obligatory ligatures: e.g., the letters �+� l+A

are written as ' not ()*. Computer encodings abstract away from the various letter
shapes and ligatures to simply encode the letter itself. The Arabic letter consists of a
basic letter form and obligatory dots that together define the letter. These dots should
not be confused with the optional diacritics that are used for specifying short vowels,
consonantal gemination and nunation (a nominal word-final morpheme specifying
indefiniteness and written only as a diacritic).

8In IPA and Maltese, the symbol „ is used for voiceless pharyngeal fricative or (� H). In HSB, it

reflects the two letters that compose the Ta-Marbuta symbol (
�� „): � h and �� t.
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Arabic Spelling

Arabic spelling rules utilize its script as an impure abjad: although diacritics are
omitted most of the time, long vowels are always written in Arabic using a combina-
tion of an omittable diacritic short vowel and non-omittable compatible consonant,
e.g., [u:] is written as uw. Additionally, Arabic uses two morphophonemic letters:�� „ is the Ta-Marbuta, feminine ending morpheme, and � is the Alif-Maqsura,

derivational marker of the word’s root radical �� y realizing as the vowel [a]. Some

letters in Arabic are often spelled inconsistently which leads to an increase in both
sparsity (multiple forms of the same word) and ambiguity (same form corresponding

to multiple words), e.g., variants of Hamzated Alif,
�
� Â or �� Ǎ, are often written

without their Hamza (� ’ ): � A; and the Alif-Maqsura (or dotless Ya) � ý and the

regular dotted Ya �� y are often used interchangeably in word final position [22].

1.3.2 Morphology

In discussing Arabic morphology, it is useful to distinguish between operations
related to the type or form of the morphological process as opposed to its function
[40, 68].

In terms of morphological form, Arabic, in a typical Semitic manner, uses both
templatic and concatenative morphemes. Concatenative morphemes form words
through sequential concatenation, whereas templatic morphemes are interdigitated.
Functionally, like most other languages of the world, we can distinguish between
derivational morphology and inflectional morphology. In Arabic morphological
form and function are independent although most templatic processes are deriva-
tional and most concatenative processes are inflectional. There are some important
exceptions which we allude to below.

Templatic Morphology

There are two types of templatic morphemes: roots and templates.9 The root
morpheme is a sequence of mostly three consonantal radicals which together signify
some abstract meaning. For example, the words +� �), katab “to write”, +� �-(. kAtib

“writer/author/scribe”, �� /�)01 maktuwb “written/letter”, +� �)01 maktab “office”

and
�$)� �)01 maktaba„ “library” all share the root morpheme k.t.b “writing-related”.

Root semantics is often, however, idiosyncratic. For example, the semantically

9Templates are sometimes further split into patterns and vocalisms [59].
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divergent words 234 laHm “meat” and 234 laHam “to solder” also have the same root
l.H.m [41]. The template is an abstract pattern in which roots are inserted. The
template like the root provides some meaning component. For example, the template
maC1C2aC3, often indicating location, combines with the roots �� . ��.� k.t.b

“writing-related” and �.�.� & .m.l “work-related” to create the nouns +� �)01 maktab

“office” and 5671 ma&mal “laboratory/factory”.

Concatenative Morphology

The templatic morphemes form the stem onto which concatenative affixes (prefixes,
suffixes and circumfixes) and clitics (proclitics and enclitics) attach. Clitics are mor-
phemes that have the syntactic characteristics of words, but show evidence of being
phonologically bound to another word [58], e.g., the proclitic conjunction +� w+

“and” or the object pronoun enclitic 2&+ +hm “them”. In this respect, a clitic is dis-
tinctly different from an affix, which is phonologically and syntactically part of the
word and often represents inflectional features, e.g., the suffixes

��+ +„ and ���+ +At
represent the feminine singular and feminine plural inflections, respectively. A word
may include multiple affixes and clitics, e.g., the word (8 
9/)� �)0)�:� wasayaktubuw-
nahA has two proclitics, one circumfix and one enclitic: wa+sa+y+aktub+uwna+hA
(and + will + 3person + write + masculine� plural + it) “and they will write it”.

The combination of both templatic and concatenative morphemes may involve a
number of phonological, morphological and orthographic adjustments that modify
the form of the created word beyond simple interleaving and concatenation. For
example, the feminine singular morpheme,

��+ +„, is turned into ��+ +t when

followed by a possessive clitic: 2&+
��;<�1

�
� Âamiyra„u+hum “princess+their” is

realized as 28�9;<�1
�
� Âamiyratuhum “their princess”.

Derivational Morphology

Derivational morphology creates new words from other words typically through
a template switch and often resulting in a change in part-of-speech (POS).
The root remains constant in the process. For example, the Arabic +� �-(. kAtib

(k.t.b+C1AC2iC3) “writer” can be seen as derived from the verb +� �), katab
(k.t.b+C1aC2aC3) “to write” in the same way the English writer can be seen
as a derivation from write. Although compositional aspects of derivations do exist,
the derived meaning is often idiosyncratic. For example, the masculine noun
+� �)01 maktab “office/bureau/agency” and the feminine noun

�$)� �)01 maktaba„
“library/bookstore” are derived from the root �� . ��.� k.t.b “writing-related” with
the location template maC1C2aC3 [41].
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Inflectional Morphology

In inflectional morphology, the core meaning and POS of the word remain intact
and the extensions are always predictable and limited to a set of possible features.
Inflectional features are all obligatory and must have a specific (non-nil) value
for every word. In Arabic, there are eight inflectional features. Aspect (perfective,
imperfective, imperative), mood (indicative, subjunctive, jussive), person (1st,
2nd, 3rd) and voice (active, passive) only apply to verbs, while case (nomina-
tive, accusative, genitive) and state (definite, indefinite, construct) only apply to
nouns/adjectives. Gender (feminine, masculine) and number (singular, dual, plural)
apply to both verbs and nouns/adjectives.

Clitics are similar to inflectional features in that they do not change the core
meaning of the word; however, they are all optional. Arabic clitics include con-
junctions, verb particles, nominal prepositions, the definite article and pronominal
enclitics that can serve as possessives of nouns and objects of verbs and prepositions.

Form-Function Independence

Arabic morphological form and function are independent. Both templatic and
concatenative morphemes can function derivationally or inflectionally, with the
exception of the roots, which are always derivational. The majority of deriva-
tional morphology is templatic and the majority of inflectional morphology is
concatenative. The most important exception is the templatic plural, often called
“broken plural”, which is formed through change of templates as opposed to the
sound plurals formed through affixation. For example, compare the following two
plurals of the noun +� �-(. kAtib “writer”: �� (�), kut�Ab (broken) “writers” and
��()� �- (. kAtib+At (sound) “writers [fem]”. More than half of all plurals in Arabic

are broken [2]. Another example of form-function independence is the derivational
suffix Ya of Nisba �� + +iy�, which maps nouns to adjectives related to them, e.g.,

=�>�
�), kutub+iy� “book-related” is derived from the noun +� �), kutub “books”, a

broken plural itself of the noun �� (�), kitAb “book”. For other aspects of form-
function independence in Arabic, see Habash [41].

Dialectal Arabic Morphology

Arabic dialect morphology is simpler in some respects and more complex in
others compared to MSA. Dialects overall lost the case and mood inflections and
merged feminine and masculine plurals and duals in verbs among other changes.
However, Arabic dialects introduce additional clitics, some with new functionality.
For example, the non-MSA circum-clitic ��CC(1 mACC š which is used to mark



18 R. Fabri et al.

negation appears in several dialects. Another example of change is the MSA future
proclitic C� saC, which is replaced by C� HaC in Levantine and C 
� �a+ in

Moroccan. For more information on Arabic dialects, see Cowell [17], Erwin [23],
Abdel-Massih et al. [1], and Harrell [44].

Morphological Ambiguity

Arabic’s optional diacritics, inconsistent spelling of some letters, together with the
language’s complex morphology lead to a high degree of ambiguity: the Buckwalter
Arabic Morphological Analyzer (BAMA), for instance, produces an average of
12 analyses per word [15] corresponding to almost 7 diacritizations and almost 3
lemmas.

1.3.3 Basic Syntactic Structure

Morphology and Syntax

In morphologically rich languages, such as Arabic, many syntactic phenomena are
expressed not only in terms of word order but also morphology. For example, Arabic
subjects of verbs have a nominative case and adjectival modifiers of nouns generally
agree with the noun they modify in case, gender, number and definiteness.

Sentence Structure

Arabic has two types of sentences: verbal sentences (VS) and nominal (sometimes
called copular, or equational) sentences (NS). The prototypical VS form is Verb-
Subject-Object(s). Arabic is a pro-drop language: in the case of a pronominal
subject, the verb expresses the person, gender and number of the subject. However,
with non-pronominal subjects, the verb agrees in person (3rd) and gender only,
while number defaults to singular. This is referred to as partial agreement.

The prototypical NS has the form of Subject-Predicate or Topic-Complement.
The subject is typically a definite nominative noun, proper noun or pronoun and the
predicate is an indefinite nominative noun, proper noun or adjective that agrees with
the subject in number and gender. The predicate can be a prepositional phrase (PP),
in which case no agreement is shown.

A complex sentence structure is formed from an NS with a VS predicate
producing a Subject-Verb-Object order. Here, the subject and verb agree in full
(gender, number and person).
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Nominal Phrase Structure

Arabic adjectives follow the nouns they modify in a nominal phrase (NP). Adjec-
tives and nouns agree in gender, number, definiteness and case, with the exception
of irrational (non-human) plural nouns whose adjectives are feminine singular.

Arabic also has a possessive/genitive construction, called Idafa, which relates
two nouns: the first is the possessed and the second is the possessor. The first noun
is in the construct state, and the second takes a genitive case and is typically definite.
An Idafa chain can be formed by adding an additional element to the beginning of
the NP. For example, 5?� ;* � ���()�: @)��-( 
A1 mfAtyH syAr„ Alrjl (keys-car-the+man)

translates as “The man’s car keys”. Adjectives modifying the head of an Idafa
construction agree with it in case; but they agree with its dependent in definiteness.

Relative Clauses

Relative clauses modify the noun they follow. If the modified noun is definite, the
relative clause is introduced by a relative pronoun which agrees with the noun it
modifies in gender and number (irrationality gets exceptional agreement). Relative
clauses of indefinite nouns are not introduced with a relative pronoun.

Arabic Dialect Syntax

Arabic dialects are not very different syntactically from MSA. For example, both
SVO and VSO orders exist in the dialects although the SVO order is more
dominant. Some of MSA’s complex syntactic phenomena such as irrational plural
agreement are maintained in the dialects, while case agreement is gone since
dialects do not inflect for case. For more information on dialectal Arabic syntax, see
Brustad [13].

1.4 Hebrew

Hebrew is one of the two official languages of the State of Israel,10 spoken natively
by half of the population and fluently by virtually all the (over seven million)
residents of the country. Hebrew exhibits clear Semitic behavior11; in particular, its
lexicon, word formation and inflectional morphology are predominantly Semitic.12

10The other is Arabic.
11In spite of some recent claims to the contrary [48, 75].
12Parts of the discussion in this section are based on Itai and Wintner [49].
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Hebrew is unique among the Semitic languages (indeed, among the world’s
languages) in that it has been ‘dormant’ for several centuries, used primarily for
religious and academic purposes, and little, if at all, as a daily spoken language.
Modern Hebrew was ‘revived’ in the end of the nineteenth century; while it is
undoubtedly based on the infrastructure of older layers of Hebrew, it was heavily
influenced by Yiddish, Slavic languages, and other languages spoken by Jews
during nearly two millennia. In this chapter, the term ‘Hebrew’ refers to Modern
Hebrew only.

1.4.1 Orthography

Hebrew is written in the Hebrew alphabet, a 22-letter abjad [18, 65]. To facilitate
readability we use a straightforward transliteration of Hebrew in this chapter,
where the characters אבגדהוזחטיכלמנסעפצקרשת� (in Hebrew alphabetic order) are
transliterated thus: abgdhwzxTiklmnsypcqršt. There are two main standards for
the Hebrew script: one in which vocalization diacritics, known as niqqud “dots”,
decorate the words, and one in which the dots are missing, and other characters
represent some, but not all of the vowels.13 Most of the texts in Hebrew are of
the latter kind. While the Academy for the Hebrew Language publishes guidelines
for transcribing undotted texts [36], they are only partially observed. Thus, the
same word can be written in more than one way, sometimes even within the same
document. For example, chriim “noon” can be spelled chrim.

The script dictates that many particles, including four of the most frequent
prepositions, the definite article h “the”, the coordinating conjunction w “and” and
some subordinating conjunctions, all attach to the words that immediately follow
them. When the definite article h is prefixed by one of the prepositions b “in”, k
“as”, or l “to”, it is assimilated with the preposition and the resulting form becomes
ambiguous as to whether or not it is definite. For example, bth can be read either as
b+th “in tea” or as b+h+th “in the tea”. Consequently, the form šbth can be read as
an inflected stem (the verb “capture”, third person singular feminine past), as š+bth
“that+field”, š+b+th “that+in+tea”, š+b+h+th “that in the tea”, šbt+h “her sitting”
or even as š+bt+h “that her daughter”. See Table 1.1.

These features of the writing system imply that Hebrew texts tend to be highly
ambiguous. First, the first and last few characters of each token may be either part of
the stem or bound morphemes (prefixes or suffixes). Second, the lack of explicitly
marked vowels yields many homographs. See a detailed discussion in Sect. 1.4.4.

13The undotted script is sometimes referred to as ktiv male “full script”, whereas the dotted script,
but with the diacritics removed, is called ktiv xaser “lacking script”. These terms are misleading,
as any representation that does not depict the diacritics would lack many of the vowels.
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1.4.2 Derivational Morphology

Root and Pattern Processes

Hebrew morphology is rich and complex. The major word formation machinery
is root-and-pattern. As an example of root-and-pattern morphology, consider the
root k.t.b, which denotes a notion of writing. Hebrew has seven verbal patterns,
which contribute to the meaning of the stem in productive but not fully predictable
ways. Thus, construed in the pa’al pattern CaCaC (where the ‘C’s indicate the
slots), the root k.t.b yields ktb [katav] “write”; whereas in the hif’il pattern hiCCiC,
which is typically a causative, it yields hktib [hik̄tiv] “dictate”. Similarly, the
(nominal) pattern haCCaCa usually denotes nominalization; hence hktbh [hak̄tava]
“dictation”. The pattern maCCeCa often denotes instruments; construed in this
pattern, the root k.t.b yields mktbh [mak̄teva] “writing desk”.

After the root combines with the pattern, some morpho-phonological alternations
take place, which may be non-trivial: for example, the hitCaCCut pattern triggers
assimilation when the first consonant of the root is t or d : thus, d.r.š+hitCaCCut
yields [hidaršut]. The same pattern triggers metathesis when the first radical is s or
š : s.d.r+hitCaCCut yields [histadrut] rather than the expected *[hitsadrut]. Semi-
vowels such as w or y in the root are frequently combined with the vowels of the
pattern, so that q.w.m+haCCaCa yields [haqama], etc. Frequently, root consonants
such as w or y are altogether missing from the resulting form.

Other Derivational Processes

While root-and-pattern is the main word formation process in Hebrew, other
processes are also operational [63]. These include several regular pattern-relating
processes, such as nominalization: each verbal pattern in Hebrew is related to
a pattern whose meaning is typically the nominalization of the meaning of the
corresponding verb. For example, hitCaCeC is related to hitCaCaCut, so that
from htlhb [hitlahev] “be enthusiastic about” one obtains htlhbwt [hitlahavut]
“enthusiasm”. Similarly, CiCeC is related to CiCuC, so that from šipr [šiper]
“improve” one obtains šipwr [šipur] “improvement”.

Other processes are more concatenative in nature, based primarily on suffixation.
Thus, the suffix wt [ut] is frequently used to convert adjectives to nouns, as in
bria [bari] healthy ) briawt [bri’ut] “health”. The suffix wn [on] can be used
to construct the diminutive, as in db [dov] “bear”) dwbwn [dubon] “teddy bear”.
Interestingly, Hebrew also has a non-concatenative diminutive operator that is based
on reduplication: klb “dog”) klblb “doggie”; xtwl “cat”) xtltwl “kittie”; irwq
“green”) irqrq “light green”; etc.
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1.4.3 Inflectional Morphology

Inflectional morphology is highly productive and consists mostly of suffixes, but
sometimes of prefixes or circumfixes, and sometimes of pattern changes.

Verbs

Verbs inflect for number, gender and person (first, second and third) and also for a
combination of tense and aspect/mood, referred to simply as ‘tense’ below. Some
of these variations are obtained by simple concatenation rules, whereas others are
better explained in terms of stem changes. The citation form of Hebrew verbs is
the third person, masculine, singular past form. Consider sgr [sagar] “close”, for
example. Its past tense forms include sgrti [sagarti], sgrt [sagarta], sgrnw [sagarnu],
etc., all of which can be obtained from the citation form by concatenation. Other past
tense forms, such as sgrh [sagra] or sgrw [sagru], can still be explained in terms of
concatenation and simple morpheme-boundary alternations (in this case, reduction
of the last vowel of the stem). However, in the present some inflected forms require a
change in the stem, as in swgr [soger], swgrim [sogrim], etc. The same applies to the
future, some of whose forms are tsgwr [tisgor], isgrw [yisgeru], etc. Consequently,
a good way of accounting for entire verb paradigms is by specifying, for each verb,
not only the citation form but also secondary stems for some of the inflections.

Fortunately, this is not difficult because the secondary stems are determined by
the root and the pattern of the verb. As noted above, verbs can belong to one of seven
patterns, and each pattern is inflected in exactly the same way. Root consonants may
trigger some variations, but these, too, are systematic and regular.

Verb patterns (‘binyanim’) are associated with (vague) meanings. Traditionally,
the nif’al pattern is considered to be the passive of the pa’al pattern, whereas pi’el
denotes reinforcement or intensification, and hif’il denotes causativization. How-
ever, these correspondences are not always clear [63]. They are highly productive in
two cases: pu’al is almost with no exception the passive of pi’el, and huf’al is the
passive of hif’il.

Verbs can take pronominal suffixes, which are interpreted as direct objects. Such
processes, however, become less frequent in contemporary Hebrew, and are usually
associated with archaic language or a high register. In some cases, verbs can also
take nominative pronominal suffixes, but this is now limited to participle forms,
which may be interpreted as nouns.

Participle forms indeed deserve special attention, as they can be used as
present tense verbs, but also as nouns or adjectives. For example, mTps [metapes]
“climbing” can be used as a verb (hwa mTps yl hqir “he is climbing on the wall”),
a noun (hmTps hgiy al hpsgh “the climber reached the summit”), or an adjective
(qniti cmx mTps lginh “I bought a vine [D climbing plant] for the garden”).
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Nominals

Several morphological properties are common to nouns, adjectives, numerals and
even prepositions; they are therefore grouped together in this section. Nouns inflect
for number (singular, plural and dual); the dual form is not productive and is only
preserved on a few nouns, such as those denoting body parts (id [yad] “hand”)
idim [yada’yim] “hands”). Even in these cases, the dual is semantically plural,
except for time expressions (e.g., šntim [shnata’yim] “two years”). Nouns that
denote animate entities inflect for gender (masculine or feminine), although some
exceptions are known [62].

Adjectives inflect for number (only singular and plural) and gender; the feminine
suffix is either h [a], t [et], or it [it]. Numerals also inflect for gender, and
ordinals also inflect for number; several idiosyncrasies occur, especially with the
low numerals.

In addition, all these three types of nominals have two phonologically distinct
forms, known as the absolute and construct states; the latter are used in compounds
[9, 10]. For example, šmlh [simla] “dress” vs. šmlt [simlat], as in šmlt klh “bridal
gown”; or qcr [qacar] “short” vs. qcr [qcar] in [qcar ru’ax] “impatient [Dshort
tempered]”. In the standard Hebrew orthography approximately half of the nominals
appear to have identical forms in both states, a fact which substantially adds to the
ambiguity.

The proto-Semitic three-case system, with explicit indication of nominative,
accusative and genitive cases, is not preserved in Hebrew. Personal pronouns,
however, reflect traces of cases. Distinct pronominal forms exist for the nominative,
accusative, dative and genitive. All these pronouns inflect for number, gender, and
person. In addition, prepositions inflect for exactly these features, in a way that fully
resembles the inflectional paradigm of pronouns (and, to some extent, that of nouns
and adjectives), so that the distinction between inflected pronouns and prepositions
is blurred. For example, the second person, feminine, singular, dative pronoun lk
[lak̄] can be viewed as an inflected form of the preposition l “to”, with a cliticized
pronominal suffix indicating the number, gender and person.

A related phenomenon allows nouns to take possessive pronominal suffixes that
inflect for number, gender and person. The base form for such inflections is the
construct state. Thus, šmlt can combine with k [ek̄] to yield šmltk “your dress”. In
sum, then, the morphological characterization of many nominal forms includes the
specification of their number and gender, as well as the person, number and gender
of potential pronominal suffixes.

Other Closed-Class Items

The main remaining part-of-speech category is that of adverbs. Generally, adverbs
do not inflect, but few exceptions exist (e.g., laT “slowly” and lbd “alone”, which
inflect for person, number and gender). Many adverbs are created from nouns by
adding the preposition b “in”, e.g., b+mhirwt “in+speedDquickly”.
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1.4.4 Morphological Ambiguity

The deficient orthography, including the lack of vowels and the attachment of
frequent particles to the words that follow them, and the morphological complexity
outlined above, greatly contribute to the ambiguity of Hebrew word forms. Itai
and Wintner [49] report that their morphological analyzer produces 2.64 analyses
per word token, on average, on a corpus of newspaper articles, with many tokens
associated with more than a dozen analyses. More recent results show an average
ambiguity level of 3.4 (excluding punctuation), with some tokens associated with
over 20 analyses (Alon Itai, p. c.). These analyses can differ at the level of
segmentation; or they can reflect different morphological features (e.g., one can be
a construct state noun, while the other is absolute); or, in few extreme cases, they
can be identical up to the identity of the stem.

As an example, consider the output produced by the morphological analyzer of
Itai and Wintner [49] on the form šbth, depicted in Table 1.1 (adapted from Itai
and Wintner [49]). Note in particular the last two analyses, which only differ in the
lemma.

1.4.5 Basic Syntactic Structure

The dominant, unmarked word order in Hebrew is subject–verb–object (SVO),
although many variations are possible [8, 38]. In particular, a very common
construction (especially in journalistic jargon) is “verb-second”, whereby the verb
follows some constituent (typically, an adverbial, but sometimes an object) and
precedes the subject and the rest of its complements.

Verbs agree with their subjects in number, gender and person. This facilitates
some flexibility in constituent order, even without explicit case marking. When the
subject is a pronoun, it may be omitted in certain cases, especially in the past and
future tenses.

While clauses may be headed by verbs, this is not mandatory, and “verbless”
predicates, whose heads are adjectives, prepositional phrases or nouns, abound [20].
Typically, in such cases the predicate is indefinite but the subject is definite. Clauses
can also be headed by modals such as crik “it is necessary” or aswr “it is forbidden”,
typically followed by infinitival verb phrases or by finite clauses introduced by š
“that”. A unique construction involves the existentials iš “there is” and ain “there
isn’t”, that behave like verbs in some respects, but are highly idiosyncratic.

Yes/no questions are either formed with the explicit interrogative ham “is it true
that”, or by changing the intonation pattern of the declarative counterpart, with no
change in word order. Wh-questions are formed by fronting an interrogative pronoun
(e.g., mi “who”, lmh “why”) but with no auxiliaries and no change in word order.

Within the noun phrase, nouns typically agree with their adjuncts (adjectives,
demonstrative pronouns, and numerals) in gender and number, but also on definite-
ness. Hebrew only has a definite article, which is marked (as a prefix, h) on nouns,
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adjectives, numerals and demonstrative pronouns, and has to be distributed over
most of the components of a definite noun phrase [73].

Hebrew provides three different constructions for specifying genitive (posses-
sive) constructions. First, using the genitive preposition šl “of”: hsprim šl hmšwrr
“the-books of the-poet”. Second, by using the construct state of the head noun:
spri hmšwrr “books-of the-poet”. In such constructions, the definite article is only
marked on the complement, and is “inherited” by the head noun [73]. As noted
above, when the complement is a pronoun, it is realized as a cliticized suffix on
the head noun: spriw “books-his”. Finally, a double-genitive construction combines
both the pronominal suffix and an explicit genitive complement, as in spriw šl hmšrr
“books-his of the-poet”.

Relative clauses are introduced by an explicit relativizer š or ašr “that”. A third
relativizer, h, is used in relative clauses that begin with a present-tense verb; such
constructions can also be viewed as adjectival phrases, as present-tense verbs can
be viewed as adjectives, and the relativizer h is a homograph of the definite article.
Resumptive pronouns in the relative clause must agree with the head noun, but may
be omitted in certain cases (and must be omitted in others). Resumptive pronouns are
obligatory as complements of prepositions and as possessors. When the resumptive
pronoun is preceded by a preposition, and opens the relative clause, the relativizer
may be omitted.

1.5 Maltese

Maltese belongs to the South Arabic branch of Central Semitic [46, 47]. It has an
Arabic stratum, a Romance (Sicilian, Italian) superstratum and an English adstratum
[12,30]. The influence of the non-Semitic element is most obvious in the lexis, while
the most salient basic grammatical structures are of Arabic origin. Maltese is the
native language of approximately 400,000 people who live in Malta and Gozo, but
it is also spoken abroad in communities in Australia, Canada, the USA and the UK.

1.5.1 Orthography

Maltese is the only Semitic language that uses a Latin-based alphabet. There are 31
letters in the Maltese alphabet. Two of these are digraphs, namely, ie [I:] and gh̄,
which is generally silent but can also be pronounced /h̄/ under certain conditions
(see below). Three symbols require diacritic marks, namely, ċ /č/, ż /z/, h̄ /h̄/
(including gh̄ ). The digraph gh̄ and the unbarred h are generally silent, but they
are sounded in certain contexts, as, for example, when they occur together as gh̄h,
as in tagh̄ha “hers” [’t5h̄h̄5]. Some speakers also sound the unbarred h in certain
contexts in which the h is a part of the object pronominal clitic -ha “her” or hom
“them”, as in raha [’r5h̄h̄5] “he saw her” instead of [r5 :]. The latter is considered to
be the standard variety, but the former is also very widespread.
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Some graphemes are ambiguous in terms of pronunciation. Thus, double z, i.e.,
zz, can either be geminate [ts:], as in razza “race” [’r5 ts:5], or geminate [dz:], as
in gazzetta “newspaper” [g5 dz:’3tt5]. Similarly, x can be [S], as in rixa “feather”
[’ri:S5 ], or [Z], as in televixin “television” [t3l3’vIZIn]. The grapheme i also has
the values [I] and [i:], as in fitt “nuisance” [fIt] and [fti:t] ftit “a little”, but it
can also be pronounced as [I:] in certain contexts, e.g., when followed by the
sound corresponding to graphemic q, gh̄, h or h̄, as in rih̄ “wind” [rI:h̄]. The letters
generally retain their sound values but there are some surface phonetic/phonological
rules that bring about changes in pronunciation that are not reflected in the spelling.
For example, the rule of word final obstruent devoicing is not reflected in the
orthography, which retains the underlying root sound. For example, [bI:p] is
rendered orthographically as bieb “door”, not *biep, because of an alternation with
[’bI:ba] bieba “a door leaf”.

1.5.2 Derivational Morphology

Mixed Root-Based and Stem-Based Morphology

At different phases of its history, Maltese borrowed profusely both from Romance
(Sicilian, Tuscan, and Modern Italian), as well as from English, especially in recent
times (see, in particular, Brincat [12] for a historical perspective; for a recent
descriptive grammar of Maltese, see Borg and Azzopardi-Alexander [11]). As a
result, Maltese displays a great deal of mixture, especially at the lexical level.
While some of these borrowings have been integrated into largely Semitic/Arabic
morphological and syntactic patterns, others have, in turn, had innovative effects on
all levels, namely, phonological, grammatical (morpho-syntactic) and semantic. The
result is that Maltese morphology appears to be both root-based and stem-based, at
least on a surface analysis (see Fabri [28]; Twist [70]; Ussishkin and Twist [71] for
various analyses and discussion).

The Arabic vocabulary of Maltese still retains the root-and-pattern characteristic
typical of Semitic languages, whereby derivational and inflectional word forms are
characterized by both internal changes to the basic consonant and vowel struc-
ture, i.e., non-concatenatively, as well as through affixation, i.e., concatenatively.
For example, in derivation, a number of forms are related to the triliteral (tri-
consonantal) radical q.s.m, including qasam “split” (1st verbal form: CVCVC),
qassam “share out” (2nd verbal form: CVCiCiVC), tqassam “get shared out”
(5th verbal form: t+ CVCiCiVC), nqasam “broke” (7th verbal form: n+CVCVC),
qasma “a split” (feminine singular nominal form: CVCC-a). In contrast to words
of Semitic/Arabic origin, non-Semitic borrowings, especially recent ones, often
retain their stem-based, purely concatenative properties. For example, the suffix -
ata, borrowed from Italian, can combine with stems of Arabic origin to form new
lexemes, as żiblata “a booze up”, which is made up of żibel “thrash” and -ata.
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In one period of its history, borrowings, especially from Sicilian and, later,
Tuscan, were often integrated into the Semitic root-and-pattern system. To take
an example, the word pejjep “to smoke” is of Romance origin from pipa “pipe”,
but was turned into a weak verb (with a middle weak consonant j ) and made to
undergo gemination of the second consonant to be turned into a verb of the second
form, which generally characterizes the causative form of a basic verbal (form one)
or nominal form. The productivity of these forms in Modern Maltese is a matter
of discussion and research. There is some evidence that these forms might not be
actively productive anymore.

One important way in which Maltese differs from Arabic and other Semitic
languages is in the morphemic status of the vowel melody. While in Modern
Standard Arabic (MSA), the vowel melody itself carries morphological information,
e.g., a for perfective active and u-i for perfective passive, this is not the case
in Maltese. In Maltese, the vowel melody either stays the same throughout, or
changes for phonological reasons or unpredictably. Thus, e.g., the imperfective
active and passive, and the perfective active and passive for a verb like kiser “break”
are jikser “he breaks”, jinkiser “he is broken”, kiser “he broke”, nkiser “he was
broken” with the melody i-e throughout. In other words, Maltese has lost the typical
morphologically motivated vowel ‘insertion’; instead, it can be argued that vowel
‘insertion’ is purely phonological, allowing root syllabification [28, 64].

In Modern Maltese, new verbs are generally ‘derived’ through loan words
which take on a very specific verbal form associated with so-called ‘lacking’ verbs
(verbi neqsin), i.e., verbs that traditionally are considered to have a missing final
weak consonant j in their citation form, e.g., the verb tefa “extinguish” (see,
in particular, Mifsud 1995 on loan verbs). Thus, an English loan verb like to
monitor becomes immoniterja “to monitor” and takes on the number, person, gender
inflectional affixes, as, e.g., in jien nimmoniterja “I monitor”, int immoniterjajt “you
monitored”.

Nominal derivations (nouns and adjectives) are also based on originally Arabic
patterns as well as non-Arabic ones. To give an example, one way of forming nouns
in Arabic is through the prefixation of m-. Similarly, in Maltese one finds miżbla
“landfill”, which is derivationally related to żibel “rubbish”. Another, different
example is h̄ad(d)em “to (make to) work” and h̄addiem “worker”. With non-
Semitic-based derivation, an intriguing question in Maltese is whether what appears
to be an affix actually has affix status in the language. Since most of the forms
that carry derivational affixes are loan words, one could argue that the affixes do
not have independent status but have simply been imported with their stems as
words. Of course, if one were to use the standard contrastiveness criterion to isolate
morphemes, one would be able to isolate affixes in most cases, as in the case of -
(z)zjoni in the following examples: ammira “admire”, ammirazzjoni “admiration”,
applika “apply”, applikazzjoni “application”. However, one can only unequivocally
assume that an affix is identified as such when it produces new and, therefore,
productive local formations, which cannot have been imported as wholes. A number
of such formations exist. For example, the Romance suffix -ata, as in spagettata “a
spaghetti meal”, as mentioned above, has recently been used to form the new word
żiblata from żibel “rubbish” meaning “a booze up”.



1 Linguistic Introduction 29

1.5.3 Inflectional Morphology

Verbs

As in derivation, in inflection, there are two main types: one that is (or at least
behaves as if it were) root-based, and one that is stem-based. Thus, for example,
from tefa “extinguish” (CVCV), we get titfi “she extinguishes” (t-VCCV), tfejt “I
extinguished” (CCV-jt) and tfiet “she extinguished” (CCV-Vt), with varying stem
patterns. In contrast, a verb like immoniterja “to monitor”, has an invariant stem,
thus n-immoniterja “I monitor”, immoniterja-jt “I monitored” and immoniterja-t
“she monitored” [28, 60]. The two basic paradigms are the imperfective, which,
except for the plural suffix -u, is mainly prefixing: n- “1 person”, t- “2 person”, j-
“3 person masculine”, t- “3 person feminine”, and the perfective, which is wholly
suffixing: -t “1/2 person singular”, -Vt “3 person feminine singular”, -na “1 person
plural”, -tu “2 person plural”, -u “3 person plural”. Apart from the affixes which
trigger subject-verb agreement, Maltese also has a set of personal pronoun enclitics
that agree with a direct or indirect object topic: -ni “me”, -k “you”, -u “him”, -
ha “her”, -na “us”, -kom “you/pl”, -hom “them”. Thus: Dik il-mara qra-t-ha l-ittra
“That woman read the letter”; literally “That woman, she read it/her the letter”.
The pronominal clitics also attach to nouns in the construct (possessive) and to
prepositions: ras-ha “her head”, h̄dej-ha “near-her” [16].

A number of contexts trigger different kinds of allomorphy both in subject
agreement affixes and topic object clitics, and also in root-based stems. The default
meanings of the basic imperfective and perfective forms are the present habitual
and the past tense, respectively. Other tense and aspect forms are formed through
the use of particles and the tense marker kien; thus, nisraq “I steal”, qed nisraq “I
am stealing”, sa nisraq “I am going to steal”, kont qed nisraq “I was stealing”, kont
sa nisraq “I was going to steal”, sraqt “I stole”, kont sraqt “I had stolen” [21, 25].

Verbs are negated by means of a preposed ma and either a suffix -x or some
other negator such as h̄add “nobody”, xejn “nothing”, and mkien “nowhere”. The
following are examples: ma mortx “I/you didn’t go”, ma ġie h̄add “nobody came”.
Interestingly, negative imperative forms do not have a ma preceding them, e.g.,
tiftah̄x “do not open”, and positive imperatives lack person marking, thus iftah̄
“open” and not *tiftah̄.

Nominals

Nouns and adjectives are generally marked for gender (masculine/feminine) and
number (singular, plural for adjectives; singular, plural, collective, dual for nouns).
Plural forms are undefined for gender, and some forms are unspecified for number
and gender, such as martri “martyr/s” and interessanti “interesting”, or for gender
only, e.g., tiċer “male/female teacher” with the plural tiċers. With respect to number,
singular masculine is generally unmarked, feminine is generally marked by a final
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-a (though not exclusively), while the plural can be either marked by means of a
number of different suffixes (strong plural: e.g., karozz-a “car”, karozz-i “cars”,
bah̄ri “sailor”, bah̄ri-n “sailors”), or non-concatenatively, through stem change
(broken plural: e.g., barmil “bucket”, bramel “buckets”) (see Farrugia [33] on
gender, and Schembri [66] and Farrugia [32] for a discussion of the broken plural).
A number of nouns also display a collective form, which is morpho-syntactically
masculine singular and denotes a mass or a collective set of objects; for example,
basal “onion”, as opposed to basla “one onion” and basliet “a number of onions”.
An even smaller set of nouns has a dual form with the suffix -ajn/ejn. In Modern
Maltese this is restricted to words referring to objects that typically occur in pairs
(gh̄ajnejn “two eyes”, idejn “two hands”), as well as to a mixed bag of objects
such as time words, e.g., xahrejn “two months”, ġimagh̄tejn “two weeks”, and
measure terms, e.g., uqitejn “two ounces”, but also h̄biżtejn “two loaves of bread”
(see Fenech [34] for a full list and discussion). The dual has not only become
restricted in Modern Maltese, but is also losing its meaning and being used as a
plural form. Thus, erba’ gh̄ajn-ejn “four eyes” is acceptable. Finally, there are also
a few remnants of the so-called plural-of-the-plural forms, such as tarf “edge”, truf
“edges”, truf-ijiet “several edges”. The difference in meaning between the last two
is not so easy to characterize. To conclude, one should also mention subtractive
forms like Lhudi “Jew”, Lhud “Jews”, and suppletive forms like mara “woman”,
nisa “women”, tifel “boy”, subien “boys” and tifla “girl”, bniet “girls”.

Other Closed Class Items

There is no specific morphologically marked class of adverbs in Maltese. Thus, e.g.,
tajjeb can be used to modify a noun (i.e., functions as an adjectival modifier), as in
kejk tajjeb “a good cake” or pasta tajba “a good pastry”, in which case it triggers
agreement, or it can be used to modify a verb, as in ikanta tajjeb “he sings well”,
in which case it has the default masculine singular form. Very often a fused form
with the prepositional bi “with” is used as an adverb, as in ġie bil-gh̄aġġla “he came
hurriedly/in a hurry”, mar bil-mod “he went slowly”.

1.5.4 Basic Syntactic Structure

Generally, given specific intonational melodies, all S, V, and O orders, except
for VSO, are possible in Maltese, with SVO being arguably the unmarked case
(though not SV). Maltese is a topic-oriented language, especially in the spoken
form. This means that any complement phrases, including the subject noun phrase
and object phrases (direct, indirect, prepositional, locational, etc.) can be placed in
different positions within the sentence. Topicality for direct and indirect objects is
obligatorily marked by means of the pronominal enclitics mentioned in Sect. 1.5.3
(see also Fabri and Borg [31]). The following is an example: Il-ktieb il-bierah̄
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Marija xtra-t-u “Maria bought the book yesterday”; literally “the book, yesterday,
Maria she bought it/him”. The same can be expressed as: il-bierah̄ Marija xtra-t-u
l-ktieb and Marija l-bierah̄ il-ktieb xtra-t-u (among others). As a result, Maltese has
a structurally free constituent order in terms of S(ubject), V(erb) and O(bject) on
sentence level.

It is clear from the above that Maltese displays subject verb agreement and
verb (topic) object agreement [24, 29]. Moreover, agreement in Maltese is strong
enough to allow both subject and object pro-drop, i.e., it allows sentences without
an explicit pronominal subject or (topic) object NP. Its rich agreement morphology
allows the language to reconstruct the subject/(topic) object in every case from the
agreement affixes and clitics on the verb. The same applies to prepositional and
nominal possessor complement phrases when a pronominal enclitic occurs on the
head preposition or noun. The following are examples: bgh̄at-t-hu-lha “I sent him to
her”, fuq-ha “on her”, xagh̄ar-ha “her hair”. Like other pro-drop languages, Maltese
also lacks expletive pronouns, i.e., it does not have anything that corresponds to it
in it seems that John is tired in English. It also allows subject object inversion and
extraction of the subject from a subordinate clause, two other properties associated
with subject pro-drop. Maltese lacks morphological case, but has a case marker, lil,
which marks specific, human direct objects: qrajt il-ktieb “I read the book” but rajt
lil Pawlu “I saw Paul”, and indirect objects: bgh̄att il-ktieb lil Pawlu “I sent the book
to Paul”.

Within the noun phrase there is agreement between the demonstrative and
the adjective, on the one hand, and the noun, on the other. The definite article
can also occur on the adjective as well as on the noun. However, this is not a
case of agreement in terms of definiteness, because the definite article on the
adjective is triggered under specific pragmatically driven conditions [27]. A form
that is homophonous with the numeral wieh̄ed “one” can sometimes occur pre-
nominally as a specificity marker (a certain X). Another ‘typical’ noun internal
feature is the construct state construction, by which two juxtaposed nouns stand in
a possessive relation. However, unlike Modern Standard Arabic, the possessor noun
is not marked for genitive case in Maltese, since Maltese lacks morphological case
altogether. Moreover, unlike Arabic, in Maltese this construction is limited, i.e., not
any noun can enter into the construct relation with any other noun. In particular,
typically inalienable relations, i.e., body parts and family relations are found in
this construction. The construct is not usually possible with alienable relations, in
which case a periphrastic construction with the possessive preposition ta’ “of” must
be used (however, see Fabri [26] and Koptjevskaja-Tamm [54] for a more detailed
discussion): xagh̄ar it-tifel “the boy’s hair”, il-ktieb ta’ Pawlu “Paul’s book”.

Yes/no questions are generally distinguished from declaratives through specific
intonational patterns. Wh-questions are formed by fronting the question word:
lil min rajt? “who(m) did you see?” Relative clauses are introduced by the
complementiser li, equivalent to “that” in English: il-ktieb li qrajt “the book that
I read”. Just like “that”, li can also introduce a subordinate clause: naf li rebah̄ “I
know he won”. Resumptive pronouns can occur under specific conditions in the
form of the pronominal enclitics mentioned above.
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1.6 Syriac

Syriac is the official liturgical language of a number of Eastern Churches in the
Middle East and the Malabar Coast of India. It is the ethnic language of the
Assyrians/Chaldeans/Syriacs which may number over one million users, none of
whom (apart from a few known family experiments) speak it natively (that is not to
say that some do not speak Neo-Aramaic dialects natively). First attested in A.D. 6,
Syriac literature continues to be produced to the present day. Syriac has two dialects:
Eastern and Western. The dialects differ mostly in orthography and phonology, but
are quite similar in morphology and syntax.

1.6.1 Orthography

Syriac employs the usual Semitic consonantary which consists of 22 consonantal
letters. Three scripts exist: Estrangela ‘rounded’ is the oldest, and is used today in
most scholarly text editions. Serto or West Syriac has its roots in an early informal
cursive hand, but becomes more dominant after the seventh century. East Syriac
became a distinct script around the thirteenth century. Like Arabic and Hebrew,
Syriac texts are mostly consonantal with three letters (Alaph, Waw, and Yudh)
playing two roles: consonantal but also representing vowels. Since the earliest dated
manuscript from A.D. 411, there is evidence of the use of a point to distinguish
homographs, which is the origin of later pointing systems. The consonantal string
mn, for example, can be either /man/ “who” or /men/ “from”: a supralinear point on
m, or between m and n, indicates /man/, while a sublinear point indicates /men/. By
the seventh century, this pointing system developed into a more comprehensive one
where each vocalic phoneme had its own set of points. Around the tenth century, and
entirely restricted to West Syriac, a new vocalization system was developed where
letters from Greek were borrowed and placed as supralinear or sublinear symbols to
indicate vowels. None of the vocalization systems superseded previous ones. Today,
one finds phrases that employ the single diacritic point, along with full pointing,
along with the Greek symbols. Having said that, most texts are unmarked and appear
in consonantal form only. Two morphological diacritics, however, are mandatory: a
supralinear two-point grapheme, similar to the German umlaut, marks plural words,
and a supralinear point grapheme on the suffix -h indicates gender (it is absent in
the masculine, and present in the feminine).

The four letters in the string bdwl act as prefixes and in such cases are attached
to the word; e.g., bytP /baytā/ “house”, lbytP /lbaytā/ “to the house”, wlbytP
/walbaytā/ “and to the house”. Possessive pronouns and object pronominal suffixes
are also attached to words; e.g., ktb /ktab/ “he wrote”, ktbh /katbeh/ “he wrote it”.
Spacing in Syriac has its own complexities. Two and sometimes three words are
attached without space, especially in familiar liturgical phrases. Syriac does not have
special graphemes for numerals; instead, the alphabet is used to denote numerals.
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A sublinear, sometimes supralinear, line has a number of functions, but primarily
marks silent letters.

1.6.2 Derivational Morphology

Like the rest of the Semitic languages, Syriac morphology is that of root-and-pattern
morphology. In the verbal system, the main patterns are:

1. CCaC (PQal )
2. CaCCeC in East Syriac and CaCeC in West Syriac (PaQQel )
3. PaCCeC (AphQel ).

Each of these patterns has a corresponding reflexive pattern which is marked with
the prefix Pet-; hence, PetCCeC, PetCaCCaC (or PetCaCaC in West Syriac), and
PettaCCaC (here the /P/ in PaCCeC assimilates into /t/ ).

The vocalization of the first pattern differs from one verb to another and is
usually lexically marked. The vocalization of the remaining patterns is more or less
invariant. Having said that, phonological processes may affect the vocalism; e.g.,
/e/ turns into /a/ when the third consonant is /r/. The derivational mechanism here
follows the same processes described in other sections of this chapter.

1.6.3 Inflectional Morphology

Conjugation patterns marking aspect (or tense), number, person, and gender are
almost invariant within a pattern. However, the patterns may differ from one root
class to the next. Root classes are defined by the values of the root consonants.
Typically, the consonants P, w, and y, when they fall in any position within the root,
cause idiosyncratic conjugation patterns.

Number, person, and gender are marked with suffixation in the perfect (almost
equal to past tense), or circumfixation in the case of the imperfect mood (almost
equal to the future tense). Hence, this part of the process is entirely concatenative,
though it may cause phonological processes to be triggered within the root-and-
pattern part of the stem.

Roots in which the first radical is /n/ have a different derivation in the imperfect,
considering that the imperfect prefix also begins with /n/ ; hence, while the imperfect
of the root morpheme k.t.b is /nektub/, that of the root morpheme n.s.b is /nessab/<
*/nensab/. Two phonological processes take place here, the /n/ of the root is deleted,
and the second radical is duplicated. A similar process takes place with roots whose
second and third radical are the same, such as b.z.z. Here, the imperfect is /nebbaz/.

In addition to the inflectional morphology, prefixation and suffixation takes place.
Prefixation is limited to the bdwl letters mentioned above. Suffixation is limited to
object pronominal suffixes (in the case of nouns) and possessive pronouns in the case
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of nouns and prepositions. There are two sets of possessive pronoun suffixes: one
attaches to singular nouns and the other to plural nouns. In the case of prepositions,
each preposition attaches to one of the sets only and the choice is idiosyncratic and
lexically marked.

1.6.4 Syntax

The field of Syriac syntax has not been fully explored, and most of the available
studies pertain mostly to the genre of biblical texts [50, 72]. In particular, we are
unaware of any computational work on Syriac syntax. We therefore do not address
Syriac syntax in this chapter.

1.7 Contrastive Analysis

Much research has been done in the area of comparative Semitic linguistics [46,57,
61]. We summarize in this section the similarities and differences among the various
Semitic languages across the dimensions outlined in previous sections, with an eye
to the impact of those similarities and differences on computational processing.

Overall, the dimension in which Semitic languages vary the most is perhaps
their writing systems, followed by phonology, morphology and then syntax. The
similarities that most uniquely define the Semitic family are their morphology and
to a lesser degree syntax and some of their orthographic choices. The variations
among languages in the Semitic family are generally comparable to variations
among members of other families.

1.7.1 Orthography

In terms of their scripts, the Semitic languages show much variation: each of the
languages we discussed above has its own script: Arabic, Hebrew, Syriac (has three
by itself), Amharic and Maltese (Latin script). In the case of Arabic, Hebrew, Syriac
and Maltese, the scripts of these four languages are historically related to the ancient
Phoenician alphabet. Though these related languages use different scripts primarily,
their scripts have been used successfully and for extended periods for a variety of
other languages from other families: Arabic script used for Persian, Urdu, Pashto,
Ottoman Turkish, among others and Hebrew used for Yiddish and Ladino. Semitic
scripts have also been known to be used for writing other Semitic languages/dialects:
e.g., Judeo-Arabic is Arabic written in Hebrew, Garshuni is Arabic written in Syriac
script, and Aramaic (a variant of Syriac) is also written in Hebrew script.
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Although Arabic, Hebrew and Syriac have distinctly different scripts, they share
very similar orthographic conventions. Most prominent is the use of optional
diacritic marks for short vowels and consonantal gemination, or what Daniels
and Bright [19] call an Abjad. Maltese uses the Latin script with alphabetical
spelling conventions that attempt one-to-one mapping of grapheme to phoneme. The
Amharic writing system is quite distinct from Arabic, Hebrew and Syriac on one
hand and from Maltese on the other hand. Amharic is a syllabary (Abugida writing
system), that can be argued to be less ambiguous than Arabic/Hebrew/Syriac, but
more so than Maltese.

Diacritic optionality is a big part of the challenge of handling Semitic languages
of the Abjad family. All three Semitic sisters are quite morphologically rich and
cliticizing only adds to the ambiguity space. Arabic, in contrast with Hebrew, has
a morphophonemic spelling system where some affixes and clitics are spelled in
a morphemic from that abstracts away from various allomorphs: e.g., the definite
article, the feminine singular suffix and the masculine plural suffix. Syriac has two
morpho-phonemic symbols for marking plurals and feminine singulars. Hebrew in
contrast is phonemic in its spelling (modulo the missing diacritics). Hebrew spelling
however has some unique challenges: first is the various overlapping allophones
for some phonemes (b:b/v, k:k/x, p:p/f, v:v/u, s:s/š ) and several graphemes with
the same pronunciations (q/k, T/t, x/k ), which have no parallel in Arabic or
Maltese, although a similar phenomenon occurs in Syriac. Second, Modern Hebrew
uses two spelling standards, with or without diacritic symbols that mark the
vowels. Arabic dialects have no official standard orthographies and as such add
a higher degree of complexity to computational processing. These orthographic
issues (optional diacritics, clitics, complex phonology-orthography mapping and
inconsistent spellings) contribute to why Semitic languages are challenging in the
context of morphological analysis and disambiguation, speech recognition and text-
to-speech, not to mention language modeling.

1.7.2 Phonology

Semitic phonology, like Semitic orthography, appears quite diverse. There are,
however, many shared features. Emphatic, uvular and pharyngeal sounds are an
important marker for Arabic and its dialects. For emphatics, Arabic has four, Syriac
has two only, while Hebrew and Maltese have lost them completely (although
they are retained in the script). Hebrew retains a couple in the script but not in
pronunciation. The Arabic emphatics appear as ejectives in Amharic. Hebrew and
Syriac, unlike Arabic and Maltese, have a few phonemes with distinct allophones:
the so called beged-kefet (bgdkpt) phonemes. Syriac still makes the distinctions
fully, but Modern Hebrew only does so for three (bkp). Arabic dialects give an
interesting living example of phonological language change as the old and new
pronunciations of Arabic coexist as part of the diglossic situation in the Arab world.
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In terms of the Semitic vowel inventory, there is much diversity. Classical Arabic
has three short and three long vowels. Arabic dialects have a wide range: Moroccan
Arabic has three vowels (no length distinction) and Levantine has eight (three short
and five long). Hebrew used to have long/short distinctions, some of which are
retained in the script, but Modern Hebrew has no length distinction any more.
Amharic and Classical Syriac have seven vowels; modern dialects of Syriac seem to
have fewer (between three and five).

Shared phonemes, such as /m/ and /n/, and regularly mappable phonemes, such
as /s/ and /š /, are important in establishing etymological connection across different
Semitic languages. Scripts that preserve some of the historical distinction are quite
important as well, especially in the case of Hebrew, establishing the relation of
Arabic /q/ to Hebrew /k / (written q).

1.7.3 Morphology

Morphology is the core of the “Semitic” linguistic classification. In contrast to
the variable orthographies and phonologies of the Semitic languages, Semitic
morphology has unique unifying aspects that define the Semitic language family and
distinguishes it from other language families. The landmark of Semitic morphology
is the use of templatic morphemes in addition to concatenative ones.

Although Arabic is the language famous for its templatic “broken” plurals,
similar phenomena exist in Hebrew also to a limited extent. Templatic morphology
is highly productive in Semitic languages and it depends on the concept of
the root morpheme, a typically triliteral abstraction that captures some general
meaning. Many of these roots seem to have shared meaning across multiple Semitic
languages, e.g., the famous k.t.b (writing-related) root. Others have different or
polysemous meanings, some of which are shared (more on this in Sect. 1.7.5 below).
Different root types typically involving gemination of second and third radical, or
weak radicals (w/y/h/’ ), seem to create similar challenges for the different Semitic
sisters.

Concatenative morphology in Semitic languages has some shared features: verbs
have typically two basic forms: the prefixing-stem (Arabic imperfective, Hebrew
future) and the suffixing-stem (Arabic perfective, Hebrew past). The map from the
morphemes to their meaning or function will vary however: the perfective/past is
similar across Semitic languages, but the imperfective has a wider range, including
present, future, subjunctive, etc.

The set of inflectional features (as opposed to morphemes which realize these
features) are generally similar. Arabic has a larger set of inflectional features
since it includes nominal case and verbal mood. Arabic has been described as
a “conservative” language as opposed to other “progressive” languages, which
would include Hebrew and other Arabic dialects which have lost case/mood in
a similar fashion to what happened in the transition from Latin to Romance
languages. It is often thought that Arabic (classical, modern standard) may reflect
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some earlier forms of the proto-Semitic morphology that gave birth to the Semitic
family. Of course, Arabic dialects and Maltese provide an interesting insight into
how language evolves, since unlike Hebrew, which was “academic/religious” for
centuries before being revived, these languages evolved naturally so to speak. The
dialects seem to add to the complexities of Arabic morphology, but at the same time
they remove some: case/mood are gone, but negative suffixes and indirect object
clitics are introduced. This suggests that the Semitic family is continuing to change
and evolve in new directions.

1.7.4 Syntax

In general, the syntactic properties of Semitic languages do not introduce specific
difficulties for computational processing. There is much variety in the syntax of the
Semitic family. In the extreme, Amharic is distinct from the rest of the languages
discussed in this chapter. Amharic is a head-final language: its dominant sentential
order is S-O-V and nominal phrases are Adjective-Noun. In contrast, Arabic is
strongly head-initial: the dominant sentential order is V-S-O and nominal phrases
are Noun-Adj. Arabic also allows S-V-O order; and Arabic dialects and Hebrew
tend to be more prominently S-V-O with some V-S-O cases. Maltese and Syriac are
also primarily S-V-O languages. All of the Semitic languages in this chapter, except
Amharic, have post-nominal modifiers.

In Arabic dialects, Hebrew, and Maltese, the possessive construction (idafa,
smikhut or construct) co-exists with an alternative prepositional possessive con-
struction. Standard Arabic does not allow the prepositional construction. Both
Hebrew and some Arabic dialects allow different forms of the double possession
construction (e.g., his house of the man). Syriac primarily uses the prepositional
possessive construction.

In Arabic, Hebrew, and Maltese, adjectives follow and agree with their head
nouns in definiteness, gender and number. Arabic adds case agreement and odd
rules for irrational plurality. Different combinations of definite/indefinite nominals
are important in forming and parsing different types of syntactic constructions.

1.7.5 Lexicon

Semitic languages share numerous lexical items with cognate roots that are readily
identifiable or easily identifiable once some of the phonological correspondences are
adjusted for: ktb has to do with “writing”, qwl with voice/speech, etc. Other roots
are faux amis: rqd is “dance” in Hebrew or “lie down” in Arabic. Other roots have
multiple senses, some of which match and some do not: the root lHm/lxm means
“bread” in Hebrew or “meat” in Arabic in its first sense, but it means “solder” in
both languages in its second sense.
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The spread of the Semitic languages and colonization by other language groups
has led to extensive borrowing. Arabic dialects have several colonizing English,
French, and Turkish influences as well as colonized Berber, Coptic and Syriac
influences. Maltese can be seen as a hybrid of Arabic and Italian, with much English
influence. Hebrew has numerous Russian borrowings, as well as Arabic borrowings
(by design as part of its revival and by ongoing interactions with Arabic speakers).
Hebrew borrowing in standard Arabic is rather ancient and restricted to religious
concepts, but it is prevalent in contemporary Palestinian Arabic.

1.8 Conclusion

We provided in this chapter a necessarily brief overview of some of the most
prominent linguistic features of Semitic languages, covering the living languages in
this family for which some computational work has been done. Our aim was not to
give a thorough, extensive account of any language or any particular phenomenon
(many books do precisely this). Rather, we tried to provide sufficient detail that
would emphasize the challenges involved in computational processing of Semitic
languages, the similarities and also the differences among them. We hope that this
will prove useful for readers of subsequent chapters of this book.
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Chapter 2
Morphological Processing of Semitic Languages

Shuly Wintner

2.1 Introduction

This chapter addresses morphological processing of Semitic languages. In light
of the complex morphology and problematic orthography of many of the Semitic
languages, the chapter begins with a recapitulation of the challenges these phe-
nomena pose on computational applications. It then discusses the approaches that
were suggested to cope with these challenges in the past. The bulk of the chapter,
then, discusses available solutions for morphological processing, including analysis,
generation, and disambiguation, in a variety of Semitic languages. The concluding
section discusses future research directions.

Semitic languages are characterized by complex, productive morphology, with a
basic word-formation mechanism, root-and-pattern, that is unique to languages of
this family. Morphological processing of Semitic languages therefore necessitates
technology that can successfully cope with these complexities.1 Several linguistic
theories, and, consequently, computational linguistic approaches, are often devel-
oped with a narrow set of (mostly European) languages in mind. The adequacy of
such approaches to other families of languages is sometimes sub-optimal. A related
issue is the long tradition of scholarly work on some Semitic languages, notably
Arabic [109] and Hebrew [117], which cannot always be easily consolidated with
contemporary approaches.

Inconsistencies between modern, English-centric approaches and traditional
ones are easily observed in matters of lexicography. In order to annotate corpora
or produce tree-banks, an agreed-upon set of part-of-speech (POS) categories is

1Parts of this introduction are based on and adapted from [137].
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required. Since early approaches to POS tagging were limited to English, resources
for other languages tend to use “tag sets”, or inventories of categories, that are minor
modifications of the standard English set. Such an adaptation is problematic for
Semitic languages. As noted in the previous chapter, there are good reasons to view
nouns, adjectives and numerals as sub-categories of a single category, nominals.
Furthermore, the distinction between verbs and nominals is blurry. Netzer et al.
[101] discuss a similar issue related to the correct tagging of modals in Hebrew.
Even the correct citation form to use in dictionaries is a matter of some debate, as
Arabic traditional dictionaries are root-based, rather than lemma-based [43].

These issues are complicated further when morphology is considered. The rich,
non-concatenative morphology of Semitic languages frequently requires innovative
solutions that standard approaches do not always provide. After a brief introduction
of some basic notions (Sect. 2.2), we recapitulate some of these challenges in
Sect. 2.3, and review the long line of proposed computational solutions in Sect. 2.4.
Section 2.5 lists some available computational implementations for the morphology
of various Semitic languages. Section 2.6 then discusses implementations of
morphological disambiguation for several Semitic languages. We conclude the
chapter with directions for future research.

2.2 Basic Notions

The word ‘word’ is one of the most loaded and ambiguous notions in linguistic
theory [76]. Since most computational applications deal with written texts (as
opposed to spoken language), the most useful notion is that of an orthographic
word. This is a string of characters, from a well-defined alphabet of letters, delimited
by spaces, or other delimiters, such as punctuation. A text typically consists of
sequences of orthographic words, delimited by spaces or punctuation; orthographic
words in a text are often referred to as tokens.

Orthographic words are frequently not atomic: they can be further divided to
smaller units, called morphemes. Morphemes are the smallest meaning-bearing
linguistic elements; they are elementary pairings of form and meaning. Morphemes
can be either free, meaning that they can occur in isolation, as a single orthographic
word; or bound, in which case they must combine with other morphemes in order
to yield a word. For example, the word two consists of a single (free) morpheme,
whereas dogs consists of two morphemes: the free morpheme dog, combined with
the bound morpheme -s. The latter form indicates the fact that it must combine with
other morphemes (hence the preceding dash); its function is, of course, denoting
plurality. When a word consists of some free morpheme, potentially with combined
bound morphemes, the free morpheme is called a stem, or sometimes root.

Bound morphemes are typically affixes. Affixes come in many varieties: prefixes
attach to a stem before the stem (e.g., re- in reconsider), suffixes attach after the stem
(-ing in dreaming), infixes occur inside a stem (e.g., the t in Arabic ijtahada, from
jahada), and circumfixes surround the stem they combine with (e.g., Hebrew ti–u in
tigdelu “you will grow”). Some bound morphemes are likely clitics [140], but as in
the previous chapter, we blur the distinction between clitics and affixes here.
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Morphological processes define the shape of words. They are usually classified to
two types of processes. Derivational morphology deals with word formation; such
processes can create new words from existing ones, potentially changing the cate-
gory of the original word. For example, the processes that create faithfulness from
faithful, and faithful from faith, are derivational. Such processes are typically not
highly productive; for example, one cannot derive *loveful from love. In contrast,
inflectional morphology yields inflected forms, variants of some base, or citation
form, of words; these forms are constructed to adhere to some syntactic constraints,
but they do not change the basic meaning of the base form. Inflectional processes are
usually highly productive, applying to most members of a particular word class. For
example, English nouns inflect for number, so most nouns occur in two forms, the
singular (which is considered the citation form) and the plural, regularly obtained
by adding the suffix -s to the base form.

Word formation in Semitic languages is based on a unique mechanism, known
as root-and-pattern. Words in this language family are often created by the
combination of two bound morphemes, a root and a pattern. The root is a sequence
of consonants only, typically three; and the pattern is a sequence of vowels and
consonants with open slots in it. The root combines with the pattern through a
process called interdigitation: each letter of the root (radical) fills a slot in the
pattern. For example, the Hebrew root p.t.x, denoting a notion of opening, combines
with the pattern maCCeC (the slots are denoted by C), typically denoting tools and
instruments, to yield maptex “key”.

In addition to the unique root-and-pattern morphology, Semitic languages are
characterized by a productive system of more standard affixation processes. These
include prefixes, suffixes, infixes and circumfixes, which are involved in both
inflectional and derivational processes (see the previous linguistic-introduction
chapter). Consider the Arabic word wasayaktubuwnaha “and they will write it”.
A possible analysis of this complex word defines the stem as aktub “write”, with
an inflectional circumfix, y—uwna, denoting third person masculine plural, an
inflectional suffix, -ha “it”, and two prefixes, sa- “will” and wa- “and”. For more
information on Arabic morphology from a computational perspective, see [127];
[63, Chap. 4]. For a good introduction to computational morphology in general,
consult [112, 128].

2.3 The Challenges of Morphological Processing

Morphological processing is a crucial component of many natural language
processing (NLP) applications. Whether the goal is information retrieval, question
answering, text summarization or machine translation, NLP systems must be aware
of word structure. For some languages and for some applications, simply stipulating
a list of surface forms is a viable option; this is not the case for languages with
complex morphology, in particular Semitic languages, both because of the huge
number of potential forms and because of the difficulty of such an approach to
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handle out-of-lexicon items (in particular, proper names), which may combine with
prefix or suffix particles. For example, the Hebrew prefix l- “to” can combine with
any proper name denoting a location, an organization or a person.

An alternative solution would be a dedicated morphological analyzer, imple-
menting the morphological and orthographic rules of the language. Ideally, a
morphological analyzer for any language should reflect the rules underlying deriva-
tional and inflectional processes in that language. Of course, the more complex
the rules, the harder it is to construct such an analyzer. The main challenge of
morphological analysis of Semitic languages stems from the need to faithfully
implement a complex set of interacting rules, some of which are non-concatenative.

Once such a grammar is available, it typically produces more than one analysis
for any given surface form; in other words, Semitic languages exhibit a high degree
of morphological ambiguity, which has to be resolved in a typical computational
application. The level of morphological ambiguity is higher in many Semitic lan-
guages than it is in English, due to the rich morphology and deficient orthography.
This calls for sophisticated methods for disambiguation. While in English (and other
European languages) morphological disambiguation may amount to POS tagging,
Semitic languages require more effort, since determining the correct POS of a given
token is intertwined with the problem of segmenting the token to morphemes, the set
of morphological features (and their values) is larger, and consequently the number
of classes is too large for standard classification techniques. Several models were
proposed to address these issues.

Contemporary approaches to part-of-speech tagging are all based on machine
learning: a large corpus of text is manually annotated with the correct POS for
each word; then, a classifier is trained on the annotated corpus, resulting in
a system that can predict POS tags for unseen texts with high accuracy. The
state of the art in POS tagging for English is extremely good, with accuracies
that are indistinguishable from human level performance. Various classifiers were
built for this task, implementing a variety of classification techniques, such as
Hidden Markov Models (HMM) [26], Average Perceptron [37], Maximum Entropy
[111, 130, 131, 133, 134], Support Vector Machines (SVM) [58], and others.

For languages with complex morphology, and Semitic languages in particular,
however, these standard techniques do not perform as well, for several reasons:

1. Due to issues of orthography, a single token in several Semitic languages can
actually be a sequence of more than one lexical item, and hence be associated
with a sequence of tags. For example, the Hebrew form šbth can be interpreted
as š+b+h+th “that+in+the+tea”, corresponding to a tag sequence consisting of a
subordinating conjunction, followed by a preposition, a determiner and a noun.

2. The rich morphology implies a much larger tagset, since tags reflect the wealth of
morphological information which words exhibit. The richer tagset immediately
implies problems of data sparseness, since most of the tags occur only rarely, if
at all, in a given corpus. For example, the MILA Hebrew morphological analyzer
[80] produces 22 different parts of speech, some with subcategories; 6 values for
the number feature (including disjunctions of values), 4 for gender, 5 for person,
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7 for tense and 3 for nominal state. Possessive pronominal suffixes can have 15
different values, and prefix particle sequences can theoretically have hundreds of
different forms. While not all the combinations of these values are possible, the
number of possible analyses (i.e., the size of the tagset) is in the thousands.

3. As a result of both orthographic deficiencies and morphological wealth, word
forms in Semitic languages tend to be ambiguous. Itai and Wintner [80] report
an average of 2.6 analysis per word in their corpora. In some cases, different
analyses are identical in all their features, except the lexical item, a phenomenon
that makes morphological disambiguation closer to the problem of word sense
disambiguation than to standard POS tagging.

4. Word order in Semitic is relatively free, and in any case freer than in English.

An additional challenge of morphological processing of Semitic languages, with
an emphasis on Arabic, stems from the form–function discrepancy. The form of
words in these languages typically provides good hints for some of the morpho-
logical features of the word, or its function; in many cases, however, the form and
the function are in disagreement. A concrete example is the phenomenon of broken
plural forms in Arabic. For a significant number of nouns, the plural form is not
obtained by the concatenation of a plural suffix, but rather by an internal change
(not unlike umlauting) that renders the surface form, which is plural in function,
singular in form. A related phenomenon involves gender agreement in Arabic: while
adjectives must agree with their head nouns in gender, when the noun is plural
and irrational (non-human), the adjective must be feminine singular (see a detailed
discussion in [3]).

Somewhat similarly, Hebrew nouns are marked for gender by a small number
of suffixes; but several masculine-appearing nouns are actually feminine, and vice
versa. Furthermore, Hebrew has two plural suffixes, -im for plural nouns and -wt for
feminine nouns, but a non-negligible number of feminine nouns take the masculine
suffix and vice versa.

Finally, it is important to note that morphological processing of Semitic
languages is often handicapped by subtle orthographic issues [28]. Hebrew, for
example, has a writing system that encodes vocalic information using a large set
of diacritics; this system, however, is rarely in use, and most contemporary texts
are written without the diacritics. Unfortunately, while a standard for non-vocalized
Hebrew exists [53], it is not adhered to by most authors, and consequently the same
word may be spelled in different ways, sometimes even within the same document.
Arabic suffers from related problems, especially when the various dialects are
considered, in which standardized forms do not exist [71].

2.4 Computational Approaches to Morphology

No single method exists that provides an adequate solution for the challenges
involved in morphological processing of Semitic languages. The most common
approach to morphological processing of natural language is finite-state technology
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[22, 81, 83, 89, 113]. The adequacy of this technology for Semitic languages has
frequently been challenged, but clearly, with some sophisticated developments,
such as flag diacritics [19], multi-tape automata [88] or registered automata [36],
finite-state technology has been effectively used for describing the morphological
structure of several Semitic languages [8, 16, 17, 68, 85, 88, 138]. We survey this
technology in the present section.

2.4.1 Two-Level Morphology

Two-level morphology was “the first general model in the history of computational
linguistics for the analysis and generation of morphologically complex languages”
[84]. Developed by Koskenniemi [89], this technology facilitates the specification
of rules that relate pairs of surface strings through systematic rules. Such rules,
however, do not specify how one string is to be derived from another; rather,
they specify mutual constraints on those strings. Furthermore, rules do not apply
sequentially. Instead, a set of rules, each of which constrains a particular string-
pair correspondence, is applied in parallel, such that all the constraints must
hold simultaneously. In practice, one of the strings in a pair would be a surface
realization, while the other would be an underlying form. Thus, for example, the
Hebrew surface form [xicim] “arrows” can correspond to the underlying form
xec+im through the mapping:

x i c 0 i m
x e c + i m

where ‘0’ is the empty string. The example reflects a rule that maps [i] to e in
the context of the plural suffix im; the upper string is the surface realization, and
the lower is its underlying form. The underlying forms are further constrained by
consulting a lexicon.

One of the greatest advantages of two-level morphology is that rules are entirely
declarative: indeed, the original formulation of [89] allows for both analysis and
generation within the same grammar. The formalism was later implemented as
part of the Xerox tools (Sect. 2.4.3); two-level rules are compiled to finite-state
transducers, which indeed allow for both analysis and generation.

2.4.2 Multi-tape Automata

Two-level morphology was applied to one Semitic language, Akkadian, by Kataja
and Koskenniemi [85]. However, the applicability of the technology to Semitic
languages in general was challenged by Lavie et al. [91], who describe some
difficulties of this technology in accounting for Hebrew verb inflections. Lavie et al.
[91] conclude: “The Two Level rules are not the natural way to describe: : : verb
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inflection process. The only alternative choice: : : is to keep all bases: : : it seems
wasteful to save all the secondary bases of verbs of the same pattern.”

Addressing such issues, [88] expands the traditional two-level model to n-tape
automata, following insight originally suggested by Kay [86] and Kataja and
Koskenniemi [85]. The two levels of expression are expanded: one of them is
retained for the surface form, but the lexical string can now be spread across multiple
representations (e.g., one for the root and one for the pattern). Thus, elements that
are separated on the surface (such as the root’s consonants) can be adjacent on a
particular lexical level.

Using multi-tape automata, [88] provides elegant solutions for derivational and
inflectional morphology of two Semitic languages, Syriac and Arabic. The same
approach is then extended by Habash et al. [68], who define a multi-tape automaton
consisting of five tapes: one for the pattern and affixational morphemes, one for
the root, one for the vocalism, one for phonological information and one for the
orthography. This model is then successfully applied to both MSA and dialectal
Arabic [6, 65, 68] The model is detailed in [7].

Hulden [79], however, notes that no other systems were built using this tech-
nology, and conjectures that the reason may be that “when the number of tapes
grows, the required joint symbol alphabet grows with exponential rapidity unless
special mechanisms are devised to curtail this growth. This explosion in the number
of transitions in an n-tape automaton can in many cases be more severe than
the growth in the number of states of a complex grammar.” To alleviate the
problem, [79] describes an algorithm that simulates an n-tape automaton with a
simple single-tape finite-state machine. Consequently, the elegant representation
of multi-tape automata can be retained, while the conversion algorithm facilitates
an implementation using standard tools such as the ones discussed in Sect. 2.4.3.
Indeed, [79] uses Foma [78] to efficiently implement a grammar of Arabic verbal
morphology over 2,000 roots.

2.4.3 The Xerox Approach

One of the most popular toolboxes for developing finite-state grammars comes from
Xerox, and is discussed in detail by Beesley and Karttunen [22]. The Xerox tools
consist of several description languages, including a formalization of two-level
morphology, but also a variant, XFST, of the calculus proposed by Kaplan and
Kay [83]. Along with the description languages come compilers that convert
morphological grammars to finite-state transducers, and programs that implement
analysis and generation with these transducers.

To address the special needs of languages with non-concatenative morphology,
XFST provides two special mechanisms. First, the compile-replace mechanism [21]
facilitates the reapplication of the regular-expression compiler to its own output.
This allows for a compact definition of some non-concatenative morphological
processes, and [19] uses it to construct a morphological grammar of Arabic. Second,
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Beesley [20] proposes a method, called flag diacritics, which adds features to
symbols in regular expressions to enforce dependencies between separated parts
of a string. These dependencies are then enforced by different kinds of unification
actions.

While the Xerox tools have for many years been the de-facto standard of finite-
state technology, they have also been proprietary, a fact that limited their distribution
and popularity. Several competing formalisms were developed over the years, of
which we note Foma [78] because it is, to a large extent, compatible with the syntax
of several Xerox tools, while being completely open-source.

2.4.4 Registered Automata

Finite-state registered automata [36] were developed with the goal of facilitating the
expression of various non-concatenative morphological phenomena in an efficient
way. The main idea is to augment standard finite-state automata with (finite) amount
of memory, in the form of registers associated with the automaton transitions. This is
done in a restricted way that saves space but does not add expressivity. The number
of registers is finite, usually small, and eliminates the need to duplicate paths as it
enables the automaton to ‘remember’ a finite number of symbols. Technically, each
arc in the automaton is associated (in addition to an alphabet symbol) with an action
on the registers. Cohen-Sygal and Wintner [36] define two kinds of actions, read and
write. The former allows an arc to be traversed only if a designated register contains
a specific symbol. The latter writes a specific symbol into a designated register when
an arc is traversed.

Cohen-Sygal and Wintner [36] show that finite-state registered automata can
efficiently model several non-concatenative morphological phenomena, including
circumfixation, root and pattern word formation in Semitic languages, vowel har-
mony, limited reduplication etc. The representation is highly efficient: for example,
to account for all the possible combinations of r roots and p patterns, an ordinary
FSA requiresO.r �p/ arcs whereas a registered automaton requires onlyO.rCp/
arcs. Unfortunately, no implementation of the model exists as part of an available
finite-state toolkit.

2.4.5 Analysis by Generation

Most of the approaches discussed above allow for a declarative specification of
(morphological) grammar rules, from which both analyzers and generators can be
created automatically. A simpler, less generic yet highly efficient approach to the
morphology of Semitic languages had been popular with actual applications. In this
framework, which we call analysis by generation here, the morphological rules
that describe word formation and/or affixation are specified in a way that supports
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generation, but not necessarily analysis. Coupled with a lexicon of morphemes
(typically, base forms and concatenative affixes), such rules can be applied in one
direction to generate all the surface forms of the language. This can be done off-line,
and the generated forms can then be stored in a database; analysis, in this paradigm,
amounts more or less to simple table lookup.

Some of the very first morphological processors of Semitic languages were
developed in this way. Probably the first example is the Hebrew morphological
system of [29, 122], see Sect. 2.5.3. Exactly the same approach is now used in the
MILA morphological analyzer of Hebrew [80] (Sect. 2.5.3). And a very similar
approach underlies the most popular morphological analyzer of Arabic, BAMA
[27]: Again, a set of rules (called the compatibility table) determines how lexemes
and affixes (stored in separate lexicons) can combine; at analysis time, a surface
form is divided to a sequence of prefixC lexemeC suffix in all possible ways, and
the lexicons are consulted to determine which potential combination is indeed valid
(see Sect. 2.5.2).

2.4.6 Functional Morphology

Functional morphology [51] is a computational framework for defining language
resources, in particular lexicons. It is a language-independent tool, based on a word-
and-paradigm model, which allows the grammar writer to specify the inflectional
paradigms of words in a specific language in a similar way to printed paradigm
tables. A lexicon in functional morphology consists of a list of words, each
associated with its paradigm name, and an inflection engine that can apply the
inflectional rules of the language to the words of the lexicon.

This framework was used to define morphological grammars for several
languages, including modeling of non-concatenative processes such as vowel
harmony, reduplication, and templatic morphology [50]. In particular, [125] uses
this paradigm to implement a morphological processor of Arabic.

2.5 Morphological Analysis and Generation of Semitic
Languages

We survey in this section the current state of the art in morphological analysis
and generation of various Semitic languages. While much effort was put into the
development of systems for processing (Modern Standard) Arabic and Hebrew, for
other languages the development of such tools lags behind.

We use the term analysis in this chapter to refer to the task of producing all the
possible analyses of a given word form, independently of its context. The problem
of producing the correct analysis in the context is called disambiguation here, and
is discussed in detail in Sect. 2.6.
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2.5.1 Amharic

Computational work on Amharic began only recently. Fissaha and Haller [49]
describe a preliminary lexicon of verbs, and discuss the difficulties involved in
implementing verbal morphology with XFST. XFST is also the framework of choice
for the development of an Amharic morphological grammar [8, 9]; but evaluation
on a small set of 1,620 words reveal that while the coverage of the grammar
on this corpus is rather high (85–94 %, depending on the part of speech), its
precision is low and many word forms (especially verbs) are associated with wrong
analyses.

Argaw and Asker [11] describe a stemmer for Amharic. Using a large dictionary,
the stemmer first tries to segment surface forms to sequences of prefixes, stem, and
affixes. The candidate stems are then looked up in the dictionary, and the longest
found stem is chosen (ties are resolved by the frequency of the stem in a corpus).
Evaluation on a small corpus of 1,500 words shows accuracy of close to 77 %.

The state of the art in Amharic, however, is most probably HornMorpho [56,57]:
it is a system for morphological processing of Amharic, as well as Tigrinya (another
Ethiopian Semitic language) and Oromo (which is not Semitic). The system is
based on finite-state technology, but the basic transducers are augmented by feature
structures, implementing ideas introduced by Amtrup [10]. Manual evaluation on
200 Tigrinya verbs and 400 Amharic nouns and verbs shows very accurate results:
in over 96 % of the words, the system produced all and only the correct analyses.

2.5.2 Arabic

Recent years saw an increasing interest in computational approaches to Arabic
morphology [5]. Attempts to automatically analyze the structure of Arabic words
date back over 50 years [34]. Several early works were done in the finite-state
framework of the Xerox tools (Sect. 2.4.3). Beesley [17] describes an early system
for morphological analysis and generation. The input is given in the standard Arabic
script, either vocalized or not, and the output includes the root, the pattern, a list
of affixes and a plethora of morphological information in the form of feature-
value pairs. The implementation was carried out in an early version of the Xerox
tools, which resembles to a high degree the two-level formalism. Beesley [18]
uses the newly-introduced flag diacritics in XFST to provide a more elegant
morphological grammar, whose implementation as an online web-based service
is described in [19]. In a similar vein, [88] demonstrates the utility of multi-tape
automata (Sect. 2.4.2) by providing examples from Arabic.

Other works from approximately the same period seem to be more focused
on an actual application, rather than on elegant and efficient representation of
morphological processes. Al-Shalabi and Evens [4] extend an earlier system and
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a large-scale lexicon to an analyzer for (mainly regular, but also some irregular)
verb forms. Berri et al. [25] describe a morphological analyzer that uses an object-
oriented model to represent morphological rules affecting both verbs and nouns,
along with a dedicated algorithm that identifies affixes and separates them from the
stem. Rules are divided into regular and exception handling. No details are provided
on the coverage of the system. Darwish [39] discusses the rapid development of a
shallow morphological analyzer. Given a large set of word–root pairs, the system
learns to identify the roots of (mainly regular) word forms. Evaluation on a large set
reveals high coverage but, unsurprisingly, rather low accuracy.

The state of the art in Arabic morphological analysis, however, is most likely
BAMA, the morphological analyzer of Buckwalter [27], which combines wide
coverage with detailed, linguistically informative analyses. BAMA is based on
a large-scale lexicon of base forms, along with lists of prefixes and suffixes.
A second part of this database includes a list of compatibility rules, which govern
the combination of stems with affixes. Finally, an efficient engine implements the
rules as well as lexical lookup. The result is a highly-efficient, broad-coverage
(and freely-available) analyzer. BAMA (most recently called SAMA, or Standard
Arabic Morphological Analyzer) is the official morphological analyzer used by the
Linguistic Data Consortium (LDC) for the Penn Arabic Treebank [93], a language
resource used by most practitioners interested in Arabic disambiguation and
parsing.

Based on this analyzer, [61] has built Aragen, a system for generating Arabic
word forms from underlying morphological descriptions. Using the same databases
of [27], Aragen implements a different engine that reverses the operation of the
analyzer. The current state of the art in Arabic morphological generation is a revised
version of Aragen, called Almorgeana [62].

A different approach was advanced in the context of the NooJ platform [123].
NooJ is a linguistic development environment that facilitates the definition of
large-coverage dictionaries and grammars, compiling them into systems that can
efficiently parse real-world corpora. NooJ has been used for the construction of
Arabic morphological and syntactic processors [23], as well as for part-of-speech
tagging and morphological analysis [82].

More recent approaches to Arabic morphology are done with an eye to syntactic
processing. For example, [125,126] addresses Arabic morphology in the framework
of Functional Morphology [51]. His system, ElixirFM, extends the original func-
tionality of the framework by addressing the specific needs of Arabic morphology.
The system not only provides (derivational and inflectional) analyses of word
forms, but can also recognize their grammatical functions. A different system,
Kawaakib [12], combines a set of both morphological and syntactic operators that
are represented as finite-state automata.

For a full, detailed and lucid exposition of computational processing of Arabic,
with a focus on morphology, refer to [63].



54 S. Wintner

2.5.3 Hebrew

Computational work on Hebrew began almost fifty years ago.2 Very early
approaches [29, 122] were superseded by a large-scale project dealing with various
aspects of computational linguistics, natural language processing and information
retrieval: the Responsa project [30,31,52]. Algorithms were developed for automatic
generation of all the possible inflected and derived forms of all the bases in Hebrew,
including those obtained by the combination of prepositions, conjunctions, articles
etc. Based on the generation algorithm, a file was created which included all
the possible Hebrew word forms, approximately 2,500,000 words. The analyzer
implements a program which strips the possible affixes off the input word and
checks whether the obtained result is indeed a legal word. Thus, morphological
analysis and generation are incorporated in a complete system for computational
processing of Hebrew (albeit not Modern, contemporary Hebrew). A more modern
implementation of this system was later commercialized [32, 33].

A different approach to Hebrew morphology is based on the Phonemic Script
[105], which is an unambiguous writing system for Hebrew, preserving the deep
structure of the words. Based on this script, a wide variety of programs were
developed, including a program for vocalization [104], a program for the prepa-
ration of concordances and indexes [103], especially developed for a database of
legal texts [106], a series of programs for morphological analysis and generation
[60, 108, 120, 121] and programs for converting phonemic script to the standard
Hebrew script [107].

Morphological analysis is one aspect of a commercial system, Context, designed
for information retrieval [110]. Another commercial system, Avgad [24], is based
on a dictionary of 25,000 entries, which form the base for “hundreds of thousands”
of Hebrew words (including inflected forms). It was used by Segal (Morphologi-
cal analyzer for unvocalized Hebrew words, http://www.cs.technion.ac.il/~erelsgl/
hmntx.zip, unpublished work, 1997) in order to construct a freely available mor-
phological analyzer: the analyzer was built by automatically generating possible
base forms, inflecting them in all possible ways and verifying the results against the
existing analyzer.

The current state of the art in Hebrew morphological analysis is based on
the HAMSAH morphological grammar [138], which is implemented in XFST
(Sect. 2.4.3). This grammar was reimplemented in Java (for the rationale behind
the reimplementation, see [136]) and is currently being maintained and distributed
by the Knowledge Center for Processing Hebrew [80]. The coverage of the system
is high, and it is constantly being tested on new documents, in order to extend its
lexicon as needed.

It is worth mentioning here that a different morphological grammar was
developed for Hebrew, focusing on transcribed spoken interactions of children

2This section is adapted from [135].

http://www.cs.technion.ac.il/~erelsgl/hmntx.zip
http://www.cs.technion.ac.il/~erelsgl/hmntx.zip
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and adults [102]. In the context of the CHILDES project [95], corpora of such
interactions are being developed for dozens of languages, many of which are
also accompanied by morphological annotations. Nir et al. [102] describe such a
corpus, transcribed in a way that reflects not only the consonantal distinctions that
the standard Hebrew script makes, but also vocalic distinctions that it does not,
including the location of the main stress on each word. This transcription makes
the morphological grammar harder to develop, but it results in a very low degree of
ambiguity. The grammar now has full lexical and rule coverage of the two corpora
it is applied to, and more corpora are expected to be analyzed in the near future.

2.5.4 Other Languages

Morphological resources for other Semitic languages are almost nonexistent. A few
notable exceptions include Biblical Hebrew, for which morphological analyzers
are available from several commercial enterprises; Akkadian, for which some
morphological analyzers were developed [16, 85, 94]; Syriac, which inspired the
development of a new model of computational morphology [88]; and dialectal
Arabic [44, 65, 68, 72].

2.5.5 Related Applications

Also worth mentioning here are a few works that address other morphology-related
tasks. These include a shallow morphological analyzer for Arabic [39] that basically
segments word forms to sequences of (at most one) prefix, a stem and (at most
one) suffix; a system for identifying the roots of Hebrew and Arabic (possibly
inflected) words [40]; various programs for vocalization, or restoring diacritics, in
Arabic [66, 97, 100, 118, 139] and in other Semitic languages [73]; determining case
endings of Arabic words [69]; and correction of optical character recognizer (OCR)
errors [96].

When downstream applications are considered, such as chunking, parsing, or
machine translation, the question of tokenization gains much importance. Morpho-
logical analysis determines the lexeme and the inflections (and, sometimes, also
the derivational) morphemes of a surface form; but the way in which a surface
form is broken down to its morphemes for the purpose of further processing can
have a significant impact on the accuracy of such applications. For example, it is
convenient to assume that Arabic and Hebrew prefixes are separate tokens; but what
about suffixes? Should there be a distinction between the plural suffixes and the
pronominal enclitics of nouns? Several works address these questions, usually in
the context of a specific application.
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Several works investigate various pre-processing techniques for Arabic, in the
context of developing Arabic-to-English statistical machine translation systems
[45, 46, 67, 116]. In the reverse direction, [13] and [2] explore the impact of
morphological segmentation on English-to-Arabic machine translation. The effect
of multiple pre-processing schemes on statistical word alignment for machine
translation is explored by Elming and Habash [47]. And Diab [41] investigates the
effect of differently defined POS tagsets (more or less refined) on the task of base
phrase chunking (shallow parsing).

2.6 Morphological Disambiguation of Semitic Languages

Early attempts at POS tagging and morphological disambiguation of Semitic
languages relied on more “traditional” approaches, borrowed directly from the
general (i.e., English) POS tagging literature. The first such work is probably [87],
who defined a set of 131 POS tags, manually annotated a corpus of 50,000 words
and then implemented a tagger that combines statistical and rule-based techniques
that performs both segmentation and tag disambiguation. Similarly, [42] use SVM
to automatically tokenize, POS-tag, and chunk Arabic texts. To this end, they use a
reduced tag set of only 24 tags, with which the reported results are very high. The
set of tags is extended to 75 in [41].

For Hebrew, two HMM-based POS taggers were developed. The tagger of [14]
is trained on an annotated corpus [80]. The most updated version of the tagger,
trained on a treebank of 4,500 sentences, boasts 97.2 % accuracy for segmentation
(detection of underlying morphemes, including a possibly assimilated definite
article), and 90.8 % accuracy for POS tagging [15]. Adler and Elhadad [1] train an
HMM-based POS tagger on a large-scale unannotated corpus of 6 million words, the
reported accuracy being 92.32 % for POS tagging and 88.5 % for full morphological
disambiguation, including finding the correct lexical entry.

As for Amharic, [48] uses condition random fields for POS tagging. As the
annotated corpus used for training is extremely small (1,000 words), it is not
surprising the accuracy is rather low: 84 % for segmentation, and only 74 % for
POS tagging. Two other works use a recently-created 210,000-word annotated
corpus [54] to train Amharic POS taggers with a tag set of size 30. Gambäck
et al. [55] experiment with HMM, SVM and Maximum Entropy; accuracy ranges
between 88 and 95 %, depending on the test corpus. Similarly, [129] investigate
various classification techniques, using the same corpus for the same task. The
best accuracy, achieved with SVM, is over 86 %, but other classification methods,
including conditional random fields and memory-based learning, perform well.

The challenge of morphological disambiguation in Semitic languages, however,
as discussed in Sect. 2.3 above, prompted several novel approaches to the task.
Many of them are based on the work of [75] and [74], who describe morphological
disambiguation of Czech, Estonian, Hungarian, Romanian and Slovene within a
single approach. The main idea is to define separate classifiers for each feature of the
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morphological analysis (e.g., POS, number, person, tense, case, etc.) The predictions
of all the classifiers are then combined with a weighted log-linear model to produce
a single, unified analysis. If a morphological analyzer for the language is available,
its output is used to constrain the possible analyses predicted by the classifiers.

This approach exactly has been adapted to Arabic by Habash and Rambow [64]
and to Hebrew by Shacham and Wintner [119]. Habash and Rambow [64] start with
the output of a morphological analyzer [27]. They define ten classifiers, one for
each feature of the morphological analysis, namely POS, gender, number, person,
voice, aspect, a pronominal enclitic and two classifiers for conjunction and particle
proclitics. The classifiers are implemented with SVM, using all the features of the
morphological analyses of words within a˙2window of the target word as features.
The predictions of the ten classifiers are combined to yield the most likely analysis
for each word. The best results are achieved by a rule-based classifier, learned from
the training data, that decides when an analysis is “good” based on the predictions
of the basic classifiers. The state of the art in Arabic morphological disambiguation
is represented by the MADACTOKAN system [70, 115], which implements these
ideas.

Shacham and Wintner [119] basically adapt this approach to Hebrew. They define
classifiers for POS, gender, number, person, tense, definiteness, status, prefixes and
suffixes, implemented with SNoW [114], using all the features of the morphological
analysis in a varying window around the target word as features. They, too,
investigate a few methods for combining the results of the classifiers, but the naïve,
unweighted combination yields the best results.

A different approach is proposed by Smith et al. [124]. While they also use
a morphological analyzer (in the case of Arabic, [27]) to constrain the possible
analyses, prediction is done in the source–channel model, where the source is a
factored, conditionally-estimated random field [90]. The model is applied to Arabic
(and also to Czech and Korean), and the results are competitive with [64] (the same
tag set of 139 tags is used).

Recently, [98, 99] proposed an alternative approach to POS tagging of Arabic,
which they refer to as full-word tagging. Given a large annotated corpus of some
500,000 words, they observe that almost 1,000 different (complex) tags occur in
the corpus. They use Memory-based Learning [38] to train a classifier to assign
any one of those tags. This is a difficult task: almost one quarter of the tags occur
only once in the corpus, so data sparseness is a serious issue. On the other hand,
the ambiguity of full word forms is low: only 1.1 analyses per word, on average,
with a maximum of 7. This approach results in more accurate disambiguation than
any other approach. Furthermore, projecting the complex POS tags to simpler ones,
in this case the extra-reduced tagset of [64], results in more accurate “basic” POS
tagging than a direct approach that predicts the simpler tags only. Most interestingly,
the results show that running either a segmentation classifier or a vocalization one
as a pre-process does not improve the accuracy of morphological disambiguation.

Again, the reader is referred to [63] for a full discussion of Arabic morphological
disambiguation. For other Semitic languages than the ones described here, unfortu-
nately, we are unaware of any works addressing morphological disambiguation.
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2.7 Future Directions

The discussion above establishes the inherent difficulty of morphological processing
with Semitic languages, as one instance of languages with rich and complex
morphology. Having said that, it is clear that with a focused effort, contemporary
computational technology is sufficient for tackling the difficulties. As should be
clear from Sect. 2.5, the two Semitic languages that benefitted from most attention,
namely MSA and Hebrew, boast excellent computational morphological analyzers
and generators. Similarly, Sect. 2.6 shows that morphological disambiguation of
these two languages can be done with high accuracy, nearing the accuracy of
disambiguation with European languages.

However, for the less-studied languages, including Amharic, Maltese and others,
much work is still needed in order to produce tools of similar precision. Resembling
the situation in Arabic and Hebrew, this effort should focus on two fronts: devel-
opment of formal, computationally-implementable sets of rules that describe the
morphology of the language in question; and collection and annotation of corpora
from which morphological disambiguation modules can be trained.

As for future technological improvements, we note that “pipeline” approaches,
whereby the input text is fed, in sequence, to a tokenizer, a morphological analyzer,
a morphological disambiguation module and then a parser, have probably reached a
ceiling, and the stage is ripe for more elaborate, unified approaches. Several works
indeed explore such possibilities, focusing in particular on joint morphological
disambiguation and parsing [35, 59, 92, 132]. We defer an extensive discussion of
these (and other) approaches to the next Chapter on parsing.
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Chapter 3
Syntax and Parsing of Semitic Languages

Reut Tsarfaty

3.1 Introduction

Parsing, the task of automatically analyzing the syntactic structure of natural
language sentences, is a core task in natural language processing (NLP). Syntactic
analysis unravels the way in which words combine to form phrases and sentences.
The syntactic analysis of sentences is important from a linguistic point of view,
as syntactic structures map language-specific phenomena (the form of words, their
order, their grouping) onto an abstract representation of meaning-bearing elements
such as subject, predicate, etc. It is also important from a technological viewpoint,
as it helps to recover the notions of “who did what to whom” from unstructured
texts.

The best parsing systems to date are supervised, data-driven and statistical.
Many state-of-the-art statistical parsers have been tuned to, and excel at, parsing
English. Such parsers will not necessarily perform as well when trained on data from
a language with different characteristics [106, 108], and indeed, existing parsing
technologies do not lend themselves to parsing Semitic texts so easily.

Semitic languages such as Arabic, Hebrew, Amharic or Maltese belong to the
Afro-Asian family, and they are assumed to be descendants of the same ancient
ancestor, called the Proto-Semitic. The linguistic structure of Semitic languages
is very different from that of English. Most of the Semitic languages are written
right-to-left and each language utilizes its own writing systems. These languages
introduce vocalization patterns and orthography that are particular to the Semitic
family (Chap. 1), and manifest rich morphology and word-order patterns that are
different from that of English (this chapter). Even though Semitic languages have
an important typological and sociological status, they have been under-studied in
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terms of language technology. With availability of annotated corpora for Hebrew
and Arabic and recent advances made in parsing technology for morphologically
rich languages [106], the time is ripe for an illuminating discussion of effective
techniques for parsing Semitic languages.

This chapter takes up the opportunity to look at statistical parsing technology
from the Semitic perspective. We ask questions such as: How can we build parsing
systems that utilize the massive technological advances made in parsing English
while doing justice to the linguistic phenomena exhibited by Semitic languages?
How well do these models perform relative to general-purpose ones in real-world
parsing scenarios? We cannot hope to do justice here to the vast literature on parsing
technology and theoretical studies on Semitic syntax, but if you follow this chapter
through, we expect that you will be able to successfully conduct (at least) the
following: (i) put together a baseline parsing system that takes into account the
Semitic challenges, (ii) effectively employ modeling techniques that proved useful
in parsing Semitic texts, and (iii) use a range of evaluation metrics in order to get a
fair grasp of parse quality and system bottlenecks. Many of the presented systems
are downloadable from the web and may be used out of the box. If you do not intend
to develop a parsing architecture yourself, this chapter will endow you with a deeper
understanding that will help you set up your data, your choice of parameters, the
feature design, etc., so as to avoid the common pitfalls of porting general-purpose
parsing systems across languages.

The remainder of this chapter is organized as follows.1 Section 3.1 first charts
the parsing world in terms of representations, models and algorithms (Sect. 3.1.1).
It then describes Semitic orthographic, morphological and syntactic phenomena
(Sect. 3.1.2). It finally outlines the overarching challenges in parsing Semitic
languages: the architectural challenge, the modeling challenge, and the lexical
challenge (Sect. 3.1.3). In Sect. 3.2 we present in detail a case study from the
constituency-based parsing paradigm. After formally defining the basic generative
parsing system (Sect. 3.2.1), we present variations that address the architectural
challenge (Sect. 3.2.2), the modeling challenge (Sect. 3.2.3), and the lexical chal-
lenge (Sect. 3.2.4) for Semitic languages. Section 3.3 surveys the main parsing
results that have been reported for Semitic languages so far. Section 3.4 sum-
marizes the current state-of-affairs and concludes with open questions for further
research.

1This chapter assumes knowledge of set theory and probability theory, and familiarity with formal
language theory. Good references would be [71] or [55].
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Fig. 3.1 (a) A phrase-structure tree for (1). (b) A dependency tree for (1). Each emphasized
grammatical function label describes the relation indicated by the dominating arc

3.1.1 Parsing Systems

Syntactic Analysis

A parsing system is a computer program that takes a sentence in a natural language
as input and provides a representation of its human perceived syntactic analysis as
output. For example, the syntactic analysis of sentence (1) below should identify the
syntactic entities “I” and “this book”, and formally represent the relations between
them, that is, that “I” is the subject of “like”, and that “this book” is its object.

(1) I like this book.

The syntactic analysis of a sentence is formally represented as a connected graph
which represents entities as nodes and relations as arcs. These representations build
on formal linguistic frameworks that have been developed by linguists over the last
century.

One way to represent this information is by means of constituency structures [11,
27]. Formally, constituency structures are linearly-ordered trees in which internal
nodes are labeled with types from a finite set of categories. Phrase-structure trees
are constituency trees labeled with phrase types – Noun Phrase (NP), Verb Phrase
(VP), Sentence (S) etc. The phrase-structure tree for the sentence in Example (1)
is illustrated in Fig. 3.1a. In some linguistic traditions it is common to derive the
grammatical function of an element from its tree position [27]. For instance, one
can identify the leftmost NP under S (“I”) as the subject of the sentence, and the
rightmost NP daughter of a VP (“this book”) as its object.

Instead of deriving grammatical relations from positions, it is possible to
represent them explicitly by means of dependency structures, which follow on the
rich linguistic tradition of [98]. A dependency structure is composed of binary arcs,
each arc connects a pair of words. When the arc is labeled, the label defines the type
of grammatical relation between the words. A labeled dependency structure delivers
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Fig. 3.2 Syntactic ambiguity in the sentence “Time flies like an arrow”

an explicit representation of the grammatical relations that define the argument-
structure.2 A dependency structure for sentence (1) is illustrated in Fig. 3.1b.

Formally, we treat parsing as a structure prediction task, where X is a set of
sentences in a language and Y is a set of parse-tree representations of sentences in
the language. A parsing system implements a prediction function h from sentences
to parse trees, that is:

h WX ! Y (3.1)

Different parsing architectures can be thought of as different instantiations of h.
For example, if X is the space of sentences in English and Y is the space
of constituency trees with English words in their leaves, then (3.1) defines a
constituency-based parser for English. If X is a set of sentences in French and
Y is the set of dependency trees where internal nodes are French words, then (3.1)
defines a dependency-based parser for French.

A pervasive problem in the automatic analysis of natural language sentences
is ambiguity. A natural language sentence may be assigned different syntactic
analyses, for example, the sentence “Time flies like an arrow” may admit at least
the analyses demonstrated in Fig. 3.2.

A parsing system aims to find a single syntactic analysis reflecting the human
perceived interpretation of the sentence. That is, for the sentence “Time flies like
an arrow” we would like to pick the (Fig. 3.2a) analysis, while for the sentence
“Fruit flies like a banana”, though superficially similar, we would pick the analysis
reflected in Fig. 3.2b.

2Constituency-based trees and dependency-based trees are the most common syntactic representa-
tion types that are produced by current parsing systems, and these are the structures we discuss in
this chapter. It is however worth mentioning that there exist parsing systems that produce structures
assigned by so-called deep grammars, such as Lexical-Functional Grammar (LFG, [14]) Head-
Driven Phrase-Structure Grammars (HPSG [91]) and Combinatorial Categorial Grammars (CCG
[97]). The methods that we discuss (data driven and statistical) can be applied effectively to these
other types of graphs too. See, for instance, [18, 50, 79].



3 Syntax and Parsing 71

Models and Algorithms

Given a treebank, that is, a finite set of example sentences annotated with their
correct parse-trees fhx; yijx 2 X ; y 2 Y g, a parsing model aims to induce a
prediction function h such that h.x0/ 2 Y is a parse-tree for x0 2 X . Since a
parse-tree is a complex structure, we cannot hope to induce a model that predicts a
syntactic parse tree as a whole. The model thus represents such structures by means
of simpler events that can be observed in annotated texts, and which can be used to
construct novel analyses for unseen texts. These events may be the rules of a formal
grammar [21], transitions in a state machine [80], pieces of the parse tree itself [12]
and so on.

Formally, the parsing modelM may be represented as a triplet, where � is a set
of constraints over the formal representation, � is a set of model parameters and h
is an algorithmic implementation of the prediction function [62].

M D Œ�; �; h� (3.2)

The constraints in � define the form of the syntactic analysis (for instance,
whether they are dependency trees or constituency trees). The scores or weights
of the simple events are the model parameters in �, and they are estimated from
annotated data based on corpus statistics. The algorithm h predicts a parse-tree given
the input sentence, and it technically referred to as the decoding algorithm.

Due to syntactic ambiguity, a sentence x 2 X may admit more than one
syntactic analysis. So a crucial task of the model is to disambiguate, to pick out
the correct syntactic analysis for a particular sentence x 2 X . Let us constrain the
set Yx to be the set of all possible trees for a given sentence x 2 X . In the general
case, h implements an algorithm that finds the highest scoring analysis for a given
sentence.

h.x/ D argmaxy2Yx score.y/ (3.3)

The score of an analysis y is defined to be a multiplication of the model parameters
�i with a feature vector f .x; y/ representing the events in the parse tree y 2 Yx.

score.y/ D
X

i

�ifi .x; y/ (3.4)

In order to implement a parsing system as in (3.3), we need to define the
following:

• The modeled events: That is, the relevant pieces of information that make up the
parse tree, and can be observed in annotated data.

• The training algorithm: That is, a statistical method that is used to estimate the
model parameters, that is, the weights of the modeled events.
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Fig. 3.3 An overall
architecture for statistical
data-driven parsing and
evaluation

• The decoding algorithm: That is, an algorithm that can construct and traverse
possible analyses given a sentence and pick out the highest scoring one.

The overall parsing architecture is depicted in Fig. 3.3. A treebank enters a
training phase in which the modeled events are observed and the model parameters
are estimated. The estimated parameters are then fed into the decoding algorithm,
which accepts a new sentence as input. Based on the parameters and the formal
constraints on the representation, it outputs the highest scoring analysis.

In order to quantitively evaluate the performance of the parsing system we
need to parse sentences that have not been seen during training, and compare the
predictions with the correct analyses. We follow a common practice in machine
learning where the annotated data (the treebank) is first split into a training set
and a test set that are disjoint. The model parameters are estimated based on the
train set, and the decoding algorithm is applied to raw sentences in the test set. The
part of the treebank reserved as a test set contains the gold analyses for the parsed
sentences, and comparing parse hypotheses with gold analyses allows us to quantify
the parser’s performance as scores (Fig. 3.3).

This architecture presents a general framework in which parsing systems can
be formalized, modeled and implemented. Current approaches to parsing can be
roughly grouped into (i) grammar-based approaches (ii) transition-based approaches
and (iii) global discriminative approaches.3 Let us characterize these approaches in
turn.

• Grammar-Based Approaches
A generative grammar is a formal finite system which consists of rules that can
be used to generate syntactic parse trees. In generative grammar-based parsing
systems, the modeled events are grammar rules, and that the vector f .x; y/ for a
parse tree y 2 Yx contains the rules that are used in deriving the tree according
to the formal grammar. The � vector contains rule scores or probabilities which
may be estimated by maximizing the likelihood of the trees in syntactically

3These methods are orthogonal to the kind of formal syntactic representation being used. That is,
grammar-based generative models can be used to generate constituency or dependency structures.
Transition-based methods can be defined for constructing dependency graphs or constituency trees.
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annotated data. The decoding algorithm for a generative system is requires to
build and explore the set of generated trees which yield the input sentence.
Efficient algorithms for this task are often based on dynamic programming
methods that can pack and efficiently traverse an exponential number of trees
in polynomial time and space complexity. Parsing models that are based on
probabilistic generative grammars underly the most accurate statistical parsers
for English to date. The use of such frameworks for parsing Semitic languages is
the main case study addressed in this chapter.

• Transition-Based Approaches
A transition-based system is a formal machine that defines states and possible
transitions between them. Every transition between states dictates an action that
can be applied to a (partial) parse. The transition system defines a start state
and a finish state, and transitions are defined such that every transition sequence
from the initial state to the finish state corresponds to a sequence of actions
that constructs a valid parse tree for the input sentence. In a transition-based
system, the modeled events represented in f .x; y/ are state-transition pairs,
and the weights in � are the scores for the different transitions in each state.
Some transition-based decoding algorithms serve the fastest parsers to date – it
is possible to construct a greedy algorithm which selects n transition between
words, one pair-of-words at a time, and predicts a dependency tree in time
complexity linear in the length of the input sentence.

• Global Discriminative Approaches
In discriminative parsing systems the modeled events are pieces or factors of
the parse-tree and the weights represent scores of these factors. Those weights
are estimated discriminatively using a globally optimized training procedure.
In practice, such parsing systems typically assume a generative component that
generates all possible parse trees in Yx for a given sentence x (usually in a
packed representation), and the decoding algorithm explores the different trees
and seeks the highest scoring one by aggregating the scores of the factors.
Dynamic programming may be useful here too, though the level of factoring and
the use of non-local features may undermine the feasibility of developing such
methods.

The challenges in parsing Semitic languages transcend different representational
and algorithmic choices. In the remainder of Sect. 3.1 we outline the main propertied
of Semitic grammar and show how they challenge the general-purpose parsing
architectures just described. Section 3.2 focuses on a single case-study, generative
constituency-based statistical parsing, and presents modeling methods that effec-
tively address the different kinds of challenges outlined below. Section 3.3 presents
parsing results for the different parsing approaches, as they were empirically shown
to perform on Semitic languages, with notes on available resources.
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3.1.2 Semitic Languages

The Semitic language family is a group of related Afro-Asian languages that are
spoken across the middle-east and North Africa. Semitic languages are spoken
by 270 million native speakers nowadays, where the most widely-spread ones are
Arabic (206 million), Amharic (27 million) and Hebrew (7 million). Many of the
morphological Semitic phenomena, including the rich system of conjugations (e.g.,
binyanim), inflections, and other syntactic constructions (e.g., idafa/smixut) are
shared across the Proto-Semitic descendants. This section presents the orthographic,
morphological and syntactic phenomena which pose challenges to the design of
statistical parsing systems of the kinds we described above.

Script and Orthography

Most Semitic languages are written from right to left, and they employ an alphabetic
system that is based on consonants and omit some or all of the vowels.4 Many
Semitic languages are known for their notorious use of vocalization patterns, which
are indicated by means of subscript or superscript diacritics. Diacritics are explicit
in educational texts, but they are usually omitted in standard texts.

Take, for instance, the Hebrew form fmnh. It may admit at least three readings.5

(2) Hebrew

a. shmena (‘fat’, ADJ.3Fem.Sing)
b. shimna (‘lubricated’, VB.3Fem.Sing)
c. she-mana (‘that’C ‘counted’, VB.3Masc.Sing)

The lack of diacritics does not pose a problem for mature readers of the language
because the correct analysis is easily resolvable based on context. In the following,
for example, the agreement features of the subject help to select the right analysis.

(3) Hebrew

a. hxtwlh fmnh
the-cat.FemSing gained-weight.FemSing (analysis (2a))

b. hild fmnh
the-child.MascSing that-counted.MascSing (analysis (2c))

The selected analysis in (3b) reveals further peculiarity of the Semitic writing
system. In Semitic languages, many linguistic elements such as determiners, definite
articles, subordinators and conjunction markers, do not appear on their own.

4A notable exception is Maltese, see Chap. 1, this volume.
5We use the Hebrew transliteration of Sima’an et al. [96] and the Arabic transliteration of Habash
[49]. The linguistic examples are taken from, or inspired by, Tsarfaty [101] and Shilon et al. [94].
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They are concatenated as affixes to the next open-class word in the sentence. This
means that a space-delimited token may contain different segments carrying their
own part-of-speech tags, as in (4)–(5).

(4) Hebrew
wkfmhbit

a. w/CC kf /REL m/PREP h/DET bit/NN
and/CC when/REL from/PREP the/DET house/NN

(5) Arabic
llqlm

a. l/PP Al/DET qlm/NN
l/for Al/the qlm/pen

Given a word-token out of context, there is massive ambiguity as to how it should be
vocalized and segmented. This has far reaching consequences for syntactic analysis.
Before we can syntactically analyze the sentence, the system should disambiguate
the morphological analysis. However, the disambiguation may need cues from
syntactic context, which is provided by the parser. Section 3.1.3 discusses the
challenge of dealing with this apparent loop.

Morphology

The morphological component of a grammar describes the internal structure of
words. As discussed in Chap. 1, Semitic languages are known for their rich
morphology, encompassing at least derivational and inflectional morphemes. Due to
extensive morphosyntactic interactions, morphological phenomena may be directly
relevant to making correct syntactic predictions.

Derivational Morphology

In Semitic languages, consonantal roots are the main carrier of meaning. Nouns,
Verbs and Adjectives in Semitic languages are derived by combining consonantal
roots with a range of morphological templates that combine vocalization patterns
and extra consonants. For instance, from the Hebrew root k.t.b (roughly “write”) one
can derive the nouns ktb (ketav, “script”) and mktb (mikhtav, “a letter”), the verbs
lktwb (likhtov, “to write”) lhktib (lehacktiv, “to dictate”) and lhtktb (lehitkatev, “to
correspond”), and the adjective/participial ktwb (katuv, “written”). Semitic roots are
not unrelated. The Arabic root k.t.b. (“write”) can be used to derive the nouns ktAb
(kita:b, ‘book’) and mktb (maktab, “office”), the verbs kAtb (ka:taba, “correspond
with”), Akttb (iktataba, “signed, donated”) and the participials katb (ka:tib, “writing,
writer”) and mktwb (maktub, “written, letter”). Morphological templates have
implication for the grammatical structure of the sentence, for instance, they carry
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information concerning the event structure and the type of participants involved in
the predicate [34, 99]. In this chapter we treat each rootC template combination as
a holistic lexical element (henceforth, a stem or a lexeme) carrying its own POS tag,
its lexical meaning and its subcategorization frame.

Inflectional Morphology

Each lexical element in Semitic languages may be realized in different word forms,
corresponding to a set of inflectional features that are appropriate for its syntactic
context. The word forms that correspond to the Hebrew verbal lexeme ktb (“write”),
for instance, realize gender, number and person features, as illustrated in (6). This
set of forms is called a paradigm [3].

(6) Hebrew

Singular Plural

1st 2nd 3rd 1st 2nd 3rd

Past
Masculine ktbti ktbt ktb ktbnw ktbtm ktbw
Feminine ktbt ktbh ktbtn
Present
Masculine kwtb kwtbim
Feminine kwtbt kwtbwt
Future
Masculine aktwb tktwb iktwb nktwb tktbw iktbw
Feminine tktbu tktwb tktwbnh tktwbnh

The sets of inflectional features that are realized by morphological markers are
similar across Semitic languages. In Hebrew and Arabic, verbs are inflected for
gender, number and person, Arabic verbs are inflected for case, aspect and mood.
Hebrew and Arabic nouns are inflected for gender and number. In addition, nouns
and adjective are inflected to mark their so-called state (smixut/idafa), determining
genitive relations in complex noun compound constructions.

The richness of the paradigms makes it hard to observe a all possible realization
possibilities of a lexeme in a finite treebank. This leads to a high OOV (out of
vocabulary) words rate, a challenge that we address in Sect. 3.2.4.

Syntax

The Semitic grammar uses rich morphological marking to indicate, in systematic
ways, how words combine to form grammatical phrases and sentences. In English,
the order of words and phrases is a significant factor determining how the words
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should be combined to deliver certain meanings. For instance, the subject must
precede the verb and the direct object has to follow it. In Semitic languages,
subjects, objects and modifiers are alternatively by marked means of morphology.
There are two ways to mark grammatical functions morphologically. One is by case
assignment on a word or a phrase, indicating its relation to the sentence predicate,
and the other is by agreement, where the inflectional features on two different words
or phrases agree in order to indicate a grammatical relation between them. Due to the
rich system of morphological argument marking, the word-order patterns in Semitic
clauses are less rigid than in English.

Word-Order

The most prominent dimension of variation across languages is their basic word-
order, that is, the order in which the Subject, Verb and Object appear in a canonical
sentence [47]. In the Proto-Semitic language, the default word-order has been
Verb-Subject-Object (VSO), This order is retained in Classical Arabic and Biblical
Hebrew. In Modern Semitic languages including Modern Hebrew and many Arabic
dialects this order has changed into Subject-Verb-Object (SVO) default order,
similar to the canonical order in English. Ethiopic Semitic languages follow a
Subject-Object-Verb (SOV) order. This variation in word-order is not only attested
across languages but also within the corpora of particular languages. In naturally
occurring Semitic texts we can attest both SVO and VSO constructions, as well as
V2 constructions in which a preposed object or modifier triggers subject/predicate
inversion (similar to Germanic languages) [95]. Within nominal phrases, we often
find relatively fixed word order patterns. In Arabic and Hebrew nominals we
find possessed–possessor (NG), and noun–adjective (NA) orders. Modern Ethiopic
languages have a possessor–possessed, and adjective–noun order within noun
phrases.

Case-Marking

Semitic languages utilize a case system in which the nominative, accusative and
genitive cases are marked. Modern Standard Arabic maintains such case endings in
literary and broadcasting contexts. Ethiopian languages preserved the accusative
case ending. Hebrew and Amharic use a differential Object marking system,
in which objects are marked by the acc marker if and only if they are also marked
for definiteness. Such explicit case marking allows to determine the grammatical
function of a word or a phrase regardless of its position.

(7) Hebrew Object Marking [31]

a. dni ntn mtnh ldinh
Dani gave present to-dina
“Dani gave a present to Dina”
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b. dni ntn at hmtnh ldinh
Dani gave ACC DEF-present to-Dina
“Dani gave the present to Dina”

(8) Amharic Object Marking [5]

a. Lemma wiffa j-aj-al.
Lemma dog 3MascSing-see-AUX(3MascSing)
“Lemma sees a dog.”

b. Lemma wiffa-w-in j-aj-ew-al.
Lemma dog-DEF-ACC 3MascSing-see-3MascO-AUX(3MascSing)
“Lemma sees the dog.”

Semitic nouns and adjectives can be inflected for state, also known as idafa in
Arabic or smixut in Hebrew. This is the morphological marking of genitive case,
which can be productively used to create arbitrarily long genitive constructions.

(9) Construct State Nouns in Hebrew

a. bit hspr
house-of the-book
school, lit: the house of the book

b. mnhl bit hspr
principal-of house-of the-book
The school principal

(10) The Idafa Construction in Arabic

a. mdyr Almdrsp
priciple-of the-school
The school principal

b. Abn mdyr Almdrsp
son-of priciple-of the-school
The school principal’s son

Definite marking (nunation in Arabic) occurs on the single (final) head of such
constructions. Due to the possibility of nesting idafa/smixut constructions, the
definite marker may be arbitrarily distant from the related genitive-marked noun.

Agreement

The inflectional features on two different elements in the sentence may share their
values in order to indicate a grammatical relation between these words or phrases.
Semitic languages exhibit patterns of agreement both at the clause level and phrase
level. For instance, Semitic subjects agree with predicates on gender, number and
person, as in (11). (In certain configurations this is not so – in Arabic VSO sentences,
the verb is always singular (12).) In noun phrases in both Hebrew and Arabic the
noun agrees with its modifier on gender, number and definiteness.
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(11) Agreement in Hebrew SVO

a. hildim ktbw
kid.MascPl write.past.3MascPl
“The boys wrote”

(12) Agreement in Arabic VSO

a. ktb AlCAwlAd
write.past.MascSing boy-MascPl.Def
“The boys wrote”

Verbless Sentences

Some Semitic sentences lack a verbal predicate altogether. In such sentences, the
predicate is realized by a nominal phrase, an adjectival phrase or a prepositional
phrase. This phrase determines the inflectional properties of the predicate.

(13) Hebrew

a. dni mwrh
Danny teacher
“Danny is a teacher”

b. dni xkm
Danny smart
“Danny is smart”

Verbless (nominal) sentences can indicate identity sentences. In such cases,
pronominal elements act as copular elements, linking the subject to the nominal
predicate. These pronominal elements must agree with the subject on inflectional
features.

(14) Hebrew

a. dni hwa mwrh
Danny Pron.MascSing teacher.MascSing
“Danny is a teacher”

b. dinh hia mwrh
Dina Pron.FemSing teacher.FemSing
“Dina is a teacher”

Clitics

Pronouns indicating grammatical functions such as subject and object may be
dropped if the verb is inflected to reflect their pronominal inflectional features.
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(15) Hebrew

a. raitih
Saw.1Sing.3FemSing
I saw her

(16) Arabic

a. rAythA
Saw.1Sing.3FemSing
I saw her

All in all, a Semitic word contains information about the lexical meaning,
argument structure, inflectional features, and one or more grammatical relations
that are realized by the word. This information provides crucial cues concerning
the syntactic structure of a sentence. In parsing, we wish to utilize such cues when
we search for the correct syntactic analysis of the sentence (Sect. 3.2.3).

3.1.3 The Main Challenges

Whether we are aimed at dependency parsing or constituency parsing, whether our
parser relies on a generative grammar, a transition-based system or a graph-based
framework, some basic assumptions inherent in the design of parsers for English
break down when the system is applied for parsing Semitic languages. One such
assumption is the notion of an input word. In English, the input words are assumed
to appear as is in the parse tree. An additional assumption made in parsing English is
that the position of words largely determines their grammatical functions and how
they can be combined. In Semitic languages, non-adjacent words may interact in
non-trivial ways due to complex morphological marking. There is also an implicit
assumption in the design of statistical parsers for English that it is feasible to derive a
comprehensive probabilistic lexicon from treebank data. Due to word-form variation
and high ambiguity, Semitic lexicons are hard to bootstrap. We hereby delineate the
emerging challenges as the architectural challenge, the modeling challenge, and the
lexical challenge.

The Architectural Challenge

In English and similar languages, space-delimited word token represents the basic
units for syntactic analysis. Due to the rich morphology of words of Semitic
languages and their complex orthography (Sect. 3.1.2), every space-delimited
word-token may contain multiple units which carry independent grammatical
categories. To illustrate, recall the Hebrew word-token wkfmhbit in Example (4).
It contains multiple morphological units indicated with their own part-of-speech
tags (and/CC when/REL from/PREP the/DT house/NN).
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In order to parse a sentence in a Semitic language, the text has to go through
morphological analysis which uncovers the sequence of word segments which
can be combined into phrases and sentences. Morphological analysis in Semitic
languages is however highly ambiguous due to morphological variation, complex
orthography, and the omission of diacritics. For example, a Hebrew word like bclm
may admit different analyses, as illustrated in (17).

(17) bclm

a. b/IN clm/NN
b. b/IN h/DT clm/NN
c. b/IN h/DT cl/NN fl/POSS hm/PRN
d. bcl/NN fl/POSS hm/PRN

Such ambiguity can only be resolved in the context at which the word token occurs.
Sometimes, local context such as neighboring words is sufficient for disambiguating
the morphological analysis. At other times, a word that contains disambiguating
cues may be distant from the word that needs to be disambiguated.

Consider the Hebrew word hneim in the below example. Here, the existence of
an agreeing element helps to pick out the correct morphological analysis of this
word.

(18) a. bclm hneim fl hecim
in-DEF-shadow DEF-pleasant of the-trees
“In the pleasant shadow of the trees”

b. bcl fl hecim hwa at zmninw hneim
in-DEF-shadow of DEF-trees he.MascSing ACC time-ours made-pleasant.
1MascSing
“In the shadow of the trees he made our time pleasant”

In (18a) there is agreement of hneim on the definite article with the previous noun,
which renders the correct analysis of hneim a definite adjective. In (18b), there
is agreement with the pronoun “he”, which is the subject of the entire sentence.
This agreement helps us understand hneim as a verb, inflected to reflect the subject
properties.

So, in order to assign a syntactic analysis we first need to identify the correct
morphological segments, but in order to pick out the correct morphological segmen-
tation in context, we need information concerning the overall syntactic structure.
How can we construct an architecture that can deal with this loop? Computationally,
there are two main strategies:

• A Pipeline Architecture. In a pipeline architecture, we first set up a mor-
phological disambiguation component, and then provide the most probable
morphological segementation as input to a standard parsing model. The parser
thus aims to assign a tree to the given sequence of morphological segments.

• A Joint Architecture. An alternative way to build the architecture is to select the
most probable morphological segmentation and syntactic analysis at once.



82 R. Tsarfaty

Fig. 3.4 A pipeline
architecture for parsing
Semitic languages

Fig. 3.5 A joint architecture
for parsing Semitic languages

The two types of architectures for parsing Semitic languages are sketched
in Figs. 3.4 and 3.5 respectively. The appealing property of a pipeline approach
is its simplicity and modularity. The downside of a pipeline is that errors in
the morphological disambiguation component may propagate to the parser and
seriously undermine its prediction accuracy. The main advantage of the joint
strategy, as advocated by Tsarfaty [100], Cohen and Smith [28], Goldberg and
Tsarfaty [42], and Goldberg and Elhadad [39], is that the joint architecture allows
us to use syntactic information to disambiguate morphological information, and
vice versa. It also helps to avoid error propagation. An apparent downside of this
strategy is that it may make the search space over joint morphological and syntactic
analyses a lot larger, which may in turn lead to search errors. In Sect. 3.2 we present
an efficient lattice-based decoder that cater for a joint solution for syntactic and
morphological disambiguation.

Correctly resolving the morphological ambiguity in the input is essential for
obtaining a correct parse, but whether this morphological disambiguation should
be done before or jointly with the parser is an empirical question.

The Modeling Challenge

A crucial factor in the modeling of a parsing system is the choice of modeled events.
Intuitively, these events reflect regular patterns in the annotated data and allow us to
generalize from them. In practice, we have to ensure we pick out relevant regularities
that lead to accurate predictions. These consideration require us to take into account
the properties of the languages that we aim to parse.

Take the notion of word-order in different languages. There exist different
word ordering patterns in different languages, some are more flexible than others.
If we are dealing with a language with fixed word order, such as English, using
the order of the different elements as model parameters may help us make very
accurate predictions, because we will find repetitive patterns in high frequencies. For
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languages with free word order, picking word-order patterns as model parameters
will not necessarily help us in making precise predictions, since the correctness of a
syntactic structure is dependent on other factors, and identical word-order patterns
will not capture the same kind of grammatical relations. In such languages we may
want to parameterize other features that are likely to exhibit more regular patterns.

When we design a parsing model for a Semitic language, we have to take
into account the following facts: (i) word order and morphological information
jointly determine the predicate-argument structure of sentences, (ii) word order
may be different for similar predicate-argument constructions, and (iii) word
combinations may be indicated by matching morphological features of remote
words. In Sect. 3.2.3 we survey different ways to parametrize such factors, implicitly
or explicitly, in a generative parsing model.

The Lexical Challenge

The syntactic analysis of sentences requires us to know the correct morphological
analysis of words and morphological segments. The morphological analysis of
Semitic words typically includes their part-of-speech tags, pronominal clitics, and
various inflectional features that are reflected in the form of the words. We refer
to this information as the morphosyntactic representation (MSR) of the word form
in context. These MSRs present the interface between word level information and
sentence structure, and the parameters of assigning MSRs to words are called lexical
parameters. During parser development in lab settings it is often assumed that
the input words are provided to the parser with correctly disambiguated MRSs.
(This happens in both constituency-based and dependency-based parser settings.)
In realistic scenarios, when parsing unstructured texts (e.g., web data), the MSRs
are not known in advance.

One way in which the model can learn how to automatically assign MSRs to
words is by observing the relative frequency of different analyses in an annotated
corpus. In languages such as English, there is not much variation in the form of
words in different syntactic contexts and we can attest enough occurrences for
each word to robustly estimate the lexical parameters. This is not the case in
morphologically rich languages, and Semitic languages in particular, where a single
lexeme may be realized as a paradigm of different word forms that realize additional
inflectional features for gender, number and person (the complete paradigm for a
single lexeme “worked” in English includes seven forms ebd, ebdti, ebdt, ebdnw,
abdtn,ebdtm, ebdw in Hebrew).

In languages such as English, the amount of annotated data appears to be
sufficient for estimating the lexical parameters, but treebanks for languages that
have been understudied have a fairly limited amount of annotated texts, typically
not enough for observing a sufficient number of lexical items in different contexts.
Even if we are given an external resource such as a complete lexicon for the
language, we usually do not have sufficient annotated data to estimate the parameter
weights for the MSRs and score the complete trees.
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This problem is referred to as high OOV (out of vocabulary) rate, and it is also
found in domain adaptation scenarios where a trained parser is applied to texts
from a different domain. In Sect. 3.2.4 we survey methods that can be used for
scoring the lexical parameters using additional resources, for instance, an external
morphological analyzer and additional amounts of unannotated data.

3.1.4 Summary and Conclusion

The grammar of Semitic languages is different than that of English, in the sense
that their word order is a lot more complex and the syntactic structures are more
flexible. These properties challenge existing parsing architectures in various ways.
The parsing architecture has to handle complex, ambiguous input words. When
constructing and scoring candidate parse trees, the model has to allow for flexible
word-order patterns while ensuring the coherence of their morphological marking.
From a machine learning point of view, a probabilistic lexicon in Semitic languages
is harder to obtain, due to high word form variation and massive ambiguity.

The next section demonstrates how the design of a parsing system can effec-
tively address these challenges. We show how morphological information can
be disambiguated jointly with the parse tree, we demonstrate different ways to
parameterize a parser such that it can take into account, implicitly or explicitly,
complex morphosyntactic interactions, and we also discuss how a parser can exploit
additional resources (such as a dictionary and/or unannotated data) in order to
handle word-form variation. We further show how to evaluate parsers, taking into
account both the morphological and syntactic components of the predicted analyses.

3.2 Case Study: Generative Probabilistic Parsing

Generative probabilistic models are the earliest and most commonly studied models
for constituency-based parsing. Despite theoretical claims concerning the inade-
quacy of context-free grammars for analyzing natural language data [93], statistical
modeling based on Probabilistic Context-Free Grammars (PCFGs) underlies the
implementation of many accurate parsers for English [21, 23, 30, 85].6 The concep-
tual simplicity and empirical viability of the framework has led to many adaptations,
and several language-independent parsing frameworks have been developed based
on it [8, 59, 85]. However, applying these ‘ready-made’ frameworks to parsing
Semitic languages requires non-trivial adaptation or reconstruction in order to
perform well on Semitic data [28, 32, 42, 45, 63, 100, 102].

6The best result reported for English constituency parsing on the Penn treebank is now just above
92 F-Score [76].
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In this chapter we describe building blocks of generative probabilistic models
for parsing and demonstrate how to reconstruct the model in ways that address the
challenges we outlined above. Addressing these challenges allows improves parsing
results for Hebrew and Arabic significantly. Parsers for Amharic, Syriac or Maltese
are relatively simple to derive based on the general framework presented here.

3.2.1 Formal Preliminaries

We formally define parsing as a structure prediction task implementing a prediction
function h WX ! Y where X is a set of sentences in a language over a vocabulary
T , and Y is a set of linearly-ordered labeled trees with terminals drawn from T .
Due to syntactic ambiguity, an input sentence x 2 X may admit multiple analyses
which we denote by the set Yx . In a probabilistic model, we aim to find the most
probably parse tree given the input sentence:

h.x/ D argmaxy2Yxp.yjx/ (3.5)

We spell out (3.5) further by incorporating the definition of conditional probability
and by observing that p.x/ is constant with respect to the maximization (3.8).

h.x/ D argmaxy2Yx p.yjx/ (3.6)

D argmaxy2Yx
p.y; x/

p.x/
(3.7)

D argmaxy2Yx p.y; x/ (3.8)

In languages such as English, each sentence x 2X is contained in any tree y 2 Yx ,
because the words stand as terminals in the tree. So we can simplify h.x/ further:

h.x/ D argmaxy2Yxp.y/ (3.9)

A parse tree y 2 Yx for an input sentence x 2 X is a complex structure, too
complex to be observed directly in the training data. Therefore, a common strategy
is to break down the construction of the tree into a finite sequence of decisions
d1; : : : ; dn such that y D d1 ı : : : ı dn. The probability of the tree equals the
multiplication of the probabilities of the conditional decisions (3.9).

h.x/ D argmaxy2Yxp.d1 ı : : : ı dn/ (3.10)

D argmaxy2Yxp.d1j;/ � : : : � p.dnjd1 : : : dn�1/ (3.11)

D argmaxy2Yx
nY

iD1
p.di jd1 : : : di�1/ (3.12)
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Fig. 3.6 A context-free derivation of the sentence “I like this book”. For each rule ˛ ! ˇ, the
substitution site ˛ is in bold, and its dominated daughters form the ˇ sequence

The modeled events are the decisions di and the model parameters are the probabil-
ities of applying each decision in a certain conditioning context. The conditioning
context is narrowed down to relevant aspects of the tree generation. We indicate it
by a function  that selects relevant features of the generation.

h.x/ D argmaxy2Yx
nY

iD1
p.di j .d1 ı : : : ı di�1// (3.13)

Probabilistic Grammars

A constituency tree can be thought of as having been generated via a formal
generative device that we call a grammar. Formally, a grammarG is a tuple

G D hT ;N ; S;Ri
Where T is a finite set of terminal symbols, N is a finite set of non-terminal
symbols, S 2 N is a designated start symbol, and R is a set of grammar rules.
A context free grammar (CFG) has rules of the form ˛ ! ˇ where ˛ 2 N is a
non-terminal symbol and ˇ 2 .T [N /� is an ordered sequence of terminals and
non-terminal symbols. These rules indicate a substitution of a non-terminal symbol
in the left-hand side with the sequence of symbols at the right-hand side of the rule.
Such substitution is independent of the context of the non-terminal in the left-hand
side, and hence the name: context-free grammars [26].

A context-free grammar can be used to generate syntactic parse trees. Given a
CFG we can obtain parse trees by means of sequentially applying rules from R.
The derivation of the sentence “I like this book” in Fig. 3.1a is graphically depicted
in Fig. 3.6. When we fix a particular traversal order of trees, say, BFS, every context-
free derivation corresponds to a unique tree and vice versa. That is, y D r1 ı : : :ı rn.

We can extend this generative device into a probabilistic grammar that can assign
non-zero probability to every sentence in the language generated by the grammar.
A probabilistic context-free grammar is a CFG tuple extended with p W R ! Œ0; 1�,
a probability mass function assigning probabilities to rules.
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PCFG D hT ;N ; S;R; pi

The function p is defined such that 8r 2 R W 0 � p.r/ � 1. In order to guarantee
assignment of probability mass to all sentences that are generated by the grammar,
p has to be defined such that the probability of all rules with the same symbol at the
left-hand side sums up to one.

X

fˇj˛!ˇ2Rg
p.˛ ! ˇ/ D 1 (3.14)

The probability assigned to a tree by a PCFG is calculated as the probability of
its unique derivation y D r1 ı : : : ı rn. Due to context-freeness, the application of
context-free rules is independent, so we can simply multiply rule probabilities.

p.y/ D p.r1 ı : : : ı rn/ D p.r1/ � : : : � p.rn/ D
nY

iD1
p.ri / (3.15)

Our baseline probabilistic parsing model is defined to be one that finds the
most probable parse tree for a given sentence by computing the probability of its
derivation according to a given PCFG. The decisions di are CFG rules, and the
conditioning context is the label at the substitution site.

h.x/ D argmaxfy2Yxg
Y

A!˛2y
p.A! ˛jA/

Training

In order to score syntactic parse trees generated by the probabilistic grammar we
need to know the probabilities of rules of the form p.˛ ! ˇj˛/. In a data-driven
setting, we extract the grammar rules (the modeled events) and estimate the model
parameters (the probability of the rules) from the annotated trees in the treebank.

The trees in the treebank are decomposed into context-free rules, and the
probability of each rule may be estimated using relative frequency counts. Formally,
if Count W R ! N indicates corpus counts of the rules occurrences, then the
empirical estimate of Op is defined as follows.

Op.˛ ! ˇj˛/ D Count.˛! ˇ/P
� Count.˛ ! �/

Probabilistic grammars extracted in this way are called treebank grammars [21].
Every treebank grammar satisfies the condition that Op assigns non-zero probabilities
for every rule in the grammar, and the sum for all rules with the same left hand side
equals to 1. This guarantees that we can assign non-zero probabilities for all the
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trees generated by the grammar for sentences drawn from T �. For every sentence
in the language generated by the treebank grammar it then holds that:

0 � Op.x/ � 1

It can be shown that this method of grammar extraction provides unbiased and
consistent statistical estimates. That is, assuming that the corpus is generated by
some context-free grammar, if we had an infinite amount of annotated data, the
probabilities estimated in this way will converge to the true probabilities in the
grammar that generated the corpus.

Decoding

Given a PCFG G D hT ;N ; S;R; pi and an input sentence x 2 X , we need
an algorithm that can find the most probable parse for a sentence according to the
probabilistic grammar. This phase is called parsing or decoding.

A naïve way to decode would be to enumerate all possible derivations of a
sentence given the rules in R, score them according to the probability model p,
and pick out the analysis with the highest probability. However, since the number of
analyses for a sentence of length n is exponential in n, this would be an inefficient
way to decode.7 In order to decode efficiently, we can store all parse trees in a two-
dimensional chart and search for the highest probability parse-tree using dynamic
programming methods. This is the idea behind the Cocke-Kasami-Younger (CKY)
algorithm for parsing with PCFGs [56].8

A pre-condition for using the CKY algorithm is that each rule in the context-free
grammar appears in one of the following two forms:

• Syntactic Rules: A! B C ; where A;B;C 2 N
• Lexical Rules: A! ˛; where A 2 N and ˛ 2 T

Such a grammar is said to be in Chomsky Normal Form (CNF) [26]. It can be
formally shown that every PCFG can be uniquely converted into its CNF-equivalent
by replacing a flat rule of n daughters with n�1 binary rules encoding intermediate
steps in generating the sequence of daughters. In Fig. 3.7a we show how to assign a
symbol for every intermediate step. Moreover, it is possible to convert a CFG into
CNF by employing the Markov “limited history” assumption, where the right side
of the rules records a limited number of previously generated sisters, as in Fig. 3.7b.

The CKY algorithm assumes a data-structure called a chart which is a two-
dimensional array of size .n C 1/ � .n C 1/ for a sentence of length n. Each cell

7The catalan number Cn D Qn
kD2

nCk
k

is the number of full binary trees with nC 1 leaves.
8There are several algorithms that use dynamic programming and a two-dimensional chart. They
can construct the tree top-down, bottom-up or left-to-right, they can use an agenda or not, and
they can be exhaustive or greedy. Here we present an exhaustive bottom-up algorithm, used at the
backbone of many state-of-the-art parsers, such as [8, 59, 85].
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Fig. 3.7 (a) Conversion into Chomsky Normal Form (b) CNF 1st-order Markovization

Fig. 3.8 The correct analysis of “Time flies like an arrow” stored in a chart

Fig. 3.9 The ambiguous analyses of “Time flies like an arrow” packed in a chart

Œi; j �may contain multiple chart-items of the formAŒi; j �whereA is a non-terminal
symbol labeling the span between two indices 0 � i < j � n in the sentence.

We store a tree in a chart by storing its labeled spans in the relevant chart cells
and recording the back-pointers to the labeled daughters that created this span, as
shown in Fig. 3.8. When we store multiple parse trees in one chart, there is a lot of
overlap, such as the shared NP “an arrow” in Fig. 3.9. This overlap is the reason
we can store an exponential number of analyses for a sentence of length n, in
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Algorithm 1 The CKY algorithm for chart parsing (with back-pointers)
1: for i D 1! n do
2: for L D 1! jN j do
3: ıLŒi � 1; i � p.AL! wi jAL/ F Initiate pre-terminal probs
4: ˇLŒi � hwi i F Store words
5: for span D 2! n do F Fill in the chart
6: for end D span! n do
7: begin end � span
8: for L D 1! jN j do
9: ıL.begin; end/ max

hm;J;Ki
p.AL! AJAK jAL/� ıJ .begin; m/� ıK.m; end/

10: ˇL.begin; end/  argmax
hm;J;Ki

p.AL ! AJAK jAL/ � ıJ .begin; m/ �
ıK.m; end/

11: return RECONSTRUCT-TREE (ıS Œ0; n�; ˇSŒ0; n�) F Follow back-pointers

polynomial space O.n2/. Each chart cell can potentially store as many items as
the number of non-terminals in the grammar. So, in practice, the space complexity
of the algorithm is bounded byO.n2�jGj/where jGj is the number of non-terminal
symbols jN j.

Algorithm 1 presents the CKY procedure. Given a PCFG with a set of rules
R, a sentence of length n and an empty chart, the algorithm proceeds by filling in
the chart with all the analyses that are licensed by the grammar, scoring them, and
picking the most probable analysis. In lines 1–4 we fill in the labels that can span
1-length terminals according to the grammar. Let L be the index of a part-of-speech
labelAL 2 N . For each terminal ti , the ı values store the rule probabilities for each
part-of-speech tag AL 2 N .

ıL.Œi � 1; i �/ D p.AL ! ti jAL/

In lines 5–10 the algorithm considers sequences of length 1 < span � n. For each
cell Œi; j � it adds a label AL into this chart item iff there exists an index i < m < j

and a rule AL ! AJAK 2 R such that AJ Œi;m� and AkŒm; j � also exist in the
chart. For every label stored as a chart-item the algorithm stores the accumulated
probability ı based on the maximal probability of obtaining the daughters:

ıL.i; j / maxhm;J;Kip.AL ! AJAK jAL/ � ıJ .i;m/� ıK.m; j /

The algorithm also keeps the back pointers to the combined cells of the most
probable chart item using the ˇ values. Once the chart is completely filled, we find
the start symbol ıS Œ0; n C 1� (where S indexes any designated start symbol) and
traverse the back-pointer indicating the most probable chart items that construct the
tree rooted in this symbol.



3 Syntax and Parsing 91

Evaluation

The performance of a constituency based parsing model is standardly evaluated
using the ParseEval measures [10], which calculate the precision and recall of
labeled spans that have been correctly predicted. Let us assume a sentence of length
n. Let P be the set of labeled spans hi; L; j i in the parse-tree and let G be the set
of labeled spans in the gold tree for the sentence. As in [35], we use the OC notation
to denote only the root part of a tree C , that is, discarding the terminals and pre-
terminal nodes. The notation j OC j indicates the number of labeled spans, discarding
the root category. The labeled precision (LP), labeled recall (LR) and F1-Score (their
harmonic means) are calculated as follows:

LP D j
OP \ OGj
j OP j (3.16)

LR D j
OP \ OGj
j OGj (3.17)

F1 D 2 � LP � LR

LPC LR
(3.18)

3.2.2 An Architecture for Parsing Semitic Languages

Preliminaries

We continue to assume that our parser implements a structure prediction function
h W X ! Y , where each element x 2 X is a sequence of space-delimited word
tokens x D w1; : : : ;wn from a set W and each output elements is a constituency
tree. When parsing Semitic languages, Semitic words do not uniquely determine
the leaves of the parse tree (Sect. 3.1.3). Therefore, we have to alter our prediction
function.

Let S be a vocabulary containing a finite set of valid morphological segments
in the language, and let us continue to assume a finite set of non-terminal
categories N . Every parse tree y 2 Y for a word sequence x D w1 : : :wn is a
constituency tree over a sequence of segments s1 : : : sm, where si 2 S and possibly
n 6D m. We assume a symbolic lexicon L , which is simply a set of morphological
segments associated with their corresponding part-of-speech tags, or, in short, a set
of lexemes.

L D fhs; lijs 2 S ; l 2 N g:

We demonstrated in Example (4) that a token wi 2 W may admit to multiple
morphological segmentation possibiities. The set of analyses is constrained by a
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language-specific morphological analyzer M where M is a function from words to
sets of sequences of lexemes M W W !P.L �/.

The morphological analysis of an input word M .wi / can be represented as a
lattice Li in which every arc corresponds to a specific lexeme hs; li 2 L . The
morphological analysis of an input sequence x D wŠ : : :wn is then a lattice L
obtained through the concatenation of the lattices M .w1/ D L1; : : : ;M .wn/ D Ln.
An example for a complete morphological analysis lattice is shown in Fig. 3.11.

Let YL be the set of trees y 2 Y that dominate sequences of segments which are
contained in the morphological lattice M .x/ D L. A parser for Semitic languages
has to predict both the correct sequence of morphological segments and the parse
tree that dominate this sequence.

h.x/ D argmaxfy2YLgp.y/ (3.19)

Joint Probabilistic Modeling

There are two different approaches to implement (3.19), as a pipeline scenario, or as
a joint prediction. In a pipeline scenario, the morphological lattice L is provided as
input to a morphological disambiguation component that aims to predict the correct
morphological analyses of the input word tokens.

hsm1 ; lm1 i� D argmax
hsm1 ;lm1 i2M .wn1/

p.sm1 ; l
m
1 jwn1/ (3.20)

Then, the most probable segmentation sm1 enters a standard parsing system which
takes that morphological segments found in (3.20) to be the tagged tree terminals.

y� D argmax
y2fy0 Wyield.y0/Dhsm1 ;lm1 i�g

p.yjhsm1 ; lm1 i�/ (3.21)

In a joint architecture, the lattice is provided as input to the parser, and the parsing
algorithm aims to jointly predict the most probable parse tree and the most probable
morphological segmentation. Since the morphological lattice for every sequence of
words is unique, we further can simplify:

y� D argmax
y2fy0Wyield.y0/2M .x/g

p.yjM .wn1// (3.22)

If we assume that all the morphological paths in the lattice are equally likely, as
in [42], we are in fact selecting both the path and the segmentation based on the
probability of the trees only, as in [42, 45], and we can simplify further:

y� D argmax
y2YL

p.y/ (3.23)
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Fig. 3.10 Three possible parses of the phrase BCLM HNEIM. Tree (a) is the gold parse

Fig. 3.11 Morphological segmentation possibilities of the phrase BCLM HNEIM. The pairs on
each arc s=l indicate the segment s and a part-of-speech label l , as assigned by the lexicon L

To illustrate this, consider the morphological lattice of the Hebrew phrase BCLM
HNEIM, as depicted in Fig. 3.10. All trees in Fig. 3.11 dominate paths in the lattice.
The goal of a joint probabilistic model is to select the most probable tree, and this
tree will pick out a single path through the lattice.

Lattice-Based Decoding

Fortunately, we can still use the CKY decoding algorithm for finding the most
probable tree over a lattice, by altering a few of its underlying assumptions [42].
We can no longer assume a chart of length n, since we do not know up front
the number of morphological segments in x D wn1 . We can know the size of
the morphological lattice, and we know that the the trees in YM .x/ will always
be anchored in states in the lattice M .x/. So we can chart size is bounded by
the number of states in the morphological lattice. jM .x/j, and the lattice states
define the indices of the array. Some morphological segments in the trees span more
than two indices. At initiation time, we seek to fill in the part-of-speech for all the
segments in the lattice, even those of which span is greater than 1.

Consider for example the chart in Fig. 3.12. It holds a tree that spans a path in
the morphological lattice. Both the NN and the VB elements span more than one
chart item, with no dominated daughters of span 1. In Fig. 3.13 the span [4,6] can
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Fig. 3.12 Extended CKY
lattice parsing:
segment-based indexing of
the phrase BCLM HNEIM.
Dotted circles indicate tagged
morphological segments

Fig. 3.13 Extended CKY
lattice parsing: two possible
analyses of the phrase BCLM
HNEIM. Dotted circles
indicate tagged
morphological segments

Algorithm 2 The CKY algorithm for lattice parsing (with back-pointers)
1: for hi; AL; j i 2 EDGES.MA.x// do F traverse the morphological analysis lattice
2: ıAL Œi; j � p.AL! si;j / F Initiate segments probs
3: ˇlatticeALŒi; j � hsi;j i F Store segments

4: for span D 2! n do F Fill in the chart
5: for end D span! n do
6: begin end � span
7: for L D 1! jN j do
8: ıL.begin; end/ max

hm;J;Ki
p.AL! AJAK/� ıJ .begin; m/� ıK.m; end/

9: ˇL.begin; end/ argmax
hm;J;Ki

p.AL! AJAK/� ıJ .begin; m/� ıK.m; end/

10: return BUILD-TREE ıS Œ0; n�/; ˇS Œ0; n� F Follow back-pointers

be covered by a single part of speech tag VB, or a phrase ADJP dominating two
spans of length 1. At decoding time, we traverses all possible trees licensed by the
grammar over all possible segmentations possibilities encoded in the lattice. The
highest probability tree selects a segmentation among the alternatives. The pseudo
code for the altered algorithm is given in Algorithm 2. Notably, only the initiation
phase (lines 1–3) has to be altered.

Evaluation

The structure and properties of Semitic languages pose challenges not only for
parsing, but also for evaluating parser performance. Standard evaluation metrics for
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Fig. 3.14 A gold tree and a parse hypothesis for evaluation

parsing assume identity between the input word sequence and the terminals in the
tree. The ParseEval metrics for evaluating constituency-based parsing [10] assume
that every tree can be represented as a set of labeled spans of the form hi; L; j i such
that a labeled constituent L spans word indices i < j . If P and G are sets of such
tuples for the gold and parse trees, the ParseEval scores are as follows.9

LP D j
OP \ OGj
j OP j (3.24)

LR D j
OP \ OGj
j OGj (3.25)

F1 D 2 � LP � LR

LPC LR
(3.26)

Applying ParseEval for cases where the parsed tree spans a different yield from
that gold tree causes the evaluation procedure to break down. Consider for example
the trees in Fig. 3.14, which all correspond to the same original raw sentence BCLM
HBEIM with the morphological lattice in Fig. 3.11. The trees contain different
segmentation hypotheses. The gold segmentation of BCLM HNEIM is more fine-
grained then the coarse-grained segmentation hypothesis. The syntactic trees are
very similar. In both of them, the overall PP and the attached NP are identified
correctly. Figure 3.15 shows the word-based indexing of the gold tree and parse
hypothesis. There are 5 syntactic nodes in the gold tree and 2 syntactic nodes in the
gold tree, and the intersection of labeled spans in empty. The ParsEval score then
calculates as F1.gold; tree/ D 0.

To circumvent this, early studies on parsing Modern Hebrew propose a gener-
alized version of Parseval, in which tuples of the form hi; L; j i indicate character

9The standard implementation of ParseEval, Evalb, is available at http://nlp.cs.nyu.edu/evalb/.

http://nlp.cs.nyu.edu/evalb/
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Fig. 3.15 Comparing the gold segmentation, tree to the predicted segmentation,tree. The different
rows demonstrate different ways of indexing. The lattice-based indices refer to the lattice in
Fig. 3.11

indices [42, 100]. This solution does not solve the problem adequately, since many
morphological processes go beyond concatenation and the sequence of characters
themselves may be misaligned. Figure 3.15 shows the character-based indexing of
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the gold tree and parse tree in our example. Because of an incorrect segmentation
hypothesis, some phonological forms are not identified, and the sequences of
characters are of different lengths. Again, the intersection of labeled spans is empty,
and the ParseEval score is again 0.

In both cases, the metrics reduce the structures to sets. We can instead use
similarity metrics that measure the differences between the trees themselves,
rather than their set reduction. Several studies address this evaluation challenge
by correcting the hypothesized segmentation using string edit operations, and then
score the parse tree dominating a corrected segment [28, 90]. This method has been
used successfully to evaluate parse trees over speech lattices, where the input signal
is ambiguous. However, in both implementations, string edit corrections may lead to
discarding syntactic nodes that were dominating removed segments, so the overall
result may be biased. In our example, changing the parse segmentation into the
gold segmentation involves deleting segment CLM and adding segments CL FL
HM. The normalized string edit distance is then 1C3

6C4 D 0:4. Changing the gold
segmentation into the parsed one we would remove CL FL HM and add BCLM,
and get the same segmentation error. Note that in the first case the trees are much
larger than in the second case, and the normalization of the tree scores are different.
These normalization changes distort the empirical results which are based on such
string-edit corrections.

To solve this challenge, Tsarfaty et al. [107] use tree-edit distance metrics to score
trees over morphological lattices directly.10 TedEval requires a set A of operations
such that, for every y1; y2 2 Y§, there is some sequence of operations ha1; : : : ; ami
(ai 2 A ) turning y1 into y2. The set A contains four edit operations: ADD.l; i; j /

and DEL.l; i; j / that adds and deletes a nonterminal node with label l 2 N
that dominates the span from state i to state j in the lattice L; ADD.hs; ti; i; j /
and DEL.hs; ti; i; j / that adds and deletes a lexeme, that is, a pair consisting of
a preterminal node labeled p 2 N and a terminal node labeled s 2 T . These
operations are properly constrained by the lattice M .x/, that is, we can only add
and delete lexemes that belong to L , and we can only add and delete them between
states where they are allowed to occur in the lattice.

We define the cost of an operation sequence ha1; : : : ; ami as the sum of the costs
of all operations in the sequence C.ha1; : : : ; ami/ DPm

iD1 C.ai / according to some
cost function C W A ! RC. An edit script ES.y1; y2/ D ha1; : : : ; ami is a sequence
of operations from A that turns y1 into y2. The minimum edit distance MED.y1; y2/

is the minimal cost edit scrip:

MED.y1; y2/ D min
ES.y1;y2/

C.ES.y1; y2//

The error of a predicted structure p 2 Yx with respect to a gold structure g 2 Yx is
defined to be the edit distance MED.p; g/. The score of a predicted structure p with

10The software may be downloaded at http://stp.lingfil.uu.se/~tsarfaty/unipar/download.html.

http://stp.lingfil.uu.se/~tsarfaty/unipar/download.html
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respect to the gold g is defined by normalizing the distance and subtracting it from
a unity:

EVAL.p; g/ D 1� MED.p; g/

N.p; g/

The normalization factor N.p; g/ is normally defined as the worst possible MED

given the sizes of p and g. In the current setting, this corresponds to the case where
every all the nodes and lexemes in p have to be removed and all the nodes and
lexemes in g have to be inserted, so we interpret the measure as the size of the tree
(jxj discards the root node, following common practice).

EVAL.p; g/ D 1� MED.p; g/

jpj C jgj
In our example, can use tree edit distance to turn the parsed hypothesis into

the gold tree directly. For that we assume the lattice-based indices as depicted
at the bottom of Fig. 3.15. We now have to apply the following operations over
the lattice-indexed lexemes and nodes: DEL(NNT/CLM,1,4), ADD(NN/CL,1,2),
ADD(POSS/FL,2,3), ADD(PRN/HM,3,4), and ADD(PP,2,4). The number of nodes
and lexemes in the gold tree is 11 and in the parsed hypothesis it is 7 (discarding the
roots). TedEval yields the following score:

EVAL.p1; g1/ D 1 � 5

7C 11 D
13

18

The TedEval score, takes into account both nodes and lexemes. It normalizes the
metrics according to the size of trees with the corresponding segmentation, and
thus provides a less biased score than those that reduce structures into sets. In our
example, the score given by TedEval reflects the fact that the system identified
correctly two of the three major components in the sentence – the overall PP and a
modified NP, and it avoids penalizing syntactic errors over misaligned segmentation.

Summary and Conclusion

We presented an architecture for parsing Semitic languages in which we assume a
morphologically ambiguous input signal and predict a morphological segmentation
jointly with the parse tree. We have further shown an adaptation of the CKY
decoding algorithm to such architectures, and demonstrated ways for evaluating
parsing results over ambiguous input. The architecture we presented here underlies
the best performing constituency parsers for Modern Hebrew and Modern Standard
Arabic. It provides a general framework for parser development, and the parser
developer to use different kinds of probabilistic grammars for disambiguation. In the
next section we show how to learn probabilistic grammars that can effectively cope
with the rich morphosyntactic interactions reflected in Semitic data.
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3.2.3 The Syntactic Model

PCFG Refinements

The greatest limitation of PCFG-based statistical parsing models is the
context-freeness assumption inherent in the formalism [93]. This assumption
imposes independence between model parameters – the probabilities of rules that
are used to derive the syntactic trees. This independence assumption is both too
strong and too weak for natural language data. Too strong, because the context
of a node may have implications for the rule that can be applied in this position,
and too weak, because a node sequence may have to be permuted when aiming
to parse unseen data. This section discusses techniques that effectively address
these two types of limitations. We present methods that involve (semi)-manual
tuning of model parameters, automatic tuning of model parameters, and a complete
remodeling of the trees. We then discuss constrained parsing, and we finally
comment on discriminative methods that discard such independence assumptions
altogether. This section concentrates on theoretical foundations. The empirical
results obtained by different models for Semitic languages are detailed in Sect. 3.3.

History-Based Modeling

In simple PCFG-based models, the parameters are the weights of grammar rules of
the form A ! ˛. These parameters may be viewed as instantiating a history-based
model, where every decision di takes the form of substitutingA into ˛. The function
 selects the symbol A at the substitution site as conditioning context.

h.x/ D argmaxy2Yx
Y

A!˛2�
p.A! ˛jA/ (3.27)

The multiplication of such parameters imposes independence assumptions that
are too strong for natural language parsing. Consider the sentence “He likes her” as
annotated in Fig. 3.16. The probability assigned to the tree according to the PCFG
on the left is equal to the probability of the tree for the ungrammatical sentence “Her
likes he” on the right. This PCFG model is said to over-generate, that is, it assigns
probability mass to sentences that should not be allowed by an English grammar.

Johnson [52] observes that it is easy to alter such independence assumptions
by relabeling each category label with its parent category. By adding parent
information, we enrich the conditioning context for rule application, and this, in
turn, creates a relation between the generated nodes and higher levels of the tree.
This modeling choice may be seen as a slightly more complex instantiation of the
function with the current label decorated with its immediately dominating parent.
(We use the X@A notation to indicate elements in the syntactic environment of a
node A.)
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S → NP VP 1
NP → He 0.5
VP → V NP 1
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NP → Her 0.5
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p(tree1)=0.25 p(tree2)=0.25)

Fig. 3.16 Over generalization of a simple PCFG. Both (tree1) and (tree2) may be generated by
the probabilistic grammar on the left, and they are assigned probability = 0.25

S → NP@S VP@S 1
NP@S →
VP@S → V@VP NP@VP 1
V@VP →
NP@VP →

He 1

likes 1
Her 1

(tree1) S

NP@v

He

VP@S

V@VP

likes

NP@VP

her

(tree2) S

NP@S

Her

VP@S

V@VP

likes

NP@VP

he
p(tree1)=1 p(tree2)=0

Fig. 3.17 Parent Annotation of a simple PCFG. The tree (tree1) is the only tree generated by
the probabilistic grammar on the left. The tree (tree2) is assigned probability = 0

Algorithm 3 The Transform-Detransform method for history-based PCFG parsing
1: trans-trainset TRANSFORM(original-trainset) F enrich treebank trees
2: grammar TRAIN(trans-trainset) F obtain a probabilistic grammar
3: for i D 1! n do F traverse the test-set
4: treei  DECODE.grammar; xi / F parse the input sentence
5: yi  DE-TRANSFORM.treei / F discard enrichment

6: return fyi gn1 F return prediction

h.x/ D argmaxx2Yx
Y

A!˛2x
p.A! ˛jA; parent@A/ (3.28)

Consider the annotation of parent category for every node in the trees, as in
Fig. 3.17. Here the annotation distinguishes NPs that occur in subject position
(NP@S ) from NPs that occur in object position (NP@VP ). A model can thus learn
to generate the right kind of pronoun at each position of the tree. This helps to
differentiate the grammatical sentence on the left from the ungrammatical sentence
on the right of Fig. 3.17, which is now assigned zero probability.

In technical terms, Johnson proposes a parsing architecture based on tree
transformation, as detailed in Algorithm 3. He first transforms the training trees
to their new format, obtains a probabilistic grammar from the transformed trees,
uses the treeank grammar to parse the test data, and reverses the transformation of
the parse trees prior to evaluation. For English parsing, it turns out that a parsing
model obtained in this way improves broad-coverage parsing of newswire texts
substantially [52]. Klein and Manning [59] further show that annotating grand-
parent information for some of the nodes in the treebank further improves English
parsing accuracy.
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Fig. 3.18 Syntactic analyses in English and Hebrew transitive sentences
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Fig. 3.19 Parent annotation features in English and Hebrew transitive sentences

Would this modeling choice have the same effect when parsing another
language? Recall that Semitic languages have a more flexible phrase structure
than sentences in English. Thus, the Hebrew version of the phrase for “I like her”
could occur as ani awhb awth , awth ani awhb and awhb ani awth (see Fig. 3.18).
When applying the parent annotation procedure to the trees in this example (see
Fig. 3.19) we do not distinguish the distribution of phrases hanging after S, and thus
it is not expected to improve the disambiguation capacity for such structures.

Empirically, parent encoding was shown to improve parsing Semitic languages to
a lesser extent than parsing English (see Sect. 3.3). This procedure mainly benefited
constructions that exhibit stricter word-order, such as relative clauses and modified
noun phrases. In order to parse Semitic languages more accurately, one has to
provide a parsing method that can cope with word-order freeness and long flat CFG
rules.

Head-Driven Models

The capacity to generate trees with flexible phrase structures crucially depends on
the ability of a grammar to generalize from observed rules to new rules. Assume for
instance that during training we observed the parse tree for ani awhb awth (I like
her) which uses the rule S! NP VP NP. Also assume that the decoder needs to find
the correct parse for the input sentence awth ani awhb (her I like) which involves the
structure S! NP NP VP. If we have not seen this rule permutation in the training
data, we will not be able to generalize from the former structure to the latter.

This is a problem of under-generation, and it leads to a lack of coverage.
A common way to increase coverage is to break down the generation of standard
rules into smaller pieces that can recombine to form rules that were unseen during
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training (much like we do in binarization Sect. 3.2.1). To solve this problem for
English, Collins and others [22,30,70] proposed the Head-Driven modeling method.
In this modeling method we view a context-free rule of the form A ! ˛, as a
complex object where we distinguish a head element H from its left and right
sisters.11

A! Ln : : : L1HR1 : : : Rm

Head-driven models break down the generation of the daughters’ sequence into
incremental steps, generating the sisters from the head outwards, one sister at a
time.

h.x/ D argmaxx2Yx
Y

A!˛2x
p.A! Ln : : : L1HR1 : : : RmjA/ (3.29)

D argmaxx2Yx
Y

A!˛2x
p.H jA/ �

nY

iD1
p.Li jA;H;L1 : : : Li�1/

�
mY

iD1
p.Ri jA;H;R1 : : : Ri�1/ (3.30)

D argmaxx2Yx
Y

A!˛2x
p.H jA/ �

nY

i�1
p.Li j L.A;H;L1 : : : Li�1//

�
mY

iD1
p.Ri j R.A;H;R1 : : : Ri�1// (3.31)

The model in (3.31) is another instance of history-based modeling. For each node
generation we select conditioning context using a history-mapping function  

the chooses relevant information from the sisters that we have already generated.
For instance, the  functions can select immediately preceeding daughters in a
Markovian generation process. A 0-order Markovized head-driven process will
consider only the parent and the head daughter as conditioning context.

h.x/ D argmaxx2Yx
Y

A!˛2x
p.H jA/ �

nY

iD1
p.Li jA;H/ �

mY

iD1
p.Ri jA;H/ (3.32)

A 1st-order Markovized process records one immediately preceding daughter in
addition to the head, a 2nd-order process records two immediately preceding

11A head is a linguistic notion coined in the generative linguistic tradition. For instance, in the rule
VP ! V NP , the verb is considered the head of the phrase. The criteria for selecting heads are
subject to debates (see, for instance, the discussion in [109]), here we leave head-selection criteria
out of the discussion and assume that deterministic rules for finding heads can be defined.
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Fig. 3.20 Head-outward generation of nodes in English and Hebrew trees
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Fig. 3.21 Morphological features of syntactic nodes in English and Hebrew trees

daughters, and so on. Higher-order Markovian processes are also conceivable but
they impose stronger dependencies between the different daughters of a CFG rule,
which greatly undermines its generalization capacity.12

Head-driven lexicalized parsing13 has been implemented in a language-
independent parsing engine by Bikel [8], and this model was later applied to
different languages with partial success. The benefits of this modeling method
have not been as significant for Semitic languages parsing as they were for parsing
English (see Sect. 3.3). When the word-order is flexible, there is no significant
correlation between the position of noun phrases and the form of the different
nouns, as can be seen in Fig. 3.20. A more systematic correlation occurs between
the form of nouns and their case assignment, as is illustrated in Fig. 3.21. A more
helpful enrichment here would then be to encode morphological case, rather than
syntactic position.

Parent encoding on top of syntactic categories and Markovization of CFG
rules are two instances of the same idea, that of encoding the generation history
of a node. The different history-mapping functions � and  correspond to two
dimensions that define the parameters’ space for parsers [59]: the vertical dimension

12Additional information may also be added to the  function. Collins [30] includes punctuation
and verbal elements in the conditioning context of model 1, and information concerning subcate-
gorization frames (the expected sisters of the verb) in model 2. In all cases, the model continues to
assume a strict separation between generating the left and right sisters.
13In the original head-driven models, each upper case symbol A;H;Li ; Ri in fact signals the
category of the node and the lexical head information. In unlexicalized parsing, lexical items are
omitted, and only the categories remain.
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(v) captures the history of the node’s ancestors (its parent and grandparents), and the
horizontal dimension (h) captures the horizontal ancestors of a node (its sisters) in
a head-outward generation process. By varying the value of h and v along this two-
dimensional grid and following the recipe of Algorithm 3, Klein and Manning [59]
showed that both horizontal and vertical history can improve parsing performance
of unlexicalized treebank grammars considerably.

Three-Dimensional Parameterization

The two-dimensional space provides information concerning the position of a
node in the tree. In the case of Semitic languages, the presence or absence of a
morphological feature may substantially affect the probability of generating certain
nodes in these positions. Encoding morphological information on top of syntactic
category labels is technically referred to as a state-split. In English, for instance, the
verbal category VB has splits such as VBS and VBG distinguishing singular verbs
and gerunds respectively. Both VBG and VBS share some behavior with the VB
category, but they exhibit different behavior in different syntactic contexts.

Tsarfaty and Sima’an [102] describe a universe in which tree structures enriched
with morphological features reside deeper along a third dimension they refer to as
depth .d/. This dimension can be thought of as encoding aspects of morphological
analysis orthogonal to the v=h dimensions. Agreement features, for instance, apply
to a set of nodes all at once. Figure 3.22 illustrates an instantiation of d with a single
definiteness feature (D). Figure 3.23 selects an NP node from Fig. 3.22 and shows its
expansion in three dimensions. Taking a history-based perspective again, we view
the function 	 as selecting morphological aspects of the structure generated so far.

h.x/ D argmaxx2Yx
Y

di2x
p.di j�.d0 ı : : : ı di�1/;  .d0 ı : : : ı di�1/;

	.d0 ı : : : ı di�1// (3.33)

In parsing engines such as [8, 30] it is often the case that 	.d0 ı : : : ı dk/ D ;,
since English does not benefit much from incorporating morphology. For Semitic
languages, where morphological information interacts with syntax more closely,
discarding morphological state-splits runs the risk of loosing important information.

There are different ways in which morphological state-splits may be explicitly
incorporated into the parsing architecture.

• Treebank grammars. This technique involves repeating Algorithm 3 for differ-
ent combinations of conditioning information, and manually tuning the choice of
rule enrichment on a development set, as in Klein and Manning [59]. This is a
simple and intuitive way to set a strong baseline. However, it relies on linguistic
intuitions, and finding the optimal combination may be labour intensive.
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Fig. 3.22 The three-dimensional parametrization space for treebank-grammar encoding

Fig. 3.23 (a) Local history of node generation in three dimensions. (b) An orthogonal dimension
of correlated splits: looking at a complex NP phrase in a three-dimensional space

• Probabilistic feature grammars. Goodman [44] proposes a history-based
model in which features are generated one by one, conditioned on previously
generated features. The choice of features, their order and the independence
between them are determined by a human expert and are tuned on a development
set.
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• Coarse-to-fine parsing. The coarse-to-fine parsing scheme is a popular way to
approach decoding when a huge space of split categories is defined [24]. In this
approach one learns multiple treebank grammars with increasing depth. The
first decoding round uses a coarse-grained treebank grammar, and later passes
use more elaborate treebank grammars, but the search is constrained by the
most probable coarse-grained structures. This method avoids the need for human
interference. However, it runs the risk that good parses will be pruned too early.

Automatic State-Splits

We have so far exploited the multidimensional space of parameters by explicitly
augmenting node labels with information concerning parents, position, morphology,
and so on. These techniques require the parser developer to explicitly define the
different dimensions, annotate the information in treebank data, and retrain the
treebank grammar. This approach is simple and intuitively appealing but it requires
investment of human efforts, firstly in adding extra annotations, and secondly in
finding the optimal combination of annotated features. Is it possible to search for an
optimal set of parameters automatically, without human intervention?

Studies such as [75,85,86] explore the possibility of employing general machine
learning techniques for finding grammars with performance-improving state-splits.
These grammars assume that each non-terminal symbol C can have different
instantiations (splits) C1; C2; C3 : : :which are used in different contexts. These split-
states encode latent information, which is hidden from the point of view of the
model. The only split criteria that matter are those that empirically improve parsing
performance on the original coarse-grain categories. These state-split grammars
are also called latent annotation PCFGs (in short, PCFG-LA). The technique of
obtaining accurate PCFG-LA parsers has been mastered and excelled by Petrov
et al. [85], delivering a language-independent parsing framework.

The PCFG-LA model runs as follows. In the training phase, the model learns
an accurate state-split grammar from a given treebank. It then uses a coarse-to-fine
decoding algorithm to efficiently parse unseen data. Training a state-split grammar
in the system of Petrov et al. [85] starts off with a completely binarized treebank
with coarse-grain phrase labels. It then follows a cycle that repeats the following
steps: (i) split (ii) merge, and (iii) smooth.

• At the split phase, every existing label is split into two categories. A rule of
the form A ! B C now has eight instantiations: A1 ! B1 C1, A1 ! B1
C2, A1 ! B2 C1, A1 ! B2 C2, A2 ! B1 C1, A2 ! B1 C2, A2 ! B2 C1,
A2 ! B2 C2.
An Expectation Maximization procedure [33] then applies to set the split-rule
probabilities. In the Expectation step, one computes the posterior probability of
each annotated rule in each position in each training tree. In the Maximization
step, these posterior probabilities as used as weighted observations, and we
update the rule probabilities to their observed relative frequencies.
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• Not all splits are equally useful. Furthermore, too many splits may lead to over-
fitting. At the merge phase, state-splits that are found not to be useful according
to an empirical gain criteria are merged back. Merging is followed by an EM
procedure that sets the probabilities of the rules in the merged grammar.

• While the grammar considers the label-splits as disjoint states, they still share
some of their behavior with the originalC type category. So, at the smooth phase
some of the probability of the split labelsC1; C2 etc. is passed back to the original
label C ,

At decoding time, the score of each split rule is calculated by marginalizing out
its splits. For efficiency reasons, multi-level coarse-to-fine pruning is used [84].

The PCFG-LA implementation of Petrov et al. [85] is publicly available14 and
has been applied to different languages (English, German, Chinese, French and
Arabic) obtaining good results. Applying it out of the box for Semitic language
data deserves certain extra considerations:

• Goldberg and Elhadad [38] found that using the PCFG-LA training procedure
over fine-grained categories does not yield major improvements. This is because
the training procedure cannot merge splits that were not perform by the system.
In order to obtain significant improvements, the treebank labels that we start with
have to be sufficiently coarse-grain.

• The available PCFG-LA implementations assume a procedure for unknown
words handling [85, footnote 3]. This method is tailored for English, where
upper case, digits and suffixes are good predictors of syntactic categories. Semitic
languages show a different behavior, and adding a specialized unknown words
treatment is indispensable [4].

• The default training setup assumes 2nd-order vertical Markovization and
1st-order horizontal Markovization. For languages with more flexible ordering,
setting 1st-order vertical Markovization and 0th-order horizontal Markovization
is preferred [38]. The generation of daughters is then conditioned on the parent
only, and the automatic state-splits implicitly encode ordering preferences of
sisters.

Relational-Realizational Parsing

The previous modeling strategies we discussed assume that the probabilistic
grammar defines the probabilities of phrase-structure trees, and hand-coded con-
straints encode linguistic (hard or soft) constraints and derive their grammatical
functions. It is possible to define the probabilistic grammar itself as a set of soft
morphosyntactic constraints that ensures a coherent predicate argument-structure by
mapping grammatical functions to phrase-structure trees. The predicate-argument

14The Java implementation can be downloaded from http://code.google.com/p/berkeleyparser/.
The extended implementation including lattice parsing was made available by Goldberg and
Elhadad [39] and can be downloaded at http://www.cs.bgu.ac.il/~yoavg/software/blatt/.

http://code.google.com/p/berkeleyparser/
http://www.cs.bgu.ac.il/~yoavg/software/blatt/
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structure may be read off directly from the trees, without the need to post-process
the data. In addition, the functional information can help to improve the quality of
the tree prediction. This is the motivation underlying the Relational-Realizational
modeling framework proposed by Tsarfaty [101] and it is applied to modeling
Semitic phenomena in Tsarfaty et al. [103–105].

The Relational-Realizational model assumes a grammar called RR-PCFG which
is a tuple RR D hT ;N ;GR; S 2 N ;Ri where the PCFG is extended with a
finite set of grammatical relations labels GR D fgr1; gr2; : : :g such as subject,
predicate, object, modifier etc. (GR \N D ;). The set R contains three kinds of
rules which alternate the generation of structural and functional notions:

R D Rprojection [Rconfiguration [Rrealization

Let us assume that CP ! C : : : C is a context-free production in the original
phrase structure tree where each daughter constituent Ci 2 N has the grammatical
relation gri 2 GR to the parent category. The set gr1 : : : grn is the relational
network (a.k.a. the projection or subcatgorization) of the parent category. Each
grammatical relation gri@CP is realized as a syntactic category Ci and carries
morphological marking appropriate to signaling this grammatical relation. The RR
grammar articulates the generation of such a construction in three phases:

• Projection: Cp ! fgrigniD1@CP
The projection stage generates the function of a constituent as a set of grammat-
ical relations (henceforth, the relational network) between its subconstituents.

• Configuration: fgri gniD1@CP ! gr1@CP : : : grn@CP
The configuration stage orders the grammatical relations in the relational network
in a linear order in which they occur in the tree.15

• Realization: gri@CP ! Ci
In realization, every grammatical relation generates the morphosyntactic repre-
sentation of the child constituent that realizes the already-generated function.

The RR model is a recursive history-based model, where every constituent
node triggers a generation cycle, conditioned on this node category. Every time
the projection-configuration-realization cycle is applied, the probability of this
constituent node is replaced with the probabilities of the three stages, multiplied:

PRR.r/ D
Projection Pprojection.fgri gniD1jCP /�
Configuration Pconfiguration.hgr0 W gr1; g1; : : :ijfgri gniD1; CP /�
Realization

Qn
iD1 Prealization.Ci jgri ; CP /�

Padjunction.hC01; : : : ; C0m0 ijgr0 W gr1; CP /�Qn
iD1 Padjunction.hCi1; : : : ; Cimi ijgri W griC1; CP /

15The configuration phase can place realizational slots between the ordered elements signaling
periphrastic adjunction and/or punctuation. See further details in the original publication [103].
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Fig. 3.24 Generating canonical and non-canonical configurations using the RR model: S level
CFG productions at the LHS of (a) and (b) are different. The RR-CFG representations at the RHS
of (a) and (b) share the projection and realization parameters and differ only in their configuration

The first multiplication implements an independence assumption between
grammatical relations and configurational positions. The second multiplication
implements an independence assumption between grammatical positions and
morphological markings of the nodes at that position. These assumptions are
appropriate for languages with flexible word order and rich morphology. The later
multiplications implement independence between the generation of complements
and the generation of adjuncts.16

Figure 3.24 shows the RR generation process for the different clauses we
discussed before. In their simple context free representation, there is no parameter
sharing between the two constructions. In the RR representation, the trees share
the projection and realization parameters, and only differ in the configuration
parameter, which captures their alternative word-ordering patterns. By making the
commonalities and differences between the clauses explicit, the grammar can create
new rules for unseen examples.

Training RR grammars confines with the transfrom-detransform method outlined
in Algorithm 3. It starts off with a set of phrase structure trees in which every
node specifies the phrase-label, grammatical function, and morphological features
of that node. The treebank then goes through a transformation which includes:
(i) separating grammatical functions from their realization, (ii) separating the
position of every relation from its morphological marking. Training can be done in
a standard way, using maximum likelihood estimates. Since the resulting grammar
assumes independence between the rules, we can use a simple chart parser over
sequences or over lattices to parse unseen sentences.

Lexicalization and Factored Modeling

Lexical tendencies provide cues that are orthogonal to syntactic information.
Consider the alternative English trees for the sentence “I saw the woman with

16Discussion of the distinction between complements and adjuncts is omitted here, refer to [101]
for further details.
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Fig. 3.25 Unlexicalized and lexicalized syntactic analyses of “I saw the woman with the hat”

the hat.” in Fig. 3.25. The analyses on the left and right are syntactically equally
plausible. There is a stronger affinity of the lexical items “woman with hat” than
that of “seeing with hat”, which makes us pick out the analysis on the left as the
correct analysis. In order to capture such tendencies, is customary to lexicalize the
parse trees. That is, for each node we add information concerning the lexical head
of the dominated constituent, as demonstrated at the bottom of Fig. 3.25. The tri-
gram “woman with hat” may be explicitly read off from the left-hand tree, while
“saw with hat” is read off from the right hand tree. If we can capture these lexical
affinities in the parsing model, it may help us choose between competing analyses.

Learning treebank grammars from lexicalized trees is hard due to extreme
data sparseness. Klein and Manning [58] suggest instead to parse with a factored
model of syntactic and lexical information, providing a practical way to model the
predicate-argument structure of a sentence as orthogonal to its tree structure.

Formally, the factored constituency/dependency model assumes an agenda-based
parser that guides the search through the space of structures y 2 Y looking for
the most likely lexicalized tree L D hy; d i with y 2 Y a phrase-structure tree
d 2 D a dependency structure projected by the phrase structure. Now, if Z !
X Y is a CFG rule and h D head.Z/ D head.X/ and h0 D head.Y /, the
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parser seeks the most probably pair of phrase structure and dependency structure
by multiplying the different factors.17 The word-level dependency information in
the model is formally incorporated through the probability distribution p.h0jh/,
and it is completely independent of structural information coming from the PCFG
productions p.XY jZ/.

hy; d i� D arg max
.y;d/

pfactored.y; d jx/ D
Y

fZh!XhYh0 gniD1

pcfg.XYjZ/ � pdep.h
0jh/

This model underlies the Stanford Parser18 which has been applied successfully
to parsing English, Chinese, German and Arabic. The application of the model
for a new language requires a specification of the head-finding rules (and possibly
language-specific unknown-words treatment). At the same time, it is not clear that
the model can effectively capture morphological-syntactic interactions, because
morphological information captured in the word-forms h; h0 is orthogonal to
syntactic configurations. A sound solution for this problem is factored modeling
of the lexicon, as described in Green et al. [46] (see also Sect. 3.2.4).

Constrained Parsing

From an empirical point of view, it is unclear that state-splits learned for non-
terminals symbols will constrain the distribution of trees sufficiently. The grammar
may still over-generate. In order to enforce grammatical structures it is possible to
impose hard-coded linguistic constraints.

• Parse Selection: Instead of providing a single output structure, most parsers
can provide a set of n most probable trees. It is possible to devise hand-coded
linguistic rules that pick out the first tree that does not violate any constraint.
In this way we can discard trees that violate morphological case constraints or
agreement. This view of parsing is reminiscent of the Optimality Theory (OT)
framework of Prince and Smolensky [87], in which the grammar is composed
of a GEN component and a set of violable constraints. According to them,
a grammatical structure is one that violates the least amount of constraints.

• Parse Reranking: Re-ranking may be viewed as a refinement of the parse selec-
tion idea. In reranking frameworks, rather than selecting the first tree that obeys
a set of hard constraints, we encode linguistic information as soft constraints.
The parses in the n-best list are re-ranked according to the weights of linguistic
features of the structure, and the weights are trained using a discriminative
framework (see Sect. 3.2.3). The best tree according to the re-ranked model is
selected as the output parse-tree [23].

17The probability model defined by the formula is deficient [60, footnote 7].
18http://nlp.stanford.edu/software/lex-parser.shtml

http://nlp.stanford.edu/software/lex-parser.shtml


112 R. Tsarfaty

• Chart Pruning The gold tree is not guaranteed to be found in the n-best list.
A different way to incorporate constraints is by way of pruning trees during
the search. In chart pruning, one observes every rule in the chart and prunes
edges that violate linguistic constraints (e.g., morphological agreement). This
view of parsing is akin to theoretical frameworks such as Lexical Functional
Grammar (LFG) or Head-Driven Phrase-Structure Grammar (HPSG) that view
tree construction as a constraint satisfaction problem [88].

Discriminative Approaches

Encoding non-local features in a history-based model results in fine-grained states
which are hard to statistically learn using a limited amount of training data.
A different approach to defining probability distributions over structures popularity
is based on discriminative methods.

One such approach is based on Maximum Entropy (MaxEnt) models [6]. MaxEnt
models may be defined over arbitrary graphical representations, and it need not
assume any independence between different sub-events in the representation of the
tree. All information in MaxEnt models is expressed through feature functions that
count the number of occurrences of a certain pattern in the representation. Anything
that is definable in terms of the representation can serve as a feature that feeds into
such functions. The parameters of the model are weights that reflect the importance
or the usefulness of the respective features.

The feature-function values are multiplied by their estimated weights to yield
the score of the structure defined by means of those features. The structure that
maximizes p.y/ is the selected parse, where:

p.y/ D 1

Z�
e

P
i �i fi .y/ (3.34)

Z� D
X

y2Y
e

P
i �i fi .y/ (3.35)

The main challenge in using such models is estimating their parameters from
data. There is no practical way of summing over all trees to calculate the normal-
ization constant Z�, so estimation procedures that maximize the joint likelihood
of the data and structures (MLE) are generally intractable. Johnson et al. [54]
suggests to use maximum conditional-likelihood estimation (MCLE) instead, where
one maximizes the conditional likelihood of the structure given its yield, and the
normalizing factor Z� is replaced with the following, more manageable,Z�.y/.

Z�.y/ D
X

y02Yx
e

P
i �i fi .y/

This estimation procedure is consistent for the conditional distribution p.yjx/
but not the joint distribution p.y; x/ we have considered so far. This means that
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the parser is optimized to discriminate between different candidates for a single
sentence. There are different ways to incorporate discriminative methods into the
parsing model.

• Discriminative Reranking [23, 29]: A probabilistic generative model can be
used to generate a list of n-best candidates and then re-rank candidates using
feature weights. Those feature-weights are learned through a discrimination
procedure. These features are selected based on pre-defined feature-schemata and
an automatic procedure selects the ones that show the best gains.

• Discriminative Estimation: It is possible to limit the application of the discrim-
inative method to the estimation of individual parameters of a generative model,
and using a probabilistic model for joint inference [53, 89]. The conditional
estimation allows us to incorporate arbitrary features, but since the parameters are
employed in a simple generative process, the feature combination has to remain
local. Conditional estimation procedures allow for potentially incorporating more
information into individual parameters when training on a small amount of data.

• Discriminative Parsing: Finkel et al. [36] propose an end-to-end CFG parsing
system based on Conditional Random Fields (CRF-CFG) in which the estimated
probabilities are normalized globally for undirected representations of complete
trees. They use an estimation procedure that maximizes the conditional likeli-
hood instead of the joint likelihood, and enrich their parameters with non-local
features. The features they use are selected from feature-schemata and the best
features are detected using a small development set. Their parser has been applied
only to English, and obtained parsing results on a par with [13, 51].

3.2.4 The Lexical Model

Combatting Lexical Sparsity

A parser has to assign morphosyntactic categories to the word-forms in the input.
These morphosyntactic categories reflect the part-of-speech tag of the word and a set
morphological features. Morphosyntactic categories provide the interface between
the structure of words (morphology) and the structure of sentences (syntax).
In whichever generative probabilistic framework we use for parsing (treebank
PCFG, PCFG-LA, RR-PCFG, Factored-PCFG, etc.) we need to estimate the lexical
probabilities p.wjt/, that is, to assign tag probability distributions to word forms.

The probability of lexical rules may be estimated using maximum likelihood
estimates, just like the syntactic rules, by counting the relative frequency of word-
tag co-occurrences.

Optb.wjt/ D #.w; t/P
w #.w; t/

D #.w; t/

#t
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Because of the high variation in the morphological form of words, it is hard
to inspect all possible morphosyntactic assignments in advance. This is further
complicated by the fact that the amount of resources available for parsing Semitic
languages is not as extensive as it is for English. Therefore we should estimate the
tagging distribution for Out-Of-Vocabulary (OOV) words, and possibly also smooth
the probability distribution over rarely occurring ones. To do so, it is customary
to fix a rare threshold value ˇ and estimate the different probability distributions
separately.

p.wjt/ D
Optb.wjt/ #w > ˇ
Oprare.wjt/ 0 < #w � ˇ
Opoov.wjt/ #w D 0

The simplest way to estimate the distributions for rare and OOV words is by
assuming a single distribution of tags for unknown words. That is, one simply
assumes an abstract UNKNOWN word and estimates the probability of tagging an
UNKNOWN word using the distribution of tags on rare words in the data. Every
word type which is under the ˇ threshold is considered a member of a set RARE.
We can calculate the OOV distribution as the probability distribution of RARE
words.

Opoov.wjt/ D Oprare.wjt/ D
P

w2RARE #.w; t/P
w #.w; t/

This estimate embodies a very crude assumption, that the tag assignment to
unknown words is not related to surface forms. Obviously, for morphologically
rich languages this is not the case, because the form of the word provide cues
concerning its syntactic category. Therefore, a refined way to estimate the rare
and OOV probability distributions may be using external resources, such external
dictionaries and lexica.

Using an External Lexicon

An external lexicon provides the list of word forms in the language along with their
morphological analyses. A morphological analyzer can be thought of as a function
mapping word-forms to a set of morphosyntactic signatures. The information
provided by an external lexicon can be used for improving the statistical estimates
of lexical insertion probabilities for unseen or rare words, in (at least) the following
ways.

Signatures

The basic estimates for the lexical insertion probability given a tag p.wjt/ are
estimated according to observation in the training set. Additionally, we can use the



3 Syntax and Parsing 115

lexicon to analyze input words and to include parameter estimates for unknown
word signatures p.sjt/.

A study of parsing Arabic and French by Green et al. [46], for example, estimates
the probability distribution ofp.t jw/ andp.t js/ directly from the training data using
relative frequency estimates, and then use Bayes law to get the estimates of p.wjt/
(where psmooth interpolates the p.t jw/ and p.sjt/ estimates).

Optb.wjt/ D p.t jw/�p.w/
p.t/

#w > ˇ

Oprare.wjt/ D psmooth.t jw/�p.w/
p.t/

0 < #w � ˇ
Opoov.wjt/ D p.t js/�p.s/

p.t/
#w D 0

Factored Lexicon

Another way to combat sparsity is to parse a factored representation of the terminals.
Each complex terminal symbol may be factored into a word form, a lemma,
grammatical features such as gender, number, and person, a morphological template,
and so on. In the factored lexicon, each token has an associated morphosyntactic
representation m, including these various grammatical features. Green et al. [46]
generate the word and morphosyntactic tag using a product of independent factors,
each of which is conditioned on the part-of-speech tag.

p.wImjt/ D p.wjt/p.mjt/

The probability p.mjt/ is estimated using the procedure of estimating p.wjt/
specified above. Since the number of m; t tuples in the training data is a lot smaller
than the number of w; t tuples, many of the probability distributions p.mjt/ may be
estimated directly from training data.

Using Unannotated Data

Given a morphological analyzer for a language, we would like to use morphosyn-
tactic analyses in order to obtain robust probabilistic estimates for rare and unknown
words. There are two main challenges that stand in the way of using a morphological
analyzer in this way. One challenge is that the morphological analyzer is symbolic,
that means that it can provide the list of analyses, but it does not provide the
probabilities p.wjt/ for the different analyses. So we need to estimate them from
annotated or unannotated data. The other challenge is more subtle. In many cases,
the morphological analyzer and the syntactic treebank do not respect the same
annotation scheme. In some cases, the morphological analyzer categories are more
fine-grained, in other cases the treebank part-of-speech categories are more fine-
grained. In any event there is no simple mapping between the two sets of categories.
In all cases, the mapping itself may have to be learned directly from the data.
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Layering

The study of Goldberg et al. [43] presents a method for enhancing unlexicalized
parsing performance using a wide-coverage lexicon, fuzzy tag-set mapping, and
EM-HMM-based lexical probabilities which are obtained using unannotated data.
In their setup, the treebank annotation scheme is different from the format of
analysis provided by the morphological analyzer. They show that simply retagging
the corpus with the latter scheme gives inferior results, since syntactically relevant
distinctions are missed. Using treebank tags only provide a good performance on
seen words, but precludes the use of the morphological analyzer for analyzing OOV
words.

To overcome this, they propose a generative approach in which the emission
probability is decomposed. First, the tree-bank tag generates a lexicon category, and
then the lexicon category generates the word.

p.wjttb/ D p.tlexjttb/p.wjtlex/

The transfer probabilities p.tlexjttb/ are estimated using maximum likelihood esti-
mates on a layered representation of the treebank, in which every production is
extended with the lexical category assigned in the lexicon. The lexicon categories
assignment was performed semi-automatically by human experts. The lexical
probabilities p.wjtlex/ are estimated using an HMM tagger in a semi-supervised
manner, using a large set of unannotated data [2]. Goldberg et al. [43] show that
using this generative process and estimation of lexical categories improves the
performance of a manually-refined treebank PCFG.

Marginalizing

Manually tagging the corpus with two layers of part-of-speech categories may be
labor intensive, and in any event, human annotators themselves do not always reach
an agreement on the correct mapping. Goldberg [38] presents an alternative method
for assigning lexical probabilities, by marginalizing over all possible lexical tag
assignements. Goldberg first assumes an inversion using Bayes law.

p.wjttb/ D p.ttbjw/p.w/
p.ttb/

Then, he provides different ways of estimating p.ttbjw/.

Optb.ttbjw/ D #w;ttb
#ttb

#w > ˇ

Opoov.ttbjw/ DP
tlex
p.tlexjw/p.ttbjtlex/ #w D 0

Oprare.ttbjw/ D #w�ptb.ttbjw/Cpoov.ttbjw/
#wC1 0 < #w � ˇ
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For frequent words, Goldberg [38] uses counts on the treebank. For unseen words,
he estimates p.tlexjw/ using pseudocounts taken from an HMM tagger applied to
unannotated data [1]. Because the HMM tagger uses an external lexicon, the lexicon
tags are different from the treebank tags. The transfer probabilities p.ttbjtlex/ are
treated as hidden variables and are marginalized out during decoding.

Clustering

An additional way to utilize unannotated data is by means of unsupervised
clustering. First, we use a large unannotated corpus to learn word clusters (e.g.,
Brown clusters [15]). Then, these clusters can be used as features in a statistical
parser. Koo et al. [61] used s a cluster-based feature mapping for a discriminative
learner. They replaced words with full description of the cluster and pos-tags with
shorter description of the hierarchical cluster. A possible way to incorporate these
feature into a constituency-based generative parser is, for instance, to change the
pos-rags and word-form representation into clusters. Candito and others [19, 20]
tested the method of replacing inflected forms by clusters of forms in a generative
probabilistic parser, and obtained good results. Levinger et al. [64] take a different
approach to clustering, where word clusters are based on linguistic similarity. They
collect similar-word (SW) sets using hand-coded rules and use the frequencies of
words in SW sets in order to differentiate the different analyses of an ambiguous
word. They show that their statistical estimates improves performance on a number
of tasks. Their method was also useful for initializing semi-supervised methods for
tagging [1].

3.3 Empirical Results

3.3.1 Parsing Modern Standard Arabic

The Penn Arabic Treebank (ATB), a set of annotated corpora for Modern Standard
Arabic (MSA), has been developed by the Linguistic Data Consortium (LDC)
since 2001.19 The ATB annotation encodes the rich morphological structure of
words and indicates grammatical relations in the form of phrase-structure trees
[65]. In addition, the ATB deals with phonemic transliteration of the Arabic script,
bidirectionality, and the incorporation of diacritics [66,69]. The PoS tags in the ATB
are complex tags that specify the part-of-speech category, an English gloss, and a
list of inflectional features for every space-delimited word. Independent clitics are

19The project page is available at http://www.ircs.upenn.edu/arabic/.

http://www.ircs.upenn.edu/arabic/
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segmented away and are assigned their own PoS tag. Syntactic trees are built on top
of morphologically analyzed and segmented input.

The LDC team made a deliberate effort to rely on the English PTB annotation
guidelines in order to speed up the development of the Arabic annotated corpora.
The morphological analyzer of Buckwalter [17] was used to propose all possible
analyses for surface space-delimited tokens, from which human annotators chose
the correct one. Then, the parsing engine of Bikel [7] was used to automatically
bootstrap syntactic parse-trees for the morphologically analyzed tokens [65]. This
annotation pipeline has been challenged in [67, 68] due to mismatches between the
PoS tags assigned by the morphological analyzer and the typical syntactic structures
assigned by the parser. These mismatches are found to originate in the inherent
complexity of the Semitic grammar, and the ATB guidelines have been revised to
reflect such mismatches and treat them in the annotation scheme.

The LDC published different versions of the ATB. ATBp1 contains 166K words
from the Agence France Press corpus, segmented, PoS tagged and syntactically
analyzed. ATBp2 contains 144K words from Al-Hayat, annotated similarly but with
added case and mood endings indicated by diacritics. ATBp3 contains 350K words
from the newswire text An-Nahar, in which the text is morphologically segmented,
vocalized, tagged and syntactically analyzed. Because of the discrepancy between
treebank words and space-delimited tokens, any morphologically analyzed and
vocalized file contains the mappings to the original surface forms.

The first constituency-based parser which was trained to parse Arabic using the
ATB is the Head-Driven lexicalized parsing engine of Bikel [7], adapted in [9] to
Arabic parsing. The rich morphological structure of Arabic words induces a large
set of complex tags which the parser was not equipped to handle (Bikel [9, pp. 79–
80]), so the adaptation involved a reduction of the Arabic rich tag set to a set with
comparable size to that of English. Bikel [9] only experimented with parsing gold
input, assuming that morphological segmentation and tagging are known in advance.
The results of applying Bikel’s parsing Engine to parsing Arabic (75.68 F-Score)
were lower than the results obtained previously for parsing English on a data set of
a comparable size (87.54 F-Score) [63, 66].

Parsing using Bikel’s engine was mostly targeted at finding enhancements of
the initial category set in the ATB. In a series of studies the ATB development
team suggested fixes for punctuation, deverbal material, finer-grained distinctions
between different types of nouns and demonstratives, and other splits based on these
experiments [63, 66–69]. Once the PoS tags have been enhanced, the ATB team
changed the trees dominating certain nominals to reflect their verbal readings. The
parsing results for all of these models leveled at about 79 F-Score for parsing gold
segmented and tagged input [63].

Green and Manning [45] study in greater detail the factors affecting Arabic
parsing performance using the ATB. They firstly compare the ATB to the Chinese
and English treebanks, and report that they are comparable in gross statistical terms,
while the ATB demonstrates a higher level of annotation inconsistencies. They then
compare the performance of three different parsing models on the standard split of
the ATB [25]. Specifically, they compare Bikel’s parsing engine [8] and Petrov’s
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PCFG-LA parser [83] with a human-interpretable state-split PCFG developed to
address particular sources of ambiguity that they find to be pertinent in the ATB.
They show that this PCFG, in conjunction with the Stanford parser (a factored model
implementation based on [57]), achieves F180.67 on gold segmented and tagged
input, outperforming the Bikel parser (F177.99) and outperformed by the PCFG-
LA parser (F184.29) in the same settings. This performance trend persists when the
corpus is pre-tagged or self-tagged by the parser (albeit obtaining lower scores).
The trend was further confirmed using the leaf-ancestor metrics [92]. They finally
compare the performance of the Stanford parser on the ATB for raw words, using
a pipeline and a joint scenario. They show that a pipeline containing the MADA
tagger followed by the Stanford parser (F179.17) outperforms joint lattice-based
parsing using the stanford parser (F176.01), an overall loss of 2pt-5pt in F-Scores
relative to the artificial gold-input parsing scenario.

Green and Manning [45] provide strong baselines for Arabic parsing and
demonstrated the empirical advantages of the PCFG-LA parser [83]. Attia et al. [4]
explore the use of simple or complex morphological cues for the handling of rare
and unknown words in English, Arabic and French, in order to further improve the
performance of the PCFG-LA model. They use their own PCFG-LA implementation
and contrast two techniques of handling unknown words: a language-independent
method and a language-specific one. The language-independent technique simply
learns a distribution for unknown words using rare words. In the language-
specific case they map every word to its morphosyntactic signature, and divide
the UNKNOWN probability mass across morphosyntactic signatures. Their experi-
ments show that language specific cues were more helpful for Arabic than they were
for French and English, ultimately increasing parser performance on the ATB dev
set from F179.53 to F181.42, for gold segmented input. A study by Dehadri et al.
[32] explored strategies for finding the best feature set and PoS tag splits using the
same parser. They experimented with a non-iterative best-first search algorithm, an
iterative, greedy best-first search algorithm, an iterative, best-first with backtracking
search algorithm and simulated annealing. They obtain F185.03 for vocalized ATB
no-tag parsing and F183.34 for unvocalized ATB no-tag parsing, both of which
assuming gold segmented input.

Arabic constituency parsing has also been explored in the context of parsing
Arabic Dialects [25]. Arabic dialects are mainly spoken, so they do not have
annotated corpora of their own. Chiang et al. [25] try to leverage the lack of data by
exploiting the ATB and using explicit knowledge about the relation between MSA
and its Levantine Arabic (LA) dialect. They test three approaches of interjecting
such knowledge to the parsing architecture: sentence transduction, in which the LA
sentence is turned into an MSA sentence and then parsed with an MSA parser,
treebank transduction, in which the MSA treebank is turned into an LA treebank
and used as training material for an LA parser; and grammar transduction, in which
an MSA grammar is turned into an LA grammar which is then used for parsing LA.
Grammar transduction obtained the best result, around F167 on gold-tagged input,
more than 17 % error reduction over their baseline.
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Advances in dependency parsing [62] and claims for the adequacy of dependency
grammars for analyzing free word-order phenomena [78, 98] have jointly led to
increased interest in Arabic dependency parsing. Initial Arabic dependency parsing
results were published in connection to data sets that were made available in
the shared tasks on multilingual dependency parsing [16, 81].20 The experimental
setup in these experiments is artificial in the sense that it assumes that the gold
segmentation, part-of-speech tags and morphological features are known prior to
parsing. This is an unrealistic assumption, but even in these settings the task allowed
the community to gain insights concerning the adequacy of general-purpose parsers
for parsing Semitic phenomena. In an overall analysis of the shared-task results,
Nivre et al. [81] makes the typological observation that Arabic is one of the most
challenging languages to parse, regardless of the parsing method used. The hope that
a completely language-independent parser will work sufficiently well on Semitic
data has not been met, and various specific studies on Arabic dependency parsing
followed.

Marton et al. [72–74] focus on transition-based parsing and present a thorough
study of the contribution of the lexical and inflectional features to Arabic depen-
dency parsing. They experiment with two parsers, MaltParser [80] and EasyFirst
[37], in three different experimental settings: gold scenarios (where morphological
analysis is known in advance), and predicted scenarios (in which morphological
analyses are automatically predicted). The data set they used is a converted
version of the ATB into dependencies, using a narrowed down set of dependency
labels.21 They report that more informative (fine-grained) tag sets are useful in gold
scenarios, but may be detrimental in predicted scenarios. They identify a set of
features (definiteness, person, number, gender, undiacritized lemma) that improve
parsing performance, even in predicted scenarios. They finally show that some of
the deficiency of parsing in predicted scenarios may be mitigated by training the
parsers on both gold and predicted tags. Their findings are robust across parsers,
with an advantage for EasyFirst (82.6 vs. 81.9 labeled attachment scores in the best
settings).22

3.3.2 Parsing Modern Hebrew

The main resource for the development of statistical parsers for Hebrew is the
Modern Hebrew Treebank [96], which was developed at MILA – The knowledge
center for processing Hebrew.23 The treebank contains 6,220 unvocalized sentences

20The CoNLL-X shared task page for is available at http://ilk.uvt.nl/conll/.
21The project homepage is available at http://www.ccls.columbia.edu/project/catib.
22An additional resource for Arabic dependency parsing is the Prague dependency treebank http://
ufal.mff.cuni.cz/padt/PADT_1.0/docs/index.html which we omit from the present discussion.
23The MILA center homepage is at http://www.mila.cs.technion.ac.il/.

http://ilk.uvt.nl/conll/
http://www.ccls.columbia.edu/project/catib
http://ufal.mff.cuni.cz/padt/PADT_1.0/docs/index.html
http://ufal.mff.cuni.cz/padt/PADT_1.0/docs/index.html
http://www.mila.cs.technion.ac.il/
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from the daily newspaper Ha’aretz. The sentences were morphologically segmented
and syntactically annotated in a semi-automatic process. Each node in the syntactic
parse tree contains different sorts of information: a phrase-structure label (S, NP,
VP, etc.) grammatical function labels (from a small set containing SBJ, OBJ,
COM and CNJ) and a set of morphological features decorating part-of-speech tags.
In the second version of the Hebrew treebank, morphological features have been
percolated to higher level syntactic categories, and (partial) head information has
added to phrase-level nodes, based on hand-coded syntactic rules [48].

Tsarfaty [100] used the Hebrew treebank for creating the first Hebrew NLP
pipeline, using a combination of a morphological analyzer, a part-of-speech tagger, a
treebank-induced PCFG and a general-purpose chart parser. The best reported result
on parsing raw input in this study was F161 with 91.5 segmentation accuracy. Since
the results involved unmatched yields, the scores were reported using character-
based ParseEval. Cohen and Smith [28] followed up with an implementation of
a joint inference for morphological and syntactic disambiguation using a product
of experts. Their syntactic model is a treebank PCFG with first-order vertical
Markovization. For the morphological model they contrast a unigram-based model
and a discriminative model based on Conditional Random Fields (CRF). For their
best model they report 64.4 parsing accuracy and 90.9 segmentation accuracy for the
joint model on raw input words. (The numbers are not comparable to other studies,
however, because Cohen and Smith used their own evaluation metrics based on
string edit distance correction to the tree.)

Goldberg and Tsarfaty [42] present a fully generative solution to the joint
morphological and syntactic disambiguation task based on lattice parsing. Their
best model included a PCFG with 1st-order vertical Markovization, manually
selected category splits and unknown words handling using a Hebrew spell-checker.
The baseline for Hebrew parsing was now pushed further to F166.60 on parsing
raw input (68.79 on the metric of Cohen and Smith) with F194.7 segmentation
accuracy. These results made it clear that for a Hebrew treebank so small, additional
resources for unknown words treatment may have crucial effects on parsing
accuracy. Goldberg et al. [43] experimented with a wide-coverage lexicon, fuzzy
tag-set mapping and EM-HMM-based lexical probabilities acquired using a large
unannotated corpus, and reported 73.40/73.99 precision/recall on parsing raw words
(compared with 76.81/76.49 precision/recall for parsing off of gold segmentation).
The components of these different solutions, including a lattice-based decoder,
a wide-coverage lexicon and HMM probabilities were incorporated by Goldberg
[38] into the PCFG-LA parser of Petrov [83], along with a rule-based filter to
the output, obtaining F176.95 on parsing raw words (and F1 85.7 for parsing gold
segments).

In an orthogonal line of work, Tsarfaty and Sima’an [102] explored the contribu-
tion of different parameterization decisions to probabilistic grammars induced from
the Hebrew treebank. They experimented with horizontal Markovization, vertical
Markovization and morphological state-splits applied to a PCFG-based parsing
model. They have shown that when each dimension of parameterization is consid-
ered in isolation, the depth annotation contributed more to parsing accuracy than
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parent annotation, which in turn contributed more than horizontal Markovization.
They further show that the contribution of the different dimensions is cumulative,
and that using 1st-order vertical Markovization, 1st-order horizontal Markovization
and one level of morphological depth, parsing results improve from F169.24 to
F174.41 on gold segmented input.

The emerging insight is that parameterization decisions which work well for
English parsing may miss important generalizations that are relevant for parsing
other languages, e.g., languages with rich morphology. Tsarfaty et al. [103–105]
followed up on this insight with the development of the Relational-Realizational
(RR) model and its application to parsing Hebrew. In the application to Hebrew
data, described in detail in Tsarfaty [101], the RR framework is applied to explicitly
modeling and directly estimating morphosyntactic patterns such as differential case
marking, agreement and clitics. The model obtained F176.6 score on parsing gold
segmented input, and F184.4 when parsing gold segmented and tagged input.

A recent study by Tsarfaty et al. [107] compares a combination of the RR model
with lattice-based PCFG-LA parsing [39] with lattice-based PCFG-LA parsing
trained on phrase structure (PS) trees. The different models are evaluated using
TedEval, distance-based scores which are tailored for evaluating morphological
syntactic disambiguation jointly [107]. In all parsing scenarios (gold, predicted tags,
raw), the bare-bone PS model of Goldberg and Elhadad [39] outperform the PS trees
extracted from the RR model (TedEval yields 93.39, 86.26 80.67 on trees given by
the PS model and 92.45, 85.83, 79.46 on trees extracted from the RR model). An
advantage of the RR trees is, however, that they provide a direct representation of
predicate-argument structure in the function labels. Evaluation on dependency labels
using TedEval shows 88.01, 82.64 and 76.10 accuracy on RR trees, slightly better
than obtained by general-purpose dependency parsers on the same task.

A different way to obtain a direct representation of the predicate argument-
structure of sentences is by training a statistical parser directly on dependency
trees. Goldberg and Elhadad [40] converted the Hebrew treebank into a dependency
treebank and compared the results of several general-purpose dependency parsers
on the treebank in gold vs. predicted settings.24 They tested the graph-based MST
parser [77] and the transition-based MaltParser [82]. In all scenarios, the 2nd-order
MST model outperformed the 1st-order MST, and both outperformed MaltParser.
The best result obtained for the Hebrew treebank, a second order MST with limited
lexical features, was 84.77 unlabeled attachment scores on the gold input scenario
and 76.10 on unlabeled attachment scores on automatically predicted segmentation
and tagging.

Goldberg [37] moved on to propose EasyFirst, a non-directional transition-based
dependency parser that is aimed at making easier attachments earlier. The feature
model of the EasyFirst parser can make reference to partial parses, and thus allows
for incorporating features that encode rich morphological interactions. The ability
of the EasyFirst parser to prefer different ordering of attachments, along with

24The treebank data is available at http://www.cs.bgu.ac.il/~yoavg/data/hebdeptb/.

http://www.cs.bgu.ac.il/~yoavg/data/hebdeptb/
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the ability to incorporate complex features, makes it suited for modeling Semitic
phenomena. Goldberg and Elhadad [41] report 84.2 unlabeled attachment scores
(UAS) on the gold input and 76.2 UAS on automatically predicted segmentation
and tagging. It is still an open empirical question how well the EasyFirst performs
on labeled dependencies.

3.4 Conclusion and Future Work

This chapter surveyed morphosyntactic phenomena in Semitic languages and
presented the challenges they pose to general-purpose statistical parsers. We have
seen that the structure of Semitic languages complicates the NLP pipeline, by
providing morphologically ambiguous signal as input to the parser. We have further
shown how parameterization decisions in generative parsing models may affect
the performance of a parser and proposed various methods for adding linguistic
constraints and for dealing with sparse data.

We reported parsing results on Modern Hebrew and Modern Standard Arabic.
A pre-condition for applying any statistical parsing model to the other Semitic
languages is the availability of morphologically and syntactically annotated corpora.
As of yet there are no broad-coverage treebanks for these languages. An important
direction for further research is therefore the development of such annotated corpora
for languages such as Syriac, Amharic or Maltese. Given the similarity of Semitic
languages to one another, it may be possible to speed up the development of parsers
for these data using transfer learning.

For languages with annotated corpora, the time is ripe for exploring more
sophisticated modeling methods, possibly incorporating discriminative estimation
and/or semantic resources. It would also be interesting to combine the strengths of
the different strategies presented here. For instance, while the constituency parser
of Goldberg [38] shows gains from improving the lexical model, the method of
Tsarfaty [101] is targeted at improving the syntactic model. Their combination may
yield a more accurate parser. Dependency parsing will benefit from investigating
joint morphosyntactic disambiguation scenarios, in order to avoid errors propaga-
tion through the pipeline.

Finally, a careful treatment of evaluation across languages, parsers and scenarios
is critical. We have seen in the previous section that while many of the studies deal
with the same challenges, they report numbers on different metrics and on different
scales. Upon developing better methods to evaluate the quality of parses across
frameworks, possibly within downstream applications, we will be able to point out
and further develop models that make better predictions for Semitic data.
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77. McDonald R, Pereira F, Ribarov K, Hajič J (2005) Non-projective dependency parsing using
spanning tree algorithms. In: HLT ’05: proceedings of the conference on human language
technology and empirical methods in natural language processing, Vancouver. Association
for Computational Linguistics, Morristown, pp 523–530
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Chapter 4
Semantic Processing of Semitic Languages

Mona Diab and Yuval Marton

4.1 Introduction

In this chapter, we cover semantic processing in Semitic languages. We will present
models of semantic processing over words and their relations in sentences, namely
paradigmatic and syntagmatic models. We will contrast the processing of Semitic
languages against English, illustrating some of the challenges – and clues – mostly
due to the inherent unique characteristics of Semitic languages.

It is a hard task to define what meaning is. Nevertheless, one can still reasonably
and usefully define related, easier problems, such as identifying different word
senses, or measuring the closeness in meaning of two words (or larger textual units).
We generally call these easier problems semantic processing tasks, and distinguish
two kinds: paradigmatic and syntagmatic semantics. Paradigmatic semantics, which
studies the lexical meaning of words, i.e., the functional properties that contrast and
separate them from other words. Paradigmatic semantics studies the conditions and
appropriateness of substituting word (or phrase) w1 with another, w2, in a certain
context or contexts. The context is usually taken to be the surrounding words in
the same sentence, often up to a fixed distance from w1. Paradigmatic semantic
relations between words include synonymy, antonymy and hyponymy [13]. On the
other hand, syntagmatic semantics studies the conditions for combining words and
creating meaningful structures.

Generally, the most complex component of semantic processing for Semitic
languages lies in handling the morpho-semantics of the words, identifying the level
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of granularity at which to consider the unit of meaning given a task at hand, and then
how to represent these units of meaning in a model in a manner that yields the most
benefit. Hence in this chapter we will address both issues of granularity level and
representation for the various semantic processing technologies. We will specifically
focus on four areas: word sense disambiguation (WSD), paraphrase detection and
generation (PDG), multi-word expression detection and classification (MWE-DC),
and semantic role labeling (SRL). We will present an overview of some of the
latest enabling technologies in these areas, with an eye on how processing Semitic
languages impacts choice of algorithm and representation. Although named entity
recognition, sentiment analysis, modality, and natural language understanding are
all areas that are relevant for semantic processing, we will not consider them in the
scope of this chapter. It is worth noting that specifically for Arabic, we are faced with
more processing issues due to the pervasive use of dialectal Arabic in current textual
genres. For the purposes of this chapter, we will not address the dialectal problem.
However it should be noted that identifying the granularity level for processing and
its implication on representation choice still holds.

4.2 Fundamentals of Semitic Language Meaning Units

Two issues that have significant impact on semantic processing of Semitic languages
are (1) the underspecification of short vowels and gemination markers (aka.
diacritics) in several of the writing systems (Hebrew, Arabic, Amharic), and (2) the
richness of the morphology (word forms), leading to data sparseness, and typically
coupled with freer word order (hence semantic role labeling techniques developed
for English are less likely to perform well).

4.2.1 Morpho-Semantics: A Primer

Semitic languages are known for their rich morphology. For a comprehensive
discussion of Semitic language morphology, we refer the reader to the chapter on
Semitic morphology in this book. For our purposes, we define a word to be a space-
delimited token in naturally written raw text. A word in Semitic languages packs
more information than a typical word in a language such as English. A word in
Semitic languages typically exhibits several morphological mechanisms: derivation,
inflection, and agglutination – all described below.

Morphemes

New words can be derived from existing words or morphemes. A morpheme is
the basic, minimal linguistic unit that bears meaning, regardless of whether it can
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stand alone as a word. For example, from a linguistic perspective, the inflectional
plural marker suffix -s, the lexical prefix anti-, or the word table are all morphemes;
accordingly, the word tables is comprised of two morphemes: tableC -s. There are
three ways to combine morphemes, where typically one morpheme (called the base)
is more central before the base (prefix or proclitic; e.g., in Arabic AlC ‘the’),1 after
the base (suffix; e.g., in ArabicCAt , the feminine plural morpheme), or both before
and after (circumfix; e.g., in Hebrew ta C : : : C uwA present tense second person
masculine plural morpheme, or mA C : : : C $ the negation morphemes in some
Arabic dialects).

Derivational Morphology

The derivational mechanism typically takes two morphemes and creates a new
word with a part of speech possibly different from that of any of the participating
morphemes. For example, speak (verb) C -er ! speaker (noun) in English, or
kamwut ‘quantity’ (noun)C -i ! kamwuti ‘quantitative’ (adj.) in Modern Hebrew.
This mechanism can be affixival (merging the morphemes serially) or templatic
(interleaving root and pattern).

The root is an ordered tuple of consonants, a.k.a. radicals, most often a triplet
(but could be a pair or a quadruple). For example, the three radicals �� �� � k t b

constitute a root related to writing in both Arabic and Hebrew.
Typically a root is unpronounceable. It is an abstract concept around which

words cluster. Roots are not necessarily monosemic, i.e. a root could have multiple
meanings. The vowels are added by merging with a pattern, a.k.a. template (see
below). Roots and patterns are inherent parts of Semitic languages and unique to
them. In some cases, glides such as the Semitic equivalents of w or y can be part
of the root, and they sometimes disappear or are replaced by vowels in certain
templates. If the second and third root members are identical consonants, they
sometimes undergo gemination or merging, which also affects the form or sound
of the resulting word.

In their derivational mechanism, Semitic languages are largely templatic, i.e.,
many derived words comprise of a root and a pattern. Sometimes an arbitrary
element is added to the meaning of the resulting word, for example due to semantic
drift in its meaning, with usage over time. The pattern is a fixed sequence of vowels
and interleaved place-holders for the root’s consonants. For example 1a2a3 conveys
a verb in past tense in Hebrew and Arabic, where the digits correspond to the root
radicals. A pattern may also contain additional consonants. Like the root, the pattern
is not necessarily monosemic. Patterns are typically a relatively small closed class.
A root and a pattern are each a morpheme: the root carries a basic meaning of

1We will be using Buckwalter transliteration throughout this chapter to illustrate the Arabic script
in Romanization.
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Table 4.1 Arabic root and template combination for the root �� �� � k t b, ‘write’

Word inflected
Num Template Lemma form English gloss Inflection

(1) 1a2a3 katab katabat She wrote Verb, past.3rd.sing.fem
(2) 1A2a3 kAtab takAtabuw They Verb, past.2nd.pl.masc

corresponded
(3) ma1o2a3 makotab makotab Office, desk Noun, masc.sing
(4) ma1A2i3 makAtib makAtib Offices, desks Noun, masc.pl (broken plural)
(5) ma1o2a3ap makotabap makotabap Library Noun, fem.sing
(6) ma1o2a3ap makotabap makotabAt Libraries Noun, fem.pl (sound plural)

an action or an object (in our example above, �� �� � k t b is a root related to

writing), while the pattern modifies the meaning over the root’s basic meaning, as
in conveying a verb/action or a noun/object, mutual or reflexive action, etc. Some

examples in Arabic are: +�
��-(

�
. kAtab ‘to correspond’, +�

�!�)
�
, kat ab ‘to dictate’, and

�� (��),� kitAb ‘book (noun)’ – each having a different pattern, merged with the same

root in this case.

Inflectional Morphology

Semitic languages inflect for various features: number, gender, aspect, grammatical
case, mood, definiteness, person, voice, and tense. The set of words sharing
meaning but varying over these inflection features is called a lexeme. It is typically
represented by one of the set members – referred to as the lemma. The lemma is
used for linguistic purposes as the citation/head form in a dictionary, or as a feature
in parsing or semantic processing. The lemma form is conventionally chosen as the
masculine singular active perfective verb form for verbs and the masculine singular
for nouns. Lemmas are fully diacritized where the short vowels and gemination
markers are explicitly represented. The lexeme can inflect with certain combinations
of these features depending on the part of speech (noun, verb, adjective, etc.)
Table 4.1 illustrates some examples of words.

In many cases the meaning of the resulting word is compositional, i.e., it can
be constructed from the meaning of the participating morphemes. In the example

in Table 4.1, we note two types of plurals: sound plural as in ��(�)�
��)
 
0�1 makotabAt,

example (4), and broken plural as in +� �-� (
�
B�1 makAtib, example (6). The sound plurals

are typically predictable, hence their underlying lemma is the same as the singular
form of the word. Conversely the broken plurals are for the most part unpredictable
and different from the general (sound) affixival case, hence their underlying lemma
is often represented as the broken form. In some lexical resources, we note that in
order to render a functional representation for the entries, the singular form is also
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Table 4.2 Arabic surface word wbHsnAthm fully diacritized and analyzed: 28�
�9� (�
) �C�3D���

��
wabiHasanAtihim

Morpheme Type Morphological class POS Gloss

wa Proclitic Agglutinative Conjunction ‘and’
bi Proclitic Agglutinative Preposition ‘by’
HasanAti Lexeme/stem Inflectional Noun fem. pl. ‘virtues’
Hasanap Lexeme/lemma Inflectional/derivational Noun fem. sing. ‘virtue’
1a2a3ap Pattern Derivational Noun fem. sing. –
H s n Root Derivational – ‘good’
him Enclitic Agglutinative Masc. pl. poss. pron. ‘their’

represented as a valid lemma, hence for example (4), +� �-� (
�
B�1 makAtib, the underlying

lemma is linked with the lemma in example (3) +�
��)0�1 makotab, similar to setting

the lemma of the English irregular ‘went’ to be ‘go’.

Agglutinative Morphology

Lexeme members could further agglutinate to certain closed class words (clitics),
forming complex surface words in naturally occurring written Semitic texts (where
in English, these would typically be space-delimited tokens). These agglutinative
clitics may be particles (such as negation particles), prepositions, and grammatical
markers of various sorts, such as aspectual and future morphemes, conjunctions,
and pronouns, some of which occur as enclitics (suffixes) and others as proclitics
(prefixes). It is worth noting that agglutinative morphology is more complex in
dialects of Arabic than they are in Modern Standard Arabic. For example, the Arabic
word 28�

�9� (�
) �C�3D���
�� wabiHasanAthim, ‘and by their virtues’, comprises the following

morphemes as illustrated in Table 4.2.
Agglutinative morphology is different from derivational and inflectional mor-

phology in that the resulting word retains a complex meaning, as in the example
above: conjunction C preposition C the stem C possessive pronoun (equivalent
to an English conjunction of a prepositional phrase), and may reach a complexity
equivalent to a whole sentence in English.

Vowel and Diacritic Underspecification

In Semitic languages, especially the major languages, Arabic, Hebrew and Amharic,
written words are mostly underspecified for vowels and consonant gemination
marking. These markers are known as diacritics. A correlate in English would
be rendering the words ‘bear’, ‘bare’, ‘bar’, as ‘br’. In Semitic languages, the
expansions could be a multitude of possibilities due to the various derivational
forms, in addition to possible inflectional variations that affect the choice of
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diacritic. For example, in Arabic, a lemma such as +�
��)
�
, katab ‘to write’, occurs

in naturally written text as the undiacritized form +� �), ktb. Yet, in context ktb could

be the word +� �)�
 
, kutib ‘was written’, inflected for passive voice, or +�

�!�)
�
, kattab ‘to

dictate’, in addition to the form +�
��)
�
, katab ‘to write’, both derivational variants (with

no inflection to feminine and/or plural forms).
In Modern Hebrew the ambiguity is even greater than in Arabic, since Hebrew

has more vowels, and relatively fewer templates with silent letters (hence fewer
written clues). For example, the Hebrew letter sequence dwd2 may stand for
dwod (uncle), dwud (boiler), or daVid (David). Modern Hebrew speakers/writers
developed a ‘fuller spelling’ (Ktiv Malé) scheme, which employs a higher rate
of silent letters to indicate vowels, and a doubling of these letters to indicate
when they are not silent. In this scheme, ‘David’ would be written as dwyd or
dwwyd. Still, although reduced, much ambiguity remains. The most widely used
scheme today is a ‘mixed spelling’ scheme, employing some, but not all, of the
‘fuller spelling’ conventions, in an attempt to better balance ambiguity, brevity,
and tradition. Another example is the Hebrew letter sequence SrwT may stand for
SeruT (service), SaroT (singing, female plural), CaroT (ministers, female plural), or
SeC ruT (that Ruth). In some writing schemes SeruT (service) is more commonly
written with an additional ‘y’ SyruT, presumably to reduce ambiguity with the
complementizer ‘S’ (that).

There exist several tools for diacritic restoration (and hence disambiguation)
with reasonable success, primarily for Arabic [45, 81, 94, 116] in addition to a
system by Sakhr software that claims a diacritization accuracy rate of 97 % [115].
State-of-the-art full diacritization of Arabic, ignoring grammatical case and mood,
is in the >95 % accuracy range by the most popular two approaches [116] and
[94]. The approach by Zitouni et al. [116] uses a maximum entropy supervised
model for diacritic restoration without resorting to any underlying morphological
resources such as an analyzer. Contrastively, the approach by Roth et al. [94]
which is based on the prior work of [45], is a supervised approach using Support
Vector Machines (SVM) that relies on a morphological analyzer which exploits
a fully diacritized dictionary to render the full diacritization of words in context.
Although both approaches achieve high performance, automatic diacritization still
needs significant improvement to show significant positive impact on text processing
and NLP applications. For example, in machine translation, a study by Diab et al.
[28] shows that partial diacritization for Arabic has positive impact on MT quality,

2We use the following transliteration for Hebrew letters: AbgdhwzHtyklmnsEpcqrST. When
denoting pronunciation, some letters may denote one of two sounds each. In such cases, they
may be transliterated as follows: b!v, k!x, p!f, non-silent w! V (sounds the same as v but
denoted uniquely for disambiguation), non-silent y! Y, (h is non-silent unless in final position,
so no special denotation is needed), and S!C (sounds the same as s but denoted uniquely for
disambiguation). Non-letter (diacritic) vowels are transliterated with the lowercase letters aeiou
(simplified as well).
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however there is still significant room for improvement. The authors show that
improving passivization diacritic restoration would have a significant impact on MT
performance, however state-of-the-art passivization discovery is in the 68–72 % F-
score level [25, 44]. In a study by Zbib et al. [115], the authors show a positive
impact on MT performance when using diacritization as a smoothing technique. In
Language modeling for automatic speech recognition, [110] show positive impact
on performance by using diacritization. These are expected results as restoring
diacritics is the first form of disambiguation.

Form vs. Function Morphology

The morpheme feature forms and their functions do not necessarily have to be
congruent in Semitic languages. For example, the Arabic broken plurals of some
masculine singular nouns have a feminine form but function as masculine plurals in
their agreement, as pointed out in [43]:

�$�)�
��)
�
, katabap ‘writers’ is the plural masculine

broken form of +� �-� (
�
. kAtib ‘writer’. In form it ends with

�� p which is typically

the feminine ending for singular nominals. Likewise, the word for ‘celebrations’
��'

�
( �
A�)�E� AHtifAlAt has the feminine ending form ��� At typically associated with

sound feminine plural forms. The latter word is the plural form of the masculine
noun �( �
A�)�E� AHtifAl. Both ��'

�
( �
A�)�E� AHtifAlAt and

�$�)�
��)
�
, katabap have feminine

forms, yet they function as masculine plurals in terms of their agreement functions.
This has implications on syntagmatic relations as explored in the realm of semantic
role labeling in Sect. 4.6.

4.3 Meaning, Semantic Distance, Paraphrasing and Lexicon
Generation

It is a hard task to define what meaning is. Nevertheless, one can still reasonably
and usefully define related, easier problems, such as measuring the closeness in
meaning of two words (or larger textual units). This easier problem is also known
as semantic similarity, or semantic distance.3 It is essential for many NLP tasks and
applications, such as (web) search, question answering, information retrieval and
extraction, plagiarism detection, paraphrase detection, and so on.

3Some researchers distinguish between similarity and relatedness [49]; without getting into this
distinction, we use here a general notion of semantic distance measures.
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4.3.1 Semantic Distance

More formally, a semantic distance measure is a function .x; y/ ! Œ0 : : : 1�, where
x and y are two given words in language L, and the distance typically ranges from
0 (totally unrelated) to 1 (highly synonymous).

Estimating semantic distance has been carried out using a lexical resource, statis-
tical machine translation methods (pivoting), corpus-based distributional methods,
or hybrid methods.

Resource-Based Measures

WordNet-based measures [49] consider two terms to be close if they occur close to
each other in the network (connected by only few arcs [55, 89]), if their definitions
share many terms [7, 86], or if they share a lot of information ([61, 91] – which are
in fact hybrid methods). WordNet sense information has been criticized to be too
fine grained or inadequate for certain NLP tasks [2, 79]. Further, the measures can
only be used in languages that have a (sufficiently developed) WordNet.

Pivot Measures

Given parallel texts, where each sentence is aligned to its translation, create
statistical translation models (whose main component is called the phrase table),
and translate x to the other language and back [9]. The semantic distance between x
and y can be estimated by marginalizing their bidirectional translation probabilitiesP

j p.xjfj /p.fj jyi /, where fj are the pivot translations in the other language(s).

Distributional Measures

Corpus-based semantic distance measures [109], rely on the distributional hypoth-
esis [36, 47]: words tend to have a typical distributional profile: they repeatedly
appear next to specific other words in a typical rate of co-occurrence. Moreover,
words close in meaning tend to appear in similar contexts (where context is taken to
be the surrounding words in some proximity). Therefore, the meaning of word x can
be represented in a vector, where the i th cell contains a distributional strength-of-
association (SoA) measure between x and the i th word in the vocabulary of a large
monolingual text corpus. Common SoA measures are conditional probabilities [99],
mutual information (PMI) [61], TF/IDF-based [38], and the likelihood ratio [31].
Such a vector is often called the distributional profile of x. The semantic distance
between x and y can then be estimated from the distance between their distributional
profiles. Any vector similarity measure may be used, e.g., the cosine function, the
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Jaccard coefficient, the Dice coefficient (all proposed by Salton and McGill [97]),
˛-skew divergence [16], and the City-Block measure [90].

Hybrid Methods

Resnik in [91] introduced a hybrid model for calculating “information content” [93].
In order to calculate it for a certain concept in the WordNet hierarchy, one traverses
the concept’s subtree, and sums the corpus-based word frequencies of all words
under that concept, and all concept nodes in that subtree, recursively. A maximum
likelihood log-probability estimation is then calculated by dividing that sum by
the total number of word occurrences in the corpus, and taking the negative log.
Patwardhan and Pedersen in [86], Mohammad and Hirst in [70] and Marton et
al. [68] proposed measures that are not only distributional in nature but also rely
on a lexical resource (a mid-size thesaurus). They treat each list of related words
(‘concepts’) in the thesaurus as a word sense, and extend these senses to the entire
vocabulary of a large corpus by marking known senses in the corpus, and assigning
a majority-vote sense to words that are not in the thesaurus. Then, given two
words .x; y/, they build distributional profiles per word sense, measure the distance
between each sense of x to each sense of y, and return the smallest.

Paraphrase Generation

Paraphrase generation is a harder task than measuring semantic distance. This is
because only one word, x, is given, and the goal is to provide y, or a set of y’s –
and typically also the distance of each y from x (or at least, a ranking order of the
y’s). More formally, a paraphrase generator is a function x ! hyi ; zi i, where x is
the given word, yi are the paraphrase candidates, and zi is the semantic distance of
yi from x as defined above, such that zi � ziC1 for all i .

Paraphrases can be generated using statistical machine translation techniques
(pivoting), or distributionally. Pivot: Given a phrase table (as described above), for
languages L and L0, translate x in L to L0 and back to yi in L [9]. Paraphrase can-
didates yi can be ranked by their marginalized bidirectional translation probabilitiesP

j p.xjfj /p.fj jyi /, where fj are the pivot translations in the other language(s)
L0. Distributional: Given a large monolingual text corpus, collect the contexts
in which x occurs, and then collect candidates yi occurring in same contexts.
Rank candidates by the distance of their distributional profiles (see Sect. 4.3.1)
[67, 85]. Other methods: Paraphrases can also be generated in other ways, for
example, using a lexical resource such as WordNet or a thesaurus. However, these
resources typically suffer from incomplete coverage, especially for longer-than-
word terms (a.k.a. multi-word expressions). Last, these methods may be combined,
e.g., paraphrasing using a thesaurus together with distributional method [66].
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A Language-Independent Example Algorithm for Paraphrasing

To date, pivoting is a more established paraphrasing method, but its application is
limited to languages with large parallel text resources. While it may have limited
relevance to Arabic, its current applicability to other Semitic languages is even
lower. Therefore, we outline here the more relevant distributional paraphrasing
method:

1. Upon receiving phrase phr , build distributional profileDPphr .
2. For each occurrence of phr , keep surrounding (left and right) context L__R.
3. For each such context L__R, gather all paraphrase candidates cand , such that
L cand R occurs in the training corpus; i.e., gather paraphrase candidates
occurring in same contexts as phr .

4. Rank all candidates cand according to their semantic distance from phr by
building profileDPcand and measuring profile (vector) distance betweenDPcand
and DPphr .

5. Optionally: Filter out every candidate cand that textually entails phr . For
example, if phr is spoken softly, then spoken very softly would be filtered out.

6. Output k-best candidates above a certain similarity score threshold.

However, to date, this has not been applied to a Semitic language.

4.3.2 Textual Entailment

Textual entailment (TE) can be defined as follows: given a phrase or a sentence x
and a set of hypotheses fhig, predict whether – or the likelihood whether – each hi
can be reasonably entailed or deduced from x (with or without larger context). For
example, x D “she ran quickly” entails h1 D “she moved” (x ! h1) or even h2 D
“she was in a hurry” (x ! h2). Note that the opposite direction (e.g., x  h1)
does not necessarily hold. Paraphrases can be viewed as symmetric TE [39], i.e.,
x $ hi . TE methods usually rely on hierarchical lexicons (or taxonomies) such
as WordNet, since the common is_a relation is entailing in nature (for example, if
running is kind of moving, then running! moving). This relation is hard to deduce
from non-annotated text.

For more on paraphrasing and textual entailment, please refer to [4, 39, 65].

4.3.3 Lexicon Creation

The task of extracting all paraphrases from a given corpus (and perhaps a seed
lexicon) is sometimes called paraphrase extraction – or TE pair extraction for
TE [4]. Here, neither x nor y are given, and the desired output is a set of
triplets hxi ; yi ; zi i, where each xi ; yi are paraphrases or a TE pair, and zi is their
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optional semantic distance or entailment confidence score. The lexicon creation
is often viewed as a side-effect of paraphrase generation capabilities, traversing
the vocabulary. Note that for covering multi-word entries, this task may become
exponential in the maximal entry length.

To date, we have not noted the use of semantic distance, paraphrasing, or
textual entailment for semitic languages, most probably due to the lack of sufficient
resources in terms of raw parallel or monolingual corpora for most Semitic
languages (with the exception of Arabic). Accordingly, we do believe there is ample
room for algorithmic applications especially where there are fewer dependencies on
language-specific resources.

Semantic distance, paraphrasing and lexicon creation all need to take into account
the fact that many words (and larger units) may have more than a single sense each.
Ignoring this fact is bound to hurt accuracy and usefulness. In the next section
we discuss word senses, how to define them, how to detect them – and specific
challenges in Semitic languages.

4.4 Word Sense Disambiguation and Meaning Induction

Word sense disambiguation or discrimination (WSD) is the task of classifying a
token (in context) into one of several predefined classes [80, 111]. WSD has been
an active research area for decades. See for example the SemEval and SensEval
workshops.4 For example, given the classes Financial-Institute and River, and the
token bank in the context ‘we strolled down the river bank’, output 1 for Financial-
Institute, or 2 for River; in this example the correct sense is sense 2. A more
recent variant of WSD is the word sense induction task (WSI), in which the sense
classes are not pre-defined, and instead, need to be induced from the data, using
unsupervised clustering techniques [98]. The idea is that word senses that have the
same meaning cluster together. Pantel and Lin [84] perform word sense induction
from raw corpora where they find most similar words to a target word by clustering
the words, each cluster corresponds to a sense. There have been several studies and
approaches to the problem, all of which use unsupervised clustering for discovering
ambiguous words and grouping their senses together. For a nice review the reader
can refer to [95]. WSD/WSI is considered one of the hardest tasks in artificial
intelligence (AI). It often requires not only linguistic knowledge, but also knowledge
of the world (facts). For example, we use world knowledge to decide that the
intended sense of ‘bass’ in ‘they got a grilled bass’ is a fish, and not a musical
instrument (since we know that typically one would grill fish, not instruments).

Sadly, our world knowledge is not yet fully compiled to machine-readable
format. However, recent research efforts aim to extract such knowledge from free

4http://nlp.cs.swarthmore.edu/semeval/ or http://www.senseval.org/

http://nlp.cs.swarthmore.edu/semeval/
http://www.senseval.org/


140 M. Diab and Y. Marton

text knowledge bases such as Wikipedia,5 at least in the form of hX, relation, Yi
tuples, e.g., hNew York, in, United Statesi [8, 112]. We will not address the issue of
world knowledge in the context of this chapter.

WSD and WSI in Semitic languages such as Hebrew or Arabic, pose greater
challenges than in English. This is due to the fact that (1) in many cases short
vowels are only represented via diacritics that are often omitted in modern writing,
and (2) several frequent prepositions, and many types of pronouns (e.g., possessive
or prepositional pronouns) are expressed as agglutinated affixes. Hence the biggest
challenge for Semitic language semantic processing for WSD is determining the
appropriate unit of meaning that is relevant for WSD/WSI. Being an enabling
technology, in most cases, this decision should depend on the end application
requirements and the availability of preprocessing resources and the amount of
data. To date, most approaches have relied on simple tokenization of agglutinative
clitics, leaving stems in the form of an inflected lexeme member, with no further
tokenization. In one study, however, we note the use of roots [33]. Using the lemma
seems a promising level of representation, since it is not as sparse as the stem and
the word-form, and yet not as underspecified and generic as the root. Lemma-based
approaches are currently being worked on. Tools for full lemmatization (mainly for
Arabic) are just becoming available.

4.4.1 WSD Approaches in Semitic Languages

For Arabic, several approaches have been proposed. In unsupervised disambigua-
tion, one of the earliest efforts to tackle Arabic WSD relies on projection across
parallel corpora of WSD classes from English to Arabic [18, 19, 24]. This approach
requires the availability of a parallel corpus of Arabic and a language with a
dictionary/knowledge base such as WordNet [35]. WordNet [35] is a manually-
created hierarchical network of nodes, where each node represents a word sense,
and each edge between nodes represents a lexical semantic (paradigmatic) relation
such as hypernymy (is-a). In this study, the authors use an English–Arabic parallel
corpus. Initially senses are assigned to the English side of the parallel corpus by
using the fact that several words in English map to the same word in Arabic: bank,
shore, riverside correspond to the Arabic word F �: $T. The three English words are

then disambiguated by maximizing the possible overlap between the chosen word
senses. Hence bank is assigned the riverside sense. Once the senses are assigned
to the English side of the parallel corpus, through word alignments, the senses are
projected onto the Arabic side of the corpus. The results are evaluated against gold
annotated data where the annotations use English WordNet classes assigned to the
Arabic words. The performance of the system is almost 65 % F-score. The data is

5http://www.wikipedia.org/

http://www.wikipedia.org/
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not within a specific domain. The Arabic data was simply white space tokenized
text with no further preprocessing.

The approach is inspired by earlier work by Dagan and Itai [15] who propose
a probabilistic approach to WSD, using parallel corpora for Hebrew and German.
They employ a syntactic parser and a bilingual lexicon. They present a statistical
model assuming a multinomial model for a single lexical relation and then using
a constraint propagation algorithm that accounts simultaneously for all relations in
the sentence. They report very high results (over 91 %) but within a narrow domain,
hence leveraging the inherent frequency of usage for specific senses of the words in
context.

More recently for Arabic, Elmougy et al. [33] use a Naive Bayes approach
coupled with an algorithm that pre-processes words to roots. The approach is
supervised, where they use 1,600 roots for training. They report accuracies of 76 %.
Furthermore, Merhbene [69] and Zouaghi [117] propose an unsupervised system
for Arabic WSD using a context-matching algorithm together with a semantics
coherence score, indicating the closest fit of the word sense to the context, akin
to the Lesk algorithm [57], which has been quite popular in the WSD literature. The
basic idea for the Lesk algorithm is to measure the word overlap of the context of
a word w in a given sentence against each sense definition of w in a dictionary. The
study investigates 10 words and they achieve an accuracy of 78 %. One issue with
all the work on Arabic WSD is the problem of researchers not using a standard data
set to allow for benchmarking.

4.4.2 WSI in Semitic Languages

In general, the approaches are language independent. The main concern is the
preprocessing of the data. We note two studies on Hebrew WSI, by Levinson
[59], and more recently by Rozovskaya and Sproat [95]. In the former, the author
compares two languages, English and Hebrew. He clusters the target words of
interest with the 50 most similar words into groups. The results of the clustering
are taken to be the number of senses. This study reports comparable results on
English and Hebrew. In the latter work, the authors compare English to Hebrew and
Russian. They report results of assigning the words to the correct sense cluster with
an F-score of 66 %. For Russian they apply morphological lemmatization and show
significant improvements (a 17 % error reduction), however they do not replicate the
results for Hebrew in this study.

Knowledge Base Resources for Arabic WSD

The Arabic WordNet (AWN) [32] was built following the EuroWordNet method of
devising a set of base concepts while aiming at maximizing the compatibility with
other WordNet databases. Accordingly by design, the AWN is completely mapped
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to the English Princeton WN 2.0 [35]. Moreover the AWN has links for its synsets
in the Suggested Upper Merged Ontology (SUMO) [82]. This representation serves
as an interlingua of sorts. AWN started off with a complete manual population,
then later in 2008, [92] semi-automatically extended it. It currently comprises
11,270 synsets (7,961 nominal, 2,538 verbal, 661 adjectival, and 110 adverbial
synsets), containing 23,496 Arabic expressions. This number includes 1,142 synsets
of named entities.

There exist two Arabic data sets that could be used for evaluation, which are
annotated against the AWN: the SemEval 2007 data set proposed by Diab et al.
[26]. The data set comprises 888 verb and noun instances: 211 verbs and 677 nouns
using the AWN.6 The second data set is the Arabic Ontonotes sense annotated
data,7 released in 2011. The latter is much larger in scope, and comprises treebanks,
co-reference resolution, and sense disambiguated data. The sense annotated data is
of the newswire genre. It covers 200,000 words. The effort also includes linking
senses to an ontology, Omega.8 For Arabic, the total number of noun types is 111,
and verb types is 150.

Knowledge Base Resources for Hebrew WSD

We note the preliminary work on creating a Hebrew WordNet [83]. They use an
alignment technique with the English WordNet. The Hebrew WN comprises a total
of 5,261 synsets corresponding to 4,090 nouns, 609 verbs, 779 adjectives, and 151
adverbs.

Resources for Amharic WSD

To date we have not come across WSD for Amharic. There are some efforts
to create a WordNet in Amharic. As for WSI methods applied to Amharic, the
research community is still creating corpora of significant sizes to be used with
these approaches in this language.

4.5 Multiword Expression Detection and Classification

In the spirit of extending the single word unit, we explore the notion of mul-
tiword expressions. The meaning (semantics) of linguistic expressions has been
thought of as primarily compositional from the lexical meaning of the participating

6Licensing for this data set is obtained through the Linguistic Data Consortium (LDC).
7http://www.ldc.upenn.edu/Catalog/catalogEntry.jsp?catalogId=LDC2011T03
8http://omega.isi.edu

http://www.ldc.upenn.edu/Catalog/catalogEntry.jsp?catalogId=LDC2011T03
http://omega.isi.edu
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elements (words, morphemes) and their order or syntactic relations (with only few
exceptions), at least from the time of Frege [37]. A multi-word expression (MWE)
refers to a longer-than-word unit, or a collocation of words that co-occur together
statistically more than chance. A MWE is a cover term for different types of
collocations, which vary in their transparency and fixedness. MWEs are pervasive
in natural language, especially in web-based texts and speech genres. In fact, we
found that in English data where MWEs (all types) are identified as single tokens,
MWEs cover 5 % of the tokens in a corpus, however they account for 43 % of
the types. Hence processing them and understanding their meaning is of crucial
importance to language understanding and essential for the development of robust
NLP applications. In fact, the seminal paper [96] refers to this problem as a key issue
for the development of high-quality NLP applications. Recently, [10] show that
modeling MWEs explicitly in the machine translation pipeline leads to significant
gains in performance.

MWEs are classified based on their lexicographic, syntactic and semantic con-
structions. Six types of MWE have been identified in the literature [21,22,96]: Noun
Noun Compounds (NNC) ‘traffic light’, Verb Noun Constructions (VNC) ‘spill
the beans’, Verb Particle Construction (VPC) ‘set up’, Light Verb Constructions
(LVC) ‘make a decision’, Fixed Constructions (FC) ‘above and beyond’, ‘by and
large’, and Named Entities Constructions (NEC) ‘John Taylor Smith’. The different
MWEs vary in their level of compositionality and their fixedness; some allow for
intervening words and/or morphological inflections. The level of transparency varies
by MWE especially for NNC and VNC categories. For example, ‘she kicked the
bucket’ could denote either a kicking event (compositional sense) or a death event
(non-compositional, idiomatic sense). The level of compositionality depends on the
context. Hence several research papers have addressed the problem of token level
classification where the instance of the MWE is identified as idiomatic vs. literal
especially for VNCs [20–22].

4.5.1 Approaches to Semitic MWE Processing and Resources

For Semitic languages, most of the work to date has been focusing on the creation
of MWE resources for the languages with two exceptions: for Arabic [48] and for
Hebrew [3].

Arabic MWE Processing

In this preliminary work, [48] present a method of pattern matching over instances
in the Arabic Giga Word 4.0 (AGW).9 The authors lemmatize the entire corpus

9http://www.ldc.upenn.edu/Catalog/catalogEntry.jsp?catalogId=LDC2009T30

http://www.ldc.upenn.edu/Catalog/catalogEntry.jsp?catalogId=LDC2009T30
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and they match all the entries in an extensive hand-built MWE lexicon (also
lemmatized) against the corpus tokens. The matching algorithm allows for gaps

such as ;1'
�
� 
�

�
� $)� 
G-�

�
� 
�H

� 
I 
JK 
L� AgmD (flAn) Eynyh En (AlAmr) , ‘(one) disre-

garded/overlooked/ignored (the issue)’, literally, ‘closed one’s eyes’. In this context,
flAn ‘one’ and AlAmr ‘the issue’ are wild cards that could be filled with any
appropriately matched replacement from the corpus. The pattern matching algo-
rithm could also handle inflectional variants such as ;1'

�
� 
ML (�8N�
))�L

�$ 
-H
� 
I �+ 
OK 
L�

AgmDt flAnp EynyhA En AlAmr where the subject is feminine. The pattern matching
algorithm performs on all above-mentioned types of MWE constructions. The
resulting corpus is an automatically classified corpus comprising 576 LVC, 64,504
VNC, 75,844 VPC, and 340,107 NNC. It is worth noting that several of the MWEs
are FC. A sample of the automatically detected MWEs are evaluated manually. The
results are 98 % accuracy for VNC, 99 % accuracy for NNC, 77.6 % accuracy for
VPC.

Resources

Most of the resources created to date are for Modern Standard Arabic. The study
by Attia et al. [5] focuses on creating a large resource for nominal MWEs (NNC),
which are comprised of noun noun compounds such as 
MP�A* � �� �	�	 dwdp AlqTn

‘cotton worm’, noun adjective constructions (NAC) such as
�$�)�*� ��� ��(�
I ( �7:� AsEAfAt

AwAlyp ‘first aid’, Named preposition noun constructions such as Q)�R�3�4�� =
�
SL �T

�!
* �
;��<* �

Altzlq ElY Aljlyd ‘ice skating’, noun conjunction noun constructions such as
�/
)�)� * � �� �( �UV � AlmAl wAlbnwn ‘wealth and children’. In their study, they mine these

nominal MWEs using three approaches: cross lingual asymmetries, translation
based extraction and some collocation based statistics over corpora. They carry out
statistical and manual validation of the output. They collect an impressive 34,658
MWEs as well as 45,202 named entities. In the recent study by Hawwari et al. [48],
they manually curated and collected 2,005 VNC, 670 VPC, 1,524 NNC types.

Hebrew MWE Processing

In the study by AlHaj and Wintner [3], the authors present an extensive study of
MWE NNC of the type haHlaTat hawaEadah ‘the committee decision’, Eowrex
haEytown ‘the journal editor’, bateY Howlym ‘hospitals’. They present a supervised
system (using support vector machines) that classifies NNC compounds as MWE
or not. They experiment with 463 instances, 205 of which are positive examples.
The examples are manually collected and classified by three annotators. They model
extensive linguistic features inspired by the lexicographic and syntactic nature of the
Hebrew language. They report significant improvement (78 % F-score) over random
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baselines as well as non-specifically linguistic baselines (63 % F-score). The focus
of this study was solely on NNC MWEs.

Hebrew Resources

A recent resource for Hebrew MWEs is [108]. In this study, the authors focus
on extracting nominal MWEs from parallel corpora exploiting non-corresponding
alignments in small parallel corpora coupled with monolingual resources. They
evaluate the impact of augmenting the dictionary in an SMT framework with the
MWEs. They report significant gains in MT performance when the MWEs are used
explicitly in the models.

4.6 Predicate–Argument Analysis

Analyzing sentences syntagmatically is believed to give us deeper understanding of
natural language. Syntactic parsing has been a subject of active research for several
decades. Associating a semantic meaning with the syntactic parse is the next logical
step toward developing an even deeper insight into meaning and how it is being
used. Shallow approaches to semantic processing are making large strides in the
direction of efficiently and effectively deriving tacit semantic information from text.
Crucially these approaches go beyond the paradigmatic to the utterance/sentential
level. Identifying and defining roles of predicate arguments in a sentence has a lot of
potential for and is a significant step toward improving important applications such
as document retrieval, machine translation, question answering and information
extraction [75].

In shallow semantic analysis, predicate argument structure is analyzed where the
arguments are associated with their roles in context. Current solutions address the
problem by reducing it to the identification of the predicates and their arguments
and then classifying the arguments into a set of argument types. For example, in the
English sentence, ‘Mark eats bananas.’, the predicate is ‘eats’ whereas ‘Mark’ is the
agent role for the predicative event and ‘bananas’ is the theme role. The crucial fact
about semantic roles is that regardless of the overt syntactic structure variation, the
underlying semantic roles remain the same. Hence, for the sentence ‘Bananas were
eaten by Mark’, ‘bananas’ is still the theme regardless of the syntactic position in
the sentence. Likewise for the causative/inchoative alternations for instance: ‘John
opened the door’ and ‘the door opened’, though ‘the door’ is the object of the
first sentence and the subject of the second, it is the theme in both sentences. The
semantic role labels may differ depending on the linguistic theory or annotated
resource adopted. In FrameNet (FN) [6] for instance, ‘Mark’ is labeled eater and
‘bananas’ is the the thing being eaten, whereas in ProbBank (PB) [52] ‘Mark’ would
be labeled ARG0 and ‘bananas’ ARG1.
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There have been several attempts at inducing this structure from tacit knowledge.
Several works have addressed the problem using unsupervised approaches for verb
subcategorization [14, 56, 62, 100, 101], and more recently unsupervised semantic
role labeling (SRL) [1, 17, 42, 54, 87, 107], among others. With the advent of
faster and more powerful computers, more effective machine learning algorithms,
and importantly, large data resources annotated with relevant levels of semantic
information,10 we are seeing a surge in efficient supervised approaches to SRL
[11, 12, 40, 41, 46, 71, 88, 106, 113] especially for English, with several notable
exceptions for German [34] and Chinese [60, 104, 105]. The systems for the other
languages follow the successful models devised for English.

However there is a significant performance drop for approaches in Semitic
languages. The problem may be attributed to the lack of NLP tools and corpora for
Amharic and to a lesser extent for Hebrew, in level and size comparable to the state-
of-the-art for English. But for Arabic, there exist advanced tools for NLP processing
as well as large corpora, and yet the performance gap still remains. Other potential
factors include the richer morphology and the associated data sparseness and freer
word order. Exploring unsupervised approaches for Arabic seems to be a promising
route to undertake, especially given the abundant number of corpora for that variety
of Semitic languages.

4.6.1 Arabic Annotated Resources

We know of two major Arabic lexical resources. The Arabic Proposition Bank
(a.k.a. Arabic Propbank, or APB) [114], which was released as part of the Ontonotes
4.0,11 and was the basis of the SemEval 2007 Task 18 data set [26]; and the more
recent Arabic VerbNet (AVN) [77].

APB

The APB is a database of verb annotations and their predicate argument structure. It
comprises 1,955 Frame Files with 2,446 framesets, where a frame file corresponds
to a predicate and a frame set corresponds to the sense of a predicate with a
unique argument structure. All the data in the Arabic Propbank is annotated against
the Penn Arabic Treebank v3.2. newswire corpus [64]. The APB has frame files
as a lexicon of entries and an associated corpus with propbank annotations. The
following is an example of how a frameset is rendered in the lexicon for one of the
senses of the verb ‘to listen’ W�6��):��� {isotamaE.

10Especially for English, notably the above-mentioned FrameNet (FN) [6] and ProbBank
(PB) [52].
11http://www.ldc.org/Ontonotes

http://www.ldc.org/Ontonotes
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• Predicate: {isotamaE W�6��):���
• Roleset id: f1, to listen
• Arg0: entity listening
• Arg1: thing listened

It should be noted that all the entries in the APB are in lemma form. In the
APB corpus, a sentence such as ‘they listened to their demands.’ 28N�* ( �P1 =

�
X ��� � �/7 �6��):���

{isotamaE {lY mTAlbhm.:

• Rel: {isotamaE, W�6��):���
• Gloss: to listen
• Arg0: -NONE- *
• Gloss: they
• Arg1: {lY mTAlbhm, 28N�* (

�P1 =
�
X ���

• Gloss: to their demands
• Example Sentence: 28N�* (

�P1 =
�
X ��� � �/7 �6��):��� {isotamaE {lY mTAlbhm.

Arabic VerbNet

AVN is a lexical resource recently manually created for Arabic predicate argument
structure. It was later extended semi-automatically for wide coverage [78]. It
emulates the English VerbNet [53] which clusters predicative entries according
to the Levin classes [58]. The Levin classes group predicates according to both
syntactic and semantic attributes. The grouping is based on shared diathesis
alternations. The hypothesis is that predicates that participate in similar diathesis
alternations and share syntactic structure share some element of meaning. This
hypothesis was put forward by Jackendoff [50, 51]. There are claims that this
holds universally. The English VerbNet is an implementation of the Levin classes
with extensions to new classes. It comprises 3,769 verbs corresponding to 5,257
senses and 274 primary classes.12 The AVN is of comparable size to the English
VerbNet. It comprises 336 classes and 231 subclasses, corresponding to 7,744
verbs, 7,815 deverbals, 7,770 participles. The number of overall frames is 1,399.
Crucially, Mousser [78] introduced the notion of sibling classes as subclasses to
handle morphological variants that are productive but bear the same meaning as the
original class members, for example a verb such as �Y

�
*/ �L Eawlama ‘globalize’ as an

eventive verb has the sub-class Y
�
*/ �7��- taEawolam ‘to be globalized’ which is a stative

verb. Interestingly, they found that 65 % of the diatheses alternations from English
hold in Arabic.

Prior to this work on AVN, Snider and Diab [102, 103] attempted to induce
predicate argument structure using unsupervised clustering methods. They created

12http://verbs.colorado.edu/~mpalmer/projects/verbnet.html

http://verbs.colorado.edu/~mpalmer/projects/verbnet.html


148 M. Diab and Y. Marton

partially gold clusters for evaluation from treebanked data and mapped them onto
the Levin classes using the English gloss information in the treebank entries. They
used frame-semantic categories by grouping different syntactic frames into four
possible frame forms, templatic patterns for the verbs, a latent semantic analysis
feature (which is basically a dimensionality reduction feature), and finally a subject
animacy feature. They achieved a 47 % F-score on the clustering against a random
baseline of 26 %.

4.6.2 Systems for Semantic Role Labeling

The typical approach to automatically assigning semantic role labels to predicate
arguments in context is by first identifying arguments and their boundary spans
and then classifying these discovered arguments into classes. The classes may be
derived from PB, FN, VN or any other formalism. Most systems to date have been
using PB. For Semitic languages, due to lack of resources until recently, the systems
developed use the APB for Arabic. We are not aware of any systems developed for
other Semitic languages. The only effort to date for building a FN for Hebrew is
described as preliminary steps in work by Petruck.13

Semitic languages pose a significant challenge to SRL for several reasons. From
a syntactic perspective, the following facts are relevant for SRL.

• Pro-drop Semitic languages tend to drop the subject and mark it morphologically
on the verb. For example, �( ��A �-;<� * � � �/R. � AklwA AlbrtqAl ‘[they] ate_they the

orange(s)’ is pro-dropped where the pronoun ‘they’ is absent. The explicit
rendering of the sentence would be as follows �( ��A�-;<� * � � �/R. � 2& hm AklwA

AlbrtqAl ‘they ate_they the orange(s)’. This is a significant phenomenon for SRL
since one of the arguments is missing hence the system has to either be able to
make it explicit or mark a trace with the argument class as well as identify the
morpheme marker on the predicate. This is especially tricky with third person
masculine singular cases since there is no explicit morpheme marker on the
predicate.

• Relative free word order Semitic languages allow for Verb Subject Object
(VSO), Object Verb Subject (OVS), SVO, etc. The canonical word order
in Arabic is VSO however in a study by Maamouri et al. [63], we found
that the Modern Standard Arabic treebank has an equal distribution of SVO
(35 %) and VSO (35 %) and pro-drop (30 %). This poses a significant chal-
lenge since it has implications in identifying the arguments and their roles,
especially when the arguments are proper nouns with no explicit grammatical

13http://www.icsi.berkeley.edu/pubs/ai/HFN.pdf

http://www.icsi.berkeley.edu/pubs/ai/HFN.pdf
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case marking due to diacritic underspecification especially in the singular
cases.14

• Possessive constructs Possessive constructs (e.g., Arabic idafa or Hebrew
smyxuwt) are especially tricky in Semitic languages as they allow for multiple
recursive embeddings in the form of idafa chains as well as allowing for
multiple modifiers. This is problematic for identifying argument spans.
An example is the following: 
M �6�)�* � ZR1 mlk Alyaman ‘king of Yemen’, or

5 �[� �)�  UV � Y>�

P7*� 
M �6�)�* � ZR1 mlk Alyaman AlEZym Almubajal ‘The great respected

king of Yemen’ where the modifiers could be multiplied, in principle,
indefinitely. Another example is

�� �Q-�;3�4�� ;-�Q1 +� E� ( �\ �( �
? 2 �L 
M-� ��� {bn Eam

xAl SAHib mdyr Aljrydap ‘the cousin of the uncle of the chairperson of the
newspaper’s friend’. These idafa constructs are quite difficult to parse and
hence pose a significant challenge to boundary detection for the argument
spans.

These syntactic phenomena play a crucial role in SRL systems. The complexity
is magnified with the absence of functional diacritics that mark grammatical case,
mood, passivization, definiteness, and agreement. We list here some examples.

1. Grammatical case For example, ;<�)�0*� �+G�)� * � 5?� � rjl Albyt Alkbyr ‘manŒmasc�
the-houseŒmasc� the-bigŒmasc�’ could mean ‘the big man of the house’ or ‘the
man of the big house’. For it to be ‘the big man of the house’, the case

marking would be  ;<�)�0*� �+� G�)� * �
 

5?� � rjlu Albyti Alkbyru ‘manŒmasc�Œnominative�
the-houseŒmasc�Œgeni t ive� the-bigŒmasc�Œnominative�’ where the modifier ‘the-big’ is
modifying ‘man’. For it to be ‘the big man of the house’, the case mark-

ing should be ;�<�)�0*� �+� G�)� * �
 

5?� � rjlu Albyti Alkbyri ‘manŒmasc�Œnominative� the-

houseŒmasc�Œgeni t ive� the-bigŒmasc�Œgeni t ive�’. In fact, the language allows for adjec-
tives to function as nouns, the modifier ‘the big’ could be the beginning of a new
noun phrase in context and could be accusative, hence out of the scope of the NP.
For example in the sentence �H

� �C*� Q)�L Q �63] ;<�)�0*� �+G�)� * � 5?� � rjl Albyt Alkbyr

mHmd Ebd AlslAm ‘the man of the house, the elder Mohamad AbdelSalam’,
where Alkbyr is an honorific for mHmd Ebd AlslAm.

2. Possessive constructs Idafa (Arabic) and smyxuwt (Hebrew) constructs
make indefinite nominals syntactically definite hence allowing for agree-
ment, therefore if identified correctly, they lead to better scoping and

effectively better boundary detection. For example,  ;<�)�0*� �+� G�)� * �
 

5?� � rjlu

Albyti Alkbyru ‘manŒmasc�Œnominative�Œdef ini te� the-houseŒmasc�Œgeni t ive� the-
bigŒmasc�Œnominative�Œdef ini te�’

14The exception is that Arabic sound masculine plural allows for relative disambiguation since it
distinguishes between nominative 
�� and both accusative and genitive cases 
M-�.
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3. Passivization Passive constructions are hard to detect due to underspecified
short vowels marking passivization inflection. The best automatic systems are at
68–72 % accuracy [25, 44]. For example, in the sentence 5�-(��I �H

�
C�̂ �;KL 5�)�I

qtl ‘mrw bslAH qAtl ‘killed Amr with a deadly weapon’, could mean qatal
EmrwaŒAccusat ive�ŒARG1� bslAHiK qAtliK ‘he killed Amr with a deadly weapon’
or qutil EmrwuŒNominative�ŒARG1� bslAHiK qAtliK ‘Amr was killed by a deadly
weapon’, or qatal EmrwuŒNominative�ŒARG0� bslAHiK qAtliK ‘Amr killed [some-
one] with a deadly weapon’. Identifying the difference between these three
depends on the underspecified vowels.

Passive constructions differ from English in that they cannot have an
explicit non-instrument underlying subject, hence only ARG1 and ARG2.

ARG0 are not allowed. For example: 5�)�
 �I [  �;KL]ŒARG1� [5"

�-(��I �
"

H
�
C�̂]ŒARG2� qutil

[Emrwu]ŒARG1� [bslAHiK qAtliK]ŒARG2� ‘[Amr]ŒARG1� was killed [by a deadly

weapon]ŒARG2�’. Arabic doesn’t allow for constructions such as 5�) �I [  �;KL]ŒARG1�

[_�6R �C�̂]ŒARG0� qutl [Emrwu]ŒARG1� [bslmY]ŒARG0� ‘[Amr]ŒARG1� was killed [by

SalmA]ŒARG0�’, it will have to be expressed as 5�) �I [  �;KL]ŒARG1� [_�6R �: Q)�-�]ŒARG2�
qutl [Emrwu]ŒARG1� [byd slmY]ŒARG0� ‘[Amr]ŒARG1� was killed [by SalmA’s
hand]ŒARG2�’,

4. Agreement patterns Relative free word order combined by agreement patterns
between Subject and Verb could be helpful when explicit yet confusing with
absence of case and passive marker and pro-drop. VSO configurations only allow
for gender agreement between Verb and Subject while SVO configurations allow
for gender and number agreement between subject and verb.

Accordingly, these syntactic characteristics are coupled with the challenge of
vowel underspecification to yield a significant impediment to efficient SRL for
Semitic languages. SRL requires that there exist quite robust tools for syntactic pars-
ing and vowel restoration for such languages as precursors to SRL. Hypothetically,
if such robust tools exist, the process of SRL would be rendered quite doable. In
fact the following two studies show that using gold features with efficient modeling
yields very comparable results to English SRL systems trained with gold features.

There are two pieces of work that developed SRL systems for Arabic. Both
systems use supervised tree kernels and they experiment with gold parses. In the
2007 system [23, 29], the authors present a tree kernel SVM based system [71–
74, 76] that uses standard features, without explicitly accounting for morphology.
They used this system to participate in the SemEval 2007 Task 18 ‘Semantic
Processing of Arabic’ where the data set is derived from the APB [27]. They
report 94 % F-score on the boundary detection task and 81.43 % F-score on the
argument classification task. In this study, the authors use a treebank, the ATB with
all its syntactic trees. They use both syntactic and lexical features in modeling the
problem. Similar to work in supervised SRL for English, the problem is broken
down to two classification problems: argument boundary detection (ABD) and
argument classification (AC). For both ABD and AC, the authors use the standard
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features of: the Predicate which is in the lemma form, the Path which is the syntactic
path linking the predicate and an argument, e.g. NN?NP?VP?VBX, the Partial
path Path feature limited to the branching of the argument, No-direction path Like
Path but without traversal directions, Phrase type Syntactic type of the argument
node, Position Relative position of the argument with respect to the predicate, Verb
subcategorization Production rule expanding the predicate parent node, Syntactic
Frame Position of the NPs surrounding the predicate, and finally, First and last
word/POS First and last words and POS tags of candidate argument phrases.

The features are extracted from the syntactically annotated treebank. The training
occurs using a polynomial kernel SVM which represent these feature vectors.
During the learning phase, given instances of two predicates of interest, the
algorithm converts the predicate instance (the syntactic tree with all its relevant
features) into a vector of n dimensions where the dimensions are the afore-defined
features. The content of the cells corresponding to the feature dimensions is set to
0 or 1 depending whether it is present or not. The kernel function calculates the
degree of overlap between the two vectors for the two predicate instances using
cosine similarity. At decode time (tagging process), given a predicate instance, the
algorithm converts it into the vector representation and attempts to find the most
similar representation it has learned for the argument distribution for that type of
predicate (namely the best fitting semantic frame). The algorithm is applied on an
argument type by argument type basis. There are 26 argument roles defined in the
APB. More details of the algorithm and its application can be found in [30].

Later in 2008 [30], the same authors extended the model to account for the rich
morphological nature of the language by adding explicit leaves to the syntactic trees
in the treebank. The feature vectors now also included tree features that go beyond
the standard features mentioned above. The morphological information is derived
from gold morphological information from the treebanks. The innovation in this
work was extending the representation power of the trees allowing for an elegant
incorporation of the explicit morphology of the predicates and the arguments into
the tree representation. In the previous work, they operate on the syntactic trees
without explicitly modeling the morphology; in this study, they extend the leaf nodes
from being simple lexical items to include morphological features hence extending
the tree representations. Then the modeling is similar to the previous study but with
the new extended tree representations that explicitly model for the morphology.
Therefore the vector dimensions included the standard features, the partial syntactic
trees similar to the Path features without the morphology, and the Path feature with
the morphology. They refer to these different feature representation settings as P3
(polynomial degree 3),15 AST, and EAST. They report significant improvements
over their previous work with 97 % for boundary detection (compared to 94 %) and
82.5 % for AC assuming gold ABD (compared to 81.43 %) and 82.17 % F-score
(compared to 80.43 %) for overall automatic ABD and AC. It is worth noting that
their version of the system that does not model the morphology explicitly yields

15The authors experiment with P1-P6 and find that P3 yields the best performance.



152 M. Diab and Y. Marton

more modest results, i.e. P3CAST which models only the syntactic structures of
the trees explicitly without any explicit morphological modeling, 80.8 % F-score
for automatic ABD and AC. This illustrates the extreme relevance of taking the
morphology seriously into account for morphologically rich languages.

Compared to English, it is noted in both studies that, similar to what we observe
in English SRL, ARG0 shows a high F-score (96.70 %). Conversely, ARG1 seems
more difficult to classify in Arabic. The F1 for ARG1 is only 90.57 % compared
with 96.70 % for ARG0. This is consistent with our observation that word order
poses a challenge for Arabic processing especially where the information about
grammatical case is masked in the underspecified diacritic markers.

4.7 Conclusion

In this chapter, we presented key issues in meaning representation and processing
of Semitic languages, focusing on lexical semantics. We pointed out the unique
morphological and syntactic characteristics of Semitic languages, especially in com-
parison to English, how these differences may affect handling Semitic paradigmatic
and syntagmatic semantics tasks, and current challenges in this area. We introduced
the reader to central tasks: semantic distance measures, paraphrase detection and
generation, word sense disambiguation and induction (WSD/WSI), multi-word
expressions (MWE), and predicate argument analysis and semantic role labeling
(SRL). Last, we presented examples of well-known algorithms for these tasks.

Most of current technology has been historically – and still is to a large extent –
designed with English in mind. However, we already see a shift in this trend, with
much work that is Semitic-centric, and more generally, centered on morphologically
rich languages (see for example publications in the *SEM16 conference as well
as the recent 2012 ACL SP-SEM-MRL workshop).17 We see this shift as a mere
beginning, as we believe that there is still much room to do more Semitic-centric
(and MRL-centric) semantic research, which in turn, may shed more light on general
semantic issues and properties in all human languages.
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Chapter 5
Language Modeling

Ilana Heintz

5.1 Introduction

The goal of language modeling is to accurately predict the next word in a sequence
of words produced in a natural language. The history, or context, that is used to make
that prediction might be long or short, knowledge-rich or knowledge-poor. We may
base a prediction only on a single preceding word, or potentially using knowledge of
all words from the start of the passage preceding the word in question. Knowledge-
rich models can incorporate information about morphology, syntax or semantics
to inform the prediction of the next word, whereas knowledge-poor models will
rely solely on the words as they appear in the text, without pre-processing or
normalization of any kind. This chapter describes knowledge-rich and knowledge-
poor language models and how each might be useful in modeling Semitic languages.

Every language modeling technique and application must handle the issue of
data sparsity: with limited amounts of data available on which to train a model,
many parameters will be poorly estimated. In a model that estimates probabilities
for two-word sequences (bigrams), it is unclear whether a given bigram has a count
of zero because it is never a valid sequence in the language, or if it was only
by chance not included in the subset of language expressed in the training data.
As the length of the modeled sequences grows more complex, this sparsity issue
also grows. Of all possible combinations of 4-grams in a language, very few are
likely to appear at all in a given text, and even fewer will repeat often enough to
provide reliable frequency statistics. The same is true of additional information (e.g.,
morphological or syntactic tags) added to each term in the sequence; the probability
of encountering a given feature combination decreases as the complexity of the
features increases. Therefore, if the goal of language modeling is to predict the
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next word, the challenge is to find appropriate, reliable estimates of word sequence
probabilities to enable the prediction. Approaches to this challenge are three-fold:
smoothing techniques are used to offset zero-probability sequences and spread
probability mass across a model; enhanced modeling techniques that incorporate
machine learning or complex algorithms are used to create models that can best
incorporate additional linguistic information; and particularly for Semitic language
modeling, morphological information is extracted and provided to the models in
place of or in addition to lexical information.

The data sparsity issue is particularly intense for Semitic languages due to
their morphological richness, as is described earlier in this volume. The copious
use of affixational morphology results in a great increase in vocabulary size. For
example, the English present-tense verb “run” has the correct agreement as the
first- and second-person singular, and first-, second-, and third-person plural forms.
The same word form is also a singular noun. In the Semitic languages, different
affixes would be used to create varying word forms indicating the correct person,
number, and gender information, and the root-and-pattern morphology would be
employed to derive a different form for the noun, as well as different stems to
account for changes in tense or aspect. In order to build reliable language models,
this increase in vocabulary size must be countered by collecting more training data,
by applying morphological stemming techniques, or by employing sophisticated
modeling techniques that better handle sparse data.

Language models are used in a variety of natural language processing appli-
cations. In automatic speech recognition, language models can be used to help
choose the best sequence of words from an acoustic lattice. Similarly in machine
translation, language models help to indicate the best path through a lattice output
by a translation model. Natural-sounding phrases and sentences are produced by
natural language generation with the aid of language models, as well. Discussions
of Semitic language modeling occur predominantly in the automatic speech recogni-
tion literature, with some mention also in studies on statistical machine translation.
These studies will be cited throughout this chapter.

This chapter proceeds by describing the utility of the perplexity evaluation
of language models in Sect. 5.2. This is followed by an introduction to n-gram
language modeling in Sect. 5.3, and an explanation of smoothing methods in
Sect. 5.4. Understanding smoothing is necessary to understanding variations on
n-gram language models that are described in Sect. 5.5. Section 5.6 comprises
a review of how morphological information is incorporated into a number of
Semitic language models. Section 5.7 summarizes and concludes the chapter with
suggestions for the most useful approaches to Semitic language modeling.

5.2 Evaluating Language Models with Perplexity

Outside of any particular application, we can compare language models by compar-
ing the likelihood that they assign to a previously unseen sequence of words. For a
given language model (LM), we might wish to calculate:
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PLM.w1 : : :wn/ (5.1)

This probability is an element of the cross-entropy of the text:

H.PLM / D �1
n
logPLM .w1 : : :wn/ (5.2)

As discussed in [36] among many other texts, cross-entropy is a measurement of
the amount of uncertainty in a probability distribution. We usually calculate the
probability of a sequence of terms as the sum of the probability of each term given
its preceding context:

H.PLM / D �1
n

nX

iD1
logPLM .wi jw1 : : :wi�1/ (5.3)

It is customary to measure the perplexity of a test set given the language model,
which gives the number of bits required to encode that text using the LM:

PP D 2H.PLM / (5.4)

A language model that encodes a test set most efficiently will do so with the
smallest number of bits. Therefore, we optimize a language model by minimizing
the perplexity of a given test set. Note that in modeling Semitic languages, the
vocabulary of the train and test set is often changed to account for morphological
properties of the language; in these cases, a variation on perplexity must be used to
compare models fairly. Section 5.3 discusses these changes to the evaluation.

Equations (5.3) and (5.4) assume that we use the entire preceding context to
calculate the probability of each term. Because that calculation is not feasible,
we replace the PLM.wi jw1 : : :wi�1/ term with an approximation, such as the
probability of only the previousN terms, or of the previousN terms and appropriate
features.

Perplexity is an often-cited measure of the strength of a language model. It is
a measure of that model’s complexity, and serves to quantify the entropy of the
model in relation to an unseen text. Perplexity is both useful and limited because it
is a measurement of a model that is intended for use in a larger system. A language
model is normally a means to an end: speech recognition (ASR), machine translation
(MT), natural language generation (NLG), and other natural language processing
tasks all use language models in one or more steps of processing. Building
complete systems for these tasks is usually more difficult and time-consuming than
building the language model alone. Even with a stable system, testing whether
a new language model improves that system’s results can take a long time and
consume computational resources. In contrast, perplexity is simple to calculate
and easy to compare cross-model. Language models can be directly compared by
perplexity without building acoustic models, translation models, or other required
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system components. However, the measurement tells us little if anything about
how well the model will perform in context. Perplexity indicates how likely the
correct word is to follow a sequence of known words, but that likelihood usually
ignores features like acoustic confusability, semantic confusability, and syntactic
confusability, which will be the main hurdles in the tasks of ASR, MT, and NLG
respectively. Perplexity can overestimate the difficulty of choosing the right word in
some contexts, while underestimating the difficulty in others. If a particular difficult
context shows up frequently, then improvements in perplexity may turn out to be
misleading.

Most of the Semitic NLP studies cited in this chapter apply language models
to the speech recognition problem. The challenge considered in this application is
acoustic confusability, which is amplified in Modern Standard Arabic (MSA) by the
concatenative morphology of affixes. Two words that differ only in a short prefix
or suffix will be acoustically confusable, and there are many such word pairs in
MSA. A language model that incorporates syntactic or morphological information
may give differing probabilities to these words, and the reduction of perplexity may
indicate such differences. But, we do not know whether the acoustic confusability
problem is overcome unless the use of the language model in an ASR task results in
a reduction of word error rate.

In summary, due to its ease of calculation and relationship to the well-understood
property of cross-entropy, perplexity evaluations are often cited as indicators of
language modeling utility. In these cases, care must be taken to assure that models
are directly comparable in terms of their vocabulary and the vocabulary of the test
set. Incorporating the language models into a complete NLP system and evaluating
in situ, when possible, is a truer indicator of the models’ utility.

5.3 N-Gram Language Modeling

A very common, basic form of language modeling is n-gram language modeling. A
probability is assigned to each unit of language based on its frequency in a training
corpus. A “unit of language” refers to some sequence of tokens, usually words.
The order n of the language model can be single words (unigrams), or sequences
of two, three, four, or more words (bigrams, trigrams, 4-grams, etc.). The simplest
example of an n-gram model is a maximum likelihood model over unigrams, where
each word is assigned a probability based on its count in a training corpus: P.w/ D
count.w/P
w count.w/ . A maximum likelihood bigram model takes into account the previous

word: P.wi jwi�1/ D count.wi�1wi /P
w count.wi�1w/

. In theory, increased context leads to greater
accuracy. A perfect theoretical model would base the prediction of each word on
all of the preceding context: P.wi jw1 : : :wi�1/. In practice, long n-grams do not
repeat often enough to provide reliable statistics, so we estimate an imperfect n-gram
model by restricting the context to only a few preceding words.
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Calculating the perplexity of a test text given a bigram model only requires the
specification of Eq. (5.4) to the bigram case:

PPbigram.w1 : : :wn/ D 2� 1
n

Pn
iD2 logP.wi jwi�1/ (5.5)

Similar formulas are derived for models with larger-order n-grams.
In using n-gram language modeling for Semitic languages, the definition of

what constitutes a word or token in the model must be carefully considered. Often,
normalization and tokenization tools are applied to the text before the language
model is calculated. Normalization refers to reducing orthographic variation, such as
changing the various forms of Arabic hamza to a single form. Tokenization methods
such as stemming are used to reduce the size of the vocabulary by separating
clitics and morphological affixes from stems. Reducing the size of the vocabulary
through normalization and tokenization has the effect of increasing the frequency
of each token, which in turn increases the reliability of the model. Normalization
and tokenization also reduce the number of out-of-vocabulary tokens - those
tokens that appear in the test text but not in the training text, and therefore may
receive a zero probability. If a language model uses tokens that are smaller than
words, then a post-processing step must be performed after decoding to return the
tokens to their original state. This is called de-tokenization. El Kholy and Habash
[20] and Al-Haj and Lavie [3] are recent studies that compare various types of
normalization, tokenization, and the reverse processes in an English-Arabic machine
translation application. Both studies find that a coarse level of tokenization, such
as using surface-level segmentation as opposed to a fine-grained morphological
segmentation, is sufficient to create useful language models, and also results in more
accurate de-tokenization.

These studies and others cited below change the vocabulary of the language
model by using morphemes or multiple words as the modeling units. Changing
the vocabulary in this way results in a situation where comparing perplexity values
is not mathematically sound; the conditions may have changed in such a way
as to bias the calculation, and the perplexity results are no longer fully inter-
pretable. Kirchhoff et al. [33] introduces a variation on the perplexity calculation
that overcomes this problem by using a consistent normalization factor across
models:

ModPPbigram.wi : : :wn/ D 2� 1
n

Pm
iD2 logP.wi jwi�1/ (5.6)

In this formulation, the normalization factor 1
n

always counts the number of words
in the test set. The number of tokens m may change from model to model
based on tokenization methods, but the number of words n remains the same
for a given test text. The average negative log probability of the test text is
calculated by removing the exponent, as in [63] and [27]. These variations on the
perplexity formula allow for a more reliable comparison of models that use differing
vocabularies.
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5.4 Smoothing: Discounting, Backoff, and Interpolation

Section 5.3 refers to the use of normalization and tokenization to counter the
problem of out-of-vocabulary (OOV) terms, and the use of smaller contexts to
increase the reliability of n-gram counts. This section discusses mathematical
approaches to solving the problems of OOV terms and unreliable counts. These
concepts are a necessary precursor to understanding the more complex types of
LMs discussed in Sect. 5.5.

Smoothing refers to three related concepts: discounting, backoff, and interpo-
lation. All three will be discussed in this section, which is modeled on the more
complete discussion in [14]. Discounting refers to the movement of probability
mass from frequent, well-modeled parameters to infrequent parameters with less
evidence. The probabilities of all parameters in an LM must always sum to one,
therefore discounting also implies normalization. Backoff is the term used to
describe the use of lower-order n-gram probabilities when the evidence for higher-
order n-grams is lacking. Higher-order (trigram, 4-gram) n-grams are preferred
because they provide greater context for the predicted word, resulting in more
accurate predictions. But this is only true when the higher-order n-grams exist in
training text, and usually only if they exist with repetition. Because lower-order
(unigram, bigram) parameters are more likely to repeat in a text, their estimates
are more reliable, even if they provide less context. Backoff is used to counter the
greater context of the high-order n-grams with the greater reliability of the low-
order n-grams. Backoff is often done in a step-wise fashion: we use a lower-order
probability where the higher-order probability is zero. Interpolation also takes into
account higher-order and lower-order parameters, but in doing so creates a smoother
distribution of probability mass than simple backoff. With interpolation, all of the
higher-order n-gram probabilities are tempered by lower-order n-gram probabilities,
regardless of their frequency.

5.4.1 Discounting

The simplest formulation for determining the probability of each n-gram requires
no discounting; it is given by the maximum likelihood (ML) model:

PML.wi jwi�1i�nC1/ D
c.wii�nC1/P
wi
c.wii�nC1/

(5.7)

Such an estimate results in zero-value probabilities for any unseen n-grams, an
undesirable outcome, given that we always expect new words to occur in a text
different from that used to build the model.

This outcome can be avoided by simply adding 1, or another constant, to the
count of every n-gram. In a test condition, the unseen n-gram will be assigned
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exactly this constant as its count. This has been empirically shown to be ineffective
[22]. A more sophisticated technique is Good-Turing discounting, which involves
calculating the count-of-counts: for every count r , how many n-grams appear r
times? We calculate r�, the Good-Turing discounting factor, by smoothing the
count-of-counts:

r� D .r C 1/NrC1
Nr

(5.8)

where r is the frequency of an n-gram type (its token count) and Nr is the number
of n-grams (types) with that frequency. For an n-gram wi : : :wi�nC1, we count its
occurrences r , then estimate its probability using its discounted count r�:

PGT .w
i
i�nC1/ D

r�

N
(5.9)

The probability mass that is taken away via discounting is “given back” in the
form of probability mass on unseen events: the total probability attributed to unseen
objects is N1

N
, the maximum likelihood of all singleton n-grams [23].

To understand Eq. (5.8), imagine a corpus of N tokens. We remove one token
from the corpus to create a single-token ‘held-out set’, then count the occurrences of
that type in the remaining ‘training’ set. We find that token in the training corpus one
fewer times than its actual occurrence in the full corpus. If we repeat the ‘held-out’
experiment for each token, we find that any token that appeared r times in the
training set has a true count of r C 1. Now consider a held-out token that does not
appear in the training set. From the perspective of the training set, it is an unknown,
but we know that it in fact has a singleton count in the true corpus. This is why
we attribute approximately a singleton count to all unknown tokens. We find the
total count of all singletons: .0 C 1/N1, then divide that count by the number of
unknowns N0 (Eq. 5.8), assigning to each unknown token an equal portion of the
total singleton count. We divide again by the token count of the training corpus to
derive the appropriate probability mass for each unseen token (Eq. 5.9). The same
logic is true when we consider the discounted value of singletons, twice-appearing
types, and so on.

To calculate the Good-Turing discount, the training data must be diverse enough
to preclude any zero counts r ; in particular, there must be tokens with low r counts,
including r D 1 (which is to say, we do not prune singleton tokens before estimating
the Good-Turing probabilities). At the upper ranges of r , where zero values of Nr
are likely to naturally occur, the values of Nr are interpolated using simple linear
regression. This step removes the zero values, and the estimates reflect a trend of
fewer items, rather than leveling off atNr D 1. In general, this method of calculating
r� results in estimated counts that are slightly less than the actual count for low
values of r , and close to the actual count for high values of r . Less probability mass
is taken from high-frequency words (and occasionally probability mass is added to
them via interpolation, due to the variability of Nr for high values of r) because
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they are more trustworthy. We are more skeptical of the repetition of low-frequency
words, therefore we take more probability mass from them to apply to unseen
words.

With this estimated value of r�, Eq. (5.9) can be used to calculate the estimated
probability of each item in the training data. This discounting method is often
used to estimate n-gram probabilities in conjunction with one of the backoff or
interpolation methods discussed next.

5.4.2 Combining Discounting with Backoff

A very common form of combining backoff with discounting is known as Katz
backoff, introduced in [30]. In this algorithm, frequent n-grams are not discounted;
they are trustworthy and their estimates are not changed. Low-frequency n-grams,
already considered unreliable, lose some of their probability mass to unseen
n-grams. This discounting is done with a variation of the Good-Turing discount
factor. Furthermore, backoff weights are used to ensure that the total probability
mass of the model remains equal to 1. Formally, where c.x/ indicates the count of
x and k is a frequency cutoff constant:

pKatz.wi : : :wi�nC1/ D
8
<

:

pML.wii�nC1/; if c.wii�nC1/ > k
dr.wii�nC1/; if 0 < c.wii�nC1/ � k

˛.wi�1i�nC1/pML.wii�nC2/; if c.wii�nC1/ D 0
(5.10)

The discount factor dr is a variation of the Good-Turing discount factor; the
discount is modified so that the total probability mass of the model remains constant,
despite the choice to not discount high-frequency n-grams. The backoff weight
˛ is related to the discounting factor; in the case that we use backoff, ˛ applies
the probability mass gained from the discounting factor evenly across the n-grams
that could result from the backoff n-gram. The exact calculation of dr and ˛ are
specified in [30] and [14]. What is important to note is the close coordination of
backing off in the third term with the discounting in the second term – together
they are used to eliminate zero counts and obtain optimal reliability in the language
model.

5.4.3 Interpolation

In addition to providing an algorithm for combining a well-motivated discounting
factor with the benefits of backoff, the Katz algorithm also takes advantage of
interpolation. In the last step, the probability of an n-gram is calculated iteratively
by accounting for all relevant lower-order n-grams. Jelinek-Mercer smoothing [29]
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also takes advantage of this recursive interpolation, but does not require calculating
the Good-Turing discounting factor or backoff weights. It simply says that, for any
n-gram, its probability should be estimated by taking into account the probability
of the whole context, as well as the probability of all shorter contexts. This is
again meant to balance the accuracy gained from the greater context of a high-order
n-gram with the greater reliability of the more frequently seen low-order n-grams.
Recursive interpolation is formulated as follows, wherePML refers to the maximum
likelihood probability [10, 14]:

Pinterp.wi jwi�1i�nC1/ D �wi�1i�nC1
PML.wi jwi�1i�nC1/C.1��wi�1i�nC1

/Pinterp.wi jwi�1i�nC2/
(5.11)

The interpolation parameters � determine how much each order n-gram will
contribute to the total probability. The values of each �wi�1i�nC1

can be learned via
the Baum-Welch algorithm, and may be calculated over word classes. Rosenfeld
[52] states that these parameters need not be specified exactly; their variance within
5 % of the best value will create little difference in the perplexity of a held-out set.

Witten-Bell smoothing [6, 67] is another recursive algorithm that interpolates
lower-order and higher-order n-gram counts. The key insight is the use of the count
of unique word types wi that follow a given prefix: jwi W c.wii�nC1/ > 0j. This value
is used to determine the values of � in Eq. (5.11). To determine a particular �wi�1i�nC1

,
we divide the type count above by the token count of all n-grams with that prefix:

1� �wi�1i�nC1
D jwi W c.wii�nC1/ > 0j
jwi W c.wii�nC1/ > 0j C

P
wi
c.wii�nC1/

(5.12)

This calculation is intended to answer the question, “How likely are we to see a new
unigram following this prefix?” The answer is used in determining the amount of
smoothing at each step of interpolation.

Absolute discounting is another form of interpolation. Ney and Essen [44]
and Ney et al. [45] show that using the same discounting factor for all n-grams,
regardless of order or frequency, can be effective if that discounting factor is
properly set. For instance, an empirical study [45] shows the following estimate
to be an effective constant for absolute discounting:

Discount D n1

n1 C 2n2 (5.13)

where n1 and n2 indicate the number of singleton and two-count n-grams in
the corpus, respectively. Again, the algorithm is recursive so that all lower-order
n-grams contribute probability mass to an n-gram. Absolute discounting led to the
widely-used Kneser-Ney discounting [35]. In this algorithm, the concern is over
how many prefixes a given unigram follows. Put another way, how likely are we to
find a given word following a new prefix? For a given unigram, its probability mass
calculated over all prefixes will be equal to its maximum likelihood probability:
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X

wi�1

pKN .wi�1wi / D c.wi /P
wi
c.wi /

(5.14)

This constraint is incorporated into a model that includes an absolute discounting
factor and recursion over lower-order backoff models. The modified version pro-
posed by Chen and Goodman [14] is a fully interpolated model – all higher-order
n-gram probabilities are discounted and interpolated with lower-order probabilities.
The formula for modified Kneser-Ney smoothing, which takes into account both the
intuition of [35] regarding known n-gram prefixes and the intuition of [29] regarding
interpolation, is given in [14], along with its derivation and further motivation.

In their careful examination of many variations of the smoothing algorithms men-
tioned, [14] find that their modified Kneser-Ney algorithm is the most successful at
reducing the perplexity of a test set. This is due to its use of an absolute discounting
factor and interpolation of lower-order models over all frequencies of n-grams.

These smoothing methods are not particular to one language or another. They
are each designed to help overcome the sparse data problem, to give a non-zero
probability to unseen n-grams, and to allow the probabilities of the component
n-grams to be distributed more evenly across all parameters of the model. They are
used in combination with varying types of language models that incorporate infor-
mation about semantics and syntax, as described in Sect. 5.5. Several of the models
described in Sect. 5.5 also attempt to overcome some limitations of these smoothing
algorithms.

5.5 Extensions to N-Gram Language Modeling

While the most widely-used language model is the simple n-gram model, there
are many variations on the theme. These variations incorporate longer-distance
dependencies, syntactic information, and semantic information. The following
sections will briefly describe the seminal research for each type of model and its
existing or potential application to Semitic natural language processing.

5.5.1 Skip N-Grams and FlexGrams

The use of n-gram modeling is pervasive in natural language processing because of
its simplicity and surprising effectiveness. Despite the utility of a word’s immediate
history in predicting the probability of that word, there are many cases where a
slightly different history – not necessarily a longer history, but a different one –
may be more effective. For instance, consider the phrase “ravenous lions, voracious
tigers, and famished bears.” The appearance of the word bears is best predicted by
its two predecessors lions and tigers, but a trigram model will only be privy to the
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context and famished. One solution to this issue is a skip-gram model, described
in [24]. First, the usual collection of n-grams is defined. Then, the parameters are
expanded by collecting alternative histories for each word: all bigrams and trigrams
within the sentence that skip over k tokens preceding it. The number of n-grams
for a given sentence greatly increases as the number of skips allowed is increased.
An evaluation that centers on the coverage, rather than the perplexity, of a test text
is useful in this application. Indeed, coverage increases as the number of skips k
increases. When the domain of the train and test are mismatched, e.g., broadcast
news as training data and conversational speech in the test set, the coverage does not
improve as significantly. This shows that the skip trigrams are not over-generating
contexts to the point of false positives. A second evaluation shows that the use of
skip-grams can be as effective, or more so, as increasing the size of the corpus. This
result may be especially relevant for modeling low-resource Semitic languages such
as Amharic, Maltese, and Syriac.

Similarly, [69] describe the use of flexgrams to overcome the limited context
of n-grams. In this method, the history may arise from anywhere in the sentence
preceding the predicted word. This method is combined with morphological decom-
position to better model the Turkish language. A reduction in perplexity is shown
with the use of flexgrams and morphological information. Therefore, this may be a
method that is also applicable to the morphologically rich Semitic languages.

5.5.2 Variable-Length Language Models

When the required storage space and computation time of a language model need
to be minimized, variable-length language models are useful. To create the optimal
model, only the most useful parameters are kept. This can be achieved in a number
of ways, including but not limited to the following techniques:

1. Discard longer n-grams if they do not contribute to the model. Kneser [34]
shows that longer n-grams can be discarded if they do not meet a frequency
threshold, e.g. singletons n-grams, or if they do not reduce the distance between
the current LM and the optimal (full) LM. Kneser [34] provides an algorithm
for optimizing the pruning function in a computationally tractable way. Seymore
and Rosenfeld [57] compare the log probability of the full and reduced model
having removed each n-gram in turn, pruning those that do not increase the
probability by a threshhold amount. Similarly, the method in [62] prunes the LM
by measuring the relative entropy of the pruned and original models, where the
perplexity of the original training set is used to express entropy. Any n-gram
that raises the perplexity by less than a threshhold is removed, and backoff
weights of the remaining n-grams are re-calculated. Siivola [61] also perform
re-calculation of backoff weights and discount parameters after n-grams are
removed through pruning, always retaining a model that is properly smoothed
according to Kneser-Ney smoothing. This pruning algorithm has been tested
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successfully on morphologically rich languages such as Finnish, especially when
morphemes are used as the building units for the language model [60]. The
method was not as successful for Egyptian Arabic data, however this may have
been due to the small size of the corpus. The consistent result in these studies is
that the outcomes of applying pruned models vary only slightly from outcomes
using larger models, so that time and storage savings are achieved without
sacrificing too much accuracy, either in perplexity or application results. Despite
the growing use of Kneser-Ney smoothing, [13] show that when aggressive
pruning is performed, for instance pruning an LM to a mere 0.1 % of its original
size, Katz smoothing is a better choice.

2. Niesler and Woodland [47] take the opposite approach by adding more context
to shorter n-grams if they do contribute to the model. In [51], the variable-length
n-grams are modeled as a type of Probabilistic Suffix Tree. The branch of a tree
can grow only if the resulting model retains a Kullback-Liebler distance less
than some threshold from the optimal, full model. Otherwise, the smaller (fewer
parameters) model is used. This approach is also used in [61], where a consistent
modification of backoff and smoothing parameters are applied to ensure that
as the model grows, it has proper Kneser-Ney smoothing at every step. Again,
similar task results can be achieved using a more compact language model that
excludes low-impact n-grams.

3. A different approach is that of [18], which changes the very construction of
an n-gram. Rather than assuming that each unit of an n-gram is a single word
token, instead the text is first segmented using the EM algorithm to choose
the most informative segments. Collocations, for instance, can be grouped as
a single token. This reduces the number of unigrams, creating a smaller model.
Perplexity must be calculated over a text that has been segmented in the same
fashion.

The benefits of each of these methods is that they provide a more theoretically
appropriate model than a fixed-length n-gram model, as words in a sequence are
dependent on different length histories. Also, the training algorithms are such that
only as many parameters as are useful to the model are used, and the model size
can be tuned on held-out data. This is a storage savings for models that would
otherwise have size exponential in the order of the n-gram. This is perhaps less
appealing when dealing with languages that lack in data, but more appealing for
languages with explosive vocabulary growth, such as Modern Standard Arabic. The
intuitions that inspired variable length n-gram modeling are surely applicable to
language modeling in the Semitic language domain. Despite the lack of literature
that applies these models to Arabic or other Semitic languages, it is an area
that will likely produce gains in language model accuracy and utility for those
languages. In particular, the third approach could be applied after morphological
segmentation to reduce the OOV rate and supply the most reliable statistics to
the model. The techniques mentioned above could also be applied to morpheme-
based n-gram models. Even so, class-based modeling, described in the next section,
may be more useful than variable-length modeling for handling large vocabulary
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applications; [47] combines class-based modeling with variable-length modeling to
positive effect.

5.5.3 Class-Based Language Models

One way to reduce the sparsity issue in n-gram modeling is to assign each word to
a class. The class may be based on semantic or syntactic principles. If an unknown
word can be successfully assigned to a class, then it is easy to apply the statistics
of distribution associated with that class to the unknown word. Brown et al. [10]
introduced class-based models with the following premise: “If we can successfully
assign words to classes, it may be possible to make more reasonable predictions for
histories that we have not previously seen by assuming that they are similar to other
histories that we have seen.” Where ci represents the class that word wi is mapped
into:

p.wi jwi�1i�nC1/ D P.wi jci /P.ci jci�1i�nC1/ (5.15)

Alternatively, one might sum over the classes ci if a word is seen as having a
distribution over classes. Rather than depend on the token history of each word, we
instead calculate the probability of the word given its class and the class history of
that word. The intention is to have histories that have been seen more often and are
therefore more reliable. There are many ways that the word classes can be derived.
In [10], a point-wise mutual information-based measure is used to group words into
semantic classes. These classes and the resulting language model can be used in
interpolation with word-based models.

As for Semitic language modeling literature, [70] use class-based modeling
for an Arabic language application. Classes are used in back-off: when wii�nC1
is unknown, the model backs off to wii�nC2c.wi�nC1/. Alternatively, the authors
create a hierarchy of these back-off possibilities, training a language model for each
level of the tree, and linearly interpolating the models. This allows the model to
incorporate statistics from the most accurate n-grams and the most reliable class-
based statistics.

In [32], class-based language models are developed based on Arabic morpho-
logical classes and using word clustering algorithms. These class-based models
are combined in a log-linear fashion with stem-based and root-based morpheme
models and with two word-based models. The parameters of the log-linear model
are derived automatically, and the analysis shows that the morpheme-class model
is among the more influential of the group, obtaining a high weight for interpolation.
In an ASR application, both of the class-based models bring down the word
error rate when combined with the word model, as compared to the word model
alone. This shows that interpolating class-based models with more fine-grained
information can lead to lower perplexity and improved ASR scores.
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The derivation of the class-based models and a more careful comparison to
other models, including factored language models, is explored in [33], a study
on Egyptian Colloquial Arabic speech recognition. Here, class-based models
are defined by morphological components: stems, morphs, roots, and patterns.
The models associated with each class are defined and calculated separately and
then interpolated. Kirchhoff et al. [33] uses a slightly different formulation of the
class-based language model than [10]:

P.wi jwi�1/ D P.wi jci /P.ci jci�1/P.ci�1jwi�1/ (5.16)

The class-based models fare well in the ensuing analysis, especially when
combined with stream models. Stream models replace each word with a specific
morphological component and derive an n-gram model over that morpheme stream.
This shows that for Egyptian Colloquial Arabic, very high-level and very low-level
information can be successfully combined to improve ASR scores.

5.5.4 Factored Language Models

Kirchhoff et al. [33] introduce Factored Language Models (FLMs) with an eye
towards Arabic and other Semitic languages. FLMs take into account as many
varied kinds of morphological, class, or semantic information as is available for each
word. This is an extended form of n-gram modeling where the backoff procedure
is more complex than the standard model. Typically, for a trigram model, in the
case that a particular trigram is not among the parameters, the model will back off
to the most appropriate bigram by ignoring the most distant word and applying a
backoff weight [30]. In an FLM, rather than drop the most distant word, instead we
consider its class, part-of-speech tag, or other feature for which a reliable weight
has been derived. FLMs are formulated as follows for a trigram model, similarly for
higher-order or bigram models:

p.f 1WK
1 ; f 1WK

2 ; : : : ; f 1WK
N / �

NY

iD3
p.f 1WK

i jf 1WKi�1 f 1WK
i�2 / (5.17)

where 1 W K represent the K features annotating each of the N words. Modeling
is done over f , a group of factors, rather than a word w. When an n-gram of
complete factors is not specified in the model, backoff can proceed along many
routes, dropping any of the factors for which there is an appropriate backoff weight
in the model. Many different backoff paths can be taken, and different discounting
models integrated along those paths. For instance, one might first drop the most
specific information in a bundle, the word itself, and use Kneser-Ney discounting
to do so. If the n-gram is still not found, one might drop a syntactic tag from the
bundle, and use Good-Turing discounting at this juncture. The choice of backoff
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can be determined a priori if faith in the features and linguistic knowledge is
sufficient to choose a reliable path. However, given the number of possible paths,
it is recommended to use an automatic method of choosing or calculating the path.
In [33], the authors use generalized parallel backoff, which takes into account all
of the possible backoff paths via averaging, multiplication, or a smooth probability
distribution.

Alternatively, backoff paths can be chosen via genetic algorithms, as introduced
for use with FLMs in [19]. These are the preferred method, as they are able
to take into account many if not all of the possible backoff paths, choosing the
best in a motivated fashion: the genetic algorithms are trained using perplexity
of development data as the optimization criterion. The automatically chosen paths
produce a lower perplexity on a test set than n-gram models, hand-chosen backoff
models, and random models (but are not compared to generalized parallel backoff).

The benefit of FLMs is the ability to use many morphological and syntactic
characteristics of each word; these properties are plentiful in Semitic languages
when counting affixes, stems, roots, and other possible morphological categories.
The same features that give Semitic languages their ever-expanding vocabularies
and intricate complexity are those that can be used to make a more informed
language model, without suffering the sparsity problem. On the other hand, one
must have tools to produce each of these features, and such tools (especially root
finders) are not always available for the lesser-studied languages and dialects. It is
sometimes possible to adapt tools from one language to another if there is a tolerance
for error; it is unclear whether Factored Language Models are robust to such tagging
errors. Given the genetic algorithms, it may be the case that they are robust, as the
unreliable features can be dropped early in the backoff path if they do not positively
influence the perplexity of the development set (or other training criterion).

5.5.5 Neural Network Language Models

Schwenk [55] describes a method of obtaining language model probabilities in a
continuous space using neural networks. An input layer, two hidden layers, and
an output layer comprise the neural network. The input layer accepts 4-grams
extracted from a corpus. The first hidden layer projects this vocabulary of possibly
hundreds of thousands of terms into a smaller space of only 50–300 dimensions.
The second hidden layer is typical of neural network algorithms: its weights
are trained using non-linear back-propagation. The output nodes represent each
word in the vocabulary. If the input is a set of words representing a three-word
history, then the output layer contains the probability that each vocabulary word
follows that history. In training, the optimization criterion is the maximization
of the log-likelihood of development data (or minimization of the perplexity,
equivalently). These outputs are interpretable as posterior probabilities when the
softmax normalization algorithm is applied.
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Training neural networks is more time-consuming than estimating a simpler Katz
or Witten-Bell language model. To speed training, the output layer may be reduced
to only the most frequent words. Tuning the probabilities of these frequent words via
neural networks is useful simply because they will appear often in the training data;
reducing word error rate on these nodes will more drastically reduce the overall
word error rate than will reducing word error rate on rare words. To obtain the
necessary coverage of the vocabulary, the neural network models are interpolated
with traditional backoff language models.

The estimation of language model probabilities is done in a continuous or dis-
tributed space when using neural networks, as opposed to the discrete calculations
performed for traditional back-off models. Continuous probability estimation is
better understood, less ad-hoc, and presumably more accurate than discrete models.
Neural network models expand linearly with the size of the vocabulary, rather than
exponentially as is typical of traditional backoff modeling.

Schwenk [55] describes additional methods to speed training, such as allowing
multiple examples to be given as input at each training epoch, and randomly
sampling the data from multiple corpora in order to achieve the best adaptation for
different language styles. Training over large corpora can also be achieved without
great computational demands by using this randomized sampling method. Larger
n-grams can be modeled with little effect on training time, however the data sparsity
that is attendant with such models is not diminished by using the neural network
method.

These methods work well for lattice rescoring with state-of-the-art speech
recognition systems in English, French, and Spanish on texts ranging in style:
broadcast news, meetings, and conversational data.

Emami et al. [21] apply this method to Arabic data. A variety of morphological
data is included in the input layer to create a richer representation of the context,
without multiplying the number of parameters and requiring a more complex
training technique, as is the case with Factored Language Models. Maximum
entropy part-of-speech (POS) tagging, maximum entropy diacritic restoration,
and segmentation of words into multiple affixes and stem using a cascaded weighted
finite state transducer are the tools used to provide morphologically informed
features. These properties are modeled as features of the word histories that are
the input to the neural network algorithm. The features are simply concatenated to
represent each word as a collection of features. This increases the model size only
linearly with the number of features, due to the projection of the input space to a
more manageable dimensionality in the first hidden layer of the neural network.
Perplexity decreases as more informative features are added to the input, and when
the models of varying input types are interpolated. To calculate perplexities, the
small-vocabulary neural network model is interpolated with a traditional backoff
model with the full vocabulary; the backoff model probabilities are used whenever
the neural network model does not have coverage of a word.

Despite the reductions in perplexity, [21] do not show an improvement in
word error rate when morphologically-rich neural network language models are
used to rescore ASR lattices. This may well have been due to errors in the POS
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tagging, segmenting, or diacritic restoration of the recognized word lattices. The
work is expanded in [38], where a slightly different set of features are employed:
along with segmentation and POS tags, shallow-parse chunk labels and full-parse
headwords both preceding and following the predicted word are used as features.
The probabilities produced by the neural network language model are used to
rescore an N-best list of ASR outputs in place of lattice rescoring. In this study,
word error rate did decrease by significant amounts on both broadcast news and
conversational data, especially when the more complex syntactic features – previous
and following exposed headwords – were included in the neural network language
model.

Therefore, the incorporation of morphological and syntactic features into a
continuous-space language model has been shown to be beneficial to Semitic natural
language processing, in particular in the speech domain.

5.5.6 Syntactic or Structured Language Models

Chelba and Jelinek [12] describe a structured language model (SLM) in which a
left-to-right parsing mechanism is used to build a model that can be applied in the
first pass of speech decoding. The challenge in training and testing is to find the best
equivalence class for the history of the current word; the n-gram history is often not
sufficient or is misleading, so a syntactically-informed history is used to replace it.

The SLM builds the syntactic structure incrementally; the part-of-speech tags
are used to predict the next word as well as that word’s tag, the structure of that
portion of the parse, and the non-terminal label on the headword. There are multiple
dependencies between these parameters, all of which are learned from data in the
Penn Treebank.

The model that results is similar to a skip-gram language model, where the
number of words skipped in the history of a word depends on the context.
Alternatively, the model can be described as a kind of linear interpolation of varied-
order n-gram models. Many of the predictions made by this model are long-distance
predictions that a trigram model does not capture.

As in other studies, the language models are tested in an ASR application and
are found to bring down word error rate a small amount. The computational load of
training and applying the SLM, however, are reported to be significant. The use
of this model in conjunction with a complementary model that focuses on topical
or semantic modeling may be rewarding. Section 5.5.8 discusses a study that does
incorporate both syntactic and semantic knowledge.

The incorporation of parse trees into language modeling is, clearly, dependent
on the availability of parse trees in that language. At present, this resource and its
attendant automatic parsers are available for Modern Standard Arabic, but are in
short supply for other Semitic languages or dialects of Arabic. When the reliability
of automatic parses is of sufficient quality to merit their use in other tools, then
structured language modeling will undoubtedly be useful for Semitic languages.
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5.5.7 Tree-Based Language Models

Bahl et al. [5] introduce tree-based language models in the context of speech
recognition. In this computation-heavy algorithm, binary trees are constructed
such that at each node a yes/no question is asked. Each question regards whether
some predictor variable, such as the previous word, nth previous word, previous
headword, etc., belongs to a given class of words. The classes are also syntactically
defined, including nouns, verbs, and plurals. At the leaves of this tree are sets
of predicted words and their probability distribution. An automatic set-building
algorithm generates a good, if not optimal, model. The probabilities on the leaves
are estimated by taking the average entropy of all of the nodes leading to that leaf;
that is, the average conditional entropy of the sets of words defined by the predictors
at each node.

The resulting models have lower perplexity than trigram models and would seem
to be good complements to them in a log-linear or other combination scheme.

This type of model has not been widely applied, perhaps due to the intensive
computing described in the 1989 article. With more modern computing resources,
such a model would be less onerous to produce, and could handle a larger vocabulary
than 10K words. Future research could show that tree-based language models form
a useful complement to the other language model types described in this chapter.
The types of features used are perhaps more easily produced than those used in,
e.g., FLMs, therefore this might be an appropriate technique to use with resource-
poor languages like Maltese and Syriac. Also, that the model improves results on a
small-data application may point to its utility for the same languages.

5.5.8 Maximum-Entropy Language Models

Maximum Entropy (MaxEnt) models are used to incorporate varying kinds of infor-
mation in a single language model. They are designed to preserve all uncertainty
except where the data explicitly provides evidence for a choice. As described in [8]
and elsewhere, the MaxEnt formula takes the form:

P
.yjx/ D 1

Z.x/
exp.

FX

iD1
�ifi .x; y// (5.18)

The values of �i 2 
 for each feature i are calculated over the training set, where
every data point x is described by F features and a class label y. Often (but not
always), the features are binary, so we can describe a certain feature fi as firing
when the feature is true and variable x belongs to class y. The general nature of
this algorithm allows the features to encompass many kinds of information. The
normalizing factor Z assures that the resulting probabilities .x; y/ are a proper
probability distribution:
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Z.x/ D
X

y2Y
exp.

FX

iD1
�ifi .x; y// (5.19)

Rosenfeld [52] describes the benefits of using MaxEnt models as well as a step-
by-step derivation of the basic training algorithm. In that study, maximum entropy
modeling is used to interpolate long-distance functions such as trigger words
and skip n-grams together with a baseline trigram model. Mutual information
calculations are used to develop trigger models – pairs of words in which each
word is informative about the other word’s presence in a document. Skip n-grams
form a good counterpart to traditional n-grams, incorporating more knowledge about
a word’s history without necessarily incurring the same data sparsity effects of a
higher-order model. These kinds of models can be linearly interpolated, which has
the benefit of ease of calculation. But, the theoretical grounds of each model are
lost; while each model is initially parameterized at a local level, the weights in the
interpolation algorithm (trained via EM algorithm) are parameterized on a global
level. MaxEnt learning can be used to combine these models without suffering this
loss of theoretical grounding. The constraints of each model are relaxed in a way that
allows them to interact, benefitting each other and strengthening the predictions.
With maximum entropy modeling, the probability of a given bigram will change
based on its context and on how functions from the various models handle that
context. Experiments show that combining language models via MaxEnt is superior
to linear interpolation. Not all of the long-distance models are as useful as hoped,
but the interactions are interesting and in many cases complementary. The effect of
the trigger model in particular is shown to match its theoretical benefit. The long-
distance models are ideal for adaptation from one domain to another, provided that
the adaptation training data is appropriate and that local-context models are also
incorporated.

Rosenfeld [52] describes training the weights �i using the Generalized Iterative
Scaling algorithm. Other, more effective models include Improved Iterative Scaling,
as introduced in [8], and gradient ascent. Maximum entropy modeling is used in
many tasks aside from language modeling; a review and comparison of these and
other MaxEnt training techniques is given in [41].

Sethy et al. [56] and Chen et al. [15] describe a model that uses the MaxEnt
algorithm together with class-based modeling to improve word error rates in ASR.
The introduction of class histories helps to make the model more compact and helps
to reduce the data sparsity problem that pervades n-gram modeling. Importantly,
[15] show improved scores on an Arabic ASR task using this method.

Sarikaya et al. [54] also use Maximum Entropy modeling to combine varying
features in a language model for an Iraqi Arabic ASR task. Word tokens are seg-
mented into morphemes and decorated with part-of-speech and other morphological
information. Maximum entropy modeling takes these features, designed in a tree
structure, as features to train a morphologically-informed language model. Joint
word and morpheme models are used to rescore word-based n-best lists and succeed
in reducing word error rate. The same technique, combining morphological with
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lexical information in a maximum entropy language model, is also used to get
improved results in a statistical machine translation task between English and Iraqi
Arabic in [53]. These studies show that maximum entropy modeling is a fruitful
arena for combining different kinds of linguistic information, including the kinds of
morphological information that have been shown to be useful to Semitic language
modeling.

Khudanpur and Wu [31] describe a method for combining semantic and syntactic
information in a maximum entropy language model. Semantic information is incor-
porated by building a topic-dependent language model; in contrast to other studies
where a separate LM is built for each topic and interpolated with a full-vocabulary
LM, [31] use maximum entropy modeling to create a single, fully-interpolated
model with fewer parameters. Furthermore, they derive syntactic information with
a trained parser, and incorporate the top N parses and probabilities into the same
language model, again using a maximum entropy technique. The topic and parse
data add more global information to the model, allowing it to make predictions
with a history greater than only the two previous words. The combined model is
successful in lowering word error rates on an English conversational speech ASR
task. The resources required to replicate this are significant: to build the topic-based
language model, [31] use a corpus with manually labeled topics (per conversation),
and a well-trained parser is required for the syntactic information. In performing this
task on Semitic data for which fewer resources are available, one might consider
using an alternative method for assigning topics to training data, e.g. Bayesian
topic modeling, and a simpler parsing methodology that incorporates long-range
dependencies.

5.5.9 Discriminative Language Models

Discriminative language models are an alternative to n-gram models introduced by
Roark et al. [50]. The discriminative model tries to solve the equation:

F.x/ D argmax
y�GEN.x/

˚.x; y/ � N̨ (5.20)

In this equation, x represents the input to a model; for instance, these inputs may
be an acoustic signal of speech. The function GEN.x/ produces all of the possible
outputs given this input, that is, all of the possible sequences of words given that
acoustic input. The function˚.x; y/ is a set of feature values over x and y, and N̨ is
a set of weights chosen so that, when the function produces the maximum value, y
is the correct sequence of words spoken in the acoustic signal. The dual concerns of
discriminative language modeling are finding an appropriate and effective feature
vector ˚ and an algorithm for training the weights N̨ . As regards feature vectors,
the technique used in [50] takes advantage of application-specific information to
build the most effective models. Regarding the training of N̨ , the authors show
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how two discriminative models, the perceptron algorithm and the global conditional
log-linear model (GCLM) can be successfully applied.

The steps of the process are:

1. Build a baseline recognizer with an acoustic model and n-gram language model
that produces output in lattice format.

2. Use these baseline lattices to derive features for discriminative LM training, and
as the training data for training the weights N̨ .

3. Use the new language model parameters to refine the decoder output in a second
pass over the lattices.

Therefore, the set of outputs GEN.x/ on which the discriminative model is
trained are the sequences in the baseline lattices. There are two kinds of features
that are derived from these lattices: the log probability of the best path y (either the
correct path if it exists in the lattice, otherwise the minimum error path is found),
and the frequency of each n-gram in y. Rather than estimate probabilities for all
n-grams, only those n-grams found in the best path y are considered. This produces
great savings in training and storage for the discriminative language model.

The perceptron algorithm increases or decreases the weights of N̨ at each iteration
whenever the predicted output is incorrect, eventually guiding the algorithm to the
maximum number of correct answers. In order for the training to converge, the data
must be separable. This means that for each incorrect answer, its score is at least
ı different than the score for the correct answer. The number of training iterations
is dependent on the value of ı. To apply the perceptron algorithm for training, the
weights on all paths in the baseline lattice are initialized to zero and are adjusted
so that y receives the greatest weight. The final weights on the lattice become the
parameters N̨ . These parameters are used both for second-pass decoding, and as the
feature set and starting point for the global conditional log-linear model (GCLM)
training algorithm.

GCLMs, in contrast, are exponential, and assign a conditional probability to each
member of GEN.x/.

p N̨ .yjx/ D 1

Z.x; N̨ /exp.˚.x; y/ � N̨ / (5.21)

The conditional distribution over the members of GEN.x/ are used to calculate the
log probability of the training data, given parameters N̨ . In GCLM, the weights on
the language model represent probability distributions over the strings. The same
features as mentioned above are used for training. The parameters of the model are
estimated from the training data and applied as a language model in a second pass
of decoding.

Both the perceptron and GCLM models are trained as weighted finite state
automatons (WFSAs). The N̨ parameters are derived from the WFSA. The number
of features used in training can be kept to a minimum by only considering those
n-grams that appear in baseline output, which also results in only the most crucial
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parameters being included in the model. The resulting language model can be
directly combined with the baseline lattice for re-scoring.

Presumably, the same approach could be taken with machine translation and its
lattices. The refined language models will then be configured to best discriminate
between semantically, rather than acoustically, confusable terms.

Kuo et al. [37] introduce a third method of training the discriminative LM, the
minimum Bayes risk calculation. In this case, the N̨ parameters of the model are
trained by calculating the number of errors contained in each hypothesis. The loss
associated with each hypothesis is compared to the same loss without a given feature
included; if the loss is worse without the feature, then ˛i associated with feature i is
positively updated, otherwise it is negatively updated. Kuo et al. [37] show that this
algorithm produces improved word error rate on ASR for Modern Standard Arabic,
especially when morphological features are used to reduce the out-of-vocabulary
rate. Additionally, the authors describe the Bayes risk metric, which allows them
to train the discriminative LM in an unsupervised way. Instead of comparing each
hypothesis to a reference transcription, each hypothesis is compared to every other
hypothesis, and the sum of the differences represents the Bayes’ risk metric:

L.yjxi / D
X

y02GEN.xi /
L.y; y0/p.y0jxi / (5.22)

where L.y; y0/ represents the number of errors in hypothesis y as opposed to
y0, and p.yjxi / is the posterior probability of hypothesis y. The hypotheses and
probabilities are given by a baseline recognizer, rather than by hand transcription.
The hypothesis that minimizes this equation, y, is considered the gold standard for
perceptron and GCLM training. This allows the use of more training data for which
hand transcriptions are not available, and as one expects, the additional training data
improves WER scores.

Arisoy et al. [4] revisits discriminative language modeling with a Turkish ASR
application. The rich morphology of Turkish serves as a good example of how
discriminative LMs, in particular those that include morphological as well as
whole-word features, might work with similarly rich Semitic languages. In this
study, the authors experiment with features derived from word n-grams, word-
based syntactic features, morph n-grams (derived via Morfessor [17]), syntactic
features estimated over the morph sequences, and topic-based features estimated
using a tf-idf vector methodology. The results show that while morph-based features
and syntactic features (both word- and morph-based) in the discriminative LM
framework improve ASR results, the semantically-informed topic features and long-
distance morph relation features are not useful. It is also the case that unigram
features are better than higher-order n-gram features in the discriminative LM.
The discriminative modeling and morph-based features help overcome the OOV
problem and data sparsity that occur in Turkish, and the lessons may well be applied
to building language models for Arabic and other Semitic languages for ASR or
other NLP applications.
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5.5.10 LSA Language Models

Bellegarda [7] describes a method for integrating long-range semantic information
into the normally short-range context of n-gram models. This method first involves
calculating the Singular Value Decomposition (SVD) of a word-by-document
matrix derived from a large set of training data that is semantically similar to the
test data. The decomposed and truncated matrices derived via SVD can be used to
represent the words and documents in a clustered semantic space. In other words,
it becomes possible to compare each word to other words in the training set based
on their distribution among documents. The decomposition effectively takes into
account all word pairs and all document pairs in deriving the similarity of all words
and documents. A new document can be clustered into a semantic grouping of
similar documents from the training set by projecting it into the SVD space. In
terms of n-gram modeling, we can model the probability of each word in a document
given the semantic history of the entire preceding document. This semantic language
model prediction is interpolated with typical n-gram modeling in the following way:

P.wi jH.nCl/
i�1 / D

p.wi jwi�1i�nC1/
p.wi j Qdi�1/
p.wi /

P
wi �V

p.wi jwi�1i�nC1/
p.wi j Qdi�1/
p.wi /

(5.23)

where wi is the current word, p.wi j Qdi�1/ is the LSA model probability for the
word given the semantic history, and V is the vocabulary. H.nCl/

i�1 represents the
integration of the n-gram probability n with an LSA probability l for the history
of the document up until word wi . This calculation provides a natural interpolation
of long- and short-term context. The component Qdi�1 can be smoothed by referring
to the word or document clusters rather than to the vectors of the individual words
seen in the document. Further tuning can be applied to determine how much of the
previous context should be taken into account for each word.

The experiments in [7] show good reductions in perplexity and word error rate
when incorporating the LSA history into the standard bigram and trigram model.
However, some caveats apply. The semantic type of the training data used to develop
the LSA model must be tightly coupled with that of the test data, otherwise the
effectiveness of the extra modeling is greatly diminished. Luckily, not a very large
amount of data is necessary to construct an effective model. Also, while the LSA
modeling is very useful as concerns content words, those that control the broad
semantic topics and ideas of a document, it is not effective at all in discriminating
between function words that appear in all documents. As these tend to be the words
most likely to be mis-recognized in an ASR context, the benefit of LSA may be lim-
ited for that task. However, while function word mistakes may be common, mistakes
in content words may be more harmful to actual understanding, so that the mistakes
that are avoided by using an LSA-interpolated model may outweigh the function
word mistakes in some evaluations. Furthermore, the long-distance semantic system
can also be interpolated with a near-term, syntactically trained language model.
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The Semitic NLP literature is missing reference to LSA language modeling.
This may be because a major obstacle in Semitic NLP is often the precise word
choice, i.e. choosing the right syntactic word form from among many semantically
identical ones, for which LSA modeling is not helpful. However, in natural language
generation, LSA modeling may help to provide some variation in phrase creation,
and it could also be useful in English-to-Semitic machine translation.

5.5.11 Bayesian Language Models

Two related goals motivate the language modeling work of [66]: to incorporate a
corpus-based topic model into an n-gram language model, and to do so using a
Bayesian algorithm. The large-context topic modeling serves to complement the
smaller-context n-gram modeling. The Bayesian paradigm enforces a method in
which all assumptions about the data are formulated mathematically in order to be
incorporated into the model. The work of [66] is based largely on that of [40]; the
discussion below draws from both studies.

The path to achieving both goals is found in Dirichlet modeling, which is used as
a replacement for the simpler kinds of smoothing and backoff described in Sect. 5.4.
A Dirichlet model provides a prior model of the data. Assume a matrix ˚ that
describes word transition probabilities over a training corpus. Each row w0 of ˚
represents the probabilities P.wjw0/. These rows make up the parameters of the
modelQ. However, the parameters ofQ are usually poorly estimated because of the
sparse data problem that affects all language modeling attempts. The real parameters
of the data are unknown; we can easily imagine that there are multiple possible
parameters of Q. The distribution of the possible parameters of Q is estimated
by the Dirichlet model. The parameters of the Dirichlet model – a hierarchical,
exponential model – are the hyperparameters of the corpus data. The crucial
parameters of the Dirichlet model are usually notated as ˛ and m; ˛ describes the
peakiness of the distribution, while m describes its mean. In most of Chap. 3 of
her dissertation, Wallach replaces these with ˇ and n, respectively, and that is the
notation that will be used in this summary. The focus here is the use of the Dirichlet
model in language and topic modeling; for a further explanation of its properties
and estimation, please see [66] and [40].

Typical bigram modeling starts with the same transition matrix ˚ , using a
formulation like Eq. (5.24) to predict the probability of a test corpus given the
training data:

P.wj˚/ D
Y

w

Y

w0

�
Nwjw0

wjw0
(5.24)

The term �wjw0 describes the probability of the bigram w0w in the training data,
while the term Nwjw0 is an exponent of � describing the bigram’s count in test
data. Smoothing and backoff algorithms such as those described in Sect. 5.4 are
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usually used to enhance this formulation to account for the sparse data problem.
Those methods are replaced here with a Dirichlet prior, which counters the
sparse data problem by estimating the probability of our training data ˚ over the
hyperparameters ˇn of the Dirichlet model:

P.˚ jˇn/ D
Y

w0

Dir.�w0 jˇn/ (5.25)

When we substitute Eq. (5.25) into Eq. (5.24), we can estimate P.wjˇn/, the
probability of the test corpus given the Dirichlet hyperparameters:

P.wjˇn/ D
Y

w0

Q
w � .Nwjw0 C ˇnw/

� .Nw0 C ˇ/ � � .ˇ/Q
w � .ˇnw/

(5.26)

� is a function used in the estimation of the Dirichlet model. At the test stage,
we can predict the probability of word w given a previous word w0 and the estimated
model using the following formulation:

P.wjw0;w; ˇn/ D Nwjw0 C ˇnw

Nw0 C ˇ (5.27)

D �w0nw C .1 � �w0/
Nwjw0

Nw0

(5.28)

Equation (5.28) is meant to evoke a typical interpolation model:
Nwjw0

Nw0

is a
bigram probability; we back off to a unigram probability described by nw, and these
are interpolated by parameter �w0 . In the Dirichlet formulation, the concentration
(peakiness) hyperparameter ˇ takes the place of EM-estimated �, and the nw

hyperparameter takes the place of Good-Turing or another kind of smoothing
discounting for w. The result is a formulation of the smoothing parameters of the
bigram w0w through the calculation of a Dirichlet prior rather than through EM
estimation.

Similar intuitions are used to apply the Dirichlet prior to topic modeling. This
is known as latent Dirichlet allocation, and is also described in [9]. Earlier we
described a matrix ˚ in which the rows represent the probabilities of transition
from word w0 to each word w. Now we instead define ˚ as the probabilities of
transitioning from topic t to words w. The set of topic distributions are notated as z.
Furthermore, we assume that a given document will include a subset of possible
topics, so there is a second transition matrix � from documents to topics. The esti-
mation of each of these two matrices is again based on sparse data, and therefore it is
useful to estimate a Dirichlet prior describing their distributions. We estimate hyper-
parameters ˇ and n to describe the distribution of possible matrices ˚ , and separate
hyperparameters ˛ and m to describe the distribution of possible matrices�.

To estimate the probability of a word using a topic-based model, we apply the
parameters ˇ and n:
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P.wjt;w; z; ˇn/ D Nwjt C ˇnw

N�jt C ˇ (5.29)

D �tnw C .1 � �t /Nwjt
Nt

(5.30)

The term N�jt refers to the distribution of all words over that topic t . Similarly,
to calculate the probability of a given topic given a document model, we apply the
hyperparameters ˛ and m:

P.t jd;w; z; ˛m/ D Nt jd C ˛mt

N�jd C ˛ (5.31)

D �dmt C .1 � �d /Nt jd
Nd

(5.32)

The models resulting from latent Dirichlet allocation have properties in common
with those resulting from latent semantic analysis, described in Sect. 5.5.10.

Given a topic model and a bigram model, the next challenge is to find a
method to combine their predictions. When using LSA to incorporate topical
information (Sect. 5.5.10), the topic models are combined with n-gram models
using linear interpolation. In contrast, to retain and extend the Bayesian properties
of the component n-gram and topic models described here, [66] calculates the
joint probability of a word given both its n-gram context and its topic context
by combining Eqs. (5.27) and (5.29). Stepping back to the initial model of the
training corpus, the transition probability matrix ˚ will now have rows defined
as the probability of transition from word w0 and topic t to word w: P.wjw0t/.
The Dirichlet hyperparameters describe the probability distribution of this jointly
estimated matrix ˚ . If the contexts w0t are modeled as strictly joint, then the
estimation is formulated as:

P.˚ jˇn/ D
Y

w0

Y

t

Dir.�w0t jˇn/ (5.33)

The hyperparameters ˇ and n are fully tied, shared between the contexts w0 and t .
Alternatively, the contexts w0 might be modeled separately for each topic:

P.˚ jfˇnt gTtD1/ D
Y

w0

Y

t

Dir.�w0t jˇnt / (5.34)

Here the hyperparameters capture topic-specific similarities between words. Lastly,
the distributions of t could be modeled separately over each context w0:

P.˚ jfˇnw0gWw0D1/ D
Y

w0

Y

t

Dir.�w0t jˇnw0/ (5.35)
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In this last case, the parameters capture information about common, topic-
independent bigrams.

The choice of prior as well as the choice of estimation procedure affect the
outcome, as better choices result in more interpretable topics and more informative
models. For jointly estimating word and topic contexts, [66] shows Eq. (5.34) to
be most effective; it is more effective than Dirichlet-estimated bigram or topic
models alone, and more effective than using either of the other priors (Eqs. 5.33
and 5.35) to estimate the joint model.

The models are evaluated by a measure related to perplexity, differing from the
usual formulation due to the use of topic models and the alternative method of
estimating the models. The results over a small training and test set show that the
proposed algorithms are effective in reducing the information rate of the models.
Furthermore, the words comprising topic models are interpretable, showing that the
method is as useful as LSA in incorporating semantic properties of the corpus into
the language model. The differences in evaluation technique, however, preclude the
comparison of the Bayesian topic-based models in [66] to typical language model-
ing methods. Ostensibly, this method of calculating the models and of testing them
is task-independent, but no task-based evaluation is given. The questions of whether
this technique is amenable to use in speech recognition or machine translation in
terms of storage and processing requirements, and whether the information theoretic
gains extend to gains in task results, remain for further research.

As for tasks within the Semitic language realm, the usual questions apply: should
the word contexts be determined over unique tokens, or should stemming be applied
first? More generally, will using this technique for estimating smoothing parameters
be useful in solving the sparse data problem that most affects Semitic languages –
the growth of vocabulary due to morphological richness? Perhaps the incorporation
of a third kind of context, one that models morphological properties, will result in
the most useful model for Semitic language applications.

5.6 Modeling Semitic Languages

The specifics of morphological and grammatical principles of Semitic languages
are covered elsewhere in this volume. There are multiple morphological functions,
including both root-and-pattern and affixational morphology, that result in an
abundance of unique word forms. As for handling this rich morphology in automatic
processing, there are two overall devices: tokenization, which reduces the number
of unique words by separating clitics from the main semantic information, and
stemming, which reduces the number of unique word forms by arranging words
into classes by their common properties, ignoring the less semantically salient
properties that make them different. Tokenization can often be applied through
simple scripts that look for specific alphabetic sequences at word boundaries.
An information-theoretic approach to tokenization can also be taken when affix
and stem dictionaries are unavailable (e.g. Morfessor, [17]). There are multiple
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approaches to stemming, ranging from language-independent statistical methods of
deriving morphemes to linguistically complex methods such as the multi-featured,
context-sensitive classes derived through the use of parsers and part-of-speech
taggers for Factored Language Models [33]. This section will review studies that
incorporate tokenization, stemming, or both in order to improve language models
for Semitic natural language processing.

5.6.1 Arabic

Vergyri et al. [65] and Kirchhoff et al. [33] both describe the utility of incorporating
morpheme information into language models for Arabic speech recognition. Both
of these studies use Egyptian Colloquial Arabic data and Factored Language
Models (FLMs), described above in Sect. 5.5.4. Automatic means are used to derive
morphemes as well as other kinds of morphological and syntactic information.
These studies focus on how FLMs and associated technologies such as generalized
parallel backoff can be used to successfully incorporate this knowledge into a
useful language model, eventually reducing word error rate on an ASR task. One
obstacle that must be overcome is the combination of recognized morphemes into
words without generating spurious words, or words not in the original vocabulary.
Another aspect of this technology is the decision of when to incorporate the
morpheme models; if the model is too complex to be effectively incorporated
into first-pass decoding, it can still be beneficial to use morpheme and enhanced
models in a second-pass decoding of word-based lattices. The experiments in
[33] also effectively separate the aspects of morpheme-based language modeling
from the FLM technique in a useful way; it is clear in this study that the use of
the more complex FLMs indeed improves upon a more simple incorporation of
morphological knowledge into the language model.

The use of morphemes in Arabic language modeling is also discussed in [21],
discussed in Sect. 5.5.5 above. Morphemes derived via a finite state algorithm, part
of speech tags, and automatically-derived short vowel information are used as input
to a neural network language modeling tool. While the gain in word error rate is
negligible in this study, the follow-up study [38] does show that accurately derived
morphological information can be used to successfully lower word error rate when
incorporated into neural network language models.

When working with a dialectal form of Arabic, there is a tension between
using morphological information derived from the more data- and resource-replete
Modern Standard Arabic and creating new tools to work with the particular dialect,
for which there may not be adequate text for training new models. Afify et al.
[2] combine tools and knowledge from both MSA and Iraqi Arabic in creating
morpheme-based language models for the Iraqi dialect. First, a set of affixes are pre-
defined based on linguistic knowledge of the dialect. The affixes are segmented from
the words based on orthographic information. These segmentations are then refined
by applying knowledge from the Buckwalter Arabic Morphological Analyzer [11],
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which encodes information about legal stems in MSA. Heuristics such as setting a
minimum stem length and checking stem accuracy against the stem dictionary limit
the number of segmentations of each word. The resulting segmentations are used
to derive both the language model and pronunciation dictionaries. The morpheme
models result in a lower out-of-vocabulary rate and a lower ASR word error rate,
especially when interpolation is used to smooth the word and morpheme language
models. The interpolation allows the model to take advantage of the longer context
of word models and the greater token coverage of morpheme models.

Xiang et al. [68] use a similar method of segmentation constrained by defined
MSA stems to produce morpheme-based language models of Arabic. When auto-
matically derived phonetic information is incorporated into both these language
models and corresponding acoustic models, word error rates drop. An important
observation of this study is that words must be segmented carefully; doing so
without constraint results in models with greater acoustic confusability. Incor-
porating phonetic knowledge into the segmentation algorithm aids in producing
models that are better aligned with the challenges encountered in ASR. Constrained
segmentation of Arabic words into morphemes is also explored in [39] and [16]. In
these studies, the statistically-derived morpheme segmentations are constrained by
pre-defined affix and stem lists. The benefit of using these morphemes in language
modeling for ASR may be limited to small-vocabulary tasks [16], but in some cases
may also be useful in large-vocabulary tasks [46].

Heintz [27] uses finite state machines to identify all of the possible stems
in a word according to a set of pattern templates. Together with a set of pre-
defined affixes, the segmentation into morphemes produces a text over which useful
language models can be estimated. However, there is no significant reduction in
word error rate in either Modern Standard Arabic or Levantine Arabic speech
recognition experiments. The use of simpler techniques such as Morfessor [17] or
affix-splitting for morpheme creation is recommended.

Marton et al. [42] discusses the use of tokenization of an Arabic language model
for translation from English to Arabic. (The main thesis of this study regards
paraphrasing the source language, English, but this does not affect the language
modeling of the target language, Arabic.) Tokenization and normalization are
performed using MADA, a morphological analysis tool trained to work with Modern
Standard Arabic data. They note that the process of de-tokenization, returning the
morphemes to word status by correctly strining them back together, is a non-trivial
and important step in processing, and discuss a successful technique.

5.6.2 Amharic

In [1], bigram language models are incorporated into an Amharic large-vocabulary
automatic speech recognition system. The system is straightforward and without
complications of morphological processing. The use of only whole words results
in a rather weak model due to data sparsity – both perplexity and the number of
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singleton words are large. The author points to the use of syllable modeling as a
useful prospect for segmenting Amharic text; the use of syllables in the acoustic
modeling experiments, tested separately from language modeling, is shown to be
beneficial.

Tachbelie and Menzel [63] build on the work for Amharic NLP begun in [1].
In this study, the authors use the Morfessor algorithm [17] to segment the Amharic
train and test texts, greatly reducing the out-of-vocabulary rate. A comparison of
word and morpheme language models via log probability (see Sect. 5.2) shows that
the word-based model provides a better encoding of the test text. Still, reducing the
out-of-vocabulary rate should be useful for application of the model in an NLP
task, and the language-independent Morfessor algorithm is sufficient to provide
adequate segmentation for this purpose. The authors test their hypotheses further
in [64]. Here the speech recognition system developed in [1] is used to test several
morpheme-based language models in Amharic. A manual segmentation of words
into morphemes is compared to the Morfessor-derived morphs. The morpheme
models are applied by expanding word bigram lattices into morpheme-based lattices
and finding the new best path. Linguistically (manually) derived morphemes, and
trigrams in particular, are found to produce better results in this second-pass
decoding. Factored language models are also explored, with word, POS, prefix, root,
pattern and suffix features. Pre-determined and genetic algorithm backoff models
are applied in this study. FLMs, especially those that include POS information and
use genetic algorithms to find the best backoff path, produce better decoding results
than the simpler methods described above.

Pellegrini and Lamel [48] also study the application of NLP techniques to
Amharic. Words are decomposed using the Harris algorithm, which looks for
morpheme boundaries at places where the number of possible subsequent letters
is large. Splitting words at these affix boundaries effectively reduces the size of
the vocabulary. Furthermore, ASR experiments using re-trained morpheme acoustic
models are successful in reducing the word error rate, both when morphemes
are counted as ‘words’ and when the morphemes are recombined into words.
However, it is found in later studies that this result is restricted to this experiment
with its small 2-h acoustic model training set. In [49], the word decompounding
is performed with Morfessor, modified to include a Harris probability for word
boundaries. The effect of this is to favor short morphs, which correspond better to
the kind of concatenative morphemes (affixes) that are found in Semitic languages.
Furthermore, the algorithm is enhanced with information about phonetic distinctive
features. A constraint is added to each model regarding acoustic confusability,
derived from acoustic alignment tables. This biases the algorithm to avoid creating
monosyllables that are acoustically confusable. All of the morpheme models reduce
the vocabulary size of the training set as compared to word models. In applying these
models in an ASR task, the lowest word error rate occurs with the most complex
model, which uses both morphological and phonetic constraints in its segmentation.
This study uses a 35-h training set, and finds that the use of a phonetic constraint
is required when deriving morphemes for language modeling to reduce word error
rate in Amharic ASR.
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5.6.3 Hebrew

Netzer et al. [43] use a trigram-model trained on 27 million Hebrew words for the
task of predicting likely words following a given context. The task envisioned in
this study is mobile device input, therefore no acoustic or translation models are
necessary. A morphological and syntactic model are incorporated to account for rich
Hebrew morphology, but in this case, results are worsened. The application is such
that only a partial sentence is used in computing and applying morphological and
syntactic information at test time, which likely accounts for the unexpected results.
It is important to have sufficient context when applying morphological and syntactic
models to modify or enhance both training and test texts.

Shilon et al. [58] is a study of Hebrew-Arabic machine translation. There is great
difficulty in building such a system, as there is no sufficient corpus of parallel
language data. Target-language LMs can be built on the available single-corpus
data, but it is also essential to incorporate linguistic rules in the decoding phase that
account for the morphological and syntactic differences that exist between Hebrew
and Arabic. A second difficulty is the fact that the lattices output by the decoder
tend to be very large, both for Hebrew and Arabic as the target language. Again,
this is due to the morphological richness of both languages, and the lack of parallel
corpora to help align and filter the output. In general, the language models are not
able to sufficiently assign accurate probabilities to all of the sequences in the lattices.
This study points to the amount of work left to be realized, both in building and
applying resources like parallel corpora and knowledge-rich language models, for
the successful application of statistical machine translation in Arabic and Hebrew.

5.6.4 Maltese

The morphological characteristics of Maltese are somewhat different than those
of the other Semitic languages discussed in this book. This impacts the kinds of
techniques that might be used in language modeling for Maltese.

As stated earlier in the book, Maltese is written with Latin text. Unlike Modern
Standard Arabic or Hebrew, all vowels are included in the orthographic form. If
vowel variation were to occur within stems as it does in the derivational morphology
of Hebrew and Arabic, this would produce a great increase in the number of word
forms in Maltese. However, it is the case that vowel harmony is not used for
morphological purposes, so vocabulary size should not increase dramatically due
to the inclusion of vowels in the orthography.

The problem of vocabulary expansion in Modern Standard Arabic and other
Semitic languages comes from the combinations of many affixes and clitics used
to encode morphological information such as gender and number agreement, case
markings, object pronouns, tense, and aspect. Maltese also uses affixes for some of
these purposes, so that the use of a stemmer may reduce the out-of-vocabulary rate.
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However, Maltese uses affixational morphology somewhat less frequently than is
seen in other Semitic languages. For instance, there is no case marking on nouns,
and some tense and aspect markers are separate particles, meaning that the amount
of vocabulary expansion will not be as great for Maltese. Therefore, larger training
sets may compensate for the growth in vocabulary due to affixational morphology
more quickly than is the case in MSA. If adequate training data is not available,
stemming techniques are likely to be useful in generating the most reliable language
models.

It is also the case that Maltese has relatively free word order. The ordering of
verb, subject, and object changes based on the topic of the sentence. This free word
order means that exact n-grams are less likely to be repeated throughout a corpus. A
modeling technique like skip n-grams or flexgrams (Sect. 5.5.1) may be especially
useful in Maltese for capturing the history of a word without relying too heavily on
word order.

5.6.5 Syriac

It is likely that the most pressing issue in language modeling for Syriac will be
the lack of training data. This issue will be exacerbated by the existence of several
forms of orthography. Therefore, a crucial step will be the normalization of the
orthography in order to take advantage of all available data.

As in MSA and Hebrew, many vowels are not normally marked in the orthog-
raphy, reducing the number of word forms that must be predicted. Affixational
morphology is used on verbs in Syriac to encode number, gender, tense, and object
pronouns, as well as possessive pronouns on nouns. Given the probable lack of
training data, stemming will be useful to decrease the out-of-vocabulary rate. The
regularity of the affixes and clitics may mean that a surface segmenter such as
Morfessor [17] will be adequate to provide useful morphemes, without resorting
to a deep morphological analysis.

5.6.6 Other Morphologically Rich Languages

Languages such as Turkish and Finnish also exhibit high degrees of morphological
complexity resulting in a quickly expanding vocabulary and high out-of-vocabulary
rate [25, 28]. Many of the techniques for dealing with the resulting data sparsity
in Semitic languages can be used to address the same problem in these other
languages, and vice versa. For instance, Sect. 5.5.9 mentions the work of [4] in
which morpheme and lexical information is used in a language model to improve
the results of a Turkish ASR task. Hacioglu et al. [26] also describe a morpheme-
splitting algorithm for Turkish, where the morphemes rather than words are again
used to improve ASR. Siivola et al. [59] discuss the use of stemming in building
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language models for Finnish ASR. Hirsimäki et al. [28] introduced the Morfessor
algorithm for segmenting words into statistically-derived “morphs” by applying it
to Finnish data. These and other studies on morphologically rich languages can
certainly inform natural language processing work in Semitic languages.

5.7 Summary

In this chapter we have explored basic n-gram modeling and many variations on
that technique that allow the incorporation of semantic, syntactic, and even phonetic
knowledge into the models. Within Semitic language modeling, the focus has been
on how best to acquire and make use of morphological information to provide
context and knowledge for the language models. Modeling techniques that make this
incorporation simpler, in particular factored language modeling and neural network
modeling, seem most promising for Semitic applications.

The use of one model over the other will often depend not only on the task, but
also on the resources available. When working with languages for which resources
are scarce, simpler linguistic extraction methods, such as statistical segmenting,
often do a sufficiently accurate job to provide informative features to the language
models. Exploration of the simpler expanded language modeling techniques, such
as skip n-grams and flex-grams, may be of greatest use in languages like Amharic,
Syriac, and Maltese, where corpus data and automatic tools for parsing, etc.
are difficult to acquire. These techniques have been shown to be as effective in
improving language models as adding more data – a crucial factor when very little
data is available.

When corpus data as well as automatic means for extracting part-of-speech
labels, roots, or other syntactic or morphological information are available, then
the more complex modeling methods that can incorporate this data will have an
advantage. Further study of more complex methods such as Bayesian topic-based
language modeling may be appropriate for languages such as Modern Standard
Arabic and Modern Hebrew, for which data and tools are available.
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Chapter 6
Statistical Machine Translation

Hany Hassan and Kareem Darwish

6.1 Introduction

Machine translation (MT) is the process of using computers to automate the
translation of text from one natural language into another. MT of text has been
an active area of research for the past few decades. In recent years, MT research
has expanded to address the automated translation of spoken language. Funding
agencies around the world and commercial entities have provided outstanding
support for MT research, leading to major advances in the quality of MT and making
MT a mainstream application. A clear indication of this success is the availability
of a number of good MT online translation systems such as Google Translate and
Bing Translator.

In general, there are many aspects that make MT a challenging problem. Some
of these problems include picking appropriate translations of polysemous words;
appropriately transliterating or translating named entities; constructing sentences
from translated words or phrases; adapting translation systems to new domains,
genres, and variations in language; etc. As a matter of fact, developing machine
translation systems depends on many other natural language processing components
and data such as word tokenization, morphological analysis, parsing, parallel data
and monolingual data.

The family of Semitic languages includes many languages such as Arabic,
Hebrew, Amaharic, Aamaic, Maltese, and Syriac. Some of these languages have
different dialects that have unique linguistic features that are divergent from
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the original language. Semitic languages have orthographic and morphological
characteristics that further complicate MT. Apart from Arabic (and to a lesser extent
Hebrew), MT between Semitic languages and other languages have generally been
understudied by the research community. The development of machine translation
systems depends on many natural language processing components and data such as
word tokenization, morphological analysis, parsing, parallel data and monolingual
data. Most of the Semitic languages can be categorized among low resources
languages which limits the approaches that can be applied for machine translation
of Semitic languages.

Arabic has received the most attention with dedicated projects and evaluation
campaigns. Although the characteristics of Arabic are similar to other Semitic
language, the language resources and research done for Arabic is not matched by
that for any of the other Semitic languages. Hebrew has started receiving some
attention, but it continues to be quite limited compared to Arabic. Thus we focus
in this chapter exclusively on MT for Arabic and Hebrew as examples of Semitic
languages.

This chapter is organized as follows: Sect. 6.2 presents an overview of machine
translation approaches; Sect. 6.3 introduces an overview of statistical machine trans-
lations approaches; Sect. 6.4 reviews the machine translation evaluation metrics.
Section 6.5 discusses the special consideration that should be taken into account
when developing SMT systems for Semitic languages. Section 6.6 discusses how
to build an SMT system; then the required software resources are introduced in
Sect. 6.7. A step-by-step guide for building SMT systems is presented in Sect. 6.8.
Finally, Sect. 6.9 summarizes the chapter and concludes.

6.2 Machine Translation Approaches

6.2.1 Machine Translation Paradigms

There are many paradigms for performing MT. The classical architecture of MT
systems follows the famous Vauquois triangle shown in Fig. 6.1. This representation
proposes that there are three main paradigms for MT, namely the direct approach,
the transfer approach, and the interlingua approach. In the direct translation
approach, the translation is performed word by word where a source word is mapped
directly to a target word possibly with some morphological analysis. This approach
highly depends on bilingual lexicons to perform the translation. However, the
direct approach is too focused on individual words and lacks knowledge of phrasal
constructs.

In the transfer approach, the source language is analyzed by a parser then some
transfer rules are used to transfer the analysis into the target language followed by a
generation step to generate the target language. The analysis, transfer and generation
components are all language dependent and have to be designed and developed
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Fig. 6.1 Vauquois triangle

according to the corresponding language. It is worth noting that some large-scale
rule-based MT systems like Systran are mostly based on the transfer approach.

In the interlingua approach, the meaning of the source language is represented
through an intermediate language (interlingua) then generation rules are used
on the unified representation. The interlingua approach is based on a theoretical
representation and has not yet been applied on a large scale.

Though the Vauquois triangle classical architecture helps in abstracting the
basic approaches and various processes that might be used in performing MT, MT
systems rarely adhere to this claimed theoretical framework due to the compromised
solutions assumed during systems development.

A more recent representation was proposed by D. Wu in [20], in which he
presented a three-dimensional MT model space that focused on the approaches
deployed to achieve the translation rather than on the process of performing the
translation. Wu’s 3D-representation consists of three dimensions: statistical versus
logical, compositional versus lexical, and example-based versus schema-based.
He defined statistical machine translation (SMT) as an MT system that makes
nontrivial use of statistics and probability while the logical system makes extensive
use of logical rules. Compositional MT uses compositional transfer transduction
rules while lexical MT uses lexical transfer without compositional rules. Finally,
example-based MT uses a large library of examples at translation runtime while
schema-based MT uses abstract schemata during runtime. Figure 6.2 shows the
projection of different SMT systems in this three-dimensional model. Word-based
SMT models represent the statistical and lexical combination, while phrase-based
SMT systems deploy more collocational information and therefore move away from
the lexical towards the compositional dimension. As more syntactic knowledge is
added into phrase-based SMT, the system is pushed further into the compositional
dimension.
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In the following, we present the most popular MT models, namely rule-based
MT, example-based MT, and phrase-based SMT models. Special attention is
devoted to phrase-based SMT, because it is currently the most dominant approach
to MT.

6.2.2 Rule-Based Machine Translation

Usually a rule-based MT system follows a transfer approach composed of three
stages: analysis, transfer and generation. The analysis stage parses the source
language text into an abstract language-specific syntactic structure regardless of
the target language. In the transfer stage, linguistic rules specific to the language pair
transform this representation into an equivalent representation specific to the target
language. Differences between languages, in vocabulary and structure, are handled
in the intermediary transfer program. In the third stage, the final target language
text is generated. Again, this approach involves a component tailored for a specific
source-target language pair and bilingual lexicons that connects the lexical units of
the source and target languages.

The transfer rules and the bilingual lexicons are typically expensive to build and
maintain. Another disadvantage is that, in the transfer approach, some ambiguities
in source and target languages are hard to discern and hence difficult to overcome
in such systems. Recently, some rule-based systems deployed a language model to
disambiguate the final target translation.

6.2.3 Example-Based Machine Translation

The example-based machine translation (EBMT) approach is often characterized
by its use of a bilingual corpus with parallel texts as its main knowledge base, at
run-time. Considering the process of human translation, the idea is that translation
takes place by analogy as opposed to the idea that people translate sentences by
doing deep linguistic analysis. EBMT is founded on the belief that people translate
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primarily by decomposing a sentence into certain phrases, then translating these
phrases, and finally properly composing these fragments into one long sentence.
Phrasal translations are translated by analogy to previous translations.

The principle of translation by analogy is encoded to EBMT through the example
translations that are used to train such a system. The EBMT consists of: (a) a
matcher that tries to find the largest phrase in the input sentence that matches
a phrase in the example base; (b) an identification module that tries to find the
translation of the matched phrase in the examples base; and (c) a recombination
module that tries to combine fragments into one sentence similar to a decoding
problem in SMT.

6.2.4 Statistical Machine Translation

SMT is an MT paradigm where translations are generated using statistical models
whose parameters are derived from the analysis of bilingual and monolingual text
corpora. The underlying idea of SMT is motivated by information theory [19],
where Weaver proposed that the statistical techniques from information theory and
cryptography might make it possible to use computers to translate text from one
natural language to another. Four decades later, in the late 1980s, a group of IBM
researchers revisited the idea of using statistical techniques for translation. They
were encouraged by the increase in computing power, the availability of large-scale
parallel corpora, and the lack of progress by other methods.

Brown et al. in [3] and [4] formulated the MT problem as a noisy channel model,
which has led to the rise of SMT. The noisy channel model assumes that a piece
of text in some source language is transmitted over a “noisy channel” that deforms
the text to produce the target language. Thus if we can learn the deformations that
occur in the channel (i.e. learning p(target|source)), which can be approximated by
products of probabilities of word or phrase translations, and the probability of the
source text, which can be approximated using a language model, then we would be
able to recover the source text from the target text.

6.2.5 Machine Translation for Semitic Languages

SMT is now by far the most dominant paradigm of MT for many reasons, namely:
accuracy, scalability, and rapid adaptation to new languages and domains. Moreover,
it requires only parallel data and no hand-crafted rules over source and target
languages as required by rule-based systems. SMT has a great advantage over
example-based systems in the way it generalizes over the training data.

We think SMT is the most suitable paradigm for developing machine translation
systems for Semitic languages for many reasons. First, SMT provides accurate
and scalable systems, second it requires only parallel data and target monolingual
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data. Third, it requires only shallow analysis and word segmentation with no
need for more sophisticated syntactic analysis which is not available for most
Semitic languages. Finally, Semitic languages share similarities on different levels
of language elements (i.e. lexical, morphological and syntactic) which makes SMT
very appealing since SMT techniques usually perform much better when translating
between similar languages.

In the next section we will introduce a brief overview of the SMT system as it is
by far the most dominant paradigm in machine translation nowadays and represents
the most promising approach for developing a new SMT system for any languages
pair.

6.3 Overview of Statistical Machine Translation

The work introduced in [3] and [4] proposed that the problem of MT can be handled
as a noisy channel model. A target sentence T is transferred to a source sentence
S when going through a noisy channel. If this noisy channel could be modeled,
then translation from S to T could be achieved. The machine translation decoder
reverses the noisy channel by reproducing the target sentence T from the source
sentence S. Figure 6.3 demonstrates the SMT system in the training and decoding
phases. At training time, the system uses a parallel corpus to estimate the translation
model probabilities, which attempts to find the most appropriate translation, and
a monolingual corpus to estimate the target language model probabilities, which
attempts to find the most fluent rendering of the translation. At decoding time,
the two probabilistic components are utilized within a global search technique to
find the best translation for a given source sentence. The translation model can take
various alignment forms such as word-based, phrase-based and syntax-based forms.
The language model can be an n-gram language model, a syntax-based language
model or any other model that measures how fluent the target language output is.

In the following sections we will review two translation models, namely: word-
based and phrase-based models.

6.3.1 Word-Based Translation Models

In word-based translation models, the translation model is simply a word-to-
word probabilistic translation model, which is typically estimated from word-level
alignments that represent a mapping between source and target words in parallel
sentence pairs. Word alignment is crucial for SMT as the accuracy of the translation
component is highly dependent on it.

There are five alignment models that have been proposed in [4] with different
complexities. They are known as IBM Models 1, 2, 3, 4, and 5. In all IBM alignment
models, a source word can be linked to exactly one target word, thus these alignment
models do not allow many-to-one, one-to-many, or many-to-many alignments.
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Fig. 6.3 Phrase-based SMT system

IBM Model-1 is the simplest amongst them and aims to learn the word (lexical)
translation model using the alignment links. If we already know the alignment links,
we can estimate the lexical translation model by collecting counts and performing
maximum likelihood estimation. On the other hand, if we have the translation
model, we can assume the most likely alignment links. The problem is that we
do not have either of them. This is a well-known problem with efficient solutions.
The problem involves learning a model from incomplete data with hidden variables
underlying the model. In the case of Model-1, we are trying to estimate the
translation probabilities while the alignment links are the hidden variables in this
problem. IBM Model-1 uses the Expectation Maximization (EM) algorithm to solve
this problem. For detailed information about the mathematical formalization of IBM
models, the reader is referred to [4]. The models are implemented in the widely used
toolkit GIZA++.1

6.3.2 Phrase-Based SMT

Word-based SMT models have a major disadvantage, namely that they do not
use any contextual information for estimating the translation probability. If the
translation unit is larger than a single word, capturing the context would help

1http://www.fjoch.com/GIZA++.html

http://www.fjoch.com/GIZA++.html
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Fig. 6.4 Sentence pair with phrase boundaries and reordering

produce better translations. Capturing context would help with local reordering
of words, such as noun-adjective reordering between different languages. Phrase-
based SMT has been proposed to overcome these problems where the unit of
translation is any sequence of adjacent words. As shown in Fig. 6.4, a phrase-based
SMT system starts by segmenting the source sentence into phrases with arbitrary
boundaries then translates the source phrases into target phrases and finally performs
reordering if applicable. As shown in Fig. 6.4, the phrases of phrase-based SMT
are not linguistically motivated and do not necessarily relate to any constituent
phrase structure. In fact, these phrases are just any arbitrary sequence of words
chosen according to the word alignment probabilities. The current paradigms of
phrase-based SMT were proposed by different research groups (e.g. IBM, RWTH-
Aachen and ISI-USC), with more similarities than differences between the various
approaches. The reader is referred to [9] which provides a comprehensive review of
statistical machine translation. In this section, we will focus on the commonly used
techniques in the research community.

6.3.3 Phrase Extraction Techniques

IBM word alignment models provide word-to-word mapping where a source word
can be aligned to exactly one target word. These alignment models do not allow for
many-to-one or many-to-many alignments and so the alignments are asymmetric,
i.e. the links of the alignment are not the same if the source and target languages
are swapped. Some ad-hoc approaches have been proposed for extracting phrase
mappings based on intersection and union of word alignments. Och and Ney [14]
proposed an approach for extracting phrase mappings based on producing sym-
metrized alignments from word-based alignments and then using some heuristics to
extract phrase pairs. First, alignments in both directions (target-source and source-
target) are produced. Both alignments are intersected to produce a high-precision
alignment. The union of the two alignments is used to extend the intersection
with more alignment points using some heuristics such as GROW-DIAGONAL
which examines all the neighboring alignment points of the intersections. If the
neighboring words are not in the intersection and if both their source and target
words are in the union, then the alignments are extended with the union words.
Finally, phrase pairs are extracted from those extended alignments.
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6.3.4 SMT Reordering

Reordering defines how far the target phrase should move during translation.
Generally, the reordering models penalize any movement in the target translation
away from the corresponding source position and depend on the language model
to judge the appropriateness of a movement. As shown in Fig. 6.4, phrases can be
translated monotonically, swapped or move further.

The basic reordering model is a linear reordering model that simply skips a
number of source words/phrases to allow the movement of the target translation
with a particular penalty. However, this simple orientation model does not depend
on the actual phrase itself but on the relative position between reordered phrases.
More recently, a number of sophisticated reordering approaches have been proposed
such as lexicalized reordering models [18]; and hierarchical lexiclaized reordering
models [8].

These approaches focus on lexicalized reordering models which model the
reordering based on the phrase itself not on the relative position as before. For
example, the model can provide a probability for each phrase in a give context to
be translated in monotone, swapped with the neighboring phrases or translated as a
discontinuous phrase and moved further.

We think that the models presented above are satisfactory for modeling how
to penalize the movement of the phrases; however, they depend on the language
model to judge the grammaticality of the translation output with this movement.
We think that the n-gram language models limit the capability of reordering models
since an n-gram language model cannot judge the grammaticality of a movement
beyond the n-gram scope. It is worth noting that the effect of reordering techniques
is highly related to the difference in structure orders between the two languages.
For example, if we are translating between Arabic and English; Arabic has SVO
and VSO orders while English has SVO only. This would lead to many reordering
variations and requires a sophisticated reordering technique. On the other hand, if
we are translating between two languages with similar structures like French and
Italian, then it will require less sophisticated reordering techniques to get good
translation.

6.3.5 Language Modeling

The language model is a very crucial component for the machine translation
performance. In MT, the main role of the language model is to judge the goodness of
the candidate translation strings. The most commonly used language models in SMT
are the n-gram language models, which are trained on unlabeled monolingual text.
Generally, more data tends to yield better language models and better translation
quality. Statistical language models have been designed to assign probabilities to
strings of words where approximations are made to limit the window of the n-gram
language model following the Markov assumption that only the most recent .n� 1/
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Fig. 6.5 All possible source segmentations with all possible target translations [10]

words are relevant when predicting the next word. The reader is referred to [9] for
more details on language modeling.

6.3.6 SMT Decoding

The task of the phrase-based SMT decoder is to search for the best translation
given a source sentence, i.e. to maximize the probability of the target sentence
as formalized in the SMT model. Generally, SMT decoders deploy a beam
search decoder. The decoding starts by searching the phrase table for all possible
translations for all possible fragments of the given source sentence. All possible
source segmentations with all possible target translations are considered as shown in
Fig. 6.5. The reordering is performed according to any of the approaches discussed
above. Each hypothesis is expanded when considering a new translation as shown
in Fig. 6.6.

The size of the search space increases exponentially due to the reordering and
the large number of translation candidates; even decoding a word-based model
with a bigram language model is an NP-complete problem. Some strategies have
to be used to limit the exponential explosion of the search space; therefore, a beam
search pruning strategy is used to prune those hypotheses having a high cost and
thus reduce the search space. Moreover, similar hypotheses are combined to reduce
further the search space, if they cover the same source words and share the same
language model history. The decoder calculates a future cost estimation for the



6 Statistical Machine Translation 209

Fig. 6.6 Expanding the decoder hypothesis with possible translations [10]

uncovered parts of the source sentence and at each hypothesis the future cost is
estimated based on the translation cost and the language model cost of the uncovered
source words. The total cost of the hypothesis is the sum of the actual cost and the
future cost. Thus, the total cost can be a good estimation of the complete hypothesis
cost. The decoder keeps a number of stacks to keep all partial translations of the
target sentence, and the beam search pruning is applied to all such stacks to keep
the most likely hypotheses. Finally the hypothesis that covers all source words with
the lowest cost is chosen as the most likely translation.

6.4 Machine Translation Evaluation Metrics

Evaluation of MT output is a very hard task due to the subjectivity of evaluation.
Automated evaluation schemes attempt to measure the quality in a way that
correlates with human evaluation. The mostly widely adopted automated evaluation
measure is the so-called Bilingual Evaluation Understudy (BLEU) [15]. BLEU
measures the translation quality by calculating the geometric mean of n-gram
agreements between the output translation and one or more reference translations.
To account for word deletion and to penalize translations with high precision but low
recall, the BLEU score includes a brevity penalty factor that penalizes translations
shorter than the references.

Many variations have been proposed to extend the BLEU score. For example, in
METEOR the focus is on recall by incorporating the use of stemming and synonyms
from Wordnet to match similar target variations. More recently, an extension of the
BLEU score to measure the dependency relations between the translation and the
references was proposed.

Nonetheless, automatic evaluation of MT remains a highly controversial issue
due to the lack of an acceptable measure that can capture translation variations.
More recently, human evaluation such Human Translation Error Rate (HTER) was
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used in large-scale evaluations. HTER is a human-based version of the translation
error rate metric, where a human calculates the minimum number of insertions,
deletions and substitutions needed to correct the translation output according to
some guidelines. While it is gaining acceptance, it is not available for everyday
tasks for all researchers; BLEU is usually used to serve this purpose.

6.5 Machine Translation for Semitic Languages

There are several aspects that would affect the translation quality when translating
to and from a Semitic language. The most notable of these aspects are word
segmentation, word alignment and reordering models, and target side gender-
number agreement. We will discuss each aspect in more detail here.

6.5.1 Word Segmentation

The main objective of word segmentation for machine translation is not to provide
morphological analysis to the source or target text, but rather to make source and
target sentence lengths as similar as possible (in the number of tokens). Another
important goal of segmentation has to do with improving the coverage of the
translation lexicon. Since languages such as Arabic and Hebrew attach clitics like
prepositions, pronouns, determiners, and coordinating conjunctions to words, the
number of unique surface forms is very large. Thus segmentation is critical for
reducing the number of translatable units.

For example the Arabic word “wsynqlhm” can be translated to the English phrase
“and he will transfer them”. In this case it may be better to segment the Arabic word
to get better alignment and better coverage. We have many choices for segmenting
the Arabic word such as “w s ynql hm”, “w s ynqlhm” and “w synglhm”.

The segmentation criterion is highly dependent on source and target languages.
A number of papers discussed the effect of segmentation schemas for Arabic-
English SMT. For example A. El-Kholy and N. Habash in [6] discussed the effect
of Arabic word segmentation on translating from a Semitic language (Arabic) to
a Latin language (English). The study highlighted the important effect of word
segmentation on translation quality. H. Al-Haj and A. Lavie in [2] discussed
the effect of Arabic word segmentation when translating from a Latin language
(English) to a Semitic language (Arabic). Both studies highlight different aspects
related to the direction, to/from a Semitic language, and the best segmentation is
dependent on the direction of the translation.

In general, when translating from a Semitic language to a non-Semitic language,
segmentation should produce segments that match the words in the target language.
From the example above, segmenting “wsynqlhm” into “w C s C ynql C hm”
would match the corresponding English words as (w ! and; s ! will; ynql !
he transfer; hm ! them). Over-segmenting or under-segmenting can adversely
affect phrasal translation and reordering.
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Fig. 6.7 Arabic-Hebrew segmentation

On the other hand, translating from a non-Semitic language, particularly English,
to a Semitic language introduces a new challenge, namely the produced segments
need to be combined in the proper order. In the example above, translating “and he
will move them” would generate “w C hw C sC ynqlC hm” out of which “hw”,
which corresponds to “he” would have to be dropped. Thus, over-segmentation can
greatly impact the ability to reconstruct words.

Translating between two Semitic languages would alleviate some of these
challenges as many Semitic languages share similar morphological structures.
Figure 6.7 illustrates the segmentation similarities between Arabic and Hebrew.
The examples show that Arabic and Hebrew shares a lot of segmentation similar-
ities which would ease the design of word segmentation for translating between
them.

It is worth noting that the word segmentation is a very crucial aspect for getting a
good translation performance; this aspect is more important with Semitic languages
than other languages because of its rich morphological structures.

6.5.2 Word Alignment and Reordering

Different syntactic structures between various languages introduce a challenge for
word alignment techniques; the more monotonic the nature of the two languages
the easier the alignment will be. For example, word alignment between English and
French is much easier than that of English and Arabic since Arabic has SVO and
VSO orders while English has the former only.

Semitic languages such as Arabic and Hebrew may allow similar syntactic struc-
tures [16]. Though Hebrew is mostly SVO, it may allow VSO order. Conversely,
Arabic is mostly VSO, but it freely allows the SVO order as well. As for noun-
phrases, the word order is the same for both Arabic and Hebrew where the adjective
trails the noun. For example, consider the noun phrase that is equivalent to “the
old city” in Hebrew and in Arabic; the mapping between Hebrew and Arabic is
monotonic in this case as shown in Fig. 6.8.

Notice that the adjective and the noun are both preceded by determiners, which
is unlike English where the noun phrase has only one determiner. Also both Arabic
and Hebrew allow for other syntactic constructs such as:
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Fig. 6.8 Arabic-Hebrew
reordering

• Genitive constructs called idafa and smikhut in Arabic and Hebrew respectively.
• Nominal sentences that don’t have verbs.
• In some cases, if the subject is a pronoun, it may be dropped.

Thus local alignment between Arabic and Hebrew can be monotonic, but
sentence level alignment may not be due to the difference in order. A fuller treatment
of syntactic differences between Arabic and Hebrew and how they reflect on MT can
be found in [16].

6.5.3 Gender-Number Agreement

Translating into Semitic languages would face another challenge, which is the
agreement between gender and number in the output of the machine translation
system. This problem is very clear when translating into a Semitic language.

Arabic and Hebrew nouns have an associated gender. For example, a “book” in
Arabic (ktAb) and Hebrew (sfr) is masculine, while a “pigeon” is feminine in Arabic
(ymAmp) and Hebrew (ywnh). English on the other hand does not assign gender to
words. Other Latin languages, such as French, assign gender to nouns, but they may
not match the assignments of Arabic or Hebrew. The gender of nouns reflects on:

• Adjectives as they must agree in gender with the noun they modify. For example,
“large” modifies a chair in Arabic as (kbyr), while “large” modifies a refrigerator
as (kbyrp) because they are masculine and feminine respectively.

• Verbs need to agree with the object (in Arabic) when passive tense is used. For
example, the equivalent Arabic verb in “the ball was played” and “the match was
played” is “lEbt” and “lEb” respectively.

In Arabic and Hebrew, verbs need to agree in number with the subject and
adjectives need to agree in number with the noun they modify. For example, the verb
in “the boy reads” and “the boys read” in Arabic is “yktb” and “yktbwn” respectively
(only in SVO order – in VSO order, the verb is “yktb” for both), and in Hebrew
is “kwtb” and “kwtbym” respectively. For an example of adjective noun number
agreement, the adjective in “the small book” and “the small books” in Arabic is
“sgyr” and “sgyrp” respectively, and in Hebrew is “qtn” and “qtnym” respectively.
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6.6 Building Phrase-Based SMT Systems

6.6.1 Data

The success of any SMT system highly depends on the availability of a reasonable
amount of high-quality parallel data as well as high-quality monolingual data. For
some languages such as Arabic, English, French and Chinese, there are large sets of
parallel training data such as the data available from the United Nations. For many
other languages, there are limited amounts of parallel data or nearly no parallel data.

For Arabic-English MT there is a fair amount of training data. For Hebrew-
English MT, there is limited training data. Unfortunately, there is very limited
training data for Arabic-Hebrew MT, mostly from the Quran and the Bible. For other
Semitic languages, MT parallel data between them and other languages is scant at
best. As for monolingual data, it is critical for building good language models and
usually easier to get for many languages. In the remainder of this section we will
briefly discuss the specifications and the amount of parallel and monolingual data
required to train an SMT system.

6.6.2 Parallel Data

The SMT technology is mature and well documented in a large number of papers
and tutorials. Moreover, the open source systems are very competitive and provide
good capability for starting a machine translation project for any language pair. The
quality and richness of parallel data is one of the strongest differentiating factors
between a good and a bad SMT system. However, preparing high-quality parallel
data is not a trivial task. The translation should be fluent while preserving all of the
meaning present in the original text. The translation must be faithful to the original
text in terms of both meaning and style. The translation should contain the exact
meaning conveyed in the source text, and should neither add nor delete information.
No words or phrases should be added to the translation as an explanation or aid to
understanding. Special attention should be paid to name translation, which should
be translated or transliterated depending on the common convention in the target
language. The Linguistic Data Consortium (LDC) has provided some guidelines for
producing parallel data with high quality. These guidelines can be obtained from
LDC website.2

A very important question for SMT practitioners is: how much training data is
required to get a good translation quality. The simple answer is that more in domain
data would enhance the quality of an SMT system. Specifying the exact amount of
data is a very challenging and is highly dependent on the languages pair and the
domain of the translation.

2http://www.ldc.upenn.edu/Catalog/docs/LDC2012T06

http://www.ldc.upenn.edu/Catalog/docs/LDC2012T06
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6.6.3 Monolingual Data

Very large amounts of monolingual data are required for training good language
models. Fortunately, huge amounts of Arabic data are already available in the news
domain via the LDC Arabic Giga Corpus.3 More data can be easily obtained by
mining the web. Similar to the parallel data, domain-specific monolingual data will
have a more positive effect on the translation accuracy than general domain data.

6.7 SMT Software Resources

6.7.1 SMT Moses Framework

Moses is the most popular open source implementation of the state-of-the-art
phrase-based SMT engine. Moses provides a framework for training, tuning, and
decoding translation models for any language pair. Moses provides fast and efficient
search techniques that quickly find the most probable translation among a large
number of possible translations. Moses provides a factored representation that might
be helpful in representing highly inflected morphological languages like Arabic and
Hebrew. For example, factored representation allows for separate translation tables
for stem-to-stem translation followed by a generation step that composes the final
word from stems and associated prefix-suffix combinations.

From an engineering point of view, Moses is very well designed and easy to
extend to add more features to the system. Moses has a very active development
community that keep adding more features. The reader is referred to the user guide
for a comprehensive guide to the Moses Framework [13].

6.7.2 Language Modeling Toolkits

SRILM, which was developed by SRI International, is one of the most popular
toolkits designed to allow both production and experimentation with statistical
language models for various applications. SRILM is written in C++. It is widely
used in the NLP community and it is integrated with Moses. It produces n-gram
word counts in the so-called ARPA format, which is a de-facto standard in the
speech and NLP communities, and in binary indexed format, which provides a
compact representation that enables efficient utilization of the language model. The
toolkit can be found at: http://www.speech.sri.com/projects/srilm/.

IRSTLM is another popular language modeling toolkit, which is written in C++
and was developed by researchers at ITC-irst [7]. This toolkit also integrates with

3http://www.ldc.upenn.edu

http://www.speech.sri.com/projects/srilm/
http://www.ldc.upenn.edu
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Moses. Like SRILM, it produces counts in ARPA format and in a binary indexed
format. IRSTLM can be obtained from: http://sourceforge.net/projects/irstlm/.

RANDLM is yet another C++ toolkit that uses so-called randomized language
models that have much lower memory requirements at the expense of being
exact [17]. Other advantages to this toolkit are: it is multi-threaded; and it can
be parallelized on a Hadoop cluster, which allows for the creation of very large
language models. Again, it supports the popular ARPA format and produces a binary
format. It can be obtained from: http://sourceforge.net/projects/randlm/.

Other notable language modeling toolkits are BerkleyLM (http://code.google.
com/p/berkeleylm/), KenLM (http://kheafield.com/code/kenlm/), HLMTools
(http://htk.eng.cam.ac.uk), and CMU SLM toolkit (http://www.speech.cs.cmu.edu/
SLM/toolkit.html).

6.7.3 Morphological Analysis

There are a number of freely available morphological analyzers that can be used
for performing the aforementioned segmentation of words to improve MT. Some of
the available tools for Arabic are QADEM (http://www1.ccls.columbia.edu/cadim/),
MADA (http://www1.ccls.columbia.edu/MADA/), MorphTagger [11], and AMIRA
[5] which provide usueful tools for analyzing Arabic. MADA the most commonly
used analyzer for the purposes of Arabic-English MT, but there are some indications
that MorphTagger [12] may be faster and slightly better for MT.

For Hebrew, there are a few available morphological analyzers such as [1] and
MorphTagger [11].

6.8 Building a Phrase-Based SMT System: Step-by-Step
Guide

In this section, we will describe a step-by-step scenario for building a Hebrew to
Arabic SMT system.

6.8.1 Machine Preparation

We recommend to have a machine with Ubuntu distribution and then install the
Ubuntu NLP package which includes Moses and all its components and makes it
easier to install Moses. It can be downloaded from the Ubuntu NLP Repository.4

Alternatively, for more advanced experiments where the user is expected to modify

4http://cl.naist.jp/eric-n/ubuntu-nlp/

http://sourceforge.net/projects/irstlm/
http://sourceforge.net/projects/randlm/
http://code.google.com/p/berkeleylm/
http://code.google.com/p/berkeleylm/
http://kheafield.com/code/kenlm/
http://htk.eng.cam.ac.uk
http://www.speech.cs.cmu.edu/SLM/toolkit.html
http://www.speech.cs.cmu.edu/SLM/toolkit.html
http://www1.ccls.columbia.edu/cadim/
http://www1.ccls.columbia.edu/MADA/
http://cl.naist.jp/eric-n/ubuntu-nlp/
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the source code of the various components, we would recommend following the
Moses User Manual and Code Guide [13] for full details on how to build the
framework. After installing the Ubuntu NLP repository or downloading and building
the Moses framework yourself, we would recommend following instructions in the
Moses User Guide to install and test a sample model.

6.8.2 Data

As we described before, each machine translation system requires parallel data and
monolingual data. Usually parallel data is harder to get while monolingual data is
easier to get and hence larger. It is good practice to include the target side parallel
data in the monolingual data as well. As a rule of thumb, all the processing done on
target data should be exactly the same on the monolingual data. At decoding time,
all preprocessing done on the training data should be done the same way on the
source side of the evaluation data. The Linguistics Data Consortium (LDC) provides
multiple volumes containing parallel training data for Arabic and English as well as
large monolingual data for a variety of languages including Arabic and English.

6.8.3 Data Preprocessing

• Simple tokenization: This simply performs white space tokenization to separate
words from punctuation.

• Numerical classes: Numbers represent a challenge to SMT systems since on the
one hand they are usually easy to translate though on the other hand they are
sparse and can represent a large portion of the translation and language model
vocabularies. As a general practice, SMT researchers used to classify numbers
written in numerical form (i.e. Arabic numerals) into a pre-specified class
used throughout the translation process and only replace it with its equivalent
translation at the end of the translation process.

• Characters normalization: This step should normalize different forms of the same
characters that might be written in different ways, like ‘hamza’ for Arabic.
Similar to this is lower casing characters for cased languages either as source,
as target or both.

6.8.4 Words Segmentation

Word segmentation is generally a challenging task for machine translation. Simply
using a morphological analyzer would lead to suboptimal translation results even
with a very good system. The words segmentation effect is crucial for the quality of
machine translation as discussed in Sect. 6.5.1.
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6.8.5 Language Model

Given parallel and monolingual data that are pre-processed as discussed before,
we can build our language model on the monolingual data and target side of the
parallel data. It is worth noting that we can have multiple language models. For
example, we can have a general domain language model and a domain-specific
language model. This would allow the parameter tuning to pick the most adequate
parameters depending on our development test data. We recommend building the
language model using SRILM, which is already included in the Ubuntu NLP
Repository. Building a simple language model using SRILM can be done by issuing
this command:

ngram-count -text CORPUS-FILE -lm SRILM-FILE
There are many advanced language modeling techniques; some are supported by

SRILM and others are supported by IRSTLM.5 We highly recommend reviewing
the Moses Manual for other alternatives such as Class based LM, Chunk based LM
and building huge Language Models as discussed above.

6.8.6 Translation Model

The Moses Framework provides simple tools to build translation models with a
single script which can perform the training. This script goes through the following
steps: prepares data, performs word alignment, calculates lexical translation table,
extracts phrases, scores phrases, builds reordering models, and finally creates
configuration files used for decoding. Invoking this training script on parallel
Arabic-Hebrew data is done using the following command:

train-model.perl -root-dir . -f hr -e ar -corpus corpus/hr-ar
Moreover, Moses supports factored translation models which support the trans-

lation of different factors that can be combined at the end of translation to generate
the target surface form. This feature is particularly important when translating to
highly morphological languages like Semitic languages. Using factored translation
models, we can design a translation system that translates different morphemes and
then combine them at a generation step to produce the final translation form.

6.8.7 Parameter Tuning

The key to good translation performance is having a good phrasal translation table
and a good language model. However, the performance can be improved by tuning

5http://sourceforge.net/projects/irstlm/

http://sourceforge.net/projects/irstlm/
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the decoder parameters. The probability cost that is assigned to a translation is
a weighted sum of probability costs of many models such as phrase translation,
language model, reordering, and word penalty models. Those weights are identified
by maximizing the translation performance on a given validation set. The most
common methodology is Minimum Error Rate Training (MERT). This can be
performed within the Moses Framework using:

mert-moses.pl -mertdirDPATH-TO-MERT-DIR input-text references decoder-
executable decoder.

6.8.8 System Decoding

Having built all the necessary models, we are now ready to decode and evaluate the
trained system. It is very straightforward to run the decoder using the configuration
file that has been produced during the training process using the command:

moses -f moses.ini
It is worth mentioning that developing an SMT system is a continuous process

that keeps improving over time by iterating various experiments and ideas.

6.9 Summary

In this chapter, we briefly introduced statistical machine translation for semitic
language. We introduced an overview of machine translation approaches and
discussed statistical machine translation in more detail. We discussed the special
consideration that should be taken into account when developing SMT systems for
Semitic languages. We discussed segmentation techniques for Semitic SMT; and
finally we introduced a guide on how to build an SMT system using freely available
resources. This chapter is not a complete guide by any means, and the reader
is highly encouraged to read the Moses user guide carefully to get the required
knowledge for developing sophisticated SMT systems.
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Chapter 7
Named Entity Recognition

Behrang Mohit

7.1 Introduction

Named entity recognition (NER) is the problem of locating and categorizing
important nouns and proper nouns in a text. For example, in news stories names
of persons, organizations and locations are typically important. In the following
example, the highlighted named entities hold key information and are useful for
language processing applications.

Before joining UCB, Lisa North worked for Pegasus Books in North Berkeley.

Named entity recognition plays an important role in applications such as Infor-
mation Extraction, Question Answering and Machine Translation. For example,
information about named entities such as Lisa North helps a machine translation
system to avoid translating them erroneously word by word.

The NER task has been studied extensively for many languages [54] including
Arabic and Hebrew. Throughout the past two decades, numerous systems and data
resources have been developed for NER. Moreover, there has been several forums
and evaluation programs focused on named entity recognition and other related
tasks.

In this chapter, we review the general state of NER research, relevant challenges
and the current state of the art works on Semitic NER. Specifically, we look into
two case studies for Arabic and Hebrew named entity recognition. We also review
Semitic NLP tasks which overlap with the named entity recognition. We close with
an overview of the available resources for Semitic NER and some the open research
questions.
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Table 7.1 Sample NER output with the mention-level (SGML) and BIO and BIOLU representa-
tions

Representation Example

SGML <PER>Dr. Doull</PER> from the <ORG>Royal College of
Paediatrics</ORG> in <LOC>Wales</LOC> backed the
<MIS>Fresh Start</MIS>.

Token BIO BIOLU

BIO & BIOLU Dr. B-PER B-PER
Doull I-PER L-PER
from O O
the O O
Royal B-ORG B-ORG
College I-ORG I-ORG
of I-ORG I-ORG
Paediatrics I-ORG L-ORG
in O O
Wales B-LOC U-LOC
backed O O
the O O
Fresh B-MIS B-MIS
Start I-MIS L-MIS
. O O

7.2 The Named Entity Recognition Task

7.2.1 Definition

Named entities (NEs) are words or phrases which are named or categorized in a
certain topic. They usually carry key information in a sentence which serve as
important targets for most language processing systems. Accurate named entity
recognition can be used as a useful source of information for different NLP
applications. For example the performance of applications like Question Answering
[69], Machine Translation [7] or Information Retrieval [39] has been improved by
named entity information. Table 7.1 shows an example sentence annotated with
the named entity information, using different representation schemes. The three
intuitive classes of person (PER), location (LOC), organization (ORG) along with
the loosely defined miscellaneous(MIS) class are used in most NER systems. These
classes are mostly relevant to the news related corpora. For other domains, NER
systems are expected to be trained and tested with other relevant class labels.

Table 7.1 also presents different representations of named entity annotation.
Early NER approaches used the mention (chunk) level representation which anno-
tated a named entity as a whole chunk [66]. As the task evolved into a sta-
tistical learning problem, the sequence labeling framework became the standard
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approach [16, 49]. In sequence labeling, the entire sequence of tokens (usually
the sentence) is labeled concurrently. The BIO labeling is a representation that is
generally used for sequence labeling. In this representation, a token is seen to be
at the Beginning or Inside or Outside a named entity. In the alternative BILOU
representation, the L and U labels are used respectively for the Last token of a
multi-token entity and the Unit-length named entities.1

The scope of named entity recognition has evolved over the past couple of
decades. Originally NER was limited to the extraction of news related proper nouns
such as names of persons, organizations and locations. With the expansion of NLP
in other domains, those few traditional named entity classes were not sufficient. For
example, for an article about science or technology, the three traditional classes are
not enough and other named entity classes need to be considered. Moreover, named
entities should not be limited to proper nouns. In certain areas of studies such as
nuclear physics, one might highlight terms such as proton or uranium as named
entities.2 Thus, despite the common focus on the person, location and organization
classes one can say that NER encompasses the extraction of all important entities in
a given context.

7.2.2 Challenges in Named Entity Recognition

Named entity recognition consists of the following two sub-problems: (1)
recognition of named entity boundaries; (2) recognition of named entity categories
(classes). These problems are usually (but not necessarily) addressed concurrently.
Similar to most problems in language processing, there are ambiguities in the
language which add to the challenge of the task. In the following, we present
examples of ambiguities in both recognition and categorization of named entities.
In the first sentence, there is an ambiguity in the recognition of the named entity
Reading that can be confused as a gerund form of a verb or a proper noun (city
name). In the second example, the ambiguity is in the named entity type; Fox can be
interpreted either as a person, an organization or a non-named entity. Furthermore,
Washington might refer to a person, location or organization (US. government).

• Reading is located between two major highways.
<LOC> Reading </LOC> is located between two major highways.

• Fox criticized Washington.
<ORG> FOX </ORG> criticized <ORG>Washington</ORG>.

1Ratinov and Roth [59] have shown that with a small linear expansion of the parameters, the
BILOU representation results in a better NER performance.
2Temporal and numerical expressions are other examples named entities which are not proper
nouns.
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Table 7.2 Examples of rules used to extract named entities

Pattern “headquartered in <x>”
Known locations Nicaragua
New locations San Miguel, Chapare region, San Miguel City
Pattern “to occupy <x>”
Known locations Nicaragua
New locations San Sebastian neighborhood

Most NER challenges lie in its heavily lexicalized and domain-dependent nature.
Names take a large part of a language and are constantly evolving in different
domains. In order to have a robust NER system for any given domain (e.g. tourism),
we need labeled corpora and lexicons (e.g. names of monuments). Creating and
updating such resources for various topics is an expensive task and requires linguis-
tics and domain expertise. In the following we will review two frameworks of rule-
based and statistical NER and will discuss their data requirements and robustness.

7.2.3 Rule-Based Named Entity Recognition

Early approaches to named entity recognition were primarily rule-based. Most rule-
based systems used three major components: (1) a set of named entity extraction
rules, (2) gazeteers3 for different types of named entity classes, and (3) the extraction
engine which applies the rules and the lexicons to the text. The rule set and the
lexicons were either completely handcrafted by humans or were bootstrapped from
a few hand-crafted examples. A successful example of the rule-based framework
was the AutoSlog Information Extraction system [61]. Table 7.2 presents samples
of Auto-Slog’s rules and the extracted named entities.4 The system starts with a
set of simple seed rules for some known entities like Nicaragua. In an iterative
bootstrapping framework the rules were applied and got extended to extract new
entities like San Sebastian.

Rule-based systems are relatively precise but usually have low coverage and work
well on narrow domains. Their performance usually depends on how comprehensive
the rules and lexicons are. Bootstrapping frameworks like [61] are still limited to
the domain of the seed rules and lexicon. Furthermore, incorporation of deeper
knowledge beyond the surface words and lexicons in to a rule-based system requires
expensive manual effort. In contrast, statistical frameworks are more flexible in
incorporating richer linguistic knowledge (e.g. syntax) which results in more robust
systems.

3Gazeteer is a term that is commonly used to refer to a domain specific lexicon. For example, there
are gazetteers for country and city names.
4Example is borrowed from [60].
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7.2.4 Statistical Named Entity Recognition

The rising popularity of the statistical NLP methods along with the expansion of
available data resources has directed NER research to data-driven and statistical
methods. The use of statistical methods reduced the human effort needed for
the tedious construction of rule sets and gazeteers. Soon after their development,
statistical and hybrid systems like [51, 52] outperformed the state of the art rule-
based systems.

Statistical named entity recognition usually uses the following two main compo-
nents:

1. Labeled training data: text corpora where named entities are annotated (similar
to examples in Table 7.1).

2. A statistical model: a probabilistic representation of the training data.

A statistical model is made of parameters which map a language event to a
probability. For example a statistical model that is trained on our earlier example
(Fox criticized Washington), might have parameters such as the probability of the
first word in a sentence being a named entity or the probability of certain word (e.g.
Fox) being labeled as organization.

As a supervised learning problem, named entity recognition can be modeled
as a classification task for each individual token. However, such approach fails to
consider the interdependency between different tokens. In contrast, NER is usually
seen as a structured learning problem for a sequence of variables. That is the
sequence labeling view where the learner predicts the labels for the entire sequence
of tokens (usually a sentence). This approach allows the modeling of the dependency
that exists between different tokens. For example in the earlier example, the class
disambiguation for the word Fox is easier if the entire sequence (specially the word
Washington) are included in the prediction.

In a sequence labeling framework a sentence is represented by a set of token
variables t1; t2; : : : ; tN . The labeler is expected to find the most likely sequence of
named entity labels, y1; y2; : : : ; yN . The set of labels consists of the BIO boundaries
along with the named entity types. Thus, the class possibilities for a model which
labels person, location, organization are: B-PER, I-PER, B-LOC, I-LOC, B-ORG,
I-ORG and O.

Formulating the problem probabilistically, we would like to find the label
sequence which satisfies:

S D argmax
y1:::yN

P.y1 : : : yN jt1 : : : tN / (7.1)

Using the Bayes’ theorem of probabilities, we can rewrite and simplify the above
formula as:

S D argmax
y1:::yN

P.t1 : : : tN jy1 : : : yN /P.y1 : : : yN / (7.2)



226 B. Mohit

Start B I

O

End

Fig. 7.1 An simplified HMM
for detect NE boundaries

There are different ways of modeling the sequence labeling problem. One well-
known approach is the hidden Markov model (HMM) [58]. HMM is based on two
concepts:

1. A probabilistic graphical model in which class variables are represented by states
which are able to generate tokens.

2. An assumption that there is a Markov process in the generation of the tokens.
The assumption is that the probability of assigning a class to a token depends
only on a few earlier tokens (and their class labels).

HMM formulates the labeling problem as:

S D argmax
y1:::yN

P.t1 : : : tnjy1 : : : yn/P.y1 : : : yn/ (7.3)

D
Y

iD1;:::;N
P.ti jyi /P.yi jyi�1/ (7.4)

In the formulation shown above, the Markov assumption allows us to shorten
the context for computing P.y1 : : : yn/ and simply use P.yi jyi�1/. This is the
first order HMM in which the model includes the contextual information for one
previous word. Richer models with higher order use longer context with much larger
parameter space.

Figure 7.1 presents an HMM for a simplified task of finding named entity
boundaries. In this model, the class labels are limited to only three boundary labels
(B, I and, O). The start and the end states are used to enforce boundaries for the
sequence labeling task. Here, the sequence labeling of named entity boundaries
follows a generative story:

1. The sequence begins at the Start state.
2. For each token position in the sequence, there is a probabilistic state transition

where the class label gets decided.
3. After each transition, the destination state generates a word.
4. The sequence finishes at the End state.

In order to follow the above HMM framework, two sets of parameters are needed
to train the HMM:
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B-Org O B-Org

Fox criticizes Washington

O O B-Pers

Fox criticizes Washington

Fig. 7.2 An ambiguous
example with the correct and
an incorrect labeling by
HMM

1. P.yi jyi�1/: state transition probability which is the conditional probability of
the current token’s label given the previous token’s label.

2. P.ti jyi /: the probability of generating a token, given its label.

During the training, the model learns these two sets of parameters by counting
and calculating the probability of different state transitions and word generations in
the training data.

Having a trained HMM, we can choose the most likely tag sequence that
maximizes the product the two parameters. Since the labeling takes place globally
for the entire sequence, the model can deal with some of the class ambiguities.
Figure 7.2 presents the correct and an incorrect sequence of HMM states (labels)
for an ambiguous sequence. Here, the tagging of Fox as (news) organization
influences the following state sequence and results in the tagging of Washington as
a (government) organization. In the second labeling, the model collectively labels
Fox as non-NE and Washington as person.

In general, the procedure to find the most likely label (state) sequence is named
decoding. Methods such as the Viterbi algorithm which use dynamic programming,
are commonly used for the HMM decoding.5

In order to train richer NER models, one would like to incorporate deeper
linguistic information like long distance dependencies, morphological agreements,
etc. HMM assumes that tokens are independent of each other. This assumption limits
the scope of the contextual information that the NER model can use. Thus, learning
features are limited to the current token [16].

In richer discriminative models such as the Maximum Entropy [15], the Percep-
tron [20] and the Conditional Random Fields (CRF) [41], there is no assumption
made about the independence of the words and their class labels. This relaxed
framework allows the model to benefit from diverse overlapping (non-independent)
features [13,49]. For example, the model can use different lexicons of foreign names

5Two well-explained usage of the above HMM framework can be found in [37, 48].



228 B. Mohit

or cultural genres [59]. Moreover, global features which are collected in context
beyond the current sentence have also been incorporated into discriminative models
[19, 59].

7.2.5 Hybrid Systems

Hybrid named entity recognition systems combine two or more systems to reach
a collective decision. These systems have shown improvement over their baseline
counterparts. The work of [17] in combining statistical and rule-based systems in
the MUC competitions as well as the work of [26] in combining different statistical
learning algorithms are two successful examples of hybrid NER. In Sect. 7.4 we
will discuss two Semitic NER systems that use hybrid frameworks, with different
learning algorithms.

7.2.6 Evaluation and Shared Tasks

Named entity recognition systems are evaluated by running them on human-labeled
data and comparing their results against this gold-standard. The comparison is
usually at the phrase level, giving full credit for complete boundary and category
matches and no credit for partial matches. The commonly used evaluation metrics
are the precision and recall which have been borrowed from Information Retrieval
evaluation. Recall measures the coverage of the system i.e. the percentage of gold-
standard named entities that the system is able to recognize. Precision measures the
accuracy, i.e. the percentage of the labeled named entities that agree with the gold
standard.

A third measure (F1) is used to combine these two metrics as shown in the
following:

Precision D C

L
Recall D C

G
F1 D 2 � Precision � Recall

PrecisionC Recall

Where:

• L: Number of labeled named entities
• G: Number of gold-standard named entities
• C : Number of correctly labeled named entities

The F1 measure has been the de facto evaluation and optimization metric for
named entity recognition, because of its simplicity and generality. However, there
have been debates about how informative this metric really is. In a NLP blog
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note,6 Chris Manning compares various types of errors in NER and argues that
F1 penalizes some types of errors too much. For example, a perfect boundary
recognition with incorrect categorization receives the same penalty as a total miss
of a named entity. Furthermore, Manning shows that optimization for such an
evaluation metric biases the system towards labeling fewer named entities.

7.2.7 Evaluation Campaigns

Since its introduction, named entity recognition has been a popular subject for group
evaluation. There have been three major NER evaluation campaigns as part of NLP
conferences. The shared task at the 6th and the 7th Message Understanding Confer-
ence (MUC) were the first NER system competitions7 which consisted of extracting
entities like person, location, organization, temporal and number expressions [66].
The evaluation followed the template-filling framework of Information Extraction
(IE) with the standard precision, recall metrics. MUC’s evaluation counts partial
credits for cases in which the boundary of the entity or its class are incorrect.

In 2002 and 2003, the Conference of Natural Language Learning (CoNLL)
included a language-independent shared task on named entity recognition. These
were important forums for language-independent NER8 where a diverse set of
learning techniques and features were explored. The BIO encoding of the NER
problem, the addition of the miscellaneous (MISC) class of named entities9 and also
the exact matching criteria in the evaluations were protocols which were introduced
in the CoNLL shared tasks and since then have been followed by many researchers.

The Automatic Content Extraction (ACE) program was a multilingual (Arabic,
Chinese and English) program that was focused on tasks such as named entity
recognition and mention detection [23]. The program has created substantial amount
of gold-standard data for the three languages. The Arabic corpus is probably
one the most important dataset for Semitic NER. ACE introduced a few new
conventions for named entity recognition; in addition to the standard person,
location and organization classes, ACE added additional entity types such as facility,
vehicle, weapon and geographic point entity (GPE). Furthermore, ACE used a more
comprehensive evaluation framework. The evaluation incorporated several kinds of
errors into an integrated scoring mechanism. This was aimed to address some of the
concerns regarding the complete matching criteria of CoNLL.

6http://nlpers.blogspot.com/2006/08/doing-named-entity-recognition-dont.html
7The term named entity was first introduced at the MUC-6 [54].
8The 2002 shared task was conducted on Dutch and Spanish [67]. The 2003 shared task was
conducted on English and German [68].
9Per CoNLL definition, any named entities that does not belong to the person, location and
organization classes is considered to be MIS.

http://nlpers.blogspot.com/2006/08/doing-named-entity-recognition-dont.html
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7.2.8 Beyond Traditional Named Entity Recognition

In the past decade, the scope of named entity recognition has been extended to new
categories and topics. Depending on the topic, there can be various categories of
named entities. Works such as [63] constructed extended ontology of named entity
categories. These ontologies are useful for NER in multi-topic texts like Wikipedia
or weblogs. Balasuriya et al. [8] highlight the substantial difference between entities
appearing in English Wikipedia versus traditional corpora, and the effects of this
difference on NER performance. There is evidence that models trained on Wikipedia
data generally perform well on corpora with narrower domains. Nothman et al. [56]
and Balasuriya et al. [8] show that NER models trained on both automatically and
manually annotated Wikipedia corpora perform reasonably well on news corpora.
The reverse scenario does not hold true for models trained on news text and there is
a major performance drop.

It is no surprise that the state-of-the-art news-based NER systems perform
less impressively when subjected to new topics and domains. Domain and topic
diversity of named entities has been studied within the framework of domain
adaptation research. In domain adaptation studies, the traditional domain which
usually matches the labeled training data in most part is the source domain and
the novel domain which usually lacks large amount of labeled data is the target
domain. A group of these methods use semi-supervised learning frameworks such
as self-training and select the most informative features and training instances to
adapt a source domain learner to a new target domain. Wu et al. [71] bootstrap
the NER learner with a subset of unlabeled instances that bridge the source and
target domains. Jiang and Zhai [36] as well as [21] make use of some labeled
target-domain data, augmenting the feature space of the source model with features
specific to the target domain.

There is also a body of work on extraction of named entities from biological
and medical text.10 In these works, target named entities range from the names
of enzymes and proteins in biology texts to symptoms, medicines and diseases in
medical records.

7.3 Named Entity Recognition for Semitic Languages

Named entity recognition inherits many of the general problems of Semitic NLP;
complex morphology, the optional nature of short vowels (diacritics) and generally
the non-standard orthography are well known problems involved in the processing
of Semitic languages which also affect NER.

Except Arabic, NER is an under-studied problem for other Semitic languages.
There is small to medium amount of labeled data for Arabic and Hebrew NER

10See [43] and [45] for an overview Biomedical NER.
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Table 7.3 Examples of morphological and orthographic challenges in Semitic NER

Morphology Orthography

Arabic ` 
M-� a =�B-�;1
�
� a �� a �b 
M<�)�0-�;1

�
H* `	�;-�c 	�!;-�b 	�;-�

llAmrykyyn (l + Al + Amryky + yn) brAd (brrAd / brAd)
to the Americans refrigerator / Brad

Hebrew אמריקא�) + (ב� באמריקא� אלוֹ��) / (אלוּ�� אלו��
bamrika (b + amrika) alwn (alun / alon)

in America to lodge / Alon

and for the rest of Semitic languages there is almost no resource. In the following
sections we review the common challenges and some solutions for Semitic NER
with a special focus on Arabic and Hebrew.

7.3.1 Challenges in Semitic Named Entity Recognition

There are four main problems involved with Semitic languages which make Semitic
NER a challenging task. Table 7.3 illustrates samples for some of these problems in
Arabic and Hebrew.11

Absence of capitalization: For English and other Latin-scripted languages, the
use of capitalization is a helpful indicator for named entities.12 Maltese is the
only Semitic language that uses capitalization in this similar fashion. The lack of
capitalization in other Semitic languages like Arabic and Hebrew increases the
ambiguity both in recognition and categorization of the named entities.

Optional vowels: Vowels are present in different levels in Semitic languages.
Short vowels (diacritics) are optional in Arabic and Hebrew. In Amharic writing,
vowels are mostly present (except in the case of gemination) and Maltese’s Latin
scripting explicitly incorporates vowels. Whenever vowels become optional (as they
are in Hebrew and Arabic), ambiguity increases. For example in Table 7.3, the non-
vocalized surface form of the Hebrew word alwn in can be interpreted as the verb
alun or the person name Alon. Similarly, the Arabic token BrAd might refer to the
Arabic noun brrAd (with an optional gemination) or the Western name Brad.

Complex morphology: The concatenative morphology in Semitic languages
makes it possible for a named entity to get attached to different clitics and form
a longer phrase. For example in Table 7.3, the Arabic entity (Amryky: American)
is agglutinated to a the Al (definite) proclitic and the yn (plural) suffix and forms
a noun phrase (the Americans). In order to recognize and categorize such entities,

11Samples for the Arabic are shown using the Buckwalter romanization [18] and samples for the
Hebrews are shown using the romanization scheme in [40].
12Capitalization is not used consistently among Latin-scripted languages. Capitalization typically
applies to proper nouns in English, to all nouns in German, and to any important noun in Italian.
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morphological analysis needs to be performed. Thus, morphological analysis and
disambiguation is expected to play an important role in Semitic NER.

Transliteration and diversity of spelling: Multiple transliteration of named
entities is a common problem in most languages including the Semitic family.
The non-standard mapping of cross-lingual consonants results in various spellings
of phonologically complex names such as Schwarzenegger in Arabic or Hebrew.
Moreover, in most Semitic languages we observe some diversity of spelling both
for local and foreign names. For example, the first letter of person name Haylü
in Amharic can take multiple forms which results in six different spellings of
the name [65]. Another example is the multiple mapping between the “h” or “t”
consonants in the Roman languages to Arabic.13

7.3.2 Approaches to Semitic Named Entity Recognition

There is an extensive body of works on Arabic named entity recognition. That
includes the creation of gazetteers, labeled datasets, statistical and also rule-based
systems. The system in [64] is an example of a rule-based approach. The approach
includes creation of name lists for the named entities and non-entities (white
and black lists) along with the extraction rules (in form of regular expressions).
The RENAR system [73] is a more recent rule-based approach. It is based on
searching gazetteers followed by a set of hand-crafted grammar recognition rules
for extracting out of lexicon entities. Finally, the system of [57] is a more recent
hybrid approach in combining a rule-based system with various statistical classifiers
in extracting a large set of named entity classes.

A range of statistical learning algorithms have been applied to Arabic NER:
Nezda et al. [55] and Benajiba et al. [11] use Maximum Entropy, Benajiba et al. [12],
Abdul-Hamid and Darwish [1] use Support Vector Machines and Farber et al. [24] as
well as [53] use Perceptron. A range of lexical, morphological and syntactic features
have been used in these statistical systems. The development and the distribution
of tools such as MADA [30] and AMIRA [22] and SAMA [46] led to studies on
the role and effects of morphological features in Arabic named entity recognition.
Moreover, the English translation information provided by MADA has provided
useful bilingual features. For example, Farber et al. [24] use the gloss translations
to estimate a capitalization feature for Arabic words. In other studies such as [12],
the MADA package has been extensively used to explore different morphological
features with different learning frameworks. In the next section we will review the
work in [12] as a case study for Semitic NER.14

13For example, foreign person names such as Hayato (Japanese) or Tahvo (Finish) can be mapped
to different Arabic spellings.
14Other relevant works on Arabic NER: [25, 47, 50, 62].
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There are two major published works on Hebrew NER. Lemberski [44]15 uses
a Maximum Entropy sequence classifier and a set of lexical and morphological
features. Features include lexeme, POS tag, several named entity lexicon and
information extracted from hand-crafted regular expression patterns. In order to
train the system with labeled data, a morphologically tagged corpus was manually
annotated with the named entity information. The annotation was in the framework
of MUC-7 on a set of 50 Hebrew news articles. In an extended work, Ben Mordecai
and Elhadad [14] use three systems separately and jointly for Hebrew named entity
recognition. In the following section we will review this work as a case study for
Semitic NER.

Similar to English, the majority of the systems for Arabic and Hebrew NER are
trained and evaluated on the news corpora. The named entity categories usually
include the traditional person, organization, location classes. Some of the Arabic
NER works go beyond the traditional classes and introduce additional classes
relevant to the domain. Shaalan and Raza [64] extract ten named entity classes
related to the business news domain. Some of the numeric classes are non-
conventional (e.g. phone number) and contributed to the development of new labeled
dataset for evaluation. The system in [55] uses an extensive annotation of text from
the Arabic Tree Bank with 18 classes of named entities. The categories include
several quantitative and temporal classes such as money and time.

Arabic Wikipedia has been the test-bed for a few recent studies on named entity
recognition. Mohit et al. [53] demonstrate that traditional named entity classes are
insufficient for a multi-topic corpus like Wikipedia. They use a relaxed annotation
framework in which article-specific classes are considered and labeled. For example,
for an article about Atom, annotators introduced and labeled particle names (e.g.
electron, proton). Furthermore, Mohit et al. [53] develop an NER system which
recognize (but does not categorize) their extended set of named entity classes for
Arabic Wikipedia. Extended classes of named entities have also been used as a
taxonomy for Arabic Wikipedia. Alotaibi and Lee [4] use a supervised classification
framework to assign Wikipedia articles to one of their eight coarse-grained named
entity classes.

Semitic NER has been studied as part of other relevant tasks. For example,
Kirschenbaum and Wintner [40] locate named entities for the purpose of translating
them from Hebrew to English. We will review these works in Sect. 7.5 along with
other works relevant to Semitic NER.

7.4 Case Studies

In this section we review the work of Benajiba et al. [12] and also Ben Mordecai
and Elhadad [14] as case studies in (respectively) Arabic and Hebrew named entity
recognition. The two works share a common approach to Semitic NER: Exploring

15Published in Hebrew.
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different learning algorithms and features sets and also lexicon construction to
achieve an optimal performance. Benajiba et al. [12] aim at finding the optimal
feature set for different classes of Arabic named entities. Ben Mordecai and Elhadad
[14] include a brief analysis of effective features, but mainly focus on combining
different learning methods for optimizing Hebrew NER. In the following we review
different aspects of these two works:

7.4.1 Learning Algorithms

The system in [12] is an empirical framework to study the effects of different
features on Arabic NER. It uses two discriminative learners (support vector
machines and conditional random fields) to construct classifiers for each named
entity class. Thus, there are classifiers for the person class, location class, etc. that
label the named entity boundaries. After the initial per-class labeling, a collective
NER classification takes place with a voting mechanism.

Ben Mordecai and Elhadad [14] explore a baseline rule-based system made
of regular expressions and two statistical classifiers (Hidden Markov Model and
Maximum Entropy). After trying different HMM schemes, they chose a structure
where each state is made of a named entity class joined with the POS tag. Moreover,
the HMM states omit a feature representation of the words. By such joint inclusion
of the class label and the POS tag, they incorporate some structural knowledge in
to their model. In contrast, their standard maximum entropy model of NER is not
constrained and freely uses features independent of each other.

7.4.2 Features

Feature selection is an important component of these two case studies and also most
other Arabic and Hebrew NER studies. As discussed earlier, NER is a heavily
lexicalized task and models rely strongly on lexical and contextual features. A
standard set of contextual features such as the preceding and following tokens and
morphemes are inherited from the English systems. Furthermore, morphological
complexities of Semitic languages requires explicit inclusion of morphological
features into the models. In Arabic, for example the gender or number agreements
between adjacent proper nouns are important hints to find the spans of the
named entity. In the absence of robust morphological and syntactic analyzers (e.g.
in Hebrew systems), models benefit from shallow structural and morphological
features such as affixes or the token’s position in the sentence.

Table 7.4 compares features used in our two cases studies [12,14]. The feature set
used in the Arabic system includes lexical, contextual features and morphological
features as well as features from named entity lexicons built from resources like
Wikipedia. Most of the morphological features are extracted by using the Arabic
MADA toolkit. The effectiveness of features has been estimated for each of the
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Table 7.4 Features in the Arabic [12] and the Hebrew [14] systems

Feature Arabic Hebrew

Context (prev. and follow. n tokens) � �
Affixes (shallow morphology) tag � �
POS tag � �
Gazeteers � �
Base phrase chunk �
Corresponding English capitalization �
Morphological analysis (person, gender, number, etc.) �
Frequency features (being a frequent nouns, phrase, token) �
Structural features (token’s position in the sentence) �
Regular expressions �
Lemma �

named entity classes. Some of these features tend to be contributing for most named
entity classes (e.g. the morphological aspect or English capitalization). However,
because each class holds its own classifier and feature analysis, there is not always
a strong consensus about the general effectiveness of a certain feature.

The feature set in [14] comprises of morphological, structural lexical and
contextual features. For morphological features there is not much Hebrew-specific
analysis and they are limited to POS tags, affixes and the lemma. However, there is
a set of regular expressions and structural features which provide some language
specific flavor to the model. Furthermore, gazetteer features use a few lexicons
that hold a comprehensive list of frequent nouns and expressions and also use
geographical and organizational lists.

7.4.3 Experiments

Both studies use system combination algorithms. However, the combination is
aimed toward different goals. For Benajiba et al. [12], each entity class has a
separate classifier and feature set. The feature-based ranking framework (Fuzzy
Borda Voting Scheme) is a mechanism to combine these different classifiers into
one final classifier. There is an average of 2 % improvement in the F1 score after
reaching the optimum feature set of classifier voting. The support vector machines
classifier outperforms others for the majority of classes and datasets while lexical
features are the most contributing ones in most experiments.

System combination in [14] is based on a simple recall-oriented heuristic: Take
the output of the best individual system (maximum entropy) and use the other two
taggers as the back-off. Finally, the empirical experiments show that dictionary
features along with the POS tag tend to be the most contributing features.

To summarize, the Arabic system in [12] and the Hebrew system in [14] are
successful examples of Semitic NER using a hybrid mixture of supervised learners.
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Both systems explore language-specific aspects of the problem, but in different
ways; Ben Mordecai and Elhadad [14] use language-specific regular expressions
to locate potential entities. Benajiba et al. [12] explicitly incorporate linguistic
knowledge (e.g. Arabic morphology) as features in to its hybrid learning framework.

7.5 Relevant Problems

The importance of named entities for multilingual applications such as machine
translation and cross language information retrieval has led researchers to focus on
a few other problems which overlap with NER. Here we have a brief overview on
three of such problems where Semitic languages (Arabic and Hebrew) have been
studied.

7.5.1 Named Entity Translation and Transliteration

The multilingual named entity information is useful for applications such as cross
language information retrieval or machine translation. For example, Hermjakob et
al. [32] have shown that inclusion of transliteration information improves machine
translation quality. Also, Babych and Hartley [7] showed that incorporation of
bilingual named entity information in general improves machine translation quality.

Named entities usually are either translated or transliterated across languages.
Compound named entities which are composed of simple nominals (as opposed to
proper nouns) might be translated across languages. For example an organizational
entity like The State Department usually gets translated. In contrast, named entities
composed of proper nouns such as IBM or Adidas usually get transliterated across
languages. Table 7.5 presents examples of translation and transliterations for Arabic
and Hebrew named entities.

There is a body of work on translation and transliteration of named entities for
Arabic and Hebrew. Al-Onaizan and Knight[3] address the named entity translation
problem. Their approach has two folds: baseline translation and transliteration of
the named entities and later, a filtering based on the target language corpus. The
underlying assumption is based on the occurrences of the named entities in the
international news: names which are important and frequent in the source language
(Arabic), are also frequent in the target language (English).

An important decision for a multilingual system (e.g. machine translation)
is whether to translate or transliterate a given source language named entity.
Hermjakob et al. [32] address this problem using a supervised classification
approach. They use a parallel corpus of phrases which include bilingual
transliterated name pairs. The Arabic side of the transliterated bitext is used to
train a classifier which highlights words of a monolingual (Arabic) text that can be



7 Named Entity Recognition 237

Table 7.5 Translation vs. transliteration of named entities in Arabic and Hebrew

Translation Transliteration

Arabic Source: AlbHr AlmtwsT / F:/�)dV � ;[)� * � rwmAnsyp /
�$)�C 
G1��

Gloss: the-sea the-middle Romantisism
Translation: Mediterranean Sea Romantisism

Hebrew Source: hayam hatichon / התיכו�� �הי eqzistentzializm / ��אקזיסטנציאליז
Gloss: the-sea the-central Existentialism
Translation: Mediterranean Sea Existentialism

transliterated. Similar classification frameworks have also been examined for the
decision making of translation vs. transliteration for Hebrew[28, 40].

Machine transliteration deals with named entities that are translated with pre-
served pronunciation [38]. There are specific challenges in Arabic and Hebrew
orthography and phonetics which add to the transliteration challenge. These include
the optional nature of vowels, the absence of certain sounds (e.g. p in Arabic),
zero or many mapping of certain sounds to Latin-based letters (e.g. multiple h in
Arabic or khaf in Hebrew). An earlier approach to the problem is described in [2]
which is a hybrid combination of phonetic-based and spelling-based models. The
extracted transliterations are post-processed by a target language (English) spell
checker. There are also transliteration studies which do not involve transliterating
the term from scratch. In [32], the transliterated candidates are extracted from a
bilingual phrase corpus and the transliteration problem is practically converted to
a search problem. There, the system uses a scoring function to filter out the noisy
transliterations using a large English corpus.16 In a relevant framework, the work of
Azab et al. [6] aims at automating the English to Arabic translation vs. transliteration
decision and reducing the out of vocabulary terms of the MT system. They model
the decision as a binary classification problem and later use their classifier within a
SMT pipeline to direct a subset of source language named entities to a transliteration
module.

For Hebrew, Goldberg and Elhadad [28] identify the borrowed and transliterated
words. Their decision is binary: A word is either generated by a Hebrew language
model, or by a foreign language model. They train a generative classifier using
a noisy list of borrowed words along with regular Hebrew text. The work of
Kirschenbaum and Wintner in [40] is also an effort to locate and transliterate the
appropriate Hebrew terms. The framework is a single-class classifier which locates
entities that are supposed to be transliterated.

16For more information about Arabic transliteration, see: [29].
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Table 7.6 An Arabic example of entity detection and tracking with gloss and literal translations

Source �/)� �C*� eR[� df� / 
OL e1( 
? ��� �/)� �C*� eR3�] / 
OL $ 
A\/-� 
M<�6)�* � 
gR3D�� �(�I ����� �
	



� �$)� �A-�; 
I �� �/\
�
� 
M1

AwbAmA qAm bHlf Alymyn bwSfh EDw mjls Al$ywx whw xAms EDw bmjls
Al$ywx mn >Swl >fryqyp

Gloss AwbAmA:Obama qAm bHlf:sworn Alymyn:right bwSfh:as EDw:member
mjls:parliment Al$ywx:the-experts whw:and-he xAms:the-fifth EDw:member
bmjls:in-parliment Al$ywx:the-experts mn:from >Swl:descent >fryqyp:African

Translation Obama took oath as a senate member which is the fifth African-American senator

7.5.2 Entity Detection and Tracking

Mention detection is a subtask of information extraction which is focused on
the identification of entities and the tracking of their associations to each other.
Mentions can be named entities, nominals, or pro-nominals. Table 7.6 presents
an Arabic example of entity detection, along with gloss and literal translations. A
detection system is expected to highlight and link the two bold segments of the
Arabic example. Entity detection is usually modeled as a sequence classification
task where each token in a sentence gets assigned to an entity within the sentence.
Similar to NER, there are tokens which are independent of entities and get an O
label. The detection part of the task is similar to the NER. The tracking part might
involve a separate linking model and coreference decoding.

Arabic mention detection was one of the tasks introduced in the ACE program.
Florian et al. [27] presented a multi-lingual system which included an Arabic
mention detection component. Their system uses two Maximum Entropy models,
one for the detection and the other one for tracking. The tracking component is a
binary linking model where each token gets either linked to another entity or starts
a new entity. Also, there have been two recent studies on the effects of morphology
and syntactic analysis on Arabic mention detection[9, 10] in which, richer Arabic
linguistic knowledge boosted the performance.

7.5.3 Projection

Availability of parallel corpora, automatic word alignment and translation systems
resulted in a body of work on resource projection [72]. In a projection framework
we use a word-aligned corpus to project some linguistic information (e.g. named
entity boundaries) from a language (e.g. English) to another language (e.g. Hebrew).
This has been a useful framework for equipping resource-poor languages with some
labeled data. Projection is not always a deterministic operation and cross lingual



7 Named Entity Recognition 239

Rena will arrive in New York and Boston

Rinh tigy lnwywrk vlbwstwn

Fig. 7.3 An NER projection
example from English to
Hebrew

differences can make it a challenging task. Figure 7.3 demonstrate an example of
named entity projection from English to Hebrew. It can be seen that morphological
richness of the Hebrew does not allow a 1-1 entity mapping across two languages.
Thus morphological analysis and segmentation should be considered as part of the
a projection pipeline.

There have been some successful attempts on the projection of entity information
for Arabic. Hassan et al. [31] extract bilingual named entity pairs from parallel
and comparable corpora using similarity metrics that use phonetic and translation
model information. Zitouni and Florian [74] study the use of projection (through
English to Arabic machine translation) to improve Arabic mention detection.
Benajiba and Zitouni [10] directly project the mention detection information using
automatic word alignments. The projected Arabic corpus provides new features
which augments and improves the baseline Arabic mention detection system. Huang
et al. [34] study the problem of finding various English spelling of Arabic names
which affects machine translation and information extraction systems. They use a
projection framework to locate various spelling of a given Arabic name.

7.6 Labeled Named Entity Recognition Corpora

Similar to the research, data resources for the Semitic NER have been limited to
Arabic and Hebrew. The Automatic Content Extraction (ACE) program is a multi-
lingual information extraction effort focused on Arabic, Chinese and English. Over
the past decade, Arabic has been one of the focus languages of the Entity Detection
and Tracking (EDT) task of the ACE. As a result, ACE has prepared a few standard
Arabic corpora with named entity information [70]. These corpora are primarily
in the newswire domain with recent additions of weblogs and broadcast news text.
The named entity categories are targeted towards the political news. They include
Person, Location, Organization, Facility, Weapon, Vehicle and Geo-Political Entity
(GPE). The Arabic named entity annotations are performed with character-level
information which boosts the accuracy of the data for morphologically compound
tokens.17 ACE has been releasing most of its dataset through the Linguistic Data
Consortium (LDC).

In addition to the standard ACE datasets, a few projects have resulted in
annotation of new NER datasets. The Ontonotes project [33] is an ongoing large
scale multilingual annotation effort with several layers of linguistic information on
texts collected from a diverse set of domains. Arabic Ontonotes includes annotation

17See [42] for more information about the Arabic ACE dataset.
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of parsing, word senses, coreferences and named entities.18 The publicly released19

Arabic ANER corpus [11] is a token-level annotated newswire corpora with four
named entity classes: person, location, organization and miscellaneous. Mohit et al.
[53] also have released a corpus of Arabic Wikipedia articles with an extended set
of named entity categories. Finally, Attia et al. [5] created a large scale lexicon of
Arabic named entities from resources such as Wikipedia.20

Named entity annotation for Hebrew has been limited to a few projects that we
discussed earlier. Hebrew corpus annotation of named entities are reported in [14,
44]. Furthermore, the annotated corpora in [35] includes a layer of named entity
information.

7.7 Future Challenges and Opportunities

Named entity recognition is still far from a solved problem for Semitic languages.
Amharic, Syriac and Maltese lack the basic data resources for building a system.
The F1 performance of the best Arabic and Hebrew systems varies between 60 and
80 % depending on the text genres. Most of the available labeled datasets are mainly
news wire corpora which might degrade the NER performance in other topics and
domains.

There are many interesting open questions to be explored. For the low resource
languages like Amharic or Syriac, well established frameworks such as active
learning or projection can be explored to create the basic data requirements and
estimating basic models. Online resources such as Wikipedia can also provide the
basic named entity corpora and lexicons.21

For medium-resource languages like Arabic and Hebrew, NER needs to be tested
in new topics and genres with extended named entity classes. To do so, semi-
supervised learning frameworks along with domain adaptation methods are the
natural starting solutions. Morphological information plays an important role in
Semitic NER. Thus, richer incorporation of morphology in NER models in form
of joint modeling is an interesting avenue to explore. Moreover richer linguistic
information such as constituency and dependency parsing, semantic resources such
as the Wordnet and Ontonotes are expected to enrich NER models.

18The fourth release of Ontonotes includes named entity annotation for a corpus of 300,000 words.
19currently at http://www1.ccls.columbia.edu/~ybenajiba/downloads.html
20Work presented in [55, 64] also report a large scale annotation of named entity information.
However the datasets were not released publicly.
21According to Wikipedia statistics, Amharic Wikipedia has more than 10,000 articles which is a
promising resource for gazetteer construction.

http://www1.ccls.columbia.edu/~ybenajiba/downloads.html
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7.8 Summary

We reviewed named entity recognition (NER) as an important task for processing
Semitic languages. We first sketched an overview of NER research, its history and
the current state of the art. We followed with problems specific to Semitic NER and
reviewed a wide range of approaches for Arabic and Hebrew NER. We observed that
complex morphology and the lack of capitalization create additional challenges for
Semitic NER. We focused on two case studies for Arabic and Hebrew and reviewed
their learning frameworks and features. Moreover, we explored the state of data
resources and research on relevant tasks such as named entity translation, transliter-
ation and projection for Hebrew and Arabic. We concluded that Semitic NER is still
an open problem. For low resource languages such as Amharic and Syriac basic data
resources are still needed for constructing baseline systems. For Arabic and Hebrew,
inclusion of richer linguistic information (e.g. dependency parsing) and adaptation
of the current systems to new text domains are interesting avenues to explore.
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Chapter 8
Anaphora Resolution

Khadiga Mahmoud Seddik and Ali Farghaly

8.1 Introduction: Anaphora and Anaphora Resolution

Anaphora is a Greek expression that means “carrying back”. For computational
linguistics, anaphora resolution (AR) is concerned with determining the relation
between two entities in the text, i.e. defining the conditions under which an entity
refers to another one which usually occurs before it. An entity may be a pronoun, a
verb, definite descriptions, a lexical modifier, a noun phrase, or a proper noun. The
“pointing back” (reference) is called an anaphor and the entity to which it refers is
its antecedent. The following sentence has four antecedents and four anaphors. The
coreference relationship is indicated by giving both the antecedent and its referent
the same index and underlining both.
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(1) The minister for Public Health and Population1 has stated that ensuring security2 at
hospitals will have priority in the next phase so that the medical teams3 can best perform
their3 jobs. He1 also confirmed that he is committed to all decrees4 that he4 has issued.

The scope of coreference resolution is more general than anaphora resolution
since coreference is a set of coreferent referring expressions, and coreference
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resolution is the task of identifying all the noun phrases that refer to the same
entity in the text, sometimes referred to as mention detection and chaining [50].
On the other hand, anaphora is about coreference of one referring expression with
its antecedent, and the process of anaphora resolution is finding the antecedent of
an anaphor.

Anaphora resolution is one of the challenging tasks of natural language
processing. It is very important since without it a text would not be fully and
correctly understood, and without finding the proper antecedent, the meaning and
the role of the anaphor cannot be realized.

In this chapter, we present an account of the anaphora resolution task. The chapter
consists of ten sections. The first section is an introduction to the problem. In the
second section, we present different types of anaphora. Section 8.3 discusses the
determinants and factors to anaphora resolution and its effect on increasing system
performance. In Sect. 8.4, we discuss the process of anaphora resolution. In Sect. 8.5
we present different approaches to resolving anaphora and we discuss previous
work in the field. Section 8.6 discusses the recent work in anaphora resolution, and
Sect. 8.7 discusses an important aspect in the anaphora resolution process which
is the evaluation of AR systems. In Sects. 8.8 and 8.9, we focus on the anaphora
resolution in Semitic languages in particular and the difficulties and challenges
facing researchers. Finally, Sect. 8.10 presents a summary of the chapter.

8.2 Types of Anaphora

There are various types of anaphora, but we will introduce the most widespread
types in the computational linguistics literature.

8.2.1 Pronominal Anaphora

The most frequent type of anaphora is the pronominal anaphora, which is charac-
terized by anaphoric pronouns. Pronouns form a special class of anaphors because
of their empty semantic structure, i.e. they do not have an independent meaning
from their antecedent. Moreover, not all pronouns are anaphoric, such as the non-
anaphoric “it”.
An example of pronominal anaphora is given in (2):
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(2) My grandmother “Safeyyah”1 has only one girl2 living in a foreign land with her2
husband and her2 children who she1 hasn’t seen for years. She1 misses her2 very much.

This is an example of pronominal anaphora, which also has several ambi-
guities. For example “ (&/her” in “ (%E� � 
�/her husband” and “ (8�9( 
)-�

�
�/her children”
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could refer either to the grandmother or to the granddaughter. Also “_&/she” and
“ (&Q�A�) 
A�-/misses her” are ambiguous. Who is missing who?

8.2.2 Lexical Anaphora

Lexical anaphora is sometimes called “definite noun phrase anaphora” [31].
It is identified when the referring expressions are definite descriptions or
proper nouns [17]. The antecedent is referred to by a definite noun phrase
representing either the same concept or semantically close concepts (e.g. synonyms,
superordinates), as shown in (3).
Q?� � Q�I � � �(6�)E� '� Y* (7* � ��	 W)�K?� 
M1 i;�-/)�)�60*� � (6RL ;j
rE `lb


;7*� $L;js � ��(3�] = 
I $-� /7\i 
��;j 
k(34��
(3) Computer scientists1 from many different countries attended the meeting. The participants1
found it hard to cope with the speed of the presentation.

In this example, “participants/ 
��;j 
k(34��” refers back to “Computer scientists/
;�-/)�)�60*� � (6RL” which is a definite noun phrase that represents a semantically close
concept.

8.2.3 Comparative Anaphora

The comparative anaphora is when the anaphoric expressions are introduced
by lexical modifiers (e.g. other, another) or comparative adjectives (e.g. better,
greater) [17].

The “one anaphora” is a type of comparative anaphora and there are many
researchers who focus on the “one anaphora” [31]. An example of the “one
anaphora” is shown in (4) where the word “one” refers back to the word “rose”:

� �; 
A\ i �Q?�� ��/3�D�� � �;K? i �	�� �(�) 
A* � �+L� 
� `ob
(4) The girl planted a red rose1 next to a yellow one1.

8.3 Determinants in Anaphora Resolution

There are several factors that facilitate identifying the antecedent of an anaphoric
expression. These are: the distance between an anaphoric expression and its
antecedent; lexical constraints such as gender and number agreement that are used to
eliminate some antecedent candidates; syntactic roles which can indicate preference
for particular antecedent candidates; etc.

These factors are divided into two categories: “eliminating” and “preferential”
factors [31]. Eliminating factors are those which exclude certain NPs from the
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set of possible candidates and preferential factors are those which give more
preference to certain candidates over others.

There are other terminologies used in the field for the eliminating and preferential
factors. Carbonell and Brown [5] use terms such as “constraints” and “preferences”,
whereas E. Rich and S. LuperFoy [41] use terms like “constraints” and “proposers”.
Other authors call them simply “factors”, “attributes”, or “symptoms” [26].

8.3.1 Eliminating Factors

The following are some of the eliminating factors used in anaphora resolution.

Gender Agreement

The sentence in (5) illustrates the requirement that the anaphor and its antecedent
must agree in gender. The closest antecedent to the pronoun in “ $ 
-

�
�” is the

proper noun “ �;<�dts/Samira” but the mismatch in gender between the pronoun
and the closest antecedent should eliminate “ �;<�dts/Samira” from being the correct
antecedent and as shown, coreference of this pronoun goes to the proper noun
“QK?

�
�/Ahmed” although it is not the closest antecedent. This is an interesting case

showing how the agreement factor has priority over the closest antecedent factor.

$-�Q& h (%p* ;j
rE
�
� i $m 
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�
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�
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(5) Ahmed1 told Samira2 that he1 had brought her2 a gift

Number Agreement

Number agreement requires that the anaphor and its antecedent must agree in
number.

	/:� h (%np 
-/* h ��()�: �QL(1 � �;K? 
;7dV � = 
I i ����()�C*� 5. `� � vb
(6.a) All cars1 in the exhibition are red except one car2, its2 color is black.

;K?� i 2%np 
-/* �Q?�� h ��()�: �QL(1 
;7dV � = 
I i ����()�C*� 5. `�� � vb
(6.b) All cars1 in the exhibition except one car2, their1 color is black.

In (6.a), “its/ (&” refers to “car/ ��()�:” not to “cars/ ����()�C*�” because they are both
inanimate objects. But in (6.b) we can notice that “their/2&” is plural pronoun so
that it refers to “cars/ ����()�C*�” which agrees with it in number.

Preconditions/Postconditions

Preconditions and postconditions use real-world knowledge to determine the
plausible antecedents to a certain anaphor by checking for some actions that must
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have occurred between the anaphor and its antecedent which prove that they denote
one and the same object or event as shown in (7).

�/3�4�(-� ;7 �: (1Q
)L (%R.
�
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�
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(7) Ahmed1 gave an apple to Mahmoud2. He2 ate it when he felt hungry.

In the above example, “/&/he” refers to “	/63]/Mahmoud” because of the
postcondition on the verb “_P7-�/give” that the actor no longer has the object being
given, and the precondition on the verb “5. (-�/eat” that the actor must have the item
being eaten.

8.3.2 Preferential Factors

We now turn to illustrate some of the preferential factors used in anaphora
resolution:

Syntactic Parallelism

Antecedents must have the same syntactic function as that of the anaphor. This
constraint is particularly useful when other constraints or preferences do not point
to an unambiguous antecedent.
�(BCG� * � W1 i (%nmp3�]	 $ 
)0* �h =�>xn* � W1 i �� /*�;<� m* � y �]	 = 
I y �];<� dV � @3�D
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(8.a) The programmer successfully combined Prolog1 with C2, but he had combined it1
with Pascal before.
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(8.b) The programmer successfully combined Prolog1 with C2, but he had combined Pascal
with it2 before.

In (8.a) the word “Prolog/�� /*�;-�” has the same syntactic function (object) as
the pronoun “it/ (&”. However in (8b), the word “Prolog/�� /*�;-�” does not have
the same syntactic function as the pronoun “it/ (&”, while the word “C/=>s” has the
same syntactic function as that of the pronoun “it/(&” (postpositive). This is called
syntactic parallelism.

Semantic Parallelism

The antecedent must have the same semantic role as the anaphor. This is useful for
systems which can automatically identify semantic roles.
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(9.a) Ahmed sent a letter to Mohamed1. Omar2 also sent a letter to him1.
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(9.b) Ahmed1 sent a letter to Mohamed2. He1 also sent a letter to Omar.

In (9.a), “Ahmed/QK?
�
�” has the semantic role of sender, while “Mohamed/Q63]”

has the semantic role of receiver. The system uses information about the sentence as
well as real-world semantic knowledge to obtain the antecedent of the anaphor. So,
according to semantic parallelism, the NP which has the same semantic role as the
anaphor, is favored. It means that “Mohamed/Q63]” should be the antecedent of the
pronoun “him/ $n”.

8.3.3 Implementing Features in AR (Anaphora Resolution)
Systems

In a system which uses vector based machine learning techniques, we need to
define a set of features to fill the feature vectors. Each AR system uses its own
set of features which must be compatible with the technique used, the language of
implementation, and the purpose of the system. Choosing the right set of features is
necessary for improving the performance of the system. We introduce two examples
of systems and the features used in each one to illustrate how the set of features
affect the performance of the system. The first system is Soon et al. [44], while the
second is Mitkov [28].

Feature-Based Anaphora Resolution System

In the [44] AR System, 12 feature types are used. These features are described as
follows:

1. Distance feature is used as the number of sentence boundaries between an
anaphor and its antecedent. If the anaphor and its antecedent are in the same
sentence, the value is 0. If they are one sentence apart, the value is 1; if they are
two sentences apart, the value is 2, and so on.

2. i-Pronoun feature returns true if the antecedent is a pronoun, else returns false.
3. j-Pronoun feature returns true if the anaphor is a pronoun, else returns false.
4. String Match feature returns true if the string of the antecedent matches the

string of the anaphor, after removing the articles and demonstrative pronouns
(a, an, the, this, these, that, those). So that computer matches this computer, and
the car matches this car.
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Fig. 8.1 Semantic classes used by Soon et al. (example. 1)

Fig. 8.2 Semantic classes used by Soon et al. (example. 2)

5. Definite noun phrase feature returns true if the antecedent is a noun phrase
starting with word “the”, else returns false.

6. Demonstrative Noun Phrase feature returns true if the antecedent is a noun
phrase starting with (that, this, these, those), else returns false.

7. Number Agreement feature returns true if the antecedent and anaphor agree
in number (both are single or both are plural), else returns false.

8. Semantic Class Agreement. Each system can define its own semantic classes;
[44] defines semantic classes like “Male”, “Female”, “Person”, “Organization”,
“Time”, etc. The semantic classes are arranged in ISA hierarchy.1 As the author
mentioned in his work, the hierarchy consists of some semantic classes which
are subclasses of a parent semantic class (e.g. Figs. 8.1 and 8.2). Each semantic
class is mapped to a WordNet Synset. The anaphor and its candidate antecedent
are in agreement if one of them is the parent of the other in the hierarchy, or on
the same level. The values returned are true, false, or unknown.

9. Gender agreement feature returns true if the anaphor and its antecedent agree
in gender, false if they do not agreed in gender and unknown if either the
anaphor or antecedent’s value is unknown.

10. Proper-Names feature returns true if both the anaphor and its antecedent are
proper nouns, else returns false.

1ISA hierarchy, also called “is a” relationship, is an arrangement of items or objects in which the
above item is represented as being the parent item for its derived items, and the derived items are
represented as children for the above item. In Object Oriented, it means attributes inherited; i.e., if
we declare A ISA B, every A entity is also considered to be a B entity. For example: if we have
class AD {person} and class BD {male, female}. if B isa A, every entity in B is A, which means
every male and female is a person.
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Table 8.1 MUC-6 result to study the contribution of the features

System ID Recall Precision F-measure Remarks

DSO 58.6 67.3 62.6 Our system
DSO_TRG 52.6 67.6 59.2 Our system using RESOLVEs

method of generating positive
and negative examples

RESOLVE 44.2 50.7 47.2 The RESOLVE coreference system
at the University of
Massachusetts

11. Alias feature returns true if the anaphor is an alias of the antecedent or vice
versa, which occurs when both anaphor and antecedent are named entities that
refer to the same entity; else returns false.

12. Appositive feature. If the anaphor is in apposition to the antecedent, returns
true; else returns false. For example “The president of the central bank” is in
apposition to “Mr. John” in the sentence “The president of the central bank,
Mr. John said: : :”

Determination of the Features

Let us now discuss how the researcher chooses the features used in his system. As
stated previously, to build a machine learning based AR System, we have to include
a useful and convenient set of features [44]. Researchers take into account that the
selected features must be generic enough to be used in a different domain. Also they
take into consideration that the features must be able to handle all types of noun
phrases and give different coreference decisions based on different types of noun
phrases. The researchers use five features to determine the type of the noun phrase:
definite noun phrases, demonstrative noun phrases, pronouns, or proper names, and
they also use the distance feature to enable the learning algorithm to determine the
distribution for the different classes of noun phrases. Also they include knowledge
sources which are not too difficult to compute.

Evaluation

Tables 8.1 and 8.2 show the MUC-6 and MUC-7 results of the system as found
in [44]. The tables show the result of this system under system ID “DSO” compared
to the coreference system at the University of Massachusetts (RESOLVE). The
author mentioned that RESOLVE is the only machine learning-based system among
MUC-6 systems which he can directly compare to.
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Table 8.2 MUC-7 result to study the contribution of the features

System ID Recall Precision F-measure Remarks

DSO 56.1 65.5 60.4 Our system
DSO_TRG 53.3 69.7 60.4 Our system using RESOLVE’s method of

generating positive and negative examples

Mitkov’s Work on Anaphora Resolution

Ruslan Mitkov [28] discussed the significance of a good set of factors in
combination with the strategy used for the system. Mitkov made a case study
based on two different approaches using the same set of factors. He reported
that while there are a number of approaches that use a similar set of factors,
the computational strategies may differ and so the results will also differ. He
differentiated the computational strategies by the way the antecedents are computed
and tracked down.

Mitkov [28] compared two different approaches using the same factors. The first
approach is the Integrated Anaphora Resolution approach (IA) [25], which uses
constraints to discount implausible candidates and then uses preferences to rank
order the most likely candidates. The second approach is the Uncertainty Reasoning
Approach (URA) [26], which employs only preferences on the basis of uncertainty
reasoning which estimates the antecedent on the basis of incomplete information,
and the assumption that the Natural Language Understanding systems are not able
to understand the input completely.

Determination of the Features

The factors used in both approaches are: gender agreement, number agreement,
syntactic parallelism, semantic consistency, semantic parallelism, domain con-
cepts, subjects which prefer the subject of the previous sentence to be the candidate
antecedent, object preference indicated by verbs, object preference indicated by
nouns, repetition as the repeated NPs are preferred to be the candidate for
antecedent, heading which means if an NP occurs in the head of the section that
contains the current sentence, then consider it as the candidate, topicalization
which means topicalized structures are given preferential treatment as possible
antecedents. For example: in the two sentences: I won’t eat that pizza, and, that
pizza, I won’t eat; topicalization of the object argument that pizza. And finally,
distance which prefers the candidates from the previous clause or sentence to be
the antecedent.

Evaluation

Mitkov’s system used a manually annotated corpus contains 113 paragraphs. The
result showed a success rate of 83 % for IA over 82 % for URA. Out of the 17 %
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Table 8.3 Evaluation result of Mitkov’s system

System ID Success rate (%) Remarks

IA 83 Out of 17 % incorrectly solved anaphors by the IA, 5 % were
solved correctly by the URA

URA 82 Out of the 18 % incorrectly solved anaphors by the URA, 4 %
were solved correctly by the IA

incorrectly solved anaphors by the IA, 5 % were solved correctly by the URA. Out
of the 18 % incorrectly solved anaphors by the URA, 4 % were solved correctly by
the IA. The URA went down to level of accuracy of 71 % with a higher threshold
of 0.8. Table 8.3 shows the result of Mitkov’s system (cf. Table 8.3).

However although it seems that the IA has a slightly better performance over
URA, URA was in general “safer”. Mitkov’s conclusions are:

• In most cases both approaches were correct.
• When information is insufficient, the URA is less “decisive”.
• The IA is more decisive but could be “iffy”.
• When information is ample, the URA is more “confident”.
• The URA is better in cases of gender and number discrepancy between anaphor

and antecedent.
• The IA is better in cases where “it” occurs frequently and refers to different

antecedents.

After showing the importance of selecting a good set of factors in the AR
systems, and how the same set of factors can obtain different results based on the
different approaches, there are still some ambiguous questions about factors and
their effect on the systems.
Mitkov summarizes these questions in four points at the end of his work [28]:
(i) How dependent are factors? (ii) Are preferences better than constraints? (iii) Do
factors hold for all genres? and (iv) Which is the best order in which to apply the
factors?

8.4 The Process of Anaphora Resolution

Most anaphora resolution systems [30, 31, 35] adhere to the following steps:

1. The first step must be the identification of the search scope for the antecedent.
All noun phrases (NPs) preceding an anaphor are initially regarded as potential
candidates for antecedents; so that the search scope has to be identified.
The search scope is the number of sentences or clauses in which we search for
the antecedents. Some systems consider all NPs preceding an anaphor, while
others impose a maximum number of previous sentences to be considered. Most
approaches set their search scope to the current and preceding sentence.
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2. After identifying the search scope, we must identify all NPs that precede the
anaphor within the search area as candidates for being the antecedents for the
specific anaphor.

3. The next step is the extraction of features that describe the selected noun
phrases by applying anaphora resolution on those candidates to select the
correct antecedent. These features many be lexical, syntactic, semantic, and
others. An optional step mentioned in [35] is to determine if the NP is new in
the discourse and determine whether it is anaphoric before trying to find the
antecedent for it.

4. The final step is scoring and searching candidates. This is the core part of an
anaphora resolution system in which the main module processes the features
extracted and determines the antecedent of the proposed anaphor. In this step the
machine-learning or knowledge-based algorithm is applied.

In the next section we will discuss the approaches to anaphora resolution which
may be used in these steps.

8.5 Different Approaches to Anaphora Resolution

There are two main approaches to anaphora resolution in terms of the way
antecedents are computed and tracked down.

Traditional approach: Discount unlikely candidates until a minimal set of plau-
sible candidates is obtained (and then make use of center or focus).

New statistical approach: Compute the most likely candidate on the basis of
statistical or AI techniques/models.

Much research has been performed in the field of anaphora and coreference
resolution especially in the field of pronominal resolution. Research with significant
importance includes [3, 20–22, 32, 33]. The cited approaches differ in the set of
anaphora that are processed, in the use of syntactic information in the analysis and
in the employment of focusing and centering theory techniques.

8.5.1 Knowledge-Intensive Versus Knowledge-Poor
Approaches

Much of the earlier work in anaphora resolution heavily exploited domain and
linguistic knowledge [5, 7, 41, 43], which was difficult both to represent and to
process, and which required considerable human input. It encouraged researchers
to move away from extensive domain and linguistic knowledge to knowledge-poor
anaphora resolution strategies [3, 10, 11, 21, 22, 27, 30, 34, 46].
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Knowledge-rich systems require:

1. Domain-specific knowledge.
2. Semantic and discourse knowledge.
3. Sophisticated inference mechanisms.

Knowledge-lean systems, however use:

1. Morphological and shallow syntactic information.
2. They avoid the use of sophisticated knowledge and complex analysis during

resolution.

Hobbs’ Naive Approach

One of the first (and best) methods relying mostly on syntactical knowledge is
Hobbs’ algorithm [18,19]. The appeal of this algorithm is that its simplicity yields a
respectable performance. Behind the apparent simplicity, however, are some non-
trivial assumptions concerning the semantic knowledge provided by the system
within which the algorithm runs.

Carbonell and Brown Approach (1988)

Carbonell’s approach solves the AR problem with a combination of a set of
strategies rather than by a single method. The authors propose a general framework
based on multiple knowledge sources, most of which require fairly sophisti-
cated linguistic or world knowledge: sentential syntax, case-frame semantics,
dialogue structure, and general world knowledge. The author uses constraints
and preferences as follow: local anaphor constraints (agreement constraints) and
precondition/postcondition constraints.

Example (10): “John gives Mark an apple. He eats it.” In this example,“he”
may refer to “John” or “Mark” but when it is done with real-world knowledge,
the postcondition of “give” is that the person no longer has the object being given
to him, so “he” must refer to Mark not John. The preferences used are case-
role persistence preference, semantic alignment preference, syntactic parallelism
preference and syntactic topicalization preference. Shown by the example:
“Mary drove from the park to the club. Peter went there too” (thereD club) and
“Mary drove from the park to the club. Peter left there too” (in this example, because
of the semantics of the verb “to leave”, “there” aligns semantically with “park” and
not with “club”).

Rich and LuperFoy [38]

Semantic knowledge is combined with various kinds of information that is typically
used in knowledge-poor approaches, such as gender agreement, number agreement,
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and recency, as well as information about which entities are globally salient
throughout a discourse. Another example of knowledge-intensive anaphora reso-
lution is given by Asher and Lascarides [1], who present a theory called Segmented
Discourse Representation Theory.

In the next section we will summarize the most well-known works by grouping
them into “traditional” and “alternative” approaches.

8.5.2 Traditional Approach

D. Carter’s Shallow Processing Approach [6]

Carter’s shallow approach mainly depends on the heavy use of syntax, semantic, and
local focusing as much as possible regardless of the amount of domain and world
knowledge presented. He said in his PhD thesis [6], that reliance on a large amount
of world knowledge is hard to process accurately.

Carter’s algorithm resolves anaphora resolution and other linguistics problems
using English stories as corpus. The algorithm output paraphrases for each sentence
in the story. Carter’s program combines other existing theories such as Sidner’s
theory and Wilks’ theory.

Rich and LuperFoy’s Distributed Architecture [41]

The distributed structure of Rich and LuperFoy [41] represents a pronominal
anaphor resolution system consisting of a loosely coupled set of modules. The
authors call these modules a “constraints source” which handles a large number
of factors such as recency, number agreement, gender agreement, animacy, disjoint
reference, semantic consistency, local focusing, global focus, cataphora and logical
accessibility. Each module implements one of the theories of anaphora resolution
which contains some constraints that restrict the choice of antecedents.

The “constraints source” consists of four functions; each function returns a score
for each candidate. The selection of the correct antecedent depends on the score
attached to each candidate given by the constraint source.

8.5.3 Statistical Approach

Nasukawa’s Knowledge-Independent Approach [34]

Nasukawa’s approach to pronoun resolution is relatively independent of external
knowledge. His approach is based on the “preference according to existence of
identical collocation patterns in the text”, “preference according to the frequency
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of repetition in preceding sentences” as well as “preference according to syntactic
position”.

Unlike some approaches which use world knowledge in finding the antecedent
of an anaphor, Nasukawa’s approach uses collection patterns to determine that the
frequency in preceding sentences of a noun phrase with the same lemma as the
candidate, is an indication for preference when selecting an antecedent.

For example, if the statement “He moved his residence” is found in the discourse,
the information works as a selectional constraint by indicating that the word
“residence” can be the object of the verb “move”.

Statistical/Corpus Processing Approach [10, 11]

Dagan and Itai [10, 11] follow a corpus-based approach for disambiguating pro-
nouns. A table lists the patterns produced by substituting each candidate with the
anaphor and the number of times each of these patterns occurs in the corpus. Based
on the frequency of these patterns, the most likely candidate is selected as the
antecedent of the anaphor. According to this statistic, the most likely candidate is
preferred as the antecedent of the anaphor.

The authors illustrate their approach on a sentence taken from the Hansard
corpus:

They knew full well that the companies held tax money1 aside for collection later on the
basis that the government2 said it2 was going to collect it1.

In this example, there are two occurrences of the anaphor “it”. The frequency of the
three candidates: “money”, “collection”, and “government” are determined. Then
a table would list the patterns produced by substituting each candidate with the
anaphor, and the number of times each of these patterns occurs in the corpus. The
definite semantic constraints eliminate all the candidates but the correct one.

8.5.4 Linguistic Approach to Anaphora Resolution

Linguists have made a principled distinction between two types of noun phrases:
lexical NPs and anaphors. The analogy in computer science, to a certain extent, is
like the distinction between constants and variables where a constant usually has
a fixed value while the value of a variable can change in the program. Similarly,
a lexical NP like “Barak Obama” is a noun phrase that refers only to itself and its
value is not likely to change. In contrast, anaphors such as pronouns and reflexives
do not have intrinsic specific reference but they acquire their reference from context.
For example, the referent of the anaphor “I” depends on who says it. It will have a
different referent every time a different person utters the pronoun “I”. The widely
held view is that anaphors have antecedents that they refer to and that it is usually
the most recent antecedent that an anaphor refers to. However, there are cases
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when the referent precedes the anaphor as in the following sentence that shows the
pronoun “ $n/he” precedes the referent “Shafiq”. This situation is usually referred
to as “cataphora” to distinguish it from cases of “anaphora” where the referent
precedes the anaphor.

(6R 
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(11) When he knew that he1 was eliminated from the candidates’ list, Shafiq1 submitted a
petition.

NLP applications are concerned with all types of coreference whether we are
dealing with anaphora or cataphora.

Linguists are interested in determining the conditions under which an anaphor
and a lexical NP can be coreferential or disjoint in reference. Chomsky [8] made
a principled distinction between three types of noun phrases: pronominals such as
I, you, he etc., reflexives like yourself, herself, themselves, etc., and R-expressions
which are lexical NPs like “John”, “the man”, or “Seattle”. Chomsky [8] claims that
there are universal principles that govern their behavior.

He defines these principles in his theory of government and binding [8, 9]. The
principles account for the different behavior of pronominals and reflexives. It can be
stated as follows:

• Principle A: an anaphor (a reflexive or a reciprocal such as each other) must be
bound in its governing category (its clause).

• Principle B: a pronominal must be free (not bound) in its governing category (its
clause).

• Principle C: an R-expression must be free (not bound).

A governing category is the clause containing the governor and its governee. The
following sentences show how the principles of the government and binding theory
work.
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(12) President Morsy met him yesterday.
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(13) President Morsy met President Morsy yesterday.
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(14) President Morsy surrounded himself with a group of advisors.

In (12) “President Morsy” and “him” must be disjoint in reference. They cannot
be referring to the same entity. This follows naturally from Chomsky’s principle
A which states that a pronominal such as “him” must be free in its clause. So
without looking into the context and on purely structural grounds we were able
to determine that in (12) the pronominal “him” does not refer to the otherwise,
possible antecedent “President Morsy”. In contrast, Principle A predicts that in (14)
the reflexive must be bound and therefore “himself” and “President Morsy” must
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be coreferential which is the case. The government and binding theory predicts
that (13) is ungrammatical because it violates Principle C which requires that an
R-expression such as “President Morsy” be free in its clause. In (14) it is not free
because there is another identical R-expression that it refers to. The interpretation of
coreference and disjoint reference between the antecedents and the anaphors in (12),
(13) and (14) does not depend on our real-world knowledge or even the linguistic
contexts. It is determined solely on the basis of the type of anaphor, in this case a
pronominal versus a reflexive, and the linguistic structure in which both the anaphor
and the antecedent occur. Farghaly [13] tested the government and binding theory
against data from Egyptian Arabic and showed that in most cases these principles
hold for Egyptian Arabic as well.

The linguistic approach though interesting, is not easy to implement in NLP
applications. It requires deep linguistic analysis to determine complex linguistic
constructs such as c-command, governors, governee and governing categories [13]
which casts serious doubts on the practicality of implementing deep theoretical
constructs in current NLP applications. However, Arabic statistical models for
mention detection and chaining [50] show that incorporating lexical and syntactic
features improve the precision of such systems.

8.6 Recent Work in Anaphora and Coreference Resolution

Actually there has been a lot of work on Anaphora and coreference resolution since
the 1980s, but it is not possible to cover all the work on AR in a single chapter.
In this section we will discuss some of the recent work in anaphora and coreference
resolution.

8.6.1 Mention-Synchronous Coreference Resolution
Algorithm Based on the Bell Tree [24]

Luo et al. [24] propose a new approach for coreference resolution using the Bell
tree. The approach uses the Bell tree algorithm to find the best path from the root of
the tree to the leaf node, then the maximum entropy algorithm is applied to compute
the probability of these paths. The system uses the same terminologies used in ACE
[37]. The term mention is used to describe the instance of a reference to an object,
while the term entity describes the collection of mentions to the same object. For
example, in the sentence:
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(15) President1 Mohammed Morse1 said that he1 will restore the rights to their owners.

“President/eG��-;* �”, “Mohammed Morse/=>s;1 Q63]”, and “he/ $n” belong to the
same entity as they refer to the same object.
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Table 8.4 Basic features used in maximum entropy model

Category Features Remark

Lexical Exact_strm 1 if two mentions have the same spelling; 0 otherwise
Left_subsm 1 if one mention is a left substring of the other; 0 otherwise
Right_subsm 1 if one mention is a left substring of the other; 0 otherwise
Acronym 1 if one mention is an acronym of the other; 0 otherwise
Edit_dist Quantized editing distance between two mention strings
ncd Number of different capitalized words in two mentions
Spell Pair of actual mention strings

Distance token_dist How many tokens two mentions are apart (quantized)
Sent_dist How many sentences two mentions are apart (quantized)
gap_dist How many mentions in between two mentions in question

(quantized)
Syntax Apposition 1 if two mentions are appositive; 0 otherwise

POS_pair POS-pair of two mention heads
Count Count Pair of (quantized) numbers, each counting how many times a

mention string is seen
Pronoun Gender Pair of attributes of {female, male, neutral, unknown}

Number Pair of attributes of {single, plural, unknown}
Possessive 1 if pronoun is possessive; 0 otherwise
Reflexive 1 if pronoun is reflexive; 0 otherwise

The process of forming entities from mentions can be represented by a tree
structure. The root node represents the first mention in the document, while the
second mention is added to the tree either by linking to an existing node or starting
a new entity. Subsequent mentions are added to the tree in the same manner. Each
leaf node in the Bell tree represents a possible coreference outcome.

The process of coreference resolution can be cast as finding the “best” leaf node,
or finding the best path from the root of the tree to the leaf node. For the coreference
resolution process, the maximum entropy algorithm is used to compute the linking
probability between a partial entity and a mention. Table 8.4 illustrates the basic
features used in a maximum entropy model. For further details on Luo’s work, the
reader is referred to [24].

8.6.2 A Twin-Candidate Model for Learning-Based Anaphora
Resolution [47, 48]

The main idea behind the twin-candidate learning model is to recast anaphora
resolution as a preference classification problem. The purpose of the classification
is to determine the preference between two competing candidates for the antecedent
of a given anaphor.
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Table 8.5 Basic features used in twin-candidate system

Features Remark

Ana_Reflexive Whether the anaphor is a reflexive pronoun
Ana_PronType Type of the anaphor if it is a pronoun (he, she, it, or they)
Candi_Def Whether the candidate is a definite description
Candi_Indef Whether the candidate is an indefinite NP
Candi_Name Whether the candidate is a named entity
Candi_Pron Whether the candidate is a pronoun
Candi_FirstNP Whether the candidate is the first mentioned NP in the sentence
Candi_Subject Whether the candidate is the subject of a sentence, the subject of a

clause, or not
Candi_Object Whether the candidate is the object of a verb, the object of a

preposition, or not
Candi_ParallelStruct Whether the candidate has an identical collocation pattern with the

anaphor
Candi_SentDist The sentence distance between the candidate and the anaphor
Candi_NearestNP Whether the candidate is the candidate closest to the anaphor in

position

Yang et al. [47, 48] propose a learning model for anaphora resolution called the
“twin-candidate model”. The baseline system is built based on the single-candidate
model.

The single-candidate model assumes that if i is an anaphor, and C is a candidate
antecedent for that anaphor, the probability that C is an antecedent for i is only
dependent on the anaphor i and the antecedent C, and is independent of all other
candidates. The assumption that the candidate antecedent is independent of all other
candidates makes the process of selecting the correct antecedent unreliable, since the
correct antecedent should be selected as the “best” one among the set of candidates.

To address this problem, Yang et al. present a so-called Twin-candidate model in
which antecedent candidates compete against each other in pairs and the one that
wins the most competitions is selected as antecedent.

The system uses positional, lexical and syntactic features described in Table 8.5.
A vector of features is specified for each training instance. The features may
describe the characteristics of the anaphor and the candidate, as well as their
relationships.

8.6.3 Improving Machine Learning Approaches
to Coreference Resolution [36]

Ng and Cardie [36] contributed two types of extensions to the approach followed
by Soon et al. [44]. First, they propose three extra-linguistic modifications to
the machine learning framework. Second, they improve the performance of Soon
et al.’s [44] corpus-based system by expanding the feature set from 12 to 53 features
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that include a variety of linguistic constraints and preferences. They use a decision
tree induction system to train the classifier to decide whether two given NPs are
coreferent or not. After the training step, a clustering algorithm is applied to create
one cluster for each set of coreferent NPs.

The three changes to the general machine learning framework are:

1. A best first technique, which selects the candidate with the highest coreference
likelihood value from among the preceding NPs instead of selecting the closest
antecedent.

2. A different training model is used. Instead of creating a positive training model
for each anaphor and its closest antecedent, it is created for the anaphor and its
most confident antecedent.

3. The third change is the modification of the string match feature in Soon et al.
The algorithm splits this feature into several primitive features which give the
learning algorithm more flexibility in creating the coreference rule.

Ng and Cardie mentioned that the result reflects decreased performance when
using the full feature set. They addressed the problem by manually selecting a subset
of 22–26 features only, which resulted in a significant gain in performance. The
modifications to the general machine learning framework boost the performance of
Soon’s coreference resolution approach from an F-measure of 62.6–70.4.

8.7 Evaluation of Anaphora Resolution Systems

Evaluating the performance of the anaphora resolution system is an extremely
important aspect of the algorithm performance. Several metrics have been proposed
for the task of scoring coreference resolution, and each of them presents advantages
and drawbacks.

From among the different scoring measures that have been developed, we will
discuss the four most widely used measures: MUC [45], B3 [2], CEAF [23], and
the ACE-value [12] and the newly introduced measure BLANC [40]. The first four
measures have been widely used, while BLANC is a proposal of a new measure
that is interesting to test. The researchers have employed these measures to compare
their results with previous works.

8.7.1 MUC [45]

The Message Understanding Conference (MUC) program was the first to define a
scoring metric, known as the MUC metric [45]. MUC was the first and most widely
used measure.
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The MUC initiatives introduced the measures for recall and precision. Also the
F-measure, precision rate and success rate are used as part of the MUC-6 and
MUC-7 evaluation tasks on coreference and anaphora resolution [4, 16].

MUC-1 (1987) was basically exploratory; and there was no formal evaluation.
MUC-2 (1989) was the first to define the primary evaluation measures of recall
and precision. It presents a template with 10 slots to be filled with information
from the text. In MUC-3 (1991) the template becomes more complex (18 slots).
MUC-4 (1992) used the same tasks as MUC-3 but with some increase in template
complexity. The innovation of MUC-5 (1993) was the use of a nested template
structure. In earlier MUCs, each event had been represented as a single template.
At MUC-6 (1995), Named Entities Recognition and Coreference resolution tasks
were added.

In anaphora, Precision is defined as:

P D number of correctly predicted antecedents

number of all predicted antecedents .correctly or false predicted/
(8.1)

And Recall as:

R D number of correctly predicted antecedents

number of all correct antecedents .predicted or missed/
(8.2)

F-measure is calculated as the weighted mean of precision and recall as:

F D 2 � P � R
P CR (8.3)

Therefore, if the approach is robust and proposes an antecedent for each
pronominal anaphor, the success rate would be equal to both recall and precision.

SuccessRate D successfully resolved anaphors

number of all anaphors
(8.4)

Although recall and precision are very important in measuring the efficiency
of an anaphora resolution system, they cannot alone provide a comprehensive
overall assessment of the system. It is necessary to assess the system against other
benchmarks.

Bagga and Baldwin [2] and Luo [23] observed two main shortcomings in
MUC measure: First, it only takes into account coreference links and ignores
single-mention entities (entities that occur in chains consisting only of one element,
the entity itself) so no link can be found in these entities.

Second, all errors are considered to be equal. The MUC scoring algorithm
penalizes the precision numbers equally for all types of errors. However some errors
are more significant than others. It favors systems that produce fewer coreference
chains which may result in higher F-measures for worse systems. Also there is
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no specific scoring scheme proposed to evaluate anaphora resolution other than
coreference resolution.

8.7.2 B-Cube [2]

Bagga and Baldwin introduce the B-Cube metric to address the shortcomings of
MUC discussed earlier.

It successfully overcomes the shortcoming of the MUC-6 algorithm by calcu-
lating the precision and recall numbers for each entity in the document including
singletons and does not care whether the entity is part of a coreference chain or not.
It then takes the weighted sum of these individual precisions and recalls as the final
metric.

Also it takes into account that the error of linking the two large chains in the
second response is more damaging than the error of linking one of the large chains
with the smaller chain in the first response.

For entity i, B-Cube defines the precision and recall as:

Precision D number of correct elements in the output chain containing entityi

number of elements in the output chain containing entityi

(8.5)

Recall D number of correct elements in the output chain containing entityi

number of elements in the truth chain containing entityi

(8.6)

The final precision and recall numbers are calculated by the following formulas:

FinalPrecision D
NX

iD1
Wi � Precisioni (8.7)

FinalRecallD
NX

iD1
Wi � Recalli (8.8)

I refer the reader to [2] for a detailed explanation of the B-Cube algorithm.

8.7.3 ACE (NIST 2003)

The terminology used in the Automatic Content Extraction (ACE) task [37] calls
each individual phrase a mention and equivalence class an entity. We should mention
that the ACE entity is called the coreference chain or equivalence class in MUC, and
the ACE mention is called an entity in MUC.
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In the ACE task, a value-based metric called ACE-value [38] is used. The
counted number of errors (a missing element, a misclassification of a coreference
chain, a mention in the response not included in the key) is used to compute the
ACE-Value. Each error is associated with cost, which depends on the type of entity
(e.g. person, location, organization) and on the kind of mention (e.g. name, nominal,
pronoun). The sum of the three costs yields the total cost. This cost is normalized
against the cost of a nominal system that does not output any entity. The final
ACE-Value is computed by subtracting a normalized cost from (1 – normalized
cost). A robust system will get 100 % ACE-Value, while a system with no output
will get 0 % ACE-Value. Although calculating ACE-Value in such way avoids the
shortcoming of the MUC F-measure, it has its own shortcomings. ACE-Value is
very task-specific and not really useful for a general coreference problem that is not
limited to a set of specific semantic types.

Another problem mentioned in [23] is that the ACE-Value is hard to interpret.
A system with 90 % does not mean that 90 % of the system entities or mentions
are correct, but that the cost of the system, relative to the one producing no
entity, is 10 %. For more details about the ACE program, the reader is referred to
(NIST 2003).

8.7.4 CEAF [23]

Luo [23] observes that coreference systems are to recognize entities and proposes a
metric called Constrained Entity-Aligned F-Measure (CEAF).

The metric finds the best one-to-one entity alignment between the subsets of
reference (GOLD)2 and system responses (SYS) before computing precision and
recall. Each SYS entity is aligned with at most one GOLD entity and vice versa.
The best mapping is that which maximizes the similarity over pairs of chains. Once
the total similarity is defined, it is straightforward to compute recall, precision and
F-measure. Luo [23] proposes two definitions of CEAF: mention-based CEAF and
entity-based CEAF.

He defined them as: mention-based CEAF which reflects the percentage of
mentions that are in the correct entities; entity-based CEAF which reflects the
percentage of correctly recognized entities [23].

Luo [23] overcomes the B-cube’s problem where the response with all mentions
in the same chain obtains 100 % recall, whereas a response with each mention in a
different chain obtains 100 % precision. The constraint imposed in the CEAF entity
alignment makes it impossible to get this error as a system that outputs too many
entities will be penalized in precision while a system that outputs too few entities

2The set of mentions contained in the gold standard, produced by a human expert, are referred to
as TRUE or GOLD mentions, as opposed to the set of mentions contained in the system output,
which are called SYSTEM or SYS mentions. Gold standard annotation is correctly identifying all
NPs that are part of coreference chains.
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will be penalized in recall. Also a perfect system will get an F-measure of 1 and a
system with no output will get an F-measure of 0.

Although CEAF is a good evaluation measure, it also has its own problems.
It suffers from the same singleton problem as B-cube. Because CEAF and B-Cube
allow the annotation of the singleton in the corpus, and consider it in the process
of resolution, their scores are higher than that of the MUC simply because a great
percentage of the score is due to the resolution of singletons.

Both the B-Cube and CEAF could be computed with a mention-weighted version
such that it gives a unique score for each mention, allowing an entity with more
mentions to have a higher score than one with fewer mentions.

8.7.5 BLANC [40]

Recasens and Hovy [40] introduce a new coreference resolution evaluation
algorithm: BiLateral Assessment of Noun Phrase Coreference (BLANC). Their
algorithm makes use of the existing Rand index [39] which is an evaluation metric
that measures the similarity between two partitions or clusters. We will not focus
on the Rand index algorithm here, as one can read more about it in [39]. BLANC is
proposed to overcome the shortcomings of the above-mentioned measures (MUC,
B-Cube, and CEAF).

BLANC introduces a new measure that considers two types of decisions:

1. Coreference decision which takes coreference and also non-coreference links
into account. A coreference link is the link that holds between every two
mentions that corefer, while a non-coreference link holds between every two
mentions that do not corefer.

2. Correctness decision: when the system is correct, the Right link has the same
value in Gold and SYS for coreference and non-coreference links, and if the
system is wrong the Wrong link does not have the same value in Gold and SYS
for coreference and non-coreference links.

We notice that BLANC balances coreference and non-coreference links equally.
In this way, singletons are neither ignored (shortcoming of MUC) nor given
greater importance than multi-mention entities (shortcoming of CEAF and B-cube).
However, a basic assumption behind BLANC is that the sum of all coreferential and
non-coreferential links is constant for a given set of mentions.

8.8 Anaphora in Semitic Languages

Many natural language processing applications require deep knowledge of the
language, and hence transferring a technology from one language to another requires
intensive effort and substantial resources.
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Moreover, many problems are unique to Semitic languages, which in general are
less investigated; the result is that language processing is less advanced for Semitic
languages than it is for other languages.

Building anaphora resolution systems for Semitic languages is not so different
from building such systems for other Latin languages. The steps to building any
AR system are the same for Semitic languages but for each step we have to
consider the special characteristics of the languages. First, we have to prepare
corpora annotated with anaphoric links and take into account the characteristics of
the language of these corpora. For example, Semitic languages have very complex
morphology [15]. Both prefixes and suffixes combine with a single base stem, such
as “ (8N�3D��/loves her”, as we have seen. The single word “ (8N�3D��/loves her” contains
a verb and a pronoun, which is an anaphor. In this case we need an additional
step in the annotation process to segment the words into tokens and check if
the token is an anaphor, an antecedent or none of them. The preprocessing step
(including corpora annotation, POS tagging, tokenization, text disambiguation and
other preprocessing) contains most of the language-specific work. Basically the
syntactic, morphological and semantic features related to the Semitic languages are
considered and processed in this step.

After preprocessing the text, the steps in building any AR system are the same
for Semitic languages and statistical approach techniques can be used to build the
base line system for Semitic language AR systems just like any other Latin systems.
In the next section, we will discuss some previous work on the Arabic language
which is one of the five Semitic languages (see Chap. 1).

8.8.1 Anaphora Resolution in Arabic

Multilingual Robust Anaphora Resolution Approach [30]

We present here a brief description of [30]. The approach used in this work consists
of a modification of Mitkov’s approach [29], and operates on texts pre-processed
by a part-of-speech tagger. The system checks input against number and gender
agreement of an antecedent indicator. A score is set for each candidate according to
each indicator, and the candidate with the highest score is returned as the antecedent.
The indicators are used in the same way for English, Polish and Arabic. The
approach was initially developed and tested for English, but it has been subjected to
some modifications to work with Polish and Arabic.

The approach resolves pronoun anaphora resolution by making use of
corpus-based NLP techniques such as sentence segmentation, part-of-speech
tagging, noun phrase identification and the high performance of the antecedent
indicators.

The detected noun phrases are passed on to a gender and number agreement
test. Agreement rules in Arabic are different from those in Latin languages. For
instance, a set of non-human items (animals, plants, objects) is referred to by a
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Table 8.6 Evaluation of
Mitkov’s system

System ID Success rate (%)

Arabic direct 90.5
Arabic improved 95.2

singular feminine pronoun, such as the pronoun “ (&/its” in the sentence “5)�K?� (8 
9/*��( �:�; 
I �+ -�
�
��/I saw butterflies their color is beautiful”, which refers to “ ��( �:�; 
I/

butterflies”. But the same pronominal suffix in Arabic can also refer to a singular
feminine object. Thus, an Arabic AR system has to disambiguate such a pronoun.
Moreover, the same pronoun in Arabic may appear as a suffix of a verb (e.g. (%R7 
I/do
it), or as a possessive pronoun when it is attached to a noun (e.g. $pp-� (�),/his book),
or as an object of a preposition (e.g. (8N�
I/in it). In particular, pronouns have several
types in Arabic. Each type is divided into many categories.

Mitkov [30] uses a set of antecedent indicators which are used for tracking
the correct antecedent from a set of candidate antecedents. Antecedent indicators
have been identified on the basis of empirical studies of numerous hand-annotated
technical manuals. A score is set for each candidate according to each antecedent
indicator (preferences), with a value (�1, 0, 1, or 2). The candidate with the highest
score is proposed as the antecedent.

This robust approach for Arabic is evaluated in two modes. The first mode
consists of using the approach without any specific modification or enhancement
(referred to as “Arabic direct” in Table 8.6), whereas the second mode uses an
enhanced version which includes rules to capture some specific characteristics of
Arabic plus additional indicators for Arabic features.

The evaluation for Arabic showed a very high “critical success rate” as well. The
robust approach used without any modification scored a “critical success rate” of
78.6 %, whereas the improved Arabic version scored 89.3 %.

For a detailed description of the system, refer to [30].

Arabic Mention Detection and Coreference Resolution [49, 50]

Zitouni et al. [49, 50] presented a statistical-based mention detection system.
Mention detection is a very important task in many NLP systems like data mining,
question answering, summarization, etc. It is also very central to anaphora and
coreference resolution since mention detection is about finding the different ways
one conceptual entity is referred to.

Zitouni et al. [49, 50] discussed their Arabic entity detection and recognition
system (EDR) for the Arabic language. The system is statistical and built around
maximum entropy, and works under the ACE 2004 framework. The EDR system
proceeds in two main phases: the mention detection phase, and the coreference
resolution phase to corefer the detected mentions into entities. The approach is
modified to accommodate the special characteristics of the Arabic language.
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Table 8.7 The result of
Zitouni et al.’s system

Base BaseC Stem

ECM-F ACE-val ECM-F ACE-val

Truth 77.7 86.9 80.0 88.2
System 62.3 61.9 64.2 63.1

The authors explain the additional complexity involved in building the system
due to the challenges in Arabic such as the different forms of the Arabic words
that result from the derivational and inflectional processes, as most prepositions,
conjunctions, pronouns, and possessive forms are attached to the Arabic surface
word.

The coreference resolution system is similar to the one described in Luo
et al. [24]. The first step in building the system is the segmentation process. The
text is segmented into words using white space delimiters, and then every single
word is separates into prefix-stem-suffix. The phase of coreference resolution groups
the mentions referring to the same entity. The system uses the Bell-tree algorithm
described in Luo et al. [24]. The root of the tree contains the first mention in the
document. The second mention is added to the tree either by linking to the existing
entity, or by creating a new entity. The other mentions in the documents are added
to the tree in the same way.

The next step in the coreference resolution phase is the maximum entropy
algorithm. The maximum entropy algorithm is used to compute the probability of
an active mention m linking with an in-focus partial entity e.

The authors introduced a set of features to be used by the maximum entropy
algorithm, such as the relationship between an entity and a mention (or a pair of
mentions) which could be characterized by certain features. There are two types
of features used, entity-level and mention-pair. The entity-level features capture
some characteristics such as gender and number agreement, while the mention-pair
features encode the lexical features. The results are reported with ACE-value (NIST
2003) and ECM-F [24], and are shown in Table 8.7.

For details on the EDR system, the reader is referred to “A Statistical Model for
Arabic Mention Detection and Chaining” in [14].

8.9 Difficulties with AR in Semitic Languages

8.9.1 The Morphology of the Language

Semitic languages have both prefixes and suffixes and sometimes both kinds of
affixes combine with a single base form (as in Hebrew: the verb inflection guard,
second person, plural, future tense; furthermore, the base form itself can be modified
in the different paradigms).
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Zitouni et al. [49, 50] explain how Arabic is a highly inflected language. Arabic
nouns encode information about gender, number, and grammatical cases. Seddik
et al. [42] state that pronouns have many types in Arabic, and each type is
divided into many categories. For example a pronoun in Arabic can be personal,
possessive, relative, or demonstrative, etc. In addition Arabic nouns must have
gender: masculine or feminine. Number in Arabic has three classifications: singular,
dual, and plural, and finally there are three grammatical cases: nominative, genitive,
and accusative.

8.9.2 Complex Sentence Structure

Unlike many other languages, Arabic may combine the verb, subject, and
object in one word such as `2&( 
))�3�D


���b which means “we saved them”. We have
to break up the phrase, and identify the subject before starting the process of
anaphora resolution.

8.9.3 Hidden Antecedents

In some cases, especially in Quranic texts, the pronoun may refer to something
which is not presented in the text, such as in Example 16. The pronoun `/&b refers
to “Allah”, which is not presented in the text. The human mind can determine the
hidden antecedent by using the knowledge that Allah is the only one who knows the
unseen. But for the anaphora resolution algorithm, it could be difficult to recognize
a hidden antecedent.

�i /& '�� (%6R7-� ' +� )� 
7* � yD��( 
A1 i �Q
)L � `ivb

(16) With Him1 are the keys of the unseen, the treasures that none know it but He1.

In this example, the pronouns “Him/ �” and “He//&” are ambiguous. The
pronouns refer to “Allah/ $R!p* �”, which is not presented in the text.

8.9.4 The Lack of Corpora Annotated with Anaphoric Links

The major problem in anaphora resolution is the lack of corpora annotated with
anaphoric relations for Semitic languages although it is very much needed in most
NLP systems. The annotation task of anaphoric relations is very time consuming and
requires a significant effort from the human annotator. To the best of our knowledge
there is no available resource for Arabic except Hammami et al. [17].
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8.10 Summary

In this chapter we have discussed anaphora and anaphora resolution, and the
different types of anaphora. We have described the two types of factors used for
anaphora resolution: “eliminating” and “preferential”, also we have shown how an
optimal set of factors can increase the performance of a system. Two examples of
systems that use different set of features are introduced to show how these features
affect the performance of the systems. Then we presented the general steps of an
anaphora resolution system. The techniques for anaphora resolution constitute an
important topic introduced in the chapter. We have classified the systems in terms of
the way the antecedents are computed and tracked down, and therefore divided the
systems into traditional and statistical types. Previous works have been introduced
to show the differences among the approaches and how it is very important to select
the appropriate approach when designing an AR system.

We also discussed the evaluation of anaphora resolution systems. We started
by giving a brief history of several coreference tasks and described evaluation
metrics such as MUC, ACE-Value, CEAF, and others. Then we focused on
anaphora resolution in Semitic languages, and showed how Semitic languages
differ from other European languages because of their complex structure and their
unique features. Then we introduced the difficulties and challenges in AR in those
languages. One problem that AR suffers from in all Semitic languages is the scarcity
of annotated corpora in anaphora resolution.
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Chapter 9
Relation Extraction

Vittorio Castelli and Imed Zitouni

9.1 Introduction

By relation we denote a connection between two entities (such as persons, orga-
nizations, countries, and locations), or between an entity and an event, explicily
supported by the text. For example, the sentence “Ginni Rometty works for IBM”
explicitly establishes an employment relation between “Ginni Rometty” and “IBM”.
Thus, the definition of relation addressed in this chapter is aligned with that of the
NIST Automatic Content Extraction (ACE) evaluations [31]. We will be interested
in closed-set relations, that is, we will assume that the types of the relations belong
to a predefined, finite set. We will investigate statistical approaches to relation
extraction, where the task is cast into a classification framework. Our discussion
will be prevalently rooted in the supervised learning framework but should be easily
extended to semi-supervised approaches.

The term “relation extraction” has been broadly used in the literature, and covers
many NLP problems not addressed in this chapter. This chapter doesn’t consider
the detection of implicit relations. For example, the sentence “Ginni Rometty
works for IBM and Paul Horn belongs to the same company as Ginni Rometty”
does not explicitly establish that “Paul Horn” is employed by “IBM”; rather, this
conclusion is reached by following an inference chain connecting multiple explicit
relations. Also, this chapter doesn’t address the automatic discovery of ontology-
style relations (e.g., hyponymy, meronymy, etc.), nor the detection of temporal
relations between events (A comes before B). It doesn’t cover open-set relation, a
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data-mining problem consisting of identifying common patterns connecting pairs of
entity mentions and clustering them into groups that might have semantic meaning.
We only discuss statistical approaches to relation extraction, leaving out topics such
as rule-based systems.

The rest of the chapter is organized as follows: Sect. 9.2 describes in more detail
the concept of relation and the problem of relation extraction; Sect. 9.3 provides an
overview of methods for relation extraction and discusses feature-based methods,
kernel methods, and semi-supervised methods; Sect. 9.4 addresses language-specific
issues that arise when extracting relations from Semitic languages; Sect. 9.5 is a
brief overview of available data for training relation extraction systems; Sect. 9.6
describes results on Arabic data.

9.2 Relations

A sentence often contains mentions of physical or abstract entities, such as persons,
groups of people, locations, countries, numerals, substances, vehicles, weapons, etc.
These mentions can be proper nouns (e.g., Barak Obama), nominals (e.g., author,
editor, president), or pronouns. Mention detection is the process of automatically
identifying the spans of text corresponding to mentions within a textual document.
Often, multiple mentions within the same document refer to the same entity;
the process of partitioning mentions into mutually exclusive sets, each of which
corresponds to a different entity, is called within-document coreference resolution,
or, more simply, coreference resolution, and each set of mentions is sometimes
called a document-level entity. Consider as an example the sentence “Bob bought
a new car on Friday and drove it to California the following day”. The sentence
contains a person mention (“Bob”), two vehicle mentions (“car” and “it”), and two
time mentions (“Friday” and “day”). The two vehicle mentions refer to the same
entity, that is, the car that Bob bought on Friday. The reader may refer to the previous
chapter on anaphora resolution for more details about a similar research problem.
Different documents could have mentions referring to the same entity. Identifying
document-level entities in different documents that correspond to the same real-
world entity is called cross-document coreference resolution. Mention detection
(which can be addressed as a named-entity recognition problem), coreference
resolution and cross-document coreference resolution are complex problems, some
of which are addressed in the previous two chapters of this book. In this chapter,
we assume that they are solved, and that their products are available when relation
extraction is performed.

Consider again the sentence “Bob bought a new car on Friday and drove it
to California the following day”. This sentence establishes that Bob became the
owner of a new car, because he purchased it. The sentence describes an ownership
relation between Bob and the car. The textual description of this relation is a relation
mention. The ownership relation is stated as factual; a similar relation is described
in hypothetical terms by the following sentence “Bob would have bought a new car
on Friday but the dealer did not have it ready.” The relation is established in the past,
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since the sentence does not provide information as to whether Bob is still the owner
of the car – he might have sold it in California. This example suggests that relation
extraction is a multi-faceted problem: it consists of determining whether there is
a relation between a pair of mentions, of inferring the type of the relation, and of
computing attributes of the detected relations, such as the roles of the mentions in the
relation, whether the relation is factual or hypothetical, the time aspect of the rela-
tion, etc. Thus, a relation mention can be represented as a tuple .m1;m2; a1; : : : ; am/

where m1 and m2 are entity mentions, and a1; : : : ; am are attributes. A relation can
then be identified with the collection of its relation mentions.

Binary relations can be extended to n-ary relations that connect n entities:
for example the sentence “Bob, Mary, and their daughter Jane went to the movies”
establishes a family relation between Bob, Mary, and Jane. The problem of relation
extraction can be tied to that of event detection. A simple representation of an event
consists of determining a keyword in the sentence, which we call the event anchor,
and extracting relations between the anchor and other mentions. This simple repre-
sentation captures who did what to whom, with what, where, and when. An event
anchor in the first example is the verb “bought”, which takes part in a set of relations:
Bob is the agent of bought, the new car is the patient of bought, and Friday is the
time of the action. A second event can be extracted, centered on the anchor “drove”:
Bob is the agent of drove, “it” (the car) is the patient, California is the explicitly men-
tioned location of the action, and the “following day” is the time of the action. In this
chapter we will restrict the attention to binary relations, in the interest of simplicity.

The vast majority of the literature on relation extraction addresses the case of
relations between entity mentions that occur in the same sentence. While there are a
few investigations of cross-sentential relations [18], we will assume throughout the
chapter that the entity mentions occur within the same sentence.

9.3 Approaches to Relation Extraction

Relation extraction approaches can be broadly categorized into three main classes:
feature-based classifiers, which approach the problem from a statistical classifica-
tion angle, kernel-based methods, which efficiently compute the similarity between
appropriate representations of the training data and the data being analyzed and
make a decision based on the result, and semi-supervised methods that augment a
training set consisting of labeled samples with unlabeled data.

9.3.1 Feature-Based Classifiers

Methods

For each pair of mentions to be analyzed, a feature-based classifier [23] extracts
features that are fed as input to one or more classifiers devoted to the computation
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of the relation attributes. For many relation sets, such as those used in the ACE
evaluation [31], detecting the existence of a relation is substantially more difficult
than computing the attributes of detected relations: for example, misses and false
alarms dominate over relation type errors. The cause is the absence of relations
between most pairs of mentions even within the same sentence. The training set is
heavily biased by examples that describe the absence of relations, and a classifier
trained with this kind of data tends to produce highly precise results but at the same
time would miss a large number of relations. Selecting a different point on the ROC
curve improves recall at the expense of precision. Due to the difficulty of relation
detection, some authors have concentrated their investigation on this problem [16]
without addressing the computation of relation attributes.

There are two possible approaches to classifying relations. The first is to build a
single classifier that computes all the relation attributes at the same time; in other
words, the classifier prediction lies in the Cartesian product of the attribute spaces
augmented by a “No Relation” label. The second approach consists of having a
classifier devoted to detecting the existence of relations and one or more classifiers
that produce the attributes of the detected relations.

As an example of using a single classifier, Kambhatla [24] addressed the probem
of detecting relations in the ACE relation taxonomy. The ACE relation taxonomy
consists of a handful of different relation types and subtypes. By combining type,
subtype, and role of the two entity mentions in the relation, one produces 46
different classes, to which a “NONE” class label is added for a total of 47 class
labels. With this approach, the training set is highly skewed towards the “NONE”
class. Kambhatla proposed a solution consisting of creating numerous training sets
by sampling-with-replacement from the original training set, training a separate
classifier with each generated training set, and combining the classifiers using an
“At-Least-N” strategy: if at least N classifiers agree on the same label ` other than
“NONE” and no other label receive more votes, the ensemble outputs the label `,
otherwise the label “NONE” is produced.

The alternative common approach consists of using a binary classifier to detect
whether a relation exists between a pair of mentions, followed by other classifiers
that compute different attributes for the relations detected by the detector. The
attribute classifiers can be used independently, or they can be cascaded, that is, the
prediction of each classifier is used to compute features for the following classifiers.
There are several advantages to this approach. First, detection is a binary problem
and all the training data is used to decide between two labels, rather than between
many labels. Second the designer has the flexibility to select appropriate features for
each classifier: features useful for detection need not be advantageous for attribute
computation and vice versa. The architecture of the system can be flexibly designed:
for example, classifiers can be cascaded so that each classifier can rely on features
computed from the predictions of previous stages. Finally, rule-based systems can
be selectively applied, especially in a cascaded architecture. A case in point is the
role of the entity mentions in the relation: in certain relation types, they play specific
roles (e.g., the sentence “Bob is the manager of John” expresses the relation (Bob,
John, ManagerOf), which is different from (John, Bob, ManagerOf)), while in others
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they are exchangeable (e.g., the sentence “Bob and Jane got married” expresses
the relation (Bob, Jane, spouseOf), which is identical to the relation (Jane, Bob,
spouseOf)). A simple rule can be constructed that invokes the mention-role classifier
only when the relation-type classifier produces a label for which the roles of the
entity mentions are not symmetric. Similarly, the types of the entities involved
in a relation constrain the possible set of relations. For example, a person can be
employed by a company, can own a company, but cannot be married to a company
(although the authors conceed that on occasion it feels that way). Such constraints
can, and should, be incorporated in the relation detection system.

Features

Different authors have proposed and used a wide array of features for classification-
based relation extractors. A study that analyzes several features classes in the context
of relation extraction can be found in the paper by Jiang and Zhai [21].

Structural features. Consider the sentence: “While Julius Caesar was in Britain,
his daughter Julia, who was married to Pompey, died in childbirth in Rome”. This
sentence contains numerous relations, for example: (1) Julius Caesar is located in
Britain, (2) he is the father of Julia, (3) Julia is the spouse of Pompey, and (4) Julia
is located at Rome. Note, further, that the second relation mention is explicitly
supported by the words his daughter, where the pronoun his is coreferenced
to Julius Caesar and the nominal daughter is coreferenced to Julia. Similary,
the third relation mention is between who, coreferenced to Julia, and Pompey.
We note immediately that entity mentions that are close to each other in the text
are substantially more likely to be part of an explicit relation than mentions that
are far from each other – we remark, incidentally, that the fact that Julius Caesar
is the father-in-law of Pompey is an implicit relation that follows from inference.
Also note that the mentions Julia and Rome are separated by several words, but
the shortest path between them in the parse tree is actually rather short. These
considerations lead us to consider a class of features that capture the distance
between entity mentions, such as the number of intervening words, the length of
the shortest path between the mentions in the parse tree, or the length of the shortest
path between the mentions in the dependency tree. Another class of structural
features captures whether the entity mentions being analyzed already play a role in
a relation. These features must be causal, in the sense that they must only fire for
relations that could be detected by the extraction algorithm before the candidate
relation between the current entity mentions; in other terms, if the relation detection
algorithm analyzes all entity mention pairs in a given order, these features should
fire only if an entity mention m1 in the current pair .m1;m2/ appears in a relation
with another entity mentionmp and the pair .m1;mp/ occurs before .m1;m2/ in the
order induced by the relation detection algorithm.

Lexical features. Different relations can be expressed in identical structural,
grammatical, and syntactic fashion. “His mother” and “his sister” express two very
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different relations (parent-child and sibling of ), which can only be distinguished
by looking at the actual words. Lexical features are therefore often used in
relation extraction systems. Examples of lexical features are: (1) the spelling of
the mentions, possibly stemmed; (2) the verb of the verb phrase containing the two
mentions, possibly stemmed; (3) verbs to the left and to the right of the mention
pair; (4) bag-of-words features that collect all the words between the two mentions
or in the same syntactic constituent that contain the two words; etc. Unlike structural
features, lexical features will increase dramatically the dimensionality of the feature
space. As a consequence, for languages with rich morphology it is advisable to use
a morphological analyzer or a stemmer to remove affixes.

Entity features. Consider the two sentences: “I visited France” and “France holds
a seat in the U.N. Security Council”. In the first sentence, the geo-political entity
France plays the role of a geographic area; in the second, it plays the role of a
sovereign state. A person cannot be located at a sovereign state, which is a political
organization with a centralized government that has independent and supreme
authority over a geographic area. Similarly, a geographic area cannot be a member of
an organization. The entity type and its role in a sentence dictate the type of relations
in which it can take part. Additionally, knowing whether the entity mentions are
represented by proper names, nominals, or pronouns appears to be useful in relation
detection.

Syntactic features. A first class of syntatic features are derived from parse trees.
These can be further divided into two categories: label-based and path-based.
Label-based features capture the non-terminal labels associated with the words of
the entity mentions, including part-of-speech tags. Path-based features represent
various encoding of the labels of non-terminal nodes encountered in paths along
subtrees that dominate the entity mentions. For example, authors have considered
the smallest subtree that cover the entity mentions and extracted features from the
shortest path between the head words of the mentions. Examples of extracted fea-
tures include: (1) the constituent label of the root of the smallest subtree covering the
pair; (2) the list of the labels of the children of the root; (3) the list of all or of selected
constituent labels along the shortest path between the two mentions; etc. Useful syn-
tactic features include those that fire when the mentions are in the same phrase, noun
phrase, sentence, etc. Binary features can be constructed from syntactic patterns, for
example mention1-PP containing mention2, which fires if the leftmost mention is in
apposition to a propositional phrase that contains the rightmost mention.

A second class of syntactic features are derived from dependency trees. These
include features that concatenate the constituent labels encountered along the full or
reduced path along the dependency tree connecting the mentions, as well as features
that fire when specific dependency patterns are encountered.

Semantic features. If the parse-tree constituents are decorated with semantic
roles [14], it is possible to construct features that capture semantic connections
between the mentions. Features of this type fire when the two mentions being
analyzed belong to constituents that have semantic roles associated with the same
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verb. Examples include: (1) the semantic role labels (SRLs) of the constituents that
contain the two mentions; (2) the (possibly stemmed) verb or verbs; and (3) indicator
functions that fire if the entity mentions span the head words of the constituents with
semantic role labels.

Classifiers

As in many other NLP tasks, there are two basic approaches to relation extraction
as classification; the first consists of considering each candidate relation mention
independently of all the others (i.i.d. classification), and the second is to perform
joint extraction, for example, using a sequential classification approach. While
conceptually any classifier can be used to detect relations, the dimensionality and
sparsity of the feature vectors requires methods that are somewhat impervious to
the curse-of-dimensionality. Thus, authors typically select log-linear models, such
as Maximum-Entropy classifiers [2] (or Maximum Entropy Markov Models [28] for
sequential classification) or Conditional Random Fields [26]. These models estimate
probabilities using the generic formula
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Other classifiers, such as large-margin methods, have been used both for feature-
based methods and for kernel-based methods, and are briefly discussed in the next
section.

9.3.2 Kernel-Based Methods

Linguistic patterns are central to natural languages. Even in grammatically permis-
sive languages such as English, people express themselves using patterns of speech,
and deviations from established patterns sound odd even when they are perfectly
comprehensible and correct according to the rules of grammar.

As an illustrative example consider the following two passages: “Dr. John E.
Kelly III, Senior Vice President of IBM Research, spoke : : :” and “Gary Locke,
the U.S. Ambassador to China, met with : : :”. Both exemplify common patterns
that coincisely describe how a person is related to an organization or country by
specifying the role or the title of the person. These patterns are very well established
and have limited variability: for example, the passage “Dr. John E. Kelly III, who
is the Senior Vice President of IBM Research, spoke : : :” is grammatically correct,
expresses the same relations as the previous version, but is substantially less likely
to occur in written text or in a spoken conversation. It is therefore natural to address
the problem of relation extraction by learning structural patterns and capturing their
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limited variability. Luckily, this goal can be accomplished efficiently by means of a
class of “similarity” functions called kernels, applied to shallow parse trees, regular
parse trees, and dependency trees.

Kernels are strictly linked to a historical classifier, the perceptron, and
its derivatives. The perceptron is a classical learning algorithm invented by
Rosenblatt [33] that has inspired a large number of classifiers, including Support
Vector Machines [10] and other large margin classifiers, such as the Voted
Perceptron [13]. In its simplest form, the perceptron is a linear binary classification
algorithm: a sample to be classified is represented as a vector of features x, and the
perceptron uses a weight vector w to predict the label of x as

Oy D sign .w � x/ ;

where � denotes the inner product and sign is the signum function. Thus, the
weight vector defines a separating hyperplane in the feature space, and samples
are classified according to half of the feature space they belong to. Incidentally, note
that an inner product defines a natural distance function:

d.x;w/ D px � xC w � w � 2x � w;

and therefore it can be thought of as a similarity function.
To account for the interaction between features, it is customary to project the

feature vector in a higher-dimensional space: for example, if x D Œx1; : : : ; xn�,
using the vector x.2/ D Œx1; : : : ; xn; x

2
1 ; x1x2; : : : ; xn�1xn; x2n� in the perceptron

algorithm accounts for all the two-way interactions between features. It is evident
that accounting for multi-way interactions substantially increases the length of the
feature vector, and consequently the computational cost of training the model and
classifying the samples.

A solution consists of computing the inner product by means of a Mercer Ker-
nel K.w; x/, which is a real-valued, symmetric, continuous, positive-semidefinite
function. Mercer’s theorem shows that, under a few mild conditions, there is an
orthonormal basis of the space of square-integrable functions defined over the
range of the vectors w and x, such that the eigenvalues f�ig corresponding to the
eigenfunctions feig are non-negative, and the kernel has the representation

K .w; x/ D
1X

iD1
�i ei .w/ej .x/;

where the sum on the right-hand side converges absolutely and uniformly. Thus,
computing the value of the right-hand kernel is tantamount to projecting w and x in
a high-dimensional (possibly infinite-dimensional) space and computing a weighted
inner product between the projections. It is possible to construct kernels that are
substantially less computationally intensive to evaluate than the computation of the
inner product in the corresponding high-dimensional space.
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Even more appealing from the viewpoint of relation extraction is the existence of
kernels on discrete structures such as strings, graphs, and trees: these can be used to
automatically capture linguistic patterns. Haussler [17] pioneered these kernels and
called them convolutional kernels. If x is a structure that can be decomposed into
parts �!x D x1; : : : ; xD and z can be decomposed into parts �!z D z1; : : : ; zD , and for
each d 2 f1; : : : ;Dg there is a kernelKd that can take xd and zd as arguments, then
the R-convolution or K1; : : : ; KD is (the zero-extension of)

K .x; z/ D
X

�!x 2R�1.x/;�!z 2R�1.z/

DY

dD1
Kd.xd ; zd /;

where R�1.x/ is the set of possible decompositions of x.
Collins and Duffy [9] extended the convolution kernels to parse trees. Their

kernel implicitly finds all subtrees in common between two parse trees, assigns to
each subtree a weight that decays exponentially with its size, and sums the weights.
They propose a dual-space algorithm that efficiently computes the kernel without
having to explicitly enumerate and check all the subtrees of the parse trees.

Convolutional kernels and related kernels have been applied to relation extrac-
tions by several authors. Zelenko et al. [36] propose the use of kernels closely related
to convolutional kernels to extract relations from shallow parse trees [1]. Shallow
parse trees identify the key elements of a sentence, rather than its entire structure.
Relation extraction is cast as a node-labeling problem: the nodes in the shallow parse
tree are labeled with the role they play in defining the relation, and nodes that do not
participate in the relation are not labeled. The author define a matching function,
which decides whether a pair of nodes from two different parses are comparable,
and a similarity function, which computes the similarity between the attributes of
matchable nodes. By appropriately crafting and combining these two functions,
the authors construct a kernel that efficiently recursively computes the similarity
between subtrees. The results reported on two relation types (person-affiliation and
organization-location) are encouraging, and this approach is potentially useful for
resource-poor languages, since a chunker can be trained with a smaller training set
than a full-fledged parser.

Culotta and Sorensen [11] define a convolutional kernel that extends that of
Zelenko et al., and that operates over dependency trees. Dependency trees are
structures that capture the grammatical relations between words. To extract a
relation between two entity mentions, Culotta and Sorensen find the smallest
common subtree of the dependency tree that include both mentions, and represent
each node of the subtree as a vector of features. A subset of these features is
used to compute the compatibility between tree nodes and another subset, possibly
overlapping with the first, is used to compute the similarity between compatible
nodes. This approach, applied to a set of five high-level ACE relations yields a
detection F-measure of 63:2% and a classification F-measure of 45:8%.

Bunescu and Mooney [4] further refine Culotta and Sorensen’s method by
restricting the attention to the shortest path between two entities in the undirected
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version of the dependency graph. The authors define lexical features, namely, the
words on the dependency path, and additional features constructed by substituting
the words in the lexical feature with their hypernyms, their part-of-speech tags, etc.
This approach yields a 2-point increase in F-measure.

Zhang et al. [37] extend the previous works by relaxing some of the technical
requirements of Culotta and Sorensen, and of Bunescu and Mooney. In particular,
they relax the requirement that the subtrees being compared have the same number
of nodes and that they lie at the same depth from the roots. The authors explore
how the selection of subtrees affects the performance of the relation extraction
algorithm, by defining seven different approaches and comparing their performance.
The methods described in the paper rely on syntactic features, and show noticeable
gains in F-measure.

Khayyamian et al. [25] apply kernel methods to syntactic parse trees, define
different weighting functions based on a decaying parameter, and compare their
results on individual relation types to those obtainable with the kernel of Collins
and Duffy [9].

9.3.3 Semi-supervised and Adaptive Learning

The methods described in the previous sections rely on the assumption that a labeled
corpus is available for training classifiers. This corpus must contain sentences where
the mentions of entities and events as well as the relations between these mentions
are annotated. The annotations must contain the information needed to extract
features for the learning algorithm, including all the desired relation attributes. There
are very few annotated corpora available even for resource-rich languages such as
English, and annotating a large corpus is a delicate and expensive task.

To address this issue, authors have proposed the use of semi-supervised and
of adaptive methods that require only a limited amount of labeled data to train a
classifier. Traditional semi-supervised methods rely on a small number of labeled
examples for the specific problem at hand and on a large unlabeled corpus to
construct a classifier. Adaptive methods use labeled data created for related domains
and unlabeled domain-specific data to construct relation extraction systems. Since
both classes of approaches use both labeled and unlabeled data, we group them
together and refer to them as semi-supervised methods.

In this chapter we review several semi-supervised approaches to relation extrac-
tion, provide a high-level description of the methods, and describe some implemen-
tations.

Bootstrap Learning. Bootstrap learning consists of using a very small number
of labeled samples or of seed patterns to iteratively extract new labeled samples
or patterns from a corpus. This method has been used for relation extraction by
Glass and Barker [15]. In this paper, the authors construct extractors for individual
relation types using a set of examples of the desired relation and a corpus. For each
example of the desired relation, they search the corpus for sentences containing
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both entities found in the example; they add the sentence as a positive example to
a new training set. Once all initial labeled examples have been exhausted, a new
classifier is constructed with the new training set. This classifier is used to discover
new instances of the desired relation type, which are treated as the initial set of
labeled examples to construct a new training set for the next iteration of the process.
The authors provide an extensive analysis of experimental results and conclude that
the method can be beneficial for specific tasks under certain conditions. A similar
approach is used in Hoffman et al. [19], and Wu and Weld [35], where the labeled
examples are Wikipedia infobox entries and bootstrapping consists of labeling as
positive examples the sentences of the Wikipedia article containing the infobox
where the two entities taking part in the relation co-occur.

Multiple Instance Learning. Multiple instance learning (MIL) [12] addresses the
case in which the training data is grouped into “bags”, and a label is assigned to
each bag. In the case of binary classification, bags are positive or negative, positive
bags are guaranteed to contain at least one positive instance (but can also contain
negative instances) and negative bags are guaranteed to contain only negative
instances. Bunescu and Mooney [6] extend a subsequence kernel approach [5] to
the multiple instance learning framework, using a support-vector machine as the
learning algorithm. The authors recast the problem into a classical classification
setting, where training instances belonging to positive bags are treated as positive
examples and training instances belonging to negative bags are treated as negative
examples. Since not all examples in a positive bag are positive, the authors modify
the SVM optimization problem by assigning a smaller misclassification penalty to
examples from a positive bag than to those from a negative bag.

Distant Supervision. Distant supervision is a subclass of semi-supervised learning
where the unlabeled data is “weakly labeled”, that is, it is labeled by a labeling
function ofter derived from a knowledge base. To create the training set, a
knowledge base is used both to obtain a small set of labeled examples and to
construct the labeling function. The labeling function is often constructed using
heuristics that guides its applicability. The labeling functions is then applied to a
corpus to obtain automatically annotated training examples that are then used to
learn an extraction system.

Mintz et al. [29] use Freebase [3] as a structured knowledge base. Freebase
contains more than 100 million instances of relations between 9 million entities, and
these relations belong to more than 7,000 different types. The gist of the approach
of Mintz et al., is to project the relations between entities captured by Freebase onto
a corpus and to use the projected relations as training examples. In particular, every
phrase in a corpus that contains mentions of two entities linked by a specific relation
in Freebase are considered as positive examples for that relation. The training corpus
used in the paper is a collection of 1.2 million Wikipedia articles, and the approach
yields 1.8 million weakly labeled examples covering 102 types of relations.

Nguyen and Moschitti [30] take a similar approach but use a corpus that
is coupled with the knowledge base. The authors use the Wikipedia infoboxes
as a relation knowledge base and project the relations from an infobox to the
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corresponding Wikipedia page. The advantage of the method is that if two entities
are linked by a specific relation in the knowledge base, they are not necessarily
linked by the same relation in an unrelated text passage. Thus, projecting a
knowledge base indiscriminately onto a large collection will produce a large number
of false alarms as well as of relation type errors, because pairs of entities can be
arguments of different types of relations. On the contrary, if a relation is expressed in
a Wikipedia infobox, the text of the corresponding page typically contains a passage
expressing that relation. Thus, Nguyen and Moschitti’s method produces fewer
training examples than that of Minz et al., but the resulting training set is probably
of higher quality. The authors also combine distant supervision with regular (direct)
supervision and test their approach on the ACE 2004 dataset. First, they map the
relation types obtained with distant supervision onto the seven main classes of ACE
relations; then, they train two classifiers, one with the ACE dataset and another with
the combination of the ACE dataset and the remapped training set produced with
distant supervision; finally, they combine the classifier posterior probabilities via a
linear combination. The cross-validation results on the English ACE data yield an
F-measure of 67:6%.

Transfer Learning and Multi-task Learning. Transfer Learning [7, 32, 34] is a
class of techniques that uses data or classifiers trained for a specific task to improve
learning in a related task for which limited training data is available. Transfer
learning could be used, for example, to leverage relation extraction training data
and classifiers in resource-rich languages to help relation extraction in resource-poor
languages; to help in learning a new relation taxonomy given classifiers and data for
an existing taxonomy. Multi-task learning [7,34] is a closely related paradigm where
classifiers for multiple related problems are learned jointly.

Jiang [20] applies transfer learning to the problem of constructing a classifier for
new relation types using information for other relation types. The author proposes
a general multi-task learning framework where classifiers for related tasks share
one or more common model components and are trained together. The problem of
learning classifiers for different relation types is then cast into this framework by
noting that often different types of relations share very similar syntactic structures.
The author notes that this approach improves the recall of the relation extractor
system and shows empirically that, on the ACE 2004 dataset, the method is
substantially better than two baseline approaches. In particular, when using transfer
learning to learn a new relation type using a previously learned relation, the author
shows a jump in F1 measure from 0.1532 to 0.4132 even when using as few as 10
labeled examples of the new relation type.

Chieu et al. [8], apply transfer learning to cross-domain relation extraction by
investigating how similarity measures from separate domains correlate with each
other and use the results to regularize the inference of the model parameters in
a multi-task learning environment. The authors also address multi-task learning
applied to different types of relations; they also observe how different relations share
similar syntactic patterns, and they propose a method in which each relation type is
learned with a separate classifier and the problems of learning different relation
types are considered as related tasks.
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9.4 Language-Specific Issues

The authors of the introductory chapter of this book give a detailed characterization
of basic linguistic facts about Semitic languages, covering orthography, morphol-
ogy, and syntax. The chapter also presents a contrastive analysis of some of these
phenomena across various Semitic languages. In this section, however, we discuss
major challenges affecting detecting relations in Semitic language documents,
which we can summarize as follows:

1. Lack of Diacritics: Semitic languages have two types of vowels. The long
vowels are written as letters in the text and short vowels are presented as
diacritics. Diacritics are often omitted from text, especially in news-wire texts,
because it is assumed that the reader can still detect the meaning and the syntax
while reading the text. NLP systems on the other hand will have to deal with
this extra layer of ambiguity because when the short vowels are, completely
or partially, omitted new homographs are created. As an example, we take the
Arabic diacritic-less word +� �),. When adding diacritics, this word represents

books in the case of #+�
 �)
 
, (kutubuN) and the verb to write in the case of

�+�
��)
�
, (kataba).

2. Morphological Challenges: Semitic languages have a complex morphology and
hence its handling is very important for the relation extraction task. In Semitic
languages such as Amharic, Arabic, Hebrew, Maltese and Syriac, words are
derived from a set of roots. Stems are constructed using template and vowel
patterns that may involve the insertion of vowels, adding prefixes and suffixes,
or doubling constants. Stems may accept the attachment of prefixes and suffixes
that include pronouns, determiners, plural and gender markers. Enclitic pronouns
are attached to the word they modify: pronouns are often realized as prefixes or
suffixes attached to a base form (stem). Consequently, Semitic languages exhibit
a high morpheme-per-word ratio that results in a sparseness of data. Applying
templates often involves introducing infixes or deleting or replacing letters from
the root. Also, prefixes include coordinating conjunctions, determiners, and
prepositions, and suffixes include attached pronouns and gender and number
markers. This leads to cases where the word may have multiple valid analyses,
only one of which is typically correct in context. Taking the Arabic word
Q)�*� (wlyd) as an example, it could be the proper name “Waleed” or it may

mean “and to hand” Q-� a � a � (w+l+yd). Further challenges are related to

the fact that in Arabic as an example, some letters are often used in place of
others due to varying orthographic conventions, common spelling mistakes, and
morphological transformations.

These linguistic phenomena make the task of building any NLP system, including
relation extraction, harder than building its counterpart dealing with languages such
as English. Hence, one important step when building a relation extraction model
for Semitic languages is to define the unit of analysis, also denoted as a token,
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when processing the input text. Because we want a system generic enough to detect
enclitic pronouns as mentions, it is essential to define a unit of analysis which
splits words into sub-word tokens (segments) or characters. On one side of the
spectrum, if we consider a character as the subject of analysis (i.e. split all words into
individual characters), the mention detection system will make a decision for every
character in the document to know whether it is the beginning of a mention, inside a
mention, or outside a mention. This idea was successfully applied for languages like
Chinese [22], but for a language having rich morphology, this will be suboptimal, as
contexts would have to be quite long to capture interesting phenomena needed for
extracting relations. On the other side of the spectrum, using a white-space delimited
word as the analysis unit leads to data sparseness and does not allow the detection
of any sub-word units (such as inflected pronouns).

Therefore, we chose to use segments as the unit of analysis when processing
Semitic languages. We start with the segmentation of the document into a sequence
of segments, which then become the subject of analysis (tokens). The segmenta-
tion process consists of separating the normal white-space delimited words into
(hypothesized) prefixes, stems, and suffixes. The mention detection system proceeds
then on each token to make a decision if it is the beginning of a mention, inside a
mention or outside a mention (cf. name-entity recognition chapter). The relation
extraction system will then process every pair of mentions to examine whether a
relation exists between them.

The resulting granularity of breaking words into segments allows a prefix or a
suffix to receive a label different from that of the stem (for instance, in the case of
pronominal mentions). In addition, stems carry important information that can be
used to boost the performance of the system as demonstrated in [27].

The following is an example of how we process a text in Arabic: for the word
28 
9(B1 (their location), the segmentation system splits it into two tokens: 
�(B1
(location) and 2& (their). The system then detects that the token 
�(B1 (location)

is a mention that refers to the entity location, whereas the token 2& (their) is a

mention, but one that might refer to a group of persons. In addition, the prepositions
– i.e., �� (by) and � (to) in 28 
9 (Bdf� (by their location) and 28 
9(BdV (for their location)

respectively – should not to be considered as part of a mention. Then, the relation
extraction model will be able to detect a relation of type belong-to between the two
mentions 
�(B1 (location) and 2& (their).

9.5 Data

There is limited data available for training relation extraction systems in Semitic
languages. One important resource is the publicly available relation dataset for
Arabic prepared by the Linguistic Data Consortium (LDC) for the NIST Automatic
Content Extraction (ACE) evaluation. This dataset is divided into a training set
and an evaluation set. The training set contains 511 annotated Arabic documents
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Table 9.1 ACE relation types and subtypes for the ACE 2004 evaluation

Type Subtype Type Subtype

ART User-or-owner PHYSICAL Located
(agent-artifact) Inventor/manufacturer Near

Other Part-whole
EMP-ORG Employ-executive PER-SOC Business

Employ-staff (personal/ Family
Employ-undetermined social) Other
Member-of-group
Partner
Subsidiary
Other

GPE-AFF Citizen-or-resident OTHER-AFF Ethnic
(GPE Based-in (PER-ORG Ideology
affiliation) Other affiliation) Other

DISCOURSE -None-

that contain 4,126 relation mentions. The test set is composed of 178 documents
containing 1,894 relation mentions.

Relations in the ACE Arabic dataset have both a Type and a Subtype attribute.
There are six relation types: ART, capturing the association between a person and
an artifact; ORG-AFF, the association between a person and an organization; PART-
WHOLE, the relation betwen an entity and its components; PER-SOC, the social
relation between two persons; PHYS, the spatial relation between two entities; GEN-
AFF, affiliations not captured by any of the previous relations; and METONYMY.

With the exception of METONYMY, the relation Type is further refined by a
Subtype attribute: ART is refined into User, Owner, Inventor or Manufacturer;
GEN-AFF is split into two subtypes: Citizen-Resident-Religion-Ethnicity, and
Organization-location; ORG-AFF has several subtypes: Employment, Founder,
Ownership, Student-Alumn, Sports-Affiliation, Investor-Shareholder, Membership;
the subtypes for PART-WHOLE are Artifact, Geographical, and Subsidiary; for
PER-SOC we have Business, Family, and Lasting-Personal; and finally, the PHYS
relation has the Located or the Near subtype. Note, incidentally, that the subtype of
a relation is in many cases unambiguously derived from the relation type and the
types of the entities taking part in the relation: for example, if two organizations
are connected by a PART-WHOLE relation, the only possible subtype is Subsidiary.
The full set of relation types and subtypes is summarized in Table 9.1.

Some of the ACE relations are symmetric in nature: if Bob is related to Mary by
a PER-SOC relation having subtype Family, then Mary is related to Bob by the same
relation. In other cases, the entities play specific roles in the relation, and this fact
is captured by the Role attribute of the relation; specifically if the relation can be
expressed as A Verb Relation B, then A is considered “Arg-1” of the relation
and B is considered “Arg-2”.
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The Modality attribute of a relation that can occur unconditionally in the
real world is ASSERTED, otherwise it has value equal to OTHER. A relation can
occur at a specific point in time or during a specific time interval; this is captured
by the Tense attribute, that can have values equal to Past, Present, Future, and
Unspecified, the latter capturing all the cases that do not squarely fall in the first
three.

The ACE data also contains annotations that link together multiple mentions
of the same relation, thus providing training data for both the Relation Mention
Detection (finding mentions of relations in the text) and the Relation Detection and
Recognition tasks (grouping together mentions of the same relation).

9.6 Results

Automatic relation extraction in Semic languages is an open field of research. It
is illustrative to describe in some detail Nanda Kambhatla’s system [24], one of
the few designed for this task. The paper describes in detail the implementation and
experimental results for the ACE 2004 relation detection and recognition task, which
is based on the set of relations illustrated in Table 9.1. The approach relies on a
cascaded architecture consisting of a relation detection stage followed by classifiers
that assign attributes to the detected relations. The relation detection stage analyzes
all pairs of mentions within a sentence, and discards those for which no relation
is defined in the ACE taxonomy. The remaining mention pairs are analyzed by an
ensemble of maximum-entropy classifiers, trained with bootstrap replicates of the
training set. These bootstrap replicates are obtained by independent sampling with
replacement from the training set, and have the same number of training examples
as the training set. The classifiers in the ensemble are trained to detect the existence
of a relation between a pair of mentions, and produce a binary label, that is, a vote,
as well as a posterior probability of detection. The votes of the classifiers in the
ensemble are combined using the “At-Least-N” approach: if at least N of the votes
are positive, the ensemble detects the existence of a relation.

The ACE training set consists of 511 Arabic documents containing 4,126 relation
mentions, while the test set consists of 178 documents with 1,894 relation mentions.
The distribution of relation types and subtypes is highly skewed: the number of
relation mentions of least represented relation subtype is two orders of magnitude
smaller than that of the most represented relation subtype. From this raw data, all
entity mentions are extracted, and for each entity mention pair in the same sentence
a variety of features are computed. These include lexical, semantic, and syntactic
features (described earlier in this chapter).

The authors compare various ensemble sizes and various strategies, including
majority vote, averaging the posteriors and detecting relations when the average
is at least 1=2, and different values of N in the “At-Least-N” approach. They
conclude that F-measure is maximized with less than 10 bags, and that the “At-
Least-2” strategy outperforms other choices of N, majority vote, and summing, as



9 Relation Extraction 295

Table 9.2 Results of best classifiers on ACE 2004 Arabic Relations. For each approach, the
number of bags yielding the highest F-measure is selected, and the rounded results reported. The
highest values in each column are highlighted in boldface

Approach Best Nr bags Precision Recall F-measure

Single classifier – 0.39 0.21 0.27
Majority 7 0.43 0.22 0.29
Summing 24 0.43 0.22 0.29
At least 1 9 0.32 0.28 0.295
At least 5 24 0.36 0.25 0.295
At least 2 9 0.36 0.28 0.305

summarized in Table 9.2. The authors also remark that the “At-Least-2” strategy
significantly outperforms the best classifier of the ensemble (the one with highest
performance on the test data) in terms of the ACE value (the offical metric of the
evaluation).

9.7 Summary

We presented in this chapter the primary ways in which relations are extracted
from text. We described how relations form the higher-level components in an
information extraction toolkit, in that they rely on features derived from lower-
level components, such as part-of-speech taggers, parsers, a semantic-role labeling
system, a mention detection component and a coreference resolution system.
Relation extraction systems typically rely on lexical features, which provide a rich
but potentially sparse form of usefully discriminative information, and features
based on paths in a parse tree, which can often generalize better and can deal with
long-distance dependencies. Furthermore, relation extraction systems typically rely
on mention detection as a crucial way to identify the participants in relations and
provide features that generalize well, since there are only a small, fixed number of
mention types. It is also possible for these systems to construct features that capture
semantic connections between the mentions by using semantic role labeling systems
that decorate the parse-tree constituents with semantic roles. One of the primary
goals of relation extraction is the structured representation of information in text,
such that it may be entered into a database and searched with greater ease and more
utility than, say, simple keyword search.
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Chapter 10
Information Retrieval

Kareem Darwish

10.1 Introduction

In the past several years, some aspects of Semitic language, primarily Arabic,
information retrieval (IR) have garnered a significant amount of attention. The
main research interests have focused on retrieval of formal language, mostly in the
news domain, with ad hoc retrieval, OCR document retrieval, and cross-language
retrieval. The literature on other aspects of retrieval continues to be sparse or non-
existent, though some of these aspects have been investigated by industry. The two
main aspects where literature is lacking are web search and social search.

This survey will cover the two main areas: (1) a significant part of the literature
pertaining to language-specific issues that affect retrieval; and (2) specialized
retrieval problems, namely document image retrieval, cross-language search, web
search, and social search.

10.2 The Information Retrieval Task

Information retrieval (IR) is concerned with the task of finding relevant documents
in response to a user’s information need. This information need can be expressed in
a variety of ways, the most popular of which are text queries. Other expressions of
information need can be in the form of:

1. An explicit indication by a user that (s)he likes a particular document or a set of
documents. This is typical of document filtering.
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2. A user’s historical document viewing patterns. This is typical of recommender
systems.

3. A find “more like this item” statement of need. The item in the query could be a
text document or snippet, a picture, a video, a melody, etc.

Documents in information retrieval are containers of information that a user is
interested in. Documents can be constituted of: text, such as news articles, reports,
tweets, or webpages; images, such as photographs or document images; videos; or a
combination of text, images, and videos. Information retrieval is mostly concerned
with making the process of finding documents that match a user’s information need
more “effective” i.e. to find relevant, high-quality results.

Finding more relevant documents typically entails handling one or a combination
of the following:

1. Appropriate language handling. Some languages require extra processing
to ensure proper mapping between query words and document words. For
example:

(a) Morphologically rich languages such as Arabic, Hebrew, and Hungarian
require some stemming to remove attached articles such as determiners,
coordinating conjunctions, and gender markers [37].

(b) Some language such as German and Finnish use word compounding to con-
struct new words. These require word decompounding to extract appropriate
units of meaning [21].

(c) Far-eastern languages such as Chinese typically don’t use spaces between
words and a user would have to segment words as they are reading.
Appropriate word segmentation or the use of character n-grams is essential
for effective retrieval in such languages [120].

2. Appropriate results ranking. Much work in IR focuses on ranking functions and
algorithms. Traditional IR ranking techniques focused on developing ranking
functions that rely on collection and document level term statistics. The main
statistics include term frequency, which is the number times a term is mentioned
in a document; document frequency, which is the number of documents in which
a term appears; and document length, which is the number of terms in a docu-
ment. One of the most popular formulas is the OKAPI BM-25 formula [102].
Follow-on work involved extending the OKAPI BM-25 to handle multiple
fields [103]. A few years ago, there was a shift to using machine learning-based
ranking functions that are trained using hundreds or thousands of examples using
tens or hundreds of features. Such functions are commonly used for web search.
The appropriate area of IR research is called “learning to rank” [84].

3. Term extraction. Aside from language handling in text documents, extraction of
terms, which are searchable units, is essential particularly for non-text documents
such as images, audio, music, and videos. For example, in the case of document
images, which are just merely scanned manuscripts, document images are
typically converted to text using optical character recognition (OCR) and the
subsequent text is searched. However, due to the recognition errors presented by
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OCR, further processing is required to perform appropriate term selection. One
of the more popular approaches involves character n-gram extraction [35, 120].

4. Query reformulation. There is often a difference between a user’s information
need and the expressed query. Hence, reformulating a user’s query can yield
improved results. Some such techniques include:

(a) Performing spelling correction on queries. E.g., “Andriod”) “Android” [6]
(b) Adding synonyms to allow for better matching. E.g. “office to let”) “office

(tojfor) (letjrent)”
(c) Adding expansion terms to queries. E.g. “SCAF” ) “SCAF Egyptian

military rulers”
(d) Using alternative words. E.g. “VW Beetle”) “Volkswagen Beetle” [64].

Such reformulations can be recommended to users or they can be performed
automatically.

5. Specialized retrieval. This includes handling particular genres or problems that
are specific to document collections, to the expression of information need, or to
the mode of results delivery. Here are some examples of each:

(a) Document collections:

(i) Tweets exhibit interesting properties such as the non-standard use of
language, short lengths, and their often conversational nature [52].

(ii) Webpages are generally semi-structured with significant interconnec-
tions between webpages. These properties lend the ranking of web
search results to “learning to rank” techniques [84].

(b) Expression of need:

(i) Text queries are the most common form of expressed information need.
(ii) Non-text queries in which a user provides a picture, a video, or a sound.

(iii) A list of relevant or non-relevant documents.

(c) Results delivery:

(i) A ranked list is the most common mode of delivering results.
(ii) Advertisements delivery with query results.

(iii) A continuously updated feed of microblogs of interest.

10.2.1 Task Definition

In this survey we are concerned with two primary issues:

1. Exploring state-of-the-art language-specific techniques for retrieving documents
written in Semitic languages, exclusively Arabic, Hebrew, and Amharic. Litera-
ture on the retrieval of other Semitic languages is scant at best. This includes:

(a) Addressing morphological and orthographic issues that affect retrieval.
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Fig. 10.1 Typical components of a search engine

(b) Summarizing best practices.
(c) Surveying evaluation methodologies, platforms, and campaigns.

2. Looking at retrieving Arabic documents, where Arabic is the best studied Semitic
language from a retrieval perspective, in the context of the following:

(a) Cross-language retrieval.
(b) Document-image retrieval.
(c) Social search.
(d) Web search.

10.2.2 The General Architecture of an IR System

A typical Web IR system has the components shown in Fig. 10.1, where most
of them are language independent. The most important language-dependent part
is typically tokenization and stemming. Other components such as ranking, spell
checking, and query reformulation depend somewhat on the language. Ranking may
depend on the language due to the topology of the web graph for the language and
the common practices of the users of a language. Spell checking and query refor-
mulation are often affected by the morphology of the language, which is addressed
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to some extent by stemming. Hence, stemming and tokenization take center stage in
showing the language-specific issues that pertain to Semitic languages.

10.2.3 Retrieval Models

There are many popular retrieval models. These models can be categorized into four
main categories. These categories are: set-based models, geometric or algebraic
models, probabilistic models, and machine-learning based models. Due to the
number of models that belong to these categories, we will give one or two example
for each category.

Set-Based Models

These constitute some of the very first retrieval models that rely on matching
between sets. One such model is the Boolean model that allows users to construct
complex queries using the Boolean operators AND, OR, and NOT. The retrieved
results would simply be documents that match the Boolean characterization without
any particular order. The advantage of this model is that it is intuitive to users and
it is easy to develop. However, developing complex queries can be cumbersome.
Further, though all retrieved documents match the Boolean characterization, ranking
results may be suboptimal. An extended Boolean model tries to overcome the
ranking problem by incorporating term weights in the model [107].

Geometric or Algebraic Models

These models are motivated by geometric or algebraic formulations of the query–
document matching problem. Some popular models that belong to this category are
the vector space model and Latent Semantic Indexing (LSI).

Vector Space Model: As the name suggests, the vector space model represents
both queries and documents as vectors whose dimensions are the words that appear
in documents and queries [106]. Vector similarity functions such as cosine similarity
can then be used to compute the similarity between the query vector (Q) and
document vector (D). Cosine similarity computes the cosine of the angle� between
the vectors as follows:

cos.�/ D
�!
Q � �!Dˇ̌

ˇ
�!
Q

ˇ̌
ˇ
ˇ̌
ˇ
�!
D

ˇ̌
ˇ

(10.1)

There are three factors that contribute to the weight of terms in a document vector.
They are term frequency (TF), document frequency (DF), and document length
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(DL) [106]. TF is the number of time the term appears in the document. Intuitively,
terms that are more representative of the content of a document, are often repeated
in a document and would have high TF. Using TF improves precision and recall. DF
is the number of documents in which a term appears. A term is more discriminating
than another if it appears in fewer documents. Using DF improves precision.

Since documents vary in length, longer document have more terms and are
more likely to have more instances of a term than shorter documents. This could
lead to longer documents getting a higher score than shorter ones. Document
length normalization is used to counteract this phenomenon. Cosine similarity, as
in Eq. (10.1), accounts for document and query lengths by placing their lengths in
the denominator.

LSI: It attempts to find the “latent” or hidden concepts in a document collection.
Such concepts can be manifested by using multiple words with similar meanings.
For example, the words “huge”, “large”, “gargantuan”, “enormous”, and “gigantic”
have similar meanings and performing simple word matching would not capture
such similarity. LSI constructs a matrix whose columns are the documents and
whose rows are the terms. Singular value decomposition (SVD), which is a
dimensionality reduction technique, is applied on the term–document matrix. Then
documents and queries are mapped to the resultant lower dimensional space [43].
The advantage of LSI is that it captures hidden concepts or relationships between
words. However, LSI’s main challenge is scalability in the presence of large
numbers of documents and terms.

Probabilistic Models

Probabilistic models attempt to compute the probability P.DjQ/ of retrieving a
document (D) given a query (Q) [101]. We will present here the probabilistic
relevance model and latent Dirichlet allocation (LDA). Other popular models
include inference networks and language modeling which are used in the Indri IR
toolkit [94].

Probabilistic Relevance Model: This model attempts to estimate the similarity
between a document and a query as follow:

sim.DjQ/ D P.Rjd/
P.ŠRjd/ (10.2)

where R is the set of relevant documents to a query. The model tries to estimate the
probability that a document is relevant and the probability that the same document
is not relevant. The most popular ranking formula based on this model is the OKAPI
BM-25 formula [102]. The formula is computed as follows:

CFW D log.N / � log.DF / (10.3)
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where N is the number of documents in the collection, and DF is the document
frequency.

sim.D;Q/ D .K1 C 1/ � CFW � TF

TFCK1 �
�
.1 � b/C b � DL

Avg.DL/

� (10.4)

where DL is number of terms in document j , TF is term frequency, and K1 and b
are tunable parameters.

LDA: LDA is a generative graphic model that assumes that latent (or hidden) topics
underlie a collection of documents [20]. The model assumes that:

1. There are latent (or hidden) topics that are unobserved in the collection.
2. These latent topics can generate a set of words using a learnable distribution.
3. Documents are composed of words.
4. Documents may contain multiple latent topics.
5. The appearance of latent topics in general or in a document is governed by a

learnable distribution.

Then given a query, we can infer the latent topic(s) that could have generated
the words in the query. Then given the topical distribution, we can rank documents
according the likelihood that they could have been generated from that distribution.

Machine Learning-Based Models

Machine learning models or learning to rank methods involve the use of supervised
or semi-supervised ranking techniques that are trained on judged query–document
pairs. Such methods are popular in web search and are standard in all major web
search engines. Typically query–document pairs are represented using hundreds
of features and are judged for relevance on a multi-point scale. The objective
function attempts to guess the proper judgment for a new query–document pair.
Some commonly used machine learning techniques that use these models include
RankNets [23] and SVM-Rank [66].

10.2.4 IR Evaluation

Evaluation Metrics

IR-effectiveness measures use precision and recall in different ways. For example,
precision at nmeasures the average precision computed at every relevant document.
Namely, descending from the top of a ranked list of retrieved documents, the
precision is computed whenever a relevant document is found and then all precision
values are divided by the maximum number of possible relevant documents that



306 K. Darwish

Table 10.1 Example output
from ranked list

Rank Relevant Precision Recall

1 No 0.00
2 Yes 0.50 0.50
3 No 0.50
4 No 0.50
5 Yes 0.40 1.00

could have been found when retrieving n documents [105]. This has the advantage
of combining precision and recall in a single measure. For example, given a set five
retrieved documents with two possible relevant documents as in Table 10.1: Average
precisionD 0:5C0:4

2
D 0:45

Typical values of n are 1, 3, 10, and 1,000, where they respectively correspond
to: the first retrieved document; documents that typically appear in the first screen of
results without the need for scrolling; documents that appear in the first result page;
and virtually all results that can be ever read by a user. Given multiple queries,
the mean of their respective average precisions is called mean average precision
(MAP). MAP computes a single value that balances between precision and recall
for many topics that might vary in the number of relevant documents to estimate
the expected effectiveness for unseen topics. MAP is one of the most commonly
reported measures of retrieval effectiveness, particularly for ad hoc retrieval where
binary relevance is assumed (i.e. documents are deemed relevant or not relevant).

In the presence of scaled relevance (as opposed to binary relevance) discounted
cumulative gain (DCG) and normalized discounted cumulative gain (nDCG) are
typically used [65]. The relevance judgments are often made on a 5-point scale,
namely 2, 1, 0, �1, and �2 corresponding to perfect, excellent, good, poor, and not
relevant respectively. nDCG measures how much information a user would gain if
the user starts to read from the top of the ranked list, normalized by the maximum
attainable gain. Typical reported nDCG values are nDCG@1, 3, and 10, which in
web search respectively represent: the first result, which is the most likely result a
user may click on; the results that typically appear on the first results screen without
scrolling; and the results that appear on the first page, which users rarely go beyond.

Evaluation Campaigns

Overall Descriptions: There are several IR evaluation campaigns that run period-
ically. Each of these campaigns is concerned with problems that are more relevant
to particular parts of the world. The common goals of these campaigns are:

1. Bringing together researchers and practitioners in the area of IR.
2. Accelerating research and development in IR.
3. Providing realistic standard test collections for problems of interest to the

research community and industry.
4. Developing evaluation metrics for different IR tasks.
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The most popular evaluation campaigns are:

1. Text REtrieval Conference (TREC: http://trec.nist.gov). TREC was started in
1992 by the National Institutes of Standards and Technology (NIST) in the US.
TREC has covered many IR problems such as:

(a) Ad hoc retrieval of English and non-English news search.
(b) Web search.
(c) Legal search.
(d) Biomedical search.
(e) Cross-language search, primarily of Arabic and Chinese using English

queries.
(f) Enterprise search.
(g) Topic filtering.
(h) Video search.
(i) Social media search.
(j) Question answering.

2. Conference and Labs of the Evaluation Forum (CLEF).1 CLEF, a European
initiative, was started in 2000 and is mainly concerned with European languages.
Some of the problems that have been addressed in CLEF include:

(a) Ad hoc search mainly for European languages.
(b) Image search.
(c) Cross-language search.
(d) Web search.
(e) Interactive search.
(f) People search.

3. National Institute of Informatics (NII) Test Collection for IR (NTCIR).2 NTCIR
was stared in Japan in 1998 with a focus on Chinese, Japanese, and Korean. Some
of the problems addressed by NTCIR include:

(a) Ad hoc search.
(b) Cross-language search.
(c) Question answering.
(d) Patent search.
(e) Web search.
(f) Summarization.

4. Forum for Information Retrieval Evaluation (FIRE).3 FIRE was started in 2008
by the Information Retrieval Society of India to promote research in South Asian
languages. Some of the problems addressed by FIRE include:

1http://www.clef-initiative.eu
2http://research.nii.ac.jp/ntcir/index-en.html
3http://www.isical.ac.in/~fire/

http://trec.nist.gov
http://www.clef-initiative.eu
http://research.nii.ac.jp/ntcir/index-en.html
http://www.isical.ac.in/~fire/
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(a) Ad hoc search.
(b) Cross-language search.
(c) Social media search.

Semitic Language-specific Evaluation Campaigns: Evaluation campaigns that
pertain to Semitic languages have been restricted to Arabic. There has been one
primary evaluation of Arabic IR as part of TREC in 2001 and 2002 as part of the
cross-language IR track. The track focused on retrieving Arabic documents using
either Arabic or English queries. More details of the evaluation are provided later.
Aside from the TREC IR-specific evaluation, there was a qualitative IR evaluation
as part of the GALE project in the context of interactive audio and video search.

Test Collections

Generally, evaluating retrieval effectiveness requires the availability of a test docu-
ment collection, with an associated set of topics and relevance judgments. Relevance
judgments are the mappings between topics and relevant documents in the collec-
tion. The cost of producing relevance judgments for a large collection is very high
and dominates the cost of developing test collections [113]. There are three main
methods of developing relevance judgments. The first is pooling, which involves
manually assessing the relevance of the union of the top n documents from multiple
retrieval systems for every topic [122]. For example, developing the relevance
judgments for the 2002 Text REtrieval Conference (TREC) cross-language track
involved assessing up to 4,100 documents for each of the 50 topics [97]. The second
method is a manual user-guided search in which a relevance assessor manually
searches and assesses documents for a topic until the assessor thinks that most
relevant documents are found [124]. The third is exhaustively searching for docu-
ments that are relevant for each topic [120]. These three methods often miss relevant
documents, and assessment of relevance is necessarily subjective, but studies have
suggested that relevance judgments can be reliably used to correctly differentiate
between retrieval systems provided that a sufficient number of queries are used [24,
104,122]. Voorhees estimated the number of sufficient queries to be about 25 [122].

Test collections need to match the task at hand as much as possible in several
aspects. Some of these aspects include:

1. Collection size: Collection size affects retrieval behavior, requiring a change
in retrieval strategies. For example, performing deep morphology on Arabic to
produce roots was shown to be the most effective strategy for searching Arabic
on small collections of several hundred documents [12]. Later work on a large
collection with 383,872 documents showed that using light stemming performed
best [11]. There are indications that even using light stemming may in fact hurt
retrieval effectiveness at web-scale where the document collection is in the range
of hundreds of millions of documents.

2. Collection genre: Different genres exhibit different attributes that affect retrieval.
For example, in searching news articles, document length normalization is
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typically important. However, when searching tweets, document length normal-
ization is less important because the variation in tweet lengths is generally small.
Another example has to do with medical search where proteins and genes may
have common names, scientific names, ontology identifiers, etc. and the use of
synonymy becomes increasingly important [61].

3. Collection modality: Different collection modalities include text, images, videos,
audio, document images, etc. An example of the effect of modality on retrieval
has to do with document length normalization. Referring back to the equation
for cosine similarity, a document length takes into account document frequency.
Hence, documents with rare words (with low DF) are considered to be larger.
When searching OCRed text, misrecognized words may have low DF causing an
artificial inflation of document length. Singhal et al. [111] solved this problem for
document length estimation using a document byte length. The OKAPI BM-25
formula uses a simple word count to perform normalization [102].

4. Document and collection structure: The structure of a document collection can
complicate or ease retrieval. For example, news articles are typically disjoint with
very few structural elements (headline, summary, article text, picture captions)
that can be used to affect document ranking. Web documents on the other hand
exhibit many features that can be used to enhance ranking. The most notable of
these features is the existence of interlinks between pages [99].

5. Query formulation: It is important to construct queries that closely mimic queries
that users actually issue. For example, web users often issue queries that contain
spelling mistakes. Thus, constructing queries without spelling mistakes would
hide real-life phenomena. Commercial web search engines such as Google
(www.google.com) and Bing (www.bing.com) are typically evaluated using
actual queries from usage logs. Observing spelling mistakes in queries led all
major commercial web search engines to include query spelling correction in the
form of automatic correction or with suggested correction as in “did you mean:”.

10.3 Semitic Language Retrieval

In this section, we look at major challenges affecting retrieving Semitic language
documents while surveying a significant part of the literature pertaining to language-
specific issues that affect retrieval. We also explore specialized retrieval problems,
namely document image retrieval, web search, and social search.

10.3.1 The Major Known Challenges

Orthographic Challenges

Semitic languages exhibit some orthographic features that complicate retrieval.
What follows is an exposition of some of these features.

www.google.com
www.bing.com
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Fig. 10.2 (a) Example of a ligature, (b) the different shapes of the letter “ba” and (c) example of
a diacritic, kashida, and three letters which are distinguishable from each other only by dots

Arabic: Arabic has a right-to-left connected script that uses 28 letters, which
change shape depending on their positions in words. There are eight other letters
(or letter forms). Fifteen of the letters contain dots to differentiate them from other
letters. Letters may or may not have diacritics (short vowels), depending on the
discretion of the producer of the document. Ligatures, which are special forms for
some character sequences, and kashidas, which are symbols that extend the length
of words, are often employed in printed text. Figure 10.2 demonstrates some of these
orthographic features.

Further some letters are often used in place of others due to varying orthographic
conventions, common spelling mistakes, and morphological transformations. These
include4:

• �� “y” (ya) and � “Y” (alef maqsoura).
• � (ha) and

�� (ta marbouta).
• � (alef),

�
� (alef maad),

�
� (alef with hamza on top), and �� (alef with hamza on the

bottom).
• � (hamza), ��� (hamza on w), and ��� (hamza on ya).

Optional diacritics, the use of kashidas and inconsistent spellings all complicate the
retrieval. There are eight different diacritic marks in Arabic.

Hebrew: Hebrew has a right-to-left script with 22 letters. Some of the letters have
special end-of-the-word forms. These letters are: �� (kaf), �� (meem), �� (nun), �� (pe),
and �� (tsadi).

4Buckwalter encoding is used to Romanize Arabic text in this chapter.
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The letter ש� is written with an optional dot on top of it to indicate whether it is
pronounced as seen or sheen. Letters may or may not have diacritics (short vowels),
depending on the discretion of the producer of the document. There are 13 different
diacritics in Hebrew.

Amharic: Amharic uses syllable patterns or consonant–vowel pairs that are com-
posed of 33 base consonants and 7 different vowels. For example, the letter that
sounds like “s” in English has the following forms:

corresponding to the sounds of: Ra, u, i, a, e, @, and o respectively. Another
phenomena in Amharic is the use of gemination where some letters are slightly
elongated (or doubled) as in al Ra (he said) and al l Ra (there is), but gemination is not
indicated in writing.

Morphological Challenges

Due to the morphological complexity of Arabic, Hebrew, and Amharic, proper han-
dling of morphology is important for IR. In what follows, we describe peculiarities
of the languages.

Arabic: Arabic words are divided into three types: nouns, verbs, and particles [2].
Particles are connection words such prepositions and pronouns. Arabic nouns and
verbs are derived from a closed set of around 10,000 roots, which are linguistic
units of meaning composed of 3, 4, or 5 letters [31]. Table 10.2 shows some of the
words that can be generated from the root +� �), (ktb). Arabic nouns and verbs are
derived from roots by applying templates to the roots to generate stems. Applying
templates often involves introducing infixes or deleting or replacing letters from
the root. Table 10.3 shows some templates for three-letter roots. Further, stems
may accept prefixes and/or suffixes to form words. Prefixes include coordinating
conjunctions, determiners, and prepositions, and suffixes include attached pronouns
and gender and number markers. Table 10.4 shows some of the possible prefixes
and suffixes and their meanings. Further, plurals can be constructed using preset
morphological transformations producing so-called broken plurals. Some examples
of singular to broken plurals are: �� (�), (ktAb) ! +� �), (ktb);

���	 (drp) ! �	
(dr); and W1(?� (jAmE)! W1�/E� (jwAmE). The number of possible Arabic words
is estimated to be 6� 1010 words [5], with an estimated one million possible stems,
and less than 10,000 roots. Stems are typically the units of meaning in Arabic, and
hence are very important. Arabic words may have multiple valid analyses, only one
of which is typically correct in context. For example the word Q)�*� (wlyd) could be
the proper name “Waleed” or may mean “and to hand” Q-� a � a � (w+l+yd).
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Table 10.2 Some of the words that can be derived from the root form +� �), “ktb”

+� �), “ktb” He wrote +� �)0-� “yktb” He is writing +� �),
�
� “|ktb” I write

+� �-(. “kAtb” Writer �� (�), “ktAb” Book $-� (�), “ktAbh” His book
$-� (�),� “wktAbh” And his book 289� (�), “ktAbhm” Their book +� �), “ktb” Books

Table 10.3 Some templates to generate stems from roots with an examples from the root
(+� �), “ktb”). “C” stands for the letters that are part of the root

57 
I CCC +� �), “ktb”
(wrote)

�(7 
I CCAC �� (�), “ktAb”
(book)

5L( 
I CACC +� �-(.
“kAtb”
(writer)

�/7 
A1 mCCwC �� /�)01
“mktwb”
(something
written)

5)�L(7 
I
CCACyC

+� G��-(�),
“ktAtyb”
(Quran
schools)

�/7 
I CCwC �� /�),
“ktwb”
(skilled
writer)

Table 10.4 Some examples of prefixes and suffixes and their meanings

Examples of prefixes

� “w” And

� “f” Then �� “Al” The

� “k” Like � “l” To ��� “wAl” And the

Examples of suffixes
� “h” His 2& “hm” Their (& “hA” Her
� “k” Your (singular) Y, “km” Your (plural) �� “y” My

Table 10.5 Some of the words that can be derived from the root form כתב� “ktb”

כתב� “ktb” write כותבת� “kwtbt” I write (fm.) כתבתי� “ktbty” I wrote

Hebrew: Hebrew morphology is very similar to Arabic morphology. Words are
typically derived from roots that are composed of 2, 3, or 4 letters, with 3-letter roots
being the most common. Words are constructed from roots by inserting vowels,
adding prefixes and suffixes, or doubling constants. Nouns can be singular or plural
(or dual in classic Hebrew), and masculine or feminine. Nouns can accept a variety
of affixes such as coordinating conjunctions, prepositions, determiners, pronouns,
etc. Hebrew verbs may have up to seven conjugations (binyanim), four different
tenses, and may be singular/plural or feminine/masculine [27]. Hebrew morphology
is ambiguous with 55 % of Hebrew words having more than one analysis and 33 %
having more than two analyses [25]. Table 10.5 shows some of the words derived
from the root “ktb”. Table 10.6 shows some example Hebrew prefixes and suffixes.

Amharic: Like Arabic and Hebrew, words are derived from a set of roots. Stems
are constructed using template and vowels patterns that may involve the insertion of
vowels, adding prefixes and suffixes, or doubling constants. Stems may accept the
attachment of prefixes and suffixes that include pronouns, determiners, plural and
gender markers.
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Table 10.6 Some examples of prefixes and suffixes and their meanings

Examples of prefixes

ו� “w” And ל� “l” To ה� “h” The

Examples of suffixes
�� “k” your (singular) ��כ “km” your (plural) י� “y” My

10.3.2 Survey of Existing Literature

Arabic Preprocessing

Handling Orthography: Prior to retrieval, the following features need to be
handled: diacritics, kashidas, ligatures, and common spelling mistakes.

Handling Diacritics: Diacritics help disambiguate the meaning of words. For
example, the two words YSL Ealam (meaning flag) and YSL Eelm (meaning
knowledge) share the same letters “Elm” but differ in diacritics. One possible solu-
tion is to perform diacritic recovery. However, this approach has many problems,
namely: the accuracy of state-of-the-art Arabic diacritizers on open domain text
is typically below 90 % [51]; diacritization is computationally expensive, often
causing indexing of large amounts of text to be prohibitive; diacritization of
previously unseen words is generally intractable; and word sense disambiguation,
which is akin to diacritization, has been shown not to benefit retrieval [108]. The
more widely adopted approach is to remove all diacritics. Though this increases
ambiguity, retrieval is generally tolerant of ambiguity [108]. Further, this approach
is computationally very efficient.

Handling Kashidas and Ligatures: Since kashidas are mere word elongation
characters, they are typically removed. As for ligatures that are encoded as single
characters in the codepage, they are transformed with the constituent letters. For
example, the ligature' is transformed to � a �.

Common Spelling Mistakes: For the case of the varying forms of alef, ya and alef
maqsoura, and ha and ta marbouta, it is possible to build a system that would correct
these common mistakes with about 99 % accuracy [44]. However, for reasons
similar to those associated with diacritic recovery, doing so is not preferred. The
most commonly used approach is letter normalization where:

• �� “y” and � “Y” are mapped to �� “y”.
• � “h” and

�� “p” are mapped to � “h”.
• � "A",

�
� "|",

�
� ">", and �� "�" are mapped to � "A".

• ��� " & "’, � " ’ ", and ��� "}" are mapped to
~
� " ’ " [32].

The rationale for performing letter normalization is the same as that for diacritic
removal.

Handling Morphology: Due to the morphological complexity of the Arabic
language, some morphological processing would help recover the main units
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of meaning, namely stems (or perhaps roots). Most early Arabic morphological
analyzers generally used finite state transducers [18,19,71]. Their use is problematic
for two reasons. First, they were designed to produce as many analyses as possible
without indicating which analysis is most likely. This property of the analyzers
complicates retrieval, because it introduces ambiguity in the indexing phase as well
as the search phase of retrieval. Second, the use of finite state transducers inherently
limits coverage, which is the number of words that the analyzer can analyze, to
the cases programmed into the transducers. Other similar approaches attempt to
find all possible prefix and suffix combinations in a word and then try to match
the remaining stem to a list of possible stems [70, 87]. This approach has the same
shortcomings as the finite transducer approach. Another approach to morphology is
so-called light stemming. In this approach, leading and trailing letters in a word are
removed if they match entries in lists of common prefixes and suffixes respectively.
The advantage of this approach is that it requires no morphological processing and is
hence very efficient. However, incorrect prefixes and suffixes are routinely removed.
This approach was used to develop Arabic stemmers by Aljlayl et al. [11], Darwish
and Oard [36], and Larkey et al. [78].

More recent analyzers can statistically perform word stemming. For example,
Darwish attempted to solve this problem by developing a statistical morphological
analyzer for Arabic called Sebawai that attempts to rank possible analyses to pick
the most likely one [30]. Lee et al. [79] developed IBM-LM, which adopted a
trigram language model (LM) trained on a portion of the manually segmented LDC
Arabic Treebank in developing an Arabic morphology system, which attempts to
improve the coverage and linguistic correctness over existing statistical analyzers
such as Sebawai [30]. IBM-LM’s analyzer combined the trigram LM (to analyze
a word within its context in the sentence) with a prefix-suffix filter (to eliminate
illegal prefix-suffix combinations, hence improving correctness) and unsupervised
stem acquisition (to improve coverage). Lee et al. report a 2.9 % error rate in analysis
compared to 7.3 % error reported by Darwish for Sebawai [79]. Diab [39] used an
SVM classifier to ascertain the optimal segmentation for a word in context. The
classifier was trained on the Arabic Penn Treebank data. Essentially, she treated the
problem as a sequence labeling problem. She reports a stemming error rate of about
1 %. Although consistency is more important for IR applications than linguistic
correctness, perhaps improved correctness would naturally yield great consistency.
Follow-on work by Darwish and Ali [32] attempted to address shortcomings of
existing stemmers that merely remove prefixes and suffixes. These shortcomings
have to do with: (a) words that are typically borrowed from other languages that
do not have standard stem forms; and (b) broken plurals. They used a generative
character model to produce related stems and broken plurals, leading to significant
improvements in retrieval effectiveness.
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Hebrew Preprocessing

Some of the earliest work on Hebrew retrieval started in the mid-1960s with
the Responsa project [27]. The project was concerned with indexing more than
500,000 religious documents that included questions and answers contained in
mainly Hebrew and partially Aramaic texts spanning 1,400 years. Due to the limited
computing resources that were available at the beginning of the project, not all
documents were indexed. By 1968 and 1977, researchers were able to index 518 and
24,000 documents respectively. Some research focused on manual versus automatic
indexing and there were initial attempts to solve morphologically related problems
in search.

Handling Orthography: Prior to retrieval, the following orthographic properties
need to be handled: diacritics and letter normalization. Like in Arabic, diacritics
help disambiguate the meaning of words. Like Arabic, it would be better to remove
all diacritics. Though this increases ambiguity, retrieval is generally tolerant of
ambiguity [108]. Further, this approach is computationally very efficient.

Concerning letter normalization, it is important to normalize letters that have spe-
cial end-of-word forms. To show the importance of such normalization, consider the
Hebrew word for “table” שולח�� (sholkhan) and its plural form שולחנות� (sholkhanot),
which is simply the singular form שולח�� (notice the change in the form of the first
letter) plus insertion in the begining of the plural form indicator .ות�

Handling Morphology: Due to the morphological complexity of Hebrew, some
morphological processing would help recover the main units of meaning, namely
stems (or perhaps roots). In the early work on the aforementioned Responsa
Project, morphological equivalence classes were created from all the words in the
document collection. In doing so, morphologically related words were heuristically
produced from base noun and verb forms. When the user issued a query, the
user was required to issue the query words in some standard base form, and the
system produced morphologically equivalent words. Then the user was quizzed
to choose which forms to include in their query. A morphological disambiguitor,
called KEDMA, was integrated into the Responsa Project to build concordances
and perform morphological analysis [15].

Carmel and Maarek [25] developed a morphological disambiguator called
Hemed to pick the most likely morphological analysis of a word – for cases where
multiple analyses were possible. In their work, they used a morphological analyzer
to produce all valid analyses, and then the analyses were ranked based on the
likelihood of the underlying analysis patterns. They applied different thresholds
on the allowed likelihood values of the disambiguator to conflate morphologically
similar words. They showed significant improvements in recall at the expense of
precision compared to not using morphological analysis at all, with an overall
drop in F-measure. Their experiments were conducted on a small collection of 900
documents with 22 queries. Retrieval results on such small collections may not be
indicative of behavior on larger collections.
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Szpektor et al. [114] used a Hebrew morphological analyzer in the context of
English–Hebrew cross-language IR. They used a finite state machine based Hebrew
morphological analyzer that was developed by Yona and Wintner [126]. However,
there were no reported treatment of Hebrew IR with comparison of different
morphological techniques on a standard Hebrew test collection. We suspect that
Hebrew would behave in a manner similar to Arabic where using roots for small
collections is preferred, while the use of light stemming would be more preferred
for larger collections. There is also a Hebrew analyzer for Lucene, a popular open
source search engine, called HebMorph. More information on HebMorph and a
treatment of possible variations in implementation are provided at http://www.
code972.com/blog/2010/06/open-source-hebrew-information-retrieval/.

Amharic Preprocessing

Some studies have looked at Amharic monolingual retrieval and Amharic–English
and Amharic–French cross-language retrieval. The most notable work on Amharic
monolingual retrieval is that of Alemayehu [8]. Alemayehu used a stemmer in
which known prefixes and suffixes were iteratively removed. There were indications
that using stemming or perhaps going to the root improved recall [9], but there
were no reports of precision. Further, the collection used for evaluation had 548
documents with an associated set of 40 queries. Such small collections may lead to
inconclusive results. Work has been done on improving matching against dictionary
entries in cross-language retrieval between Amharic and English [14]. A stemmer
was developed that attempts to generate all possible segmentations of a word, then
attempts to match stems against entries in a dictionary. If multiple possible stems of
a word matched dictionary entries, then the most frequent stem was chosen.

10.3.3 Best Arabic Index Terms

Basic Preprocessing

In most Arabic IR work, the following steps have become standard [32, 78]:

• Removing diacritics and kashidas.
• Performing the aforementioned normalizations. These normalizations are per-

formed in some web search engines.
• Replacing single character ligatures with constituent letters.
• Removing stop words (post morphological processing) [26, 45].

Using Morphology: Due to the morphological complexity of the Arabic language,
much research has focused on the effect of morphology on Arabic IR. The goal
of morphology in IR is to conflate words of similar or related meanings. Several
early studies suggested that indexing Arabic text using roots significantly increases
retrieval effectiveness over the use of words or stems [4, 12, 62]. However, all

http://www.code972.com/blog/2010/06/open-source-hebrew-information-retrieval/
http://www.code972.com/blog/2010/06/open-source-hebrew-information-retrieval/
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the studies used small test collections of only hundreds of documents and the
morphology in many of the studies was done manually.

A study by Aljlayl et al. [11] on a large Arabic collection of 383,872 documents
suggested that lightly stemmed words, where only common prefixes and suffixes are
stripped from them, were perhaps better index terms for Arabic. Similar studies by
Darwish and Oard [35] and Larkey et al. [78] also suggested that light stemming is
indeed superior to morphological analysis in the context of IR. Darwish compared
light stemming to using Sebawai [30] and Larkey et al. [78] compared to using
the Buckwalter morphological analyzer. The reported shortcomings of morphology
might be attributed to issues of coverage and correctness. Concerning coverage,
analyzers typically fail to analyze Arabized or transliterated words, which may
have prefixes and suffixes attached to them and are typically valuable in IR. As for
correctness, the presence (or absence) of a prefix or suffix may significantly alter
the analysis of a word. For example, the word “Alksyr” is unambiguously analyzed
to the root “ksr” and stem “ksyr.” However, removing the prefix “Al” introduces
an additional analysis, namely to the root “syr” and the stem “syr.” Perhaps such
ambiguity can be reduced by using the context in which the word is mentioned. For
example, the word “ksyr” in the sentence “sAr ksyr” (and he walked like), the letter
“k” is likely to be a prefix. The problem of coverage is practically eliminated by
light stemming. However, light stemming yields greater consistency without regard
to correctness.

However, a later study by Darwish et al. [37] suggested that using IBM-LM [79]
statistically significantly improved retrieval effectiveness over using light stemming
and other morphological analyzers. This is most likely due to the broad coverage of
IBM-LM and the ability to rank the most likely analysis. Other work by Darwish
and Ali [32] suggests that using AMIRA [39] and generating “similar” stems and
broken plurals further improves retrieval effectiveness beyond other approaches due
to the lower stemming error rate and broad coverage.

Using Character N-grams: The use of character 3- and 4-grams has been shown
to be very effective in Arabic IR [35,92]. The estimated average length of an Arabic
stem is about 3.6 characters. Darwish and Oard [35] showed that character n-grams
in fact outperform the use of light stemming. The effectiveness of character n-grams
is perhaps due to:

• They consistently match stems of words.
• They are not bound by a preset vocabulary like morphological analysis.
• N-grams that include prefixes and suffixes appear more often than n-grams that

include stems, and hence the use of inverse document frequency (IDF) would
automatically demote the weight of n-grams that have prefixes and suffixes and
promote the weight of n-grams that include stems.

The use of character n-grams should be done in conjunction with kashida and
diacritic removal and performing proper letter normalization. The major downside
of character n-grams is the increased processing of text and increased space storage
requirement, where a six-letter word is replaced with four tokens (if character
trigrams are used).
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10.3.4 Best Hebrew Index Terms

Basic Preprocessing

Like Arabic, the following preprocessing would be appropriate:

• Removing diacritics.
• Performing the aforementioned normalizations of letters with different end-of-

word forms.
• Removing stop words (post-morphological processing).

Using Morphology: Due to the morphological complexity of Hebrew, though the
studies in the literature are inconclusive, performing morphological analysis with
associated morphological disambiguation to ascertain the best analysis of a word
would likely produced the best rest retrieval results [25, 114].

Using Character N-grams: The appropriate n-gram length depends on the average
length of meaning-bearing units, typically stems, in a language. We suspect that
character 3-, 4-, or 5-grams would be most appropriate to Hebrew. However, this
requires experimentation to make a definitive conclusion.

10.3.5 Best Amharic Index Terms

Limited studies have suggested that stemming helps recall, but none reports clear
numbers on the effect of stemming on precision. More work is required for Amharic.

10.4 Available IR Test Collections

10.4.1 Arabic

There are several Arabic text collections that have been used for IR evaluations and
can be readily obtained. These collections are:

The TREC 2001/2002 Cross-language IR Track Collection: Most recent studies
on Arabic retrieval have been based on this collection [49, 97]. For brevity, the
collection is referred to as the TREC collection. The collection contains 383,872
articles from the Agence France Press (AFP) Arabic newswire. Twenty-five topics
were developed for the 2001 evaluation and an additional fifty topics were developed
for 2002. Relevance judgments were developed at the LDC by manually judging a
pool of documents obtained from combining the top 100 documents from all the
runs submitted by the participating teams to TREC’s cross-language track in 2001
and 2002. The 2001 topics and their relevance judgments are suspect due to the
large number of relevant documents being contributed to the pool by only one of
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the participating teams [49]. For the 2002 topics, the number of known relevant
documents ranges from 10 to 523, with an average of 118 relevant documents per
topic [97]. This is presently the best available large Arabic information retrieval
test collection. The TREC topics include a title field that briefly names the topic, a
description field that usually consists of a single sentence description, and a narrative
field that is intended to contain any information that would be needed by a human
judge to accurately assess the relevance of a document [49].

Zad Al-Mead Collection: This collection was built from Zad Al-Mead, a medieval
book that is free of copyright restrictions and for which a free electronic copy
is available. The book, written in the fourteenth century by a Muslim theologian,
consists of 2,730 separate documents that address a variety of topics such as
mannerisms, history, jurisprudence and medicine. Darwish [31], a native speaker
of Arabic, developed 25 topics and exhaustively searched the collection for relevant
documents. The number of relevant documents per topic ranges from zero (for one
topic) to 72, averaging 18. The average query length is 5.5 words.

Other non-publicly available collections were created by different commercial
entities to gauge the effectiveness of their IR systems. For example, Hefny et al. [60]
reported on Arabic–English cross-language web retrieval results using a set of 200
cross-language queries that were run against Bing.

10.4.2 Hebrew

The Responsa collection is perhaps the largest collection reported in the literature
with 500,000 documents [27]. Carmel and Maarek [25] developed a collection of
900 documents with 22 associated queries. Szpektor et al. [114] used a collection
of descriptions of museum artifacts to construct a document collection. Their study
was preliminary and only used five queries, which would not be sufficient to make
conclusive conclusions.

10.4.3 Amharic

The only collection reported on in the literature has 548 documents with an
associated set of 40 queries [9]. The collection was obtained from the Institute of
Ethiopian Studies and includes documents from 1974 to 1991 on anti-government
propaganda. Such small collections may lead to inclusive results.

10.5 Domain-Specific IR

In what preceded, we surveyed linguistic challenges associated with ad hoc retrieval
of Arabic, Hebrew, and Amharic. In the following, we explore IR applications
for different domains. Though we restrict the treatment of domain-specific IR



320 K. Darwish

applications to Arabic, the treatment can be instructive in addressing similar
applications in other Semitic languages. We address four different applications. Two
of these, namely cross-language IR (CLIR) and document image retrieval, are fairly
well studied. For the other two, namely web search and social search, the literature
is fairly scant, but we will explore some of their challenges.

10.5.1 Arabic–English CLIR

CLIR is the process of finding documents in one language based on queries in a
different language [96]. One of the central issues in this work pertains to query
translation. Query translation has been explored extensively in the context of cross-
language information retrieval, where a query is supplied in a source language to
retrieve results in a target language. Two of the most popular query translation
approaches are dictionary based translation (DBT) methods [81] and machine
translation (MT) [125]. DBT methods usually involve replacing each of the source
language words with equivalent target language word(s). Since a source language
word may have multiple translations, optionally the most popular translation or n
best translations are used. Since web search engines typically use an AND operator
by default, using multiple translations may cause translated queries to return no
results. Another alternative is to use a synonym operator, which has been shown to
be effective in CLIR [81, 100]. A synonym operator can be approximated in web
search by using an OR operator between different translations. Some online search
engines have synonym operators, such as the “word” operator in Bing. However, the
use of a weighted synonym operator, where each translation is assigned a confidence
score, is not supported in popular web search engines, though it has been shown to
be effective in cross-language search [123]. MT has been widely used for query
translation [121,125]. Wu et al. [125] claim that MT outperforms DBT. Their claim
is sensible in the context of web search for two reasons: (a) MT attempts to optimally
reorder words after translation and web search engines are typically sensitive to
word order; and (b) MT produces a single translation without any synonyms or OR
operators, for which the rankers of web search engines are not tuned.

Another approach of interest here is the so-called cross-lingual query sugges-
tion [46, 48]. This approach involves finding related translations for a source lan-
guage query in a large web query log in the target language. Gao et al. [46] proposed
a cross-language query suggestion framework that used a discriminative model
trained on cross-language query similarity, cross-language word co-occurrence in
snippets of search results, co-clicks from both queries to the same URL, and
monolingual query suggestion. Recent work by Hefny et al. [60] extends the work
of Gao et al. [46] by using alternative features, such as phonetic similarity, relative
query lengths, and cross-language coverage.

The second issue involves merging multilingual results, where results from
multiple languages that the user may speak are combined into a single ranked list.
For results merging in general, there are several simple techniques in the literature
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such as score-based merging, round-robin merging, and normalized score-based
merging [83]. Score-based merging assumes that scores in different ranked lists are
comparable, which cannot be guaranteed. This can be solved by normalizing scores
from different ranked lists. Round-robin merging assumes that different ranked lists
have a comparable number of relevant documents [83]. Si and Callan [110] used
a logistic regression based model to combine results from different multilingual
ranked lists in the context of ad hoc search. Tsai et al. [119] also addressed
the problem in the context of ad hoc search. They used document, query, and
translation based word-level features to train an FRank-based ranker whose score
was then linearly combined with the BM-25 score of each document. Rankers
of web search engines typically consider many more features such as link-graph,
document structure, and log based features. Gao et al. [47] used a Boltzman machine
to learn a merging model that takes cross-language relations between retrieved
documents into account. They tested their approach on ad hoc as well as web
search. In the context of web search, they evaluated their approach using queries
that have equivalents in the query log of the target language, which means that these
queries would likely benefit from cross-language results merging. Hefny et al. [60]
employed a supervised learning rank model, namely SVMRank, to merge multiple
ranked lists into a single list. SVMRank was trained using the relevance judgments
for query–result pairs which were used to extract pairwise order constraints.

The third central issue is ascertaining when cross-language web search would
yield good results. The literature is relatively sparse on this issue. Kishida [72]
examined “ease of search” and translation quality as means to perform cross-
language query prediction. Another less related work examined when and when
not to translate query words [80]. Hefny et al. [60] proposed the use of query logs,
through so-called query picking, to determine if cross-language search would be
effective or not. Essentially, given a source language query, if an equivalent query is
found in a large query-log, then the query would likely produce good results.

Most of the work on Arabic–English CLIR was conducted as part of the TREC
2001 and 2002 CLIR track [49,97]. The track-associated work was conducted on the
aforementioned collection of 383,872 news articles from the AFP Arabic newswire
associated with 75 topics and relevance judgments, and it focused exclusively
on searching an Arabic corpus using English queries. Studied on this collection
focused on a variety of issues such as transliterating named entities [3], stem-
ming [10,26], combining multiple transliteration resources [36], combining multiple
translations [123], interactive retrieval [59], and blind relevance feedback [93].

Hefny et al. in [60] focused on searching the English web using Arabic queries.
Their work addressed other problems relating to combing multilingual results and
cross-language query performance prediction.
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10.5.2 Arabic OCR Text Retrieval

This refers to searching scanned manuscripts. The most notable method for
searching such scanned manuscripts involves performing OCR and then searching
the resultant text. Although OCR is fast, OCR output typically contains errors. The
errors are even more pronounced in OCRed Arabic text due to Arabic’s orthographic
and morphological properties. The introduced errors adversely affect linguistic
processing and retrieval of OCRed documents.

Arabic OCR

The goal of OCR is to transform a document image into character-coded text. The
usual process is to automatically segment a document image into character images
in the proper reading order using image analysis heuristics, apply an automatic
classifier to determine the character codes that most likely correspond to each
character image, and then exploit sequential context (e.g., preceding and following
characters and a list of possible words) to select the most likely character in each
position. The character error rate can be influenced by reproduction quality (e.g.,
original documents are typically better than photocopies), the resolution at which
a document was scanned, and any mismatch between the instances on which the
character image classifier was trained and the rendering of the characters in the
printed document. Arabic OCR presents several challenges, including:

• Arabic’s cursive script in which most characters are connected and their shapes
vary with position in the word. Further, multiple connected characters may
resemble other single characters or combinations of characters. For example, the
letter �� ($) may resemble �+
- (nt).

• The optional use of word elongations and ligatures, which are special forms of
certain letter sequences.

• The presence of dots in 15 of the 28 to distinguish between different letters
and the optional use of diacritic which can be confused with dirt, dust, and
speckle [35]. The orthographic features of Arabic lead to some characters being
more prone to OCR errors than others.

• The morphological complexity of Arabic, which results in an estimated 60 billion
possible surface forms, complicates dictionary-based error correction.

There are a number of commercial Arabic OCR systems, with Sakhr’s Automatic
Reader and Shonut’s OmniPage being perhaps the most widely used [75, 76].
Most Arabic OCR systems segment characters [50, 56, 57, 75], while a few opted
to recognize words without segmenting characters [13, 86]. A system developed
by BBN avoids character segmentation by dividing lines into slender vertical
frames (and frames into cells) and uses an HMM recognizer to recognize character
sequences [86].
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OCR Degraded Text Retrieval

Retrieval of OCR degraded text documents has been reported on for many lan-
guages, including English [53, 68, 115, 117]; Chinese [120]; and Arabic [30].

For English, Doermann [40] reports that retrieval effectiveness decreases sig-
nificantly for OCRed documents with an error rate at some point between 5 and
20 %. Taghva reported experiments which involved using English collections with
204–674 documents that were about 38 pages long on average [116, 117]. The doc-
uments were scanned and OCRed. His results show negligible decline in retrieval
effectiveness due to OCR errors. Taghva’s work was criticized for being done on
very small collections of very long documents [120]. Small collections might not
behave like larger ones, and thus they might not be reflective of real-life applications
in which retrieval from a large number of documents is required [54]. Similar
results for English were reported by Smith [112] in which he reported no significant
drop in retrieval effectiveness with the introduction of simulated OCR degradation
in which characters were randomly replaced by a symbol indicating failure to
recognize. These results contradict other studies in which retrieval effectiveness
deteriorated dramatically with the increase in degradation. Hawking reported a
significant drop in retrieval effectiveness at a 5 % character error rate on the TREC-
4 “confusion track” [58]. In the TREC-4 confusion track, approximately 50,000
English documents from the federal registry were degraded by applying random edit
operations to random characters in the documents [68]. The contradiction might be
due to the degradation method, the size of the collection, the size of the documents,
or a combination of these factors. In general retrieval effectiveness is adversely
affected by the increase in degradation and decrease in redundancy of search terms
in the documents [40].

Several studies reported the results of using n-grams. A study by Harding
et al. [53] compared the use of different length n-grams to words on four English col-
lections, in which errors were artificially introduced. The documents were degraded
iteratively using a model of OCR degradation until the retrieval effectiveness of
using words as index terms started to significantly deteriorate. The error rate in
the documents was unknown. For n-grams, a combination of 2- and 3-grams and a
combination of 2-, 3-, 4-, and 5-grams were compared to words. Their results show
that n-gram indexing consistently outperformed word indexing, and combining
more n-grams was better than combining fewer. In another study by Tseng and Oard,
they experimented with different combinations of n-grams on a Chinese collection
of 8,438 document images and 30 Chinese queries [120]. Although ground truth
was not available for the image collection to conclude the effect of degradation on
retrieval effectiveness, the effectiveness of different index terms were compared.
They experimented with unigrams, bigrams, and a combination of both. Chinese
words were not segmented and bigrams crossed word boundaries. The results of
the experiments show that a combination of unigrams and bigrams consistently
and significantly outperforms character bigrams, which in turn consistently and
significantly outperform character unigrams.
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For Arabic, Darwish and Oard [35] reported that character 3- and 4-grams were
the best index terms for searching OCR degraded text. They conducted their experi-
ments on a small collection of 2,730 scanned documents. In general, blind relevance
feedback does not help for the retrieval of OCR degraded documents [33, 77, 120].

Building an OCR Degraded Collection

To build an OCR degraded test collection, there are three common approaches:

• Printed Document Domain: which involves building a collection by scanning
printed documents and performing OCR. This approach is most desirable
because the errors in the text are due to real OCR degradation and not a model
of the degradation. However, building large test collections of several hundred
thousand documents with a set of topics and relevance judgments can be very
expensive. Therefore, the collections reported in the literature were all small. One
such collection is a Chinese collection of 8,438 documents which was developed
by Tseng and Oard [120]. The documents in Tseng’s collection varied widely
in their degradation level and there was no accurately character-coded version
(OCR ground truth) for the collection. Abdelsapor et al. [1] developed a collec-
tion of Arabic OCRed document images by randomly picking approximately 25
pages from 1,378 Arabic books from Bibliotheca Alexandrina (BA) forming a
set of 34,651 printed documents. Associated with the collection is a set of 25
topics that were developed using an iterative search and judge method [109]. The
books cover a variety of topics including historical, philosophical, cultural, and
political subjects and the printing dates of the books range from the early 1920s to
the present. Again, no ground truth is available for the collection. Having ground
truth helps show the effect of degradation on retrieval. Developing OCR ground
truth is typically laborious, involving either correction of OCR errors in the
OCRed version of the collection or manual reentry of the collection’s text. Lam-
Adesina and Jones [77] reported on a collection that they developed from the
Spoken Document Retrieval (SDR) track collection. The stories in the collection
was printed using different formats and fonts, and the resulting hardcopies were
scanned and OCRed. Associated with the collection of 21,759 news stories are
rough or closed-caption quality transcripts and 50 topics that were developed
for the SDR track [77]. Darwish [31] reported on a small collection of 2,730
documents of scanned and OCRed document images for which ground truth
exists.

• Image Domain: which involves building a collection by synthesizing document
images from a preexisting non-degraded collection, degrading the document
images, and performing OCR on them. Synthesizing document images is done
by typesetting the text into an image [41]. To degrade document images,
different document degradation models were developed [16, 17, 41, 74]. The
models parameterize different aspects of the document images such as font size,
page skew, horizontal and vertical offset, horizontal and vertical scaling, blur,
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resolution, pixel jitter, and sensitivity. With degradation modeling, document
image collections of varying degradation levels with corresponding ground truth
can be developed automatically. To verify suitability of the generated document
image collections for further OCR research, tests were developed. It is claimed
that a degradation model is valid if the confusion matrices that result from
automatically degraded documents are similar to the ones that result from real
documents [73, 82, 85]. The advantage of this approach for creating OCR-
degraded collections is that it is inexpensive, the degradation level can be tuned,
and OCR ground truth is automatically available. Although OCR researchers
prefer real document images and real OCR output [120], this approach might
be suitable for IR experimentation, but its suitability for IR needs to be verified.

• Text Domain: building a collection by synthesizing OCR degradation. This
approach has the advantage of being able to use a preexisting non-degraded
collection with its topics and relevance judgments to rapidly build a new
degraded collection. This approach was used in developing many degraded text
collections [29, 53, 55, 112]. The degradation models ranged between ones that
attempted to accurately model OCR degradation [53] to ones that randomly
introduced errors [112]. Mittendorf and Schuble [95] argued that using synthetic
OCR degradation does not lead to the variations of recognition probabilities,
which affect ranking permutations the most, that are observed in real OCR
degradation. Darwish [31] introduced formal tests to verify that the modeled
OCR degradation has similar effect on retrieval as real OCR degradation.

OCR Error Correction

Much research has been done to correct recognition errors in OCR degraded
collections. Reducing the number of errors in the text may lead to improved
IR effectiveness. There are two main approaches to error correction, namely,
word level and passage level. Some of the kinds of word-level post-processing
include the use of dictionary lookup [22, 28, 63, 67], character [86, 116] and
word n-grams [63, 88], frequency analysis, and morphological analysis [42, 98].
Passage-level post-processing techniques include the use of word n-grams [88],
word collocations [63], grammar [7], conceptual closeness [63], passage-level word
clustering [116] (which requires handling of affixes for Arabic [38]), and linguistic
and visual context [63]. Dictionary lookup is used to compare recognized words
with words in a lexicon [22,28,63,67]. Finding the closest matches to every OCRed
word in the dictionary is attempted, and the matches are then ordered using a
character-level error model in conjunction with either a unigram probability of the
matches in the text [67] or an n-gram language model [88, 118]. Another approach
suggested by Magdy et al. [89] involves the use of multi-OCR output fusion. In
this approach multiple OCR systems, which typically have different classification
engines with different training data, are used to recognize the same text. The output
of the different OCR systems is then fused by picking the most likely recognized
sequence of tokens using language modeling [89].
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Other Approaches

Two other techniques are worth mentioning here. The first is query garbling in
which an error model is used to generate garbled versions of query words [34].
Query garbling is akin to translating queries to the document space and much of
the work on CLIR would apply. Another approach does not involve using OCR
at all. The basic idea is that similar connected elements in printed documents are
clustered and represented with IDs, which are then used to generate equivalent
textual representations. The resultant representations are indexed using an IR engine
and searched using the equivalent IDs of the connected elements in queries [90].

10.5.3 Arabic Social Search

Though most of the 350 million natives of the Middle East can read and understand
Modern Standard Arabic (MSA), they generally use dramatically different lan-
guages in daily interactions. With the spread of online social interaction in the Arab
world, these dialects started finding their way into online social interaction. There
are six dominant dialects, which are Egyptian (85C million speakers), Moroccan
(75Cmillion), Levantine (35Cmillion), Iraqi (25 million), Gulf (25Cmillion), and
Yemeni (20Cmillion).5 Aside from those, there are tens of different Arabic dialects
along with variations within the dialects.

There are several factors that make dialects different. Different dialects make dif-
ferent lexical choices to express certain concepts, though in many cases the lexical
choices have proper Arabic roots. For example, the concept corresponding to “I
want” is expressed as “EAwz” 
��(L in Egyptian, “Abgy” _�


7-� � in Gulf,
“Aby” =�q� � in Iraqi, and “Bdy” �� Q-� in Levantine. The most popular MSA form is
“Aryd” Q-��

�
�. In certain situations, some words are used to mean different or

completely opposite things in different dialects.
The pronunciations of different letters are often different from one dialect to

another. One of the letters with most variations in pronunciation is the letter “q” (
��).

In MSA, it is typically pronounced similar to the English “q” as in the word “quote”.
However, it is pronounced as an “a” in Egyptian and Levantine (as in “Alpine”), as a
“ga” in Gulf (as in “gavel”), and as a “gh” in Sudanese (as in “Ghana”). Another is
the letter “j” (�� ) which is pronounced as a soft “g” like in “gavel” in Egyptian
and Yemini dialects and as “j” like in “John” in most other dialects. Differing
pronunciations reflect on the way people spell dialectic text.

As for the influence of foreign languages, different countries have had strong
interactions with other societies that speak different languages. Some of the
interactions have been the result of geographic juxtaposition or military conflict.
For example, Lebanon was occupied by France, Egypt was occupied by Britain,

5http://en.wikipedia.org/wiki/Varieties_of_Arabic

http://en.wikipedia.org/wiki/Varieties_of_Arabic
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Iraq has a large Kurdish minority and borders Iran, and Algeria has a large Berber
population. Such interaction has caused an influx of foreign words into the dialects
of different countries. For example, in some of the Gulf countries you may hear the
phrase “shebb el-lait” ( �+)�

!
R* � +� �:) meaning “turn on the light”. In this particular

example “shebb” is Arabic and “lait” is a deformed form of the word “light”. In
more extreme situations as in countries like Algeria, people mix Arabic, French, and
Berber together, while using grammatical rules of one language, typically Arabic,
to construct sentences.

All these factors have complicated interactions between people from different
parts of the Arab world. Social media platforms have caused large portions of
populations to express themselves in writing. Though MSA was the traditional
de facto modus operandi for writing Arabic, people became more inclined to use
their dialectic Arabic in their written daily interactions on social media sites. Some
notable trends started appearing in text used on social platforms, such as:

1. The writing of Arabic words using phonetically equivalent Latin characters.
These tendencies have given rise to truly interesting language use. Consider the
following Facebook post “Ana nazel el goma3a el gayah el tahrir inshAllah”
which corresponds to “I am going next Friday to Tahrir – God willing.” In
the post, dialectic Egyptian Arabic is written using Latin letters with the
corresponding Arabic is $ !�* � �

�
( �: 
��� ;-�; [�) * � �$ 7 6 3�4�� �/ -� � 
�( 
-

( 
-
�
� . Notice also, that the word “goma3a”, which corresponds to Friday in

English, starts with the letter “jeem” (�� ) but is actually written in Latin letters
to correspond to the Egyptian pronunciation of the letter. There is an opposite
phenomena where English words are written using Arabic letters. There are
several commercial programs that aim to convert from Romanized Arabic text
to Arabic such as Yamli (www.yamli.com), Google Ta3reeb (http://www.google.
com/ta3reeb/), and Microsoft Maren (www.getMaren.com). Such Romanized
Arabic text requires specialized language detection to properly identify it in text.
Darwish [69] adapted transliteration work with language modeling to perform
offline conversion of Arabizi to Arabic.

2. The mixed language text where many of the social platform users may speak
multiple languages, mainly Arabic and English or Arabic and French. Consider
the following tweet: “yeaaa aham 7aga do everything with pride” where the
Arabic is mixed with English to say “yes, the most important thing: do everything
with pride.”

3. The use of dialectic words that may have different morphological forms than
MSA. For example, Egyptian Arabic uses a negation construct similar to the
“ne pas” negation construction in French. Consider the Egyptian Arabic word�e�G)�7R1 (mlEbt$) which means “I did not play” and is composed of “m+lEbt+$”.
Such constructs are not handled by existing MSA morphological analyzers.

4. The use of phonetic transcription of words to match how words are pronounced
in dialects. For example, the word

��Q\ (Sdq) meaning “truth” or “honestly” is
often written as y �}k (Sj) to match the Gulf dialect.

5. Creative spellings, spelling mistakes, and word elongations are ubiquitous in
social text.

www.yamli.com
http://www.google.com/ta3reeb/
http://www.google.com/ta3reeb/
www.getMaren.com
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Table 10.7 Arabic
processing in Google and
Bing

Feature Google Bing

Diacritics removal
p p

Kashida removal
p p

Letter normalization Partial
p

Light stemming X X
Stop word removal X X

6. The use of new words that don’t exist in the language such as words expressing
laughter (e.g. �/* (lwl) corresponding to Laugh Out Loud (LOL)) and using
Arabic words to mean new things (e.g. 
M[� (THn) meaning “grinding” in MSA,
but intended to mean “very”).

All these factors complicate Arabic social text retrieval. There is a recent
preliminary paper by Magdy et al. [91] that tries to address some of these issues,
but many more issues are yet to be tackled.

10.5.4 Arabic Web Search

To the best of our knowledge, there is no publicly published work on Arabic web
search. Google and Bing have been working on improving Arabic web search for
several years, but the vast majority of their work is unpublished. Google and Bing
claim to index roughly 3 billion and 210 million Arabic pages respectively. To
ascertain the relative number of indexed Arabic pages, two Arabic stop words (=�


I-in
and 
M1-from) were used as queries to search in the two search engines. There are
several challenges that need to be addressed for Arabic search, namely:

1. Efficiency: Due to the large scale of the web, all processing must be very efficient.
Hence, performing complex processing such morphological analysis and latent
semantic indexing becomes prohibitive.

2. Language handling: Due to efficiency related constraints, minimalist language
processing is done. Table 10.7 summarizes current support in Google and Bing.
This information was obtained by searching using different queries that were
designed to test the specific features in the engines. Both search engines emulate
stemming using query alteration. Alteration may involve expanding query words
using their synonyms and/or morphological variants.6

3. Ranking: There are fundamental differences between the English and Arabic
webs. Some of these differences are:

(a) Unlike the English web, the Arabic web is sparsely connected. This makes
features such as PageRank less useful.

6This is based on communication with people working on different web search engines.
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(b) The relative size of the Arabic forum content is disproportionately larger
compared to the English forum content. English forum content is often
considered of lower quality. However, such content is often of high-quality
in Arabic. Considering that most Arab companies and institutions lack web
presence, many entities resort to forums to post information.

(c) The Arabic web is significantly smaller than the English web, and the size of
available Arabic resources such as Wikipedia is dwarfed by those available
for English. To contrast both, Arabic Wikipedia has slightly more than
259,000 articles compared to more than three million English articles.

4. Index coverage: Index coverage of good quality pages is critical to the effective-
ness of web search. Much Arabic content is nestled inside large portals such as
YouTube, WordPress, Facebook, etc. Short of indexing everything on the web
in general and on such sites in specific, indexing the Arabic specifically may be
challenging. There are other issues that are not necessarily unique to Arabic but
would need handling nonetheless such as spam detection, query spell checking,
web page segmentation, query reformulation, and results presentation.

10.6 Summary

This chapter presents a treatment of some of the language-specific issues that affect
the retrieval of three Semitic languages, namely Arabic, Hebrew, and Amharic.
Literature on the retrieval of other Semitic languages is limited or non-existent.
The chapter covers morphological as well as orthographic features of the different
languages and state-of-the-art methods to handle these features. Further, the chapter
addresses certain domain-specific IR problems, namely cross-language IR, OCR
text retrieval, social search, and web search. The literature on the two latter problems
is scant at best, and much interesting research is required to address them.
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Chapter 11
Question Answering

Yassine Benajiba, Paolo Rosso, Lahsen Abouenour, Omar Trigui,
Karim Bouzoubaa, and Lamia Belguith

11.1 Introduction

The question answering (QA) task has been created to satisfy a specific need of
information requested by users who are looking to answer a specific question. The
final goal is the ability to automatically parse the available data, extract and validate
the potential answers regardless of whether the question is simple, such as:

“To what family of languages does Hebrew belong?”
or one that needs a deeper analysis of the data, such as:

“What political events succeeded the Tunisian revolution?”
It is important to note that one of the most important features of QA systems is their
ability to extract the necessary information from natural language documents. This
feature lowers the cost significantly because the creation and update of databases
that encompass all the knowledge in a structured fashion has proved to be practically
impossible. The use of natural language processing (NLP) techniques does not come
at no cost because they:
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• Come with an intrinsic error penalty as they almost always rely on statistical
models and rule-based modules that never perform at 100 %;

• Require a significant amount of training data to build the underlying statistical
models; and

• Tend to resort to language-dependant resources and modules which need to be
built from scratch for each different language.

In this chapter, we are concerned with the performance of such a system
when dealing with a Semitic language. Such a language, as introduced in Chap. 1,
exhibits a set of morphological and syntactic properties that need to be taken into
consideration and which we will discuss in this chapter. The interest of the NLP
research community in QA for Semitic languages is very recent. In CLEF 2012, the
QA4MRE task was the first competition to include a Semitic language, i.e. Arabic.
Therefore, there is not enough literature on Semitic languages QA per se and we will
borrow some insights from other NLP tasks that, we know, can significantly help to
understand the intricacies of Semitic languages QA. Thereafter, we will look into
QA research works that have been conducted on Arabic to further understand what
is required to build a successful QA system for our languages of interest.

In order to achieve this endeavor, we have prepared a chapter that covers almost
all the necessary topics to be self-contained. It has been organized as follows.
Section 11.2 provides a more detailed description of the generic architecture of a QA
system and also takes a deep dive into approaches for answering definition questions
and query expansion techniques for QA. Section 11.3 briefly enumerates the most
relevant characteristics of the Semitic languages to the QA task. It follows up by
a traversal of the relevant NLP tasks to QA and summarizes the relevant literature.
Section 11.4 focuses on two specific Arabic QA research works to study some of
the techniques for answering definition questions and enriching a query, and reports
their results and conclusions. Finally, in Sect. 11.5 we provide a summary to draw
the most insightful conclusions.

11.2 The Question Answering Task

11.2.1 Task Definition

As we have previously mentioned the main goal of the QA task is to help users with
an urgent need of answering a specific question. However, a more formal definition
is needed at this stage to give more details about the task and introduce some of the
relevant terminology for the rest of the chapter.

A QA system has two major items at its input (see Fig. 11.1), namely:

1. User questions: that consists in a set of questions expressed in natural language.
2. A collection of documents: these are unstructured documents written in natural

language where the answers to the user question can be fetched.
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Fig. 11.1 Generic architecture of a QA system

The system generates at its output the set of relevant answers sorted according to
their probability of correctness. The general internal architecture of a QA system is
discussed in detail below. However, it is important to note here that this architecture
is closely related to the type of questions we want our QA system to be able to
process. The type of the question not only is a strong hint for the system to filter
out the information found in the document collection, it also defined the type of
preprocessing technology required, such as part-of speech (POS) tagging, named
entity recognition (NER), coreference resolution (coreference for short), etc., to
build a robust system. Consequently, in order to better define the QA task it is
necessary to discuss the types of questions involved.

The types of questions that have been enumerated and used in the major
evaluation campaigns, i.e. TREC and CLEF, are the following:

1. Factoid questions: generally, the main purpose of the user when she asks a factoid
question is to find out about a specific name of a person, place, organization, etc.
An example of a factoid question is:

“What is the capital of Morocco?”
Or it can be a little bit more complicated, such as:

“What is the biggest city in Italy?”
This type of question is considered to be the least complicated because they do
not require any type of inference or expensive post-processing.

2. List questions: similar to the previous type of question but the expected answer
is a list of items instead of one item. For instance, the following question:

“What are the countries that have geographic boundaries with Spain?”
expects for an answer a list of countries. Also the question:

“Who are the most famous quantum physicists that have been part of the
Manhattan project?”

is a more complicated example because it is probable that the list of physicists’
names is scattered over different documents.

3. Definition questions: which will be discussed in more detail in Sect. 11.4.1, are
the opposite of factoid questions. Whereas factoid questions provide information
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and expect a name, definition questions provide the name and request the QA
system to provide information. For instance:

“Who is Moncef Marzouki?”
4. Date and quantity: as the name clearly indicates, the expected answer is a date

or a quantity. For instance, the following questions fall under this category:
“When was Richard Feynman born?”

and,
“What age was Mozart when he composed his first symphony?”

5. Other more general types: CLEF and TREC have created a separate set of
questions for the most advanced systems. This type of question is kept open
and the participating system need to perform more processing and inference
than in the previous categories to figure out the right answer. An example of this
category of questions would be a question like:

“What were the major consequences of the Arab Spring revolutions over the
world economy?”

By defining this set of question types the CLEF and TREC evaluation campaigns
have elegantly established different domains of QA expertise where each type of
question reveals the performance of the participating systems at specific tasks. In
other words, each type of question raises a different type of challenge. In the next
subsection we want to take a first glance at these challenges. By doing so we
make it very easy to understand afterwards the reason behind choosing a specific
architecture for a QA system and at the same time we prepare the ground to explain
how exactly building a QA system for a Semitic language requires investigating
additional aspects.

11.2.2 The Major Known Challenges

As we have attempted to show in the previous subsection, understanding the
challenges posed by the QA task is key to understanding the contribution of the
seminal QA research works (described in Sect. 11.2.3) and the role played by each
module in a QA system. The goal of this subsection is to shed light on these
challenges. We consider that the major ones are the following:

1. Lack of context: as mentioned in the introduction of this chapter, the input of a
QA system is the user’s question and a collection of documents. However, only
the former element is relevant for the system to understand the user’s need. These
questions are usually short and concise which raises a quintessential challenge
to the QA task, i.e. there is not enough material (or context) to restrict the
search space or to disambiguate in case some question terms are polysemous.
Readers who have approached the information retrieval (IR) task should find this
challenge familiar.

2. Language dependency: whether to build a language-specific QA system or not
has always been a key decision for most of the researchers in this domain.
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The main reason is that this decision drives the technologies that are going
to be used to build the system. The language-independent QA systems, from
a general viewpoint, tend to use more frequency-based approaches and try to
limit, as much as possible, the use of any NLP using language-specific rules or
probabilistic models. On the other hand, the language-specific ones, which we
are most interested in here, use more NLP tools and models.

3. Required technologies: because a language-specific QA system is itself a feder-
ate system built upon a set of sub-modules, its overall performance is strongly
proportional to theirs. The challenge is to build such sub-modules in a way
that they perform well enough to make an accurate QA system. Achieving this
endeavor might be stymied by lack of data and/or adequate techniques. For
instance, some of the modules that we frequently see employed in QA systems
are the following:

• Preprocessing tools: these prepare the ground for the rest of the modules by
cleaning the text and make it more “suitable” for the NLP tools to operate on.
We have highlighted the word suitable because it is idiosyncratic and it is
better understood when the type of data and the nature of the target language
are specified. For the Semitic languages, as we will see in more detail in
Sect. 11.3, the major preprocessing step consists of word-segmentation, also
called tokenization. This consists of breaking each word into the morphemes
composing it in order to decrease the sparseness of the text.

• Information extraction (IE) tools: their main role is to highlight specific
information, relevant to the QA system, in the text to be used when listing the
potential answers. The named entity recognition (NER) systems are amongst
the most used IE tools in QA. However, the most advanced systems tend to
use also coreference and relation extraction systems to overcome the problems
encountered when different parts of the goal information are dispersed in the
text.

• Semantic resources: in order to perform query expansion (see Sect. 11.2.3) it
is recommended to use semantic resources such as WordNet. In the case of
Semitic languages these resources are either absent for some of them or, for
others, require a significant enrichment to reach a level where they can be used
for successful results (see Sect. 11.4.2).

Other challenges may arise when we get into the details. However, what we believe
is important to point out here is that even though we cannot find enough literature
to show the challenging aspects of building a QA system oriented to a Semitic
language, looking at the published work investigating the NLP sub-fields which
we have enumerated is relevant to understand the difficulty of the QA task.

11.2.3 The General Architecture of a QA System

According to the literature, a standard QA system is composed of at least three
modules: question analysis, document or passage retrieval, and answer extraction.
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Further modules for query expansion, to enrich the original question with related
terms, and answer validation, to validate the answer before returning, can be added
in the QA pipeline of Fig. 11.1.

Given as input the question, typed or via a voice interface [55], the question
analysis module determines the type of the given question (question classification),
in order to pass the information about the expected type of answer to the answer
extraction module, together with the question keywords (used by the passage
retrieval module as a query) and the named entities appearing in the question
(which are very essential to validate the candidate answers). For instance, if the
question is “How many inhabitants were in Rabat in 1956?” the expected answer
is a quantity (the target of the question is the number of inhabitants) but this value
has to accomplish the contextual constraints of Rabat (i.e., we are not interested in
the number of inhabitants of another town) and of 1956 (i.e., we are not interested
in any other date). Question analysis is probably the most crucial step of a QA
system, since, in the answer extraction module, the extraction strategy of the
answer completely depends on the correct classification of the question: a proper
classification of the question will allow to restrict the candidate answers to be
considered. Moldovan et al. report in [45] that more than 36 % of errors in QA are
due to mistakes of question classification. The approaches for question classification
can be pattern-based or machine learning-based and generally use a QA typology
made up of question types. Most of these approaches use named entities (NEs)
tagging for question (and answer) typing, typically classifying a question as
requiring a particular NE type as the answer. Therefore, the recognition of NEs
is crucial throughout the QA process, from question analysis to answer extraction,
and even more for a morphologically-rich language such as Arabic [10] and [11].

Document or passage retrieval is the core module of QA systems and it retrieves
the passages of documents that are relevant to contain the answer. Usually document
retrieval systems supply a set of ranked documents based on a distance function
between the question and the documents, and use classical weighting schemes
that are based on term frequency, such as tf-idf, or on statistical analysis, such as
BM25 [52]. Most QA systems are based on IR methods that have been adapted to
work on passages instead of the whole document. The main problem with these
QA systems is that they are the adaptations of classical document retrieval systems
that are not specifically oriented to the QA task, and often fail to find documents
containing the answer when presented with natural language questions.

The passage retrieval (PR) module returns instead pieces of text (passages) that
are relevant to the user questions instead of returning a ranked list of documents
like the IR systems do. In fact, it is important to consider the differences between
traditional document retrieval and QA-oriented passage retrieval: in the first case,
the greatest effort is made to retrieve documents about the topic of the query, while
in the second case, the aim is to retrieve pieces of text that contain the answer to
a given question. Various methods have been proposed to determine the similarity
between the passage and the question [59].

Also, it is interesting to mention that in the PR module the NE recognition is
very important. Chu-Carroll et al., in [18] and [17], investigate the impact that
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NE recognition may have on document and/or passage results. In order to study
the significant degradation in search performance with imperfect NEs, the authors
applied different error models to the gold standard annotations in order to simulate
errors made by automatic recognizers. A significant document retrieval gain was
achieved when adopting NE recognizers (15.7 % improvement in precision).

As stated by Abney et al. in [1] and Clarke et al. in [19], the good performance
of the document or PR module is a critical aspect for the answer extraction module
that is responsible for extracting the final answer from the retrieved passages or
documents. Every piece of information extracted during the previous step (e.g.
the words of the contextual constraints of the question) is important in order to
determine the right answer. The answer is searched for within the retrieved passages,
using the information obtained from the question analysis about the focus and the
target of the question that need to be extracted by the answer extraction module
among the list of candidate answers. Finally the answer extraction module extracts
a list of candidate answers from the relevant passages and returns the one that it
is most confident about. In order to estimate for each of the candidate answers the
probability of correctness and to rank them from the most to the least probable
correct one, some QA systems have a final answer validation module in the pipeline
of Fig. 11.1 [53].

In this section we described the main characteristics of a generic architecture
of a monolingual QA system whose aim is mainly answering factoid questions on
objective facts or definitions. In case of cross-lingual QA a module to deal with
the translation of the question has to be added at the beginning of the pipeline of
Fig. 11.1. Moreover, when we want to process more difficult questions, such as
list questions, further modules need to be included to both add another layer of
information, i.e. anaphora resolution, and deal with the high level of noise usually
encountered in microblogs and tweets.

11.2.4 Answering Definition Questions and Query Expansion
Techniques

Initial researchers in the definition question answering area have proposed the use
of models such as tf-idf, bag of words and centroid vector based on a numeric
approach for the identification of answers [66], and on surface patterns based on a
symbolic approach for the extraction of answers [28, 51]. Other methods have been
proposed based on the combination of numeric and symbolic approaches. These
methods are frequently based on machine learning algorithms (i.e., decision trees,
Hidden Markov Models) [15, 20, 26, 65], linguistic approaches involving deeper
linguistic tools and resources (i.e., ontologies, syntactic and semantic analyzers,
named entity recognizer) [38–40]. Moreover, Web knowledge mining methods
have been investigated [67]. Cui et al. have proposed in [21] a soft matching
method for answer extraction that is based on machine learning, web mining and
a probabilistic approach. Moldovan et al., in [46], have proposed to transform
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questions and answer passages into logic representations and world knowledge
axioms as well as linguistic axioms to supply the logical prover, in order to render
a deep understanding of the relationship between questions, passages and answers.
Also, Denicia-Carral et al. have proposed in [23] a method for answering definition
questions that is based on the use of surface text patterns, a sequence-mining
algorithm, and a knowledge-based approach.

Other researchers, such as Miliaraki and Androutsopoulos in [44], have used a
mining external definitions method to rank the definitions with machine learning
approaches. Their methods consist in calculating the similarity between candidate
answers and definitions from external Web knowledge resources such as Wikipedia
and biography dictionaries. Harabagiu et al. in [56] and Moldovan et al. in [46]
have both proposed to identify answers by combining extraction techniques with
abductive reasoning. Blair-Goldensohn et al. [14] have proposed to combine their
knowledge-based method with a statistical approach to answer definition question.
Finally, Tanev et al. have proposed in [58] to combine linguistic processing with a
Web knowledge mining method.

The above research works have given a new advance to answering definition
questions not only on the basis of symbolic and numeric approaches but also with
hybrid approaches. In order to address the problem of answering definition question
in Arabic, in Sect. 11.4 we present DefArabicQA, a QA system based on both
linguistic and frequency-based approaches. DefArabicQA uses a surface patterns
technique similar to the one developed by Ravichandran and Hovy in [51].

With respect to query expansion (QE), many techniques have been investigated
by researchers in the IR field. The basic ones are those targeting to fix spelling errors
by searching for the corrected form of the words, such as the work presented by
Pinto, in [50]. Other QE processes rely on morphological relations and reformulate
the user query by adding the different variations that are generated from a keywords
stem [42]. Although this QE technique produces higher recall [12, 47] it is difficult
to assert that it improves the precision. This is why researchers have investigated
other QE techniques such as those using semantic relations. Generally, a semantic
QE process is performed by considering the synonyms of the query keywords. A
thesaurus can be used as a base for such a process [48]. However, the use of a
thesaurus, which is generally built on the basis of statistical techniques, presents
many disadvantages. Indeed, building a thesaurus is a time-consuming task since
a great amount of data has to be processed. Moreover, the precision of thesaurus-
based QE in term of semantic distance has to be proved.

In the work of Bilotti et al. presented in [13], a special focus was put on QA.
Indeed, in that work, the authors quantitatively compare two different approaches to
handling term variation: applying a stemming algorithm at indexing time, and per-
forming morphological query expansion at retrieval time. Conducted experiments
show that morphological expansion yields higher recall.

In Sect. 11.4 we describe our QE approach for Arabic QA. The approach uses
both morphological variations as in [12, 13] and semantic relations. In comparison
with the work of Bilotti et al. in [13], our approach expands at retrieval time. It aims
at reaching higher recall by considering semantically related terms extracted from
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the Arabic WordNet. This technique has also been used in other works, such as Hsu
in [36] and Gong et al. in [33]. With respect to the latter works, our approach is
different in:

1. Considering many levels in the hyponymy hierarchy of the Arabic WordNet;
2. Taking into account relations with the super merged ontology (SUMO);
3. Improving precision in the context of QA using a distance density N-gram PR

module;
4. Not considering terms weighting.

11.2.5 How to Benchmark QA System Performance:
Evaluation Measure for QA

In order to be able to compare the overall performance of a QA system and its
sub-modules, different measures have been defined. In this subsection we want to
enumerate the most used ones and describe their formulas.

F-measure: this measure is used in QA especially to evaluate the performance of
the PR module. It combines precision and recall in one measure. Precision is an
indicator of how many of the retrieved items are relevant. Thus precision can be
expressed as follows:

PrecisionDNumber of retrieved relevant items/Number of retrieved items

Recall, on the other hand, indicates how many of all the relevant items have been
retrieved and can be expressed as follows:

RecallDNumber of retrieved relevant items/Number of relevant items

F-measure combined both in the following formula:

F-measureD 2 . Precision . recall/(PrecisionC recall)

Accuracy: this measure is used to evaluate the quality of the overall QA system
that provides one potential answer. Accuracy is a number between 0 and 1 that
indicates the probability of the QA system to provide the correct answer on average.
It is expressed as following:

AccuracyDNumber of correct answers/Number of questions

Mean reciprocal rank (MRR): this measure is used to evaluate the quality of
an overall QA system that provides a sorted list of n potential answers. MRR is a
number between 0 and 1 that indicates how many times the QA system ranks the
correct answer as first. The formula to compute MRR is:

MRR D .1=jQj/:
jQjX

iD0
.1=rank.i// (11.1)
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Answered questions (AQ): is another measure for QA systems providing a sorted
list of n potential answers. AQ is a number between 0 and 1 that indicates the
probability of the QA system providing a correct answer in its sorted list of n
potential answers. AQ is expressed as follows:

AQDNumber of answer lists that contain the correct answer/Number of questions

This measure represents a relaxed version of both the accuracy and the MRR. That
is because it does not penalize the system when it does not rank the correct answer
as first.

11.3 The Case of Semitic Languages

11.3.1 NLP for Semitic Languages

In the first chapter of this book, the authors give a detailed characterization of
the Semitic languages. In this section, however, we want to merely recall two
characteristics that have been central to almost all NLP tasks, namely:

1. Lack of short vowels: in their classical form, all the Semitic languages use two
types of vowels. The long ones are represented as letters in the scripture and the
short ones as diacritics. In the modern Semitic languages, however, the diacritics
are omitted, primarily in all news-wire texts, because the reader can still mentally
add the diacritics while reading the text. The machines on the other hand are
confronted with an increase in ambiguity because when the short vowels are,
completely or partially, omitted new homographs are created.

2. Agglutinating word forming strategy: the Semitic languages use both derivation
and inflection to form the words. Consequently, Semitic languages exhibit a high
morpheme-per-word ratio that results in a sparseness of data.

According to the literature, building a robust NLP system for any Semitic language
means accounting for these characteristics and their implications.

Another challenging aspect of building efficient NLP systems oriented to a
Semitic language is the availability of resources and annotated data. Across the
board, publications show that some Semitic languages have access to more resources
than others.

For instance, Itai and Wintner in [37] report Hebrew NLP resources that are
available both for research and commercial purposes. These resources include POS-
tagging, morphological disambiguation and other lexicons. For Arabic, we find
among the most used corpora the Arabic TreeBank [43], the Arabic WordNet [25]
and the data used for the automatic content extraction (ACE) competition [24]. Also,
an Amharic POS-tagging corpus is described by Demeke and Getachew in [22].
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Fig. 11.2 Architecture of the QARAB system as illustrated in the original paper

11.3.2 QA for Semitic Languages

In our description of the major challenges of the QA task in this chapter (see
Sect. 11.2.2) we have mentioned how, due to the nature of the task, QA systems
are federate systems relying on many components. Building these components
requires a set of resources and annotated data which might not be available for
the Semitic languages. As we show in Sect. 11.2.1, it is still possible to employ
language-independent techniques to successfully build a QA system for a specific
type of questions. However, that does not deny the fact that one of the factors that
discourages conducting more advanced research in QA for our languages of interest
is the scarcity of resources.

In the literature, the only published QA research works for Semitic languages
report studies using only Arabic (including the ones we report in Sect. 11.4). Those
works are the following:

Hammou et al. report in [35] their work to build a QA system, QARAB,
fully oriented to the Arabic language. The architecture of QARAB is illustrated
in Fig. 11.2. As reported in their paper, their system relies on a tokenizer and
POS-tagger to preprocess the documents. This is necessary when dealing with any
Semitic language since the data tends to be very sparse in its raw form as mentioned
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Fig. 11.3 ArabiQA system architecture

in Sect. 11.3.1. After retrieving the candidate sentences that may contain the answer
using an IR system, they are processed using a set of keywords to find the answer.

The test-bed of the second QA system was composed of a set of articles from
the Raya newspaper. In the evaluation process four Arabic native speakers were
asked to give the system 113 questions and judge manually the correctness of its
answers. The reported results of precision and recall are of 97.3 %. These (possibly
biased) results seem to be very high if compared with those obtained before for other
languages (cf. Sect. 11.2.3). Unfortunately, the test-bed that was used by the authors
is not publicly available to be used for comparison.

Benajiba et al., in [10], have followed CLEF guidelines to build an evaluation
corpus. Their research study, however, targeted factoid questions only. The resulting
QA system, ArabiQA (cf. Fig. 11.3), employs JIRS for passage retrieval. The same
authors showed in a previous publication [9] that JIRS performs significantly better
when the documents are preprocessed with a stemmer first.

In their paper, the authors report that an answer extraction (AE) module reached
an accuracy of 83.3 %. This AE system relies heavily on their NER system.

Other works that have significantly contributed to the Arabic QA research are
Abouenour et al. in [5] and Trigui et al. in [62]. In Sect. 11.4 we give a detailed
description of their main contributions.

For Semitic languages other than Arabic, we did not find any published works
on QA or any field closely related to it. However, we believe that most of the works
done on Arabic report significant insights can be easily extrapolated to the other
Semitic languages because of the characteristics they share.

In the next section we describe in detail two Arabic QA systems in which we
invite the reader to see more details of the intricacies involved in building a QA
system for a Semitic language.
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11.4 Building Arabic QA Specific Modules

11.4.1 Answering Definition Questions in Arabic

In this section, we detail the approach and the architecture of an Arabic definition
QA system entitled ‘DefArabicQA’ [61].

As mentioned in Sect. 11.1, definition questions are questions asking about inter-
esting information concepts, organizations or persons such as “What is Subliminal
Stimuli?”, “What is the Muslim Brotherhood?” or “Who is Tawakel Karman?”
Figure 11.4 illustrates an example of an Arabic definition question with its expected
answer.

This section describes DefArabicQA, an open-domain definition question
answering system for Arabic language. This system is based on a hybrid approach
constituted of superficial linguistic and statistical methods. The statistical methods
are based on external knowledge, Web mining for QA, frequency and bag-of-words
ranking. These methods are used mainly for both passage retrieval and answer
selection modules. The superficial linguistic methods are based essentially on
lexical pattern, lexical constraint pattern and lexical analyzer. These methods are
used in both question analysis and answer extraction modules.

DefArabicQA System

To perform question answering, as discussed in Sect. 11.2, questions are first
analyzed and a list of predictions is made such as the type of answer expected by
the user. Secondly, a search of a list of relevant documents is performed. And then,
the top relevant passages that probably contain the expected answer are identified. A
list of candidate answers is extracted from these passages. Finally, the top selected
candidate answers are reported.

The architecture of the DefArabicQA system consists of four modules which can
be described as follows: questions analysis, passage retrieval, answers extraction
and answer selection (Fig. 11.5).

Question Analysis

The first module of DefArabicQA is question analysis. A set of lexical question
patterns built by an expert are used in this module to identify the key characteristics
of the question which are: question class, expected answer type, and question topic.
These patterns are illustrated in Fig. 11.6. They cover the most standard linguistic
styles used to ask a definition question in Arabic language about a concept, an
organization, or a person. These question patterns cover respectively in English the
typical form of definition questions started by the interrogative pronouns: WHO and
WHAT used in the data set of the conference TREC [64].
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Fig. 11.4 An Arabic definition question and its expected answer (with its English version)

Fig. 11.5 DefArabicQA system architecture

Fig. 11.6 A list of the Arabic definition lexical question patterns used by DefArabicQA with their
English version

The result of the question analysis module for the definition question:
“� 
�/6RCdV� 
��/ 
E'� _� &(1” (What is the Muslim Brotherhood?), shown in Fig. 11.4,
is as follows: the question class is “definition”, the expected answer type is “a
definition of a group of persons sharing common criteria or a definition of an
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organization”, the question topic is “ 
�/6 R CdV � 
��/ 
E'�”(“Muslim Brotherhood”,)
and the interrogative pronoun is “_� &(1”(‘who is the’).

The key characteristics of the question are essential for the process of the passage
retrieval, answer extraction and answer selection modules.

Passage Retrieval

This is the second module of DefArabicQA. In this module, the search of the
top relevant passages is performed to look for pertinent passages from structured
and unstructured Web documents. The key characteristics of the question (i.e., the
question class, the question topic and the interrogative pronoun) are used to build
the respective search queries. The structured Web documents are collected from
the online encyclopedia “Wikipedia”, while the unstructured Web documents are
collected from the result of the Arabic version of the Google search engine. All these
Web documents are collected according to the respective question search queries.

The search results of the passages retrieved are normalized by replacing some
Arabic characters by standard ones (e.g. the Arabic letter “ ��” is normalized to “ �”).
Then, a list of constraint rules are applied to verify the minimum length of passages
and their language, and the existence of the totality of the words of the question
topic when it is composed of multi-words. The passages satisfying these constraint
rules are kept and used as input to the answer extraction module.

Answer Extraction

This is the third module of DefArabicQA. This module is based on statistical and
surface pattern approaches. A set of 100 definition lexical patterns are built semi-
automatically following a method inspired by the work reported by Ravichandran
and Hovy in [51]. These lexical answer patterns are built to extract precise definition
information (answers) from the collected passages. These patterns are built to deal
with various linguistic styles used in Arabic documents to introduce definition
information. The method used to construct these patterns can be described in four
steps: (i) a set of seeds (i.e., a seed is constituted of a named entity and its definition)
are collected from an annotated corpus, (ii) a set of passages containing both
elements of the respective seed are retrieved, (iii) the lexical answer patterns are
generated from these passages by replacing the seed elements (i.e., named entity
and its respective definition) by these tags: [named entity] and [definition], (iv) an
Arabic expert verifies these lexical answer patterns by removing the tokens that are
not useful and attributing a pertinence score to each pattern. Figure 11.7 illustrates
these steps with an example.

Therefore, the alignment process based on the soft matching method can deal
with non-excepted tokens in a passage [62]. Figures 11.8 and 11.9 (translation
provided in Figure 11.10) illustrates an example of this variation language (i.e., the
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Fig. 11.7 Example of the process of the main steps to build a lexical answer pattern

Fig. 11.8 An example of a successful alignment process based on hard-matching method

tokens “Microsoft Corporation”: are not expected by the pattern at position 3) and
how the alignment process has succeeded in dealing with it.

The soft-matching method clearly helps when the correct information (the
expected answer) is not frequent in the retrieved passages, because in case of
non-redundancy, any missed information means probably an unanswered question.
The flexibility criterion of the alignment process based on soft-matching method
resolves this problem and the infrequent information is identified. Despite this
advantage, the negative consequence of using the soft-matching approach in the
alignment process is the identification of noisy information as candidate answers
in some case. This drawback has its effect on the last answer selection module of
DefArabicQA cases and, therefore, on the overall results [62].

Answer Selection

The fourth module of DefArabicQA employs a statistical approach. The candidate
answers identified by the answer extraction module are classified as appropriate
and inappropriate candidate answers. The criterion used for this classification is
based on the hypothesis that information is correct if it is redundant. A candidate
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Fig. 11.9 An example of a successful alignment process based on soft-matching method

Fig. 11.10 Tokens of the examples in Figs. 11.8 and 11.9 translated from Arabic to English

answer is classified as appropriate if it is constituted by frequency clauses above
a given threshold, otherwise it is classified as inappropriate. The duplicate and
near duplicate candidate answers that are classified as appropriate are moved to
the inappropriate ones. Only the appropriate candidate answers that are different are
kept for the ranking step.

The candidate answers classified as appropriate are ranked according to criteria
related to special and global features of the candidate answers. As described by
Trigui et al. [60], these criteria are: pattern weight criterion, snippet position
criterion, frequent word criterion, and lexical coverage criterion. The top ranked
candidate answers are selected to be reported.

Implementation

The lightweight definition of the QA system for DefArabicQA is developed by the
Anlp-RG research group.1 It is based on tools which are not costly in complexity and

1https://sites.google.com/site/anlprg/

https://sites.google.com/site/anlprg/
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Fig. 11.11 An example of an output of DefArabicQA according to an Arabic definition question

Table 11.1 Results according to the answer expected type

Nature of the expected answers for the questions Correct False Total

A definition answer 79 (89 %) 10 (11 %) 89 (100 %)
A “Nil” answer 20 (51 %) 19 (49 %) 39 (100 %)

time such as Alkhalil morpho sys, reported by Boudlal et al. in [16]. It uses the Web
resource as a corpus. A list of patterns are used both in the question analysis and
the answer extraction modules. These patterns are three definition lexical question
patterns that were built manually by an expert and 100 definition lexical answer
patterns built semi-automatically using 230 seeds.

Figure 11.11 shows an example of the main interface of DefArabicQA. The
question asked is “ � 
�( 1; , 5./ �- _� & 
M 1 ” (in English “Who is Tawakel
Karman?”). The returned answers by the DefArabicQA are annotated by an Arabic
expert as appropriate answers.

Evaluation

DefArabicQA was evaluated on 128 Arabic definition questions. These questions
were manually annotated based on whether or not they have answers. As result of
the annotation, 89 questions were considered as definition questions and 39 were
not (i.e., ‘Nil’ answer expected). The overall results are shown in Table 11.1. The
results are divided according to the annotation of the questions: question expecting a
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definition answer or not. Eighty-nine percent of the questions expecting a definition
answer have obtained correct answers. While 51 % of the questions expecting no
answer have obtained correctly ‘Nil’. The overall accuracy for these 128 definition
questions is 0.77, while MRR is equal to 0.74. This score indicates the performance
of DefArabicQA.

11.4.2 Query Expansion for Arabic QA

As mentioned in Sect. 11.2.3, the Passage Retrieval module plays a key role in a
QA system. So the enhancement of such a module is an important subject for QA
research One possibility is integrating a Query Expansion module on top of PR
module. Let us recall that a Query Expansion process consists in adding new terms
to the bag-of-words in the user query and generating new queries that are used at the
document or passage retrieval stage. Another possibility is using N-gram models in
order to improve the quality of passage ranking that is provided the PR module.

The current section focuses on how QE and N-gram models can be developed
and combined in the context of QA especially for Arabic as one of the Semitic
languages, and discusses the required linguistic resources and datasets as well as
the impact on performances measures.

Recently, Abouenour et al. proposed in [3] an approach that aims at enhancing
performance of PR leveraging semantic QE. This work is not only concerned
with the development of modules but also by resource enrichment, applying and
evaluating statistical approaches to Arabic QA through well-known measures and
an evaluation dataset that was built in the framework of this work.

Actually, in this approach, a question, after being analyzed (keywords extraction,
stopwords removal, question classification, etc.), is processed through two levels:
keyword-based level and structure-based level. The former integrates a semantic
QE module that generates semantically related terms for each question keyword.
The latter applies a PR system that is based on the Distance Density N-gram Model
and is adapted to the Arabic language. Both levels aim at enhancing the quality of
passage ranking.

The proposed approach was tested by the same authors (see [6]) using a dataset
which is composed of: (i) 2,264 TREC and CLEF questions2(with their answers)
translated into Arabic and covering different question types and domains (see
Table 11.2 and Fig. 11.12); (ii) a document collection which is automatically built
from Web snippets returned by the Yahoo API.3 These snippets correspond to
queries generated from the 2,264 questions of the dataset. On average, each question
is concerned by 8 queries and each query provides 30 snippets; so, the collection

2Can be downloaded from: http://sibawayh.emi.ac.ma/ArabicQA/resources/TrecClefQuestions
Arabic.xls
3http://developer.yahoo.com/

http://sibawayh.emi.ac.ma/ArabicQA/resources/TrecClefQuestionsArabic.xls
http://developer.yahoo.com/
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Table 11.2 TREC and CLEF
questions distribution over
categories

Type CLEF TREC Collection

Abbreviation 34 133 167

Count 89 106 195

Location 123 307 430

Measure 16 56 72

Object 26 29 55

Organization 63 57 120

Other 120 340 460

Person 194 258 452

Time 93 208 301

List 6 6 12

Overall 764 1;500 2;264

Fig. 11.12 TREC and CLEF
question distribution over
domains

contains around 556,816 documents (a document per snippet). These documents
have been converted into the SGML format that is used by the PR system integrated
in the structure-based level.

The objective behind building and using this dataset is multi-fold. Firstly, it
fills in a gap in the evaluation material for Arabic QA. In fact, the QA4MRE task
organized on behalf of CLEF 2012 was among the rare campaigns that provided
a test-set and collections that can be used in evaluation of Arabic QA systems.
Secondly, the dataset of 2,264 questions can present complexity that is similar to
that of CLEF and TREC in terms of number and structure. Thirdly, since the main
objective of the evaluation is comparing results before and after using the proposed
approach, we can afford to build the document collection from question queries.
Finally, using CLEF and TREC questions as evaluation test beds gives us an idea
about the difference in Arabic QA performances with respect to different levels
of complexity such as question culture (European and American respectively) and
structure (short and long respectively).

The experimental process followed the cycle shown in Fig. 11.13.
This experimental process integrates three main steps:

• Step 1: concerns the PR process which implements the previously mentioned two
levels.



11 Question Answering 355

Fig. 11.13 Experimental process for the Arabic QA approach evaluation

• Step 2: the passages resulting from the PR process (composed of the two
levels) are considered relevant if they contain the expected answer. The answer
validation task allows evaluating the process on the basis of three well-known
measures namely accuracy, mean reciprocal rank and number of answered
questions.

• Step 3: after analysis of the questions for which our process fails to retrieve
passages containing the right answer, the ontology used as a resource is extended
and the PR process is refined in order to overcome the identified weaknesses and,
therefore, increasing passage relevance.

The evaluation of the proposed approach has a two-fold objective: (i) testing
the usefulness of this approach in a challenging context such as the Web, and
(ii) considering a large number of open-domain questions that have a significant
representativeness of users’ needs.

In the following subsections, we begin by giving an overview of the semantic
QE process integrated in the keyword-based level. After that, we describe the use of
the Java information retrieval system4 (JIRS) as an implementation of the Distance
Density N-gram Model adopted at the structure-based level. We show by example
how this system can decrease the negative effect of the high recall generated by QE.
Finally in this section, the obtained results as well as their analysis are presented
and discussed.

4http://sourceforge.net/projects/jirs

http://sourceforge.net/projects/jirs
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Semantic Query Expansion Based on Arabic WordNet

Overview of the QE Process

The first objective of a QE process is reformulating the user query in such a way
as to consider other related terms. At the retrieval stage, these new terms may help
in forming new queries that can reveal documents with high relevance for the user
even if they do not contain any term of the original query. Generally, light stemming
is applied to each keyword in order to enrich the query by terms sharing the same
stem. In the QA task, the meaning of the user question has to be maintained since
the finality of the system is providing a precise answer rather than listing related
documents. Hence, a semantic QE process is more suitable in this case. Such a
process consists in considering also terms that are nearer in terms of meaning even if
they do not share the same stem. The semantic QE process proposed by Abouenour
et al. in [3] is based on the content and semantic relations in the Arabic WordNet
(AWN) ontology [25] which presents the following advantages:

• The AWN ontology is a free resource for modern standard Arabic (MSA).
• AWN is based on the design and the content of Princeton WordNet (PWN)

described by Fellbaum in [27] and other WordNets. These WNs have been used
in different NLP fields and have proven significantly useful in many applications;

• AWN has a structure which is similar to WordNets existing for approximately 40
languages. Therefore, cross-language processes could be considered later as an
enhancement of the present work.

• AWN is also connected to the suggested upper merged ontology (SUMO) [49].
Let us recall briefly that SUMO is an upper level ontology which provides
definitions for general-purpose terms and acts as a foundation for more specific
domain ontologies. The connection of AWN with SUMO allows these formal
definitions to be used.

The proposed QE process uses four of the semantic relations connecting
AWN synsets. Let us recall that in WordNet, synonyms are grouped into synsets.
Therefore, in addition to the stem-based QE, a question keyword is expanded by
its hyponyms, hypernyms, synonyms and related SUMO concepts. The first three
relations have used in QE for QA for other languages such as English [34]. The
current work proposes for Arabic an approach which is inspired by what was done
for English with two major contributions:

• Considering also SUMO concepts that are connected with AWN synsets;
• Performing a recursive QE process where terms that are generated from the four

relations (i.e., synonymy, hypernymy, hyponymy and SUMO) are again inputs
for the same process. Figure 11.14 illustrates an example where the four kinds of
QE have been applied [5].

Figure 11.14 illustrates the process applied in the keyword-based level. Two
stages are depicted: the preprocessing stage (Node with label 1) and the keywords
expansion stage (Node with label 2). Each stage is composed of elementary tasks.
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Fig. 11.14 Example using the proposed semantic QE

These elementary tasks are illustrated by subnodes that are placed in the figure
from the top down according to their rank in the processing.

As shown in Fig. 11.14, the preprocessing stage (Node 1) which precedes
the keywords expansion stage (Node 2) consists in extracting the most relevant
keywords from the question by removing stopwords. Given the example of the
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question5 “� =�

q/0C*;-� /)� 
AR)�: �QR �A�- ��


Q* � +� O 
)dV � /& (1” (What is the position
held by Silvio Berlusconi?), the set of keywords to be considered at the keywords
expansion stage (Node 2) is formed of the following terms: +� O
)dV � (position), �QR�A�-
(that was held), =�


q/ 0 C *;-� / )� 
A R )� : (Silvio Berlusconi). Figure 11.14 depicts
results after applying this semantic stage on the keyword “+� O
)dV �”. The process
starts by extracting the AWN synsets that are equivalent to the stem of the keyword
concerned.

Therefore, three synsets are found: manoSib_n1AR, manoSib_n2AR and
$aHana_v1AR. After that, the process looks for the SUMO concepts linked to the
three AWN synsets. “Position” is the only concept that is linked to these synsets.

Using the three AWN synsets and the SUMO concept, the process can then
move to the next step of the semantic QE. This step consists in extracting the
AWN synsets that are synonyms, supertypes (hypernym), subtypes (hyponym) and
SUMO definitions related synsets of the three synsets. For instance, the synset
“manoSib_n1AR” has the following related synsets:

• One synonym synset which is
�$ 
A)� 
�� (wZyfp : job);

• A supertype which is
�$ 
)%1 (mhnp : profession) and no subtypes. These related

synsets are linked to the original synset “manoSib_n1AR” using the “hyponym”
relation in AWN;

• The concept “Position” which is linked to the considered original synset has the
following definition in SUMO: “A formal position of responsibility within an
&%Organization. Examples of Positions include president, laboratory director,
senior researcher, sales representative, etc.” Given that in SUMO definitions,
concepts are preceded by the symbols “&%” and “?”, the process can identify the
SUMO concept “Organization” as being related to the “Position” concept. This
new concept is linked to the AWN synset “

�$)�7K?� ” (jamoEiy˜ap : association). The
neighborhood (supertypes and subtypes) of this new synset allows us to reach
new related synsets such as: “

�$6 
P 
)1” (munaZ{ amap : organization), “
�$L(K?� ”

(jamaAEap : community), “
�$1/0E” (Hkwmp : government) and “ =�>s()�: �( 
P 
̂

”
(niZaAm siyaAsiy : political system). The SUMO concept “Organization” is also
linked to other synsets such as “e�̂��” (ra}iys : Chairman). Therefore, new terms
could be reached in the neighborhood of this other synset such as “ZR1” (malik :
king), “ � �� 
�/ *� e �̂�� ” (ra}iys AlwizaraA’ : prime minister) and “e�̂���$*�Q*�” (ra}iys Ald awolap : nation president).

In Fig. 11.14, we illustrate that related synsets are extracted after applying
recursively the four kinds of QE on each original and generated synset. The same
figure shows the words that can replace the keyword “+� O
)dV �” in the question in
order to generate new queries to be passed to the used Search Engine (SE). These
words are those belonging to the generated synsets. In the case of named entities

5Example from the CLEF 2005 questions set.
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(NEs), the keyword is preceded in the question by its supertype rather than replaced
by this supertype.

Improving the QE Resource

The described semantic QE process is applied on each question keyword. Hence, if
none of the question keywords is covered by AWN the question cannot be processed.
A first analysis of the TREC and CLEF questions shows that the use of the current
release of AWN allows applying the process on only 19.9 % of the CLEF questions
and 42.8 % of the TREC questions. In addition, the average of related terms that
can be generated per question is very low (three terms per question in the case
of extension by synonymy). Therefore, an extension of the AWN resource was
necessary in order to achieve a twofold goal: (i) increasing the number of questions
to be considered in the experiments and (ii) enlarging the list of generated terms per
question.

In the NLP community, building large-scale language resources is devoted more
attention as a prerequisite to any NLP application. In the community of WordNets
(WNs), there are many such resources having similar structures. However, dif-
ferences in terms of coverage are observed between European WNs and Semitic
WNs. This is mainly due to the fact that the former was and is still concerned
by a large number of extension works and approaches. The extension of Semitic
WordNets such as AWN and Hebrew WN can profit from these European languages
in terms of approaches and experiences with a special focus on the improvement
of Semitic WN’s usability. In this perspective and in order to reach the previously
mentioned twofold goal, the AWN extension has been investigated in the framework
of existing European WN approaches (such as English and Spanish) and for Arabic
QA usability. Obviously, there are many lines that can be followed and therefore
priorities have to be defined. In order to define priorities in the framework of Arabic
QA, preliminary experiments were conducted and analysis of failed questions
(i.e. questions for the QE process fail to improve the quality of returned passages
and to get the expected answer in the first five ranks) was done. Hence, three main
priorities were figured out: (i) adding new NEs in AWN, (ii) adding new verbs and
(iii) refining synsets hierarchy for nouns. Following these three lines, AWN was
firstly extended by 300,000 NEs extracted from the YAGO6 ontology [57]. These
NEs were semi-automatically translated (into Arabic) and mapped with existing
synsets by means of WordNet-based and heuristic-based techniques [6]. After that,
verbs extracted from the English VerbNet7 as well as the Unified Verb Index8 (UVI)

6YAGO is an ontology with large number of entities (around three million NEs) and related facts
written in English. It is built from WordNet and Wikipedia and is connected with the SUMO
ontology. It is available at http://www.mpi-inf.mpg.de/YAGO-naga/YAGO/downloads.html
7http://verbs.colorado.edu/~mpalmer/projects/verbnet.html
8http://verbs.colorado.edu/verb-index/

http://www.mpi-inf.mpg.de/YAGO-naga/YAGO/downloads.html
http://verbs.colorado.edu/~mpalmer/projects/verbnet.html
http://verbs.colorado.edu/verb-index/
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were translated into Arabic in order to increase the coverage of verbs in AWN.
This translation resulted in around 6,600 verbs that were considered in the process
of mapping verbs with their corresponding AWN synsets through three of the eight
existing mapping heuristics. Note that these heuristics were previously used in many
WordNet building and enrichment projects, e.g. the work presented by Rodríguez
et al., in [54] and that for the sake of accuracy the other five heuristics were not
considered (these five heuristics generated many new but irrelevant verb/synset
connections). The third line that was considered for AWN extension consisted
in refining the hierarchy of nouns in the AWN ontology. The objective behind
this refinement is to be able to generate more terms using QE by subtypes and
supertypes. In this third line, a two-stage technique was adopted:

• Stage 1: Identifying hyponymy patterns over Web snippets. A seed list of AWN
hypernym/hyponym pairs helped in generating Web queries while the Maximal
Frequent Sequences algorithm [29] allowed extracting patterns from the resulting
snippets;

• Stage 2: Instantiating the identified patterns. The instantiation is performed by
searching for hypernym/X and X/hyponym pairs which match the given pattern
where X stands for the searched part of the pair.

The different techniques used in the three AWN extension lines are characterized
by their independence from the set of questions that have been analyzed for the
definition of AWN extension priorities. In fact, the extension processes do not
start from the keywords of these questions but rather from other resources. These
processes allowed adding new instances (around 433,333 NEs), new verbs (C122 %
of what exist in the original AWN) and new hypernym/hyponym associations
(C5 %).

The whole AWN extension can be explored using an online Web interface9 which
allows identifying original and new information in AWN. Figure 11.15 illustrates a
sample entry from this interface.

As depicted in Fig. 11.15, a user can explore the hierarchy of original and
extended AWN synsets through the tree displayed on the left side of the interface.
In our example, the focus is on the synset Q&( �: ($Ahd : to see) under the lexical
node 57
I (fEl : verb). On the right side, the interface shows that this original synset
(we can identify that it is original i.e. it is part of the non-extended version of AWN
since it does not contain the label NS) was augmented by six new word senses
(those having the label NWS) such as @dV (lmH : to descry) and 
FE' (lAHZ : to
take notice). Similarly, the interface helps the user in identifying new added synsets,
instances (i.e. NEs of the selected synset) and word forms (for instance broken plural
form of words or root form of verbs).

To sum up, the keyword-based level generates for each question keyword related
terms on the basis of AWN semantic relations. In order to guarantee that question
keywords are more likely covered by AWN and therefore by the proposed QE

9The AWN extension Web interface is available at http://sibawayh.emi.ac.ma/awn_extension

http://sibawayh.emi.ac.ma/awn_extension
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Fig. 11.15 Example of the extension of the verb synset Q&( �: ($Ahd: to see)

process, AWN has been semi-automatically extended. The QE process can generate
a higher number of related terms per question keyword due to the fact that process is
recursive and that the extended AWN provides more related terms. This situation can
result in extraction of irrelevant snippets by the PR system integrating the proposed
QE process.

In order to limit the eventual negative impact of generated terms using recursion,
preliminary experiments were conducted and showed that by ascending or descend-
ing two levels in the AWN hierarchy, the recursive QE process with subtypes and
supertypes can improve results by 8 % for the accuracy and by around 4 % for the
MRR [3, 4]. Thus, setting this limitation can reduce the number of generated terms
without affecting performance.

In addition, the problem of generating a higher number of related terms by using
the extended AWN can be resolved at the structure-based level of the approach. The
following section gives an overview of this level.

Distance Density N-Gram Model Combined with Semantic QE

The structure-based level of the current approach uses JIRS that implements the
Distance Density N-gram Model [31]. This model considers a sequence of n
adjacent words (n-gram) extracted from a sentence or a question. All possible n-
grams of the question are searched in the collection in concern. It also assigns them
a score according to the n-grams and weight that appear in the retrieved passages.

The JIRS system has the advantage of being language-independent because it
processes the question and the passages without using any language knowledge,
lexicon or syntax [30]. However, some adaptations were added to the system in
order to be used in the context of the Arabic language [9]. The main modifications
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Fig. 11.16 Steps of the JIRS integration in the structure-based level

were made on the Arabic language-related files (text encoding, stop-words, list of
characters for text normalization, Arabic special characters, question words, etc.).

In the same work, the authors conducted preliminary experiments based on a test-
bed developed for Arabic with the same characteristics of the CLEF 2006 collection.
These experiments show that JIRS can retrieve relevant passages also in Arabic
reaching a coverage up to 69 % and a redundancy up to 3.28 when light-stemming
is also processed. It was reported by Gómez et al. in [31] that this QA-oriented
system improves the coverage measure. The same authors in [32], prove empirically
that the JIRS system enhances the MRR. Both works used a Spanish collection and
200 CLEF questions. Balahur et al., in [8], also used the system in increasing the
precision of a process that combines opinion analysis with other challenges, such as
the ones related to English QA.

With respect to these encouraging experiments, it makes sense to use JIRS in
the structure-based level of this approach in order to assign a higher relevance to
passages that present a higher probability to contain the expected answer. Often, the
expected answer appears in a passage with the same question structure. For instance,
in our previous example, the expected structure is “/)� 
A R )�: �QR �A�- ��


Q * � +� O 
) dV �
=�


q/0C*;-�” (the position held by Silvio Berlusconi). Thus passages that contain this
structure will be assigned the highest relevance measured by JIRS score.

The structure-based level integrates JIRS according to four steps as illustrated in
Fig. 11.16. We can summarize these steps as follows:

• Step 1 “snippets retrieval”: using the Yahoo API, 1,000 distinct snippets corre-
sponding to each question query (generated using the semantic QE described in
the previous section) are extracted from the Web. This number was set on the
basis of previous experiments where it has been checked that the optimal value is
between 800 and 1,000 snippets for the Spanish CLEF document collection [31];

• Step 2 “collection building”: a collection is built using the extracted snippets in
the format of JIRS files;
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Table 11.3 Questions covered by semantic QE using the extended AWN

By synonyms By subtypes By supertypes By SUMO def. Semantic QE

CLEF 412 304 337 244 412
% 53.9 39.8 44.1 31.9 53.9
TREC 1,135 660 694 704 1,135
% 75.7 44 46.3 46.9 75.7
Total 1,547 964 1,031 948 1,547
% 68.3 42.6 45.5 41.9 68.3

• Step 3 “collection indexation”: the built collection is indexed using the indexation
process provided by the JIRS API;

• Step 4 “structure-based search”: each question query is searched again but now
against the generated index and relying on the Distance Density N-gram Model
implemented in JIRS.

After step 4, each query generated from the question results in five ranked
passages. This passage ranking is based on the similarity score calculated by the
JIRS system according to the Distance Density N-gram Model. For instance, if we
have 20 queries generated from the question in concern, then 20 sets of 5 ranked
passages are retrieved using the JIRS index corresponding to the collection built in
step 2. From these sets, the five passages with the best JIRS scores are considered
as the most relevant passages for the question.

Using the keyword-based and structure-based levels described in Sects. 11.1
and 11.2, experiments were carried out on the set of 2,264 Arabic TREC and CLEF
questions. The obtained results and the improvements made are discussed in the
following section.

Experiment Results, Analysis of Questions and Performance Improvement

The conducted experiments allow investigating three main issues: (i) the ability of
the used resource (original and extended AWN) to support the proposed QE process,
i.e. what is the percentage of questions that can be expanded per QE type (by
synonyms, by supertypes, etc.); (ii) the ability of the used resource to generate a
high number of new related terms per question; (iii) the impact of the keyword and
structure based levels on performances in terms of accuracy, MRR and answered
questions. Concerning the first two issues, experiments show that using the extended
AWN a significant improvement is reached in terms of covering the questions with
the QE process and generating higher number of related terms. Tables 11.3 and 11.4
show the obtained results.

As Tables 11.3 and 11.4 reveal, the semantic QE process could be applied on
around 68 % of the TREC and CLEF questions thanks to the extended release of
AWN (vs 35 % with the standard release). The other advantage of the proposed
AWN extension is generating a higher number of terms per question. In fact,
the average of generated terms has been significantly improved for the QE by
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Table 11.4 Comparison between standard and extended AWN in terms of generated terms per
question

Avg. generated terms per question Avg. generated terms per question

QE type Original AWN Extended AWN
By synonyms 3 18
By subtypes 1 15
By supertypes 2 23
By definition 1 1

Table 11.5 Results before and after AWN enrichment

Measures
Without the
two-level approach

Using the approach
(original AWN)

Using the approach
(extended AWN)

Acc@G (%) 9.66 17.49 26.76
MRR@G 3.41 7.98 11.58
AQ@G (%) 20.27 23.15 35.94

Synonyms, by Subtypes and by Supertypes. Since the AWN extension did not focus
on the improvement of SUMO concepts/AWN synsets connections, the average of
QE by Definition remained the same.

As regards the third issue investigated by the conducted experiment, let us recall
that terms generated by the semantic QE process are used then to formulate new
Web queries. These queries result in a number of snippets that are processed by JIRS
following the steps described above. The answer of each question is then checked
in the first five snippets. In order to evaluate performances we use the QA measures
describe in Sect. 11.2.5.

Table 11.5 shows the results obtained for these measures with respect to three
cases [2]: (i) using only the SE, (ii) using the two-level approach relying on the
standard release of AWN and (iii) using the same approach but relying on the
extended AWN.

From Table 11.5, it is clear that the proposed approach which is based on
the combination of the keyword-based and structure-based levels has a significant
impact on performances. Indeed, the accuracy reached 17.49 % (vs 9.66 % without
the two-level approach), the global MRR passed from 3.41 to 7.98 and the number
of answered questions increased by around 3 % (from 20.27 to 23.15 %). Table 11.5
also highlights the prominent role of extending AWN which resulted in semantically
expanding a higher number of questions. In fact, this role is raised by roughly 27 %
of accuracy, 12 of global MRR and 36 % of answered questions. The statistical
significance of these results was prooved by a t-test [5].

The above results show that both retrieval performance (measured by means of
accuracy and number of answered questions) and passage ranking quality (measured
by MRR) are enhanced after using the proposed approach. These results are
encouraging due to the following facts:

• The obtained results can be compared to those of QA systems for English.
Indeed, Kim et al. report in [41] a 38.6 MRR and 51.8 % of answered questions
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with respect to lenient evaluation. Aktolga et al. report in [7] that they reached
a 26.1 % accuracy, a 36.3 MRR and 36.4 % of answered questions. Let us recall
that their experiments consider 622 questions from TREC 2000 and TREC 2001
and that their approach also integrates a QE process based on only WordNet
synonymy relations. As we can see, the results in terms of accuracy and number
of answered questions are approximately similar.

• Most of the processed Arabic questions contain NEs. This problem was slightly
resolved by integrating new entities in AWN from YAGO. However, many NEs in
Arabic can have different spelling variants.10 If such variants are not recognized
then the semantic QE approach cannot be applied.

• In the current work, the Web has been queried instead of a document collection.
This is a double-edged sword. While the high redundancy of the Web allows
a better recall, some expected answers cannot be reached due to information
depreciation. This problem concerns particular information about persons. If
we take the previous example, results in the Web for the position held by
“Silvio Berlusconi” will emphasize on current positions rather than those held in
previous periods. For instance, if the question looks for his position in 1990 the
answer may not appear in the first 1,000 snippets. This concerns many questions
since the TREC and CLEF set of questions belong mostly to the year 2004.

• For languages such as Spanish and English, previous experiments with JIRS
report that this system is more likely to retrieve relevant passages when high
redundancy is guaranteed. Unfortunately, the Web does not provide enough
redundancy for many Arabic TREC and CLEF questions. This is mainly due to
the fact that these translated questions come from the European and the American
cultures and are therefore not covered by Arabic Web content.

• The snippets are too small to contain both question keywords and the expected
answer. For example, in a document which contains the structure “��


Q*� +� O 
)dV �
=�


q/0C*;-� /)� 
AR)�: �QR�A�-”, the expected answer “=�X(P�̂'� � �� 
�/*� e�̂��” may not
occur in a snippet composed of 20 words if the distance between this answer and
that structure is higher than 20.

The present work has contributed in the area of Semitic QA systems from
different perspectives through: (i) the development of new modules (semantic QE
process), resources (extended AWN) and approaches (statistical approach based
on the combination of QE and QA-oriented PR systems); (ii) building evaluation
datasets for Arabic QA evaluation which is lacking in the community (in fact, the
list of Arabic TREC and CLEF questions can be reused by other researchers);
(iii) conducting new experiments with language-independent QA tools (i.e. JIRS)
and measures which allow benchmarking with existing campaigns so far not
concerned with Semitic languages.

10The NE resource available at http://langtech.jrc.it/JRC-Names.html claims integrating up to
hundreds of variants for a single person.

http://langtech.jrc.it/JRC-Names.html
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This work can be followed by other Semitic QA projects since the resource
namely AWN exists for these languages with similar structure and semantic rela-
tions and the used statistical approach supported by JIRS is language-independent.

As future works, the proposed AWN extension can be a start point towards a
more refined release to be integrated in the semantic QE process. In this direction,
other AWN extension lines can be considered in particular with the addition of new
semantic relations such as meronymy (i.e., is part-of relation) and the enrichment of
SUMO concept and AWN synsets connections.

11.5 Summary

In this chapter we have described some key concepts to be taken into consideration
when building a QA system for a Semitic language. Two major aspects have been
described:

1. The QA task: that is unique in its goal, i.e. fetch an answer for a specific question
in a pool of documents written in natural language. It is also unique in that the
best QA systems are built not only by investigating the appropriate techniques but
also by putting together several building blocks where each one plays a specific
role.

2. The characteristics of the Semitic languages: for which we have tried to show
that there are intrinsic characteristics, such as the lack of short vowels and the
sparseness of data, that can stymie building robust statistical models for the
different building blocks of the systems. But also the scarcity of resources and
annotated data might be a challenging obstacle towards obtaining the desired
performance.

In Sect. 11.4 we have described two research works, both participating systems in
the Arabic QA task in the QA4MRE track at CLEF 2012. In each one of them
specific modules of QA have been developed for Arabic. In the first one, the
main aim of the research work was to investigate an efficient technique to answer
Arabic definition questions. In order to achieve this endeavor, the DefArabicQA
system was developed. This system is based on a linguistic knowledge approach.
Although this approach has been widely used in the state of the arts, Trigui et al.
in [63] have focused on its impact on the Arabic QA, and its benefits when it is
applied to the Web as a source of descriptive information instead of a collection
of news documents. The experimental results achieved show clearly the efficiency
of the proposed technique. The second research work os aimed at improving the
performances of Arabic QA systems that target open and dynamic domains. To do
so, the focus was placed on enhancing the QE. Expertise learnt from this work after
building the whole system is threefold:

• When working in dynamic domains such as the Web where the collection of
documents grows over time, the F-measure cannot be applied because the recall
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and precision cannot be calculated. It is important also to mention that the three
other measures (MRR, accuracy and AQ) have the same increasing trend.

• Concerning the QE module, it is worth extending the question in order to get
more opportunity to answer it from documents. The extension has to be done
using the closest semantic neighborhood of question keywords. For this purpose,
the semantic resource to rely on (AWN in our case) should be as accurate as
possible and as wide as possible in terms of domain/language coverage.

• Finally, attention should also be devoted to PR. When using the Distance Density
N-gram Model, PR has the effect of decreasing the negative effect of QE noise
(if any) and improving the quality (MRR) of returned passages.

Our main goal was to offer a chapter that could help researchers, engineers and
practitioners better understand the task and the intricacies involved in building them
especially when it comes to morphologically rich/complex languages such as the
Semitic languages.
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Chapter 12
Automatic Summarization

Lamia Hadrich Belguith, Mariem Ellouze, Mohamed Hedi Maaloul,
Maher Jaoua, Fatma Kallel Jaoua, and Philippe Blache

12.1 Introduction

This chapter addresses automatic summarization of Semitic languages. After a
presentation of the theoretical background and current challenges of automatic
summarization, we present different approaches suggested to cope with these
challenges. These approaches fall into two classes: single vs. multiple document
summarization approaches. The main approaches dealing with Semitic languages
(mainly Arabic, Hebrew, Maltese and Amharic) are then discussed. Finally, a
case study of a specific Arabic automatic summarization system is presented. The
summary section draws the most insightful conclusions and discusses some future
research directions.

The summary notion was defined by the American National Standards Institute,
in 1979 as follows: an abbreviated, accurate representation of the content of a
document preferably prepared by its author(s) for publication with it. Such abstracts
are also useful in access publications and machine-readable databases.

Text summarization is then the process to reduce the length or complexity of
the original text without losing the main content, by means of different techniques
such as selection and/or generalization on what is important in the source [52].
According to [75], text summarization is the process of distilling the most important
information from a source (or sources) to produce an abridged version for a
particular user (or users) and task (or tasks).
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The input of the summarization process has traditionally been focused on text.
But it can also be multimedia information, such as images, videos or audios, as well
as on-line information or hypertexts. Furthermore, summarizing can be applied to
multiple documents. This process is known as multi-document summarization and
the source documents in this case can be in a single-language (monolingual) or in
different languages (translingual or multilingual).

The output of the summarization process may be an extract (i.e. when a selection
of significant sentences of a document is performed) or an abstract (i.e. when the
summary can serve as a substitute for the original document) [29].

The above aspects tackled by the summarization task should be considered by
an automatic process of this task. Automatic summarization is a very interesting
and useful task to cope with the increasing availability of online information
on the World Wide Web. Although attempts to generate automatic summaries
started in 1950 [63], automatic summarization is still a challenging research area.
Various research works related to this area have been published (details will be
presented in the following sections of this chapter). However, most of these works
have concentrated on indo-European languages. Works on Semitic languages are
relatively few and not very advanced.

This chapter intends then to investigate the approaches and systems developed
for Semitic languages in the context of automatic summarization.

The rest of the chapter is organized as follows: Sect. 12.2 describes some
aspects related to text summarization. Section 12.3 presents the main evaluation
campaigns and the common measures to evaluate automatic summarization systems.
Sections 12.4 and 12.5 give an overview of the different approaches to generate
summaries for both single and multiple documents. Summarization approaches
built for Semitic languages are outlined in Sect. 12.6. A case study of an Arabic
summarization system is detailed in Sect. 12.7. Finally, Sect. 12.8 concludes this
chapter.

12.2 Text Summarization Aspects

The concepts presented throughout this section (summary types, user types, sum-
mary characteristics, etc.) should be taken into account in the automation of the
summarization task. The summarization machine described by Hovy and Marcu
[47] satisfies this condition. It shows that a source text could have different
summaries (see details in Sect. 12.2.1). Indeed, this machine can be configured
according to user preferences. The parameters taken into account could be the
summary size, type, etc. Note that these parameters have been discussed by several
authors [52, 70].

The summarization machine accepts, as input, a single or multiple documents
with or without a user query and generates, as output, an abstract (a short well-
written text), an extract (a set of pertinent sentences), a template, or a frame. Extract
and abstract forms will be discussed in Sect. 12.2.2.
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Fig. 12.1 A summarization machine [47]

Fig. 12.2 The general architecture of a summarization system [47]

Figure 12.1 shows the inputs, the outputs and the possible options (parameters)
of the summarization machine. The general process recommended for a summa-
rization system, shown in Fig. 12.2, requires three main steps: extraction (or topic
identification), interpretation and generation. Note that filtering is performed when
dealing with multiple document summarization. The required steps depend on the
form of the final product delivered to the user.

The first stage, extraction or topic identification produces simple extracts. It
filters the input to retain only the most important, central, topics. Generally, we
assume that a text could have many sub-topics, and that the topic extraction process
could be parameterized in at least two ways: first, by including more or fewer
topics to produce longer or shorter summaries, and second, by including only topics
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related to the user’s expressed interests. Typically, topic identification is achieved
using several complementary techniques. These techniques will be discussed in
Sects. 1.4 and 1.5.

To produce abstract-type summaries, the core process is the interpretation step.
In this step, two or more topics are fused together to form a third, more general
one. Since the result is something new, not explicitly contained in the input, this
stage requires the system to have access to knowledge different from the input. The
results of interpretation are usually unreadable abstract representations. Systems
therefore include a step of summary generation to produce human readable text.
This step reformulates the extracted and fused material into a coherent, densely
phrased, new text.

12.2.1 Types of Summaries

The same text may have many different summaries depending on various factors:
input, output, purpose, etc. According to Spark Jones [52] and Hovy [45, 46],
different summary types can be distinguished:

• Single-document vs. multi-document source: A summary can be based on one
text in some cases, but it fuses together many texts in other cases. Note that a
multi-document summary is a text that covers the content of more than one input
text, and is usually used only when the input texts are thematically related.

• Domain-specific vs. general: A domain-specific summary derives from input
text(s) which theme(s) pertain to a single restricted domain. Then, it may
be appropriate to apply domain-specific summarization techniques, focus on
specific content, and output specific formats. On the contrary, a general-domain
summary derives from input text(s) in any domain, and can make no such
assumptions [46].

• Extract vs. abstract: The output of a summary system may be an extract
consisting of material entirely copied from the source (i.e. a set of significant
sentences selected from the document). A summary can also be an abstract
generated from an internal representation that results from the input analysis [29].

• Fluent vs. disfluent: A fluent summary is written in full, grammatical sentences
that are related and follow a logical order, according to the rules of coherent
discourse structure. A disfluent summary consists of individual words or text
portions that lead to non-grammatical sentences or incoherent paragraphs [46].

• Neutral vs. biased: A neutral summary presents the essential information without
providing opinions. It tries to be objective. A biased summary extracts and
formulates the content from some point of view. It includes some of the system’s
own bias through inclusion of material with one bias and omission of material
with another.

• Generic vs. query-oriented: Generic summaries can serve as substitute for the
original text and try to represent all relevant material of a source text. They
provide the author’s view whereas query-oriented summaries reflect the user’s
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interest. User-focused summaries select specific themes of the original text, in
response to a user’s query.

• Indicative vs. informative: Indicative summaries are used to underline topics that
are addressed in the source text. They can give a brief idea of what the original
text is about. They provide a reference function for selecting documents for more
in-depth reading. Informative summaries are intended to cover the topics in the
source text at some level of detail [2, 68]. Thus, they reflect the content, and
describe what is in the input text.

• Background vs. just-the-news: A background summary teaches about the topic.
It assumes that the reader does not have enough knowledge of the input text(s)
content, and hence includes explanatory material, such as circumstances of place,
tense, and actors. A just-the-news summary conveys just the newest facts on an
already known subject, assuming the reader is familiar with the topic.

12.2.2 Extraction vs. Abstraction

Summaries produced by automatic systems can be grouped into two families:
extracts and abstracts. On one side, systems producing summaries by abstraction
have to understand the document and then generate a grammatical and coherent text.
On the other side, systems performing extracts should select units (words, sentences,
paragraphs, etc.) that contain the essence of the document and then produce an
extract by assembling them. It was observed that about 70 % of the sentences used in
manually created summaries are taken from the source text without any modification
[60]. As its name implies, an extract is a part taken from a source document to
provide an overview (outline) of its contents.

An abstract relies on two phases: first understanding the source document and
then rewriting the document in a more compact form. Mani [68] distinguishes the
abstract from the extract as follows: an abstract is a text with at least a few units
(paragraphs, phrases, words, etc.) which are not present in the source document.

This definition is nevertheless too restrictive. During the production of an extract,
a copy-paste process can be applied to informative units such as sentence segments
(e.g. nominal or verbal group). Thus, the produced extract will consist of units that
do not appear in the original document.

Most of the extraction methods adopt a linear weighting model. In this model,
each text unit is weighted according to some features such as: the unit’s location in
the source text (Location(U)), how often it occurs in the source text (StatTerm(U)),
the appearance of cue phrases (CuePhrase(U)), and statistical significance metrics
(AddTerm(U)). The sum of these individual weights, usually modified by specific
tuning parameters attached to the weights, is the overall weight of the text unit U
[41]:

Weight .U / WD Location .U /C CuePhrase .U /C StatTerm .U /C AddTerm .U /
(12.1)
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Unlike the linear model in extraction methods, abstraction requires more
resources for natural language processing (NLP), including grammars and lexicons
for parsing and generation. It also requires some common sense and domain-specific
ontologies for reasoning during analysis and salience computation [41] . So, we can
conclude that extraction is easier than abstraction.

12.2.3 The Major Known Challenges

The major challenge in summarization lies in distinguishing the most informative
parts of a document from the less informative ones. Summarization approaches
are often divided into two main groups, text abstraction and text extraction. Text
abstraction presents more challenges: it should parse the original text in a deep
linguistic way, interpret the text semantically into a formal representation, find new
more concise concepts to describe the text and then generate a new shorter text, an
abstract, with the same basic information content. Much knowledge in NLP is then
required to perform the text abstraction.

Text extraction also faces the challenge of determining the effective features of
a text summarization system that extracts the main ideas from source documents
and that covers all important themes. This problem is usually addressed by
text-clustering approach. For example, Carbonell and Goldstein [18] proposes a
contribution to topic driven summary by introducing the Maximal Marginal Rel-
evance (MMR) measure. The idea is to combine query relevance with information
novelty. MMR rewards relevant sentences and penalizes redundant ones.

Other problems consist in resolving automatic text summarization in a language-
domain-independent way. Efforts towards statistical language-independent process-
ing have been taken by the extractive approach, so summarization steps can possibly
be automated in a language-independent system. Such a promising approach has
been proposed by many authors [7, 70, 85]. However, due to the lack of resources
(annotated corpora, NLP tools) for Semitic languages, the goal of language-
independent automatic summarization cannot be reached very soon.

12.3 How to Evaluate Summarization Systems

The process of summary system evaluation faces two major problems. First,
researchers use different metrics when assessing their systems. Second, the eval-
uations are performed on different corpora. The absence of standard test corpora
and metrics makes it very hard to compare different summarization systems. Thus,
some evaluation campaigns have been created. These campaigns have established
standard corpora and metrics firstly to encourage researchers to work on the
summarization field and secondly to ensure a fair evaluation of the different systems.



12 Automatic Summarization 377

12.3.1 Insights from the Evaluation Campaigns

DUC (Document Understanding Conference) is the most important evaluation
campaign created by the community of the automatic summarization and extraction
field. This conference was created by a group of researchers in March 2000
and is directed by the NIST (National Institute for Science and Technology), an
organization under the defense advanced research projects agency (DARPA). In
2008, DUC joined TREC (Text Retrieval Conferences) to form only one conference
namely the TAC conference (Text Analysis Conference).

One should mention that many of the actual advances in the automatic sum-
marization field are the result of the establishment of this annual evaluation
campaign (DUC/TAC). The evaluation performed by these conferences allowed the
researchers to evaluate and compare their systems on a large scale and on the same
corpora. New summarization tasks have been proposed by these conferences.

These tasks have different inputs (biography, blog, multilingual) and purposes
(headline generation, specific). Moreover, the TAC conference proposed an evalua-
tion task to develop new evaluating measures [23].

It should be noted that the availability of previous years’ evaluation data for
DUC/TAC has also made possible the exploration of supervised summarization
methods. Indeed, one could use the corpora released by the conferences, the human
summaries as well as the summaries produced by the participating systems.

12.3.2 Evaluation Measures for Summarization

Summary evaluation could be performed either automatically or manually. Manual
evaluation is based on subjective criteria and produced by a human evaluator to
assess the linguistic quality of a summary. Human evaluators generally attribute
scores to evaluate the grammaticality of the extract, its coherence and its cohesion.
Moreover, human evaluators could determine an overall responsiveness score by
comparing the summary to the source text.

For automatic evaluation there are many evaluation measures developed for the
evaluation campaigns. In the following, we present three main measures: Rouge,
AutoSummEng and Pyramid.

– ROUGE Scores: These metrics allow to evaluate automatically an extract or
a summary by comparing it to several model summaries. ROUGE scores are
used by DUC/TAC 1 conferences to evaluate both human and system summaries
[57]. The scores determined by ROUGE are based on two types of units: model
units (MU) representing the n-grams of the words extracted from the human

1http://www.nlpir.nist.gov/projects/duc/
http://www.nist.gov/tac/

http://www.nlpir.nist.gov/projects/duc/
http://www.nist.gov/tac/
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summaries, used as summary models; and peer units (PU) which result from the
decomposition of the summaries (or the extracts) generated automatically by the
systems into n-grams of words. The ROUGEn metric uses the correspondence
between the distribution of the words (n-grams) of a candidate summary (PU)
and that of the whole human summary (MU). It should be noted that ROUGEn
is the general formula of the ROUGE metric and ROUGE can adopt various
parameters, including word stemming, stop-word removal and n-gram size. For
example, ROUGE2 evaluates bigram co-occurrence while ROUGESU4 evaluates
skip bigrams with a maximum distance of four words. It should be also noted that
there are other metrics of ROUGE called ROUGEBE that consider the minimal
length of syntactically well-formed units [48, 98]

– AutoSummENG: This metric is based on the extraction of relations between n-
grams, given the spatial proximity of those n-grams within a given text [37].
Then, a graph is constructed to indicate the full set of deduced relations. Such
representations are extracted from both system and human summaries. The
graph edges indicate the mean distance between the neighboring n-grams in all
occurrences. A comparison between the graph representation of the generated
summary and the summary models is established, returning a degree of similarity
between the graphs.

– Pyramid: The Pyramid metric [81] is an indirect manual evaluation metric of
summary content. Human assessors read each summary model and determine
the semantic content units (SCU) (i.e., the ideas or statements of a text). To each
pyramid SCU is attributed a score according to its occurrence in the summarizing
system. The pyramid score of a system summary is given by the score of similar
SCU contained in the pyramid.

12.4 Single Document Summarization Approaches

Automatic summarization methods are based on extraction or on abstraction
approaches. The extraction methods generally use a selection algorithm to extract,
from the source text, a list of salient textual units (generally sentences). The final
extract is then generated from this list, by respecting the chronological order in
which the units appear in the source text and ensuring the reduction threshold (i.e., a
maximal number of textual units). In the abstraction methods, the computer program
attempts to interpret, to some degree, the information contained in the document.
The information is condensed into a few core ideas which may be presented in a
readable form via natural language.

We discuss in this section methods based on extraction approaches. Extraction
methods are based on numerical, symbolic knowledge, or hybrid heuristics (i.e.,
combining both knowledge types).
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12.4.1 Numerical Approach

The numerical approach regroups empirical methods which are typically confined
with an assignment of scores (i.e. weights) to the text words and thereafter to the
text sentences. The score assignment is based on specific rules mainly relative to
the identification of indicators or criteria for the importance of each source text
sentence.

The final score of a sentence is thus obtained by aggregating the scores of the
different sentence units. The final sentence score is considered as its importance
degree. The idea is to support sentences which have the highest final scores. The
final decision of a sentence belonging to the extract is also based on the reduction
threshold, which will increase or decrease the chance of the sentence being selected
in the extract. The final extract generation is thus reduced to the concatenation of
the sentences with highest scores in the order of their occurrence in the source
document.

On the practical level, the score calculation is often done by statistical and
probabilistic methods. Thus, the criteria of score attribution can combine different
features: word frequency (tf � idf) [91], sentence position [29], cue phrases [86],
word signature [58], words from the titles, bonus and stigma expressions [78].

In addition to statistical and probabilistic techniques, sentence selection could
rely on learning methods. The general principle of the extraction techniques based
on learning consists of taking advantage of the reference summaries (extracts
or abstracts) produced by professional summarizers in order to build systems
which learn how to classify sentences on the basis of extraction criteria used by
professional summarizers [7, 55, 68].

Various learning methods have been proposed. Turney et al. used the Genetic
Algorithm to learn the best combinations [99]. The Genetic Algorithm was also
adopted by Jaoua et al. to simulate the mechanisms of extract generation and
classification in order to determine the best mechanism which maximizes the
informational quality of the extract [50].

12.4.2 Symbolic Approach

The symbolic approach tries to model the text’s discourse structure. Initial works
use a linguistic level. We cite as an example the work of Hahn [40] which
is based on the identification of the relations of synonymy, generalization and
specification. Barzilay proposed to detect robust lexical chains [9] for performing
the summarization task.

Subsequently, the use of a symbolic approach based on discourse structure
analysis has been imposed. Indeed, the purely symbolic approach is generally done
by a formal representation of the knowledge contained in the documents or by
paraphrasing techniques [94].
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Many works on discourse analysis have been proposed. They are based on the
idea that the text structure and coherence can be represented by rhetorical relations.
These relations constitute valuable tools to consider the discourse under various
angles: (i) they handle the text on a hierarchical basis by connecting its sentences;
(ii) they produce a complement to the sentence semantics; (iii) they establish a
fundamental model to represent the argumentative and/or intentional organizations
which constitute a discourse [90]. The rhetorical structure of text shows then the
centrality of textual units that reflect their importance. In this context, several
symbolic techniques are used for the extraction process, such as the RST (Rhetorical
Structure Theory) [72–74, 83].

Other researchers were interested in exploring the context of the linguistic indica-
tors to determine the discursive nature of the utterance [4, 26]. For example, Minel
[79] identified a set of discursive categories such as the thematic announcement,
the underlining, the definition, the recapitulation and the conclusion. Note that the
filtering could be an overlap between the discursive analysis and other factors such
as the user profile.

12.4.3 Hybrid Approach

Given that the produced summaries are generally not very coherent because of the
disconnection of the extracted sentences from their context, the hybrid approach
tries to fill this gap by combining numerical and symbolic methods to take into
account the discourse features.

Most research works on extraction are based on the extraction of hybrid-based
knowledge coming from various symbolic and numerical sources or even based on
score attribution to information extracted in a symbolic way. In this context, Ono
et al. [83] undertakes the extraction step by representing the source text in the form
of an RST tree and assigning weights to its various nodes according to their position.
Thus, it is the final score which judges the relevance of a tree node.

In the same context, Boudabbous et al. [17] proposed a hybrid approach based on
the joint use of numerical and symbolic techniques to extract the relevant passages
from the source text. The discourse symbolic analysis consists of a rhetorical
analysis which aims to highlight, in a source text, the minimal units (central units)
necessary for the extraction process. When no rhetoric relation is attributed to some
units, the relevance of these units is determined by a learning mechanism based on
the Support Vector Machine (SVM) algorithm.

12.5 Multiple Document Summarization Approaches

Research works on multiple document summarization should consider aspects of
connectivity between the source documents, as well as aspects of redundancy,
consistency, cohesion and organization of extract sentences. The simple approach
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of concatenating the source documents into one document and then applying
single document summarization methods is insufficient. Thus, several works on
multiple document summarization propose specific methods that reflect document
multiplicity.

We survey in this section the current state of the art for multiple document
summarization. As done for single document summarization, we classify the
proposed works in three main approaches: numerical, symbolic and hybrid.

12.5.1 Numerical Approach

The numerical approach for multiple document summarization regroups methods
based on statistical and training techniques to produce extracts. These techniques
are generally applied in order to select, in a first stage, the important sentences and
avoid, in a second stage, the information redundancy. Most techniques, used for the
selection stage, are inspired by research works proposed within the single document
framework, whereas similarity techniques are applied for selected sentences to
ensure the reduction of extract redundancy.

Statistical Methods

Most statistical methods use metrics which inform about the similarity between
the source document textual units in order to create groups (clusters) of similar
units or to avoid the redundancy if the clustering is not carried out. They also use
statistical criteria to measure the importance of these units in order to classify them.
We present below some statistical methods.

– Methods based on the application of an MMR (Maximum Marginal Relevance)
metric proposed by Goldstein et al. [38]. Lin and Hovy [59] have combined
MMR with five heuristics: sentence position, term frequency, concept signature,
term clustering, and tense indicators. Mori et al. [80] have used MMR combined
with an IGR (Informational Gain Rational) metric.

– Methods based on the use of the centroid concept introduced by Radev [88] to
indicate the keywords of a collection. Sekine and Nobata [93], Erkan and Radev
[33], Goldensohn et al. [15] have also used the centroid concept.

– Methods based on the Multiple Sequence Alignments (MSA) technique proposed
by Lacatusu et al. [56] and started by Barzilay and Lapata [10], and on the
algebraic and matrix techniques (e.g. the Latent Dirichlet Allocation method [8]).
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Training Based Methods

Many researchers have used training based methods for multiple document sum-
marization: Conroy et al. [21] combine the MMR metric with a Hidden Markov
Model, Vanderwende et al. [100] use training mechanisms for user query expansion.
In the same way, Dunlavy et al. [28] proceed by question classification and apply
the Hidden Markov Model which uses the word signature.

From the same point of view, training is used to infer similarity measurement
between the sentences and the query words. Jagadeesh et al. [49] proposed to use a
probabilistic model combined with an entropy measurement. Amini and Usunier [6]
proposed a classification allowing determining the importance of a sentence class by
comparing it to the query words. Within the framework of biographical summaries,
Biadsy et al. [14] proposed the use of a classifier to determine the most important
sentences of a text.

12.5.2 Symbolic Approach

The multi-document summarization methods adopting the symbolic approach use
linguistic treatments and analyses which, according to the considered task and to
the used resources, can be described as shallow or deep.

Shallow Analysis Based Methods

Shallow analysis based methods use linguistic indicators to detect the relations
between the words or the sentences of the source documents. These relations make it
possible to deduce the importance of the sentences, their similarity or dissimilitude
and facilitate their classification or clustering.

In this framework, Filatova and Hatzivassiloglou [34] and Nobata and Sekine
[82] proceeded by recognition of the named entities as well as the relations which
they maintain. Zhou et al. [104] determined the category of the sentences resulting
from articles describing human biographies. To summarize blogs, Ku et al. [54]
carried out an analysis based on three word lists expressing the positive, negative
and neutral opinions.

The linguistic indicators detected in document sentences can also be exploited
to identify the textual units that can instantiate predefined summaries templates.
This method was initially applied within the framework of simple document
summarization (i.e. [31, 97]). It has also been used for multiple document sum-
marization: Radev and Mckeown [89] proposed the SUMMONS (SUMMarizing
Online NewS) system for summarizing newspapers describing terrorist acts. White
et al. [102] proposed instantiating the templates with information extracted from
the source newspapers describing natural disasters. In the same way, Daumé et al.
[24] proposed to use summary templates decomposed into two parts: the first part
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describes the main event and the second one presents the event details. Harabagiu
et al. [42] proposed to use the difference between the source articles to instantiate
templates (implemented in the GISTEXTER system). Their method produces an ad
hoc template when the system predefined template base is inadequate to the field of
the document collection.

Deep Analysis Based Methods

Deep analysis based methods use the discourse structure and the semantic and
pragmatic structures of the source texts, in order to determine the rhetorical,
semantic and pragmatic relations between the various units which compose them.
These relations are then exploited on the clustering process level (similar units) as
well as that of relevant unit selection (with strong connectivity). The main research
works can be classified into three methods: the comprehension based method,
the rhetorical structure based method and the lexical and syntactic analysis based
method.

– Comprehension based methods: The comprehension based methods require the
development of conceptual models and robust linguistic and data-processing
tools. In this context, Mani and Bloedorn [69] based their work on Sowa
conceptual graphs, Melli et al. [77] identified the semantic dependences (graphs)
between the source texts on the one hand, and the user query on the other hand.

– Rhetorical structure based methods: The discursive analysis allows to explore
the rhetorical relations between the sentences and the source documents. Thus,
Radev [87] proposed an extension of the rhetorical structure theory called CST
(cross structure theory). They added rules to detect the similarity/dissimilarity
between the documents, the paragraphs and the sentences.

– Lexical and syntactic analysis based methods: The lexical and syntactic analyses
allow identifying the key concepts, and their syntactic relations. Fuentes et al.
[35] exploited the lexical chains, the co-reference chains and the named entity
chains to extract the cohesion forms which connect the sentences of the source
texts. The lexical chain technique was also used by Ercan [32]. Afantenos
et al. [1] focused on the event evolution in the source documents and proposed
the detection of the synchronic and diachronic relations between the described
events. This detection is based on an ontology which exploits the syntactic and
semantic characteristics of analyzed events.

12.5.3 Hybrid Approach

The hybrid approach regroups methods that combine numerical and symbolic
techniques. Note that this combination is often motivated either by the low quality
of the generated summaries, or by limitation of the application fields of the initial
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methods. Within the framework of the hybrid methods, we cite the one proposed by
Mckeown et al. [76]. This method is based on a linguistic and statistical analysis
to determine the summary sentences which convey similar topics. These sentences
are then ordered according to the publication date of their source articles and are
combined according to grammatical rules. It should be noted that this method was
implemented in the MultiGen system which handles documents treating the same
event.

Hatzivassiloglou et al. [43] have proposed a method which organizes similar
small textual units (sentences or paragraphs) in distinct groups. It allows, based
on a selection and generation module, to reduce each of these groups to only one
sentence.

Blair-Goldensohn et al. [15] used the rhetorical structures adopted by Radev to
judge the belonging of a sentence to a summary. They used, within this framework,
statistical criteria such as the centroid concept as well as lexical criteria to determine
the important sentences.

In the same context, Ou et al. [84] proposed a hybrid method which combines
syntactic, discursive and statistical techniques in order to automatically produce
scientific summaries in the field of sociology. The final summary represents a
framework describing four types of information namely: research concepts, interlink
concepts, contextual relations and research methods.

In the context of query focused multi-document summarization, Yeh et al.
[103] proposed to evaluate the relevance of a sentence to the query by combining
similarities calculated from the vector space model and latent semantic analysis.
They also proposed a modified Maximal Marginal Relevance metric in order to
reduce redundancy by taking into account shallow feature salience.

Jaoua et al. [51] proposed a method which considers the extract as the minimal
extraction unit. Extracts built from combination of the source document sentences
are evaluated and then classified. The classification uses a set of criteria aiming to
maximize the coverage of keywords and to minimize the information redundancy in
the extract. The generation and the classification of extracts have been implemented
by using a genetic algorithm. Jaoua et al. also highlighted the importance of using a
multi-objective optimization strategy to classify the extracts. To improve the struc-
tural quality of the produced extracts, they proposed the integration of a revision step
to handle the extract sentences reordering. They have also integrated compression
mechanisms to further enhance the linguistic quality of the final extracts. The
compression was based on a set of compression rules and on a parsing process.

Celikyilmaz and Hakkani-Tur [19] proposed a hybrid multi-document summa-
rization method which considers the extraction as a two-step learning problem. The
first step consists of building a generative model for pattern determination and the
second uses a regression model for inference. They used a hierarchical topic model
to determine the latent characteristics of sentences in document clusters and then to
calculate their scores. Based on these scores, they trained a regression model. This
model is based on the lexical and structural characteristics of the sentences. Finally,
they used this model to determine new sentences which are candidates to form a
summary.
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12.6 Case of Semitic Languages

We survey in this section the current state of the art on automatic summarization
of Semitic languages. While much effort has been put into the development
of summarization systems for processing Modern Standard Arabic (MSA) and
Hebrew, for other Semitic languages the development of such tools lags behind.

As introduced in Chap. 1, the processing of texts written in Semitic languages
poses many challenges. Indeed, Semitic language scripts differ from Indo-European
language scripts. Several linguistic theories, and, consequently, computational
linguistic approaches, are often developed with a narrow set of (mostly European)
languages in mind. The adequacy of such approaches to other families of languages
is sometimes unrealistic. Moreover Semitic texts (except Maltese ones) are written
from right to left whereas the usual treatments handle the texts from left to right. The
non-adequacy of European language approaches to the case of Semitic languages
also applies to automatic summarization when based on symbolic approaches (i.e.,
approaches that rely on grammars or where deep processing is needed, etc.).
However when only shallow processing is used, we could assume that approaches
proposed for European languages could work for any languages, among them
Semitic languages.

In this context, a multilingual task was introduced in TAC’2011 to promote
multi-document summarization approaches that are language independent. Each
system which participated in the task was called to provide summaries for different
languages. Arabic and Hebrew are among the languages that have been introduced
in this task.

In the following, we first present the main automatic summarization systems that
have participated in TAC’2011 and that are language independent. Then, we present
automatic systems that are language dependent.

12.6.1 Language-Independent Systems

Livak et al., proposed Muse system which implements a supervised language-
independent summarization approach based on optimization of multiple statistical
sentence ranking methods [62]. This system extends the initial system proposed
for Hebrew and English languages and uses the same method to process Arabic
documents. The authors concluded that the same weighting model is applicable
across multiple languages to rank important sentences.

Hmida et al. use MMR modified measure to rank sentences for different lan-
guages [44]. In order to reduce the dependence to language, the authors ignore the
notion of word and use n-grams of characters as tokens to represent sentences. The
language-independent MMR system (MMR-IND) was compared to the language-
dependent MMR topline (MMR-DEP). Evaluations had been established for all
languages provided by the TAC’11 multilingual corpus. For Semitic languages,
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results showed that for Hebrew, MMR-DEP is worse than MMR-IND while for
Arabic it is better.

J. Steinberger et al. proposed a language-independent summarization system
that applies a singular value decomposition (SVD) on a term-by-sentence matrix
[96]. In the initial used matrix, the only resource which is language dependent
was a list of stop-words. The SVD determines the latent (orthogonal) dimensions,
which in simple terms correspond to the different topics discussed in the source
document. The author uses the resulting matrixes to identify and extract the most
salient sentences. This system was implemented first for English. The TAC’2011
multilingual task allowed testing the system on other languages. For Semitic
languages, the system was ranked at the top for Hebrew and it was lower than
baseline for Arabic.

Conroy et al. proposed a system that ranks sentences by estimating the prob-
ability that a term will be included in a human-generated summary [22]. The
probability is based on the term signature, and its co-occurrence on the corpus. The
authors chose a non-redundant subset of high scoring using non-negative matrix
factorization to minimize information redundancy in the summary. First, the system
was used for English. This system was experimented with other languages (Arabic
and Hebrew) in the multilingual summarization pilot for TAC’2011.

In the rest of this section, we present some automatic summarization systems that
are language dependent. We focus only on Arabic, Hebrew, Maltese and Amharic
because for the other Semitic languages we did not find any work that is directly or
indirectly related to automatic summarization.

12.6.2 Arabic Systems

Most summarization systems developed for Semitic languages are based on shallow
processing. The use of such techniques (i.e., statistical methods, machine learning,
etc.) can be explained by the lack of NLP tools necessary for deep processing
(parsers, morphological analyzers, etc.).

We present in this section the main Arabic summarization systems.
The Lakhas System [27] is an Arabic automatic summarization system of

single documents. This system extracts the relevant sentences (i.e. sentences to be
included in the summary) according to their weights. Lakhas is intended to generate
very short summaries (headlines). To produce an English summary, Lakhas first
summarizes the original Arabic document and then applies machine translation to
produce the English summary. The advantage is to avoid problems coming from
poor translations. Lakhas addresses multiple difficulties related to Arabic sentence
splitting, tokenization, and lemmatization. The scoring function is based on the
sentence position in the document, the number of subject terms (i.e. words that
appear in the headlines) in the sentence, the number of indicative words in the
document, and the tf.idf value of each word in the sentence. This system was
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evaluated within the framework of the DUC’2004 conference which was about
summarization of documents translated from Arabic to English.

Sobh et al. [95] have proposed an automatic summarization system for Arabic
which integrates Bayesian, genetic programming (GP) and classification methods
to extract the summary sentences. The proposed system is trainable and uses a
manually annotated corpus. It is based on a statistical classification which classifies
a sentence (i.e. as relevant or not) according to its feature vector. The importance
of a sentence is determined by various heuristics such as position, cue phrases,
word/phrase frequency, lexical cohesion, discourse structure and indicator phrases.
GP is used for the optimization to obtain the best feature combination that classifies
sentences. We should note that the system requires annotated training and testing
corpora.

The AQBTSS system [30] is a query-based single document summarization
system that accepts, as input, an Arabic document and a query (also in Arabic)
and provides, as output, a summary. AQBTSS is based on learning techniques.
Indeed, the authors adapted the traditional vector space model (VSM) and the cosine
similarity to find the most relevant passages of the source text and then produce the
text summary.

Schlesinger et al. [92] proposed CLASSY, an Arabic/English query-based multi-
document summarizer system. They used an unsupervised modified k-means
method to cluster multiple documents into different topics. They relied on the
automatic translation of an Arabic corpus into English. The quality of the summaries
was not high enough because of tokenization and sentence-splitting errors.

Alrahabi et al. [3] have proposed an automatic summarization system based
on the contextual exploration method. This method uses linguistic knowledge and
linguistic markers to determine relevant information such as thematic segments,
definitional utterances and conclusive utterances.

Al-Sanie [5] has proposed a system that extends RST for Arabic language to
build a discourse infrastructure for Arabic text summarization. The discourse level
experimented in this work is based on rhetorical relations. The author identified a set
of 23 rhetorical relations and when the relations between the text units are extracted,
a full text representation is built in a binary tree structure called a schema or RS-tree.
The summary consists of the top level nucleus of the rhetorical tree.

Maaloul et al. [64] and Bouadabbous et al. [16] proposed a method that combines
numerical and symbolic techniques to produce extracts for single Arabic documents.
The numerical features are determined by a learning technique based on the SVM
algorithm. Symbolic features introduced in this work are based on the Rhetorical
Structure Theory technique [71] and uses discourse knowledge. The method consists
in determining the rhetorical relations (nucleus-satellite) between the minimal units
of the text. After building a rhetorical relations tree, a filtering step is used to keep
only important rhetorical relations. Note that this summarization method will be
described in more detail in Sect. 12.7.
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12.6.3 Hebrew Systems

For Hebrew, the first work in the field of automatic summarization is probably the
one done by Hacohen et al. [39] for law articles. The summarization is done by
extraction of the most relevant sentences. The developed system combines multiple
statistical methods. To evaluate the weight to attribute to each method, the authors
experimented with many machine learning algorithms such as: perceptron learning,
Naive Bayesian learning, and genetic algorithm. The best results were achieved by
the genetic algorithm.

Recent work has been done by Litvak et al. [61] who have developed a bilingual
system (for Hebrew and English languages). The system uses a genetic algorithm to
find the best linear combination of 31 sentence scoring metrics based on vector and
graph representations of text documents (for both languages). Experimental results
show that the system performances for both languages are quite similar.

12.6.4 Maltese Systems

For Maltese language there are few works on NLP in general and on automatic
summarization in particular. Indeed, development of computational linguistic tools
and resources for Maltese is as yet in its infancy. Some projects to develop such
resources and tools for Maltese are in progress.

One of these projects could be found on the Maltese Language Resource Server
(MLRS) http://mlrs.research.um.edu.mt. The Maltese Language Resource Server
is a project coordinated by the Institute of Linguistics and the Department of
Intelligent Computer Systems at the University of Malta whose primary aim is to
create and make available basic language resources for the Maltese language, as well
as develop natural language processing tools for Maltese. The project has benefited
from funding from the Malta Council for Science and Technology (MCST) and the
University of Malta.

Some information about current projects on a written corpus and a dictionary of
Maltese are available at http://um.edu.mt/linguistics/research/mlrs. Other informa-
tion about the SPAN (Speech Annotation for Maltese Corpora) project which aims
at creating an annotated corpus of spoken Maltese could be found at http://um.edu.
mt/linguistics/research/span.

To our knowledge, the only work that may have some connection to automatic
summarization is [101]. The connection of this research work to Maltese is indirect:
although the summarization system was developed for Maltese property sales
contracts under Maltese law, it is based on a corpus of documents in the English
language (i.e. Maltese is the national language of Malta, and a co-official language
of the country alongside English). According to [101] a version of the system for
Maltese documents could be straightforwardly developed but it has not yet been
done.

http://mlrs.research.um.edu.mt
http://um.edu.mt/linguistics/research/mlrs
http://um.edu.mt/linguistics/research/span
http://um.edu.mt/linguistics/research/span
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12.6.5 Amharic Systems

Amharic is still an under-resourced language (as are most Semitic languages).
Indeed, very few computational linguistic resources has been developed for Amharic
and very little has been done in terms of NLP applications for this language.
However, some research works have tried to develop computational linguistic
resources for Amharic as rapidly as possible in order to create new ones as well
as to extend and refine the resources themselves [36].

All available resources for Amharic could be downloaded from the resource
portal for the Amharic NLP/CL community (nlp.amharic.org). Among them we
can cite: the Amharic manually annotated corpus of 210,000 words and the
AMMORPHO morphological stemmer. One should note that these resources are
still fairly basic and further extensions are quite clearly needed.

To our knowledge there is no work that has been done on the automatic
summarization field for Amharic. The only NLP research works that we found
mainly address information retrieval, machine translation and speech recognition.

12.7 Case Study: Building an Arabic Summarization System
(L.A.E)

We present in this section the L.A.E / =�X
�
'� ( 
[Rp* � system, an automatic summa-

rizer for Arabic [53]. L.A.E is based on an original hybrid approach that combines
numerical and symbolic techniques to extract the relevant text passages [66]. The
symbolic technique relies on a rhetorical analysis which aims to identify the minimal
units of the text and determine the rhetorical relations between them.

The numerical technique is based on supervised machine learning and uses the
Support Vector Machine (SVM) algorithm. This technique allows to decide whether
a sentence having certain rhetorical relations is relevant or not for the final extract
(in particular, the rhetorical relation Others - ; 
E

�
� which is assigned when no other

rhetorical relation is determined).
The learning mechanism relies on a training corpus of 185 news articles collected

from the Web2 without any restriction concerning their theme, content or volume.
They have been manually annotated, by two human experts, to determine the
rhetorical relations and their characteristics.

To our knowledge there is no other annotated corpus that could be used for Arabic
automatic summarization. Hence, the authors constructed their own corpus. The
training corpus size is relatively small. This is due to the fact that the construction
of such corpora is a hard and expensive task.

2http://www.daralhayat.com

nlp.amharic.org
http://www.daralhayat.com
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Source text segmentation

Rhetorical analysis

Morphological analysis

Linguistic criteria

Sentence selection 
User query

XML Extract

Or

Fig. 12.3 L.A.E general architecture [17]

In the rest of this section, we present the L.A.E general architecture and its
implementation details. Then, we describe some aspects of its use and present the
evaluation results based on an original corpus, manually annotated in the context of
this research work.

Note that each Arabic example given in this section will be followed by its
transliteration using the Buckwalter system3 and its English translation.

12.7.1 L.A.E System Architecture

The L.A.E system architecture is based on the proposed hybrid approach that
combines symbolic and numerical techniques (rhetorical analysis and machine
learning). It is composed of four main steps (see Fig. 12.3): source text segmen-
tation, morphological analysis, rhetorical analysis and sentence selection.

One advantage of the hybrid approach is its ability to produce a dynamic
summary according to the user query. Another advantage is the possibility of
determining whether a sentence is relevant or not even though the rhetorical analysis
fails in determining its rhetorical relation.

12.7.2 Source Text Segmentation

The objective of this step is to segment the source text (which could be a HTML
or XML file) into smaller textual units: titles, sections, paragraphs and sentences.
The segmentation relies on a rule-based approach proposed by Belguith et al. [12]
to segment non-vowelled Arabic texts into paragraphs and sentences.

3http://www.qamus.org:80/transliteration.htm

http://www.qamus.org:80/transliteration.htm
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Fig. 12.4 Segmenting rule structure

Fig. 12.5 A rule corresponding to the coordination conjunction � [w] (and)

The proposed approach consists in a contextual analysis of the punctuation
marks, the coordination conjunctions and a list of particles that are considered as
sentence boundaries. One hundred eighty-three rules have been proposed to segment
Arabic texts into paragraphs and sentences [13]. Figure 12.4 shows the general
structure of these segmenting rules.

The segmenting rules are classified into three main classes according to the con-
sidered splitting marker type (i.e. a punctuation mark, a coordination conjunction or
a particle). Figure 12.5 shows an example of a rule corresponding to the coordination
conjunction � [w] (and).

Example 12.1 shows that when applying the rule of Fig. 12.5 on text (T1), this
latter will be segmented into two sentences: (S1) and (S2).

Example 12.1.
(T1)
� �;KL 
M1 ��;j�s(7* � 
M: =�


I Y���;0*� 
�
�
�;�A* � 
F 
AE� ;jr1 =�


I Y* (7* � � 
Q& Q*�
[wld h�A AlEAlm fy mSr wHfZ Alqrjn Alkrym fy sn AlEA$rp mn Emrh]
This scientist was born in Egypt, and he learned the Holy Quran at the age of 10.

(S1)
;jr1 =�


I Y* (7* � � 
Q& Q*�
[wld h�A AlEAlm fy mSr]
This scientist was born in Egypt
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Table 12.1 HTML tag set used to segment Dar al Hayet corpus

HTML tags Role

< P > and < =P > Mark the beginning/end of a paragraph
< DIV > and < =DIV >
<SPAN> and < =SPAN >

< font style D "font � family W Simplified
Arabic;AB Geeza; Times New Roman; TimesI color W
BlackI font� size:15pt I " > and < =font >

Mark the beginning/end of a title

< fontstyle D "font� family W Simplified
Arabic;AB Geeza; Times New Roman; TimesI color W
BlackI font � size W 13pt I " > and < =font >

Mark the beginning/end of a title

(S2)
� �;KL 
M1 ��;j�s(7* � 
M: =�


I Y���;0*� 
�
�
�;�A* � 
F 
AE�

[w HfZ Alqr|n Alkrym fy sn AlEA$rp mn Emrh]
and he learned the Holy Quran at the age of 10.

In addition to the rule set described above, the segmentation is also based on a set of
HTML tags that guides the segmentation process (i.e. in case of HTML documents).
Note that the HTML tag set could relatively change from one corpus to another.

Table 12.1 shows the HTML tag set used for the Dar al Hayet corpus (i.e. news
articles available on the Dar al Hayet magazine website).

The segmentation step provides, as output, an XML file containing the source
text enriched with XML tags that indicate titles, sections, paragraphs and sentences
boundaries (see Fig. 12.6).

Morphological Analysis

The main goal of the morphological analysis is to determine, for each word, the
list of its possible morpho-syntactic features (part of speech (POS), tense, gender,
number, etc.).

The L.A.E system uses the morphological analyzer MORPH-2 [13]. MORPH-2
is based on a knowledge-based computational method to generate for each word its
possible POS (noun, adjective, verb, possessive pronoun, demonstrative pronoun,
preposition, etc.) and its morphological features namely, the gender, the number,
the tense, the personal pronoun, the determination (determined/undetermined) and
the semantic feature (human/non-human) [11]. MORPH-2 operates on five steps.
It accepts an Arabic text (which can be not vocalized, partially vocalized or fully
vocalized). A tokenization process is applied in the first step. Then, the system
determines, in a second step, for each word, its possible clitics. An affixal analysis
is then applied to determine all possible word affixes and roots. The fourth step
consists of extracting the word morpho-syntactic features according to the valid
affixes and root. Finally, a vocalization step is applied in the case of non-vocalized
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Fig. 12.6 Example of a segmentation step output

or partially vocalized texts [20]. MORPH-2 uses a lexicon of 5,754 trilateral and
quadrilateral roots to which all corresponding verbal and nominal schemas are
associated. The combination of roots and verbal schemas provides 15,212 verbal
stems. The combination of roots and nominal schemas provides 28,024 nominal
stems. A set of computing rules is also stored in the lexicon. An interdigitation
process between the verbal schemas and the appropriate rules provides 108,415
computed nouns [20].

The L.A.E morphological analysis step generates, as output, a text in XML
format which consists of the segmentation step output enriched with tags indicating
the words’ morpho-syntactic features that are generated by the MORPH-2 system
(see Fig. 12.7).

Rhetorical Analysis

The rhetorical analysis has a double objective; first, binding two adjacent minimal
units together, of which one has the status of nucleus (central segment) and the other
has the status of nucleus or satellite (optional segment); and second, determining the
rhetorical relations between the various juxtaposed minimal units of the paragraph.
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Fig. 12.7 Example of output
of the morphological analysis
step

Based on a study corpus (i.e. 500 newspaper articles), 20 rhetorical relations have
been manually determined by two human experts (see Fig. 12.8).

The determination of a relation is done by applying a set of constraints (rhetorical
frames) on the nucleus, the satellite and the combination of the nucleus and the
satellite. Thus, a rhetorical frame (see Fig. 12.9) consists of linguistic markers.
These markers are classified into two types: linguistic indicators and complementary
indexes [78]. Linguistic indicators announce important concepts that are relevant to
the summarization task.

The complementary indices are looked for in the neighbouring indicator. Thus,
according to the context, they can confirm or reject the rhetorical relation announced
by the releasing indicator.

Example 12.2 illustrates a sentence extracted from one of the news articles of the
study corpus. This sentence contains a Specification - J)�O
3D�� relation between the
first minimal unit (1) and the second minimal unit (2).
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Fig. 12.8 Rhetorical relations list

Fig. 12.9 A rhetorical relation frame

Example 12.2.

�/E� � Q?
�
� 
�(. 5-� | F�A 
I ��Q
) 
A* � Z* 
	 =�


I $�) 
I; 
L 5-� 
; 
- 
M0-� Y* �� ;jr)��I ;<�)� *
�
� 
M0* `ib

��(L(: $)� 
I =�>

r�A-� 
�(. ��


Q* � �/R 
I =>%�A1 (6)�:' `hb | ��;<�8N�x* � (8N�&(�A1 
J7-� � ��( �C*�
� 
M-�;-� (L (
3}�s�� W1 �

�
� �Q)�E�

[(1) lkn Olbyr qySry lm ykn nzyl grfth fy �lk Alfndq fqT, bl kAn OHd wjwh Al$ArE
wbED mqAhyhA Al$hyrp,
(2) lAsymA mqhY “flwr” Al�y kAn yqDy fyh sAEAt wHydA Ow mE O$xAS
EAbryn.]
(1) Albert Kaisary was not only a resident in that hotel, but he was also one of the
famous street and people cafes,
(2) In particular the cafe Floor in which he spends hours alone or with passengers.

A Specification - J)�O
3D�� relation has generally the role of detailing what is
indicated and confirming its meaning and clarifying it. The specification frame (see
Fig. 12.9) is used to detect the Specification - J)�O
3D�� rhetorical relation.

Empirical studies done on the corpus showed some ambiguities in determining
the correct rhetorical relation between two adjacent segments.

Example 12.3.

�
�
� 
M<��A-� (: ��'�; 
<?� 5)� �I 
M1 ���;-�


Q3D�� �$d �f �+
-(. |;jx�̂ ' ��

Q* � �(34�� � 
Q& =�


I� `ib
� � � ��;<�P 
E ��'

�
(1 =X

�
� +� & 
Q-� `hb Q�I =�q� ;7* � =�>s()�C*� ;<�OdV �

[(1) wfy h�A AlHAl Al�y lA ysr, kAnt vmp tH�yrAt mn qbl jnrAlAt sAbqyn On
AlmSyr AlsyAsy AlErby qd (2) y�hb IlY m|lAt xTyrp: : : ]
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Fig. 12.10 Rhetorical frame corresponding to Example 12.3

Fig. 12.11 Rhetorical frame corresponding to Example 12.4

(1) In these unfavorable conditions, there are warnings from the general army that
the Arabic politics in future may (2) lead to serious consequences. . .

Example 12.4.

�/)�* 23�D


� +�
�I�� � (C
̂; 
I =X

�
� +� & 
	 `hb Q�I =�BRdV� �� 	( 
)* � 
M1 W)� 
I� �� �/C1 `ib

� � � (df� 
� 
M-� Y���;,
[(1) msWwl rfyE mn AlnAdy Almlky qd (2) �hb AlY frnsA w rAqb njm lywn krym
bn zymA: : :]
(1) A leader from the royal team (2) may have gone to France to observe’ the Lyons’
star Karim Benzema. . .

Examples 12.3 and 12.4 show that the releasing indicator may/Q�I provides two

different rhetorical relations: Weighting - @)�E� ;�- and Assertion - � 
;E� . Due to the

absence of complementary indexes in the indicator context, one could not confirm
the concept announced by the indicator. Thus, to solve this ambiguity, Maaloul et al.
[67] propose to use some morphological features (i.e., word POS, verb tense) of the
words occurring immediately after the indicators.

The rhetorical frames corresponding to Examples 12.3 and 12.4 are presented in
Figs. 12.10 and 12.11.

Moreover, to ensure the construction of a unique RST tree Keskes et al. [53]
propose an enrichment phase of the rhetorical relations. This enrichment is based
on morphological frames and correction frames. Figure 12.12 shows the different
phases of the rhetorical analysis step. The first phase consists of determining the
status of the minimal units (i.e. central segment or optional segment) and their
rhetorical relations. This phase is based on a shallow analysis and more precisely
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Fig. 12.12 Rhetorical analysis phases

Fig. 12.13 Example of a correction rule (index-relation type)

on the contextual exploration technique [25]. It uses rhetorical frames based only
on linguistic criteria (releasing indicators and complementary indexes).

The second phase consists of an enrichment of the detected rhetorical relations.
It applies rhetorical frames which are based on morphological criteria in order to
deduce other relations not identified during the first phase.

The third phase aims to correct the obtained rhetorical relations. It applies a set of
correction rules on the set of rhetorical relations determined in the preceding phases.
Note that the correction rules are of two types: index-relation or relation-relation.
Figures 12.13 and 12.14 present two examples of these rules.

The fourth phase consists in producing the RST tree, judged to be the most
representative of the text source structure. The RST tree construction is based on
the five schema types proposed by Mann and Thompson [71]. It is also based on 63
rhetorical rules proposed by Keskes et al. [53].
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Fig. 12.14 Example of correction rule (relation-relation type)

Fig. 12.15 Retained rhetorical relations for the indicative, informative and opinion extracts

Sentence Selection

The sentence selection step aims at identifying relevant sentences, candidates for the
final extract. This extract is dynamic: it can be generated according to a particular
type (indicative, informative, etc.) or according to a user query. Indeed, one user
may prefer extracts focusing on definitional parts while another may be interested
in extracts focusing on conclusive ones.

The sentence selection step is based on two main processes: the RST tree
simplification process and the machine learning process.

The RST tree simplification process: it aims at pruning the RST tree by con-
sidering only interesting rhetorical relations according to the extract type. Indeed,
for each extract type (i.e., indicative, informative, opinion, etc.), the human experts
proposed a list of the most important rhetorical relations. Figure 12.15 shows the list
of retained rhetorical relations for the indicative, informative and opinion extracts.
Note that it is also possible for the user to choose the list of rhetorical relations.

The machine learning process: the rhetorical analysis step is not able to determine
all rhetorical relations. Indeed, when no releasing indicator is detected in a sentence,
it simply assigns the relation Others - ; 
E

�
� to it (i.e. the rhetorical relation Others -

; 
E
�
� is assigned when no other rhetorical relation is determined). In such a case,
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Fig. 12.16 Principle of supervised learning based systems

the machine learning process (i.e. more precisely supervised machine learning) is
used in order to determine whether the sentence is relevant or not. Indeed, sentences
having the relation Others - ; 
E

�
� could be pertinent. Ignoring those sentences when

producing the final summary could negatively affect its quality. Thus, the machine
learning process aims to determine among sentences connected by the rhetorical
relations Others - ; 
E

�
� those which are relevant and consequently will be retained in

the final summary.
The supervised machine learning process relies on two phases: the learning phase

and the use phase (see Fig. 12.16).

The learning phase: it uses a training corpus composed of a set of source docu-
ments and their corresponding extracts. This phase is based on several numerical
criteria useful for the generation of the SVM classification equation: sentence
position in the text, sentence position in the paragraph, number of title words,
number of bonus phrases, number of stigma phrases, anaphoric expressions, lexical
co-occurrence, etc.

The training corpus is formed of 185 articles selected from the magazine Dar
al Hayat -

�� ()�34�� � �	. The choice of the journalistic field is mainly justified by the
important number of linguistic markers [65].

These articles cover several domains although they focus on some domains more
than others (see Table 12.2). According to Boudabbous et al. [17], this is due to the
fact that some domains present more diversity and richness in terms of events and
temporal expressions (e.g. this is the case of the political event domain).

The training corpus was manually tagged by two human experts who selected
the relevant sentences of each article. The reference summaries were generated
manually after experts’ agreement.
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Table 12.2 Training corpus details

Domain Number of articles Article size (sentence number)

Sport news 25 200
National news 45 1,800
Politics 50 2,800
Education 30 660
Science 35 490
Total 185 articles 5,950 sentences

Fig. 12.17 A news article extracted from the training corpus

Figure 12.17 illustrates a news article extracted from the training corpus. The
selected sentences are bounded by the symbol $.

The second phase of the learning process, called the use phase, determines
which sentences, having the rhetorical relations Others - ; 
E

�
�, are relevant to the

final extract.

12.7.3 Interface

The L.A.E system is implemented using Delphi. Figure 12.18 shows the L.A.E
system main interface. This system also integrates some tools, in particular the STAR
tokenizer [12] and the MORPH-2 morphological analyzer [11].

Figure 12.19 shows the user query interface. Many options are offered to the user
and he can choose (i) the extract size in terms of a number of sentences or a reduction
rate, (ii) the extract type (e.g. informative, indicative, opinion) or a personalized
extract (i.e. in this case he can specify the rhetorical relation types to be considered
when generating the extract).
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Fig. 12.18 The L.A.E system interface

Fig. 12.19 User query interface

12.7.4 Evaluation and Discussion

The test corpus consists of 100 newspaper articles extracted from Dar al Hayet
magazine. This corpus is different from the training corpus and the study corpus
presented above. For each test corpus article, there is a summary reference manually
extracted by two human experts. A summary reference is a set of relevant sentences
extracted, by the experts, from the source news articles.

A sentence is considered to be relevant in case both experts agree on it. In the
other case, it is considered to be irrelevant unless it gets a kappa index greater than
0.68.

In order to show the efficiency of the proposed hybrid method, the L.A.E system
was evaluated in two ways. The first evaluation was done by the L.A.E (V0) system
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Fig. 12.20 L.A.E. system evaluation results

which is based only on a purely symbolic approach (i.e. the sentence selection is
based only on the RST analysis) and the second evaluation was done by the L.A.E
(V1) system which is based on a hybrid approach (i.e., the sentence selection is
based on the RST analysis and on the machine learning process).

Figure 12.20 shows that the L.A.E (V1) evaluation results are largely better than
the L.A.E (V0) ones. Indeed, L.A.E (V0) obtained 0.21 for F-measure while the
L.A.E (V1) F-measure reached 0.53. These results confirm that applying a hybrid
approach could enhance the summarization system performance.

12.8 Summary

In this chapter we first described some key concepts related to the summarization
task: task definition, summary types, general architecture of a summarizing system,
extraction vs. abstraction, evaluation measures for summarization, the major known
challenges, automatic summarization and insights from the evaluation campaigns.

Then, we have discussed the main approaches for both single and multiple docu-
ment summarization. Advances in automatic summarization for Semitic languages
and main related research works have been discussed. As a conclusion, we can
say that the main challenging obstacle of these research works is due to (i) the
characteristics of the Semitic languages such as the lack of short vowels, the absence
of punctuation marks, relatively long sentences and rich morphology and (ii) the
sparseness of resources (i.e., NLP tools and corpora) that might stymie building
robust system for automatic summarization and encourage system evaluation on
large corpora.

Finally, we have described a research work where a system for automatic
summarization of Arabic texts has been developed. The main aim of this research
work was to investigate an original hybrid approach to summarize Arabic texts. In
order to achieve this endeavor numerical techniques were combined with symbolic
ones. This approach has the advantage of being able to decide according to the
source text and the symbolic technique results whether a learning approach is
needed or not, in order to enhance the extract quality.

Our main goal was to offer a document that could help researchers, engineers
and practitioners better understand the summarization task and the intricacies
involved in building automatic summarization systems especially when it comes
to morphologically rich/complex languages such as Semitic languages.
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Chapter 13
Automatic Speech Recognition

Hagen Soltau, George Saon, Lidia Mangu, Hong-Kwang Kuo,
Brian Kingsbury, Stephen Chu, and Fadi Biadsy

13.1 Introduction

In this chapter we describe techniques to build a high performance speech rec-
ognizer for Arabic and related languages. The key insights are derived from our
experience in the DARPA GALE program, a 5-year program devoted to enhancing
the state-of-the-art in Arabic speech recognition and translation. The most important
lesson is that general speech recognition techniques work very well also on Arabic.
An example is the issue of vowelization: short vowels are often not transcribed
in Arabic, Hebrew, and other Semitic languages. Semi-automatic vowelization
procedures, specifically designed for the language, can improve the pronunciation
lexicon. However, we also can simply choose to ignore the problem at the lexicon
level, and compensate for the resulting pronunciation mismatch with the use of
discriminative training of the acoustic models. While we focus on Arabic, in this
chapter, we speculate that the vast majority of the issues we address here will
completely carry over to other Semitic languages. We have tested the approaches
discussed in this chapter only on Arabic, as that is the Semitic language with
the most resources. Our experimental results demonstrate that such language-
independent techniques can solve language-specific issues at least to a large extent.
Another example is morphology, where we show that a combination of language-
independent techniques (an efficient decoder to deal with large vocabulary and
exponential language models) and language-specific techniques (a neural network
language model that uses morphological and syntactic features) lead to good results.

H. Soltau (�) • G. Saon • L. Mangu • H.-K. Kuo • B. Kingsbury • S. Chu
IBM T.J. Watson Research Center, Yorktown Heights, NY, USA
e-mail: hsoltau@us.ibm.com; aon@us.ibm.com; mangu@us.ibm.com; hkuo@us.ibm.com;
bedk@us.ibm.com; schu@us.ibm.com

F. Biadsy
Google, New York, NY, USA
e-mail: fadi.biadsy@gmail.com

I. Zitouni (ed.), Natural Language Processing of Semitic Languages,
Theory and Applications of Natural Language Processing,
DOI 10.1007/978-3-642-45358-8__13, © Springer-Verlag Berlin Heidelberg 2014

409

mailto:hsoltau@us.ibm.com
mailto:aon@us.ibm.com
mailto:mangu@us.ibm.com
mailto:hkuo@us.ibm.com
mailto:bedk@us.ibm.com
mailto:schu@us.ibm.com
mailto:fadi.biadsy@gmail.com


410 H. Soltau et al.

Fig. 13.1 Block diagram of an automatic speech recognition system

For these reasons we describe in the text a list of both language-independent and
language-specific techniques. We describe also a full-fledged LVCSR system for
Arabic that makes best use of all the techniques. We also demonstrate how this
system can be used to bootstrap systems for related Arabic dialects and Semitic
languages.

13.1.1 Automatic Speech Recognition

Modern speech recognition systems use a statistical pattern recognition approach to
the problem of transforming speech signals to text. This approach is data-driven:
to build a speech recognition system, practitioners collect speech and text data
that are representative of a desired domain (e.g., news broadcasts or telephone
conversations), use the collected data to build statistical models of speech signals
and text strings in the target domain, and then employ a search procedure to find the
best word string corresponding to a given speech signal, where the statistical models
provide an objective function that is optimized by the search process. A high-level
block diagram of such a speech recognition system is given in Fig. 13.1.

More precisely, in the statistical framework, the problem of speech recognition
is cast as

bW D argmax
W

P.WjXI�/
(13.1)

where W is a word sequence, bW is the optimal word sequence, X is a sequence of
acoustic feature vectors, and � denotes model parameters.

Solving this problem directly is challenging, because it requires the integration of
knowledge from multiple sources and at different time scales. Instead, the problem
is broken down by applying Bayes’ rule and ignoring terms that do not affect the
optimization, as follows:
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bW D argmax
W

P.WjXI�/
(13.2a)

D argmax
W

P.XjWI�/P.WI�/
P.XI�/ (13.2b)

D argmax
W

P.XjWI�/P.WI�/
(13.2c)

Referring back to Fig. 13.1, we can identify different components of a speech
recognition system with different elements of Eq. (13.2). The feature extraction
module (Sect. 13.2.1) computes sequences of acoustic feature vectors, X, from audio
input. The acoustic model (Sect. 13.2.1) computes P.XjWI�/: the probability of
the observed sequence of acoustic feature vectors, X, given a hypothesized sequence
of words, W. The language model (Sect. 13.3.1) computes P.WI�/, the prior
probability of a hypothesized sequence of words. The search process (Sect. 13.3.2)
corresponds to the argmax operator.

13.1.2 Introduction to Arabic: A Speech Recognition
Perspective

An excellent introduction to the Arabic language in the context of ASR can be found
in Kirchhoff et al. [27]. Here we describe only a couple of special characteristics
of Arabic that may not be familiar to non-Arabic speakers: vowelization and
morphology.

1. Vowelization
Short vowels and other diacritics are typically not present in modern written Ara-
bic text. Thus a written word can be ambiguous in its meaning and pronunciation.
An Arabic speaker can resolve the ambiguity based on human knowledge and
various contextual cues, such as syntactic and semantic information. Although
Arabic automatic diacritizaion has received considerable attention by NLP
researchers, the proposed approaches are still error-prone, especially on non-
formal texts. When designing an ASR system, we therefore need to consider
whether to represent words in the vowelized or un-vowelized form for the
language model. Another consideration is whether the pronunciation model or
dictionary should contain information derived from the diacritics, such as short
vowels.

2. Morphology
Arabic is a morphologically rich language. In Arabic morphology, most mor-
phemes are comprised of a basic word form (the root or stem), to which affixes
can be attached to form whole words. Arabic white-space delimited words may
be then composed of zero or more prefixes, followed by a stem and zero or more
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suffixes. Because of the rich morphology, the Arabic vocabulary for an ASR
system can become very large, on the order of one million words, compared
with English which typically has a vocabulary on the order of one hundred
thousand words. The large vocabulary exacerbates the problem of data sparsity
for language model estimation.

Arabic is the only Semitic language for which we have a sufficient amount of
data, through the DARPA GALE program; therefore we have decided to focus
on developing and testing our ASR techniques only for Arabic. We will describe
how our design decisions helped us to successfully overcome some of the Arabic-
dependent issues using new sophisticated language-dependent and independent
modeling methods and good engineering.

It is important to note that the majority of the modeling techniques and algorithms
outlined in this chapter have already been tested on a set of languages such
as English, Mandarin, Turkish and Arabic. While we only discuss these ASR
approaches for Arabic in this chapter, there is no reason to believe that these
approaches would not work for other Semitic languages. The fundamental reason
for this is that we were able to tackle language-specific problems with language-
independent techniques. As an illustration, we also discuss in this chapter the
similarities between the two Semitic languages Arabic and Hebrew. We speculate
that the same language-dependent techniques used to address the challenges of
Arabic ASR, such as the morphological richness of the language and diacritization
would also work for Hebrew.

13.1.3 Overview

This chapter is organized as follows. In the first two sections, we describe the
two major components for state-of-the-art LVCSR: the acoustic model and the
language model. For each model, we distinguish between language-independent
and language-specific techniques. The language-specific techniques for the acoustic
models include vowelization and modeling of dialects in decision trees. The
language-specific parts of the language model include a neural network model
that incorporates morphological and syntactic features. In Sect. 13.4, we describe
how all these techniques are used to build a full-fledged LVCSR system that
achieves error rates below 10% on an Arabic broadcast news task. In Sect. 13.5, we
describe techniques that allow us to port Modern Standard Arabic (MSA) models
to other dialects, in our case to Levantine. We describe a dialect recognizer and
how this can be used to identify relevant training subsets for both the acoustic and
language model. We describe a decoding technique that allows us to use a set of
dialect-specific models simultaneously during run-time for improved recognition
performance. Section 13.6 describes the various data sets we used for system
training, development, and evaluation.
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13.2 Acoustic Modeling

13.2.1 Language-Independent Techniques

Feature Extraction

The goal of the feature extraction module is to compute a representation of the audio
input that preserves as much information about its linguistic content as possible,
while suppressing variability due to other phenomena such as speaker characteristics
or the acoustic environment. Moreover, this representation should be compact
(typically generating about 40 parameters for every 10 ms of audio) and should
have statistical properties that are compatible with the Gaussian mixture models
most often used for acoustic modeling. A very common form of feature extraction
is Mel frequency cepstral coefficients (MFCCs) [16], and most other approaches to
feature extraction, such as perceptual linear prediction (PLP) coefficients, employ
similar steps to MFCCs, so we describe their computation in detail below.

The steps for computing MFCCs are as follows.

1. The short-time fast Fourier transform (FFT) is used to compute an initial time-
frequency representation of the signal. The signal is segmented into overlapping
frames that are usually 20–25 ms in duration, with one frame produced every
10 ms, each frame is windowed, and a power spectrum is computed for the
windowed signal.

2. The power spectral coefficients are binned together using a bank of triangular
filters that have constant bandwidth and spacing on the Mel frequency scale, a
perceptual frequency scale with higher resolution at low frequencies and lower
resolution at high frequencies. This reduces the variability of the speech features
without severely impacting the representation of phonetic information. The filter
bank usually contains 18–64 filters, depending on the task, while the original
power spectrum has 128–512 points, so significant data reduction takes place
here.

3. The dynamic range of the features is reduced by taking the logarithm. This
operation also means that the features can be made less dependent on the
frequency response of the channel and on some speaker characteristics by
removing the mean of the features over a sliding window, on an utterance-by-
utterance basis, or for all utterances attributed to a given speaker.

4. The features are then decorrelated and smoothed by taking a low-order discrete
cosine transform (DCT). Depending on the task, 13–24 DCT coefficients are
retained.

In order to remove the effect of channel distortions, the cepstral coefficients are
normalized so that they have zero mean and unit variance on a per utterance or a per
speaker basis. The final feature stream includes the local temporal characteristics of
the speech signal because these convey important phonetic information. Temporal
context across frames can be incorporated by computing speed and acceleration
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Waveform

Fig. 13.2 Frontend pipeline

Fig. 13.3 Graphical model representation of a hidden Markov model

coefficients (or delta and delta-delta coefficients) from the neighboring frames
within a window of typically ˙4 frames. These dynamic coefficients are appended
to the static cepstra to form the final 39-dimensional feature vector. A more modern
approach is to replace this ad-hoc heuristic with a linear projection matrix that maps
a vector of consecutive cepstral frames to a lower-dimensional space. The projection
is estimated to maximize the phonetic separability in the resulting subspace. The
feature vectors thus obtained are typically modelled with diagonal covariance
Gaussians. In order to make the diagonal covariance assumption more valid, the
feature space is rotated by means of a global semi-tied covariance transform. This
sequence of processing steps is illustrated in Fig. 13.2.

Acoustic Modeling

Speech recognition systems model speech acoustics using hidden Markov models
(HMMs), which are generative models of the speech production process. A graph-
ical model representation of an HMM is given in Fig. 13.3. An HMM assumes
that a sequence of T acoustic observations X D x1; x2; : : : ; xT is generated by an
underlying discrete-time stochastic process that is characterized by a single, discrete
state qt taking on values from an alphabet of N possible states. The state of the
generative process is hidden, indicated by the shading in Fig. 13.3. The HMM also
makes two important conditional independence assumptions. The first is that the
state of the generating process at time t , qt , is conditionally independent of all
states and observations, given the state at the previous time step, qt�1. The second
assumption is that the acoustic observation at time t , xt , is conditionally independent
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of all states and observations, given qt . These conditional independence assumptions
are denoted by the directed edges in Fig. 13.3.

An HMM is specified by four elements: an alphabet of N discrete states for
the hidden, generative process; a prior distribution over q0, the initial state of the
generative process;P.qt jqt�1/, anN�N matrix of state transition probabilities; and
fP.xt jqt /g, a family of state-conditional probability distributions over the acoustic
features. In most large-vocabulary speech recognition systems, the distribution of
initial states is uniform over legal initial states. Similarly, the state transition matrix
only allows a limited number of possible state transitions, but the distribution over
allowable transistions is taken as uniform. Remaining are the methods used to
define the state alphabet, which will be described in detail later in this section, and
fP.xt jqt /g, the observation probability distributions.

The standard approach to modeling the acoustic observations is to use Gaussian
mixture models (GMMs)

P.xt jqj / D
MX

mD1
wmj.2�/

� k2 j˙ mjj� 12 e� 1
2 .xt��mj/

T ˙ �1
mj .xt��mj / (13.3)

where state qj has M k-dimensional Gaussian mixture components with means
�mj and covariance matrices ˙ mj, as well as mixture weights wmj such thatP

m wmj D 1. Note that in most cases the covariance matrices are constrained to be
diagonal. GMMs are a useful model for state-conditional observation distributions
because they can model in a generic manner variability in the speech signal due to
various factors, because their parameters can be estimated efficiently using the EM
algorithm, and because their mathematical structure allows for forms of speaker and
environmental adaptation based on linear regression.

To understand how the HMM state alphabet is defined, it is necessary to
understand how words are modeled in large-vocabulary speech recognition systems.
Speech recognition systems work with a finite, but large-vocabulary (tens to
hundreds of thousands) of words that may be recognized. Words are modeled as
sequences of more basic units: either phonemes or graphemes. Phonemes are the
basic sound units of a language, and are thus a very natural compositional unit for
word modeling. However, using phonemes entails a significant amount of human
effort in the design of the speech recognition dictionary: somebody has to produce
one or more phonetic pronunciations for every word in the dictionary. This cost
has driven the use of graphemic dictionaries, in which words are modeled directly
as sequences of letters. While this approach works well for some languages, such
as Finnish, that have essentially phonetic spellings of words, it works less well for
other languages. For example, consider the pair of letters “GH” in English, which
can sound like “f” as in the word “enough,” like a hard “g” as in the word “ghost,”
or can be silent as in the word “right.”

To characterize the temporal structure of the basic speech units (phonemes
or graphemes), each unit is modeled with multiple states. A popular choice for
modeling is illustrated in Fig. 13.4, where the HMM topology is strictly left-to-right
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Fig. 13.4 A typical 3-state, left-to-right HMM, drawn as a finite-state machine. The beginning (b),
middle (m), and end (e) of a basic speech unit are modeled separately to characterize the temporal
structure of the unit

with self loops on the states. The 3-state model shown can have separate observation
distributions for the beginning, middle, and end of the unit. If different units have
different durations, these may be represented by allocating a greater or fewer
number of states to different units.

A final, key ingredient in modeling of speech acoustics is the concept of context
dependence. While phonemes are considered to be the basic units of speech,
corresponding to specific articulatory gestures, the nature of the human speech
apparatus is such that the acoustics of a phoneme are strongly and systematically
influenced by the context in which they appear. Thus, the “AE” sound in the word
“man” will often be somewhat nasalized because it is produced between two nasal
consonants, while the “AE” in “rap” will not be nasalized. Context-dependence can
also help with the ambiguity in going from spelling to sound in graphemic systems.
Returning to the “GH” example from above, we know for English that a “GH” that
occurs at the end of a word and is preceded by the letters “OU” is likely to be
pronounced “f”.

Although it produces more detailed acoustic models, context-dependence
requires some form of parameter sharing to ensure that there is sufficient data to train
all the models. Consider, for example, triphone models that represent each phone
in the context of the preceding and following phone. In a naive implementation that
represents each triphone individually, a phone alphabet of 40 phones would induce
a triphone alphabet of 403 D 64;000 triphones. If phones are modeled with 3-state,
left-to-right HMMs as shown above, this would lead to 3 � 64;000 D 192;000

different models. Due to phonotactic constraints, some of these models would not
occur, but even ignoring those, the model set would be too large to be practical.

The standard solution to this explosion in the number of models is to cluster the
model set using decision trees. Given an alignment of some training data, defined
as a labeling of each frame with an HMM state (e.g., the middle state of “AE”), all
samples sharing the same label can be collected together and a decision tree can
be grown that attempts to split the samples into clusters of similar samples at the
leaves of the tree. The questions that are asked to perform the splits are questions
about the context of the samples: the identities of the phonetic or graphemic units
to the left and right; the membership of the neighboring units in classes such as
“vowels,” “nasals,” or “stops;” and whether or not a word boundary occurs at some
position to the left or right. A popular splitting criterion is data likelihood under
a single, diagonal-covariance Gaussian distribution. In this case, the decision trees
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can be trained efficiently by accumulating single-Gaussian sufficient statistics for
each context-dependent state, and then growing the decision trees. Once a forest
of decision trees has been grown for all units, they are pruned to the desired size.
Typically, a few thousand to ten thousand context-dependent states will be defined
for a large-vocabulary speech recognition system.

The training process for speech recognition systems is usually iterative, begin-
ning with simple models having few parameters, and moving to more complex
models having a larger number of parameters. In the case of a new task, where
there are no existing models that are adequately matched to it, speech recognition
training begins with a flat start procedure. In a flat start, very simple models with no
context-dependence and only a single Gaussian per state are initialized directly from
the reference transcripts as follows. First, each transcript is converted from a string
of words to a string of phones by looking up the words in the dictionary. If a word
has multiple pronunciations, a pronunciation is selected at random. This produces
a sequence of N phones. Next, the corresponding sequence of acoustic features is
divided into N equal-length segments, and sufficient statistics for each model are
accumulated from its segments. Once the models are initialized, they are refined by
running the EM algorithm, and the number of Gaussian mixture components per
state is gradually increased.

The models that are produced by a flat start are coarse, and usually have poor
transcription accuracy; however, they are sufficient to perform forced alignment of
the training data. In the forced alignment procedure, the reference word transcripts
are expanded into a graph that allows for the insertion of silence between words and
the use of the different pronunciation variants in the dictionary, and then the best
path through the graph given an existing set of models and the acoustic features for
the utterance is found using dynamic programming. The result of this procedure is
an alignment of the training data in which every frame is labeled with an HMM state.
Given an alignment, it is possible to train context-dependent models, as described
above. Typically, for a new task, several context-dependent models of increasing
size (in terms of the number of context-dependent HMM states and the total number
of Gaussians) will be trained in succession, each relying on a forced alignment from
the previous model.

For ASR systems we are interested in the optimality of the recognition accuracy
however, and we aim to train the acoustic model discriminatively so as to achieve the
lowest word error rate on unseen test data. Directly optimizing the word error rate
is hard because it is not differentiable. Alternative approaches look at optimizing
smooth objective functions related to word error rate (WER) such as minimum
classification error (MCE), maximum mutual information (MMI) and minimum
phone error (MPE) criteria. Discriminative training can be applied either to the
model parameters (Gaussian means and variances) or to the feature vectors. The
latter is done by computing a transformation called feature-space MPE (fMPE)
that provides time-dependent offsets to the regular feature vectors. The offsets
are obtained by a linear projection from a high-dimensional space of Gaussian
posteriors which is trained such as to enhance the discrimination between correct
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and incorrect word sequences. Currently, the most effective objective function
for model and feature-space discriminative training is called boosted MMI and is
inspired by large-margin classification techniques.

Speaker Adaptation

Speaker adaptation aims to compensate for the acoustic mismatch between training
and testing environments and plays an important role in modern ASR systems.
System performance is improved by conducting speaker adaptation during training
as well as at test time by using speaker-specific data. Speaker normalization
techniques operating in the feature domain aim at producing a canonical feature
space by eliminating as much of the inter-speaker variability as possible. Examples
of such techniques are: vocal tract length normalization (VTLN), where the goal
is to warp the frequency axis to match the vocal tract length of a reference
speaker, and feature-space maximum likelihood linear regression (fMLLR), which
consists in affinely transforming the features to maximize the likelihood under the
current model. The model-based counterpart of fMLLR, called MLLR, computes a
linear transform of the Gaussian means such as to maximize the likelihood of the
adaptation data under the transformed model.

13.2.2 Vowelization

One challenge in Arabic speech recognition is that there is a systematic mismatch
between written and spoken Arabic. With the exception of texts for beginning
readers and important religious texts such as the Qur’an, written Arabic omits eight
diacritics that denote short vowels and consonant length:

1. fatha /a/,
2. kasra /i/,
3. damma /u/,
4. fathatayn (word-ending /an/),
5. kasratayn (word-ending /in/),
6. dammatayn (word-ending /un/),
7. shadda (consonant doubling), and
8. sukun (no vowel).

There are two approaches to handling this mismatch between the acoustics and
transcripts. In the “unvowelized” approach, words are modeled graphemically, in
terms of their letter sequences, and the acoustics corresponding to the unwritten
diacritics are implicitly modeled by the Gaussian mixtures in the acoustic model.
In the “vowelized” approach, words are modeled phonemically, in terms of their
sound sequences, and the correct vowelization of transcribed words is inferred
during training. Note that even when vowelized models are used the word error rate
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calculation is based on unvowelized references. Diacritics are typically not ortho-
graphically represented in Arabic texts. Diacritization is generally not necessary to
make the transcript readable by Arabic literate readers. Thus, Arabic ASR systems
typically do not output fully diacritized transcripts. Therefore, the vowelized forms
are mapped back to unvowelized forms in scoring – it is also the NIST scoring
scheme. In addition, the machine translation systems we use currently require
unvowelized input. An excellent discussion of the Arabic language and automatic
speech recognition can be found in Kirchhoff et al. [27].

One of the biggest challenges in building vowelized models is initialization:
how to obtain a first set of vowelized models when only unvowelized transcripts
are available. One approach is to have experts in Arabic manually vowelize a
small training set [33]. The obvious disadvantage is that this process is quite labor
intensive, which motivates researchers to explore automated methods [2]. Following
the recipe in [2], we discuss our bootstrap procedure and some issues related to
scaling up to large vocabularies.

Pronunciation Dictionaries

The words in the vocabulary of both the vowelized and unvowelized systems are
assumed to be the same, and they do not contain any diacritics, just as they appear
in most written text. In the unvowelized system, the pronunciation of a word is
modeled by the sequence of letters in the word. For example, there is a single
unvowelized pronunciation of the word Abwh.

Abwh(01) A b w h

The short vowels are not explicitly modeled, and it is assumed that speech associated
with the short vowels will be implicitly modeled by the adjacent phones. In other
words, short vowels are not presented in our phoneme set; acoustically, they will be
modeled as part of the surrounding consonant acoustic models.

In the vowelized system, however, short vowels are explicitly modeled in both
training and decoding. We use the Buckwalter Morphological Analyzer (Version
2.0) [7], and the Arabic Treebank to generate vowelized variants of each word.
The pronunciation of each variant is modeled as the sequence of letters in the
diacriticized word, including the short vowels. For shadda (consonant doubling),
an additional consonant is added, and for sukun (no vowel), nothing is added. For
example, there are four vowelized pronunciations of the written word Abwh.

Abwh(deny/refuse/CtheyCit/him) A a b a w o h u
Abwh(desire/aspire/CtheyCit/him) A a b b u w h u
Abwh(fatherCits/it) A a b u w h u
Abwh(reluctant/unwillingChis/its) A b u w h u
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Table 13.1 Comparison
of different initialization
methods for vowelized
models

Training method WER (RT-04)

Flat-start 23.0 %
Bootstrap 22.8 %

The vowelized training dictionary has 243,368 vowelized pronunciations, cov-
ering a word list of 64,496 words. The vowelization rate is about 95 %. For the
remaining 5 % of words that are not covered, we back off to unvowelized forms.

In the following subsections, we focus on the vowelized system. Since written
transcripts of audio data do not usually contain short vowel information, how does
one train the initial acoustic model? One could use a small amount of data with
manually vowelized transcripts to bootstrap the acoustic model. Alternatively, one
could perform flat-start training.

Flat-Start Training vs. Manual Transcripts

Our flat-start training procedure initializes context-independent HMMs by dis-
tributing the data equally across the HMM state sequence. We start with one
Gaussian per state, and increase the number of parameters using mixture splitting
interleaved within 30 forward/backward iterations. Now, the problem is that we
have 3.8 vowelized pronunciations per word on average, but distributing the data
requires a linear state graph for the initialization step. To overcome this problem,
in the first iteration of training we randomly select pronunciation variants. All
subsequent training iterations operate on the full state graph representing all possible
pronunciations.

We compare this approach to manually vowelized transcripts where the correct
pronunciation variant is given. BBN distributed 10 h of manually vowelized devel-
opment data (BNAD-05, BNAT-05) that we used to bootstrap vowelized models.
These models are then used to compute alignments for the standard training set
(FBISCTDT4). A new system is then built using fixed alignment training, followed
by a few forward/backward iterations to refine the models. The error rates in
Table 13.1 suggest that manually vowelized transcripts are not necessary. The
fully automatic procedure is only 0.2 % worse. We opted for the fully automatic
procedure in all our experiments, including the evaluation system.

Short Models for Short Vowels

We noticed that the vowelized system performed poorly on broadcast conversational
speech. It appeared that the speaking rate is much faster, and that the vowelized state
graph is too large to be traversed with the available speech frames. The acoustic
models do not permit state skipping. One solution is to model the three short
vowels with a shorter, 2-state HMM topology. The results are shown in Table 13.2.
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Table 13.2 Comparison
of different HMM topologies
for short vowels

Topology RT-04 BCAD-05

3-state 19.0 % 28.9 %
2-state 18.5 % 27.4 %

Table 13.3 OOV/WER ratio
for an unvowelized system on
RT-04

Vocabulary OOV rate WER

129k 2.9 % 20.3 %
589k 0.8 % 19.0 %

Table 13.4 OOV/WER ratio for a vowelized system on RT-04

Vocab. Variants Vowel. rate OOV rate WER

129k 538k 90.4 % 2.9 % 19.8 %
589k 1967k 72.6 % 0.8 % 18.3 %

The improvements on RT-04 (broadcast news) are relatively small; however, there
is a 1.5 % absolute improvement on BCAD-05 (broadcast conversations).

Vowelization Coverage of the Test Vocabulary

As mentioned before, we back off to unvowelized forms for those words not covered
by Buckwalter and Arabic Treebank. The coverage for the training dictionary is
pretty high at 95 %. On the other hand, for a test vocabulary of 589k words, the
vowelization rate is only 72.6 %. The question is whether it is necessary to manually
vowelize the missing words, or whether we can get around that by backing off to
the unvowelized pronunciations. One way to test this – without actually providing
vowelized forms for the missing words – is to look at the OOV/WER ratio. The
assumption is that the ratio is the same for a vowelized and an unvowelized system if
the dictionary of the vowelized system does not pose any problems. More precisely,
if we increase the vocabulary and we get the same error reduction for the vowelized
system, then, most likely, there is no fundamental problem with the vowelized
pronunciation dictionary.

For the unvowelized system, when increasing the vocabulary from 129k to 589k,
we reduce the OOV rate from 2.9 % to 0.8 %, and we reduce the error rate by 1.3 %
(Table 13.3). For the vowelized system, we see a similar error reduction of 1.5 %
for the same vocabulary increase (Table 13.4). The system has almost 2 million
vowelized pronunciations for a vocabulary of 589k words. The vowelization rate
is about 72.6 %. In other words, 17.4 % of our list of 589k words are unvowelized
in our dictionary. Under the assumption that we can expect the same OOV/WER
ratio for both the vowelized and unvowelized system, the results in Table 13.3 and
Table 13.4 suggest that the back-off strategy to the unvowelized forms is valid for
our vowelized system.
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Table 13.5 Effect
of pronunciation probabilities
on WER

System RT-04 BCAD-05

Unvowelized 17.0 % 25.4 %
Vowelized 16.0 % 26.0 %
C Pron. prob 14.9 % 25.1 %

Table 13.6 Comparison
of vowelized and
unvowelized models at
various adaptation passes, no
pronunciation probabilities.
RT-04 test set

Decoding pass Unvowelized Vowelized

SI 29.5 % 25.0 %
VTLN 26.2 % 23.1 %
FMLLR 23.0 % 21.1 %
MLLR 22.1 % 20.4 %

Pronunciation Probabilities

Our decoding dictionary has about 3.3 pronunciations per word on average. There-
fore, estimating pronunciation probabilities is essential to improve discrimination
between the vowelized forms. We estimated the pronunciation probabilities by
counting the variants in the 2,330-h training set.

The setup consists of ML models, and includes all the adaptation steps (VTLN,
FMLLR, MLLR). The test sets are RT-04 (Broadcast News) and BCAD-05 (Broad-
cast Conversations). Adding pronunciation probabilities gives consistent improve-
ments between 0.9 % and 1.1 % on all test sets (Table 13.5). Also, pronunciation
probabilities are crucial for vowelized models; they almost double the error
reduction from vowelization. We investigated several smoothing techniques and
longer word contexts, but did not see any further improvements over simple unigram
pronunciation probabilities.

Vowelization, Adaptation, and Discriminative Training

In this section, we summarize additional experiments with vowelized models. One
interesting observation is that the gain from vowelization decreases significantly
when more refined adaptation and training techniques are used. Table 13.6 shows
the error rate of unvowelized and vowelized models with and without adaptation.
The relative improvement from vowelization is more than 15 % at the speaker-
independent level. However, after applying several normalization and adaptation
techniques, the gain drops to 7.7 % at the MLLR level.

An even more drastic reduction of the vowelization gain is observed after
discriminative training (Table 13.7). The vowelized setup includes the 2-state
HMMs for short vowels and pronunciation probabilities. While discriminative
training reduces the error rate by 4.9 % for the unvowelized setup, we observed
an error reduction of only 3.4 % for the vowelized models.

It seems that standard adaptation and discriminative techniques can at least
partially compensate for the invalid model assumption of ignoring short vowels,
and the improvements from vowelization are subsequently reduced when using
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Table 13.7 Comparison of vowelized and unvowelized models before and after discriminative
training. Vowelized system uses pronunciation probabilities and 2-state HMMs for short vowels.
Both systems use speaker adaptation: VTLN, FMLLR, and MLLR. DEV-07 test set

Models Unvowelized Vowelized

ML 17.1 % 14.8 %
fMPECMPE 12.2 % 11.4 %

Table 13.8 Acoustic models
trained without and with
additional TRANSTAC data

Acoustic model WER (DEV-07)

2330h GALE 19.2 %
C 500h TRANSTAC 19.6 %

better adaptation and training techniques. Thus, well-engineered speech recognition
systems using only language-independent techniques can perform almost as well as
systems using language-specific methods.

13.2.3 Modeling of Arabic Dialects in Decision Trees

As shown in Table 13.28, the training data comes from a variety of sources, and there
are systematic variations in the data, including dialects (Modern Standard Arabic,
Egyptian Arabic, Gulf Arabic, etc.), broadcasters (Al Jazeera, Al Arabiya, LBC,
etc.), and programs (Al Jazeera morning news, Al Jazeera news bulletin, etc.).

The problem we face is how to build acoustic models on diverse training data.
Simply adding more training data from a variety of sources does not always
improve system performance. To demonstrate this, we built two acoustic models
with identical configurations. In one case, the model was trained on GALE data
(2,330 h, including unsupervised BN-03), while in the second case we added 500 h
of TRANSTAC data to the training set. TRANSTAC data contains Iraqi Arabic
(Nadji spoken Arabic and Mesopotamian Arabic). Both GALE and TRANSTAC
data are Arabic data, but they represent very different dialects and styles. The model
trained on additional TRANSTAC data is 0.4 % worse than our GALE model (see
Table 13.8).

Both acoustic models used 400k Gaussians, a comparatively large number that
should be able to capture the variability of different data sources. Furthermore,
we did not find that increasing the number of Gaussians could offset the reduced
performance caused by the addition of unmatched training data.

Because adding more training data will not always improve performance, we
need to find which part of the training data is relevant. Training separate models
for each category or dialect requires sufficient training data for each category,
significantly more human and computational effort, and algorithms that reliably
cluster training and test data into meaningful categories. We propose instead to
model dialects directly in the decision trees: a data-driven method for building
dialect-specific models without splitting the data into different categories.
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Similiar approaches using additional information in decision trees can be found
in the literature. Reichl and Chou [37] used gender information to specialize
decision trees for acoustic modeling. Speaking rate, SNR, and dialects were used
in [19], and questions about the speaking mode were used in [45] to build models
for hyperarticulated speech.

Decision Trees with Dialect Questions

We extend our regular decision tree algorithm by including non-phonetic questions
about dialects. The question set contains our normal phonetic context questions,
as well as dynamic questions regarding dialect. Dialect questions compete with
phonetic context questions to split nodes in the tree. If dialect information is
irrelevant for some phones, it will simply be pruned away during tree training.

The training of dialect-specific trees and Gaussian mixture models is straight-
forward. The decision tree is grown in a top-down clustering procedure. At each
node, all valid questions are evaluated, and the question with the best increase in
likelihood is selected. We use single Gaussians with diagonal covariances as node
models. Statistics for each unclustered context-dependent HMM state are generated
in one pass over the training data prior to the tree growing. Dialect information is
added during HMM construction by tagging phones with additional information.
The additional storage cost this entails is quite significant: the number of unique,
unclustered context-dependent HMM states increases roughly in proportion to the
number of different tags used.

The questions used for tree clustering are written as conjugate normal forms.
Literals are basic questions about the phone class or tag for a given position.
This allows for more complex questions such as Is the left context a vowel and is
the channel Al Jazeera (�1DVowel && 0DAlJazeera). Similarly, more complex
questions on the source may be composed. For example, to ask for Al Jazeera, one
would write (0 D AlJazeeraMorning or 0 D AlJazeeraAfternoon). The idea is to
allow a broad range of possible questions, and to let the clustering procedure select
the relevant questions based on the training data. The questions cover all the channel
and dialect information available from the audio filenames.

We used this technique to build a dialect-dependent decision tree for the acoustic
models trained on the combined GALE and TRANSTAC data. We generated a tree
with 15,865 nodes, and 8,000 HMM states. Approximately 44 % of the states depend
on the dialect tag, so the remaining 56 % of the models are shared between two very
different data sources: GALE and TRANSTAC.

Building Static Decoding Graphs for Dynamic Trees

Training dialect-specific models is relatively easy; however, decoding with such
models is more complicated if a statically compiled decoding graph is used. The
problem is that the decision tree contains dynamic questions that can be answered
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−1 = Vowel

A−b−3A−b−1 A−b−2

+2 = SIL

A−b−0

0 = MSA

Fig. 13.5 Decision tree with dialect questions. Each question is of the format ContextPosi-
tionDClass. Leaves are marked with HMM states A-b-0,. . . (phone /A/, begin state)

0 = MSA

+2 = SIL

A−b−2 A−b−3

0 = MSA

A−b−1 +2 = SIL

A−b−2 A−b−3

−1 = Vowel

A−b−0

Fig. 13.6 Decision tree after one transformation step. The original root 0DMSA was replaced by
the left child �1DVowel, and a new copy of 0DMSA was created

else   : A−b−0

MSA : A−b−2

−1 = Vowel

+2 = SIL +2 = SIL

Virtual−0 Virtual−1 Virtual−2 Virtual−3

else   : A−b−0

MSA : A−b−2MSA : A−b−3

else   : A−b−1 else   : A−b−1

MSA : A−b−3

Fig. 13.7 Reordered decision tree. Dynamic questions are replaced by virtual leaves

only at run-time, and not when the graph is compiled. The solution for this
problem is to separate the decision tree into two parts: a static part containing only
phonetic questions, and a dynamic part for the dialect questions. The decision tree
is reordered such that no dynamic question occurs above a static question. The static
part of the decision tree can be compiled into a decoding graph as usual, while the
dynamic part of the tree is replaced by a set of virtual leaves. The decoder maintains
a lookup table that transforms each virtual leaf to a corresponding dialect-specific
leaf at run-time.

In the following we explain how to reorder the decision tree such that dynamic
questions do not occur above static questions. Figures 13.5–13.7 illustrate the
process. In this example, the root of the tree is marked with the question 0DMSA.
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Table 13.9 Reordered tree
statistics
for GALEC TRANSTAC
setup

Number of nodes 15,865
Number of leaves 8,000
Dialect-dependent leaves 44.3 %
Number of reordered nodes 29,137
Number of virtual leaves 7,085

If the center phone is marked as Modern Standard Arabic (MSA), the right branch
will be chosen, otherwise the left branch.

The reordering algorithm consists of a sequence of transformation steps. In each
step, a dynamic question node is pushed down one level by replacing it with one
of its children nodes. Figure 13.6 shows the tree after applying one transformation
step. In each transformation step, the selected dynamic question node is duplicated
together with one of its branches. In this example, the right branch starting with
C2 D SIL is duplicated. The node to be moved up (promoted) (�1 D Vowel in
Fig. 13.6) is separated from its subtrees and moved up one level, with the duplicated
subtrees becoming its children. The subtrees that were originally children of the
promoted node become its grandchildren. The resulting tree is equivalent to the
original tree, but the dynamic question is now one level deeper.

The reordering procedure terminates when no transformation step can be applied.
In the worst case, this procedure causes the decision tree’s size to grow expo-
nentially; however, in practice we observe only moderate growth. Table 13.9
summarizes the tree statistics after reordering. The number of internal nodes grew
by only a factor of 2, which is easily managed for decoding graph construction.

The last step is to separate the static and dynamic tree parts. The dynamic
question nodes are replaced by virtual leaves for the graph construction. The
virtual leaves correspond to lookup tables that map virtual leaves to physical HMM
states at run-time. The static decoding graph can now be constructed using the
tree with virtual leaves. At run-time, dialect information is available,1 and virtual
leaves can be mapped to the corresponding physical HMM states for acoustic score
computation.

Experiments

We use our vowelized Arabic model as a baseline in our experiments. The
vocabulary has about 737,000 words, and 2.5 million pronunciations. The language
model is a 4-gram LM with 55M n-grams. Speaker adaptation includes VTLN
and FMLLR. All models are ML trained. In addition to the GALE EVAL-06 and
DEV-07 test sets, we also used a TRANSTAC test set comprising 2 h of audio.

1This can be done via a separate dialect ID tool, as described in Sect. 13.5.1, selecting the dialect
with the best likelihood, or other sources of information.
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Table 13.10 Comparison
of regular tree and tree with
dialect questions. GALE
DEV-07 test set

Acoustic model Regular tree Dialect tree

2330h GALE 19.2 % 18.6 %
C 500h TRANSTAC 19.6 % 18.7 %

Table 13.11 Comparison
of regular tree and tree with
dialect questions.
TRANSTAC test set

Acoustic model Regular tree Dialect tree

2330h GALE 35.9 % –
C 500h TRANSTAC 25.9 % 24.7 %

Table 13.12 Comparison of regular tree and tree with dialect questions with unsupervised training
data. GALE EVAL-06 and DEV-07 test sets

Test set Regular tree Dialect tree

EVAL-06 30.2 % 29.6 %
DEV-07 20.3 % 19.5 %

The dialect labels are derived from the audio file names. The file names encode TV
channel and program information.

In the first experiment we train four acoustic models. Each model has 8,000 states
and 400,000 Gaussians. The models are trained on either 2,330 h of GALE data or
on the GALE data plus 500 h of TRANSTAC data. For each training set, we train
one model using the regular (phonetic context only) question set and one using
phonetic and dialect questions. The test set is DEV-07. The results are summarized
in Table 13.10. For the GALE model, we see an improvement of 0.6 % WER. The
improvement for the GALE C TRANSTAC training set is slightly higher, 0.9 %.
The results suggest that the decision tree with dialect questions can better cope with
diverse, and potentially mismatched, training data.

In the second experiment (Table 13.11), we use the same set of acoustic models
as before, but the vocabulary and language model are now TRANSTAC-specific and
the test set is drawn from TRANSTAC data. Adding TRANSTAC data improves the
error rate from 35.9 to 25.9 %. Adding the dialect-specific questions to the tree-
building process improves the error rate by an additional 1.2 %. We did not test the
dialect tree trained on GALE data only. The tree does not contain any TRANSTAC-
related questions, since the models were trained on GALE data only.

In the final experiment, we use a large amount of unsupervised training data from
our internal TALES data collection. The acoustic model was trained on 2,330 h of
GALE data plus 5,600 h of unsupervised training data. The results are shown in
Table 13.12. The dialect-dependent decision tree reduces the error rate by 0.6 %
on EVAL-06 and 0.8 % on DEV-07. While adding more unsupervised training data
does not help if large amounts of supervised training data are available, we observe
that the dialect tree is able to compensate for adding “unuseful” data (Table 13.12).
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13.3 Language Modeling

13.3.1 Language-Independent Techniques for Language
Modeling

Base N -Grams

The standard speech recognition model for word sequences is the n-gram language
model. To see how an n-gram model is derived, consider expanding the joint
probability of a sequence of M words in terms of word probabilities conditioned
on word histories:

P.wM ;wM�1; : : : ;w3;w2;w1/ D P.w1/ � P.w2jw1/ � P.w3jw2;w1/ � � � � �
P.wM jwM�1; : : : ;w3;w2;w1/

(13.4)

Given that the words are drawn from a dictionary containing tens to hundreds of
thousands of words, it is clear that the probability of observing a given sequence of
words becomes vanishingly small as the length of the sequence increases. The solu-
tion is to make a Markov assumption that the probability of a word is conditionally
independent of previous words, given a history of fixed length h. That is,

P.wM ;wM�1; : : : ;w3;w2;w1/ Ñ P.w1/ � P.w2jw1/ � P.w3jw2;w1/ � � � � �
P.wM jwM�1;wM�2/

(13.5)

A model that makes a first-order Markov assumption, conditioning words only
on their immediate predecessors, is called a bigram model, because it deals with
pairs of words. Likewise, a model that makes a second-order Markov assumption is
called a trigram model because it deals with word triplets: two-word histories and
the predicted word. Equation (13.5) illustrates a trigram model.

N-gram language models are trained by collecting a large amount of text and
simply counting the number of times each word occurs with each history. However,
even with the n-gram assumption, there is still a problem with data sparsity: a
model based only on counting the occurrences of words and histories in some
training corpus will assign zero probability to legal word sequences that the speech
recognition system should be able to produce. To cope with this, various forms of
smoothing are used on language models that reassign some probability mass from
observed events to unobserved events. The models described below generally use
modified Kneser–Ney smoothing [1, 13].



13 Automatic Speech Recognition 429

Model M

Model M [11] is a class-based n-gram model; its basic form is as follows:

p.w1 � � �wl / D
lC1Y

jD1
p.cj jcj�2cj�1;wj�2wj�1/p.wj jwj�2wj�1cj / (13.6)

It is composed of two submodels, a model predicting classes and a model
predicting words, both of which are exponential models. An exponential model
p
.yjx/ is a model with a set of features ffi .x; y/g and equal number of parameters

 D f�i g where

p
.yjx/ D exp.
P

i �ifi .x; y//

Z
.x/
(13.7)

and where Z
.x/ is a normalization factor defined as

Z
.x/ D
X

y0

exp.
FX

iD1
�ifi .x; y

0// (13.8)

Let png.yj!/ denote an exponential n-gram model, where we have a feature
f!0 for each suffix !0 of each !y occurring in the training set; this feature has the
value 1 if !0 occurs in the current event and 0 otherwise. For example, the model
png.wj jwj�1cj / has a feature f! for each n-gram ! in the training set of the form
wj , cjwj , or wj�1cjwj . Let png.yj!1; !2/ denote a model containing all features in
png.yj!1/ and png.yj!2/. Then, the distributions in Eq. (13.6) are defined as follows
for the trigram version of Model M:

p.cj jcj�2cj�1;wj�2wj�1/ 	 png.cj jcj�2cj�1;wj�2wj�1/ (13.9)

p.wj jwj�2wj�1cj / 	 png.wj jwj�2wj�1cj / (13.10)

To smooth or regularize Model M, it has been found that `1 C `22 regularization
works well; i.e., the parameters
 D f�i g of the model are chosen to minimize

O`1C`22.
/ D log PPtrain C ˛

Ctot

X

i

j�i j C 1

22Ctot

X

i

�2i (13.11)

where PPtrain denotes training set perplexity and where Ctot is the number of words
in the training data. The values ˛ and  are regularization hyperparameters, and
the values .˛ D 0:5; 2 D 6/ have been found to give good performance for a
wide range of operating points. A variant of iterative scaling can be used to find the
parameter values that optimize Eq. (13.11).
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Neural Network Language Model

The neural network language model (NNLM) [3, 17, 44] uses a continuous rep-
resentation of words, combined with a neural network for probability estimation.
The model size increases linearly with the number of context features, in contrast
to exponential growth for regular n-gram models. Details of our implementation,
speed-up techniques, as well as the probability normalization and optimal NN
configuration, are described in [18].

The basic idea behind neural network language modeling is to project words into
a continuous space and let a neural network learn the prediction in that continuous
space, where the model estimation task is presumably easier than the original
discrete space [3, 17, 44]. The continuous space projections, or feature vectors, of
the preceding words (or context features) make up the input to the neural network,
which then will produce a probability distribution over a given vocabulary. The
feature vectors are randomly initialized and are subsequently learned, along with the
parameters of the neural network, so as to maximize the likelihood of the training
data. The model achieves generalization by assigning to an unseen word sequence
a probability close to that of a “similar” word string seen in the training data. The
similarity is defined as being close in the multi-dimensional feature space. Since the
probability function is a smooth function of the feature vectors, a small change in
the features leads to only a small change in the probability.

To compute the conditional probability P.yjx1; x2; � � � ; xm/, where xi 2 Vi
(input vocabulary) and y 2 Vo (output vocabulary), the model operates as follows:
First for every xi ; i D 1; � � � ; m, the corresponding feature vector (continuous
space projection) is found. This is simply a table lookup operation that associates
a real vector of fixed dimension d with each xi . Secondly, these m vectors are
concatenated to form a vector of size m � d . Finally this vector is processed by the
neural network which produces a probability distribution P.:jx1; x2; � � � ; xm/ over
vocabulary Vo at its output.

Note that the input and output vocabularies Vi and Vo are independent of
each other and can be completely different. Training is achieved by searching for
parameters˚ of the neural network and the values of feature vectors that maximize
the penalized log-likelihood of the training corpus:

L D 1

T

X

t

logP.yt jxt1; : : : ; xtmI˚/ � R.˚/ (13.12)

where superscript t denotes the t th event in the training data, T is the training data
size and R.˚/ is a regularization term, which in our case is a factor of the L2 norm
squared of the hidden and output layer weights.

The model architecture is given in Fig. 13.8 [3,17,44]. The neural network is fully
connected and contains one hidden layer. The operations of the input and hidden
layers are given by:
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outputhidden layer
input layer

L S

tanh softmax

y

x 1

x 2

xm

Fig. 13.8 The neural network architecture

f D .f1; : : : ; fd �m/ D .f.x1/; f.x2/; � � � ; f.xm//
gk D tanh .

P
j fjLkj C B1

k/ k D 1; 2; : : : ; h

where f.x/ is the d -dimensional feature vector for token x. The weights and biases
of the hidden layer are denoted by Lkj and B1

k respectively, and h is the number of
hidden units.

At the output layer of the network we have:

zkDP
j gj SkjCB2k kD1;2;:::;jVo j

pk D ezk
P

j e
zj

k D 1; 2; : : : ; jVoj (13.13)

with the weights and biases of the output layer denoted by Skj and B2
k respectively.

The softmax layer (Eq. (13.13)) ensures that the outputs are valid probabilities and
provides a suitable framework for learning a probability distribution.

The kth output of the neural network, corresponding to the kth item yk of
the output vocabulary, is the desired conditional probability: pk D P.yt D
ykjxt1; : : : ; xtm/.

The neural network weights and biases, as well as the input feature vec-
tors, are learned simultaneously using stochastic gradient descent training via
back-propagation algorithm, with the objective function being the one given in
Eq. (13.12). Details of the implementation, speed-up techniques, as well as the
probability normalization and optimal NN configuration, are described in [18].

Given the large vocabulary of the Arabic speech recognition system, data
sparsity is an important problem for conventional n-gram LMs. Our experience is
that NNLM significantly reduces perplexity as well as word error rate in speech
recognition. Results will be presented later together with those of an NNLM that
incorporates syntactic features.
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13.3.2 Language-Specific Techniques for Language Modeling

In this section, we describe a language model that incorporates morphological and
syntactic features for Arabic speech recognition [29, 30]. This method is language
specific in the sense that certain language-specific resources are used, for example,
an Arabic parser.

With a conventional n-gram language model, the number of parameters can
potentially grow exponentially with the context length. Given a fixed training set,
as n is increased, the number of unique n-grams that can be reliably estimated is
reduced. Hence in practice, a context no longer than three words (corresponding to
a 4-gram LM) is used.

This problem is exacerbated by large vocabularies for morphologically rich
languages like Arabic. Whereas the vocabulary of an English speech recognition
system typically has under 100k words, our Arabic system has about 800k words.
The idea of using rich morphology information in Arabic language modeling has
been explored by several researchers. The most common idea has been to use
segments, which are the result of breaking an inflected word into parts, for better
generalization when estimating the probabilities of n-gram events [28]. As an
example, the white-space delimited word tqAblhm (she met them) is segmented into
three morphs: prefix t (she), followed by stem qAbl (met) and suffix hm (them).

Compared to a regular word n-gram model, a segmented word n-gram model has
a reduced context. To model longer-span dependencies, one may consider context
features extracted from a syntactic parse tree such as head word information used in
the Structured Language Model (SLM) [10]. Syntactic features can be useful in any
language. Here is an example in English:

The girl who lives down the street searched the bushes in our neighbor’s backyard for her
lost kitten.

Through a parse tree, one can relate the words girl, searched, and for. Such long-
span relationships cannot be captured with a 4-gram language model. Various types
of syntactic features such as head words, non-terminal labels, and part-of-speech
tags, have been used in a discriminative LM framework as well as in other types of
models [15].

Using many types of context features (morphological and syntactic) makes it
difficult to model with traditional back-off methods. Learning the dependencies
in such a long context is difficult even with models such as factored language
models [28] due to the large number of links that need to be explored. On the other
hand, the neural network language model (NNLM) [3, 17, 44] is very suitable for
modeling such context features. The NNLM uses a continuous representation of
words, combined with a neural network for probability estimation. The model size
increases linearly with the number of context features, in contrast to exponential
growth for regular n-gram models. Another advantage is that it is not required to
define a back-off order of the context features. The model converges to the same
solution no matter how the context features are ordered, as long as the ordering is
consistent.
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Table 13.13 WER results of NNLM using word and syntactic features

LM EVAL08U BN BC

4-gram 9.4 % 6.9 % 12.5 %
4-gramCword NNLM 9.1 % 6.5 % 12.1 %
4-gramCword NNLMC syntax NNLM 8.6 % 6.2 % 11.5 %

The following text processing steps are used to extract morphological and
syntactic features for context modeling with an NNLM. Arabic sentences are
processed to segment words into (hypothesized) prefixes, stems, and suffixes, which
become the tokens for further processing. In particular, we use Arabic Treebank
(ATB) segmentation, which is a light segmentation adopted to the task of manually
writing parse trees in the ATB corpus [32]. After segmentation, each sentence is
parsed, and syntactic features are extracted. The context features used by the NNLM
include segmented words (morphs) as well as syntactic features such as exposed
head words and their non-terminal labels.

Table 13.13 shows the WER results of using NNLMs, with word features only or
with morphological and syntactic features. The results are given for an evaluation
set EVAL08U, with a breakdown for the broadcast news (BN) and broadcast
conversations (BC) portions. An NNLM with word features reduced the WER by
about 3 % relative, from 9.4 to 9.1 %. Using morphological and syntactic features
further reduced the WER by 5 % relative, from 9.1 to 8.6 %. It is seen that syntactic
features are helping both BN and BC. Specifically, through the use of syntactic
features, for BN, the WER improved by 4.6 % (6.5–6.2 %) and for BC, the WER
improved by 5.0 % (12.1–11.5%).

Although the modeling methodology behind the syntax NNLM is language
independent, when a new language or dialect is encountered, certain resources such
as a segmenter and parser may have to be developed or adapted. In our experiments,
even though the syntax NNLM was trained on only 12 million words of data, two
orders of magnitude less than the text corpora of over 1 billion words used to train
the n-gram LM, it was still able to provide significant improvements to the WER.
For a new language with little data available to train the n-gram LM, the syntax LM
is likely to help even more.

Search

The search space for large-vocabulary speech recognition is both enormous and
complex. It is enormous because the number of hypotheses to consider grows
exponentially with the length of the hypothesized word strings and because the
number of different words that can be recognized is typically in the tens to hundreds
of thousands. The search space is complex because there is significant structure
induced by the language model, the dictionary, and the decision trees used for
HMM state clustering. One approach to search, the static approach, represents the
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components of the search space (the language model, dictionary, and decision trees)
as weighted finite-state transducers (WFSTs), and then uses standard algorithms
such as WFST composition, determinization, and minimization to pre-compile a
decoding graph that represents the search space. The search process then simply
reads in this graph and performs dynamic programming search on it, given a
sequence of acoustic feature vectors, to perform speech recognition. Such static
decoders can be very efficient and can be implemented with very little code because
all of the complexity is pushed into the precompilation process. However, the size of
the language models that can be used with static decoders is limited by what models
can successfully be precompiled into decoding graphs. An alternative approach,
dynamic search, constructs the relevant portion of the search space on the fly. Such
decoders can use much larger language models, but are also significantly more
complicated to write.

13.4 IBM GALE 2011 System Description

In this section we describe IBM’s 2011 transcription system for Arabic broadcasts,
which was fielded in the GALE Phase 5 machine translation evaluation. Like most
systems fielded in competitive evaluations, our system relies upon multiple passes
of decoding, acoustic model adaptation, language model rescoring, and system
combination to achieve the lowest possible word error rate.

13.4.1 Acoustic Models

We use an acoustic training set composed of approximately 1,800 h of transcribed
Arabic broadcasts provided by the Linguistic Data Consortium (LDC) for the GALE
evaluations.

Unless otherwise specified, all our acoustic models use 40-dimensional features
that are computed by an LDA projection of a supervector composed from 9
successive frames of 13-dimensional mean- and variance-normalized PLP features
followed by diagonalization using a global semi-tied covariance transform [20], and
use pentaphone cross-word context with a “virtual” word-boundary phone symbol
that occupies a position in the context description, but does not generate an acoustic
observation. Speaker-adapted systems are trained using VTLN and fMLLR. All the
models use variable frame rate processing [14].

Given that the short vowels and other diacritic markers are typically not
orthographically represented in Arabic texts, we have a number of choices for
building pronunciation dictionaries: (1) unvowelized (graphemic) dictionaries in
which the short vowels and diacritics are ignored, (2) vowelized dictionaries
which use the Buckwalter morphological analyzer [7] for generating possible
vowelized pronunciations and (3) vowelized dictionary which uses the output of
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a morphological analysis and disambiguation tool (MADA) [23]; the assignment of
such diacritic markers is based on the textual context of each word (to distinguish
word senses and grammatical functions).2 Our 2011 transcription system uses the
acoustic models described below.

• SI A speaker-independent, unvowelized acoustic model trained using model-
space boosted maximum mutual information [35]. The PLP features for this
system are only mean-normalized. The SI model comprises 3k states and 151k
Gaussians.

• U A speaker-adapted, unvowelized acoustic model trained using both feature-
and model-space BMMI. The U model comprises 5k states and 803k Gaussians.

• SGMM A speaker-adapted, Buckwalter vowelized subspace Gaussian mixture
model [36,43] trained with feature- and model-space versions of a discriminative
criterion based on both the minimum phone error (MPE) [34] and BMMI criteria.
The SGMM model comprises 6k states and 150M Gaussians that are represented
using an efficient subspace tying scheme.

• V A speaker-adapted, Buckwalter vowelized acoustic model trained using the
feature-space BMMI and model-space MPE criteria. The changes in this model
compared to all the other models are: (1) the “virtual” word boundary phones
are replaced with word-begin and word-end tags, (2) it uses a dual decision tree
that specifies 10k different Gaussian mixture models, but 50k context-dependent
states, (3) it uses a single, global decision tree and (4) expands the number of
phones on which a state can be conditioned to ˙3 within words. This model has
801k Gaussians.

• BS A speaker-adapted, unvowelized acoustic model using Bayesian sensing
HMMs where the acoustic feature vectors are modeled by a set of state-dependent
basis vectors and by time-dependent sensing weights [40]. The Bayesian formu-
lation comes from assuming state-dependent Gaussian priors for the weights and
from using marginal likelihood functions obtained by integrating out the weights.
The marginal likelihood is Gaussian with a factor analyzed covariance matrix
with the basis providing a low-rank correction to the diagonal covariance of the
reconstruction error [42]. The details of this model are given in Sect. 13.4.1.

• M A speaker-adapted system, MADA vowelized system, with an architecture
similar to V. The details of this model are given in Sect. 13.4.1.

• NNU, NNM Speaker-adapted acoustic models which use neural network fea-
tures. They were built using either the unvowelized lexicon (NNU) or the MADA
one (NNM). Section 13.4.1 describes these models in more detail.

2MADA operates by examining a list of all possible Buckwalter morphological analyses for each
word, and then selecting the analysis that matches the current context best using SVM classifiers.
MADA uses 19 distinct weighted morphological features. The selected analyses carry complete
diacritic, lexemic, glossary and morphological information; thus all disambiguation decisions are
made in one step. See [23] for more details.
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Bayesian Sensing HMMs (BS)

Model Description

Here, we briefly describe the main concepts behind Bayesian sensing hidden
Markov models [40]. The state-dependent generative model for the D-dimensional
acoustic feature vectors xt is assumed to be

xt D ˚iwt C �t (13.14)

where ˚i D Œ�i1; : : : ;�iN � is the basis (or dictionary) for state i and wt D
Œwt1; : : : ;wtN �

T is a time-dependent weight vector. The following additional assump-
tions are made: (1) when conditioned on state i , the reconstruction error is zero-
mean Gaussian distributed with precision matrix Ri , i.e. �t jst D i � N .0; R�1i /
and (2) the state-conditional prior for wt is also zero-mean Gaussian with precision
matrix Ai , that is wt jst D i � N .0; A�1i /. It can be shown that, under these
assumptions, the marginal state likelihood p.xt jst D i/ is also zero-mean Gaussian
with the factor analyzed covariance matrix [42]

Si
�D R�1i C ˚iA�1i ˚T

i (13.15)

In summary, the state-dependent distributions are fully characterized by the param-
eters f˚i;Ri ; Ai g. In [40], we discuss the estimation of these parameters according
to a maximum likelihood type II criterion, whereas in [41] we derive parameter
updates under a maximum mutual information objective function.

Automatic Relevance Determination

For diagonal Ai D diag.˛i1; : : : ; ˛iN/, the estimated precision matrix values ˛ij

encode the relevance of the basis vectors �ij for the dictionary representation of xt .
This means that one can use the trained ˛ij for controlling model complexity. One
can first train a large model and then prune it to a smaller size by discarding the basis
vectors which correspond to the largest precision values of the sensing weights.

Initialization and Training

We first train a large acoustic model with 5,000 context-dependent HMM states
and 2.8 million diagonal covariance Gaussians using maximum likelihood in a
discriminative FMMI feature space. The means of the GMM for each state are then
clustered using k-means. The initial bases are formed by the clustered means. The
resulting number of mixture components for the Bayesian sensing models after
the clustering step was 417k. The precision matrices for the sensing weights and the
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reconstruction errors are assumed to be diagonal and are initialized to the identity
matrix.

The models are trained with six iterations of maximum likelihood type II
estimation. Next, we discard 50 % of the basis vectors corresponding to the largest
precision values of the sensing weights and retrain the pruned model for two
additional ML type II iterations. We then generate numerator and denominator
lattices with the pruned models and perform four iterations of boosted MMI
training of the model parameters as described in [41]. The effect of pruning and
discriminative training is discussed in more details in [42].

MADA-Based Acoustic Model (M)

This acoustic model is similar to the V model. It uses a global tree, word position
tags, and a large phonetic context of ˙3 . While the MADA-based model uses
approximately the same number of Gaussians, the decision tree uses only one level,
keeping the number of HMM states to 10;000. Since the MADA-based model uses a
smaller phone set than the Buckwalter vowelized models, we were able to reuse the
vowelized alignments and avoid the flat-start procedure. In this section we describe
the strategy used for constructing training and decoding pronunciation dictionaries,
the main difference between this system and the V system. Both pronunciation
dictionaries are generated following [5] with some slight modification.

Training Pronunciation Dictionary

Here we describe an automatic approach to building a pronunciation dictionary
that covers all words in the orthographic transcripts of the training data. First, for
each utterance transcript, we run MADA to disambiguate each word based on its
context in the transcript. MADA outputs all possible fully-diacritized morphological
analyses for each word, ranked by their confidence, the MADA confidence score.
We thus obtain a fully-diacritized orthographic transcription for training. Second,
we map the highest-ranked diacritization of each word to a set of pronunciations,
which we obtain from the 15 pronunciation rules described in [5]. Since MADA may
not always rank the best analysis as its top choice, we also run the pronunciation
rules on the second best choice returned by MADA, when the difference between
the top two choices is less than a threshold determined empirically (in our imple-
mentation we chose 0.2). The IBM system is flexible enough to allow specifying
multiple diacritized word options at the (training) transcript level. A sentence can be
a sequence of fully diacritized word pairs as opposed to a sequence of single words.
This whole process gives us fully disambiguated and diacritized training transcripts
with more than one or two options per word.
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Decoding Pronunciation Dictionary

For building the decoding dictionary we run MADA on the transcripts of the speech
training data as well as on the Arabic Gigaword corpus. In this dictionary, all pro-
nunciations produced (by the pronunciation rules) for all diacritized word instances
(from MADA first and second choices) of the same undiacritized form are mapped
to the undiacritized and normalized word form. Word normalization here refers to
removing diacritic markers and replace Buckwalter normalized Hamzat-Wasl ({), <,
and > by the letter ‘A’. Note that it is standard to produce undiacritized transcripts
when recognizing MSA. Diacritization is generally not necessary to make the
transcript readable by Arabic-literate readers. Therefore, entries in the decoding
pronunciation dictionary need only to consist of undiacritized words mapped to a
set of phonetically-represented diacritizations.

A pronunciation confidence score is calculated for each pronunciation. We
compute a pronunciation score s for a pronunciation p as the average of the
MADA confidence scores of the MADA analyses of the word instances that this
pronunciation was generated from. We compute this score for each pronunciation
of a normalized undiacritized word. Let m be the maximum of these scores. Now,
the final pronunciation confidence score forp is�log10.c=m/. This basically means
that the best pronunciation receives a penalty of 0 when chosen by the ASR decoder.
This dictionary has about 3.6 pronunciations per word when using the first and
second MADA choices.

Neural Network Acoustic Models (NNU and NNM)

The neural network feature extraction module uses two feature streams computed
from mean and variance normalized, VTLN log Mel spectrograms, and is trained
in a piecewise manner, in which (1) a state posterior estimator is trained for each
stream, (2) the unnormalized log-posteriors from all streams are summed together
to combine the streams, and (3) features for recognition are computed from the
bottleneck layer of an autoencoder network. One stream, the lowpass stream, is
computed by filtering the spectrograms with a temporal lowpass filter, while the
other stream, the bandpass stream, is computed by filtering the spectrograms with a
temporal bandpass filter. Both filters are 19-point FIR filters. The lowpass filter has
a cutoff frequency of 24 Hz. The bandpass filter has a differentiator-like (gain pro-
portional to frequency) response from 0 to 16 Hz and a high-pass cutoff frequency
of 27 Hz. The posterior estimators for each stream compute the probabilities of 141
context-independent HMM states given an acoustic input composed from 19 frames
of 40-dimensional, filtered spectrograms. They have two 2048-unit hidden layers,
use softsign nonlinearities [21] between layers, and use a softmax nonlinearity at
the output. The softsign nonlinearity is y D x=.1C jxj/. Initial training optimizes
the frame-level cross-entropy criterion. After convergence, the estimators are further
refined to discriminate between state sequences using the minimum phone error
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criterion [24, 34]. Stream combination is performed by discarding the softmax
output layer for each stream posterior estimator, and summing the resulting outputs,
which may be interpreted as unnormalized log-posterior probabilities. We then
train another neural network, containing a 40-dimensional bottleneck layer, as
an autoencoder, and use the trained network to reduce the dimensionality of the
neural network features. The original autoencoder network has a first hidden layer
of 76 units, a second hidden layer of 40 units, a linear output layer, and uses
softsign nonlinearities. The training criterion for the autoencoder is the cross-
entropy between the normalized posteriors generated by processing the autoencoder
input and output vectors through a softmax nonlinearity. Once the autoencoder is
trained, the second layer of softsign nonlinearities and the weights that expand
from the 40-dimensional bottleneck layer back to the 141-dimensional output are
removed. Details of this NN architecture are described in [39].

Once the features are computed, the remaining acoustic modeling steps are
conventional, using 600k 40-dimensional Gaussians modeling 10k quinphone
context-dependent states, where we do both feature- and model-space discriminative
training using the BMMI criterion. Two acoustic models were trained using the
neural-net features: one (NNM) used a MADA-vowelized lexicon, while the other
(NNU) used an unvowelized lexicon. Note that the posterior estimators used in
feature extraction were trained with MADA-vowelized alignments.

13.4.2 Language Models

For training language models we use a collection of 1.6 billion words, which
we divide into 20 different sources. The two most important components are the
broadcast news (BN) and broadcast conversation (BC) acoustic transcripts (7.5
million words each) corresponding to 1,800 h of speech transcribed by LDC for
the GALE program. We use a vocabulary of 795,000 words, which is based on
all available corpora, and is designed to completely cover the acoustic transcripts.
To build the baseline language model, we train a 4-gram model with modified
Kneser–Ney smoothing [13] for each source, and then linearly interpolate the 20
component models with the interpolation weights chosen to optimize perplexity on
a held-out set. We combine all the 20 components into one language model using
entropy pruning [48]. By varying the pruning thresholds we create (1) a 913 million
n-gram LM (no pruning) to be used for lattice rescoring (Base) and (2) a 7 million
n-gram LM to be used for the construction of static, finite-state decoding graphs.

In addition to the baseline language models described above, we investigated
various other techniques which differ in either the features they employ or the
modeling strategy they use. These are described below.

• ModelM A class-based exponential model [11]. Compared to the models used in
the previous evaluation, we use a new enhanced word classing [12]. The bigram
mutual information clustering method used to derive word classes in the original
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Model M framework is less than optimal due to mismatches between the classing
objective function and the actual LM, so the new method attempts to address this
discrepancy. Key features of the new method include: (a) a class-based model that
includes word n-gram features to better mimic the nature of the actual language
modeling, (b) a novel technique for estimating the likelihood of unseen data for
the clustering model, and (c) n-gram clustering compared to bigram clustering in
the original method. We build Model M models with improved classing on 7 of
the corpora with the highest interpolation weights in the baseline model.

• WordNN A 6-gram neural network language model using word features.
Compared to the model used in the P4 evaluation [25], we train on more data (44
million words of data from BN, BC and Archive). We also enlarge the neural
network architecture (increased the feature vector dimension from 30 to 120 and
the number of hidden units from 100 to 800) and normalize the models. We create
a new LM for lattice rescoring by interpolating this model with the 7 ModelM
models and Base, with the interpolation weights optimized on the held-out set.
In the previous evaluation we did not get an improvement by interpolating the
WordNN model with model M models, but the changes made this year result in
significant improvements.

• SyntaxNN A neural network language model using syntactic and morphological
features [29]. The syntactic features include exposed head words and their non-
terminal labels, both before and after the predicted word. For this neural network
model we used the same training data and the same neural network architecture
as the one described for WordNN. This language model is used for n-best
rescoring.

• DLM A discriminative language model trained using the minimum Bayes risk
(MBR) criterion [31]. Unlike the other LMs, a DLM is trained on patterns
of confusion or errors made by the speech recognizer. Our potential features
consist of unigram, bigram, and trigram morphs, and we used the perceptron
algorithm to select a small set of useful features. With the selected features, we
trained the DLM using an MBR-based algorithm, which minimizes the expected
loss, calculated using the word error information and posterior probabilities of
the N-best hypotheses of all the training sentences. To prepare data for DLM
training, we used a Phase 3 unvowelized recognizer trained on 1,500 h of acoustic
data to decode an unseen 300 h set. This unseen training set was provided in
Phase 4, but adding this data to acoustic or language model training did not
improve the system, so it is an ideal set for DLM training. During the evaluation,
a single MBR DLM thus trained was used to rescore the N-best hypotheses
from all the systems. Although there is a mismatch between training and test
conditions, improvements were still observed. Details of these experiments as
well as post-eval experiments are presented in [31].

Having many diverse language models, the challenge is to be able to combine
them while achieving additive gains, and Sect. 13.4.4 describes our strategy.
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13.4.3 System Combination

We employ three different techniques for system combination. The first technique
is cross-adaptation (�), where the fMLLR and MLLR transforms required by a
speaker-adapted acoustic model are computed using transcripts from some other,
different speaker-adapted acoustic model. The second technique is tree-array com-
bination (C), a form of multi-stream acoustic modeling in which the acoustic scores
are computed as a weighted sum of scores from two or more models that can have
different decision trees [47]. The only requirement for the tree-array combination
is that the individual models are built using the same pronunciation dictionary. The
third technique is hypothesis combination using the nbest-rover [50] tool from
the SRILM toolkit [49]. In all these combination strategies, the choice of systems to
combine was based on performance on a variety of development sets.

13.4.4 System Architecture

IBM’s 2011 GALE Arabic transcription system is a sequence of multiple passes
of decoding, acoustic model adaptation, language model rescoring, and system
combination steps. In this section, we show how all the models described in the
previous sections are combined to generate the final transcripts. We report results
on several data sets: DEV’07 (2.5 h); DEV’09 (2.8 h); EVAL’09, the unsequestered
portion of the GALE Phase 4 evaluation set (4.2 h); and EVAL’11, the GALE Phase
5 evaluation set (3 h). EVAL’11 is unseen data on which no tuning was done. In our
2011 evaluation system we have the following steps.

1. Cluster the audio segments into hypothesized speakers.
2. Decode with the SI model.
3. Compute VTLN warp factors per speaker using transcripts from (2).
4. Decode using the U model cross-adapted on SI.
5. Decode using the SGMM model cross-adapted on (4).
6. Compute best frame rates per utterance using transcripts from (5).
7. Decode using the SGMM model cross-adapted on U and frame rates from (6).
8. a. Using the U model and transcripts from (5), compute fMLLR and MLLR

transforms.
b. Using the BS model and transcripts from (5), compute fMLLR and MLLR

transforms.
c. Using the NNU model and transcripts from (5), compute fMLLR and MLLR

transforms.
d. Decode and produce lattices using a tree-array combination of the U model

with transforms from (8a), the BS model with transforms from (8b) and
NNU with transforms from (8c).

9. a. Using the M model and transcripts from (5), compute fMLLR and MLLR
transforms.
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Table 13.14 Word error rates for the final three combined models before and after adding LM
rescoring passes

Step Decoding pass DEV’09 EVAL’09 EVAL’11

(8d) .UC BSC NNU/� SGMM� U 12.6 % 9.5 % 8.9 %
(9c) .MC NNM/� SGMM� U 13.3 % 9.8 % 9.2 %
(10) V� SGMM�U 13.5 % 9.8 % 9.5 %
(14a) (8d)C simplex 11.4 % 8.4 % 7.8 %
(14b) (9c)C simplex 11.9 % 8.6 % 8.1 %
(14c) (10)C simplex 12.5 % 9.2 % 8.4 %
(15) (14a)C (14b)C (14c) 11.1 % 8.1 % 7.4 %

b. Using the NNM model and transcripts from (5), compute fMLLR and
MLLR transforms.

c. Decode and produce lattices using a tree-array combination of the M model
with transforms from (9a) and the NNM model with transforms from (9b).

10. Decode and produce lattices using the V model, frame rates from (6) and
fMLLR and MLLR transforms computed using transcripts from (5).

11. Using an interpolation of Base, 7 ModelM and one WordNN language
models

a. Rescore lattices from (8d), extract 50-best hypotheses
b. Rescore lattices from (9c), extract 50-best hypotheses
c. Rescore lattices from (10), extract 50-best hypotheses.

12. Parse the 50-best lists from (11) and score them with a SyntaxNN language
model; produce new language model scores for each hypothesis.

13. Score the 50-best lists from (11) with a discriminative language model and
produce new language model scores for each hypothesis.

14. Combine acoustic scores, language model scores from (11), syntax LM scores
from (12) and discriminative LM scores from (13) using simplex

a. Add the new scores to the hypotheses from (11a)
b. Add the new scores to the hypotheses from (11b)
c. Add the new scores to the hypotheses from (11c).

15. Combine the hypotheses from (14a), (14b), and (14c) using the nbest-rover
tool from the SRILM toolkit [49]. This constitutes the final output
(Table 13.14).

Table 13.15 shows the word error rates obtained after adding new language
models either for lattice or n-best rescoring for the (8d) system. It can be seen
that each additional rescoring pass improves the performance, and that the total
improvement from language modeling rescoring is 1.1–1.2 % absolute on all the
sets. Similar improvements have been obtained on the other two systems that are
part of the final system combination ((9c) and (10)).
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Table 13.15 Word error rates for different LM rescoring steps on the .UCBSCNNU/�SGMM�
U:vfr (8d) set of lattices

Step Language model DEV’09 EVAL’09 EVAL’11

(8d) Base 12.6 % 9.5 % 8.9 %
(11) CModelM and WordNN 11.7 % 8.8 % 8.2 %
(12) C SyntaxNN 11.6 % 8.6 % 7.9 %
(13) CDLM 11.5 % 8.6 % 8.0 %
(14) C SyntaxNN and DLM 11.4 % 8.4 % 7.8 %

13.5 From MSA to Dialects

One of the key challenges in Arabic speech recognition research is how to handle
the differences between Arabic dialects. Most recent work on Arabic ASR has
addressed the problem of recognizing Modern Standard Arabic (MSA). Little
work has focused on dialectal Arabic [26, 51]. Arabic dialects differ from MSA
and each other in many dimensions of the linguistic spectrum, morphologically,
lexically, syntactically, and phonologically. What makes Arabic dialect challenging
in particular is the lack of a well-defined spelling system, resources (i.e., acoustic
and LM training data) as well as tools (such as morphological analyzers and
disambiguation tools).

In this section, we report a series of experiments about how we can progress from
Modern Standard Arabic (MSA) to Levantine ASR, in the context of the GALE
DARPA program. While our GALE models achieved very low error rates, we still
see error rates twice as high when decoding dialectal data. We make use of a state-
of-the-art Arabic dialect recognition system to automatically identify Levantine and
MSA subsets in mixed speech of a variety of dialects including MSA. Training
separate models on these subsets, we show a significant reduction in word error rate
over using the entire data set to train one system for both dialects. During decoding,
we use a tree array structure to mix Levantine and MSA models automatically using
the posterior probabilities of the dialect classifier as soft weights. This technique
allows us to mix these models without sacrificing performance for either variety.
Furthermore, using the initial acoustic-based dialect recognition system’s output,
we show that we can bootstrap a text-based dialect classifier and use it to identify
relevant text data for building Levantine language models.

13.5.1 Dialect Identification

As mentioned above, we are interested in building Levantine-specific models using
the available GALE data. Recall that this data contains a mix of dialects in addition
to MSA and that this data has no specific dialect annotations. To build a Levantine-
specific ASR system, we need dialect annotations for each utterance since Arabic
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speakers, in broadcast conversations (BC), tend to code mix/switch between MSA
and their native dialects across utterances and even within the same utterance.3 In
this work, we build a dialect recognition system to identify dialects at the utterance
level.

Biadsy et al. [4, 6] have previously shown that a dialect recognition approach
that relies on the hypothesis that certain phones are realized differently across
dialects achieves state-of-the-art performance for multiple dialect and accent tasks
(including Arabic). We make use of this system (described next) to annotate some
of our Arabic GALE data.

Phone Recognizer and Front-End

The dialect recognition approach makes use of phone hypotheses. Therefore, we
first build a triphone context-dependent phone recognizer. The phone recognizer
is trained on MSA using 50 h of GALE speech data of broadcast news and
conversations with a total of 20,000 Gaussians. We use one acoustic model for
silence, one for non-vocal noise and another to model vocal noise. We utilize a
unigram phone model trained on MSA to avoid bias for any particular dialect.4

We also use FMLLR adaptation using the top CD-phone sequence hypothesis. Our
phone inventory includes 34 phones, 6 vowels and 28 consonants.

Phone GMM-UBM and Phonetic Representation

The first step in the dialect recognition approach is to build a ‘universal’acoustic
model for each context-independent phone type. In particular, we first extract
acoustic features (40d feature vectors after CMVN and FMLLR) aligned to each
phone instance in the training data (a mix of dialects). Afterwards, using the frames
aligned to the same phone type (in all training utterances), we train a Gaussian
Mixture Model (GMM), with 100 Gaussian components with diagonal covariance
matrices, for this phone type, employing the EM algorithm. Therefore, we build 34
GMMs. Each phone GMM can be viewed as a GMM-Universal Background Model
(GMM-UBM) for that phone type, since it models the general realization of that
phone across dialect classes [38]. We call these GMMs phone GMM-UBMs.

Each phone type in a given utterance (U ) is represented with a single MAP
(Maximum A-Posteriori) adapted GMM. Specifically, we first obtain the acoustic
frames aligned to every phone instance of the same phone type in U . Then these
frames are used to MAP adapt the means of the corresponding phone GMM-UBM

3In this work, we do not attempt to identify code switching points; we simply assume that an
utterance is spoken either in MSA or in purely a regional dialect.
4We use true phonetic labels here by generating pronunciation dictionaries using MADA, following
[4].
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using a relevance factor of r D 0:1. The resulting GMM of phone type � is called the
adapted phone-GMM (f�). The intuition here is that f� ‘summarizes’ the variable
number of acoustic frames of all the phone instances of a phone-type � in a new
distribution specific to � in U [6].

A Phone-Type-Based SVM Kernel

Now, each utterance U can be represented as a set SU of adapted phone-GMMs,
each of which corresponds to one phone type. Therefore, the size of SU is at most
the size of the phone inventory (j˚ j). Let SUa D ff�g�2˚ and SUb D fg�g�2˚ be the
adapted phone-GMM sets of utterances Ua and Ub , respectively. Using the kernel
function in Eq. (13.16), designed by Biadsy et al. [6] which employed the upper
bound of KL-divergence-based kernel (13.17), proposed by Campbell et al. [9], we
train a binary SVM classifier for each pair of dialects. This kernel function compares
the ‘general’ realization of the same phone types across a pair of utterances.

K.SUa ; SUb / D
X

�2˚
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0
�; g
0
�/ (13.16)

where f 0� is the same as f� but we subtract from its Gaussian mean vectors the
corresponding Gaussian mean vectors of the phone GMM-UBM (of phone type �).
g0� is obtained similarly from g� . The subtraction forces zero contributions from
Gaussians that are not affected by the MAP adaptation. And,
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where, !�;i and ˙�;i respectively are the weight and diagonal covariance matrix of

Gaussian i of the phone GMM-UBM of phone-type �; �fi and �gi are the mean
vectors of Gaussian i of the adapted phone-GMMs f� and g� , respectively.

It is interesting to note that, for (13.16), when K� is a linear kernel, such as the
one in (13.17), each utterance SUx can be represented as a single vector. This vector,
say Wx, is formed by stacking the mean vectors of the adapted phone-GMM (after

scaling by
p
!�˙

� 1
2

� and subtracting the corresponding ��) in some (arbitrary)
fixed order, and zero mean vectors for phone types not in Ux . This representation
allows the kernel in (13.16) to be written as in (13.18). This vector representation
can be viewed as the ‘phonetic fingerprint’ of the speaker. It should be noted that,
in this vector, the phones constrain which Gaussians can be affected by the MAP
adaptation (allowing comparison under linguistic constraints realized by the phone
recognizer), whereas in the GMM-supervector approach [8], in theory, any Gaussian
can be affected by any frame of any phone.

K.SUa ; SUb / D W T
a Wb (13.18)
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Table 13.16 F-Measure
for each dialect class using
the four-way classifier with
30 s cuts

Dialect F-measure

Levantine 90.7 %
Iraqi 86.7 %
Gulf 87.1 %
Egyptian 98.6 %

13.5.2 ASR and Dialect ID Data Selection

As noted above, the GALE data is not annotated based on dialects. Moreover, to the
best of our knowledge, there is no Arabic dialect corpus of similar domain and/or
acoustic condition as broadcast conversations. Fortunately, there are telephone
conversation corpora available from the LDC for four Arabic dialects (Egyptian,
Levantine, Gulf, and Iraqi). To address the acoustic recording and domain issues we
build two systems.

In our first system, we train our dialect recognition on dialect data taken from
spontaneous telephone conversations from the following Appen corpora: Iraqi
Arabic (478 speakers), Gulf (976), and Levantine (985). For Egyptian, we use
the 280 speakers in CallHome Egyptian and its supplement. Using the kernel-
based approach describe above, we train a binary SVM classifier for each pair of
dialects on 30 s cuts of 80 % of the speakers (of each corpus). Each cut consists
of consecutive speech segments totaling 30 s in length (after removing silence).
Multiple cuts are extracted from each speaker.5 As a result, we obtain six binary
classifiers for the four broad Arabic dialects.

To label utterances with dialect ID tags, we need a single four-way classifier
to classify the dialect of the speaker to one of the four dialects. To build such a
classifier, we first run the six SVM binary classifiers on the remaining 20 % held-
out speakers. Every SVM binary classifier provides a posterior probability P.C1jx/
for each test sample x of belonging to classC1. We use these posteriors as features to
train a four-way logistic regression on the 20 % set. The 10-fold cross validation of
this classifier is 93.3 %; the F-measure of each dialect class is shown in Table 13.16.

We run this system to annotate a portion of our GALE BC data (after down-
sampling to 8 Khz). The dialect recognition system classified 54 h of Levantine
speech with a relatively high confidence. Since the dialect ID system is trained on
telephone conversations as opposed to broadcast conversations, we asked the LDC
to validate/filter the output of the system. We find that about 36 h out of 54 h are
tagged as “mostly Levantine”, a 10 h set contains code switching between MSA and
Levantine at the utterance level, and an 8 h set contains either other dialects or MSA.
Recall that our system is not trained to identify MSA.

We extract a 4 h test set (LEV_4h) to be used for reporting results in all the
Levantine ASR experiments. From the remaining 32 h we extract all the utterances

5The equal error rate reported by Biadsy et al. [6] of this dialect recognition system on the
remaining 20 % held-out speakers is 4 %.
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Table 13.17 MADA AM used for dialect ID, WER test

System WER on DEV-07

50k Gaussians, 1k states, ML 16.8 %
200k Gaussians, 5k states, ML 15.4 %
200k Gaussians, 5k states, fBMMIC BMMI 12.5 %

longer than 20 s, this yields approximately 10 h of data (LEV_10). Part of the
transcripts released by LDC for the GALE program have “non-MSA” annotations.
This allows us to select a 40 h MSA corpus by choosing speakers whose utterances
have no such markings. From this set we select 4 h for our MSA ASR experiments
(MSA_4h). From the remining data, we further select a 10 h set with utterances
longer than 20 s (MSA_10).

13.5.3 Dialect Identification on GALE Data

Given that now we have gold standard BC MSA and Levantine data (MSA_10
and LEV_10), we can train another dialect recognition system to distinguish MSA
vs. Levantine for BC acoustic conditions. We divide LEV_10 into 9 h for training
and 1 h for testing our dialect recognition system. Similarly MSA_10 is divided into
9 h for training and 1 h for testing. Note that this amount of acoustic data is typically
not sufficient to train dialect identification systems; however, we are interested in
making use of the rest of the data for other experiments.

As described in Sect. 13.5.1, for the dialect identification system we need a phone
decoder; therefore we carry out a number of experiments to find the best strategy
for building it. We train three MADA Vowelized (i.e., a true phonetic-based system)
triphone acoustic models in which we vary the number of Gaussians and the number
of states, using either ML or discriminative training. First, we test these models for
word recognition with our unpruned 4-gram LM. Table 13.17 shows the word error
rates on the DEV-07 set.

In the next test, we use the triphone models to decode phone sequences with
different phone language models. For each phone decoder we build a dialect
classification system using the SVM-Kernel approach described in Sect. 13.5.1.
We train the models on 9 h of Levantine data and 9 h of MSA data, and evaluate
the results on a test set which contains 1 h of Levantine and 1 h of MSA data.
Table 13.18 shows the dialect classification rates for the different acoustic model and
phone language model combinations. Based on these results we decided to use the
smallest, simplest model (50k Gaussians ML model with unigram phone language
model) for the subsequent experiments.
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Table 13.18 Dialect
classification performance

System/features Classification accuracy

50k ML 1-gram phone LM 85.1 %
50k ML 3-gram phone LM 84.5 %
200k ML, 3-gram phone LM 84.9 %
200k fBMMIC BMMI, 3-gram 83.0 %

Table 13.19 300 h AM tested on DEV-07

System Unvowelized BW vowelized MADA vowelized

ML 16.6 % 14.2 % 13.9 %
fBMMIC BMMI 12.7 % 11.8 % 11.7 %

13.5.4 Acoustic Modeling Experiments

Comparing Vowelizations

We select a 300-h subset from our entire GALE training set and train speaker
adaptive acoustic models for all three lexical setups. The decoding setup includes
VTLN, FMLLR, and MLLR and we use an unpruned 4-gram LM with a 795k
vocabulary. First, we test the models on one of our standard GALE development
sets, DEV-07, shown in Table 13.19. Pronunciation probabilities are used for both,
Buckwalter and MADA systems. Buckwalter and MADA vowelizations perform
similarly, while the unvowelized models are 2:7% worse at the ML level. However,
we want to note that the difference is only 1% after discriminative training. This
indicates that discriminative training of context-dependent (CD) GMM models is
able to compensate for the lack of (knowledge based) pronunciation modeling to a
large degree.

In the next comparison, we test the models on a newly defined MSA test set.
The reason behind this set is that we want to use the same methodology for
defining/selecting a test set for both Levantine and MSA. We would like to analyze
the difficulty of Levantine when compared to MSA under exactly same conditions.
We are basically reducing effects related to how and from where the test sets are
chosen. DEV-07, for example, is a test set defined by LDC which consists of mostly
very clean broadcast news data. This is very likely the reason behind our very low
error rates. The MSA_4h test set is selected randomly from broadcast conversations
of our training set and labeled as MSA by our dialect classifier. The reason to select
the data from broadcast conversations is to match the conditions of the Levantine
test set. All of the Levantine data comes from BC as well. The error rates on this
MSA test set (Table 13.20) is almost twice as high as the error rates on DEV-07
(Table 13.19), although both are non-dialectal (MSA) test data. We also see that all
three models perform at a similar level (21.2–21.8%) after discriminative training.

We now compare the models on Levantine data (LEV_4). Recall that this
Levantine test set is part of the GALE corpus identified automatically by our
dialect classifier and manually verified by LDC (see Section above). The same
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Table 13.20 300 h AM tested on MSA_4h

System Unvowelized BW vowelized MADA vowelized

ML 28.6 % 27.0 % 25.7 %
fBMMIC BMMI 21.8 % 21.7 % 21.2 %

Table 13.21 300 h AM tested on LEV_4h

System Unvowelized BW vowelized MADA vowelized

ML 48.2 % 50.3 % 48.1 %
fBMMIC BMMI 39.7 % 42.1 % 40.8 %

methodology for selecting the test data is used for MSA_4h and LEV_4h. Both
MSA_4h and LEV_4h test sets are excluded from the training of the acoustic and
language models. Looking at Tables 13.20 and 13.21, we observe two main points:

1. The error rate for Levantine is almost twice as high as for MSA (39.7 vs. 21.8 %).
We compare here the Levantine error rate to MSA_4h and not to DEV-07. This
allows us to attribute the increase in error rate to dialect and not to other effects
(how the test set was chosen and how carefully the transcripts were done).

2. Another interesting observation is that the unvowelized models perform best on
Levantine (39.4 vs. 40.8 and 42.1 %). We speculate that this is due to the fact
that the Buckwalter analyzer, MADA, and the pronunciation rules are designed
for MSA – which do not work properly for Levantine words. A dialect-specific
morphological analyzer would very likely improve results, but it is unclear that it
would significantly reduce the error rate on Levantine given that the unvowelized
perform comparably well on MSA data (Table 13.20).

Selecting Dialect Data from the 300-h Training Subset

We now run the dialect recognition system on our 300-h subset of the GALE training
corpus. Out of this training set, we obtain about 37 h labeled as Levantine. This is
not sufficient to train a set of acoustic models. One option is to use a deep MLLR
regression tree or MAP training. In our experience MLLR works well for limited
domain adaptation data, but will not be able to fully utilize a large amount of domain
adaptation data. While MAP works better with more adaptation data, it is difficult
to use it in combination with feature space discriminative training.

Instead, we use a form of training with weighted statistics. The advantage
is that all components of the model (including decision trees) are trained at all
training stages (ML, DT) with the new domain data. In our case we have additional
information in the form of a dialect posterior probability for each utterance from the
dialect classifier. We use this posterior to weight the statistics of each utterance
during ML and discriminative training. The modified statistics are computed as
shown in formula (13.19).
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Table 13.22 Comparing
weighting schemes of
training statistics on LEV_4h,
300 h setup, unvowelized ML
models

Training data WER

Unweighted (300 h) 48.2 %
Hard-weighted (37 h) 48.3 %
Soft-weighted (300 h) 45.3 %

Table 13.23 300 h AM tested on LEV_4h

System Unvowelized BW vowelized MADA vowelized

ML 45.3 % 47.3 % 45.5 %
fBMMIC BMMI 38.4 % 41.4 % 39.2 %

E.x/ D
X

i

P.dialectjxi / � xi

E.x2/ D
X

i

P.dialectjxi / � x2i (13.19)

Table 13.22 shows a comparison of different weighting schemes. In the first row,
we simply train on all 300 h regardless whether they are Levantine or MSA. This
model gives us an error rate of 48:2%. In the second row, we train only on the
selected Levantine subset of 37 h. The error rate is slightly higher, 48:3%, due to
the lack of training data. In the third row, we train on the same 300 h, but weight the
statistics of each utterance individually by the posterior score of the dialect classifier.
This provides us with a smoothing of the models, avoids overtraining and we get a
2:9% error reduction.

We apply now the soft-weighting scheme to all vowelization setups and compare
the models both after ML and fBMMI C BMMI training in Table 13.23. The
improvement from focusing on Levantine training data can be seen by comparing
Table 13.21 with Table 13.23. For example, for the unvowelized models, we obtain
2.9 % absolute error reduction at the ML level, and 1.3 % after discriminative
training. Note that we do not add training data, rather we find relevant subsets that
match our target dialect.

Tree Array Combination

When we focus the training on Levantine, we can expect the model to perform worse
on MSA data. In fact, the error rate increases from 12:7 to 15:1% on DEV-07 when
we use the Levantine models (Table 13.24). Our toolkit allows us to combine models
with different decision trees into one single decoding graph [46]. This enables us to
combine different acoustic models in one decoding pass on the fly, without making
a hard model selection. The combined acoustic score is the weighted sum of the log
likelihoods of the combined models. In our case, we combine the MSA and LEV
unvowelized models. The results are in Table 13.24. The first two rows represent
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Table 13.24 Tree array combination of general models with Levantine models in on decoding
pass, 300-h unvowelized fBMMIC BMMI setup

Weight for MSA model Weight for LEV models DEV-07 LEV_4h

1.0 0.0 12.7 % 39.7 %
0.0 1.0 15.1 % 38.4 %
0.5 0.5 13.3 % 38.2 %
Dialect classifier soft weight 12.9 % 38.4 %

Table 13.25 Comparing
weighting schemes of
training statistics on LEV_4h,
1,800-h setup, unvowelized
ML models

Training data WER

Unweighted (1,800 h) 47.0 %
Hard-weighted (237 h) 42.3 %
Soft-weighted (1,800 h) 43.5 %

the extreme cases where either the MSA or LEV model is used exclusively. In the
third row, we weight both models equally and constant for all utterances. The error
rate on DEV-07 is 13:3%, 0:6% higher than when just using the MSA model, but
much better than when using the LEV models only (15:1%). On the other hand,
we get a small improvement on the Levantine test set (38:4% goes to 38:2%). This
is a system combination effect. We used tree arrays in the past as an alternative to
ROVER or cross-adaptation, for example in our latest GALE evaluation. In the last
row in Table 13.24 we use the posterior of the dialect classifier as a soft weight
for model combination on a per utterance basis. This automatic strategy gives us an
error rate that is close to the optimal performance of a model selected manually.

Selecting Dialect Data from the 1,800-h Training Set

The full GALE training corpus consists of about 18;00 h. Similar to the previous
experiments, but now focusing exclusively on the unvowelized models, we generate
dialect labels for the entire training corpus. The dialect recognition system identified
about 237 h as Levantine in the GALE corpus (or 13 %). In Table 13.25, we compare
different weighting schemes for the Levantine data. In contrast to the 300 h setup
(Table 13.22), the best error rate is achieved now by training exclusively on the
237 h of Levantine data and not by using the dialect scores to weight the statistics.
The reason is simply that the amount of Levantine training data is now large enough
to train acoustic models and we do not need to add data as was the case for the
previous experiments when we had only 37 h of Levantine data.

After discriminative training (fBMMI C bMMI) of the 237 h unvowelized
Levantine models, the error rate goes down to 36:3%. In other words, we can lower
the error rate by almost 10% relative by focusing on relevant subsets of the training
data and the dialect classifier together with the tree array decoding technique which
allows us to use both Levantine and MSA models in one decoding pass, so the
engine can handle both dialectal and non-dialectal utterances at the same time.
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Table 13.26 Text only
dialect classification using
Levantine and MSA language
models

Test data Dialect classification

MSA_4h 86.0 %
Lev_4h 87.2 %

Table 13.27 LM rescoring
with Levantine LM

Training data WER

913m 4-gram baseline LM 36.3 %
C 3-gram Levantine LM from 238 h set 35.4 %
C 4-gram Levantine weighted LM (all text sources) 35.1 %

13.5.5 Dialect ID Based on Text Only

The experiments described in Sect. 13.5.4 demonstrate that the acoustic training
data contains relevant dialect subsets which when detected can improve the acoustic
models. In this section, we report on a similar strategy for language modeling, but
now we built a dialect classifier based on text only – no audio data is used. First,
we build a Kneser–Ney smoothed 3-gram Levantine LM on the 2 million words
corresponding to the transcripts of the 237 h of Levantine acoustic training data
(identified automatically). Similarly, we build an MSA language model from all
the utterances which are classified as MSA with more than 95 % probability by the
dialect annotator. We build a text dialect classifier which simply checks the log-
likelihood ratio of the two LMs on a given utterance. Table 13.26 shows that we can
predict the dialect reliably even when only text data is available.

Levantine LM

Our GALE language models are trained on a collection of 1.6 billion words, which
we divide into 20 parts based on the source. We train a 4-gram model with modified
Kneser–Ney smoothing [13] for each source, and then linearly interpolate the 20
component models with the interpolation weights chosen to optimize perplexity
on a held-out set. In order to build a Levantine language model, we run the text
dialect annotator described above on each of the 20 text sources and build 4-gram
language models on the 20 dialectal subparts. The new 20 dialect language models
are interpolated with the 20 original ones. We optimize the interpolation weights
of the 40 language models on a Levantine held-out set. Table 13.27 shows the
improvements obtained by adding dialect data to the original language model. Note
that the improvement from adding dialect language models is less than the one
obtained from dialect acoustic models. One reason for this is the fact that the initial
dialect data is selected from the BC part of the training data, and the BC language
model has a high weight in the baseline interpolated LM.
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Finding Levantine Words

We can identify dialectal words if we compute how many times the word occurs in
the Levantine corpus vs. the MSA one. After sorting the count ratios, we find the
following words ranked at the top of the list: Em, hyk, bdw, bdk, ylly, blbnAn, which
are in fact Levantine words. Note that identifying dialectal words can be useful
for building better pronunciation dictionaries for dialects as well as for machine
translation.

13.6 Resources

As explained in Sect. 13.1.1 a speech recogizer consists of models representing the
underlying acoustic and language characteristics. In order to build a speech rec-
ognizer, language-specific data for training these models is required. The Linguistic
Data Consortium (www.ldc.upenn.edu) is a good starting point to look for publically
available data resources. In this section we describe the available data for Arabic that
was mostly collected as part of DARPA programs.

13.6.1 Acoustic Training Data

We used the following corpora for acoustic model training in various experiments
presented here:

• 85 h of FBIS and TDT-4 audio with transcripts provided by BBN,
• 51 h of transcribed GALE data provided by the LDC for the GALE Phase 1 (P1)

evaluation,
• 700 h of transcribed GALE data provided by LDC for the Phase 2 (P2) and Phase

2.5 (P2.5) evaluations,
• 5.6 h of BN data with manually vowelized transcripts provided by BBN (BNAT-

05),
• 5.1 h of BN data with manually vowelized transcripts provided by BBN (BNAD-

05),
• 500 h of transcribed Iraqi data (TRANSTAC),
• 1,800 h of untranscribed audio from the EARS BN-03 corpus, and
• 10,000 h of untranscribed audio collected at IBM Research (TALES).

BNAT-05 and BNAD-05 were used only for a comparison of flat-start training to
manual data for the initialization of vowelized models. The TRANSTAC data was
used only for experiments on dialect modeling. The TALES data was used only for
experiments on large-scale unsupervised training, including tests of dialect models.
The evaluation system described in Sect. 13.4 was trained only on data available to
all GALE program participants: FBIS, TDT-4, GALE P1 and P2, and EARS BN-03.

www.ldc.upenn.edu
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Table 13.28 Source
variability in Arabic
broadcast training data

Source Hours

Al Arabiya 2; 455

Al Jazeera Morning News 306

Al Jazeera Midday News 326

Al Jazeera News Bulletin 975

Dubai News 27

ESC News 81

LBC (Lebanese) Flash News 88

LBC International News 161

Voice of America 184

Al Alam 47

NBN News 131

Arabic broadcast news and conversations are highly variable, coming from
many different broadcasters and containing a mixture of Modern Standard Arabic
(MSA) and dialectical Arabic. To illustrate this variability, Table 13.28 provides
a breakdown of a sample comprising 130 h of GALE transcribed data, 750 h of
untranscribed EARS BN-03 data, and 5,600 h of untranscribed TALES data by
source. Note that only the predominant sources in the sample are listed; there is
also a long tail containing many additional sources which are represented by smaller
amounts of audio.

13.6.2 Training Data for Language Modeling

We used the following resources for language modeling:

• Transcripts of the audio data released by LDC (7M words),
• The Arabic Gigaword corpus (500M words),
• News group and web log data collected by LDC (22M words),
• Web transcripts for broadcast conversations collected by CMU/ISL (100M

words), and
• web text data collected by Cambridge University and CMU (200M words).

Automatic transcripts from the unsupervised training corpus were not used for
language modeling.

13.6.3 Vowelization Resources

Besides the training data, there are other resources that are helpful to build
systems for Arabic, but not necessarly essential. Many research groups use these
tools for their Arabic LVCSR systems to generate vowelized pronunciation lexica.
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In Sect. 13.2.2 we demonstrate how these tools can be used to generate vowelized
forms for unvowelized corpora and improve the speech recognition performance.

1. Buckwalter’s morphological analyzer
The morphological analyzer [7] can be used to decompose (unvowelized) words
into morphemes and provide a list of vowelizations. It is also available from
LDC.

2. MADA (Morphological Analysis and Disambiguation for Arabic)
This tool [22] can be used to rank and refine the vowelized variants by performing
a sentence-wide analysis. It uses the results from Buckwalter’s morphological
analyzer to rerank them using an SVM classifier that uses morphological and
n-gram features.

3. Arabic Treebank
The Arabic Treebank (www.ircs.upenn.edu/arabic) consists of part-of-speech,
morphological and syntax annotations for a corpus collected as part of the
DARPA TIDES program. The corpus can be used to find vowelized forms for
pronucuation lexica.

13.7 Comparing Arabic and Hebrew ASR

The goal of this section is to describe the challenges involved in building an ASR
system for modern Hebrew. We hypothesize that most of the techniques used for
building an Arabic ASR will carry over to Hebrew as well.

Hebrew is a morphologically rich language, therefore, as in Arabic, the vocab-
ulary size can be very large, if explicit morphological modeling is not employed,
affecting the lexicon size as well as the language model. All of this may highly
likely lead to higher language model perplexity, larger decoder search space, and
large memory requirements. We have seen in this chapter how to handle these issues
for Arabic, hence the same techniques are likely to carry over. The diacritizaion
phenomenon, or so-called Niqqud in Hebrew, is almost identical to that of Arabic.
Short vowels and consonant alternation markers are written as diacritic markers
above, below or inside letters. Similar to Arabic, most modern Hebrew texts are
written with almost no Niqqud whatsoever. The same word with different Niqqud
typically changes meaning, POS, and/or pronunciations, as in Arabic.

As in Arabic, there is almost a one-to-one mapping between fully diacritized
Hebrew words to pronunciations using simple pronunciation rules. Therefore,
automatic morphology analysis and disambiguation techniques may be useful for
Hebrew to build a “vowelized” system as we have seen for Arabic. We also
hypothesize that a completely “unvowelized” system, as in Arabic, will also perform
relatively well for Hebrew. In other words, ignoring the Niqqud completely may
provide us with a relatively accurate system, particularly when discriminative
training is used. Unlike Arabic, in modern Hebrew, there is no notion of regional
dialects. This suggests that building a Hebrew ASR system is far easier than building

www.ircs.upenn.edu/arabic
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a unified Arabic ASR system. This is due to the facts that Hebrew has a single
well-defined spelling system, a single vocabulary set, a single morphological and
syntactic system and a single phonetic inventory.

13.8 Summary

We described in this chapter LVCSR techniques, both language-independent and
language-specific, to obtain high performance LVCSR systems. Our main findings
are based on our experience from the 5-year DARPA GALE program, aimed at
improving Arabic speech recognition and translations. Our main findings are:

1. Current LVCSR technology works fairly robustly on a set of different languages.
Ninety percent of the improvements in our system come from basic technology
that works across languages. It is important to get the basic techniques for
acoustic and language modeling right before addressing language-specific issues.

2. The lack of diacritics in written texts is one of the more important language-
specific issues. Short vowels are not written but spoken, creating a mismatch
between transcripts and audio files. The first solution is to use semi-automatic
vowelization procedures such as Buckwalter’s morphological analyzer. These
tools can be used to add vowelized pronunciation variants to the lexicon. Flat-
start training over pronunciation graphs can then initialize acoustic models.
Repeated system building will lead to very good vowelized acoustic models.

3. Discriminative training is able to compensate for modeling errors. Instead of
trying to model short vowels, we explore the idea of letting our acoustic models
learn to deal with modeling errors in the pronciation lexicon. Long-span phonetic
context allows decision trees to create states corresponding to effects related to
missing short vowels. Discriminative training (feature and model space boosted
MMI or MPE) trains acoustic models in a way that corrects modeling errors.
Experimental results show that unvowelized models are very competitive once
speaker adaptation and discriminative training is added.

4. The rich morphology of the Arabic language is another issue that is important for
LVCSR. The rich morphology creates two problems. The first problem is that a
lot of words are not covered by regular sized vocabularies. The second problem is
data sparsity for language modeling. One solution for these problems is to build
a morpheme-based vocabulary and language model. This approach yields very
low OOV rates while maintaining regular sized vocabularies. The downside is
a postprocessing step that converts the recognition output back to words. This
postprocessing step will create additional errors since the mapping is usually
ambiguous.

A more elegant approach, in our opinion, is to rely on careful engineering.
A well-written LVCSR decoder can easily work with very large vocabularies.
Then, we can use word-based vocabularies and simply increase the size of the
vocabulary to millions of words. No postprocessing of the recognition output
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is required and the OOV rates on standard tests are below 0:5%. Class-based
exponential language models such as Model-M have proved to be very capable.

5. Increased data sets make language-specific techniques less important. During the
course of the GALE program the amount of training data increased from 100 h
to more than 1,300 h. We observed that improvements from vowelization were
reduced significantly when more training data became available.

6. Languages such as Arabic cover a wide variety of dialects. We presented several
methods for helping LVCSR systems cope with dialects. One approach is to
make acoustic models dialect specific. Adding dialect questions to the decision
tree is a data-driven way to generate HMM states specific to certain dialects.
Another approach is to bootstrap a dialect-specific system by leveraging MSA
models. The dialect recognition system allows us to focus on relevant training
subsets. While specialized models for Levantine perform poorly on MSA, the
tree array decoding procedure allows us to mix both models without sacrificing
performance. Also, we showed that we can build a text-only dialect classifier
that performs as well as a dialect classifier requiring audio data. The text-only
dialect classifier enables us to find relevant LM text data. Another application
is pronunciation modeling where the text-based dialect classifier can provide us
with candidate words that occur only in Levantine.

7. Diversity of acoustic models is good for system combination. Instead of relying
on either vowelized or unvowelized models, we use both models. The com-
bination can be done as cross-adapation, confusion network combination or
other methods. System combination makes LVCSR technology more robust on a
variety of test sets and improves the error rate significantly.
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