
Multi-Agent Programming Contest 2013

Tobias Ahlbrecht, Jürgen Dix, Michael Köster, and Federico Schlesinger

Department of Informatics, Clausthal University of Technology,
Julius-Albert-Str. 4, 38678 Clausthal-Zellerfeld, Germany

{dix,tobias.ahlbrecht,michael.koester,
federico.schlesinger}@tu-clausthal.de

Abstract. This is about the ninth edition of the Multi-Agent Program-
ming Contest1, an annual, community-serving competition that attracts
groups from all over the world. Our contest enables head-to-head com-
parison of multi-agent systems and supports educational efforts in the
design and implementation of such systems. This year we have gener-
ated a multitude of statistical data for each match and give a detailed
interpretation of them.

1 Introduction

In this paper we (1) briefly introduce the Contest, (2) elaborate on the 2013 sce-
nario and its differences with the 2012 edition, (3) introduce the five teams that
took part in the tournament, and (4) present many statistical data to interpret
the matches and the performance of the teams.

The Multi-Agent Programming Contest 1 (MAPC) is an annual international
event that has started in 2005 as an attempt to stimulate research in the field of
programming multi-agent system by 1) identifying key problems, 2) collecting
suitable benchmarks, and 3) gathering test cases which require and enforce coor-
dinated action that can serve as milestones for testing multi-agent programming
languages, platforms and tools. In 2013 the competition was organized and held
for the ninth time.

More detailed information about the strategies of the teams are to be found in
the subsequent five papers in this volume. In addition, we compiled a companion
paper [1] that contains short answers from each team to more than 50 questions
that allows the reader to easily compare the teams.

1.1 Related Work

For a detailed account on the history of the contest as well as the underlying
simulation platform, we refer to [2,7,5,6,10]. A quick non-technical overview ap-
peared in [3].

1 http://multiagentcontest.org

M. Cossentino et al. (Eds.): EMAS 2013, LNAI 8245, pp. 292–318, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://multiagentcontest.org


Multi-Agent Programming Contest 2013 293

Similar contests, competitions and challenges have taken place in the past
few years. Among them we mention Google’s AI challenge2 , the AI-MAS Win-
ter Olympics3, the Starcraft AI Competition4, the Mario AI Championship5 , the
ORTS competition6, the Planning Competition7, and the General Game Play-
ing8. Every such competition rests in its own research niche. Originally, our
Contest has been designed for problem solving approaches that are based on
formal approaches and computational logics. But this is not a requirement to
enter the competition.

1.2 The Contest from 2005–2013

Through the history of the Contest, changes to the scenarios were introduced
with every new edition, with three major redesigns.

From 2005 to 2007, a classical gold miners scenario was used [8]. We intro-
duced the MASSim platform: A platform for executing the Contest tournaments.

From 2008 to 2010 we developed the cows and cowboys scenario, which was
designed to enforce cooperative behavior among agents [4]. The topology of the
environment was represented by a grid that contained, besides various obstacles,
a population of simulated cows. The goal was to arrange agents in a manner that
scared cows into special areas, called corrals, in order to get points. While still
maintaining the core tasks of environment exploration and path planning, the
use of cooperative strategies was a requirement of this scenario.

In 2011, the agents on Mars scenario [5] was newly introduced. In short,
the environment topology was generalized to a weighted graph. Agents were
expected to cooperatively establish a graph covering while standing their ground
in an adversarial setting and reaching certain achievements. The basics of the
agents on Mars scenario remained until the 2013 edition discussed in this paper,
although several modifications were introduced to keep the Contest challenging.

2 MAPC 2013: Agents on Mars, Third Edition

For the 2013 edition of the Contest, a few significant modifications were made
to the agents on Mars scenario used in 2012, in order to keep the challenge up
to date. This section focuses on these modification; a more detailed description
of the scenario can be found in Appendix A.

The number of agents in each team was increased again this year, to a total
of 28 agents: 6 Explorers, 6 Repairers, 6 Sentinels, 6 Inspectors and only 4
Saboteurs. The 2012 edition comprised instead 4 agents of each role per team,

2 http://aichallenge.org/
3 http://www.aiolympics.ro/
4 http://eis.ucsc.edu/StarCraftAICompetition
5 http://www.marioai.org/
6 http://skatgame.net/mburo/orts/
7 http://ipc.icaps-conference.org/
8 http://games.stanford.edu/

http://aichallenge.org/
http://www.aiolympics.ro/
http://eis.ucsc.edu/StarCraftAICompetition
http://www.marioai.org/
http://skatgame.net/mburo/orts/
http://ipc.icaps-conference.org/
http://games.stanford.edu/


294 T. Ahlbrecht et al.

whereas in the 2011 edition there were only 2 vehicles for each role, totaling 10
vehicles per team.

A big addition to the 2013 edition was the introduction of ranged actions.
Agents could now act at a distance, i.e., having a target node that is different
than the one where the agent stands (probe), or having a target agent that
stands on a different node (inspect, attack and repair); these, as long as the
target is within the visibility range. The successful execution of ranged actions
depends on a probability factor that is based on both the distance to the target
and the visibility range of the executor.

A slightly more subtle change was made to the map-generating algorithm, to
get different (parametrized) levels of connectivity between the nodes that the
teams should adapt to.

On a more general level, not concerning directly with the playability of the
scenario, a lot of effort was invested in easing the development process to the
participants, by means of improving the visualization tools, as well as the feed-
back sent to the agents. The new visualization lets the viewer distinguish at
glance the roles of the agents, the last actions executed by each agent and their
success/failure, the executor and target of ranged actions, and the nodes that
were already probed by each team, all directly from the map.

3 The Tournament

Following the mode implemented in 2012, a qualification round was held prior
to the tournament, in which teams were required to show that they were able
to maintain good stability (i.e. timeout-rates below 5%) during a round of test
matches. Only then were they allowed to take part in the tournament.

3.1 Participants and Results

Five teams from around the world registered for the Contest and were able to
pass the qualification round, thus taking part in the tournament (see Table 1).

Table 1. Participants of the 2013 Edition

Team Affiliation Platform/Language

AiWXX Sun Yat-Sen University, China C++
GOAL-DTU Technical University of Denmark GOAL
LTI-USP University of Sao Paulo, Brazil Jason, CArtAgO, Moise
SMADAS-UFSC Federal University of Santa Jason, CArtAgO, Moise

Catarina, Brazil
TUB TU Berlin, Germany JIAC



Multi-Agent Programming Contest 2013 295

AiWXX: The team AiWXX [11] from Sun Yat-Sen University, China, took
part in the contest for the second time, slightly changing its name (formerly
AiWYX), and incorporating a second developer. The agents were developed
in C++, using no agent-specific technologies. The approach used is central-
ized, where one agent gets all the percepts from the other agents and makes
the decisions for the whole team.

LTI-USP: The team LTI-USP [9] from University of São Paulo, Brazil, also
competed for the second time; this time with two developers, one less than
in 2012. Agents were implemented using Jason, CArtAgO and Moise. There
is one agent that determines the best strategy, but each agent has its own
thread, with its own beliefs, desires and intentions. Agents broadcast new
percepts, but communication load decreases over time.

SMADAS-UFSC: The team SMADAS-UFSC [14] from Federal University of
Santa Catarina, Brazil, was the winner of the 2012 edition. It had 7 team
members (one more than in 2012). The language of choice for agent develop-
ment was Jason combined with CArtAgO and Moise. Besides normal agent-
communication provided by Jason, agents shared a common data-structure
(blackboard) for storing the graph topology.

GOAL-DTU: The team GOAL-DTU [12] from the Technical University of
Denmark is a regular contender of the Multi-Agent Programming Contest.
This incarnation counted with 7 team members. The language of choice (as
well as the team name) changed to GOAL for this edition, after having used
a Python-based system for the previous two editions. The agents follow a
decentralized approach, where coordination is achieved through distributed
algorithms, e.g. for auction-based agreement.

TUB: The team TUB [13], Technical University Berlin, Germany, is another
regular contender of the Multi-Agent Programming Contest, presenting this
time a team with 12 members (originally working as two separate groups).
The agents are developed in the JIAC V platform (which won the contest
several times in previous years).

The tournament took place on the 9th and 10th of September, 2013. Each day
each team played against two other teams so that in the end all teams played
against all others. We started the tournament each morning at 12 pm and finished
at around 6 pm. A match between two teams consisted of 3 simulations differing
in the size and connectivity level of the graph: the first simulation was always 550
nodes with a thinning factor9 of 10%, the second one 580 nodes with a thinning
factor of 20%, and the third one 600 nodes with a thinning factor of 30%. Teams
got 3 points for winning a simulation and 1 point in case of a draw. The results
of this year’s Contest are shown in Table 2.

All the participating teams of the 2013 edition had also participated in the
2012 edition (with a few different members in some cases), and the final results
remained very similar, in spite of the modifications to the scenario and the new
strategies implemented. SMADAS-UFSC was crowned champion for the second

9 The thinning factor is a configuration parameter that is inversely proportional to
the connectivity level of the graph.



296 T. Ahlbrecht et al.

Table 2. Results

Pos. Team Score Difference Points

1 SMADAS-UFSC 2702948 : 1455163 1247785 36
2 GOAL-DTU 2284575 : 1614711 669864 27
3 LTI-USP 2117299 : 2083105 34194 15
4 TUB 1412702 : 2238820 -826118 6
5 AiWXX 1516760 : 2642485 -1125725 6

consecutive time, improving their previous year’s performance and winning in
every single simulation they took part in. GOAL-DTU was again a clear second,
after winning every simulation except when they faced the Contest winners. LTI-
USP obtained a respectable third place surpassing TUB and this was the only
modification in the ranking of the five teams with respect to the 2012 edition.
Both TUB and AiWXX got six points, so no team ended the Contest empty
handed, but the difference in the simulation scores favoured the former to secure
the fourth place.

3.2 Overview of the Teams’ Strategies

In this section we collect a few facts about the participating teams. For more
detailed information we refer to the team description articles[11,12,9,14,13] and
to the joint paper[1] in these proceedings.

SMADAS-UFSC: The strategy can be divided into two phases: In the first
phase the agents explore the map to obtain achievement points and to find
good zones as early as possible. In this phase the agents try to build one
big zone. If occupying such a zone is not possible in the first 130 steps the
second phase is activated: The agents conquer the best nodes and try to pro-
tect several small zones. Additionally, the developers specified some special
algorithms for building zones when the map has only a few connections.

While implementing the team the developers defined five different strate-
gies and tested them with different maps against their team from last year
and decided for the particular one right before the contest.

They claim that occupying several small zones was one of the main reasons
why the performance was so good.

GOAL-DTU: The overall strategy was as follows: After around 70 steps one
Explorer computed the best positions for the Sentinels and Inspectors to
build a zone. After 150 steps the Explorer agents joined them. Saboteurs
and Repairers were responsible for destroying the opponent’s zones.

The team claims that their agents had two strong points: the ability to
control a zone and the preemptive repairing, i.e., the Repairers anticipate an
attack on a teammate and start repairing the agent right in that moment.
One of the weak points was that the Saboteurs had an unresolved bug.

LTI-USP: The main strategy was basically the same as last year, namely, to
divide the agents into three subgroups: two for occupying zones and one for



Multi-Agent Programming Contest 2013 297

sabotaging the enemy. However, the team organization was implemented in
a different way. Instead of using the roles (like Explorer, Sentinel, etc.) from
the scenario, additional roles with different strategies were defined. An agent
then could adopt a particular role and execute the associated strategies to
fulfill her mission.

The team believes that a strong point of their implementation was a de-
fensive strategy, resulting in more stable zones. The weak point was the size
of the zones.

TUB: The strategy was twofold: Each agent followed its own strategy for col-
lecting achievement points. Second, the team had a coordinator agent for
computing and building zones. The agents had various roles they can take
on, thus they could decide to help building a zone or to disturb the zone
building of the opponent.

The authors claim that a strong point of their implementation was that
the agents’ strategies could be easily replaced due to the modular implemen-
tation. One of the main weak points was the zone building strategy.

AiWXX: The main strategy of the team was to probe the whole map first and
then occupy several stable and valuable zones.

The team claims that one of the strong points was the computational
speed of their pure C++ implementation. However, a weak point was that
they did not take the actions of the opponent into account while developing
the agents and therefore did not specify a defense or counter-strategy.

4 Overview of Teams’ Performance

We collected a lot of data throughout the matches concerning the score and
the zones (discussed in Section 4.1), the achievements (cf. Section 4.2) and the
overall stability and reliability of the teams (see Section 4.3). Additionally, in
Section 4.4 we analyse the behaviour of the agents regarding their roles. The
underlying data can be downloaded from our web page10.

4.1 Score, Zone Values, and Zone Stability

In this section we analyse for each team the overall performance (summed
scores), the development of the achievement points and the zone stability.

All these values somehow depend on each other. The curves for the achieve-
ment points are usually quite flat but monotonically increasing: They could also,
due to buying actions, decrease, but this does not really show in our curves. The
reason is that this effect of buying is too small (i.e. the teams did not use it
extensively) to have a visible effect.

To interpret the curves for zone stability, one has to take into account that
monotonically increasing parts show that the zones are stable: the steeper it is,
the more stable it is. Dually, if parts of the curve are monotonically decreasing

10 http://multiagentcontest.org/downloads/

Multi-Agent-Programming-Contest-2013

http://multiagentcontest.org/downloads/Multi-Agent-Programming-Contest-2013
http://multiagentcontest.org/downloads/Multi-Agent-Programming-Contest-2013


298 T. Ahlbrecht et al.

this means that zones are attacked by the opponent and are unstable. So the
derivative of these curves gives a better picture.

This behaviour follows from the computation of the the values in the chart:
each node gets a counter that is initialised to 0 once the node belongs to a
zone. In each step, the counter is incremented if it still belongs to the zone. The
counter is set to 0 if the zone does not exist anymore. The values depicted in
the chart are the sum over all counters of all nodes.

SMADAS-UFSC. The winner of our contest, won all matches and scored
perfectly. GOAL-DTU came closest and the following figure shows the first sim-
ulation which was almost a draw.

Fig. 1. UFSC-SMADAS vs. GOAL-
DTU Simulation 1: Summed scores

Fig. 2. UFSC-SMADAS vs. GOAL-
DTU Simulation 1: Step-scores and
Achievement points

Fig. 3 shows that both teams were good in defending their zones and build-
ing up more (in the last third, SMADAS-UFSC was better in achieving this).
The step scores were also narrow and oscillating between the two teams. The
achievement points from SMADAS-UFSC were consistently better from early on
in the match.

Fig. 3. UFSC-SMADAS vs. GOAL-
DTU Simulation 1: Stability

Fig. 4. GOAL-DTU vs. LTI-USP Sim-
ulation 2: Summed scores



Multi-Agent Programming Contest 2013 299

GOAL-DTU. The runner up (for the third consecutive time) played very well
and this also shows in the charts. As a typical example we chose the second
simulation against LTI-USP. Fig 5 shows that green (GOAL-DTU) performed
consistently better than LTI-USP, both in the achievements as well as in the
step scores. This is even more immediate in the zone stability.

Fig. 5. GOAL-DTU vs. LTI-USP Sim-
ulation 2: Step-scores and Achievement
points

Fig. 6. GOAL-DTU vs. LTI-USP Sim-
ulation 2: Stability

In the paragraph above about SMADAS-UFSC, we discussed the first simula-
tion with GOAL-DTU which was a close match. Interestingly, GOAL-DTU did
not as well in the other two simulations. There, its zone stability was not on par
with its competitor.

LTI-USP. The team came third but showed some strong playing.

Fig. 7. LTI-USP vs. SMADAS-UFSC
Simulation 3: Step-scores and Achieve-
ment points

Fig. 8. LTI-USP vs. SMADAS-UFSC
Simulation 3: Stability



300 T. Ahlbrecht et al.

Figure 8 shows that zone stability worked well from the middle of the game to
almost the end (LTI-USP is blue). Also the scores are well over the achievement
points. A good result, only the opponent was a bit better in this match.

TUB. The german team did usually quite poor on zone stability. The following
figures show the first simulation of TUB against LTI-USP.

Fig. 9. TUB vs. LTI-USP Simulation
1: Step-scores and Achievement points

Fig. 10. TUB vs. LTI-USP Simulation
1: Stability

In Fig. 9 one notices that the score of the green team (TUB), consists mainly
of achievement points (the green curve is oscillating around or even under the
achievements line). The poor performance on zone stability is of course clearly
shown in Fig. 10.

However, TUB was doing much better in the third simulation against LTI-
USP, where it almost drawed: So it did much better on the bigger scenario (which
is usually more difficult to handle).

Fig. 11. TUB vs. LTI-USP Simulation
3: Summed scores

Fig. 12. TUB vs. LTI-USP Simulation
3: Step-scores and Achievement points



Multi-Agent Programming Contest 2013 301

AiWXX. Although AiWXX came last, a few games were very close. The next
figures show such a close match. The step scores in Fig. 13 show clearly that
AiWXX was performing on par until the middle of the game, when the scores
went quite dramatically down, and then up and down without stabilizing. The
same is showing in Fig. 14: the team was not able to defend their zones.

Fig. 13. AiWXX vs. LTI-USP Simu-
lation 2: Step-scores and Achievement
points

Fig. 14. AiWXX vs. LTI-USP Simula-
tion 2: Stability

Conclusion. This year we saw some very interesting matches. Some of them
were close to a draw. For some teams the building of zones did not work well
when the opponent was too agressive. It worked better against other teams.

4.2 Achievements

In general, all teams gave more priority to achievement points as part of the
score than as a resource to improve agents’ attributes. In fact, only two of the
five teams made use of the buy action at all, and they did it in a planned,
limited, and consistent manner: GOAL-DTU spent 14 achievement points per
simulation, and LTI-USP spent 20 points per simulation.

The average number of achievement points earned by each team, without
taking the buys into consideration, is consistent with the final ranking of the
contest: 71 points for SMADAS-UFSC, 70,5 for GOAL-DTU (56,5 after buys),
67,5 for LTI-USP (47,5 after buys), 64,5 for TUB and finally 56 for AiWXX.
Interestingly, these numbers varied only a little for each team in the different
simulations: they were not in any relation to the map sizes.

Figure 15 corresponds to Simulation 1 of the match between GOAL-DTU and
LTI-USP, and reflects how the different buying strategies of these two teams
affect the evolution of the achievement points. GOAL-DTU realizes all buys in
a single phase that starts at around step 140, whereas 4 peaks11 can be seen in
the graph for LTI-USP, the first one at the very beginning of the simulation and

11 The number of achievement point can only decrease through the buying action.



302 T. Ahlbrecht et al.

Fig. 15. GOAL-DTU vs. LTI-USP
Simulation 1: Achievement Points

Fig. 16. UFSC vs. TUB Simulation 3:
Achievement Points

the last one prior to step 90. Even though at the end of this simulation LTI-USP
manages to earn more achievement points than GOAL-DTU, it is clear that the
achievement points of GOAL-DTU had more effect on the final score.

Figure 16 on the other hand, shows the typical evolution of the achievement
points for teams that did not use the buying action. In these case, SMADAS-
UFSC and TUB are almost on par, with a slight margin in favor of the former.

Regarding the composition of the achievements, it is worth noting the
following:

– The survey action was the fastest to pay-off in terms of achievements, pro-
viding up to 10 achievement points in the very first step (up to surveyed160).

– The area achievements varied from simulation to simulation, but as expected,
the best-performing teams were the ones who earned these achievements
earlier.

– LTI-USP was markedly slower than the rest of the teams in probing more
than 320 nodes (probed320 achievement). The rest of the teams reached
this number in general at around step 140, almost always before step 200.
LTI-USP, on the other hand, never obtained this achievement before step
300, and often after step 400.

– The attack-related achievements were a major source of differences in the
final count of achievement points earned. Aggressive teams, for example
SMADAS-UFSC, performed better in this respect.

– Attack-related achievements were also the main source of achievement points
in the end of each simulation.

– AiWXX’s agents never used the parry action, and therefore never got any
parry achievements.

Conclusion. Differently from the previous edition, this year there were no
simulations in which the achievement points played a significant role in the final
score. Although some teams performed better than others, the differences were
much smaller than the differences in zone-score.



Multi-Agent Programming Contest 2013 303

Whether it really pays off to implement a buying strategy, is not clear. This
year’s winners proved that a team can do very well without one. At the same
time, the second and third ranked teams spent some of their achievement points
in improvements, and clearly outperformed the fourth and fifth, even though the
average achievement points remaining at the end of the simulations was better
for the latter. For the two teams that did use the buying action, however, the
strategy was rather conservative, and they kept most of the achievement points
for scoring.

4.3 Agents’ Reliability and Stability

In this section we analyse the success and failure of executing actions by the
agents. The set of failure codes can be divided into three classes: a random
failure, a technical failure, and a failure with rerspect to the semantics of the
simulation.

While the first failure is introduced by the scenario12 to ensure a certain
degree of stability of the agents’ perceive-think-act cycle (i.e. the agents are able
to detect a failure and act accordingly), the second one is directly connected
to the stability of the platform respectively to the agent program. If an agent
is not able to send her action in a reasonable time slot then it can be only
because of two reasons: the network communication was too slow or the agent
had some problems due to a crash or some computational issues. Indeed, in this
year’s competition the participants did not have any network problems but some
agents crashed during a run and had to be restarted and/or were using too much
time for their computations13.

The last class of failures is directly related to the game logic of the scenario.
An attack-action can fail when the attacked agent executes the parry-action.
A ranged action or goto-action can fail because the node or opponent is out
of range. Even if the agent is in range, it can fail with a certain probability
(determined by the visibility). Additionally, it fails in case of lack of resources,
when the agent got successfully attacked or the status or role does not allow
to execute a particular action. For the complete description of all actions and
failure codes we refer to the scenario description in Appendix A.

For the reliability and stability of the agent we will focus on the following
failure codes: We will look at all technical failures because they allow us to
directly deduce some stability properties. On the semantical level we will consider
the out of range failures, the unreachable failures, the status and role failures as
well as the resources failures. These failures show that the agent did not respect
her internal status or made some wrong conclusions regarding the environment
and allow us therefore to speak about the reliability of the agent.

Finally, we will mention the other failures only if their occurrence is much
higher than the average.

12 For this year we let 1% of the actions fail randomly.
13 The time limit was set to almost 4 seconds.



304 T. Ahlbrecht et al.

SMADAS-UFSC. Concerning the stability we can conclude from the data
that the SMADAS-UFSC agents were very stable. In total, only 12 actions were
not sent in time. Interestingly, it was one action per simulation. More precisely,
it was always the very same Inspector that did not send an action in the last
step.

When it comes to reliability there are only very few failures because of lack of
resources. Thus, we can say the agents were very reliable. However, one reason
might be that the UFSC team did not use the ranged actions—a potential source
of error—a lot.

Typical results for SMADAS-UFSC are shown in Figure 17 and Figure 19.

Reason SMADAS-UFSC % LTI-USP %

parried 812 3,87 514 2,45
out of range 69 0,33

random 206 0,98 226 1,08
resources 1 0 13 0,06
attacked 285 1,36 191 0,91

no action received 1 0
status 1 0
in range 1187 5,65

Fig. 17. LTI-USP vs. SMADAS-UFSC Simulation 1: Failed Actions

GOAL-DTU. The GOAL-DTU agents were also very stable. Around 0.5 per-
cent of the actions got lost due to computational issues and the agents did not
crash at all. From the scenario perspective the GOAL-DTU team made more
mistakes than the SMADAS-UFSC team. One reason for this was caused by
the use of ranged actions. Nevertheless the team was robust and did not try to
execute an action forbidden by the role or the current status. Figure 18 contains
some exemplary data of one simulation.

Reason TUB % GOAL-DTU %

parried 286 1,36 3 0,01
out of range 8 0,04 4 0,02

random 203 0,97 231 1,1
resources 4 0,02

unreachable 573 2,73
attacked 138 0,66 259 1,23

no action received 19 0,09
status 17 0,08
in range 52 0,25 118 0,56

Fig. 18. TUB vs. GOAL-DTU Simulation 2: Failed Actions



Multi-Agent Programming Contest 2013 305

LTI-USP. The stability of LTI-USP was in between the first two teams. While
SMADAS-UFSC was the most stable team in the field the LTI-USP was following
closely afterwards. In only two simulations (Simulation 3 against AiWXX and
Simulation 3 against GOAL-DTU) LTI-USP had some stability issues. Less than
0.1% and 0.8% respectively of actions failed due to that.

Regarding the failures depending on the scenario we can say that the number
of failures due to the lack of resources and the out of range actions was compara-
ble with the ones from GOAL-DTU, however the number of actions that failed in
range was significantly higher (around 5 Percent). Buying more visibility range
for the agents would have decreased that value.

Figure 17 shows an example.

TUB. The TUB team’s stability was similar to that from GOAL-DTU. In some
simulations the agents did not loose one action in others they lost some (but
always not more than 1%). Thus the agents were stable and answering normally
in time.

When it comes to the reliability of the agents’ code we noticed some differences
to the first three teams. The agents often tried to go to a node that was not
reachable from their position. This was especially the case in Simulation 1 against
GOAL-DTU. More than 6% of the actions returned that failure. Also, some
actions failed due to the status. Concerning the ranged actions and the resources
the results are comparable with GOAL-DTU.

Figure 18 depicts a typical result for TUB.

AiWXX. Finally, the stability of AiWXX (Example shown in Figure 19) was
the worst in the contest although (except for one simulation against LTI-USP
where the computer or the agents crashed) it was still in the range of 2 to 5
percent and therefore quite good.

The reliability was as for the other teams. One thing we noticed was that
quite some actions failed due to an attack of the opponent. So it might be that
a better strategy for parrying or avoiding attacks would have helped to get a
better position in the final ranking.

Reason AiWXX % SMADAS-UFSC %

parried 52 0,25
random 237 1,13 201 0,96

unreachable 3 0,01
attacked 261 1,24 39 0,19

no action received 1120 5,33 1 0
status 4 0,02
in range 7 0,03

Fig. 19. AiWXX vs. SMADAS-UFSC Simulation 1: Failed Actions



306 T. Ahlbrecht et al.

Conclusion. In summary, we can say that this year all teams were stable and
reasonable reliable. This was expectable since we only slightly changed the sce-
nario in the last two years and all teams from this year were participating last
year as well.

4.4 Actions Per Role

In this section we take a look at the frequency at which actions are executed per
agent role and team. For a description of the agents’ roles and their respective
available actions we refer to Appendix A. Sometimes, we shall mention the per-
centage of failed actions on a per role and a per team basis. For a more general
perspective of failed actions per team only, we refer to Section 4.3.

Explorer. The Explorer role’s inherent task is to scout the map and probe

nodes to get information about their value.
Comparing all teams, the actions goto and recharge are dominant over all

others. Most of the teams (all except AiWXX) execute a similar number of probe
actions in all simulations. Although maps of different sizes are played (550, 580
and 600 nodes each), the number of executed probe actions does not increase
proportionally and at times even decreases for those teams. Also, no Explorer
used the buy action and thus nobody was able to execute a ranged probing.

SMADAS-UFSC: This teams’ Explorers did not use the survey action at all.
Apart from this, the amount of probing was in line with most of the other teams
and settling down around 13% in each simulation. Most actions were goto and
recharge, however, neither one dominates the other in all simulations.

GOAL-DTU: This team’s Explorers used the least probe actions (directly
followed by LTI-USP), peaking below 10%. The amount of survey actions is
negligible and the most used action was recharge at 75% to 80%. From this
we can deduce that these Explorers seemingly always explored an equally sized
portion of the map. Since only a small percentage is left for the goto action, we
can further assume -also based on the overall outcome- that suitable zones were
found swiftly and could be held for a long time. A characteristic performance
of these Explorers is given in Figure 20. Each bar represents one action that is
available to the role. They allow for analyzing how often the respective actions
were used by the agents of the current role and team. The green colored part
indicates how many actions were successful while the red part represents the
failed actions. Above each bar are a couple of numbers. The blue ones describe
the total amount (in absolute and relative numbers) of usages of the action.
Accordingly, the green numbers below describe the successful actions.

LTI-USP: Everything said in the previous paragraph also applies for these
Explorers. The only difference to GOAL-DTU is the amount of goto actions
which ranges from 17% to 31% for LTI-USP. The behaviour of this team was
also very uniform over all simulations.

TUB: The TUB Explorers were the only ones to use an observable amount
of skip actions (which also holds for every other role of TUB). Usage of the



Multi-Agent Programming Contest 2013 307

Fig. 20. AiWXX vs. GOAL-DTU Simulation 1: GOAL-DTU Explorer Actions

recharge action might have proven to be a better alternative, however, there was
no case of unexceptionally many ’failed resources’ failures for TUB. The relative
number of probe and survey actions was uniform for all simulations. However,
one simulation showed a large number of failed survey actions. Nevertheless,
the number of successful survey actions in this simulation is comparable to that
of the other simulations.

AiWXX: Their Explorers used the probe action to a varying degree ranging
from 6% to as much as 30% which is the peak percentage of all teams. Besides
some simulations, in which they used the survey action more than every other
team, the majority of actions falls upon goto and recharge. However, there is
no clear favorite between these two actions regarding all simulations. This points
to a varied degree of mobility that is neither dependent on the opponent nor the
size of the map.

Inspector. The Inspector is the only role that is able to inspect, that is to
gain information about agents of the other team aside from their observable
properties.

The teams used the inspect action to a varying degree. However, SMADAS-
UFSC, GOAL-DTU and LTI-USP show a similar performance (of actions) over
all simulations.



308 T. Ahlbrecht et al.

SMADAS-UFSC, GOAL-DTU, LTI-USP:.These Inspectors used the survey

and inspect actions a negligible amount of times. Of these inspect actions,
only those of SMADAS-UFSC are mostly succeeding while those of the others
fail in approximately 2 out of 3 cases. The remaining actions are divided between
goto and recharge with recharge clearly dominating. From this we can derive
that the Inspectors were mainly used to occupy zones neglecting their special
feature. As an example, we refer to Figure 21, which looks quite similar to all
other simulations of these three teams.

Fig. 21. LTI-USP vs. SMADAS-UFSC Simulation 2: SMADAS-UFSC Inspector
Actions

TUB: The TUB Inspectors used the inspect action a lot more, ranging from
15% to 55%. In addition, these were mostly successful (i.e. more than 75% in
the worst case). Another distinction is the amount of goto actions dwarfing the
number of recharge actions. However, only these agents had a tendency to fail
at using this goto action making up for the increased usage.

AiWXX: These Inspectors used the inspect action only at 1-3% of times,
thus falling in line with every other team but TUB. The survey action was used
in 1-15% of steps and the remaining numbers of goto and recharge actions
were alternating over simulations, which differs from all other teams.



Multi-Agent Programming Contest 2013 309

Repairer. The Repairer is able to enable agents which have been disabled by
attacks from other teams. As this strongly depends on the performance of the
competitor, there is no uniform behavior over all simulations.

SMADAS-UFSC: This team was the one to use the repair action the least.
Aside from this, the survey and parry actions were used a few times leaving
the goto and recharge actions again with the greatest number of executions.
The latter actions were mostly used equally with no action dwarfing the other.
These Repairers showed a uniform performance over all simulations.

GOAL-DTU: The Repairers used the survey action more than the average.
The agents also parried the most. However, most of the parry actions failed.
The repairing ranged from 5% to 30% and most repair actions were successful.

LTI-USP: Their Repairers used 6 buy actions per simulation on average. The
recharge action was used at varying amounts, in one simulation even peaking
at 85%. The repair action was mostly used a lot, however, less than 50% of
these uses were successful. If the agents repaired more, the recharge action was
used less (probably only being the default action).

TUB: These Repairers did not parry at all. The repair action was used in
5% up to 40% of steps and mostly succeeded. The repair and recharge actions
were alternating similar to LTI-USP.

AiWXX: The AiWXX Repairers used the repair action the most. At times
it was used in more than 60% of steps and mostly successful. These agents also
did not parry at all (so, of course requiring more repairs). An example can be
seen in Figure 22.

Saboteur. The Saboteur is opposite to the Repairer, being able to disable other
agents if they do not parry.

Three of the teams did not make use of the buy action. However, those who
did were not affected by a higher percentage of failures in general.

SMADAS-UFSC: This team did not buy anything for the Saboteurs. The
attack action was used 25% to 50% and the success percentage depended on
the respective opponent. It was used more often than the recharge action.

GOAL-DTU: These agents used the buy action 7 times on average. An effect
of this is not reflected in the charts. The attack action was used in 20% to 50%
of steps and again failed according to the respective competitor. The survey

and parry actions were ignored.
LTI-USP: These Saboteurs used 4 to 5 buy actions per simulation. The attack

action was used in 15% to 55% of steps and failed quite often, except in one single
simulation. The independence of the opponent is possibly due to ranged attacks
that were not used by many other teams. Buying more visibility range would
have increased the number of successful attacks.

TUB: The TUB team did not use the buy action. The attack action was used
in 5% to 50% of steps. Slightly distinctive, the percentage of failures did not vary
per opponent but per simulation. An example can be seen in Figure 23.



310 T. Ahlbrecht et al.

Fig. 22. AiWXX vs. GOAL-DTU Simulation 3: AiWXX Explorer Actions

AiWXX: The attack action was used in 5% to 40% of steps without using a
bought upgrade. Similar to TUB, the failure percentage differed per simulation
and not per opponent.

Sentinel. The Sentinel role is best suited to defend a zone, since it can use the
parry action and has no other distinctive characteristic.

SMADAS-UFSC: This team parried in 12% of steps while succeeding at
around 75% of these actions. The dominant actions here were goto and recharge

with the latter occurring more often.
GOAL-DTU: This team parried more often, ranging from 3% to 30% of possi-

ble executions. However, the Sentinels were mostly succeeding in less than 50% of
these actions. This might be a sign of increased pre-emptive parrying. The most
used action again was recharge at 60-80%. This again underlines the tendency
of GOAL-DTU to use the fewest goto actions.

LTI-USP: These Sentinels used the parry action in 1 to 17% of steps. A
relation to the map size is not in evidence, however, exceptionally many parry

actions were used in the match against SMADAS-UFSC. An example of such
a match is given in Figure 24. This might be due to their Saboteurs being the
most aggressive ones in using the attack action against LTI-USP and shows a
certain degree of flexibility in adapting to the amount of incoming attacks.



Multi-Agent Programming Contest 2013 311

Fig. 23. TUB vs. GOAL-DTU Simulation 2: TUB Explorer Actions

TUB: The TUB agents were again the only ones to use the skip action. The
parry action was only used in 1-6% of steps and mostly failed. Also, the agents
used the survey action in 1% of steps. In two occasions, the percentage was 5%
and 15% respectively, however, the successful survey actions still made up only
1% of the total actions.

AiWXX: The parry action was not used at all. The agents performed a small
amount of survey actions and otherwise used the recharge and goto actions
in varying proportions.

Conclusion. We have seen that the teams did not use the actions as diverse as
one could have expected. For some teams and roles, the proportions of actions
were very similar. However, some teams (mostly the ones coming 4th and 5th)
showed completely different behavior. Also, some teams showed to behave similar
over all simulations while others varied more with respect to using the available
actions.



312 T. Ahlbrecht et al.

Fig. 24. LTI-USP vs. SMADAS-UFSC Simulation 1: LTI-USP Explorer Actions

5 Summary, Conclusion and Future of the Contest

This paper provides an overview of the most recent edition (2013) of the Multi-
Agent Programming Contest. We introduced the Contest in general, and we elab-
orated on the current scenario, with an emphasis on the changes to the last
edition in 2012.

In this year, we had a plethora of statistical data available that we carefully
analysed in the sections above. In a companion paper, [1], we collected the an-
swers to 50 questions posed to the teams. They are arranged in a way to facilitate
the comparison of the teams.

Here are a few observations, not just for this edition, but for the last three
(where we introduced the Mars scenario).

– In all three editions a dedicated Multi-Agent Programming language or plat-
form won.

– The runner-up in all three editions was the team headed by Jørgen Villadsen
(DTU). For the first two editions they used Python, for the third one GOAL
(a dedicated agent programming language which also won the first edition).

– We believe it is fair to say (taking all the results into account) that ad hoc
implementations seem to perform worse than MAS inspired systems.

– The introduction of a qualification round increased the stability of the teams
and therefore the whole contest a lot. We shall keep this feature.



Multi-Agent Programming Contest 2013 313

– Teams performing for the second time usually perform better. But all teams
performed in previous editions (sometimes only the team leader remained
and started with a new crew).

– The overall performance of the teams is improving with each new contest,
although we increased the complexity considerably (size of the map, number
of agents, difficulty of the task).

– Some teams were playing well when the opponent was not too agressive, but
they played very bad when the opponent attacked them.

– Only two teams (placed second and third) used the buy-actions and invested
money to improve agents. All others used achievements solely to improve the
overall score. The part of the score related to achievements did not play a
major role.

– Only one team, placed last, showed slight problems with the stability of the
agents. Otherwise this did not play any role.

– Only the team placed last did not use any parry action (to defend a zone).
– Compared with the cows and cowboys scenario, we see much more coopera-

tion among the agents, more dynamic behaviour, and a lot more interaction
with the opposing team. In addition, the data to be handled (observing the
environment, messages between the agents) has also increased a lot. While
we have not yet excluded centralized approaches, the sheer amount of data
makes it difficult for the systems to provide each agent with the central
memory for the whole system.
Also, in the current scenario, the computational costs of shortest path finding
is high so that it is not feasible for all agents to execute it at the same time.

How can we make the contest even more exciting?

Agents: Why not using a massive number of agents: many agents with different
roles and thus different capabilities. Not just 10-30, but hundreds of them.
This would allow us to take into account the scalability of agent-oriented
programming platforms.

Uncertainty: Up to now our environments were pretty observable, the amount
of failing actions or wrong sensors was small. This could be changed to more
indeterministic environments, where agents have to find out the effects of
their actions.

Communication: It might also be worthwhile to focus on agent communication
and to evaluate that aspect of the tournament by routing agent-messages
through the MASSim server for proper evaluation.

Last but not least, the most important part of the contest are the contestants:
This year, three teams started as student projects.

We hope to attract more teams and students in the future: the contest is an
excellent opportunity to learn about multi-agent systems.

Acknowledgements. We would like to thank Alfred Hofmann from Springer
for his support right from the beginning and for endowing the price of 500 Euro
in Springer books.



314 T. Ahlbrecht et al.

References

1. Ahlbrecht, T., et al.: Multi-Agent Programming Contest 2013: The Teams and the
Design of their System. In: Cossentino, M., El Fallah Seghrouchni, A., Winikoff,
M. (eds.) EMAS 2013. LNCS (LNAI), vol. 8245, pp. 366–390. Springer, Heidelberg
(2013)

2. Behrens, T., Dastani, M., Dix, J., Köster, M., Novák, P.: Special Issue about Multi-
Agent-Contest. Annals of Mathematics and Artificial Intelligence, vol. 59. Springer,
Netherlands (2010)

3. Behrens, T., Dastani, M., Dix, J., Hübner, J., Köster, M., Novák, P., Schlesinger,
F.: The multi-agent programming contest. AI Magazine 33(4), 111–113 (2012)

4. Behrens, T., Dastani, M., Dix, J., Novák, P.: Agent contest competition: 4th edi-
tion. In: Hindriks, K.V., Pokahr, A., Sardina, S. (eds.) ProMAS 2008. LNCS,
vol. 5442, pp. 211–222. Springer, Heidelberg (2009)

5. Behrens, T., Dix, J., Hübner, J., Köster, M., Schlesinger, F.: MAPC 2011 Documen-
tation. Technical Report IfI-12-01, Clausthal University of Technology (December
2012)

6. Behrens, T., Dix, J., Hübner, J., Köster, M., Schlesinger, F.: MAPC 2011 Evalu-
ation and Team Descriptions. Technical Report IfI-12-02, Clausthal University of
Technology (December 2012)

7. Behrens, T., Köster, M., Schlesinger, F., Dix, J., Hübner, J.F.: The Multi-agent
Programming Contest 2011: A Résumé. In: Dennis, L., Boissier, O., Bordini, R.H.
(eds.) ProMAS 2011. LNCS, vol. 7217, pp. 155–172. Springer, Heidelberg (2012)

8. Dastani, M., Dix, J., Novák, P.: The second contest on multi-agent systems based
on computational logic. In: Inoue, K., Satoh, K., Toni, F. (eds.) CLIMA 2006.
LNCS (LNAI), vol. 4371, pp. 266–283. Springer, Heidelberg (2007)

9. Franco, M.R., Sichman, J.S.: Improving the LTI-USP Team: A New JaCaMo Based
MAS for the MAPC 2013. In: Cossentino, M., El Fallah Seghrouchni, A., Winikoff,
M. (eds.) EMAS 2013. LNCS, vol. 8245, pp. 339–348. Springer, Heidelberg (2013)

10. Köster, M., Schlesinger, F., Dix, J.: The multi-agent programming contest 2012.
In: Dastani, M., Hübner, J.F., Logan, B. (eds.) ProMAS 2012. LNCS, vol. 7837,
pp. 174–195. Springer, Heidelberg (2013)

11. Li, C., Liu, L.: Prior State Reasoning in Multi-agent systems and Graph-
Theoretical Algorithms. In: Cossentino, M., El Fallah Seghrouchni, A., Winikoff,
M. (eds.) EMAS 2013. LNCS (LNAI), vol. 8245, pp. 356–365. Springer, Heidelberg
(2013)

12. Villadsen, J., Jensen, A.S., Christensen, N.C., Hess, A.V., Johnsen, J.B., Woller,
Ø.G., Ørum, P.B.: Engineering a Multi-Agent System in GOAL. In: Cossentino,
M., El Fallah Seghrouchni, A., Winikoff, M. (eds.) EMAS 2013. LNCS (LNAI),
vol. 8245, pp. 329–338. Springer, Heidelberg (2013)

13. Werner, S., Bender-Saebelkampf, C., Heller, H., Heßler, A.: Multi-Agent
Programming Contest 2013: TUB Team Description. In: Cossentino, M.,
El Fallah Seghrouchni, A., Winikoff, M. (eds.) EMAS 2013. LNCS (LNAI),
vol. 8245, pp. 349–355. Springer, Heidelberg (2013)

14. Zatelli, M.R., de Brito, M., Schmitz, T.L., Morato, M.M., de Souza, K.S., Uez, D.M.,
Hübner, J.F.: SMADAS: A Team for MAPC Considering the Organization and the
Environment as First-class Abstractions. In: Cossentino, M., El Fallah Seghrouchni,
A.,Winikoff, M. (eds.) EMAS 2013. LNCS (LNAI), vol. 8245, pp. 319–328. Springer,
Heidelberg (2013)



Multi-Agent Programming Contest 2013 315

A Scenario Description

It is now a tradition to accompany the technical description of each scenario with a
motivating little story:

In the year 2033 mankind finally populates Mars. While in the beginning the
settlers received food and water from transport ships sent from earth shortly
afterwards – because of the outer space pirates – sending these ships became too
dangerous and expensive. Also, there were rumors going around that somebody
actually found water on Mars below the surface. Soon the settlers started to
develop autonomous intelligent agents, so-called All Terrain Planetary Vehicles
(ATPV), to search for water wells. The World Emperor – enervated by the
pirates – decided to strengthen the search for water wells by paying money
for certain achievements. Sadly, this resulted in sabotage among the different
groups of settlers.

Now, the task of your agents is to find the best water wells and occupy the
best zones of Mars. Sometimes they have to sabotage their rivals to achieve
their goal (while the opponents will most probably do the same) or to defend
themselves. Of course the agents’ vehicle pool contains specific vehicles. Some
of them have special sensors, some are faster and some have sabotage devices
on board.

Last but not least, your team also contains special experts, e.g. the repairer
agents, that are capable of fixing agents that are disabled. In general, each agent
has special expert knowledge and is thus the only one being able to perform a
certain action. So your agents have to find ways to cooperate and coordinate
among them.

A.1 The Map

The environment’s topology is constituted by a weighted graph. Each edge has a weight,
which is a number that represents the costs of moving from one of its vertices to the
other. Each vertex has a unique identifier and a value indicated by a number from 1
to 10. The vertices’ values are crucial for calculating the values of zones. A zone is a
subgraph that is covered by a team of agents according to a coloring algorithm that is
based on a domination principle.

Several agents can stand on a single vertex. If a set of agents dominates such a vertex,
the vertex gets the color of the dominating team. A previously uncolored vertex that
has a majority of neighbors (at least 2) with a specific color, inherits this color as well.
Finally, if the overall graph contains a colored subgraph that constitutes a frontier or
border, such that there are no rival agents inside of it, all the nodes that are inside the
border are colored as well. This means that agents can color or cover a subgraph that
has more vertices than the overall number of agents. Figure 25 shows a screenshot of
a relatively small map, depicting, amongst other things, the graph coloring.

A.2 The Agents

Before elaborating on the agent roles we have to specify the effectoric capabilities of the
agents. Each agent, or vehicle, has a state that is defined by its position on the map, its
current energy available for executing actions and its current health, plus a visibility



316 T. Ahlbrecht et al.

Fig. 25. A screenshot of the agents on Mars scenario

range and a strength level. On top of that, each team has a budget for equipping the
vehicles during the simulation.

Of course, all the actions that cost energy will fail if the vehicle under consideration
does not have enough energy. When the health level drops to 0 (due to opponent
attacks), the vehicle becomes disabled until repaired: it can then only perform a subset
of the actions, and it does not count for node domination nor for zones calculation.

Actions. These actions are defined by the scenario:

– skip is the noop-action, which does not change the state of the environment,

– recharge increases the current energy of a vehicle by a fixed factor and can be
performed at any time without costs,

– attack decreases the health of an opponent that stands within the visibility range
from the attacker, if successfully executed, and decreases the current energy of the
attacker,

– parry parries an attack and decreases the energy of the defending agent,

– goto moves the vehicle to a neighboring vertex while decreasing its energy by the
weight of the traversed edge,



Multi-Agent Programming Contest 2013 317

– probe yields the exact value of a given vertex within the visibility range,14 and
decreases the vehicle’s energy,

– survey yields the exact weights of visible edges while decreasing the energy,
– inspect costs energy and yields the internals of all opponents standing on the

same node, or a given opponent within the visibility range,
– buy equips the vehicle with new components, which increase its performance, and

cost money, and
– repair repairs a given teammate in the visibility range, which, again, costs energy.

The actions that can act at a distance (probe, inspect, attack and repair) are
regarded as ranged actions. When the target of such actions is not the same node
where the agent stands nor is an agent standing on the same node, the action can fail
randomly following a probability factor, that is calculated based on the visibility range
and the distance to the target.

Roles. We have defined five different roles. Each role defines the vehicle’s internals and
its capabilities. The roles differ with respect to energy, health, strength and visibility
range. The effectoric capabilities are as follows:

– explorer can skip, move to a vertex, probe a vertex, survey visible edges, buy
equipment and recharge its energy,

– repairer can skip, move to a vertex, parry an attack, survey visible edges, buy
equipment, repair a teammate and recharge its energy,

– saboteur can skip, move to a vertex, parry an attack, survey visible edges, buy
equipment, attack an opponent and recharge its energy,

– sentinel can skip, move to a vertex, parry an attack, survey visible edges, buy
equipment and recharge its energy,

– inspector can skip, move to a vertex, inspect visible opponents, survey visible
edges, buy equipment and recharge its energy.

Each team consists of 28 agents: 6 Explorers, 6 Repairers, 6 Sentinels, 6 Inspectors
and only 4 Saboteurs.

A.3 The Scoring

A step-score is calculated for each team in every step, and the final score of a simulation
is the sum of all step-scores. The step-score is the sum of all area values plus the
achievement points that the team retains at the given step.

Achievements. Achievements are tasks that, when fulfilled, contribute to the teams’
budgets. We have defined a set of achievements that includes having zones with fixed
values, inspecting a specific number of vehicles, probing a number of vertices, surveying
a fixed number of edges and successfully performing and parrying a number of attacks.
The numbers needed to reach an achievement of a certain type increase exponentially,
making them harder to get as the game advances.

For every achievement, a team gets 2 achievement points. These can act as money,
that the team may opt to spend in improvements for the agents at any time of the
simulation. If not spent, these points contribute to the step-score.

14 It is required to probe a node in order to get its full value summed to score when
the node belongs to a zone. Otherwise, it only sums as 1 point.



318 T. Ahlbrecht et al.

A.4 The Execution Cycle

In each step, each vehicle is provided with its currently available percepts:

– the state of the simulation, i.e. the current step,
– the state of the team, i.e. the current scores and money,
– the state of itself, i.e. its internals,
– all visible vertices, i.e. identifier and team,
– all visible edges, i.e. their vertices’ identifiers,
– all visible vehicles, i.e. their identifier, vertices and team,
– probed vertices, i.e. their identifier and values,
– surveyed edges, i.e. their vertices’ identifiers and weights, and
– inspected vehicles, i.e. their identifiers, vertices, teams and internals.

After sending percepts, the server grants some time for deliberation. After that the
new state is computed. The simulation state transition is as follows:

1. collect all actions from the agents,
2. let each action fail with a specific probability,
3. execute all remaining attack and parry actions,
4. determine disabled agents,
5. execute all remaining actions,
6. calculate zones and step-score
7. prepare percepts,
8. deliver the percepts.


	Multi-Agent Programming Contest 2013
	1 Introduction
	1.1 Related Work
	1.2 The Contest from 2005–2013

	2 MAPC 2013: Agents on Mars, Third Edition
	3 The Tournament
	3.1 Participants and Results

	4 Overview of Teams’ Performance
	4.1 Score, Zone Values, and Zone Stability
	4.2 Achievements
	4.3 Agents’ Reliability and Stability
	4.4 Actions Per Role

	5 Summary, Conclusion and Future of the Contest
	References




