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Preface

ALGOSENSORS, the International Symposium on Algorithms and Experiments for
Sensor Systems, Wireless Networks and Distributed Robotics, is an international
forum dedicated to the algorithmic aspects of wireless networks, static or mobile. The
9th edition of ALGOSENSORS was held during September 5–6 in Sophia Antipolis,
France, within the ALGO annual event.

Originally focused solely on sensor networks, ALGOSENSORS now covers more
broadly algorithmic issues arising in all wireless networks of computational entities,
including sensor networks, sensor-actuator networks, and systems of autonomous
mobile robots. In particular, it focuses on the design and analysis of discrete and
distributed algorithms, on models of computation and complexity, on experimental
analysis, in the context of wireless networks, sensor networks, and robotic networks
and on all foundational and algorithmic aspects of the research in these areas.

This year papers were solicited in three tracks: Sensor Network Algorithms (Track
A), Wireless Networks and Distributed Robotics Algorithms (Track B), and Experi-
mental Algorithms (Track C).

In response to the call for papers, 30 submissions were received, out of which 19
papers were accepted after a rigorous reviewing process by the (joint) Program
Committee, which involved at least three reviewers per paper. In addition to the
technical papers, the program included two invited presentations, the keynote talk by
Magnús M. Halldórsson (Reykjavik University), and the opening talk by Giuseppe
Prencipe (University of Pisa). This volume contains the technical papers as well as
summaries of the two keynote talks.

We would like to thank the Program Committee members, as well as the external
reviewers, for their fundamental contribution in selecting the best papers resulting in a
strong program. We would also like to warmly thank the ALGO/ESA 2013 organizers
for kindly accepting the proposal of the Steering Committee to co-locate
ALGOSENSORS with some of the leading events on algorithms in Europe.

October 2013 Paola Flocchini
Jie Gao

Evangelos Kranakis
Friedhelm Meyer auf der Heide
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Modeling Reality Algorithmically: The Case
of Wireless Communication

Magnús M. Halldórsson(B)

ICE-TCS, School of Computer Science, Reykjavik University, 101 Reykjavik, Iceland
mmh@ru.is

1 Algorithmic Models and Their Properties

Computation is increasingly being viewed as the 21st century approach to model-
ing the world. Classical sciences have become increasingly more computer-driven,
necessitating a computational perspective. The equation – bastion of 20th cen-
tury science – is becoming supplanted by the algorithm. To properly address
real-world phenomena, we need models appropriate for algorithmic approaches.

This note contains the author’s reflections on the choice and design of models,
particularly those capturing aspects of the measurable world. What it is that we
look for in models and the essential properties that we seek. We do this in the
context of wireless networking, but hope that some of the lessons have wider
relevance.

We postulate that algorithmic models must satisfy four properties to be truly
useful.

Fidelity. A model must be a fair representation of reality. Whereas physics
has the advantage that its relatively simple laws hold with extremely high
precision, the settings for most fields of study are inherently noisy, making
perfect models a pipe dream. Instead, abstractions are an intrinsic part of
most models, where the intent is to factor out unimportant ideosyncracies.
On the other hand, if essential features are eliminated, the model fails its
primary task: to faithfully represent reality.

Simplicity. Overly complex models generally result in limited usage. The utility
of such models for algorithmic design is necessarily limited, as it complicates
all the efforts involved. Occam’s razor suggests that models should be as
simple as possible, but also no simpler than that, paraphrasing an aphorism
attributed to Einstein. Simplicity also has implications for analysis.

Analyzability. In order to truly understand real-world phenomena, we need to
be able to analyze them and study, both individually and in relation to other
phenomena. A model with characteristics that defy analysis may allow for
uniformed heuristic use, but will hamper our understanding of the intrinsic
properties of the concept at hand.

Generality. Finally, we seek explanations of general utility with wide applica-
bility. There is always the danger to introduce context-specific attributes to
strengthen the predictive power of the model, but the more we do so, the
less useful the model is as a means to explain general properties.

P. Flocchini et al. (Eds.): ALGOSENSORS 2013, LNCS 8243, pp. 1–5, 2014.
DOI: 10.1007/978-3-642-45346-5 1, c© Springer-Verlag Berlin Heidelberg 2014



2 M.M. Halldórsson

It may be helpful to consider some examples.

Integer Linear Programming. ILP is an extremely general tool to represent com-
binatorial problems, allowing for generic solution methods. Depending on the
context, it can be very faithful to the real phenomena. The utilities for algo-
rithm design and analysis depends a lot on the specific domain, and can range
from very high to minimal.

Maxwell’s equations. The equations for electrodynamics that underlie electrical
and communication technologies are both very general and highly precise, omit-
ting only the quantum effects that are usually immeasurably small. However,
when examined at the scale of wireless networks, the details involved are over-
whelming, rendering them unusable for all but exceptional settings of algorithms
and analysis.

In general, the utility of a model may depend on the issue/problem under
consideration.

2 Selected Wireless Models

A fair number of algorithmic models has been proposed for wireless networks.
Let us consider the more prominent models, explore the problems that they
address well and examine the issues they raise and their weaknesses. Usually,
the distributed setting is assumed, but one can also evaluate them with respect
to centralized algorithms. Let n denote the number of wireless transceiver nodes.

Radio model. In the earliest and the most basic model, a wireless transmission is
successful if exactly one transmitter is transmitting, in which case all the other
nodes receive the message.

A core problem addressed in this model, which has been extended to other
models, is leader election: the nodes should agree on a single node as a leader.
With this primitive, many other issues are simplified. One surprising result due
to Willard is that this can be achieved in O(log log n) steps [15], when the nodes
have collision detection, i.e., can distinguish silence from the case when two or
more nodes are attempting to transmit.

The key limitation of this model is the assumption that all nodes are within
communication range. It is also pessimistic in that it does not allow for any
spatial reuse of the wireless channel.

General graphs. In the (general) graph model, the graph represents which pairs
of nodes can communicate (and interfere) with each other. In this sense, the
radio model corresponds to the clique graph.

The prototypical problem addressed in this model is the broadcast problem:
how to transmit a message from a given source to all other nodes in the graph.
A celebrated result of Bar-Yehuda, Goldreich and Itai [2] shows that this can
be achieved in O(D log n) time steps with a randomized distributed algorithm,
where D is the diameter of the graph. This is essentially optimal for a distributed
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algorithm, and within logarithmic factor of the best possible by a centralized
algorithm.

One downside of the model is that many problems become hard to solve even
approximately. For instance, the coloring problem, which captures core questions
regarding scheduling wireless communications, has no sublinear approximation
algorithm [6].

Disc graphs. Communication occurs in the physical world, which is three-
dimensional, and distances do matter. A natural approach to limit complexity
is therefore to embed the nodes in a Euclidean space and assume that nodes can
connect if they are sufficiently close. In the basic setting, nodes can communicate
(and interfere) if and only if they are within a fixed distance apart, giving rise
to unit disc graphs (UDG). UDGs have been the source of a large amount of
interesting theory, with the early paper of Clark et al. [3] cited over 1000 times.

Many variations and extensions exist, such as allowing for differing
power/radii of the nodes (disc graphs) or different ranges for interference than for
communication (protocol model). All disc graphs, however, make strong assump-
tions: the world is flat (i.e., planar), radio transmission ranges are circular, and
reception is symmetric. More generally, all graph-based models assume that
reception quality is a binary and that interference is a pairwise relationship.
Numerous empirical results (see, e.g., [10]) have shown these to be simplistic.

Physical model. The model of choice in engineering circles has been the physical
model, where the radio signal is assumed to be a decaying function of distance.
Here, interference is no longer binary but additive, with successful reception
achieved if the total amount of interference is sufficiently small relative to the
strength of the intended signal (i.e., high enough signal-to-interference-and-noise-
ratio, SINR).

The standard assumption is that signal decays as a polynomial function of
distance, known as geometric pathloss. Namely, if the signal travels distance d
from a sender transmitting with power P , it will be received with strength P/dα,
where α is an absolute constant depending on the setting, understood to be in
the range [2,6].

The physical model was mostly ignored by algorithm theory for a long time,
assumed to be too complicated and hard to analyze (failing our Simplicity and
Analyzability axioms). Recent years have, however, seen great improvements in
our understanding of the model and increase in analytic results.

One problem for which results in the physical model are qualitatively different
from those in other models is the aggregation problem (and the related connectiv-
ity problem): Compute aggregation statistic (say, the minimum) of a set of values,
where each wireless node contains only a single value. In any disc or graph-based
model, the worst-case round complexity is necessarily linear. Surprisingly, per-
haps, Moscibroda and Wattenhofer showed that in the physical model it is only
poly-logarithmic [13]. In fact, the worst-case bound is only O(log n) [7].

Even though the physical model adds several attributes of realism, it still
has issues regarding fidelity. Geometric path loss means assuming that antennas
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are omnidirectional and that signal decays smoothly as a function of distance.
Real environments have obstacles and walls that can reflect, scatter and damper
signals, and the mere appearance of floors or a ground introduces multi-path
effects that are beyond the pure geometric path loss.

3 Future Directions

The preceding models have now all been fairly well studied. Each has aspects
that fit certain problems better than others, allowing us to draw distinct lessons.
None, however, captures all the important aspects of real environments. Exper-
imental evidence has indeed found that wireless reception is tricky, defying sim-
plistic characterizations [1]. We point out a few additional approaches that have
been considered.

If the assumption of geometric path loss is jettisoned from the physical model,
we are left with the abstract SINR model. This is extremely general, with gen-
eral graphs being a special case. Thus, scheduling-type problems become highly
inapproximable. Still, it may be instructive to consider this general model fur-
ther, identifying other types of restricted instances or parameterized properties
that allow us to recover the Analyzability axiom. The inductive independence or
maximum average affectance property of [9] is one such candidate.

Temporal variability in wireless signal reception has been captured in the
recent dual graph model [12]. It extends the (general) graphs model by allowing
for both reliable and adversarially chosen unreliable links. Whether this exact
definition is the best one remains to be seen.

Random artifacts appear to be unavoidable in real networks, at least at a
low level. Different versions are known as “fading”, “shadowing”, or “Gaussian”
noise. One of the more common ones, Rayleigh fading, has been analyzed in con-
junction with the physical model [4] under the assumption of full independence.
Correlations and other variations await further study.

Our coverage is by no means exhaustive. Among exciting recent directions
are the Abstract MAC Layer [11], multi-channel models (e.g., [5]), jamming
resistance [14], and MIMO extensions of the physical model (e.g., [8]).

We believe that the time is ripe for tackling the challenge of faithfully mod-
eling real wireless environments, while obeying the other axioms of simplicity,
generality and analyzability. A natural direction would be to meld some of the
recent variations with the classical models and assess the resulting model accord-
ing to these criteria.

Acknowledgements. I thank the attendees of WRAWN (Workshop on Realistic
models for Algorithms in Wireless Networks) 2013 for stimulating presentations and
discussions that motivated these reflections. Any misrepresentations or omissions are,
of course, mine only.
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Autonomous Mobile Robots: A Distributed
Computing Perspective

Giuseppe Prencipe(B)

Dipartimento di Informatica, Università di Pisa, Pisa, Italy
prencipe@di.unipi.it

Abstract. The distributed coordination and control of a team of
autonomous mobile robots is a problem widely studied in a variety of
fields, such as engineering, artificial intelligence, artificial life, robotics.
Generally, in these areas, the problem is studied mostly from an empiri-
cal point of view.

Recently, the study of what can be computed by such team of robots
has become increasingly popular in theoretical computer science and
especially in distributed computing, where it is now an integral part of
the investigations on computability by mobile entities [28]. In this paper
we describe the current investigations on the algorithmic limitations of
what autonomous mobile robots can do with respect to different coordi-
nation problems, and overview the main research topics that are gaining
attention in this area.

1 Introduction

For the last twenty years, the major trend in robotic research, both from engi-
neering and behavioral viewpoints, has been to move away from the design
and deployment of few, rather complex, usually expensive, application-specific
robots. In fact, the interest has shifted towards the design and use of a large
number of “generic” robots which are very simple, with very limited capabilities
and, thus, relatively inexpensive, but capable, together, of performing rather
complex tasks.

The advantages of such an approach are clear and many, including: reduced
costs; ease of system expandability which in turns allows for incremental and
on-demand deployment; simple and affordable fault-tolerance capabilities; re-
usability of the robots in different applications [26,49].

One of the first studies conducted in this direction in the AI community
is that of Matarić [44]. The main idea in Matarić’s work is that “interactions
between individual agents need not to be complex to produce complex global
consequences”.

Other investigations in the AI community include the study of [4] on stig-
mergy communication and on the use a set of simple robots that operate com-
pletely autonomously and independently to collect pucks spread over a square

This research is supported in part by MIUR of Italy under project ARS TechnoMedia.

P. Flocchini et al. (Eds.): ALGOSENSORS 2013, LNCS 8243, pp. 6–21, 2014.
DOI: 10.1007/978-3-642-45346-5 2, c© Springer-Verlag Berlin Heidelberg 2014
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arena in a single cluster; the ALLIANCE architecture and the studies on selfish
behavior of cooperative robots in animal societies by Parker [49]; the formation
and navigation problems in multi-robot teams in the context of primitive animal
behavior in pattern formation by Balch and Arkin [3]; and the experiments in
cooperative cleaning behavior of Jung et al. [38].

Alternative approaches to the problem of studying multi-robot systems, can
be found in the CEBOT system of Fucuda, Kawaguchi et al. [32,41], in the
planner-based architecture of Noreils [47], in the information requirements theory
of Donald et al. [26] (see [7] for a survey), in the Swarm Intelligence of Beni
and Hackwood [5], in the Self-Assembly Machine (“fructum”) of Murata et al.
[46], etc.

The common feature of all these approaches is that they do not deal with
formal correctness of the solutions, that are only analyzed empirically. In all
these investigations, algorithmic aspects were somehow implicitly an issue, but
clearly not a major concern, let alone the focus, of the study. An investigation
with an algorithmic flavor has been undertaken within the AI community by
Durfee [27], who argues in favor of limiting the knowledge that an intelligent
robot must possess in order to be able to coordinate its behavior with others.

More recently, the study of teams of autonomous mobile robots has gained
attention also in distributed computing area, keeping pace with the trend orig-
inally started in robotics and AI. However, here the problem has been tackled
from a different perspective: from a computational point of view. In other words,
the focus is to understand the relationship between the capabilities of the robots
and the solvability of the tasks they are given. In these studies, the impact of
the knowledge of the environment is analyzed: can the robots form an arbitrary
geometric pattern if they have a compass? Can they gather in a point? Which
information each robot must have about its fellows in order for them to collec-
tively achieve their goal? The goal is to look for the minimum power to give to
the robots so that they can solve a given task; hence, to formally analyze the
strengths and weaknesses of the distributed coordination and control.

In this paper we describe the current investigations on the interplay between
robots capabilities, computability, and algorithmic solutions of coordination
problems by autonomous mobile robots.

2 Modeling Autonomous Mobile Robots

The considered computational universe is a 2-dimensional plane populated by
a set of n autonomous mobile robots, denoted by r1, . . . , rn, that are modeled
as devices with computational capabilities which are able to freely move on a
two-dimensional plane.

The Robots and Their Behavior. A robot is a computational unit capable
of sensing the positions of other robots in its surrounding, performing local
computations on the sensed data, and moving towards the computed destination.
The local computation is done according to a deterministic algorithm that takes
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in input the sensed data (i.e., the robots’ positions), and returns a destination
point towards which the executing robot moves. All the robots execute the same
algorithm. The local view of each robot includes a unit of length, an origin, and
a Cartesian coordinate system defined by the directions of two coordinate axes,
identified as the X and Y axis, together with their orientations, identified as
the positive and negative sides of the axes. Each robot cyclically performs the
following operations: (i) Look: The robot observes the world by activating its
sensors which will return a snapshot of the positions of all other robots within
the visibility range with respect to its local coordinate system. Each robot is
viewed as a point, hence its position in the plane is given by its coordinates, and
the result of the snapshot (hence, of the observation) is just a set of coordinates
in its local coordinate system: this set forms the view of the world of r. (ii)
Compute: The robot performs a local computation according to a deterministic
algorithm A (we also say that the robot executes A). The algorithm is the same
for all robots, and the result of the Compute state is a destination point. (iii)
Move: If the destination point is the current location of r, r performs a null
movement (i.e., it does not move); otherwise it moves towards the computed
destination but it can stop anytime during its movement.1

The robots are completely autonomous: no central control is needed. Fur-
thermore they are anonymous, meaning that they are a priori indistinguishable
by their appearance, and they do not (need to) have any kind of identifiers that
can be used during the computation.

Moreover, the robots are silent: there are no explicit direct means of com-
munication, and any communication occurs in a totally implicit manner. Specif-
ically, it happens by means of observing the robots’ positions in the plane, and
taking a deterministic decision accordingly. In other words, the only mean for
a robot to send information to some other robot is to move and let the others
observe (reminiscent of bees in a bee dance).

Activation and Operation Schedule. With respect to the activation schedule
of the robots and of the timing of the operations within their cycles, there are
two main models, asynchronous and semi-synchronous.

In the asynchronous model (Async), no assumptions on the cycle time of
each robot, and on the time each robot takes to execute each state of a given
cycle are made [29]. It is only assumed that each cycle is completed in finite
time, and that the distance traveled in a cycle is finite. Moreover, the robots
do not need to have a common notion of time, and each robot can execute its
actions at unpredictable time instants.

More precisely, there are only two limiting assumptions. The first one refers
to space; namely, the distance traveled by a robot during a computational cycle.
(A1) The distance traveled by a robot r in a move is not infinite. Furthermore,
there exists an arbitrarily small constant δr > 0, such that if the destination point
1 e.g. because of limits to the robot’s motorial capabilities.
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is closer than δr, r will reach it; otherwise, r will move towards it of at least δr.
As no other assumptions on space exist, the distance traveled by a robot in a
cycle is unpredictable.

The second limiting assumption is on the length of a cycle. (A2) The amount
of time required by a robot r to complete a computational cycle is not infinite.
Furthermore, there exists a constant εr > 0 such that the cycle will require at
least εr time. As no other assumption on time exists, the resulting system is fully
asynchronous and the duration of each activity (or inactivity) is unpredictable;
this setting is usually denoted by Async.

There are two important consequences: First, since the time that passes after
a robot starts observing the positions of all others and before it starts moving
is arbitrary, but finite, the actual move of a robot may be based on a situation
that was observed arbitrarily far in the past, and therefore it may be totally
different from the current situation. Second, since movements can take a finite
but unpredictable amount of time, and different robots might be in different
states of their cycles at a given time instant, it is possible that a robot can be
seen while it is moving by other robots that are observing.2

In the semi-synchronous (Ssync) model, the activations of the robots is logi-
cally divided into global rounds; in each round, one or more robots are activated
and obtain the same snapshot; based on that snapshot, they compute and per-
form their move [57].

In particular, there is a global clock tick reaching all robots simultaneously,
and a robot’s cycle is an instantaneous event that starts at a clock tick and ends
by the next. The only unpredictability is given by the fact that at each clock
tick, every robot is either active or inactive, and only active robots perform
their cycle. The unpredictability is restricted by the fact that at least one robot
is active at every time instant, and every robot becomes active at infinitely many
unpredictable time instants. A very special case is when every robot is active
at every clock tick; in this case the robots are fully synchronized (this specific
setting is usually denoted by Fsync).

In this setting, at any given time, all active robots are executing the same
cycle state; thus no robot will look while another is moving. In other words, a
robot observes other robots only when they are stationary. This implies that
the computation is always performed based on accurate information about the
current configuration. Furthermore, since no robot can be seen while it is moving,
the movement can be considered instantaneous. An additional consequence of
atomicity and synchronization is that, for them to hold, the maximum distance
that a robot can move in one cycle is bounded.

Capabilities. Different settings arise from different assumptions that are made
on the robots’ capabilities, and on the amount of information that they share
and use during the accomplishment of the assigned task. In particular,
2 Note that this does not mean that the observing robot can distinguish a moving

robot from a non moving one.
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– Visibility. The robots may be able to sense the complete plane or just a
portion of it. We will refer to the first case as the Unlimited Visibility case.
In contrast, if each robot can sense only up to a distance V > 0 from it, we
are in the Limited Visibility case. In the following, we will say also that the
robots have unlimited/limited visibility.

– Geometric Agreement. Each robot r has its own unit of length, and a
local compass defining a local Cartesian coordinate system defined by the
directions of two coordinate axes, identified as the X and Y axis, together
with their orientations, identified as the positive and negative sides of the
axes. This local coordinate system is self-centric, i.e. the origin is the posi-
tion of the observing robot. Depending on the level of consistency among
the robots on the direction and orientation of the axes of their local com-
passes, different classes of global geometric agreement can be identified: total
agreement (or consistent compass), when the robots agree on the direction
and orientation of both axes; partial agreement (or one axis) when all robots
agree on the direction and orientation of only one axis; chirality when the
robots agree on the orientation of the axes (i.e., clockwise); and no agree-
ment (or disorientation), where no consistency among the local coordinate
systems is known to exist.

– Memory. The robots can access local memory to store different amount
of information regarding the positions in the plane of their fellows. In the
oblivious model, all the information contained in the workspace is cleared at
the end of each cycle. In the non-oblivious (or persistent memory) model,
part (or all) of the local memory is legacy: unless explicitly erased by the
robot, it will persist throughout the robot’s cycles. In this model, an impor-
tant parameter is the size of the persistent workspace. One extreme is the
unbounded memory case, where no information is ever erased; hence robots
can remember all past computations and actions. On the opposite side is the
case when the size of the persistent workspace is constant; in this case, the
entities are just Finite-State Machines, and are called finite-state robots.

Let us stress that the only means for the robots to coordinate is the obser-
vation of the others’ positions and their change through time. For oblivious
robots, even this form of communication is impossible, since there is no memory
of previous positions.

3 Static Problems

Pattern Formation. The Pattern Formation problem is one of the most
important coordination problem and has been extensively investigated in the lit-
erature (e.g., see [10,56,57,60]). The problem is practically important, because,
if the robots can form a given pattern, they can agree on their respective roles
in a subsequent, coordinated action.
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In its most general definition, the robots are required to form an arbitrary
pattern. The geometric pattern to be formed is a set of points (given by their
Cartesian coordinates) in the plane, and it is initially known by all the robots
in the system.

The robots are said to form the pattern if, at the end of the computation,
the positions of the robots coincide, in everybody’s local view, with the points of
the pattern. The formed pattern may be translated, rotated, scaled, and flipped
into its mirror position with respect to the initial pattern. Initially the robots
are in arbitrary positions, with the only requirement that no two robots are in
the same position, and that, of course, the number of points prescribed in the
pattern and the number of robots are the same.

The basic research questions are which patterns can be formed, and how they
can be formed. Many proposed procedures do not terminate and never form the
desired pattern: the robots just converge towards it; such procedures are said to
converge.

There exists solution to solve this problem in both Async (e.g., [31]) and
Ssync (e.g., [57]), by always considering robots with unlimited visibility. In all
the solutions, the kind of patterns that can be formed by the robots depends on
the level of agreement the robots have on their local coordinate systems.

Several studies also investigated on the formation of specific patterns, such
as lines and circles. In the Line Formation problem, the robots are required
to place themselves on a line, whose position is not prescribed in advance (if
n = 2, then a line is always formed). In [15], this problem has been tackled by
studying an apparently totally different problem: the spreading. In this problem,
the robots, that at the beginning are arbitrarily placed on the plane, are required
to evenly spread within the perimeter of a given region. In their work, the authors
focus on the one-dimensional case: in this case, the robots have to form a line,
and place themselves uniformly on it. A very interesting aspect of the study, is
that [15] addresses the issue of local algorithms: each robots decides where to
move based on the positions of its close neighbors. In particular, in the case of
the line, the protocol is quite simple: each robot r observes its left and right
neighbor. If r does not see any robot, it simply does not move; otherwise, it
moves to the median point between its two neighbors. The authors prove its
convergence in Ssync. Furthermore, if each robot knows the exact number of
robots at each of its sides, it is possible to achieve the spreading in one dimension
in a finite number of cycles.

In the Circle Formation problem, the robots want to place themselves
on the plane to form a non degenerated circle of a given diameter.3 One of
the first discussion on circle formation by a group of mobile entities was by
Debest [20], who introduced it as an illustration of self-stabilizing distributed
problems, but did not provide an algorithm. This problem was first studied
by Sugihara and Suzuki [56]. They presented an heuristic distributed protocol,

3 If the diameter is not fixed a priori, the problem becomes trivial, even in Async:
each robot computes the smallest circle enclosing all the robots’ positions and moves
on the circumference of such a circle.
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successively improved by Tanaka [58], that allowed the robots to form an approx-
imation of a circle (more similar to a Reuleaux triangle) having a given diameter
D. A variant of this problem is the Uniform Circle Formation problem: the
n robots on the plane must be arranged at regular intervals on the boundary of
a circle. This kind of formation can be usefully deployed in surveillance tasks:
the robots are placed on the border of the area (or around the target) to surveil
(e.g., see [34]). Both problems have since been extensively investigated in Ssync
and Async [8,21–24,39,52,58].

Gathering. In the Gathering problem, the robots, initially placed in arbitrary
and distinct positions, are required to gather in a single location within finite
time. This problem is also called point formation, homing, or rendezvous. A
problem closely related to Gathering is that of Convergence, where the
robots need to be arbitrarily close to a common location, without the requirement
of ever reaching it.

In spite of their apparent simplicity, these problems have been investigated
extensively both in Ssync and in Async under a variety of assumptions on
the robots’ capabilities: in fact, several factors render this problem difficult to
solve. First of all, some basic results about Gathering: It is possible in Fsync,
with an algorithm that exploits the properties of the center of gravity of the
team [13]; it is impossible without additional assumptions in Ssync, hence in
Async [51,57], and trivially achievable even in Async with totally agreement
on the coordinate systems (gather at the position occupied by the rightmost and
topmost robot).

Rendezvous. When the system contains only two robots, the Gathering prob-
lem is very special, and it is often called Rendezvous. We have just stated that,
with a common coordinate system, there is an easy solution to Gathering, and
hence to Rendezvous even in Async. In absence of a common coordinate sys-
tem the problem is not solvable even in Ssync. Hence, with n = 2, the focus is
on gathering in Fsync, and on the Convergence problem.4

The Rendezvous has been extensively studied by assuming different level
of agreement on the compass systems of the robots. In particular, the problem is
solvable in Async when the robots agree on chirality, but the axis are however
tilted up to a φ < π

2 degrees [37], and the tilt is fixed. If the robots still agree
on chirality, but the tilt of their compasses might be variable, rendezvous can
be achieved in Ssync with fully variable compasses if and only if φ < π

4 , and in
Async with semi-variable compasses5 if and only if φ < π

6 [37].

4 Notice that Rendezvous has a trivial solution in Fsync: a robot moves to the
halfway point to the other robot. In both Ssync [57] and Async [13], this move-to-
half strategy guarantees only convergence.

5 The tilted compasses are said to be fully variable if the actual tilt of each compass
may vary at any time (but always with no more than φ from the global coordinate
system); they are semi-variable if the tilt of each compass may vary (but no more
than φ) between successive cycles, but it does not change during a cycle.
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Gathering and Convergence. The Gathering problem has been extensively
investigated both experimentally and theoretically in the unlimited visibility set-
ting, that is assuming that the entities are capable to sense the entire space. As
stated above, when no additional assumptions are made in the model, there is no
deterministic solution to the Gathering problem in Ssync. However, Conver-
gence is possible even in Async: The robots get closer to a gathering point, but
never reach it in finite time. One quite simple and effective convergence solution
in Async exploits the Center of Gravity of the robots [13]. With the strongest
assumption of unlimited mobility (all robots always reach their destinations when
performing a Move), convergence time in Async can be improved [17].

Thus, the Gathering problem has a solution only adding additional assump-
tions. The most common assumption is that of multiplicity detection: a robot is
able to detect whether a point on the plane is occupied by more than one robot.
With this assumption, there exists solutions in both Ssync [57] and Async [12].
Another capability that has also been considered is a stronger form of multiplic-
ity detection, where robots can detect the exact number of robots located at a
given position [25]. Adding this capability, it is impossible to solve the problem
for all possible initial configurations containing an even number of robots; how-
ever the robots can gather from an arbitrary configuration with n robots, when
n is odd. In this case, initial configurations include also configurations contain-
ing more than one robot on the same point. Note that, since this algorithm is
correct starting from all possible configurations provided n is odd (even the ones
containing more than one robot), it is truly self-stabilizing.

In contrast, the multiplicity detection is not used in the solution described
in [11]; however, it is assumed that the robots can rely on an unlimited amount
of memory: the robots are said to be non-oblivious. In other words, the robots
have the capability to store the results of all computations since the beginning,
and freely access to these data and use them for future computations.

Furthermore, in Ssync agreement on chirality and unlimited mobility suffice
for making the problem solvable, even with variable tilted compasses, if the tilt
of the local compasses is φ < π

4 [36];
A different setting that has been studied is when robots have limited visibility:

in this scenario, an obvious necessary condition to solve the problem, is that at
the beginning of the computation the visibility graph (having the robots as nodes
and an edge (ri, rj) if ri and rj are within viewing distance) is connected [2,30].
In [2] the proposed protocol solves the Convergence problem. In [30], the
authors present an algorithm that let the robots to gather in a finite number of
cycles. However, in this case the robots can rely on the presence of a common
coordinate system: that is, they share a compass.

With limited visibility, the Convergence problem has been studied in
Fsync when the robots operate in a non-convex region (of which they have
no map) [33]; in Async with a limited form of asynchrony [42], where the time
spent by a robot in the Look, and Compute states is bounded by a globally pre-
defined amount, while the time spent in the Move state is bounded by a locally
predefined quantity (not necessarily the same for each robot); and in Async



14 G. Prencipe

under a 1-fair scheduler [40]: Between two successive activations of each robot
r, all other robots have been activated at most once (as a consequence, from the
moment r observes the current situation to the moment it finishes its movement,
no other robot performs more than one Look).

The Gathering problem has been also investigated in the context of robots
failures. In this context, the goal is for the non-faulty robots to gather regardless
of the action taken by the faulty ones. Two types of robot faults were investigated
by Peleg et al. [1]: crash failure, in which the robot stops any activity and will
no longer execute any computational cycle; and the byzantine failure, in which
the robot acts arbitrarily and possibly maliciously.

In [14] it is analyzed the case of systems where the robots have inaccuracies in
sensing the positions of other robots, in computing the next destination point,
and in moving towards the computed destination. The authors provide a set
of limitations on the amount of inaccuracies allowing convergence; hence, they
present an algorithm for convergence under bounded measurement, movement
and calculation errors. In [43], the case of radial errors has also been considered.

Finally, beside the inaccuracies in the compasses that have already been cited
above (tilted compasses), with eventually consistent compasses (i.e., transient
errors on the compasses), the Gathering problem has also been studied in
Ssync, with robots that agree on chirality: in this case, it has been proven that
the robots can gather in finite time [53].

Near-Gathering A problem that is very close to the Convergence problem is
Near-Gathering, where a set of robots with limited visibility, at the begin-
ning arbitrarily placed in the plane on distinct positions, are required to get
close enough to each other, without any collisions. In particular, in finite time,
the robots are required to move within distance ε from each other for some
predefined ε. This problem is particularly useful to overcome the limitations
introduced by having robots with limited sensing capabilities: in fact, once they
are close enough, all robots can see each other, hence they can operate as they
had unlimited visibility power. This problem has been recently solved in Async
for robots with consistent compass [48].

4 Dynamic Problems: Flocking and Capture

In this set of problems, the robots dynamically move, and there is really no
ending in the robots’ tasks. Let us consider the Flocking problem first: There
are mainly two versions of this problem. In the first one, there are two kinds of
robots in the environment: the leader L, and the followers (this scenario is also
called guided flocking). The leader acts independently from the others, and it
can be assumed that it is driven by an human pilot. The followers are required
to follow the leader wherever it goes (following), while keeping a formation they
are given in input (flocking). In this context, a formation is simply a pattern
described as a set of points in the plane, and all the robots have the same
formation in input.
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In [35], an algorithm solving this problem in Async has been tested by using
computer simulation; the algorithm assumes no agreement. All the experiments
demonstrated that the algorithm is well behaved, and in all cases the followers
were able to assume the desired formation and to maintain it while following the
leader along its route. Moreover, the obliviousness of the algorithm contributes
to this result, since the followers do not base their computation on past leader’s
positions.

In the second version of the problem, also known as homogeneous flocking,
there is no exogenous source (i.e., no guide) and every robot knows the trajectory:
The path along which the flock has to move is known in advance to every robot
(e.g., [6,54,55]).

Finally, if the leader is considered an “enemy” or “intruder”, and the pattern
surrounds it, the problem is known as Capture (or intruder). A protocol that
assumes no agreement and solves the problem in Async has been presented
in [34]. The proposed algorithm exhibits remarkable robustness, and numeric
simulations indicate that the intruder is efficiently captured in a relatively short
time and kept surrounded after that, as desired. Furthermore, the solution is self-
stabilizing. In particular, any external intervention (e.g., if one or more of the
cops are stopped, slowed down, knocked out, or simply faulty) does not prevent
the completion of the task.

5 New Directions

Computing with Colors. A new direction of investigation that just started
being explored is the introduction in the model of some form of direct commu-
nication. The first attempt in this direction is in [19], where the robots make
visible to their fellows O(1) persistent bits [19]: Each robot is equipped with
a light bulb that can display a constant numbers of different colors; the colors
are visible to all other robots, and are persistent, that is, the light bulbs are not
automatically reset at the end of each cycle. Thus, they can be used to remember
states and to communicate. Apart from these lights, the robots are oblivious in
all other respects.

Studies in this direction just started, and here is a brief summary of the
major results obtained so far.

Colored Async versus Ssync. The presence of lights with visible colors is
undoubtably a very powerful computational tool even if just constant in num-
ber. Indeed, it can overcome the limitations of Async making the robots strictly
more powerful than traditional Ssync robots, as we see in the following. In fact,
it has been shown that asynchronous robots with lights are at least as powerful
as semi-synchronous ones: the proof consists of a protocol that allows to execute
any semi-synchronous algorithm in an asynchronous setting, each robot using a
light with a constant number of colours [19].

There are problems that robots cannot solve without visible bits, even if they
are semi-synchronous, but can be solved with O(1) visible bits even if the robots
are asynchronous [19]. One such a problem is rendezvous, i.e., the gathering of
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two robots; from previous Sect. 3, we know that this problem is not solvable in
Ssync. However, this problem can be solved if the robots have O(1) colors.

Hence, these two results lead to conclude that asynchronous robots endowed
with O(1) visible lights are strictly more powerful than semi-synchronous robots
without any light [19].

Colored Async versus Fsync. The relationship between Fsync and Colored
Async is less understood. What is known is that asynchronous robots, if empow-
ered with both a constant number of visible lights and the ability to remember
a single snapshot from the past, become at least as powerful as traditional fully
synchronous robots [19].

Interestingly, there are problems that can be solved in Async with three
colours and one past snapshot, but are not solvable in Fsync without additional
information. This is the case, for example, of the Blinking problem, which
requires n > 2 robots to perform subtasks T1 and T2 repeatedly in alternation.
In T1, the robots must form a circle, i.e. each robot lies on a distinct point on
the same circle C of radius Rad > 0; while in T2, the robots must gather at a
single point.

The presence of a problem not solvable in Fsync but solvable in Async with
lights and one past snapshot, leads to the following conclusion: Asynchronous
robots, endowed with O(1) visible lights and able to remember a single snapshot,
are strictly more powerful than fully-synchronous oblivious robots without any
lights [19].

This is to be contrasted with the fact that, without lights, Async robots are
not even as powerful as Ssync, even if they remember an unlimited number of
previous snapshots [50].

Solid Robots. In the standard model, the robots are viewed as points, i.e., they
are dimensionless. An interesting variant of the model is to consider entities that
occupy a physical space of some size; that is, the entities have a solid dimension.
These robots, called solid (or fat), are assumed to have a common unit distance
and are viewed as circular disks of a given diameter. The disks of two robots can
touch but cannot overlap. Moreover, it is assumed that, if during its movement
a robot collide with another, its movement stops (fail-stop collision).

The robots’ visibility might be affected by their solid dimension. If so, two
robots r1 and r2 can see each other if there exist points x and y in the visibility
radius of r1 and r2 respectively, such that the segment [xy] does not contain
any point of any other robot. Note that if a robot r1 can see robot r2, it can
see some non-zero arc of its bounding circle and thus it can always compute its
centre. Otherwise, if no visibility obstruction occurs, the robots are said to be
transparent.

Very few problems have been investigated for solid robots. One of these is the
Gathering. Obviously, in the case of solid robots, the definition of gathering
needs to be modified.

The robots are said to form a connected configuration in the plane if between
any two points of any two robots there exists a polygonal line each of whose
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points belongs to some robot. Gathering is accomplished if the robots form
some connected configuration and they are all visible to each other (and thus
are aware that a connected configuration is achieved).

Adding a physical dimension to the robots significantly complicates the task,
mainly because of the fact that their “body” can obstruct visibility. An example
that shows one of the difficulty is given by a team of 4 robots whose centres are
situated on two intersecting non-perpendicular lines, one robot in each of the
four half- lines. The obvious algorithm that would work if the robots were points
would be to have them move towards the intersection of the two lines, which
is invariant under straight moves. However, it is easy to see that an adversary
might have two robots meet in their move toward the centre, thus obstructing
the view to the other two, without forming a connected configuration. In general,
the lack of full visibility due to obstruction, prevent the robots from being able
to compute easily an invariant point.

For the gathering of solid robots, currently there are only solutions for very
small teams; in fact, no gathering algorithm is known for n > 4 non-transparent
solid robots [18]. Furthermore, these algorithms are not collision-free and they
rely on the fail-stop collision assumption to work.

In [9] it is presented an algorithm that works for n ≥ 5 robots that are
solid but transparent. The robots must be initially placed in an asymmetry
configuration (so that a leader can be elected) and the desired gathering pattern
is a circular layered structure of robots with the elected leader in the center.

In [16] gathering by solid robots is considered in a different setting. Each
robot is given in input the position of the gathering point in its own coordinate
system. All robots have the same dimension dim, and they are said to be gathered
when they form a sphere with minimum radius around the predefined gathering
point. Robots have limited visibility, large enough to avoid collisions (thus, a
visibility radius V ≥ 2 · dim is sufficient), and they operate in Fsync.

Solid robots have been also studied in the context of circle formation, in [56,
58] for robots with unlimited visibility, and in [45] for mobile robots whose vision
is not only limited but also directional.

Simulation Environments. A promising area of research on these topics is
represented by the development of computer simulation environments dedicated
to autonomous mobile robots. Several studies can be found in the literature right
on this track [2,34,35,56,58]. All these simulation environments are specifically
designed and developed for a particular problem: for instance, the one in [58] for
the circle formation; the one in [35] for the flocking problem; the one in [34] for
the intruder problem.

Recently, there has been a first attempt in designing a modular simulation
environment to test and execute generic protocols for the autonomous mobile
robots addressed in this paper: SYCAMORE [59]. In this environment, the
protocol of a robot is defined as a plugin given in input to the simulation engine,
and it can be easily set to simulate both 2D an 3D scenarios.
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6 Conclusions

In this paper, we surveyed a number of recent results on the interplay between
robots capabilities and solvability of problems. The goal of these studies is to gain
a better understanding of the power of distributed control from an algorithmic
point of view. The area is quite young, thus still offers many research quests.
First, one outstanding theoretical open problem: no solution is still known for the
Gathering problem where the robots have limited visibility and no agreement;
actually, it is not even clear whether the problem is solvable (a similar problem
stands for the Near-Gathering).

Then, operating capabilities of our robots are quite limited: New research
directions can be taken by expanding the capabilities of the robots, in the
attempt of better modeling the real robots. It would be interesting to look at
models where the robots have more complex capabilities, e.g.: the robots have
some kind of direct communication capabilities (besides the use of lights); the
robots are distinct and externally identifiable; etc. Little is known about the
solvability of other problems like spreading and exploration (used to build maps
of unknown terrains), about the physical aspects of the models, such as those
related to energy saving issues, and about the relationships between geometric
problems and classical distributed computations. In the area of reliability and
fault-tolerance, lightly faulty snapshots, a limited and directional (i.e., not 360◦)
range of visibility, obstacles that limit the visibility and that moving robots must
avoid or push aside, as well as robots that appear and disappear from the scene
clearly are all topics that have not yet been studied.

We believe that investigations in these areas will provide useful insights on
the ability of weak robots to solve complex tasks.

Acknowledgements. The author would like to thank Paola Flocchini and Nicola
Santoro for their help and suggestions in the preparation of this paper.
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55. Souissi, S., Yang, Y., Défago, X., Takizawa, M.: Fault-tolerant flocking for a group
of autonomous mobile robots. J. Syst. Softw. 84, 29–36 (2011)

56. Sugihara, K., Suzuki, I.: Distributed algorithms for formation of geometric patterns
with many mobile robots. J. Robot. Syst. 13, 127–139 (1996)

57. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: formation of
geometric patterns. Siam J. Comput. 28(4), 1347–1363 (1999)

58. Tanaka, O.: Forming a circle by distributed anonymous mobile robots. Technical
report, Department of Electrical Engineering, Hiroshima University, Hiroshima,
Japan (1992)

59. Volpi, V.: Sycamore: a 2D–3D simulation environment for autonomous mobile
robots algorithms. https://code.google.com/p/sycamore/

60. Wang, P.K.C.: Navigation strategies for multiple autonomous mobile robots mov-
ing in formation. J. Robot. Syst. 8(2), 177–195 (1991)

https://code.google.com/p/sycamore/


Token Dissemination
in Geometric Dynamic Networks

Sebastian Abshoff(B), Markus Benter, Andreas Cord-Landwehr,
Manuel Malatyali, and Friedhelm Meyer auf der Heide

Heinz Nixdorf Institute & Computer Science Department, University of Paderborn,
Fürstenallee 11, 33102 Paderborn, Germany

{abshoff,benter,phoenixx,malatya,fmadh}@hni.upb.de

Abstract. We consider the k-token dissemination problem, where k ini-
tially arbitrarily distributed tokens have to be disseminated to all nodes
in a dynamic network (as introduced by Kuhn et al. STOC 2010). In con-
trast to general dynamic networks, our dynamic networks are unit disk
graphs, i.e., nodes are embedded into the Euclidean plane and two nodes
are connected if and only if their distance is at most R. Our worst-case
adversary is allowed to move the nodes on the plane, but the maximum
velocity vmax of each node is limited and the graph must be connected
in each round. For this model, we provide almost tight lower and upper
bounds for k-token dissemination if nodes are restricted to send only
one token per round. It turns out that the maximum velocity vmax is a
meaningful parameter to characterize dynamics in our model.

Keywords: Geometric dynamic networks · Token dissemination ·
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1 Introduction

Dynamic networks appear in many scenarios like peer-to-peer networks, mobile
wireless ad-hoc networks or swarms of mobile robots. The dynamics in such
models is diverse and different. Kuhn et al. [10] have introduced a very general
model with the aim of understanding limitations and possibilities when coping
with dynamics in networks, independent of specific application. In this paper, we
look at special dynamics motivated by agents that move in the Euclidean plane
and that are able to communicate with nearby agents only. More particularly,
we look at dynamic unit disk graphs as they are often used to model ad-hoc
networks or robotic networks. We are mainly interested in exploring the impact
of a velocity limit of the agents on the time required to perform fundamental
tasks such as token dissemination.
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The nodes of our geometric dynamic network are embedded into the Euclid-
ean plane and two nodes are connected if and only if their distance is at most a
constant R, which models the limited range of a wireless communication device.
We consider a worst-case dynamic that is able to move the nodes within this
plane. This worst-case dynamic is restricted by a maximal velocity parameter
vmax and it must preserve connectivity of the network. In our model, we can
prove lower and upper bounds for the k-token dissemination problem, which has
also been studied by Kuhn et al. in a general model. In the k-token dissemina-
tion problem, k initially arbitrarily distributed tokens have to be disseminated
by the nodes of the dynamic network such that each node receives all tokens
and also decides that it has received all k tokens since we assume k is not known
by the nodes beforehand. Note that solving the all-to-all token dissemination
problem, where each node starts with exactly one token, implicitly solves the
counting problem if the nodes’ unique IDs are considered as tokens. While solv-
ing the token dissemination problem, a distributed algorithm must cope with
the dynamic of the network, i.e., the changes of edges as induced by a worst-case
dynamic that moves the nodes.

In our model, we restrain the dynamic network model by Kuhn et al. by
introducing a geometry that gives a natural restriction of the power of a worst-
case dynamic by geometric means. From this, we expect new insights into the
complexity of distributed computational problems by using different techniques
that exploit the geometry of the dynamic network. As a first step, both our lower
and upper bounds for the k-token dissemination problem contain the maximal
velocity parameter vmax, i.e., they are bound by the characteristic value of the
network dynamic. More precisely, we define a dynamic unit disk graph with
maximal node velocity vmax and communication radius R and require connec-
tivity w.r.t. a unit disk graph with radius 1. Our algorithm terminates after
O(n(n + k) · min{vmax, R} · R−2) rounds if R > 1. Moreover, we present a lower
bound of α(n · k · min{vmax, R} · R−3) for randomized knowledge-based token-
forwarding algorithms. Note that for k = α(n), the upper bound simplifies to
O(n · k ·min{vmax, R} ·R−2) and the upper and the lower bound become almost
tight.

2 The Geometric Dynamic Network Model

In this paper, we consider the following dynamic network model adapted from
Kuhn et al. [10,12,17]: we assume a dynamic graph with a fixed set V of n nodes,
and a discrete, synchronous time model. Each node v is identified by a unique
ID, assigned by some injective function id : V ≥ {1, . . . ,poly(n)}. In round r,
the dynamic graph has some edge set Er, forming the graph Gr = (V,Er). We
assume local broadcast communication, i.e., a message sent by node u in round
r is delivered to u’s neighbors in round r+1. Therefore, when sending a message
in round r, a node usually does know to which neighbors the message will be
delivered. In this paper, the message each node can send via local broadcast
communication is limited to one token per round. Kuhn et al. introduced the
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concept of T -interval connectivity as a reasonable restriction of the dynamic: For
each time interval I of length T ← 1, there must be some stable and connected
subgraph in all graphs Gr with r ∈ I. If T = 1, this just means the graph must
be connected in each round r.

Our modifications address a dynamic model motivated by geometric mobility
as it appears, e.g., in swarm robotics. Here, we assume that each node v in each
round r has a position pr(v) ∈ R

2 (however, our results also hold for R
3).

The distance between two nodes u and v in round r is denoted by dr(u, v)
= |pr(u) − pr(v)|. Then, for each round r, we define Gr as the unit disk graph
with communication radius R. We omit the round parameter r when the round
is clear from context. In addition, 1 ≤ R ≤ n holds throughout the paper for
technical reasons. Furthermore, we assume that the maximum velocity of each
node is bounded by a parameter vmax > 0, i.e., the position of a node changes at
most by a distance vmax from round to round. Such a model was also considered
by Bienkowski et al. [1], and it is often (implicitly or explicitly) assumed for
designing local strategies for robotic formation problems (for a survey see [11]).

Our results require a somewhat stronger notion of connectivity than in the
general model by Kuhn et al.: We demand that the graph in round r is connected
even if we restrict the communication radius to 1 instead of R. To distinguish
these graphs, we talk about the communication graph Gr if radius R is used, and
about the connectivity graph G◦

r if radius 1 is used. Thus, we require that the
connectivity graph G◦

r is connected in each round r. This geometric model gives
rise to another natural restriction of dynamics. A graph Gr is called C-connected
if at least C edges have to be removed to transform Gr into a disconnected graph.

The focus of our paper lies on the k-token dissemination problem. In this
problem, each node u in the network receives as input I(u) a possibly empty
subset of tokens such that

∣
∣
⋃

v∈V I(v)
∣
∣ = k. Then, the nodes have to dissemi-

nate these tokens such that each node eventually knows all k tokens and then
explicitly terminates (i.e., it outputs the result and does not send/receive any
further messages). Here, k is not known by the nodes beforehand. Additionally,
we examine the implications of our results for the problem of counting, which is
to determine the exact number of nodes in the network.

We show a result for a restricted class of algorithms that is called knowledge-
based token-forwarding algorithms (cf. Kuhn et al.): let Au(r) denote the set of
messages node u has received by the beginning of round r including its input
I(u). A token-forwarding algorithm requires each node to send only one pure
token from Au(r) (without modification and without annotation) or the empty
message, and it must not terminate before it has received all k tokens. A token-
forwarding algorithm is called knowledge-based if the distribution that deter-
mines which token is sent by u in round r is a function only of its unique
ID id(u), Au(0), . . . , Au(r − 1) and the sequence of u’s coin tosses up to round r
(including r). Many natural strategies can be found in this class of knowledge-
based token-forwarding algorithms, e.g., strategies like sending a known token
sampled uniformly at random.
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3 Related Work

Dynamic networks, where the set of edges in the network may change arbitrarily
and in an adversarial way from round to round as long as the graph is strongly
connected in each round, were introduced by Kuhn et al. [10,12,17]. In each
round, each node may send a message of size O(log n) bits that is delivered
to all neighboring nodes in the following round. Computation in their model
requires termination. On the one hand, for the k-token dissemination problem
in T -interval connected dynamic networks, Kuhn et al. present a determinis-
tic O(n(n + k)/T ) token-forwarding algorithm. This algorithm can be used to
obtain an O(n2/T ) algorithm for the counting problem. On the other hand,
they give a α(nk/T ) lower bound for the restricted class of knowledge-based
token-forwarding algorithms and they provide an α(n log k) lower bound for
deterministic centralized token-forwarding algorithms.

Dutta et al. [5] improved the latter lower bound by Kuhn et al. to
α(nk/ log n + n) for any randomized (even centralized) token-forwarding algo-
rithm and showed for a weakly-adaptive adversary that k-token dissemination
can be done in O((n + k) log n log k) w.h.p. Furthermore, they provide two
polynomial time, randomized and centralized offline algorithms, one returns an
O(n,min{k,

∀
k log n}) schedule w.h.p. and another one an O((n + k) log2 n)

schedule w.h.p. if nodes can send a token along each edge per round. Using simi-
lar techniques, Haeupler and Kuhn [9] showed lower bounds if nodes are allowed
to forward b ≤ k tokens or if they are only required to obtain a ε-fraction in
T -interval connected dynamic networks and dynamic networks that are c-vertex
connected in every round.

O’Dell and Wattenhofer [18] analyzed information dissemination problems
in slightly different but worst-case adversarial models. Das Sarma et al. [19]
developed randomized token-forwarding algorithms based on random walks on
dynamic networks. Here, an oblivious adversary that is not aware of the random
choices of the algorithm modifies the network. Haeupler and Karger go beyond
the class of token-forwarding algorithms and send linear combinations of tokens.
With this technique, they are able to solve the k-token dissemination problem
in O(nk/ log n) rounds w.h.p. [8]. Brandes and Meyer auf der Heide [4] develop
algorithms for counting if in addition every edge in the network fails with some
probability. Michail et al. [16] studied computation in possibly disconnected
dynamic networks and introduced temporal connectivity conditions. The same
authors [15] looked into naming and counting in the absence of unique IDs in
dynamic networks. Here, naming refers to the problem of generating unique IDs.
Interestingly, they introduce a different communication model where the nodes
in the network can send different, individual messages to their neighbors but
without any information about their states.

The unit disk model has been extensively studied in the area of routing in
wireless ad-hoc and sensor networks, in particular, in geographic routing algo-
rithms. Geographic routing takes advantage of the availability of position infor-
mation to decide which node becomes the next hop. Those algorithms assume
that a node can get its own position using a location service such as GPS.
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A worst-case optimal and average-case efficient geographic routing algorithm
has been proposed by Kuhn et al. [13,14]. However, geographic routing focuses
on single source routing while a well-designed token dissemination algorithm
has to take congestion into account. For a broad overview about further routing
algorithms in this area, we refer to Frey et al. [7].

Gossiping algorithms are a class of algorithms for distributed computation in
arbitrary graphs following a simple principle:the nodes are initialized with some
values, they continuously exchange these values and calculate new values based
on the ones they received together with a problem specific function.

Boyd et al. [2,3] analyzed the mixing time of the averaging problem. Later on,
Dimakis et al. [6] showed that the mixing time can be significantly improved in
grid graphs and random geometric graphs, two communication models for real-
istic sensor networks. In a random geometric graph, the n sensor locations are
chosen uniformly and independently in the unit square, and each pair of nodes
is connected if their Euclidean distance is smaller than some constant trans-
mission radius R. They proposed an algorithm that computes true average to
accuracy 1/nα using O(n1.5

∀
log n) radio transmissions. This reduces the energy

consumption by a factor of
√

n/ log n compared to standard gossip algorithms.

4 Lower Bound on Token Dissemination in Geometric
Dynamic Networks

In this chapter, we show that any knowledge-based token-forwarding algorithm
needs α(n · k · min{vmax, R} · R−3) rounds for solving the k-token dissemination
problem in geometric dynamic networks. To do so, we follow a similar analysis
like the one by Kuhn et al. for an α(nk) lower bound for dynamic networks with
arbitrarily changing edges [10].

For the sake of a simple presentation, we first introduce our construction for
the special case R = 1, i.e., the communication graph is equal to the connectivity
graph. Later, this result will be generalized to the case R ← 1.

Theorem 1. If R = 1, then any knowledge-based token-forwarding algorithm
for k-token dissemination requires α(n · k · min{vmax, 1}) rounds to succeed with
probability > 1

2 .

Proof. We create the setting as follows: Initially, some node v0 knows all k tokens
and all other nodes do not know any token. As the token-forwarding algorithm is
knowledge-based, the probability distribution of the tokens sent by v0 does not
depend on the dynamic graph. Let r∗ :=

⌊
(n−4)k

2L

⌋

− 1 for L :=
⌈

1+ε
2vmax

⌉

, which
is used as the length of a row of nodes in our construction. λ is a suitably small
chosen value. Then, by linearity of expectation and Markov’s inequality, there
is some infrequently sent token t that is sent < n−4

L times by v0 until round r∗

with probability of at least 1
2 . For this, we define a dynamic such that v0 cannot

terminate by round r∗ since some node must be unaware of t at this time.
All nodes are positioned as shown in Fig. 1: Except for the four nodes v0,

vn−1, vn−2, and vn−3, all other nodes are assigned to horizontal rows where each
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Fig. 1. Construction for R = 1 showing the positions of the nodes for a fixed j.

row consists of L nodes that are positioned on four levels. On each level, the
nodes have a distance of exactly 1, which maximizes the distance between the
nodes such that the row is still connected. The distance between two levels is at
least 1 + λ.

Node v0 is connected to v(j−1)L+1, vjL+1, and vn−1, and positioned such
that the distance between v0 and vjL+1 is exactly 1. Analogously, node vn−1

is connected to v(j−1)L+1, vkL+1, and v0, and positioned such that the distance
between vn and vkL+1 is exactly 1. We will see later that these nodes are essential
for preserving connectivity during the movement of the nodes.

Similarly, node vn−2 is connected to vjL+L, viL+L, and vn−3, and positioned
such that the distance between vn−2 and viL+L is exactly 1. In contrast to that,
node vn−3 is only connected to vjL+L and vn−2 but the distance between vn−3

and vjL is slightly larger than 1. As we will see later, this is important to ensure
that the infrequently sent token t cannot be learned by the nodes on level 0.
Initially, one row j = 0 is at level 1 and all other rows i > j are stacked at
level 0. Level 2 and level 3 are not occupied by rows at this time.

When v0 sends the token t, three rows start moving down. In particular, one
row j + 1 at level 0, row j at level 1, and row j − 1 at level 2 start moving down
with maximal relative velocity 2vmax

1 for the next L rounds until they reach
level 1, 2, and 3, respectively. Once a row reaches level 3, it does not move any
further and all rows k < j − 1 stack again. As soon as rows j + 1, j, j − 1 reach
the next level, j can be incremented and Fig. 1 shows the current situation. If v0
again sends token t, the described procedure repeats and three rows move down.
1 To upper bound the worst-case traveling distance for a fixed node pair u and v, we

can w.l.o.g. assume that u is static while v moves with velocity of at most 2vmax.



28 S. Abshoff et al.

The crucial property of our construction is that the graph is always connected
while the infrequently sent token t never reaches the rows stacked on level 0. Let
us first argue why the graph is always connected. Initially, level 0 and level 1
are occupied and the graph is connected. During movement, the location of
node vn−2 ensures that the row moving between level 0 and level 1 is connected.
Analogously, node vn−1 connects the row moving in between of level 2 and level 3.
The placement of node v0 and vn−3 ensures that the left side of the graph is
connected to the right side of the graph via the row in between of level 1 and
level 2.

Let us now consider the second property: level 0 never gets the infrequently
sent token t. According to the definition of the dynamic graph, the only possibil-
ity for level 0 to get t is via the row moving between level 1 and level 2 via node
vn−3 or vn−2. Since t is sent less than

⌊
n−4

L

⌋

times, the token needs more than
L rounds to cross one row. Thus, according to the definition of the movement,
the nodes vjL+L and vn−3 become disconnected at least one round before t can
be sent from vjL+L to vn−3. This is when the row arrives at level 2.

Since there are
⌊

n−4
L

⌋

rows, the nodes on at least one row are unaware of the
token. Hence, r∗ = α(n · k · min{vmax, 1}) rounds are required. ∪�

Next, we extend this construction for an arbitrary communication radius
R ← 1:

Theorem 2. If R ← 1, then any knowledge-based token-forwarding algorithm
for k-token dissemination requires α(n ·k ·min{vmax, R}·R−3) rounds to succeed
with probability > 1

2 .

Proof. As before, we want to find a token that is sent infrequently over some
cut. Yet, for R ← 2, the communication graph is ∼R∗-connected in each round,
i.e., there is no single cut vertex as in the construction before for R = 1. There-
fore, multiple nodes v0, vn−1, . . . , vn−≥R�+3 initially receive all k tokens such that
the probability distribution of the tokens sent by them does not depend on the
dynamic graph. Define r∗ :=

⌊
(n−cR)k
2L≥R�

⌋

− 1 for L :=
⌈
3(R+ε)
2vmax

⌉

· (R + 1) and

some constant c ∈ N
+ that is specified later. Then, by linearity of expectation

and Markov’s inequality, there is some infrequently sent token t which is sent
< (n−cR)k

L≥R� times by all nodes v0, vn−1, . . . , vn−≥R�+3 until round r∗ with probabil-
ity of at least 1

2 . We present a dynamic such that all nodes v0, . . . , v≥R�−1 cannot
terminate by round r∗ since there still is a node that is unaware of t at this time.

All nodes are positioned as shown in Fig. 2: similar to the construction in
Theorem 1, except for c := 2 (⊥3(R + λ)� − 2) nodes v0, vn−1, . . . , vn−2≥3(R+δ)�+3,
all other nodes are assigned to horizontal rows where each row consists of L nodes
that are positioned on six levels. The distance between vn−2�3(R+δ)	+3 and the
position below vjL is slightly greater than one. Initially, one row j = 0 is at
level 1 and all other rows i > j are stacked at level 0. Levels 2, . . . , 5 are not
occupied by rows at this time.

When one of the nodes v0, vn−1, . . . , vn−≥R�+3 sends the token t, one row at
level 0 and all rows on levels 1, . . . , 4 start moving down with maximal relative
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Fig. 2. Construction for R ≥ 1 showing the positions of the nodes for a fixed j.

velocity 2vmax for the next L rounds until they reach the next level. The row
from level 0 stops at level 1, but all other rows continue moving until they reach
level 5, where they do not move any further and stack again. As soon as row
j +1 reaches level 0, j can be incremented and Fig. 2 shows the current situation
until t is sent again. If any of the nodes v0, vn−1, . . . , vn−≥R�+3 sends the token
t again, the described procedure repeats and further rows move down.

Observe that the graph is always connected and that token t cannot reach
vn−�3(R+δ)	+3 or any node above since it is sent less than

⌊
(n−cR)k

L≥R�
⌋

times
and the token needs more than L rounds to cross one row. Since there are
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⌊
n−cR

L

⌋

rows, the nodes on at least one row are unaware of the token. Therefore,
r∗ = α(n · k · min{vmax, R} · R−3) rounds are required. ∪�
Remark 1. Our results implies that the lower bound by Kuhn et al. [10] already
holds for a much more restricted model of dynamics: If we choose R = 1 and vmax

constant, e.g. vmax = 1, then we achieve the α(nk) lower bound for knowledge-
based token-forwarding algorithms.

5 Upper Bound on Token Dissemination in Geometric
Dynamic Networks

In this chapter, we present a k-token dissemination algorithm for geometric
dynamic networks with bounded maximum velocity vmax. The algorithm is
basically an extension of the algorithm by Kuhn et al. which allows to solve
k-token dissemination under arbitrary edge dynamics in Θ(n(n + k)) rounds.
Under the restriction of R > 1, it is possible to speed up the algorithm up to
Θ(n(n+k) ·min{vmax, R}·R−1). Moreover, if R ← 2, then the Θ(R)-connectivity
of the communication graph can be exploited to get another speed-up of Θ(R),
i.e., the algorithm needs O(n(n + k) · min{vmax, R} · R−2) rounds in total.

Let us first sketch the dissemination algorithm by Kuhn et al. for 2T -interval
connected graphs. By definition of 2T -interval connectivity, there is a spanning
connected subgraph for at least 2T rounds. This subgraph is used to establish
a pipelining effect such that at least the T smallest tokens are disseminated to
all nodes in Θ(n) rounds. The algorithm proceeds in ∼ n

T ∗ phases, where each
phase consists of 2T rounds.2 In each round of each phase, each node sends the
smallest token it has not yet sent in this phase. To disseminate k tokens, this
procedure can be repeated ⊥ k

T � times. We restate the following results are either
provided in the paper by Kuhn et al. or that directly follow from their results.

Theorem 3 ([10,17]). For T ← 1, in a T -interval connected dynamic net-
work with arbitrarily changing edges, the algorithms by Kuhn et al. for k-token
dissemination and counting can be sped up by a factor of T , i.e., they need
Θ(n(n + k) · T−1) rounds for k-token dissemination and Θ(n2 · T−1) rounds for
counting.

Theorem 4 ([10,17]). For T,C ← 1, in a T -interval connected dynamic net-
work with arbitrarily changing edges where the stable subgraph is C-connected,
the algorithms by Kuhn et al. for k-token dissemination and counting can be sped
up by a factor of T ·C, i.e., they need Θ(n(n+k) ·T−1 ·C−1) rounds for k-token
dissemination and Θ(n2 · T−1 · C−1) rounds for counting.

Note that it is assumed that T and C are known by the nodes. Furthermore,
we would like to stress that it is not enough that G(r) is C-connected in each
2 Note that n is not known by the nodes beforehand but as described by Kuhn et al.

[10] it can be determined involving the dissemination procedure itself using different
estimates for n.
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round r. To make use of the pipelining effect it is also important that the stable
subgraph is C-connected.

In the following, we show that our geometric dynamic networks are Θ(R ·
v−1
max)-interval connected if R > 1 and that the stable subgraphs are Θ(R)-

connected if R ← 2.

Fig. 3. After v moved to position v′, the nodes u and v are still connected.

Lemma 1. Assume the nodes of a geometric dynamic network move with maxi-
mum velocity vmax. Then, the geometric dynamic network is

⌊
(R−1)
2·vmax

⌋

+1-interval
connected.

Proof. Consider a fixed node pair u and v which is connected in the connectivity
graph of round r. Observe that the distance between two nodes can increase by
at most 2vmax per round. Thus, nodes that are connected in the connectivity
graph (radius 1) stay connected in the communication graph (radius R) for at
least

⌊
(R−1)
2·vmax

⌋

further rounds. This implies the lemma (cf. Fig. 3). ∪�

Lemma 2. Assume the nodes of a geometric dynamic network move with max-
imum velocity vmax. Then, the geometric dynamic network contains a spanning
⌊
1
2R

⌋

-connected subgraph that is stable for
⌊

R
4vmax

⌋

+ 1 rounds.

Proof. Consider a path of length
⌊
1
2R

⌋

in the connectivity graph of round r. The
nodes on this path form a clique in the communication graph. Following a similar
argument as in Lemma 1, these nodes stay connected in the communication
graph for further

⌊ 1
2R

2vmax

⌋

rounds. This implies the lemma. ∪�

Theorem 5. If R > 1, then k-token dissemination can be done in Θ(n(n + k) ·
min{vmax, R} · R−2) rounds and counting can be done in Θ(n2 · min{vmax, R} ·
R−2) rounds.
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Proof. If R > 1, then according to Lemma 1 the geometric dynamic network is
Θ(R · v−1

max)-interval connected. Thus, by Theorem 3, the algorithms by Kuhn
et al. need Θ(n(n + k) · min{vmax, R} · R−1) rounds for k-token dissemination
and Θ(n2 · min{vmax, R} · R−1) rounds for counting.

If in addition R ← 2, then according to Lemma 2, the communication graph
contains a spanning Θ(R)-connected subgraph that is stable for Θ(R · v−1

max)
rounds. Thus, by Theorem 4, the algorithms by Kuhn et al. need Θ(n(n + k) ·
min{vmax, R} ·R−2) rounds for k-token dissemination and Θ(n2 ·min{vmax, R} ·
R−2) rounds for counting. ∪�

Comparing the lower and the upper bound, we can observe that the bounds
are almost matching (despite of a factor of R−1) if k = Θ(n). However, it should
be pointed out that the graph model is a bit relaxed by introducing the connec-
tivity graph in addition to the communication graph. It is an interesting question
for further research to consider less relaxed models or even matching models.

6 Conclusion and Future Prospects

We showed that the k-token dissemination problem in geometric dynamic net-
works can be solved asymptotically faster than in traditional dynamic networks.
For this, we utilized a communication radius larger than one, which is the con-
nectivity radius. Specifically, by introducing natural conditions, the k-token dis-
semination problem can be solved in O(n(n + k) · min{vmax, R} · R−2) rounds
in our model with R > 1 while the lower bound for arbitrary edge dynamics
for knowledge-based token-forwarding algorithms is α(nk) [10]. Additionally,
these results can also be applied to count the number of nodes of the network
in O(n2 · min{vmax, R} · R−2) rounds if R > 1.

Our lower bound shows that even an optimal knowledge-based token-forward-
ing algorithm needs α(n ·k ·min{vmax, R}·R−3) rounds to disseminate k tokens.
For the more interesting case of k = α(n), the upper bound simplifies to O(n ·k ·
min{vmax, R}·R−2) and becomes almost tight. It should be pointed out that our
upper bound model is somehow relaxed by introducing the connectivity graph
in addition to the communication graph. However, we think that this is a good
starting point for analyzing, how we can improve the performance of k-token
dissemination, counting, and other related problems by restricting general edge
dynamics.

As a next step, it would be interesting to further restrict the model used for
the upper bound. Particularly, is it possible to show similar round complexity
results with matching models in the upper and lower bound such that we can
omit the restriction R > 1? To gain more intuition about bounds in the geometric
dynamic network model, it is another open question whether global knowledge
is an advantage in this model and if so, to what degree. In other words, can a
central online algorithm for k-token dissemination that is able to observe the
positions of the nodes perform better when facing the network dynamic?

Moreover, more general geometric network models could be of interest. Those
are for example asynchronous time models or different graph classes such as disk
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graphs or quasi unit disk graphs. Yet, one could also think about looking at
different and specifically non-geometric restrictions to the network dynamic. A
challenging but very interesting question is, whether it is possible to build up
a hierarchy of dynamic network restrictions similar to hierarchies known from
complexity theory.
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Abstract. Recently developed wake-up receivers pose a viable alterna-
tive for duty-cycling in wireless sensor networks. Here, a special radio
signal can wake up close-by nodes. We model the wake-up range by the
unit-disk graph. Such wake-up radio signals are very energy expensive
and limited in range. Therefore, the number of signals must be mini-
mized. So, we revisit the Connected Dominating Set (CDS) problem for
unit-disk graphs and consider an online variant, where starting from an
initial node all nodes need to be woken up, while the online algorithm
knows only the nodes woken up so far and has no information about the
number and location of the sleeping nodes.

We show that in general this problem cannot be solved effectively,
since a worst-case setting exists where the competitive ratio, i.e. the
number of wake-up signals divided by the size of the minimum CDS, is
φ(n) for n nodes. For dense random uniform placements, this problem
can be solved within a constant factor competitive ratio with high prob-
ability, i.e. 1 − n−c.

For a restricted adversary with a reduced wake-up range of 1 − θ we
present a deterministic wake-up algorithm with a competitive ratio of

O(θ− 1
2 ) for the general problem in two dimensions.

In the case of random placement without any explicit position infor-
mation we present an O(log n)-competitive epidemic algorithm with high
probability to wake up all nodes. Simulations show that a simplified
version of this oblivious online algorithm already produces reasonable
results, that allows its application in the real world.

Keywords: Wake-up receivers · Online algorithm · Connected
dominating set · Unit-disk graph · Epidemic algorithms

1 Introduction

Energy is the driving problem of wireless sensor networks (WSNs), since sensor
nodes usually operate for long periods and the only source of energy is bat-
tery cells which are difficult to be exchanged. The functionality of WSNs can
be extended through the use of low power microprocessors, sensors, and radio
transceivers. The availability of low power hardware components provided a
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Fig. 1. Wireless sensor node with integrated wake-up receiver

technological break-through of wake-up receivers. These receivers interact only
when a special wake-up signal is addressed to them. When a wake-up signal is
received, the wake-up receiver triggers an interrupt to wake the sensor node. In
addition, any sensor node has the capability of transmitting a wake-up signal to
wake up all other close-by sensor nodes. Recent research [9] has decreased the
energy consumption of sensor nodes when no activity is required to less than
9µW, whereas sensor nodes that are not equiped with wake-up receivers who
uses duty cycle would be spending around 51 mW checking the medium from
time to time. Figure 1 shows a sample board of a designed wake-up receiver
integrated with a wireless sensor node.

Wake-up receivers integrated in sensor nodes constitute a paradigm shift for
wireless sensor protocols. In which, sensor nodes interact with the surrounding
neighbors only when they are required to receive and send information. The duty
cycle process for periodically checking to find out whether messages need to be
received or synchronizing with other sensor nodes may not be required anymore.

Despite that this technology provides a new solution for the energy con-
sumption problem, new problems arise. Sensor nodes are required to produce
a wake-up signal, these signals are energy expensive compared with the signals
that are required for normal data communication. Furthermore, the communi-
cation range of a wake-up signal is smaller than the normal data communication
range, which requires a multi-hop wake-up signals to wake up sensor nodes that
are located in the normal data communication range. Our aim is to minimize
the number of wake-up signals transmitted as much as possible and maximize
the covered area to reduce the energy required to wake up sensor nodes.

A straight-forward solution is to establish minimum set of sensors which are
able to wake up all sensor nodes in case some data need to be collected or
distributed. This is the well known Connected Dominating Set (CDS) problem,
where one tries to compute the Minimum CDS (MCDS). This problem plays an
important role in wireless networks and it is known to be NP-complete.
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For simplicity we assume a unit-disk range model and we are interested in
computing the minimum dominating connected set in unit disk graphs, i.e. geo-
metric graphs where an undirected edge exists between nodes, if their distance
is at most 1.

However, our problem is somehow different. When the sensor nodes are
placed, no positions are known before the first wake-up signal. Also, the nodes
may be moving, sensor nodes may fail, and possible persistent memory might
not be available. All these are reasons to build up a CDS from scratch regularly.

So, we face an online version of the MCDS problem in the context of wake-up
receivers. At the beginning, one sensor node wakes up, e.g. because of new sensor
data. It sends a wake-up signal and receives responses from all next neighbors.
Then, a decision needs to be taken which of the neighbored sensors is allowed to
send the next wake-up signal. Since normal data communication consumes only
little energy compared to the wake-up signal, we can assume that all active nodes
are aware of each other. Furthermore, the information which sensor received a
wake-up signal is available to us, even if the sensor has already been woken up.
The question is now, can we wake up all nodes with minimal number of wake-up
signals. This is what we address as the wake-up minimum connected dominating
set problem in unit disk graphs. In this variant the positions of the woken up
nodes become available as soon as they are awake. For the wake-up position-
aware minimum connected dominating set problem in unit disk graphs positions
are not known at all.

2 Related Work

The new wake-up receivers developed by Gamm et al. in [9] give us an alternative
to the concept of duty cycles for awaiting incoming messages in wireless sensor
networks.

A perfectly efficient online wake-up would use a minimum connected domi-
nating set of nodes to wake up all the nodes. Finding such a MCDS was already
shown to be NP-hard for general graphs, as well as for unit disc graphs [4,13].
For the general (non unit-disk graph) problem no polynomial time approxima-
tion exists unless NP ≥ DTIME[nO(log log n)] [10], yet for MCDS with unit disc
graphs a PTAS has been presented in [3].

Movement of sensor nodes and maintaining an existing MCDS in their pres-
ence was discussed before by Das et al. in [5].

Of course the wake-up problem is an online version of MCDS, because of the
differences to the online version presented by Eidenbenz [8] we are referring to
it as the wake-up problem.

Eidenbenz models the online problem by node added every round by an
adversary, while the online algorithm has to present a CDS, but may never
remove nodes once added to the CDS. He shows a competitive ratio of α(n) for
the CDS size.

Another online MCDS problem closer related to the wake-up problem is dis-
cussed as broadcast problem by Bar-Yehuda et al. [1] and leads to the same lower
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bound of ε(n), so does the reactive routing problem [14]. This motivates why
comparing to an adversary with the same radio range is pointless, as asymptot-
ically no online algorithm can beat trivial flooding, i.e. using the whole graph
as CDS.

Further research discusses Minimum Routing Cost CDS (MOC-CDS) [6]
which requires the hop distance, between any pair of nodes to be minimal. This
problem is also NP hard, but for the unit disc graph a PTAS exists [7]. A more
generalized version of the problem is called λ-MOC-CDS, where the dominating
set must have an λ-spanner property additionally. For λ = 1 these problems are
the same.

For distributed generation of MCDS approximations are discussed in [15].
Our problem differs, since not all nodes are awake in the beginning, but have
to discover all other nodes from the starting node, leading to different time and
message complexity.

The motivation for proving an algorithm for a dense random network stems
from the requirement for density in a random unit disk graph to guarantee
connectivity of the network [11].

In the position oblivious case we use a push-based epidemic rumor spreading
algorithm with a simple counter mechanism, similar to the one in [12]. Rumor
spreading turns out to be simple and robust. For other applications epidemic
algorithms have been already proposed. For a survey of epidemic algorithms in
wireless sensor networks we refer to the Chap. 3, Epidemic Models, Algorithms
and Protocols in Wireless Sensor and Ad-hoc Networks in [2] by Das and Prabib.

3 Preliminaries

We assume that points are in general positions, i.e. that neither three points
are on a line nor four points on a circle in two dimensions. For points in two
dimensions or three dimensions the unit-disk graph (UDG) of a given point set
V is an undirected graph with edge set E := {{u, v} | u, v ← V : |u, v| ∈ 1}.
Later on we refer also to UDGs with different radius r.

We consider the following problems.

Definition 1. Given an undirected graph G = (V,E) a connected dominating
set (CDS) S has the following properties

1. S is connected in G, i.e. for all u, v ← S there exists a path from u to v in
G using only nodes of S.

2. S is dominating all nodes in V , i.e. for all u ← V there exists a node v ← S
such that {u, v} ← E.

Definition 2. The wake-up position oblivious Minimum Connected Dominat-
ing Set Problem in Unit Disk Graphs (Wake-Up-PO-MCDS-UDG) is to con-
struct a CDS where the algorithm works in rounds and starts with a node s0.
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1. At the beginning only the nodes V1 = {u ← V : {u, s0} ← E} and edges
E1 = {{u, s0} : u ← V1} are known.

2. In round i a node si ← V1 may be selected by the algorithm and then the
nodes Vi+1 = {u ← V : {u, si} ← E} and edges Ei+1 = {{u, si} : u ← V1} are
added to the knowledge base of the algorithm.

In the wake-up position-aware minimum connected dominating set problem in
unit disk graphs also the position of the known nodes is available to the algorithm.

4 Lower Bounds

The problem of computing the minimum connected dominating set for unit-
disk graphs (MCD-UD) has been proven to be NP-complete by Lichtenstein
[13]. Lower approximation bounds are not known, while the best approximation
factor so far has a bound of 3.8 [16].

For the Wake-up version there is a trivial, but hard computational lower
bound for the competitive ratio, i.e. the number of nodes of a connected dom-
inating set woken up by an algorithm divided by the number of nodes of the
MCDS.

Proposition 1. The competitive ratio of all deterministic algorithms for Wake-
Up-MCD-UD is at least n

2 − 1
2 . For probabilistic algorithms the expected compet-

itive ratio is at least n
4 .

Proof. We use a variant of the construction presented in [1,8,14], see Fig. 2.
The optimal solution uses wake-up calls from the start node s and the node ui

connected to t. Any deterministic algorithm can be fooled to use n − 1 wake-up
calls of nodes u1, . . . , un−2 such that the final wake up call reaches t.

If the connected node ui is chosen randomly, then any randomized algorithm
needs in the expectation 1 + n−2

2 = n
2 calls to launch a wake-up at ui.

1

s

u1

un-2

t

Fig. 2. Lower bound construction with competitive ratio n/2 − 1
2

5 Algorithms

While the wake-up problem can not be efficiently solved in general, for high
node density a straight-forward grid based algorithm already achieves constant
approximation ratio.
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5.1 A Grid-Based Online Algorithm

We partition the area into a grid of a square size of 1◦
5

for two dimensions and
1◦
6

for three dimensions, see Fig. 7. This grid size guarantees that any node in a
cell can reach all nodes in (orthogonally) neighbored cells with a unit-distance
wake-up call. We assume that each node is aware of its grid position and let
denote cell(u) the grid cell of u.

The grid based wake-up algorithm 1 chooses a representative for each cell and
performs a flooding on the grid structure. In particular, it solves the problem if
all grid cells are non-empty. Note that such a m×m grid can be covered only by
a CDS of size of at least ( m◦

5
− 1)2 = 1

5m2 − 2◦
5
m + 1 in two dimensions, while

the number of nodes who perform wake up calls is bounded by m2. Hence, in a
square we have a competitive ratio of 5+o(1), and in a cube a competitive ratio
of 6 + o(1) by an analogous calculation.

Algorithm 1: Grid based wake-up algorithm
Send wake up from s
Gdone ≥ {cell(s)}
Gto-do ≥ {cell(u) : {u, s} ∈ E} \ {cell(s)}
while Gto-do ∨= ∅ do

Pick a node w such that cell(w) ∈ Gto-do

Send wake up from w
Gdone ≥ Gdone ∪ {cell(w)}
Gto-do ≥ Gto-do ∪ {cell(u) : {u, w} ∈ E} \ cell(s) \ Gdone

end

If enough nodes are placed randomly, then every cell is occupied with high
probability, i.e. 1 − n−c for a constant c where c ← (0, 1).

Theorem 1. If n nodes are place randomly in a m × m-grid with m ∈ √
n

c lnn
for some constant c. Then the grid based wake-up algorithm computes a CDS
with a constant competitive ratio with high probability, i.e. 1 − 1

nc+1 for any
c > 1.

Proof. A node is placed in one of the m2 cells with probability 1
m2 ≤ c lnn

n .
Therefore, the chance that it is not placed in a cell is 1− c lnn

n . So, the probability
that a cell is empty can be upperbounded as follows.

(

1 − c ln n

n

)n

∈ e−c lnn = n−c (1)

We have used (1 − 1/m)m ∈ 1/e for m > 0. By the union bound the probability
that any of cell is empty is therefore at most n−c+1. ∀∪

Note that when the node density is decreased only by a constant factor, that
the unit disk graphs becomes disconnected [11] and there is no solution for CDS.
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5.2 A Competitive Algorithm with Respect to a Weaker Adversary

We have seen that for non-randomized placement the wake-up variant cannot
compete with the offline version, which can be seen as an adversary which places
the sleeping nodes in the area outside of the wake up signals. However, if we
compare the wake-up algorithm with a weaker adversary, we can show some
interesting results.

For this we consider two unit-disk graphs with radius 1 and 1 − Θ for some
Θ ← (0, 1). The wake-up algorithm solves the wake-up problem for CDS in unit
disk graphs, i.e. with radius 1. We compare its performance to the size of the
minimum connected dominating set of the unit disk graph with radius 1 − Θ of
the same event. In this way, counter-examples cannot occur as shown in Fig. 2.

Algorithm 2: (1 − Θ) cover two hop wake-up grid algorithm
Send wake up from s
Gdone ≥ {cell(s)}
Gto-do ≥ {cell(u) : {u, s} ∈ E} \ {cell(s)}
while Gto-do ∨= ∅ do

Pick a node w such that cell(w) ∈ Gto-do

Send wake up from w

Compute the
⌈

32π√
α

⌉
-coverage boundary set S of the neighbored nodes of w

forall the v ∈ S do
Gdone ≥ Gdone ∪ {cell(v)}
Gto-do ≥ Gto-do ∪ {cell(v) : {v, w} ∈ E} \ Gdone

end

end

Theorem 2. In two dimensions there is a wake-up algorithm which produces at
most O(Θ−1/2) more wake-up calls than the number of nodes of the CDS of the
1 − Θ unit disk graph for Θ ← (0, 1).

Proof. The key idea is for a node u to cover the two-hop neighborhood of the
1 − Θ unit disk graph with a set of nodes in the neighborhood of the unit-disk
graph. We prove that the size of this set of this

⌈
32α◦

ε

⌉

-coverage boundary set

nodes is bounded by O( 1◦
ε
).

Using this observation we use a grid based approach like in [14]. If in two
dimensions we choose the grid size of 1◦

2
(1 − Θ), then any node in a cell of size

u can reach with two hops all nodes which any node of its cell can reach in one
hop, since the diagonal of the cell is 1 − Θ. So, it suffices to broadcast a message
in a grid, which can be done in constant factor overhead.
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It remains to construct the coverage of the two-hop neighborhood of the
1 − Θ unit disk graphs with O(

√
Θ) nodes. For this, we need to investigate some

properties of the two-hop neighborhood.

Definition 3. The two-hop covering node set of a unit-disk-graph of radius r
starting with node s is the set of nodes S ≥ V with the following properties:

1. All nodes of S are within distance r of s.
2. Each node of S is necessary, i.e. for all nodes of u ← S there exists a point p

within distance [r, 2r] from s with |u, p| ∈ r and |v, p| > r for all v ← S \{u}.
We call the nodes of S = {c1, . . . , cm} the cover nodes. The outer ring is the

disk of radius 2r without the disk of radius r with center s. The coverage area is
the union of all disks of radius r and center points of S. The coverage boundary
is the boundary of this coverage area. By definition it consists of arcs with radius
r and center points of S. When two points u, v of S have distance r to the same
point w the coverage boundary, we call this point a boundary point, see Fig. 3.
Now the following geometric observations can be made.

Lemma 1

1. Given a point p of the coverage boundary, which is not a boundary point,
and the tangent T of the boundary, then the angle Λ between (p, s) and T is
in the range Λ ← [16π, 5

6π].
2. The length of the coverage boundary is at most 8πr.

Proof. The first statement comes from a simple geometric observation which is
based on possible placement of nodes ci, see Fig. 4.

For the second statement, note that each distance d traveled on the boundary
region corresponds to an angle difference of at least d

z
1

sin δ , where z is the distance
to s which is in the range [r, 2r]. The angle of the tangent is Λ. Since 1

2 ∈ sin Λ ∈
1 and since the total angle difference is bounded by 2π, it follows that the
maximum length of the boundary is bounded by 8πr. ∀∪

We neglect the case, where the coverage boundary intersects with the inner
ring. It is straight-forward that the following claims also hold for this case.

Using the observation of Lemma 1 we can order all cover points according
to their direction seen from s as c1, . . . , cm. Only neighbored nodes share a
boundary point. We name the angles according to Fig. 3. We denote bi as the
boundary point between ci and ci+1, and bm as the boundary node between c1
and cm. Let λi = ∠cibici+1, βi = ∠bi−1cibi and γi = π − ∠ci−1cici+1.

From the definition of the angles we derive the following equalities for all
i ← [1,m]:

γi = βi − λi + λi−1

2
, (2)

m∑

i=1

γi = 2π . (3)
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Fig. 3. Definition of coverage bound-
ary, boundary points b1, . . . , bm and
cover nodes S = {c1, . . . , cm} labeling

r
r

r

s

ci

p

p'

Fig. 4. Angle property of the boundary
region

Since the boundary region is defined by the arcs of angles λ1, . . . , λn with radius
r now Lemma 1 implies

m∑

i=1

βi ∈ 8π .

So,
m∑

i=1

λi =

(
m∑

i=1

λi + γi

)

− 2π =

(
m∑

i=1

βi

)

− 2π ∈ 6π

While the cover points do not necessarily form a convex hull, its form is quite
well behaved. For a large number of cover points we need to find groups of near
points, i.e. with small angles λi and βi.

Lemma 2. Given m boundary points then, there exist at least k ∈ m interval
indices i1, . . . , ik such that for all ν ← {1, . . . k}:

iν+1−1
∑

j=iν

λj ∈ 12π

k
and

iν+1−1
∑

j=iν+1

βj ∈ 16π

k

Proof. Start with i1 = 1. Now for ν = 1, 2, . . . choose the largest q such that

q
∑

j=iν

λj ∈ 12π

k
and

q
∑

j=iν+1

βj ∈ 16π

k

and set iν+1 := q + 1.
By definition

iν+1∑

j=iν

λj >
12π

k
or

iν+1∑

j=iν

βj >
16π

k
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One of this property must be violated more than k/2 times. This would imply

m∑

j=1

λj >
12π

k

k

2
= 6π or

iν+1∑

j=iν

βj >
16π

k

k

2
= 8π

which contradicts Lemma 1 ∀∪
Lemma 3. For given boundary nodes c1, . . . , cm with

m∑

i=1

λi ∈ 1
2
√

Θ and
m∑

i=2

βi ∈ 1
2
√

Θ ,

the disks with center c1, . . . , cm with radius 1 − Θ are covered by the two disks
with center c1 and cm with radius 1.

Proof. From Eq. 2 we get for all ω ∈ m:
∣
∣
∣
∣
∣

Δ∑

i=2

γi

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

Δ∑

i=2

βi − 1
2
(λ1 + λΔ) −

Δ−1∑

i=2

λi

∣
∣
∣
∣
∣
∈

∣
∣
∣
∣
∣

Δ∑

i=2

βi −
Δ∑

i=1

λi

∣
∣
∣
∣
∣
∈ 1

2
√

Θ .

Furthermore, we assume Θ < 1 and use tan 1
2λi = |ci, ci+1|/2(1 − Θ) and

tan(x) ∈ 2x for x ← [0, 1].

|c1, cm| ∈
m−1∑

i=1

|ci, ci+1| ∈
m−1∑

i=1

2(1 − Θ) tan
1
2
λi ∈

m−1∑

i=1

2(1 − Θ)λi ∈ √
Θ

Since all sums
∣
∣
∣
∑Δ

i=2 γi

∣
∣
∣ ∈ 1

2

√
Θ and the maximum distance |c1, cm| ∈ 1

2

√
Θ

we can conclude that c1, . . . , cm fits into a rectangle of length 1
2

√
Θ and width

1
2Θ. The rest follows by the following geometric argument.

The worst case placement for the outer nodes c1 and cm and some inner node
ci is depicted in Fig. 5. Note that

(

1 − 1
2
Θ

)2

+
(√

Θ

4

)2

= 1 − Θ +
1
16

Θ +
1
4
Θ2 = 1 − 15

16
Θ +

1
4
Θ2 ∈ 1 .

Therefore the two outermost nodes with radius 1 always cover the disks with
radius 1 − Θ. ∀∪

Putting all pieces together, given a start node s it wakes up all neighbor
nodes. They report their position and the algorithms chooses k =

⌈
32α◦

ε

⌉

intervals
according to Lemma 2. From these k intervals surrounding s we start wake-up
calls only from the nodes at the interval borders, i.e. ci1 , . . . , cik

. These nodes
can cover also the area covered by all cover nodes. So, we need k = O(Θ−1/2)
wake-up calls to wake up all nodes in the two-hop (1 − Θ)-neighborhood. For a
grid size of 1◦

2
(1 − Θ) this includes all points in the neighborhood of any given
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c1

1

Fig. 5. If the cover nodes are inside a
√

θ × 1
2
θ-rectangle, then two disks with radius 1

of the two outermost nodes cover all disks with radius 1 − θ

point. Therefore, the cell based approach will inform at least the same node set
as the adversary.

Another implication from the (constant size) cell based approach is that if
we only count cells instead of nodes, there are straight-forward linear upper
and lower bounds for the number of wake-up calls. From this observation the
competitive ratio of O(Θ−1/2) follows. ∀∪

5.3 A Position Oblivious Wake Up Algorithm

It seems natural and necessary that the positions of the nodes is used by the
wake up algorithms. There are a lot of reasons why the positions might not be
known. It is expensive and time-consuming to measure the coordinates and store
it on each sensor node. Some sensor nodes might have no persistent memory and
cannot store such information. And most important, since the communication
range is dependent to the environment it is not clear what the position means
in comparison to the unit disk range.

The following oblivious wake-up algorithms come into mind: Flooding, ran-
dom walk, and epidemic algorithms. While flooding reaches all nodes, it is the
worst with respect to energy. Random walks neither reduce the number of wake-
up signals nor does it give any delivery guarantees. Epidemic algorithms appear
to be the most reasonable solution. The question, however, is how to stop the
epidemic wake-up of nodes. We use a push-based epidemic rumor spreading algo-
rithm [12] which will be combined with a simple counter mechanism, which stops
the wake-up if k other wake-ups have been received.

However, it is possible to exploit some position information given by the
graph structure itself. The random k-covered wake-up of algorithm 3 distinguish
between covered and uncovered nodes. A node is covered, if it has received two
wake-up signals. The algorithm starts with one node and picks in each round a
node which has not been covered twice.
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This idea generalizes to the random k-covered wake-up algorithm, where
nodes continue to send until each node has been covered k +1 times or has send
a wake-up signal.

Algorithm 3: Random k-covered wake-up
Input graph G = (V, E), start node s ∈ V
forall the u ∈ V do

counter(u) ≥ 0
end
W ≥ {s}
Node s sends wake-up signal
forall the u ∈ V : {u, s} ∈ E do

counter(u) ≥ counter(u) + 1
end
while ∃u ∈ V \ W : 0 < counter(u) ≤ k do

Pick a random node w ∈ V \ W with 0 < counter(u) ≤ k
W ≥ W ∪ {w}
Node w sends wake-up signal
forall the u ∈ V : {u, w} ∈ E do

counter(u) ≥ counter(u) + 1
end

end

While we show in Sect. 5.3 that for k = 1 the algorithms performs very well,
the generalization is necessary since there are situations where the algorithm
fails from the start. In Fig. 6 such case is depicted. The node s wakes up four
nodes and the near-by node u continues. This node wakes up the same set of
nodes as s and so the algorithm stops, since all nodes are covered twice.

With the help of the position information this case could have been clearly
avoided. But even without it one could increase k. However, the factor k increases
the message complexity. So, a compromise between error rate and message com-
plexity needs to be made.

For the dense case, one can show that the error rate can be reduced to any
polynomial if the density is large enough and k is chosen to be logarithmic in n.

Theorem 3. If n nodes are place randomly in a m×m-grid with m ∈ √
n

c lnn for
some constant c. Then the Random O(log n) covered wake-up algorithm computes
a CDS with a competitive ratio of O(log n) high probability, i.e. 1−n−c for some
c ≤ 1.

Proof. The expected number of nodes in each cell is n
m2 ≤ c ln n. Using Chernoff

bounds it is possible to prove that this amount is in the range [12
n

m2 , 2 n
m2 ] with

high probability. The expected number of nodes in the communication range is
upper bounded by 5π n

m2 since the cell length is 1◦
5
. Again Chernoff bound can
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s u

Fig. 6. A counter-example for the
random-k-covered-wake-up

1

Fig. 7. Grid construction in two
dimensions.

provide with high probability that the number of nodes reachable in one hop is
at most 10π n

m2 with high probability.
So, the probability that a node of a neighbor cell is activated is at least 1

10α .
Therefore, if each node is randomly activated until 10(c + 1) ln n wake up calls
have been reached, this results in a probability of 1 − n−c that each cell starts
at least one wake-up call, when a neighbor cell has been activated before. ∀∪

6 Simulations

We have simulated the epidemic random k-covered algorithms to evaluate the
efficiency of the covered nodes and the wake-up signals needed from the source
node to reach every single node in the area. The grid based flooding algorithm
and the competitive algorithm (with (1−Θ) unit disk graphs) have high constant
factors involved such that they clearly cannot compete.

We randomly deployed varying number of nodes in a square area of 100 m
edge length. The middle node is woken up first and the wake-up communication
range is limited to 10 m based on real-world data. Figures 8 and 9 show how the
CDS is constructed in a network with 1,000 randomly deployed nodes using the
random 1-covered, resp. 2-covered, wake-up algorithm.

Starting with a source node at a position (50, 50), the algorithm randomly
picks the next node to be woken in order to cover the rest of the nodes that
are found in the area. The nodes transmitting wake-up signal form a tree from
the source node to each covered nodes. Only edges where a new wake-up call is
initiated are depicted. In case of k = 1, a node is considered to be covered when
it is covered by two wake-up signals or if it transmits one. When the algorithm
considers k > 1 then a possible intersection in the tree can be formed as it
appears in Fig. 9.
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Fig. 8. Random-1-covered-wake-up Fig. 9. Random-2-covered-wake-up

The quality of the algorithms are measured according to their coverage, i.e.
the ratio of uncovered nodes after the algorithm has terminated, and the com-
plexity, i.e. the number of wake-up calls sent. We have simulated this for the
above parameters for increasing density. For this, we increase the number of
nodes from 1 to 2,000.

Figure 10 shows that for k = 1 the ratio of uncovered nodes is relatively high
compared to the set of nodes which can be reached, this percentage is displayed
as the result of the flooding algorithm. Increasing k ameliorates this behavior.
For high node density all algorithms reach nearly a full coverage. For k = 1
a coverage of 95% happens when 350 nodes are participating, for k ≤ 2 this
already happens for 250 nodes.

Figure 11 indicates that the message complexity grows linearly with k and
converges for increasing node density. Surprisingly, the complexity increases from
k = 1 to k = 2 only by around 40%. So, k = 2 appears to be a good compromise
between coverage and complexity.

Fig. 10. Uncovered node ratio Fig. 11. Wake-up signal transmitted
for n nodes
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7 Conclusions and Future Work

The improved efficiency of wake-up receivers down to the microwatt range implies
a paradigm shift for wireless sensor networks. Now, no busy idling implemented
as duty-cycling is necessary until the first sensor information or the first message
arrives. However, when the nodes need to be woken up without any prior knowl-
edge we face the wake-up connected dominating set problem, presented here.

For this problem, we provide theoretical and practical solutions. Our algo-
rithms work for random placement and an adversarial setting, where we needed
to reduce the power of the adversary, otherwise no efficient algorithms can be
found. It turns out that for the random placement the position information is
not necessary to find an efficient algorithm with a O(log n)-competitive ratio. We
have simulated a simplified variant of this and have seen that it reaches nearly
all nodes with small number of wake-up calls.

This raises the hope that duty-cycling might soon be a technique of the past.
However, with the available transceiver technology a wake-up call is orders of
magnitudes more energy-consuming than standard operation. Taking this into
account, it does not make sense to wake up the network from scratch every
time a sensor reading appears. At this moment, it is more efficient to put
the full network into sleep after some thousand communication cycles. So with
the current hardware, a hybrid solution of wake-up calls and duty-cycling is the
optimal solution.

Another available technique is the use of IDs for wake-up calls. It is possible
to program sensor nodes to be woken up only on a special signal, which are
given by a programmable ID. This may help protocols to build up a wake-up
infrastructure, where the wake-up signals may trigger different nodes or paths.
At this point, it is not clear how this feature can be used in future protocols and
what can be achieved with it.

Since, the wake-up transceiver have only become available recently, we are in
the process of implementing the given protocols and further research will show,
how well these wake-up algorithms behave in real world.
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Abstract. We investigate algorithmic control of a large swarm of mobile
particles (such as robots, sensors, or building material) that move in a 2D
workspace using a global input signal such as gravity or a magnetic field.
Upon activation of the field, each particle moves maximally in the same
direction, until it hits a stationary obstacle or another stationary particle.
In an open workspace, this system model is of limited use because it has
only two controllable degrees of freedom—all particles receive the same
inputs and move uniformly. We show that adding a maze of obstacles to
the environment can make the system drastically more complex but also
more useful. The resulting model matches ThinkFun’s Tilt puzzle.

If we are given a fixed set of stationary obstacles, we prove that
it is NP-hard to decide whether a given initial configuration can be
transformed into a desired target configuration. On the positive side,
we provide constructive algorithms to design workspaces that effciently
implement arbitrary permutations between diffierent configurations.

Keywords: Robot swarm · Nano-particles · Uniform inputs · Parallel
motion planning · Complexity · Array permutations

1 Introduction

Since the first visions of massive sensor swarms, more than ten years of work
on sensor networks have yielded considerable progress with respect to hardware
miniaturization. The original visions of “Smart Paint” [1] or “Smart Dust” [27]
have triggered a considerable amount of theoretical research on swarms of sta-
tionary processors, e.g., the work in [16–18,29]. Recent developments in the
ability to design, produce, and control particles at the nanoscale and the rise of
possible applications, e.g., targeted drug delivery, micro and nanoscale construc-
tion, and Lab-on-a-Chip, motivate the study of large swarms of mobile objects.
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But how can we control such a swarm with only limited computational power and
a lack of individual control by a central authority? Local, robotics-style motion
control by the particles themselves appears hopeless, because (1) the physics of
motion at the low Reynold’s number nanoscale environment requires overcoming
a considerable amount of resistance, and (2) the capacity for storing energy for
computation, communication, and motion control shrinks with the third power
of object size.

A possible answer lies in applying a global, external force to all particles in
the swarm. This resembles the logic puzzle Tilt [38], and dexterity ball-in-a-maze
puzzles such as Pigs in Clover and Labyrinth, which involve tilting a board to
cause all mobile pieces to roll or slide in a desired direction. Problems of this type
are also similar to sliding-block puzzles with fixed obstacles [10,24–26], except
that all particles receive the same control inputs, as in the Tilt puzzle. In the real
world, driving ferromagnetic particles with a magnetic resonance imaging (MRI)
scanner gives a nano-scale example of this challenge [40]. Becker et al. [7] demon-
strate how to apply a magnetic field to simultaneously move cells containing iron
particles in a specific direction within a fabricated workspace; see Fig. 1a. Other
recent examples include using the global magnetic field from an MRI to guide
magneto-tactic bacteria through a vascular network to deliver payloads at spe-
cific locations [8], and using electromagnets to steer a magneto-tactic bacterium
through a micro-fabricated maze [28]; however, this still involves only individual
particles at a time, not the parallel motion of a whole, massive swarm. How can
we manipulate the overall swarm with coarse global control, such that individual
particles arrive at multiple different destinations in a (known) complex vascular
network such as the one in Fig. 1b?

Thus, we study the following basic problem: Given a map of an environment,
such as the vascular network shown in Fig. 1b, along with initial and goal posi-
tions for each particle, does there exist a sequence of inputs that will bring each
particle to its goal position?

As it turns out, the deliberate use of existing stationary obstacles leads to a
wide range of possible sequences of moves. In the first part of the paper, we show
that this may lead to computationally difficult situations. In the second part of
the paper (Sect. 5), we develop several positive results. The underlying idea is to
construct artificial obstacles (such as walls) that allow arbitrary rearrangements
of a given two-dimensional particle swarm. For clearer notation, we will formulate
the relevant statements in the language of matrix operations, which is easily
translated into plain geometric language.

Our paper is organized as follows. After a formal problem definition in Sect. 2
and a discussion of related work in Sect. 3, we provide our main result on the
complexity of the problem in Sect. 4. We then present constructive algorithmic
results in Sect. 5, and end with concluding remarks in Sect. 6.

2 Problem Definition

We study the problem on a two-dimensional grid. We assume that particles
cannot be individually controlled, but are all simultaneously given a message
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http://www.mathworks.com/matlabcentral/fileexchange/42892.

Fig. 1. (Top) State of the art in controlling small objects by force fields. (Bottom) A
complex vascular network, forming a typical environment for the parallel navigation of
small objects.
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to travel in a given direction until they collide with an obstacle or another
particle. This assumption corresponds to situations with limited state feedback,
or for particles that move at unpredictable speeds. More precisely we consider
the following scenario, illustrated in Fig. 2, which we call GlobalControl-
ManyParticles:

1. Initially, the planar square grid is filled with some unit-square particles (each
occupying a cell of the grid) and some fixed unit-square blocks.

2. All particles are commanded in unison: a valid command is “Go Up” (u),“Go
Right” (r),“Go Down” (d), or “Go Left” (l). All particles move in the com-
manded direction until they hit an obstacle or another particle. A representa-
tive command sequence is ≥u, r, d, l, d, r, u, . . .←. We call these global commands
force-field moves. We assume we can bound the minimum particle speed and
can guarantee all particles have moved to their maximum extent.

3. The goal is to get any particle to a specified position.

The algorithmic decision problem GlobalControl-ManyParticles is to
decide whether a given puzzle is solvable. As it turns out, this problem is com-
putationally difficult: we prove NP-hardness in Sect. 4. While this result shows
the richness of our model (despite the limited control over the individual parts),
it also constitutes a major impediment for constructive algorithmic work.

Fig. 2. In this image, black cells are fixed, white cells are free, solid discs are individ-
ual particles, and goal positions are dashed circles. For the simple world at left, it is
impossible to maneuver both particles to end at their goals. The world at right has a
finite solution: ≥r, d, l∈.

3 Related Work

Large Robot Populations. Due to the efforts of roboticists, biologists, and chem-
ists (e.g. [9,35,37]), it is now possible to make and field very large (103–1014)
populations of simple robots. Potential applications for these robots include tar-
geted medical therapy, sensing, and actuation. With large populations come two
fundamental challenges: (1) how to perform state estimation for the robots, and
(2) how to control these robots.

Traditional approaches often assume independent control signals for each
robot, but each additional independent signal requires bandwidth and engi-
neering. These bandwidth requirements grow at O(n). Using independent sig-
nals becomes more challenging as the robot size decreases. At the molecular
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scale, there is a bounded number of modifications that can be made. Espe-
cially at the micro- and nano-scales it is not practical to encode autonomy in
the robots. Instead, the robots are controlled and interacted with using global
control signals.

More recently, robots have been constructed with physical heterogeneity so
that they respond differently to a global, broadcast control signal. Examples
include scratch-drive microrobots, actuated and controlled by a DC voltage sig-
nal from a substrate [12]; magnetic structures with different cross-sections that
could be independently steered [19]; MagMite microrobots with different reso-
nant frequencies and a global magnetic field [20]; and magnetically controlled
nanoscale helical screws constructed to stop movement at different cutoff fre-
quencies of a global magnetic field [36]. In our previous work with robots modeled
as nonholonomic unicycles, we showed that an inhomogeneity in turning speed
is enough to make even an infinite number of robots controllable with regard
to position. All these approaches show promise, but they require precise state
estimation and heterogeneous robots. In addition, the control law computation
required at best a summation over all the robot states O(n) [6] and at worst a
matrix inversion O(n2.373)[4].

In this paper we take a very different approach. We assume a population
of approximately identical planar particles (which could be small robots) and
one global control signal that contains the direction all particles should move.
In an open environment, this system is not controllable because the particles
move uniformly—implementing any control signal translates the entire group
identically. However, an obstacle-filled workspace allows us to break symmetry.
We showed that if we can command the particles to move one unit distance at a
time, some goal configurations have easy solutions [5]. Given a large free space,
we have an algorithm showing that a single obstacle is sufficient for position
control of N particles (video of position control: http://youtu.be/5p XIad5-Cw).
This result required incremental position control of the group of particles, i.e. the
ability to advance them a uniform fixed distance. This is a strong assumption,
and one that we relax in this work.

Dexterity Games. The problem we investigate is strongly related to dexterity
puzzles—games that typically involve a maze and several balls that should be
maneuvered to goal positions. Such games have a long history. Pigs in Clover,
involving steering four balls through 3 concentric incomplete circles, was invented
in 1880 by Charles Martin Crandall. Dexterity games are dynamic and depend
on the manual skill of the player. Our problem formulation also applies the same
input to every agent, but imposes only kinematic restrictions on agents. This is
most similar to the gravity-fed logic maze TiltTM, invented by Vesa Timonen
and Timo Jokitalo and distributed by ThinkFun since 2010 [38].

Computational Geometry: Robot Box-Pushing. Many variations of block-pushing
puzzles have been explored from a computational complexity viewpoint, with a
seminal paper proving NP-hardness by Gordon Wilfong in 1991 [43]. The general
case of motion-planning when each command moves particles a single unit in a

http://youtu.be/5p_XIad5-Cw
http://www.thinkfun.com/tilt
http://www.thinkfun.com
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world composed of even a single robot and both fixed and moveable squares is
in the complexity class PSPACE-complete [11,13,25].

Ricochet Robots [14], Atomix [26], and PushPush [10] have the same con-
straint that robots when moved must move to their full extent. This constraint
reflects physical realities where, due to uncertainties in sensing, control appli-
cation, and robot models, precise quantified movements in a specified direction
is not possible, but the input can be applied for a long period of time and be
guaranteed that the robots will move to their fullest extent. In these games the
robots move to their full extent with each input, but each robot can be actuated
individually. The complexity of the problem with global inputs to all robots has
remained an open problem.

Sensorless Manipulation. The algorithms in the second half of our paper do
not require feedback, and we have drawn inspiration from work on sensorless
manipulation [15]. The basic idea in this work is to explicitly maintain the set of
all possible robot configurations and to select a sequence of actions that reduces
the size of this set and drives it toward some goal configuration. Carefully selected
primitive operations can make this easier. For example, sensorless manipulation
strategies often use a sequential composition of primitive operations, “squeezing”
a part either virtually with a programmable force field or simply between two flat,
parallel plates [23]. Some sensorless manipulation strategies take advantage of
limit cycle behavior, for example engineering fixed points and basins of attraction
so that parts only exit a feeder when they reach the correct orientation [31,33].
These two strategies have been applied to a much wider array of mechanisms
such as vibratory bowls and tables [21,41,42] or assembly lines [2,23,39], and
have also been extended to situations with stochastic uncertainty [22,32] and
closed-loop feedback [3,34].

Parallel Algorithms: SIMD. Another related area of research is Single Instruction
Multiple Data (SIMD) parallel algorithms [30]. In this model, multiple proces-
sors are all fed the same instructions to execute, but they do so on different data.
This model has some flexibility, for example allowing command execution selec-
tively only on certain processors and no operations (NOPs) on the remaining
processors.

Our model is actually more extreme: the particles all respond in effectively
the same way to the same instruction. The only difference is their location, and
which obstacles or particles will thus block them. In some sense, our model is
essentially Single Instruction, Single Data, Multiple Location.

4 Complexity

We prove that the general problem defined in Sect. 2 is computationally
intractable:

Theorem 1. GlobalControl-ManyParticles is NP-hard: given an initial
configuration of movable particles and fixed obstacles, it is NP-hard to decide
whether any particle can be moved to a specified location.
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Proof. We prove hardness by a reduction from 3SAT. Suppose we are given n
Boolean variables x1, x2, . . . , xn, and m disjunctive clauses Cj = Uj ∈ Vj ∈ Wj ,
where each literal Uj , Vj ,Wj is of the form xi or ¬xi. We construct an instance of
GlobalControl-ManyParticles that has a solution if and only if all clauses
can be satisfied by a truth assignment to the variables.

Variable gadgets. For each variable xi that appears in ki literals, we construct ki

instances of the variable gadget i shown in Fig. 3, with a particle initially at the
top of the gadget. The gadget consists of a tower of n levels, designed for the
overall construction to make n total variable choices. These choices are intended
to be made by a move sequence of the form ≥d, l/r, d, l/r, . . . , d, l/r, d, l←, where
the ith l/r choice corresponds to setting variable xi to either true (l) or false (r).
Thus variable gadget i ignores all but the ith choice by making all other levels
lead to the same destination via both l and r. The ith level branches into two
destinations, chosen by either l or r, which correspond to xi being set true or
false, respectively.

In fact, the command sequence may include multiple l and r commands in
a row, in which case the last l/r before a vertical u/d command specifies the
final decision made at that level, and the others can be ignored. The command
sequence may also include a u command, which undoes a d command if done
immediately after, or else does nothing; thus we can simply ignore the u com-
mand and the immediately preceding d if it exists. We can also ignore duplicate
commands (e.g., d, d becomes d) and remove any initial l/r command. After
ignoring these superfluous commands, assuming a particle reaches one of the
output channels, we obtain a sequence in the canonical form ≥d, l/r, d, l/r, . . . ,
d, l← as desired, corresponding uniquely to a truth assignment to the n variables.
(If no particle reaches the output port, it is as if the variable is neither true nor
false, satisfying no clauses.) Note that all particles arrive at their output ports
at exactly the same time.

(a) variable, i = 1 (b) i = 2 (c) i = 3 (d) i = 4

Fig. 3. Variable gadgets that execute by a sequence of ≥d, l/r∈ moves. The ith l/r
choice sets the variable to true or false by putting the ball in a separate column.
This selection move is shown in blue. Each gadget is designed to respond to the ith
choice but ignore all others. This lets us make several copies of the same variable by
making multiple gadgets with the same i. In the figure n = 4, and the input sequence
≥d, l, d, r, d, l, d, r, d, r, d∈ causes i = (1, 2, 3, 4) to produce (true, false, true, false) (Colour
figure online).
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Clause gadgets. For each clause, we use the or gadget shown in Fig. 4a. The or
gadget has three inputs corresponding to the three literals, and input particles
are initially at the top of these inputs. For each positive literal of the form xi,
we connect the corresponding input to the left output of an unused instance
of variable gadget i. For each negative literal of the form ¬xi, we connect the
corresponding input to the right output of an unused instance of a variable
gadget i. (In this way, each variable gadget gets used exactly once.)

We connect the variable gadget to the or gadget in a simple way, as shown
in Fig. 5: place the variable gadget above the clause so as to align the vertical
output and input channels, and join them into a common channel. To make
room for the three variable gadgets, we simply extend the black areas separating
the three input channels in the or gadget. The unused output channel of each
variable gadget is connected to a waste receptacle. Any particle reaching that
end cannot return to the logic.

If any input channel of the or gadget has a particle, then it can reach the
output port by the move sequence ≥d, l, d, r←. Furthermore, because variable gad-
gets place all particles on their output ports at the same time, if more than one
particle reaches the or gadget, they will move in unison as drawn in Fig. 4a,
and only one can make it to the output port; the others will be stuck in the
“waste” row, even if extra ≥l, r, u, d← commands are interjected into the intended
sequence. Hence, a single particle can reach the output of a clause if and only if
that clause (i.e., at least one of its literals) is satisfied by the variable assignment.

x 1 x 3x 4

oi

waste

(a) 3-input OR

o1 o2 o3 o4 o5

waste

Target

(b) m -input AND (True )

o1 o2 o3 o4 o5

waste

Target

(c) m -input AND (False)

Fig. 4. Gadgets that use the cycle ≥d, l, d, r∈. The 3-input or gadget outputs one par-
ticle if at least one particle enters in an input line, and sends any extra particle(s)
to a waste receptacle. The m-input and gadget outputs one particle to the Target
Location, marked in gray, if at least m inputs are True. Here m = 5. Excess particles
are sent to a waste receptacle.

Check gadget. As the final stage of the computation, we check that all clauses
were simultaneously satisfied by the variable assignment, using the m-input and
gadget shown in Fig. 4b and c. Specifically, we place the clause gadgets along a
horizontal line, and connect their vertical output channels to the vertical input
channels of the check gadget. Again we can align the channels by extending the
black areas that separate the input channels of the and gadget, as shown in the
composite diagram Fig. 5.

The intended solution sequence for the and gadget is ≥d, l, d, r←. The and
gadget is designed with the downward channel exactly m units to the right from
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(a) Initial state. The objective is to get one particle to the grey square at lower left.

(b) Setting variables to (False, True, False, True) does not satisfy this 3SAT problem.

(c) Setting the variables (True, False, False, True) will satisfy this 3SAT problem.

(d) Successful outcome. (True, False, False, True) places a single particle in the goal.

Fig. 5. Combining 12 variable gadgets, three 3-input or gadgets, and an m-input and
gadget to realize the 3SAT expression (¬A∨¬C∨D)∅ (¬B∨¬C∨D)∅ (¬A∨B∨D)∅
(A ∨ ¬B ∨ C). Matlab code implementing the examples for each figure in the paper
is available online http://www.mathworks.com/matlabcentral/fileexchange/42892.

the left wall, and > 2m units from the right wall, so for any particle to reach
the downward channel (and ultimately, the target location), at least m particles
must be presented as input. Because each input channel will present at most one
particle (as argued in a clause), a particle can reach the final destination if and
only if all m clauses output a particle, which is possible exactly when all clauses
are satisfied by the variable assignment.

This completes the reduction and the NP-hardness proof.

http://www.mathworks.com/matlabcentral/fileexchange/42892-drive-magnetic-micro-robots-through-a-2d-vascular-network
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We conjecture that GlobalControl-ManyParticles is in fact PSPACE-
complete. One approach would be to simulate nondeterministic constraint logic
[24], perhaps using a unique move sequence of the form ≥d, l/r, d, l/r, . . . ← to
identify and “activate” a component. One challenge is that all gadgets must
properly reset to their initial state, without permanently trapping any particles.
We leave this for future work.

5 Matrix Permutations

The previous sections investigated pathologically difficult configurations. This
section investigates a complementary problem. Given the same particle and world
constraints as before, what types of control are possible and economical if we
are free to design the environment?

First, we describe an arrangement of obstacles that implement an arbitrary
matrix permutation in four commands. Then we provide efficient algorithms for
sorting matrices, and finish with potential applications.

5.1 A Workspace for a Single Permutation

For our purposes, a matrix is a 2d array of particles (each possibly a differ-
ent color). For an ar × ac matrix A and a br × bc matrix B, of equal total
size N = ar · ac = br · bc, a matrix permutation assigns each element in A a
unique position in B. Figures 6 and 7 show example constructions that execute
matrix permutations of total size N = 25 and 100, respectively. For simplicity
of exposition, we assume henceforth that all matrices are n × n squares.

Theorem 2. Any matrix permutation can be executed by a set of obstacles that
transforms matrix A into matrix B in just four moves. For N particles, the
arrangement requires (3N + 1)2 space, 4N + 1 obstacles, and 12N/speed time.

Proof. Refer to Figs. 6 and 7 for examples. The move sequence is ≥u, r, d, l←.
Move 1: We place n obstacles, one for each column, spaced n units apart, such
that moving u spreads the particle array into a staggered vertical line. Each
particle now has its own row. Move 2: We place N obstacles to stop each
particle during the move r. Each particle has its own row and can be stopped at
any column by its obstacle. We leave an empty column between each obstacle
to prevent collisions during the next move. Move 3: Moving d arranges the
particles into their desired rows. These rows are spread in a staggered horizontal
line. Move 4: Moving l stacks the staggered rows into the desired permutation,
and returns the array to the initial position.

By reapplying the same permutation enough times, we can return to the
original configuration. The permutations shown in Fig. 6 return to the original
image in 2 cycles, while Fig. 7 requires 740 cycles. For a two-color image, we
can always construct a permutation that resets in 2 cycles. We construct an
involution, a function that is its own inverse, using cycles of length two that
transpose two particles. This technique does not extend to images with more
than two colors.
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Fig. 6. In this image for N = 15, black cells are obstacles, white cells are free, and
colored discs are individual particles. The world has been designed to permute the
particles between ‘A’ into ‘B’ every four steps: ≥u, r, d, l∈. See video at http://youtu.
be/3tJdRrNShXM.

Fig. 7. In this larger example with N = 100, the diffierent control sections are easier to
see than in Fig. 6. (1) The staggered obstacles on the left spread the matrix vertically,
(2) the scattered obstacles on the upper right permute each element, and (3) the stag-
gered obstacles along the bottom reform each row, which are collected by (4). The cycle
resets every 740 iterations. See http://youtu.be/eExZO0HrWRQ for an animation of
this gadget.

5.2 A Workspace for Arbitrary Permutations

There are various ways in which we can exploit Theorem 2 in order to generate
larger sets of (or even all) possible permutations. As it turns out, there is a
tradeoff between the number of introduced obstacles and the number of moves
required for realizing a permutation.

We start with obstacle sets that require only few moves.

Theorem 3. For any set of k fixed, but arbitrary, permutations of n×n pixels,
we can construct a set of O(kN) obstacles, such that we can switch from a start
arrangement into any of the k permutations using at most O(log k) force-field
moves.

Proof. See Fig. 8. Build a binary tree of depth log k for choosing between the
permutations by a sequence of ≥r, d, (r/l), d, (r/l), . . . , d, (r/l), d, l, u← with log k
(r/l) decisions between the initial prefix ≥r, d← and final suffix ≥d, l, u←. This gets
the pixels to the set of obstacles for performing the appropriate permutation.

Corollary 1. For any ε > 0, we can construct a set of (N !)ε obstacles such that
any permutation of n × n = N pixels can be achieved by at most O(N log N)
force-field moves.

Proof. Follows from Theorem 3 by k = (N !)ε/N .

http://youtu.be/3tJdRrNShXM
http://youtu.be/3tJdRrNShXM
http://youtu.be/eExZO0HrWRQ
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Fig. 8. For any set of k fixed, but arbitrary permutations of n × n pixels, we can
construct a set of O(kN) obstacles, such that we can switch from a start arrangement
into any of the k permutations using at most O(log k) force-field moves. Here k = 4
and transforms ‘A’ into ‘B’, C’, ‘D’, or ‘E’ in eight moves: ≥r, d, (r/l), d, (r/l), d, l, u∈.

Now we proceed to more economical sets of obstacles, with arbitrary per-
mutations realized by clockwise and counterclockwise move sequences. We make
use of the following lemma, which shows that two base permutations are enough
to generate any desired rearrangement.

Lemma 1. Any permutation of N objects can be generated by the two base per-
mutations p = (1, 2) and q = (1, 2, · · · N). Moreover, any permutation can be
generated by a sequence of length at most N2 that consists of p and q.

Proof. Similar to Bubble Sort, we use two nested loops of N . Each move
consists of performing q once, and p when appropriate.

This allows us to establish the following result.

Theorem 4. We can construct a set of O(N) obstacles such that any n × n
arrangement of N pixels can be rearranged into any other n × n arrangement π
of the same pixels, using at most O(N2) force-field moves.

Proof. See Fig. 9. Use Theorem 2 to build two sets of obstacles, one each for
p and q, such that p is realized by the sequence ≥u, r, d, l← (clockwise) and q is
realized by ≥r, u, l, d← (counterclockwise). Then we use the appropriate sequence
for generating π in O(N2) moves.

Using a larger set of generating base permutations allows us to reduce the
number of necessary moves. Again, we make use of a simple base set for gener-
ating arbitrary permutations.

Lemma 2. Any permutation of N objects can be generated by the N base per-
mutations p1 = (1, 2), p2 = (1, 3), . . . , pN−1 = (1, (N − 1)) and q = (1, 2 · · · N).
Moreover, any permutation can be generated by a sequence of length at most N
that consists of the pi and q.

Proof. Straightforward, analogous to Theorem 4: in each step i, apply q once,
and swap element π(i) into position i.
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Fig. 9. Repeated application of two base permutations can generate any permutation,
when used in a manner similar to Bubble Sort. The obstacles above generate the
base permutation p = (1, 2) in the clockwise direction ≥u, r, d, l∈ and q = (1, 2, · · ·N) in
the counter-clockwise direction ≥r, u, l, d∈.

Theorem 5. We can construct a set of O(N2) obstacles such that any n × n
arrangement of N pixels can be rearranged into any other n × n arrangement π
of the same pixels, using at most O(N log N) force-field moves.

Proof. Use Theorem 2 to build N sets of obstacles, one each for p1, . . . , pN−1, q.
Furthermore, use Lemma 2 for generating all permutations with at most N
different of these base permutation, and Theorem 3 for switching between these
k = N permutations. Then we can get π with at most N cycles, each consisting
of at most O(log N) force-field moves.

This is the best possible with respect to the number of moves, in the following
sense:

Theorem 6. Suppose we have a set of obstacles such that any permutation of
an n × n arrangement of pixels can be achieved by at most M force-field moves.
Then M is at least Ω(N log N).

Proof. Each permutation must be achieved by a sequence of force-field moves.
Because each decision for a force-field move ≥u, d, l, r← partitions the remaining
set of possible permutations into at most four different subsets, we need at least
Ω(log(N !)) = Ω(N log N) such moves.

6 Conclusions

In this paper we analyzed the complexity of steering many particles with uni-
form inputs in a 2d environment with obstacles. We are motivated by practical
challenges in steering magnetically-actuated robots through vascular networks.
Many examples of natural, locally 2d vascular networks exist, such as the leaf
example in Fig. 1b, and the endothelial networks on the surface of organs.

Clearly, there are many exciting new challenges that lie ahead. The next
step is to extend the complexity analysis to PSPACE-complete. We are also
exploring using particles and obstacles to construct logic gates. These results
let us implement and and or gates. Using dual-rail logic, where the signal
and its inverse are explicitly represented by the presence of a particle along
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either the signal or the inverse rail, we could also implement not, nand, and
nor gates. Generating fan-out gates seems to require additional complexity
in GlobalControl-ManyParticles because conservation rules are violated.
Some way of encoding an order of precedence so that a reversible operation on
particle a will affect particle b is needed. Potential approaches use either 2 × 1
particles, or 0.5×1 obstacles so that the presence of a first particle can enable an
action on a second particle, and yet be distinguished from the absence of the first
particle and the presence of the second. With uniform 1× 1 obstacles and parti-
cles, these cases are indistinguishable. Finally, many exciting applications require
platforms that can navigate in three dimensions. This poses a large number of
additional challenges, both for the theory and the physical implementation.
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Abstract. We consider the following class of polygon-constrained
motion planning problems: Given a set of k centrally controlled mobile
agents (say pebbles) initially sitting on the vertices of an n-vertex simple
polygon P , we study how to plan their vertex-to-vertex motion in order
to reach with a minimum (either maximum or total) movement (either in
terms of number of hops or Euclidean distance) a final placement enjoying
a given requirement. In particular, we focus on final configurations aim-
ing at establishing some sort of visual connectivity among the pebbles,
which in turn allows for wireless and optical intercommunication. There-
fore, after analyzing the notable (and computationally tractable) case
of gathering the pebbles at a single vertex (i.e., the so-called rendez-
vous), we face the problems induced by the requirement that pebbles
have eventually to be placed at: (i) a set of vertices that form a connected
subgraph of the visibility graph induced by P , say G(P ) (connectivity),
and (ii) a set of vertices that form a clique of G(P ) (clique-connectivity).
We will show that these two problems are actually hard to approxi-
mate, even for the seemingly simpler case in which the hop distance is
considered.

1 Introduction

In many practical applications a number of centrally controlled devices need to be
moved from an initial positioning towards a final configuration so that a desired
task can be completed. In particular, in settings like robotics and sensor network-
ing, the devices generally happen to have a limited transmission and reception
capability, and thus to establish some kind of reciprocal communication they need
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to build an obstacle-free ad-hoc network. However, by any respects, movements are
expensive, and so this repositioning procedure should be accomplished in such a
way that some distance-related objective function is minimized.

In this paper, we assume the underlying environment is a simple polygon,
say P , and the moving devices (pebbles, in the sequel) are initially placed on
vertices of P . In our setting, pebbles can only move within the polygon through
a vertex-to-vertex polygonal path, and so they will reach a final position which
coincides with a polygon vertex. This restriction about the initial, intermediate,
and ending position of the pebbles is motivated by the fact that vertices are a
notable position in a polygon, for which several well-studied classes of computa-
tional geometry problems (e.g., art-gallery guarding, facility location, etc.) have
been considered. Moreover, from a more practical point of view, we point out
that recently there has been a growing attention towards limited-sensing robotic
devices, which are built in such a way that they are able to only detect very
minimal information about the surrounding environment. In particular, the so-
called combinatorial robots [12] are only able to move to visible corners of the
(planar) region they are embedded in, i.e., the vertices of a polygon. There-
fore, we study a set of motion planning (i.e., centrally managed) problems that
arise by the combination of three different final positioning goals and a pair of
movement optimization functions, which will be computed with respect to two
different distance concepts. More precisely, we first focus our study on a sce-
nario where we want the pebbles to be moved to a single vertex (RV, which
stands for rendez-vous) of P . In fact, gathering at a single vertex will enable
pebbles to exchange information in a setting where long-range communication
is not allowed. Then, we turn our attention to the more general case in which
pebbles have to form a connected subgraph (Con) of the visibility graph of P .
Recall that such a graph has a node for each polygon vertex, and an edge for
each pair of polygon vertices which can be joined by a straight line contained
in the interior or the boundary of polygon P . Thus, quite naturally, we focus
on the visibility graph of P , since intervisibility between polygon vertices turns
out to enable wireless or optical connection among devices. Finally, in order to
consider the plausible case in which a mutual direct connection among pebbles
is needed, we analyze the problem in which they have to form a clique (Clique)
in the visibility graph. For all these problems, we consider both the minimiza-
tion of the overall movement (Sum) and the maximum movement (Max) of the
pebbles. To this respect, these functions will be measured both in terms of the
classic Euclidean distance (ED) covered by the pebbles, and with regard to the
hop distance (HD) measure, i.e., that in which the distance between two vertices
in P is given by the minimum number of edges in any vertex-to-vertex polygonal
path in P connecting the two vertices. This latter type of distance is important
in many practical cases since it resorts to the number of turns that a device must
take all along the way.

Related Work. Although movement problems were deeply investigated in a dis-
tributed setting (see [11] for a survey), quite surprisingly the centralized coun-
terpart has received attention from the scientific community only very recently.
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The first paper which defines and studies these problems in this latter setting
is [6]. In their work, the authors study the problem of moving the pebbles on a
graph G of n vertices so that their final positions form any of the following con-
figurations: connected component, path (directed or undirected) between two
specified nodes, independent set, and matching. Regarding connectivity prob-
lems, the authors show that both variants are hard and that the approximation
ratio of Con-Max is between 2 and O(1 +

√

k/Opt), where k is the number of
pebbles and Opt denotes the measure of an optimal solution. This result has been
improved in [3], where the authors show that Con-Max can be approximated
within a constant factor, more precisely 136. In [6] it is also shown that Con-
Sum is not approximable within O(n1−α) (for any positive α), while it admits an
approximation algorithm with ratio of O(min{n log n, k}) (where k is the num-
ber of pebbles). Moreover, they also provide an exact polynomial-time algorithm
for Con-Max on trees.

More recently, in [7], a variant of the classical facility location problem has
been studied. This variant, called mobile facility location, can be modelled as a
motion planning problem and is approximable within (3+α) (for any positive α) if
we seek to minimize the total movement [1]. On the other hand, a variant where
the maximum movement has to be minimized admits a tight 2-approximation
[1,6].

Finally, for Con and Clique, in [4] the authors present a set of improved
(in)approximability results both for general and special classes of graphs, and
moreover they also study the problem of moving pebbles to an independent set.

Our Problems and Results. More formally, our problems can be stated as follows.
Let P be a simple polygon delimited by the set of vertices V (P ) = ≥v1, . . . , vn←,
in this order. Let A = {p1, . . . , pk} be a set of pebbles. Each pebble initially sits
on a polygon vertex (multiple pebbles can occupy the same position). Thus, by
S = (s1, . . . , sk) we denote the initial configuration of the pebbles. Given a target
vertex vi ∈ P , we denote by d(si, vi) the length of a shortest path in P starting at
si and ending at vi. Such a shortest path is actually a vertex-to-vertex polygonal
path, which is in compliance with our setting. Let U = (u1, . . . , uk), with ui ∈ V ,
denote the final configuration of the pebbles, and let |d(S,U)| =

∑k
i=1 d(si, ui),

and ||d(S,U)|| = maxi=1,...,k{d(si, ui)}. With a small abuse of notation, when in
the final configuration all the pebbles sit on a same vertex u, we denote these
quantities by |d(S, u)| and ||d(S, u)||. Finally, let G(P ) be the visibility graph of
P . We study the following problems:

1. Rendez-vous: The questions we address are:
(i) RV-Max: find u◦ = arg minu∈V (P ){||d(S, u)||};
(ii) RV-Sum: find u◦ = arg minu∈V (P ){|d(S, u)|}.

2. Connectivity: Let C denote the set of subsets of vertices of P which induce a
connected subgraph in G(P ). Then, the questions we address are:
(i) Con-Max: find U◦ = arg minU∈C{||d(S,U)||};
(ii) Con-Sum: find U◦ = arg minU∈C{|d(S,U)|}.

3. Clique: Let K denote the set of subsets of vertices of P which induce a clique
in G(P ). Then, the questions we address are:
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(i) Clique-Max: find U◦ = arg minU∈K{||d(S,U)||};
(ii) Clique-Sum: find U◦ = arg minU∈K{|d(S,U)|}.

Besides the above problems, we also define the corresponding ones associated
with the hop distance in P between vi and vj , say h(vi, vj). An example of
solutions for our problems w.r.t. both distance models is given in Fig. 1, while
the results we present in the paper are summarized in Table 1, where by p and
m we denote the size of the set of vertices of P initially occupied by pebbles and
of the set of edges of G(P ), respectively.

Table 1. New (in bold) and old (with the reference therein) results for the various
motion problems, where ρ denotes the best approximation ratio for the corresponding
problem. All the inapproximability results hold under the assumption that P �= NP.

Max Sum

RV HD: solvable in O(pm) time HD: solvable in O(pm+k) time

ED: solvable in O(n log n) time ED: solvable in O(pn + k) time

Con HD: NP-hard; ρ ≥ 2; ε ∗ 136 [3] HD: NP-hard; ρ ≥ n1−ε; ρ ≤ 1 + O(nk/Opt)

ED: polyAPX-hard ED: polyAPX-hard

Clique HD: NP-hard; ρ ≥ 3/2; ε ∗ 1 + 1/Opt [4] HD: NP-hard; ε ∗ 2 [4]

ED: open ED: open

2 Rendez-vous

As far as the hop distance is concerned, RV-Max and RV-Sum have a näıve
O(pm) and O(pm+ k) time solution, respectively, whose improvement is a chal-
lenging open problem. Indeed, let V (S) be the set of vertices of P initially
occupied by the pebbles. Observe that a shortest hop-distance path is just a
shortest path in the visibility graph G(P ) of P . Then, first of all we compute
G(P ) in O(n + m) time [9]. After, and only for RV-Sum, in O(n + k) time we
associate with each vertex v of P the multiplicity of pebbles initially sitting on
it, say μ(v). Then, in O(pm) time we find the p breadth-first search trees of
G(P ) rooted at the vertices of V (S). From these trees, it is easy to see that we
are able in O(pn) time to solve both problems, by computing for RV-Max and
for RV-Sum respectively

x◦ = arg min
x∈V (P )

{max{h(x, v)|v ∈ V (S)}},

x◦ = arg min
x∈V (P )

{ ∑

v∈V (S)

h(x, v) · μ(v)
}

.

Concerning the Euclidean distance, once again RV-Max and RV-Sum have
a trivial O(pn) and O(pn+k) time solution, respectively, which work as follows.
First, for RV-Sum only, in O(n + k) time we associate with each vertex v of P
the multiplicity μ(v). Then, for each vertex v ∈ V (S) we can find its distance



Polygon-Constrained Motion Planning Problems 71

Fig. 1. An example of our studied problems for both HD and ED. Polygon P and its
visibility graph G(P ) are shown in (a) and (b), respectively. Black vertices are occupied
by pebbles, whose movement is depicted with directed paths. Optimal solutions for RV-
Max and RV-Sum w.r.t. ED are shown in (c) and (d), respectively, while (e) and (f)
show optimal solutions for the corresponding problems w.r.t. HD, respectively. Optimal
solutions for Con-Max and Con-Sum w.r.t. ED are shown in (g) and (h), respectively,
while an optimal solution for the corresponding problems w.r.t. HD is shown in (i).
Finally, in (j) it is shown an optimal solution for Clique-Max w.r.t. to both ED and
HD and Clique-Sum w.r.t. ED, while an optimal solution for Clique-Sum w.r.t. HD
is shown in (k). Notice that dashed lines in (g–k) show the subgraph of G(P ) induced
by the final position of the pebbles.



72 D. Bilò et al.

to all the other polygon vertices in O(n) time [5,8]. Finally, similarly to the hop
distance, in O(pn) time we solve both problems. However, we now show that as
far as the RV-Max problem is concerned, it is possible to provide an efficient
O(n log n) time solution:

Theorem 1. The RV-Max problem can be solved in O(n log n) time.

Proof. Observe that in O(n log n) time (see [2]) we can compute the so-called
furthest-site geodesic Voronoi diagram of V (S) w.r.t. the Euclidean distance in
P , i.e., a partition of P into a set of regions such that each region remains
associated with the farthest point (in terms of Euclidean distance within P ) in
V (S). Moreover, it can be shown [2] that the size of such a diagram is O(n),
and that given the diagram, for each vertex of P we can find in O(1) time the
farthest point in V (S), i.e., the farthest pebble. Finally, we select the vertex for
which the farthest pebble is closest, and we gather the pebbles there. ≤∀

3 Connectivity

3.1 Con-Max

Concerning Con-Max, let us start by focusing on the hop distance. Then, we
are able to prove the following.

Theorem 2. The Con-Max problem w.r.t. the hop distance is NP-hard.

Proof. We show the NP-hardness by reduction from the NP-complete 3-Sat
problem. In 3-Sat, we are given a set X = {x1, . . . , xδ} of β variables, a set
Y = {c1, . . . , cm} of m disjunctive clauses over X, each containing exactly three
literals (i.e., a variable or its negation), and we want to find a truth assignment
γ : X ∪ {0, 1} satisfying the conjunction of the clauses in Y . For a given
instance I of 3-Sat, we build an instance I ≥ for the Con-Max problem as
follows: we build a simple polygon P , illustrated in Fig. 2, consisting of 2β literal
vertices VL = {x1, x̄1, . . . , xδ, x̄δ}, β assignment vertices VA = {a1, . . . , aδ},
2β + 2m gate vertices VG = {g1, g

≥
1, . . . , gδ+m, g≥

δ+m}, and 5m clause vertices
VC = {c11, c12, c13, p1, q1, . . . , cm1, cm2, cm3, pm, qm}. Polygon P is so constructed
such that, among the others, the following visibility constraints hold:

– literal vertices see each other reciprocally;
– each assignment vertex ai can see only gi, g

≥
i, xi, x̄i;

– each clause vertex cij can see only gδ+i, g
≥
δ+i, pi, qi, the other two clause ver-

tices in its clause, and the literal vertex corresponding to the jth literal of its
clause;

– each clause vertex pi can see only ci1, ci2, ci3, qi.

Then, we put a pebble in each assignment vertex, and a pebble in each pi,
i = 1, . . . , m, so the number of pebbles is k = β + m.

We now show that the 3-Sat instance I has a satisfying truth assignment iff
there exists a solution for I ≥ having maximum hop distance of 1. One direction
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Fig. 2. The polygon P used for proving the NP-hardness of Con-Max problem w.r.t.
the hop distance. Pebbles sit initially on black vertices.

is immediate. Given a satisfying assignment γ , we indeed define the following
movement: each pebble in an assignment vertex moves to the appropriate literal
verified by γ , while each pebble in a clause moves to any clause vertex seeing a
verified literal. In this way, the pebbles originally sitting on assignment vertices
will form a clique in the visibility graph G(P ), while the remaining pebbles are
connected to (i.e., see) exactly an occupied literal vertex.

Concerning the other direction, suppose that there is a solution for I ≥ having
value at most 1. We show that such a solution can be transformed in polynomial
time into a satisfying assignment for I. First of all, notice that by construction of
P , each assignment pebble must be moved to either an associated gate vertex or
to an associated literal vertex to guarantee mutual visibility among assignment
pebbles. Then, observe that in a single hop a pebble in a clause can see a literal
vertex only if it moves to either of the three clause vertices that can see the
respective literal vertices. Thus, to guarantee connectedness among assignment
and clause pebbles, it is required that at least one of these three literals is
occupied by an assignment pebble. Hence, the satisfying assignment for I is
given exactly by the placement onto these literal vertices of the assignment
pebbles that will guarantee the connectedness with the clause pebbles. Notice
that some of the assignment pebbles may need not move to any literal vertex
(i.e., the corresponding variable is not instrumental to guarantee the satisfiability
of I), and so they could simply move to an associated gate vertex in order to be
connected to the assignment pebbles which moved towards the literal vertices.
For these pebbles, we arbitrarily assign a value to the associated variables.

It remains to prove that P can be constructed in polynomial time. It suffices
to show that P can be embedded on integer grid points with polynomial area
and using a polynomial number of algebraic operations, similarly to the approach
used in [10]. Let r = β +m. W.l.o.g., assume that m = Θ(β), and so r = Θ(β) =
Θ(m). Consider a circle C with radius Θ(r2) centered at a point o. We position
the literal vertices x1, x̄1, . . . , xδ, x̄δ on the upper side of C, regularly spaced.
Let the angle (in radians) from o to any two contiguous vertices be Θ(1/r), and
so the angle ∠x1ox̄δ can be less than a fraction of π (i.e., all the vertices stay on
the upper side). Observe that in this way, the distance between two contiguous
vertices is Θ(r). Now, position the assignment spikes on the lower-left side of C,
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so that the angle ∠gjajg
≥
j is Θ(1/r) and the distance between aj and gj , g

≥
j is

Θ(r) (i.e., the distance between gj and g≥
j is Θ(1), and so we can actually put

these vertices on the grid), and the visibility cone from aj towards the upper
side of C includes only the literal vertices xj , x̄j (indeed, the projection of the
cone on the upper side of C has length Θ(r)). Notice that each spike has area
Θ(r). Moreover, again we can guarantee that the angle ∠g1og

≥
δ is less than a

fraction of π. Let us now consider the set of vertices in a clause, along with the
associated gate vertices. Let {gδ+t, g

≥
δ+t, ct1, ct2, ct3, pt, qt} be this set of vertices

for the tth clause. We will embed these points on an r × r grid drawn at the
lower-right side of C. Let ot be the center of such a grid. We draw a circle
Ct centered at ot of radius Θ(r), and we append it to C by the gate vertices
gδ+t, g

≥
δ+t. We let the angle ∠gδ+totg

≥
δ+t be Θ(1/r). Observe now that it is not

hard to see that the angle ∠gδ+txg≥
δ+t is less than ∠gδ+totg

≥
δ+t, for any point

x on the semi-circumference of Ct opposite to the gate vertices, since any such
point is farther from gδ+t, g

≥
δ+t than ot. So, the visibility cone from any such

point towards the upper side of C has an angle O(1/r) and then a projection
on C of length O(r). Thus, it includes a portion of C which is in the order of
the distance between two contiguous literal vertices. Then, we place ct1, ct2, ct3

on the projection through the midpoint of gδ+t, g
≥
δ+t of the respective associated

literal vertex. Finally, we suitably deform Ct so as to put pt, qt in such a way
that pt can only see ct1, ct2, ct3 and qt. Again, the angle ∠gδ+1og

≥
δ+m is less than

a fraction of π. It can now be verified that this construction gives the desired
polygon, and its area is Θ(r4). ≤∀

Thus, since the problem is hard already when the optimal solution costs 1,
we immediately have the following:

Corollary 1. For any α > 0, the Con-Max problem w.r.t. the hop distance
cannot be approximated within 2 − α, unless P = NP.

Moreover, the following implication is also easy to prove:

Corollary 2. Deciding whether Con-Max admits a solution with at most h
hops is NP-complete, for any h ≥ 1.

Proof. Case h = 1 follows directly from Theorem 2. For h > 1, it suffices to
suitably modify the polygon P in Fig. 2 in such a way that the pebbles need to
move for h − 1 steps in order to see the literal and the clause vertices. ≤∀
Concerning the approximability, we recall that in [3] the authors provide a 136-
approximation for the very same problem on general unweighted graphs, which
can therefore be applied to visibility graphs as well.

The above NP-hardness proof can be modified in order to show that the
general Con-Max problem with Euclidean distances is NP-hard as well.

Theorem 3. The Con-Max problem is NP-hard.
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Proof. We show the NP-hardness again by reduction from 3-Sat. For a given
instance I of 3-Sat, we build an instance I ≥ for Con-Max as follows: we build
a simple polygon P with 2β literal vertices VL = {x1, x̄1, . . . , xδ, x̄δ}, β assign-
ment vertices VA = {a1, . . . , aδ}, 2m gate vertices VG = {g1, g

≥
1, . . . , gm, g≥

m},
and 3m clause vertices VC = {c11, c12, c13, . . . , cm1, cm2, cm3}. Polygon P is so
constructed such that, among the others, the following visibility constraints hold
(see Fig. 3):

– literal and assignment vertices see each other reciprocally;
– each clause vertex cij can see only gδ+i, g

≥
δ+i, the other two clause vertices in

its clause, and the literal vertex corresponding to the jth literal of its clause.

Then, we put a pebble in each assignment vertex, and a pebble in each clause
vertex, so the number of pebbles is k = β + 3m. Let us see how polygon P is
actually constructed in polynomial time and with polynomial area. Let r = β+m.
W.l.o.g., assume that m = Θ(β), and so r = Θ(β) = Θ(m). Consider a circle
C with radius Θ(r3) centered at a point o. We position each triple of vertices
xi, ai, x̄i on the upper side of C, regularly spaced at a distance Θ(r). Then, we
let the angle (in radians) from o to any two contiguous triplets be Θ(1/r) (i.e.,
the distance between two contiguous triplets is Θ(r2)). In this way, the angle
∠x1ox̄δ can be less than a fraction of π, and then assume that all these vertices
lie in the [π/4, 3π/4] sector. Let us now consider the set of vertices in a clause,
along with the associated gate vertices. Let {gt, g

≥
t, ct1, ct2, ct3} be this set of

vertices for the tth clause. We will embed these points on an r2 × r2 grid drawn
at the lower side of C, in the [5π/4, 7π/4] sector. Let ot be the center of such
a grid. We draw a circle Ct centered at ot of radius Θ(r2), and we append it
to C by the gate vertices gt, g

≥
t. We let the angle ∠gtotg

≥
t be Θ(1/r2) (i.e., the

distance between gt and g≥
t is Θ(1), and so we can actually put these vertices

on the grid). Then, the visibility cone from any point on the semi-circumference
of Ct opposite to the gate vertices towards the upper side of C has an angle of
O(1/r2) and then a projection on C of length O(r). Thus, it sees a portion of
C including a single literal vertex. Then, we place ct1, ct2, ct3 on the projection
through the midpoint of gt, g

≥
t of the respective associated literal vertex. Notice

that by construction, these vertices will lie in the lower side of Ct, and so they
will be at Θ(r2) distance from the respective gate vertices. It can now be verified
that this construction gives the desired polygon, and its area is Θ(r6).

Then, it is not hard to see that the 3-Sat instance I has a satisfying truth
assignment iff there exists a solution for I ≥ having maximum distance Θ(r). One
direction is immediate. Given a satisfying assignment γ , we indeed define the
following movement: each pebble in an assignment vertex moves to the appro-
priate literal verified by γ , while each pebble in a clause stands still. In this way,
the pebbles originally sitting on assignment vertices will form a clique in the
visibility graph G(P ), while for each clause there is at least a pebble connected
to a literal vertex satisfying the clause, and so the other pebbles in the clause
will remain connected to it. Notice that the maximum movement is Θ(r).

Concerning the other direction, suppose that there is a solution for I ≥ having
value Θ(r). We show that such a solution can be transformed in polynomial
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Fig. 3. The polygon P used for proving the NP-hardness of Con-Max, along with a
specification of distances among vertices. Pebbles sit initially on black vertices.

time into a satisfying assignment for I. First of all, notice that by construction
of P , no assignment pebble can move beyond the adjacent literal vertices, and
similarly no pebble in a clause can move to the associated gate vertices. Then,
in order to guarantee connectedness, we have that each assignment vertex must
move to a literal vertex, and moreover there must be at least a pebble in each
clause seeing a literal vertex occupied by a pebble. Thus, this corresponds to a
satisfying assignment for I. ≤∀

The above result has a very strong implication:

Corollary 3. Con-Max is not approximable within any polynomial, unless P =
NP.

Proof. Observe that the construction of the polygon P given in Theorem 3 can be
inflated as follows: for any integer k > 2, we let the circle C have radius Θ(rk+1),
we let the distance between two contiguous triplets be Θ(rk), we embed each
clause on an rk × rk grid, and we finally let the angle ∠gtotg

≥
t be Θ(1/rk). It

can now be verified that this construction gives a polygon of area Θ(r2(k+1)) for
which an optimal solution of cost Θ(r) exists iff there is a satisfying assignment,
while any approximate solution will require a pebble to be moved by ξ(rk).
Hence, since r = Θ(n), the claim follows. ≤∀

3.2 Con-Sum

Concerning Con-Sum, the reduction shown in Theorem 2 can be modified to
prove the following two results:

Theorem 4. The Con-Sum problem w.r.t. the hop distance is NP-hard.

Proof. We use the same construction as in Theorem 2. The claim is that the
instance I of 3-SAT is satisfiable iff there is a solution for the instance I ≥ of
Con-Sum of cost at most β + m. Given a truth assignment, the existence of a
solution of cost β + m is immediate, since we have shown how to move every
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pebble at most by one to obtain connectedness. Now assume that we have a
solution U with total movement of h := ||d(S,U)|| ∼ β +m. First of all, we show
that h < β + m is unfeasible, and so it must be h = β + m.

For the sake of contradiction, assume that h < β + m hops are enough. This
means that there is at least a pebble that does not move. But then observe that
the distance in the visibility graph G(P ) of P between any two initial positions of
pebbles is at least 3, and so to be visually connected to other pebbles, a pebble
that stands still asks for (at least) another pebble being moved by at least 2
hops. Moreover observe that each vertex of P guards at most a single vertex on
which pebbles initially sit, and so no pebble which moves for at least 2 hops can
be visually connected to more than one pebble which remained still. From this,
we have that to guarantee connectedness, it must be h ≥ β +m, a contradiction.

Then, let h = β+m. If each pebble has moved, we are done, since this implies
that each clause pebble is connected in G(P ) to a literal pebble, and therefore
we can compute (in polynomial time) a truth assignment for I by using the
same arguments used in Theorem 2. Otherwise, assume this is not the case, and
so there is at least one pebble that remained still. We will show that U can
be modified into another solution U ≥ such that (i) U ≥ still has total movement
h, and (ii) every pebble moves exactly one step in U ≥. The modification of the
solution U is quite simple. Let H be the (connected) subgraph of the visibility
graph induced by the final positions of the pebbles in U . Moreover, let p be a
pebble sitting in the node v and which did not move in U . Consider a node v≥

which is adjacent to v in H onto which a pebble p≥ sits. In order to reach v≥,
as explained before pebble p≥ moved by t ≥ 2 hops. Moreover, observe that by
construction the set of vertices which are visible from v is a subset of the set
of vertices which are visible from v≥. Then, we modify U as follows. We move p
from v to v≥, and we move p≥ backwards by one step w.r.t. its path towards v≥.
In this way, the movement of p≥ is now t − 1 ≥ 1, all the vertices which where
guarded by p≥ are now guarded by p, and p and p≥ are connected. So the new
pebble configuration is still connected and the total movement remains h. By
proceeding in this way, we will arrive to the aimed configuration U ≥. ≤∀
Corollary 4. For any 0 < α < 1, the Con-Sum problem w.r.t. the hop distance
cannot be approximated within n1−α, unless P=NP.

Proof. We adapt the reduction of Theorem 2 as follows: we modify the gadgets
of the assignment vertices and of the clauses by adding 2N vertices and N + 1
pebbles for each gadget, where N = (β + m)2/α−1 (see Fig. 4).

Then, it can be shown that (see also the proof of Theorem 4):

(i) if there exists a satisfying truth assignment for I, then there exists a solution
for I ≥ having total movement of β + m;

(ii) if there exists a solution for I ≥ with total movement less than or equal to
N , then there exists a satisfying truth assignment for I. Indeed, as the total
movement is less than or equal to N , a pebble placed on vertex aj or vertex
pt has been moved by at most 1 (otherwise, all the other N pebbles placed
in the same gadget would have been moved by at least 1).
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Fig. 4. The assignment and clause gadgets for proving the inapproximability of Con-
Sum w.r.t. the hop distance. Pebbles sit initially on black vertices. Vertex aj and vertex
pt contain two pebbles each.

Since 3-SAT is NP-complete and n = Θ
(

(β + m)2/α
)

, the approximation ratio of
any polynomial time algorithm for the Con-Sum problem must be at least

N

β + m
=

(β + m)2/α−1

β + m
= (β + m)2/α−2 = ξ(nα/2)2/α−2 = ξ(n1−α).

≤∀
On the positive side, we have the following:

Theorem 5. The Con-Sum problem w.r.t. the hop distance can be solved opti-
mally up to an additive term of O(nk).

Proof. It suffices to observe that any solution which will bring all the pebbles to
sit on a same vertex cannot require more than n additional hops for each of the
k pebbles w.r.t. an optimal solution. ≤∀

On the other hand, when we consider the Euclidean distance, Con-Sum
becomes much harder, as the following two results show:

Theorem 6. The Con-Sum problem is NP-hard.

Proof. The NP-hardness follows again by reduction from 3-Sat, by slightly mod-
ifying the construction given in Theorem 3. More precisely, we let the circle C
have radius Θ(r4), we let the distance between two contiguous triplets be Θ(r3),
we embed each clause on an r3 × r3 grid, and we finally let the angle ∠gtotg

≥
t

be Θ(1/r3). It can now be verified that this construction gives a polygon of area
Θ(r8), for which it can be shown that there exists a satisfying assignment for
3-Sat iff there exists a solution for Con-Sum of costs Θ(r2). ≤∀
Corollary 5. Con-Sum is not approximable within any polynomial, unlessP=NP.

Proof. Observe that the construction of the polygon P given in Theorem 6 can be
inflated as follows: for any integer k > 3, we let the circle C have radius Θ(rk+1),
we let the distance between two contiguous triplets be Θ(rk), we embed each
clause on an rk × rk grid, and we finally let the angle ∠gtotg

≥
t be Θ(1/rk). It

can now be verified that this construction gives a polygon of area Θ(r2(k+1)) for
which an optimal solution costs Θ(r2) (and can be found in polynomial time iff
P=NP), while any approximate solution will require a pebble to me moved by
ξ(rk). Hence, since r = Θ(n), the claim follows. ≤∀
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4 Clique-Connectivity

As far as the clique-connectivity problems are concerned, we are able to provide
results only for the hop distance case, while the Euclidean case remains open.

4.1 Clique-Max

Concerning Clique-Max, it is easy to see that the problem can be solved opti-
mally up to an additive term of 1, by just guessing a vertex belonging to an
optimal solution onto which all the pebbles are moved (see [4]). In spite of that,
the problem is hard, as proven in the following:

Theorem 7. The Clique-Max problem w.r.t. the hop distance is NP-hard.

Proof. We suitably modify the reduction of Theorem 2. So, the reduction is
still from the 3-Sat problem. For a given instance I of 3-Sat, we build an
instance I ≥ for the Clique-Max problem as follows: we build a simple polygon
P consisting of 3β literal vertices VL = {x1, x̌1, x̄1, . . . , xδ, x̌δ, x̄δ}, 5m clause
vertices VC = {c11, c12, c13, p1, q1, . . . , cm1, cm2, cm3, pm, qm}, 2m gate vertices
VG = {g1, g

≥
1, . . . , gm, g≥

m}, 3 obstacle vertices y1, y2, y3, and finally five auxiliary
vertices z1, z2, z3, z4, p̄. Polygon P is so constructed that, among the others, the
following visibility constraints hold (see Fig. 5):

– every literal vertex xi sees all the other literal vertices but x̄i, and vice versa;
– each clause vertex cij can see only gδ+i, g

≥
δ+i, pi, qi, the other two clause ver-

tices in its clause, and the literal vertex corresponding to the jth literal of its
clause;

– each clause vertex pi can see only ci1, ci2, ci3, qi;
– gate vertices cannot see auxiliary vertices due to the obstacle made up by

y1, y2, y3;
– p̄ can see only z3 and z4, z3 and z4 see each other and can see only z1, z2, p̄,

while z1 and z2 can see all the literal vertices but not the gate vertices.

Then, we put a pebble in each clause vertex pi, i = 1, . . . , m, and a pebble
in p̄.

We now show that the 3-Sat instance I has a positive answer iff there exists a
solution for I ≥ having maximum hop distance of 2. One direction is simple. Given
a satisfying assignment γ , we indeed define the following movement: each pebble
in a clause moves first (with a single hop) to any clause vertex seeing a verified
literal, and then it reaches the corresponding literal vertex with an additional
hop. Moreover, we move the pebble in p̄ to z1. In this way, the assignment vertex
will form a clique in the visibility graph G(P ), and each pebble makes 2 hops.

Concerning the other direction, suppose that there is a solution for I ≥ having
value at most 2. We show that such a solution can be transformed in polynomial
time into a satisfying assignment for I. First of all, notice that the pebble in p̄
must be either in z1 or z2. Moreover, by construction, since the final positions of
the pebbles induce a clique, it must be the case that every pebble is on a literal
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Fig. 5. The polygon P used for proving the NP-hardness of Clique-Max w.r.t. the
hop distance. Pebbles sit initially on black vertices.

vertex. Indeed, the only vertices that can be reached by 2 hops from pt and
which are visible by z1 or z2 are the literal vertices associated with the tth clause.
Moreover, we cannot have two pebbles on xi and x̄i, because these two vertices
cannot see each other. Hence, the final positions of the clause pebbles define a
truth assignment for the formula. Notice that it can be the case that there is
no pebble in xj nor in x̄j (i.e., the corresponding variable is not instrumental to
guarantee the satisfiability of I). In this case we assign an arbitrary value to xj .

It remains to show that P can be constructed in polynomial time. Actually,
the construction is similar to that used in Theorem 2, and so we leave it to the
reader. We just point out that the angle ∠x̄ixix̌i must be Θ(1/r2), in order to
hide only x̄i to xi (i.e., the distance between x̌i and the ray passing through
xi, x̄i will be Θ(1)). ≤∀

Since the problem is hard already when the optimal solution costs 2, we have:

Corollary 6. For any α > 0, Clique-Max w.r.t. the hop distance cannot be
approximated within 3/2 − α, unless P = NP.

Moreover, the following implication is also easy to prove:

Corollary 7. Deciding whether Clique-Max admits a solution with at most h
hops is NP-complete, for any h ≥ 2.

Proof. Case h = 2 follows directly from Theorem 7. For h > 2, it suffices to
suitably modify the polygon P used in Theorem 7 in such a way that the pebbles
need to move for h − 1 steps in order to see the literal and the clause vertices. ≤∀

4.2 Clique-Sum

Concerning Clique-Sum, once again we restrict ourselves to the hop distance
case. First of all, notice that in this case the problem is 2-approximable [4].
However, it turns out that a slight modification of the reduction used for Clique-
Max yields the following:
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Theorem 8. The Clique-Sum problem w.r.t. the hop distance is NP-hard.

Proof. We use the same construction as in Theorem 7. W.l.o.g. we assume that
in the instance of 3-SAT the mth clause cm contains only the variable xδ (either
negate or not), and that xδ occurs only in cm. We claim that I is satisfiable
iff I ≥ admits a solution of total movement at most 2(m + 1). One direction is
immediate, since we have proved that if I has a satisfying truth assignment then
we can move the pebbles towards a clique with maximum movement of 2. Now,
assume that we have a solution of total movement of at most 2m + 2. We will
show that every pebble must move by at least 2 hops to guarantee the clique
constraint (and so actually at least 2m + 2 hops are needed). This immediately
implies the claim, since this means that each pebble moves exactly 2 steps, and
so we can compute (in polynomial time) a truth assignment for I by using the
same arguments used in Theorem 7. First of all, observe that the hop distance
between any two pt and pt′ is at least 4 (i.e., it is 4 if ct and ct′ share a literal,
otherwise is 5). Moreover, the hop distance between any pt and p̄ is 5. Finally,
for our assumption about instance I, the hop distance between pt and pm is 5,
for every t ∗= m. Let h be the movement of a pebble p. In order to move all the
pebbles in a feasible configuration, we have that two pebbles have been moved
by at least 4 − h hops, and the remaining m − 2 pebbles have been moved by
at least 3 − h hops. Summing up over all the pebbles, the total movement is
at least 3m + 2 − (m − 1)h, which is less than or equal to 2m + 2 only when
h ≥ ⊥m/(m − 1)�, i.e., h ≥ 2. ≤∀

5 Discussion and Open Problems

Motion planning in a constrained environment is susceptible of a deep investi-
gation in several respects. Here we have limited our attention to planar vertex-
to-vertex motion in a simple polygon and with the objective of achieving very
basic configurations, but it is easy to imagine more challenging scenarios. For
instance, notice that relaxing the assumption that pebbles have to start, turn,
and stop at vertices only will make the planning task substantially more difficult.
On the other hand, a simplifying yet very interesting setting is that in which the
constraining polygon is orthogonal.

As far as the problems in our setting are concerned, we point out that it
remains open to understand the computational properties of Clique (both
Max and Sum) w.r.t. the Euclidean distance. Moreover, establishing whether
Clique-Max for the hop distance is hard already when an optimal solution
costs 1 is very intriguing: indeed, such a case retains a strong connection with
the Clique Dominating Set (CDS) problem (i.e., deciding whether a graph
has a dominating clique). For general graphs, it is known that this problem
is NP-complete, while it is unknown whether CDS is NP-complete for visibility
graphs. Notice that if CDS was NP-complete for visibility graphs, we would have
the NP-hardness of Clique-Max already restricted to instances where an opti-
mal solution costs 1 (indeed, it suffices to consider instances with a pebble in
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each vertex). Conversely, if we prove that Clique-Max is polynomially solvable
for h = 1, then this implies that CDS for visibility graphs is also decidable in
polynomial time. Finally, we feel that an improvement of the 136-approximation
algorithm for Con-Max w.r.t. the hop distance might be possible, by exploiting
the special nature of visibility graphs.
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László Blázovics1 and Tamás Lukovszki2(B)

1 Department of Automation and Applied Informatics,
Budapest University of Technology and Economics, Budapest, Hungary

laszlo.blazovics@aut.bme.hu
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Abstract. We consider the focused coverage self-deployment problem
in mobile sensor networks, where an area with maximum radius around a
Point of Interest (POI) must be covered without sensing holes. Li et al.
[9,10] described several algorithms solving this problem. They showed
that their algorithms terminate in finite time. We present a modified
version of the Greedy-Rotation-Greedy (GRG) algorithm by Li et al.,
which drive sensors along the equilateral triangle tessellation (TT) graph
to surround a POI. We prove that our modified GRG (mGRG) algorithm
is collision free and always ends up in a hole-free network around the POI
with maximum radius in O(D) steps, where D is the sum of the initial
distances of the sensors from the POI. This significantly improves the
previous bound on the coverage time. The theoretical results are also
validated by simulations.

Keywords: Self-deployment · Mobile sensor network · Localized
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By assuming a large scale sensor network with unpredictable sensor failure,
limited sensing and communication range, decentralized or localized sensor self-
deployment methods are more beneficial and scale invariant than centralized
solutions. In this context localized means that each sensor makes independent
decisions using neighborhood information only.

There are situations where sensors should cover a dedicated area around
a Point of Interest (POI). These scenarios are typical in such cases like area
discovery for survivors around the epicenter of disaster. In these cases the area
close to the POI has higher priority and it is more important to be covered
than the distant one. This type of coverage is called focused coverage or F-
coverage [10].

In this article we present a localized, synchronous algorithm for the sensor
self-deployment problem with optimal F-coverage.

1.1 Focused Coverage (F-Coverage)

We follow the terminology of Li et al. [10]. The coverage region of a sensor
network is the region which is enclosed by the outer boundary of the network.
If the coverage is not complete there will be still sensing (or coverage) holes.
Sensing holes are closed areas inside the coverage region which are not covered
by the sensing range of the sensors.

The coverage radius (or radius of an F-coverage) is the radius of the maximal
hole-free disc enclosed by sensors and centered as POI. The optimal F-coverage
has maximized coverage radius. If the number of sensors is unlimited and the
sensing radius of the sensors approaching zero then the maximum hole-free disc
has a circular shape. Since the sensing radius of the sensors is finite, we consider
a discrete variant of coverage radius measured by layer distance. Layer distance,
also called convex layers in computational geometry represents the number of
successive complete convex polygons adjacently surrounding POI. More pre-
cisely, we consider a discrete set of convex polygons Pi, (i = 1, 2, ...) composed
of sensors, centered at POI, and having a diameter of i · d for some constant d.
Then the coverage radius is the maximum value k, such that Pk is completely
in the coverage region.

1.2 The Equilateral Triangle Tessellation

The equilateral triangle tessellation is a tiling of the plane in equilateral triangles
with no overlaps and no gaps. The equilateral triangle tessellation (TT) maxi-
mizes the coverage area of a given number of sensors without coverage gap when
sensor separation is equal to rs

≥
3, where rs is the sensing radius of the sensors

[1,11]. If the communication radius rc of the sensors is at least rs

≥
3, the deploy-

ment of the sensors corresponding to a TT layout guarantees the connectivity
of the network. The convex polygons defining the layers and the layer distance
of the F-coverage are hexagons centered at the POI.
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1.3 Problem Statement

We are given n mobile sensors with communication radius rc and sensing radius
is rs of each, rc ← rs

≥
3. We assume that the n mobile sensors are initially placed

at the vertices of the TT, such that each sensor is placed in a different vertex.
This is an unrealistic assumption if the sensors are dropped from a plane. In
that case the sensors can perform the Snap and Spread algorithm by Bartolini
et al. [2] to achieve the above condition. The sensors may be disconnected at
the beginning. All sensors have a common coordinate system and they all know
the location of the POI. Without loss of generality, the POI at the origin of the
coordinate system. Furthermore, the sensors only have information about their
1- and 2-hop neighbors. The sensors are able to move only on the edges of the
TT graph (see Fig. 2). They all move synchronously with uniform speed, s.t.
they travel an edge of the TT in one time unit.

The sensors operate corresponding to the Look-Compute-Move model. In
one cycle, a sensor takes a snapshot of the current configuration (Look), makes
a decision to stay idle or to move to one of its adjacent nodes (Compute), and
in the latter case makes an instantaneous move to this neighbor (Move).

The motion ends when the sensors uniformly surround the POI by forming
hole-free network with maximized coverage radius. From now on we will use the
terms node and sensor interchangeably.

1.4 Our Contribution

We present a modified version of the GRG/CV algorithm of Li et al. [10]. We
prove that our modified GRG (mGRG) algorithm guarantees, that after O(D)
steps each node reaches its final layer, where D is the sum of initial hop distances
of the nodes from the POI in the TT. We validate our theoretical results also
with simulations.

An important difference between the requirements of the GRG of Li et al.
[10] and our mGRG algorithm is that the GRG in [10] uses the knowledge about
the 1-hop neighborhood of the sensors, while our mGRG algorithm needs the
knowledge of the 2-hop neighborhood. We give examples, that show that the
knowledge about the 2-hop neighborhood of the sensors is necessary to avoid
collision situations and make the deployment process faster.

This paper is organized as follows. Section 2 gives an overview of related
work. In Sect. 3 we introduce our mGRG algorithm and mathematical notations.
We prove the convergence of the mGRG algorithm in Sect. 4 and present an
O(D) upper bound on the surrounding time. Section 5 presents our experimental
results. Finally, Sect. 6 summarizes the work.

2 Related Work

In the field of mobile sensor networks sensor self-deployment problem has been
an important research topic that deals with autonomous coverage formation.
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In the article of Gage et al. [6] three type of formation was introduced.
However it was a military oriented article, from the perspective of the F-coverage
only the blanket formation is relevant. In this formation the nodes form static
connected group in order to maximizes the detection rate of targets appearing
within the coverage area.

The most common sensor self-deployment method is the vector or virtual-
force-based approach. The algorithms which rely on this approach use potential
fields, generated around the sensors which moves the neighbors by attract or
repulse them (depending on the distance). The first work which used this app-
roach was published by Howard et al. [7].

Large amount of research deals with sensor deployment algorithms for cov-
erage formation over a Region of Interest (ROI). An excellent summary can be
found in the works of Nayak et al. [12] and Brass et al. [3].

Cortes et al. [5] proposed Voronoi diagram based sensor self-deployment
method for the coverage of the ROI. The main idea of self-deployment with
Voronoi diagrams is to move sensors to minimize their local uncovered areas
(equivalently speaking, to maximize their sensing-effective areas) by aligning
their sensing range with their Voronoi regions as much as possible.

Li at al. [8–10] introduced the F-coverage problem. They solved the problem
in a discrete case on an equilateral triangle tessellation. Collision of sensors
during the deployment was allowed, i.e. more than one sensors can occupy the
same triangle vertex at the same time. They presented a proof of the convergence
of their solution within finite time. The convergence time, energy consumption
and number of collisions has been evaluated by simulations.

In the work of Yang et al. [13] a distributed load-balancing sensor self-
deployment algorithm was presented which partitions the plane into a 2D mesh,
and treats nodes as load. By this algorithm, nodes in each cell form a cluster
covering the cell and are managed by an elected cluster head. This approach also
requires dense network coverage and inter-agent communication.

Bartolini et al. [2] have presented a localized algorithm on a hexagonal grid
map in which the entities simultaneously use the snap and the spread activities
in order to cover the given area. The nodes are dispersing from their initial
position while occupying the free hexagons. On each occupied hexagon only the
occupier allowed to stay, which forwards the others towards the borderline of
the covered area.

Cord-Landwehr et al. [4] studied the problem of gathering mobile robots with
an extent at a fixed position as dense as possible to form a disk of minimum radius
around the gathering point. The authors present an algorithm for the continuous
case and the discrete case, where the robots are moving on a grid. They prove an
O(nR) upper bound for the gathering time, where n is the number of robots and
R is the distance of the farthest robot from the gathering point. They empirically
studied the continuous case, where in they report a few deadlock situations in
the simulations.
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3 The Modified GRG

Before the introduction of our modified GRG algorithm, we briefly review the
collision avoidance version GRG/CV [10] of the GRG algorithm.

3.1 The GRG/CV Algorithm

The Greedy-Rotation-Greedy (GRG) algorithm and its version with collision
avoidance (GRG/CV) are designed for the asynchronous model. The self-
deployment decision of the sensors only uses the information about the 1-hop
neighborhood. In order to keep the description simple, we declare the POI unoc-
cupyable. Therefore, the POI related rules were not used. The sensors try to
move toward the POI along the TT edges and decrease the hop distance to the
POI step by step. This movement is called greedy advance movement. If the
greedy advance movement is blocked, the sensors use another type of movement,
called rotation movement, i.e. they try to move on the same layer. The rotation
is restricted to a particular, say the counterclockwise, direction so as to avoid
unnecessary collision among rotating nodes. The key is that a sensor should not
move away from the POI once it moves closer to it. A sensor stops rotating when
it reaches a vertex where greedy advance can resume, or when it returns to the
vertex where it started rotating or the rotational movement is blocked. In the
case that a greedy advance movement and a rotation movement target the same
vertex, a competition rule is applied, which gives higher priority to the greedy
advance movement.

Although the GRG/CV is an asynchronous algorithm, in most cases it works
also in a synchronous environment. However, as illustrated on Fig. 1(a), there
are situations where a sensor is unable occupy an empty vertex. The sensor u on
the second layer is unable to move to the empty vertex, because it only knows
its 1-hop neighborhood. Thus, u does not see the empty vertex. Therefore, u
rotates counterclockwise. In the same time step v moves to the empty place, and
the previous position of v becomes empty. After one step (See Fig. 1(b)) the u
is in front of the empty place, however due to the Safety Rule in [10] it is not
allowed to occupy the empty place1. The empty space moves in the first layer
in clockwise direction and u on the second layer in counterclockwise direction.
After three steps the same situation appears as in Fig. 1(a), just rotated around
the POI by an angle of 2α/3 counterclockwise. After making a full circle around
the target, u will stop without occupying the empty place.

It is not solved in [10].

3.2 The mGRG Algorithm

The main ideas of our concept to make the surrounding of the POI faster are
the following. First, each hexagonal layer is assigned a heading direction, such
1 The Safety Rule in [10] describes that a node must not greedily advance unless it

knows the movement is definitely safe. It says that a node u does not choose inward
vertex neighbor x as greedy next hop if the neighbor of x on the layer of x in clockwise
direction is not a one-hop neighbor of u.
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Fig. 1. Endless loop with the modified GRG/CV

Fig. 2. The hexagonal layers (trajectories) and their heading direction in the equilateral
triangle tessellation

that any two neighboring layers have opposite heading direction. For example,
odd layers have counterclockwise and even layers clockwise heading direction.
When a sensor on a certain layer performs a rotation step, it moves around the
POI in the given heading direction. Second, if a greedy advance movement and a
rotation movement target the same vertex, the rotational movement gets higher
priority. This principle will ensure that each sensor can keep moving in each time
step, since rotation will be always possible.

The sensors move straight towards the POI until they reach the innermost
hexagonal layer. This is the primary trajectory (T1).

Similarly to the base GRG, if a node is unable to the get closer to the POI
– because of another node is in front of it, or it has reached the innermost layer
– it should rotate on the current layer.

If the node is able to move to an inner layer it should check whether an other
node is trying to get to the same place. An example can be seen on Fig. 2.

Now we define the priority rule more precisely. Consider a vertex x on the
layer Ti The vertex x has at most four neighboring vertices from which it can be
occupied in the next step if x is a corner vertex, and at most three, otherwise.
One such neighboring vertex is on the same layer Ti and at most three vertices
on the next higher layer Ti+1. Regarding x the highest priority is assigned to
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the neighbor vertex on Ti. The heading direction Ti+1 defines an order on the
neighbor vertices on Ti+1. The first one in this order gets the second highest
priority, the second the next highest, etc. For example, in Fig. 2 vertex p1 can be
occupied from vertices q1, q2, q3, p2. The priority order from highest to lowest
is p2, q3, q2, q1. A sensor u obtains the same priority than the vertex currently
occupied by u. A sensor u can occupy a vertex x, if no other sensor resides
on a vertex with higher priority regarding x. Note that each sensor is aware
of the sensors that can occupy the same vertex, since they are in the 2-hop
neighborhood of each other. Thus, each sensor can decide locally, whether it has
the highest priority among them.

If a sensor u is equally far from two vertices closer to the POI than u (like
q1 from p0 and p1 in Fig. 2 and the heading direction of u is counterclockwise
(clockwise), then the vertex left (right) from the direction of the POI is prefered.
If there is another sensor with higher priority regarding this vertex, then u choose
the other. If this vertex also can be occupied by a higher priority sensor, then u
must rotate.

These rules imply that each sensor either moving towards the target or rotat-
ing around it, it never stays on same place in the next time step. They also imply
that a node must know the 2-hop neighborhood in order to avoid collision and
to detect an occupyable vertex in the next inner layer.

4 Analysis

In this section we prove that by using the mGRG algorithm a group of mobile
sensors will always enclose a given POI with maximum coverage radius.

We assume that at the beginning each sensor resides on different vertices of
the TT and tries to move on the edges towards of the POI.

We say that two sensor u and v are in conflict if they may target the same
vertex x of the TT in one step.

We prove that the sensors always can move, never stuck in deadlock situation
and we give a convergence guarantee of the surrounding process.

4.1 Upper Bound on the Coverage Time

First we show that each sensors can move either into the direction of the POI
or rotate on the same layer around the POI. Therefore, the sum of the distances
between the nodes and the POI never increases during the process.

Lemma 1. Each sensor v, which is not on the innermost layer T1, can move
towards the POI if v is not in conflict with another sensor u with higher priority.
Otherwise, v can move on its current layer around the POI in the corresponding
heading direction. The distance between the POI and the sensor never increases
during the coverage process.
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Proof. First we consider a sensor v which is already on the innermost layer T1.
We show that v can move on that layer and its distance never increases. Since all
sensors on T1 (if any) move in the same direction around the POI synchronously,
their distance to each other remains the same, and thus, they do not cause a
collision. Another sensor u is only allowed to move to T1, if it does not cause a
collision.

Now we consider a sensor v which not in T1. If v is not in conflict with any
another sensor u regarding a neighboring vertex on the next inner layer, then it
moves towards the POI and its distance strictly decreases. Otherwise, by similar
argument than above, v can rotate on its current layer and its distance from the
POI does not change. ∈≤

Now we are able to prove a guarantee of the convergence of the coverage
process.

Theorem 1. Until the inner layers have not been occupied with sensors (i.e. an
inner orbit Tin contains an unoccupied vertex), the sum of hop-distances of the
sensors from the POI decreases by at least 1 within 3(i + 1) + 1 steps, where i is
the index of the innermost layer with an unoccupied vertex Ti.

Proof. Our rules guarantee that for each sensor the distance from the POI never
increases. If a sensor is not prohibited by other sensors, it is moving towards
the POI, until it reaches the innermost layer. If a sensor does not decrease its
hop-distance to the POI by one unit in a time step, then it is either on the
innermost layer or it is in conflict with another sensor.

Let Ti be the innermost layer which contains an unoccupied vertex. Consider
a sensor v on the layer Tj , such that j > i and j is smallest among them. If no
such sensor exists, then we are done, all inner layers are filled. Otherwise, if v is
not at a corner vertex of the hexagonal layer Tj , then v can only be prohibited
to move in the direction of the POI by sensors on Ti. If v is at a corner vertex
of Tj , it also can be prohibited to move in the direction of the POI by another
node v◦ on a neighboring vertex of the same layer. Then we substitute v by v◦.
The sensor v decreases its distance until it reaches layer Ti+1 where it starts
the rotation. The sensor v and the unoccupied vertex on Ti rotate in opposite
direction. Within 3(i+1)+1 steps either v can move into the unoccupied vertex
on Ti or another sensor filled it before v. Thus, within 3(i + 1) + 1 steps at least
one sensor decreased its hop-distance to the POI at least by one. ∈≤
Theorem 2. After O(D) time steps all inner layers are filled, where D is the
sum of initial hop-distances of the sensors to the POI.

Proof. For i ← 1, the number of vertices of layer Ti is 6i. Let i∈ be the smallest
index, such that the number of sensors n is less than or equal to

∑i∗

i=1 6i. For
1 ∀ i < i∈, let mi = 6i and let mi∗ = n − ∑

1∗i<i∗ 6i. We show that after O(D)
time steps all vertices of layers Ti, 1 ∀ i < i∈, become occupied and layer Ti∗

contains mi∗ sensors.
For 1 ∀ i ∀ i∈ and 1 ∀ j ∀ mi, let ti,j be the time, when all layers Tα, β < i,

are already filled and the number of sensors on layer Ti increases from j −1 to j.
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Let vi,j be the sensor moving to layer Ti at time ti,j . Ti will be the final layer
of vi,j , since all layers closer to the POI are already filled. Let Vi,j be the set
of sensors that have already reached their final layer at time ti,j . To simplify
the description let t1,0 be the starting time and ti+1,0 := ti,mi

, for 1 ∀ i < i∈.
Consider the time dti,j := ti,j−ti,j−1, 1 ∀ i ∀ i∈, 1 ∀ j ∀ mi. Let ui,j ∪ V \Vi,j−1

be a sensor at time ti,j−1 which is closest to the POI and not prohibited to move
in the direction of the POI by nodes in V \ Vi,j−1. The sensor ui,j can move in
the direction of the POI in each time step, until it reaches the layer Ti+1. (In
case ui,j could not decrease its hop-distance to the POI, then it is in conflict with
another sensor w on the same layer. Then we simply replace ui,j by w. Note that
at time ti,j−1, w was also on the same layer as ui,j , since ui,j was closest to the
POI.) Then after O(i) rotation steps on layer Ti+1 it can occupy an unoccupied
vertex in Ti, if Ti has not been filled before this time step. Thus, we obtain that
dti,j ∀ di,j−1(ui,j , o) + O(i), where di,j−1(ui,j , o) is the distance of ui,j to the
POI at time ti,j−1, which is not greater than the initial distance d(ui,j , o) of ui,j

and the POI. Furthermore, d(ui,j , o) ← i. Therefore, dti,j ∀ c ·d(ui,j , o), for some
constant c > 1. Thus we can conclude that the time t until all the sensors reach
their final layer is:

t =
i∗

∑

i=1

mi∑

j=1

dti,j ∀
∑

u≥V

c · d(u, o) = O(D).

∈≤

5 Evaluation

In order to evaluate our solution we have implemented both the GRG/CV and
the mGRG algorithms in our custom synchronous simulation environment. We
performed simulations where the nodes were placed uniformly at random on the
vertices of a TT graph. In all scenarios the POI was placed on one of the centre
vertex of the TT graph. The sensors know their 2-hop neighborhood in the TT.
Due to the synchronous environment, the speed and the taken distance were
the same for each sensor in each time step. We made two group of simulations
during the evaluation process.

In the first group we measured the performance of the GRG/CV and the
mGRG when the dropping area was a fixed 30 × 30 square area and network
size was varying from 30 to 315 nodes. With each parameter we performed 20-20
simulations. In the second group we kept the number of the nodes fixed (90),
while we varied the size of the dropping area from 25 × 25 to 45 × 45. We
performed 40-40 simulations with each parameter.

5.1 GRG/CV vs. mGRG

Below we will introduce the results of the two simulation groups. The results are
visualised on Fig. 3. Figure 3(a) and (b) show, that the mGRG always required
less time steps than GRG/CV for finalising the coverage.
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(a) (b)

(c) (d)

(e) (f)

Fig. 3. Simulation results for mGRG (blue) GRG/CV (red), (a)–(c) var. size network
fixed size dropping area, (d)-(f) fixed size network, var. size dropping area, (a)(d)
Coverage time (b)(e) average moves per node (c)(f) overall moves of nodes (Colour
figure online)

5.2 Fixed Sized Dropping Area and Varied Network Size

Figure 3(a) shows the coverage time of the algorithms. As it was noticed in
simulations of Li et al. [10] for the GRG/CV algorithm the curves are tendentially
increasing however they contain similar intervals in which they descend. Our
mGRG algorithm shows a similar behavior. This is because both algorithms
do not converge until there is no node which are able to move closer to the
POI. However if the outermost layer has more free vertices than moving nodes,
the occupation of these vertices required less steps than those situations when
all vertices must be occupied. The latter case can be observed in the peaks of
Fig. 3(a) where the number of nodes enables to fully fill all the layers. In both
situations mGRG always performs better than GRG/CV. It can be observed
that difference will be more significant with increasing number of sensor nodes.

Figure 3(c) shows the average number of steps taken by the sensor nodes.
Because the nodes in mGRG never stop moving, each node make the same
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amount of steps which is equal to the convergence time. In contrast, the nodes
in GRG/CV often stop moving in order to allow neighbors with higher priority
to continue their motion and to avoid collisions. The moving of the nodes is
prohibited more frequently as the density of the nodes increases. That is why
the average number of steps in GRG/CV decreases and that is the main reason
why the GRG/CV is slower than mGRG.

Figure 3(e) shows the total number of moves taken during the coverage
process. GRG/CV performs less moves than the mGRG it is less sensitive to
number of nodes. However we should note this is because that nodes in GRG/CV
often stop and then start moving again. The nodes in mGRG keep moving even
they reached their final layer.

5.3 Fixed Sized Network and Varied Sized Dropping Area

Figure 3(b) shows that the mGRG performs the converage faster than the
GRG/CV. In addition it is less dependent on the startup constellation. It can
be also observed that these curves are monotonically increasing. This is because
the number of the entities is fixed and the coverage time only depends on the
size of the dropping area.

Figure 3(d) shows, that both the GRG/CV and the mGRG require more
steps as the dropping area getting larger. It can be also observed that in that
case nodes in the GRG/CV take less steps. This is mainly caused by the stopped
nodes as we have already described.

Similar to the results of the first group the overall number of time steps of
GRG/CV was less in various field sizes too, as it can be seen of Fig. 3(f). As it
was already described this is because the nodes in mGRG are always moving
even when they have reached their final layer.

5.4 Simulation Summary

In the simulations our mGRG algorithm were always faster but it required more
moving steps than the GRG/CV. We note in certain situations like aerial appli-
cation, the difference between standing or hovering and moving is not significant
from the perspective of energy consumption. In those scenarios the coverage time
is more relevant.

6 Conclusions

We have presented a new algorithm mGRG to solve the focused coverage problem
in self-deploying mobile sensor networks. Our algorithm is a modified version of
the GRG/CV algorithm by Li et al. [10]. We have proved that our algorithm
always guarantees that the sensor nodes enclose the POI without sensing holes
in O(D) time step, where D is the sum of distances of the nodes from the POI
in the initial configuration. This significantly improves the previous bound on
the coverage time. The theoretical results are also validated by simulations. The
simulations show that our mGRG algorithms results in a faster coverage than
the GRG/CV.
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Abstract. We present two novel approaches for the problem of self-
calibration of network nodes using only TDOA when both receivers and
transmitters are unsynchronized. We consider the previously unsolved
minimum problem of far field localization in three dimensions, which
is to locate four receivers by the signals of nine unknown transmitters,
for which we assume that they originate from far away. The first app-
roach uses that the time differences between four receivers characterize
an ellipsoid. The second approach uses linear algebra techniques on the
matrix of unsynchronized TDOA measurements. This approach is easily
extended to more than four receivers and nine transmitters. In exten-
sive experiments, the algorithms are shown to be robust to moderate
Gaussian measurement noise and the far field assumption is reasonable
if the distance between transmitters and receivers is at least four times
the distance between the receivers. In an indoor experiment using sound
we reconstruct the microphone positions up to a mean error of 5 cm.

1 Introduction

In this paper we study the problem of node localization using only Unsynchro-
nized Time difference Of Arrival (UTOA) measurements between nodes, where
either receivers or transmitters are far away from the other group. The problem
arises naturally in microphone arrays for audio sensing. Is it possible to calcu-
late both multiple microphone positions as well as the timings and directions of
the sound sources, if the microphones are unsynchronized, i.e. do not use the
same clock, just from sounds emanating from far away at unknown locations
and times? An example application could be to locate several cell phones just
by environmental sounds, where cell phone positions and sound directions are
to be recovered without synchronizing the phones first.

1.1 Related Work

Although time of arrival (TOA) and time difference of arrival (TDOA) problems
have been studied extensively in the literature in the form of localization of e.g. a
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DOI: 10.1007/978-3-642-45346-5 8, c© Springer-Verlag Berlin Heidelberg 2014
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sound source using a calibrated array, see e.g. [4,6–8], the problem of calibration
of a sensor array from only measurements, i.e. the node localization problem,
has received less attention.

In [21] and refined in [12] a far field approximation was utilized to solve
the TOA and TDOA case, with the minimal number of four receivers and six
unsynchronized far field transmitters in 3D. Under the assumption that signals
and receivers are distributed in the unit disk, the distance between receivers
can be approximated by evaluation of the range of time differences [3,16,18] or
by statistical analysis of their distribution [10,20], although these approaches
depend on the availability of a large number of signals. Calibration of TOA
networks using only measurements has been studied in [14,19], where solutions
to the minimal cases of three transmitters and three receivers in the plane, or six
transmitters and four receivers in 3D are given. Calibration of TDOA networks
is studied in [17] and further improved upon in [13], where the non-minimal case
of eight transmitters and five receivers is solved. In [2,23] a TDOA setup is used
for indoor navigation based on non-linear optimization, but the methods can get
stuck in local minima and are dependent on initialization.

The problem of node localization using only UTOA measurements from
unsynchronized receivers and transmitters in a far field setting has been consid-
ered in [5], however the approach requires at least five receivers, which is more
than the minimum case. Minimal algorithms are of importance in RANSAC
schemes [9] to weed out outliers in noisy data which is a common problem in
TOA/TDOA/UTOA applications. The problem has been addressed in a differ-
ent manner estimating ellipse coefficients in [22], but no analysis of degenerate
cases has been done and the algorithm is only described for the planar case.

In this paper we expand on previous work and propose two novel algorithms
for parameter estimation of a receiver array, the Ellipsoid method in 3D and the
Matrix Factorization method for UTOA measurements, that both consider the
minimum case of four receivers and nine transmitters in three dimensions. We
compare the methods on simulated and real data where we demonstrate their
numerical stability. The methods are also evaluated on overdetermined cases
using more than four receivers and nine transmitters.

2 Problem Setting

In the following treatment, we make no difference between real and virtual
transmitters. Assume that the transmitters are stationary at position bj ≥ R

3,
j = 1, . . . , k and that the receivers are at positions ri ≥ R

3, i = 1, . . . , m. By
measuring how long time the signals take to reach the receiver and knowing the
speed of the signals, distances αij = ←ri − bj← can be measured, ← · ← denoting
the Euclidean norm. These are TOA measurements.

When neither receivers or transmitters are synchronized, for instance exter-
nal sound sources recorded on different computers, the measurements will be of
the form αij = ←ri−bj←+fi+g̃j where fi, g̃j are unknown offsets for receivers and
transmitters respectively. We denote measurements of this kind Unsynchronized
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Time difference Of Arrival (UTOA) measurements. Furthermore, if the trans-
mitters are so far from the receivers that a transmitter can be considered to have
a common direction to the receivers, the measurements can be approximated by

αij = ←ri−bj←+fi+g̃j ∈ ←r1−bj←+(ri−r1)T nj+fi+g̃j = rT
i nj+ḡj+fi+g̃j (1)

where ḡj = ←r1−bj←−rT
1 nj and nj is the direction of unit length from transmit-

ter j to the receivers. By setting gj = ḡj + g̃j we get the far field approximation

αij ∈ rT
i nj + fi + gj .

When the approximation is good, we will call αij Far Field UTOA (FFUTOA)
measurements.

2.1 The FFUTOA Calibration Problem

We assume that (i) the speed of signals v is known, and thus all time measure-
ments are transformed to distances by multiplication by v and (ii) receivers can
distinguish which TOA signal comes from which sender. This can be done in
practice by e.g. separating the signals temporally or by frequency.

Problem 1. Given mk FFUTOA measurements αij ≥ R, i= 1, . . . , m, j = 1, . . . , k,
taken from m receivers and k transmitters, estimate receiver positions ri ≥ R

3,
directions nj ≥ R

3 from transmitter j to receivers, receiver and transmitter
offsets fi ≥ R, gj ≥ R such that

αij = rT
i nj + fi + gj , and ←nj← = 1 . (2)

Note that the problem is symmetric in receivers and transmitters, i.e. if each
receiver instead could be viewed as having a common direction to all trans-
mitters, the same problem can be solved for transmitter positions and receiver
directions. We denote f = [f1, . . . , fm]T , g = [g1, . . . , gk], r = [r1, . . . , rm] and
n = [n1, . . . ,nk].

The problem of determining full transmitter positions bj instead of directions
nj , see (1), seems harder than using the far field approximation as in Problem 1.
The measurements are now bilinearly dependent on ri and nj . Algorithms that
explicitly consider the far field assumption are also required, as the problem of
determining general positions of transmitters when the far field approximation
is in effect, is an ill-conditioned problem.

We denote the problem as minimal if the number of solutions for generic
distance measurements αij is finite and positive, disregarding solutions that are
the same up to gauge freedom.

2.2 Gauge Freedom

The unknown parameters (r,n, f ,g) have certain degrees of freedom that does
not change the measurements, called gauge freedom. Any translation t, rotation
matrix R and offset change K can be applied to the solution according to
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Fig. 1. Scheme of the Ellipsoid method. Three distances d2, d3, d4, and three angles
ϕ3, ϕ4, and θ define a tetrahedron of four receivers r1, r2, r3, r4. Transmitter b is
assumed to be far away from the receivers. Its signal arrives from the angles ϕb, λb.

ri,trans = ri + t, gj,trans = gj − tT nj

ri,rot = Rri, nj,rot = Rnj

fi,offs = fi + K, gj,offs = gj − K

without changing the measurements αij . Thus, we can only hope to reconstruct
the unknowns up to these seven degrees of freedom.

3 The Ellipsoid Method in Three-Dimensional Space

We propose the Ellipsoid TDOA method which solves the FFUTOA calibration
problem for four receivers using at least nine transmitters. The time differences of
signals from distant emitters form an ellipsoid which characterizes the distances
and angles between four receivers. An elegant representation can be derived from
the knowledge that an ellipsoid corresponds to a covariance matrix. Once this
covariance matrix is known, one can extract the parameters that generate the
ellipsoid from the matrix, i.e. the configuration of four receivers.

3.1 Definition of the Covariance Ellipsoid

A rigid tetrahedron of four receivers is defined by three distances d2 = ←r1 −r2←,
d3 = ←r1−r3←, d4 = ←r1−r4←, two height angles ε3 = ∠r2r1r3 , ε4 = ∠r2r1r4 , and
the azimuth angle λ4 = ∠a3r1a4 , see Fig. 1. Furthermore we define Θ = ∠r3r1r4 .

A signal arrives from the angles εb = ∠r2r1b and λb = ∠a3r1ab , uniquely
determining the direction. The signal angles with respect to two receivers are
Λ2 = ∠r2r1b, Λ3 = ∠r3r1b, and Λ4 = ∠r4r1b. Omitting the signal index, these
angles are defined by the UTOA measures according to the cosine law as

x = α1 − α2 = d2 cos(Λ2) , y = α1 − α3 = d3 cos(Λ3) ,
and z = α1 − α4 = d4 cos(Λ4) .

(3)
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The auxiliary points a3, a4, and ab are projections of r3, r4, and b respectively,
onto the plane orthogonal to r1 − r2 through r1.

In the following we derive the covariance matrix for time differences in the
Eq. (3) assuming uniform signal source positions. This matrix characterizes a
covariance ellipsoid, [15], describing the ellipsoid which the time differences reside
on. If this matrix is known, the distances and angles between the receivers can
be directly read from the matrix. We state the following definition.

Definition 1. The Σ-ellipsoid for covariance matrix Σ is the ellipsoid with
center µ where for all points x holds

dMah(x,µ,Σ) =
√

(x − µ)T Σ−1(x − µ) = 1 .

The metric dMah(x,µ,Σ) is the Mahalanobis distance. For Σ-ellipsoids the fol-
lowing holds.

Lemma 1. The covariance of points uniformly distributed over a Σ-ellipsoid in
R

3 is Σ̂ = 1
3Σ. In the two-dimensional case the covariance is Σ̂ = 1

2Σ.

Lemma 1 can be verified by integration over all points of the Σ-ellipsoid and
calculating the covariance. Given the definition of the covariance ellipsoid we
propose the following theorem.

Theorem 1. The time differences (x, y, z) of distant signals arriving at four
receivers r1, r2, r3, r4 in space R

3 form a 3Σ̂-ellipsoid with covariance matrix

Σ̂ =
1
3

⎛

⎝

d2
2 d2d3 cos(ε3) d2d4 cos(ε4)

d2d3 cos(ε3) d2
3 d3d4 cos(Θ)

d2d4 cos(ε4) d3d4 cos(Θ) d2
4

⎞

⎠ .

Proof. The proof is directly based on the definition of a covariance ellipsoid.
The first thing to show is that the matrix Σ̂ is actually a covariance matrix,
therefore is positive semi-definite. For simplicity we assume that the receivers
are synchronized, therefore the mean µ is zero. In case they are not, synchronize
the receivers by regression as described in the next Sect. 3.2.

Now, consider the continuous distribution of synchronized time differences
over uniformly distributed directions of origin. Such a uniform distribution of
signal origins b̂ in space R

3 can be created by points

b̂ = R · (

r cos(λ), r sin(λ), π
⎧T

,

where λ ≥ [0, 2β] and π ≥ [−1, 1] are uniformly independently distributed random
variables, and r =

≤
1 − π2.

The density function of the distribution is h(λ, π) = g(λ)f(π) = 1
4π . Without

loss of generality, the tetrahedron is aligned such that r1 is the origin, r2 is
parallel to the ẑ-axis, and r3 resides on the x̂/ẑ-plane. Assuming that the sphere
is large, i.e. the signals b̂ originate from far away, the angles of the signals are

λb = λ and cos(εb) = π . (4)
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By using spherical trigonometry and the Eq. (3) we calculate the time differences
x̂ = [x, y, z]T with respect to the tetrahedron angles as follows

x = d2 cos(Λ2) = d2

⎨

cos(εb)
⎩

y = d3 cos(Λ3) = d3

⎨

cos(ε3) cos(εb) + sin(ε3) sin(εb) cos(λb)
⎩

(5)

z = d4 cos(Λ4) = d4

⎨

cos(ε4) cos(εb) + sin(ε4) sin(εb) cos(λb − λ4)
⎩

.

Note that the angles Λ2, Λ3, Λ4, are not uniformly distributed in the three-
dimensional case, in contrast to the planar case. We express Θ as

cos(Θ) = sin(ε3) sin(ε4) cos(λ4) + cos(ε3) cos(ε4) . (6)

Using the uniform distribution of signals (4) and the time differences x̂ from
Eq. (5) that follow, we show by integration that the time differences characterize
a covariance matrix as stated in Theorem 1:

Σ̂ =

2π∫

0

1∫

−1

x̂ x̂T h(Λ, π) dπ dλ = h(Λ, π)

2π∫

0

1∫

−1

⎛

⎝

x2 xy xz
xy y2 yz
xz yz z2

⎞

⎠ dπ dλ

(4)−(6)
=

1
3

⎛

⎝

d2
2 d2d3 cos(ε3) d2d4 cos(ε4)

d2d3 cos(ε3) d2
3 d3d4 cos(Θ)

d2d4 cos(ε4) d3d4 cos(Θ) d2
4

⎞

⎠ . (7)

Due to the quadratic form is Σ̂ positive semidefinite. Furthermore, the matrix
is definite, which follows from the fact that the time differences are bounded.

The next step is to verify that the time differences are actually characterized
by the matrix. The distribution of signal directions (λb, εb) is irrelevant for this
step, and for application of the algorithm. However, as the points b̂ in Eq. (4)
cover the complete sphere, all signal directions are considered. Calculating the
Mahalanobis distance by inserting x̂ and Σ̂ yields

dMah

(

x̂,γ0, 3Σ̂
⎧

=
√

x̂T
(

3Σ̂
⎧−1

x̂ = 1 ,

revealing that all time difference points have constant Mahalanobis distance from
the origin, therefore reside on an ellipsoid, which is according to Lemma 1 the
3Σ̂-ellipsoid. ∀∪

3.2 Transformation of the Covariance Matrix

We now describe the transformation of parameters from a regression polynomial
to the parameters of the covariance matrix. Under the assumption of a zero-
mean ellipsoid, i.e. the receivers are synchronized, an ellipsoid is described by a
polynomial equation

ax2 + by2 + cz2 + dxy + exz + fyz = 1 . (8)



Minimal Solvers for Unsynchronized TDOA Sensor Network Calibration 101

Regression of at least m ≥ 6 signals in the equation system
⎛

⎜
⎝

x2
1 y2

1 z2
1 x1y1 x1z1 y1z1

...
...

...
...

...
...

x2
m y2

m z2
m xmym xmzm ymzm

⎞

⎟
⎠

︸ ︷︷ ︸

Q

(a, b, c, d, e, f)T

︸ ︷︷ ︸

u

= γ1

and solving a least squares scheme for u =
(

QT Q
⎧−1(

QTγ1
⎧

yields ellipsoid
parameters a to f .

An ellipsoid in space R
3 can be represented by the matrix form xT Σ−1x =

1 , where x = [x, y, z]T is a vector and Σ is a symmetric positive definite matrix

Σ =

⎛

⎝

ν2
1 ω1 ω2

ω1 ν2
2 ω3

ω2 ω3 ν2
3

⎞

⎠ .

Substitution and conversion of the parameter set yields the parameters of the
covariance matrix

ν2
1 = (f2 − 4bc) / Z ω1 = (2cd − ef) / Z

ν2
2 = (e2 − 4ac) / Z ω2 = (2be − df) / Z (9)

ν2
3 = (d2 − 4ab) / Z ω3 = (2af − de) / Z

where Z = be2 + cd2 + af2 − 4abc − def .
In case the receivers are not synchronized, the ellipsoid is shifted to zero-mean

by converting the general ellipsoid polynomial equation to a translation-invariant
form. In three dimensions the general form is

ax2 + by2 + cz2 + dxy + exz + fyz + gx + hy + jz = 1 , (10)

for which the parameters a to j are calculated by regression of at least nine
signals. The parameters are converted to the following translation-invariant form

â(x − û)2 + b̂(y − v̂)2 + ĉ(z − ŵ)2

+ d̂(x − û)(y − v̂) + ê(x − û)(z − ŵ) + f̂(y − v̂)(z − ŵ) = 1. (11)

Calculation of â to f̂ and û, v̂, ŵ from the coefficients of Eq. (10) can be done
in a computer algebra software by expansion of Eq. (11) and substitution of the
constant term. The coefficients â to f̂ are converted for the covariance matrix
using Eq. (9). The coefficient vector (û, v̂, ŵ)T equals the center point of the
ellipse and the synchronization offset of the receivers.

According to Theorem 1, the distances and angles in the tetrahedron of
receivers are now directly characterized by the coefficients of the covariance
matrix. The distances and angles are calculated by

d2 =
≤

3 ν1 , cos(ε3) = ω1
σ1σ2

,

d3 =
≤

3 ν2 , cos(ε4) = ω2
σ1σ3

,

d4 =
≤

3 ν3 , cos(Θ) = ω3
σ2σ3

.
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3.3 Degenerate Cases

When measurements αij are corrupted by noise, or the far field assumption is
violated, the solution of parameters in (10) might not yield an ellipsoid, but
another type of quadric surface. For four receivers and nine transmitters, this
constitutes a case of given measurements where there is no exact real solution
to (2), as such time differences must lie on an ellipsoid by Theorem 1. Instead of
using the regression scheme, one can obtain an approximation based on Theorem
1 by covariance estimation of the given time differences (x, y, z), denoted Σ◦.
Using Σ̂ = 1

3Σ
◦, distance and angle parameters can be estimated as in Sect. 3.2.

Other degenerate cases are when the ellipsoid is collapsed to a ellipse surface,
or when transformed time differences in (11) lie on two intersecting quadric
surfaces, thus giving infinite number of solutions.

4 Matrix Factorization Method

The matrix factorization method uses linear techniques to solve Problem 1 for
receiver positions, transmitter directions and offsets. At least four receivers and
nine transmitters are needed. Without loss of generality we assume that the
solution is partially normalized for gauge freedom as the first receiver r1 = 0
and f1 = 0, see Sect. 2.2.

Using the FFUTOA measurements αij , collected in the matrix D̃ = [αij ]m×k

we immediately obtain the unknowns gj since α1j = rT
1 nj + f1 + gj = gj , since

r1 = 0 and f1 = 0. We then subtract the first row containing gj from all other
rows of D̃ and remove the first row of zeros to obtain a new matrix that fulfill

D2 =
[
rT f

]
[
n
γ1

]

(12)

where γ1 is a vector of ones. D2 is a product of two matrices of rank ∼ 4 and is
thus itself of rank ∼ 4. This is used in [5]. Here we further reduce the rank of the
factorization by subtracting the first column of D2 from all the other columns
and remove the first row of columns. Both steps manipulating D̃ can be done
using the compaction matrices Cm of size (m−1)×m and Ck of size k×(k−1):

Cm =

⎡

⎢
⎢
⎢
⎣

−1 1 0 . . . 0
−1 0 1 . . . 0
...

...
...

. . .
...

−1 0 0 . . . 1

⎤

⎥
⎥
⎥
⎦

, Ck =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

−1 −1 . . . −1
1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (13)

Then we have

D = CmD̃Ck =
[
r̃T f

]
[
ñ
γ0

]

= r̃T ñ, (14)

where r̃ equals r with the first receiver removed as r1 = 0, and ñ is a 3× (k − 1)
matrix with the jth column ñj = nj+1−n1. Now we have a rank-3 factorization,
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thus requiring at least four receivers and four transmitters. After applying SVD
to D = USVT we obtain the rank-3 factorization such that D = r̄T n̄ where
r̄ = U3S3 and n̄ = VT

3 . U3, S3 and V3 are the truncated parts of the SVD
corresponding to the three largest singular values. This factorization of D is
unique up to an unknown transformation H i.e. D = r̄T H−1Hn̄. We will find
ñj = Hn̄ i.e. nj+1 − n1 = Hn̄j by using the constraints that

ñT
j ñj = (nj+1 − n1)T (nj+1 − n1) = 2 − 2nT

j+1n1 = 2 − 2(Hn̄j + n1)T n1

= −2n̄T
j HT n1 = n̄T

j HT Hn̄j . (15)

We apply a change of variables with a 3 × 3 symmetric C = HT H and a 3 × 1
vector v = HT n1. From (15), we have the following equation for transmitter j:

n̄T
j Cn̄j + 2n̄T

j v = 0. (16)

These equations are linear in the elements of C and v which have in total 9
variables. In general, with 8 such equations (thus 9 transmitters), we can solve
this homogeneous linear equation system uniquely up to scale.

We can extract the solutions for C and v from the solution to the linear equa-
tion which is valid up to an unknown scaling factor and sign. We can determine
the sign by using that C is positive definite and compute H by applying Cholesky
factorization C = HT H. As HT H = HT RT RH for a rotation/mirroring matrix
R, this will give H uniquely up to R. But as R corresponds to rotating/mirroring
the coordinate system, R is a gauge freedom according to Sect. 2.2 and can be
set to the identity matrix.

We can find the scale by using the constraint ←n1← = ←H−T v← = 1. Note
that fixing the scale in this way will also guarantee that nT

j nj = (HT n̄j +
n1)T (HT n̄j + n1) = n̄T

j HT Hn̄j + 2n̄T
j HT n1

︸ ︷︷ ︸

=0 by (15)

+nT
1 n1 = nT

1 n1 = 1. Summarizing

these steps yields Algorithm 1.

Algorithm 1. Input : FFUTOA measurement matrix D̃ of size (m = 4) × (k = 9).
Output : Receiver positions r, transmitter directions n, receiver offsets f and transmitter
offsets g. Conditions: (i) D must have rank 3, (ii) the linear equations (16) must only
have a null space of dimension one, (iii) C must be positive definite.

1. Set gj := D̃1j and D := CmD̃Ck where Cl,Cm is the compaction matrices in (13)
2. Calculate the SVD D = USVT and set r̄ to first three columns of US and n̄ to

first three rows of VT

3. For the unknowns in the symmetric matrix C and vector v, get the solution space
for the equations n̄T

j Cn̄j + 2n̄T
j v = 0 where n̄j is the jth column of n̄

4. Set the sign of the solution C,v such that C11 > 0
5. Calculate the Cholesky decomposition C = HTH
6. Lock the scale of the solutions H,v so that ≥H−Tv≥ = 1
7. Set n1 := H−Tv, nj+1 := Hn̄j + n1 and r := H−T r̂
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4.1 Degenerate Cases

Theorem 2. Degenerate cases for the minimal algorithm are when (i) The
transformed measurement matrix D has Rank(D) ∼ 2 or (ii) The difference of
the transmitter directions nj −n1 lie on the intersection of two or more quadric
surfaces with constant term 0.

Case (i) happens iff receivers or transmitter directions lie in a plane. For
(ii), the case when the transmitter directions nj lie on the intersection of two or
more a quadric surfaces is a special case.

Proof. The only time the algorithm fails is when the prerequisites are not ful-
filled. This happens iff (i) Rank(D) ∼ 2 or (ii) the linear equations (16) have a
null space of dimension two or more.

For case (i), step (4) will extract data from the SVD that are not uniquely
determined from the measurements, but has several degrees of freedom. This
will result in a reconstruction of r,n that fulfills the measurements, but is not
unique, as there are an infinite number of solutions.

Rank(D) ∼ 2 iff either receivers r or difference of transmitter directions
nj − n1 in (14) are embedded in a lower dimensional subspace than assumed.
Remembering that receiver positions can be translated as in Sect. (2.2), this is
equivalent to receivers or transmitter directions being embedded in a plane.

For case (ii), there are at least two non linearly dependent solutions to (16).
The solutions can be seen as constants for a quadric surface with radius 0 that
n̄j should lie on, i.e.

n̄T
j C1n̄j + n̄T

j D1 = 0, n̄T
j C2n̄j + n̄T

j D2 = 0,

where [C1 D1] ∗= λ[C2 D2] for all λ ≥ R\{0} and Ci symmetric. As nj+1 −n1 =
Hn̄j , this is equivalent to

(nj − n1)
T H−T C1H−1 (nj − n1) + (nj − n1)

T H−T D1 = 0,

(nj − n1)
T H−T C2H−1 (nj − n1) + (nj − n1)

T H−T D2 = 0, (17)

which is equivalent of the difference of the receiver directions nj − n1 lying on
two or more quadric surfaces with constant term 0. As a special case, if the
transmitter directions nj lie on two or more different quadric surfaces, then the
differences nj − n1 will fulfill (17). ∀∪

Note that the degenerate cases characterized in (i) is inherent to the prob-
lem, not the algorithm. There are fewer degrees of freedom to estimate than
assumed, and thus there is not a unique solution. If both receivers and trans-
mitter directions lie in the same plane, a similar algorithm for 2D based on the
same factorization steps and equations can readily be constructed.

A special case is when C is not positive definite. Then there exists no real
factorization C = HT H. There exists complex factorizations, e.g. obtained using
eigenvalue decomposition C = QT DQ = QT

≤
D

T ≤
DQ = HT H, which results

in complex solutions. These cases equate exactly to the cases where the ellipsoid
method does not get an ellipsoid from solving (10), as these are the cases where
there are no exact real solutions to the given measurements.
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5 Extension to Overdetermined Cases and Noise

Both algorithms solve a minimal case, meaning that there are only a finite posi-
tive number of solutions to (2) given arbitrary measurements in general enough
position. This can be seen from the fact that the matrix factorization algorithm
does not lose any solutions from the solution space by any particular choice in
any of the steps. Thus there one solution discounting gauge freedom. Another
way of seeing it is by counting degrees of freedom. When using m = 4 receivers
and k = 9 transmitters, the number of measurements mk = 36 equals to the
number of unknowns, 4m + 3k − 7 = 36 accounting for gauge freedom.

When having more than four receivers, more than nine transmitters and the
measurements dij are not true FFUTOA measurements, due to noise or that
the far field assumption does not hold, both methods can be extended in a
straightforward manner.

For the ellipsoid method, two modifications are made. (i) When having more
than nine receivers, the least squares solution to (11) can be calculated. (ii)
When having more than four receivers, subproblems using only four receivers at
a time are solved. With overlap of receivers used in the different subproblems,
all distances between receivers can be calculated and multidimensional scaling
[1] can be used to get the full coordinates of all receivers.

For the matrix factorization method, the three following modifications are
made. (i) In step 4, the best rank 3 approximation can still be obtained by SVD,
although D is not necessarily rank 3. (ii) The system of equations in step 4
will in general only have the trivial solution, but is approximated to rank 8 by
SVD to still attain the expected one dimensional solution set. (iii) ←nj← is only
approximately 1, so nj is normalized to be of length 1.

From here on, the extended methods will be used. Note that when only mini-
mal number of measurements are available, the extended methods are equivalent
to the minimal ones.

6 Experimental Validation

To be able to evaluate the quality of a solution, receivers positions ri are com-
pared to ground truth receiver positions ri,gt. Receivers are rotated, mirrored
and translated so that

∑

i ←R(ri − t) − ri,gt←2 is minimized, where R and t is a
rotation/mirroring and translation respectively. Finding R and t is done by using
[11]. For all experiments, relative errors are then defined as ←r−rgt←Fro/←rgt←Fro

where ← · ←Fro is the Frobenius norm. All algorithms were implemented and run
on a standard desktop computer in Scilab.

6.1 Simulations

For all simulations, offsets fi and gj are drawn from i.i.d. uniform distributions
over [0, 10]. To evaluate the assumption that transmitters have a common direc-
tion to the receivers, transmitter positions bj were uniformly distributed over a
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Fig. 2. Mean relative error of reconstructed receiver positions for 100 runs, plotted
against the approximate distance from receivers to transmitters. (a) Bars are ±1 stan-
dard deviation for the different transmitter distances.

sphere of radius d. To be able to control how much further away transmitters
were from receivers than the inter distance between receivers, four receivers were
placed at a tetrahedron around the origin with side length 1 m. As signal sources
are often easily obtained in applications, 15 transmitters were used. UTOA Mea-
surements were constructed as αij = ←ri −bj←+ fi + gj . The mean relative error
for 100 runs each plotted against the transmitter distance d to the origin can be
seen for different radii d in Fig. 2a for the minimal four receivers and in Fig. 2b
for five receivers. The extra receiver was uniformly distributed in the cube of
which the tetrahedron of the four first receivers were inscribed to.

Figure 2a shows that using only four receivers, both algorithms can get under
5 % relative error with having transmitter approximately four times further away
than the inter distance between receivers. For the experiment in Fig. 2b, we
compare the results to the method in [5] as we now have the five receivers for
the method to be applicable. The results indicate the ellipsoid method being
slightly worse on short distances and the matrix factorization method being
generally more accurate. Mean execution time was 8.0 ms, 2.1 ms and 30 ms for
the ellipsoid method, matrix factorization method and the method in [5] each.

To test the robustness of the methods, white Gaussian noise was added to
the measurements. The same setup as for the far field experiments was used,
with transmitter distance of 107 from the receivers. In Fig. 3 relative error of
reconstructed receiver positions are plotted against the standard deviation of the
noise. The results indicate the ellipsoid method being slightly better with higher
noise level when using the minimum four receivers, and the matrix factorization
outperforming both the ellipsoid and the method in [5] using five receivers.

The numerical performance of the minimal algorithms were evaluated by gen-
erating problems where the measurement matrix D̃ are FFUTOA (2). Receivers
are drawn from i.i.d. uniform distributions in a cube of unit volume centered
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Fig. 3. Measurements with additive Gaussian white noise. The standard deviation is
plotted against the mean relative error of reconstructed receiver positions for 100 runs.

around the origin. Nine transmitter directions and four receivers were simulated.
The error distribution for 1000 such experiments can be seen in Fig. 4a. Mean
execution time for the ellipsoid method and the matrix factorization method was
3.2 and 1.9 ms respectively.

6.2 Real Data

The same data as in [5] was used, where the measurements dij were obtained
from an experimental setup using eight SHURE SV100 microphones as receivers
and random distinct manually made sounds as transmitters. The microphones
were connected to a M-Audio Fast Track Ultra 8R audio interface. The 19 sound
sources were approximately 30 m away from the receivers. Microphones were set
in the corners of a cuboid of roughly 100 × 105 × 60 cm3. A picture of the
experiment setup can be seen in Fig. 4b. The microphone offsets were created
by adding uniformly i.i.d. silences between 0-1 s long to the beginning of each
sound track, effectively starting the recordings at different unknown times. The
beginning of each sound were matched by a heuristic cross correlation algorithm
to create TDOA measurements.

As we have more than five microphones, the algorithms were also compared
using the method in [5]. The mean reconstruction error on the microphone posi-
tions were 15 cm, 5 cm and 14 cm for the ellipsoid method, matrix factorization
method and the method in [5] respectively. Most of the error are in the floor-
to-roof direction. This can be explained by the sounds all being made close to
ground level and thus the transmitter directions will be close to being in a plane,
giving poor resolution in floor-to-roof direction.
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Fig. 4. (a) Numerical performance of minimal solver in 1000 simulated experiments.
(b) Setup for indoor experiment using microphones and distinct manually made sounds.

7 Conclusions

We have presented two methods for solving the previously unsolved problem
of sensor network calibration using only a minimal number of unsynchronized
TDOA measurements in a far field setting. The assumption of far field signals is
important, as the problem of trying to determine exact positions for transmitters
is ill conditioned when the far field assumption is close to true.

Simulated experiments support the feasibility of the methods, and show that
the minimal algorithms are numerically stable and fast, making them suitable in
RANSAC schemes to weed out outliers. They also handle additive Gaussian noise
well. The far field assumption gives good results as long as transmitter-receiver
distances are four times larger than inter-receiver distances.

A comparison between the two methods, running on the minimal case of
four receivers and nine transmitters, indicates the matrix factorization method
being slightly faster and having better worst case precision than the ellipsoid
method. The ellipsoid method however has a more plausible way of handling
the case when the measurements are such that no exact real solutions exist, as
per Sects. 3.3 and 4.1. The ellipsoid method estimates the covariance of the time
differences for parameter estimation, whereas the matrix factorization finds a
complex solution.

When having more than the minimum amount of four receivers and nine
transmitters, the matrix factorization is easily extended to handle more than
the minimal number of receivers and transmitters, and usually exhibit better
average case performance than both the ellipsoid method and the method in
[5], applicable when five or more receivers are available. The ellipsoid method
is easily extended to handle more than the minimal nine transmitters, but not
easily extended to handle more than the minimal four receivers. Although none
of the methods are formally optimal in any sense, they are in closed form, fast,
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and can serve as initializations for further nonlinear optimization if need be.
Both methods are significantly faster than the method in [5], and the matrix
factorization method performs better in reconstructing the receiver positions.

In a real world experiment in an indoor environment, both methods perform
well and the matrix factorization method reconstructs microphone positions with
an average of 5 cm error from the previous 14 cm in [5].

Future work of interest is developing a method for calibration of UTOA
networks not using the far field assumption, thus being able to solve problems
when the far field assumption is far from true.
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Abstract. We consider mobile agents of limited energy, which have to
collaboratively deliver data from specified sources of a network to a cen-
tral repository. Every move consumes energy that is proportional to the
travelled distance. Thus, every agent is limited in the total distance it
can travel. We ask whether there is a schedule of agents’ movements that
accomplishes the delivery. We provide hardness results, as well as exact,
approximation, and resource-augmented algorithms for several variants
of the problem. Among others, we show that the decision problem is
NP-hard already for a single source, and we present a 2-approximation
algorithm for the problem of finding the minimum energy that can be
assigned to each agent such that the agents can deliver the data.

Keywords: Mobile agents and robots · Data aggregation and delivery ·
Power-awareness · Algorithms

1 Introduction

Recent progress in designing and producing small, simple, and cheap mobile
micro-robots raised new algorithmic challenges in deploying these robots in var-
ious tasks. In this paper, we study the question of whether and how such simple
robots can collaboratively transfer information from specified sources to a sin-
gle repository. Due to their simplistic construction, the robots have only very
limited capabilities, for example, little memory, small computational power, lim-
ited communication capabilities, noisy sensing, or limited battery power. In this
paper, we focus on the last limitation aspect – the limited battery power. In
particular, we study how such a limitation influences collective capabilities of
the robots to accomplish the delivery task. We concentrate on this single aspect
of the robots, and do not limit the other capabilities of the robots. In particular,
we assume the robots to have enough memory to store the data, and we are also
not interested in the amount of time it takes to finish. We study the delivery
task on graphs; for this reason we adapt our terminology to the literature and
refer to the robots as agents.
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Model

We consider undirected, connected, edge-weighted graphs. The weight w(e) of
edge e represents the energy required to cross the edge. Therefore, we will some-
times refer to w(e) as the length of the edge. By d(u, v) we denote the distance
between nodes u and v, i.e., the length of the shortest path from u to v (with
respect to the edge weights).

We further consider k mobile agents that are initially placed on vertices of a
given graph. Agent i can move along the edges of G. In total, agent i can move
along a walk of length at most Ri. The agent can stop anywhere on an edge e.
In such a case the travelled distance is proportional to w(e) and to the position
of the stop on e.

Furthermore, there are m distinct sources S = {s1, . . . , sk} ≥ V , and one
target t ← V \ S. Each source contains data that needs to be delivered by the
agents to target t. An agent i collects data from source s by simply visiting s
on its walk. An agent i collects data from agent j by meeting agent j (at some
location). An agent i visiting target t on its walk delivers (or transfers) all data
that it has collected before.

We study the problem of deciding whether all data (from all sources) can
be delivered to the target, i.e., whether there exists a schedule prescribing every
agent how to move such that at the end all data is delivered. We call such a
schedule feasible. In full generality, a schedule describes the movement of an
agent in continuous time, assuming that all agents move at unit speed. We will
see in a moment, however, that we may concentrate on schedules where at any
time at most one agent moves. This then allows us to neglect the travel times and
consider the movements of the agents in discrete time steps, where movements
happen instantaneously.

We refer to the decision problem of finding a feasible schedule as DataDe-
livery. Given just the position of the agents in the network, we also study
the related minimization problem of finding the smallest uniform power R for
which the agents, when assigned the range R each, can deliver the data to t. We
are interested in the computational complexity of the problem, and in approx-
imation and resource-augmented algorithms. We say that an algorithm for the
minimization version of DataDelivery is α-approximate, α > 1, if it runs in
polynomial-time and always finds a feasible schedule for uniform range R such
that R ∈ α · R◦, where R◦ is the minimum uniform power for which a schedule
exists. We say that an algorithm for the decision version of DataDelivery with
agents’ initial ranges Ri is a ε-resource augmented algorithm, ε > 1, if either
the algorithm (correctly) answers that there is no feasible schedule, or it finds a
feasible schedule for the modified (augmented) powers R∈

i := ε · Ri.

Related Work

On a very high level, our problem can be seen as a special case of data aggre-
gation in (wireless) sensor networks [10]. There, sensor nodes are deployed in an
environment, each possessing some data that they need to route (transmit) over
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an underlying communication network such that all data eventually arrives in
a specific aggregation node. Obviously, the nature in which the data “flows” in
the network makes the main difference of data aggregation in sensor networks
to our problem.

There has been little previous work on data-aggregation-like problems by
mobile agents. Anaya et al. [5] study the convergecast problem where a set of
mobile agents, deployed in an edge-weighted graph, each possessing certain data
and a uniform power R, need to move such that at the end at least one agent
knows all data (and every agent travels a distance at most R). The main differ-
ence to our problem is that there are no sources and a target where the data need
to be delivered. On contrary, in convergecast the “target agent” can be chosen
freely to suit the given power constraints. Anaya et al. [5] study the converge-
cast problem both in the centralized and in the distributed setting. They show
that the decision problem is strongly NP-complete, even if G is a tree, provide
a linear-time algorithm for the case when G is a line, and a 2-approximation
algorithm for the minimization version in general graphs. In the distributed set-
ting, they provide a 2-approximate algorithm for trees and show that this is best
possible (even if G is a line).

There is little research on general power-aware computation with mobile
agents. A rare example is the study of self-deployment by Heo and Varshney [8].
Arguably, minimizing the total travelled distance (instead of the maximum trav-
eled distance) by any single agent comes close to optimizing individual power-
consumption. There is a rich research history accomplishing various tasks (such
as pattern formation, exploration, or searching) by mobile agents where the
prime optimization goal was the total travelled distance, see e.g. [2,3,6].

Power-aware computation is a relatively new research area. Most of the exist-
ing literature focuses on different computational models than mobile robots, e.g.,
on routing, tracking, and broadcasting in wireless networks [4,9], or on schedul-
ing [1,7]. However, most of these works focus on minimizing the total energy
consumption (whereas we focus on leveraging the consumed energy per compu-
tational entity).

Important Observations and Further Variants

The nature of the problem allows us to make several crucial observations that
limit the space in which we search for feasible strategies. We will argue about
the single source case, but the very same observations can be made for the
multi-source case as well.

First of all, it is easy to see that no two agents need to move at the same
time. Assume that a given instance has a feasible solution and let us consider
one. Let us consider the “flow” of the data from s to t in the solution, i.e.,
consider for every agent that collected the data the path that the agent made
after the collection, and the union of all paths of the agents after they collected
the information. Thus, this “flow” can be seen as the subgraph of G. It follows
that there has to be an s-t path in the subgraph. Obviously, for completing the
data delivery task, we can ignore all movements of the agents beyond this path.
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Scanning this path from s to t and observing the identity of the agents that are
currently active gives a sequence of agents (we do not need to choose more than
one agent per position on the path). It is easy to see that the agents then can
walk sequentially in this order, and thus we can only consider discrete time steps
such that in each time step exactly one agents moves (to an arbitrary position).

It is now also easy to see that without loss of generality, no agent i appears
more than once in this sequence: if yes, we can just ignore all agents that
appeared in-between the two occurrences of agent i on the s-t path.

These considerations motivate the following natural variant of DataDeliv-
ery: Find a feasible schedule such that the data is moved from s to t along a
fixed path (given as part of the input).

Our Results

We first consider the single-source case in Sect. 2, and show that DataDelivery
is NP-complete in this case, even for the case of uniform ranges R. We then
provide a 3-resource augmented algorithm, and a 2-approximation algorithm for
the problem. The combination of the ideas of these two algorithms provides a
min{3, (1 + λ)}-resource augmented algorithm, where λ is the largest ratio of
the agent’s ranges, i.e., λ := maxi,j

Ri

Rj
. We also consider the case when the

data needs to be moved along a fixed path P (given as part of the input),
and show that also this problem is NP -complete, and that there exists ε◦ > 1
such that there is no ε◦-augmented algorithm, unless P = NP . Finding a good
approximation or resource-augmented algorithm for this version is left as an open
problem. We also consider the special case when G is a line or a tree. If G is a
line, we provide a polynomial-time algorithm for the case of uniform ranges. For
the general (non-uniform) ranges, we leave the complexity of the problem open
(and note that the min{3, (1 + λ)}-resource augmented algorithm applies). The
case when G is a tree translates to the case of a line with general (non-uniform)
ranges, and thus remains open as well.

We study the case of multiple sources in Sect. 3. For the constant number
sources k and for general graphs, the natural adaptation of the results for single
source carry over. For the general number of sources, the problem becomes NP -
complete already for trees and for uniform ranges, by a trivial modification of
the hardness result for convergecast by Anaya et al. [5].

2 Single Source

In this section we study DataDelivery with single source node s. We first show
the hardness result.

Theorem 1. Deciding whether k agents can transfer the information from a
given source s to a given target t is (strongly) NP-complete, even for unweighted
graphs and for uniform ranges.
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Fig. 1. Illustration of the reduction of 3-Partition to our problem. The horizontally
aligned vertices from s to t form the dedicated path P ∗. The shaded boxes along P ∗

are the buckets. Each line connecting v1 with P ∗ stands for a path of length L. For
simplicity, the lines connecting v2, . . . , v3z with P ∗ are omitted.

Proof. A solution to our problem is a set of walks, one for every agent, whose
union forms a subgraph in which s and t are connected. Thus, our problem is
obviously in NP – it is easy to check in polynomial time whether the given set
of walks satisfy all required conditions.

To show the hardness, we will reduce the 3-Partition problem to our prob-
lem: given integers a1, a2, . . . , a3z, for some z ← N, and an integer B such that
∑

i ai = z × B, the 3-Partition problem asks whether there is a partition
S1, . . . , Sz of the integers such that

∑

x∗Si
x = B. 3-Partition is NP-complete

even if B is polynomially bounded in z, and if for every i, B/4 < ai < B/2.
Given an instance of 3-Partition we construct an unweighted instance of

our problem as follows. The graph contains a dedicated s-t path P ◦ of length
zB + (z − 1). The first B edges on the path are called the first bucket. At the
end of the first bucket, we place an auxiliary agent with range 1. This agent can
thus help to transfer the message only along the adjacent edge on the s-t path.
After this edge, the second bucket starts (containing again B edges), followed by
a second auxiliary agent of range 1, and one edge, and the third bucket and so
on. For every integer ai we create a vertex vi and connect it to every vertex of
the s-t path by a path of length L. We place an agent to every vertex vi and set
its range to be L + ai, where L = 2B. Figure 1 illustrates the reduction.

We now show that there is a solution to 3-Partition if and only if there is
a solution in the just described instance of our problem. The “if” part is trivial:
Given a solution of Partition, just use the three agents corresponding to the
set Si to move the data within bucket i. Use the auxiliary agents to advance the
data on the edge between the buckets. We now argue about the “only if” part.
We first show that the data needs to be transported along the dedicated path
P ◦. The only alternative is to transfer the data from s to vertex vi, i = 1, . . . , z,
and from there to t. This path Pi has length 2L. Obviously, agent i with range
Ri = L + ai sitting at vi cannot alone transfer the data along this path. Any
other agent j can get to s (by travelling the distance L from vj) and from there
to distance at most aj < B/2 from s on the path Pi. From there, no other agent
but vi can advance the data along the alternative Pi; the agent then can advance
the data further to distance aj + ((L + ai) − (L − aj)) < B/2 + B, i.e., to a
position on Pi that is before vertex vi. It is easy to see that no agent can further
advance the data from there. Thus, the only way to transport the data is to use
the dedicated s-t path P ◦. Now, because the length of P ◦ is zB + (z − 1) and
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because every agent i can advance the data on P ◦ by at most ai steps, every
solution to our problem needs to use all agents (including the auxiliary ones)
in their “full power”. Thus, such a solution uses exactly three agents in every
bucket, bringing the data collectively from the beginning of the bucket to the
end of the bucket. This then gives a solution to the 3-Partition.

We can easily modify the reduction for the case of uniform ranges R: just
add a path of length R − Ri to every vertex vi and place the agent i at the end
of the path. ≤∀

In the following we show that the hard part of the problem lies in knowing
the order in which the agent move (and not in routing the agents through the
graph). Namely, we show that given the order in which the agents move, we can
solve in polynomial time whether there is a feasible schedule compatible with
the given order.

Theorem 2. DataDelivery with single source is solvable in polynomial time
if restricted to a fixed order of the agents to move, and if agents can meet only
at vertices.

Proof. For each agent i we can compute a set of feasible “pick-pass” locations,
that is, the set of all pairs (x, y) such that i can move to x (to pick up the
information from another agent) and move to y (to pass the information to
another agent),

Ci := {(x, y)| d(i, x) + d(x, y) ∈ Ri}.

Given an ordered sequence of agents (expressing the order in which they need
to advance the data), where each agent appears at most once, we can compute a
feasible movement of the agents by looking at the following layered graph. Layer
ik contains the edges of Cik and a path from s to t in this graph corresponds to
a feasible movement of the agents (every agent appears at most once and thus
its movement is a single “pick-pass” edge which, by definition, is feasible for its
range). Note that, since agents can only meet at the nodes of the graph, this
layered graph can be computed in polynomial time. ≤∀

We now present a 3-augmented algorithm for DataDelivery with single
source on general graphs and with general ranges. Our algorithm first checks
whether it is (at all) possible that a feasible schedule exists. For this purpose,
consider a ball B(i) of radius Ri centered in the initial location of agent i, i.e.,
the set of all positions (vertices and positions on the edges) at distance at most
Ri from i. If there is a feasible schedule, then there is one such that the data
travels from s to t along a simple path, carried over by a sequence of Θ agents
i1, . . . , iα (and where no agent appears more than once in the sequence). Observe
now that (1) s is in the ball of agent i1 (i1 is able to reach s to collect the data),
(2) the balls of ij and ik+1 intersect (agent ij collects data from ij), and (3) t is
in the ball of the last agent iα (agent iα delivers the data to t). These properties
imply the existence of an s-t path in the connectivity graph: the vertices are s,
t and the agents, and there is an edge between i and j, if the balls B(i) and
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B(j) intersect, and where we set B(s) := {s} and B(t) := {t}. We can check the
existence of an s-t path in the connectivity graph in polynomial time. If there is
no such path, then there is no solution for DataDelivery. Otherwise, if there
is such a path, we show that there is a feasible schedule for agents with new
ranges R∈

i = 3 · Ri.
The feasible schedule for R∈

i can be found in the following way. We first find
an s-t path in the connectivity graph; recall that every agent appears at most
once in this path. This path induces a natural order on the agents (that appear
on the path), and let i1, . . . , iα be the order of these agents. For every two agents
ij and ij+1, j < Θ, let xj be an arbitrary vertex in B(i)∪B(i+1). Define further
x0 := s and xα := t. Then, every agent ij moves as follows: it first goes to xj−1,
collects the data there, it goes back to initial position, and from there it goes
to xj . Obviously, with this schedule, the data gets delivered to t. Furthermore,
every agent ij does not travel more than 3 · Rij (as every of its “three” moves
are within its range Ri). We have thus proved the following.

Theorem 3. There is a 3-resource augmented algorithm for DataDelivery
with single source.

The ideas of the 3-resource augmented algorithm can be adapted to give a
2-approximation algorithm for the optimization variant of DataDelivery with
single source. Recall that in the optimization version, we are asked to find the
minimum uniform range R such that there is a feasible schedule.

We will use the following observations. Consider an optimum solution, i.e.,
the smallest R◦ and a corresponding schedule. Let i1 be the first agent from the
optimum solution to move, i.e., the agent that collects the data from s. Without
loss of generality, we may assume that the optimum solution moves agent i1 to s
along a shortest path. This now induces a new instance of the problem: agent i1 is
now located in s, and has range R∈ = R◦ −d(i1, s), while all other agents remain
in their initial positions and with unchanged ranges R◦. By our construction,
we know that this instance has a feasible schedule. This then implies that there
is a path from i1 (which sits on node s) to t in the connectivity graph of the
modified instance.

The 2-approximation algorithm then works as follows. We first guess the
first agent i1 from the optimum solution that collects the data from s (i.e.,
technically, we try all possible candidate agents, perform the subsequent steps
as explained below, and choose the solution giving the smallest range R among
all the candidates). We move agent i1 to s along a shortest path of length d =
d(i1, s), and compute the smallest Ra such that there is a path from i1 to t in
the connectivity graph of the instance where every agent but i1 has range Ra,
and agent i1 has range Ra − d. By the definition of Ra, we know that R◦ ≥ Ra.
Let i1, i2, . . . , iα, t be an i1-t path in the connectivity graph of the considered
instance. Thus, we know that for any 1 ∈ j < Θ, the respective balls intersect,
and therefore d(ij , ij+1) ∈ 2 · Ra, and furthermore d(iα, t) ∈ Ra. Observe now
that the schedule where agent ij goes to agent ij+1, j < Θ, and agent iα goes
to t, is feasible if we add Ra to the range of every agent. This gives a feasible
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schedule to the original setting where agent i1 has not been moved to s, with
uniform ranges 2 ·Ra. We can thus return 2 ·Ra as the solution of the algorithm.

Because R◦ ≥ Ra, i.e., 2 · R◦ ≥ 2 · Ra, we obtain that the algorithm is a
2-approximation.

Theorem 4. There is a 2-approximation algorithm for DataDelivery with
single source.

Obviously, we can use the ideas of the 2-approximation algorithm for design-
ing an equivalent 2-resource augmented algorithm for the case when the ranges
are uniform, i.e., when Ri = Rj for every i, j. The very same algorithm is then
(1+λ)-resource augmented algorithm, where λ = maxi,j

Ri

Rj
: It can happen that

the algorithm decides for agent i to bring the data (from its initial position) to
the initial position of agent j; For this, Ri needs to be increased by additive Rj

to be able to do it, which gives the claimed ration (1 + λ). Thus, we have the
following.

Corollary 1. There is a min{3, (1 + λ)}-resource augmented algorithm for
DataDelivery with single source.

We now consider a special case where the delivery of the data needs to happen
along a fixed path in G. This is motivated by security reasons when we do
not want the data to be delivered in dangerous areas of the environment. We
now show that this problem is hard. We present an alternative proof for this
case, since this gives us (additionally to the pure hardness result of Theorem 1)
hardness for providing arbitrary good ε-resource augmented algorithms.

Theorem 5. The variant of DataDelivery in which there is a single source
and the data must travel along a fixed path of the graph is NP-hard.

Proof. We reduce the problem from the restriction of 3-SAT in which every
variable appears at most four times [11].

The idea of the reduction is as follows (see Fig. 2). Each clause consists of a
“gadget” which has some common part with the fixed path. Intuitively speaking,
if a clause is satisfied, then the data can travel from left to right along the portion
of the path “covered” by that clause. The reduction will ensure that there is a
satisfying assignment if and only if the data can travel from left to right through
each of the clauses sub-paths.

Fig. 2. Overview of the reduction from 3-Sat.
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More formally, for each clause Cj = {lj1 , lj2 , lj3}, we create a gadget consist-
ing of a graph and an agent with range 5 as shown in Fig. 3 (upper part). For
each variable xi the corresponding gadget is the simple graph plus the agent of
range R shown in Fig. 3 (lower part); We shall set R < 3L so that this agent
is forced to choose between “true or false”. The three edge literals in the clause
gadget are connected to some vertices of the corresponding variable gadget: The
endpoints of an edge for literal xi (resp., literal ¬xi) are connected to the vertex
in the variable gadget of xi corresponding to true (resp., false). The overall
construction (see Fig. 2) consists in a concatenation of all clause gadgets, where
any two consecutive gadgets are connected via a spline path, that is, a chain of
L edges/agents like the one shown in Fig. 3.

Fig. 3. The gadgets for clauses (upper part) and for variables (lower part) and how
they are interconnected. An agent is shown as box with a number inside (its range).
The two edges in the variable gadget have length L. Every other edge has unit length
and the splines represent a chain of L edges with L additional agents of range 1 each.

We say that an agent covers and edge of the path if it traverses that edge
from left to right. By setting R = L + 8 and L = 8 we have that

1. The agent for the clause cannot cover all three literal edges alone, but can
cover any two of them. It is impossible for this agent to cover some edge of
another clause gadget (because of the spline paths between clause gadgets).

2. The agent for a variable xi can either (1) cover one edge in each of the clauses
where xi appears positive or (2) cover one edge in each of the clauses where
xi appears negated. It is impossible for this agent to cover an edge from a
clause where xi is positive and from another clause where xi is negated.

Note that in the second item we use the fact that every variable appears in
at most four clauses and, without loss of generality, it appears both positive
and negated (so, there are at most three positive occurrences and at most three
negated ones).

Claim. For every satisfying truth-assignment there exists a feasible movement of
the agents such that the data travels along the path.

Proof (of Claim). If the assignment sets xi = true (resp., xi = false) then, by
Item 2, the variable agent can cover one literal edge in each of the clauses where
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xi appears positive (resp., negated). Since the assignment satisfies all clauses,
each clause has one literal edge covered by a variable agent. The remaining two
literal edges can be covered by the clause agent of the clause (Item 1). The edges
in the spline paths are covered by the corresponding agents. ≤∀
Claim. For every feasible movement of the agents such that the data travels
along the path, there exists a satisfying truth-assignment.

Proof (of Claim). In every feasible movement all edges in the path must be
covered by some agent. In particular, for each clause, there must be one of the
three literal edges that is covered by a variable agent (Item 1). By Item 2 we
can obtain a truth-assignment as follows: If the variable agent for xi covers
edge literals of clauses where xi appears positive, then we set xi = true; Other-
wise we set xi = false. By the previous argument, this assignment satisfies all
clauses. ≤∀
The two claims above imply the NP-hardness. ≤∀

Note that the proof of hardness can be easily extended to the case of identical
ranges. Moreover, with minor modifications, the reduction can be extended to
prove that there is no ε-augmented algorithm for this variant of the problem,
for some constant ε > 1.

Corollary 2. There exists ε > 1 such that there is no ε-augmented algorithm
for DataDelivery with single source and fixed delivery path, unless P=NP.

3 Multiple Sources

In this section we consider the version of DataDelivery in which the agents
have to collect the data from more than one source to a common target location.

3.1 A 2-approximation for a Constant Number of Sources with
Identical Powers

The 2-approximation algorithm from Theorem 4 can be generalized to the case
of a constant number of sources. Intuitively speaking, the algorithm guesses the
set of “pick-up” agents that first reach the sources and, if an agent picks up data
at more than one source, then it also guesses the order in which this is done
(this is possible since there is only a constant number of sources).

More formally, in the optimal solution the piece of data at every source si

travels along some path whose first agent is the pick-up agent of that source.
Note that an agent can be the pick-up agent of several sources. Given the set
P of pick-up agents, each pick-up agent p ← P is then matched to an ordered
sequence of sources,

s
(p)
1 ∼ s

(p)
2 ∼ · · · ∼ s

(p)
αp

,

meaning that, in the optimal solution, agent p visits these sources in that partic-
ular order (possibly by visiting other locations in between). After being visiting
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the last source, p will move to some location to pass its data to some other agent
ip. Similarly to the case of a single source, we consider a new instance in which
p has moved to its last source s

(p)
αp

and its initial power R has been decreased by
the minimum cost of visiting these sources in that particular order:

d(p, s
(p)
1 ) + d(s(p)1 , s

(p)
2 ) + · · · + d(s(p)αp−1, s

(p)
αp

).

(Visiting other additional locations between two consecutive sources can only
increase this cost.) The new instance is thus feasible and, in particular, the
range of p when starting from the last source allows it to move inside the ball of
ip. Thus it can move directly to ip if provided an extra power of R. Therefore,
any path from s to t in the connectivity graph of the modified instance yields
a 2-approximation: Each pick-up agent visits all of its sources in the specified
order and then moves from the last source to the first agent in the path (by the
previous argument this costs at most 2R). Then the subsequent agents simply
bring the collected data directly to the next agent in the path (again the cost is
at most 2R since these agents have power R also in the modified instance).

The 2-approximation algorithm now suggests itself: Guess the set of pick-up
agents and their ordered sequence of sources (there are only constantly many
since the number of sources is constant), and then check if the connectivity graph
of the modified instance contains a path from s to t (this is indeed the case when
the guess in the first step is correct).

Theorem 6. There is a 2-approximation algorithm for DataDelivery with a
constant number of sources.

3.2 On Hardness and Approximation of Arbitrary
Number of Sources

When there are many sources but each source initially contains an agent, then the
problem is NP-hard even for identical powers. This follows from Theorem 4 in [5],
which study a conceptually different problem, but the proof of hardness applies
also to our problem. We note that one can easily extend the 2-approximation
algorithm from Sect. 3.1 for this very special case.

4 Conclusions and Open Problems

In this work we have studied several variants of DataDelivery. This problem
concerns how a set of energy-constrained agents can collectively move some data
from a set of given locations to a common target. The problems turn out to
be hard, and the hardness lies (essentially) in finding how and in which order
the agents should move to perform this task. On the positive side, we provide
algorithms that find solutions which guarantee that no agent uses more than a
constant factor the energy required by the optimum. It would be interesting to
close the gap between our approximation and resource augmentation algorithms
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and hardness results. Are there any better algorithms? What is the complexity
of DataDelivery on special graphs? The problem is open even for trees and
for the following simple geometric version: the agents lie on a single line with
source and target being the endpoints. We note that if all agents have uniform
ranges, then the problem is solvable on the line (but remains open for trees): start
with the closest agent (to the source); when advancing the data, never overtake a
(previously) unused agent; recursively use the closest agent to advance it further.
Finally, it would be interesting to obtain positive results for the variant in which
the piece of data must travel along a fixed (given graph), or for the case of an
arbitrary number of sources.
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Abstract. Sensor networks are widely used to collect data that are
required for future information retrieval. Data might be aggregated in
a predefined number k of special nodes in the network, called storage
nodes, which, for replying to external queries, compress the last received
raw data and send them towards the sink. We consider the problem of
locating such storage nodes in order to minimize the energy consumed
for converging the raw data to the storage nodes as well as to converge
the aggregated data to the sink. This is known as the minimum k-storage
problem. We first prove that it is NP -hard to be approximated within a
factor of 1+ 1

e
. We then propose a local search algorithm which guarantees

a constant approximation factor. We conducted extended experiments to
show that the algorithm performs very well in many different scenarios.
Further, we prove that the problem is not in APX if we consider directed
links, unless P = NP .

1 Introduction

Networks of sensor nodes are usually employed to monitor large areas, collect-
ing data with regular frequency. This large volume of data has to be stored
somewhere for answering to external user queries [8]. Source nodes, which are
responsible for collecting data, can either locally store the data or transmit them
to the sink, a powerful node connected to the external world. If data are locally
stored, several problems may arise: (i) data cannot be accumulated for long
periods because nodes are equipped with only limited memory space; (ii) stored
data are lost once the energy of a source node – battery operated – is depleted;
and (iii) searching data for serving query demand results in network-wide com-
munications. Alternatively, source nodes can forward the collected data to the

Research partially supported by the Research Grant 2010N5K7EB ‘PRIN 2010’ ARS
TechnoMedia (Algoritmica per le Reti Sociali Tecno-mediate), from the Italian Min-
istry of University and Research, and by “Fondazione Cassa di Risparmio della
Provincia dell’Aquila” within project ARISE.

P. Flocchini et al. (Eds.): ALGOSENSORS 2013, LNCS 8243, pp. 123–138, 2014.
DOI: 10.1007/978-3-642-45346-5 10, c© Springer-Verlag Berlin Heidelberg 2014



124 G. D’Angelo et al.

sink. However, communicating data from the source nodes up to the sink makes
the network congested, especially if data are transmitted raw, that is, uncom-
pressed. In general, source nodes may forward their raw data to some midway
nodes, referred to as storage nodes. Here, raw data are stored and aggregated,
i.e., reduced in size, to be transmitted to the sink at the time a query demand
from external users is submitted. Such midway nodes must have extra perma-
nent storage, more power battery and more computational capabilities. With
this two-tier model, if the number of storage nodes is kept limited, the network
becomes less congested at the price of a moderate increase of the network cost.
This scheme has been pursued in [16,17] where the problem of selecting a subset
of storage nodes so as the overall communication cost is minimized is called opti-
mal storage placement problem. When the number of storage nodes is limited
by an integer k, we talk about the minimum k-storage problem.

Data query is a very important service in networking applications. Thus, the
minimum k-storage problem appears also in other contexts, like web caching,
peer-to-peer, and database systems.

Related Work. There have been a lot of prior research on data querying mod-
els in sensor networks. Initially, no in-network storage was considered: the query
was spread out to every sensor by flooding messages and data were returned by
following the same path but in the reverse direction [12]. To reduce the com-
munication cost towards the sink, clustering routing protocol have been then
considered [19]. Later, the data-centric in-network model has been introduced
[18], which stores different data types in different places to facilitate the archiv-
ing and retrieving process in the network. Due to the large storage capabilities
required by the in-network model, it has been proposed in [7] to store data in
a degrading model: fresh-data are stored raw, while long-term data are kept,
but compressed. More recently, a two-tier model has been proposed in [17] to
ameliorate both the problem of limited storage and communication congestion.
The authors formulate the problem as an integer programming problem and pro-
pose a 10-approximation rounding algorithm. Differently from this paper, they
assume that (i) raw data have size independent from the source node; and (ii)
the energy spent for transmitting one unit data between any pair of sensors is
proportional to their Euclidean distance. For us, instead, different source nodes
may generate data of different size since sensors can monitor different environ-
ment aspects. Moreover, we assume that communications follow an underlying
network represented by a graph. Each edge of the graph has its own weight that
measures the energy required to traverse it.

In [16], the problem is solved assuming that the communication network
topology is a directed tree T , rooted at the sink. When a sensor s sends one
unit data upwards to the sink the energy cost is fixed, while when a sensor s
sends one unit data downwards, the energy cost is proportional to the number of
children of s in T . Thus, the energy cost for diffusing the query – which involves
communications from the sink downwards to the storage nodes – cannot be
ignored, as done in this paper and in [17]. Indeed, we assume that the query
cost is negligible. In fact, storage nodes may even simply send query replies
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in a proactive manner with a predefined query frequency. In [16], the storage
placement problem has been solved assuming that the number of storage nodes is
either unlimited or limited. Moreover, two tree models are considered: in the fixed
tree model, the problem is optimally solved following a dynamic programming
approach; in the dynamic tree model, a stochastic analysis of the performance
estimation is conducted. Note that, in this paper, the communication network
topology is not restricted to any specific class of graphs.

Finally, the minimum k-storage problem is strongly related to the well-known
k-median problem [2,10,11]. In fact, if data compressed is assumed to be of
negligible size (i.e., there is no cost in sending data from storage nodes to the
sink), so as for the energy spent for the queries, and if the sink is assumed to
be one of the k selected nodes, then minimum k-storage problem coincides with
the minimum k-median problem. Under these assumptions, k-storage minimizes
only the energy cost required to send raw data to the storage nodes. This is
the classical k-median problem, except that the sink is a special, predefined
median. Clearly, the relation with the k-median also suggests affinities with
facility location problems [2,10,11]. However, to the best of our knowledge, there
is no variant of facility location problems that coincides with our k-storage.

Our Results. First, we prove that it is NP -hard to approximate the metric
k-median problem (MMP ) within a factor of 1 + 1

e . At the best of our knowl-
edge, in the literature, only a harder variant of MMP , where medians can be
chosen only among a subset of nodes, has been shown to be not approximable
within a factor of 1 + 2

e [11]. The obtained result for MMP is then extended
to the minimum k-storage problem by means of a polynomial time reduction
that preserves approximation. For the case of directed links, we prove that the
problem is even not in APX , unless P = NP . For the undirected case, a local
search algorithm to solve the minimum k-storage problem is then proposed. We
show that it guarantees a constant approximation ratio. The algorithm has been
also experimentally evaluated by conducting an extended investigation of its per-
formance by varying on different parameters, like graph type and size, number
of storage nodes k, raw data size, compression factor of the storage nodes, and
accuracy of the solution.

2 Problem Definition and Notation

Let G = (V,E) be a connected graph of n nodes representing a sensor net-
work. Unless differently specified, G is considered undirected. Each node v ≥ V
generates raw data at regular time intervals, with frequency rd and size sd(v).
Edges of the network have different weights. The energy cost propagation of a
message over the edge {u, v} ≥ E is denoted by w(u, v). When communication
links are bidirectional (i.e., G is undirected), w(u, v) = w(v, u). Let d(u, v) be
the minimum energy cost for propagating a message from u to v.

Each v ≥ V can be set to serve as storage node, i.e., it makes use of higher
storage capacity. A solution is a set S ← V of storage nodes such that |S| ∈ k,
for some k ≥ N.
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External users retrieve data, with frequency rq, from a special storage node
r ≥ S, named sink. Each node v in V is associated to a storage node, denoted
as α(v) ≥ S. Clearly, if v ≥ S, then α(v) = v. For replying to a query, a storage
node compresses and sends to r the last data generated from its associated
nodes. The compressed size of the data produced by a node v becomes εsd(v),
with ε ≥ [0, 1]. The compressed data cannot be further compressed if they reach
another storage node. A node v ≥ V is associated to the storage node s that
minimizes rdsd(v)d(v, s) + rqεsd(v)d(s, r), ties are arbitrarily broken. Formally,
α(v) = arg mins◦S sd(v) (rdd(v, s) + εrqd(s, r)).

The total cost per time unit for a set S of storage nodes is given by: cost(S) =
∑

v◦V sd(v)(rdd(v, α(v))+εrqd(α(v), r)), where α is induced by S. The minimum
k-storage problem (briefly, MSP ) consists in finding a subset S ← V , with |S| ∈ k
that minimizes cost(S).

We assume that rd ≤ εrq, as otherwise, there is no need for storage nodes and
the nodes can send their raw data directly to the sink along the shortest paths.
It follows that ε

rq

rd
∈ 1, and then we can define an instance of the problem with

r∈
d = r∈

q = 1 and ε∈ = ε
rq

rd
. Therefore, we can assume without loss of generality

that rd = rq = 1 and ε ≥ [0, 1]. Then, the total cost per time unit is:

cost(S) =
⎛

v◦V

sd(v) (d(v, α(v)) + εd(α(v), r)) .

It can be then assumed that any solution S to MSP has size k, since reducing
the number of storage nodes does not decrease its cost.

3 Hardness of Approximation

In this section, we show that it is NP -hard to approximate MSP within a factor
of 1 + 1

e . To this aim, we provide an approximation factor preserving reduction
from the k-median problem defined as follows.

Let G = (V,E) be a complete graph, k ≥ N, and dist(u, v) ≥ N be the
distance from u to v over the edge that connects them, (u, v) ≥ E. A k-median
set for G is a subset V ∈ ← V with |V ∈| ∈ k. The minimum k-median problem
consists in finding a k-median set V ∈ that minimizes the sum of the distances
from each vertex to its nearest median, i.e.

∑

u◦V minv◦V ∞ dist(u, v).
In the metric minimum k-median problem (briefly, MMP ) it is assumed that

the distance function is symmetric and satisfies the triangle inequality.
In the next theorem, we show that it is NP -hard to approximate MMP within

a factor of 1 + 1
e . This result holds even if the distance function assumes only

values in {1, 2} and it is of its own interest.

Theorem 1. It is NP -hard to approximate MMP within a factor λ < 1 + 1
e .

Proof. Our proof is based on a reduction that preserves approximation from
minimum dominating set to MMP , and it is similar to the technique used in [10]
for the metric uncapacitated facility location problem.
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We show that, if there exists an algorithm λ-MMP with approximation factor
λ < 1 + 1

e for MMP , then there exists a (c ln n)-approximation algorithm for
the minimum dominating set for some c < 1. This implies that it is NP -hard
to approximate MMP within a factor λ as it has been shown that it is NP -
hard to approximate the minimum dominating set within a factor c ln n for any
c < 1 [3,5]. The minimum dominating set problem is defined as follows.

Let G = (V,E) be an undirected graph, a dominating set for G is a subset
V ∈ ← V such that for each u ≥ V \V ∈ there is a v ≥ V ∈ for which {u, v} ≥ E. The
minimum dominating set problem consists in finding the minimum cardinality
dominating set.

Given an instance G = (V,E) of the minimum dominating set problem we
build an instance of MMP defined as a graph G∈ = (V,E∈), where E∈ = V × V
and

dist(u, v) =

⎝

1 if {u, v} ≥ E

2 otherwise.
(1)

We give an approximation algorithm A for the minimum dominating set
problem on G that exploits the algorithm λ-MMP on G∈.

Let us suppose for a while that the size k of an optimal dominating set is
known. Fixed such a value of k, algorithm A selects a dominating set V ∈ by
repeatedly applying algorithm λ-MMP by using parameter k for the instance of
MMP .

Initially, V ∈ = ∀ and G1 = (V1, E1) with V1 = V and E1 = V1 × V1. At
each iteration p ≤ 1, the λ-MMP algorithm selects the set S of the k-medians
which will be added to the dominating set V ∈, then A computes the set Θ(S) =
⎞

v◦S Adj(v), where Adj(v) is the set of neighbors of v in G. Then, it creates a
smaller instance Gp+1 for MMP with Vp+1 = Vp \ (S ∪ Θ(S)). The algorithm
ends when all nodes are covered.

In order to evaluate the approximation provided for the minimum dominat-
ing set problem, observe that if A terminates after Λ iterations, the returned
dominating set V ∈ has size at most Λ · k. Then, since k is the size of an optimal
dominating set, Λ is the approximation factor guaranteed by A for minimum
dominating set.

We now show an upper bound on Λ. After the pth iteration of the while
loop, let dp = |Θ(S)| be the number of neighbors of any medians in G and
ip = |Vp| − dp − k be the number of remaining nodes. In other words, dp are the
nodes that pay a cost of 1 in the pth instance of MMP and ip are those that pay a
cost of 2. After the first stage of the while loop, by definition d1+i1+k = |V1| = n.
Since k is the size of an optimal dominating set on G, then there exists a solution
for MMP on G1 of cost n − k. Therefore, the value of an optimal solution for
MMP on G1 is OPT ∈ n − k. Algorithm λ-MMP outputs a solution of cost
d1 + 2i1 ∈ λOPT ∈ λ(n − k). By substitution, n − k + i1 ∈ λ(n − k) and
finally i1 ∈ (n − k)(λ − 1) ∈ n(λ − 1). After the pth stage of the while loop,
dp + ip + k = ip−1, and dp + 2ip ∈ λ(ip−1 − k) and then ip ∈ n(λ − 1)p. At the
beginning of the last iteration Λ we have at most n(λ − 1)α−1 = π uncovered
nodes, for some 1 ∈ π ∈ n, and then, Λ − 1 = log(ε−1)

δ
n ∈ log(ε−1)

1
n = lnn

ln 1
ν−1

.
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We know that it is NP -hard to approximate the minimum dominating set
problem within a factor (c ln n)-approximation, for each c < 1. Moreover, for
each c∈ such that 0 < c∈ < c < 1, we have c∈ ln n ∈ c ln n − 1, for n sufficiently
large. It follows that for each c∈ < 1, c∈ ln n + 1 ∈ c ln n < Λ ∈ lnn

ln 1
ν−1

+ 1.

Therefore, 1
ln 1

ν−1
≤ 1 which implies 1

ε−1 ∈ e, and hence λ ≤ 1 + 1
e .

Since we do not know the size k of the optimal dominating set, we repeat the
approximation algorithm based on λ-MMP for all the values of k, 1 ∈ k ∈ |V |
and we return the dominating set of minimum size. �∼

By exploiting Theorem 1, we show that it is NP -hard to approximate MSP
within a factor λ < 1 + 1/e. The proof is based on a reduction that preserves
approximation from MMP to MSP . Given an instance G = (V,E), k of MMP ,
where dist(u, v) ≥ {1, 2} with (u, v) ≥ E, we build a graph G∈ = (V ∈, E∈), where
V ∈ = V ∪ I. Nodes i{u,v} ≥ I are called intermediate. For each {u, v} ≥ E:

– {u, v} ≥ E∈ if dist(u, v) = 1;
–

⎠{u, i{u,v}}, {i{u,v}, v}} ≥ E∈ if dist(u, v) = 2.

The size of raw data is sd(i{u,v}) = 0, for each i{u,v} ≥ I, and sd(v) = 1, for each
v ≥ V . The weight w(u, v) is set to 1 for each {u, v} ≥ E∈.

Let λ-MSP be a λ-approximation algorithm for MSP .

Lemma 1. Let S be the set of storages returned by λ-MSP executed on graph G∈.
If S ∗ I ⊥= ∀, starting from S we can generate a solution S∈ such that cost(S∈) ∈
cost(S) by iteratively swapping each storage i{u,v} ≥ S ∗ I with u or v.

Proof. Let N(u) and N(v) be the sets of nodes that send query responses to
i{u,v}, across u and v respectively. If |N(u)| = |N(v)| we can swap the storage in
i{u,v} with either u or v without changing the cost of the solution. If |N(u)| ⊥=
|N(v)|, we can assume without loss of generality that |N(u)| > |N(v)|. Hence, we
swap the storage in i{u,v} with u decreasing the cost of the solution of |N(u)| −
|N(v)| > 0. �∼
Theorem 2. MSP is at least as hard to approximate as MMP .

Proof. In the following, we provide an approximation algorithm for MMP .
For each r ≥ V , we run λ-MSP on an instance of MSP given by the graph

G∈ = (V ∈, E∈) defined above and by sink r and ε = 0. Let S(r) be the set of
storages selected by λ-MSP , and OPTMSP (r) be the cost of an optimal solution
for MSP with sink r. We refine solution S(r), obtaining the set S∈(r), with the
post-processing stage described in the proof of Lemma 1. It follows that S∈(r)
is an approximate solution for the MSP instance with a better performance
guarantee than S(r), that is cost(S∈(r)) ∈ βOPTMSP (r), with β ∈ λ.

Let S∗ be the subset of medians generated by the algorithm, that is cost(S∗) =
minr◦V cost(S∈(r)). Let OPTMMP be the cost of an optimal solution for MMP
on G and let v be a node in an optimal solution for MMP . Since a solution
for MSP with sink v is a feasible solution for the instance of MMP , then
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OPTMSP (v) ≤ OPTMMP . However, OPTMSP (v) ∈ OPTMMP as there exists
an optimal solution for MMP that contains v and then such a solution is fea-
sible for the instance of MSP with sink v. Hence, OPTMSP (v) = OPTMMP

and cost(S∗) ∈ cost(S∈(v)) ∈ βOPTMSP (v) = βOPTMMP ∈ λOPTMMP , since
cost(S∗) = minr◦V cost(S∈(r)) ∈ cost(S∈(v)) and S∈(v) is a β-approximate solu-
tion for MSP with β ∈ λ. Finally, we observe that as in the reduction ε = 0,
then cost(S∗) is the cost of the set of medians S∗ in the instance of MMP . �∼
Corollary 1. It is NP -hard to approximate MSP within a factor λ < 1 + 1

e .

Note that, the above lower bound holds even with unitary edge weights. The
reduction can be modified by shortcutting of each intermediate nodes with an
edge of weight 2. In this way, we can prove that the above theorem and its
corollary hold with unitary sd but with weights in {1, 2}.

In the case of directed graphs, the following theorem can be stated.

Theorem 3. For directed graphs, MSP does not belong to APX, unless P =
NP .

4 Local Search Algorithm

A local search algorithm L for solving MSP on undirected graphs is defined as
follows. Each solution is specified by a subset S ← V of exactly k nodes. To
move from one feasible solution S to a neighboring one S∈, we define a swap
operation between two nodes s ≥ S and s∈ ≥ V \ S which consists in adding s∈

and removing s, that is S∈ = S ∪ {s∈} \ {s}. In our local search algorithm, we
repeatedly check whether any swap move yields a solution of lower cost. In the
affirmative case, we apply to the current solution any swap move that improves
the solution cost and the resulting solution is set to be the new current solution.
This is repeated until, from the current solution, no swap operation decreases
the cost, that is, the current solution represents a local optimum.

Let us define f : (0, 1] → R, f(ε) = 2
ν , g : [0, 1

2 ) → R, g(ε) = 12ν
1−2ν , and

h : [0, 1] → R,

h(ε) =

⎧

⎨

⎩

g(ε) if ε = 0
min{f(ε), g(ε)} if ε ≥ (0, 1

2 )
f(ε) if ε ≥ [12 , 1].

Theorem 4. The local search algorithm L for MSP exhibits a locality gap of at
most 5 + h(ε).

Proof. The proof follows the scheme of [2], where it is shown that a local search
algorithm for MMP provides a 5-approximation. We consider, for any input
instance of MSP , the optimal solution, denoted by S∗, and the one provided by
L, denoted by S. Clearly, sink r belongs to both S and S∗. For both solutions,
each node v is assigned to a storage node according to the definition in Sect. 2.
These mappings are denoted as α(v) and α∗(v), respectively. Similarly, C and
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C∗ denote the total cost of S and S∗, respectively. By definition, S represents a
local minimum, that is, it cannot be improved anymore by means of one further
step of algorithm L. Clearly, S∗ is not known but the methodology still provides
a reasonable comparison among the two solutions.

The relation between S and S∗ is obtained by considering k ideal swaps,
called crucial swaps, between the nodes in S and the ones in S∗. Since S is
locally optimal, each swap, singularly taken, does not improve the objective
function of the resulting solution. Each crucial swap consists in swapping into
the solution one node s∗ ≥ S∗ and swapping out one node s ≥ S. The main
property for each swap is that any element s∗ ≥ S∗ will participate in exactly
one of these k crucial swaps, and each s ≥ S will participate in at most two of
these k swaps. The case where s∗ ≡ s is possible, but still it does not improve
the current solution.

The mapping α can be used to categorize the nodes in S as follows:

– let O ← S be the set of nodes s ≥ S that have exactly one node s∗ ≥ S∗ with
α(s∗) = s;

– let Z ← S be the set of nodes s ≥ S for which none of the nodes s∗ ≥ S∗ have
α(s∗) = s;

– let T ← S be the set of nodes s ≥ S such that s has at least two nodes in S∗

assigned to it in the current solution.

The mapping α provides a matching between a subset O∗ ← S∗ and the set
O ← S. Hence, if γ denotes the number of nodes in R∗ = S∗\O∗, then |Z∪T | = γ
since |S∗| = |S| = k. This implies |T | ∈ Δ

2 , and hence |Z| ≤ Δ
2 .

We can now construct the crucial swaps as follows: for each node s∗ ≥ O∗,
we swap it with α(s∗). Since r belongs to both S and S∗, either it is in O, or it
is in T . In both cases, it is swapped with itself, and then other at most γ swaps
remain to be defined. Each of such swaps moves into the solution a distinct node
in R∗, and moves out a node in Z, so that each node in Z appears in at most
two swaps. For those swaps involving nodes in R∗ and Z, we are free to choose
any mapping provided that each element of R∗ is swapped in exactly once, and
each element of Z is swapped out once or twice.

For each crucial swap cs(s, s∗) between s ≥ S and s∗ ≥ S∗, let S∈ = (S \
{s})

⎞{s∗}. We set the associations of nodes to storage nodes in S∈ as follows:

– For any v such that α∗(v) = s∗, v is associated to s∗, since s∗ ≥ S∈;
– For any v such that α∗(v) ⊥= s∗ and α(v) = s, v is associated to α(α∗(v));
– Any other v remains associated to α(v).

In order to proceed with the proof, we need the following lemma which proves
that α(α∗(v)) ≥ S∈.

Lemma 2. If α∗(v) ⊥= s∗, then α(α∗(v)) ⊥= s.

Proof. By contradiction, let α(α∗(v)) = s. We know that s ≥ O. In fact, each
node swapped out by a crucial swap is either in Z or O. However the former case
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is not possible since by the definition of Z the nodes is Z have no associated
nodes of S∗. Since s ≥ O, it is mapped by function α to exactly one element in
O∗, and we build a crucial swap by swapping s with that one element. Hence,
α∗(v) = s∗ which contradicts the hypothesis. �∼

We can now evaluate the cost of the obtained solution S∈ after a crucial swap.
By the above discussion, S∈ differs from S only for elements v such that α∗(v) =
s∗, and those for which α∗(v) ⊥= s∗ but α(v) = s. Moreover, cost(S) ∈ cost(S∈)
since S is locally optimal. Hence, 0 ∈ cost(S∈) − cost(S) ∈

≤
∑

v:σ∈(v)=s∈
sd(v) · [(d(v, φ∗(v)) + θd(φ∗(v), r)) − (d(v, φ(v)) + θd(φ(v), r))] + (2)

+
∑

v : σ∈(v) ≥= s∈

σ(v) = s

sd(v) · [(d(v, φ(φ∗(v))) + θd(φ(φ∗(v)), r)) − (d(v, φ(v)) + θd(φ(v), r))]

(3)

By summing up over all crucial swaps cs(s, s∗), the term (2) of the inequality
becomes

⎛

cs(s,s∈)

⎛

v:σ∈(v)=s∈
sd(v)·[(d(v, α∗(v))+εd(α∗(v), r))−(d(v, α(v))+εd(α(v), r))] =

⎛

v◦V

sd(v) · [(d(v, α∗(v)) + εd(α∗(v), r)) − (d(v, α(v)) + εd(α(v), r))] = C∗ − C.

In fact,
⎞

s∈◦S∈{v : α∗(v) = s∗} = V , and, for any s∗
1, s

∗
2 ≥ S∗, {v :

α∗(v) = s∗
1} ∗ {v : α∗(v) = s∗

2} = ∀, implies
∑

cs(s,s∈)
∑

v:σ∈(v)=s∈ m(v) =
∑

s∈◦S∈
∑

v:σ∈(v)=s∈ m(v) =
∑

v◦V m(v), for any function m.
From the term (3) of the inequality, we first consider d(v, α(α∗(v))) +

εd(α(α∗(v)), r) which can be upper bounded by

d(v, α∗(v)) + εd(α∗(v), r) + (1 + ε)d(α∗(v), α(α∗(v))),

since, by the triangle inequality, d(v, α(α∗(v))) ∈ d(v, α∗(v))+d(α∗(v), α(α∗(v)))
and d(α(α∗(v)), r) ∈ d(α∗(v), α(α∗(v)))+d(α∗(v), r), see Fig. 1 for a visualization
of these bounds.

We now give two different upper bounds on d(α∗(v), α(α∗(v))), for different
values of ε which imply two different upper bounds on the term (3) of the
inequality.

Bound 1. Clearly, d(α∗(v), α(α∗(v))) ∈ d(α∗(v), r) since r ≥ S and α∗(v) is
associated to α(α∗(v)), hence obtaining for ε > 0:

d(v, α∗(v)) + εd(α∗(v), r) + (1 + ε)d(α∗(v), r) ∈
(x + 1)(d(v, α∗(v)) + εd(α∗(v), r)),

with x = 1+ν
ν , that is (1 + ε)d(α∗(v), r)∈ xεd(α∗(v), r) ∈ xd(α∗(v), r).
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Fig. 1. Upper bounds on distance d(φ∗(v), φ(φ∗(v)))

Fig. 2. The two upper bound functions to the locality gap.

From the above bounding, by summing up over all the crucial swaps:
⎛

cs(s,s∈)

⎛

v : σ∈(v) ≥= s∈

σ(v) = s

sd(v) · [(d(v, α(α∗(v))) + εd(α(α∗(v)), r))

−(d(v, α(v)) + εd(α(v), r))] ∈
∈

⎛

cs(s,s∈)

⎛

v : σ∈(v) ≥= s∈

σ(v) = s

sd(v) · (x + 1)(d(v, α∗(v)) + εd(α∗(v), r)) ∈

2(x + 1)
⎛

v◦V

sd(v) · (d(v, α∗(v)) + εd(α∗(v), r)) = 2(x + 1)C∗

Where the last inequality is due to the fact that each s ≥ S appears in at
most two crucial swaps.

Hence for any ε > 0, 0 ∈ cost(S∈) − cost(S) ∈ C∗ − C + 2(x + 1)C∗ =
C∗(2x + 3) − C, that is, C

C∈ ∈ 2x + 3 = 5 + 2
ν .

Bound 2. Since solution S contains both α(α∗(v)) and α(v), then (see Fig. 1):
d(α∗(v), α(α∗(v))) + εd(α(α∗(v)), r) ∈ d(α∗(v), α(v)) + εd(α(v), r), hence
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d(α∗(v), α(α∗(v))) ∈ d(α∗(v), α(v))+εd(α(v), r) ∈ d(α∗(v), v)+d(α(v), v)+
εd(α(v), r) ∈ d(α∗(v), v)+εd(α∗(v), r)+d(α(v), v)+εd(α(v), r). The penul-
timate inequality holds by the triangle inequality (see Fig. 1), and in the last
one we added εd(α∗(v), r).

By summing up over all crucial swaps,
⎛

cs(s,s∈)

⎛

v : σ∈(v) ≥= s∈

σ(v) = s

sd(v) · [d(α∗(v), v) + εd(α∗(v), r)+

+(1 + ε)(d(α∗(v),v) + εd(α∗(v), r) + d(α(v), v) + εd(α(v), r))
− (d(v, α(v)) + εd(α(v), r))] =

⎛

cs(s,s∈)

⎛

v : σ∈(v) ≥= s∈

σ(v) = s

sd(v) · [(2 + ε)(d(α∗(v), v) + εd(α∗(v), r))+

ε(d(α(v), v) + εd(α(v), r))] ∈
2

⎛

v◦V

sd(v) · [(2 + ε)(d(α∗(v), v)+ εd(α∗(v), r)) +ε(d(α(v), v) +εd(α(v), r))]

= 2(2 + ε)C∗ + 2εC

Hence obtaining, 0 ∈ cost(S∈) − cost(S) ∈ C∗ − C + 2(2 + ε)C∗ + 2εC =
(5+2ε)C∗+(2ε−1)C. If ε < 1

2 , then 2ε−1 < 0, and (1−2ε)C ∈ (5+2ε)C∗,
that is C

C∈ ∈ 5 + 12ν
1−2ν . �∼

Theorem 4 provides two upper bounds to the locality gap given by 5 + f(ε)
and 5+g(ε). Functions f , g, and h are plotted in Fig. 2. Function f is monotonic
decreasing, while g is monotonic increasing, in their intervals of definition. We
have that f(ε) = g(ε) for ε = 1

6 (
√

7 − 1) ≈ 0.274 where f(ε) = g(ε) < 7.3.
For all the other values of ε, one of the two functions is always below such a
threshold, that is the approximation ratio is always below 12.3.

Actually, algorithm L is not yet an approximation algorithm, as the number
of iterations needed to find a local optimum solution might be superpolynomial.
To fix this problem, as in [2], we can change the stopping condition of L so it
finishes as soon as it finds an approximate local optimum solution, i.e., when
the solution S is such that every neighboring solution S∈ of S has cost(S∈) >

(1−ν)cost(S), for some ν > 0. This leads to at most
log(

cost(S0)
cost(S∈) )

log( 1
1−β )

iterations, where
S0 is the initial solution selected in the first iteration of L. This is polynomial
in the size of the input.

Corollary 2. There exists an 1
1−ε (5 + h(ε))-approximation algorithm MSP for

any ν ≥ (0, 1).

Finally, by following the arguments in [2], the algorithm can be improved
by allowing t simultaneous swaps. For such algorithm, the analysis given in
Theorem 4 can be extended by defining the crucial swaps in a way that each
storage in the local optimal solution appears in at most t+1

t swaps. This leads



134 G. D’Angelo et al.

to a locality gap of h∈(ε), where h∈ : [0, 1] → R,

h∈(ε) =

⎧

⎨

⎩

g∈(ε) if ε = 0
min{f ∈(ε), g∈(ε)} if ε ≥ (0, t

t+1 )
f ∈(ε) if ε ≥ [ t

t+1 , 1],

f ∈ : (0, 1] → R, f ∈(ε) = 1 + t+1
t

1+2ν
ν and g∈ : [0, t

t+1 ] → R, g∈ = (3+ν)t+2+ν
(1−ν)t−ν .

To give an idea on the improvement provided by this method, we computed the
maximum value of the upper bounds on the approximation ratio for t = 2, 3, 4,
which is less than 8.67, 7.78 and 7.05, respectively. It follows that for t ≤ 2 and
any value of ε, our algorithm improves over the 10-approximation algorithm
provided in [17].

5 Experimental Analysis

In this section, we experimentally analyze the performance of algorithm L. We
implemented the algorithm in C++ and compared the values of the found solu-
tions with those of an optimal one computed by solving the following integer
program with the GLPK solver [9].

min
∑

v,s◦V xvs · sd(v)(d(v, s) + εd(s, r))
s.t.

∑

s◦V xvs = 1 for each v ≥ V
xvs ∈ ys for each v, s ≥ V
∑

s◦V ys ∈ k, yr = 1
ys, xvs ≥ {0, 1} for each v, s ≥ V.

Our experiments are performed on a workstation equipped with a 3.60 GHz
Intel processor and 24 GB of main memory. The program has been compiled
with GNU g++ compiler 4.4.3 under Linux. We used the following datasets.

Random Geometric Graphs (RGG). These graphs simulate sensors thrown
at random in a two-dimensional space [14]. By throwing n points in a unit square
uniformly at random, the probability that no nodes are inside a circle of diameter

d =
√

ρ log n
n is smaller than n− ρ

4 , hence, for ω ≤ 4 and large n, this probability
is very low [15]. Therefore, to generate the graphs we proceeded as follows. First,
nodes are generated and a uniformly random position in a unit size square is
associated to each of them. An edge between nodes u and v is added to the graph

if the Euclidean distance between u and v is at most 1
2

√

ω log n
n . Edge weights are

set to the Euclidean distances. We set ω = 4 and n ≥ {100, 300, 1000}. Similar
instances, for n = 100 have been used in [17].

Barabasi-Albert Graphs (BA). These graphs have been proven to model
many real-world networks such as the Internet, the World Wide Web, citation
graphs, and some social networks [1]. A Barabási–Albert topology is generated
by iteratively adding one node at a time, starting from a given connected graph
with at least two nodes. A newly added node is connected to any other existing
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nodes with a probability that is proportional to the degree that the existing
nodes already have. Hence, the more connected a node is, the more likely it is
to receive new connections. We set n ≥ {100, 300, 1000} and the weight of each
edge is a value sampled from a uniform distribution defined in the range [40, 60].

OR Library (PMED). We used the dataset for MMP of the OR Library [4],
a collection of test datasets for several problems. The dataset consists in 40
instances named pmed1, pmed2,. . . , pmed40, whose sizes range from n = 100 to
900. This dataset has been used for several experimental studies on MMP [13].

Erdős-Rényi Random Graphs (ER). In these graphs, given a fixed number
of nodes n and a parameter p, there exists an edge between two nodes u and v
with probability p. The probability p represents the density of the graph, that
is the ratio between the number of edges in the graph and that in a complete
graph of n nodes. We generated these graphs with the same parameters of [6]
and [13], that is n = 100 with p = 0.1, and n = 150 with p = 0.05. The weight
of each edge is randomly taken in the range [40, 60].

The sink node is chosen uniformly at random among the nodes of the graph.
As motivated in Sect. 2, we set rd and rq to 1. For each of the above graphs, we
made a test configuration by setting ε ≥ {0.0, 0.1, . . . , 1} and 30 values of k in the
interval {1, . . . , n} with step �n/30⊇. In the cases of n = 1000, the sampling for
k has been considered for 10 values. The value of sd(v) is randomly taken from
a uniform distribution in the range [1, 10], independently for each v ≥ V . For
each of the above test configuration, we generated 5 different graphs in order to
compute average values and standard deviations of the measured performance.
Finally, we set the parameter ν in Corollary 2 to 0.005, 0.01, and 0.1 and the
number t of simultaneous swaps to 1. We made this last choice with the aim to
analyzing the worst-case behavior of L.

Analysis. In Fig. 3.left, we plot the approximation ratio obtained by our algo-
rithm on a rgg graph of 300 nodes as a function of k, assuming that ε = 0.1 (for
any other value of ε, L exhibits better behavior). In the diagram, we plot three
functions, one for each tested value of ν. In Fig. 3.right, we report the number of
iterations needed for achieving such a ratio in the same setting. This represents
the computational time required by the algorithm in a machine-independent way.
In our machines, each iteration requires about 0.25 s. in average for graphs of 300
nodes (See Table 1 for the computational time). As expected, the ratio decreases
with ν, and in particular, for ν = 0.005 it is always less than 1.108, that is, the
obtained solution is at most 10.8 % worse than the optimal one and it is below
the theoretical lower bound (i.e. 1+1/e > 1.367). On the other hand, decreasing
ν increases the number of iterations. When k is small, the approximation ratio
is reduced, in fact for k < 100, it is less than 1.07. However, this required up
to 18 iterations. We obtain better results both in terms of approximation ratio
and number of iterations with large values of k. In fact, for k > 250, the ratio is
below 1.05 and it is obtained with at most 2 iterations.

In Fig. 4, we plot the approximation ratio and the number of iterations
obtained on a rgg graph of 300 nodes as a function of ε, assuming that k = 21
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Fig. 3. Random geometric n = 300, θ = 0.1

Fig. 4. Random geometric n = 300, k = 21

(for any other value of k, L exhibits better behavior). For small values of ν the
ratio is very small. In detail, it is at most 1.023 for ν = 0.005 and 1.042 for
ν = 0.01. For ν = 0.1 we observe a decreasing tendency. This is in contrast with
the theoretical upper bound plotted in Fig. 2 (which is however confirmed if func-
tions sd and w are constant). The maximum value measured is 1.38, obtained
when ε = 0. For ν = 0.005, the good values of the approximation ratio required
more iterations if ε is small. This is due to the fact that if ε approaches 1, then
the usage of storage nodes does not significantly decrease the objective function
and hence the first feasible solution already has a good approximation ratio. In
particular, for ε = 1 the usage of storage nodes does not decrease the energy
costs.

For the other settings, varying on the number of nodes,the values of ε and k
and the type of graph, the overall tendencies are similar. This is also confirmed
by the plots of Fig. 5, where we compare the performance of the algorithm in
different graph types. In detail, in Fig. 5 we report the average values of the
graphs with 100 nodes, ε = 0.1 and ν = 0.005, as a function of k and classified
by graph type. We do not observe any significant difference with respect to the
type of graph. We note that in these cases the approximation ratio is smaller
than the previously reported ones.
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Fig. 5. Graph type comparison n = 100, θ = 0.1, λ = 0.005

Table 1. Average computational time required for each iteration of L when k = n/2.
Note that the computational time of the iterations in the extreme cases, i.e. k = 1 or
n = k is always < 0.0001.

Graph n k Time per
type iteration (s)

rgg 100 50 0.0121
300 150 0.3274
1000 500 15.0086

ba 100 50 0.0122
300 150 0.3291
1000 500 14.2448

pmed 100 50 0.0116
300 150 0.3191
900 450 10.9442

er 100 50 0.0137
150 75 0.0392

6 Conclusions

The minimum k-storage problem has been considered from the theoretical and
experimental points of view. The obtained results show that, in undirected
graphs, the problem is not approximable within a factor of 1 + 1

e . On the
other hand, it admits a constant-factor polynomial-time approximation algo-
rithm based on local search technique which performs very well in practical
scenarios. For the case of directed graphs, the problem has been proved to not
belong to APX .
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Abstract. Counting is a fundamental problem of every distributed sys-
tem as it represents a basic building block to implement high level
abstractions. In anonymous dynamic networks, counting is far from being
trivial as nodes have no identity and the knowledge about the network is
limited to the local perception of the process itself. Moreover, nodes have
to cope with continuous changes of the topology imposed by an external
adversary. A relevant example of such kind of networks is represented by
wireless sensor networks characterized by the dynamicity of the commu-
nication links due to possible collisions or to the presence of duty-cycles
aimed at battery preservation. In a companion paper [14], a leader-based
algorithms to count the number of processes in an anonymous dynamic
network, namely ANoK , has been proposed. Such algorithm employs a
technique that mimics an energy transfer from the anonymous nodes to
the leader to converge to an exact count of the number of nodes hav-
ing no knowledge on the dynamic network. Unfortunately ANoK is an
unconscious counting algorithm, i.e., the algorithm eventually converges
to the exact count but there is no node in the network that is able to
detect when this happens. In this paper, we define a new algorithm,
called A∗

NoK , by augmenting ANoK with a termination heuristic that
allows the leader to decide when it should output the current count and
we provide an experimental evaluation, for both ANoK and A∗

NoK , con-
sidering different types of dynamic graphs.

1 Introduction

Networks of tiny artifacts will play a fundamental role in the computational
environments and applications of tomorrow. Networked embedded sensors and
mobile devices will produce a constant flow of data between the real world and
modern and traditional networks such as information, communication and social
networks. Such hyperconnected dynamic environments create very challenging
system models where what was trivially solvable in a static system, is now far
from being trivial. What is becoming apparent is that in such environments,
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theory and models for static distributed systems do not capture anymore the
new kind of applications that are emerging. As a result, over the last years,
dynamic distributed systems have attracted a lot of interest from the relevant
research community (see e.g., [7,8,24]).

A critical issue in designing such hyperconnected dynamic infrastructures is
security and trust, especially when artifacts exchange crucial information that
needs to be protected [10]. It is evident that contemporary networks have signif-
icant difficulties dealing with third-party tracking and monitoring online, much
of it spurred by data aggregation, profiling, and selective targeting. Terms like
information security, data confidentiality and integrity, entity authentication and
identification need to be considered [26]. A promising approach for addressing
these problems is to incorporate privacy in the design and models of such future
systems by guaranteeing the anonymity of the artifacts.

In this paper, we consider the problem of counting the number of nodes in a
network, without revealing any information about their identities or providing
information about the network state. Counting is among the most fundamental
problems of distributed computation and it is a key function for network man-
agement and control, and the vast number of papers appearing in the relevant lit-
erature is a clear indication of its importance. A large part of these studies deals
with causes of dynamicity such as failures and changes in the topology that even-
tually stabilize [15]. However, the low rate of topological changes that is usually
assumed is unsuitable for reasoning about truly dynamic networks. We envision
future networks with highly dynamic changes: connected artifacts may become
immediately unreachable after they have been received a message from them. We
consider recent theoretical models for dynamic networks in which the topology
may change arbitrarily from round to round. In some models (e.g.,[18]), edges
- representing communication among hyperconnected artifacts - are changed at
each round by an adversary, that is forced to modify edges in such a way that
the network is always connected. In other models (e.g., [5,12]), edges appear by
following a random distribution where certain properties of the dynamic network
hold with high probability. Under these assumptions taken for granted, theoret-
ical results indicate that we can design protocols for distributed tasks that are
robust, scalable and that terminate.

In this work we remove fundamental assumptions made by previous theo-
retical models: (a) we avoid any assumption on the network knowledge: nodes
do not know the size (or an upper bound) n of the network, or any other met-
rics [14,19]; (b) we also avoid any assumption on providing unique identities
(ids) to the artifacts: nodes execute identical programs and in symmetric net-
works it is impossible to count the nodes unless a leader is not introduced [19];
(c) we do not require the network to be connected at each time instance (e.g.,
1-Interval connectivity property [18,21]). We believe that the resulting mode of
operation is more suitable for future hyperconnected environments, where pri-
vacy is incorporated in the model. Under this mode of operation, we propose a
new distributed algorithm, namely A◦

NoK , that defines a termination heuristic
in order to provide estimates on the size of the anonymous network.
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A◦
NoK is built starting from the unconscious counting algorithm ANoK intro-

duced in the companion paper [14]. ANoK guarantees that the leader eventually
converges to the exact count but it has no way to detect when this happens
(unconsciousness). In this paper, we equip the leader of ANoK with an heuris-
tics as terminating condition. In this new algorithm, namely A◦

NoK , the leader
uses the heuristics to guess when it can conclude the count and output a value.

Both the algorithms exploits the energy-transfer technique to count the exact
number of nodes. Informally the technique works as follows: each node vi is
assigned with a fixed energy charge, stored in the variable evi

, and during each
round it discharges itself by disseminating energy around to its neighbors i.e.,
evi

decreases of a value k ≥ evi
/2, then this quantity k is equally split among

the neighbors of vi and this value is added to vi’s neighbors variable. The leader
acts as a sink collecting energy (i.e., energy is not transferred by the leader to
neighbors). Our technique enforces, at each round, a global invariant on the
sum of energy among networks’ nodes (i.e.,

∑

vi
evi

= #nodes), that resorts
to the fact that energy is not created or destroyed in the anonymous dynamic
distributed system (energy conservation property). Considering the behavior of
the nodes, the energy is eventually transferred to the leader and stored there.
The leader measures the energy received to count the size of the network.

We follow a detailed experimental approach and investigate the performance
of both ANoK and A◦

NoK (Sects. 4.1 and 4.2) in the presence of an oblivious
adversary that rearranges the edges of the communication graph without a strat-
egy and acts according to some probability distribution that may also disconnect
the network1. In particular, we consider different random evolving graph models
in order to identify the error rate of the algorithm (the number of times the
termination heuristic fails) as well as the efficiency for terminating the compu-
tation (the difference from the actual size of the network and the value output
by the termination heuristic). We also look into networks that are periodically
disconnected as the artifacts duty-cycle (Section 4.4).

For the case of densely connected anonymous networks, A◦
NoK terminates

always correctly. In cases where the network experiences regular partitions,
A◦

NoK provides estimates on the size whose accuracy varies according to the
degree of disconnection of the network (see Sect. 4.2). Longer periods of network
disconnections bring to lower accuracy in counting. Let us finally remark that
A◦

NoK is able to answer to predicates such as “does the network contain more
than T nodes?” (i.e., |V | ← T )in a number of rounds lesser than the one needed
by the base ANoK algorithm presented in [14] as shown in Section 4.3.

2 Related Work

The question concerning which problems can be solved in a distributed system
where all processors use the same algorithm and start from the same state has a
long history, with its roots dating back to the seminal work of Angluin [3], who
1 In [14] we addressed the problem of counting in the presence of a worst-case adversary

that is constrained to preserve only the connectivity of the network.
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investigated the problem of establishing a “center”. She was the first to realize
the connection with the theory of graph coverings, which was going to provide,
in particular with the work of Yamashita and Kameda [25], several character-
izations for problems that are solvable under certain topological constraints.
Other well-known studies on unknown networks have dealt with the problems
of robot-exploration and map-drawing of an unknown graph [2,13,22] and on
information dissemination [6]. Sakamoto [23] studied the “usefulness” of initial
conditions for distributed algorithms (e.g. leader or knowing n) on anonymous
networks by presenting a transformation algorithm from one initial condition
to another. Fraigniaud et al. [16] assumed a unique leader in order to break
symmetry and assign short labels as fast as possible. Recently, Chalopin et al.
[9] have studied the problem of naming anonymous networks in the context of
snapshot computation. Finally, Aspnes et al. [4] studied the relative powers of
reliable anonymous distributed systems with different communication mecha-
nisms: anonymous broadcast, read-write registers, or read-write registers plus
additional shared-memory objects.

Distributed systems with worst-case dynamicity were first studied in [21]
by introducing the 1-interval connectivity model. They studied flooding and
routing problems in asynchronous communication and allowed nodes to detect
local neighborhood changes. Under the same model, [18] studied the problem of
counting for networks where nodes have unique IDs and provided an algorithm
that requires O(n2) rounds using O(log n) bits per message. In [19], the authors
studied the problem of anonymous counting in this worst-case dynamicity model
and provided an algorithm where given that the nodes know an upper bound on
the maximum degree that will ever appear, the nodes obtain an upper bound on
the size of the network. In [20] the 1-interval connectivity assumption is replaced
by other less restrictive temporal connectivity conditions that only require that
another causal influence occurs within every time-window of some given length.
They introduce several novel metrics for capturing the speed of information
spreading in a dynamic network and provide terminating algorithms for fast
propagation of information under continuous disconnectivity.

Let us finally remark that the counting problem has been also investigated
also in the context of gossip-based protocols where the dynamicity of the system
is governed by a sampling oracle [17] that, at each round, provides each node with
a set of neighbors, obtained by randomly sampling network members. This is
similar to have a oblivious adversary. However, in the model of [17] the number of
neighbors is known before the send step, in our model this is actually not possible.

3 Background

System Model. A dynamic network is a network whose topology changes
along time due to possible failures of nodes or communication links. We consider
computations executed in discrete synchronous rounds, controlled by a fictional
global clock accessible to all the nodes. Thus, all nodes have access to the cur-
rent round number via a local variable that we usually denote by r. A dynamic
network is modeled by a dynamic graph G(r) = (V,E(r)), where V is a set of
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n nodes (or processors) and E : IN ∈ P(E∈), where E∈ = {{u, v} : u, v ≤ V },
is a function mapping a round number r ≤ IN to a set E(r) of bidirectional
links drawn from E∈ [18]. Intuitively, a dynamic graph G is an infinite sequence
G(1), G(2), . . . of instantaneous graphs, whose edge sets are subsets of E∈ chosen
by an adversary. The set V is assumed throughout this work to be static, that
is it remains the same throughout the execution.

Nodes in V are anonymous, i.e. they have no identifier. At each round r, the
local view of a node v, denoted as lv(r), is defined by the multi set containing
all the states of processes that are neighbors of v at round r (i.e. all the local
variables maintained by the neighbors of v at round r).

Nodes in the network communicate by sending and receiving messages via
anonymous broadcast ; in every round r, each node u generates a single message
mu(r) to be delivered to all its current neighbors in Nu(r) = {v | {u, v} ≤ E(r)}.

Oblivious Dynamic Graph Adversaries. In order to model the dynamicity
of the network graph, we consider the following four adversary models:

1. G(n,p) Graph[11]: at the beginning of each round r the set of edges is
emptied and then for any pair of processes u, v ≤ V , the edge uv is created
according to a given probability p. Let us recall that in the G(n, p) graph
model, there exist a connectivity threshold t, depending on the number of
nodes n, such that if probability p is above the threshold, then G(n, p) is
connected with very high probability.

2. Edge-Markovian (EM) Graph[12]: at each round r, edges are modified
according to the following rules:
(a) For each edge uv ≤ E(r−1), uv is removed from E(r) with a probability

pd (i.e., death probability).
(b) For each edge uv /≤ E(r − 1), uv is created and inserted in E(r) with a

probability pb (i.e., birth probability).
Clearly, connectivity of the graph at each round depends on pd and pb.

3. Duty-cycle based Graph: at round r0 the dynamic graph has a fixed, con-
nected, topology. Each node follows a duty cycling phase during which, if at a
given round ri the node is awake it can receive and send messages according
the topology of r0 to any neighboring node that is also awake. While when at
round rj it is in sleep mode, all adjacent edges are removed from the graph.
The presence of the duty cycle essentially brings some dynamicity in the graph
since not all edges will be set at each round. This model constructs evolv-
ing graphs that reflect realistic deployments of resource constraint devices.
Remark that this model does not guarantee that the graph will be connected
at each round.

Energy-Transfer Technique. In [14], we presented a technique, called energy-
transfer, for counting the size of the network overcoming the lack of identities and
the constantly dynamic environment. Such technique is inspired to the physical
conservation of energy invariant and we abstract the notion of energy by assign-
ing to each process a variable (representing an energy charge). In particular,
each node is assigned a fixed energy charge, and during each round it discharges
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itself by disseminating it around to its neighbors. The leader acts as a sink col-
lecting energy (i.e., energy is not transferred by the leader to neighbors). The
technique enforces, at each round, an invariant on the sum of energy among
networks’ nodes: energy is not created or destroyed. Considering the behavior
of the nodes, the energy is eventually transferred to the leader and stored there.
The leader measures the energy received to count the size of the network. Inter-
estingly, this technique is very simple to implement and depends on very limited
information about the attributes of a given network (i.e., node ids, channel ids
etc). [14] introduced a series of algorithms applying the energy-transfer technique
that either assume knowledge on certain aspects of the network (e.g., an upper
bound on node degree) in order to terminate the computation (i.e. conscious
algorithm), or do not make any additional assumption but do not terminate as
the ANoK algorithm (i.e. unconscious algorithm where the computation con-
verges to the correct count, but nodes are not able to detect when to terminate).

We remark that the results in [14], especially those concerning the absence of
any knowledge assumption, represent an interesting feasibility point, even if they
cannot be used in practice since the leader is not able to verify any terminating
condition and thus it is not able to provide an answer to the counting problem.
In this paper, we present an algorithm, namely A◦

NoK , obtained by the basic
ANoK one, in which we define a terminating condition based on the definition
of an heuristic and we show that it enables an accurate count.

4 Unconscious Counting Algorithms with Termination
Heuristic

4.1 The Unconscious No-Knowledge Algorithm ANoK

The No-Knowledge Algorithm (ANoK) presented in [14] works in the following
way: each non-leader node v starts, at round r0, with energy quantity ev = 1
and it transfers half of its current energy to the neighbors. However, v has no
knowledge about the network and thus it cannot know the exact number of
neighbors in r before receiving messages, but it can only guess such number.
Thus, v supposes to have d neighbors and it broadcasts a quantity of energy 1

2d
(as if there are really d neighbors). Then v starts to collect messages transmitted
by its neighbors at the beginning of the round and it stores such messages in a
local variable Smsg. At the end of the round, v updates its energy ev to 1

2 +(d−
|Smsg|) 1

2d+
∑

∗m≥Smsg
m to preserver the quantity of energy over all the network.

Notice that, if the real number of neighbors at round r is lower than the
estimation (i.e., |Nv(r)| ≥ d) then the global energy conserved among all the
processes is still constant (this is due to the compensation done by v at the end of
the round based on the effective number of received messages). On the contrary,
if the number of neighbors is greater than the estimation (i.e., |Nv(r)| > d) then,
there is the release of a local surplus of energy. As an example, consider the case
where v has energy ev the estimation of neighbors is d = 2 and the real number
of neighbors is Nv(r) = 8. When v sends ev

4 to each neighbors, the total amount
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of energy transferred is twice the energy stored by v (i.e., the energy transferred
is 8 × ev

4 = 2ev while node v had only ev residual energy). However, since v
adjusts its local residual energy considering the number of received messages, it
follows that its residual energy will become negative and globally the energy is
still preserved.

The local surplus of positive/negative energy could create, in the leader, a
temporary value of energy e that is greater than |V | or negative. Moreover, the
adversary could change, at each round, the degree of nodes in order to avoid the
convergence of the leader. To overcome these issues each processes stores locally
the highest number of neighbors it has ever seen and it uses such number as
estimation of its degree d. node v can increase d at most |V | − 1 times, from 1
to |V |. This implies that worst case adversary cannot create an infinite surplus
of local energy. Since the conservation of energy is not violated and the local
surplus of energy is finite, it is straightforward to prove that the leader has to
converge to the value |V | and the adversary could delay this convergence only
a finite number of times. Intuitively, the adversary cannot delay too much its
moves, because when the energy stored in V \ {vl} is less than a certain value,
the local surplus of energy that it could create, even in the worst case, it is not
enough to change the leader count. So, if at each round r the leader counts ∀evl

∪,
it is possible to prove that there exists a round r◦ after which the leader will
always count the correct value despite the move of the adversary [14].

Unfortunately, looking to the number of consecutive rounds in which the
leader outputs always the same count is not sufficient to provide a terminating
condition as such number can always be influenced by the adversary. As a con-
sequence, the leader cannot detect convergence. In fact, let us suppose that the
leader stops when the increment of energy at round r is below a threshold t. It is
always possible to have a network of size t + 1 where each node have a residual
charge of t. So each increment on the leader energy is below the termination
threshold but the residual energy on the network is greater than 1, so if the
leader terminates it will miss one node.

4.2 Termination Heuristic: A∗
NoK

In this section, we will present the heuristic added to the basic ANoK to obtain
the new algorithm A◦

NoK working in an anonymous network with No Knowledge
assumption and having a termination condition. The heuristic is used by the
leader to decide at which time the current count can be considered as the final
one. The heuristic is based on the assumption that the dynamicity of the graph
is governed by a random process (i.e., a graph where links change according to
a uniform probability distribution) and it considers the notion of flow observed
by the leader.

At each round r, the leader vl will receive a fraction of energy from all its
neighbors. So the flow of energy to the leader at round r can be expressed as:

Φr(vl) =
∑

∗v≥Nvl
(r)

ev(r)
2dmax

v (r)
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where ev(r) is the energy of v at round r and dmax
v (r) is the maximum number

of neighbors that node v has so far. After a sufficient number of rounds, the
estimation of the flow observed by the leader is

Φr(vl) =
∑

∗v≥Nvl
(r)

ev(r)
2dmax

v (r)
� |Nvl

(r)|
2d

max(r)
avg

ev(r)

where 2dmax
avg (r) is the average of the maximum degrees seen by nodes in G at

round r and ev(r) is the average of the energy kept by all non-leader nodes at
round r.

Let us remark that, in the absence of the leader, the energy is always balanced
among nodes in the network and let us recall that the leader is the only node
absorbing energy. As a consequence, nodes being neighbors of the leader could
have less energy than others as they transferred part of their energy to the leader
without receiving nothing from it. Due to the assumption about the probabilistic
nature of the edges creation process and considering the functioning of ANoK ,
those non-leader nodes will tend to have a similar quantity of energy as they will
balance energy surplus. Thus, the leader can estimate ev(r) � |V |−evl (r−1)

|V | .
Due to the assumption about the probabilistic nature of the edges creation

process, the leader will see almost the same maximum number of neighbors as
the other nodes. Thus, 2dmax

vl
(r) � 2dmax

avg (r). Thus, substituting we have

Φr(vl) � |Nvl
(r)|

2dmax
vl

(r)
|V | − evl

(r − 1)
|V |

from which we obtain

|V̄ (r)| � ρ(r)evl
(r − 1)

ρ(r) − Φr(vl)

where |V̄ (r)| is estimation of the number of processes in the network done by
the leader at round r and ρ(r) = |Nvl

(r)|
2dmax

vl
(r) .

Let k = ∀evl
(r)∪ be the number representing the count done by the leader at

round r, and let Δ(r) = |V̄ (r)| − evl
(r) be difference between the network size

estimated with the energy flow and the energy currently stored at the leader. We
can finally define a termination condition as follows: ∪ as the count outputted
by the leader at round r, as long as ∀evl

(r)∪ remains stable, the leader computes
the average Δ of Δ(r) over the last k rounds and if after k consecutive rounds
the quantity ∀evl

(r + k) + h∪ is equal to k and ∀evl
(r + k)∪ = k the counting

procedure terminates and the leader outputs k.

5 Performance Evaluation

Simulator. In order to run our experiments, we developed a JAVA simulator
using the Jung library [1] to keep track of the graph data structure. Each process
v is seen as a node in the graph and it exposes an interface composed of two
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methods: the first one allowing to send a message for round r and the second one
allowing to deliver messages for the round r. Moreover, each node has associated
a queue qv storing the messages that it has to receive. The simulation is done
trough a set of threads; a thread Tj takes a node from a list lm containing all
of nodes to be examined in this round, removes it from the list and invokes the
method send message. Tj also takes the message m generated by v, and adds it
to the queues of Nv(r). When lm is empty, a different set of threads is activated
to deliver messages. Tj takes a node v from a list ld and manage the delivery
of all messages in qv that v received during the current round. When all the
messages in the queues are delivered to all the processes, the round terminates
and the topology can be modified according to the dynamicity model considered
and a new round can start.

Metrics and Parameters. We investigate three key performance metrics:

– Convergence Time Distribution: the convergence time is defined by the
first round at which the algorithm outputs the correct value. In the following,
we studied the probability distribution of the convergence time to show the
average latency of the algorithms before reaching a correct count.

– Flow Based Gain Δ: such metrics represents the difference measured by the
leader between the size estimated through the flow and the the size estimated
trough the energy stored inside the leader (i.e., Δ(r) = |V̄ (r)| − evl

(r)).
– Error Frequency ρ: we measured the percentage of uncorrect termination

obtained while adopting the heuristics-based termination condition defined in
Sect. 4.2.

The above metrics have been evaluated by varying the following parameters:

– Dynamicity Model: we considered different types of oblivious dynamic
graph adversaries to evaluate the factors impacting every metrics (see Sect. 3
for a formal description).

– Edges Creation Probability p: such probability governs the graph dynam-
icity according to the specific model considered (G(n,p) or Edge-Markovian).

We have evaluated the performance of the algorithms under different metrics
in networks comprised of {10, 100, 1000} nodes. When not explicitly stated, tests
are the results of 1000 independent runs.

5.1 Evaluation of ANoK

We implemented and tested ANoK on both G(n,p), Edge-Markovian and Duty-
cycle-based graphs. Let us first consider the case of G(n,p) graphs and let us
recall that the connectivity threshold t is defined according to the number of
nodes in the graph (i.e., t = ln(|V |)

|V | ). We evaluate our algorithm for several
probability p. In particular, for any probability greater than 2t, we consider only
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(a)

(b)

Fig. 1. ANoK Convergence time distribution for G(n,p) graphs with different edge cre-
ation probabilities p.

connected graph instances, i.e., at each step, we check the connectivity and in
case of disconnected graph we sample a new random graph. For probabilities
smaller than 2t we allow disconnected graph instances.

Figure 1 shows ANoK convergence time distribution when the algorithm runs
on G(n,p) graphs. As expected the convergence time becomes worse when we con-
sider disconnected instances. However, it is worth notice that the algorithm is
able to converge to the correct count even in presence of disconnected instances.
Moreover, the increment of convergence time is inversely proportional to p and
there is an increment of the distribution variance due to the presence of discon-
nected instances.

When considering Edge-Markovian graphs, we set the probability of creating
an edge as in the G(n,p) graphs and we fixed the probability of deleting an edge
to 0.25 (i.e., pd = 0.25 and pb = f(t)).

Figure 2 shows ANoK convergence time distribution; as we can see, it is com-
parable to G(n,p) graph one. In addition, the persistence of edges across rounds
(due to pd ≥ 1) mitigates the low values of edge creation probability. As a
consequence, the convergence is faster than the pure G(n,p).
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Fig. 2. ANoK Convergence time distribution for edge-Markovian graphs with different
edge creation probabilities pb and |V | = 100.

5.2 Evaluation of A∗
NoK

In the following, we evaluate the A◦
NoK algorithm on both G(n,p) and Edge-

Markovian graphs. Figure 3 shows several measures related to the heuristic cor-
rectness. In particular, in addition to the error frequency ρ, we measured also
the average error and maximum error done, by the heuristic, in terms of number
of nodes missed with respect to the real number of nodes in the graph. We omit
from the Figure some probabilities since they always terminate correctly (p ← t

2
in case of G(n,p) graphs and pb ← t

4 for the Edge-Markovian). In case of discon-
nected topologies, i.e., p ≥ t

4 for the G(n,p) or pb ≥ t
8 for the Edge-Markovian, we

have that the percentage of counting instances terminating correctly is smaller
that 100% and it becomes proportionally worse with the decrease of p. More-
over, it is possible to see a bimodal behavior of the heuristic when it fails: two
cases are frequent in the experiments (i) the heuristic forces the termination
in the first rounds of the counting process with the consequence of having the
leader outputting a count much smaller than the real number of processes and
(ii) the heuristic fails when the energy accumulated by the leader is close to the
current network size. In all our experiments we have not found a case in which
the heuristics forces the termination in a case different from this two. Moreover
in the table we indicate the Convergence Detection Time, that is the number of
rounds after the first convergence that the heuristics employs to correctly ter-

Fig. 3. Evaluation of the Termination Correctness ρ. The results are the outcome of
500 experiments
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minate the count. It is possible to see that in the majority of experiments, even
on disconnected instances the heuristic converges in a time that is equal to the
size of the network.

5.3 Comparison Between ANoK and A∗
NoK

The flow could be used to estimate the size of |V | obtaining a faster count.
Figure 4 shows the evolution of Δ, i.e., difference measured by the leader between
the size estimated through the flow and the the size estimated trough the energy
stored inside the leader, both from a temporal perspective 4(a) and from the
energy perspective 4(b).

The value Δ reaches the maximum when the energy at the leader is approx-
imately half of the network size; in this case, when the network is connected
(i.e., p ← t), the use of the heuristic allows the leader to predict, correctly, the
presence of at least others 17 nodes.

So, on connected instances our approach could be useful to answer faster
to predicates likes |V | ← t. In addiction, the flow-based estimation continues
to perform well on non-connected instances only until a certain threshold, then
the gain obtained with the flow drops to one or two nodes more than the ones
estimated by the energy.
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Fig. 4. Difference between the size estimated with the flow (A∗
NoK) and the size esti-

mated by looking to the energy stored at the leader (ANoK) in a Gn,p network of
|V |=100.
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Moreover the figures show why the termination heuristics works bad on
instances where p ≥ t

4 , we can see that Δ falls behind the threshold of 1, both
when the energy in the leader is low, and when the energy in the leader is
approaching the value |V | this could lead to two possible misbehavior, termi-
nating after few rounds from the start, so with a value that could be sensibly
distant from the value of |V | or it could terminate near |V |, when Δ falls again
behind 1.

Figure 4(a) shows the behavior of Δ along time. In particular,

– when the network is connected (i.e., p ← t), the counting done by the leader
fast approaches half of the network size (i.e., the maximum value for Δ). The
energy-based count approaches the actual size with an exponential time; this
is visible from the exponential decay of Δ. This behavior is present also when
p < t, even tough there is a slower decay of Δ that obviously reflects a slower
approach to the actual size.

– for values of p ≥ t the curves show a high variance. This is due to the presence
of disconnected topologies that introduce a variance in the convergence time
for which the magnitude is proportional to the inverse of p. This high variance
in convergence is due to the high variance of the flow that the leader will see
during the execution.

The same behavior can be observed in Edge-Markovian graphs (cfr. Figure 5).
The presence of more edges in the edge-markovian graph affects positively the
Δ measures since it is less prone to the value of p. It is possible to notice a
slightly low maximum value for the edge-markovian process, 17 against 17.3 of
the G(n,p) graph.

We run also tests with larger graphs (|V | = 1000) but we omit them here
since curves exhibit the same behavior of those shown in Figs. 4 and 5, notably
in this case the maximum delta is about 170 nodes.

5.4 Duty Cycle

In order to test the adaptiveness of our heuristic, we run A◦
NoK on regular

topologies: rings and chains. Over those topologies, we simulate a duty-cyle of
80%. Each node independently sleeps for 20% of the time and during this period
links of sleeping nodes are deleted. Considering a ring topology with |V | = 100,
the average convergence time is around 26986 rounds for 100 experiments, for the
chain the convergence time is on average 70000 rounds . We also tested random
G(n,p) topologies where p = 2t, in this case the average over 200 experiments
shows a convergence time of 1059 rounds. The most noticeable phenomenon
is that on graphs with duty-cyle both the termination heuristic and the size
estimation perform really bad: on rings and chains the termination heuristics
always fails and on random graphs it fails on the 23% of the instances.
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Fig. 5. Difference between the size estimated with the flow (A∗
NoK) and the size

estimated by looking to the energy stored at the leader (ANoK) for Edge Markovian
network with pd = 0.25 of |V |=100.
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Fig. 6. Difference between the size estimated with the flow (A∗
NoK) and the size esti-

mated by looking to the energy stored at the leader (ANoK) of 200 runs for duty cycle
and random graph with |V |=100.

6 Conclusion

In this work we presented a practical algorithm based on a paradigm that mim-
ics an energy transfer from nodes to the leader, namely A◦

NoK , obtained by
the algorithm ANoK presented in [14]. This is done by equipping the leader of
ANoK with a termination heuristic. Both algorithms has been implemented and
tested. Experiments show that A◦

NoK terminates correctly on dense graphs and
it has acceptable error rate (i.e., the termination heuristic fails just a few times
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returning a wrong count) on disconnected graph instances; however, the error
rate becomes high when we consider sparse and extremely disconnected graph
instances or regular topologies. An interesting point revealed by the analysis is
that when the heuristic fails, it exhibits a bimodal behavior: either the count out-
put by the terminating heuristic has a small difference with the actual network
size or this difference is on the order of the size of the network.

This interesting feature has to be further investigated to understand if and
how it is possible to design better heuristics. Thanks to the concept of energy-
flow, A◦

NoK could answer faster to predicates like |V | ← T .
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Abstract. We study an allocation problem that arises in various scenar-
ios. For instance, a health monitoring system where ambulatory patients
carry sensors that must periodically upload physiological data. Another
example is participatory sensing, where communities of mobile device
users upload periodically information about their environment. We
assume that devices or sensors (generically called clients) join and leave
the system continuously, and they must upload/download data to sta-
tic devices (or base stations), via radio transmissions. The mobility of
clients, the limited range of transmission, and the possibly ephemeral
nature of the clients are modeled by characterizing each client with a
life interval and a stations group, so that different clients may or may
not coincide in time and/or stations to connect. The intrinsically shared
nature of the access to base stations is modeled by introducing a maxi-
mum station bandwidth that is shared among its connected clients, a
client laxity , which bounds the maximum time that an active client is
not transmitting to some base station, and a client bandwidth , which
bounds the minimum bandwidth that a client requires in each trans-
mission. Under the model described, we study the problem of assigning
clients to base stations so that every client transmits to some station in
its group, limited by laxities and bandwidths. We call this problem the
Station Assignment problem. We study the impact of the rate and
burstiness of the arrival of clients on the solvability of Station Assign-
ment. To carry out a worst-case analysis we use a typical adversarial
methodology: we assume the presence of an adversary that controls the
arrival and departure of clients. The adversary is limited by two parame-
ters that model the rate and the burstiness of the stations load (hence,
limitting the rate and burstiness of the client arrivals). Specifically, we
show upper and lower bounds on the rate and burstiness of the arrival
for various client arrival schedules and protocol classes. The problem
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has connections with Load Balancing and Scheduling, usually studied
using competitive analysis. To the best of our knowledge, this is the first
time that the Station Assignment problem is studied under adversarial
arrivals.

Keywords: Station Assignment · Periodic sensing · Health monitoring
systems · Participatory sensing · Continuous adversarial dynamics

1 Introduction

We study a dynamic allocation problem that arises in various scenarios where
data sensed using mobile devices has to be gathered using one of many static
access points available. Examples include wearable health-monitoring systems,
where ambulatory patients carry physiological sensors, and the data gathered
must be periodically uploaded, and participatory sensing, where communities of
mobile device users upload periodically information about their environment.
We call this problem Station Assignment.

We study the Station Assignment problem assuming a continuous arrival of
mobile devices, called clients, who have to upload data to static devices, called
base stations, via radio transmissions. The mobility of clients, the limited
range of transmission, and the possibly limited time that they will be uploading
to a given station, are modeled by assigning to clients a life interval and a
stations group. That is, as clients move, the set of stations that they could
possibly upload data may change. We model this event as a client that departs
and a new client that arrives. The intrinsically shared nature of the base stations
is modeled by introducing a maximum station bandwidth that a station can
share among its connected clients, a client laxity , which bounds the maximum
time that an active client is not transmitting to some base station, and a client
bandwidth , which bounds the minimum bandwidth that a client requires in
each transmission.

Under the described model, we study the problem of assigning clients to base
stations so that every client transmits to some station in its group, limited by
laxities and bandwidths. We study the impact of the frequency of client arrivals
on the solvability of Station Assignment. Specifically, we show upper and lower
bounds on the rate and burstiness of the client arrivals for solvability of Station
Assignment under various client arrival schedules and protocol classes. To carry
out a worst-case analysis, we use a typical adversarial methodology: we assume
the presence of an adversary that controls the arrival and departure of clients.
The adversary is limited by two parameters that model the rate and burstiness
of the arrival. We also study the connections of this problem with online load
balancing and scheduling, usually studied using competitive analysis. To the best
of our knowledge, this is the first time when the Station Assignment problem is
studied under adversarial arrivals.
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2 Adversarial Model and Problem Definition

Model. We consider a Mobile Radio Network composed of a set S of base stations,
or simply stations for short and a set C of clients that want to transmit
packets to some station. Throughout we denote n � |C| and m � |S|. The time
is assumed to be slotted and the time domain is N. Each time slot is long enough
to transmit one packet.

Each client c ≥ C has the following characterization.

– A life interval , which is the set αc = [a, b] ← N of consecutive slots in which
c is active.

– A stations group, which is the set Sc ← S of stations to which c may transmit
packets.

– A laxity wc ≥ N, 0 < wc ∈ |αc|, such that c ≥ C must transmit to some
station in Sc at least once within every wc consecutive time slots in αc. In
this work we assume the laxity to be some value w, which is the same for all
clients.

– A bandwidth bc ≥ R
+ that models a resource requirement (such as frequency

bandwidth).

On the other hand, each station s ≥ S has the following characterization.

– A bandwidth Bs ≥ R
+, which limits the sum of the bandwidth of the clients

transmitting to s. In this work we assume the station bandwidth to be some
value B, which is the same for all stations.

We refer to the set of stations (with their parameters) as the system and to
the set of clients (with their parameters) as the client arrival schedule .

To carry out a worst-case analysis, we consider adversarial client arrival
schedules where the adversary is limited as follows. For any C ◦ ← C, let S(C ◦) =
⋃

c∈C′ Sc. For a given pair of values ε > 0 and λ ≤ 0 (that limit the rate
and burstiness of the stations load, which in turn limits the arrival/departure of
clients), we say that a client arrival schedule is (ε, λ)-admissible if the following
conditions hold:

∀C ◦ ← C : ∀T = [t, t◦] ← N :
∑

c∈C′
bc

|αc ∪ T |
w

∈ |T ||S(C ◦)|εB + λ (1)

∀c ≥ C : bc ∈ B . (2)

The first condition (1) restricts the load of the stations for any set of clients
C ◦ and any time interval T . In particular, given any C ◦ and any T , the total
bandwidth requested by the clients in C ◦ (specifically,

∑

c∈C′ bc|αc ∪ T |/w) has
to be no larger that a fraction ε of the bandwidth that can be provided by
the stations that can serve the clients in C ◦ (S(C ◦)) plus a constant term λ
(that allows for some burstiness). The second condition (2) imposes that the
requested bandwidth bc of each client must be no larger that the bandwidth B
of each station. Naturally, if some client had a request of bandwidth larger than
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B it would be impossible to satisfy it. Adversarial methodology characterized
as above is typically used for performing worst-case analysis of the considered
problem [3,10,11].

Problem. The Station Assignment problem is defined as follows. For a given
system and admissible client arrival schedule, for each time slot t ≥ N schedule
a set of clients to transmit to each station in t, so that

1. Each client c ≥ C transmits to some station in Sc at least once within each
w consecutive time slots in αc using a bandwidth bc;

2. For each station s ≥ S the sum of the bandwidths of the clients transmitting
to s in any time slot is at most B.

Protocols. We consider the following classes of protocols, commonly used in
scheduling literature.

– A Station Assignment algorithm is called irrevocable if for each client c all
the transmissions of c are to the same station s. We say that the algorithm
irrevocably assigns the client c to station s.

– A Station Assignment algorithm is called online if the information about any
client c is revealed to the algorithm only at the arrival time of c.

– A Station Assignment algorithm is called improvident if the algorithm does
not know when a client will leave the system.

3 Our Results

The results presented in this work are summarized in Tables 1 and 2. The tables
are organized by the system characteristics (columns) and the rows are further
subdivided by double lines into comparable settings for which upper and lower
bounds are presented. Lower bounds are for impossibility whereas upper bounds
are for solvability.

Table 1. Summary of bounds on problem solvability for offline protocols.

bc Sc Arrival Offline β ρ Theorem

time protocol class

Identical Identical Identical Any > mwB
(

n/(mw)
�n/(mw)� − ρ

)

n = ∗ mwBρ+β
B ≥

>
n/(mw)

�n/(mw)� 1

Identical Identical Identical Even

assignment

≤ mwB

(
n/(mw)⌈
n/(mw)

⌉ − ρ

)
≤ n/(mw)⌈

n/(mw)
⌉ 2

Distinct Identical Identical Any – > 1/2 3

Distinct Identical Identical Any > mB(1/m + 1/2 − ρ) – 4

Any Identical Identical Balance station-

bandwidth

usage

< mwB(1/2 − ρ) < 1/2 5

Distinct Distinct Identical Any > mwB (1/(mw) − ρ) > 1/(mw) 6

Any Any Any Any ≤ mwB(1/(mw) − ρ) ≤ 1/(mw) 7
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Table 2. Summary of bounds on problem solvability for online protocols.

bc Sc Arrival τc Offline β ρ Theorem
time protocol class

1 Distinct Distinct Open Irrevocable > mB
(

1
lnm

− ρ
)

> 1
lnm

9

1 Distinct Distinct Distinct Irrevocable
improvident
randomized

> mB
(

3√
2m

− ρ
)

> 3√
2m

10

1 Distinct Distinct Distinct Irrevocable
improvident
deterministic

> mB
(

1√
2m

− ρ
)

> 1√
2m

10

b ≥ ρB Any Any Open Irrevocable
improvident

< ρB ≤ 1
1+

√
2m

11

We study offline Station Assignment under various model assumptions, start-
ing from a more optimistic one where all clients have the same bandwidth and
the same stations group, and removing gradually assumptions making the model
more pessimistic and, hence, realistic. Studying different models gives insight on
what the inherent challenges of Station Assignment are, c.f., Table 1.

We start considering adversarial client arrival schedules where all clients have
the same stations group and bandwidth. Then, Theorem1 shows that for each
λ > mwB ((n/(mw))/�n/(mw)∼ − ε), where n = �(mwBε+λ)/B∼, there exists
a (ε, λ)-admissible client arrival schedule such that no Station Assignment algo-
rithm can solve the problem, even if all clients arrive simultaneously and have
the same life interval. Given that it must be λ ≤ 0, this lower bound for non-
solvability implies also a lower bound of ε > (n/(mw))/�n/(mw)∼. Corollary 1
shows a stronger bound on λ that holds for any positive ε. Under the same con-
ditions, Theorem 2 shows that the offline algorithm that distributes the clients
evenly solves Station Assignment, for any (ε, λ)-admissible client arrival schedule
that matches those bounds on λ and ε.

Then, we move to a class of client arrival schedules where clients may have
different bandwidths, although the stations group is still the same for all.
In this scenario, Theorem 3 shows that, for each ε > 1/2, there exists a
(ε, λ)-admissible client arrival schedule such that no Station Assignment algo-
rithm can solve the problem, even if all clients must arrive simultaneously.
Changing the adversarial client arrival schedule slightly, Theorem4 shows a
bound of λ > mB(1/m + 1/2 − ε) for the same conditions. This bound implies
a bound on ε as well, but it is subsumed by Theorem3. Under the same condi-
tions, Theorem 5 shows that an algorithm that (somehow) balances the station-
bandwidth usage solves Station Assignment, for any (ε, λ)-admissible client
arrival schedule such that λ < mwB(1/2 − ε) and ε < 1/2.

The last class of client arrival schedules we consider in our offline analysis
does not restrict station groups or bandwidths. Theorem6 shows that, for each
λ > mB (1/m − ε) (which implies ε > 1/m because λ ≤ 0) there exists a
(ε, λ)-admissible client arrival schedule such that Station Assignment cannot be
solved by any algorithm, even if all clients arrive at the same time. Theorem7
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matches those bounds, showing that if ε ∈ 1/(mw) and λ ∈ mwB (1/(mw) − ε)
the Station Assignment problem is solvable using any algorithm for any client
arrival schedule.

Moving to online protocols, c.f., Table 2, by showing a reduction from Load
Balancing [7], we prove in Theorem 9 that for any irrevocable algorithm, that is,
algorithms where the station-client assignments are final, there is a client arrival
schedule such that if λ > mB(1/ ln m − ε) the Station Assignment problem
is not solvable. Again, the lower bound implies a lower bound of ε > 1/ ln m
because λ ≤ 0. If the algorithm is additionally improvident, that is, the departure
time of clients already in the system is not known in advance, then Theorem10
shows lower bounds of λ > mB

(

3/
∗

2m − ε
)

and λ > mB
(

1/
∗

2m − ε
)

for
randomized and deterministic algorithms respectively. Those bounds imply that
if ε > 3/

∗
2m and if ε > 1/

∗
2m respectively the Station Assignment problem

cannot be solved. Finally, Theorem11 shows that, when all clients have the same
bandwidth b ≤ εB and do not depart, even if the station groups and arrival times
are different, if ε ∈ 1/(1 +

∗
2m) and λ < εB the algorithm that distributes

clients evenly (restricted to station group) solves Station Assignment.
We also show in Theorem 8 (not included in Table 2) a lower bound on ε for

non-solvability with irrevocable algorithms that applies to systems with distinct
station-bandwidths. Corollary 2 shows that instantiating Theorem 8 on a system
where all stations have the same bandwidth B, the lower bound on ε for non-
solvability is ε > 1/(1 + ln m).

4 Related Work

Adversarial queuing was introduced in [3,11], applied to store-and-forward net-
works, to measure stability of buffers and packet latency of dynamically injected
packets. Later, there were approaches to apply it in the context of wireless
networks: modelled as time-varying channels [4], radio channels with collisions
[2,12], or SINR networks [15]. In a single-hop radio channels with collisions, more
detail competitive analysis of dynamic and stochastic traffic was performed [9].
The difference between this line of research and our work is that it considered
simple packet forwarding requests without additional scheduling constraints.

In [7], Azar, Broder, and Karlin studied a load balancing problem where a
set of tasks that arrive and depart in time (temporary, as opposed to permanent
when tasks do not depart) have to be assigned to a set of machines. Each task
has an associated weight that represents the load that the processing of such
task adds to a machine. Additionally, each task has an associated subset of
machines that may process the task (restricted assignment). Upon arrival, a
task must be assigned to a machine immediately and cannot be transferred to
another machine later. The machine starts processing the task immediately and
continues until the task departs. An assignment algorithm selects a machine
to assign each task upon arrival. In the online version the algorithm does not
know future arrivals or departures, whereas an offline algorithm has complete
knowledge. The cost of an assignment of a given input is the maximum load of



Station Assignment with Applications to Sensing 161

Table 3. Competitive ratios of load balancing problem.

Unknown duration Known duration Permanent

Identical 2 − o(1) [7,13] 2 − o(1) [7,13] 2 − φ [14]

Related θ(1) [8] θ(1) [8] θ(1) [8]

Restricted O(
√

m) [8] O(log mT ) [8] θ(log m) [5]

λ(
√

m) [7]

the machines for such assignment. The authors study the competitive ratio of an
online algorithm with respect to an offline one as the supremum over all inputs
of the cost ratio. Specifically, for the greedy online algorithm that assigns each
task to the least loaded machine, they show matching upper and lower bounds of
((3m)2/3/2)(1+o(1)) on the competitive ratio, and a lower bound of Θ(

∗
m) for

any deterministic or randomized algorithm. The lower bound is matched in [8].
Variants of the problem include relaxing the constraint such that the duration
of a job is known on arrival (temporary) or the job never depart (permanent).
Another direction of relaxation includes making all machines to be available for
all jobs (identical or related). Table 3 gives a summary of the results.

In [1], Alon et al. studied a similar model for permanent tasks. They consider
two cases: (i) the tasks have associated weights and can be assigned to any
machine (unrestricted), (ii) the tasks have unit weights and can be assigned
only to a subset of the machines (restricted). They provide an Λ-approximation
scheme for the Lp norm of the loads. Interestingly, for the restricted unit-weights
model, they show that there exists an assignment that is optimal for all norms.
For further references on dynamic online scheduling and load balancing, see the
chapters [6,16].

5 Analysis of Offline Protocols

In this section, we study the impact of ε and λ on the offline solvability of Station
Assignment.

5.1 Unique Stations Group and Client Bandwidth

We start with a very optimistic scenario (for Station Assignment algorithms)
where all clients have the same stations group and the same bandwidth. We
show a lower bound for non-solvability that holds even under those optimistic
conditions. Given that λ ≤ 0 by definition, the bound obtained implies a lower
bound on ε.

Theorem 1. Given a system of m stations each with bandwidth B, even if all
clients must have the same stations group and the same bandwidth, for any
λ > mwB

(
n/(mw)

∗n/(mw)≥ − ε
)

, where n ≤ �(mwBε + λ)/B∼, n ≥ Z
+, there exists

a (ε, λ)-admissible client arrival schedule such that no algorithm can solve the
Station Assignment problem, even if all clients must have the same life interval.
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Proof. Consider a client arrival schedule of n clients, for any n ≤ ⌈

(mwBε +
λ)/B

⌉

, n ≥ Z
+, with the same bandwidth b = (mwBε + λ)/n and the same life

interval of length w. Such schedule is (ε, λ)-admissible because, for any n◦ ∈ n
and any subinterval T of the life interval of the clients (i.e., |T | ∈ w), it
holds n◦b |T |

w ∈ nb |T |
w = (mwBε + λ) |T |

w ∈ m|T |Bε + λ, and b = mwBρ+β
n ∈

mwBρ+β⌈

(mwBρ+β)/B
⌉ ∈ B. However, by the pigeonhole principle, there is at least one

station and one slot for which the sum of bandwidths of the clients assigned
to the station in the slot is at least �n/(mw)∼b = �n/(mw)∼(mwBε + λ)/n.
Replacing λ > mwB ((n/(mw))/�n/(mw)∼ − ε), the latter is bigger than B. ⊥�
Given that the client arrival schedule is adversarial, by choosing the station
group to be a singleton in the above proof, that is m = 1, and the laxity w = 1,
the lower bound obtained becomes λ > B (1 − ε), which implies that if ε > 1
the Station Assignment is not solvable. We assume that ε ∈ 1 throughout the
rest of the paper. This result can also be used to show that, for some higher
values of λ, Station Assignment is not solvable for any ε > 0.

Corollary 1. Given a system of m stations each with bandwidth B, even if all
clients must have the same stations group and the same bandwidth, if ε > 0 and
λ ≤ nB/�n/(mw)∼, where n = �(mwBε+λ)/B∼, there exists a (ε, λ)-admissible
client arrival schedule such that no algorithm can solve the Station Assignment
problem, even if all clients must have the same arrival time.

Proof. Let ε > 0, from Theorem 1 it is enough to prove the claim that λ >

mwB
(

n/(mw)
∗n/(mw)≥ − ε

)

, where n = �(mwBε + λ)/B∼. This holds if λ ≤
mwB n/(mw)

∗n/(mw)≥ = nB
∗n/(mw)≥ . ⊥�

Now we show a matching upper bound for solvability in the same optimistic
scenario. That is, all clients have the same stations group and bandwidth.

Theorem 2. Given any (ε, λ)-admissible client arrival schedule of n clients,
such that all clients have the same bandwidth, the same station group of size

m > 0, and the same arrival time, if λ ∈ mwB

(

n/(mw)
⌈

n/(mw)
⌉ − ε

)

, the algorithm

that assigns clients evenly among stations and intervals of w times slots solves
the Station Assignment problem on any system of at least m stations each with
bandwidth B.

Proof. Let b be the client bandwidth. In order to show the claim, it is enough
to show it for the initial w time slots after the arrival of the clients, given that,
if some client departs, the bandwidth usage of the assigned station is reduced.
Note that the life interval of all clients is at least w, by the definition of laxity.
Given that the assignment of clients is even, the station most used has at most
�n/(mw)∼ clients assigned per slot. Hence, in order to prove the claim, it is
enough to prove � n

mw ∼b ∈ B. Due to admissibility (Eq. (1)) for w slots (i.e.,
|T | = w), we know that nb ∈ mwBε+λ. Replacing this bound on b, it is enough
to show that � n

mw ∼mwBρ+β
n ∈ B. Replacing the bound on λ, it can be seen that

the inequality holds. ⊥�
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5.2 Unique Stations Group and Distinct Client Bandwidth

We now consider a less optimistic scenario where the client bandwidths may be
different. Theorems 3 and 4 show lower bounds for non-solvability on ε and λ
respectively.

Theorem 3. Given a system of m stations each with bandwidth B, even
if all clients must have the same station group, for any ε > 1/2, there exists
a (ε, λ)-admissible client arrival schedule such that no algorithm can solve the
Station Assignment problem, even if all clients must have the same life interval.

Proof. Consider a client arrival schedule of mw + 1 clients with the same sta-
tion group S and the same life interval of length w. One of the clients, call it
x, has bandwidth b = (ε − π)mwB for some value π such that 1/2 < π < ε
and ε − 1/(mw) ∈ π < (εmw − 1)/(mw − 1). Each of the remaining mw
clients has bandwidth πB. Such schedule is (ε, λ)-admissible because, for any
subset of n ∈ mw + 1 clients that includes x, Eq. (1) becomes ∀T : |T | ∈ w :
((n − 1)πB + (ε − π)mwB) |T |

w ∈ |T |mεB+λ, which is true because n−1 ∈ mw
and λ ≤ 0. On the other hand, if we consider the n ∈ mw clients that do not
include x, Eq. (1) becomes ∀T : |T | ∈ w : nπB |T |

w ∈ |T |mεB + λ, which is
true because n ∈ mw, λ ≤ 0, and π < ε. Finally, Eq. (2) also holds because
πB < εB ∈ B because ε ∈ 1, and (ε − π)mwB ∈ B for π ≤ ε − 1/(mw). How-
ever, given that there are mw + 1 clients, due to the pigeonhole principle two
clients have to be assigned to the same slot of the same station. Then, there is a
slot in some station such that the sum of the assigned clients is either 2πB > B
or πB + (ε − π)mwB > B because π < (εmw − 1)/(mw − 1). ⊥�

The following theorem shows a lower bound on λ for this scenario. The proof
uses an adversarial client arrival schedule similar to the schedule used in the
proof of Theorem3. The details are left to the full version of this paper.

Theorem 4. Given a system of m stations each with bandwidth B, even if all
clients must have the same station group, for any λ > mB(1/m + 1/2 − ε), there
exists a (ε, λ)-admissible client arrival schedule such that no algorithm can solve
the Station Assignment problem, even if all clients must have the same arrival time.

Now we show an upper bound for solvability for the same scenario. That is,
the stations group is unique among clients but the bandwidth may be different.

Theorem 5. Given any (ε, λ)-admissible client arrival schedule, such that all
clients have the same station group of size m > 0 and the same arrival time, if
λ < mwB(1/2 − ε), there exists a polynomial time algorithm that computes an
assignment of clients to stations that solves the Station Assignment problem on
any system of at least m stations each with bandwidth B. The transmission sched-
ule of such assignment is periodic with period w.

Proof. Consider a (ε, λ)-admissible client arrival schedule where all clients have
the same station group, arrive simultaneously, and all have laxity w. Let the time
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slot of clients arrival be labeled as 1. We will focus on the first interval of slots
[1, w]. Notice that all clients that arrive at time 1 stay active during such interval,
given that by definition ∀c ≥ C : wc ∈ |αc|. We will show how to assign each client
to one station and one slot within this window, so that no station is overloaded in
any slot. The assignment in all the subsequent intervals [iw+1, (i+1)w], for each
integer i > 0, is identical. Let A be any initial assignment of each client to one of
the m stations and one of the w slots. Let Bmax be the maximum bandwidth used
in A in any slot, and let (s, i) be some station-slot pair with such bandwidth usage
in the assignment A. If Bmax ∈ B, we are done. Otherwise, given that Bmax > B,
station s has more than one client assigned in slot i, since otherwise the client
arrival schedule would violate Eq. (2). If the sum of the bandwidth used on some
pairs (s◦, j) and (s◦◦, k) is at most B, consider another assignment A◦ where the
clients assigned to (s◦, j) and (s◦◦, k) in A are now all assigned to (s◦, j), and the
clients assigned to (s, i) in A are now split between (s, i) and (s◦◦, k). Repeat the
procedure above until the sum of bandwidth usage in each two station-slot pairs
is at least B, or Bmax ∈ B. In the latter case we are done. Otherwise, adding
in pairs, the total bandwidth used throughout all stations and slots is at least
mwB/2. But, according to Eq. (1), the total bandwidth used must be at most
mwεB + λ < mwB/2. Which is a contradiction. ⊥�

A similar bound can be obtained if clients never depart, even if they arrive at
different times.

5.3 Distinct Stations Group and Client Bandwidth

Now we consider the harshest scenario where clients may have different station
groups and different bandwidths. Given that λ ≤ 0 by definition, the bound
obtained implies that if ε > 1/m the problem is not solvable.

Theorem 6. Given a system of m stations each with bandwidth B, for each λ >
mwB(1/(mw) − ε), there exists a (ε, λ)-admissible client arrival schedule such
that no algorithm can solve the Station Assignment problem, even if all clients
must have the same life interval.

Proof. Consider a client arrival schedule of n + 1 clients, where n = amw, for
some integer a ≤ 1, such that n ≤ (mwBε + λ − B)/B. The first n clients have
a singleton station group so that, for each station si, i = 1, 2, . . . ,m, the num-
ber of clients with station group {si} is aw. The bandwidth of each of these n
clients is b = (mwBε + λ − B)/n. There is one additional client x with station
group M and bandwidth B. All the n + 1 clients in the client arrival schedule
have the same life interval of length w ≤ 1). Such client arrival schedule is (ε, λ)-
admissible because, for any subinterval T such that |T | ∈ w, the total bandwidth
of any subset of n◦ ∈ n + 1 clients is, if x is included then ((n◦ − 1)b + B) |T |

w =
((n◦ − 1)mwBρ+β−B

n + B) |T |
w ∈ (mwBε + λ) |T |

w ∈ |T |mBε + λ. Otherwise,
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if x is not included, and hence n◦ ∈ n, the total bandwidth is n◦b |T |
w =

n◦ mwBρ+β−B
n

|T |
w = n′

awBε|T | + n◦ β−B
n

|T |
w ∈

⌈

n′
aw

⌉

|T |Bε + λ. Therefore,

Eq. (1) holds. Additionally, replacing the expression of n in b, it can be
seen that b ∈ B. Thus, Eq. (2) holds for all clients. However, for any assignment,
there must be at least one slot of one station with bandwidth usage B + ab =
B + n

mb = B + n
mw

mwBρ+β−B
n = B(1 + ε) + β−B

mw , which is bigger than B for
λ > mwB(1/(mw) − ε). ⊥�

Now we show a matching upper bound for solvability for the same strict sce-
nario. That is, both, the stations group and bandwidth, may be different among
clients.

Theorem 7. Given any (ε, λ)-admissible client arrival schedule, if λ ∈
mwB(1/(mw) − ε), the Station Assignment problem can be solved on any system
of m stations each with bandwidth B.

Proof. Consider an assignment of a given (ε, λ)-admissible client arrival schedule.
Consider the set C ◦ ← C of clients that are active at any given time step t in
such assignment. Because the client arrival schedule is (ε, λ)-admissible, making
|T | = w in Eq. (1) and using that w ∈ |αc|, it must be

∑

c∈C′ bc ∈ w|S(C ◦)|εB +
λ ∈ wmεB + λ. Replacing in the latter the upper bound on λ, we have that
∑

c∈C′ bc ∈ B. Thus, no station can have a bandwidth usage bigger than B. ⊥�

6 Analysis of Online Protocols

In this section, we present bounds for irrevocable improvident online protocols.

6.1 Lower Bounds for Non-solvability

We show now that irrevocable algorithms do not always solve the problem. Theo-
rem 8 applies to a more general model where the station bandwidths may be dif-
ferent. The corollary that follows instantiates the result on a model where the
station bandwidth is unique. The proof is left to the full version of this paper.

Theorem 8. For any system of m stations, where station s has bandwidth
Bs, any λ ≤ 0, and for each irrevocable online algorithm A, there is a station
labeling {s1, . . . , sm} and a (ε, λ)-client arrival schedule such that, if ε > Bsm

/
(

Bsm
+

∑m−1
j=1

(
∑m

i=j Bsi
− maxj∈[j,m] Bsj

)
1

m−j+1

∏m−j
k=2

(

1 − 1
k

))

, A cannot
solve the Station Assignment problem.

Corollary 2. For any system of m stations each with bandwidth B, and for each
irrevocable algorithm A, and for any ε > 1/(1+ ln m) and λ ≤ 0, there is a (ε, λ)-
client arrival schedule such that A cannot solve the Station Assignment problem.

Proof. Replacing all bandwidths in the lower bound of ε in Theorem 8 by B, we

get ε >
(
∑m

j=1
1
j

)−1

= H−1
m > 1

1+ln m . ⊥�
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Observe that for the above proof to work it is not needed that an irrevocable
algorithm assigns a client to a station forever. It is enough that it assigns it for
m + w steps to reach the same result.

The following theorem for irrevocable algorithms relates λ and ε for the case
where the bandwidth of all stations is the same. Given that λ ≤ 0 by definition,
the bound implies that if ε > 1/ ln m, the Station Assignment problem is not
solvable.

Theorem 9. For any system of m stations, such that all stations have the same
bandwidth B, and for each irrevocable algorithm A, there is a (ε, λ)-client arrival
schedule such that, if λ > mB(1/ ln m−ε), thenA cannot solve the Station Assign-
ment problem.

Proof. Consider an adaptive adversary that decides the clients that arrive accord-
ing to the actions of A. The adversarial client arrival schedule is the following. Let
w = 1. For each client c, it is bc = 1. The life interval of all clients is open ended.
That is, upon arrival, clients stay active forever. Clients arrive in batches. A new
batch of clients arrive after the previous batch has been irrevocably assigned by
algorithm A. Time is conceptually divided in m rounds, which are enumerated
sequentially as 1, 2, . . . ,m. A new round starts when a new batch of clients arrive.
The number of clients arriving in each round is εB +λ/m. (We omit ceilings and
floors throughout the proof for clarity.) All clients arriving in the same round i
have the same stations group Si. Starting from the whole set of stations S in the
first round, the stations group for each new round is reduced by one station. We
say that such station is removed . Thus, for round 1 the stations group has size m,
for round 2 the size is m−1, and so on until round m when the stations group has
size 1. For any round r > 1, the station removed is the station with the smallest
number of clients assigned.

First we notice that the client arrival schedule defined is (ε, λ)-admissible. For
this purpose, it is enough to show that the property is preserved after each batch of
arrivals. Consider any round i = 1, . . . , m. Let Cj be any subset of clients with sta-
tions group Sj , for j = 1, . . . , i. We know that |Cj | ∈ εB+λ/m. So, in Eq. (1), the
εB term can be applied to the station removed in round j, and putting together
all the λ/m terms they add up to iλ/m ∈ λ.

We show now that, with the above client arrival schedule, the sum of the band-
widths of the clients assigned to the station in Sm is more than B. Let the number
of clients arriving in each round be called X = εB + λ/m. In round 1 the over-
all number of clients is X. Given that the station removed is the one with the
smallest number of clients, in round 2 the overall number of clients assigned to
stations in S2 is at least X(1 − 1/m) + X. Likewise, in round 3, the overall num-
ber of clients assigned to stations in S3 is at least ((X(1− 1/m)+X)(1− 1/(m−
1))+X. Inductively, the number of clients assigned to the station in Sm is at least
(

. . .
((

X m−1
m + X

)
m−2
m−1 + X

)
m−3
m−2 . . .

)
1
2+X = X

(
1
m + 1

m−1 + · · · + 1
2 + 1

)

>

X ln m. That is, the total bandwidth of the clients assigned to the station in Sm

is at least ln m(εB + λ/m). Thus, if λ > mB(1/ ln m − ε) the claim follows. ⊥�
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The following theorem shows that the restriction on ε for solvability with irrev-
ocable assignments is stronger for improvident algorithms. Theorem10 shows that,
for randomized online algorithms, if λ > mB

(

3/
∗

2m − ε
)

the Station Assign-
ment problem is not solvable, and if λ > mB

(

1/
∗

2m − ε
)

the Station Assign-
ment problem is not solvable online deterministically. Given that λ ≤ 0 by
definition, the bound implies that if ε > 3/

∗
2m, or if ε > 1/

∗
2m respectively,

the problem is not solvable.

Theorem 10. For any set of m stations each with bandwidth B, the following
holds, even if all clients must have the same bandwidth:

1. For any m ≤ 5 and λ > mB
(

3/
∗

2m − ε
)

, there exists a (ε, λ)-admissible
client arrival schedule such that no online irrevocable improvident randomized
algorithm can solve Station Assignment.

2. For any m ≤ 1 and λ > mB
(

1/
∗

2m − ε
)

, there exists a (ε, λ)-admissible
client arrival schedule such that no online irrevocable improvident deterministic
algorithm can solve Station Assignment.

Proof. If λ > mB(1−ε), the claim follows from Theorem 1. So, for the rest of the
proof we assume that λ ∈ mB(1 − ε).

For the Load Balancing problem, where computing tasks have to be assigned
to servers, the proof of Theorem 3.3 in [7] shows a sequence of unit-weight tasks
such that, the maximum (over the servers) off-line load at all times is 1, and the
competitive ratio of any randomized irrevocable improvident algorithm is at least
(
∗

2m/3)(1+o(1)). (The theorem is stated in asymptotic notation, but the bound
obtained in the proof is the expression given here.) We reuse such adversary map-
ping tasks to clients, servers to stations and weights/loads to bandwidths. Let
the bandwidth of such clients be instead εB + λ/m and the laxity w = 1. This
client arrival schedule is (ε, λ)-admissible because (i) λ ∈ mB(1 − ε) and then
εB + λ/m ∈ B, and (ii) the maximum off-line bandwidth at all times on each
station is at most εB + λ/m. However, the bandwidth used at some station is
at least (

∗
2m/3)(εB + λ/m), which is larger than B if λ > mB

(

3/
∗

2m − ε
)

,
which is feasible for m > 9/2. The same argument can be used for deterministic
algorithms and competitive ratio of

∗
2m. ⊥�

6.2 Upper Bounds for Solvability

The following theorem applies to a setting where the station bandwidth is unique,
but the station group may be different for each client.

Theorem 11. For any system of m stations each with bandwidth B, there exists
an online algorithm, such that if ε ∈ 1/(1 +

∗
2m), λ < εB, all clients have the

same bandwidth b ≤ εB and laxity w = 1, and never depart, the Station Assign-
ment problem is solved.

Proof. Let S be the set of stations in the system and, for any subset of stations
S◦ ← S, let C ◦ be the set of clients C ◦ = {c|Sc = S◦}. Using that b ≤ εB and
λ < εB, the following properties arise from admissibility.
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Property 1. ∀S◦ ← S : |C ◦| ∈ |S◦|.
That is, for each station group of x stations, there are at most x clients with that
station group.

Property 2. ∀S◦◦ = {S◦|S◦ ← S} : | ≡S′∈S′′ C ◦| ∈ | ≡S′∈S′′ S◦|.
That is, for any set of station groups, the maximum number of clients with those
station groups is at most the size of the union of those groups.

Consider the online algorithm that, for each client c, assigns c to the station
s ≥ Sc with the largest available bandwidth, breaking ties arbitrarily. We show
that, under the assumptions of the theorem, this algorithm solves the problem.
For the sake of contradiction, assume that some station si is overloaded. That is,
si has some integer number k of clients assigned such that k > 1/ε. We show
that then the number of clients in the system must be more than m, which is not
possible according to Property 1.

We compute a lower bound on the number of clients that should be in the
system in order to have more than 1/ε clients in si. For clarity, we label the clients
assigned to si in the order in which they were assigned. Client 1 is the first one
and, hence, does not require any other clients to be in the system before. For each
client c = 2, 3, . . . , k, we identify clients that must have been assigned before c
to some station. We allocate some of those clients to each c. In order to avoid
over-counting, sometimes we may reallocate some clients, so that each client in
the system is allocated to at most one client.

Assume that, for each client c ≥ [2, k], we can allocate c − 1 “new” clients.
Then, overall, we will have 1+2+ · · ·+k−1 allocated clients which yields a lower
bound of k(k − 1)/2 > m clients in the system proving the claim. The details of
the allocation procedure follow.

For each client c = k, k − 1, . . . , 2 in si, we know that there must be at least
c−1 clients in each station in Sc, because the algorithm distributes clients evenly
in Sc. If the clients in one or more of the stations in Sc have not been allocated yet,
we choose one of those stations arbitrarily and allocate the c − 1 clients assigned
to that station to c. If the clients in all stations in Sc have been already allocated
to some client, assume that there is at least one client c◦ ≥ [c + 1, k] such that
the clients assigned to some station sj ≥ Sc′ have not been allocated. Then, we
reallocate c − 1 clients from c◦ to c, and we allocate the c◦ − 1 clients in sj to c◦.

We show now that if the latter assumption is false, Property 2 has been vio-
lated. For the sake of contradiction, assume that, at the point of allocating clients
for some client c, the clients in all stations in ≡k

c′=c+1Sc′ have been already allo-
cated to some client in [c + 1, k]. This implies that k − c = | ≡k

c′=c+1 Sc′ |. Thus, if
Sc ← ≡k

c′=c+1Sc′ , Property 2 is violated.

7 Conclusions

This paper presented worst-case (adversarial) analysis of scheduling periodic com-
munication between base stations and mobile clients. We considered various
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classes of scheduling settings and protocols, and provided limitations on feasible
mobility patterns given in the form of upper and lower bounds on client injec-
tion rates and burstiness. The obtained variety of results is a promising starting
point for further study of more complex scheduling settings in the proposed mobil-
ity model, including the settings motivated by sensor and local wireless network
applications.
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Abstract. We consider the distributed construction of a deterministic
local broadcasting schedule in the SINR model of interference. During
the execution of such a schedule each node should be able to transmit one
message to its neighbors. Our construction requires only O(Δ logn) time
slots, where Δ is the maximum node degree in the network and n the
number of nodes. We prove that the length of the constructed schedule is
asymptotically optimal, i.e. of length O(Δ). Considering the simulation
of CONGEST algorithms in the SINR model, our deterministic schedule
achieves a runtime of O(τΔ2+Δ logn) time slots, where τ is the original
runtime in the CONGEST model. We show that there is a lower bound
of Ω(Δ2) for the simulation of each one of the τ rounds, hence our
simulation is optimal apart from the logarithmic factor. If we restrict the
knowledge of the nodes and let the maximum node degree Δ be unknown,
we can prove that at least Ω(D+τΔ2) time slots are required to simulate
synchronized CONGEST algorithms in the SINR model of interference,
where D is the diameter of the network. For our algorithms we assume
location information to be given. Regarding the case without location
information we argue that a deterministic algorithm to compute local
broadcasting schedules by Derbel and Talbi [ICDCS’10], which requires
transmission power adaption, needs messages of size O(log n) to simulate
CONGEST algorithms. This is a logarithmic factor less than stated by
the authors.

1 Introduction

Local broadcasting is one of the most fundamental task in wireless networks.
In contrast to global broadcasting, where one message must be spread over the
whole network, in the problem of local broadcasting each node must send one
message only to all direct neighbors. In wireless networks usually only a frac-
tion of all nodes can broadcast simultaneously due to the signal interference of
multiple transmissions. Hence local broadcasts must be coordinated in order to
avoid too high interference. Since interference is modeled relatively realistic in
the SINR model (Signal-to-Interference-and-Noise-Ratio model, cf. Sect. 2), the
problem of finding a local broadcasting schedule must be tackled by algorithms
designed for this model, whereas for many other models such as the message-
passing based CONGEST or LOCAL models [1] the broadcasting problem does

P. Flocchini et al. (Eds.): ALGOSENSORS 2013, LNCS 8243, pp. 170–184, 2014.
DOI: 10.1007/978-3-642-45346-5 13, c© Springer-Verlag Berlin Heidelberg 2014



On Local Broadcasting and CONGEST Algorithms in the SINR Model 171

not occur as interference-free communication is assumed (cf. Sect. 2). Thus, in
these models message reception is guaranteed regardless of other transmissions.

However, wireless technology is becoming more and more ubiquitous and
hence distributed computing in a wireless context—along with the SINR model—
received increasing attention in recent research. Local broadcasting is a funda-
mental problem in the SINR model that can be used as a building block to
solve higher-level problems. Hence it is quite well studied and can be solved in
O(Δ log n) time slots [2] (where Δ is the maximum number of nodes in any trans-
mission region of the network) if Δ is known. Further results will be discussed
in Sect. 1.1. Due to the vast amount of algorithms designed for message-passing
models, one particularly interesting application of local broadcasting is to sim-
ulate algorithms designed for message-passing models in the SINR model.

For complex algorithms it may be more effective to invest some time in a
preprocessing step in order to achieve faster local broadcasting. In fact, this
can be beneficial and both Derbel and Talbi [3] and Jurdzinski and Kowal-
ski [4] achieve—using different methods and assumptions—local broadcasting in
O(Δ), which is optimal due to a trivial lower bound1 For Derbel’s and Talbi’s
approach such a preprocessing requires O(Δ log n) time slots while Jurdzinski’s
and Kowalski’s approach requires O(Δ log3 n) slots. Inspired by both approaches
we describe how to construct a deterministic local broadcasting schedule with
optimal length O(Δ) and preprocessing time of O(Δ log n) time slots. We use
distributed node coloring proposed by Derbel and Talbi [3] to construct an infea-
sible local broadcasting schedule and combine it with the concept of dilution by
Jurdzinski and Kowalski [4], which enables us to achieve feasibility of the sched-
ule while increasing the length of the schedule only by a constant factor. We
require the nodes to know an upper bound on the number of nodes n, the max-
imum node degree Δ in the network, their own ID, and location information.
We do not require carrier sensing and restrict ourselves to uniform and non-
adjustable transmission powers.

Our deterministic local broadcasting algorithm differs from the previously
mentioned algorithms in various ways. In contrast to the distributed node color-
ing by Derbel and Talbi [3] we do not require the nodes to tune their transmission
power, while they require the nodes to tune the transmission power by a con-
stant factor. With regard to the backbone structure constructed by Jurdzinski
and Kowalski [4] the method described in this work is faster by a polylogarithmic
factor.

Using the local broadcasting schedule to simulate algorithms (with original
runtime τ) designed for the CONGEST model, we achieve a runtime of O(τΔ2+
Δ log n) time slots in the SINR model. Regarding the case that nodes do not
know the global maximum degree, we show a lower bound of Ω(τΔ2 + D) (with
diameter D) on the runtime in the SINR model for the simulation of synchronized
CONGEST algorithms.
1 As only one transmission can be received in a time slot, Δ nodes in a transmission
region require Ω(Δ) time slots to transmit to one (shared) neighbor.
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Finally, we argue that the local broadcasting based on a coloring described
in [3] is capable of simulating message-passing algorithms with messages that
are by a factor of log n smaller than stated. This results in an approach that is
capable of simulating CONGEST algorithms in O(τΔ2+Δ log n) using messages
of size O(log n). This is as fast as the deterministic local broadcasting schedule
described in this work, however, note that they assume the nodes to tune their
transmission power by a constant factor, while we require location information
to be given.

1.1 Related Work

A few years ago, the SINR model has only been considered for basic communi-
cation problems in wireless networks such as connectivity [5,6], link scheduling
[7], or local broadcasting [2]. However, it recently attracted considerable atten-
tion even in the distributed computing community. There are now initial works
considering distributed computing problems in the SINR model, for example
distributed node coloring [3,8], independent sets [8] or dominating sets [9].

However, due to the complexity of analyses in the SINR model, it is reason-
able to use local broadcasting as a building block in order to run more evolved
distributed computing algorithms on wireless networks. By simulating a round-
based message-passing environment through local broadcasting even complex
distributed algorithms such as for example all-pairs shortest paths [10] or graph
partition [11] designed for the message-passing-based CONGEST model can be
made available in the SINR model.

The simulation of message-passing algorithms in radio networks (in which
a message is successfully received if the receiver is silent and only one of its
neighbors is transmitting) has first been studied by Alon et al. in [12]. They
propose a separate simulation of each round of the message-passing algorithm.
Among other results they proved a bound of Θ(Δ2) for the case that each node
transmits a different message to each of its neighbors. The lower bound translates
to the SINR model with a slightly modified proof (see Sect. 4.1), while the upper
bound has not yet been reached. Kuhn et al. [13] proposed an abstract interface—
an abstract MAC layer—that enables easier models (i.e., message-passing based
models) to be executed in more realistic models for wireless communication.
However, they did only describe an implementation of the abstract MAC layer
by local broadcasting in the radio network model, which does not account for
global interference.

Local broadcasting in the SINR model has first been studied by Goussevskaia
et al. in [2]. They considered local broadcasting with known and unknown com-
petition (which is the number of nodes within a certain region around the node)
in asynchronous networks and propose two randomized algorithms for the asyn-
chronous SINR model with runtimes of O(Δ log n) and O(Δ log3 n) for known
and unknown competition. Yu et al. [14] improve the approximation ratio for
the unknown competition by a logarithmic factor to O(Δ log2 n) and propose
two algorithms for the synchronized model (with synchronous and asynchronous
wake-up) that make use of carrier sensing and thereby achieve local broadcasting
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in O(Δ log n) time slots. In [15] Yu et al. improve the algorithm for asynchro-
nous time slots and unknown competition further to O(Δ log n + log2 n) and
provide a lower bound of Ω(Δ+ log n) for randomized algorithms in this model.
Halldórsson and Mitra [16] provide an algorithm with the same running time of
O(Δ log n + log2 n) in the same model, that is slightly simpler and more robust.
They also provide an algorithm that achieves a running time of O(Δ + log2 n)
per round of local broadcasting with the assumption that acknowledgments are
received freely.

The first result that achieves local broadcasting in the synchronized SINR
model in O(Δ) after a preprocessing stage of O(Δ log n) time slots is from Der-
bel and Talbi [3]. They transfer a distributed node coloring algorithm proposed
by Moscibroda and Wattenhofer [17] to the SINR model and, by tuning the
transmission power during the coloring step, achieve a deterministic local broad-
casting schedule of length O(Δ) that is feasible in the SINR model. A second
result by Jurdzinski and Kowalski [4], which assumes the location to be known to
the nodes, achieves the optimal runtime of O(Δ) for local broadcasting without
requiring the capability of nodes to tune their transmission power. However, the
preprocessing stage requires O(Δ log3 n) time slots. The authors introduce the
concept of dilution (cf. Sect. 2.2) and build a deterministic backbone structure
that enables communication to the backbone in O(Δ) and local broadcasts from
within the backbone in constant time. This backbone structure also enables local
broadcasting in O(Δ). For an overview of related results, see Table 1.

Table 1. Local broadcasting results for the SINR model. Ordered chronologically by
appearance with separation in algorithms with and without preprocessing.

Publication Assumptions Runtime

Goussevskaia et al. [2] Asynchron model (async), Δ O(Δ logn)
Goussevskaia et al. [2] Async O(Δ log3 n)
Yu et al. [14] Async O(Δ log2 n)
Yu et al. [14] Sync. model, carrier sense (c.s.) O(Δ logn)
Yu et al. [15] Async O(Δ logn + log2 n)
Halldórsson & Mitra [16] Async, c.s. or free ACKs O(Δ + log2 n)

Publication Assumptions Runtime +prepr.

Derbel & Talbi [3] Sync, Δ, tune transmission power O(Δ) + O(Δ logn)
Jurdzinski & Kowalski [4] Sync, Δ, location O(Δ) + O(Δ log3 n)
This work Sync, Δ, location O(Δ) + O(Δ logn)

1.2 Structure

The rest of this paper is structured as follows. In the next section, we describe
required models and state some basic definitions. In Sect. 3, the construction of
the deterministic local broadcasting schedule is described and we show its feasi-
bility in the SINR model. Afterwards we consider the simulation of CONGEST
algorithms in the SINR model in Sect. 4. We conclude this work with some final
remarks in Sect. 5.
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2 Model and Definitions

We consider a wireless network consisting of n nodes, that are placed arbitrarily
on the Euclidean plane. The global maximum number of nodes within a trans-
mission region is called the maximum degree of any node in the network and
denoted by Δ. We usually assume that all nodes in the network know their ID
and an upper bound ñ on n, with ñ ≥ nc for some constant c ← 1. As the upper
bound influences our results only by a constant factor we usually write n even
though only ñ may be known by the nodes.

In the geometric SINR model a transmission from node v to node w is suc-
cessful iff the SINR condition holds:

Pv

dist(v,w)α

∑

u◦I
Pu

dist(u,w)α + N
← β (1)

where Pv (Pu) denotes the transmission power of node v (u), α is the attenuation
coefficient2 depending on the network environment, the SINR-threshold β ← 1
is a hardware-defined constant, N is the environmental noise and I is the set of
nodes sending simultaneously with v. We assume uniform transmission powers,
hence Pv = P for each node v.

Based on the SINR condition the maximum transmission range of each node
is ( P

Nβ )1/α. However, as soon as only one other node in the network transmits
simultaneously, this transmission range cannot be achieved anymore. Having
only one transmission in the whole network is clearly not desired, hence we define
the maximum transmission range RT such that twice the amount of noise can be
tolerated: RT = ( P

2Nβ )1/α. Note that this is a usual assumption and consistent
with [3]. We do not exactly require twice the amount of noise, any constant
factor b > 1 would also be sufficient. The area that is within the transmission
range of a node v is denoted by Dv

T .

2.1 Simulating CONGEST Algorithms in the SINR Model

Let us first introduce the CONGEST model of distributed computation [1]
briefly. This model focuses on the effects of congestion in distributed networks.
Algorithms in the CONGEST model enforce a O(log n) limitation on the maxi-
mum message size, while messages can only be sent to neighboring nodes. Note
that with one message only a constant number of node IDs in the range [0, . . . , n]
can be transmitted in this model. Hence, unlike in the LOCAL model which
allows messages of unlimited sizes but restricts the runtime to a constant num-
ber of rounds [1] only a small fraction of the possibly obtained information can
be made known to neighbors in reasonable time.

For a simulation of algorithms designed for the CONGEST model of dis-
tributed computation in the geometric SINR model we require the following
properties to hold:
2 The higher α is, the faster the signal fades. Usual values are α ≥ [2, 6].
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– Locality: The neighbors of each node v must be reachable in our model, i.e.,
in the nodes transmission area Dv

T .
– Disambiguity: Each message is intended to one receiver, which is specified

in the message by the receivers ID.
– Synchronization: Two neighbors are not allowed to be in different rounds

of the CONGEST algorithm.

For the simulation to be successful we require that one or more transmission
per sender-receiver-pair must be feasible in the SINR model of interference with
high probability (w.h.p.—at least probability 1 − 1

nc for a constant c > 0) in
each round of the CONGEST algorithm. Note that by disambiguity messages
that are overheard by a node but not intended for it are discarded upon recep-
tion. This is not required in any part of our algorithms but increases clarity of
the required properties. We usually assume the network to be connected, hence
synchronization in combination with connectivity implies that all nodes must be
in the same round of the CONGEST algorithm.

2.2 Dilution and Backbone Structure

In accordance with [4] we call a partition of the 2-dimensional plane in boxes of
size γ × γ, where γ = RT /

∈
2, the pivotal grid Gγ . Note that the dimensions

of the box are such that all nodes within the same box are within each others
transmission radius. Formally each box includes its bottom and left side but does
not include its top and right side. We assume box C(i, j) to be the box with
lower left coordinates (i, j) ≤ R

2. A node with position (x, y) is in box C(i, j) iff
∀x

γ ∪ = i and ∀ y
γ ∪ = j.

A local broadcast schedule can be seen as an assignment of 0/1-bitstrings to
nodes indicating in which time slots the node is allowed to broadcast. In the
deterministic schedule constructed in this work, however, each node sends only
once throughout an execution of the schedule. Hence we can simply store the
number of the time slot instead of a 0/1 bitstring.

In order to combine geometric information with local broadcast schedules,
we use the concept of dilution as introduced in [4]. For a constant δ, which deter-
mines the distance between two active transmissions and will be defined later,
we assign each node v local coordinates (lvx, lvy) = (∀x

γ ∪ mod δ, ∀ y
γ ∪ mod δ) = (i

mod δ, j mod δ). This ensures that nodes in the same box of Gγ share the same
local coordinates. Now, we can dilute a local broadcast schedule by a factor of
δ2 by allowing each node v with local coordinates (lvx, lvy) to send in time slot
tδ2 + lvxδ + lvy iff v was allowed to send in time slot t in the original schedule.

3 Deterministic Local Broadcasting Schedule

One main approach for wireless transmission scheduling problems is to find a
graph coloring and then use this coloring to decide when and for how long each
node is allowed to transmit a message. This can be done by simply associating
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each color with a time slot. Let us first consider the simpler protocol model, in
which a transmission is successful iff in the interference range (which often equals
the transmission range) of the receiver only one node is transmitting at a given
time. Even in this simpler model a node coloring which ensures that two nodes
are assigned different colors if they are within each others transmission range
is not sufficient to directly build a feasible transmission schedule as depicted in
Fig. 1. However, for the protocol models this can be overcome by using a distance-
2-coloring (i.e., a coloring which ensures unique colors within each transmission
region DT ).

Due to the global nature of interference in the SINR model, finding some sort
of agreement about transmission schedules (i.e., medium access) is required for
deterministic local broadcasting schedules. In the case of coloring in the SINR
model, even the more refined coloring that achieves unique colors within each
transmission region is not sufficient as shown in Fig. 1(b). However, schedules can
be made feasible if the node coloring ensures unique colors in an area larger than
the transmission region. Unfortunately finding such a coloring is not possible if
we cannot reach nodes outside the transmission region. Finding a coloring can
be made possible by tuning the nodes transmission power to reach a larger trans-
mission region, cf. [3], investing time in Ω(D) (given the network is connected),
or having additional knowledge such as location information or knowledge about
the topology. As computation of the diameter requires Ω(n) time slots [18], we
restrict ourselves to some additional knowledge. In this work we consider loca-
tion information to be known by each node. In the following theorem we show
that we can distributedly construct a feasible local broadcasting schedule based
on the location information and a given node coloring, even if the coloring does
not ensure unique colors within each transmission region DT . Note that such a
coloring is easy to compute within O(Δ log n) time slots even in the SINR model
[3]. If not noted otherwise we assume such a coloring.

Fig. 1. Using a coloring as depicted on the left does not yield a feasible local broad-
casting schedule in the protocol model as the transmission from v to w is not feasible
as according to the coloring u and v transmit simultaneously. However, the coloring on
the right corresponds to a local broadcasting schedule that is feasible in the protocol
model. Still it is not feasible in the SINR model as the SINR constraint is violated (at
least for α ∈ 6).

Theorem 1. Given a network of nodes in which each node knows its location,
the color assigned by a coloring using at most cmax = O(Δ) colors, and cmax
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itself. Then we can distributedly compute a local broadcasting schedule that is
feasible under the SINR model of interference with length in O(Δ).

In order to prove the theorem we first show that such a coloring is a local
broadcasting schedule in which at most one node sends in each box of the pivotal
grid Gγ (Lemma 1), and then prove that we can achieve a feasible schedule by
applying dilution to this schedule (Lemma 2).

Lemma 1. Given a network in which each node has a unique color within dis-
tance RT . This implies a local broadcast schedule in which in each slot at most
one node is transmitting in each box of the pivotal grid Gγ .

Proof. As each node knows the number c of its color and a shared upper bound
cmax on the number of colors assigned to the nodes in the network we can assign
each color to one of cmax time slot. Consider a node v within box C(i, j) and
color c. Since the diameter of each box is exactly RT , the coloring ensures that
there is no other node within box C(i, j) that has color c.

We extend Proposition 1 in [4] by explicitly giving a formula to compute the
constant δ (depending only on α) that enables us to prove feasibility of a δ-diluted
schedule in the SINR model of interference for α > 2. For α = 2 we can also
achieve feasibility, however for δ ≤ O(log n), which is now additionally dependent
on n. This leads to an increase in the schedule length of a multiplicative factor
of δ2 ≤ O(log2 n).

Lemma 2. Let α > 2 and δ =
(

8P
∑∞

k=1
1

kα−1

N γα

)1/α

+3. Then a local broadcasting

schedule S in which at most one node in each box of the pivotal grid Gγ transmits
in each time slot can be made feasible in the SINR model of interference with a
constant increase in the schedule length.

The case α = 2 is considered after the proof.

Proof. Let length(S) be the length of the local broadcasting schedule S. In order
to achieve a feasible schedule, we dilute the schedule S by a constant δ2 and
obtain a feasible schedule S ∈ with length(S ∈) = O(length(S)·δ2) = O(length(S)).
In this schedule S ∈ a node v with local coordinates (lvx, lvy) sends in time slot
tδ2 + lvxδ + lvy if and only if the node would have sent in time slot t of schedule
S.

Let us now consider an arbitrary time slot of schedule S ∈, a node v that
transmits a message in this time slot, and another node w that is within the
transmission region of v. Let C(i, j) be the box in which v is located and accord-
ingly (lvx, lvy) = (i mod δ, j mod δ) the local coordinates of v. We claim that w
can successfully receive the message sent by v and hence—as we considered an
arbitrary sender, receiver and time slot—this schedule is feasible in the SINR
model. To show this claim we bound the interference received by w from simul-
taneously transmitting nodes by first upper bounding the number of simultane-
ously transmitting nodes within certain distances and then computing an upper
bound on the interference of all those nodes on w.
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The application of δ-dilution ensures that only nodes u with local coordinates
(lux , luy ) = (i mod δ, j mod δ) = (lvx, lvy) transmit simultaneously with v. Note
that local coordinates are shared by all nodes in the same box. Hence we call
boxes that have nodes with the same local coordinates as v, i.e. boxes that are
also allowed to send in the considered time slot, active. Due to the cyclicity of
the modulo operator, δ-dilution results in a grid of active boxes with distance
ξ := (δ − 1)γ between each two active boxes, as depicted in Fig. 2. Note that
according to Lemma 1 at most one node in each active box transmits in each
time slot.

Fig. 2. Grid cells of Gγ that are active simultaneously to a transmission originating
from box C(i, j). Note that in order to increase readability ξ := (δ − 1)γ.

Let us now examine how many active boxes there are at specified distances.
We consider the boxes in so-called rings, which actually are the border layer of
active boxes of a square centered at the box C(i, j). In the situation of Fig. 2
all depicted nodes in columns j − δ , j and j + δ except for C(i, j) itself are in
boxes of ring level 1 from C(i, j). It can be observed that in each ring of level
k ← 1, exactly 8k active boxes can be accommodated. Also, each node in level k
has distance at least k((δ − 3)γ) from w (δ − 3 since w can be at most 2 boxes
away from v).

Using this relation we can now upper bound the interference received by w
from all nodes sending simultaneously with v, which are at most 8k nodes from
each ring level k. Hence the interference at w is at most

∑

u◦V \{v},
u sending simultaneously with v

P
dist(u,w)α

≥
∗∑

k=1

(8k)
P

(k(δ − 3)γ)α
(2)

≥
∗∑

k=1

8P k

kα(δ − 3)αγα
≥ 8P

(δ − 3)αγα

( ∗∑

k=1

1
kα−1

)

≥ N (3)

where the first equation follows from applying the considerations about the ring
levels and the last equation follows by insertion of δ. Note that the sum, which
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is the generalized harmonic number of order (α − 1), evaluates to a value lower
than 6 for α > 2.2 and is in O(1) for any α > 2 [19].

Evaluating the SINR at node w yields

SINRw =
P

dist(v,w)α

∑

u◦V \{v},
u sending simultaneously with v

P
dist(u,w)α + N

←
P

Rα
T

2N
← β

where the first inequality follows from dist(v, w) ≥ RT and Eq. 3 and the last
inequality follows from the definition of the transmission range RT = ( P

2Nβ )1/α.
This concludes the proof for α > 2.

We will now briefly consider the case of α = 2.

Corollary 1. Let α = 2 and δ =
(

8P
∑n

k=1
1

kα−1

N γα

)1/α

+ 3. Then a local broad-

casting schedule S in which at most one node in each box of the pivotal grid Gγ

transmits in each time slot can be made feasible in the SINR model of interfer-
ence with a factor δ2 ≤ O(log2 n) increase in the schedule length.

Proof. Note that we changed the sum introduced in Eq. 2 from
∑∗

k=1 to
∑n

k=1.
This is possible as at most n non-empty ring levels exist. Since the distance of
the levels increases it holds that

∑

non-empty ring levels k

1
kα−1

≥
n∑

k=1

1
kα−1

(4)

and hence the resulting sum
∑n

k=1
1
k can be evaluated to O(log n)[19]. This

implies δ ≤ O(log n) and finally length(S ∈) = O(length(S) · δ2) = O(length(S) ·
log2 n) as claimed in the corollary.

A pseudo code of the procedure described above is given in Algorithm 1. First
an initial schedule is computed by distributed node coloring, then this schedule
is diluted in order to obtain a schedule that is feasible in the SINR model. We
can see that the algorithm itself is very simple. For a definition of the parameters
cf. Sect. 2. Note that regarding δ neither the ceiling nor limiting the sum at n
affects our theoretic results.

4 Simulating CONGEST Algorithms in SINR

Using the deterministic local broadcasting schedule constructed in Sect. 3,
CONGEST algorithms with a runtime in O(τ) can be simulated in O(τΔ2 +
Δ log n) for α > 2. This can be done by first computing the local broadcasting
schedule in O(Δ log n) and then simulating the algorithm using so-called single-
round-simulation as introduced by Alon et al. [12]. This requires Δ executions of
the local broadcasting schedule for each round of the message-passing algorithm.
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Algorithm 1. Distributed computation of a feasible local broadcasting schedule
at node v
Require: location information (xv, yv), α, N, β, P, Δ, n

c ∨ color assigned by distributedNodeColoring(Δ, n, α, N , β, P) (e.g., [3])

δ ∨
⌈(

8P
∑n

k=1
1

kα−1
N γα

)1/α
⌉
+ 3 // dilution constant

(lvx, lvy) ∨ (∅xv

γ
∪ mod δ, ∅ yv

γ
∪ mod δ) // local coordinates

active slot ∨ δ2c + δlvx + lvy

We restrict ourselves to the simulation of general CONGEST algorithms in
most parts of our work. In this model a node can send a different message of size
O(log n) to each neighbor in each round (cf. Sect. 2.1). However the methods
transfer to the simulation of algorithms designed for similar models, for example
if the same message is sent to all neighbors or if differently-sized messages are
used. In particular for messages of arbitrary size s in a message-passing algo-
rithm, the message size during simulation in the SINR model is O(s + log n). If
unlike in the CONGEST model the same message is sent to each neighbor the
runtime of the simulation decreases to O(τΔ + Δ log n).

4.1 The Maximum Node Degree and the Simulation of
(Synchronized) CONGEST Algorithms

Regardless of which local broadcasting strategy we use to simulate the rounds
of the message-passing algorithm, all nodes must know the maximum number
of time slots required to simulate one round of the message-passing algorithm.
This number is needed so that each node can determine the time slot in which
all nodes should finish with a certain round of the CONGEST algorithm. In the
case of our local broadcasting schedule the number of slots required per round is
r = Δ(δ2 · cmax) ≤ O(Δ2), where cmax is the number of colors used by the node
coloring.

So far we assumed the global maximum node degree Δ to be known to all
nodes. In this section we will show that without an upper bound on the maximum
node degree we cannot simulate a synchronized message-passing algorithm in less
than Ω(D + τΔ2) time slots, where D is the diameter of the network. In order
to show this results, let us briefly consider a lower bound on the number of time
slots required to simulate one round of a general message-passing algorithm.
Such a lower bound has already been stated by Alon et al. in [12] for the radio
network model. However, it does not directly transfer to the SINR model. Note
that we show the lower bound for message-passing models that allow to send a
different message to each neighbor in each round (which is consistent with the
assumptions of Alon et al.). This includes the general CONGEST model.

Lemma 3. One round of a message-passing algorithm cannot be simulated in
less than Ω(Δ2) time slots, where Δ is the maximum node degree of all nodes in
the network.
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Proof. Assume a graph with all nodes within one transmission radius RT and
let this graph consist of two clusters Sl, Sr of the same (geometric) diameter d.
Let those clusters be at least η times the diameter apart from each other and
η > 1 be chosen such that P

(ηd)α − P
((η+2)d)α < N (note that the left part tends

towards 0 for increasing values of η). Such clusters are shown in Fig. 3.

Fig. 3. Two clusters of same diam-
eter within one transmission region.
The distance between the clusters is
more than η times the diameter of the
cluster.

Fig. 4. The network is constructed
such that a nodes are in the cluster
on the right. For a > 2 the maximum
node degree Δ occurs in the cluster on
the right and must be communicated
through the network. The transmission
range is such that on the left part at
most two nodes are within each others
transmission range.

Let us only consider the transmission from the left cluster to the right cluster.
Each node in the left cluster must transmit one different message to each node
in the right cluster. This yields Δ

2 × Δ
2 ≤ Ω(Δ2) inter-cluster-transmissions.

We will now show that at most one inter-cluster transmission can occur in
one time slot. Let v ≤ Sl be in the left cluster and w ≤ Sr be in the right cluster.
Assume v transmits to w in time slot t and assume another node u transmits to
any other node in the same time slot. There are 2 cases: u can either be in Sl or
Sr. In both cases u transmits simultaneously to v and we show that w cannot
successfully receive v’s message due to a SINR of less than 1. Let u ≤ Sl, then
the SINR constraint (cf. Sect. 2) evaluates to

P
dist(v,w)α

P
dist(u,w)α + N

∈
P

(ηd)α

P
((η+2)d)α + N

<

P
(ηd)α

P
((η+2)d)α + P

(ηd)α − P
((η+2)d)α

=

P
(ηd)α

P
(ηd)α

= 1 ∈ β

where the first inequality holds since dist(v, w) ← ηd and dist(u,w) ≥ (η + 2)d
and the strict inequality follows from the selection of η. Hence w cannot receive
v’s message. Otherwise, if u in Sr the SINR is

P
dist(v,w)α

P
dist(u,w)α + N

≥
P

(ηd)α

P
(d)α + N

<
1
ηα

< 1 ≥ β

where the first inequality again holds since dist(v, w) ← ηd and dist(u,w) ≥ d,
the second inequality follows from 0 < N and cancelation of P

dα and the third
inequality holds since ηα > 1. Hence at most one transmission from the left to
the right cluster can happen in one time slot. This shows that Δ

2 × Δ
2 ≤ Ω(Δ2)

time slots are needed to simulate one round of a message-passing algorithm.
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We can now prove the main result of this section, which provides a lower
bound on the simulation runtime if the global maximum degree is not known to
the nodes in the network.

Proposition 1. Let n be the only knowledge available to the nodes. Then the
simulation of a synchronized message-passing algorithm (e.g., CONGEST ) that
requires τ rounds in the message-passing model cannot be executed in less than
Ω(D +τΔ2) time slots in the SINR model.

Proof. According to Lemma 3, Ω(τΔ2) is a lower bound for simulating a
message-passing algorithm with runtime τ . To show the Ω(D) lower bound, note
that networks with Δ =

∈
D exist, and hence in those networks at least Ω(D)

time slots are required for each round of the simulation. However, there exist
also networks in which τΔ2 �≤ Ω(D) and still Ω(D) time slots are required for
the simulation. Hence Ω(D +τΔ2) is effectively a stronger bound than Ω(τΔ2).

Consider two networks. The first is the network depicted in Fig. 4 with a =∈
n, and the second a line network (which is equal to the depicted network

without the high-density part on the right, i.e. with a = 0). Clearly the line
network is a network in which τΔ2 �≤ Ω(D). For nodes on the left end of both
networks the view is exactly the same until at least Ω(D) time slots have passed
and information from the high-density part can reach the left end of the network.
Assume for contradiction that there is an algorithm that finishes the simulation
on both networks in less than Ω(D) time slots. This algorithm must compute
the number of time slots required for each round of the simulation in order
to synchronize the message-passing algorithm. Since the information about the
high-density part is not available to nodes on the left end of both networks
the algorithm computes the same number of required time slots in the leftmost
nodes of both networks. Regardless of the result the algorithm fails to simulate
the message-passing algorithm in one of the networks. If the result (i.e., the
required number of time slots per simulated round) is in o(

∈
n), the algorithm

fails in the network depicted in Fig. 4 with a =
∈

n, as the network cannot
be synchronized. If the result is in Ω(

∈
n) this results in Ω(n) = Ω(D) time

slots for the simulation, which contradicts the assumption that the algorithm
runs in less than Ω(D) time slots on both graphs. Hence any algorithm that
simulates a synchronized message-passing algorithm in the SINR model without
the knowledge of Δ requires at least Ω(D) time slots.

Note that the proof relies on restrictions on simultaneous transmissions and the
synchronization of the CONGEST algorithm. Hence letting the node know the
diameter D or even its position does not circumvent the bound.

4.2 Notes on Location Information

After considering the case that the global maximum degree Δ is unknown, we will
now focus on the knowledge of location information. Local broadcasting in O(Δ)
time slots (after a preprocessing stage of O(Δ log n) time slots) is also possible
by allowing nodes to tune their transmission power. Derbel and Talbi describe
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an algorithm that is based on distributed node coloring with tuned transmission
radius in [3] and they achieve a runtime of O(τΔ2 + Δ log n). However, they
state a message size of O(s · log n), where s is the original message size. For the
simulation of CONGEST algorithms this results in messages of size O(log2 n)
instead of O(log n). We claim that messages of size O(log n) are possible and
hence this additional logarithmic factor is not necessary. The algorithm consists
of two parts. In the first part a distributed node coloring is computed. For this
only the node ID and the number of the color must be transmitted. Hence
messages of size O(log n) are sufficient. In the second part the actual simulation
takes place. Therefore the original message of size s along with a node ID (in
order to identify the receiver) must be transmitted. This requires messages of size
O(s+log n). For CONGEST algorithms this results in messages of size O(log n),
since s ≤ O(log n).

Hence for both cases, using either tuned transmission powers or location
information the same runtime of O(τΔ2+Δ log n) and messages of size O(log n)
are sufficient to simulate a CONGEST algorithm with original runtime τ in the
SINR model.

5 Conclusion

In this work we introduced a new algorithm to compute a deterministic local
broadcasting schedule of optimal length O(Δ) that is feasible in the SINR model
of interference. The construction of the schedule requires O(Δ log n) time slots,
which is optimal up to the logarithmic factor. The algorithm enables the simula-
tion of algorithms designed for message-passing models in more realistic models
of interference such as the SINR model: An algorithm with original runtime of
τ rounds in the CONGEST model can be simulated in O(τΔ2 + Δ log n) time
slots in the SINR model. This is optimal apart from the logarithmic factor. Our
algorithm assumes that nodes know their position and the global maximum node
degree Δ. We showed a lower bound of Ω(D +τΔ2), thus the knowledge of Δ is
required in order to achieve an efficient simulation.
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Abstract. We study variants of the α-synchronizer by Awerbuch
(J. ACM, 1985) within a distributed message passing system with proba-
bilistic message loss. The purpose of synchronizers is to maintain a virtual
(discrete) round structure. Their idea essentially is to let processes con-
tinuously exchange round numbers and to allow a process to proceed to
the next round only after it has witnessed that all processes have already
started its own current round.

In this work, we study how four different, naturally chosen, strategies
of forgetting affect the performance of these synchronizers. The vari-
ants differ in the times when processes discard part of their accumulated
knowledge during execution. Such actively forgetting synchronizers have
applications, e.g., in sensor fusion where sensor data becomes outdated
and thus invalid after a certain amount of time.

We give analytical formulas to quantify the degradation of the syn-
chronizers’ performance in an environment with probabilistic message
loss. In particular, the formulas allow to explicitly calculate the perfor-
mance’s asymptotic behavior. Interestingly, all considered synchronizer
variants behave similarly in systems with low message loss, while one
variant shows fundamentally different behavior from the remaining three
in systems with high message loss. The theoretical results are backed up
by Monte-Carlo simulations.

1 Introduction

A set of sensor nodes collecting in-field data and exchanging it over an ad-hoc
wireless network is a common setup for sensor fusion applications [9]. Message
loss is typically a non negligible issue within such systems. A common strategy
to deal with message loss is to run a synchronizer algorithm, whose purpose is to
generate a virtual (discrete) round structure at the application layer such that,
at each round step, a process receives all messages from all processes sent in
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the current round. In this work we study a retransmission-based variant of the
α-synchronizer, introduced by Awerbuch [1] as the first in a series of synchronizer
algorithms for asynchronous message-passing systems. Its main idea is that each
process continuously broadcasts its current round number together with the
corresponding application data. In systems with high dynamics, this application
data may vary between broadcasts, even within one round. A process starts
the next round when it has received the messages of its current round from all
other processes. Additionally it delivers the most actual data it has received
in its current round to the application layer. The synchronizer then guarantees
a synchronization precision equal to the diameter of the network graph. The
original α-synchronizer by Awerbuch used additional acknowledgment messages,
which we omit. Rather, a message with round number R is treated as an implicit
acknowledge for messages with round numbers less than R.

Fig. 1. Messages to process 2 and its resulting round switches without forgetting
(black) and with forgetting (gray).

Figure 1 shows the beginning of an execution of the synchronizer executed in
a system with three processes. For clarity, only messages to process 2 are shown.
Time is assumed to elapse in discrete steps at all processes. We assume the
existence of an underlying mechanism preventing the processes’ discrete time
from diverging, i.e., a synchronous system. At each point in time a process
broadcasts its application data, e.g., the current sensor reading. Initially, at time
0, all processes start round 1. By time 4, process 2 has received round 1 messages
from all processes and thus proceeds to round 2. Note, however, that the age of
the round 1 data it hands over to the application layer when switching to round
2 differs significantly per process: while its own data and the data from process
3 is of age 1 (discrete time units), data from process 1 is of age 3. If this data
is time-variant, e.g., the position of a moving object, it is typically represented
by an interval (i.e., a value ± some accuracy) that detoriates with time [9]. A
proper deterioration accounts for the maximum change of the position since the
actual sampling of the data. When merging intervals representing the same data,
from different sources, e.g. using (fault-tolerant) interval-intersection functions
like [7,13], relying on old data obviously yields imprecise results.
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A strategy to counteract this problem is to let the synchronizer actively “for-
get” old data it has received by discarding it. As an extreme, consider a variant
of the synchronizer that discards data at each (discrete) time step, resulting in
all the data to be of age 1 at each round switch. Clearly, however, this results
in a performance loss, i.e., longer times between round switches. The resulting
execution is depicted in gray in Fig. 1 with the difference that process 2 then
switches to round 2 only at time 5.

In this paper we consider four variants of the α-synchronizer that differ in
the conditions of when to forget memory content, that is, reset the variables
representing the knowledge to their initial values. While three of the variants,
namely the variant that never forgets, the variant in which a process forgets
when it makes a round switch, and the variant that forgets at each time step,
can be implemented in a distributed manner, the variant which forgets when the
last process makes a round switch serves as a theoretical bound only.

We study the impact of forgetting on the performance of the synchronizer
variants in an environment where every message transmission succeeds with a
certain probability. By giving explicit formulas and simulation results for the
performance as well as simulation results for the average age of data when a
process makes a round switch, our results can be used to quantify the tradeoff
between the different strategies.

Detailed Contribution. We make the following contributions in this paper: (1)
We formally introduce the notion of forgetting in the context of a (specific)
synchronizer. We consider four different conditions on when processes forget
and study the respective degrading effects on the synchronizer’s performance
in a probabilistic environment. (2) We state explicit formulas for the expected
round duration for two of these conditions and give efficient bounds for the other
two conditions. These bounds are shown to approximate the true value well if
the probability p of successful message transmission is high. (3) We show that
for all four conditions, the expected round durations collapse when p ≥ 1: All
four expected round durations, as well as its first derivative as a function of p,
are equal in p = 1. (4) We prove that for p ≥ 0, the expected round duration for
three of the conditions has the same order of growth, which we calculate explicitly
for all four conditions. (5) We present simulation results of the expected round
duration, comparing them to our calculations, and simulation results for the
average age of data when a process makes a round switch.

Related Work. Our notion of knowledge is different from that of Fagin et al. [3],
who studied the evolution of knowledge in distributed systems with powerful
agents; in particular, their agents do not forget. While Mahesh and Varghese [5]
use crashing processes and the forgetting during reboot in a destructive way, we
use forgetting in a constructive manner. Nowak et al. [10] calculated the expected
round duration of a retransmission-based synchronizer when a single transmis-
sion arrives with constant probability p, but a message that was retransmitted
at least M times is guaranteed to arrive. They did not investigate the impact
of forgetting on the synchronizer’s performance, and assumed M to be finite,
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which we do not. Bertsekas and Tsitsiklis [2] proved bounds for the case of con-
stant processing times and exponentially distributed message delays. They did
not derive exact performance measures. Rajsbaum [11] presented bounds on the
synchronizer rate for the case of exponentially distributed processing times and
transmission delays. Rajsbaum and Sidi [12] calculated the rate’s exact value in
the case of exponentially distributed processing times and negligible transmission
delays.

Organization of the Paper. The rest of the paper is organized as follows. Section 2
introduces our system model, the studied synchronizer algorithm, and the four
conditions on forgetting we investigate, i.e., when the processes forget the gained
knowledge. In Sect. 3 we give the performance measure and we derive explicit
formulas for two of the four conditions in Sect. 4. Section 5 uses a Markov chain
model to compute the expected round duration of the remaining two conditions
on forgetting and states results on the asymptotic behavior of the expected round
duration. It also presents analytical lower bounds that facilitate estimations of
the expected round duration. In Sect. 6 we compare the performance as well as
the average age of data achieved by the different conditions on forgetting against
each other.

2 System Model and Algorithm

In this paper we study the performance of variants of the α-synchronizer [1]
running in a fully-connected message passing system with processes 1, 2, . . . , N .
Processes take steps simultaneously at all integral times t � 0, but messages
may be lost. Messages that do arrive have a transmission delay of 1, i.e., a
message sent at time t arrives at time t + 1, or not at all. A step consists in
(a) receiving messages from other processes, (b) performing local computations,
and (c) broadcasting a message to the other processes.

The synchronizer variants have two local variables, specified for every process
i at time t: The local round number Ri(t) and the knowledge vector

(

Ki,1(t),
Ki,2(t), . . . , Ki,N (t)

⎛

. Processes continuously broadcast their local round num-
ber. The knowledge vector contains information on other processes’ local round
numbers, accumulated via received messages. A process increments its local
round number, and thereby starts the next round, after it has gained knowl-
edge that all other processes have already started the current round. The round
increment rule assures a precision of 1, i.e., |Ri(t)−Rj(t)| � 1 for all t. We write
RG(t) = mini Ri(t) and call it the global round number at time t.

After updating its local round number, a process may forget, i.e., lose its
knowledge about other processes’ local round numbers. We are considering four
different conditions COND, describing the times when process i forgets:

I. Never, i.e., COND := false.
II. At every local round switch, i.e., COND :=

⎝

Ri(t) = Ri(t − 1) + 1
⎞

.
III. At every global round switch, i.e., COND :=

⎝

RG(t) = RG(t − 1) + 1
⎞

.
IV. Always, i.e., COND := true.
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Formally, we write Mi,j(t) = 0 if process j’s message to process i sent at time
t was lost, and Mi,j(t) = 1 if it arrives (at time t + 1). Process i’s computation
in its step at time t consists of the following:

1. Update knowledge according to received messages:
Ki,j(t) ← Rj(t − 1) if Mi,j(t − 1) = 1, and Ki,j(t) ← Ki,j(t − 1) otherwise.

2. Increment round number if possible: Ri(t) ← Ri(t−1)+1 if Ki,j(t) � Ri(t−1)
for all j, and Ri(t) ← Ri(t − 1) otherwise.

3. Conditional forget: Ki,j(t) ← 0 if COND is true.

Initially, Ki,j(0) = 0, and no messages are received at time 0. In particular,
Ri(0) = 1. In the remainder of this paper, when we refer to Ki,j(t), we mean its
value after step 3.

We assume that the Mi,j(t) are pairwise independent random variables with

P
(Mi,j(t) = 1

⎛

= p if i ∈= j and P
(Mi,i(t) = 1

⎛

= 1 . (1)

We call the parameter p the probability of successful transmission.

Fig. 2. An execution of the synchronizer

Figure 2 shows part of an execution for condition I on forgetting. Times are
labeled t0 to t10. Processes 1 and 3 start their local round R at time t4 while
process 2 has already started its local round R at time t3. The arrows in the
figure indicate the time until the first successful reception of a message sent in
round R: The tail of the arrow is located at time t a process i starts round R and
thus broadcasts R for the first time. The head of the arrow marks the smallest
time after t at which a process j receives a message from i. Messages from
processes to themselves are always received at the next time step and thus are
not explicitly shown in the figure. For example, processes 1 and 3 start round R
at time t4 sending R for the first time. While process 2 receives the message from
3 in the next step, it needs an overall amount of 4 time steps and consecutive
retransmissions to receive a message from process 1 at time t8.

3 Performance Measure

For a system with N processes and probability p of successful transmission, we
define the expected round duration of process i by λi(N, p) = E limt◦∈ t/Ri(t).
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Since our synchronization algorithm guarantees precision 1, it directly follows
that λi(N, p) = λj(N, p) for any two processes i and j. We will henceforth refer
to this common value as λ(N, p), or simply λ if the choice of parameters N
and p is clear from the context. To distinguish the four proposed conditions on
forgetting, I to IV, we will write λI, λII, λIII, and λIV, respectively.

In the rest of the paper, we study the expected round duration λ for the four
conditions on forgetting. Note that the condition in case III cannot be detected
locally and thus does not allow for a distributed implementation. We rather use
λIII as a bound (cf. Eq. 2). For case IV, where processes always forget, and for
case III, where processes forget on global round switches, λ can be calculated
efficiently with explicit formulas, which we give in Sect. 4 in Theorems 1 and
2. For the remaining cases, I and II, we could compute λ(N, p) by means of a
steady state analysis of a finite Markov chain with time complexity exponential
in N . We show how to do this in Sect. 5.1. The Markov chain model is also useful
to study the behavior of λ, for all four conditions on forgetting, when p ≥ 1 and
p ≥ 0. We do this in Sects. 5.2 and 5.3, respectively. We derive explicit lower
bounds on λI and λII in Sect. 5.4.

We will repeatedly use the dual of Ri(t), namely Ti(r), the time process i
switches to round r. Further set TG(r) = maxi Ti(r). The next proposition allows
to calculate λ dually by:

Proposition 1. For all four conditions on forgetting, λ = E lim
t◦∈ t/Ri(t) =

E lim
r◦∈ Ti(r)/r.

It is not hard to show, by comparing Ti(r) for every fixed choice of the
sequence M, that

λI � λII � λIII � λIV . (2)

4 Explicit Formulas for λIII and λIV

In this section, by elementary probability theory and calculations, we derive
explicit formulas for λIII and λIV in Theorems 1 and 2, respectively. Both use a
formula for the expected maximum of geometrically distributed random variables
(Proposition 2). For that purpose define for pairwise independent with parameter
p geometrically distributed random variables Gi

Λ(M , p) = E max
1�i�M

Gi .

We will make use of the following well-known proposition [6,14].

Proposition 2. Λ(M , p) =
M⎠

i=1

(
M
i

⎧

(−1 )i
1

(1 − p)i − 1

Consider case III, i.e., processes forget on global round switches. Initially,
all processes i are in round Ri(0) = 1, and their knowledge is Ki,j(0) = 0.
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Observe that processes switch to round 2 as messages are received. At the time
t at which the last process switches to round 2, it holds that (i) all processes
i have Ri(t) = 2, (ii) all processes have knowledge Ki,j(t) � 1 for all j before
forgetting, and (iii) all processes forget, since a global round switch occurred,
ultimately resulting in Ki,j(t) = 0. The only difference between the initial state
and the state at time t is the constant round number offset Ri(t) = Ri(0)+1. By
repeated application of the above arguments we obtain that the system is reset
to the initial state modulo a constant offset in round numbers Ri, each time a
global round switch occurs. This allows to determine the expected average round
duration by analyzing the expected time until the first round switch.

We will now state explicit formulas for the expected round duration in cases
III and IV. We will use these formulas in particular in Sect. 5.3 when studying
the behavior of λ for p ≥ 0.

Theorem 1. λIII(N , p) = Λ
(

N (N−1 ), p
⎛

=
N (N−1)

⎠

i=1

(
N (N − 1 )

i

⎧
(−1 )i

(1 − p)i − 1

Proof. Recall that the events that i receives a message from j at time t are
pairwise independent for all i, j and times t. Thus the smallest time t, at which i
receives a message from j is geometrically distributed with parameter p. Noting
that the first global round switch occurs at time TG(2) = maxi(Ti(2)), we obtain

λ(N , p) = E lim
r◦∈ TG(r)/r = ETG(2 ) = E max

1�i�N (N−1)
Gi

where the Gi are geometrically distributed with parameter p. The theorem now
follows from Proposition 2. ≤∀

Theorem 2. λIV(N , p) = Λ
(

N , pN−1
⎛

=
N⎠

i=1

(
N
i

⎧

(−1 )i
1

(1 − pN−1 )i − 1

Proof. Observe that the first global round switch occurs at the minimum time t
by which each of the processes has received messages from all processes simul-
taneously; and that Ri(t) = 2 as well as Ki,j(t) = 0 holds at this time. Again
the state at time t is identical to the initial state with all round numbers incre-
mented by 1. Repeated application of the above arguments allows to calculate
the expected round duration by λ(N , p) = ETG(2 ). The first time i receives
a message from all processes simultaneously is geometrically distributed with
parameter pN−1. Since we have N nodes, we take the maximum over N such
geometrically distributed random variables. The theorem now follows from
Proposition 2. ≤∀

5 Markovian Analysis

Determining λI and λII, the expected round duration in the cases that processes
never forget or forget at local round switches, is more involved. In the following,
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we will calculate λ by modeling the system as a finite Markov chain and analyzing
its steady state distribution. Additionally, we derive the asymptotic behaviors
for p ≥ 1 and for p ≥ 0 from the Markov chain model. As the computation of
the chain’s steady state distribution is computationally very expensive, we will
give analytical lower bounds in Sect. 5.4.

Let A(t) be the sequence of matrices with Ai,i(t) = Ri(t) and Ai,j(t) =
Ki,j(t) for i ∈= j. It is easy to see that A(t) is a Markov chain, i.e., the distribution
of A(t + 1) depends only on A(t). Since both Ri(t) and Ki,j(t) are unbounded,
the state space of Markov chain A(t) is infinite.

We therefore introduce the sequence of normalized states a(t), defined by
A(t)−mink Ak,k(t) cropping negative entries to −1, i.e., ai,j(t) = max

⎨

Ai,j(t)−
mink Ak,k(t) , −1

⎩

. Normalized states belong to the finite set {−1, 0, 1}N×N .
The sequence of normalized states a(t) is a Markov chain: The probability

that A(t+1) = Y , given that A(t) = X, is equal to the probability that A(t+1) =
Y + c, given that A(t) = X + c. We may thus restrict ourselves without loss
of generality to considering the system being in state X − mini(Xi,i) at time
t. Further, by the algorithm and the fact that the precision is 1, cropping the
entries of X −mini(Xi,i) at −1 does not lead to different transition probabilities:
the probability that A(t + 1) = Y given that A(t) = X − mini(Xi,i) is equal to
the probability that A(t + 1) = Y given that A(t) is X − mini(Xi,i) cropped at
−1. It follows that a(t) is a finite Markov chain, for the algorithm with any of
the four conditions on forgetting.

We will repeatedly need to distinguish whether there is a global round switch
at time t or not. Let â(t) be the Markov chain obtained from a(t) by adding to
each state a an additional flag Step such that Step(â(t)) = 1 if there is a global
round switch at time t, and 0 otherwise.

5.1 Using the Steady State to Calculate λ

Call a Markov chain good if it is aperiodic, irreducible, Harris recurrent, and has
a unique steady state distribution. It is not difficult to see that â(t) is good for
all four conditions on forgetting.

Theorem 3. Let X(r) be good Markov chain with state space X and steady state
distribution π. Further, let g : X ≥ R be a function such that

∑

X∗X |g(X)| ·
π(X) < ∪. Then, limr◦∈ 1

r

∑r
k=1 g

(

X(k)
⎛

=
∑

X∗X g(X) ·π(X) with probabil-
ity 1 for every initial distribution.

Proof. [8, Theorem 17.0.1(i)]

A standard method, given the chain’s transition matrix P , to compute the
steady state distribution π is by matrix inversion:

π = e · (

P (n◦1) − I(n◦0)
⎛−1 (3)

where M (k◦x) denotes matrix M with its kth column set to x, I is the identity
matrix, and e = (1, 1, . . . , 1).
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We call a processes i a 1-process in state â if âi,i = 1. Likewise, we call i a
0-process in â if âi,i = 0. Denote by #−1(â) the number of −1 entries in rows of
matrix â that correspond to 0-processes in â.

Proposition 3. For all conditions of forgetting, Ri(t)/t ≥ 1/λ with probability
1 as t ≥ ∪. Furthermore, λ = 1/

(∑

â p#−1 (â) · π(â)
⎛

.

Proof. It holds that RG(t) =
∑t

k=1 Step
(

â(k)
⎛

. By Theorem 3, with probability
1 it holds that:

lim
t◦∈ Ri(t)/t = lim

t◦∈ RG(t)/t = lim
t◦∈

1
t

t⎠

k=1

Step(â(k)) =
⎠

â

Step(â) · π(â) .

Since â(t) is a finite Markov chain, the last sum is finite. It follows that Ri(t)/t
converges to a constant, say c, with probability 1. Thus t/Ri(t) converges to 1/c
with probability 1. By definition of λ, it follows that λ = 1/c. This shows the
first part of the proposition.

The second part of the proposition is proved by the following calculation:

1/λ = E lim
t◦∈ Ri(t)/t = E lim

t◦∈ RG(t)/t = E lim
t◦∈

1
t

t⎠

k=1

Step
(

â(k)
⎛

=
⎠

â

lim
t◦∈

1
t

t⎠

k=1

P
(

â(k − 1) = â
⎛ · E(

Step(â(k)) | â(k − 1) = â
⎛

=
⎠

â

p#−1(â) lim
t◦∈

1
t

t⎠

k=1

P
(

â(k − 1) = â
⎛

=
⎠

â

p#−1(â) · π(â) . �

5.2 Behavior of λ for p → 1

The next theorem provides means to approximate the expected round duration
for all conditions on forgetting when messages are successfully received with high
probability. Since this is typically the case for real-world systems, it allows to
characterize their expected round duration very efficiently.

Theorem 4. For all four conditions on forgetting,
d

dp
λ(N , p)

⎜
⎜
p=1

= −N (N −1 ).

Proof. Let p ∈ (0, 1). Let πN,p(â) be the steady state probability of state â of
Markov chain â(t). From Proposition 3, 1/λ(N , p) =

∑

â p#−1 (â) ·πN ,p(â). Then

d

dp
1/λ(N , p) =

⎠

â

#−1 (â) · p#−1 (â)−1 · πN ,p(â) +
⎠

â

p#−1 (â) · d
dp

πN ,p(â) .

Evaluation of the derivative at p = 1 leads to

d

dp
1/λ(N , p)

⎜
⎜
⎜
p=1

=
⎠

â

#−1 (â) · πN ,1 (â) +
⎠

â

d
dp

πN ,p(â)
⎜
⎜
⎜
p=1

.
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Observe that as p goes to 1, πN,p(â) goes to 0 for all states â, except for â0,
the state with 0 in the diagonal, −1 everywhere else, and Step(â) = 1. It is
#−1(â0) = N(N − 1). Moreover, as p goes to 1, πN,p(â0) approaches 1. Hence,

= N(N − 1) +
d

dp

⎟
⎠

â

πN,p(â)

)⎜
⎜
⎜
⎜
⎜
p=1

= N(N − 1) + 0 ,

as the sum of the steady state probabilities over all states a equals 1. The
theorem follows from d

dpλ(N, p)
⎜
⎜
p=1

= − d
dp1/λ(N, p)

⎜
⎜
p=1

· λ2(N, 1) and
λ(N, 1) = 1. ≤∀

5.3 Behavior of λ for p → 0

In systems with unreliable communication, in which Theorem 4 is not valuable,
the following theorem on the asymptotic behavior of the expected round duration
for all our conditions on forgetting, is useful. It turns out that λI, λII, and λIII

have the same order of growth for p ≥ 0, namely p−1, while λIV has a higher
order of growth.

Theorem 5. For p ≥ 0, λI(N , p), λII(N , p) and λIII(N , p) are in Θ
(

p−1
⎛

, and
λIV(N , p) is in Θ

(

p−(N−1)
⎛

.

Proof. We first show the statement for λIII. It is (1−p)i −1 =
∑i

j=1

(
i
j

⎛

(−p)j =
Ω(p) for p ≥ 0. Hence by Theorem 1, λIII(N, p) = O(p−1) for p ≥ 0.

For all conditions on forgetting, all transition probabilities of the Markov
chain â(t) are polynomials in p. Hence by Eq. 3, all steady state probabilities
π(â) are rational functions in p. Proposition 3 then in particular implies that
λI(N, p) is also rational in p. Clearly, λI(N, p) ≥ ∪ as p ≥ 0. Hence λI(N, p)
has a pole at p = 0 of order at least 1. This implies λI(N, p) = Ω(p−1 ). From
the inequalities λI � λII � λIII, the first part of the theorem follows.

To show the asymptotic behavior of λIV(N, p), observe that by (1−p)i −1 =
−p

∑i
j=1

(
i
j

⎛

(−p)j−1 ∼ −p · i for p ≥ 0 and by Proposition 2, we have

p · Λ(M , p) ∼
M⎠

i=1

(
M
i

⎧

(−1 )i+1 1
i

.

As shown in the textbook by Graham et al. [4, (6.72) and (6.73)] this sum equals
HM , denoting the Mth harmonic number. This concludes the proof. ≤∀

5.4 Lower Bounds on λI and λII

Determining the expected round duration for cases I and II by means of the
Markov chain a(t) is computationally intensive, even for small system sizes N .
We can, however, compute efficient lower and upper bounds on λ(N , p): For both,
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case I and II, λIII(N, p) is an upper bound. We will next derive computationally
feasible lower bounds for λI(N, p) and λII(N, p).

From Proposition 1 and Theorem 3 follows, by considering the conditional
expectation of TG:

λ =
1

∑

â Step(â) · π(â)

⎠

â

Step(â) · π(â) · E(TG(2) | â(0) = â) ,

where E(TG(2) | â(0) = â) is the expected time until the first global round
switch, given that the system initially is in state â. It holds that E(TG(2) |
â(0) = â) = Λ(#−1(â), p).

Let [n] denote the set of states â with #−1(â) = n and Step(â) = 1, and
denote by

⋃
[n] the union of all [n] for 0 � n � N(N − 1). Further let π̂(n) =

∑

â∗[n] π(â)/(
∑

â Step(â) · π(â)). It follows that π̂(n) = 0 for n < 2N − 2 in case
II and π̂(n) = 0 for n < N − 1 in case I.

The basic idea of the bounds on λ is to bound π̂(n). Let P(â � [n]) be the
probability that, given the system is in state â at some time t, for the minimum
time t≥ > t at which a global round switch occurs, â(t≥) ∈ [n]. We obtain for
π̂(n):

π̂(n) =
⎠

â

Step(â) · π̂(â) · P(â � [n]) =
⎠

â∗⋃[n]

π̂(â) · P(â � [n])

=
⎠

â∗[n]

π̂(â) · P(â � [n]) +
⎠

â∗⋃[n]\[n]
π̂(â) · P(â � [n])

� π̂(n) min
â∗[n]

P(â � [n]) + (1 − π̂(n)) min
â∗⋃[n]\[n]

P(â � [n])

� π̂(n)cn + (1 − π̂(n))dn

for cn, dn suitably chosen. One can derive valid choices for both parameters for
cases I and II by excessive case inspection of transition probabilities for all state
equivalence classes [k], k � 0. We provide only a proof for case II in Sect. 5.5, as
the proof for case I is by analogous arguments.

Partitioning the above sum into a one term from states in [n] to states in [n],
and one remaining term, allows us to finally state inequality

π̂(n) � dn
1 + dn − cn

=: πn . (4)

The resulting lower bounds on π̂(n), denoted by πI
n and πII

n for cases I and II
respectively, finally yield lower bounds on λ. Since Λ is nondecreasing in its first
argument, we can bound λ(N, p) by



1 −
N(N−1)

⎠

n=N

πI
n



 Λ(N − 1, p) +
N(N−1)

⎠

n=N

πI
nΛ(n, p) � λI(N, p) (5)
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in case I. For case II we obtain


1 −
N(N−1)

⎠

n=2N−1

πII
n



 Λ(2N − 2, p) +
N(N−1)

⎠

n=2N−1

πII
n Λ(n, p) � λII(N, p) . (6)

5.5 Lower Bound on Parameters for λII

We next show how to derive bounds on parameters cn and dn, in the following
denoted by dIIn and cIIn . From these we obtain bounds on πN(N−1) from (4).

We start our analysis with determining πN(N−1). Since P(â � [N(N − 1)])
is greater than the probability that â(t + 1) ∈ [N(N − 1)], given that â(t) =
â, for arbitrary t, we have P(â � [N(N − 1)]) � p#−1(â). Thus we may choose
cIIN(N−1) = pN(N−1), dIIN(N−1) = pN(N−1)−1 and obtain

πN(N−1) =
pN(N−1)−1

1 + pN(N−1)−1(1 − p)
.

Next we turn to the analysis of πN(N−1)−1. Since it is not possible to make a
direct transition from a state â ∈ ⋃

[n] to a state in [N(N − 1) − 1], we consider
bounds on the probability that the system is in a state within [N(N − 1) − 1]
at time t + 2, given that â(t) = â. Fix in â one column j whose all non-diagonal
entries equal −1. Clearly such a column must exist, since Step(â) = 1. Given
that â(t) = â, assume that at time t + 1, all messages from processes i ∈= j
to all processes i≥ with Ki∞,i(t) = −1, and one message from process j to some
fixed j≥ ∈= j, are received. That is, N(N − 2) + 2 − #0(â) messages are received.
Moreover, at time t + 1, k (up to N − 3) of the remaining N − 2 message sent
by j are received. By construction, k +2 of the processes are 1-processes at time
t+1. For â(t+1) ∈ [N(N −1)−1] to hold, it is sufficient that: For all 0-processes
i with âi,j(t + 1) = −1, process i must receive a message from j at time t + 2;
exactly one of the messages from a 1-process to a 1-process is received. Since at
time t + 1 there are (k + 2)(k + 1) messages from 1-processes to 1-processes, we
obtain: For all â ∈ ⋃

[n],

P(â � [N(N − 1) − 1]) �

�
N−3⎠

k=0

(
N − 2

k

⎧

pN(N−2)+2−#0(â)+k(1 − p)N−2−k·

· pN−2−k · p · (1 − p)(k+2)(k+1)−1 · ((k + 2)(k + 1))

= pN(N−1)−#0(â)+1·

·
N−3⎠

k=0

(
N − 2

k

⎧

((k + 2)(k + 1))(1 − p)N+k2+2k−1

=: β(#0(â)) .

So we choose cIIN(N−1)−1 = β(1) and dIIN(N−1)−1 = β(0).
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Finally we turn to the analysis of πn for n = 2(N − 1) + x, where 0 � x �
(N − 2)(N − 1) − 2. Again we bound P(â � [2(N − 1) + x]), for â ∈ ⋃

[n], by
analyzing the probability that â(t + 2) ∈ [2(N − 1) + x], given that â(t) = â.
Fix a row j of â with T non-diagonal entries equal to 0. Given that â(t) = â,
assume that at time t + 1, all messages to processes i ∈= j from all processes i≥

with Ki,i∞(t) ∈= 0 are received. That is, (N −1)(N −1)−#0(â)+T messages are
received. Moreover, at time t+1, k (up to N −T −2) of the remaining N −T −1
messages to j are received. Hence, all processes different from j are 1-processes
at time t + 1. At time t + 2 all remaining messages to process j are received.
From the (N − 2)(N − 1) messages sent by 1-processes to 1-processes exactly x
are not allowed to be received for â(t + 2) ∈ [2(N − 1) + x] to hold. Thus, for
fixed row j and â ∈ ⋃

[n],

P(â � [2(N − 1) + x] | row j) �

�
N−2−T⎠

k=0

(
N − T − 1

k

⎧

pk+(N−1)2−#0(â)+T

· (1 − p)N−1−k−T pN−1−k−T p(N−2)(N−1)−x(1 − p)x

·
(

(N − 1)(N − 2)
x

⎧

=
(

(N − 1)(N − 2)
x

⎧

(1 − p)xpN(N−1)−#0(â)+(N−2)(N−1)−x

· (

(2 − p)N−1−T − 1
⎛

=: γ(#0(â), T, x) .

Note that γ is nonincreasing in its second and third argument. Every state â
has at least one row with T = 0 non-diagonal entries equal to 0. All other rows
must have T � N − 2 non-diagonal entries equal to 0, since a row must have at
least one entry equal to −1. Thus, we have

P(â � [2(N − 1) + x]) �
γ(#0(â), 0, x) + (N − 1) · γ(#0(â), N − 2, x) =: γ̃(#0(â), x).

We thus choose cII2(N−1)+x = γ̃((N − 1)(N − 2) − x, x) and dII2(N−1)+x = γ̃(0, x).
The lower bound on λII follows from (4) and (6).

6 Discussion of Results

In this section we present the results obtained by calculating the expected round
duration λ for the four conditions on forgetting that we consider. Additionally,
we used Monte-Carlo simulations to estimate λ and the average age of data when
a process performs a round switch.

Figure 3 shows, with varying probability p, the exact value of the expected
round duration for conditions on forgetting I–IV in a system with N = 3
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Fig. 3. Expected round durations for N = 3 and lower bounds for cases I and II.

processes. As stated in Sect. 5.3, the figure shows the gap between the cases
I, II, and III, having an asymptotic growth in Θ(1/p) when p approaches 0, and
the case IV, which has an asymptotic growth in Θ(1/pN−1). Furthermore, as
depicted in Sect. 5.2, all the plots have the same slope in the point p = 1 result-
ing in a good approximation for the hard to calculate cases I and II in a system
with reliable communication.

In settings with unreliable communication, for which the approximation result
on the derivative of λ at p = 1 is not valuable, cases I and II can be approxi-
mated by their analytical lower bounds (Sect. 5.4), and bounded from above by
the λ for case III (Theorem 1). A comparison between the lower bounds and the
actual systems is illustrated in Fig. 3.

As the calculations of the exact values for the expected round duration using
the Markov chain model are computationally very expensive, we used Monte-
Carlo simulations to compare them with our calculations. To this end, we simu-
lated systems with 2 � N � 12 processes for 100 000 steps and averaged over 30
runs. The simulations were done using three different values for p. Figures 4 and
5 show the obtained average round durations with the calculated lower bound
and with case III as upper bound. The average round durations for case I (where
processes never forget) is shown in Fig. 4(a) – (c) and the case II (where processes
forget after a local round switch) is shown in Fig. 5(a) – (c). Figure 6(a) – (c)
depict the calculated expected round duration for case IV, i.e., the synchronizer
variant that forgets at each time step. Note that it is significantly higher than
all the other variants when message loss is considerable.

Figure 7 shows Monte-Carlo simulation results of the average age of data
when a process performs a round switch, for cases I and II, both of which can
be implemented in a distributed manner. Case IV, for which the same holds,
by definition has an average age of data of 1. One immediately observes that
while the average age of both cases I and II is significantly higher than in case
IV, forgetting at each processes’ round switch only has a marginal effect on the
average age compared to not forgetting at all.

7 Conclusion

We studied the effect of actively discarding memory content on a variant of
the α-synchronizer. For practically relevant applications, e.g., in sensor fusion,
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(a) (b) (c)

Fig. 4. Monte-Carlo simulation results for case I compared against the calculated lower
bound and the calculated expected round duration of case III serving as an upper
bound.

(a) (b) (c)

Fig. 5. Monte-Carlo simulation results for case II compared against the calculated
lower bound and the calculated expected round duration of case III serving as an
upper bound.

(a) (b) (c)

Fig. 6. Calculated expected round duration of case IV.

(a) (b) (c)

Fig. 7. Average age Monte-Carlo simulation results for case I (blue, upper) and II
(green, lower) (Colour figure online).
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forgetting turns out to be a simple strategy to decrease the average age of data
handed over to the application layer when a process makes a round switch. In case
the accuracy of data degrades over time, e.g., data samples taken from a timed
process, a decreased average age of the samples results in an increased accuracy
of the merged data. To assess the inevitable drawback of forgetting strategies,
namely degraded performance, we analyzed four naturally chosen strategies of
forgetting. We obtained analytic formulas for the behavior of the expected round
duration λ(N, p) as the probability of successful transmission p ≥ 0 and p ≥ 1,
as well as means to calculate λ(N, p) for arbitrary N and p, allowing to assess
whether the resulting loss of performance is acceptable for a specific application.
Interestingly, it turned out that the behavior of all four variants is similar for
p ≥ 1. For p ≥ 0 only two asymptotic behaviors of the expected round duration
were observed: Θ(1/pN−1) for the significantly slower variant that forgets at
each time step, and Θ(1/p) for the other variants.
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Abstract. In the barrier resilience problem (introduced by Kumar et
al., Wireless Networks 2007), we are given a collection of regions of the
plane, acting as obstacles, and we would like to remove the minimum
number of regions so that two fixed points can be connected without
crossing any region. In this paper, we show that the problem is NP-hard
when the regions are arbitrarily fat regions (even when they are axis-
aligned rectangles of aspect ratio 1 : (1 + ε)). We also show that the
problem is fixed-parameter tractable (FPT) for such regions. Using our
FPT algorithm, we show that if the regions are β-fat and their arrange-
ment has bounded ply Δ, there is a (1 + ε)-approximation that runs in

O(2f(Δ,ε,β)n7) time, where f ∈ O(Δ2β6

ε4
log(βΔ/ε)).

1 Introduction

The barrier resilience problem asks for the minimum number of spatial regions
from a collection D that need to be removed, such that two given points p and
q are in the same connected component of the complement of the union of the
remaining regions. This problem was posed originally in 2005 by Kumar et al
[11,12], motivated from sensor networks. In their formulation, the regions are
unit disks (sensors) in some rectangular strip B ≥ R

2, where each sensor is able
to detect movement inside its disk. The question is then how many sensors need
to fail before an entity can move undetected from one side of the strip to the
other (that is, how resilient to failure the sensor system is). Kumar et al. present
a polynomial time algorithm to compute the resilience in this case. They also
consider the case where the regions are disks in an annulus, but their approach
cannot be used in that setting.
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1.1 Related Work

Despite the seemingly small change from a rectangular strip to an annulus, the
second problem still remains open, even for the case in which regions are unit
disks in R

2. There has been partial progress towards settling the question: Bereg
and Kirkpatrick [2] present a factor 5/3-approximation algorithm for the unit
disk case. Afterwards, Alt et al. [1] and Tseng and Kirkpatrick [16] independently
showed that if the regions are line segments in R

2, the problem is NP-hard. We
also note that Tseng and Kirkpatrick [16] also sketched how to extend their
proof for the case in which the input consists of (translated and rotated) copies
of a fixed square or ellipse, but no formal proof was given.

The problem of covering barriers with sensors is very current and has received
a lot of attention in the sensor network community (e.g. [3,4,8]). In the algo-
rithms community, closely related problems involving region intersection graphs
have also became quite popular. Gibson et al. [7] study the opposite problem of
ours: compute the maximum number of disks one can remove such that p and q
are still separated.

1.2 Results

We present constructive algorithms for two natural restricted variants of the
problem. In Sect. 3 we show that the problem is fixed-parameter tractable on the
resilience when the regions satisfy an upper bound on the fatness [6] (intuitively
speaking, the regions must have some resemblance to a unit disk). In Sect. 4 we
also show that if the collection of regions has bounded ply [14] (that is, sensors
are more or less evenly distributed in the plane), the FPT result can be used to
obtain an approximation scheme. In particular, the constructive results apply to
the original unit disk coverage setting (formal definitions of fatness and ply are
given in the corresponding sections).

As a complement to these algorithms, in Sect. 5 we show that the problem
is NP-hard even when the input is a collection of arbitrary fat regions in R

2.
The result holds even if regions consist of axis-aligned rectangles of aspect ratio
1 : 1 + α and 1 + α : 1.

Our results rely on tools and techniques from both computational geometry
and graph theory.

Due to lack of space, several proofs and extensions have been omitted. A full
version of the paper containing all the omitted details can be found in [10].

2 Preliminaries

We denote with p and q the points that need to be connected, and with D the set
of regions that represent the sensors. To simplify the presentation of our results,
we make the following general position assumption: all intersections between
boundaries of regions in D consist of isolated points. We say that a collection
of objects in the plane are pseudodisks if the boundaries of any two of them
intersect at most twice.



On the Complexity of Barrier Resilience for Fat Regions 203

We formally define the concepts of resilience and thickness introduced in [2].
The resilience of a path ε between two points p and q, denoted r(ε), is the
number of regions of D intersected by ε. Given two points p and q, the resilience
of p and q, denoted r(p, q), is the minimum resilience over all paths connecting p
and q. In other words, the resilience between p and q is the minimum number of
regions of D that need to be removed to have a path between p and q that does
not intersect any region of D. From now on, we assume that neither p nor q are
contained in any region of D. Note that such regions must always be counted
in the minimum resilience paths, hence we can ignore them (and update the
resilience we obtain accordingly).

Often it will be useful to refer to the arrangement (i.e., the subdivision of the
plane into faces, see e.g. [5] for a formal definition) induced by the regions of D,
which we denote by A(D). Based on this arrangement we define a weighted dual
graph GA(D) as follows. There is one vertex for each cell (i.e., face) of A(D). Each
pair of neighboring cells A,B is connected in GA(D) by two directed edges, (A,B)
and (B,A). The weight of an edge is 1 if, when traversing from the starting cell
to the destination one, we enter a region of D (or 0 if we leave a region1).

The thickness of a path ε between p and q, denoted t(ε), equals the number
of sensor region intersections of ε (possibly counting the same region multiple
times). Given two points p and q, the thickness of p and q, denoted t(p, q), is the
value |spGA(D)

(p, q)|+λ(p), where spGA(D)
(p, q) is a shortest path in GA(D) from

the cell of p to the cell of q, and λ(p) equals the number of regions that contain
p. Also note that the resilience (or thickness) between two points only depends
on the cells to which the points belong to. Hence, we can naturally extend the
definitions of thickness to encompass two cells of A(D), or a cell and a point.

Note that thickness and resilience can be different (since entering the same
region several times has no impact on the resilience, but is counted every time
for the thickness). In fact, the thickness between two points can be efficiently
computed in polynomial time using any shortest path algorithm for weighted
graphs (for example, using Dijkstra’s algorithm). However, as we will see later,
the thickness (and the associated shortest path) will help us find a path of low
resilience.

Throughout the paper we often use the following fundamental property of
disks, already observed in [2]. In the statement below, “well-separated” is in the
sense used in [2]—i.e., the distance between p and q is at least 2

←
3.2

Lemma 1 ([2], Lemma 1). Let D be a set of unit disks, and let ε◦ be a path
from p to q of minimum resilience. If p, q are well-separated, then ε◦ encounters
no disk of D more than twice.

Corollary 1 ([2]). When the regions of D are unit disks, the thickness between
two well-separated points is at most twice their resilience.
1 Note that no other option is possible under our general position assumption.
2 Note that the well-separatedness of p and q is used to prove a factor 2 instead of 3.

Everything still works for ill-separated points, at a slight increase of the constants.
Our most general statements for β-fat regions do not make this requirement.
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3 Fixed-Parameter Tractability

In this section we introduce a single-exponential fixed-parameter tractable (FPT)
algorithm, where the parameter is the length of the optimal solution. Thus, our
aim is to obtain an algorithm that given a problem instance, determines whether
or not there is a path of resilience r between p and q, and runs in O(2f(r)nc)
time for some constant c and some polynomial function f .

For clarity we first explain the algorithm for the special case of unit disks.
Afterwards, in Sect. 3.2, we show how to adapt the solution to the case in which
D is a collection of Θ-fat objects. Note that for treating the case of unit disk
regions we assume that p and q are well-separated, so we can apply Lemma 1.
This requirement is afterwards removed in Sect. 3.2.

First we give a quick overview of the method of Kumar et al.[11] for open belt
regions. Their idea consists in considering the intersection graph of D together
with two additional artificial vertices s,t with some predefined adjacencies. There
is a path from the bottom side to the top side of the belt if and only if there
is no path between s and t in the graph. Hence, computing the resilience of the
network is equal to finding a minimum vertex cut between s and t.

Our approach is to find a low thickness path that passes through p and q, cut
open through it, and transform the problem instance into one with something
similar to an open belt region. We then follow the approach of Kumar et al.
taking into account that the right and left boundaries of our region correspond
to the same point. Hence, instead of using a regular vertex cut, we will use a
vertex multicut [17].

Consider the shortest path Λ between the cells containing p and q in GA(D),
let t be the number of traversed disks (recall that we assumed that p is not
contained in any region, hence this number is exactly the thickness of p and q).
We observe that cells with high thickness to p or q can be ignored when we look
for low resilience paths.

Lemma 2. The minimum resilience path between p and q cannot traverse cells
whose thickness to p or q is larger than 1.5t.

Proof. We argue about thickness to p; the argument with respect to q is analo-
gous. Let π be a path of minimum resilience between p and q, and let r be the
resilience of π. Recall that π does not enter a disk more than twice, hence the
thickness of π is at most 2r ∈ 2t. Assume, for the sake of contradiction, that
the thickness of some cell C traversed by π is greater than 1.5t. Let πC be the
portion of π from C to q. By the triangle inequality, the thickness of πC is less
than 0.5t. However, by concatenating Λ and πC we would obtain a path that
connects p with C whose thickness is less than 1.5t, giving a contradiction. �

Let R be the union of the cells of the arrangement that have thickness from p
at most 1.5t; we call R the domain of the problem. Observe that R is connected,
but need not be simple (see Fig. 1(a)). By the previous result, cells that do not
belong to R can be discarded, since they will never belong to a path of resilience
r. Note that the number of cells remaining in R might still be quadratic, hence
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Fig. 1. (a) The reduced domain R, and a path τ ′ from p to q′ via q. (b) After cutting
along τ ′, we get the domain R′. We add a set S of extra vertices on the boundary of
R′, and we now have two copies of q. A crossing pattern, consisting of a topological
path ρ (defined by the sequence of points of S it passes) and a binary assignment to
the disks of D intersected by τ ′, is also shown.

asymptotically speaking the instance size has not decreased (the purpose of this
pruning will become clear later). We extend the minimum resilience path Λ from
q until a point q∈ on the boundary of the domain. Let Λ ∈ denote the extended
path (Fig. 1(a)).

Lemma 3. There exists a path Λ ∈ of minimum resilience from p to a point q∈

on the boundary of R via q, whose thickness is at most 1.5t.

Proof. Consider any shortest path tree from p in the dual graph of the reduced
domain R, defined as the corresponding subgraph of GA(D). All leaves of the tree
correspond to cells on the boundary of R, which by definition have thickness at
most 1.5t from p. Therefore all other cells in the tree lie on a path from p to a
boundary cell that has length exactly 1.5t, including q. �

We “cut open” through Λ ∈, removing the cut region from our domain. Note
that cells that are traversed by Λ ∈ are split by two copies of the same Jordan
curve (Fig. 1(b)). After this cut we have two paths from p to q. We arbitrarily
call them the left and right paths. Consider now a minimum resilience path
denoted π; let r = r(π) denote its resilience. This path can cross Λ ∈ several times,
and it can even coincide with Λ ∈ in some parts (shared subpaths). Although we
do not know how and where these crossings occur, we can guess (i.e., try all
possibilities) the topology of π with respect to Λ ∈. For each disk that Λ ∈ passes
through, we either remove it (at a cost of 1) or we make it an obstacle. That
way we explicitly know which of the regions traversed by Λ ∈ could be traversed
by π. Additionally, we guess how many times π and Λ ∈ share part of their paths
(either for a single crossing in one cell, or for a longer shared subpath). For each
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shared subpath, we guess from which cell π arrives and leaves (and if the entry or
exit was from the left or right path). We call each such configuration a crossing
pattern between Λ ∈ and π. Figure 1(b) illustrates a crossing pattern.

Lemma 4. For any problem instance D, there are at most 24r log r+o(r log r) cross-
ing patterns between Λ ∈ and π, where r = r(π).

Proof. First, for all disks in Λ ∈, we guess whether or not they are also traversed
by π. By Lemma 3, Λ ∈ has thickness at most 1.5t, there are at most such many
disks (hence up to 21.5t choices for which disks are traversed by π).

We now bound the number of (maximal) shared subpaths between π and Λ ∈:
recall that π passes through exactly r = r(π) disks, and visits each disk at most
twice. Hence, there cannot be more than 2r shared subpaths. Observe that Λ ∈

cannot traverse many cells of A(D): when moving from a cell to an adjacent one,
we either enter or leave a disk of D. Since we cannot leave a disk we have not
entered and Λ ∈ has thickness at most 1.5t, we conclude that at most 3t cells will
be traversed by Λ ∈ (other than the starting and ending cells).

For each shared subpath we must pick two of the cells traversed in Λ ∈ (as
candidates for first and last cell in the subpath). By the previous observation
there are at most 3t candidates for first and last cell (since that is the number of
cells traversed by Λ ∈). Additionally, for each shared subpath we must determine
from which side π entered and left the subpath (four options in total). Since these
choices are independent, in total we have at most 2r×(3t×3t×4)2r = 2r·362r ·t4r

options for the number of crossing patterns. Combining both bounds and using
the fact that t ∈ 2r, we obtain:

21.5t · 2r · 362r · t4r ∈ 25r · 2r · 362r · (2r)4r

= 29r+1+log r+2r log 36+4r log r

= 24r log r+o(r log r)

�
Note that the bound is very loose, since most of the choices will lead to an

invalid crossing pattern. However, the importance of the lemma is in the fact
that the total number of crossing patterns only depends on r.

Our FPT algorithm consists in considering all possible crossing patterns,
finding the optimal solution for a fixed crossing pattern, and returning the solu-
tion of smallest resilience. From now on, we assume that a given pattern has
been fixed, and we want to obtain the path of smallest resilience that satisfies
the given pattern. If no path exists, we simply discard it and associate infinite
resilience to it.

3.1 Solving the Problem for a Fixed Crossing Pattern

Recall that the crossing pattern gives us information on how to deal with the
disks traversed by Λ ∈. Thus, we remove all cells of the arrangement that contain



On the Complexity of Barrier Resilience for Fat Regions 207

p

q

H

Gπ

Gπ

p

q

(a) (b) (c)

Fig. 2. (a) We may schematically represent W as a circle, since the geometry no longer
plays a role. Partial paths are shown dashed. (b) The intersection graph of the regions
after adding extra vertices for boundary pieces between points of S ∪ {p, q}, shown
green (Colour figure online). (c) The secondary graph H, representing the forbidden
pairs.

one or more disks that are forbidden to π. Similarly, we remove from D the disks
that π must cross. After this removal, several cells of our domain may be merged.

Since we do not use the geometry, we may represent our domain by a disk
W (possibly with holes). After the transformation, each remaining region of D
becomes a pseudodisk, and π becomes a collection of disjoint partial paths, each
of which has its endpoints on the boundary of W (see Fig. 2(a)). To solve the
subproblem associated with the crossing pattern we must remove the minimum
number of disks so that all partial paths are feasible.

We consider the intersection graph GI between the remaining regions of D.
That is, each vertex represents a region of D, and two vertices are adjacent if and
only if their corresponding regions intersect. Similarly to [11], we must augment
the graph with boundary vertices. The partial paths split the boundary of R
into several components. We add a vertex for each component (these vertices are
called boundary vertices). We connect each such vertex to vertices corresponding
to pseudodisks that are adjacent to that piece of boundary (Fig. 2(b)). Let GX =
(VX , EX ) be the resulting graph associated to crossing pattern X . Note that no
two boundary vertices are adjacent.

We now create a secondary graph H as follows: the vertices of H are the
boundary vertices of GX . We add an edge between two vertices if there is a
partial path that separates the vertices in GX (Fig. 2(c)). Two vertices connected
by an edge of H are said to form a forbidden pair (each partial path that would
create the edge is called a witness partial path). We first give a bound on the
number of forbidden pairs that H can have.

Lemma 5. Any crossing pattern has at most 2r2 + r forbidden pairs.

Proof. Observe that GX only adds edges between boundary vertices. Thus, it
suffices to show that GX has at most 2r + 1 boundary vertices. Since partial
paths cannot cross, each such path creates a single cut of the domain. This cut
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introduces a single additional boundary vertex (except the first partial path that
introduces two vertices). Recall that we can map the partial paths to crossings
between paths Λ ∈ and π and, by Lemma 4, these paths can cross at most 2r times.
Thus, we conclude that there cannot be more than 2r + 1 boundary vertices. �

The following lemma shows the relationship between the vertex multicut
problem and the minimum resilience path for a fixed pattern.

Lemma 6. There are k vertices of GX whose removal disconnects all forbidden
pairs if and only if there are k disks in D whose removal creates a path between
p and q that obeys the crossing pattern X .

Proof. Let A∈ be the regions of A(D) inside R that are not covered by any disk
after the k disks have been removed and let R∈ be their union. By definition,
there is a path between p and q with the fixed crossing pattern if all partial paths
are feasible (i.e., there exists a path connecting the two endpoints that is totally
within R∈). The reasoning for each partial path is analogous to the one used by
Kumar et al. [11]. If all partial paths are possible, then no forbidden pair can
remain connected in GX , since—by definition—each forbidden pair disconnects
at least one partial path (the witness path). On the other hand, as soon as one
forbidden pair remains connected, there must exist at least one partial path
(the witness path) that crosses the forbidden pair. Thus if a forbidden path is
not disconnected, there can be no path connecting p and q for that crossing
pattern. �

That is, thanks to Lemma 6, we can transform the barrier resilience problem
to the following one: given two graphs G = (V,E), and H = (V,E∈) on the
same vertex set, find a set D ≥ V of minimum size so that no pair (u, v) ≤ E∈ is
connected in G\D. This problem is known as the (vertex) multicut problem [17].
Although the problem is known to be NP-hard if |E∈| > 2 [9], there exist several
FPT algorithms on the size of the cut and on the size of the set E∈ [13,17].
Among others, we distinguish the method of Xiao ([17], Theorem 5) that solves
the vertex multicut problem in roughly O((2k)k+π/2n3) time, where k is the
number of vertices to delete, β = |E∈|, and n is the number of vertices of G.

Theorem 1. Let D be a collection of unit disks in R
2, and let p and q be two

well-separated points. There exists an algorithm to test whether r(p, q) ∈ r, for
any value r, and if so, to compute a path with that resilience, in O(2f(r)n3) time,
where f(r) = r2 log r + o(r2 log r).

Proof. Recall that our algorithm considers all possible crossings between π and
Λ ∈. For any fixed crossing pattern X , our algorithm computes GX , and all asso-
ciated forbidden pairs. We then execute Xiao’s FPT algorithm [17] for solving
the vertex multicut problem. By Lemma 6, the number of removed vertices (plus
the number of disks that were forced to be deleted by X ) will give the minimum
resilience associated with X .

Regarding the running time, the most expensive part of the algorithm is
running an instance of the vertex multicut problem for each possible crossing
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pattern. Observe that the parameters k and β of the vertex multicut problem
are bounded by functions of r as follows: k ∈ r and β ∈ 2r2 + r (the first
claim is direct from the definition of resilience, and the second one follows from
Lemma 5). Hence, a single instance of the vertex multicut problem will need
O((2r)r+(2r2+r)/2n3) = O(2(1+log r)(r2+1.5r)n3) = O(2r2 log r+o(r2 log r)n3) time.
By Lemma 4 the number of crossing patterns is bounded by 24r log r+o(r log r).
Thus, by multiplying both expressions we obtain the bound on the running
time, and the theorem is shown. �

We remark that the importance of this result lies in the fact that an FPT
algorithm exists. Hence, although the dependency on r is high, we emphasize
that the bounds are rather loose. We also note that both the minimum resilience
path and the disks to be deleted can be reported.

3.2 Extension to Fat Regions

We now generalize the algorithm to similarly-sized Θ-fat regions. A region D is
Θ-fat if there exist two concentric disks C and C ∈ whose radii differ by at most a
factor Θ, such that C ∀ D ∀ C ∈ (whenever the constant Θ is not important, the
region D is simply called fat). Since we need the regions to be of similar size, we
assume without loss of generality that the radius of C is 1 and the radius of C ∈

is Θ; in this case we will call D a Θ -fat unit region. For the purpose, we must
extend Lemmas 1, 2, 3, 4 and 5 to consider Θ-fat unit regions. The dependency
of Θ in most of the Lemmas is quadratic (see details in the full version [10]),
but the rest of the algorithm remains unchanged: the only property of unit disks
that is still used is the fact that they are connected, to be able to phrase the
problem as a vertex cut in the region intersection graph.

Theorem 2. Let D be a collection of n connected Θ-fat unit regions in R
2, and

let p and q be two points. Let r be a parameter. There exists an algorithm to
test whether r(p, q) ∈ r, and if so, to compute a path with that resilience, in
O(2f(β,r)n3) time, where f(Θ, r) ≤ O(Θ4r2 log(Θr)).

4 (1 + ε)-Approximation

The arrangement formed by a collection of regions D is said to have bounded
ply λ if no point p ≤ R

2 is contained in more than λ elements of D. In this
section we present an efficient polynomial-time approximation scheme (EPTAS)
for computing the resilience of an arrangement of disks of bounded ply λ.

The general idea of the algorithm is very simple: first, we compute all pairs
of regions that can be reached by removing at most k disks, for k = ∪4λ/α2�.
Then, we compute a shortest path in the dual graph of the arrangement of
regions, augmented with extra edges. We prove that the length of the resulting
path is a (1 + α)-approximation of the resilience.

As in the previous section, we first consider the case in which D is a set of n
unit disks in R

2 of ply λ. Let A(D) be the arrangement induced by the regions
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of D, and let GA(D) be the dual graph of A(D). Recall that GA(D) has a vertex
for every cell of A(D), and a directed edge between all pairs of adjacent cells
of cost 1 when entering a disk, and cost 0 when leaving a disk. For any given
k, let Gk be the graph obtained from GA(D) by adding, for each pair of cells
A,B ≤ A(D) with resilience at most k, a shortcut edge

−−∼
AB of cost r(A,B).

For a pair of cells of A(D), we can test whether r(A,B) is smaller than k, and
if it is, compute it, in O(2f(k)n3) time (where f(k) = r2 log r + o(r2 log r)) by
applying Theorem 1 to a point p ≤ A and a point q ≤ B. Since there are O(n2)
cells in A(D), we can compute Gk by doing this O(n4) times, leading to a total
running time of O(2f(k)n7). Observe that this running time is polynomial in n,
and exponential in k. In particular, it is an EPTAS since k = 4λ/α2. Again,
we emphasize that the bounds are loose, and that our objective is to show the
existence of an EPTAS to the resilience problem.

4.1 Analysis

Lemma 7. Let D ≤ D, where A(D) has ply λ, and let s,t be any two points
inside D. Then the resilience between s and t in D is at most λ.

Proof. Let c be the number of disks containing either s or t (c ∗ 1, since D
contains both points). These c disks clearly must be removed. Now we analyze
what other disks, not containing neither s nor t, may need to be removed too.
For each other disk D1 (not containing both s and s) that needs to be removed
in an optimal solution, there must be another disk D2 that intersects D1 and,
together, separate s and t inside D. We call such a pair of disks a separating
pair.

Thus if the resilience is (c + c∈), there must be at least c∈ disjoint separating
pairs intersecting D. Moreover, since disks have unit-size, if two disks form a
separating pair, at least one of them must intersect the center of D. Figure 3
illustrates the argument.

Since the ply of A(D) is λ, this implies that there can be at most λ − c
separating pairs, and thus the resilience is at most λ. �

The previous lemma implies that in an optimal resilience path, if a disk
appears twice, its two occurrences cannot be more than 2λ apart (when counting
the cells traversed by the path between the two occurrences of the disk).

To prove our result it will be convenient to focus on the sequence of disks
encountered by a path when going from p to q. It turns out that such problem
is essentially a string problem, where each symbol represents a disk encountered
by the path. In that context, the thickness will be equivalent to the number of
symbols of the string (recall that we assume that p is not contained in any disk),
and the resilience to the number of distinct symbols.

Let S = ⊥s1 . . . sn〉 be a string of n symbols from some alphabet A, such that
no symbol appears more than twice. Let T be a substring of S. We define β(T ) to
be the length of T , and d(T ) to be the number of distinct symbols in T . Clearly,
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s

t

m

A(D)

D

Fig. 3. The point m is contained in at least c′ + 1 disks of A(D). Therefore, one of the
neighboring cells has ply at least c′ + c + 1

1
2β(T ) ∈ d(T ) ∈ β(T ). Let γ and k be two fixed integers such that γ < k. We
define the cost of a substring T of S to be:

ν(T ) =



⎛⎝

⎛⎞

γ if T = ⊥aωa〉 for some a ≤ A, string ω s. t.a ≡≤ ω, and β(T ) > γ

d(T ) if β(T ) ∈ k

β(T ) otherwise

Note that, in the string context, d acts as the resilience, β as the thickness,
and ν is the approximation we compute. Intuitively, if T is short (i.e., length
at most k) we can compute the exact value d(T ). If T has a symbol whose two
appearances are far away we will use a “shortcut” and pay γ (i.e., for unit disk
regions, by Lemma 7, we will take γ = λ). Otherwise, we will approximate d by
β. Given a long string, we wish to subdivide S into a segmentation T , composed
of m disjoint segments (i.e. substrings of S) T1, . . . , Tm, that minimize the total
cost ν(T ) =

⎠

i ν(Ti). Clearly, ν(T ) ∈ β(S).

Lemma 8. Let S be a sequence. There exists a segmentation T such that ν(T ) ∈
(1 + α)d(S), where α = 2

√

γ/k.

Proof. Let ω be an integer such that γ < ω < k, of exact value to be specified
later. First, we consider all pairs of equal symbols in S that are more than ω
apart. We would like to take all of these pairs as separate segments; however,
we cannot take segments that are not disjoint. So, we greedily take the leftmost
symbol s whose partner is more than ω further to the right, and mark this as
a segment. We recurse on the substring remaining to the right of the rightmost
s.3 Finally, we segment the remaining pieces greedily into pieces of length k.
Figure 4 illustrates the resulting segmentation.

Now, we prove that the resulting segmentation has a cost of at most (1 +
α)d(S). First, consider a symbol to be counted if it appears in only one short

3 In fact, we could choose any disjoint collection such that after their removal there
are no more segments of this type longer than λ.
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Fig. 4. (a) A string of 52 symbols, each appearing twice. (b) First, we identify a
maximal set of segments bounded by equal symbols, and longer than λ = 4. (c) Then,
we segment the remaining pieces into segments of length k = 10. Red symbols are
double-counted (Colour figure online).

(blue) segment, and to be double-counted if it appears in two different short seg-
ments. Suppose s is double-counted. Then the distance between its two occur-
rences must be smaller than ω, otherwise it would have formed a long (red)
segment. Therefore, it must appear in two adjacent short segments. The left-
most of these two segments has length exactly k, but only ω of these can
have a partner in the next segment. So, at most a fraction ω/k symbols are
double-counted.

Second, we need to analyze the cost of the long (red) segments. In the worst
case, all symbols in the segment also appear in another place, where they were
already counted. In this case, the true cost would be 0, and we pay γ too much.
However, we can assign this cost to the at least ω symbols in the segment;
since each symbol appears only twice they can be charged at most once. So,
we charge at most γ/ω to each symbol. The total cost is then bounded by
(1 + ω/k + γ/ω)d(S). To optimize the approximation factor, we choose ω such
that ω/k = γ/ω; more precisely we take ω = ∪←kγ�. Recall that we initially set
k = ∪4γ/α2�. �

4.2 Application to Resilience Approximation

We now show that the shortest path between any p, q in Gk is a (1 + α)-
approximation of their resilience. Let ε be a path from p to q in R

2, and let
S(ε) be the sequence that records every disk of D we enter along ε, plus the
disks that contain the start point of ε, added at the beginning of the sequence,
in any order. Then we have |S(ε)| = t(ε).

Lemma 9. For every path ε from p to q and every segmentation T of S(ε),
there exists a path from p to q in Gk of cost at most ν(T ).

Lemma 10. For any p, q ≤ R
2, it holds r(spGk

(p, q)) ∈ (1 + α)r(p, q).

Theorem 3. Let D be a set of unit disks of ply λ in R
2. We can compute a path

ε between any two given points p, q ≤ R
2 whose resilience is at most (1+α)r(p, q)

in O(2f(Δ,ε)n7) time, where f(λ, α) = 16Δ2 log(Δ/ε)
ε4 + o(Δ2 log(Δ/ε)

ε4 ).
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4.3 Extension to Fat Regions

As in Sect. 3.2, we now generalize the result to arbitrary Θ-fat unit regions.

Lemma 11. Let D ≤ D, where A(D) has ply λ, and let p,q be any two points
inside D. Then the resilience between p and q in D is at most (2Θ + 1)2λ.

As before, the rest of the arguments do not rely on the geometry of the
regions anymore, and we can proceed as in the disk case. The only difference is
that the value γ of doing a shortcut has increased to (2Θ + 1)2λ.

Theorem 4. Let D be a set of unit disks of ply λ in R
2. We can compute a

path ε between any two points p, q ≤ R
2 whose resilience is at most (1+ α)r(p, q)

in O(2f(Δ,β,ε)n7) time, where f ≤ O(Δ2β6

ε4 log(Θλ/α)).

5 NP-Hardness

In this section we show that computing the resilience of certain types of fat
regions is NP-hard. We recall that NP-hardness was shown in [1] and [16] for the
case in which regions are line segments in R

2. In this section we show hardness
extends for the case in which ranges have bounded fatness (i.e., ranges are not
skinny). We note that Tseng [15] sketched how to extend the proof given in [16]
for the case in which D is a collection of (translated and rotated) copies of a
fixed square or ellipse. Although the spirit of the construction is clear, no details
and no formal proof of correctness were given.

In addition to providing completeness to the rest of our results, our con-
struction is of independent interest, since it is completely different from those
given in [1] and [16]. Moreover, our proof has the advantage of being very easy
to extend to other shapes. We also note that the construction of Tseng uses
several rotations of a fixed shape (i.e., 3 for a square, 4 for an ellipse), whereas
our construction only needs two different rotations of the same shape.

First we show NP-hardness for general connected regions, and later we extend
it to axis-aligned rectangles of aspect ratio 1 : 1 + α and 1 + α : 1. We start the
section establishing some useful graph-theoretical results.

Let G be a graph, and let p be a point in the plane. Let Γ be an embedding
of G into the plane, which behaves properly (vertices go to distinct points, edges
are curves that don’t meet vertices other than their endpoints and don’t triple
cross), and such that p is not on a vertex or edge of the embedding. We say Γ is
an odd embedding around p if it has the following property: every cycle of G has
odd length if and only if the winding number of the corresponding closed curve
in the plane in Γ around p is odd. We say a graph G is oddly embeddable if there
exists an odd embedding Γ for it. We begin by proving that vertex cover is still
NP-hard for this constrained class of graphs. (Omitted proofs can be found in
the full version [10].)

Lemma 12. Minimum vertex cover on oddly embeddable graphs of maximum
degree 3 is NP-hard.
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p
p

(a) (b)

Fig. 5. Creating regions to follow Γ and T .

Given an embedded graph Γ , we say that a curve in the plane is an odd Euler
path if it does not go through any vertex of Γ and it crosses every edge of Γ an
odd number of times.

Lemma 13. Let p be a point in the plane, and Γ an oddly embedded graph
around p. Then there exists an odd Euler path for Γ that starts at p and ends in
the outer face. Moreover, such path can be computed in polynomial time.

Lemma 14. Let p be a given point in the plane, and Γ an oddly embedded
graph (not necessarily planar) around p. Furthermore, let T be a curve that
forms an odd Euler path from p to the outer face. Then we can construct a set
D of connected regions such that a minimum set of regions from D to remove
corresponds exactly to a minimum vertex cover in Γ .

Proof. If T is self-intersecting, then we can rearrange the pieces between self-
intersections to remove all self-intersections. Thus we assume that T is a simple
path.

If T crosses any edge of Γ more than once, we insert an even number of extra
vertices on that edge such that afterwards, every edge is crossed exactly once.
Let Γ∈ be the resulting graph. Since we inserted an even number of vertices on
every edge, finding a minimum vertex cover in Γ∈ will give us a minimum vertex
cover in Γ.

Now, for each vertex v in Γ ∈, we create one region Dv in D. This region
consists of the point where v is embedded, and the pieces of the edges adjacent
to v up to the point where they cross T . Figure 5(a) shows an example (the
regions have been dilated by a small amount for visibility; if the embedding Γ
has enough room this does not interfere with the construction). Note that all
regions are simply connected.

Finally, we create one more special region W in D that forms a corridor for
T . Then W is duplicated at least n times to ensure that crossing this “wall” will
always be more expensive than any other solution. Figure 5(b) shows this.
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Now, in order to escape, anyone starting at p must roughly follow T in order
to not cross the wall. This means that for every edge of Γ ∈ that T passes, one of
the regions blocking the path (one of the vertices incident to the edge) must be
disabled. The smallest number of regions to disable to achieve this corresponds
to a minimum vertex cover in Γ ∈. �

Combining this result with Lemma 12, we obtain our first hardness result
for the barrier resilience problem. As mentioned before, our construction can be
modified so that it works for a much more restricted class of regions: axis-aligned
rectangles of sizes 1 × (1 + α) and (1 + α) × 1 for any α > 0 (as long as α depends
polynomially on n). Details on the necessary changes can be found in the full
version [10].

Theorem 5. The barrier resilience problem for regions that are axis-aligned
rectangles of aspect ratio 1 : (1 + α) is NP-hard.

A similar approach can likely be used to show NP-hardness for other specific
shapes of regions. However, it seems that a vital property is that they need to
be able to completely cross each other: that is, the regions in D should not be
pseudodisks.4 Thus, if one were to prove that vertex cover for oddly embeddable
graphs of bounded degree is NP-hard would also imply that the barrier resilience
problem for unit disks is also NP-hard.
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1 Introduction

Unlike cellular networks, wireless ad-hoc networks have no fixed routing infra-
structure. Communication in these networks relies on a shared medium through
either single hops or multihops, often resulting in inevitable collision. Virtual
backbones are often used as a potential solution where only the nodes in the
virtual backbone become responsible to handle communication among all nodes
in the network. Clearly, a small virtual backbone is desirable to reduce routing
overhead. In addition, the nodes in the backbone must induce a (strongly) con-
nected subgraph that can be reached by all nodes. Thus, in case of undirected
graphs, we speak of a connected dominating set based virtual backbone. A sub-
set of nodes in an undirected graph is a connected dominating set, henceforth
CDS, if each node in the network is either in the set or has a neighbor in it and
the subgraph induced by these nodes is connected.

Previous work on dominating set based virtual backbones propose distrib-
uted algorithms for undirected graphs, especially for unit disk graphs, which
model symmetric networks in which all nodes have the same transmission range
[2–9]. In practice, however, wireless ad-hoc networks are asymmetric, because
the transmission ranges of nodes need not be the same, due to differences in
power and functionality. Therefore, a disk graph, which considers nodes with
different transmission ranges, better models a wireless ad-hoc network. In a disk
graph G, each node v ∈ V is fixed on the Euclidean plane and has a transmission
range rv ∈ [rmin, rmax], where rmin and rmax denotes the minimum and max-
imum transmission range, respectively. For two disjoint nodes u, v ∈ V , there
is a directed edge (u, v) if and only if du,v ≤ ru where du,v is the Euclidean
distance between u and v. An edge (u, v) ∈ E is unidirectional if (v, u) /∈ E and
bidirectional if (v, u) ∈ E.

We consider the corresponding graph theoretic problem which seeks a mini-
mum strongly connected dominating-absorbent set (SCDAS) in a directed disk
graph, namely DG. A subset of nodes in a directed graph is an SCDAS if the
subgraph induced by these nodes is strongly connected and each node in the
graph is either in the set or has both an in-neighbor and an out-neighbor in it.

On the other hand, many routing protocols in wireless ad-hoc networks use
acknowledgments for the data packets exchanged between the nodes. This moti-
vates the restriction to only employ the bidirectional edges of the graph for
routing. Therefore, we also consider disk graphs from which all unidirectional
edges are dropped. These were first studied in [19] and are called disk graphs
with bidirectional edges, namely DGBs. The corresponding problem asks for a
CDS in an undirected graph.

The two problems, minimum SCDAS in a DG and minimum CDS in a
DGB, are NP-hard by a simple reduction from minimum CDS in unit disk
graphs [1]. Previous work on minimum SCDAS in a DG includes only sequen-
tial approximation algorithms based on constructing spanning trees, such as in
[13,14]. For minimum CDS in a DGB, there are a number of distributed approx-
imation algorithms such as in [19–22], which also use spanning trees. But since
constructing a spanning tree distributively cannot be done in better than linear
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time (in the order of the graph) [2], the techniques used in these algorithms
cannot construct time-efficient distributed algorithms.

We introduce the first distributed algorithm for minimum SCDAS in a DG.
The algorithm gives an O(k4)-approximation ratio and has a runtime bound
of O(Diam(G)) where Diam(G) is the diameter of the graph, and k denotes
the transmission ratio rmax/rmin with rmax and rmin being the maximum and
minimum transmission range, respectively.

Rather than constructing a spanning tree, our algorithm first constructs a
maximal independent set(MIS), which forms an absorbent-dominating set then
strongly connects the MIS constructed. To find a maximal independent set,
our algorithm uses the O(log◦ n) time algorithm for undirected growth-bounded
graphs in [9]. This is done by finding an MIS in the subgraph Ḡ = (V, Ē)
resulting from G = (V,E) by deleting all unidirectional edges from G.

Moreover, when applied to minimum CDS in a DGB, our algorithm gives an
O(ln k)-approximation in O(k8 log◦ n) time, which, for bounded k, is an optimal
approximation for the problem, following Lenzen and Wattenhofer’s Ω(log◦ n)
runtime lower bound for distributed constant approximation in unit disk graphs
[18].

The rest of this paper is organized as follows. In Sect. 2, we give some prelim-
inaries. We present the recent work in Sect. 3. Then, we describe the algorithm
and give its analysis (running time and approximation ratio) in Sects. 4 and 5,
respectively. We extend the algorithm to DGBs in Sect. 6 and finally present
some possible future research directions in Sect. 7.

2 Preliminaries

In this paper, basic graph theoretic notations such as degree of a node, maximum
degree Δ in a graph, and diameter Diam(G) of a graph G, are adopted.

In a disk graph, G = (V,E), each node v ∈ V is fixed on the Euclidean plane
and has a transmission range rv ∈ [rmin, rmax], where rmin and rmax denote the
minimum and maximum transmission range, respectively. For two disjoint nodes
u, v ∈ V , there is a directed edge (u, v) if and only if du,v ≤ ru where du,v is the
Euclidean distance between u and v. An edge (u, v) ∈ E is called unidirectional
if (v, u) /∈ E and bidirectional if (v, u) ∈ E. A disk graph with only bidirectional
edges, i.e., undirected graph, is a DGB.

We say G is (strongly) connected if for any two nodes u, v ∈ V , there exists
a (directed) path from u to v. An independent set (IS) in G is a subset S of V
such that there is no bidirectional edge between any two nodes of S. We then
say S does not violate independence. A subset of V is a maximal independent
set (MIS) if it is an IS to which no node can be added without violating
independence.

Let (u, v) be a unidirectional edge. Then, u is absorbed by v and v is domi-
nated by u. We say a graph is growth-bounded if there is a polynomial function
f(r) such that every r-neighborhood in the graph contains at most f(r) inde-
pendent nodes.
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Communication Model. In this paper, communication among nodes is done
in synchronous rounds. In each round, each node sends a message of size O(log n)
bits to its neighbors.

3 Recent Work

Previous work on dominating set based virtual backbones propose distributed
algorithms mainly for unit disk graphs [3–9]. For general undirected graphs, the
authors in [2] give a polylogarithmic-time randomized distributed approximation
algorithm. Their algorithm starts with a dominating set constructed by a ran-
domized distributed algorithm for dominating sets and then it destroys cycles
to preserve connectivity while at the same time adding as few more nodes as
possible. Their approximation ratio of O(log Δ) is the best possible for general
graphs unless NP ⊆ DTIME [NO(log log n)]. Some other works such as [26] and
[27] also propose distributed approximation algorithms but only for dominating
sets which do not require connectivity.

Thai et al. [19] introduced the first distributed algorithm for minimum CDS in
DGBs. They gave a constant approximation algorithm for bounded transmission
ratio, with O(n2) time and message complexity. Later, Raei et al. [20] improved
the two bounds. They gave an O(n) time complexity and O(n log n) message com-
plexity, which was further improved to O(n) in [21]. Lately, the authors in [22]
presented a timer based energy-aware algorithm with similar results.

Algorithms for minimum SCDAS in directed DGs have been proposed in
[10–12,25]. These are either heuristic based where no approximation bound is
given or sequential. Du et al. [23] introduced the minimum Strongly Connected
Dominating Set problem and presented a centralized constant approximation
algorithm for bounded transmission ratio in disk graphs. Later Thai et al. [13]
added the ‘absorbent’ property and introduced the minimum SCDAS problem.
They presented a centralized constant approximation algorithm for the problem,
based on constructing two spanning trees, and bounded their approximation
ratio using the geometric properties of disk graphs. A similar result was given in
[24] for minimum SCDAS, based on using a Steiner tree with minimum number
of Steiner nodes.

For general directed graphs, Li et al. [14] gave a polynomial time logarithmic
approximation algorithm based on constructing directed rooted trees.

4 Approximation Algorithm

This section has two parts. In the first part, we present our distributed algo-
rithm, which we call DistributedSCDAS, and in the second part, we prove its
correctness.

Algorithm Description
Given a strongly connected directed graph G = (V,E), algorithm Distributed-
SCDAS first constructs Ḡ = (V, Ē) by deleting all unidirectional edges from
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G. Then, it constructs an MISI in Ḡ, for an illustration see Fig. 1. Note that,
since Ḡ has only bidirectional edges, we may apply any distributed algorithm
for computing the MIS in undirected graphs, e.g. Luby’s algorithm in [17]. We
will later (Sect. 4, Subsection Runtime) present a faster possibility in case of disk
graphs. Clearly, I forms a dominating-absorbent set, DAS, in G = (V,E). To
strongly connect I in G, the algorithm constructs G∈ = (I, E∈) from G, which
contains a directed edge from u to v if there is a path from u to v of length at
most three, whose (at most two) inner nodes are in V \I. This construction may
lead to multiple edges from u to v. In this case, we remove all but one of them.
The nodes in I along with the inner nodes in G corresponding to the remaining
edges of G∈ form an SCDAS (See Fig. 2).

Algorithm 1. DistributedSCDAS
Input: A strongly connected directed graph G = (V, E)
Output: An SCDAS S ⊂ V
-Step 1: (Construct a DAS) Construct Ḡ = (V, Ē) by deleting all unidirectional edges
from G and then find an MIS in Ḡ. Let I be such an MIS.
-Step 2: (Strongly connect DAS)
2.1: Construct G′ = (I, E′) from G = (V, E) as follows. For each pair u, v of nodes
from I, E′ contains a directed edge from u to v if there is a path from u to v of length
at most three, whose (at most two) inner nodes are in V \ I. This construction may
lead to multiple edges from u to v.
2.2: For each pair (u, v) of nodes from I, for which G′ contains multiple edges from u
to v, remove all but one of these edges.
-Output I∪C, where C is the set of the inner nodes in G corresponding to the remaining
edges of G′.

Distributed Implementation
All nodes are assigned IDs. The algorithm above can be implemented distribut-
edly as follows. At the end of the algorithm, each node knows whether it belongs
to the SCDAS or not.
Step 1: At each round, each node runs a distributed MIS algorithm and decides
whether it belongs to an MISI or not.
2.1: Each MIS node in I sends an edgeRequest packet, which is a packet request-
ing to form an edge. The edgeRequest packet includes a source which contains
the ID of the node requesting to form an edge. If a non-MIS node in V \I receives
such a request, it adds its ID to the packet and forwards the packet. Note that:

– a node in I ignores an edgeRequest packet it receives, if itself is the source of
it.

– a node in V \ I ignores an edgeRequest packet it receives, if it has already
received a packet from the same source.

2.2: A node in I may receive multiple edgeRequests with the same source. For
each source, it ignores all but the first edgeRequest. Thus with each source, it
forms an edge consisting of the nodes with the IDs on the packet.
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Fig. 1. a) The original graph G = (V, E), b) Ḡ = (V, Ē) where the dotted edges are
the unidirectional edges that were removed from G and the black nodes form the MIS
nodes.

c) d)

Fig. 2. c) G′ = (I, E′) where the node set I is in black. d) G′ = (I, E′), the gray edges
are those which were removed in Step 2.2, and the nodes on the black edges form the
set C.

– Each node in I informs the source nodes about its edge formations with them,
which in turn inform the participating nodes, i.e., nodes on the selected pack-
ets(edges).

In the next subsection, we prove the correctness of the algorithm. Then, in
Sect. 5, we bound its approximation ratio and runtime.
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Correctness
Note that the following theorem also holds for a DGB since a DG is a general-
ization of a DGB.

Theorem 1. Given a strongly connected directed graph G = (V,E), algorithm
DistributedSCDAS constructs an SCDAS.

Proof. DistributedSCDAS outputs I ∪ C, where I is an MIS in Ḡ and thus in
G, and consequently a DAS. Thus, it remains to show that I ∪ C is strongly
connected. The next lemma gives the main insight.

Lemma 1. If G is strongly connected, then G∈ is strongly connected.

Proof of Lemma 1. Let G be a strongly connected graph and I be an MIS in
G. Then, the following two properties hold.

i) If there is a path P = (u, v, w) with u, v, w ∈ V \I then v must be dominated
and absorbed by a node y ∈ I.

ii) For each pair of nodes (u,w) there exists a walk W = (u = v1, ...vn = w)
(vi not necessarily distinct) such that each node in I ∩ W is followed by at
most two nodes of V \ I.

Proof of i). Assume i) is not true. Then I ∪ {v} is an independent set. Thus I
is not maximal. �
Proof of ii). Assume ii) is not true. Let A be the set including all walks W
from u to w in G. For a walk W ∈ A let mW be the maximum length of a
subpath given by consecutive nodes of V \ I and c(mW ) be the number of those
subpaths with length mW in W . We choose a walk W ∈ = (u = v1, ...vn = w) ∈ A
such that mW ′ and c(mW ′) is minimum. Let vi, vi+1, vi+2 (i = 1..n−2) be three
nodes of a longest subpath with nodes in V \ I. Due to i), vi+1 is dominated
and absorbed by a node y ∈ I. Thus, W = (v1, ..., vi, vi+1, y, vi+1, vi+2, ...vn) is
a walk from u to w. If c(mW ′) = 1 then mW = mW ′ − 1 and if c(mW ′) > 1 then
c(mW ) = c(mW ′) − 1, contradicting the choice of W ∈. �

Let I be the underlying MIS of G and u,w ∈ I. It follows from ii) that we
can find a walk W , such that each node in I ∩ W is followed by at most two
nodes of V \ I. Thus, W corresponds to a path P in G∈ from u to w. �

Proof of Theorem 1. Lemma 1 implies that the graph G∈ constructed in
Step 2.1 is strongly connected. Then, since Step 2.2 only removes edges from E∈

whose deletion does not affect the strong connectivity of G∈, the resulting I ∪ C
is strongly connected in G. �

5 Analysis (Approximation Ratio and Running Time)

In this section, we prove that Algorithm DistributedSCDAS has a constant
approximation ratio and completes in O(Diam(G)) time in directed disk graphs,
DGs.
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Theorem 2 [(Main Theorem-DG)]. Given a directed disk graph, G = (V,E)
with transmission ratio k = rmax/rmin. Algorithm DistributedSCDAS constructs
an O(k4)-approximation for minimum SCDAS in O(Diam(G)) time.

Proof. To prove the O(k4)-approximation ratio, we need the following three
lemmas.

Lemma 2. For any two independent nodes u, v in G, the distance between u
and v is greater than rmin.

Proof of Lemma 2. If the distance between u and v is at most rmin, then, u
and v are connected in both directions. �

Lemma 3. At the end of Step 2.2, the degree of each node in G∈ is upper bounded
by

⌊

49k2 − 1
⌋

.

Proof of Lemma 3. Due to Lemma 2, for each pair of independent nodes (x, y)
in G, their distance dx,y is greater than rmin. At the end of Step 2.2, each node
in G∈ has at most one out-going edge for each neighbor. Therefore, the degree
of each node in G∈ is bounded by the number of independent nodes in u’s 3-
hop neighborhood in G. Thus, for each edge (u, v) in G∈, the distance du,v is
bounded by rmin < du,v < 3rmax. The maximum area which may be covered
by the disks of the independent nodes in u’s 3-hop neighborhood in G is given
by the difference of the areas between two disks with radii 3.5rmax and rmin

2 .
Moreover, the minimum area of a disk is π( rmin

2 )2. It follows that u has at most
⌊
(3,5rmax)

2−(
rmin

2 )2

(
rmin

2 )2

⌋

=
⌊

49k2 − 1
⌋

neighbors in G∈. �
The following lemma is proven in [13].

Lemma 4. ([13]) The size of any independent set in G is bounded from above
by 2.4(k + 1

2 )2 · |SCDASopt|+3.7(k + 1
2 )2, where SCDASopt denotes an optimal

SCDAS.

Now we can conclude the bound on the approximation ratio as follows:
The size of the SCDAS constructed by the algorithm is bounded by

|SCDAS| ≤ |IS| (1 + 2Δ(G∈)), (1)

because Step 2 of the algorithm adds for each node in I at most 2Δ(G∈) nodes
from V \ I in order to strongly connect I.

Plugging in the bounds from lemmas 3 and 4 yields:

|SCDAS| ≤
(

2.4(k +
1
2
)2 · |SCDASopt| + 3.7(k +

1
2
)2

)

· (

1 + 2
⌊

49k2 − 1
⌋)

(2)
This implies:

|SCDAS| = O(k4) · |SCDASopt| (3)

�
We now show that DistributedSCDAS requires O(Diam(G)) time on DGs.
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– For computing the MIS in Step 1, we might use Luby’s O(log n) time ran-
domized algorithm to construct an MIS. However, this is not the best we can
do when it comes to disk graphs. In fact, there is a deterministic O(log◦ n)
time algorithm for finding an MIS in bounded-growth graphs [9]. Moreover,
when the transmission ratio k = rmax/rmin is bounded, disk graphs become
bounded-growth graphs with f(r) = O(r2k2). Therefore, for disk graphs,
rather than using Luby’s O(log n) time randomized algorithm for finding
an MIS in Step 1, we use the deterministic O(log◦ n) time algorithm for
bounded-growth graphs in [9]. When applied to disk graphs, the algorithm
takes O(k8 log◦ n).

– In Step 2 constructing G∈ = (I, E∈) from G = (V,E) needs only three broad-
casts because the edgeRequest packets stop after at most two inner nodes.
Once ‘connecting’ nodes are selected, it remains to inform them.

– Informing the participating nodes takes O(Diam(G)) time where each source
node informs other source nodes about the selected edges and consequently
the selected nodes. Note that the number of nodes to be informed are at most
2k2, thus bounding the number of propagated messages by O(k2).

Therefore, DistributedSCDAS requires O(Diam(G)) time in total. �

6 Undirected Disk Graphs, DGBs

In this section, we modify DistributedSCDAS and apply it on a DGB. Then, we
show its approximation ratio and running time.

Given a connected undirected graph G = (V,E), our modified Distributed-
SCDAS constructs an MIS I in G. Clearly, I forms a dominating set in G. To
connect I in G, each node in I ignores all edgeRequest packets from all source
nodes except one, i.e., the first one it receives. Since the graph is undirected, it
is enough for each node in I to connect to one other node in I.

Theorem 3 [(Main Theorem-DGB)]. Given an undirected disk graph, G =
(V,E) with transmission ratio k = rmax/rmin. Algorithm DistributedSCDAS
constructs a O(ln k)-approximation for minimum CDS in O(k8 log◦ n) time.

Proof. To show the O(ln k)-approximation ratio, we need the following lemma.

Lemma 5. ([19]) The size of any independent set in G is at most O(ln k).

Since each node in the MIS adds at most two non-MIS nodes to connect,
the approximation ratio holds.

We now show that DistributedSCDAS requires O(k8 log◦ n) time on DGBs.
For computing an MIS in G, we use the same deterministic O(log◦ n) time

algorithm for finding an MIS in bounded-growth graphs [9], which when applied
to disk graphs, takes O(k8 log◦ n) time. Moreover, since the graph is undirected,
O(1) time is needed to connect the constructed MIS. �
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7 Conclusion

This paper presents the first distributed algorithm, DistributedSCDAS, for the
minimum Strongly Connected Dominating-Absorbent Set problem in directed
disk graphs. Not only does DistributedSCDAS give a constant approxima-
tion ratio when the transmission ratio is bounded, but it also terminates in
O(Diam(G)) time. Moreover, when applied to the minimum Connected Domi-
nating Set problem in undirected disk graphs with bounded transmission ratio,
our algorithm gives an optimal approximation. The main question which remains
open is whether we can achieve good approximation ratios not only for disk
graphs but other classes of graphs, such as general digraphs and bounded-degree
digraphs, as well. Moreover, nodes in the virtual backbone are often subject to
failure. Thus, fault tolerance cannot be avoided. Symmetric networks have been
extensively studied within the fault tolerant consideration, whereas only few
heuristics, [15,16], have studied the problem in asymmetric networks. Motivated
by this, we aim to give distributed approximation algorithms for the underlying
fault-tolerant virtual backbone problem in asymmetric networks.
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Abstract. We consider the problem of uniformly dispersing mobile
robots in an unknown, connected, and closed space, so as to cover it
completely. The robots are autonomous and identical, they enter the
space from a single point, and move in coordination with other robots,
relying only on sensed local information within a restricted radius. The
existing solutions for the problem require either the robots to be syn-
chronous or the space to be without holes and obstacles. In this paper
we allow the robots to be fully asynchronous and the space to contain
holes. We show how, even in this case, the robots can uniformly fill the
unknown space, avoiding any collisions, when endowed with only O(1)
bits of persistent memory and O(1) visibility radius. Our protocols are
asymptotically optimal in terms of visibility and memory requirements,
and these results can be achieved without any direct means of commu-
nication among the robots.

1 Introduction

Unlike their static counterparts, mobile sensors and robots can self-deploy within
a target space S to “cover” it so to satisfy some optimization criteria. To achieve
such a goal without the help of any central coordination or external control
is a rather complex task, and designing localized algorithms for efficient and
effective deployment of these mobile entities is a challenging research issue. Such
a task has been studied by several authors and continues to be the subject of
extensive research. Most of the work is focused on the (uniform) self-deployment
problem; that is, how to achieve uniform deployment in S (usually assumed to
be polygonal) starting from an initial random placement of the sensors in S (e.g.,
[2,6–10,12–14,16,17]).

The problem has recently been studied within the context of weak robots:
the mobile robots rely only on sensed local information within a restricted range,
called the visibility radius; usually they have no explicit means of communication
or they can communicate only within a very limited range, called the communica-
tion radius. Localized solution algorithms for such weak robots have been devel-
oped for special spaces such as a line (e.g., a rectilinear corridor), a ring (e.g., the
boundary of a convex region), a grid , etc. (e.g., [1,3,4]; see [5] for a recent survey).
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We are interested in a specific instance of the self-deployment problem, called
the Uniform Dispersal (or Filling) problem, where the robots have to completely
cover an unknown space S entering through a designated entry point. In the
process, the robots must avoid colliding with each other, and must terminate
(i.e., reach a quiescent state) within finite time [9,11,15]. The space S may be
of arbitrary shape but we assume it to be an orthogonal grid of unit cells, where
each cell can contain exactly one robot (see Fig. 1). Such orthogonal spaces are
of particular interest because they can be used to model indoor and urban envi-
ronment (e.g., floorplans, city maps, etc.). The robots enter the space through
one of the cells in S, called the door, and they must eventually fill up all the
cells of S while ensuring that there is never a collision (two or more robots in
the same cell).

Fig. 1. An arbitrary closed space (Left) represented as an orthogonal grid of cells
(Right). Each cell can contain a single robot.

Our focus is on the minimum capabilities required by the sensors in order
to effectively complete the uniform dispersal task. There are some intrinsic lim-
itations on the amount of memory and the minimum visibility/communication
range needed to solve the uniform dispersal problem for any connected orthog-
onal space whose shape is a priori unknown. In particular, it is known that the
robots need to have some persistent memory of the past; the problem is in fact
unsolvable by oblivious robots even if the system is fully synchronous and the
robots have unlimited visibility and an unlimited communication range [15]. It
is similarly unsolvable by robots that cannot see nor communicate, even if the
system is fully synchronous and the robots have unlimited persistent memory
[15].

Since oblivious robots cannot deterministically solve the problem, the ques-
tion is whether the problem is solvable by finite-state robots, that is robots with
a constant number of bits of non-volatile memory. More specifically, since robots
that cannot see nor communicate cannot deterministically solve the problem, the
main research question is whether the problem is solvable by finite-state robots
that have just a constant visibility radius (and constant communication range).

Two existing results hints that, under very restrictive conditions, the answer
to those questions is positive. In fact, it has been proven that finite-state
robots with constant visibility and communication radius are able to solve the
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problem if the system is fully-synchronous (FSYNC), which allows perfect coor-
dination between the robots [11]. A similar positive result has been established
for asynchronous systems (ASYNC) if the space S contains no holes (i.e., obsta-
cles completely within S) [15].

In this paper we lift these two restrictions: we allow the robots to be fully
asynchronous and the space to contain holes; and we show that the answer
is indeed positive in all cases. We constructively prove that robots endowed
with only O(1) bits of persistent memory and O(1) visibility radius can always
uniformly fill the unknown space, avoiding any collisions; this results can be
achieved without any direct means of communication.

In particular, we present a solution protocol that, without using any direct
communication, solves the problem for robots having only a few states and a
visibility radius v = 6 units (i.e. a robot can see up to 6 consecutive cells in each
direction). We then investigate the use of direct communication within constant
range and show how to use it to decrease the visibility radius, without increasing
the memory requirement. Namely, we introduce a second protocol that, using
communication radius c = 1, solves the problem for finite-state robots having
visibility radius v = 1; transmitted messages in this protocol are of constant size.
A summary of these results is shown in Table 1.

Table 1. Summary of contributions.

Algorithm Memory Visibility radius Communication Asynchronous Holes
of robots radius allowed

MUTE O(1) 6 No communication YES YES
TALK O(1) 1 1 YES YES

2 Model and Definitions

The system is composed by a set R of mobile entities, called robots, whose task is
to completely cover a space S that they enter sequentially from the same place.
The space S is a connected finite region of the plane possibly with holes; the
shape of S is arbitrary (see Fig. 1). Connected means that it is possible to reach
any point of S from any other point of S passing only through points in S. A
hole is a region of the plane which is not part of S and is surrounded completely
by points of S; the boundaries of S and holes are called obstacles. The region
S and its holes are assumed to be partitioned into square cells; each cell can
be covered completely by one robot, and each hole is composed of an integral
number of cells. Let |S| = n be the number of cells of S. We assume |R| ≥ |S|.

The robots in R are simple computational entities with sensory and loco-
motion capabilities. The sensory devices on the robot allows it to have a vision
of its immediate surroundings up to a fixed distance called visibility radius1 v.
1 A visibility radius of one means that the robot sees all eight neighboring cells.
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The robots may have or may not have an explicit means of communicating; if
available, this ability is also restricted to a fixed distance called communication
range2 c, and each transmission is restricted to a constant number of bits. Both
the visibility radius and the communication range remain constant in time. The
robots have local sense of orientation, that is a consistent notion of up-down
and right-left ; however, they do not have any global positioning mechanism, and
have no knowledge of the shape of S other than that it is connected orthogonal
grid. The robots are anonymous, in the sense that there are no distinct ids and
they are externally identical, autonomous, and they all follow the same protocol.
Each robot has a constant number of bits of non-volatile working memory; thus
the robots are finite-state machines with O(1) distinct states.

On entering S, a robot operates in continuous active-inactive cycles. When
active, a robot performs a Look-Compute-Move sequence of operations: It first
takes a snapshot of its surrounding inside the visibility radius to know which
cells are occupied, empty or obstacle (Look). Using the information provided by
the snapshot and its local state, the robot executes the protocol to determine
a new state and a destination cell, which is either the same where it currently
resides or one of the four adjacent cells (Compute). Finally, it moves to the
computed destination (Move). It then becomes inactive. In case the robots have
communication capabilities, a robot may send messages to any robot within its
communication range, during the Compute stage. The message is immediately
received and causes the receiving robot to change its state. Each cycle of activity
is assumed to be non-interruptible, in the sense that once they are started they
will be completed. However, the robots are asynchronous: there is no global syn-
chronization among the cycles of different robots, and the time elapsed between
two consecutive operations by the same robot, as well as between two consecutive
activations, is finite but arbitrary.

The robots enter S through a special cell called door. This cell could be
located anywhere and it is indistinguishable from other cells; that is, a robot
cannot distinguish the door from other cells using its sensory vision. However,
unlike other cells, the door is never empty: whenever a robot leaves the door cell,
a new robot appears it. If a robot is in a cell, it completely covers it. If two or
more robots are in the same cell at the same time then there is a collision. Two
cells are called neighbors if a robot can move from one to the other in one step.
The distance between two cells is the smallest number of steps a robot needs to
move to reach one cell from the other. The successor of a robot r is the robot
that entered S just after r and its predecessor is the robot that entered just
before r.

The problem to be solved called uniform dispersal (or filling), requires that
within finite time, the entire space is completely filled, i.e., every cell of the space
is occupied by exactly one robot. Furthermore the system configuration at that
time must be quiescent, i.e., no robot moves thereafter.
2 A communication range of one means that the robot can communicate directly to

the robots located in the eight neighboring cells.
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3 Algorithm for Filling without Communication

In this section, we consider robots that do not have any explicit means of com-
munication. The robot can still see other robots (if they are within the visibility
range). So the only way for robots to coordinate with each other is by means
of their vision and their movements. We present an algorithm (MUTE) that
succeeds in filling the entire space with such robots, without any collisions, even
under the restriction that both the amount of memory available to a robot and
its visibility range are constants (independent of the size of the space and the
number of robots).

The strategy of Follow the Leader introduced in [11], solves the filling problem
by moving the robots in a single file, with one leading robot. However, when there
are holes, it is possible there are cycles in the path of the leader, which would lead
to either a deadlock or a collision. To avoid forming any cycles, the algorithm
MUTE uses the simple trick of putting up a wall to block any secondary access
to the path. In other word, whenever the Leader reaches a cell from which it can
move in more than one direction (henceforth such a cell is called a bifurcation
cell), the leadership is passed to the next robot and the old leader moves to one
of the neighbouring cell to block this access until the current path is completely
filled.

During the algorithm MUTE, the robots can be in one of the following four
states:

– Leader: There is at most one robot in this state at any time during the
execution of the algorithm3.

– Follower: A robot in this state is always in the path followed by the current
leader.

– Blocking: A robot in this state was a Leader that reached a bifurcation cell
and moved to block one of the access to the path. A robot in this state remains
stationary until all other possible directions4 become completely filled. At this
moment, if it is possible for this robot to move, then it reassumes the leadership
and starts moving again.

– Stopped: Any robot in this state was a Leader that reached a dead-end. This
is a terminating state so robots that enter this state never move again.

The transition from one state to another, during any execution of algorithm
MUTE, is defined by the diagram shown in Fig. 2.

Note that the robots need to coordinate with each other to pass the lead-
ership, exchange state information, avoid collisions and so on. Since the robots
lack any means of explicit communication, we need to use the visual capabilities
of the robots to implement some sort of implicit communication. In algorithm
MUTE, this is achieved by assuming a visibility range of six cells (i.e. the robots
can see up to a distance of six cells in each direction). This visibility range is
3 Except during the process of transferring the leadership as explained later.
4 the blocking robot only takes into account the direction that were still open at the

moment it enters in the Blocking state.
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Fig. 2. States transition diagram of algorithm MUTE where None is the state of the
robot when it appears at the door.

enough to permit each robot to see the preceding and succeeding robots, and
still maintain an appropriate distance between them so that the robots can move
in special patterns as a signalling mechanism to exchange information whenever
necessary. In order to communicate implicitly using vision, both robots, the
sender and the receiver of the information, effectuate some special movements.
This is reminiscent of the way some species of animals or insects communicate
among themselves (e.g. the dancing of the bees when they find a source of food).

Thus, during the algorithm the robots move along a path maintaining a fixed
pattern (i.e. a fixed distance between successive robots). This pattern is broken
when a robot (typically the leader) needs to communicate with its successor.
The successor realizes the break in the pattern and thus, it knows that a com-
munication process has started. The receiver acknowledges that it has received
the information by making a special movement (specified later). Once the infor-
mation exchange is completed, the two robots continue moving along the path,
maintaining the fixed pattern as before. Algorithm 1 presents the rules for move-
ment of a robot r when it is not is the process of communicating with another
robot. Algorithm 2 defines the rules for two consecutive robots in the path that
are in the process of communicating something.

Algorithm 1. (MUTE): Rules for movement
A robot r, that is not in the process of communicating, moves forward if and only if
the following conditions hold:

1. Robot r is not is state Blocking or Stopped.
2. The cell to which r wants to move is not occupied
3. r does not have a predecessor or the predecessor is at distance four.
4. r does not have a successor or the successor is at distance three or the successor

is at the door, at a distance less than three.

During the algorithm, the system of robots is always in a correct configuration
as defined below.

Definition 1. During algorithm MUTE, at any time t, the system is said to
be in a correct configuration if and only if the following conditions hold:
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– There is at most one Leader, or, the leadership is being passed from one robot
to another (by means of a special communication process).

– Let Π be the path followed by the Leader from the door to its current location
(If the leadership is being passed we consider the old leader), then:

• Except the Leader, any robot located on Π is in state Follower.
• Any robot in state Follower is located in Π.
• Every cell p′ /∈ Π that has a neighboring cell p ∈ Π is occupied by a robot
either in state Blocking or in state Stopped.

– Let R = {ri : 0 ≤ i ≤ l}, be the ordered sequence of robots in Π where l is the
number of robot in state Follower, rl is the leader and r0 is the robot at the
door. And let ri and rj, i, j > 0, j = i + 1, be two consecutive robots in R

• If neither ri nor rj is in the middle of a communication process then the
distance in Π between them is either three or four.

• If ri and rj are at distance less than three, then they are in the process
of communicating with each-other.

Note that the robot r0 which is at the door, is not required to satisfy the last
condition of a correct configuration. This is because, whenever the door becomes
empty, a new robot appears at the door. Thus, the pattern of distances cannot
be maintained near the door. However, as we will show this does not affect the
behavior of the rest of the robots.

Fig. 3. Behavior of sender robot s and receiver robot r, during a communication
process.

We shall now explain in more details when and how communications take
place in algorithm MUTE. During any execution of the algorithm there are
four situations in which a robot needs to communicate some information to its
successor. We describe below these four types of communications called Block-
ing, Stopping, Bifurcation and Reopening.
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Algorithm 2. (MUTE): Rules for implicit communication
Robot s needs to notify something to its successor r which is at distance three (see
Figure 3).

1. s waits until r’s successor becomes visible. This is to ensure that r’s successor
knows that there is a communication process in progress ahead so it does not move
until the communication is completed.

2. s moves one step back to notify a communication of either a Bifurcation or
Reopening (Figure 3 (b)). As explained later, the visibility range of the robots
and the pattern maintained by the robots in the path, allows robot r to realize
which kind of communication is taking place. After the move, robot s waits for an
acknowledgement from robot r.

3. To acknowledge the receipt of the communication, robot r now moves one step
ahead and waits for a notification from robot s (Figure 3 (c)).

4. s signals the end of the communication process by moving one step ahead; it then
waits for an acknowledgement again (Figure 3 (d)).

5. Robot r acknowledges by moving one step back. At this time, the communication
has ended and both robots are back in their original positions (Figure 3 (e)).

1. Blocking: This situation occurs when the leader reaches a cell with more
than one possible direction of movement (see Fig. 4). In this case the leader
(the dark-gray robot in the figure) does not need to take any special action.
The leader waits until its successor (the white robot) is at distance three; it
then moves to one of the possible directions and changes its state to Blocking
(the light-gray robot in the figure). When the successor robot was at distance
four (Fig. 4(a)), it realizes, before its next move, that its predecessor has more
than one possible movement. So after the move, the successor becomes the
new leader (the dark-gray robot in Fig. 4(b)), while the predecessor changes
to state Blocking. As a result, the leadership was passed from one robot to
another and the communication process ends here.

2. Stopping: This situation occurs when the leader rl is moving to the end
of the path and it has only one more move to perform (Fig. 5(b)). In this
case, the Leader’s successor rs, cannot distinguish whether its predecessor is
in the middle of a communication process with some robot ahead (Fig. 3) or,
the predecessor is the leader going to a dead-end (Fig. 5(b) and (e)). Thus
rs will wait at distance four from rl. The Leader rl moves one step ahead
to communicate to the successor rs that the leader has reached a dead end
and the leadership should be passed to another robot. Note that if rl was
at a bifurcation cell (before the move) then it will now become Stopped
(Fig. 5(c)). In this case, the next Blocking robot will notify rs which is the
new direction. Otherwise, if rl was not at a bifurcation cell, it will become
Blocking (Fig. 5(f)), and then communicate to rs that the path is going to
a dead-end. This communication is similar to the Reopening communica-
tion (described below) when a new direction of movement is communicated
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Fig. 4. (a) The leader (colored dark-grey) reaches a cell with more than one possible
moves (b) It blocks one direction and passes leadership to the successor.

(except that the new direction is actually a dead-end in this case, and the
robot rs will realize that).

3. Bifurcation: This situation occurs when a robot, either a Follower or a
Leader, is in a bifurcation cell with only one possible movement (Fig. 6), so
the robot must communicate to its successor the information that this is at
a bifurcation cell.

4. Reopening: A Blocking robot b must reopen the blocked direction because
all other directions that were open before, are now completely filled (Fig. 5(c)
and (e)). It is possible that are other Blocking robots in neighboring cells, but
if those directions were blocked before b became Blocking, then robot b has
the higher priority to reopen its blocked direction.

In the two last types of communication (Bifurcation and Reopening) robots
must take some special action in order to communicate. The behavior of the
two robots during these two types of communication is essentially the same
and follows the rules of Algorithm 2. Notice that whenever two robots start
such a communication process they do nothing else until the communication has
terminated. In this sense, the communication process can be thought of as an
atomic action.

There are a few complications that can occur during the communication
process of Algorithm 2, due to the special condition for robots at the door. First
consider what happens if at the start of the communication process, the successor
of the receiver ( rs ) is at distance less than three from the receiver ( r ). There
are two cases when this situation could occur. Either when rs is at door or when
rs itself is communicating with r. In the first case rs will not move since its
predecessor is at distance less than three. And, in the second case, rs will move
back just one step returning to distance three from r. Notice that r will not
move until rs moves back since they are in a communication process. After that,
r can start communicating with its predecessor s. Thus, both communications
would be successful. Now, let us consider the case when the receiver robot r is
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Fig. 5. The leader (colored dark-grey) is moving to the end of the path. The white
robot is a Follower which is next robot in the path. Black robots are in state Stopped,
while Grey robots with an arrow are in state Blocking (i.e. blocking the exit in the
direction of the arrow).

Fig. 6. Either a follower (colored white) or the leader (colored grey) is in a bifurcation
cell.
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at the door. In this case, since robots can see at distance six and all the robots
enter the space through a unique door, any robot at the door can distinguish
among the four scenarios in which some communication is needed. Thus it is not
actually necessary to notify anything to a robot that is at the door. Moreover
since the sender robot s would itself be within a constant distance of the door,
it can remember whether its successor r is at the door or not. Thus the robot s
would act as if the communication has already been sent to r.

Finally notice that after a communication process both, the sender and the
receiver, end at their original positions. Thus we can ensure the following prop-
erties about the algorithm MUTE.

Proposition 1. The following holds during algorithm MUTE: (1) Starting
from a correct configuration, every communication process ends in a correct con-
figuration. (2) Starting from a correct configuration, every movement following
the rules of Algorithm 1 ends in a correct configuration.

The following propositions prove the correctness of the algorithm.

Proposition 2. There are no collisions during Algorithm MUTE.

Proof. In algorithm MUTE, robots may backtrack only during a communication
process. During the communication process, the sender moves back only when the
receiver (its successor) is at distance three, and the rules of the communication
process ensure that these two robots do not collide. Moreover these two robots
do not go beyond the stretch of path between them (when they started the
communication), and all cells neighboring the path are blocked, in any correct
configuration. Thus no collisions can occur during a communication process.

Let us now assume that no communication takes place and suppose a col-
lision occur the normal movement of the robots. Since robots never move to
an occupied cell, such a collision must involve either Follower or Leader robots
that move to the same cell simultaneously. Now, the movements of a Follower
is restricted to the part of the path between its current cell and its predecessor
which is always at least three cells away and no other robot can enter this path
as all exits are blocked. Thus, a Follower robot is never involved in a collision.
This leaves us with only Leader robots, and since there is at most one such robot
at any time, there cannot be any collisions.

Proposition 3. There are no deadlocks during any execution of the algorithm.

Proof. First notice that any communication process ends within a finite time.
Outside of the communication process, let us consider the cases when a robot
waits for another robot. Note that Stopped robots have already terminated and
a blocking robot never waits for another blocking robot, so any deadlock must
involve at least a Leader or Follower robot. The only case when a leader waits
is when its successor s is at distance four. But in this case successor s would
move unless the successor of s is also at a distance four from s. This implies that
every robot in the path has its successor at distance four. Otherwise the robot
that is closer than distance four from its successor, would move, contradicting
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the existence of deadlock. However, since the robot at the door does not have
any successor, it could move and this contradicts the existence of a deadlock.
Thus no leader or follower could be involved in a deadlock and thus there are no
deadlocks during the algorithm.

Proposition 4. Algorithm MUTE always terminates within a finite time.

Proof. We have already seen that the algorithm ensures there are no cycles in
the path and thus no robot visits the same cell twice except during a communi-
cation process. A communication process always ends in finite time, and at that
both the receiver and the sender are back in their original positions. Moreover,
according to the rules of the algorithm no pair of robots communicates more
than twice from the same cells. So, within a finite time the robots involved in a
communication, must either moves to a new cell or stop moving. Since there are
only a finite number of new cells, all robots must stop after a finite time.

Proposition 5. Algorithm MUTE always completely fills the space S.

Proof. Suppose for the sake of contradiction that after the algorithm terminates
there are some empty cells and let us consider an empty cell p that is adjacent to
an occupied cell q (such a cell must exist as S is connected). Since the algorithm
has terminated, the robot r in cell q is in state Stopped. This implies that when
r became Stopped, either cell p was occupied or it was the previous location
of robot r. In either case cell p had been occupied by some robot in the past.
Consider the last robot rl to visit p. When robot rl moved out of cell p, it
must have a successor and thus the successor must have visited cell p too. This
contradicts the fact rl was the last robot to visit cell p. Thus, there cannot be
any empty cells after the termination of the algorithm.

The above results prove the correctness of the algorithm. Recall that the robots
can be in only five states and in each state a robot needs to remember only a
constant amount of additional information. To summarize:

Theorem 1. Algorithm MUTE solves the filling problem for any connected
space of n cells, without collisions, and using exactly n robots, each of which has
O(1) memory and a visibility radius of six.

4 Algorithm for Filling with Explicit Communication

The algorithm in the previous section used robots having a visibility radius of
six to solve the Filling problem. We now show that if explicit communication is
allowed between robots (even within short ranges), then the visibility radius of
the robots could be reduced one. Note that this is the minimum visibility radius
necessary to solve Filling without any collisions [15].

In this section we present an algorithm (TALK) which solves the filling prob-
lem when both the visibility and communication ranges are limited to distance
one. The algorithm still requires only a constant amount of memory for each
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robot, and fills the complete space without any collisions. Algorithm TALK
also uses the basic strategy of follow-the-leader, but no robot moves until its
previous position is occupied by the successor. This ensures that the distance
between consecutive robots in the path is never more than two (at most one cell
between consecutive robots). If the leader robot r is about to move to a cell x
that was visited before (e.g. when the path has a cycle), robot r can determine
whether cell x has been already visited, by asking the robots in the cells neigh-
boring x (Robot r can see at least two such cells and one of them would contain
a robot). Thus the algorithm can avoid collisions. During the algorithm, the
leader always moves to an unvisited cell, while the followers always move to the
previous position of their predecessor. If the leader does not have any unvisited
neighboring cell, it stops moving and passes the leadership to its successor.

The robots could be in one of the following states while executing this
algorithm:

1. Leader: At any time, there is at most one robot in this state. This robot
always moves to an unvisited cell. If there is no possible movement it passes
the leadership to its successor and changes to state Stopped.

2. Follower: A robot in the state is always on the path from the door to the
current Leader. A Follower robot always moves to the previous position of
its predecessor unless it receive the leadership (in this case it changes to state
Leader).

3. Stopped: A Robot in this state has terminated and does not ever move again
during the execution of the algorithm.

A new robot appearing at the door changes to state Follower or Leader depend-
ing on whether or not it sees any robots in the neighboring cells.
The following variables and functions are used by a robot r to store and share
information about past and future moves:

– r.Entry is the cell from which r entered its current position. This variable is
NULL if r is at the door.

– r.Exit is the cell to which r should move in the next step. This variable is
NULL for the Leader and the Stopped robots.

– Find-Next-Move(NewCell) is a function that returns true or false depending
on whether or not there is a valid next move (i.e. an unvisited neighboring
cell). The possible destination is returned as parameter NewCell.

The communication between robots uses the following types of messages:

1. Leadership: This message is sent by the Leader to transfer the leadership
to its successor.

2. N ext-Pos: This message is sent by either a Leader or a Follower, just before
moving. This informs their successor about the next position in the path.

When a robot r receives a Next-Pos message from the cell x, the variable
r.Exit is set to cell x. The rules of the algorithm are presented in Algorithm
3. The implementation of function Find-Next-Move() is straightforward and it is
omitted.
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Algorithm 3. (TALK) : Rules followed by robot r

if (r.State = None) then
if (all neighboring cells are empty) then

r.State ≥ Leader
else

r.State ≥ Follower
end if

else if ( r.State = Follower ) then
if ( ( r.Exit ∈= NULL ) ∨ ( r.Entry is occupied )) then

NewPos ≥ r.Exit
r.Exit ≥ NULL
Send message Next-Pos to r.Entry.
r.Entry ≥ Current cell.
Move to NewPos

end if
else if ( r.State = Leader ) then

if ( r.Entry is occupied ) then
if ( Find-Next-Move(NewCell) = true ) then

Send message Next-Pos to r.Entry.
r.Entry ≥ Current cell.
Move to NewCell

else
Send message Leadership to r.Entry.
r.State ≥ Stopped

end if
end if

end if

We can prove the following properties for the algorithm.

Proposition 6. There are no collisions during Algorithm TALK.

Proof. As in the previous algorithm, a robot never moves to an occupied cell.
Furthermore, according to the rules of the algorithm, no robot backtracks and
a Follower robot can move only to the last position of its predecessor, when
this cell becomes empty. Since only the Leader can move to unvisited cells, no
collisions are possible. Therefore, algorithm TALK is collision free.

Proposition 7. Algorithm TALK terminates in finite time.

Proof. According to the rules of the algorithm, the Follower robots always move
on the path of Leader while the Leader only moves to unvisited cells and passes
the leadership to its successor whenever it cannot find any empty cell to move to.
Since the number of cells are finite, any Leader must eventually stop and pass
the leadership. Every new leader will also stop in finite time and, thus every
robot on the path will stop. Therefore the algorithm terminates in a finite time
when every robot has stopped.
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Proposition 8. Algorithm TALK completely fills the space S.

Proof. Suppose that after termination of the algorithm, at time t, there are some
cells that remain empty. Let p be such a cell. Notice that if this cell was visited
before then there must be a Follower robot r in one of its neighboring cells and
the next time this robot executes, it will move to cell p, contradicting the fact of
the termination of the algorithm. Thus, every empty cell must be an unvisited
cell.

However since the space is connected, there must be an empty (and hence
unvisited) cell adjacent to an occupied cell q. Consider the last robot that visited
cell q. This robot is now Stopped (since the algorithm has terminated). But
according to the rules of the algorithm, a robot cannot become Stopped if there
is an unvisited cell adjacent. This contradiction proves that there cannot be
any empty cells after the termination of the algorithm. Thus, the algorithm
completely fills S.

We summarize the above results as follows:

Theorem 2. Algorithm TALK solves the filling problem for any connected
space of size n without collisions and using only n robots each having a con-
stant amount of memory and a visibility and communication radius of one.

5 Conclusions

We showed how to solve the filling (or, uniform dispersal) problem for unknown
spaces of arbitrary shapes possibly containing holes, using asynchronous robots
having O(1) visibility and O(1) memory. While our solutions are asymptotically
optimal in the memory and visibility requirements, it would be interesting to
determine the exact bounds on v, the visibility radius required for solving the
problem. Our solution gives an upper bound of v = 6 when there is no explicit
communication, while only a trivial lower bound of v = 1 is known. Another pos-
sible research direction is to investigate fault-tolerant algorithms for the problem
(e.g. one can consider self-stabilizing algorithms to tolerate corruptions in the
memory of the robots).
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Abstract. Consider a synchronous static radio network of n nodes rep-
resented by an undirected graph with maximum degree Δ. Suppose that
each node has a unique ID from {1, . . . , N}, where N ≥ n. In the com-
plete neighbourhood learning task, each node p must produce a set Lp of
IDs such that ID i ∈ Lp if and only if p has a neighbour with ID i. We
study the complexity of this task when it is assumed that each node fixes
its entire transmission schedule at the start of the algorithm. We prove

a Ω( Δ2

log Δ
log N)-slot lower bound on schedule length that holds in very

general models, e.g., when nodes possess collision detectors, messages
can be of arbitrary size, and nodes know the schedules being followed
by all other nodes. We also prove a similar result for the SINR model of
radio networks. To prove these results, we introduce a new generaliza-
tion of cover-free families of sets, which may be of independent interest.
We also show a separation between the class of fixed-schedule algorithms
and the class of algorithms where nodes can choose to leave out some
transmissions from their schedule.

1 Introduction

Neighbourhood learning is an important step in wireless network initialization
and in algorithms for tasks such as routing, medium-access control, topology
control, and gossiping. Further, in the study of local computation in distributed
computing, it is assumed that information about neighbouring nodes has already
been collected, which is non-trivial in the case of wireless radio networks. If it
is not known how to collect neighbourhood information in an efficient way, or,
if we are able to prove a strong lower bound for neighbourhood learning, then
the actual running time of a solution that depends on this information can be
significantly worse than its running-time analysis suggests. In many of these
applications, it is important that each node learns their entire neighbourhood
before proceeding to other tasks, so we focus our attention on deterministic algo-
rithms that guarantee full neighbourhood discovery within a bounded amount
of time that is known in advance.

The main challenge that is encountered when designing algorithms for wire-
less radio networks is the possibility of radio interference. When several nodes
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transmit during a single time slot, the signals from all transmissions may prevent
a nearby listening node from receiving any message. This is known as a trans-
mission collision. Unless otherwise specified, we consider the Unit-Disk Graph
(UDG) radio network model in this paper: a collision occurs at p if two or more
neighbours of p transmit in the same time slot, or, if a neighbour of p trans-
mits during the same time slot that p does. A node p receives a message from
a neighbour q if q transmits and no collision occurs at p. In the basic model, p
cannot tell the difference between a collision and the case where no neighbour
transmits. With a weak collision detector, p can make this distinction, as long as
p is not transmitting. With a strong collision detector, p can always distinguish
between a collision and silence.

Our eventual goal is to determine the complexity of the neighbourhood learn-
ing in both static and mobile networks. Most of the results in the literature concen-
trate on determining upper bounds for this task in various models. However, good
lower bounds are missing, even if we restrict attention to the class of algorithms
where nodes follow a fixed schedule. Specifically, a t-slot fixed-schedule algorithm
for the complete neighbourhood learning task is a deterministic algorithm run by
each node p such that: p knows its entire t-slot schedule at time slot 0; p transmits
a message during each slot for which the entry in its schedule is 1, and otherwise
stays silent; and, at the end of slot t, p outputs a list of all of its neighbours. We
can classify existing fixed-schedule algorithms as one of three types:

1. Collision-Free Algorithms: In every execution, there is never a time slot
during which a transmission collision occurs.

2. Local Broadcast Algorithms: For each node p in the network, there exists
a time slot during which p transmits and no transmission collisions occur at
p’s neighbours.

3. Direct-Discovery Algorithms: For each pair of nodes (p, q) in the network,
there exists a time slot during which p transmits and no transmission collision
occurs at q.

The best known fixed-schedule solution is a O(α2 log N)-slot direct-discovery
algorithm based on cover-free families (equivalently, strongly-selective families),
which we describe in Sect. 3.2. However, it is not known if this is the optimal
fixed-schedule solution. Of course, this might depend on the particular choice of
model: direct-discovery algorithms work in models where nodes do not possess
collision detectors, have no knowledge of the schedules used by other nodes, and
can only send their own ID in every message. Perhaps, without these restrictions,
there are algorithms that can do better. For example, in multi-hop networks,
nodes can forward messages that they have received in previous slots, which
can help other nodes infer who their neighbours are. As another example, with
strong collision detection and knowledge of every node’s schedule, a node can
learn from silence: all nodes scheduled to transmit in a slot where no message was
received and no collision was detected can be eliminated as possible neighbours.
Even if it is difficult to imagine how to use such additional information to devise
algorithms that do significantly better than direct discovery, it is important to
formally verify whether or not it is possible, and to understand the reasons why.
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Our main contribution in this paper is a ε( α2

log α log N) lower bound for gen-
eral fixed-schedule neighbourhood learning algorithms for UDG networks mod-
els, even when nodes possess strong collision detectors, have knowledge of every
node’s schedule, and can send arbitrary messages (Sect. 4). Nodes with these fea-
tures will be referred to as strong nodes. The fact that the lower bound holds for
networks of strong nodes strengthens our result, since the lower bound automat-
ically applies to models where nodes do not have these features. For networks of
strong nodes, we also prove a separation between fixed-schedule algorithms and
the class of algorithms where nodes can choose to leave out transmissions from
their schedule (Sect. 5). Our lower bound for fixed-schedule neighbourhood learn-
ing depends on size bounds for a new generalization of cover-free families that we
call thick cover-free families (Sects. 2.4 and 6). Further, we use our results about
these combinatorial objects to prove, to our knowledge, the first non-trivial lower
bound for fixed-schedule neighbourhood learning in SINR models (Sect. 7).

2 Models and Definitions

2.1 Network Model

A static ad hoc network consists of n nodes at arbitrary fixed locations. Nodes do
not have information about their location, and nodes know the value of n. Each
node p possesses a unique identifier number ID(p) from the range {1, . . . , N},
where N ≥ n. All nodes know the value of N . Denote by p(i) the node with
identifier i. The topology of a network is represented as an undirected graph,
with a vertex for each node and an edge joining each pair of neighbours. The
maximum degree of the network is denoted by α and we assume that nodes
know the value of α. For any node p, the set of nodes that are neighbours of p
is known as p’s neighbourhood. We consider the task of complete neighbourhood
learning, where each node p must produce a set Lp of IDs such that ID i ← Lp

if and only if p has a neighbour with ID i.
At any given time, a node can either transmit or listen, but not both. The

signal transmitted by a node p reaches p and all neighbours of p. We consider
networks where the nodes share a single radio channel, which means that two
signals that reach the same point at the same time interfere with one another.
A listening node that receives two or more signals during a single slot t only
hears noise, and we say that a collision has occurred during slot t. A collision
also occurs if a transmitting node receives one or more other signals. In the
case when exactly one neighbour of a listening node transmits, we say that the
listening node receives a message from the transmitting neighbour. In one radio
model, we will assume that nodes cannot distinguish between a collision and
silence. In another model, we will assume that nodes possess strong collision
detectors, so that, whether they are listening or transmitting, they can detect
that a collision has occurred.

Each node possesses a clock that divides time into equal-length slots,
(t0, t1, . . .). Each slot is long enough to allow the complete transmission of any
message. We consider synchronous models, in which it is assumed that all clocks
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run at the same rate, that slot boundaries coincide across all nodes, and that
each node begins its local algorithm at time slot 1. Time slot 0 represents the
initial state of the system. The model allows any set of nodes to transmit during
a single slot.

We say that a network consists of weak nodes if: nodes cannot distinguish
between a collision and silence; each node can only send its own ID in each
message; and, no node has any knowledge about the schedules of other nodes.
A network consists of strong nodes if: nodes possess strong collision detectors;
nodes can send arbitrary messages; and, each node initially knows the schedule
associated with each node ID.

2.2 Schedules and Algorithms

A node’s schedule T is a {0, 1}-vector that indicates during which slots it will
transmit. Entry T [i] of a node’s schedule is 1 if and only if the node transmits
during time slot i. A schedule matrix S is a {0, 1}-matrix with t rows and N
columns. Column j is the schedule of the node with ID j. A family of sets
{S1, . . . , SN} over {1, . . . , t} can be represented by a {0, 1}-matrix with t rows
and N columns: entry Mi,j is 1 if and only if i ← Sj . We will use this fact to
relate families of sets with node transmission schedules.

A t-slot fixed-schedule algorithm for the complete neighbourhood learning
task is a deterministic algorithm run by each node p such that: p knows its
entire t-slot schedule at time slot 0; p transmits a message during each slot for
which the entry in its schedule is 1, and otherwise stays silent; and, at the end
of slot t, p outputs a list of all of its neighbours. A non-adaptive algorithm is a
fixed-schedule algorithm in which the sequence of messages sent by each node is
the same in every execution.

2.3 Cover-Free Families

For any set S, an r-cover for S is a collection of r sets other than S, whose union
contains S. For r ∈ 1, an r -cover-free family F is a collection of N subsets of
{1, . . . , t} such that, for each S ← F, there is no r-cover for S consisting of sets
from F. We will say that t is the length of F and N is the size of F. This reflects
the fact that the schedules that we construct from cover-free families will have
t time slots and will provide schedules for up to N nodes. Note that it is easy
to find cover-free families of small size (e.g., any family consisting of exactly one
set is r-cover-free for all r ∈ 1) and that it is difficult to construct cover-free
families of large size but small length.

Many related results in the literature refer to families of sets that are called
strongly-selective families. A family G of subsets of {1, . . . , u} is k -strongly-
selective if, for each Z ≤ {1, . . . , u} with |Z| ∀ k and for each z ← Z, there exists
a set G ← G such that G ∪ Z = {z}. Strongly-selective families and cover-free
families can be viewed as ‘duals’ of one another, as remarked in [3]: when repre-
sented in matrix form (see Sect. 2.2), the columns of a matrix form an r-cover-free
family consisting of N subsets of {1, . . . , t} if and only if the rows of the matrix
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form an (r + 1)-strongly-selective family consisting of t subsets of {1, . . . , N}. It
follows that asymptotic bounds on the size of cover-free families also apply to
strongly-selective families (and vice versa). The definition of strongly-selective
families first appears in Clementi et al. [3], where they were used to solve the
multi-broadcast problem in ad hoc wireless radio networks.

2.4 Thick Cover-Free Families

Our new generalization of cover-free families captures the ‘thickness’ of a cover.
Namely, we would like to specify how many times the elements of a set S appear
in the sets S1, . . . , Sr. This information is lost if we use the usual definitions
of sets and unions. A multiset is a generalization of a set in which there can
be multiple copies of the same element. For any multisets F = [f1, . . . , fm] and
G = [g1, . . . , gε], let F � G = [f1, . . . , fm, g1, . . . , gε] be the multiset union of
F and G. For c sets, we denote the multiset union by

⊎c
i=1 Si. For any set F ,

denote by
⊎b

F the multiset consisting of b copies of each element of F . Note
that, for any multisets F ,G, |F � G| = |F | + |G|.
Definition 1. For any set S, an r-cover of thickness b for S is a family of r sets
other than S, whose multiset union contains at least b copies of each element in S.

Definition 2. A family F of sets is r-cover-free for thickness b if, for every set
S ← F, there does not exist an r-cover of thickness b for S consisting of sets from F.

Note that an r-cover of thickness 1 is equivalent to a traditional r-cover, and
that an r-cover-free family for thickness 1 is equivalent to a traditional r-cover-
free family. Also, any cover-free family for thickness b is also a cover-free family
for any thickness b◦ > b.

As far as we know, there is no ‘dual’ definition for thick cover-free families in
the literature. So, we propose k-strongly- b -selective families with the following
definition: for each Z with |Z| ∀ k and for each z ← Z, there exists a set G ← G
such that z ← G ∪ Z and |G ∪ Z| ∀ b. When represented in matrix form, it
is not hard to see that the columns form an r-cover-free family for thickness b
consisting of N subsets of {1, . . . , t} if and only if the rows form an (r + 1)-
strongly-b-selective family consisting of t subsets of {1, . . . , N}.

3 Known Results

3.1 Cover-Free Families

Cover-free families were defined in Erdös, Frankl, and Füredi [12], but the con-
cept was first introduced by Kautz and Singleton [17] in their study of superim-
posed binary codes. In particular, they were called zero-false-drop codes of order
r. When the columns of a matrix are taken to be codewords of a zero-false-drop
code of order r, the resulting matrix is called r -disjunct. These matrices play a
central role in non-adaptive solutions to combinatorial group testing problems,
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where the goal is to identify a small number of defective items from a large
set by performing tests on groups of items (see Du and Hwang [7] for a survey
on this topic). There are also several generalizations of cover-free families (and
strongly-selective families) in the literature [4,5,8,10,24].

Erdös et al. [12] provide a non-constructive proof that there exist r-cover-
free families consisting of N subsets of {1, . . . , t} such that t ← O(r2 log N).
Porat and Rothschild [21] provided the first construction of cover-free families
that meet this asymptotic bound. Further, Erdös et al. [12] showed that if N <
(
r+2
2

)

(e.g., if r ∈ 2
∼

N − 1), then N ∀ t. The family consisting of {1}, . . . , {t}
meets this bound with equality. For any r-cover-free family consisting of N
subsets of {1, . . . , t}, a proof that t ← ε((r2/ log r) log N) has been provided by
D’yachkov and Rykov [9], Ruszinkó [22], Chaudhuri and Radhakrishnan [1], and
Füredi [13].

3.2 Neighbourhood Learning

Previous work about neighbourhood learning has focused mainly on upper
bounds. A trivial upper bound of N slots is achieved by a round-robin algorithm
where a node with ID i transmits during time slot i. More efficient algorithms use
schedules in which some transmissions may be lost due to collisions. In networks
of weak nodes, one solution is to use a schedule based on cover-free families:
given a α-cover-free family F = {S1, . . . , SN} where each Sj ≤ {1, . . . , t}, the
node with ID j transmits its ID during time slot s if and only if s ← Sj . Such
a schedule guarantees that every node successfully transmits its ID to all of its
neighbours. To see why, suppose to the contrary that there is a node pi whose
ID is not received by some neighbour pj . This means that during every slot that
pi transmitted, it must be the case that either pj or one of pj ’s other neighbours
(there are at most α−1 of these) transmitted. It follows that the set of pi’s trans-
mission slots is contained in the union of α other sets of transmissions slots, that
is, there is a α-cover for Si in the family of transmission schedules. The length
of the algorithm is at most t, which, using the construction of cover-free families
by Porat and Rothschild [21], leads to an algorithm that uses O(α2 log N) slots
(or N slots if α ∈ 2

∼
N − 1).

The algorithm based on cover-free families is relatively easy to implement
since it is non-adaptive: each execution of the algorithm follows the same sched-
ule and sends the same messages, regardless of the network topology. A fully-
adaptive algorithm for networks of weak nodes was provided by Gasieniec et
al. [14] and uses O(α2 log N) slots when α <

∼
n, or O(n log2 n log2 N) slots

otherwise. When nodes can distinguish between a collision and silence, Mittal
et al. [20] devised a fully-adaptive algorithm for neighbourhood learning that
uses O(n log N) slots. This algorithm works even if nodes do not know an upper
bound for α (or, for that matter, n). In these fully-adaptive algorithms, nodes
decide during which slots they will transmit based on messages that they receive
during the execution. Though these two algorithms have better asymptotic run-
ning times than the solution based on cover-free families when α is large, they
are much more difficult to describe and implement.
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In networks of weak nodes, several lower bounds for neighbourhood learning
algorithms are known. Krishnamurthy et al. [19] showed that the best-case run-
ning time of any collision-free algorithm for neighbourhood learning is at least
N − n slots. A straightforward adversary argument shows that the worst-case
running time of any collision-free algorithm is at least N − 1 slots if nodes know
their degree in advance and N slots if they do not. It is not too difficult to
show that any direct-discovery fixed-schedule algorithm that solves the neigh-
bourhood learning task must use a schedule that corresponds to a α-cover-free
family. Using the known size bounds from Sect. 3.1, this gives a lower bound of
ε((α2/ log α) log N) time slots.

For general fixed-schedule neighbourhood learning in networks of strong
nodes, we know of only one non-trivial lower bound. Note that, for any neigh-
bourhood learning algorithm, we require that each node is able to distinguish
between the case where it has 0 neighbours and the case where it has at least
1 neighbour. This means that the schedule used by a fixed-schedule neighbour-
hood learning algorithm must correspond to a α-selective family, as defined in
[2]. Clementi et al. [3] show that any such schedule has at least (α/24) log (N/α)
time slots (when α ∀ N/64). Our main result in this paper gives a better lower
bound for general fixed-schedule neighbourhood learning algorithms
that matches the ε((α2/ log α) log N)-slot lower bound for direct-discovery
algorithms.

4 A Lower Bound for Neighbourhood Learning
with Strong Nodes

In this section, we show that any fixed-schedule algorithm for the neighbourhood
learning task in UDG networks of strong nodes uses at least ε((α2/ log α) log N)
slots.

First, for any fixed-schedule algorithm for the neighbourhood learning task,
we show that the algorithm’s schedule matrix represents a α-cover-free family
for thickness 2. A node p’s history hp,δ is a vector that stores the messages that
it has received during the execution λ of an algorithm. Entry i of a node p’s
history, hp,δ[i], is equal to: the message that p received during slot i, if at least
one neighbour of p transmitted during slot i and no collision occurred at p; ∗, if
a collision occurred at p; ⊥, otherwise. Two executions λ, Θ of an algorithm are
indistinguishable to a node p up to time slot s if hp,δ[1 . . . s] = hp,ν [1 . . . s].

Observation 1. For any t-slot algorithm, if two executions are indistinguishable
to a node p up to time slot t, p outputs the same list of neighbours in both
executions.

For any column j of a schedule matrix S, let Sj be the set of time slots
during which the node with ID j is scheduled to transmit. Consider any k ←
{1, . . . , N} and any set C = {k1, . . . , kr} ≤ {1, . . . , N} − {k}. Then, the family
F = {Sk1 , . . . , Skr

} is an r-cover of thickness 2 for Sk if and only if, for every time
slot t◦ during which the node with ID k is scheduled to transmit, at least 2 nodes



On the Complexity of Fixed-Schedule Neighbourhood Learning 251

with IDs in C are scheduled to transmit during t◦. The next result shows that
the existence of such a α-cover of thickness 2 in an algorithm’s schedule means
that there are networks in which the algorithm fails to solve the neighbourhood
learning task.

Theorem 2. For any fixed-schedule algorithm A with schedule matrix S for the
complete neighbourhood learning task in any UDG network of strong nodes with
maximum degree α, the family of sets {S1, . . . , SN} is a α-cover-free family for
thickness 2.

Proof. To obtain a contradiction, assume that there exists a k ← {1, . . . , N} and a
set C = {k1, . . . , kα} ≤ {1, . . . , N}−{k} such that the family F = {Sk1 , . . . , SkΔ

}
is a α-cover of thickness 2 for Sk.

Let C be a α-clique of nodes {p(k1), . . . , p(kα)}, and let V = C ∪ {p(k)}.
Construct G1 = (V,E1) with E1 = {p(k), p(k1)} ∪ E(C). Next, construct G2 =
(V,E2) with E2 = {p(k), p(k2)} ∪ E(C). We show that all nodes in V − {p(k)}
output the same list of neighbours in the executions of A on G1 and G2, which
contradicts the correctness of A.

Let λ1 be the execution of A on G1, and let λ2 be the execution of A
on G2. We prove, by induction on the length Λ of the executions λ1, λ2, that
hp,δ1 [1 . . . Λ] = hp,δ2 [1 . . . Λ] for all p ← V − {p(k)}.

In the base case, all nodes possess the same initial information in both
networks. As induction hypothesis, assume that, for each p ← V − {p(k)},
hp,δ1 [1 . . . Λ] = hp,δ2 [1 . . . Λ]. We show that, for each p ← V −{p(k)}, hp,δ1 [1 . . . (Λ+
1)] = hp,δ2 [1 . . . (Λ + 1)]. Since A is a fixed-schedule algorithm, each node p in V
transmits in slot Λ + 1 of execution λ1 iff p transmits in slot Λ + 1 of execution
λ2. Further, by the induction hypothesis, the nodes in V −{p(k)} send the same
messages in slot Λ + 1 of execution λ1 as they do in slot Λ + 1 of execution λ2.
Each node q in V − {p(k), p(k1), p(k2)} only has neighbours in V − {p(k)}, so
hq,δ1 [Λ + 1] = hq,δ2 [Λ + 1].

Finally, consider whether or not p(k) transmits in slot Λ + 1. If p(k) does not
transmit in slot Λ+1, then hp(k1),δ1 [Λ+1] = hp(k1),δ2 [Λ+1] and hp(k2),δ1 [Λ+1] =
hp(k2),δ2 [Λ + 1]. If p(k) does transmit in slot Λ + 1, then at least 2 nodes in
p(k1), . . . , p(kα) transmit during slot Λ + 1, since {Sk1 , . . . , SkΔ

} is a α-cover
of thickness 2 for Sk. Therefore, hp(k1),δ1 [Λ + 1] = ∗ = hp(k1),δ2 [Λ + 1] and
hp(k2),δ1 [Λ + 1] = ∗ = hp(k2),δ2 [Λ + 1]. Thus, for each node q in V − {p(k)},
hq,δ1 [Λ + 1] = hq,δ2 [Λ + 1]. By Observation 1, all nodes in V − {p(k)} output the
same neighbour list in both executions, contradicting the correctness of A. ≡�

Theorem 2 tells us that the columns of any schedule matrix used by a fixed-
schedule neighbourhood learning algorithm must represent a α-cover-free family
for thickness 2. Therefore, a lower bound on the number of rows of any such
matrix gives us a lower bound on the number of slots used by any fixed-schedule
neighbourhood learning algorithm. To prove such a lower bound, we actually fix
the number of rows t in the schedule matrix, and then prove an upper bound on
the number of columns N in terms of t (see Theorem 7 in Sect. 6). Re-arranging
the expression for the upper bound on N gives a lower bound on t in terms of
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N (see Corollary 8). Thus, we get the following lower bound for fixed-schedule
neighbourhood learning algorithms.

Theorem 3. Any fixed-schedule algorithm for the complete neighbourhood
learning task for any UDG network of strong nodes with maximum degree α
uses at least ε((α2/ log α) log N) slots.

5 The Power of Choice

A t-slot optional-schedule algorithm for the complete neighbourhood learning
task is a deterministic algorithm run by each node p such that: p knows its entire
t-slot schedule at time slot 0; p does not transmit during each slot for which the
corresponding entry in its schedule is 0, and otherwise can choose to transmit
or stay silent; and, at the end of slot t, p outputs a list of all of its neighbours.
We present an optional-schedule algorithm for complete neighbourhood learning
that uses O(n + n log (N/n)) slots, which beats our ε((α2/ log α) log N) fixed-
schedule lower bound in networks of high degree (e.g. α ← ε(n)). This algorithm
relies heavily on an algorithm for conflict resolution described by Komlós and
Greenberg (KG) [18]. In the conflict resolution task, there is a set of k nodes
that have all transmitted to a channel simultaneously and we must schedule
these nodes such that each node eventually gets to transmit on its own. Their
conflict resolution algorithm fixes each node’s entire schedule at time slot 0 and
each node p follows its schedule until there is a slot t in which p transmits and
all others stay silent. This slot t is guaranteed to exist due to the combinatorial
properties of the set of schedules. After slot t, p chooses to remain silent for the
remainder of the algorithm. This is possible in their network model since node p
is able to detect whether or not it was the only transmitter on the channel. The
authors prove that there exists a schedule matrix S of length O(k +k log (N/k))
slots such that the conflict resolution task is solved using their algorithm.

We now show how to use the KG algorithm to construct a neighbourhood
learning algorithm A for arbitrary networks. Starting with a schedule matrix S
used by the KG algorithm to solve conflict resolution for n nodes, we construct
a schedule matrix S◦ as follows: for each i ∈ 1, set row 2i−1 of S◦ to be equal to
row i of S, and set row 2i to be the row of all 1’s. We refer to the odd-numbered
slots as KG slots, and the even-numbered slots as feedback slots. In each KG slot
s, the nodes behave as they do in the KG algorithm: if node p’s schedule has
a 1 in slot s, p transmits its ID if and only if there is no previous KG slot in
which p transmitted and p’s ID was received by all of p’s neighbours. In each
feedback slot f , a node q transmits its ID if and only if q detected a collision in
slot f − 1. The number of slots used by A is twice the number of slots used by
the KG algorithm, which is O(n + n log (N/n)).

Recall that nodes possess strong collision detectors, so they can detect col-
lisions whether they are transmitting or listening. Each feedback slot f allows
any node p that transmitted in KG slot f − 1 to determine if its message was
received by all of its neighbours: a collision has occurred at a neighbour of p
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during KG slot f − 1 if and only p receives a message or detects a collision
during feedback slot f . Hence, before the beginning of any KG slot f + 1, p can
determine if there is a KG slot f ◦ ∀ f − 1 during which all of its neighbours
received its ID, as required by the algorithm. The correctness of the algorithm
follows directly from the correctness of the KG algorithm. To see why, we know
that the KG algorithm guarantees that each node p in an n-clique transmits on
its own, say during slot tp. When our algorithm is run on a network of n nodes
but with fewer edges than the n-clique, p will successfully transmit its ID to all
of its neighbours during the KG slot corresponding to tp, if not before.

6 An Upper Bound on the Size of Thick
Cover-Free Families

In this section, we provide an upper bound on the number of sets in r-cover-
free families for thickness b. First, we will need a result about shadows due to
Sperner, as well as Dilworth’s Theorem.

Consider a family F of (h−1)-element subsets of {1, . . . , t}. The upper shadow
of F [11] is the family consisting of all h-element supersets (over {1, . . . , t}) of
members of F. Sperner [23] (see [11]) proved the following bound on the upper
shadow of F.

Theorem 4 (Sperner [23]). If h ∀ (t+1)/2, then the cardinality of the upper
shadow of F is at least |F|.
Corollary 5. For any h ∀ �t/2�, consider a set family G consisting of subsets
of {1, . . . , t}, and suppose that each set in G has cardinality less than h. If G is
an antichain with respect to inclusion, then |G| ∀ (

t
h

)

.

Proof. Suppose that G is an antichain, and let Λ be the cardinality of the smallest
set in G. Construct the family of all sets in G of cardinality greater than Λ and
the upper shadow of the subfamily of all Λ-element sets in G. By Proposition
4, we know that the cardinality of this family is at least |G|. We repeat this
process a total of h − Λ times to obtain the family B of all h-element supersets
of members of G. Then, |G| ∀ |B| ∀ (

t
h

)

. ≡�
Theorem 6 (Dilworth’s Theorem [6]). Let P be a partially ordered set. The
cardinality of largest antichain in P is equal to the minimum number of chains
needed to cover P .

Theorem 7. Consider any family F of subsets of {1, . . . , t}, and let h = �(tb(b+
1))/(r(r + 1) − b(b − 1) − 1)�. For r ∈ 2b + 1, every family F that is r-cover-free
for thickness b has size at most (r − b) + 2b

(
t
h

)

.

Proof. Note that 0 < h < �t/3� ∀ t/2 when r ∈ 2b + 1. Let R be the family
of all h-element subsets of {1, . . . , t} that are contained in at least one and at
most b sets in F. We partition F into three disjoint sub-families. Let F(R) =
{S ← F : S ⊇ A for some A ← R}, let F<h = {S ← F : |S| < h}, and, let
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F◦ = F−{F(R)∪F<h}. Equivalently, F◦ = {S ← F | |S| ∈ h and ∀C ≤ Swith|C| =
h, there exist at least b sets in F − {S} that contain C}.

To obtain the desired result, we will prove that: (1) |F(R)| ∀ b
(

t
h

)

, (2) |F<h| ∀
b
(

t
h

)

, and (3) |F◦| ∀ r − b.
To prove (1), note that, for each set T ← R, there are at most b sets in F(R)

that contain T . This implies that |F(R)| ∀ b|R| ∀ b
(

t
h

)

. To prove (2), consider
the partial ordering of the elements of F<h by inclusion. Since F is r-cover-
free for thickness b, every chain of F<h has cardinality at most b (otherwise,
every element in the minimal set in the chain would appear at least b times in
the multiset union of the other sets in the chain). Also, by Corollary 5, every
antichain of F<h has cardinality at most

(
t
h

)

. By Theorem 6, F<h can be covered
using

(
t
h

)

chains. Therefore, |F<h| ∀ b
(

t
h

)

. Finally, to prove (3), assume that
there are at least w = r − b + 1 sets F1, . . . , Fw ← F◦. We show that the union of
these sets contains more than t elements. This is a contradiction, since sets in
F◦ are subsets of {1, . . . , t}.

Let Q =
⊎w

q=1[(
⊎b

Fq) − ⊎q−1
i=1 Fi]. For each q ← {1, . . . , w}, the multiset

(
⊎b

Fq) − ⊎q−1
i=1 Fi consists of all elements of Fq that do not appear at least b

times in
⊎q−1

i=1 Fi. We proceed by proving upper and lower bounds on the size
of Q (Claims 1 and 3, respectively), and, by comparing the two expressions, we
will reach the desired contradiction.

Claim 1. |Q| ∀ (b(b + 1)/2)|F1 ∪ . . . ∪ Fw|
Proof. For any fixed q ← {1, . . . , w}, let Xq,k be the set consisting of all elements
x ← Fq such that x is in exactly k of F1, . . . , Fq−1. Then, (

⊎b
Fq) − ⊎q−1

i=1 Fi

consists of exactly b−k copies of each x ← Xq,k, for all k ← {0, 1, . . . , b−1}. Hence,
we can re-write |Q| = |⊎w

q=1[(
⊎b

Fq) − ⊎q−1
j=1 Fj ]| =

∑w
q=1

∑b−1
k=0(b − k)|Xq,k| =

∑b−1
k=0(b− k)

∑w
q=1 |Xq,k|. The desired result follows once we show that, for each

k ← {0, . . . , b − 1},
∑w

q=1 |Xq,k| ∀ |F1 ∪ . . . ∪ Fw|.
Fix an arbitrary k ← {0, . . . , b − 1}. Since Xq,k ≤ Fq for q = 1, . . . , w, it

suffices to show that, for each element x ← F1 ∪ . . . ∪ Fw, there is at most one
q ← {1, . . . , w} such that x ← Xq,k. Choose the largest Λ such that x ← Xε,k.
By the definition of Xε,k, x ← Fε and x is in exactly k of F1, . . . , Fε−1. Let
i1, . . . , ik ← {1, . . . , Λ − 1} be such that x ← Fi1 , . . . , x ← Fik

. For each λ ←
{i1, . . . , ik}, x is in at most k − 1 of F1, . . . , Fδ−1, so x �← Xδ,k. Further, for each
Θ ← {1, . . . , Λ − 1} − {i1, . . . , ik}, x �← Fν ⊇ Xν,k. �

Claim 2. For F ← F◦ and F1, . . . , Fz ← F with z ∀ r − b, |(⊎b
F ) − ⊎z

i=1 Fi| >
h(r − z).

Proof. Assume that |(⊎b
F ) − ⊎z

i=1 Fi| ∀ h(r − z). We can cover the elements
of (

⊎b
F ) − ⊎z

i=1 Fi using v = r − z ∈ b subsets of F with h elements each. Call
these sets A1, A2, . . . , Av. By the definition of F◦, for each Ak with k ← {1, . . . , v},
there exists a set Sk ← F − {F} that contains Ak. However, this means that
F1 � . . . � Fz � S1 � . . . � Sv ⊇ ⊎b

F . In other words,
⊎b

F is covered by the
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multiset union of z + v = z + (r − z) = r sets. This contradicts the fact that F
is r-cover-free for thickness b. �

Claim 3. |Q| ∈ (h/2)[r(r + 1) − b(b − 1)]

Proof. Since w = r − b+1 and q ← {1, . . . , w}, q −1 ∀ r − b, so, by Claim 2 with
z = q − 1, |Q| =

∑w
q=1 |(⊎b

Fq) − ⊎q−1
i=1 Fi| >

∑w
q=1 h(r − q + 1). Substituting

w = r − b + 1, this sum is equal to h
∑r

j=b j = h[(r(r + 1)/2) − (b(b − 1)/2)].�
Claims 1 and 3 imply that |F1∪. . .∪Fr−b+1| ∈ (h/b(b+1))[r(r+1)−b(b−1)].

Since h = �(tb(b+1))/(r(r+1)−b(b−1)−1)�, we get that |F1∪ . . .∪Fr−b+1| > t,
a contradiction. This implies that |F◦| ∀ r − b. ≡�

Fixing the size of F and re-arranging the upper bound from Theorem 7 gives
us the following lower bound on t, the size of the universe over which the sets in
F are taken. The proof is omitted due to space constraints.

Corollary 8. For any r ∈ 2b + 1 and any r-cover-free family F for thickness b

consisting of subsets of {1, . . . , t}, t ← ε
(

r2

b2 log r log |F|
)

.

7 A Lower Bound for Neighbourhood Learning in the
SINR Model

In the SINR model of wireless networks [15], a node p receives a message from
node q if q’s signal is sufficiently stronger than the sum of all other signals
received at p (plus some constant amount of background noise). At p’s physical
location, the strength of q’s signal is calculated as P/(d(q, p)δ), where P is q’s
transmission power, d(q, p) is the Euclidean distance between nodes q and p, and
λ is the path-loss exponent (usually taken to be greater than 2, so that a signal
degrades at least quadratically with respect to distance). Assuming that all nodes
transmit with the same power P (known as a uniform power assignment), the
sum of all other signals received at p is calculated as

∑

q∞ ∈=q(P/d(q◦, p)δ) for all
transmitting nodes q◦ other than q. Formally, if S is a set of transmitting nodes,
then node p receives a message from node q if P/d(q,p)α

N+
∑

q∞∈S−{q}(P/d(q∞,p)α) ∈ Θ, where
N represents the constant amount of background noise, and Θ is a parameter
known as the minimum signal to interference ratio. We define q to be a neighbour
of p if a transmission by q alone is received by p, namely, if P/(Nd(q, p)δ) ∈ Θ.
We assume that each node knows a linear upper bound on the number of nodes
in the network.

To prove a lower bound for fixed-schedule neighbourhood learning, we first
observe that, if too many nodes transmit during the same time slot t, no node
in the network receives a message during t, regardless of the network topology.
We denote by Dmin a fixed lower bound on the distance between any two nodes
in the network, and we denote by Dmax a fixed upper bound on the distance
between any two nodes in the network.
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Lemma 9. Suppose that all nodes transmit with the same power P . Let a =
1+�(Dδ

max/P )((P/ΘDδ
min)−N )�. For any node p and any time slot t, if exactly

b > a nodes transmit during time slot t, then p receives no message during time
slot t.

Proof. Suppose that q1, . . . , qb are the transmitting nodes during time slot t, each
transmitting with power P . Re-arranging b > 1 + (Dδ

max/P )((P/ΘDδ
min) − N ),

we get that Θ >
P/Dα

min

((b−1)P/Dα
max)+N . Consider any transmitting node qi. Note

that d(qi, p) ∈ Dmin and that
∑

qj ∈=qi
P/d(qj , p)δ ∈ (b − 1)P/Dδ

max. Therefore,

Θ > P/d(qi,p)
α

N+
∑

qj �=qi
P/d(qj ,p)α . Hence, p does not receive qi’s message. ≡�

We prove a lower bound for the neighbourhood learning task in a model
SMAX that is at least as strong as the SINR model, which implies that the
same lower bound holds for the SINR model. Specifically, SMAX is a model
of wireless radio networks that includes a parameter, smax, that specifies the
maximum number of simultaneous transmissions that can occur in a single slot
without causing collisions at every node. In particular, a collision occurs at every
node if greater than smax nodes transmit, and, otherwise, each node receives the
message contained in the strongest received signal. Further, we assume that each
node can distinguish between a collision and the case where no nodes transmit.

Analogously to Theorem 2, we can show that, in the SMAX model, any fixed-
schedule neighbourhood learning algorithm uses a schedule that corresponds to
an (n − 1)-cover-free family for thickness smax + 1.

Lemma 10. For any fixed-schedule algorithm A with schedule matrix S for the
complete neighbourhood learning task for SMAX networks of strong nodes, the
family of sets {S1, . . . , SN} is an (n−1)-cover-free family for thickness smax +1.

Proof. To obtain a contradiction, assume that there exists a k ← {1, . . . , N}
and a set C = {k1, . . . , kn−1} ≤ {1, . . . , N} − {k} such that the family F =
{Sk1 , . . . , Skn−1} is an (n − 1)-cover of thickness smax + 1 for Sk.

Let G1 be any network consisting of nodes V = {p(k1), . . . , p(kn−1)}, and
let G2 be any network consisting of nodes V ∪ p(k) where p(k) is a neighbour of
at least one node in V . We show that all nodes in V − {p(k)} output the same
list of neighbours in the executions of A on G1 and G2, which contradicts the
correctness of A.

Let λ1 be the execution of A on G1, and let λ2 be the execution of A
on G2. We prove, by induction on the length Λ of the executions λ1, λ2, that
hp,δ1 [1 . . . Λ] = hp,δ2 [1 . . . Λ] for all p ← V − {p(k)}.

In the base case, all nodes possess the same initial information in both
networks. As induction hypothesis, assume that, for each p ← V − {p(k)},
hp,δ1 [1 . . . Λ] = hp,δ2 [1 . . . Λ]. We show that, for each p ← V −{p(k)}, hp,δ1 [1 . . . (Λ+
1)] = hp,δ2 [1 . . . (Λ + 1)]. Since A is a fixed-schedule algorithm, each node p in
V − {p(k)} transmits in slot Λ + 1 of execution λ1 iff p transmits in slot Λ + 1
of execution λ2. Further, by the induction hypothesis, the nodes in V − {p(k)}
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send the same messages in slot Λ + 1 of execution λ1 as they do in slot Λ + 1 of
execution λ2.

Finally, we consider whether or not p(k) transmits in slot Λ + 1 of execution
λ2. If p(k) does not transmit in slot Λ + 1 of execution λ2, then, for each p ←
V − {p(k)}, hp,δ1 [Λ + 1] = hp,δ2 [Λ + 1]. If p(k) does transmit in slot Λ + 1 of
execution λ2, then we know that at least smax + 1 nodes in p(k1), . . . , p(kn−1)
transmit during slot Λ + 1 in both executions λ1 and λ2, since {Sk1 , . . . , Skn−1}
is an (n − 1)-cover of thickness smax + 1 for Sk. Therefore, by the definition of
smax, no nodes receive any messages in slot Λ + 1 in both executions λ1 and λ2,
so, for each p ← V −{p(k)}, hp,δ1 [Λ+1] = hp,δ2 [Λ+1]. Thus, we have shown that,
for each p ← V − {p(k)}, hp,δ1 [1 . . . (Λ + 1)] = hp,δ2 [1 . . . (Λ + 1)]. By Observation
1, all nodes in V − {p(k)} output the same list of neighbours in executions λ1

and λ2, contradicting the correctness of A. ≡�
By Corollary 8, the resulting lower bound for any fixed-schedule algorithm

in the SMAX model is ε( n2

(smax+1)2 log n log N). It follows from Lemma 9 that
any algorithm that solves neighbourhood learning in the SINR model will also
be correct in the SMAX model when smax = 1+ �(Dδ

max/P )((P/ΘDδ
min)−N )�.

Therefore, we can apply the lower bound for the SMAX model to SINR networks.

Theorem 11. In the SINR model with uniform power assignments, any fixed-
schedule algorithm for the complete neighbourhood learning task uses at least
ε( n2

(smax+1)2 log n log N) slots, where smax = 1 + �(Dδ
max/P )((P/ΘDδ

min) − N )�.
While we are familiar with some existing upper bounds for neighbourhood

learning and local broadcast in SINR models [16,25], the above result seems to
be the first non-trivial lower bound for complete neighbourhood learning.

8 Conclusions and Future Work

In this paper, we have demonstrated the fundamental limitations of fixed-
schedule algorithms for neighbourhood learning in UDG networks. Even if nodes
can send arbitrary messages, if they possess strong collision detectors, and if
they know every node’s schedule, there is no fixed-schedule algorithm that does
significantly better than the O(α2 log N) algorithm based on cover-free fam-
ilies (equivalently, strongly-selective families.) This was shown by presenting a
ε((α2/ log α) log N)-slot lower bound for any such algorithm. However, if nodes
are allowed to leave out some transmissions from their schedule, then there is a
O(n + n log (N/n))-slot algorithm for neighbourhood learning, which beats our
lower bound in networks of high degree. We have also shown how to use thick
cover-free families to prove a lower bound in the more realistic SINR model.

Our work leaves open several directions for future research. First, we would
like to prove lower bounds for neighbourhood learning algorithms in networks
where nodes are allowed to leave out some transmissions from their schedule.
Second, we would like to find a non-trivial lower bound for fully-adaptive algo-
rithms, that is, algorithms where nodes do not follow a pre-calculated schedule.
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Finally, we are very interested in better understanding the neighbourhood learn-
ing task in dynamic versions of our network model, i.e., by allowing the network
topology to change over time.
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Abstract. Given a set of m mobile objects in a sensor network, we
consider the problem of finding the nearest object among them from
any node in the network at any time. These mobile objects are tracked
by nearby sensors called proxy nodes. This problem requires an object
tracking mechanism which typically relies on two basic operations: query
and update. A query is invoked by a node each time when there is a need
to find the closest object from it in the network. Updates of an object’s
location are initiated when the object moves from one location (proxy
node) to another. We present a scalable distributed algorithm for track-
ing these mobile objects such that both the query cost and the update
cost is minimized. The main idea is that given a set of mobile objects
our algorithm maintains a virtual tree of downward paths pointing to
the objects. Our algorithm guarantees an O(1) approximation for query
cost and an O(min{logn, logD}) approximation for update cost in the
constant-doubling graph model, where n and D, respectively, are the
number of nodes and the diameter of the network. We also give polylog-
arithmic approximations for both query and update cost in the general
graph model. Our bounds are deterministic and hold in the worst-case.
Moreover, our algorithm requires only polylogarithmic bits of memory
per node. To our best knowledge, this is the first algorithm that is asymp-
totically optimal in handling nearest neighbor queries with low update
cost.

1 Introduction

In sensor networks, object tracking is an important application where the pres-
ence of particular objects (animals, vehicles, etc.) can be detected by nearby
sensors [5,7,10,13,17,20,22,23,25,26,35,37,38,40]. We consider in this paper the
nearest neighbor query problem, denoted as NNQ, in which the objective is to
track these mobile objects in such a way that any node in the network can locate
the nearest object, among the set of objects available in the network, from it at
any time with the minimum cost possible. We mean by locating nearest object
the finding of the closest sensor node that has (i.e., detects) the object. For an
example, consider a sensor network tracking the movement of taxies (as objects).
A pedestrian injects queries into the network from his location, by sending them
through nearby sensor nodes using devices, such as PDAs, for the nearest taxi.

P. Flocchini et al. (Eds.): ALGOSENSORS 2013, LNCS 8243, pp. 260–277, 2014.
DOI: 10.1007/978-3-642-45346-5 19, c© Springer-Verlag Berlin Heidelberg 2014
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The data will then be extracted from the relevant sensor nodes to respond to
the user. Note that NNQ is along the lines of the in-network data processing
problem for object tracking, e.g. [23,39], and different from the target tracking
problem to approximate the trajectory of moving objects, e.g. [3,28].

We model the problem of tracking mobile objects by a weighted graph G,
where graph nodes correspond to sensor nodes and graph edges correspond to
communication links between the sensor nodes. We assume that each sensor
node has its own memory where the objects information reside. A sensor node
that currently detects a mobile object is called the proxy node for that object at
that time. We consider a nearest-sensor model such that the sensor that is near
to the object becomes its proxy [8,25]. The proxy nodes change over time when
objects move. Proxy nodes are subset of sensor nodes which currently have (at
least) a detected object in their memory. Proxy nodes store the detected objects
and the bookkeeping information about objects in their memory. We sometime
denote sensor nodes by users. In NNQ, the objective is to find the nearest proxy
node.

Object tracking in NNQ involves two basic operations: query and update . A
query operation is invoked when a user is looking for the location of the nearest
object (i.e., the nearest proxy node). An update operation is initiated when the
object moves from one node to another, i.e., it updates the location of the objects.
Location queries and updates may be done in various ways. A naive way to query
is to flood the whole network. All proxy nodes will reply to the query and the
user which issued the request can choose the nearest one among them. Clearly,
this approach is inefficient due to energy consumed when the network is large or
the query rate is high [25]. Moreover, the time to answer a query is critical when
the network query rate is more frequent. Alternatively, if all location information
is stored at a specific node (e.g., the sink), no flooding is needed. But, whenever
a movement is detected, update messages have to be sent up to that specific
node all the time, which may be a major bottleneck. Moreover, when objects
move frequently, abundant update messages will be generated. Therefore, we are
interested in an approach for NNQ where query operations are not required to
be flooded and update operations are not always required to be sent up to the
sink. We assume that each node can issue query operations at any time, query
rate is frequent, and multiple queries from different nodes can exist.

Cost Model: Consider a set of m mobile objects in a sensor network G. We
assume that the cost to send messages between any pair of nodes in G depends
only on the distance (i.e., the edge weights) between them.

– Query cost: We measure the cost of a query operation with respect to the
communication cost, which is the total number of messages sent in the network
G by any NNQ algorithm to reach the closest proxy node from any requesting
node. The optimal communication cost for any query operation is the shortest
distance between the requesting node and its nearest proxy node in G. We
compare the communication cost of a NNQ algorithm for a query operation to
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the optimal communication cost for that operation to obtain query competitive
ratio, which is the approximation of the NNQ algorithm for queries.

– Update cost: When an object moves from one proxy node to another proxy
node, the optimal communication cost to update the location of that object is
at least the distance between these proxy nodes. This is because the distance
between the old and new proxy nodes is the actual minimum distance in G
the object traverses and hence any algorithm for NNQ needs to send messages
at least equivalent to this distance to reflect the location change in its NNQ
data structure. We compare the communication cost of a NNQ algorithm for
a set of update operations to the optimal communication cost for that set of
operations to obtain update competitive ratio, which is the approximation of
the NNQ algorithm for updates.

We look for a class of algorithms for NNQ that hold following two properties:
(1) NNQ can be answered with the cost that is proportional to the shortest
distance to the closest proxy node from the requesting node in G, and (2) The
data structure needed for answering NNQ can be maintained with the cost that
is proportional to the minimum distance the objects traverse if they followed
shortest paths in G. We present a NNQ algorithm in this work which is optimal
for query cost and near-optimal for update cost.

Existing techniques focused on aggregation and join queries, e.g. [18,30], and
not much work has been done on nearest neighbor queries [31]. Previous work on
nearest neighbor queries has focused only on finding the nearest sensor nodes to
a specific query point [11,36]. This is different from our objective of finding the
nearest mobile object from any sensor node at any time. Authors in [23,25,26,38]
focused on tracking mobile objects but queries are only supported from the
specific sink node. These papers [5,10,33–35] tried to solve the NNQ problem
but with only one object; for multiple objects the structure developed should
be replicated for every object. This replication increases the query cost linearly
with the number of objects because, to find the nearest object, an algorithm
may need to visit all the structures one after another.

Contributions: We propose a scalable query-optimal distributed NNQ algo-
rithm for m mobile objects with near-optimal update cost in constant doubling
networks, including low-dimensional Euclidean and growth-restricted networks,
which has been used as an appropriate model of sensor network metric in several
prior papers [10,16,17,29,40]. Our NNQ algorithm incurs a query competitive
ratio of O(1), i.e. if the nearest object is at proxy node u at distance d from the
query node v then our algorithm finds that object with the total cost of only
O(d). We consider query operations individually and they have always small
cost. To our best knowledge, this is the first result that achieves a constant-factor
optimal solution to the nearest neighbor queries in realistic sensor networks that
holds in the worst-case. In some cases, our algorithm may not return the actual
closest proxy u at distance d but a proxy within distance O(d) from the request-
ing node. We call the distance ratios of the returned versus the closest proxies
as the query closeness ratio which is O(1) in our algorithm.
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Our NNQ algorithm provides O(min{log n, log D}) competitive ratio on the
total communication cost for any set of update operations to maintain the
required data structure, where n and D, respectively, are the number of nodes
and the diameter of the network. This result assumes the one by one case where
the next update operation does not arrive until the current update operation is
finished. This assumption captures the application scenarios where event inter-
arrival times are much greater compared with the message propagation time
[17]. The reason for analyzing a sequence of update operations is because they
provide small amortized update cost compared to the analysis of a single only
update operation.

Moreover, we analyze the memory requirement of our NNQ algorithm through
the total number of memory bits it uses in the network nodes to store both the
object and the bookkeeping information. Our algorithm has the total memory
requirement of only O(log n · log D) bits per node, independent of the number
of objects m.

We also extend our results to general networks. For any query operation, our
NNQ algorithm provides O(log4 n) competitive ratio, and for any set of update
operations, it provides O(min{log3 n, log2 n · log D}) competitive ratio. Also, an
object returned by a query operation guarantees the closeness ratio of O(log2 n).
This update competitive ratio is optimal within a poly-log factor in light of the
α( log n

log log n ) lower bound due to Alon et al. [2] in hypercubes and highly expanding
graphs. Moreover, the memory requirement is only O(log2 n·log D) bits per node.
All of our bounds are deterministic and hold in the worst-case.

Approach: The main idea is to maintain a hierarchical structure on top of the
underlying sensor network metric so that a distributed algorithm that runs on
the hierarchical structure can give almost optimal approximation ratio for both
query and update operations. In the literature, various problems were solved
in sensor networks using hierarchical structures providing good approximations,
e.g. [1,5,10,16,17,22,29,40].

We extract from G a hierarchical structure, denoted HS, which organizes the
nodes into levels (see Fig. 1) using a simple distributed maximal independent
set algorithm [27]. The structure HS has O(log D) levels, where at each level
there are leader nodes pointing to leaders of lower level. The leaders of higher
levels are subsets (refinements) of leaders at lower levels. All the individual
nodes in the network are by default leaders in the bottom level (level 0) of
HS and there is a single leader node of the whole network graph at the top
level (level h = O(log D)) which is called the root. Only the bottom level nodes
can issue query and update requests for the objects in the network, while the
nodes in higher levels are used to propagate the request operations in the graph.
The nodes in higher levels store the pointer information for the objects in their
vicinity.



264 G. Sharma and C. Busch

Fig. 1. Illustration of mobile object tracking (� are objects).

The idea
now is to main-
tain a virtual
tree, denoted
as T (Fig. 1
with only bold
edges), on HS
with edges sp-
anning the
given set of
mobile objects.
(We call T a
virtual tree as
it may contain
cycles when projected to G.) T consists of object paths which are directed paths
from the root to the bottom-level nodes that own the objects (for example,
the path r − u3 − u2 − u1 − 1 in Fig. 1a). Tree T is dynamic and it changes
after every update operation. The object path pointing to an object is updated
whenever the object moves from one node to another (e.g., the paths u1 − 1 and
r−u3−v2−w1−4 in Fig. 1b). These path updates are done through correspond-
ing messages, delete and insert (which together constitute an update operation),
issued respectively by the nodes that lose and get the objects (nodes 1 and 4,
resp., in Fig. 1b). A delete goes upward in HS following the object path pointing
to it in the reverse order and removes existing downward pointers in its way. An
insert follows a pre-specified path in HS, which we refer to as root path, and may
be different than an existing path in HS; while going upward, it sets downward
pointers on its way. This upward propagation will be stopped when these insert
and delete messages meet at a common ancestor (u3 in Fig. 1b). Therefore, our
approach is different than the differential one-from studied in [32] for target
tracking.

The root path of a node is built by visiting upward the set of limited nearby
leader nodes of that node starting from the bottom level up to the top level
(details in Sect. 2). The object paths are built upon the root paths of nodes
initiating update operations in the graph, i.e., object paths are formed from
the fragments of root paths of different leaf nodes. In a query operation, each
requesting node uses its root path to intersect the first object path in its upward
propagation and then reaches the object without modifying the existing tree T
in its downward propagation (queries from nodes 1 and 6 in Fig. 1c for nearest
objects).

The initial tree T is obtained by publishing the objects in the proxy nodes
they were first detected following their respective root paths towards the root,
making each parent pointing to its child. This process is repeated until the
root paths intersect with object paths previously set by some other objects,
and hence forming the initial object path for each object. While maintaining
the object paths, there may be the case that object pointers from two different
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nodes at some level point to the same immediate child node in T , thus, creating
cycles. In this case, we maintain T by removing appropriately the problematic
fragments of object paths that may create cycles (e.g., the fragment w3−w2−w1

in Fig. 1b).
We borrow some ideas of object and root paths from [35]. The novelty of

this work is on how to deal with multiple objects; paper [35] and other closely
related work [5,10,20,33,34] dealt with only one object. The extension to multi-
ple objects case is non-trivial. This is because we can create different structures
for each object using the approaches of [5,10,20,33–35], but the approximation
for a query operation increases by O(m) factor in the worse case using structure
replication. A hierarchically well-separated tree (HST) approach using [6,14]
would be probabilistic, giving bounds for the expected cost for both query and
update, while our bounds are deterministic.

Related Work: Demirbas and Ferhatosmanoglu [11] use R-trees [19] to locate
nearest sensor nodes in sensor networks. Winter and Lee [36] gave an algorithm
to locate k nearest sensor nodes. However, they [11,36] focused only on locating
nearest sensor nodes which usually do not change over time. Yao et al. [37]
focused on moving objects tracked by a sensor network, where the sensor nodes
are spreading over a 2-dimensional space, from the observation that the nearest
object may not be detected by the nearest sensor node and tried to locate the
nearest object to a given query point. Demirbas et al. [9,12] studied the problem
of event querying for checking whether a predefined event happened in a region;
however, did not consider nearest neighbor queries.

Another line of work [1,15,22,24] studied the problem of providing a location
service for ad hoc networks to allow any source node to know the location of
any destination node to establish communication sessions between nodes whose
location is unknown. Authors in [1,15] presented a routing framework such that
each node can send messages to any other node without knowing the position of
the destination node. Recently, Kulathumani et al. [22] gave an algorithm Trail
for distributed object tracking. However, this location service problem is different
in the sense that all these work did not consider nearest neighbor queries similar
to ours. Moreover, GLS [24] made little effort to handle updates, so that even
the update operations for the object at nearby nodes need to reach to the root
of the structure to find those nearby nodes.

Paper Organization: The rest of the paper is organized as follows. We discuss
the model and the hierarchical structure in Sect. 2. We then present algorithm
in Sect. 3 and analyze it in Sect. 4. We then provide extensions to general graphs
in Sect. 5. Proofs (and also some related work) are deferred to full version due
to space restrictions.
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2 Preliminaries

Model: We consider a static sensor network G = (V,E,w) consisting of n sensor
nodes V , where E represents interconnection links between sensor nodes and the
weight function w : E ≥ R

+ corresponds to the latency of communication links.
We have m mobile objects M. Objects are tracked by nearby sensor nodes
which are proxy nodes. Each node in V has a unique identifier. The weight of
a link is equal to the communication cost of sending a message over the link.
We assume that w(u, u) = 0 for any u ← V . For simplicity, we assume that the
weight of a link is provided according to the distance between two sensor nodes
in the network. We take G to be connected, i.e., there is a path of nodes (with
respective sequence of edges connecting the nodes) between any pair of nodes in
G. Let distG(u, v) be the shortest path length (distance) between nodes u and
v with respect to the weight function w in G. The k-neighborhood of a node v
is the set of nodes which are within distance at most k from v (including v).
The diameter is D = maxu,v◦V distG(u, v), which denotes the maximum shortest
path distance over all pairs of nodes in G. We assume that nodes and links do
not crash and there is FIFO communication between nodes (i.e. no overtaking
of messages occurs).

Hierarchical Structure Construction: We describe how to build a hierarchi-
cal structure HS on the sensor network for later use in the NNQ algorithm. Hier-
archical structures were used to solve different problems in sensor networks, e.g.
[1,5,10,16,17,22,29,40]. For simplicity, we focus mostly on a constant-doubling
network; we describe how to handle other networks in Sect. 5. The doubling
dimension graph is defined as follows: Let the space within radius β of a point be
called the ball centered at that point. A point set γ has doubling dimension Θ
if any set of points in γ that are covered by a ball of radius β can be covered by
2α balls of radius ε

2 . We say that a metric is doubling and has a low dimension if
Θ is bounded by a constant and is small. A constant-doubling network has been
used as an appropriate model of a sensor network metric in a large body of prior
work [10,16,17,29,40]. We select the nodes to include in HS using a distributed
maximal independent set algorithm; we particularly consider the algorithm due
to Luby [27]. This structure was used before by Sun and Herlihy in [20] for a
problem in the different context.

We now discuss in detail the construction of HS. We define a sequence of
connectivity graphs I := {I0 = (V0, E0), I1 = (V1, E1), . . . Ih = (Vh, Eh)}, where
0 is the lowest level where HS construction begins and h ∈ ≤log D∀ + 1 is the
highest level where the HS construction ends. We choose to include nodes of
the original network G in Ii, 0 ∈ � ∈ h, as follows. At level 0, we include all
sensor nodes of G in I0 such that V0 := V , and for any two nodes u, v ← V0,
there is an edge (u, v) ← E0 if and only if distG(u, v) < 21. We call the nodes
in I0 the leaf nodes. We denote by MIS0 a maximal independent set of I0.
At level 1 ∈ � ∈ h − 1, we include only nodes from MISδ−1 in Iδ such that
Vδ := MISδ−1, and for any two nodes u, v ← Vδ, there is an edge (u, v) ← Eδ if
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and only if distG(u, v) < 2δ+1. We call the nodes in Iδ the level � nodes. MISδ

is a maximal independent set of Iδ. At level h, Ih contains exactly one node,
which we call the root node.

We define default parent and parent set for each level � node w ← Iδ. The
default parent of w ← Iδ is a node in Iδ+1 that is closest to w, i.e., it is the node
at distance at most 2δ+1 away from w. The parent set of w ← Iδ is a subset of
nodes in Iδ+1 that are within distance 4 · 2δ+1 of w including the default parent.

HS described above is a layered node structure on I. The vertex set in it is
the level-0 through level-h nodes in the connectivity graphs I0 to Ih. The edges
in HS are formed by drawing edges between parent-child pairs in two consecutive
level connectivity graphs Iδ and Iδ+1. (Note that we do not consider the edges
we formed in I construction for the edges in HS.) Therefore, the edges span
only between two consecutive level nodes. These edges are logical edges which
are simulated by the physical edges in G following the edges in the shortest path
between the nodes that are connected in HS. Moreover, the nodes at each level
� ∪ 1 are again the logical nodes which are simulated by the physical nodes
in the sensor network similar to edges. That is, some nodes in the network G
participate as parent nodes for many levels in HS and some edges participate in
connecting many parents in different levels.

We denote by homeδ(x) the level-� default parent of x. These default par-
ents for a leaf node x for each level are defined recursively up to the root such
that home0(x) = x and homeδ(x) is the default parent of homeδ−1(x). These
homeδ() nodes are useful in defining parent sets. We denote by parentsetδ(x) the
parent set of homeδ−1(x) (the nodes at level � within 4 · 2δ+1 from homeδ−1(x)).
According to the construction of HS and the definition of parent sets, all
level-(� + 1) parents of level � node w can be covered by 22α radius-2δ neigh-
borhood balls. Also, different level-(�+1) parents of w are at least distance 2δ+1

from each other since they are maximal independent sets at level �, i.e. two dif-
ferent parents cannot be from the same radius-2δ neighborhood. Therefore, w
has no more than 22α level-(� + 1) parents.

Observation 1. In constant-doubling networks, there are at most 22α parent
nodes at level � + 1 for any node at level �.

We now define a path Root Path(u) for each node u ← V which will refer
to as the “root path” of u. Root Path(u) is formed by connecting the ascending
sequence of parent sets of node u in HS starting from parentset0(u) = u at
level 0 to parentseth(u) = r at level h (the root level). As there are at most 22α

nodes in the parent set of any leaf level node at each level �, all the nodes in the
parent set parentsetδ(u) are visited in that level � according to their node IDs
starting from the smallest ID node and ending in the highest ID node. Thus, the
highest ID node in parentsetδ(u) at level � is connected to the smallest ID node
in parentsetδ+1(u) at level � + 1 to form Root Path(u). Nodes in parentsetδ(u)
in each level � for each node u are visited according to this order for both
query and update operations. In Algorithm 1 at Sect. 3, however, we just use the
Root Path(u) formed from considering only one node in parentsetδ(u) at every
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level 1 ∈ � ∈ h for simplicity in describing update operations. We denote the
next node towards the root for a current node w in the root path Root Path(u)
of any node u by the parent of w and the previous node by its child. We say that
two paths intersect if they have a common node. We also say that two paths
intersect at level i if they visit the same leader node at level i. We have the
following lemma.

Lemma 1. For any two nodes u, v ← V , their root paths Root Path(u) and
Root Path(v) intersect at level min{h, ≤log(distG(u, v))∀ + 1}.

In our algorithm in Sect. 3, we sometime need to examine paths which are
obtained from fragments of root paths, which we call “object paths”. The root
path is a trivial object path. In general, an object path is obtained by concate-
nating the fragments of root paths of several nodes. This scenario occurs when
root paths for the objects are changed by many updates in HS from different
nodes due to object movements. We can bound the lengths of the root paths
and object paths as follows.

Lemma 2. For the root path Root Path(u) from each node u ← V (or the object
path Object Path(u)) up to level j, denoted as Root Pathj(u) (or Object Pathj(u)),
length(Root Pathj(u)) ∈ 2j+2α+4.

3 NNQ Algorithm

High Level Overview: Consider a set M = {ξ1, ξ2, . . . , ξm} of |M| = m
mobile objects. The proxy of each object ξi is the sensor node which currently
detects it. The main goal of our NNQ algorithm is to maintain a virtual tree
T (Fig. 1 with only bold edges) that spans only the proxy nodes of the objects
in HS (Sect. 2) all the time (even when the objects move). We will argue that
T supports best possible answering of NNQ queries, which are for the nearest
objects from the query nodes. The downward pointers pointing to the objects are
used in T formation. This is done by maintaining an object path (for each object
ξi) which is a directed path from the root node r of HS to the bottom-level node
that is the proxy of ξi.

For maintaining T and facilitating NNQ, we use following three operations:
publish, query, and update. publish operations are used to form the initial object
paths in HS pointing to the objects (this can also be seen the special case of insert
operations we describe later). These initial objects paths are formed from the
root paths of the proxy nodes that detect the objects. The node, say u, becomes
the first proxy of ξi if it issues a publish operation. The publish operation is
applied for each object only once in the beginning. publish makes objects findable
in HS for future query and update operations. The query operation is issued by
any sensor node to obtain the nearest object among m objects (from the proxy
of that object) from its location. The update operation is used when the object
is moved from the current proxy node to some new proxy node. This operation
is realized through two different operations: (i) insert which is issued at the new
proxy node and (ii) delete which is issued at the current proxy node.
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Fig. 2. Maintaining T (� are objects)

A query operation issued by
a node x for the closest object
ξi from its location uses its
own Root Path(x) which inter-
sects with the first object path
and then leads to the object
ξi. Let v be the proxy of
ξi. Let w be the intersecting
node of Root Path(x) and the
object path Object Path(v) to v.
The query message is first sent
upward HS along Root Path(x)
towards the root r until it inter-
sects at a node (i.e., w) with
Object Path(v), and then the request message follows Object Path(v) from node
w to the object proxy v; then v sends ξi (or related information, e.g. its location)
to x (along some shortest path in the original network G) as asked by the query
node.

An update operation for ξi is issued when ξi is moved from the current proxy
x to the new proxy y, y issues an insert operation and x issues a delete operation,
respectively (Fig. 2). Let w be the intersecting node (i.e., common ancestor) of
the root path Root Path(y) of the node y and the object path Object Path(x)
pointing to x. The intersecting node w guaranteed to exist because in the worst-
case scenario the paths intersect at the root r. The update is implemented by
sending insert message from y and a delete message from x upward in HS,
respectively, along Root Path(y) and Object Path(x) in the reverse order, until
the insert and delete messages intersect at a node (i.e. node w). While going up,
insert and delete messages modify their respective paths to point toward y. The
insert operation sets the directions of the edges in the fragment of Root Path(y)
between y and w to point toward y. Whereas, the delete operation deletes the
downward pointers (or links) in the fragment of Object Path(x) from w to x.
The new object path for ξi now points toward y. This process has resulted to a
object path that consists of two root path fragments, a fragment of x’s root path
from r to w, and a fragment of y’s root path from w to y. Subsequent update
operations may result into further fragmentation of the object path into multiple
root path fragments.

The above description of query and update operations applies when there is
only one object in the network. When there are many objects, the insert and
delete operations for ξi, when it moves from x to y, may not always need to
reach to the common ancestor w. This is because insert operation from y may
find an object path pointing to an object at proxy z, before reaching w following
Root Path(y). As shown in Fig. 2a, insert from y only needs to set the downward
pointers up to node y1 (not up to the common ancestor w as shown in Fig. 2b),
as there exists already an object path pointing to the object at node 4. Similarly,
the delete operation also may not need to remove the downward pointers up to
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Algorithm 1: NNQ algorithm
1 Publish object at leaf node vi:
2 k ≥ 1;

3 Until node pk(vi) is not a root node OR pk(vi).degree = 0 do

4 Set pk(vi).pointer = pk−1(vi); k ≥ k + 1;

5 Set pk(vi).pointer = pk−1(vi);
6 Query nearest object by leaf node vi:
7 k ≥ 1;

8 Until t.degree > 0 or t.spcl degree > 0 for any t ∈ parentsetk(vi) do
k ≥ k + 1;

9 If t.degree > 0 then Go to the proxy node following downward pointers
t.pointer ∨= ∅ and send information to vi;

10 Else Go to the proxy node following downward pointers starting first
t.spcl pointer ∨= ∅ and send information to vi;

11 Insert object by leaf node vi received from leaf node vj:
12 k ≥ 1;
13 Until a delete message from vj is not found do

14 If pk(vi).degree = 0 then Set pk(vi).pointer = pk−1(vi); Set

spcl parent(pk(vi)).spcl pointer = pk(vi);
15 If t.pointer = pk(vi) from t /∈ pk+1(vi) then

delete downward fragment(pk(vi));
16 k ≥ k + 1;

17 If pk(vi).degree = 0 then Set parentk(vi).pointer = pk−1(vi); Set

spcl parent(pk(vi)).spcl pointer = pk(vi);
18 If t.pointer = pk(vi) from t /∈ pk+1(vi) then

delete downward fragment(pk(vi), t);
19 Delete object from leaf node vj that moved to leaf node vi:
20 k ≥ 1;
21 Until an insert message from vi is not found do
22 If delete message is of type erase then

23 Set pk(vi).pointer = ∅ to pk−1(vi) in Object Path(vi);

24 Set spcl parent(pk(vi)).spcl pointer = ∅ to its special child pk(vi);

25 If pk(vi).degree > 0 then

26 Set pk(vi).pointer = ∅ to pk−1(vi) in Object Path(vi);

27 Set spcl parent(pk(vi)).spcl pointer = ∅ to its special child pk(vi);
28 Change delete message type from erase to relay;
29 If delete message is of type relay then Forward the delete message to

pk+1(vi);
30 k ≥ k + 1;
31 delete downward fragment(x, y):
32 Set y.pointer = ∅ for x;
33 If y.degree = 0 then delete downward fragment(y, y√) for y√ which has

y√.pointer = y;
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w; simply deleting the downward pointers in the fragment of object path from
x to the node that has downward pointer (w1 in Fig. 2a) pointing to some other
node is sufficient. This approach provides the minimum communication cost for
update operations because the insert and delete messages reach to the common
ancestor only in the worst-case. However, it may not provide any guarantee on
the cost of query operations, i.e., the nearest object that is requested by a node
may be in its neighboring node but the query operation may need to reach up to
the root r to find an object path leading to that object. This is due to the possible
enormous fragmentation of the object paths after several update operations.

We avoid this situation and guarantee efficiently query cost along with low
update cost using the following two ideas: (1) To minimize the update cost, our
algorithm always matches the insert message from y with its corresponding delete
message from x at the common ancestor node w (Fig. 2b), and (2) To guarantee
low query cost simultaneously with low update cost, our algorithm uses the
concept of a special parent node, such that whenever a downward pointer is set
at a node t ← parentsetk(.) the special parent node of t is also informed about
t holding a downward pointer. The special parent is selected in Root Path(y)
for any node t in such a way that any query close to t will either reach t or its
special parent (details in Definition 1).

Algorithm Description: We now formally describe the algorithm. The algo-
rithm is given in Algorithm 1. We assume that each node in G knows its parent
and special parent in HS (both in its root path), except the root node, whose
parent and special parent are both ⊥ (null). We define special parent node as
follows:

Definition 1. We denote a special-parent node of a level i parent node
pi(u) of a node u in Root Path(u) as spcl parent(parenti(u)) such that
spcl parent(parenti(u)) is the pk(u) of u in Root Path(u) at level k, where
k = i+2Θ+4, i.e., spcl parent(pi(u)) is some parent node of u in Root Path(u)
at level k.

A node might have pointers and spcl pointers towards its children (otherwise
they are ⊥); there is at least a pointer at the root that is not ⊥. If we view
pointers and spcl pointers that are not null as directed edges in HS, they always
point down. We denote by degree the number of pointers and spcl degree the
number of spcl pointers that are set at any node in HS (e.g., the degree of node
y1, denoted as y1.degree in Fig. 2 is 2 but w1.degree is 1). We assume nodes
process messages sequentially.

For simplicity, assume that there is only one parent node pδ(.) at any level
�. Therefore, Root Path(x) of a leaf node x is the concatenation of p0(x) = x,
p1(x) up to ph(x) = r, such that pk(x) is the level k parent node of x, pk−1(x)
and pk+1(x) are its child and parent node both in Root Path(x), and r is the
root (Sect. 2).

Recall that we did not use parentsetk(.) in Algorithm 1. When we use
parentsetk(vi) set then we only need to set the pointer from next parent to
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the current one in the order of the nodes in parentsetk(vi). The lowest ID
node t ← parentsetk(vi) has t.pointer that is set to the highest ID node in
parentsetk−1(vi), second lowest ID node t1 ← parentsetk(vi) has t1.pointer = t,
and so on, such that the lowest ID node t∈ ← parentsetk+1(vi) has t∈.pointer
set to the highest ID node in parentsetk(vi). This technique is very useful as
it avoids the need of an expensive synchronization mechanism in concurrent
situations.

4 Performance Analysis

In this section, we analyze the performance of Algorithm 1 for query and update
operations. We assume a synchronous communication model such that the com-
munication link latency is predictable. Note that our algorithm provides cor-
rectness without this assumption. We assume that a time unit is of duration
required for a message sent by a node to reach a destination node that is a
unit distance far from it. Assuming an execution starts at time 0, we define
a notion of time windows similar to [34] which will be helpful in the analysis
to obtain upper bounds for the communication cost and also respective lower
bounds. As the lower bound is based on actual distances in the original graph
G, it will hold also in asynchronous executions where the latency is difficult to
predict. We have the sequence of windows for each level k, 0 ∈ k ∈ h, i.e.,
Wk = {W 0

k ,W 1
k , . . .}, where W 0

k is the first window at level k, W 1
k is the second

window at level k, and so on; each time window W i
k is assumed to be of time

duration 2k+2α+4, 0 ∈ k ∈ h (Lemma 1). W j+1
k starts immediately after W j

k

expires. Due to synchrony assumption, the windows are aligned in such a way
that Wk−1 starts at the same time with Wk. Thus, for one window at level h,
there are exactly two windows at level h−1, exactly four windows at level h−2,
and so on, so that there are exactly 2h−k windows at level k. The requests from
level 0 are forwarded to level 1 at the end of the window W0. Level 1 parents
forward requests to level 2 at the end of the window W1. This proceeds at higher
levels and in a similar way to the downward direction. Therefore, at the end
of a window, each level k parent node can exchange a message with its parent
neighbors at level k + 1 or level k − 1.

We start with the cost due to publish operations. The publish cost is the total
communication cost that is needed for a leaf proxy node that initially detects
the object to insert it in HS. Note that the publish operation adds downward
pointers on the publishing leaf proxy node’s root path towards the root. This
process repeats until the publish operation visits either the root node or there
exists a downward pointer, z.pointer at any level k parent node z in the root
path of the publishing proxy node. Therefore, the total communication cost for
a publish operation is O(D), which immediately follows from Lemma 2, since
the number of levels h = ≤log D∀ + 1 in HS. Note that this is one time cost and
will be compensated from query and update operations issued thereafter.
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Query Cost: We focus on the competitive ratio C(r)/C∗(r), where C(r) is the
total communication cost of serving a query operation r using Algorithm 1 and
C∗(r) is the optimal cost of serving r. If there are no update operation in the
system, it is trivial to see that a query operation r from x finds the first object
path to the nearest proxy v, at level ≤log(distG(x, v))∀ + 1 (Lemma 1), following
Root Path(x), where distG(x, v) is the distance of the proxy v from x in G. When
there are update operations in the system, the query r issued by x may not find
the object path to v from it at level ≤log(distG(x, v))∀ + 1 because the object
path Object Path(v) to v might have been deformed significantly such that the
2(≥log(distG(x,v))�+1)-neighborhood of x has no information about the proxy v.
Nevertheless, we prove Theorem 1.

Lemma 3. If a node x issues a query operation r for the closest object ξi at
proxy v at distance distG(x, v) ∈ 2i, Root Path(x) is guaranteed to find the
Object Path(v) to v at level k ∈ i + 2Θ + 4.

Theorem 1. The competitive ratio of Algorithm 1 for any query operation is
O(1).

Let a node x issues a query operation r and there is the closest object ξ at
the proxy node v at distance distG(x, v) ∈ 2i. Our NNQ algorithm may return
an object ξ that is not at v but at some other node u. We bound the ratio
D(r)/D∗(r), which we denote as the query closeness ratio, where D(r) is the
distance to the proxy node of the farthest object that may return by a query
operation and D∗(r) is the distance to the proxy node of the closest object. This
is also due to the fragmentation of root paths caused by update operations. In
particular, we prove the following lemma.

Lemma 4. The closeness ratio of Algorithm 1 for any query operation is O(1).

Update Cost: We now prove the performance of our NNQ algorithm for update
operations. We consider a sequence of update operations (realized through the
combination of insert and delete operations) on the objects. Lets define a one by
one execution of a set E of l (l does not need to be known) update operations
E = {r1 = (u1, v1), r2 = (u2, v2), . . . , rl = (ul, vl)}, where ri = (ui, vi), 1 ∈ i ∈ l,
are the subsequent update operations with old proxy nodes ui and new proxy
nodes vi. This execution captures the scenarios where event inter-arrival times
are much greater than the message propagation times [17]. We define an array
S = {S0, S1, . . . , Sh} of counters to keeps track of the levels visited by each
operation ri in HS when objects move. Initially, each Si = 0. At the end of the
execution of E , each Si have the count of the total number of operations that
reached level i. The peak level for an operation ri is the maximum level reached
by ri in HS. According to our assumption, as publish operations for each object
are executed before the first update operation r1, the peak level reached by r0
for at least an object is h (the maximum level in HS) and r0 is counted at
all Si starting from S0 to Sh. In other words Si = 1 for 0 ∈ i ∈ h after the
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first publish operation. For each update operation ri ← E , i > 0, we keep track
of it by registering it at all the counters Si from 0 to k until insert meets its
corresponding delete operation at its peak level k. That is, after each update
Si = Si + 1 for 0 ∈ i ∈ k when k is the peak level for that update . We have
that k ∈ h.

Let C∗(E) denote the total communication cost of serving all the operations
in E using the optimal algorithm in G. Let C(E) denote the total communication
cost of serving all the operations in E using Algorithm 1. The total communica-
tion cost is measured through the total distance traversed by all the messages.
We bound the competitive ratio CRNNQ = maxE C(E)/C∗(E) as given in Theo-
rem 2.

Theorem 2. The update competitive ratio of Algorithm 1 is O(min{log n,
log D}).

Memory Requirement: The memory requirement of our NNQ algorithm is
the total amount of memory bits it uses in the nodes of the network to track m
mobile objects S. We prove the following theorem (details are omitted).

Theorem 3. The memory requirement of Algorithm 1 is O(log n · log D) bits
per node.

5 Extensions to General Networks

We now show the scalability of our NNQ algorithm in general network topolo-
gies. We use a (O(log n),O(log n)) partition scheme of [4,21,35] to maintain a
hierarchical structure HS in general networks. This partition scheme is based on
well-known ideas for clustering the graph to approximate graph distance metrics
by distributions over tree metrics [6,14] on a general metric network. A similar
scheme is used by [29] to solve the problem of distributing information from
a collection of sources to mobile users in a wireless mesh network. This scheme
computes a (coarsening) cover C in deterministic polynomial time [35] such that:
(1) for each v ← V , Br(v) = {u ← V |distG(u, v) ∈ r} is contained in at least one
set in C; (2) every vertex v is contained in at most O(log n) sets in C; and (3)
each set in C has radius at most O(r · log n), for any r > 0. This scheme can
also be computed through a distributed algorithm in a message efficient manner
similar to [17]. We do not use directly the HST tree constructed using [6,14]
for NNQ algorithm as the HST tree construction of [6,14] is probabilistic and
bounds the cost only in expectation.

There are h ∈ ≤log D∀+1 levels in this (O(log n),O(log n))-partition scheme.
At level 0, each node in V belongs to exactly one cluster which consists only of
the node itself. At highest level (h), there are O(log n) copies of the cluster that
contains all the nodes in V ; only one copy is kept removing the rest to have just
only one cluster at level h in HS. In any level i, 1 ∈ i ∈ h − 1, each node u ← V
belongs to exactly O(log n) clusters. We select a leader node arbitrary for each
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cluster from the nodes that are in that cluster so that HS can be the hierarchical
structure of leader nodes of all clusters at all the levels mentioned above.

Similar to Sect. 3, the parent set parentsetδ(x) of x are all the parent nodes
within distance O(2δ · log n) of x; according to this HS construction, the total
number of nodes in the parent set are O(log n). These parent child pairs are
connected similarly to Sect. 2. The Object Path(u) for each node u ← V visits
the leader nodes in parentsetδ(u) at level � that u belongs to according to the
level of the clusters (derived from labeling the O(log n) hierarchical partitioned
hierarchies used in (O(log n),O(log n))-partition scheme construction; details
in [35]) starting from the smallest label cluster and ending at the largest label
cluster. Object paths are also defined similarly. Moreover, we set the time window
of duration O(2k ·log2 n) for each level 1 ∈ k ∈ h. We have these following results
in general networks.

Lemma 5. For any two nodes u, v ← V in general networks, their root paths
Root Path(u) and Root Path(v) intersect at level min{h, ≤log(distG(u, v))∀ +
1}. Moreover, for the root path Root Path(u) from each node u ← V (or
the object path Object Path(u)) up to level j, denoted as Root Pathj(u) (or
Object Pathj(u)), length(Root Pathj(u)) ∈ O(2k · log2 n).

Lemma 6. If a node x issues a query operation r for the closest object ξi

at proxy v at distance distG(x, v) ∈ 2i, Root Path(x) is guaranteed to find
Object Path(v) to v at level k ∈ i + 2 + 2 log log n + log c, for some positive
constant c.

Theorem 4. The competitive ratio of Algorithm 1 for any query operation is
O(log4 n) in general networks.

Lemma 7. The closeness ratio of Algorithm 1 for any query operation is
O(log2 n) in general networks.

Theorem 5. The update competitive ratio of Algorithm 1 is O(min{log3 n,
log2 n · log D}) in general networks.

Theorem 6. The memory requirement of Algorithm 1 is O(log2 n · log D) bits
per node in general networks.

References

1. Abraham, I., Dolev, D., Malkhi, D.: Lls: a locality aware location service for mobile
ad hoc networks. In: DIALM-POMC, pp. 75–84 (2004)

2. Alon, N., Kalai, G., Ricklin, M., Stockmeyer, L.: Lower bounds on the competitive
ratio for mobile user tracking and distributed job scheduling. Theor. Comput. Sci.
130(1), 175–201 (1994)

3. Aslam, J., Butler, Z., Constantin, F., Crespi, V., Cybenko, G., Rus, D.: Tracking
a moving object with a binary sensor network. In: SenSys, pp. 150–161 (2003)

4. Awerbuch, B., Peleg, D.: Sparse partitions. In: FOCS, vol. 2, pp. 503–513 (1990)



276 G. Sharma and C. Busch

5. Awerbuch, B., Peleg, D.: Online tracking of mobile users. J. ACM 42(5), 1021–1058
(1995)

6. Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic appli-
cations. In: FOCS, pp. 184–193 (1996)

7. Can, Z., Demirbas, M.: A survey on in-network querying and tracking services for
wireless sensor networks. Ad Hoc Netw. 11(1), 596–610 (2013)

8. Chen, W.P., Hou, J.C., Sha, L.: Dynamic clustering for acoustic target tracking in
wireless sensor networks. In: ICNP, pp. 284– 294 (2003)

9. Demirbas, M., Arora, A., Kulathumani, V.: Glance: a lightweight querying service
for wireless sensor networks. Theor. Comput. Sci. 410(6–7), 500–513 (2009)

10. Demirbas, M., Arora, A., Nolte, T., Lynch, N.A.: A hierarchy-based fault-local sta-
bilizing algorithm for tracking in sensor networks. In: Higashino, T. (ed.) OPODIS
2004. LNCS, vol. 3544, pp. 299–315. Springer, Heidelberg (2005)

11. Demirbas, M., Ferhatosmanoglu, H.: Peer-to-peer spatial queries in sensor net-
works. In: P2P, pp. 32–39 (2003)

12. Demirbas, M., Lu, X., Singla, P.: An in-network querying framework for wireless
sensor networks. IEEE Trans. Parallel Distrib. Syst. 20(8), 1202–1215 (2009)

13. Demmer, M.J., Herlihy, M.P.: The arrow distributed directory protocol. In: Kutten,
S. (ed.) DISC 1998. LNCS, vol. 1499, pp. 119–133. Springer, Heidelberg (1998)

14. Fakcharoenphol, J., Rao, S., Talwar, K.: A tight bound on approximating arbitrary
metrics by tree metrics. J. Comput. Syst. Sci. 69(3), 485–497 (2004)

15. Flury, R., Wattenhofer, R.: Mls: an efficient location service for mobile ad hoc
networks. In: MobiHoc, pp. 226–237 (2006)

16. Funke, S., Guibas, L.J., Nguyen, A., Wang, Y.: Distance-sensitive information bro-
kerage in sensor networks. In: Gibbons, P.B., Abdelzaher, T., Aspnes, J., Rao, R.
(eds.) DCOSS 2006. LNCS, vol. 4026, pp. 234–251. Springer, Heidelberg (2006)

17. Gao, J., Guibas, L., Milosavljevic, N., Zhou, D.: Distributed resource management
and matching in sensor networks. In: IPSN, pp. 97–108 (2009)

18. Gupta, H., Chowdhary, V.: Communication-efficient implementation of join in sen-
sor networks. Ad Hoc Netw. 5(6), 929–942 (2007)

19. Guttman, A.: R-trees: a dynamic index structure for spatial searching. SIGMOD
Rec. 14(2), 47–57 (1984)

20. Herlihy, M., Sun, Y.: Distributed transactional memory for metric-space networks.
Distrib. Comput. 20(3), 195–208 (2007)

21. Jia, L., Lin, G., Noubir, G., Rajaraman, R., Sundaram, R.: Universal approxima-
tions for tsp, steiner tree, and set cover. In: STOC, pp. 386–395 (2005)

22. Kulathumani, V., Arora, A., Sridharan, M., Demirbas, M.: Trail: A distance-
sensitive sensor network service for distributed object tracking. ACM Trans. Sen.
Netw. 5(2), 15:1–15:40 (2009)

23. Kung, H.T., Vlah, D.: Efficient location tracking using sensor networks. In: WCNC,
vol. 3, pp. 1954–1961 (2003)

24. Li, J., Jannotti, J., De Couto, D.S.J., Karger, D.R., Morris, R.: A scalable location
service for geographic ad hoc routing. In: MobiCom, pp. 120–130 (2000)

25. Lin, C.Y., Peng, W.C., Tseng, Y.C.: Efficient in-network moving object tracking
in wireless sensor networks. IEEE Trans. Mob. Comput. 5(8), 1044–1056 (2006)

26. Liu, B.H., Ke, W.C., Tsai, C.H., Tsai, M.J.: Constructing a message-pruning tree
with minimum cost for tracking moving objects in wireless sensor networks is
np-complete and an enhanced data aggregation structure. IEEE Trans. Comput.
57(6), 849–863 (2008)

27. Luby, M.: A simple parallel algorithm for the maximal independent set problem.
In: STOC, pp. 1–10 (1985)



Optimal Nearest Neighbor Queries in Sensor Networks 277

28. Mechitov, K., Sundresh, S., Kwon, Y., Agha, G.: Poster abstract: cooperative track-
ing with binary-detection sensor networks. In: SenSys, pp. 332–333 (2003)

29. Motskin, A., Downes, I., Kusy, B., Gnawali, O., Guibas, L.J.: Network warehouses:
efficient information distribution to mobile users. In: INFOCOM, pp. 2069–2077
(2011)

30. Nath, S., Gibbons, P.B., Seshan, S., Anderson, Z.R.: Synopsis diffusion for robust
aggregation in sensor networks. In: SenSys, pp. 250–262 (2004)

31. Roussopoulos, N., Kelley, S., Vincent, F.: Nearest neighbor queries. SIGMOD Rec.
24(2), 71–79 (1995)

32. Sarkar, R., Gao, J.: Differential forms for target tracking and aggregate queries in
distributed networks. IEEE/ACM Trans. Netw. 21(4), 1159–1172 (2013)

33. Sharma, G., Busch, C.: Towards load balanced distributed transactional memory.
In: Kaklamanis, C., Papatheodorou, T., Spirakis, P.G. (eds.) Euro-Par 2012. LNCS,
vol. 7484, pp. 403–414. Springer, Heidelberg (2012)

34. Sharma, G., Busch, C.: An analysis framework for distributed hierarchical direc-
tories. In: Frey, D., Raynal, M., Sarkar, S., Shyamasundar, R.K., Sinha, P. (eds.)
ICDCN 2013. LNCS, vol. 7730, pp. 378–392. Springer, Heidelberg (2013)

35. Sharma, G., Busch, C., Srinivasagopalan, S.: Distributed transactional memory for
general networks. In: IPDPS, pp. 1045–1056 (2012)

36. Winter, J., Lee, W.C.: Kpt: a dynamic knn query processing algorithm for location-
aware sensor networks. In: DMSN, pp. 119–124 (2004)

37. Yao, Y., Tang, X., Lim, E.-P.: In-Network processing of nearest neighbor queries for
wireless sensor networks. In: Li Lee, M., Tan, K.-L., Wuwongse, V. (eds.) DASFAA
2006. LNCS, vol. 3882, pp. 35–49. Springer, Heidelberg (2006)

38. Yen, L.H., Wu, B.Y., Yang, C.C.: Tree-based object tracking without mobility
statistics in wireless sensor networks. Wirel. Netw. 16(5), 1263–1276 (2010)

39. Zhang, W., Cao, G.: Dctc: Dynamic convoy tree-based collaboration for target
tracking in sensor networks. IEEE Trans. Wirel. Commun. 3(5), 1689–1701 (2004)

40. Zhou, D., Gao, J.: Maintaining approximate minimum steiner tree and k-center
for mobile agents in a sensor network. In: INFOCOM, pp. 511–515 (2010)



Conflict Graphs and the Capacity
of the Mean Power Scheme

Tigran Tonoyan(B)

TCS Sensor Lab, Centre Universitaire d’Informatique, Route de Drize 7,
1227 Carouge, Geneva, Switzerland

tigran.tonoyan@unige.ch

Abstract. In this paper the capacity and scheduling problems for wire-
less networks are considered. It is shown that when using the mean power
scheme for the capacity problem, the conflict graph based interference
model approximates the SINR model within a constant factor of approx-
imation. Such an approximation does not take place for the uniform
and linear power schemes. Using this result, it is also shown that under
certain assumptions on the underlying metric space, the mean power
scheme yields shorter (asymptotically) schedules than the uniform and
linear power schemes, for any set of links. This supports the theoretical
evidence that the mean power scheme is more efficient and scalable to
different network topologies than more traditional uniform and linear
power schemes, and could be a better candidate for MAC protocols.

1 Introduction

Scheduling is one of the fundamental problems in wireless networks: given a set
of links, one needs to schedule them into the minimum number of time slots, sub-
ject to interference. The subset corresponding to each time slot must be “feasible”
with respect to the model of interference adopted. Another related problem is the
capacity problem, where it is needed to find a maximum cardinality feasible sub-
set of links. There are a few ways to model the interference. Conflict graph based
models are a common way of modeling interference in higher level analysis. In
recent years considerable research was conducted for the SINR model, where the
cumulative interference is considered as opposed to “binary” interference of graph
based models. It has been argued that graph based models can be too optimistic by
not taking into account the cumulative interference or path loss. However, these
models also have advantages such as simplicity. In fact, in networks with many
obstacles and boundaries, the general SINR model seems to be hardly tractable,
and graph based models can be the only reasonable option. Hence, it is interesting
to find out how well do graph based models approximate the SINR model. In this
paper we consider a special conflict graph model based on the SINR formula, and
compare it with the SINR model with respect to the capacity problem.

Related Work. The drawbacks of disk graph models have been demonstrated both
theoretically and experimentally [1–4]. These drawbacks mainly stem from the
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fact that these models do not take the cumulative effect of interference into the
account. However, it is known that certain conflict graph models approximate
SINR scheduling in doubling metric spaces within a constant approximation fac-
tor when the node power levels are uniform and the lengths of the links are “almost
equal” [5]. When the link lengths are allowed to be arbitrary, the degree of approx-
imation depends on the power assignment methods used in the network [6]. In [6]
three power schemes are considered - the linear, uniform and mean power schemes,
and it is shown that when the scheduling problem is considered for links located
in doubling metric spaces, then the difference of the solution in a special conflict
graph model and in the SINR model is in O(log α) for the uniform and linear
power schemes, and is in O(log n) for the mean power scheme, where α is the
ratio between the longest and shortest link lengths and n is the number of links.
These approximation bounds hold also for the capacity problem.

Our Contribution. In this paper we show that the optimum SINR capacity of the
mean power scheme can be approximated by the maximum independent sets of
the corresponding conflict graph within a constant factor, while for the uniform
and linear power schemes the approximation factor can still be as large as ε(n).
This shows that for the capacity problem the gap between the two models is in
O(1), which means that a constant factor approximation algorithm for one model
can be used to obtain a constant factor approximation for the other model. We use
this result and the graph models as a tool to compare optimum schedule lengths
for different power schemes. It is known that the mean power scheme yields bet-
ter solutions for the capacity problem than the uniform and linear power schemes,
for any network topology [7]. In this paper we show that under certain assump-
tions on the metric space where the network is located, the mean power scheme
yields shorter schedules than the uniform and linear power schemes for any net-
work topology, thus extending the results of [7]. Thus, the mean power scheme
is not only scalable in different interference models, but it is also more efficient
than the uniform and linear power schemes, from the perspective of the schedul-
ing problem. These results support the theoretical evidence that the mean power
scheme could be a better choice in MAC protocol design for wireless networks
(see [5] and [8] for more evidence).

2 Models and Definitions

2.1 Capacity and Scheduling Problems

The general theoretical problems that we consider here are as follows. Let λ =
{1, 2, . . . , n} denote the set of n links (transmission requests between a sender and
a receiver node) in a metric space, where the sender node of each link is assigned
a certain power level. Then, using a specific interference model, one can define a
feasible set of links, i.e. a set of links that can transmit with the given power levels
all in the same time slot without interference. Capacity problem asks to select a
maximum cardinality feasible subset of λ . A closely related problem, Scheduling
problem, asks to split λ into the minimum number of feasible subsets, each of
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which can be assigned to a different time slot. Each such collection of subsets is
called a schedule, and the number of subsets is called the length of the schedule. Of
course, the sizes of feasible sets and schedules depend on the power assignment of
the nodes and the interference model. Next we define the SINR model and related
conflict graph model.

2.2 The Path-Loss Model of Signal Decay and Cumulative
Interference

Let the sender node of each link i be assigned a power level P (i) according to
some assignment policy or power scheme. According to the path-loss propagation
model [9], the receive signal of each link i is Pi = P (i)/lαi , where li is the distance
between the sender and the receiver of i and Θ > 0 is the path-loss exponent (typ-
ically, 2 < Θ < 6 [9]). Similarly, the interference caused by link j at the receiver
of link i is Iji = P (j)/dα

ji, where dji denotes the metric distance from the sender
node of link j to the receiver node of link i. According to SINR (Signal to Interfer-
ence and Noise Ratio) model, the transmission of a link i is successful if and only
if the SINR is greater than a certain threshold Λ ≥ 1:

Pi
∑

j◦S\{i} Iji + N
≥ Λ, (1)

where the constant N ≥ 0 denotes the noise and S is the set of links transmitting
in the same time slot as i.

In this model, a subset S of λ is feasible if (1) holds for each link i ← S.
We denote the optimum SINR-capacity of a set λ with respect to power scheme

P as OPTCP (λ ), and we denote the optimumSINR-schedule length by OPTSP (λ ).

Assumptions. The noise coefficient N can be skipped under certain assumptions
which are discussed in Sect. 2.5 (see also [7]). From this point on we assume N = 0.
We also need the assumption that the path-loss parameter Θ be greater than the
doubling dimension of the metric space where the nodes are located. The exact
definition of doubling dimension can be found in [10]. Here we only need the fact
that in a metric space with doubling dimension m, each ball of radius r contains
at most C · (r/r∈)m disjoint balls of a smaller radius r∈ where C is an absolute con-
stant. It is known that the m-dimensional Euclidean space has doubling dimension
m (see [10]).

By assuming N = 0 and Λ ≥ 1, it is easy to check that the following condition
in equivalent to the SINR condition:

AP (S, i) =
∑

j◦S\i

min{1, Iji/Pi} ∈ 1/Λ. (2)

This form of SINR condition has been considered in a number of papers (e.g. [11])
because it has the convenient additivity property: if there are two disjoint sets S1

and S2 then AP (S1 ≤ S2, i) = AP (S1, i)+AP (S2, i). We can also define A(S1, S2)
for two sets of links as AP (S1, S2) =

∑

j◦S2
AP (S1, j).
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Following [12], we say that a set S is a p-signal set if AP (S, i) ∈ 1/p. Similarly,
a partition of the set of links is a p-signal partition if each subset is a p-signal
set. The following theorem shows that one can vary the threshold of the SINR
condition without changing the schedule length much. It holds for any fixed power
assignment.

Theorem 1. [12] There is a polynomial-time algorithm that takes a p-signal sched-
ule and transforms into a p∈-signal schedule, for p∈ > p, increasing the number of
slots by a factor of at most ∀2p∈/p∪2.

2.3 The Conflict Graph Model

Graph models incorporate the notion of independence of links. Two links i and j
are q-independent with respect to a power assignment P if AP ({i}, j) < 1/qα and
AP ({j}, i) < 1/qα, otherwise we say that i and j are q-adjacent
w.r.t P . When P is clear from the context, we will just say q-independent,
q-adjacent etc.

This helps us define the q-adjacency graph GP
q (λ ) of the set of links λ w.r.t

power assignment P , where the set of vertices of GP
q (λ ) is λ and two links i and j

are adjacent in GP
q (λ ) if and only if they are q-adjacent links. In the conflict graph

interference model related to GP
q (λ ), we assume that a set of links is feasible iff it

is an independent set in GP
q (λ ) in the sense of graph theory. Capacity problem in

this model is to find a maximum cardinality independent set in GP
q (λ ). We denote

the size of such a set by π(GP
q (λ )). A schedule in this model is a coloring of graph

GP
q (λ ), so Scheduling problem is to vertex-color the graph with the least number

of colors (so that adjacent vertices get different colors). We denote the number of
colors used in the optimum coloring by β(Gq(λ )).

Note that if two links are q-adjacent then at least one of them interferes with
the other one “too much”, so GP

q (λ ) is a natural approximation of the stricter
SINR model.

It follows from the definition of q-independence that each qα-signal set of links
is q-independent. Taking into account Theorem 1, we can state the following rela-
tion between schedule lengths of the same set of links in the two models.

Theorem 2. For any set of links λ , any power scheme P and a constant q ≥ 1,
β(GP

q (λ )) ← O(OPTSP (λ )).

2.4 Distance Dependent Power Schemes

The power assignments considered in this paper are made according to generic
schemes. For example, the uniform power scheme assigns all links the same power
levels. By saying power scheme P we will understand the corresponding power
assignment for a given network. The motivation for considering power schemes is
the fact that they are computable in a localized and general manner and do not
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depend on the whole network topology, which makes them well-suited for decen-
tralized wireless networks as opposed to complex power control algorithms.

We consider the power schemes which are given by a formula of type P (i) =
cltαi , where t ≥ 0 is the parameter describing the power scheme and c > 0 is a
constant (not necessarily small). The well-known uniform, linear and mean power
schemes are included in this class of power schemes. The uniform power scheme
corresponds to the parameter value t = 0, i.e. all the links are assigned the same
transmit power. We denote this power scheme by U . The linear power scheme,
denoted by L, corresponds to the parameter value t = 1, i.e. all the links are
assigned power levels such that they have a constant receive power. The mean
power scheme, denoted by M, corresponds to the parameter value t = 1/2. Our
analysis concentrates on M and its relation with the other power schemes.

2.5 Noise Factor

Here we show that the noise factor can be avoided in the SINR formula in asymp-
totic computations, under certain assumptions.

Let us suppose that there is a noise N and a link i is in a SINR-feasible (w.r.t.
some power assignment P ) set S that contains at least two links. Then it must be
that P (i)/lαi ≥ ΛN . We make a slightly stronger assumption: e.g. P (i)/lαi ≥ 2ΛN .

If a set S is SINR-feasible w.r.t. P without the noise factor and with Λ∈ = 2Λ,
then we have P (i)/lαi ≥ Λ∈ ∑

j◦S\i P (j)/dα
ji, so

P (i)/lαi ≥ Λ
∑

j◦S\i

P (j)/dα
ji + P (i)/(2lαi ) ≥ Λ

∑

j◦S\i

P (j)/dα
ji + ΛN,

so S is also SINR-feasible with the noise N and with the original Λ. Thus, if our
assumption holds we can do the computations with N = 0.

3 The Capacity ofM and the Conflict Graphs

In this section we show that for any set of links, the optimal SINR capacity w.r.t.
M can be approximated by the maximum independent set of the corresponding
conflict graph within a constant approximation ratio. Let us start with some lem-
mas.

We call S an equilength set of links if for any pair of links i, j ← S, li < 2lj .

Lemma 1. Let i be a link, S be a set of links and h > 0 be an integer. We assume:

(a) S is an equilength set of links,
(b) for all links j ← S, lj ≥ li,
(c) for all j, k ← S, d(sj , sk) >

√

lj lk and d(rj , rk) >
√

lj lk,
(d) either AM(j, i) > h−α for all j ← S or AM(i, j) > h−α for all j ← S.

Then |S| ← O(hm).
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Proof. We present the proof for the case when AM(j, i) > h−α for all j ← S. The
other case can be handled in a similar way, by replacing senders with receivers and
vice versa. Let γ denote the length of the shortest link in S. From (d) we have that
for all j ← S,

d(sj , ri) < h
√

lilj ,

and since S is equilength,

d(sj , ri) < h
√

2liγ =
√

2h
√

liγ.

On the other hand, from (b) and (c) we have that for all pairs j, k ← S,

d(sj , sk) >
√

lj lk ≥
√

liγ.

These inequalities can be interpreted in terms of metric balls as follows: for each
pair of nodes sj , sk, the metric balls of radius

√
liγ/2 centered at these nodes do

not intersect each other, and all these balls are contained in the ball of radius
(
√

2h + 1/2)
√

liγ centered at node ri. Thus, using the doubling property of the
metric space, we can conclude that the number of different balls (and thus, the
number of links in S) is bounded by (2

√
2h+1)m, which proves the lemma for the

case considered. ∼∗
We will use the following well known results from calculus in the proof of the

next lemma. Let f(x) be a real convex function: then for each x, y from the domain
of f ,

f(x) − f(y) ∈ f ∈(x)(x − y). (3)

Let g(x) be a real decreasing function, integrable over [1,⊥). Then

∗∑

k=1

g(x) ∈ g(1) +
∫ ∗

1

g(h)dh. (4)

The following lemma is the place where we use the assumption that Θ > m.
We use the following notation: for a set of links S and a link i, we denote

S+
i = {j ← S : lj ≥ li} and S−

i = {j ← S : lj < li}.

Lemma 2. Suppose that Θ > m and let S be a set of links which is 2-independent
w.r.t. mean power. Then for each link i ← S,

AM(S+
i , i) + AM(i, S+

i ) ← O(1).

Proof. First observe that for each si, sj ← S,

d(si, sj) >
√

lilj and d(ri, rj) >
√

lilj . (5)

Indeed, from 2-independence we have d(si, rj) > 2
√

lilj and d(sj , ri) > 2
√

lilj .
If we assume that li ≥ lj then, using the triangle inequality, we get:

d(si, sj) ≥ d(si, rj) − lj >
√

lilj .
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The second inequality follows in the same way from d(sj , ri) > 2
√

lilj . Now, let
us first fix a link i0 ← S and show that AM(S+

i0
, i0) ← O(1). In order to bound the

sum, we first consider the subsets T1, T2, . . . of S+
i0

, where

Th = {j ← S+
i0

: AM(j, i0) > h−α}.

We will first bound AM(Th, i0) for each Th separately. For doing this, let us fix Th

for some h ≥ 1 and split Th into subsets of equilength links:

Th = T 1
h ≤ T 2

h ≤ T 3
h . . . ,

where T k
h = {j ← Th : lj ← [2k−1, 2k)}. Let us upper-bound the value AM(T k

h , i0)
for fixed h and k. Note that all the conditions of Lemma 1 are satisfied for the
set T k

h and the link i0 with corresponding values of the parameters; hence, |T k
h | ←

O(hm). It remains to find out how many subsets T k
h are there for a fixed h. Accord-

ing to the assumptions, for each link j ← Th, AM(j, i0) > h−α, so

d(sj , ri0) < h
√

lj li0 . (6)

On the other hand, we have from (5) that

d(si, sj) >
√

lilj (7)

for each pair of links i, j ← Th. At last, applying the triangle inequality, we have:

d(si, sj) ∈ d(si, ri0) + d(sj , ri0). (8)

Combining (6), (7) and (8), we get that
√

lilj < h
√

lili0 + h
√

lj li0 (9)

Fig. 1. An illustration of (9).
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holds for all i, j ← Th (see Fig. 1). Dividing by the square root of the longer link,
this implies that for all links j ← Th except one,

lj/li0 < 4h2,

that one link being the longest link in Th. Let j0 denote the second longest link
in Th. Then we have that lj0/li0 < 4h2. Since lj ≥ li0 for all j ← Th, we see that
the number of subsets T k

h for a fixed h is upper-bounded by log lj0
li0

+ 1, where +1
counts for the longest link (which might be much longer than the rest of the links).
Thus, the number of T k

h with a fixed h is in O(log h), and the overall number of
links in Th is in O(hm log h). Since T1 = ∅ (2-independence) and Th ≡ Th−1, we
have that

AM(S+
i0

, i0) ∈
∗∑

h=2

|Th \ Th−1|(h − 1)−α =
∗∑

h=2

|Th|[(h − 1)−α − h−α] ∈

∈
∗∑

h=2

|Th| Θhα−1

(h(h − 1))α
∈

∗∑

h=2

chm log h

h(h − 1)α
∈

∗∑

h=1

c∈ log h

hα−m+1
← O(1).

The explanation follows. We used (3) with f(h) = hα (which is a convex function

for Θ ≥ 1). In the last statement we used the fact that
∑∗

h=1

log h

hα−m+1
converges:

this follows from the assumption that Θ > m. Indeed, since g(h) = log h/hα−m+1

is a decreasing function, we can apply (4):

∗∑

h=1

g(h) ∈ g(1) +
∫ ∗

1

g(h)dh =
∫ ∗

1

log h

hα−m+1
dh =

= −(Θ − m)−1

(
log h

hα−m

∣
∣
∣
∣

∗

1

− ln−1 2
∫ ∗

1

dh

hα−m+1

)

=
1

ln 2(Θ − m)2
.

This concludes the proof of AM(S+
i , i) ← O(1). The claim AM(i, S+

i ) ← O(1) can
be proven similarly, by replacing senders with receivers and vice versa in the proof.
Note that Lemma 1 is symmetric in this respect and works for both
cases. ∼∗

The following is a known lemma, e.g. [11].

Lemma 3. Let S be a set of links such that AP (S+
i , i)+AP (i, S+

i ) ← O(1) for each
link i ← S, where P is an arbitrary power scheme. Then OPTCP (S) ← ε(|S|).
Proof. Consider the sum

∑

i◦S AP (S, i). Using additivity of A(., .) (for both argu-
ments), we can rearrange the sum as follows:

∑

i◦S

AP (S, i) =
∑

i◦S

AP (S+
i , i) + AP (i, S+

i ) ∈ c|S|
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for a number c ← O(1). Using the pigeonhole principle, we can conclude that for
at least half of the links i ← S, AP (S, i) ∈ 2c. This means that there is a subset
S∈ ≡ S with |S∈| ≥ |S|/2 such that AP (S∈, i) ∈ 2c holds for each i ← S∈. Applying
Theorem 1 for S∈, we obtain a feasible subset S∈∈ ≡ S∈ with |S∈∈| ← ν(|S∈|), which
completes the proof. ∼∗

At this point we are ready to prove the main theorem.

Theorem 3. Suppose that Θ > m. Then for any set of links λ ,

π(G2(λ )) = ε(OPTCM(λ )).

Proof. It follows from Theorem 2 that π(G2(λ )) ← O(OPTCM(λ )). It suffices to
show that β(G2(λ )) ← ν(OPTCM(λ )). Consider a maximum independent set S
of G2(λ ). From Lemma 2 we have that for each i ← S, AM(S+

i , i) + AM(i, S+
i ) ←

O(1). Hence, applying Lemma 3, we have

OPTCM(λ ) ≥ OPTCM(S) ← ε(|S|) = ε(π(GM
2 (λ ))). ∼∗

This result shows that SINR capacity of M is well approximated by the capac-
ity of the corresponding conflict graph model. In contrast, it can be shown that
the power schemes L and U are not so scalable with respect to the corresponding
conflict graphs. This is shown in the following theorem (originally from [6]). The
network example from this theorem is a generalization of the network example
from [2].

Theorem 4. For any n > 0 and q ≥ 1, there is a network instance λ , such
that |λ | = n, λ is q-independent w.r.t. L and U , but OPTCU (λ ) ← O(qα) and
OPTCL(λ ) ← O(qα).

Proof. In this instance, there are n links {1, 2, . . . , n} sequentially aligned on a
straight line in the increasing order of numbers going from left to right. We set
li = 2i for i = 1, 2, . . . , n. Each link has its sender on the left side and the receiver
on the right side. For each i > 1, we define di,i−1 = qli. Now we can calculate all
the other distances. For each i > 1, we have:

di1 =
i−1∑

t=2

(dt,t−1 + lt) + di,i−1 =
i−1∑

t=2

lt + q

i∑

t=2

lt =

= (q + 1)
i−1∑

t=2

lt + qli = (2q + 1)li − 4(q + 1),

where we used the fact that li = 2i. Now if i > j then

dij = di1 − dj1 − lj = (2q + 1)(li − lj) − lj and

dji = di1 − dj1 + li = (2q + 1)(li − lj) + li.
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It is easy to check that this set of links is q-independent with respect to both U
and L.

Suppose that the power scheme U is used. Consider any SINR-feasible subset
of links S of size k with the links i1 < i2 < · · · < ik. For the longest link ik we
have:

AU (S, ik) =
k−1∑

t=1

lαik
dα

itik

=
k−1∑

t=1

lαik
((2q + 1)(lik − lit) + lik)α

≥ k − 1
(2q + 2)α

.

We should have also that AU (S, ik) ∈ 1/Λ which allows us bound the number of
links in S:

k ∈ (2q + 2)α

Λ
+ 1.

For the case of the power scheme L a similar argument works if we consider
AL(S, i1). ∼∗

4 Comparing SINR Schedules Using Conflict Graphs

It is easy to check that q-independence w.r.t. U or L implies q∈-independence w.r.t.
M, where q∈ = q − 1. This remark, combined with Theorem 3 and Theorem 4,
implies that there are network instances for which M can provide much better
capacity than U or L. It is also known that the capacity of M for any network
instance cannot be worse than by a constant factor than the capacity of U and
L [7]. In this section we discuss the relation between the optimal schedule lengths
of M and the two power schemes U and L, for any set of links. It follows readily
from the results presented in the previous section that if Θ > m then for any set of
links, the optimum schedule length w.r.t. M is not less than the optimum schedule
length w.r.t. U (not counting constant factors).

Theorem 5. Suppose that Θ > m. Then for any set of links λ ,

OPTSM(λ ) ← O(OPTSU (λ )).

Proof. Let S be a SINR-feasible set of links w.r.t. U . Then S is a q-independent set
of links w.r.t. U for a constant q ≥ 1. In view of Theorem 1, we can assume that q ≥
3. The q-independence condition w.r.t. U for two links i, j is the
following:

d(si, rj) > qlj and d(sj , ri) > qli.

Let us assume that li ≥ lj . Then, using the triangle inequality, we see that the
spatial separation between the senders and receivers should be a multiple of li,
provided that q ≥ 3:

d(si, sj) ≥ d(sj , ri) − li > (q − 1)li and d(ri, rj) ≥ d(sj , ri) − lj > (q − 1)li.
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This means that S is a q −1-independent set w.r.t. M; hence, Theorem 3 applies.
This implies that for each link i ← S, AM(S+

i , i) ← O(1). In order to bound
AM(S−

i , i) it is enough to note that AM(S−
i , i) ∈ AU (S−

i , i). Indeed,

AM(S−
i , i) =

∑

j◦S−
i

(√

lilj

dji

)α

∈
∑

j◦S−
i

(
li
dji

)α

= AU (S−
i , i).

It follows from SINR-feasibility of S that AU (S−
i , i) ← O(1). Hence, AM(S, i) =

AM(S+
i , i) + AM(S−

i , i) ← O(1), and it remains to apply Theorem 1 in order to
show that S can be scheduled into a constant number of subsets w.r.t. M. ∼∗

A similar result can be achieved for L as well. However, we were able to prove
such a result only with a stricter assumption on Θ: Θ > 2m. Note that in the case
when m = 2, i.e. when the nodes are on the Euclidean plane, we require Θ > 4,
which is still in the practical range for Θ (see [9]). For the three dimensional case
we require Θ > 6 which might be unpractical.

Theorem 6. Suppose that Θ > 2m. Then for any set of links λ ,

OPTSM(λ ) ← O(OPTSL(λ )).

Proof. Let S be a SINR-feasible set w.r.t. L. As in the case of U , we can show that
GM

q−1(λ ) is a subgraph of GL
q (λ ) for q ≥ 2. Hence, we can assume that we have

a 2-independent (w.r.t. L) set S, and AM(S+
i , i) ← O(1). We aim to show that

under the assumptions of the theorem, AM(S−
i , i) ← O(1) holds.

Let us split S−
i into equilength subsets T1, T2, . . . where Tt = {j ← S−

i :
2t−1lmin ∈ lj < 2tlmin}. We compute AM(Tt, i) separately for each t. Let us
fix an index t and further split Tt into subsets T 1

t , T 2
t , . . . where T r

t = {j ← Tt :
d(sj , ri) ∈ li +(r −1)γ}, where γ is the length of the shortest link in Tt. Note that
T 1

t is empty. Let us fix an r > 1 as well. It follows from 2-independence and the
construction of Tt that the distance between any two sender nodes sj , sk belonging
to Tt is at least γ. This means that balls of radius γ/2 around those senders do not
intersect. Note that for T r

t , these balls are also contained in the larger ball cen-
tered at ri with radius li+(r−1/2)γ. Using the doubling property of the space, we
obtain that the number of those sender nodes and the links in T r

t is upper bounded
as follows:

|T r
t | ∈ C ·

(
li + (r − 1/2)γ

γ/2

)m

.

Note also that for r > 1 and for any link j ← T r
t \ T r−1

t , AM(j, i) ∈
( √

li(2ε)

li+(r−1)ε

)α

; hence,
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AM(Tt, i) =
∑

r≥1

AM(T r
t \ T r−1

t , i) ∈
∑

r≥1

(|T r
t | − |T r−1

t |)
( √

li(2γ)
li + (r − 1)γ

)α

=

=
∑

r≥2

|T r
t |

(( √

li(2γ)
li + (r − 1)γ

)α

−
(√

li(2γ)
li + rγ

)α)

∈

∈
∑

r≥2

|T r
t |(2liγ)α/2 Θγ

(li + (r − 1)γ)α+1
=

∑

r≥2

(li + (r − 1/2))m(2liγ)α/2

(γ/2)m(li + (r − 1)γ)α+1
∈

∈ 2α/2+2ml
α/2
i γα/2−m

∑

r≥1

1
(li + rγ)α+1−m

.

The last sum can be bounded using (4):

∑

r≥1

1
(li + rγ)α+1−m

∈ 1
(li + γ)α+1−m

+
∫ ∗

1

dr

(li + rγ)α+1−m
∈ 2

γ(li + γ)α−m
.

Thus, AM(Tt, i) ∈ 2α/2+2m+1 l
α/2
i γα/2−m

l(li + γ)α−m
∈ 2α/2+2m+1

(
γ

li

)α/2−m

. Recall that

Tt is an equilength subset of S−
i , and the minimum link lengths of Tt for different

values of t differ at least by a factor 2, so

AM(S−
i , i) ∈

∗∑

1

AM(Tt, i) ∈ 2α/2+2m+1

l
α/2−m
i

�log li/lmin�
∑

t=1

(2tlmin)(α/2−m)

Using (4) for the sum in the last term, we can bound it by cl
α/2−m
i with c ← O(1),

which will give A(S
−
i , i) ← O(1). ∼∗

5 Conclusion

It was shown in this paper that when the mean power scheme is used, the cor-
responding conflict graph approximates SINR capacity within a constant factor.
This is not the case for the uniform and linear power schemes. It is possible that
the constant factor approximation could be extended for scheduling too, so it is
an interesting open question whether such an approximation holds.

We also showed that conflict graphs can be used in order to show that the mean
power scheme is more efficient than the uniform and linear power schemes in terms
of SINR scheduling. These results were obtained under some assumptions. While
these assumptions seem to be reasonable, it would certainly be useful to prove the
results for more general settings. We believe that the close connection of the two
models can yield more results, because it allows to use graph theoretical methods
for working with the SINR model.
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Rendezvous of Two Robots with Visible Bits
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Abstract. We study the rendezvous problem for two robots moving in
the plane (or on a line). Robots are autonomous, anonymous, oblivious,
and carry colored lights that are visible to both. We consider determin-
istic distributed algorithms in which robots do not use distance informa-
tion, but try to reduce (or increase) their distance by a constant factor,
depending on their lights’ colors.

We give a complete characterization of the number of colors that are
necessary to solve the rendezvous problem in every possible model, rang-
ing from fully synchronous to semi-synchronous to asynchronous, rigid
and non-rigid, with preset or arbitrary initial configuration.

In particular, we show that three colors are sufficient in the non-rigid
asynchronous model with arbitrary initial configuration. In contrast, two
colors are insufficient in the rigid asynchronous model with arbitrary ini-
tial configuration and in the non-rigid asynchronous model with preset
initial configuration.

Additionally, if the robots are able to distinguish between zero and
non-zero distances, we show how they can solve rendezvous and detect
termination using only three colors, even in the non-rigid asynchronous
model with arbitrary initial configuration.

Keywords: Rendezvous · Autonomous · Mobile · Robots · Visible

1 Introduction

1.1 Models for Mobile Robots

The basic robot model we employ has been thoroughly described in [1–3,7].
Robots are modeled as points freely moving in R

2 (or R). Each robot has its own
coordinate system and its own unit distance, which may differ from the others.
Robots operate in cycles that consist of four phases: Wait, Look, Compute,
and Move.

In a Wait phase a robot is idle; in a Look phase it gets a snapshot of
its surroundings (including the positions of the other robots); in a Compute
phase it computes a destination point; in a Move phase it moves toward the
destination point it just computed, along a straight line. Then the cycle repeats
over and over.

P. Flocchini et al. (Eds.): ALGOSENSORS 2013, LNCS 8243, pp. 291–306, 2014.
DOI: 10.1007/978-3-642-45346-5 21, c© Springer-Verlag Berlin Heidelberg 2014
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Robots are anonymous and oblivious, meaning that they do not have distinct
identities, they all execute the same algorithm in each Compute phase, and the
only input to such algorithm is the snapshot coming from the previous Look
phase.

In a Move phase, a robot may actually reach its destination, or it may
be stopped before reaching it. If a robot always reaches its destination by the
end of each Move phase, then the model is said to be rigid. If a robot can
unpredictably be stopped before, the model is non-rigid. However, even in non-
rigid models, during a Move phase, a robot must always be found on the line
segment between its starting point and the destination point. Moreover, there is
a constant distance α > 0 that a robot is guaranteed to walk at each cycle. That
is, if the destination point that a robot computes is at most α away (referred
to some global coordinate system), then the robot is guaranteed to reach it by
the end of the next Move phase. On the other hand, if the destination point is
more than α away, the robot is guaranteed to approach it by at least α.

In the basic model, robots cannot communicate in conventional ways or store
explicit information, but a later addition to this model allows each robot to
carry a “colored light” that is visible to every robot (refer to [2]). There is a
fixed amount of possible light colors, and a robot can compute its destination
and turn its own light to a different color during a Compute phase, based on
the light colors that it sees on other robots and on itself. Usually, when robots
start their execution, they have all their lights set to a predetermined color.
However, we are also interested in algorithms that work regardless of the initial
color configurations of the robots.

In the fully synchronous model (FSynch) all robots share a common notion
of time, and all their phases are executed synchronously. The semi-synchronous
model (SSynch) is similar, but not every robot may be active at every cycle.
That is, some robots are allowed to “skip” a cycle at unpredictable times,
by extending their Wait phase to the whole cycle. However, the robots that
are active at a certain cycle still execute it synchronously. Also, no robot can
remain inactive for infinitely many consecutive cycles. Finally, in the asynchro-
nous model (ASynch) there is no common notion of time, and each robot’s
execution phase may last any amount of time, from a minimum β > 0 to an
unboundedly long, but finite, time.

Figure 1 shows all the possible models arising from combining synchronous-
ness, rigidity, and arbitrarity of the initial light colors. The trivial inclusions
between models are also shown.

Without loss of generality, in this paper we will assume Look phases in
ASynch to be instantaneous, and we will assume that a robot’s light’s color
may change only at the very end of a Compute phase.

1.2 Gathering Mobile Robots

Gathering is the problem of making a finite set of robots in the plane reach
the same location in a finite amount of time, and stay there forever, regardless of
their initial positions. Such location should not be given as input to the robots,
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Fig. 1. Robot models with their trivial inclusions. An asterisk means that the initial
color configuration may be arbitrary; no asterisk means that it is fixed. The numbers
indicate the minimum amounts of distinct colors that are necessary to solve Ren-
dezvous in each model (cf. Theorem 10).

but they must implicitly determine it, agree on it, and reach it, in a distribute
manner. Note that this problem is different from Convergence, in which robots
only have to approach a common location, but may never actually reach it.

For any set of more than two robots, Gathering has been solved in non-
rigid ASynch, without using colored lights (see [1]). The special case with only
two robots is also called Rendezvous, and it is easily seen to be solvable in
non-rigid FSynch but unsolvable in rigid SSynch, if colored lights are not used
(see [8]).

Proposition 1. If only one color is available, Rendezvous is solvable in non-
rigid FSynch and unsolvable in rigid SSynch.

Proof. In non-rigid FSynch, consider the algorithm that makes each robot move
to the midpoint of the current robots’ positions. At each move, the distance
between the two robots is reduced by at least 2α, until it becomes less than 2α,
and the robots gather.

Suppose that an algorithm exists that solves Rendezvous in rigid SSynch
by using just one color. Let us assume that the two robots’ axes are oriented sym-
metrically, in opposite directions. This implies that, if we activate both robots
at each cycle, they obtain isometric snapshots, and thus they make moves that
are symmetric with respect to their current midpoint. Therefore, by doing so,
the robots can never meet unless they compute the midpoint. If they do it, we
just activate one robot for that cycle (and each time this happens, we pick a
different robot, alternating). As a result, the robots never meet, regardless of
the algorithm. ≥←
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However, in [2] it was shown how Rendezvous can be solved even in non-
rigid ASynch using lights of four different colors, and starting from a preset
configuration of colors. Optimizing the amount of colors was left as an open
problem.

1.3 Our Contribution

In this paper, we will determine the minimum number of colors required to solve
Rendezvous in all models shown in Fig. 1, with some restrictions on the class
of available algorithms.

Recall that robots do not necessarily share a global coordinate system, but
each robot has its own. If the coordinate system of a robot is not even self-
consistent (i.e., it can unpredictably change from one cycle to another), then
the only reliable reference for each robot is the position of the other robot(s)
around it. In this case, the only type of move that is consistent will all possible
coordinate systems is moving to a linear combination of the robots’ positions,
whose coefficients may depend on the colored lights. In particular, when the
robots are only two, we assume that each robot may only compute a destination
point of the form

(1 − γ) · me.position + γ · other.position,

for some γ ∈ R. In turn, γ is a function of me.light and other.light only. This
class of algorithms will be denoted by L.

In Sect. 2, we will prove that two colors are sufficient to solve Rendezvous
in non-rigid SSynch with arbitrary initial configuration and in rigid ASynch
with preset initial configuration, whereas three colors are sufficient in non-rigid
ASynch with arbitrary initial configuration. All the algorithms presented are
of class L.

On the other hand, in Sect. 3 we show that even termination detection can
be achieved in non-rigid ASynch with arbitrary initial configuration using only
three colors, although our algorithm is not of class L (indeed, no algorithm of
class L can detect termination in Rendezvous).

In contrast, in Sect. 4 we prove that no algorithm of class L using only two
colors can solve Rendezvous in rigid ASynch with arbitrary initial configura-
tion or in non-rigid ASynch with preset initial configuration.

Finally, in Sect. 5 we put all these results together and we conclude with a
complete characterization of the minimum amount of colors that are needed to
solve Rendezvous in every model (see Theorem 10).

2 Algorithms for Rendezvous

2.1 Two Colors for the Non-rigid Semi-Synchronous Model

For non-rigid SSynch, we propose Algorithm 1, also represented in Fig. 2. Labels
on arrows indicate the color that is seen on the other robot, and the destination
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of the next Move with respect to the position of the other robot. “0” stands for
“do not move”, “1/2 ” means “move to the midpoint”, and “1” means “move to
the other robot”. The colors used are only two, namely A and B.

Algorithm 1: Rendezvous for non-rigid SSynch and rigid ASynch

me.destination ←− me.position
if me.light = A then

if other.light = A then
me.light ←− B
me.destination ←− (me.position + other.position)/2

else
me.destination ←− other.position

else if other.light = B then
me.light ←− A

Fig. 2. Illustration of Algorithm 1

Lemma 1. If the two robots start a cycle with their lights set to opposite colors,
they eventually gather.

Proof. Both robots retain their colors at every cycle, and the A-robot keeps
computing the other robot’s location, while the B-robot keeps waiting. Hence,
their distance decreases by at least α for every cycle in which the A-robot is
active, until the distance becomes smaller than α, and the robots gather. ≥←
Theorem 1. Algorithm 1 solves Rendezvous in non-rigid SSynch, regardless
of the colors in the initial configuration.

Proof. If the robots start in opposite colors, they gather by Lemma 1. If they
start in the same color, they keep alternating colors until one robot is active
and one is not. If this happens, they gather by Lemma 1. Otherwise, the two
robots are either both active or both inactive at each cycle, and they keep com-
puting the midpoint every other active cycle. Their distance decreases by at
least 2α each time they move, until it becomes smaller than 2α, and they finally
gather. ≥←
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2.2 Two Colors for the Rigid Asynchronous Model

We prove that Algorithm 1 solves Rendezvous in rigid ASynch as well, pro-
vided that the initial color is A for both robots.

Lemma 2. If, at some time t, the two robots have opposite colors and neither
of them is in a Compute phase that will change its color, they will eventually
solve Rendezvous.

Proof. Each robot retains its color at every cycle after time t, because it keeps
seeing the other robot in the opposite color at every Look phase. As soon as the
A-robot performs its first Look after time t, it starts chasing the other robot.
On the other hand, as soon as the B-robot performs its first Look after time t,
it stops forever. Eventually, the two robots will gather and never move again.≥←
Theorem 2. Algorithm 1 solves Rendezvous in rigid ASynch, provided that
both robots start with their lights set to A.

Proof. Let r be the first robot to perform a Look. Then r sees the other robot
s set to A, and hence it turns B and computes the midpoint m. Then, as long
as s does not perform its first Look, r stays B because it keeps seeing s set to
A. Hence, if s performs its first Look after r has turned B, Lemma 2 applies,
and the robots will solve Rendezvous.

On the other hand, if s performs its first Look when r is still set to A (hence
still in its starting location), s will turn B and compute the midpoint m, as well.
If some robot reaches m and performs a Look while the other robot is still set
to A, the first robot waits until the other turns B. Without loss of generality, let
r be the first robot to perform a Look while the other robot is set to B. This
must happen when r is in m and set to B, hence it will turn A and stay in m.
If r turns A before s has reached m, then Lemma 2 applies. Otherwise, r turns
A when s is already in m, and both robots will stay in m forever, as they will
see the other robot in m at every Look. ≥←

2.3 Three Colors for the Non-rigid Asynchronous Model

For non-rigid ASynch, we propose Algorithm 2, also represented in Fig. 3. The
colors used are three, namely A, B, and C.

Observation 3. A robot retains its color if and only if it sees the other robot
set to a different color.

Lemma 3. If, at some time t, the two robots are set to different colors, and
neither of them is in a Compute phase that will change its color, they will
eventually solve Rendezvous.

Proof. The two robots keep seeing each other set to different colors, and hence
they never change color, by Observation 3. One of the two robots will eventually
stay still, and the other robot will then approach it by at least α at every Move
phase, until their distance is less than α, and they gather. As soon as they have
gathered, they will stay in place forever. ≥←
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Algorithm 2: Rendezvous for non-rigid ASynch

me.destination ←− me.position
if me.light = A then

if other.light = A then
me.light ←− B
me.destination ←− (me.position + other.position)/2

else if other.light = B then
me.destination ←− other.position

else if me.light = B then
if other.light = B then

me.light ←− C

else if other.light = C then
me.destination ←− other.position

else
if other.light = C then

me.light ←− A

else if other.light = A then
me.destination ←− other.position

Fig. 3. Illustration of Algorithm 2

Theorem 4. Algorithm 2 solves Rendezvous in non-rigid ASynch, regard-
less of the colors in the initial configuration.

Proof. If the robots start the execution at different colors, they solve Ren-
dezvous by Lemma 3.

If they both start in A, then let r be the first robot to perform a Look. r
plans to turn B and move to the midpoint. If it turns B before the other robot
s has performed a Look, then Lemma 3 applies.
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Otherwise, s plans to turn B and move to the midpoint, as well. If a robot
stops and sees the other robot still set to A, it waits. Without loss of generality,
let r be the first robot to perform a Look and see the other robot set to B. r
now plans to turn C, but if it does so before s has performed a Look, Lemma
3 applies.

So, let us assume that both robots have seen each other in B and they both
plan to turn C. Once again, if a robot turns C and sees the other robot still in
B, it waits. Without loss of generality, let r be the first robot to see the other
robot in C. r plans to turn A, but if it does so before s has performed a Look,
Lemma 3 applies.

Assume that both robots see each other in C and they both plan to turn A.
If a robot turns A and sees the other robot still in C, it waits. At some point,
both robots are in A again, in a Wait phase, but they have approached each
other. They both moved toward the midpoint in their first cycle, and then they
just made null moves. As a consequence, if their distance was smaller than 2α,
they have gathered. Otherwise, the distance has decreased by at least 2α. As
the execution goes on and the same pattern of transitions repeats, the distance
keeps decreasing until the robots gather. As soon as they have gathered, they
never move again, hence Rendezvous is solved.

The cases in which the robots start both in B or both in C are resolved with
the same reasoning. Note that all the states with both robots set to the same
color and in a Wait phase have been reached in the analysis above. ≥←

3 Termination Detection

Suppose we wanted our robots to acknowledge that they have gathered, in order
to turn off, or “switch gears” and start performing a new task. Although this is
not a requirement of the basic Rendezvous problem, it is a useful feature to
add as a bonus.

Observation 5. If the model is SSynch, termination detection is trivially
obtained by checking at each cycle if the robots’ locations coincide.

Unfortunately, in ASynch, correct termination detection is harder to obtain.
Observe that both Algorithm 1 (for rigid ASynch) and Algorithm 2 (for non-
rigid ASynch) fail to guarantee termination detection. Indeed, suppose that
robot r is set to A and sees the other robot s set to B, and that the two robots
coincide. Then r cannot tell if s is still moving or not. If s is not moving, it is
safe for r to terminate, but if s is moving, then r has still to “chase” s, and
cannot terminate yet.

To guarantee correct termination detection in non-rigid ASynch, we propose
Algorithm 3, represented in Fig. 4. Note that different rules may apply depending
on the distance between the two robots, indicated by d in the picture. However,
robots need only distinguish between zero and non-zero distances. The colors
used are again three, namely A, B, and C.
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Fig. 4. Illustration of Algorithm 3

Observation 6. No robot can move while it is set to C.

Lemma 4. If some robot ever turns C from a different color, the two robots will
gather and their execution will terminate correctly.

Proof. A robot can turn C only if it performs a Look while the other robot is
in the same location. If robot r performs a Look at time t that makes it turn C,
then r stays C forever after, unless it sees the other robot s set to C as well, in a
different location. Let t′ > t be the first time this happens. Due to Observation
6, r does not move between t and t′. On the other hand, s coincides with r at
time t. Then s must turn some other color and move away from r, and then turn
C at some time t′′ such that t < t′′ � t′. But, in order to turn C, s would have
to coincide with r, which is a contradiction.

Hence r will stay C and never move after time t. As soon as s sees r set
to C, it starts moving toward it (after turning A, if s is also set to C and not
coincident with r), covering at least α at each Move phase, until their distance
becomes less than α and s finally reaches r. Then s will turn C as well, and both
robots will terminate correctly after seeing each other again. ≥←
Lemma 5. If, at some time t, the two robots are set to A and B respectively,
and neither of them is in a Compute phase that will change its color, they will
eventually gather and terminate correctly.

Proof. If some robot ever turns C after time t, gathering and termination are
ensured by Lemma 4. Otherwise, the two robots keep seeing each other set to
opposite colors, and hence they never change color. The B-robot will eventually
stay still, and the A-robot will then approach it by at least α at every Move



300 G. Viglietta

phase, until their distance is less than α, and they gather. The B-robot then
turns C, and Lemma 4 applies again. ≥←

Let r(t) denote the position of robot r at time t � 0.

Lemma 6. Let t be a time instant at which both robots are set to A, and neither
of them is in a Compute phase. Let us assume that robot r will stay still until
the end of its current phase (even if it is a Move phase), and that robot s will
either stay still until the end of its current phase, or its destination point is r’s
current location. Then r and s will eventually gather and terminate correctly.

Proof. If s is not directed toward r at time t, let d be the distance between r(t)
and s(t). Otherwise, let t′ be the time at which s performed its last Look, and
let d be the distance between s(t′) and r(t). Furthermore, let k = ≤d/α∀. We will
prove our claim by well-founded induction on k, so let us assume our claim to
hold for every k′ such that 0 � k′ < k.

The first robot to perform a Look after time t sees the other robot set to
A. If they coincide (i.e., if s has reached r or if k = 0), the first robot turns
C, and Lemma 4 applies. If they do not coincide, the first robot turns B. If it
turns B before the other robot has performed a Look, then Lemma 5 applies.
Otherwise, when the second robot performs its first Look after time t, it sees
the first robot still set to A. Once again, if they coincide, the second robot turns
C and Lemma 4 applies. At this point, if k = 1 and s was directed toward r at
time t, the robots have gathered and terminated correctly.

Hence, if r and s perform their first Look at times tr and ts respectively,
we may assume that both will turn B, r computes the midpoint mr of r(tr) and
s(tr), and s computes the midpoint ms of r(ts) and s(ts). Observe that, if s’s
destination was not r at time t, then mr = ms.

Without loss of generality, let r be the first robot to perform the second
Look. r sees s set to B, hence it turns A. If s performs the second Look after
r has already turned A, then s necessarily sees r in A (because r keeps seeing s
in B), and Lemma 5 applies.

Otherwise, both robots see each other in B, and both eventually turn A.
Without loss of generality, let s be the first robot to perform the third Look. If
k = 1 and s was not directed toward r at time t, the robots have indeed gathered
in mr = ms, so s turns C and Lemma 4 applies.

At this point we may assume that k � 2, hence α � (k − 1)α < d � kα.
We claim that the distance d′ between r and s is now at most (k − 1)α. Indeed,
if s was not directed toward r at time t, then each robot has either reached
mr = ms, or has approached it by at least α. In any case, d′ � d − α � (k − 1)α.
Otherwise, if s was directed toward r at time t, then observe that both mr and
ms lie between r(t) and m = (r(t) + s(t))/2. Moreover, s has performed its first
Look while at distance at most d − α from r(t), and subsequently it has further
approached r(t). On the other hand, r is found between r(t) and m, thus at
distance not greater than d/2 from r(t). Hence, d′ � max{d− α, d/2} � (k −1)α.

Now, s is the first robot to perform the third Look, and sees r either already
in A or still in B. In the first case, the inductive hypothesis applies, because r
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is not in a Compute phase, and its destination is r itself. In the second case, s
computes r’s location, and it keeps doing so until r turns A. When this happens,
the inductive hypothesis applies again. ≥←
Corollary 1. If, at some time t, both robots are set to B and are both in a
Wait or in a Look phase, they will eventually gather and terminate correctly.

Proof. The reasoning in the proof of Lemma 6 also implicitly addresses this case.
Indeed, the configuration in which both robots are set to B and in a Wait or
a Look phase is reached during the analysis, and is incidentally resolved, as
well. ≥←
Theorem 7. Algorithm 3 solves Rendezvous in non-rigid ASynch and ter-
minates correctly, regardless of the colors in the initial configuration.

Proof. If both robots start in A, Lemma 6 applies. If they both start in B,
Corollary 1 applies. If one robot starts in A and the other one starts in B, then
Lemma 5 applies.

If exactly one robot starts in C, it will stay still forever, and the other robot
will eventually reach it, turn C as well, and both will terminate.

If both robots start in C and they are coincident, they will terminate. If they
are not coincident, let r be the first robot to perform a Look. r will then turn
A and move toward the other robot s. If s performs its first Look when r has
already turned A, it will wait, r will eventually reach it, turn C, and both will
terminate. Otherwise, s performs its Look when r is still set to C, hence s will
turn A as well, and move toward r.

Then, one robot will keep staying A and moving toward the other one, until
both have turned A. Without loss of generality, let r be the first robot to see
the other one set to A. If they are coincident, r turns C and Lemma 4 applies.
Otherwise, r turns B. If this happens before s has seen r in A, then Lemma
5 applies. Otherwise, both robots will turn B. As long as only one robot has
turned B, it stays B and does not move. At some point, one robot sees the other
in B and Corollary 1 applies. ≥←

4 Impossibility of Rendezvous with Two Colors

Observe that Algorithms 1, 2 and 3 only produce moves of three types: stay still,
move to the midpoint, and move to the other robot. It turns out that, regardless
of the number of available colors, any algorithm for Rendezvous must use those
three moves under some circumstances.

Proposition 2. For any algorithm solving Rendezvous in rigid FSynch,
there exist a color X and a distance d > 0 such that any robot set to X that sees
the other robot at distance d and set to X moves to the midpoint.
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Proof. Assume both robots start with the same color and in distinct positions.
We may assume that both robots get isometric snapshots at each cycle, so they
both turn the same colors, and compute destination points that are symmetric
with respect to their midpoint. If they never compute the midpoint and their
execution is rigid and fully synchronous, they never gather. ≥←

Similarly, there must exist two states X and Y and a distance d such that,
if a robot in X (respectively, Y ) sees the other robot in Y (respectively, X) and
at distance d, it moves to the other robot’s location (respectively, it stays still).

The above observation partly justifies the choice to restrict our attention to a
specific class of algorithms: from now on, every algorithm we consider computes
only destinations of the form

(1 − γ) · me.position + γ · other.position,

where the parameter γ ∈ R depends only on me.light and other.light. Similarly,
a robot’s next light color depends only on the current colors of the two robots’
lights, and not on their distance. Recall from Sect. 1 that this class of algorithms
is denoted by L. Notice that Algorithms 1 and 2 both belong to L, but Algorithm
3 does not, because it may output a different color depending if the two robots
coincide or not.

A statement of the form X(Y ) = (Z, γ) is shorthand for “if a robot is set to X
and sees the other robot set to Y , it turns Z and makes a move with parameter
γ”, where {X,Y,Z} ∪ {A,B} and γ ∈ R. The negation of X(Y ) = (Z, γ) will
be written as X(Y ) �= (Z, γ), where as a transition with an unspecified move
parameter will be denoted by X(Y ) = (Z, Θ).

4.1 Preliminary Results

Here we assume that the model is rigid ASynch, that only two colors are avail-
able, namely A and B, and that the initial configuration is with both robots set
to A. All our impossibility results for this very special model are then applicable
to both non-rigid ASynch with preset initial configuration and rigid ASynch
with arbitrary initial configuration.

So, let an algorithm that solves Rendezvous in this model be given. If the
algorithm belongs to class L, then the following statements hold.

Lemma 7. A(A) = (B, Θ).

Proof. If the execution starts with both robots in A, and A(A) = (A, Θ), then no
robot ever transitions to B, and Rendezvous is not solvable, due to
Proposition 1. ≥←
Lemma 8. If A(A) = (B, 1/2), then B(A) = (B, Θ).

Proof. Let us assume by contradiction that B(A) = (A, Θ). If B(A) = (A, γ) with
γ �= 1, we let the two robots execute two cycles each, alternately. As a result,
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each robot keeps seeing the other robot in A, and their distance is multiplied by
|1 − γ|/2 �= 0 at every turn. Hence the robots never gather.

If B(A) = (A, 1), we let robot r perform a whole cycle and the Look and
Compute phases of the next cycle, while the other robot s waits. At this point,
their distance has halved, r is set to A, and is about to move to s’s position. Now
s performs two whole cycles, reaching r’s position with its light set to A. Finally,
we let r finish its cycle. As a result, the distance between the two robots has
halved, both robots have performed at least a cycle, they are in a Wait phase,
and they are both set to A. Hence, by repeating the same pattern of moves, they
never gather. ≥←
Lemma 9. If A(A) = (B, 1/2) and B(B) = (A, Θ), then B(B) = (A, 0).

Proof. Assume by contradiction that A(A) = (B, 1/2) and B(B) = (A, γ) with
γ �= 0. We let both robots perform a Look and a Compute phase simultane-
ously. Both turn B and compute the midpoint m. Then we let robot r finish the
current cycle and perform a new Look. As a result, r will turn A and will move
away from m. Now let the other robot s finish its first cycle and perform a whole
new cycle. s reaches m, sees r still set to B and still in m, hence s turns A and
stays in m. Finally, we let r finish the current cycle. At this point, both robots
are set to A, they are in a Wait phase, both have performed at least one cycle,
and their distance has been multiplied by |γ|/2 �= 0. Therefore, by repeating the
same pattern of moves, they never gather. ≥←
Lemma 10. If A(A) = (B, 1/2) and B(B) = (A, 0), then B(A) = (B, 0).

Proof. By Lemma 8, B(A) = (B, Θ). Assume by contradiction that B(A) =
(B, γ) with γ �= 0. We let both robots perform a Look simultaneously, so both
plan to turn B and move to the midpoint m. We let robot r finish the cycle,
while the other robot s waits. Then we let r perform a whole other cycle. So r
sees s still in A, and moves away from m, while staying B. Now we let s finish
its first cycle and move to m. Finally, we let both robots perform a new cycle
simultaneously. As a result, both robots are set to A and are in a Wait phase,
both have performed at least one cycle, and their distance has been multiplied
by |γ|/2 �= 0. By repeating the same pattern of moves, they never gather. ≥←
Lemma 11. If A(A) = (B, 1/2) and B(B) = (A, 0), then A(B) = (A, 1).

Proof. Let us first assume that A(B) = (B, γ) with γ �= 1. We let one robot
perform a whole cycle, thus turning B and moving to the midpoint. Then we let
the other robot perform a cycle, at the end of which both robots are set to B.
Finally, we let both robots perform a cycle simultaneously, after which they are
back to A and in a Wait phase. Because their distance has been multiplied by
|1 − γ|/2 �= 0, by repeating the same pattern of moves they never gather.

Assume now that A(B) = (B, 1). We let robot r perform a Look and a
Compute phase, thus turning B and computing the midpoint. Now we let the
other robot s perform a whole cycle, at the end of which it is set to B and has
reached r. Then we let r finish its cycle, moving away from s. Finally, we let
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both robots perform a new cycle simultaneously, which takes them back to A.
Their distance has now halved, and by repeating the same pattern of moves they
never gather.

Assume that A(B) = (A, Θ), and let robot r perform an entire cycle, thus
turning B and moving to the midpoint. Due to Lemma 10, B(A) = (B, 0), which
means that, from now on, both robots will retain colors. Hence, r will always
stay still, and s will never reach r unless A(B) = (A, 1). ≥←

4.2 Rigid Asynchronous Model with Arbitrary Initial Configuration

Lemma 12. Algorithm 1 does not solve Rendezvous in rigid ASynch, if both
robots are set to B in the initial configuration.

Proof. Let both robots perform a Look phase, so that both will turn A. We
let robot r finish the current cycle and perform a new Look, while the other
robot s waits. Hence, r will stay A and move to s’s position. Now we let s finish
the current cycle and perform a new Look. So s will turn B and move to the
midpoint m. We let r finish the current cycle, thus reaching s, and perform a
whole new cycle, thus turning B. Finally, we let s finish the current cycle, thus
turning B and moving to m. As a result, both robots are again set to B, they
are in a Wait phase, both have executed at least one cycle, and their distance
has halved. Thus, by repeating the same pattern of moves, they never gather.≥←
Theorem 8. There is no algorithm of class L that solves Rendezvous using
two colors in rigid ASynch from all possible initial configurations.

Proof. Because robots may start both in A or both in B, the statement of Lemma
7, holds also with A and B exchanged. Hence A(A) = (B, Θ), but also B(B) =
(A, Θ). Moreover, by Proposition 2, either A(A) = (B, 1/2) or B(B) = (A, 1/2).
By symmetry, we may assume without loss of generality that A(A) = (B, 1/2).
Now, by Lemma 9, B(B) = (A, 0). Additionally, by Lemma 10 and Lemma 11,
B(A) = (B, 0) and A(B) = (A, 1). These rules define exactly Algorithm 1, which
is not a solution, due to Lemma 12. ≥←

4.3 Non-rigid Asynchronous Model with Preset Initial
Configuration

Theorem 9. There is no algorithm of class L that solves Rendezvous using
two colors in non-rigid ASynch, even assuming that both robots are set to a
predetermined color in the initial configuration.

Proof. Let both robots be set to A in the initial configuration, and let d � 0 be
given. By Lemma 7, A(A) = (B, γ), for some γ ∈ R. If γ �= 1/2, we place the
two robots at distance d/|1 − 2γ| from each other, and we let them perform a
whole cycle simultaneously. If γ = 1/2, we place the robots at distance d + 2α,
and we let them perform a cycle simultaneously, but we stop them as soon as
they have moved by α. As a result, both robots are now set to B, and at distance
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d from each other. This means that any algorithm solving Rendezvous with
both robots set to A must also solve it with both robots set to B, as well.

Similarly, we can place the two robots at distance d/|1−γ| or d+α, depending
if γ �= 1 or γ = 1. Then we let only one robot perform a full cycle, and we let it
finish or we stop it after α, in such a way that it ends up at distance exactly d
from the other robot. At this point, one robot is set to A and the other is set to
B.

It follows that any algorithm for Rendezvous must effectively solve it from
all possible initial configurations. But this is impossible, due to Theorem 8. ≥←

5 Conclusions

We considered deterministic distributed algorithms for Rendezvous for mobile
robots that cannot use distance information, but can only reduce (or increase)
their distance by a constant factor, depending on the color of the lights that
both robots are carrying. We called this class of algorithms L.

We gave several upper and lower bounds on the number of different colors
that are necessary to solve Rendezvous in different robot models. Based on
these results, we can now give a complete characterization of the number of
necessary colors in every possible model, ranging from fully synchronous to semi-
synchronous to asynchronous, rigid and non-rigid, with preset or arbitrary initial
configuration.

Theorem 10. To solve Rendezvous with an algorithm of class L from a preset
starting configuration,

– one color is sufficient for rigid and non-rigid FSynch;
– two colors are necessary and sufficient for rigid SSynch, non-rigid SSynch,

and rigid ASynch;
– three colors are necessary and sufficient for non-rigid ASynch.

To solve Rendezvous with an algorithm of class L from an arbitrary starting
configuration,

– one color is sufficient for rigid and non-rigid FSynch;
– two colors are necessary and sufficient for rigid and non-rigid SSynch;
– three colors are necessary and sufficient for rigid and non-rigid ASynch.

Proof. All the optimal color values derive either from previous theorems or from
the model inclusions summarized in Fig. 1.

That just one color is (necessary and) sufficient for all FSynch models follows
from Proposition 1.

Proposition 1 also implies that, for all the other models, at least two colors
are necessary. Therefore, by Theorem 1, two colors are necessary and sufficient
for all SSynch models.

Similarly, Theorem 2 states that two colors are necessary and sufficient for
rigid ASynch with preset initial configuration. On the other hand, by
Theorem 8 and 9, three colors are necessary in the three remaining models,
and by Theorem 4 three colors are also sufficient. ≥←
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In the three models in which three colors are necessary and sufficient, it
remains an open problem to determine whether using distance information to
its full extent would make it possible to use only two colors.
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