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Preface

ALGOSENSORS, the International Symposium on Algorithms and Experiments for
Sensor Systems, Wireless Networks and Distributed Robotics, is an international
forum dedicated to the algorithmic aspects of wireless networks, static or mobile. The
9th edition of ALGOSENSORS was held during September 5-6 in Sophia Antipolis,
France, within the ALGO annual event.

Originally focused solely on sensor networks, ALGOSENSORS now covers more
broadly algorithmic issues arising in all wireless networks of computational entities,
including sensor networks, sensor-actuator networks, and systems of autonomous
mobile robots. In particular, it focuses on the design and analysis of discrete and
distributed algorithms, on models of computation and complexity, on experimental
analysis, in the context of wireless networks, sensor networks, and robotic networks
and on all foundational and algorithmic aspects of the research in these areas.

This year papers were solicited in three tracks: Sensor Network Algorithms (Track
A), Wireless Networks and Distributed Robotics Algorithms (Track B), and Experi-
mental Algorithms (Track C).

In response to the call for papers, 30 submissions were received, out of which 19
papers were accepted after a rigorous reviewing process by the (joint) Program
Committee, which involved at least three reviewers per paper. In addition to the
technical papers, the program included two invited presentations, the keynote talk by
Magnis M. Halldérsson (Reykjavik University), and the opening talk by Giuseppe
Prencipe (University of Pisa). This volume contains the technical papers as well as
summaries of the two keynote talks.

We would like to thank the Program Committee members, as well as the external
reviewers, for their fundamental contribution in selecting the best papers resulting in a
strong program. We would also like to warmly thank the ALGO/ESA 2013 organizers
for kindly accepting the proposal of the Steering Committee to co-locate
ALGOSENSORS with some of the leading events on algorithms in Europe.

October 2013 Paola Flocchini
Jie Gao

Evangelos Kranakis

Friedhelm Meyer auf der Heide
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Modeling Reality Algorithmically: The Case
of Wireless Communication

Magntis M. Halldérsson ™)

ICE-TCS, School of Computer Science, Reykjavik University, 101 Reykjavik, Iceland
mmhQru.is

1 Algorithmic Models and Their Properties

Computation is increasingly being viewed as the 215 century approach to model-
ing the world. Classical sciences have become increasingly more computer-driven,
necessitating a computational perspective. The equation — bastion of 20" cen-
tury science — is becoming supplanted by the algorithm. To properly address
real-world phenomena, we need models appropriate for algorithmic approaches.

This note contains the author’s reflections on the choice and design of models,
particularly those capturing aspects of the measurable world. What it is that we
look for in models and the essential properties that we seek. We do this in the
context of wireless networking, but hope that some of the lessons have wider
relevance.

We postulate that algorithmic models must satisfy four properties to be truly
useful.

Fidelity. A model must be a fair representation of reality. Whereas physics
has the advantage that its relatively simple laws hold with extremely high
precision, the settings for most fields of study are inherently noisy, making
perfect models a pipe dream. Instead, abstractions are an intrinsic part of
most models, where the intent is to factor out unimportant ideosyncracies.
On the other hand, if essential features are eliminated, the model fails its
primary task: to faithfully represent reality.

Simplicity. Overly complex models generally result in limited usage. The utility
of such models for algorithmic design is necessarily limited, as it complicates
all the efforts involved. Occam’s razor suggests that models should be as
simple as possible, but also no simpler than that, paraphrasing an aphorism
attributed to Einstein. Simplicity also has implications for analysis.

Analyzability. In order to truly understand real-world phenomena, we need to
be able to analyze them and study, both individually and in relation to other
phenomena. A model with characteristics that defy analysis may allow for
uniformed heuristic use, but will hamper our understanding of the intrinsic
properties of the concept at hand.

Generality. Finally, we seek explanations of general utility with wide applica-
bility. There is always the danger to introduce context-specific attributes to
strengthen the predictive power of the model, but the more we do so, the
less useful the model is as a means to explain general properties.

P. Flocchini et al. (Eds.): ALGOSENSORS 2013, LNCS 8243, pp. 1-5, 2014.
DOI: 10.1007/978-3-642-45346-5_1, (© Springer-Verlag Berlin Heidelberg 2014



2 M.M. Halldérsson

It may be helpful to consider some examples.

Integer Linear Programming. ILP is an extremely general tool to represent com-
binatorial problems, allowing for generic solution methods. Depending on the
context, it can be very faithful to the real phenomena. The utilities for algo-
rithm design and analysis depends a lot on the specific domain, and can range
from very high to minimal.

Mazwell’s equations. The equations for electrodynamics that underlie electrical
and communication technologies are both very general and highly precise, omit-
ting only the quantum effects that are usually immeasurably small. However,
when examined at the scale of wireless networks, the details involved are over-
whelming, rendering them unusable for all but exceptional settings of algorithms
and analysis.

In general, the utility of a model may depend on the issue/problem under
consideration.

2 Selected Wireless Models

A fair number of algorithmic models has been proposed for wireless networks.
Let us consider the more prominent models, explore the problems that they
address well and examine the issues they raise and their weaknesses. Usually,
the distributed setting is assumed, but one can also evaluate them with respect
to centralized algorithms. Let n denote the number of wireless transceiver nodes.

Radio model. In the earliest and the most basic model, a wireless transmission is
successful if exactly one transmitter is transmitting, in which case all the other
nodes receive the message.

A core problem addressed in this model, which has been extended to other
models, is leader election: the nodes should agree on a single node as a leader.
With this primitive, many other issues are simplified. One surprising result due
to Willard is that this can be achieved in O(loglogn) steps [15], when the nodes
have collision detection, i.e., can distinguish silence from the case when two or
more nodes are attempting to transmit.

The key limitation of this model is the assumption that all nodes are within
communication range. It is also pessimistic in that it does not allow for any
spatial reuse of the wireless channel.

General graphs. In the (general) graph model, the graph represents which pairs
of nodes can communicate (and interfere) with each other. In this sense, the
radio model corresponds to the clique graph.

The prototypical problem addressed in this model is the broadcast problem:
how to transmit a message from a given source to all other nodes in the graph.
A celebrated result of Bar-Yehuda, Goldreich and Itai [2] shows that this can
be achieved in O(D logn) time steps with a randomized distributed algorithm,
where D is the diameter of the graph. This is essentially optimal for a distributed
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algorithm, and within logarithmic factor of the best possible by a centralized
algorithm.

One downside of the model is that many problems become hard to solve even
approximately. For instance, the coloring problem, which captures core questions
regarding scheduling wireless communications, has no sublinear approximation
algorithm [6].

Disc graphs. Communication occurs in the physical world, which is three-
dimensional, and distances do matter. A natural approach to limit complexity
is therefore to embed the nodes in a Euclidean space and assume that nodes can
connect if they are sufficiently close. In the basic setting, nodes can communicate
(and interfere) if and only if they are within a fixed distance apart, giving rise
to unit disc graphs (UDG). UDGs have been the source of a large amount of
interesting theory, with the early paper of Clark et al. [3] cited over 1000 times.
Many variations and extensions exist, such as allowing for differing
power /radii of the nodes (disc graphs) or different ranges for interference than for
communication (protocol model). All disc graphs, however, make strong assump-
tions: the world is flat (i.e., planar), radio transmission ranges are circular, and
reception is symmetric. More generally, all graph-based models assume that
reception quality is a binary and that interference is a pairwise relationship.
Numerous empirical results (see, e.g., [10]) have shown these to be simplistic.

Physical model. The model of choice in engineering circles has been the physical
model, where the radio signal is assumed to be a decaying function of distance.
Here, interference is no longer binary but additive, with successful reception
achieved if the total amount of interference is sufficiently small relative to the
strength of the intended signal (i.e., high enough signal-to-interference-and-noise-
ratio, SINR).

The standard assumption is that signal decays as a polynomial function of
distance, known as geometric pathloss. Namely, if the signal travels distance d
from a sender transmitting with power P, it will be received with strength P/d®,
where « is an absolute constant depending on the setting, understood to be in
the range [2,6].

The physical model was mostly ignored by algorithm theory for a long time,
assumed to be too complicated and hard to analyze (failing our Simplicity and
Analyzability axioms). Recent years have, however, seen great improvements in
our understanding of the model and increase in analytic results.

One problem for which results in the physical model are qualitatively different
from those in other models is the aggregation problem (and the related connectiv-
ity problem): Compute aggregation statistic (say, the minimum) of a set of values,
where each wireless node contains only a single value. In any disc or graph-based
model, the worst-case round complexity is necessarily linear. Surprisingly, per-
haps, Moscibroda and Wattenhofer showed that in the physical model it is only
poly-logarithmic [13]. In fact, the worst-case bound is only O(logn) [7].

Even though the physical model adds several attributes of realism, it still
has issues regarding fidelity. Geometric path loss means assuming that antennas
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are omnidirectional and that signal decays smoothly as a function of distance.
Real environments have obstacles and walls that can reflect, scatter and damper
signals, and the mere appearance of floors or a ground introduces multi-path
effects that are beyond the pure geometric path loss.

3 Future Directions

The preceding models have now all been fairly well studied. Each has aspects
that fit certain problems better than others, allowing us to draw distinct lessons.
None, however, captures all the important aspects of real environments. Exper-
imental evidence has indeed found that wireless reception is tricky, defying sim-
plistic characterizations [1]. We point out a few additional approaches that have
been considered.

If the assumption of geometric path loss is jettisoned from the physical model,
we are left with the abstract SINR model. This is extremely general, with gen-
eral graphs being a special case. Thus, scheduling-type problems become highly
inapproximable. Still, it may be instructive to consider this general model fur-
ther, identifying other types of restricted instances or parameterized properties
that allow us to recover the Analyzability axiom. The inductive independence or
maximum average affectance property of [9] is one such candidate.

Temporal variability in wireless signal reception has been captured in the
recent dual graph model [12]. Tt extends the (general) graphs model by allowing
for both reliable and adversarially chosen unreliable links. Whether this exact
definition is the best one remains to be seen.

Random artifacts appear to be unavoidable in real networks, at least at a
low level. Different versions are known as “fading”, “shadowing”, or “Gaussian”
noise. One of the more common ones, Rayleigh fading, has been analyzed in con-
junction with the physical model [4] under the assumption of full independence.
Correlations and other variations await further study.

Our coverage is by no means exhaustive. Among exciting recent directions
are the Abstract MAC Layer [11], multi-channel models (e.g., [5]), jamming
resistance [14], and MIMO extensions of the physical model (e.g., [8]).

We believe that the time is ripe for tackling the challenge of faithfully mod-
eling real wireless environments, while obeying the other axioms of simplicity,
generality and analyzability. A natural direction would be to meld some of the
recent variations with the classical models and assess the resulting model accord-
ing to these criteria.

Acknowledgements. 1 thank the attendees of WRAWN (Workshop on Realistic
models for Algorithms in Wireless Networks) 2013 for stimulating presentations and
discussions that motivated these reflections. Any misrepresentations or omissions are,
of course, mine only.
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Autonomous Mobile Robots: A Distributed
Computing Perspective

Giuseppe Prencipe(®
Dipartimento di Informatica, Universita di Pisa, Pisa, Italy
prencipe@di.unipi.it

Abstract. The distributed coordination and control of a team of
autonomous mobile robots is a problem widely studied in a variety of
fields, such as engineering, artificial intelligence, artificial life, robotics.
Generally, in these areas, the problem is studied mostly from an empiri-
cal point of view.

Recently, the study of what can be computed by such team of robots
has become increasingly popular in theoretical computer science and
especially in distributed computing, where it is now an integral part of
the investigations on computability by mobile entities [28]. In this paper
we describe the current investigations on the algorithmic limitations of
what autonomous mobile robots can do with respect to different coordi-
nation problems, and overview the main research topics that are gaining
attention in this area.

1 Introduction

For the last twenty years, the major trend in robotic research, both from engi-
neering and behavioral viewpoints, has been to move away from the design
and deployment of few, rather complex, usually expensive, application-specific
robots. In fact, the interest has shifted towards the design and use of a large
number of “generic” robots which are very simple, with very limited capabilities
and, thus, relatively inexpensive, but capable, together, of performing rather
complex tasks.

The advantages of such an approach are clear and many, including: reduced
costs; ease of system expandability which in turns allows for incremental and
on-demand deployment; simple and affordable fault-tolerance capabilities; re-
usability of the robots in different applications [26,49].

One of the first studies conducted in this direction in the Al community
is that of Matari¢ [44]. The main idea in Matarié’s work is that “interactions
between individual agents need not to be complex to produce complex global
consequences”.

Other investigations in the Al community include the study of [4] on stig-
mergy communication and on the use a set of simple robots that operate com-
pletely autonomously and independently to collect pucks spread over a square

This research is supported in part by MIUR of Italy under project ARS TechnoMedia.

P. Flocchini et al. (Eds.): ALGOSENSORS 2013, LNCS 8243, pp. 6-21, 2014.
DOI: 10.1007/978-3-642-45346-5_2, (© Springer-Verlag Berlin Heidelberg 2014
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arena in a single cluster; the ALLIANCE architecture and the studies on selfish
behavior of cooperative robots in animal societies by Parker [49]; the formation
and navigation problems in multi-robot teams in the context of primitive animal
behavior in pattern formation by Balch and Arkin [3]; and the experiments in
cooperative cleaning behavior of Jung et al. [38].

Alternative approaches to the problem of studying multi-robot systems, can
be found in the CEBOT system of Fucuda, Kawaguchi et al. [32,41], in the
planner-based architecture of Noreils [47], in the information requirements theory
of Donald et al. [26] (see [7] for a survey), in the Swarm Intelligence of Beni
and Hackwood [5], in the Self-Assembly Machine (“fructum”) of Murata et al.
[46], etc.

The common feature of all these approaches is that they do not deal with
formal correctness of the solutions, that are only analyzed empirically. In all
these investigations, algorithmic aspects were somehow implicitly an issue, but
clearly not a major concern, let alone the focus, of the study. An investigation
with an algorithmic flavor has been undertaken within the AI community by
Durfee [27], who argues in favor of limiting the knowledge that an intelligent
robot must possess in order to be able to coordinate its behavior with others.

More recently, the study of teams of autonomous mobile robots has gained
attention also in distributed computing area, keeping pace with the trend orig-
inally started in robotics and AI. However, here the problem has been tackled
from a different perspective: from a computational point of view. In other words,
the focus is to understand the relationship between the capabilities of the robots
and the solvability of the tasks they are given. In these studies, the impact of
the knowledge of the environment is analyzed: can the robots form an arbitrary
geometric pattern if they have a compass? Can they gather in a point? Which
information each robot must have about its fellows in order for them to collec-
tively achieve their goal? The goal is to look for the minimum power to give to
the robots so that they can solve a given task; hence, to formally analyze the
strengths and weaknesses of the distributed coordination and control.

In this paper we describe the current investigations on the interplay between
robots capabilities, computability, and algorithmic solutions of coordination
problems by autonomous mobile robots.

2 Modeling Autonomous Mobile Robots

The considered computational universe is a 2-dimensional plane populated by
a set of n autonomous mobile robots, denoted by r1,...,7,, that are modeled
as devices with computational capabilities which are able to freely move on a
two-dimensional plane.

The Robots and Their Behavior. A robot is a computational unit capable
of sensing the positions of other robots in its surrounding, performing local
computations on the sensed data, and moving towards the computed destination.
The local computation is done according to a deterministic algorithm that takes
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in input the sensed data (i.e., the robots’ positions), and returns a destination
point towards which the executing robot moves. All the robots execute the same
algorithm. The local view of each robot includes a unit of length, an origin, and
a Cartesian coordinate system defined by the directions of two coordinate axes,
identified as the X and Y axis, together with their orientations, identified as
the positive and negative sides of the axes. Each robot cyclically performs the
following operations: (i) Look: The robot observes the world by activating its
sensors which will return a snapshot of the positions of all other robots within
the visibility range with respect to its local coordinate system. Each robot is
viewed as a point, hence its position in the plane is given by its coordinates, and
the result of the snapshot (hence, of the observation) is just a set of coordinates
in its local coordinate system: this set forms the view of the world of r. (ii)
Compute: The robot performs a local computation according to a deterministic
algorithm A (we also say that the robot exzecutes A). The algorithm is the same
for all robots, and the result of the Compute state is a destination point. (iii)
Move: If the destination point is the current location of r, r performs a null
movement (i.e., it does not move); otherwise it moves towards the computed
destination but it can stop anytime during its movement.!

The robots are completely autonomous: no central control is needed. Fur-
thermore they are anonymous, meaning that they are a priori indistinguishable
by their appearance, and they do not (need to) have any kind of identifiers that
can be used during the computation.

Moreover, the robots are silent: there are no explicit direct means of com-
munication, and any communication occurs in a totally implicit manner. Specif-
ically, it happens by means of observing the robots’ positions in the plane, and
taking a deterministic decision accordingly. In other words, the only mean for
a robot to send information to some other robot is to move and let the others
observe (reminiscent of bees in a bee dance).

Activation and Operation Schedule. With respect to the activation schedule
of the robots and of the timing of the operations within their cycles, there are
two main models, asynchronous and semi-synchronous.

In the asynchronous model (ASYNC), no assumptions on the cycle time of
each robot, and on the time each robot takes to execute each state of a given
cycle are made [29]. It is only assumed that each cycle is completed in finite
time, and that the distance traveled in a cycle is finite. Moreover, the robots
do not need to have a common notion of time, and each robot can execute its
actions at unpredictable time instants.

More precisely, there are only two limiting assumptions. The first one refers
to space; namely, the distance traveled by a robot during a computational cycle.
(A1) The distance traveled by a robot r in a move is not infinite. Furthermore,
there exists an arbitrarily small constant §, > 0, such that if the destination point

! e.g. because of limits to the robot’s motorial capabilities.
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1s closer than §,, r will reach it; otherwise, r will move towards it of at least 0.
As no other assumptions on space exist, the distance traveled by a robot in a
cycle is unpredictable.

The second limiting assumption is on the length of a cycle. (A2) The amount
of time required by a robot r to complete a computational cycle is not infinite.
Furthermore, there exists a constant €, > 0 such that the cycle will require at
least &, time. As no other assumption on time exists, the resulting system is fully
asynchronous and the duration of each activity (or inactivity) is unpredictable;
this setting is usually denoted by ASYNC.

There are two important consequences: First, since the time that passes after
a robot starts observing the positions of all others and before it starts moving
is arbitrary, but finite, the actual move of a robot may be based on a situation
that was observed arbitrarily far in the past, and therefore it may be totally
different from the current situation. Second, since movements can take a finite
but unpredictable amount of time, and different robots might be in different
states of their cycles at a given time instant, it is possible that a robot can be
seen while it is moving by other robots that are observing.?

In the semi-synchronous (SSYNC) model, the activations of the robots is logi-
cally divided into global rounds; in each round, one or more robots are activated
and obtain the same snapshot; based on that snapshot, they compute and per-
form their move [57].

In particular, there is a global clock tick reaching all robots simultaneously,
and a robot’s cycle is an instantaneous event that starts at a clock tick and ends
by the next. The only unpredictability is given by the fact that at each clock
tick, every robot is either active or inactive, and only active robots perform
their cycle. The unpredictability is restricted by the fact that at least one robot
is active at every time instant, and every robot becomes active at infinitely many
unpredictable time instants. A very special case is when every robot is active
at every clock tick; in this case the robots are fully synchronized (this specific
setting is usually denoted by FsyNc).

In this setting, at any given time, all active robots are executing the same
cycle state; thus no robot will look while another is moving. In other words, a
robot observes other robots only when they are stationary. This implies that
the computation is always performed based on accurate information about the
current configuration. Furthermore, since no robot can be seen while it is moving,
the movement can be considered instantaneous. An additional consequence of
atomicity and synchronization is that, for them to hold, the maximum distance
that a robot can move in one cycle is bounded.

Capabilities. Different settings arise from different assumptions that are made
on the robots’ capabilities, and on the amount of information that they share
and use during the accomplishment of the assigned task. In particular,

2 Note that this does not mean that the observing robot can distinguish a moving
robot from a non moving one.
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— Visibility. The robots may be able to sense the complete plane or just a

3

portion of it. We will refer to the first case as the Unlimited Visibility case.
In contrast, if each robot can sense only up to a distance V' > 0 from it, we
are in the Limited Visibility case. In the following, we will say also that the
robots have unlimited/limited visibility.

Geometric Agreement. Each robot r has its own unit of length, and a
local compass defining a local Cartesian coordinate system defined by the
directions of two coordinate axes, identified as the X and Y axis, together
with their orientations, identified as the positive and negative sides of the
axes. This local coordinate system is self-centric, i.e. the origin is the posi-
tion of the observing robot. Depending on the level of consistency among
the robots on the direction and orientation of the axes of their local com-
passes, different classes of global geometric agreement can be identified: total
agreement (or consistent compass), when the robots agree on the direction
and orientation of both axes; partial agreement (or one azis) when all robots
agree on the direction and orientation of only one axis; chirality when the
robots agree on the orientation of the axes (i.e., clockwise); and no agree-
ment (or disorientation), where no consistency among the local coordinate
systems is known to exist.

Memory. The robots can access local memory to store different amount
of information regarding the positions in the plane of their fellows. In the
oblivious model, all the information contained in the workspace is cleared at
the end of each cycle. In the non-oblivious (or persistent memory) model,
part (or all) of the local memory is legacy: unless explicitly erased by the
robot, it will persist throughout the robot’s cycles. In this model, an impor-
tant parameter is the size of the persistent workspace. One extreme is the
unbounded memory case, where no information is ever erased; hence robots
can remember all past computations and actions. On the opposite side is the
case when the size of the persistent workspace is constant; in this case, the
entities are just Finite-State Machines, and are called finite-state robots.

Let us stress that the only means for the robots to coordinate is the obser-

vation of the others’ positions and their change through time. For oblivious
robots, even this form of communication is impossible, since there is no memory
of previous positions.

Static Problems

Pattern Formation. The PATTERN FORMATION problem is one of the most
important coordination problem and has been extensively investigated in the lit-

erature (e.g., see [10,56,57,60]). The problem is practically important, because,
if the robots can form a given pattern, they can agree on their respective roles

in a subsequent, coordinated action.
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In its most general definition, the robots are required to form an arbitrary
pattern. The geometric pattern to be formed is a set of points (given by their
Cartesian coordinates) in the plane, and it is initially known by all the robots
in the system.

The robots are said to form the pattern if, at the end of the computation,
the positions of the robots coincide, in everybody’s local view, with the points of
the pattern. The formed pattern may be translated, rotated, scaled, and flipped
into its mirror position with respect to the initial pattern. Initially the robots
are in arbitrary positions, with the only requirement that no two robots are in
the same position, and that, of course, the number of points prescribed in the
pattern and the number of robots are the same.

The basic research questions are which patterns can be formed, and how they
can be formed. Many proposed procedures do not terminate and never form the
desired pattern: the robots just converge towards it; such procedures are said to
converge.

There exists solution to solve this problem in both AsyNC (e.g., [31]) and
SsyNC (e.g., [57]), by always considering robots with unlimited visibility. In all
the solutions, the kind of patterns that can be formed by the robots depends on
the level of agreement the robots have on their local coordinate systems.

Several studies also investigated on the formation of specific patterns, such
as lines and circles. In the LINE FORMATION problem, the robots are required
to place themselves on a line, whose position is not prescribed in advance (if
n = 2, then a line is always formed). In [15], this problem has been tackled by
studying an apparently totally different problem: the spreading. In this problem,
the robots, that at the beginning are arbitrarily placed on the plane, are required
to evenly spread within the perimeter of a given region. In their work, the authors
focus on the one-dimensional case: in this case, the robots have to form a line,
and place themselves uniformly on it. A very interesting aspect of the study, is
that [15] addresses the issue of local algorithms: each robots decides where to
move based on the positions of its close neighbors. In particular, in the case of
the line, the protocol is quite simple: each robot r observes its left and right
neighbor. If r does not see any robot, it simply does not move; otherwise, it
moves to the median point between its two neighbors. The authors prove its
convergence in SSYNC. Furthermore, if each robot knows the exact number of
robots at each of its sides, it is possible to achieve the spreading in one dimension
in a finite number of cycles.

In the CIRCLE FORMATION problem, the robots want to place themselves
on the plane to form a non degenerated circle of a given diameter.®> One of
the first discussion on circle formation by a group of mobile entities was by
Debest [20], who introduced it as an illustration of self-stabilizing distributed
problems, but did not provide an algorithm. This problem was first studied
by Sugihara and Suzuki [56]. They presented an heuristic distributed protocol,

3 If the diameter is not fixed a priori, the problem becomes trivial, even in ASyNc:
each robot computes the smallest circle enclosing all the robots’ positions and moves
on the circumference of such a circle.
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successively improved by Tanaka [58], that allowed the robots to form an approx-
imation of a circle (more similar to a Reuleaux triangle) having a given diameter
D. A variant of this problem is the UNIFORM CIRCLE FORMATION problem: the
n robots on the plane must be arranged at regular intervals on the boundary of
a circle. This kind of formation can be usefully deployed in surveillance tasks:
the robots are placed on the border of the area (or around the target) to surveil
(e.g., see [34]). Both problems have since been extensively investigated in SSYNC
and ASYNC [8,21-24,39,52,58].

Gathering. In the GATHERING problem, the robots, initially placed in arbitrary
and distinct positions, are required to gather in a single location within finite
time. This problem is also called point formation, homing, or rendezvous. A
problem closely related to GATHERING is that of CONVERGENCE, where the
robots need to be arbitrarily close to a common location, without the requirement
of ever reaching it.

In spite of their apparent simplicity, these problems have been investigated
extensively both in SSYNC and in ASYNC under a variety of assumptions on
the robots’ capabilities: in fact, several factors render this problem difficult to
solve. First of all, some basic results about GATHERING: It is possible in FSyYNC,
with an algorithm that exploits the properties of the center of gravity of the
team [13]; it is impossible without additional assumptions in SSYNC, hence in
AsyNc [51,57], and trivially achievable even in ASYNC with totally agreement
on the coordinate systems (gather at the position occupied by the rightmost and
topmost robot).

Rendezvous. When the system contains only two robots, the GATHERING prob-
lem is very special, and it is often called RENDEZVOUS. We have just stated that,
with a common coordinate system, there is an easy solution to GATHERING, and
hence to RENDEZVOUS even in ASYNC. In absence of a common coordinate sys-
tem the problem is not solvable even in SSYNC. Hence, with n = 2, the focus is
on gathering in FSYNC, and on the CONVERGENCE problem.*

The RENDEZVOUS has been extensively studied by assuming different level
of agreement on the compass systems of the robots. In particular, the problem is
solvable in ASYNC when the robots agree on chirality, but the axis are however
tilted up to a ¢ < 7 degrees [37], and the tilt is fixed. If the robots still agree
on chirality, but the tilt of their compasses might be variable, rendezvous can
be achieved in SSYNC with fully variable compasses if and only if ¢ < 7, and in
AsyNC with semi-variable compasses® if and only if ¢ < Z [37].

4 Notice that RENDEzZvVOUS has a trivial solution in FSYNC: a robot moves to the
halfway point to the other robot. In both SsyNc [57] and AsyNc [13], this move-to-
half strategy guarantees only convergence.

5 The tilted compasses are said to be fully variable if the actual tilt of each compass
may vary at any time (but always with no more than ¢ from the global coordinate
system); they are semi-variable if the tilt of each compass may vary (but no more
than ¢) between successive cycles, but it does not change during a cycle.
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Gathering and Convergence. The GATHERING problem has been extensively
investigated both experimentally and theoretically in the unlimited visibility set-
ting, that is assuming that the entities are capable to sense the entire space. As
stated above, when no additional assumptions are made in the model, there is no
deterministic solution to the GATHERING problem in SSYNC. However, CONVER-
GENCE is possible even in ASYNC: The robots get closer to a gathering point, but
never reach it in finite time. One quite simple and effective convergence solution
in ASYNC exploits the Center of Gravity of the robots [13]. With the strongest
assumption of unlimited mobility (all robots always reach their destinations when
performing a Move), convergence time in ASYNC can be improved [17].

Thus, the GATHERING problem has a solution only adding additional assump-
tions. The most common assumption is that of multiplicity detection: a robot is
able to detect whether a point on the plane is occupied by more than one robot.
With this assumption, there exists solutions in both SsyNc [57] and ASyNc [12].
Another capability that has also been considered is a stronger form of multiplic-
ity detection, where robots can detect the exact number of robots located at a
given position [25]. Adding this capability, it is impossible to solve the problem
for all possible initial configurations containing an even number of robots; how-
ever the robots can gather from an arbitrary configuration with n robots, when
n is odd. In this case, initial configurations include also configurations contain-
ing more than one robot on the same point. Note that, since this algorithm is
correct starting from all possible configurations provided n is odd (even the ones
containing more than one robot), it is truly self-stabilizing.

In contrast, the multiplicity detection is not used in the solution described
n [11]; however, it is assumed that the robots can rely on an unlimited amount
of memory: the robots are said to be non-oblivious. In other words, the robots
have the capability to store the results of all computations since the beginning,
and freely access to these data and use them for future computations.

Furthermore, in SSYNC agreement on chirality and unlimited mobility suffice
for making the problem solvable, even with variable tilted compasses, if the tilt
of the local compasses is ¢ < § [36];

A different setting that has been studied is when robots have limited visibility:
in this scenario, an obvious necessary condition to solve the problem, is that at
the beginning of the computation the visibility graph (having the robots as nodes
and an edge (r;,7;) if 7, and r; are within viewing distance) is connected [2,30].
In [2] the proposed protocol solves the CONVERGENCE problem. In [30], the
authors present an algorithm that let the robots to gather in a finite number of
cycles. However, in this case the robots can rely on the presence of a common
coordinate system: that is, they share a compass.

With limited visibility, the CONVERGENCE problem has been studied in
FsyNC when the robots operate in a non-convex region (of which they have
no map) [33]; in ASYNC with a limited form of asynchrony [42], where the time
spent by a robot in the Look, and Compute states is bounded by a globally pre-
defined amount, while the time spent in the Mowe state is bounded by a locally
predefined quantity (not necessarily the same for each robot); and in AsyNC
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under a 1-fair scheduler [40]: Between two successive activations of each robot
r, all other robots have been activated at most once (as a consequence, from the
moment r observes the current situation to the moment it finishes its movement,
no other robot performs more than one Look).

The GATHERING problem has been also investigated in the context of robots
failures. In this context, the goal is for the non-faulty robots to gather regardless
of the action taken by the faulty ones. Two types of robot faults were investigated
by Peleg et al. [1]: crash failure, in which the robot stops any activity and will
no longer execute any computational cycle; and the byzantine failure, in which
the robot acts arbitrarily and possibly maliciously.

In [14] it is analyzed the case of systems where the robots have inaccuracies in
sensing the positions of other robots, in computing the next destination point,
and in moving towards the computed destination. The authors provide a set
of limitations on the amount of inaccuracies allowing convergence; hence, they
present an algorithm for convergence under bounded measurement, movement
and calculation errors. In [43], the case of radial errors has also been considered.

Finally, beside the inaccuracies in the compasses that have already been cited
above (tilted compasses), with eventually consistent compasses (i.e., transient
errors on the compasses), the GATHERING problem has also been studied in
SSYNe, with robots that agree on chirality: in this case, it has been proven that
the robots can gather in finite time [53].

Near-Gathering A problem that is very close to the CONVERGENCE problem is
NEAR-GATHERING, where a set of robots with limited visibility, at the begin-
ning arbitrarily placed in the plane on distinct positions, are required to get
close enough to each other, without any collisions. In particular, in finite time,
the robots are required to move within distance € from each other for some
predefined . This problem is particularly useful to overcome the limitations
introduced by having robots with limited sensing capabilities: in fact, once they
are close enough, all robots can see each other, hence they can operate as they
had unlimited visibility power. This problem has been recently solved in ASYNC
for robots with consistent compass [48].

4 Dynamic Problems: Flocking and Capture

In this set of problems, the robots dynamically move, and there is really no
ending in the robots’ tasks. Let us consider the FLOCKING problem first: There
are mainly two versions of this problem. In the first one, there are two kinds of
robots in the environment: the leader L, and the followers (this scenario is also
called guided flocking). The leader acts independently from the others, and it
can be assumed that it is driven by an human pilot. The followers are required
to follow the leader wherever it goes (following), while keeping a formation they
are given in input (flocking). In this context, a formation is simply a pattern
described as a set of points in the plane, and all the robots have the same
formation in input.
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In [35], an algorithm solving this problem in ASYNC has been tested by using
computer simulation; the algorithm assumes no agreement. All the experiments
demonstrated that the algorithm is well behaved, and in all cases the followers
were able to assume the desired formation and to maintain it while following the
leader along its route. Moreover, the obliviousness of the algorithm contributes
to this result, since the followers do not base their computation on past leader’s
positions.

In the second version of the problem, also known as homogeneous flocking,
there is no exogenous source (i.e., no guide) and every robot knows the trajectory:
The path along which the flock has to move is known in advance to every robot
(e.g., [6,54,55]).

Finally, if the leader is considered an “enemy” or “intruder”, and the pattern
surrounds it, the problem is known as CAPTURE (or intruder). A protocol that
assumes no agreement and solves the problem in ASYNC has been presented
in [34]. The proposed algorithm exhibits remarkable robustness, and numeric
simulations indicate that the intruder is efficiently captured in a relatively short
time and kept surrounded after that, as desired. Furthermore, the solution is self-
stabilizing. In particular, any external intervention (e.g., if one or more of the
cops are stopped, slowed down, knocked out, or simply faulty) does not prevent
the completion of the task.

5 New Directions

Computing with Colors. A new direction of investigation that just started
being explored is the introduction in the model of some form of direct commu-
nication. The first attempt in this direction is in [19], where the robots make
visible to their fellows O(1) persistent bits [19]: Each robot is equipped with
a light bulb that can display a constant numbers of different colors; the colors
are visible to all other robots, and are persistent, that is, the light bulbs are not
automatically reset at the end of each cycle. Thus, they can be used to remember
states and to communicate. Apart from these lights, the robots are oblivious in
all other respects.

Studies in this direction just started, and here is a brief summary of the
major results obtained so far.

Colored ASYNC wversus SSYNC. The presence of lights with visible colors is
undoubtably a very powerful computational tool even if just constant in num-
ber. Indeed, it can overcome the limitations of ASYNC making the robots strictly
more powerful than traditional SSYNC robots, as we see in the following. In fact,
it has been shown that asynchronous robots with lights are at least as powerful
as semi-synchronous ones: the proof consists of a protocol that allows to execute
any semi-synchronous algorithm in an asynchronous setting, each robot using a
light with a constant number of colours [19].

There are problems that robots cannot solve without visible bits, even if they
are semi-synchronous, but can be solved with O(1) visible bits even if the robots
are asynchronous [19]. One such a problem is rendezvous, i.e., the gathering of
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two robots; from previous Sect. 3, we know that this problem is not solvable in
SsyNc. However, this problem can be solved if the robots have O(1) colors.

Hence, these two results lead to conclude that asynchronous robots endowed
with O(1) wvisible lights are strictly more powerful than semi-synchronous robots
without any light [19].

Colored AsYNC wversus FsyNC. The relationship between FsyNc and Colored
AsyNC is less understood. What is known is that asynchronous robots, if empow-
ered with both a constant number of visible lights and the ability to remember
a single snapshot from the past, become at least as powerful as traditional fully
synchronous robots [19].

Interestingly, there are problems that can be solved in ASYNC with three
colours and one past snapshot, but are not solvable in FsyNc without additional
information. This is the case, for example, of the BLINKING problem, which
requires n > 2 robots to perform subtasks 77 and T» repeatedly in alternation.
In T7, the robots must form a circle, i.e. each robot lies on a distinct point on
the same circle C of radius Rad > 0; while in T5, the robots must gather at a
single point.

The presence of a problem not solvable in FSYNC but solvable in ASYNC with
lights and one past snapshot, leads to the following conclusion: Asynchronous
robots, endowed with O(1) wisible lights and able to remember a single snapshot,
are strictly more powerful than fully-synchronous oblivious robots without any
lights [19].

This is to be contrasted with the fact that, without lights, ASYNC robots are
not even as powerful as SSYNC, even if they remember an unlimited number of
previous snapshots [50].

Solid Robots. In the standard model, the robots are viewed as points, i.e., they
are dimensionless. An interesting variant of the model is to consider entities that
occupy a physical space of some size; that is, the entities have a solid dimension.
These robots, called solid (or fat), are assumed to have a common unit distance
and are viewed as circular disks of a given diameter. The disks of two robots can
touch but cannot overlap. Moreover, it is assumed that, if during its movement
a robot collide with another, its movement stops (fail-stop collision).

The robots’ visibility might be affected by their solid dimension. If so, two
robots r; and 72 can see each other if there exist points x and y in the visibility
radius of 1 and ro respectively, such that the segment [xy] does not contain
any point of any other robot. Note that if a robot r; can see robot ry, it can
see some non-zero arc of its bounding circle and thus it can always compute its
centre. Otherwise, if no visibility obstruction occurs, the robots are said to be
transparent.

Very few problems have been investigated for solid robots. One of these is the
GATHERING. Obviously, in the case of solid robots, the definition of gathering
needs to be modified.

The robots are said to form a connected configuration in the plane if between
any two points of any two robots there exists a polygonal line each of whose
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points belongs to some robot. Gathering is accomplished if the robots form
some connected configuration and they are all visible to each other (and thus
are aware that a connected configuration is achieved).

Adding a physical dimension to the robots significantly complicates the task,
mainly because of the fact that their “body” can obstruct visibility. An example
that shows one of the difficulty is given by a team of 4 robots whose centres are
situated on two intersecting non-perpendicular lines, one robot in each of the
four half- lines. The obvious algorithm that would work if the robots were points
would be to have them move towards the intersection of the two lines, which
is invariant under straight moves. However, it is easy to see that an adversary
might have two robots meet in their move toward the centre, thus obstructing
the view to the other two, without forming a connected configuration. In general,
the lack of full visibility due to obstruction, prevent the robots from being able
to compute easily an invariant point.

For the gathering of solid robots, currently there are only solutions for very
small teams; in fact, no gathering algorithm is known for n > 4 non-transparent
solid robots [18]. Furthermore, these algorithms are not collision-free and they
rely on the fail-stop collision assumption to work.

In [9] it is presented an algorithm that works for n > 5 robots that are
solid but transparent. The robots must be initially placed in an asymmetry
configuration (so that a leader can be elected) and the desired gathering pattern
is a circular layered structure of robots with the elected leader in the center.

In [16] gathering by solid robots is considered in a different setting. Each
robot is given in input the position of the gathering point in its own coordinate
system. All robots have the same dimension dim, and they are said to be gathered
when they form a sphere with minimum radius around the predefined gathering
point. Robots have limited visibility, large enough to avoid collisions (thus, a
visibility radius V' > 2 - dim is sufficient), and they operate in FsyYNcC.

Solid robots have been also studied in the context of circle formation, in [56,
58] for robots with unlimited visibility, and in [45] for mobile robots whose vision
is not only limited but also directional.

Simulation Environments. A promising area of research on these topics is
represented by the development of computer simulation environments dedicated
to autonomous mobile robots. Several studies can be found in the literature right
on this track [2,34,35,56,58]. All these simulation environments are specifically
designed and developed for a particular problem: for instance, the one in [58] for
the circle formation; the one in [35] for the flocking problem; the one in [34] for
the intruder problem.

Recently, there has been a first attempt in designing a modular simulation
environment to test and execute generic protocols for the autonomous mobile
robots addressed in this paper: SYCAMORE [59]. In this environment, the
protocol of a robot is defined as a plugin given in input to the simulation engine,
and it can be easily set to simulate both 2D an 3D scenarios.
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6 Conclusions

In this paper, we surveyed a number of recent results on the interplay between
robots capabilities and solvability of problems. The goal of these studies is to gain
a better understanding of the power of distributed control from an algorithmic
point of view. The area is quite young, thus still offers many research quests.
First, one outstanding theoretical open problem: no solution is still known for the
GATHERING problem where the robots have limited visibility and no agreement;
actually, it is not even clear whether the problem is solvable (a similar problem
stands for the NEAR-GATHERING).

Then, operating capabilities of our robots are quite limited: New research
directions can be taken by expanding the capabilities of the robots, in the
attempt of better modeling the real robots. It would be interesting to look at
models where the robots have more complex capabilities, e.g.: the robots have
some kind of direct communication capabilities (besides the use of lights); the
robots are distinct and externally identifiable; etc. Little is known about the
solvability of other problems like spreading and exploration (used to build maps
of unknown terrains), about the physical aspects of the models, such as those
related to energy saving issues, and about the relationships between geometric
problems and classical distributed computations. In the area of reliability and
fault-tolerance, lightly faulty snapshots, a limited and directional (i.e., not 360°)
range of visibility, obstacles that limit the visibility and that moving robots must
avoid or push aside, as well as robots that appear and disappear from the scene
clearly are all topics that have not yet been studied.

We believe that investigations in these areas will provide useful insights on
the ability of weak robots to solve complex tasks.

Acknowledgements. The author would like to thank Paola Flocchini and Nicola
Santoro for their help and suggestions in the preparation of this paper.
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Abstract. We consider the k-token dissemination problem, where & ini-
tially arbitrarily distributed tokens have to be disseminated to all nodes
in a dynamic network (as introduced by Kuhn et al. STOC 2010). In con-
trast to general dynamic networks, our dynamic networks are unit disk
graphs, i.e., nodes are embedded into the Euclidean plane and two nodes
are connected if and only if their distance is at most R. Our worst-case
adversary is allowed to move the nodes on the plane, but the maximum
velocity vmax Of each node is limited and the graph must be connected
in each round. For this model, we provide almost tight lower and upper
bounds for k-token dissemination if nodes are restricted to send only
one token per round. It turns out that the maximum velocity vmax is a
meaningful parameter to characterize dynamics in our model.

Keywords: Geometric dynamic networks : Token dissemination -
Distributed computing

1 Introduction

Dynamic networks appear in many scenarios like peer-to-peer networks, mobile
wireless ad-hoc networks or swarms of mobile robots. The dynamics in such
models is diverse and different. Kuhn et al. [10] have introduced a very general
model with the aim of understanding limitations and possibilities when coping
with dynamics in networks, independent of specific application. In this paper, we
look at special dynamics motivated by agents that move in the Euclidean plane
and that are able to communicate with nearby agents only. More particularly,
we look at dynamic unit disk graphs as they are often used to model ad-hoc
networks or robotic networks. We are mainly interested in exploring the impact
of a velocity limit of the agents on the time required to perform fundamental
tasks such as token dissemination.
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The nodes of our geometric dynamic network are embedded into the Euclid-
ean plane and two nodes are connected if and only if their distance is at most a
constant R, which models the limited range of a wireless communication device.
We consider a worst-case dynamic that is able to move the nodes within this
plane. This worst-case dynamic is restricted by a maximal velocity parameter
Umax and it must preserve connectivity of the network. In our model, we can
prove lower and upper bounds for the k-token dissemination problem, which has
also been studied by Kuhn et al. in a general model. In the k-token dissemina-
tion problem, k initially arbitrarily distributed tokens have to be disseminated
by the nodes of the dynamic network such that each node receives all tokens
and also decides that it has received all k tokens since we assume k is not known
by the nodes beforehand. Note that solving the all-to-all token dissemination
problem, where each node starts with exactly one token, implicitly solves the
counting problem if the nodes’ unique IDs are considered as tokens. While solv-
ing the token dissemination problem, a distributed algorithm must cope with
the dynamic of the network, i.e., the changes of edges as induced by a worst-case
dynamic that moves the nodes.

In our model, we restrain the dynamic network model by Kuhn et al. by
introducing a geometry that gives a natural restriction of the power of a worst-
case dynamic by geometric means. From this, we expect new insights into the
complexity of distributed computational problems by using different techniques
that exploit the geometry of the dynamic network. As a first step, both our lower
and upper bounds for the k-token dissemination problem contain the maximal
velocity parameter vpy.y, i.e., they are bound by the characteristic value of the
network dynamic. More precisely, we define a dynamic unit disk graph with
maximal node velocity vpmax and communication radius R and require connec-
tivity w.r.t. a unit disk graph with radius 1. Our algorithm terminates after
O(n(n + k) - min{vyay, R} - R72) rounds if R > 1. Moreover, we present a lower
bound of 2(n - k - min{vmax, R} - R~3) for randomized knowledge-based token-
forwarding algorithms. Note that for k = {2(n), the upper bound simplifies to
O(n - k- min{vmax, R} - R~2) and the upper and the lower bound become almost
tight.

2 The Geometric Dynamic Network Model

In this paper, we consider the following dynamic network model adapted from
Kuhn et al. [10,12,17]: we assume a dynamic graph with a fixed set V' of n nodes,
and a discrete, synchronous time model. Each node v is identified by a unique
ID, assigned by some injective function id : V' — {1,...,poly(n)}. In round r,
the dynamic graph has some edge set E,., forming the graph G, = (V, E,.). We
assume local broadcast communication, i.e., a message sent by node v in round
r is delivered to u’s neighbors in round r + 1. Therefore, when sending a message
in round r, a node usually does know to which neighbors the message will be
delivered. In this paper, the message each node can send via local broadcast
communication is limited to one token per round. Kuhn et al. introduced the
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concept of T-interval connectivity as a reasonable restriction of the dynamic: For
each time interval I of length 7" > 1, there must be some stable and connected
subgraph in all graphs G, with r € I. If T = 1, this just means the graph must
be connected in each round 7.

Our modifications address a dynamic model motivated by geometric mobility
as it appears, e.g., in swarm robotics. Here, we assume that each node v in each
round r has a position p,.(v) € R? (however, our results also hold for R3).
The distance between two nodes u and v in round r is denoted by d,.(u,v)
= |pr(u) — pr(v)|. Then, for each round r, we define G, as the unit disk graph
with communication radius R. We omit the round parameter r» when the round
is clear from context. In addition, 1 < R < n holds throughout the paper for
technical reasons. Furthermore, we assume that the maximum velocity of each
node is bounded by a parameter vyax > 0, i.e., the position of a node changes at
most by a distance vyax from round to round. Such a model was also considered
by Bienkowski et al. [1], and it is often (implicitly or explicitly) assumed for
designing local strategies for robotic formation problems (for a survey see [11]).

Our results require a somewhat stronger notion of connectivity than in the
general model by Kuhn et al.: We demand that the graph in round r is connected
even if we restrict the communication radius to 1 instead of R. To distinguish
these graphs, we talk about the communication graph G, if radius R is used, and
about the connectivity graph G!. if radius 1 is used. Thus, we require that the
connectivity graph G, is connected in each round r. This geometric model gives
rise to another natural restriction of dynamics. A graph G, is called C-connected
if at least C' edges have to be removed to transform G, into a disconnected graph.

The focus of our paper lies on the k-token dissemination problem. In this
problem, each node u in the network receives as input I(u) a possibly empty
subset of tokens such that |{J,cy Z(v)| = k. Then, the nodes have to dissemi-
nate these tokens such that each node eventually knows all k£ tokens and then
explicitly terminates (i.e., it outputs the result and does not send/receive any
further messages). Here, k is not known by the nodes beforehand. Additionally,
we examine the implications of our results for the problem of counting, which is
to determine the exact number of nodes in the network.

We show a result for a restricted class of algorithms that is called knowledge-
based token-forwarding algorithms (cf. Kuhn et al.): let A, (r) denote the set of
messages node u has received by the beginning of round r including its input
I(u). A token-forwarding algorithm requires each node to send only one pure
token from A, (r) (without modification and without annotation) or the empty
message, and it must not terminate before it has received all k£ tokens. A token-
forwarding algorithm is called knowledge-based if the distribution that deter-
mines which token is sent by w« in round r is a function only of its unique
ID id(u), Ay (0),..., Ay(r —1) and the sequence of u’s coin tosses up to round r
(including 7). Many natural strategies can be found in this class of knowledge-
based token-forwarding algorithms, e.g., strategies like sending a known token
sampled uniformly at random.
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3 Related Work

Dynamic networks, where the set of edges in the network may change arbitrarily
and in an adversarial way from round to round as long as the graph is strongly
connected in each round, were introduced by Kuhn et al. [10,12,17]. In each
round, each node may send a message of size O(logn) bits that is delivered
to all neighboring nodes in the following round. Computation in their model
requires termination. On the one hand, for the k-token dissemination problem
in T-interval connected dynamic networks, Kuhn et al. present a determinis-
tic O(n(n + k)/T) token-forwarding algorithm. This algorithm can be used to
obtain an O(n?/T) algorithm for the counting problem. On the other hand,
they give a 2(nk/T) lower bound for the restricted class of knowledge-based
token-forwarding algorithms and they provide an 2(nlogk) lower bound for
deterministic centralized token-forwarding algorithms.

Dutta et al. [5] improved the latter lower bound by Kuhn et al. to
Q2(nk/logn + n) for any randomized (even centralized) token-forwarding algo-
rithm and showed for a weakly-adaptive adversary that k-token dissemination
can be done in O((n + k)lognlogk) w.h.p. Furthermore, they provide two
polynomial time, randomized and centralized offline algorithms, one returns an
O(n,min{k, /klogn}) schedule w.h.p. and another one an O((n + k)log?n)
schedule w.h.p. if nodes can send a token along each edge per round. Using simi-
lar techniques, Haeupler and Kuhn [9] showed lower bounds if nodes are allowed
to forward b < k tokens or if they are only required to obtain a J-fraction in
T-interval connected dynamic networks and dynamic networks that are c-vertex
connected in every round.

O’Dell and Wattenhofer [18] analyzed information dissemination problems
in slightly different but worst-case adversarial models. Das Sarma et al. [19]
developed randomized token-forwarding algorithms based on random walks on
dynamic networks. Here, an oblivious adversary that is not aware of the random
choices of the algorithm modifies the network. Haeupler and Karger go beyond
the class of token-forwarding algorithms and send linear combinations of tokens.
With this technique, they are able to solve the k-token dissemination problem
in O(nk/logn) rounds w.h.p. [8]. Brandes and Meyer auf der Heide [4] develop
algorithms for counting if in addition every edge in the network fails with some
probability. Michail et al. [16] studied computation in possibly disconnected
dynamic networks and introduced temporal connectivity conditions. The same
authors [15] looked into naming and counting in the absence of unique IDs in
dynamic networks. Here, naming refers to the problem of generating unique IDs.
Interestingly, they introduce a different communication model where the nodes
in the network can send different, individual messages to their neighbors but
without any information about their states.

The unit disk model has been extensively studied in the area of routing in
wireless ad-hoc and sensor networks, in particular, in geographic routing algo-
rithms. Geographic routing takes advantage of the availability of position infor-
mation to decide which node becomes the next hop. Those algorithms assume
that a node can get its own position using a location service such as GPS.
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A worst-case optimal and average-case efficient geographic routing algorithm
has been proposed by Kuhn et al. [13,14]. However, geographic routing focuses
on single source routing while a well-designed token dissemination algorithm
has to take congestion into account. For a broad overview about further routing
algorithms in this area, we refer to Frey et al. [7].

Gossiping algorithms are a class of algorithms for distributed computation in
arbitrary graphs following a simple principle:the nodes are initialized with some
values, they continuously exchange these values and calculate new values based
on the ones they received together with a problem specific function.

Boyd et al. [2, 3] analyzed the mixing time of the averaging problem. Later on,
Dimakis et al. [6] showed that the mixing time can be significantly improved in
grid graphs and random geometric graphs, two communication models for real-
istic sensor networks. In a random geometric graph, the n sensor locations are
chosen uniformly and independently in the unit square, and each pair of nodes
is connected if their Euclidean distance is smaller than some constant trans-
mission radius R. They proposed an algorithm that computes true average to
accuracy 1/n® using O(n'-5y/logn) radio transmissions. This reduces the energy
consumption by a factor of \/n/logn compared to standard gossip algorithms.

4 Lower Bound on Token Dissemination in Geometric
Dynamic Networks

In this chapter, we show that any knowledge-based token-forwarding algorithm
needs 2(n - k - min{vmax, R} - R~3) rounds for solving the k-token dissemination
problem in geometric dynamic networks. To do so, we follow a similar analysis
like the one by Kuhn et al. for an £2(nk) lower bound for dynamic networks with
arbitrarily changing edges [10].

For the sake of a simple presentation, we first introduce our construction for
the special case R = 1, i.e., the communication graph is equal to the connectivity
graph. Later, this result will be generalized to the case R > 1.

Theorem 1. If R = 1, then any knowledge-based token-forwarding algorithm
for k-token dissemination requires 2(n - k- min{vmax, 1}) rounds to succeed with
probability > %

Proof. We create the setting as follows: Initially, some node vy knows all k tokens
and all other nodes do not know any token. As the token-forwarding algorithm is
knowledge-based, the probability distribution of the tokens sent by vy does not

depend on the dynamic graph. Let r* := {%J —1for L := [2}]“'5 —‘, which

max

is used as the length of a row of nodes in our construction. € is a suitably small
chosen value. Then, by linearity of expectation and Markov’s inequality, there
is some infrequently sent token ¢ that is sent < "T"l times by vg until round r*
with probability of at least % For this, we define a dynamic such that vy cannot
terminate by round r* since some node must be unaware of ¢ at this time.

All nodes are positioned as shown in Fig.1: Except for the four nodes vy,
Un—1, Un—2, and v, _z, all other nodes are assigned to horizontal rows where each
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Fig. 1. Construction for R = 1 showing the positions of the nodes for a fixed j.

row consists of L nodes that are positioned on four levels. On each level, the
nodes have a distance of exactly 1, which maximizes the distance between the
nodes such that the row is still connected. The distance between two levels is at
least 1 + €.

Node vg is connected to v(;_1)r+1, Vjr+1, and v,_1, and positioned such
that the distance between vy and v;r4+1 is exactly 1. Analogously, node vy,_1
is connected to v(j_1)p41, VkL+1, and vg, and positioned such that the distance
between v,, and v 41 is exactly 1. We will see later that these nodes are essential
for preserving connectivity during the movement of the nodes.

Similarly, node v,z is connected to vjr+r, vir.+1, and v,—_3, and positioned
such that the distance between v,,_o and v;r4 1 is exactly 1. In contrast to that,
node v,,_3 is only connected to v;r4r and v,_g but the distance between v,_3
and v;z, is slightly larger than 1. As we will see later, this is important to ensure
that the infrequently sent token ¢ cannot be learned by the nodes on level 0.
Initially, one row j = 0 is at level 1 and all other rows i > j are stacked at
level 0. Level 2 and level 3 are not occupied by rows at this time.

When vy sends the token ¢, three rows start moving down. In particular, one
row j+ 1 at level 0, row j at level 1, and row j — 1 at level 2 start moving down
with maximal relative velocity 2Umax' for the next L rounds until they reach
level 1, 2, and 3, respectively. Once a row reaches level 3, it does not move any
further and all rows k < j — 1 stack again. As soon as rows j + 1,4,j — 1 reach
the next level, j can be incremented and Fig. 1 shows the current situation. If v,
again sends token ¢, the described procedure repeats and three rows move down.

! To upper bound the worst-case traveling distance for a fixed node pair u and v, we
can w.l.o.g. assume that wu is static while v moves with velocity of at most 2vmax.
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The crucial property of our construction is that the graph is always connected
while the infrequently sent token ¢ never reaches the rows stacked on level 0. Let
us first argue why the graph is always connected. Initially, level 0 and level 1
are occupied and the graph is connected. During movement, the location of
node v, _o ensures that the row moving between level 0 and level 1 is connected.
Analogously, node v,,_1 connects the row moving in between of level 2 and level 3.
The placement of node vy and v,_3 ensures that the left side of the graph is
connected to the right side of the graph via the row in between of level 1 and
level 2.

Let us now consider the second property: level 0 never gets the infrequently
sent token t. According to the definition of the dynamic graph, the only possibil-
ity for level 0 to get ¢ is via the row moving between level 1 and level 2 via node
Up_3 O Up_g. Since t is sent less than L”T%J times, the token needs more than
L rounds to cross one row. Thus, according to the definition of the movement,
the nodes v;r4+1 and v,_3 become disconnected at least one round before ¢ can
be sent from v;4 1, to v,—3. This is when the row arrives at level 2.

Since there are L”—*‘LJ rows, the nodes on at least one row are unaware of the

I
token. Hence, r* = 2(n - k - min{vyax, 1}) rounds are required. O

Next, we extend this construction for an arbitrary communication radius

R>1:

Theorem 2. If R > 1, then any knowledge-based token-forwarding algorithm
for k-token dissemination requires 2(n-k-min{vmyayx, R} R™3) rounds to succeed
with probability > %

Proof. As before, we want to find a token that is sent infrequently over some
cut. Yet, for R > 2, the communication graph is | R]-connected in each round,
i.e., there is no single cut vertex as in the construction before for R = 1. There-
fore, multiple nodes vo, vy —1, - . ., Vp—| g|+3 initially receive all k tokens such that
the probability distribution of the tokens sent by them does not depend on the

dynamic graph. Define r* := L(nggw —1for L := {%—‘ -(R+1) and

some constant ¢ € NT that is specified later. Then, by linearity of expectation
and Markov’s inequality, there is some infrequently sent token ¢ which is sent
< (HLLﬁ)k
ity of at least % We present a dynamic such that all nodes vy, ..., v gj_1 cannot
terminate by round r* since there still is a node that is unaware of ¢ at this time.

All nodes are positioned as shown in Fig.2: similar to the construction in
Theorem 1, except for ¢ := 2 ([3(R + €)] — 2) nodes vo, Un—1, . - ., Upn—2|3(R+e)|+3
all other nodes are assigned to horizontal rows where each row consists of L nodes
that are positioned on six levels. The distance between v, _s[3(r4.¢)1+3 and the
position below v;, is slightly greater than one. Initially, one row j = 0 is at

times by all nodes vo, vy —1, - . ., V| r|+3 until round r* with probabil-

level 1 and all other rows ¢ > j are stacked at level 0. Levels 2,...,5 are not
occupied by rows at this time.
When one of the nodes vo, v, —1,-..,v,—|r|+3 sends the token ¢, one row at

level 0 and all rows on levels 1,...,4 start moving down with maximal relative
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1 1 1 1 level 0,'
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Fig. 2. Construction for R > 1 showing the positions of the nodes for a fixed j.

velocity 2vUmax for the next L rounds until they reach the next level. The row
from level 0 stops at level 1, but all other rows continue moving until they reach
level 5, where they do not move any further and stack again. As soon as row
j+1 reaches level 0, 5 can be incremented and Fig. 2 shows the current situation
until ¢ is sent again. If any of the nodes vo,v,—1,...,v,_|r|+3 sends the token
t again, the described procedure repeats and further rows move down.

Observe that the graph is always connected and that token ¢ cannot reach
(n—cR)k
LIR]
and the token needs more than L rounds to cross one row. Since there are

Un—[3(R+e)]+3 Or any node above since it is sent less than { J times
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L"*LCRJ rows, the nodes on at least one row are unaware of the token. Therefore,

r* = 2(n - k- min{vmax, R} - R~3) rounds are required. O

Remark 1. Our results implies that the lower bound by Kuhn et al. [10] already
holds for a much more restricted model of dynamics: If we choose R = 1 and vmax
constant, e.g. Umax = 1, then we achieve the £2(nk) lower bound for knowledge-
based token-forwarding algorithms.

5 Upper Bound on Token Dissemination in Geometric
Dynamic Networks

In this chapter, we present a k-token dissemination algorithm for geometric
dynamic networks with bounded maximum velocity vmax. The algorithm is
basically an extension of the algorithm by Kuhn et al. which allows to solve
k-token dissemination under arbitrary edge dynamics in @(n(n + k)) rounds.
Under the restriction of R > 1, it is possible to speed up the algorithm up to
O(n(n+k)-min{vyayx, R} R™1). Moreover, if R > 2, then the O(R)-connectivity
of the communication graph can be exploited to get another speed-up of @(R),
i.e., the algorithm needs O(n(n + k) - min{vmax, R} - R=2) rounds in total.

Let us first sketch the dissemination algorithm by Kuhn et al. for 27-interval
connected graphs. By definition of 27-interval connectivity, there is a spanning
connected subgraph for at least 27" rounds. This subgraph is used to establish
a pipelining effect such that at least the T smallest tokens are disseminated to
all nodes in ©(n) rounds. The algorithm proceeds in | 7% | phases, where each
phase consists of 27 rounds.? In each round of each phase, each node sends the
smallest token it has not yet sent in this phase. To disseminate k tokens, this
procedure can be repeated [%] times. We restate the following results are either
provided in the paper by Kuhn et al. or that directly follow from their results.

Theorem 3 ([10,17]). For T > 1, in a T-interval connected dynamic net-
work with arbitrarily changing edges, the algorithms by Kuhn et al. for k-token
dissemination and counting can be sped up by a factor of T, i.e., they need
O(n(n+k)-T~Y) rounds for k-token dissemination and ©(n?-T~') rounds for
counting.

Theorem 4 ([10,17]). For T,C > 1, in a T-interval connected dynamic net-
work with arbitrarily changing edges where the stable subgraph is C-connected,
the algorithms by Kuhn et al. for k-token dissemination and counting can be sped
up by a factor of T-C, i.e., they need O(n(n+k)-T~-C~1) rounds for k-token
dissemination and ©(n? - T~1. C~1) rounds for counting.

Note that it is assumed that 7" and C' are known by the nodes. Furthermore,
we would like to stress that it is not enough that G(r) is C-connected in each

2 Note that n is not known by the nodes beforehand but as described by Kuhn et al.
[10] it can be determined involving the dissemination procedure itself using different
estimates for n.
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round 7. To make use of the pipelining effect it is also important that the stable
subgraph is C-connected.

In the following, we show that our geometric dynamic networks are O(R -
vl )-interval connected if R > 1 and that the stable subgraphs are O(R)-

max

connected if R > 2.

Fig. 3. After v moved to position v’, the nodes v and v are still connected.

Lemma 1. Assume the nodes of a geometric dynamic network move with maxi-
(Rfl)J +1-interval

2 Umax

mum velocity vmax. Then, the geometric dynamic network is {

connected.

Proof. Consider a fixed node pair u and v which is connected in the connectivity
graph of round r. Observe that the distance between two nodes can increase by
at most 2vpy.x per round. Thus, nodes that are connected in the connectivity
graph (radius 1) stay connected in the communication graph (radius R) for at

least {(R_l)J further rounds. This implies the lemma (cf. Fig. 3). O

2-Umax

Lemma 2. Assume the nodes of a geometric dynamic network move with maz-
imum velocity vmax. Then, the geometric dynamic network contains a spanning

L%RJ -connected subgraph that is stable for L R J + 1 rounds.

4Umax

Proof. Consider a path of length L%RJ in the connectivity graph of round r. The
nodes on this path form a clique in the communication graph. Following a similar
argument as in Lemma 1, these nodes stay connected in the communication

1
graph for further {25}? J rounds. This implies the lemma. O

Theorem 5. If R > 1, then k-token dissemination can be done in O(n(n+ k) -
min{vmax, R} - R~2) rounds and counting can be done in ©(n? - min{vyax, R} -
R™2) rounds.
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Proof. If R > 1, then according to Lemma 1 the geometric dynamic network is
O(R - vl )-interval connected. Thus, by Theorem 3, the algorithms by Kuhn
et al. need O(n(n + k) - min{vyax, R} - R~1) rounds for k-token dissemination
and ©(n? - min{vmax, R} - R™1) rounds for counting.

If in addition R > 2, then according to Lemma 2, the communication graph
contains a spanning ©(R)-connected subgraph that is stable for O(R - v,l))
rounds. Thus, by Theorem 4, the algorithms by Kuhn et al. need ©(n(n + k) -
min{vmayx, R} - R~2) rounds for k-token dissemination and ©(n? - min{vyax, R} -

R~2) rounds for counting. O

Comparing the lower and the upper bound, we can observe that the bounds
are almost matching (despite of a factor of R™1) if k = ©(n). However, it should
be pointed out that the graph model is a bit relaxed by introducing the connec-
tivity graph in addition to the communication graph. It is an interesting question
for further research to consider less relaxed models or even matching models.

6 Conclusion and Future Prospects

We showed that the k-token dissemination problem in geometric dynamic net-
works can be solved asymptotically faster than in traditional dynamic networks.
For this, we utilized a communication radius larger than one, which is the con-
nectivity radius. Specifically, by introducing natural conditions, the k-token dis-
semination problem can be solved in O(n(n + k) - min{vmayx, R} - R~2) rounds
in our model with R > 1 while the lower bound for arbitrary edge dynamics
for knowledge-based token-forwarding algorithms is 2(nk) [10]. Additionally,
these results can also be applied to count the number of nodes of the network
in O(n? - min{vpax, R} - R~2) rounds if R > 1.

Our lower bound shows that even an optimal knowledge-based token-forward-
ing algorithm needs 2(n - k- min{vmay, R} - R~3) rounds to disseminate k tokens.
For the more interesting case of k = £2(n), the upper bound simplifies to O(n -k -
min{vyay, R} R™2) and becomes almost tight. It should be pointed out that our
upper bound model is somehow relaxed by introducing the connectivity graph
in addition to the communication graph. However, we think that this is a good
starting point for analyzing, how we can improve the performance of k-token
dissemination, counting, and other related problems by restricting general edge
dynamics.

As a next step, it would be interesting to further restrict the model used for
the upper bound. Particularly, is it possible to show similar round complexity
results with matching models in the upper and lower bound such that we can
omit the restriction R > 17 To gain more intuition about bounds in the geometric
dynamic network model, it is another open question whether global knowledge
is an advantage in this model and if so, to what degree. In other words, can a
central online algorithm for k-token dissemination that is able to observe the
positions of the nodes perform better when facing the network dynamic?

Moreover, more general geometric network models could be of interest. Those
are for example asynchronous time models or different graph classes such as disk
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graphs or quasi unit disk graphs. Yet, one could also think about looking at
different and specifically non-geometric restrictions to the network dynamic. A
challenging but very interesting question is, whether it is possible to build up
a hierarchy of dynamic network restrictions similar to hierarchies known from
complexity theory.
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Abstract. Recently developed wake-up receivers pose a viable alterna-
tive for duty-cycling in wireless sensor networks. Here, a special radio
signal can wake up close-by nodes. We model the wake-up range by the
unit-disk graph. Such wake-up radio signals are very energy expensive
and limited in range. Therefore, the number of signals must be mini-
mized. So, we revisit the Connected Dominating Set (CDS) problem for
unit-disk graphs and consider an online variant, where starting from an
initial node all nodes need to be woken up, while the online algorithm
knows only the nodes woken up so far and has no information about the
number and location of the sleeping nodes.

We show that in general this problem cannot be solved effectively,
since a worst-case setting exists where the competitive ratio, i.e. the
number of wake-up signals divided by the size of the minimum CDS; is
©(n) for n nodes. For dense random uniform placements, this problem
can be solved within a constant factor competitive ratio with high prob-
ability, i.e. 1 —n™°.

For a restricted adversary with a reduced wake-up range of 1 — € we
present a deterministic wake-up algorithm with a competitive ratio of
O(e_%) for the general problem in two dimensions.

In the case of random placement without any explicit position infor-
mation we present an O(log n)-competitive epidemic algorithm with high
probability to wake up all nodes. Simulations show that a simplified
version of this oblivious online algorithm already produces reasonable
results, that allows its application in the real world.

Keywords: Wake-up receivers - Online algorithm - Connected
dominating set - Unit-disk graph - Epidemic algorithms

1 Introduction

Energy is the driving problem of wireless sensor networks (WSNs), since sensor
nodes usually operate for long periods and the only source of energy is bat-
tery cells which are difficult to be exchanged. The functionality of WSNs can
be extended through the use of low power microprocessors, sensors, and radio
transceivers. The availability of low power hardware components provided a
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DOI: 10.1007/978-3-642-45346-5_4, (© Springer-Verlag Berlin Heidelberg 2014
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Fig. 1. Wireless sensor node with integrated wake-up receiver

technological break-through of wake-up receivers. These receivers interact only
when a special wake-up signal is addressed to them. When a wake-up signal is
received, the wake-up receiver triggers an interrupt to wake the sensor node. In
addition, any sensor node has the capability of transmitting a wake-up signal to
wake up all other close-by sensor nodes. Recent research [9] has decreased the
energy consumption of sensor nodes when no activity is required to less than
9 W, whereas sensor nodes that are not equiped with wake-up receivers who
uses duty cycle would be spending around 51 mW checking the medium from
time to time. Figurel shows a sample board of a designed wake-up receiver
integrated with a wireless sensor node.

Wake-up receivers integrated in sensor nodes constitute a paradigm shift for
wireless sensor protocols. In which, sensor nodes interact with the surrounding
neighbors only when they are required to receive and send information. The duty
cycle process for periodically checking to find out whether messages need to be
received or synchronizing with other sensor nodes may not be required anymore.

Despite that this technology provides a new solution for the energy con-
sumption problem, new problems arise. Sensor nodes are required to produce
a wake-up signal, these signals are energy expensive compared with the signals
that are required for normal data communication. Furthermore, the communi-
cation range of a wake-up signal is smaller than the normal data communication
range, which requires a multi-hop wake-up signals to wake up sensor nodes that
are located in the normal data communication range. Our aim is to minimize
the number of wake-up signals transmitted as much as possible and maximize
the covered area to reduce the energy required to wake up sensor nodes.

A straight-forward solution is to establish minimum set of sensors which are
able to wake up all sensor nodes in case some data need to be collected or
distributed. This is the well known Connected Dominating Set (CDS) problem,
where one tries to compute the Minimum CDS (MCDS). This problem plays an
important role in wireless networks and it is known to be NP-complete.
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For simplicity we assume a unit-disk range model and we are interested in
computing the minimum dominating connected set in unit disk graphs, i.e. geo-
metric graphs where an undirected edge exists between nodes, if their distance
is at most 1.

However, our problem is somehow different. When the sensor nodes are
placed, no positions are known before the first wake-up signal. Also, the nodes
may be moving, sensor nodes may fail, and possible persistent memory might
not be available. All these are reasons to build up a CDS from scratch regularly.

So, we face an online version of the MCDS problem in the context of wake-up
receivers. At the beginning, one sensor node wakes up, e.g. because of new sensor
data. It sends a wake-up signal and receives responses from all next neighbors.
Then, a decision needs to be taken which of the neighbored sensors is allowed to
send the next wake-up signal. Since normal data communication consumes only
little energy compared to the wake-up signal, we can assume that all active nodes
are aware of each other. Furthermore, the information which sensor received a
wake-up signal is available to us, even if the sensor has already been woken up.
The question is now, can we wake up all nodes with minimal number of wake-up
signals. This is what we address as the wake-up minimum connected dominating
set problem in unit disk graphs. In this variant the positions of the woken up
nodes become available as soon as they are awake. For the wake-up position-
aware minimum connected dominating set problem in unit disk graphs positions
are not known at all.

2 Related Work

The new wake-up receivers developed by Gamm et al. in [9] give us an alternative
to the concept of duty cycles for awaiting incoming messages in wireless sensor
networks.

A perfectly efficient online wake-up would use a minimum connected domi-
nating set of nodes to wake up all the nodes. Finding such a MCDS was already
shown to be NP-hard for general graphs, as well as for unit disc graphs [4,13].
For the general (non unit-disk graph) problem no polynomial time approxima-
tion exists unless NP C DTIM E[nC(o81oe™)] [10], yet for MCDS with unit disc
graphs a PTAS has been presented in [3].

Movement of sensor nodes and maintaining an existing MCDS in their pres-
ence was discussed before by Das et al. in [5].

Of course the wake-up problem is an online version of MCDS, because of the
differences to the online version presented by Eidenbenz [8] we are referring to
it as the wake-up problem.

Eidenbenz models the online problem by node added every round by an
adversary, while the online algorithm has to present a CDS, but may never
remove nodes once added to the CDS. He shows a competitive ratio of ©(n) for
the CDS size.

Another online MCDS problem closer related to the wake-up problem is dis-
cussed as broadcast problem by Bar-Yehuda et al. [1] and leads to the same lower
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bound of §2(n), so does the reactive routing problem [14]. This motivates why
comparing to an adversary with the same radio range is pointless, as asymptot-
ically no online algorithm can beat trivial flooding, i.e. using the whole graph
as CDS.

Further research discusses Minimum Routing Cost CDS (MOC-CDS) 6]
which requires the hop distance, between any pair of nodes to be minimal. This
problem is also NP hard, but for the unit disc graph a PTAS exists [7]. A more
generalized version of the problem is called a-MOC-CDS, where the dominating
set must have an a-spanner property additionally. For o = 1 these problems are
the same.

For distributed generation of MCDS approximations are discussed in [15].
Our problem differs, since not all nodes are awake in the beginning, but have
to discover all other nodes from the starting node, leading to different time and
message complexity.

The motivation for proving an algorithm for a dense random network stems
from the requirement for density in a random unit disk graph to guarantee
connectivity of the network [11].

In the position oblivious case we use a push-based epidemic rumor spreading
algorithm with a simple counter mechanism, similar to the one in [12]. Rumor
spreading turns out to be simple and robust. For other applications epidemic
algorithms have been already proposed. For a survey of epidemic algorithms in
wireless sensor networks we refer to the Chap. 3, Epidemic Models, Algorithms
and Protocols in Wireless Sensor and Ad-hoc Networks in [2] by Das and Prabib.

3 Preliminaries

We assume that points are in general positions, i.e. that neither three points
are on a line nor four points on a circle in two dimensions. For points in two
dimensions or three dimensions the unit-disk graph (UDG) of a given point set
V' is an undirected graph with edge set £ := {{u,v} | u,v € V : |u,v| < 1}.
Later on we refer also to UDGs with different radius r.

We consider the following problems.

Definition 1. Given an undirected graph G = (V, E) a connected dominating
set (CDS) S has the following properties

1. S is connected in G, i.e. for all u,v € S there exists a path from u to v in
G using only nodes of S.

2. S is dominating all nodes in V', i.e. for all w € V there exists a node v € S
such that {u,v} € E.

Definition 2. The wake-up position oblivious Minimum Connected Dominat-
ing Set Problem in Unit Disk Graphs (Wake-Up-PO-MCDS-UDG) is to con-
struct a CDS where the algorithm works in rounds and starts with a node sq.
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1. At the beginning only the nodes Vi = {u € V : {u,so} € E} and edges
Ey = {{u,s0} : w € Vi } are known.

2. In round i a node s; € Vi may be selected by the algorithm and then the
nodes Vig1 = {u €V : {u,s;} € E} and edges E;11 = {{u,s;} : u € Vi} are
added to the knowledge base of the algorithm.

In the wake-up position-aware minimum connected dominating set problem in
unit disk graphs also the position of the known nodes is available to the algorithm.

4 Lower Bounds

The problem of computing the minimum connected dominating set for unit-
disk graphs (MCD-UD) has been proven to be NP-complete by Lichtenstein
[13]. Lower approximation bounds are not known, while the best approximation
factor so far has a bound of 3.8 [16].

For the Wake-up version there is a trivial, but hard computational lower
bound for the competitive ratio, i.e. the number of nodes of a connected dom-
inating set woken up by an algorithm divided by the number of nodes of the
MCDS.

Proposition 1. The competitive ratio of all deterministic algorithms for Wake-
n 1

Up-MCD-UD is at least 5 — 5. For probabilistic algorithms the expected compet-

itive ratio is at least 7.

Proof. We use a variant of the construction presented in [1,8,14], see Fig.2.
The optimal solution uses wake-up calls from the start node s and the node u;
connected to t. Any deterministic algorithm can be fooled to use n — 1 wake-up
calls of nodes uq,...,u,_o such that the final wake up call reaches t.

If the connected node u; is chosen randomly, then any randomized algorithm
needs in the expectation 1 + "T_Q = 5 calls to launch a wake-up at u;.

Fig. 2. Lower bound construction with competitive ratio n/2 — %

5 Algorithms

While the wake-up problem can not be efficiently solved in general, for high
node density a straight-forward grid based algorithm already achieves constant
approximation ratio.
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5.1 A Grid-Based Online Algorithm

We partition the area into a grid of a square size of f for two dimensions and
% for three dimensions, see Fig. 7. This grid size guarantees that any node in a
cell can reach all nodes in (orthogonally) neighbored cells with a unit-distance
wake-up call. We assume that each node is aware of its grid position and let
denote cell(u) the grid cell of w.

The grid based wake-up algorithm 1 chooses a representative for each cell and
performs a flooding on the grid structure. In particular, it solves the problem if
all grid cells are non-empty. Note that such a m x m grid can be covered only by

a CDS of size of at least (% —1)?2=1m? - %m + 1 in two dimensions, while

the number of nodes who perform wake up calls is bounded by m?. Hence, in a
square we have a competitive ratio of 5+ o(1), and in a cube a competitive ratio
of 6 + o(1) by an analogous calculation.

Algorithm 1: Grid based wake-up algorithm

Send wake up from s
Gdone — {Cell(s)}
Gio-do — {cell(u) : {u,s} € E}\ {cell(s)}
while Gi,_4, # 0 do
Pick a node w such that cell(w) € Gyo_go
Send wake up from w
Gaone < Gdone U {cell(w)}
Gto-do + Gto-do U {Cen(u) : {u’ w} € E} \ Cen(s) \ Gdone

end

If enough nodes are placed randomly, then every cell is occupied with high
probability, i.e. 1 —n~¢ for a constant ¢ where ¢ € (0, 1).

Theorem 1. If n nodes are place randomly in a m x m-grid with m < /-
for some constant c. Then the grid based wake-up algorithm computes a CDS
with a constant competitive ratio with high probability, i.e. 1 — # for any

c>1.

Proof. A node is placed in one of the m? cells with probability % > Cl“”

Therefore, the chance that it is not placed in a cell is 1 — dn” . So, the probablhty
that a cell is empty can be upperbounded as follows.

1 n
<1 o c IlTL) < efclnn —nc (1)

n

We have used (1 —1/m)™ < 1/e for m > 0. By the union bound the probability
that any of cell is empty is therefore at most n=¢*1. O

Note that when the node density is decreased only by a constant factor, that
the unit disk graphs becomes disconnected [11] and there is no solution for CDS.
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5.2 A Competitive Algorithm with Respect to a Weaker Adversary

We have seen that for non-randomized placement the wake-up variant cannot
compete with the offline version, which can be seen as an adversary which places
the sleeping nodes in the area outside of the wake up signals. However, if we
compare the wake-up algorithm with a weaker adversary, we can show some
interesting results.

For this we consider two unit-disk graphs with radius 1 and 1 — € for some
€ € (0,1). The wake-up algorithm solves the wake-up problem for CDS in unit
disk graphs, i.e. with radius 1. We compare its performance to the size of the
minimum connected dominating set of the unit disk graph with radius 1 — € of
the same event. In this way, counter-examples cannot occur as shown in Fig. 2.

Algorithm 2: (1 — ¢€) cover two hop wake-up grid algorithm

Send wake up from s

Gdone — {cell(s)}

Grodo — {cell(w) : {u,s} € E}\ {eell(s)}
while Gy,.4, # 0 do

Pick a node w such that cell(w) € Gio-do
Send wake up from w

Compute the [%ﬂ—coverage boundary set S of the neighbored nodes of w

forall the v € S do
Gaone — Gdone U {cell(v)}
Gto-do — G(to-do U {Ceu(v) : {’U, w} € E} \ CJdone

end

end

Theorem 2. In two dimensions there is a wake-up algorithm which produces at
most 0(6’1/2) more wake-up calls than the number of nodes of the CDS of the
1 — € unit disk graph for e € (0,1).

Proof. The key idea is for a node u to cover the two-hop neighborhood of the
1 — € unit disk graph with a set of nodes in the neighborhood of the unit-disk

graph. We prove that the size of this set of this {32”—‘—coverage boundary set

NG
nodes is bounded by O(#)

Using this observation we use a grid based approach like in [14]. If in two
dimensions we choose the grid size of %(1 — €), then any node in a cell of size
u can reach with two hops all nodes which any node of its cell can reach in one
hop, since the diagonal of the cell is 1 — €. So, it suffices to broadcast a message
in a grid, which can be done in constant factor overhead.
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It remains to construct the coverage of the two-hop neighborhood of the
1 — € unit disk graphs with O(y/€) nodes. For this, we need to investigate some
properties of the two-hop neighborhood.

Definition 3. The two-hop covering node set of a unit-disk-graph of radius r
starting with node s is the set of nodes S C 'V with the following properties:

1. All nodes of S are within distance r of s.
2. Each node of S is necessary, i.e. for all nodes of u € S there exists a point p
within distance [r,2r] from s with |u,p| <7 and |v,p| > r for allv € S\ {u}.

We call the nodes of S = {cy,...,cn} the cover nodes. The outer ring is the
disk of radius 2r without the disk of radius r with center s. The coverage area is
the union of all disks of radius r and center points of S. The coverage boundary
is the boundary of this coverage area. By definition it consists of arcs with radius
r and center points of S. When two points u, v of S have distance r to the same
point w the coverage boundary, we call this point a boundary point, see Fig. 3.
Now the following geometric observations can be made.

Lemma 1

1. Given a point p of the coverage boundary, which is not a boundary point,
and the tangent T of the boundary, then the angle 6 between (p,s) and T is
in the range § € [im, 27].

2. The length of the coverage boundary is at most 87r.

Proof. The first statement comes from a simple geometric observation which is
based on possible placement of nodes ¢;, see Fig. 4.

For the second statement, note that each distance d traveled on the boundary
region corresponds to an angle difference of at least < where z is the distance

1
zsind?
to s which is in the range [r, 2r]. The angle of the tangent is §. Since 3 < siné <
1 and since the total angle difference is bounded by 2w, it follows that the

maximum length of the boundary is bounded by 8. O

We neglect the case, where the coverage boundary intersects with the inner
ring. It is straight-forward that the following claims also hold for this case.

Using the observation of Lemma 1 we can order all cover points according
to their direction seen from s as ci,...,¢,. Only neighbored nodes share a
boundary point. We name the angles according to Fig.3. We denote b; as the
boundary point between ¢; and ¢;+1, and b, as the boundary node between ¢;
and Cm.- Let a; = Zcibici_i'_l, ,61' = ébi—lcibi and Yi =T — Lci_lcici_i_l.

From the definition of the angles we derive the following equalities for all
i€[l,m]:

o+ o
_ 2
o 2

Vi = Bi —
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coverage
_---boundary

boundary
_-- point
cover node
Fig. 3. Definition of coverage bound- Fig. 4. Angle property of the boundary
ary, boundary points b1,...,b, and region
cover nodes S = {ci,...,cn} labeling
Since the boundary region is defined by the arcs of angles ay, .. ., a;,, with radius

r now Lemma 1 implies

m
Zﬁz‘ < 8m.
i=1
So,

m m m

$ = (Savsn) -2e= (S -or <o

i=1 i=1 i=1

While the cover points do not necessarily form a convex hull, its form is quite

well behaved. For a large number of cover points we need to find groups of near
points, i.e. with small angles «; and ;.

Lemma 2. Given m boundary points then, there exist at least k < m interval
indices i1, ..., i such that for allv € {1,...k}:

1u+1 1u+1

Zaj_m—ﬂ and Zﬂj_l&r

=1, Jj=t,+1
Proof. Start with ;1 = 1. Now for v = 1,2, ... choose the largest ¢ such that

q q
127 167
2 o< and 3 G< e
J=1y Jj=t,+1
and set i,41 :=q+ 1.
By definition

7fz/+1 7,,,+1

Z a; > i Z 8, > 1677

j=i, Jj=iy
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One of this property must be violated more than k/2 times. This would imply

12 k o 16 k:
Z o > TE_ =6m or Z B; > T 8T
J=tu
which contradicts Lemma 1 a
Lemma 3. For given boundary nodes ci,. .., cm with

m

Zazé \f and Zﬁté \f

the disks with center ci,...,cn, with radius 1 — € are covered by the two disks
with center c1 and c¢,, with radius 1.

Proof. From Eq. 2 we get for all £ < m:

L

Z%’

=2

14

-1
S8 lantan) -~ Yo
=2

=2

1
< =\fe
_2

Zﬂz Za

Furthermore, we assume € < 1 and use tanica; = |¢;,ci41|/2(1 —€) and
tan(x) < 2z for z € [0, 1].

m—1 m— m—
le1, em| < Z les, civa] < Z (1—¢) tan 50 < Z (1—€)a; < Ve
i=1 i=1 P
< 1/e and the maximum distance |cy, ¢,n| < 11/€
we can conclude that ¢q,..., ¢, fits into a rectangle of length 2 5v/€ and width
%e. The rest follows by the following geometric argument.
The worst case placement for the outer nodes ¢; and ¢, and some inner node
¢; is depicted in Fig. 5. Note that

2 2
1 Ve 1 15
l——e) + (X)) =1-e+— +f =1-— +f <1.
( 2€> (4) ‘T 16" ¢ 16° ¢

Since all sums ‘Zf:z Vi

Therefore the two outermost nodes with radius 1 always cover the disks with
radius 1 —e. O

Putting all pieces together, given a start node s it wakes up all neighbor

nodes. They report their position and the algorithms chooses k = PZTZ—‘ intervals

according to Lemma 2. From these k intervals surrounding s we start wake-up
calls only from the nodes at the interval borders, i.e. ¢;,,...,¢; . These nodes
can cover also the area covered by all cover nodes. So, we need k = O(e~1/2)
wake-up calls to wake up all nodes in the two-hop (1 — €)-neighborhood. For a

grid size of %(1 — ¢€) this includes all points in the neighborhood of any given
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Fig. 5. If the cover nodes are inside a /€ X %e-rectangle, then two disks with radius 1
of the two outermost nodes cover all disks with radius 1 — e

point. Therefore, the cell based approach will inform at least the same node set
as the adversary.

Another implication from the (constant size) cell based approach is that if
we only count cells instead of nodes, there are straight-forward linear upper
and lower bounds for the number of wake-up calls. From this observation the
competitive ratio of O(¢~1/2) follows. O

5.3 A Position Oblivious Wake Up Algorithm

It seems natural and necessary that the positions of the nodes is used by the
wake up algorithms. There are a lot of reasons why the positions might not be
known. It is expensive and time-consuming to measure the coordinates and store
it on each sensor node. Some sensor nodes might have no persistent memory and
cannot store such information. And most important, since the communication
range is dependent to the environment it is not clear what the position means
in comparison to the unit disk range.

The following oblivious wake-up algorithms come into mind: Flooding, ran-
dom walk, and epidemic algorithms. While flooding reaches all nodes, it is the
worst with respect to energy. Random walks neither reduce the number of wake-
up signals nor does it give any delivery guarantees. Epidemic algorithms appear
to be the most reasonable solution. The question, however, is how to stop the
epidemic wake-up of nodes. We use a push-based epidemic rumor spreading algo-
rithm [12] which will be combined with a simple counter mechanism, which stops
the wake-up if k£ other wake-ups have been received.

However, it is possible to exploit some position information given by the
graph structure itself. The random k-covered wake-up of algorithm 3 distinguish
between covered and uncovered nodes. A node is covered, if it has received two
wake-up signals. The algorithm starts with one node and picks in each round a
node which has not been covered twice.
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This idea generalizes to the random k-covered wake-up algorithm, where
nodes continue to send until each node has been covered k + 1 times or has send
a wake-up signal.

Algorithm 3: Random k-covered wake-up

Input graph G = (V, E), start node s € V
forall the v € V do
‘ counter(u) < 0
end
W — {s}
Node s sends wake-up signal
forall the u € V : {u,s} € E do
‘ counter(u) < counter(u) + 1
end
while Ju € V\ W : 0 < counter(u) < k do
Pick a random node w € V' \ W with 0 < counter(u) < k
W — WU {w}
Node w sends wake-up signal
forall the u € V : {u,w} € E do
‘ counter(u) < counter(u) + 1
end

end

While we show in Sect. 5.3 that for k£ = 1 the algorithms performs very well,
the generalization is necessary since there are situations where the algorithm
fails from the start. In Fig.6 such case is depicted. The node s wakes up four
nodes and the near-by node u continues. This node wakes up the same set of
nodes as s and so the algorithm stops, since all nodes are covered twice.

With the help of the position information this case could have been clearly
avoided. But even without it one could increase k. However, the factor k increases
the message complexity. So, a compromise between error rate and message com-
plexity needs to be made.

For the dense case, one can show that the error rate can be reduced to any
polynomial if the density is large enough and k is chosen to be logarithmic in n.

Theorem 3. Ifn nodes are place randomly in a mxm-grid withm < \/—*— for
some constant c. Then the Random O(logn) covered wake-up algorithm computes
a CDS with a competitive ratio of O(logn) high probability, i.e. 1 —n~=¢ for some
c>1.

Proof. The expected number of nodes in each cell is .75 > cInn. Using Chernoff

bounds it is possible to prove that this amount is in the range [%#, —5] with

high probability. The expected number of nodes in the communication range is
n

upper bounded by 572 since the cell length is % Again Chernoff bound can

m2
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Fig.6. A counter-example for the Fig.7. Grid construction in two
random-k-covered-wake-up dimensions.

provide with high probability that the number of nodes reachable in one hop is
at most 107> with high probability.

So, the probability that a node of a neighbor cell is activated is at least 10%.
Therefore, if each node is randomly activated until 10(c 4+ 1) Inn wake up calls
have been reached, this results in a probability of 1 — n™¢ that each cell starts
at least one wake-up call, when a neighbor cell has been activated before. O

6 Simulations

We have simulated the epidemic random k-covered algorithms to evaluate the
efficiency of the covered nodes and the wake-up signals needed from the source
node to reach every single node in the area. The grid based flooding algorithm
and the competitive algorithm (with (1—¢) unit disk graphs) have high constant
factors involved such that they clearly cannot compete.

We randomly deployed varying number of nodes in a square area of 100 m
edge length. The middle node is woken up first and the wake-up communication
range is limited to 10 m based on real-world data. Figures 8 and 9 show how the
CDS is constructed in a network with 1,000 randomly deployed nodes using the
random 1-covered, resp. 2-covered, wake-up algorithm.

Starting with a source node at a position (50, 50), the algorithm randomly
picks the next node to be woken in order to cover the rest of the nodes that
are found in the area. The nodes transmitting wake-up signal form a tree from
the source node to each covered nodes. Only edges where a new wake-up call is
initiated are depicted. In case of k = 1, a node is considered to be covered when
it is covered by two wake-up signals or if it transmits one. When the algorithm
considers k£ > 1 then a possible intersection in the tree can be formed as it
appears in Fig. 9.
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O
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Fig. 8. Random-1-covered-wake-up Fig. 9. Random-2-covered-wake-up

The quality of the algorithms are measured according to their coverage, i.e.
the ratio of uncovered nodes after the algorithm has terminated, and the com-
plexity, i.e. the number of wake-up calls sent. We have simulated this for the
above parameters for increasing density. For this, we increase the number of
nodes from 1 to 2,000.

Figure 10 shows that for £ = 1 the ratio of uncovered nodes is relatively high
compared to the set of nodes which can be reached, this percentage is displayed
as the result of the flooding algorithm. Increasing k ameliorates this behavior.
For high node density all algorithms reach nearly a full coverage. For k£ = 1
a coverage of 95% happens when 350 nodes are participating, for k& > 2 this
already happens for 250 nodes.

Figure 11 indicates that the message complexity grows linearly with £ and
converges for increasing node density. Surprisingly, the complexity increases from
k =1to k =2 only by around 40 %. So, k = 2 appears to be a good compromise
between coverage and complexity.
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7 Conclusions and Future Work

The improved efficiency of wake-up receivers down to the microwatt range implies
a paradigm shift for wireless sensor networks. Now, no busy idling implemented
as duty-cycling is necessary until the first sensor information or the first message
arrives. However, when the nodes need to be woken up without any prior knowl-
edge we face the wake-up connected dominating set problem, presented here.

For this problem, we provide theoretical and practical solutions. Our algo-
rithms work for random placement and an adversarial setting, where we needed
to reduce the power of the adversary, otherwise no efficient algorithms can be
found. It turns out that for the random placement the position information is
not necessary to find an efficient algorithm with a O(log n)-competitive ratio. We
have simulated a simplified variant of this and have seen that it reaches nearly
all nodes with small number of wake-up calls.

This raises the hope that duty-cycling might soon be a technique of the past.
However, with the available transceiver technology a wake-up call is orders of
magnitudes more energy-consuming than standard operation. Taking this into
account, it does not make sense to wake up the network from scratch every
time a sensor reading appears. At this moment, it is more efficient to put
the full network into sleep after some thousand communication cycles. So with
the current hardware, a hybrid solution of wake-up calls and duty-cycling is the
optimal solution.

Another available technique is the use of IDs for wake-up calls. It is possible
to program sensor nodes to be woken up only on a special signal, which are
given by a programmable ID. This may help protocols to build up a wake-up
infrastructure, where the wake-up signals may trigger different nodes or paths.
At this point, it is not clear how this feature can be used in future protocols and
what can be achieved with it.

Since, the wake-up transceiver have only become available recently, we are in
the process of implementing the given protocols and further research will show,
how well these wake-up algorithms behave in real world.
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Abstract. We investigate algorithmic control of a large swarm of mobile
particles (such as robots, sensors, or building material) that move in a 2D
workspace using a global input signal such as gravity or a magnetic field.
Upon activation of the field, each particle moves maximally in the same
direction, until it hits a stationary obstacle or another stationary particle.
In an open workspace, this system model is of limited use because it has
only two controllable degrees of freedom—all particles receive the same
inputs and move uniformly. We show that adding a maze of obstacles to
the environment can make the system drastically more complex but also
more useful. The resulting model matches ThinkFun’s Tilt puzzle.

If we are given a fixed set of stationary obstacles, we prove that
it is NP-hard to decide whether a given initial configuration can be
transformed into a desired target configuration. On the positive side,
we provide constructive algorithms to design workspaces that efficiently
implement arbitrary permutations between different configurations.

Keywords: Robot swarm - Nano-particles - Uniform inputs - Parallel
motion planning - Complexity - Array permutations

1 Introduction

Since the first visions of massive sensor swarms, more than ten years of work
on sensor networks have yielded considerable progress with respect to hardware
miniaturization. The original visions of “Smart Paint” [1] or “Smart Dust” [27]
have triggered a considerable amount of theoretical research on swarms of sta-
tionary processors, e.g., the work in [16-18,29]. Recent developments in the
ability to design, produce, and control particles at the nanoscale and the rise of
possible applications, e.g., targeted drug delivery, micro and nanoscale construc-
tion, and Lab-on-a-Chip, motivate the study of large swarms of mobile objects.
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But how can we control such a swarm with only limited computational power and
a lack of individual control by a central authority? Local, robotics-style motion
control by the particles themselves appears hopeless, because (1) the physics of
motion at the low Reynold’s number nanoscale environment requires overcoming
a considerable amount of resistance, and (2) the capacity for storing energy for
computation, communication, and motion control shrinks with the third power
of object size.

A possible answer lies in applying a global, external force to all particles in
the swarm. This resembles the logic puzzle Tilt [38], and dexterity ball-in-a-maze
puzzles such as Pigs in Clover and Labyrinth, which involve tilting a board to
cause all mobile pieces to roll or slide in a desired direction. Problems of this type
are also similar to sliding-block puzzles with fixed obstacles [10,24-26], except
that all particles receive the same control inputs, as in the Tilt puzzle. In the real
world, driving ferromagnetic particles with a magnetic resonance imaging (MRI)
scanner gives a nano-scale example of this challenge [40]. Becker et al. [7] demon-
strate how to apply a magnetic field to simultaneously move cells containing iron
particles in a specific direction within a fabricated workspace; see Fig. 1la. Other
recent examples include using the global magnetic field from an MRI to guide
magneto-tactic bacteria through a vascular network to deliver payloads at spe-
cific locations [8], and using electromagnets to steer a magneto-tactic bacterium
through a micro-fabricated maze [28]; however, this still involves only individual
particles at a time, not the parallel motion of a whole, massive swarm. How can
we manipulate the overall swarm with coarse global control, such that individual
particles arrive at multiple different destinations in a (known) complex vascular
network such as the one in Fig. 1b?

Thus, we study the following basic problem: Given a map of an environment,
such as the vascular network shown in Fig. 1b, along with initial and goal posi-
tions for each particle, does there exist a sequence of inputs that will bring each
particle to its goal position?

As it turns out, the deliberate use of existing stationary obstacles leads to a
wide range of possible sequences of moves. In the first part of the paper, we show
that this may lead to computationally difficult situations. In the second part of
the paper (Sect.5), we develop several positive results. The underlying idea is to
construct artificial obstacles (such as walls) that allow arbitrary rearrangements
of a given two-dimensional particle swarm. For clearer notation, we will formulate
the relevant statements in the language of matrix operations, which is easily
translated into plain geometric language.

Our paper is organized as follows. After a formal problem definition in Sect. 2
and a discussion of related work in Sect. 3, we provide our main result on the
complexity of the problem in Sect.4. We then present constructive algorithmic
results in Sect. 5, and end with concluding remarks in Sect. 6.

2 Problem Definition

We study the problem on a two-dimensional grid. We assume that particles
cannot be individually controlled, but are all simultaneously given a message
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(a) (Left, center) after feeding iron particles to ciliate eukaryon (Tetrahymena pyri-
formis) and magnetizing the particles with a permanent magnet, the cells can be turned
by changing the orientation of an external magnetic field. (Right) using two orthogo-
nal Helmholz electromagnets (left), Becker et al. demonstrated steering many living
magnetized T. pyriformis cells [7]. All cells are steered by the same global field.
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(b) Biological vascular network (cottonwood leaf). Photo: Royce Bair/Flickr/Getty
Images. Given such a network along with initial and goal positions of N parti-
cles, is it possible to bring each particle to its goal position using a global con-
trol signal? Note that this arrangement is mot a tree, but is a graph structure
with loops. MATLAB code for driving n robots through this network available at
http://www.mathworks.com/matlabcentral /fileexchange/42892.

Fig. 1. (Top) State of the art in controlling small objects by force fields. (Bottom) A
complex vascular network, forming a typical environment for the parallel navigation of
small objects.
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to travel in a given direction until they collide with an obstacle or another
particle. This assumption corresponds to situations with limited state feedback,
or for particles that move at unpredictable speeds. More precisely we consider
the following scenario, illustrated in Fig.2, which we call GLOBALCONTROL-
MANYPARTICLES:

1. Initially, the planar square grid is filled with some unit-square particles (each
occupying a cell of the grid) and some fixed unit-square blocks.

2. All particles are commanded in unison: a valid command is “Go Up” (u),“Go
Right” (r),“Go Down” (d), or “Go Left” (I). All particles move in the com-
manded direction until they hit an obstacle or another particle. A representa-
tive command sequence is (u,r,d,l, d, r, u,...). We call these global commands
force-field moves. We assume we can bound the minimum particle speed and
can guarantee all particles have moved to their maximum extent.

3. The goal is to get any particle to a specified position.

The algorithmic decision problem GLOBALCONTROL-MANYPARTICLES is to
decide whether a given puzzle is solvable. As it turns out, this problem is com-
putationally difficult: we prove NP-hardness in Sect.4. While this result shows
the richness of our model (despite the limited control over the individual parts),
it also constitutes a major impediment for constructive algorithmic work.

Fig. 2. In this image, black cells are fixed, white cells are free, solid discs are individ-
ual particles, and goal positions are dashed circles. For the simple world at left, it is
impossible to maneuver both particles to end at their goals. The world at right has a
finite solution: (r,d,I).

3 Related Work

Large Robot Populations. Due to the efforts of roboticists, biologists, and chem-
ists (e.g. [9,35,37]), it is now possible to make and field very large (103-10'4)
populations of simple robots. Potential applications for these robots include tar-
geted medical therapy, sensing, and actuation. With large populations come two
fundamental challenges: (1) how to perform state estimation for the robots, and
(2) how to control these robots.

Traditional approaches often assume independent control signals for each
robot, but each additional independent signal requires bandwidth and engi-
neering. These bandwidth requirements grow at O(n). Using independent sig-
nals becomes more challenging as the robot size decreases. At the molecular
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scale, there is a bounded number of modifications that can be made. Espe-
cially at the micro- and nano-scales it is not practical to encode autonomy in
the robots. Instead, the robots are controlled and interacted with using global
control signals.

More recently, robots have been constructed with physical heterogeneity so
that they respond differently to a global, broadcast control signal. Examples
include scratch-drive microrobots, actuated and controlled by a DC voltage sig-
nal from a substrate [12]; magnetic structures with different cross-sections that
could be independently steered [19]; MagMite microrobots with different reso-
nant frequencies and a global magnetic field [20]; and magnetically controlled
nanoscale helical screws constructed to stop movement at different cutoff fre-
quencies of a global magnetic field [36]. In our previous work with robots modeled
as nonholonomic unicycles, we showed that an inhomogeneity in turning speed
is enough to make even an infinite number of robots controllable with regard
to position. All these approaches show promise, but they require precise state
estimation and heterogeneous robots. In addition, the control law computation
required at best a summation over all the robot states O(n) [6] and at worst a
matrix inversion O(n2-373)[4].

In this paper we take a very different approach. We assume a population
of approximately identical planar particles (which could be small robots) and
one global control signal that contains the direction all particles should move.
In an open environment, this system is not controllable because the particles
move uniformly—implementing any control signal translates the entire group
identically. However, an obstacle-filled workspace allows us to break symmetry.
We showed that if we can command the particles to move one unit distance at a
time, some goal configurations have easy solutions [5]. Given a large free space,
we have an algorithm showing that a single obstacle is sufficient for position
control of N particles (video of position control: http://youtu.be/5p_XIad5-Cw).
This result required incremental position control of the group of particles, i.e. the
ability to advance them a uniform fixed distance. This is a strong assumption,
and one that we relax in this work.

Dexterity Games. The problem we investigate is strongly related to dexterity
puzzles—games that typically involve a maze and several balls that should be
maneuvered to goal positions. Such games have a long history. Pigs in Clover,
involving steering four balls through 3 concentric incomplete circles, was invented
in 1880 by Charles Martin Crandall. Dexterity games are dynamic and depend
on the manual skill of the player. Our problem formulation also applies the same
input to every agent, but imposes only kinematic restrictions on agents. This is
most similar to the gravity-fed logic maze Tilt™, invented by Vesa Timonen
and Timo Jokitalo and distributed by ThinkFun since 2010 [38].

Computational Geometry: Robot Box-Pushing. Many variations of block-pushing
puzzles have been explored from a computational complexity viewpoint, with a
seminal paper proving NP-hardness by Gordon Wilfong in 1991 [43]. The general
case of motion-planning when each command moves particles a single unit in a
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world composed of even a single robot and both fized and moveable squares is
in the complexity class PSPACE-COMPLETE [11,13,25].

Ricochet Robots [14], Atomix [26], and PushPush [10] have the same con-
straint that robots when moved must move to their full extent. This constraint
reflects physical realities where, due to uncertainties in sensing, control appli-
cation, and robot models, precise quantified movements in a specified direction
is not possible, but the input can be applied for a long period of time and be
guaranteed that the robots will move to their fullest extent. In these games the
robots move to their full extent with each input, but each robot can be actuated
individually. The complexity of the problem with global inputs to all robots has
remained an open problem.

Sensorless Manipulation. The algorithms in the second half of our paper do
not require feedback, and we have drawn inspiration from work on sensorless
manipulation [15]. The basic idea in this work is to explicitly maintain the set of
all possible robot configurations and to select a sequence of actions that reduces
the size of this set and drives it toward some goal configuration. Carefully selected
primitive operations can make this easier. For example, sensorless manipulation
strategies often use a sequential composition of primitive operations, “squeezing”
a part either virtually with a programmable force field or simply between two flat,
parallel plates [23]. Some sensorless manipulation strategies take advantage of
limit cycle behavior, for example engineering fixed points and basins of attraction
so that parts only exit a feeder when they reach the correct orientation [31,33].
These two strategies have been applied to a much wider array of mechanisms
such as vibratory bowls and tables [21,41,42] or assembly lines [2,23,39], and
have also been extended to situations with stochastic uncertainty [22,32] and
closed-loop feedback [3,34].

Parallel Algorithms: SIMD. Another related area of research is Single Instruction
Multiple Data (SIMD) parallel algorithms [30]. In this model, multiple proces-
sors are all fed the same instructions to execute, but they do so on different data.
This model has some flexibility, for example allowing command execution selec-
tively only on certain processors and no operations (NOPs) on the remaining
Processors.

Our model is actually more extreme: the particles all respond in effectively
the same way to the same instruction. The only difference is their location, and
which obstacles or particles will thus block them. In some sense, our model is
essentially Single Instruction, Single Data, Multiple Location.

4 Complexity

We prove that the general problem defined in Sect.2 is computationally
intractable:

Theorem 1. GLOBALCONTROL-MANYPARTICLES is NP-hard: given an initial
configuration of movable particles and fixed obstacles, it is NP-hard to decide
whether any particle can be moved to a specified location.
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Proof. We prove hardness by a reduction from 3SAT. Suppose we are given n
Boolean variables x1, 2, ..., Ty, and m disjunctive clauses C; = U; V V; V Wj,
where each literal U;, V;, W; is of the form x; or —z,;. We construct an instance of
GLOBALCONTROL-MANYPARTICLES that has a solution if and only if all clauses
can be satisfied by a truth assignment to the variables.

Variable gadgets. For each variable x; that appears in k; literals, we construct k;
instances of the variable gadget i shown in Fig. 3, with a particle initially at the
top of the gadget. The gadget consists of a tower of n levels, designed for the
overall construction to make n total variable choices. These choices are intended
to be made by a move sequence of the form (d, {/r, d, l/r, ..., d,/r,d, 1), where
the ith [ /r choice corresponds to setting variable x; to either true (1) or false (r).
Thus variable gadget ¢ ignores all but the ith choice by making all other levels
lead to the same destination via both [ and r. The ith level branches into two
destinations, chosen by either [ or r, which correspond to x; being set true or
false, respectively.

In fact, the command sequence may include multiple [ and r commands in
a row, in which case the last [/r before a vertical u/d command specifies the
final decision made at that level, and the others can be ignored. The command
sequence may also include a u command, which undoes a d command if done
immediately after, or else does nothing; thus we can simply ignore the u com-
mand and the immediately preceding d if it exists. We can also ignore duplicate
commands (e.g., d,d becomes d) and remove any initial {/r command. After
ignoring these superfluous commands, assuming a particle reaches one of the
output channels, we obtain a sequence in the canonical form (d, l/r, d, l/r, ...,
d, 1) as desired, corresponding uniquely to a truth assignment to the n variables.
(If no particle reaches the output port, it is as if the variable is neither true nor
false, satisfying no clauses.) Note that all particles arrive at their output ports
at exactly the same time.

AR IAA LS

(a) variable, i=1 (b) i=2 (c) i=3 d i=4

Fig. 3. Variable gadgets that execute by a sequence of (d,l/r) moves. The ith [/r
choice sets the variable to true or false by putting the ball in a separate column.
This selection move is shown in blue. Each gadget is designed to respond to the ith
choice but ignore all others. This lets us make several copies of the same variable by
making multiple gadgets with the same 4. In the figure n = 4, and the input sequence
(d,l,d,r,d,l,d,r,d,r d) causes i = (1,2, 3,4) to produce (true, false, true, false) (Colour
figure online).
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Clause gadgets. For each clause, we use the OR gadget shown in Fig.4a. The OR
gadget has three inputs corresponding to the three literals, and input particles
are initially at the top of these inputs. For each positive literal of the form x;,
we connect the corresponding input to the left output of an unused instance
of variable gadget i. For each negative literal of the form —x;, we connect the
corresponding input to the right output of an unused instance of a variable
gadget i. (In this way, each variable gadget gets used exactly once.)

We connect the variable gadget to the OR gadget in a simple way, as shown
in Fig.5: place the variable gadget above the clause so as to align the vertical
output and input channels, and join them into a common channel. To make
room for the three variable gadgets, we simply extend the black areas separating
the three input channels in the OR gadget. The unused output channel of each
variable gadget is connected to a waste receptacle. Any particle reaching that
end cannot return to the logic.

If any input channel of the OrR gadget has a particle, then it can reach the
output port by the move sequence (d, [, d, ). Furthermore, because variable gad-
gets place all particles on their output ports at the same time, if more than one
particle reaches the OrR gadget, they will move in unison as drawn in Fig.4a,
and only one can make it to the output port; the others will be stuck in the
“waste” row, even if extra (I, r,u,d) commands are interjected into the intended
sequence. Hence, a single particle can reach the output of a clause if and only if
that clause (i.e., at least one of its literals) is satisfied by the variable assignment.

01 02 03 04 05 01 03 03 04 05

0]
(a) 3-input OR (b) m-input AND (True) (c) m-input AND (False)

Fig. 4. Gadgets that use the cycle {d,l,d,r). The 3-input OR gadget outputs one par-
ticle if at least one particle enters in an input line, and sends any extra particle(s)
to a waste receptacle. The m-input AND gadget outputs one particle to the TARGET
LOCATION, marked in gray, if at least m inputs are TRUE. Here m = 5. Excess particles
are sent to a waste receptacle.

Check gadget. As the final stage of the computation, we check that all clauses
were simultaneously satisfied by the variable assignment, using the m-input AND
gadget shown in Fig.4b and c. Specifically, we place the clause gadgets along a
horizontal line, and connect their vertical output channels to the vertical input
channels of the check gadget. Again we can align the channels by extending the
black areas that separate the input channels of the AND gadget, as shown in the
composite diagram Fig. 5.

The intended solution sequence for the AND gadget is (d,l,d,r). The AND
gadget is designed with the downward channel exactly m units to the right from
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(a) Initial state. The objective is to get one particle to the grey square at lower left.

(c) Setting the variables (True, False, False, True) will satisfy this 3SAT problem.
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(d) Successful outcome. (True, False, False, True) places a single particle in the goal.

Fig. 5. Combining 12 variable gadgets, three 3-input ORrR gadgets, and an m-input AND
gadget to realize the 3SAT expression (mAV—=CV D)A(=BV-CVD)A(-AVBVD)A
(AV BV C). MATLAB code implementing the examples for each figure in the paper

is available online http://www.mathworks.com/matlabcentral/fileexchange/42892.

the left wall, and > 2m units from the right wall, so for any particle to reach
the downward channel (and ultimately, the target location), at least m particles
must be presented as input. Because each input channel will present at most one
particle (as argued in a clause), a particle can reach the final destination if and
only if all m clauses output a particle, which is possible exactly when all clauses

are satisfied by the variable assignment.
This completes the reduction and the NP-hardness proof.
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We conjecture that GLOBALCONTROL-MANYPARTICLES is in fact PSPACE-
COMPLETE. One approach would be to simulate nondeterministic constraint logic
[24], perhaps using a unique move sequence of the form (d, I/r, d, I/r, ...) to
identify and “activate” a component. One challenge is that all gadgets must
properly reset to their initial state, without permanently trapping any particles.
We leave this for future work.

5 Matrix Permutations

The previous sections investigated pathologically difficult configurations. This
section investigates a complementary problem. Given the same particle and world
constraints as before, what types of control are possible and economical if we
are free to design the environment?

First, we describe an arrangement of obstacles that implement an arbitrary
matrix permutation in four commands. Then we provide efficient algorithms for
sorting matrices, and finish with potential applications.

5.1 A Workspace for a Single Permutation

For our purposes, a matriz is a 2D array of particles (each possibly a differ-
ent color). For an a, X a. matrix A and a b, x b, matrix B, of equal total
size N = a, - a. = b, - b, a matriz permutation assigns each element in A a
unique position in B. Figures6 and 7 show example constructions that execute
matrix permutations of total size N = 25 and 100, respectively. For simplicity
of exposition, we assume henceforth that all matrices are n x n squares.

Theorem 2. Any matriz permutation can be executed by a set of obstacles that
transforms matriz A into matriz B in just four moves. For N particles, the
arrangement requires (3N + 1)2 space, 4N + 1 obstacles, and 12N /speed time.

Proof. Refer to Figs.6 and 7 for examples. The move sequence is (u,r,d, ).
Move 1: We place n obstacles, one for each column, spaced n units apart, such
that moving u spreads the particle array into a staggered vertical line. Each
particle now has its own row. Move 2: We place N obstacles to stop each
particle during the move r. Each particle has its own row and can be stopped at
any column by its obstacle. We leave an empty column between each obstacle
to prevent collisions during the next move. Move 3: Moving d arranges the
particles into their desired rows. These rows are spread in a staggered horizontal
line. Move 4: Moving [ stacks the staggered rows into the desired permutation,
and returns the array to the initial position.

By reapplying the same permutation enough times, we can return to the
original configuration. The permutations shown in Fig.6 return to the original
image in 2 cycles, 