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Abstract. This paper investigates an approach of decision making in-
ternally in an agent where a decision is based on preference and expecta-
tion. The approach uses a logic for qualitative decision theory proposed
by Boutilier to express such notions. To make readily use of this we de-
scribe a simple method for generating preference and expectation models
that respect certain rules provided by the agents, and we briefly dis-
cuss how to integrate the approach into an existing agent programming
language.

1 Introduction

Agents taking part in a multi-agent system are usually seen as intelligent
entities that autonomously are able to bring about (from their own perspec-
tives) desirable states. The designer is in a fixed setting with a controlled num-
ber of agents and globally desirable states often able to implement the agents
such that their own desirable states coincide with the globally desirable states.
In open societies, agents often come from different sources and their desires can-
not as such be assumed to match the global desires. A suggestion is to impose an
organization on the agents, which can influence the actions of the agent toward
the desires of the organization.

When agents are constrained by an organization, their own goals may con-
flict with those of the organization and they need in such cases to be able to
decide which of the conflicting goals to pursue. In some of the previous work
toward resolving such conflicts, desires and obligations are ordered a priori, so
that an agent either prefers desires over obligations or obligations over desires.
This results in agents that are always selfish (considering own goals more impor-
tant than organizational goals) or always social (vice versa). We argue in this
paper that such distinction can be too hard; even a selfish agent could in some
cases benefit from preferring certain obligations to its desires. We consider an
approach on how to resolve such (and other) conflicts, based on work in the area
of qualitative decision theory by Boutilier [4], where the expected consequences
of bringing about a state are considered. We show that this result in agents that
are not always either social or selfish, but instead are able to decide based on
the consequences of bringing about a state.

Our focus is on a general approach toward deciding between different kinds of
influences, with the aim to show that although agents are subject to influences
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from different entities, they are able to make decisions based on the current
situation, their preferences and the expected consequence of bringing about a
state. We do not focus explicitly on the choice between an agent’s desires and
the obligations from an organization, but emphasize that the approach is useful
in this situation and other situations as well.

To make the approach readily useful we furthermore describe a simple method
for generating models for preference and expectation based on basic rules, such
as “I prefer to drive to work when it rains”, specified by the agents.

The paper is organized as follows: In section 2, we discuss the issues that arise
when an agent has to make a decision between conflicting influences. In section
3, we present a new approach on how to solve such conflicts without having to
put the agents into the categories “selfish” or “social”. We present a method
for generating models that conform to the agent’s preferences in section 4. In
section 5, we discuss a case in which agents have conflicting influences and show
that our method enables them to make a decision using their own preference
and the expected consequence of bringing about each state. We briefly discuss
how to implement the system and integrate it in an existing agent programming
language in section 6. Finally, we conclude our work and discuss future research
directions in section 7.

2 Conflicting Influences

Agents entering an environment will be subject to influences from multiple
sources: their own desires, requests from other agents, and obligations from an
organization. In the well-known BDI model, an agent’s desires become inten-
tions, when the agent commits to bringing about these desires. One could argue
that if an agent wants to accept requests from other agents, or if it wants to
adhere to the obligations of an organization, these influences are merely desires
as well, i.e. the agent simply desires to do so. The incentives for doing so are
however not clear, since there should be different reasons for committing to ac-
tual desires and to requests or obligations “disguised” as desires. For example,
if an agent has a desire to move a box from A to B, it typically wants to do
so. However if the agent wants to pay a bill before its due date, this “desire”
has more likely arisen from the fact that the agent does not want to pay a fine,
rather than being an actual desire to pay the bill. In such a situation, the desire
may actually be an obligation or a request to pay the bill, which means that the
agent should reason differently since the actual desire is to avoid paying a fine.

Furthermore, consider an agent that receives an undesirable request from an
agent that it desires to help. It may choose to commit to the task even though the
task itself is not desirable, because the desire to help the other agent is stronger than
the desire not to perform the task (the consequence of not helping the other agent
might be a bad reputation). Similarly, if an agent is obligated to perform certain
tasks for an organization, it should not only be able to consider whether the task is
desirable, but also weigh this against the penalty for violating the obligation.

We call something that the agent might choose to intend to do a “decision
influence” rather than a desire since it, as argued above, may stem from many
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different sources rather than being merely desires. The agent naturally has to
consider its desires since it would be irrational to ignore them, but the con-
sequence of not reasoning about e.g. obligations might be intolerable so these
influence the agent as well. This also means that the agent is not supposed to be
reasoning explicitly about whether it should commit to bringing about an arbi-
trary obligation or desires; they are merely considered influences, and the agent
is not concerned with the different types of influences: only the fact that they
affect the decision process matters. Several approaches are proposed on how to
let agents choose between specific types of influences (typically obligations and
desires) [2,5,6,7,8], so we briefly discuss how our approach differs.

In [5] conflicts between beliefs, obligations, intentions and desires are discussed
with a focus on a distinction between internal conflicts, e.g. contradictory beliefs,
conflicting obligations and external conflicts, such as a desire which is in conflict
with an obligation. The solution proposed, the BOID architecture, imposes a
strict ordering between beliefs, obligations, intentions and desires, such that the
order of derivation determines the agent’s attitude. Thus different agent types
emerge; an agent deriving desires before beliefs is a wishful-thinking agent, while
an agent deriving obligations before desires is social.

We believe this ordering is too strong; if an agent is social, it will always
choose obligations over desires, and vice versa for selfish agents. This might not
always be appropriate. For instance, a selfish agent might desire not to go to
work, but if the consequence of not fulfilling the obligation of going to work is
severe (i.e. getting fired), even a selfish agent should consider this consequence
before deciding not to go to work.

Dignum et al. suggests that “both norms and obligations should be explicitly
used as influences on an agent’s behavior” [7]. They represent obligations (and
norms) using Prohairetic Deontic Logic [10], a preference-based dyadic deontic
logic which allows for contrary-to-duty obligations (obligations holding in a sub-
ideal context). Furthermore, they propose a modified BDI-interpreter in which
selected events are augmented with potential deontic events, which, put simply,
are obligations and norms that may become applicable when choosing a plan. For
instance, if agent a has an obligation to perform a task for agent b, and a does
not intend to do so he ought to inform b about this. The modified interpreter
generates a number of options depending on these potential events and chooses
a relevant plan based on the agent’s attitude.

In [8] it is argued that the preference orderings induced by desires, obliga-
tions and norms should be combined into a single ordering. It is noted that a
common way to do so is to allow that a single preference ordering determine the
aggregate ordering, such that the agent might always put obligations over norms
and norms over desires, similarly to the BOID architecture. Another approach
is also discussed in which the orderings are mapped into a common scale, such
that very desirable situations could outweigh the cost of violating certain obli-
gations. Such ordering should be quite dynamic since, for example, obligations
toward a trusted agent should become less important if that agent becomes less
trustworthy. Simple rules are presented to deal with few alternatives, but it is
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noted that the situation is more complex if an agent has to choose between three
or more alternatives and none of the three orderings agree on a preferred alter-
native. A simple rule which orders the alternatives in a fixed order results in a
very simple-minded agent and it is suggested that the consequences of different
situations is considered, however this is not investigated further.

Different types of role enactments are identified in [6] and they describe an
approach for verification of consistency of agent goals and role goals. They work
with agents and roles in which goals are prioritized using an ordering and inves-
tigate what is required to make agents and roles are compatible. This leads to
role enacting agents that can prioritize own goals and role goals in a combined
ordering, thus not necessarily making agents explicitly selfish or social. They
define different enactment types, such as selfish enactment in which the agent
includes both own goals and role goals, but gives priority to own goals, and social
enactment in which priority is given to the rule goals.

2.1 Consequence-Based Decisions

Performing an action will in many cases result in one or more side effects that
may or may not be desirable for the agent performing the action. These side
effects are part of the consequences of performing the action, and the agent can
reason using more information by considering these consequences, thus enabling
it to make better decisions. This suggests that in order to reason about bringing
about a certain state, the agent should consider what consequences are expected
when bringing about that state.

We therefore suggest that the agent should reason about the expected conse-
quences of choosing to commit to a decision influence and furthermore that this
reasoning should be based on both preference and tolerance. We use preference for
influences and tolerance for expected consequences of influences, and the reason
for using tolerance instead of preference in the case of consequences is that the
agent should not need to desire the consequences of bringing about a state. Since
the consequences are merely side effects, they need not be desired in the same way
as the influences are. If a consequence is preferable, then clearly it is also tolerable
but the opposite need not be the case (the agent might tolerate going to work even
though prefers to stay at home). We define a situation as being tolerated when the
opposite is not preferred (e.g., working is tolerated if staying at home is not pre-
ferred over working). Using the influences, we can build two sets to base a decision
on: the set ofmost preferred influences,Pref, and the set of influenceswith themost
tolerable expected consequences, Tol. We can identify different strategies for how
to make a decision based on these sets, such as considering one set before the other
or by using a combination of the sets:

Pref > Tol (1)

Pref < Tol (2)

Pref ∪ Tol (3)

Pref ∩ Tol (4)
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We can let preferences take precedence (1) such that if a single influence is most
preferred (in Pref ) it is chosen, and only in case of multiple most preferred
influences will tolerance be taken into account, or we can let tolerance take
precedence (2), which gives the opposite situation. However, this means that
only in some cases are both preference and tolerance taken into account, so
an agent could choose to commit to something it prefers which leads to an
intolerable situations that could have been avoided if both sets were taken into
account. We could take the collective influences (3), but then the agent would
have to choose between things it prefer and things it tolerate even though the
former may be intolerable and the latter could be unwanted. Instead we could
let the decision be the influences that are both preferred and tolerated (4), thus
ensuring that the decision is preferred by the agent and that the consequences
can be tolerated. In certain situations, these sets may not coincide, and we argue
then that the safest decision is to choose something tolerated, since then even
though the influence might not be most preferred, at least it will not lead to
an intolerable state. Our approach makes use of the last strategy, i.e. taking
the intersection of the sets, since it incorporates both measures in all situations,
while not resulting in intolerable preferred states.

Note that our approach does not incorporate an explicit notion of organiza-
tions; the focus is on many different kinds of influences including the obligations
toward an organization. As a result, we model consequences as expectations from
the environment, that is, which possible world is the most expected, which is
the second most and so on. This means that if the consequences of the violation
of an obligation (i.e. sanctions) are specified in an organizational model, these
consequences are in our approach modeled such that worlds in which the vio-
lation has occurred and a sanction has been imposed are more expected than
the worlds where the violation has occurred without the agent being sanctioned.
This will be evident in the example in section 5 where all expected consequences
are incorporated into the same model.

3 Modeling Influence and Consequence

We base our work on the Logic for Qualitative Decision Theory (QDT) by
Boutilier [4]. We briefly describe the semantics of QDT and define a few new
abbreviations to be used in the decision-making.

The basic idea behind the QDT model is as follows. An agent has the ulti-
mate desire of achieving the goals to which it is committed. This can be modeled
by a possible worlds-model in which the agent has achieved its goal when it is
in a world where those goals hold. The most preferred world in an ideal set-
ting is the world in which the agent has achieved all of its goals. However, such
world is often unreachable since the agent could have contradicting goals, other
agents could prevent the agent from achieving all of its goals, an organization
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could impose obligations, which contradict the agent’s goals, etc. By ordering
the worlds in a preference relation, it is possible to choose the most preferred
world(s) in a sub-ideal situation.

In order to decide between influences the consequence of bringing about a
state should be taken into account. If the consequence of pursuing a personal
desire is to be fired from your workplace, it might not be reasonable to do so even
though the desire was more preferred than the obligations from work. We briefly
describe QDT below before moving on to modeling the expected consequence of
bringing about a state.

A QDT model is of the form:

M = 〈W,≤P ,≤N , π〉,

where W is the non-empty set of worlds, ≤P is the transitive, connected pref-
erence ordering1, ≤N is the transitive, connected normality ordering, and π is
the valuation function. The normality ordering is used to model how likely each
world is, e.g. it is normally cold when it is snowing, and the preference ordering
is used to model an agent’s preferences.

The semantics are as follows:

M,w |= p ⇐⇒ p ∈ π(w)

M,w |= ¬ϕ ⇐⇒ M,w 
|= ϕ

M,w |= ϕ ∧ ψ ⇐⇒ M,w |= ϕ ∧M,w |= ψ

M,w |= �P ϕ ⇐⇒ ∀v ∈W, v ≤P w,M, v |= ϕ

M,w |= ←�P ϕ ⇐⇒ ∀v ∈W,w <P v,M, v |= ϕ

M,w |= �N ϕ ⇐⇒ ∀v ∈W, v ≤N w,M, v |= ϕ

M,w |= ←�N ϕ ⇐⇒ ∀v ∈W,w <N v,M, v |= ϕ

We can define the other operators (∨,→,�,
←
�) as usual. Finally, we can talk

about a formula being true in all worlds or some worlds:
↔
�P ϕ ≡ �P ϕ ∧←�P ϕ

and
↔
�P ϕ ≡ �P ϕ ∨←�P ϕ, respectively (similarly for normality). The following

abbreviations are defined [4]:

(1) I(ψ | ϕ) ≡ ↔�P¬ϕ ∨↔�P (ϕ ∧ �P (ϕ→ ψ)) (Conditional preference)

(2) ϕ ≤P ψ ≡ ↔�P (ψ → �Pϕ) (Relative preference)

(3) T (ψ | ϕ) ≡ ¬I(¬ψ | ϕ) (Conditional tolerance)

(4) ϕ⇒ ψ ≡ ↔�N¬ϕ ∨↔�N (ϕ ∧�N (ϕ→ ψ)) (Normative conditional)

The abbreviations state that (1) ψ is ideally true if ϕ is true, (2) ϕ is at least
as preferred as ψ, (3) ψ is tolerable given ϕ and (4) that ψ normally is the case
when ϕ is.

1 We adopt the notion by Boutilier and others that we prefer minimal models, so
v ≤P w denotes that v is at least as preferred as w.
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In order to make decisions as motivated above, we define the following ab-
breviations, which allow us to specify different kinds of relative preference, and
relative tolerance.

ϕ 
≤P ψ ≡ ¬(ϕ ≤P ψ) (Not as preferred)

ϕ ≈P ψ ≡ (ϕ ≤P ψ ∧ ψ ≤P ϕ)
∨ (ϕ 
≤P ψ ∧ ψ 
≤P ϕ) (Equally preferred)

ϕ ≤T (γ) ψ ≡ (T (ϕ | γ) ∧ ¬T (ψ | γ)) ∨
((T (ϕ | γ) ↔ T (ψ | γ)) ∧
(ϕ ≤P ψ ∨ ϕ ≈P ψ)) (Relative tolerance)

Relative tolerance is defined as ϕ being at least as tolerable as ψ w.r.t γ when
either ϕ is tolerable given γ and ψ is not, or both ϕ and ψ are tolerable given γ (or
both are not), and ϕ is at least as preferred as ψ, or they are equally preferable.
This means that even if neither is tolerable, they are still comparable.

3.1 Making a Decision

We now show how QDT can be used to decide between conflicting influences.
We define a model for an agent’s decision making as follows:

MC = 〈M,F,C,B 〉,

where M is a QDT-model as defined above, F is the set of influences, C is the
set of controllable propositions2, and B is the agent’s belief base.

The set of potential consequences C′ is defined such that if ϕ ∈ C then
ϕ,¬ϕ ∈ C′. That is, if ϕ is controllable, then one of ϕ,¬ϕ may be a consequence
of bringing about some state.

In order for a potential consequence to be an actual (expected) consequence
of ϕ, it has to follow from the most normal worlds where ϕ holds. That is, we
add ϕ to the belief base B, and the potential consequences that follow from the
expanded belief base are then the expected consequences. Assuming that ϕ and
B are consistent, we add ϕ to B using the expansion operator, +, of the AGM
theory [1], where B+ϕ means adding ϕ to a copy of B and closing the resulting
set under logical consequence. We work with a copy of the belief base since the
reasoning concerns what happens if the literal is added.

If, however, ϕ and B are not consistent, we can use the AGM revision operator,
+̇, which behaves like +, but if ϕ and B are not consistent, B is minimally
modified to make it consistent with ϕ, before adding ϕ.

As shown in [3], AGM belief revision can be efficiently implemented in rational
agents, making it suitable for our approach. We can now formally define the
expected consequence of bringing about a state.

2 A controllable proposition is, roughly, a proposition that the agent is able to influ-
ence, directly or indirectly, by an action. E.g., snow is not controllable and cannot
be a consequence of an action, whereas work is.
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Definition 1 (Expected consequences). Given an agent’s belief base B, the
set of potential consequences C′ and a literal ϕ. The expected consequences of
bringing about ϕ, denoted EC(ϕ), is given by:

EC(ϕ) =
∧
Cϕ for all Cϕ ∈ {Cϕ | (B +̇ ϕ⇒ Cϕ) where Cϕ ∈ C′}

i.e. the conjunction of all literals Cϕ that are normally consequences of the cur-
rent belief base B expanded with ϕ, such that B remains consistent. If there are
no expected consequences, then EC(ϕ) = �.

Consider a normality ordering in which we have that

a ∧ x⇒ b, a ∧ ¬x⇒ c, d ∧ ¬x⇒ e,

and belief base B = {x}. Then we have that EC(a) = b and EC(d) = �. If
B = {¬x}, then EC(a) = c and EC(d) = e.

Definition 2 (Most preferred influences). Given an agent’s set of influ-
ences F , the most preferred influences then are defined as the set Pref:

Pref = {ϕ | ϕ ∈ F ∧ ∀ψ ∈ F (ψ 
= ϕ→ ϕ ≤P ψ)}
Definition 3 (Most tolerable consequences). Given an agent’s set of in-
fluences F , the most preferred influences then are defined as the set Tol:

Tol = {ϕ | ϕ ∈ F ∧ ∀ψ ∈ F (ψ 
= ϕ→ EC(ϕ) ≤T (ϕ∨ψ) EC(ψ))}
An agent can make a decision by selecting the most preferred influences having the
most tolerable consequences from the set of potentially conflicting influences, F ,.

Definition 4 (Decision). Given a the set of influences F and the expected
consequences EC(ϕ) for all ϕ ∈ F , we can get the set of best influences (the
decision) the agent should choose from, Dec, as follows:

Dec =

{
Tol if Tol ∩ Pref = ∅
Tol ∩ Pref otherwise

Given a model MC , an agent can then choose an arbitrary literal from Dec,
since all of these will be preferred and have tolerable consequences (or at least
have tolerable consequences).

If there are no expected consequences of bringing about a certain proposition,
i.e. if EC(ϕ) = �, then ϕ is considered tolerable since we do not expect any con-
sequences. Therefore comparing the relative tolerance for all other consequences,
ψ, is reduced to comparing � ≤T (C) ψ and ψ ≤T (C) �. Note that T (� | ψ) is
true iff ψ is true in any world3. Furthermore, � ≤P ψ is always true, and ψ ≤P �
is true iff ψ is true in all worlds. Thus, it is possible to make a decision even if
some influences have no known consequences.

3 Since T (� | ψ) ≡ ↔
�Pψ ∧↔

�P (¬ψ ∨�P (ψ ∧ �).
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In the following, we show that an agent given a model, MC can always make
a decision.

Lemma 1. Given expressions ϕ, ψ, and γ, the following relation holds for rel-
ative tolerance:

¬(ϕ ≤T (γ) ψ) → (ψ ≤T (γ) ϕ)

Proof. We assume ¬(ϕ ≤T (γ) ψ) and prove that (ψ ≤T (γ) ϕ). Based on the
assumption and the definition of relative tolerance, the following formulas hold:

¬(T (ϕ | γ) ∧ ¬T (ψ | γ)) (5)

¬((T (ϕ | γ) ↔ T (ψ | γ)) ∧ (ϕ ≤P ψ ∨ ϕ ≈P ψ)) (6)

1. Given (5), we have that either T (ϕ | γ) ↔ T (ψ | γ) or ¬T (ϕ | γ) ∧ T (ψ | γ)
holds. In the latter case we have that ψ ≤T (γ) ϕ by the definition of relative
tolerance. Otherwise they are equally tolerable and we have to consider the
second case.

2. Given (6), either ¬(T (ϕ | γ) ↔ T (ψ | γ)) or ¬(ϕ ≤P ψ ∨ ϕ ≈P ψ). If the
former is the case, then one is tolerated and the other is not. Because of (5),
we have that ¬T (ϕ | γ) ∧ T (ψ | γ) and therefore ψ ≤T (γ) ϕ. If the latter is
the case then we have that ¬(ϕ ≤P ψ) ∧ ¬(ϕ ≈P ψ). In that case we have
that ψ <P ϕ and therefore ψ ≤T (γ) ϕ. ��

Proposition 1. Given a non-empty set of influences F and the expected con-
sequence EC(ϕ) for each ϕ ∈ F , the set of best influences, Dec, is always non-
empty.

Proof. If |F | = 1 then Dec = F = Tol = Pref , since there are no ψ 
= ϕ in F . If
|F | > 1 then we consider each case.

– If Tol ∩ Pref = ∅ then Dec = Tol and we have to show that Tol 
= ∅. If
Tol = ∅ then there is no ψ such that EC(ϕ) is relatively more tolerated than
EC(ψ). Since |F | > 1 there is at least one ψ 
= ϕ, and by lemma 1 we then
have that EC(ψ) is relatively more tolerated than EC(ϕ). Thus ψ ∈ Tol
and Tol 
= ∅.

– If Tol ∩ Pref 
= ∅ then, since Dec = Tol ∩ Pref , Dec cannot be empty. ��
Proposition 1 shows that the decision procedure will always produce a non-

empty result, meaning that we can use the procedure even in situations where
there is no conflict between influences.

4 Generating Models

The preferences of an agent are usually not described as a model shown above,
but will rather be expressions such as “I prefer that it does not rain” or “When it
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Algorithm 1. Atom retrieval

function retrieve atoms(F,R)
At← positive(F )
checked← ∅
for all ϕ ∈ At \ checked do

At← At ∪ atoms rule(ϕ,R)
checked← checked ∪ {ϕ}

return At

rains, I want to stay inside”. In order to utilize such preferences in the decision
procedure above, a transformation is required. In the following, we present a
method, which will generate a QDT-model that respects non-contradictory rules
specified by the agent.

Each agent specifies a set of rules of the form (ϕ, ψ), where ϕ and ψ are
standard propositional formulas. A rule, (ϕ, ψ), should be read as “if ϕ then
normally/preferably ψ”. Using the notion of possible worlds, we understand a
rule as follows. Worlds w, in which w |= ϕ∧ψ, are favored over worlds w′, where
w′ |= ϕ∧¬ψ. Thus, a rule is roughly interpreted as the conditionals for preference
and normality. In the following, we propose a method for generating preference
and normality orderings that respect such rules by utilizing this interpretation.
The generic definition of the conditional operators from the previous section is:

if ϕ then ψ ≡ ↔�¬ϕ ∨↔�(ϕ ∧ �(ϕ→ ψ)).

From this definition, it is clear that there are two ways to ensure that a rule
(ϕ, ψ) is respected. Either (a) ϕ is never true or (b) in the most favored world(s)
where ϕ is true, ψ is also true. Option (a) is achieved easily; we simply remove all
worlds where ϕ is true. However, the agent does probably not intend this, since
the rules are most likely specified such that favored situations are actually also
possible situations. We therefore require that the method does not remove any
worlds from W . The method should ensure that after the application of a rule
we have M |= (ϕ, ψ). Another natural requirement is that previously applied
rules still hold after application of a new rule. If this is not possible, we say that
the new rule contradicts previously applied rule, and therefore discard the new
rule.

The aim is to generate a model respecting the rules, such that the agent
can make a decision based on the model. Given the modal nature of QDT,
the generation is based on the notion of possible worlds, W , so the first step
is to generate W . Instead of generating a general model in which all rules are
applicable, we create sub-models for different parts of the world. For exam-
ple, an agent’s preference concerning work might not be relevant for decisions
in a different context, such as a family party. Furthermore, certain situations
are not deemed possible, such as leaving work early and not going to work at
all. W is generated using the agent’s current influences F to decide which atoms
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Algorithm 2. Rule application

function apply((ϕ,ψ),W,≤)
max← max(≤)
for all w ∈ W do

if w |= ϕ ∧ ¬ψ then Wc ← w

if (w |= ϕ ∧ ψ) and ¬∃w′(w′ ∈ W ∧ (w′, w) ∈ lock) then
o(w) = max+ 1
Ws ← w

if Ws = ∅ then return ⊥
for all w ∈ Ws, w

′ ∈ Wc do lock(w,w′)

return �

are relevant for making a decision in the context of F and any impossible worlds
are removed. Algorithm 1 retrieves the relevant atoms from F and the set of
rules. positive(S) is the set of all literals in S with all negative literals made
positive, such that if ¬ϕ ∈ S then ϕ ∈ positive(S). atoms rule(ϕ,R) returns
a set of all atoms that appear in rules r ∈ R where ϕ also appears (e.g. if
R = {(ϕ, ψ1), (ϕ, ψ2)} then atoms rule(ϕ,R) = {ϕ, ψ1, ψ2}.

Given the set of relevant atoms, At, the set of possible worlds contains
a world for each set in 2At, where each set either contains the atom or its
negation. For instance, given At = {a, b}, the initial model will be 2At =
{{a, b}, {¬a, b}, {a,¬b}, {¬a,¬b}}. Impossible worlds are specified as simple for-
mulas, e.g. ¬a ∧ b. A world that entails such an expression is removed from W ,
which is then set of possible worlds given F .

An ordering, ≤, is the result of a mapping from a world to a natural number,
the o-value, denoted o : W → N , such that worlds with higher numbers are
more favored. Worlds can have the same o-value if they are equally favored. The
maximum o-value of an ordering ≤ is denoted max(≤).

We propose using a locking mechanism in which the ordering between two
worlds can be locked, such that if lock(w1, w2) then it must always be the
case that w1 < w2. We can use this to e.g. lock the ordering between worlds
w1 = {ϕ, ψ} and w2 = {ϕ,¬ψ} if a rule (ϕ, ψ) is applied by creating a lock,
lock(w1, w2), such that w1 is always favored over w2. Then if a rule (ϕ,¬ψ) is
applied, the ordering cannot be changed so that w2 is favored over w1 because
it would result in the previously applied rule no longer being respected (since ψ
would not be entailed by the most favored world where ϕ holds).

Rules are applied using the function apply : (R,≤) → {�,⊥} (algorithm
2). Applying a rule (ϕ, ψ) is done by finding all worlds in which both ϕ and ψ
holds (the sought worlds) and all worlds in which ϕ and ¬ψ holds (the contra-
dictory worlds). The sought worlds are given an o-value of max(≤) + 1 and all
contradictory worlds are locked in relative position to the sought worlds.
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A rule (ϕ, ψ) cannot be applied if there is no world w in which w |= ϕ ∧ ψ or
for all such worlds a lock, lock(w′, w), exists for some w′.

Proposition 2. Given an initial ordering ≤ and a set of rules R = {r1, . . . , rn}
where each ri is of the form (ϕi, ψi), the result of successfully applying rules r1
to ri, 0 < i ≤ n is an ordering which respects rules {r1, . . . , ri}.
Proof. When i = 1 no previous rules have been applied, so we only have to show
that the model respects rule r1 after successful application. We have o(w) = 1 for
all worlds w. Applying r1 can only fail if no worlds entail ϕ1 ∧ψ1 or all entailing
worlds are locked. Since lock = ∅ initially, only the former can be the case.
But then the rule would describe an impossible world and cannot be applied.
Otherwise, after applying r1, it is entailed by the model, since for all worlds w
where w |= ϕ1 ∧ ψ1 we have o(w) = 2 and the o-value of all other worlds is
unchanged. Thus the worlds entailing r1 are most preferred so the rule itself is
entailed by the model.

When i > 1 we assume that all rules up to and including ri−1 have been
applied successfully. We therefore have

M |= (ϕ1, ψ1) ∧ · · · ∧ (ϕi−1, ψi−1).

Let li = {(w,w′) | w |= ϕi ∧ ψi and w′ |= ϕi ∧ ¬ψi} be the set of locks between
worlds with contradictory consequents of a rule (ϕi, ψi). Before applying ri the
set lock contains

lock = l1 ∪ · · · ∪ li−1
Rule ri can then be applied if there is at least one world w in which w |= ri and
where w is not the second entry of a pair in lock (i.e. there is a world entailing
ri which is not locked by another world). If there is no such world then either
the rule describes an impossible world and should be rejected, or a previously
applied rule contradicts it, which also means it should be rejected. Otherwise
the rule will be successfully applied resulting in a model entailing all rules up to
and including ri:

M |= (ϕ1, ψ1) ∧ · · · ∧ (ϕi, ψi),

and a new lock set: lock′ = lock ∪ li. Assuming that the rule is successfully
applied we know that for all w in which w |= ri we have o(w) = max(≤) + 1.
Clearly ri is then entailed by the model. We then have to show that all rules up
to ri are still entailed as well.

Consider rule rj where 0 < j < i. Rule rj was entailed by the model before
applying ri. Therefore there are worlds wj where wj |= ϕj ∧ ψj and no lock of
it exists, and w′j where w′j |= ϕj ∧ ¬ψj , and for all such worlds we have that
o(wj) > o(w′j) and (wj , w

′
j) ∈ lock. Thus all worlds contradicting rj are locked

relative to those entailing it. If w′j ∈ Ws for some w′j then some of the sought
worlds are locked by rj , but since Ws only contains unlocked worlds, this cannot
be the case. Therefore no worlds w′j will be given a higher o-value than any wj
world. Furthermore, since w′j contains all the worlds that could invalidate rj ,
clearly rj is still entailed after applying ri. ��
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Algorithm 3. Model generation

function generate(F,P ,R)
At← retrieve atoms(F,R)
W ← init(At,P)
≤ ← o(W )
R′ ← sort(R)
for all (ϕ,ψ) ∈ R′ do

apply((ϕ,ψ),W,≤)
return ≤

Even though we can successfully apply a set of rules, the function can be further
optimized to maximize the number of successful applications of rules. Note that
the use of a locking mechanism decreases the number of worlds that can be moved
around every time a rule is successfully applied. Therefore, by minimizing the
number of worlds being locked in each iteration, we maximize the number of
rules that can be applied. The function s : R → N gives each rule a score, where
rules with many propositions and operators receive higher scores than rules with
few.

s((�, ψ)) = s(ψ)− 1
s((ϕ, ψ)) = s(ϕ) + s(ψ)
s(ϕ ∧ ψ) = s(ϕ) + s(ψ) + 1
s(ϕ ∨ ψ) = s(ϕ) + s(ψ) + 1
s(¬ϕ) = s(ϕ) + 1
s(�) = 0
s(p) = 1

By applying the highest valued rules (the most specialized) first, we ensure that
as few worlds as possible are locked. Notice that that rules where the antecedent
is � will be penalized, since they are very general, whereas � in the consequent
is ignored.

The algorithm generate : (F,P ,R) → ≤ then works as follows (algorithm
3). Retrieve relevant atoms and generate an initial model of possible worlds. Sort
rules descending according to their s-value using sort(R). Each rule in R is then
applied using apply((ϕ, ψ),≤). Finally, the algorithm returns the ordering ≤,
which respects all successfully applied rules.

4.1 Application of Equally General Rules

The need for constraining the order of rule application touches upon a shortcom-
ing of the model generation; rule application may fail, if previously applied rules
have locked the matching worlds. In many cases this is actually a good thing,
since it does not make sense to first apply a rule r1 = (ϕ, ψ) and then later
r2 = (ϕ,¬ψ). r1 and r2 are clearly contradictory rules, and both should not be
applied at once, since we cannot both expect ψ and ¬ψ when ϕ is true. However,
if two rules receive the same score they will be applied in a non-deterministic
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order which could lead to a situation where applying the rules in one order re-
sults in one model, and applying in another order results in a different model. It
might even be the case that we can apply both rules using one ordering, while
another ordering rejects one of the rules.

Consider rules R = {(�, A), (�, B)} and possible worlds W = 2{A,B}. The
rules have equal score and they will therefore be applied in a non-deterministic
order. If (�, A) is applied first the ordering will be AB < AB < {AB,AB},
whereas the ordering will be AB < AB < {AB,AB} if (�, B) is applied first.
The rules satisfy the model in both cases; in the most preferred world(s) both A
and B hold, but the ordering of less preferred world differs. We argue that even
though this is the case, it is clear that as long as the rules have been successfully
applied they are satisfied by the model, which means that the model can be used
by the agent to reason about its influences by taking its preferences into account.
In situations where certain orderings might reject a rule while other orderings
would not, it is evident that the latter ordering is favored4. If this is the case, the
agent might simply monitor the rule application, and if the algorithm rejects a
rule given a certain ordering, the agent can attempt to apply the equally general
rules in a different order. However, if all orderings result in rejection of one of
the rules, this indicates that some of the rules contradict each other, suggesting
that not all the rules can be consistently applied to the model.

5 Case Study

In this section, we apply the model to a simple scenario. We consider a situation
in which agents are normally expected to go to work, but during snowy weather,
they are not expected to go to work. The agent Alice prefers that it does not
snow, but when it snows, she wants to stay at home. We have the following rules
for expectations of the environment and preferences of the agent:

REnv = {(�,work), (snow ,¬work )}
RAlice = {(�,¬snow), (snow ,¬work)}.

The environment expectation rules represent the expectations that originate
from different sources such as an organization or other agents.

In the following we let S abbreviate snow and W work. We denote negation
using an overline, e.g. S when it is not snowing and we write conjunctions by
writing literals next to each other, e.g. SW when it is snowing and the agent
is working. From the rules above it is clear that At = {W,S}. The orderings
≤P and ≤N are then generated using the algorithms described above. Figure 1
shows how Alice’s preference ordering is generated using her rules.

To make the situation more interesting we add the possibility of being fired
(F ) and of leaving early (E):

RAlice = {(�, S), (S,W ), (�, F ), (W,E)}.
4 After all, the aim is to apply as many of the rules as possible.
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SW SW SW SW =⇒
(S,W ) SW SW SW

SW

=⇒
(�, S)

SW

SW

SW SW

lock

lock
lock

lock

Fig. 1.Generation of Alice’s preferences. Note that some of the locks have been omitted
for clarity, e.g. the lock between SW and SW .
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(a) Alice’s preferences

EFSW EFSW EFSW EFSW
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EFSW EFSW

EFSW

(b) Expectation

Fig. 2. The preference and normality orderings generated using the rules and prohibi-
tions specified by the environment and Alice

Thus, she does not want to be fired, and in situations where she chooses to go
to work, she prefers to leave early. The rules of the environment are updated to
conform to this change; if it snows, one can stay home without being fired but
this is not the case when it does not snow.

REnv = {(�,W ), (S, FW ), (SW,F ), (�, E), (W,F )}.
Furthermore, agents are not expected to leave early and will normally not be
fired if they work.

Certain worlds are not possible given the new rules; an agent will not be
working if it is fired, and if it is not working, it will not leave early. This is
represented by the set of prohibitions: P = {FW,EW}. Thus, the set of possible
worlds W is reduced to those worlds where none of the prohibitions above are
entailed. The preference and normality orderings resulting from these rules are
shown in figure 2(a) and 2(b).

Alice is now able to decide between her influences using the generated model.
Say Alice has a desire to stay at home, but an obligation toward her employer
to go to work, i.e. the set of influences is F = {W,W}. We then consider two
cases: one where it snows and one where it does not.

a) We have that B = {S} so all worlds in which it does not snow are ignored.
This leaves us with four possible worlds, where Alice’s most preferred world
is EFSW , thus Pref = {W}. The expected consequence of both going to
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work and not going to work is not to be fired, which means that each is
equally tolerable, thus Tol = {W,W}. The decision is then the intersection:
Dec = {W}.

b) We have that B = {S}, giving four possible worlds. In this case Alice’s most
preferred worlds are EFSW and EFSW , thus Pref = {W,W}. From the
expectations we see that EC(W ) = EFS and EC(W ) = EFS. Since not
being fired is more tolerable than being fired, Tol = {W}, and the decision
is then Dec = {W}.

Note that Alice was labeled neither “social” nor “selfish”. Her preference and
the expected consequences are taking into account, and this leads to the results
above. When she chooses to go to work, this does not mean that she is strictly
social. She might very well have a (selfish) desire to leave early, which she can
choose to do if she tolerates the consequences of doing so.

6 Toward an Implementation

The case study showed that agents are able to make decisions based on rules
of preference and expectation. We believe that the approach can be integrated
in existing agent systems to let agents make decisions based on their own pref-
erences and the external expectations. We are currently investigating how the
procedure can be integrated into the GOAL agent programming language [9].
While this is work in progress, we briefly discuss the work that has been done
and some of the implications such integration has.

In GOAL, the choice of committing to different goals and performing actions
is relatively simple; a program consists of a list of rules that are either evalu-
ated in linear or random order. This means that either the preference ordering
is specified a priori, or it is not specified at all. We believe that by integrating
the agents’ rules of preference and the expectations into the GOAL system, the
agents will be able to make decisions based on preferences in different situa-
tions thus providing a different kind of processing order of GOAL rules. This
requires that the system is able to understand a specification of preferences and
expectations.

We have taken the first steps toward an implementation by implementing a
prototype of the system in Prolog5. The reason for choosing Prolog is that (1) it
makes the implementation of the QDT models quite simple and (2) it allows us
to integrate the system directly into the GOAL agent’s knowledge base. The set
of rules is specified as a list of pairs, [(Phi,Psi),...]; prohibitions as simple
formulas; and a lock as a pair of lists, such that (L1,L2) represents that for all
worlds w1 in L1 and w2 in L2 is it the case that w1 < w2.

The basic operators (∧,¬,�) are implemented straightforwardly; ∧ and ¬ are
evaluated in the current world and � in all more preferred (or expected) worlds.

5 The Prolog code that follows has been slightly simplified to be more easily
comprehended.
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Each abbreviation is then defined, e.g. the conditional preference operator is
defined as follows:

eval(I(ψ | ϕ), Ws, W, TV) :-

eval(
↔
�P¬ϕ ∨↔�P (ϕ ∧�P (ϕ→ ψ)), Ws, W, TV).

where Ws is the set of all worlds and W is the current world. eval succeeds if TV
can be unified with the truth-value of the formula.

The application of a rule is done using two findall-queries: one to build the
set Wc and one for Ws.

apply rule(Ws, Ord, (ϕ, ψ), Lock, W c, W s) :-

findall(W, (member(W,Ws), eval(ϕ∧¬ψ, Ws, W, t)), W c),

findall(W, (member(W,Ws), \+ (member(( ,Locked), Lock),

member(W, Locked)), eval(ϕ ∧ ψ, Ws, W, t)), W s).

where Ws is the set of all worlds, Ord is the current ordering, (ϕ, ψ) is the rule
being applied, Lock is the set of locks, and W c and W s are Wc and Ws, respec-
tively. The first query succeeds if W c can be unified with all worlds w in which
w |= ϕ ∧ ¬ψ. The second query succeeds if W s can be unified with all worlds w
where w |= ϕ ∧ ψ and w is not locked. A rule is successfully applied when W s

\= [], i.e. Ws 
= ∅. The ordering can be changed by incrementing the o-value
for each w ∈Ws, and the lock is updated to include the pair of lists (W s, W c).

Agents make a decision using the sets Pref and Tol, which are built by fol-
lowing their definitions closely. For example, the set Pref is built as follows:

pref([], , ,[]).

pref([ϕ|FTail], F, Ws, Pref) :-

checkpref(ϕ, F, Ws), !, Pref=[ϕ|Tail],
pref(FTail, F, Ws, Tail).

pref([ |FTail], F, Ws, Pref) :- pref(FTail, F, Ws, Pref).

where F is the set of all influences, Ws is the set of all worlds, and checkpref(Phi,

F, Ws) succeeds if ϕ ≤P ψ for all ψ ∈ F . Pref is then unified with all ϕ ∈ F
that are most preferred. A similar predicate is defined for Tol. The final set, Dec,
is the intersection of Pref and Tol, or just Tol if the intersection is empty, and
a decision can then be made using the following Prolog query (here making a
decision based on the case study above):

?- decision([¬s], P, N, Dec).

Dec = [w].

where P and N are the generated preference and normality orderings, and Dec

corresponds to Dec.
The decision procedure can be used as-is within GOAL, meaning that GOAL

agents are able use the decision procedure. However, this also means that the
decision of which influence to commit to needs to be implemented directly in the
agent’s program, which suggests that the programmer will have to understand
the mechanisms of the procedure. A more ideal solution would be to integrate the
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procedure within GOAL, e.g. allowing for another GOAL rule evaluation order
(which would then choose a rule matching an influence in Dec), requiring only
that the programmer to specifies each agent’s preferences and the expectations
from the environment. This is however out of scope for this paper and is left for
future research.

7 Conclusion

We have argued that conflicts are prone to arise when agents interact in open
societies and enact roles in an organization, since their own desires may be in
conflict with obligations toward other agents or the obligations of the role(s) they
are enacting. We have discussed why obligations along with desires should be
considered influences on the agent’s behavior rather than being seen as desires
being imposed onto the agent by other entities. Since influences do not necessarily
represent states the agent wants to achieve, they should only be pursued if the
agent can tolerate their consequences.

Our approach to decide which influences to commit to, which is based on
qualitative decision theory, is an attempt to let the agent reason about the influ-
ences without taking into account that one influence is a desire, and another is
an obligation, since such bias can result in labeling the agent “selfish” or “social”
in advance. The approach works by including the consequence of bringing about
a state in the reasoning, thus letting the agent consider its preferences, without
choosing something that results in an intolerable state. We have argued that this
indeed lets the agents reach a decision without strictly preferring certain types
of influences to others.

To make the procedure readily available we furthermore have developed a
simple method that can generate models to be used in the reasoning process by
the use of expressions describing the agent’s preferences. By use of a simple lock-
ing mechanism, the method generates models, which respect non-contradictory
rules specified by the agent such that it is possible to make a decision among a
set of influences. The simple nature of the method also allows us to generate the
models on the fly, so that if the agent’s preferences change during execution a
new model can be generated. Since the method works by generating all possible
states of relevant sub-models, it may prove to be inefficient in cases that are
more complex. Even though we only consider sub-models, it would be natural to
investigate how to optimize this. Furthermore, since rules of equal generality are
applied non-deterministically, different models may emerge, though they satisfy
the same sets of rules; although our goal was to create models satisfying rules,
we believe a deterministic procedure is desirable and it could be an interesting
direction for future work.

Another direction for further research would be to investigate how to integrate
the prototype into the GOAL agent programming language. While we have al-
ready built a working prototype of the system in Prolog, much more work needs
to be done to successfully integrate it into a full-fledged programming language
such as GOAL.
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Finally, the non-propositional case should be investigated such that reasoning
about the agent’s preferences can be done in cases that are more complex. For
instance, it should be possible for the agent to prefer being at home, at(home),
compared to other places such as work, while still being able to express that
being at a café is more preferred than being at home.
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