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Abstract. Testing multi-agent systems is a challenge, since by definition such
systems are distributed, and are able to exhibit autonomous and flexible behaviour.
One specific challenge in testing agent programs is developing a collection of
tests (a “test suite”) that is adequate for testing a given agent program. In order
to develop an adequate test suite, it is clearly important to be able to assess the
adequacy of a given test suite. A well-established technique for assessing this is
the use of mutation testing, where mutation operators are used to generate vari-
ants (“mutants”) of a given program, and a test suite is then assessed in terms of
its ability to detect (“kill”) the mutants. However, work on mutation testing has
focussed largely on the mutation of procedural and object-oriented languages.
This paper is the first to propose a set of mutation operators for a cognitive agent-
oriented programming language, specifically GOAL. Our mutation operators are
systematically derived, and are also guided by an exploration of the bugs found
in a collection of undergraduate programming assignments written in GOAL. In
fact, in exploring these programs we also provide an additional contribution: evi-
dence of the extent to which the two foundational hypotheses of mutation testing
hold for GOAL programs.
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1 Introduction

Testing multi-agent systems (MAS) is a challenge, since by definition such systems are
distributed, and are able to exhibit autonomous and flexible behaviour. For example,
Munroe et al. note that “However, the task [validation] proved challenging for several
reasons. First, agent-based systems explore realms of behaviour outside people’s ex-
pectations and often yield surprises . . . ” [12, Section 3.7.2]. Similarly, Pěchouček and
Mařı́k [16, Page 413] note that1: “Although the agent system performed very well in all
the tests, to release the system for production would require testing all the steel recipes
with all possible configurations of cooling boxes”.

There has been work on testing of multi-agent systems, especially in the last 4-5
years. Most of this work has focussed on tool support for executing (manually defined)
tests (e.g. [2,3]). However, some work has investigated test generation based on design
models [21], ontologies [13], or using evolutionary techniques [14]. Space precludes

1 On the other hand, for another application they note that: “Even though this negotiation pro-
cess has not been theoretically proved for cycles’ avoidance [sic], practical experiments have
validated its operation” [16, Page 407].
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a detailed review of testing, and we refer the reader to [20, Section 8.1] for a review
of work on testing and debugging MAS. Overall, the conclusion of this review was
that “testing of agent based systems is an area where there is a need for substantial
additional work” [20, Section 8.1].

Given a collection of tests (a “test suite”), a key question when testing an agent
system is to what extent is the test suite adequate? A test suite is adequate to the extent
that it is able to distinguish between a correct and an incorrect program. In developing
an adequate test suite, it is obviously useful to be able to assess the adequacy of the test
suite. This assessment can assist a tester in detecting when a test suite is not sufficient
and needs to be refined or extended. It can also guide a tester in knowing when to stop
adding test cases.

So far, work on assessing the adequacy of test cases (e.g. [9,11,19]) has only con-
sidered the use of various coverage metrics to assess test suite adequacy. However,
although coverage is necessary, it is not sufficient. Knowing that a test suite covers a
certain portion of a program simply indicates that parts of the program were executed
by the tests. It doesn’t allow us to draw conclusions about whether these parts of the
program were tested in a way that allows errors in the program to be detected, i.e. to
distinguish between correct and incorrect programs.

An alternative, well-established, technique for assessing test suite adequacy is mu-
tation testing [6] (see Section 2.1). Mutation testing directly assesses the ability of a
test suite to distinguish between different programs, and is considered a more powerful
and discerning metric than coverage. For instance Mathur notes that “If your tests are
adequate with respect to some other adequacy criteria . . . then chances are that these
are not adequate with respect to most criteria offered by program mutation” [10, Page
503].

Most work on mutation testing of programs has focussed on programs in procedural
and object-oriented languages [6, Figure 5]. There has been a (very) small amount of
work on applying mutation to agents [18,1]. However, this work has not considered
mutating agent programs written in a cognitive agent-oriented programming language.

In this paper we propose a set of mutation operators for the cognitive agent-oriented
programming language GOAL (see Section 2.2 for a brief introduction to the language).
Although we derive mutation operators for a specific language, the process by which
the operators are derived is generic, and can easily be applied to other agent-oriented
programming languages (see Section 6).

In deriving our mutation operators we are guided by an exploration of actual bugs
in GOAL programs. We want mutation operators to generate “realistic” bugs, and we
assess this by considering a collection of GOAL programs (written by undergraduate
students at another university). Section 4 compares the bugs that exist in these programs
against the sorts of bugs that our mutation operators generate, and uses the results to
guide the selection of mutation operators. In fact, the results of this assessment of bugs
also forms an additional contribution, in that it provides evidence of the extent to which
the two foundational hypotheses of mutation testing hold for GOAL programs.

The remainder of this paper is structured as follows. We begin by briefly review-
ing mutation testing (Section 2.1) and introducing the GOAL programming language
(Section 2.2). We then present our mutation operators in Section 3. Section 4 looks at
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a collection of GOAL programs and considers what bugs they contain. We then (Sec-
tion 5) describe an implementation of the mutation operators, and report the number
of mutants generated by different operators for a number of example GOAL programs.
Finally, we conclude with a discussion, including future work (Section 6).

2 Background

2.1 Mutation Testing

We now very briefly introduce the key ideas of mutation testing, which is a long es-
tablished field, going back to the 70s. For a detailed introduction to mutation testing
see Chapter 7 of [10], and for a recent review of the field see Jia & Harman [6]. In a
nutshell, mutation testing assesses the adequacy of a test suite by generating variants
(“mutants”) of the program being tested, and assessing to what extent the test suite is
able to distinguish the original program from its mutants (termed “killing the mutant”).
Given a test suite, a program P written in a programming language, and a set of mu-
tation operators for that programming language, the process of mutation testing is as
follows (see Figure 1):

1. Execute the program P against all tests in the test suite, recording the results;
2. Use the mutation operators to generate a set of mutant programs P1 . . . Pn from P

(where each Pi is the result of applying a single mutation);
3. Test each mutant Pi against the tests in the test suite;
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4. Each mutant that behaves differently to the original program is flagged as having
been “killed”2;

5. The adequacy of the test suite is D/n where D is the number of killed mutants and
n is the number of mutants. A quality score of 1 (highest) is good, and 0 is bad.

The mutants are generated using mutation operators: rules that take a program and
modify it, yielding a syntactically valid variant. The key challenge in developing a mu-
tation testing scheme is the definition of a good set of mutation operators for the pro-
gramming language used. A set of mutation operators is good to the extent that it (1)
generates errors that are realistic; and (2) does so without generating a huge number of
mutants.

Mutation testing rests on two foundational hypotheses [6]. The first is the competent
programmer hypothesis, which states that programmers tend to develop programs that
are close to being correct. This hypothesis is important in that a consequent of it is that
a simple syntactic mutation is a good approximation of the faults created by competent
programmers. In other words, the competent programmer hypothesis is what justifies
the use of simple syntactical mutations as proxies for real bugs. The second foundational
hypothesis is the coupling effect hypothesis. This proposes that a test suite that can find
the simple faults in a program, will also find a high proportion of the program’s complex
faults [15]. This hypothesis justifies the generation of mutants by the application of
a single mutation operator instance, rather than having to consider the application of
multiple mutation operators to generate a mutant.

In Section 4 we consider a collection of GOAL programs and assess to what extent
these two foundational hypotheses hold. Although there is empirical evidence to sup-
port both these hypotheses for procedural programs, this paper is the first to consider
evidence for these hypotheses in the context of agent systems.

2.2 GOAL

This section briefly introduces GOAL (Goal Oriented Agent Language); for further de-
tails we refer the reader to the existing literature [5,4]. A Multiagent System in GOAL is
defined using a configuration file that specifies the environment, configuration options,
and a number of GOAL agents, each with a GOAL program. A GOAL agent program
consists of five components: domain knowledge (e.g. Prolog rules), initial beliefs, ini-
tial goals, action definitions, and a program. Note that both the domain knowledge and
the beliefs are specified using a knowledge representation language which can be varied
(the GOAL implementation uses SWI-Prolog). In this paper we focus on the program
component, both because it corresponds most closely to other agent-oriented program-
ming languages (AOPLs), and because that is usually where the complexity of the agent
is [17], and where errors are made (see Section 4).

2 Some mutants may be equivalent in behaviour to the original program (“equivalent mutants”),
and, since program equivalence is undecidable, identifying and removing these mutants is a
manual and partial process. This is a standard problem in the field of mutation testing but
there is evidence that most equivalent mutants are actually fairly easy to detect. A related issue
is where a mutant may be non-equivalent, but may still be correct. Mutation testing is not
concerned with whether a mutant is correct, but with whether it is different, and whether this
difference can be detected by a test suite.
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GOAL programs are built out of actions and mental state conditions. Actions in
GOAL are either user-defined (pre and post condition), or are one of the five built-in
actions that insert or delete beliefs, adopt or drop goals, or send a message. GOAL

also defines an achievement goal a-goal(φ) ≡ goal(φ) ∧ ¬bel(φ) and an achieved
goal goal-a(φ) ≡ goal(φ) ∧ bel(φ). A mental state condition (MSC) in GOAL is
built out of conditions over the agent’s beliefs and its goals. A GOAL program def-
inition then, in essence, consists of a sequence of rules of the form3 “if MSC then
action1 + . . .+ actionn” where the actions are performed in order4, and there can be at
most one user-defined action.

These rules are actually placed within modules. However, in this paper we do not
consider the mutation of modules, since the module construct is unique to GOAL, and
was not used in the programs we considered (see Section 4). The grammar in Figure 2
summarises the subset of the language that we focus on. It thus differs from the original
grammar given by Hindriks [5] in that it omits modules. It also differs in a couple of
places where it has been changed to match what the implementation supports (specif-
ically for drop(φ) the φ must not contain negations; and in fact in mentalatoms belief
conditions can actually contain disjunctions).

Semantics: A rule “if condition then action” is applicable if the condition holds,
and is enabled if the actions’ preconditions are met. Applicable and enabled rules are
options. The execution cycle consists of the following steps:

1. Clear previous cycle’s percepts.

2. Update percepts by executing all options (i.e. enabled rules) in the distinguished
event module.

3. Focus on the main module: compute the options, select one (by default rules are
evaluated in linear order and the first option is selected), and perform its actions.

4. Update goals by dropping goals that are believed to hold.

Compared with other cognitive agent programming languages, GOAL’s most dis-
tinctive (relevant) features are: (a) The limitation that an action rule can only result in a
sequence of actions, rather than a mixture of actions and subgoals; and (b) The lack of
a trigger condition. This makes GOAL action rules more general, in that a rule doesn’t
require a particular trigger. However, it also means that a rule can be applied repeatedly:
in, say, Jason a rule of the form +!goal : context ← planBody can be applied (if the
context is true) to deal with the creation of a goal. However, the rule will not be applied
subsequently unless the goal is re-posted. By contrast, in GOAL a rule of the form “if
goal(goal) then actions” can be applied repeatedly, as long as goal remains a goal of
the agent.

3 There is also a form “forall MSC do actions” used in the percept processing module.
4 The GOAL documentation states that “The actions that are part of a composed action may be

put in any order in the action part of a rule. However, the order the actions are put in is taken
into account when executing the composed action: The actions are executed in the order
they appear” (emphasis added).
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program ::= actionrule+

actionrule ::= if mentalstatecond then actioncombo

| forall mentalstatecond do actioncombo

mentalstatecond ::= mentalliteral { , mentalliteral }∗
mentalliteral ::= true | mentalatom | not( mentalatom )

mentalatom ::= bel( litconj ) | goal( litconj )

actioncombo ::= action { + action }∗
action ::= user-def-action | built-in-action | communication

user-def-action ::= id[parameters]

built-in-action ::= insert( litconj ) | delete( litconj )

| adopt( poslitconj ) | drop( poslitconj )

communication ::= send( id , poslitconj )

poslitconj ::= atom { , atom }∗ .

litdisj ::= litconj { ; litconj }∗ .

litconj ::= literal { , literal }∗ .

literal ::= atom | not( atom )

atom ::= predicate[parameters] | ( litdisj )

parameters ::= ( term { , term }∗ )

Fig. 2. GOAL Agent Program syntax (adapted from [5]): term is a legal term and id is an identifier

3 Deriving GOAL Mutation Operators

“the design of mutation operators is as much of an art as it is science.” [10,
Page 530].

In deriving a set of mutation operators for GOAL we follow the approach of
Kim et al. [8] and derive mutation operators based on HAZOP and the syntax of the
language. HAZOP (Hazard and Operability Study) is a technique for identifying haz-
ards in systems by considering each element of the system and applying “guide words”
such as NONE, MORE, LESS, PART OF, AS WELL AS, or OTHER THAN. For ex-
ample, in a chemical processing system, engineers might consider what hazard exists if
a certain pipe carries MORE chemical than it should, or if there is a contaminant (“AS
WELL AS”). Kim et al. applied this idea to generating mutation operators by apply-
ing these guide words to the syntax of Java. For example, when considering a method
invocation, the guide word OTHER THAN suggests that the designer consider the pos-
sibility that a different method to the intended one is invoked. This then leads directly
to the definition of a mutation operator that rewrites a method invocation by changing
the method name. Figure 3 shows their interpretation of the HAZOP guide words (note
that some of the guide words, such as those to do with scope, or quantitative changes,
are not applicable to GOAL, and so have been left out of the figure).
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Guide Words Interpretation
NO/NONE No part of the intention is achieved. No use of syntactic components.
AS WELL AS Specific design intent is achieved but with additional results
PART OF Only some of the intention is achieved, incomplete
REVERSE Reverse flow - flow of information in wrong direction . . . negation of condition
OTHER THAN A result other than the original intention is achieved, complete but incorrect

Fig. 3. HAZOP guide words and their interpretation for software (copied from [8])

In deriving mutation operators for GOAL we actually go through two stages. We
firstly apply HAZOP to abstract syntactical classes in order to develop generic mutation
schemas (Figure 4). These are generic in that they are applicable to a wide range of
programming languages. We then apply these schemas to the GOAL syntax to generate
specific mutation rules for GOAL (Figure 5). The advantage of doing the derivation in
two stages is that we can then more easily derive mutation operators for other AOPLs
by applying the generic schemas.

In deriving our generic schemas we consider three generic syntactical types: a se-
quence of elements, a (binary) operator that has two sub-elements, and a unary operator.
For each of these generic syntactical types we consider what mutations are suggested by
the HAZOP guide words, which gives a set of generic mutation schemas for that syn-
tactical type. In addition, there is also a generic schema, suggested by the NO/NONE
HAZOP guide word, that can be applied to delete (“drop”) any syntactical type. For-
mally we write drop:x � ε to capture this: the “drop:” is a label, x is a variable for a
syntactical element, the arrow “�” indicates a mutation, and ε denotes the empty syn-
tactical construct of the appropriate form (e.g. empty sequence, “True” Boolean value).

Consider now a sequence of elements (x1 . . . xn). The HAZOP guide word PART OF
suggests that we consider removing an element in the sequence (“drop1” in Figure 4).
The OTHER THAN guide word suggests changing part of the sequence, specifically,
we select an element, and replace it with a variant (derived using other appropriate mu-
tation operators; “mut1”). The REVERSE suggests changing the order of the sequence.
However, in general reversing a sequence of syntactic elements doesn’t make much
sense, and instead we propose a rule to swap two adjacent elements in the sequence
(“seqswap”): note that we choose to only swap adjacent elements in order to avoid gen-
erating a large number of possible mutants (but see the discussion of program:seqtop
and seqbot later in this section). The AS WELL AS guide word suggests that we add an
item to the sequence. However, we prefer to avoid adding things because this raises the
issue of what to add? If we add, say, a new rule to a GOAL program, what rule should
we add? It is possible to define a way of creating a new rule from existing fragments in
the program, but this tends to result in a very large number of possible mutations. The
NO/NONE guide word has already been handled by a rule that applies to all syntactical
types, including sequences.

Consider now a binary operator (notation: x⊕ y or x ⊗ y, where we assume that ⊕
and ⊗ are different). Using similar reasoning, we are inspired by PART OF to consider
dropping either the left or right element (“dropL”, “dropR”); by REVERSE to swap the
elements (“swap2”); and by OTHER THAN to change either the operator (“op2”) or to
mutate one of the elements (“mutL”, “mutR”).
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Finally, consider a unary operator (notation: �x or ♦x, assuming � �= ♦). Using
similar reasoning, we are inspired by the PART OF guide word to delete the operator
(“delop”); by OTHER THAN to change the operator (“op1”) or mutate the component
(“mut”). We also can add an operator (“addop”) which can be seen as inspired by the
“negation of condition” interpretation of the REVERSE guide word (e.g. F � ¬F ).

Figure 4 shows the resulting generic mutation schemas. Recall that each rule is of
the form “keyword : x� y”. We also employ a convention that where we have p(x)�
p(x′), there is an implied “if x � x′”. In other words, the mut1 rule, for instance, is
really shorthand for “mut1: x1 . . . xj . . . xn � x1 . . . x

′
j . . . xn if xj � x′

j”.

drop: x� ε

seqswap: x1 . . . xj xj+1 . . . xn � x1 . . . xj+1 xj . . . xn

mut1: x1 . . . xj . . . xn � x1 . . . x
′
j . . . xn

drop1: x1 . . . xj xj+1 . . . xn � x1 . . . xj+1 . . . xn

dropL: x⊕ y � y dropR: x⊕ y � x swap2: x⊕ y � y ⊕ x
op2: x⊕ y � x⊗ y mutL: x⊕ y � x′ ⊕ y mutR: x⊕ y � x⊕ y′

addop: x� ♦x delop: ♦x� x op1: ♦x� �x mut: ♦x� ♦x′

Fig. 4. Generic Mutation Schemas

The second step is to apply these generic mutation schemas to the GOAL syntax in
order to derive a set of mutation operators specific to GOAL. In doing so, we sometimes
leave out rules that don’t make sense. For example, when a binary operator is commu-
tative, it doesn’t make sense to mutate by swapping its arguments (“swap2”). We now
proceed to consider in turn each syntactical element type in GOAL and consider how
the generic mutation schemas apply to it.

We begin by considering a GOAL program. This is a sequence of action rules, and
therefore the relevant generic mutation schemas are those for a sequence (seqswap,
mut1, drop1), as well as the universal “drop” schema. In this case, it doesn’t make
sense to drop the whole program, so we have three rules (labelled in Figure 5 “pro-
gram:seqswap”, “program:mut1” and “program:drop1”). For example, given a program
that consists of the rules r1r2r3 we could apply the mutation operator program:seqswap
to swap any two rules, for example swapping r1 and r2 to obtain the mutated program
r2r1r3. We could alternatively apply program:drop1 to remove a single rule, for in-
stance dropping r1 yielding the mutated program r2r3. A final option is to select a rule,
for instance r2, and mutate it using a rule mutation operator, yielding the mutated rule
r′2, and the overall mutated program r1r

′
2r3.

In fact, in our exploration of bugs in example GOAL programs, we also found that the
limitation to only swap adjacent rules in a program was too strong: there were a number
of cases where bugs corresponded to other sorts of changes to the order of rules in a
program. Although we do not want to introduce a mutation operator to allow arbitrary
reorderings of the rules in a program, we do propose a compromise that allows many of
the bugs seen to be generated by our mutation rules, whilst not increasing the number
of possible mutants too much. This compromise is to add mutation operators that allow
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a single rule in the program to be moved to the start (“program:seqtop”) or end (“pro-
gram:seqbot”) of the program. Applying these rules to the program r1r2r3r4r5 with rule
r3 being moved yield respectively the mutated programs r3r1r2r4r5 and r1r2r4r5r3.

Next we consider a GOAL action rule (abbreviated AR). An action rule is effectively
a binary connective with two sub-components, and hence the generic schemas for bi-
nary connectives apply (i.e. dropL, dropR, swap2, op2, mutL, mutR, as well as drop).
However, for an AR the components cannot be deleted, since a rule must have both a
condition and actions (although an MSC could be replaced with “true”), and they can-
not be swapped, so we only have rules for op2, mutL, and mutR. For op2 we consider
replacing “if MSC then AC” with “forall MSC do AC” (and vice versa), but only in the
context of the percept processing module. Note that op2 has two instances, and that it
is fairly specific to GOAL: other AOPLs don’t deal with percepts in the same way. The
universal “drop” rule isn’t needed for actionrules, since actionrules only occur within a
sequence, and we already have a rule to delete an element in the sequence. Thus, for an
action rule in the main module (i.e. not in the percept module), we can only mutate it by
selecting either its mental state condition or its action combo, and using an appropriate
mutation operator to mutate the selected element.

A mentalstatecond (MSC) is also a sequence. Here it does make sense to also con-
sider the overall drop rule, dropping the whole MSC, as well as the usual mut1 and
drop1 rules. However, in fact the result of dropping an MSC completely is rarely a valid
GOAL program: GOAL requires that variables appearing in the actions of a rule also
appear in that rule’s condition. Since this requirement only holds for a “true” condition
when the action list has no variables, the MSC:drop rule is unlikely to ever be applicable
(see Section 5). Note that we only consider mutation by dropping an MSC if it has more
than one element (otherwise the same effect is achieved by the ML:drop rule). Finally,
we did not initially define mutation operators to change the order of conditions in an
MSC, since in many cases the order doesn’t matter, for instance where each condition
has disjoint variables. However, in other cases the order may matter, and we could con-
sider extending our set of mutation operators with rules to change the order as future
work.

A mentalliteral (ML), as defined in the GOAL syntax, is an optional unary operator
(“not”) that is applied to a mental atom (which itself is either a bel or a goal operator
applied to a litconj). We can mutate a mentalliteral by dropping it completely. We can
also add or remove a “not” (“addop”, “delop”), or we can mutate the mental atom.
Mutating a mental atom (MA) can be done by either changing a bel to a goal (or vice
versa), or by mutating the literal conjunction. Note that we cannot mutate the “not” into
another operator, since there is no alternative operator.

An actioncombo (AC) is a sequence of actions. It cannot be entirely deleted. How-
ever, we can mutate an individual action or drop one. Note that the swap rule doesn’t
really make sense: although GOAL specifies that actions in an actioncombo are exe-
cuted sequentially, it would in fact be non-idiomatic to have a sequence of actions that
is order dependent.

An action (A) is either user defined (“id[parameters]”) or is one of the five built-in
actions: insert, delete, adopt, drop, send. Dropping an action completely is already cov-
ered by the rule AC:drop1, so we only consider mutating the parameters of the action,
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or the action type. In mutating the action type we exclude changing a belief operation to
a goal operation and vice versa, since this doesn’t make sense, and is unlikely to yield
a sensible mutant. When mutating a message, we can mutate the message content, or
the recipient. Finally, we can mutate a user-defined action by mutating either the id (by
replacing it with a different user defined action or by mutating the parameters. In replac-
ing a user-defined action with a different user-defined action we need to ensure that the
two actions have the same number of parameters (which we term being “compatible”).
This condition also applies when mutating atoms by changing their predicate.

We did observe that some programs had “typos” (e.g having “at” instead of “at-
Block”) in predicates. However, we did not introduce a mutation operator to create
such typos for the simple reason that this operator would be redundant. Consider, for
example, replacing the action “delete(p)” with “delete(typo)”. This is actually equiv-
alent to just deleting the action. Similarly, replacing “bel(p)” with “bel(typo)” in an
MSC is equivalent to replacing it with “false”, i.e. with deleting the rule; and having
“adopt(typo)” is equivalent to a null action since the goal won’t have rules that handle
it, so won’t have any effect.

A poslitconj (PLC) and a litconj (LC) are both sequences (respectively of Atoms “At”
or Literals “Lit”), so we can remove an element of the sequence or mutate an element
of the sequence. As for MSCs, we did not define swapping operations, but these could
be considered as future work.

A Literal is an optional unary connective (“not”) applied to an Atom, and hence can
be mutated by adding or removing a negation, or by mutating the atom. Mutating an
atom can be done by mutating the predicate (replacing it with another predicate found
in the program), or by mutating the parameters. Parameters are a sequence of terms (we
abbreviate term to t), but we do not want to change the length of the sequence, hence
can only mutate individual terms. However, swapping terms is a reasonable mutation.

Mutating a list (of the form [t1|t2]) is done similarly to any other binary connective,
yielding the following rules (for space reasons, these are not shown in Figure 5):

termlist:drop1 [A|As]� A [A|As]� As
termlist:seqswap [A|As]� [As|A]
termlist:mut [A|As]� [A′|As] [A|As]� [A|As′]

Finally, we consider the mutation of terms (excluding lists). A term is of the form
f(t1, . . . , tn) and, viewed as a sequence of arguments, can be mutated by dropping a
sub-term (“term:drop1”), mutating a sub-term, or swapping adjacent sub-terms. There
is one special case: equality. For the term t1 = t2 it does not make sense to drop either
sub-term, nor to swap the sub-terms.

Figure 5 shows the collected mutation operators for GOAL. Recall that by convention
where we have p(x) � p(x′), there is an implied “if x � x′”. We also assume that
there are implicit checks for syntactic elements being of the correct type. For instance,
in the rule ML:addop, the element MA must be a MentalAtom, and hence cannot be
“true” or “not(MA)”. There is also a constraint: for those rules that involve an element
j+1 (i.e. the swap and drop1 rules) we have 1 ≤ j and j+1 ≤ n, and hence that n ≥ 2
(so we don’t drop the last element in a list). For other rules we have 1 ≤ j ≤ n. Finally,
the program:mut rule has an additional condition, discussed above, that all variables
appearing in the actions also appear in the rule’s condition.
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program:seqtop AR1 . . . ARj ARj+1 . . . ARn � ARj AR1 . . . ARj+1 . . . ARn

program:seqbot AR1 . . . ARj ARj+1 . . . ARn � AR1 . . . ARj+1 . . . ARn ARj

program:seqswap AR1 . . . ARj ARj+1 . . . ARn � AR1 . . . ARj+1 ARj . . . ARn

program:mut1 AR1 . . . ARj . . . ARn � AR1 . . . AR′
j . . . ARn (see text for condition)

program:drop1 AR1 . . . ARj ARj+1 . . . ARn � AR1 . . . ARj+1 . . . ARn

AR:op2 if msc then actioncombo� forall msc do actioncombo (only percept rules)
AR:op2 forall msc do actioncombo� if msc then actioncombo (only percept rules)
AR:mutL if msc then actioncombo� if msc′ then actioncombo
AR:mutR if msc then actioncombo� if msc then actioncombo′

AR:mutL forall msc do actioncombo� forall msc′ do actioncombo
AR:mutR forall msc do actioncombo� forall msc do actioncombo′

MSC:drop ML1 . . .MLj MLj+1 . . .MLn � true
MSC:mut1 ML1 . . .MLj . . .MLn �ML1 . . .ML′

j . . .MLn

ML:drop ML� true (if ML �= true)
ML:addop MA� not( MA ) ML:delop not( MA )�MA
ML:mut MA �MA′ not( MA )� not( MA′ )
MA:op1 bel( litconj )� goal( litconj ) goal( litconj )� bel( litconj )
MA:mut ♦( litconj )� ♦( litconj′ ) where ♦ ∈ {bel, goal}
AC:mut1 A1 . . . Aj . . . An � A1 . . . A

′
j . . . An

AC:drop1 A1 . . . Aj Aj+1 . . . An � A1 . . . Aj+1 . . . An

A:op1 insert( litconj )� delete( litconj ) delete( litconj )� insert( litconj )
A:op1 adopt( poslitconj )� drop( poslitconj ) drop( poslitconj )� adopt( poslitconj )
A:mut ♦( litconj )� ♦( litconj′ ) where ♦ ∈ {insert, delete}
A:mut ♦( poslitconj )� ♦( poslitconj′ ) where ♦ ∈ {adopt, drop}
A:mut send( id , poslitconj )� send( id , poslitconj′ )
A:mut send( id , poslitconj )� send( id′ , poslitconj )
A:mut(*) id[parameters]� id′[parameters]
A:mut id[parameters]� id[parameters′]

PLC:mut1 At1 . . . Atj . . . Atn � At1 . . . At′j . . . Atn
PLC:drop1 At1 . . . Atj Atj+1 . . . Atn � At1 . . . Atj+1 . . . Atn
LC:mut1 Lit1 . . . Litj . . . Litn � Lit1 . . . Lit

′
j . . . Litn

LC:drop1 Lit1 . . . Litj Litj+1 . . . Litn � Lit1 . . . Litj+1 . . . Litn

Lit:addop At� not( At ) Lit:delop not( At )� At
Lit:mut At� At′ not( At )� not( At′ )
At:mut(*) predicate[parameters]� predicate′[parameters]
At:mut predicate[parameters]� predicate[parameters′]
At:mut lit1; . . . ; litj ; . . . ; litn � lit1; . . . ; lit

′
j ; . . . litn

parameters:seqswap t1 . . . tj tj+1 . . . tn � t1 . . . tj+1 tj . . . tn
parameters:mut t1 . . . tj . . . tn � t1 . . . t

′
j . . . tn

term:drop1 f(t1 . . . tj , tj+1 . . . tn)� f(t1 . . . tj+1 . . . tn)
term:mut1 f(t1 . . . tj , tj+1 . . . tn)� f(t1 . . . tj , t

′, tj+1 . . . tn)
term:seqswap f(t1 . . . tj , tj+1 . . . tn)� f(t1 . . . tj+1, tj . . . tn)
term:mut X = Y � X ′ = Y X = Y � X = Y ′

Constraints: 1 ≤ j and j + 1 ≤ n for constraints that have j + 1, otherwise 1 ≤ j ≤ n
(*) = compatibility constraint (see text)

Fig. 5. Mutation Operators for GOAL
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These rules have the property that when applied to a valid GOAL program, they
result in another valid program, since they always replace a syntactical element of a
certain type (e.g. MSC) with another valid syntactical element of the same type (see
also Section 5). Figure 6 shows an example GOAL rule and its mutations (generated by
the implementation described in Section 5).

Original: if not(goal(target(A, B))), bel(holding(C)) then adopt(target(C, table)).
ml:drop if true, bel(holding(A)) then adopt(target(A, table)).
ml:delop if goal(target(A, B)), bel(holding(C)) then adopt(target(C, table)).
ma:op1 if not(bel(target(A, B))), bel(holding(C)) then adopt(target(C, table)).
ml:addop if not(goal(target(A, B))), not(bel(holding(C))) then adopt(target(C, table)).
ma:op1 if not(goal(target(A, B))), goal(holding(C)) then adopt(target(C, table)).
lit:addop if not(goal(target(A, B))), bel(not(holding(C))) then adopt(target(C, table)).
at:mut if not(goal(target(A, B))), bel(block(C)) then adopt(target(C, table)).
a:op1 if not(goal(target(A, B))), bel(holding(C)) then drop(target(C, table)).
parameters:seqswap

if not(goal(target(A, B))), bel(holding(C)) then adopt(target(table, C)).

Fig. 6. GOAL clause and example mutations, with the changes highlighted

4 An Empirical Evaluation of Programs

We now turn to an empirical evaluation by examining a collection of GOAL programs.
The aim of this examination is primarily to assess how well the mutation operators
are able to generate realistic bugs. However, we also briefly consider what our em-
pirical evaluation tells us about the two foundational hypotheses of mutation testing
(Section 4.1).

Methodology: We obtained a collection of 55 GOAL programs, written as an as-
signment by first year undergraduate students at Delft university. These programs each
implement a solution to “Blocks World for Teams” (BW4T) [7]: a single5 agent that
moves around an environment with a number of rooms (see Figure 7), collecting blocks
of various colours, and delivering them to the “dropzone” in a specified order (e.g. a red
block, then a blue block). The environment (which runs in a separate process) provides
the agent with percepts (e.g. in(Room), color(BlockID, Color), holding(BlockID)), and
four actions (goTo(Location), goToBlock(BlockID), pickUp, and putDown).

We are interested in assessing how well the mutation operators are able to generate
realistic bugs. We therefore consider the collection of GOAL programs as being a source
of realistic buggy programs, and consider whether each of the buggy programs could
have been generated from a correct program by applying our mutation operators. We
therefore proceeded by testing each program to locate bugs, and then fixing the bugs. In
fixing bugs we were careful to only make changes that were necessary, and to consider
what alternative changes might be used to fix the bug. Once a bug was fixed we re-
tested the program to confirm that the fix was correct. When testing the programs we

5 We only considered the initial version of the assignment with one agent.
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Fig. 7. Blocks World for Teams

used a number of test suites: the two example scenarios that were used in the original
assignment, a set of ten randomly generated test cases, and a generated enumeration
of all possible starting configurations within a limited scope (for scope sizes 1 and 2).
Overall, we considered a program to be correct if it managed to deliver the desired
blocks in all runs. Note that in some cases programs were successful in delivering all
blocks, but had other issues, for example, a program might deliver incorrect blocks
along the way, or may require a large number of additional actions. However, as long
as it ended up delivering the desired blocks, we considered it to be “correct”. Of the
55 programs, 4 were excluded, since they did not run at all (e.g. syntax errors), and 15
further programs were excluded since they did not have any (detected) bugs. This left a
total of 36 buggy programs.

Before we consider how well the mutation operators are able to generate realistic
bugs (as represented by the 36 buggy programs), we need to consider the assumptions
that were made in developing the mutation operators. To what extent do these assump-
tions hold?

Recall that GOAL programs have a number of components (e.g. domain knowl-
edge, action definitions), and that we have focussed on the program rules, i.e. assumed
that errors only occur in the program rules. Is this a valid assumption? Out of the 36
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programs with bugs, only 9 programs involved errors that related to non-supported
GOAL features. One of these 9 programs involved incorrect usage of nested rules, and
the remaining 8 programs had problems in the definition of actions, mostly incorrect
definitions of their pre/post conditions6. The somewhat surprising number of programs
with issues in defining actions may be due to a feature of the BW4T environment: the
environment is a separate process, and there is a delay between performing an action,
and the action actually taking place. This means that when defining an action, such as
pickUp, the action’s post-condition should be “true”, rather than, say, “holding(Block)”,
because the environment will, in due course, perform the action and inform the agent of
the action’s success (or failure) by sending suitable percepts (such as “holding(Block)”).
Having pickUp make holding(Block) true is a problem because in reality (i.e. in the en-
vironment) the agent may fail to pick up the block, or may take a while to succeed. If
holding(Block) is asserted immediately (by an incorrect post condition), then the agent
may then proceed to move to the dropzone, based on the false belief that it has already
picked up the block.

The second assumption that we made in developing the mutation operators was to
ignore certain features specific to GOAL, namely modules, nested rules, and macros.
This assumption was clearly reasonable: of the 36 buggy programs, only 6 programs
used nested rules (2 of these 6 also used macros). However, only one of these 6 programs
had a bug that was related to the use of nested rules.

Having considered, and evaluated, the assumptions, we now consider to what extent
the bugs that we observed could be seen as the result of one or more applications of
the defined mutation operators. As noted earlier, 27 out of the 36 buggy programs had
bugs that solely related to supported GOAL features. Of these 27 programs, 16 pro-
grams had errors that did not require additional mutation operators. The remaining 11
programs had errors that corresponded to the application of a number of mutation oper-
ator instances, where at least one of the operators was additional to the ones that we had
defined. The additional mutation operators were: (i) addition of elements (either actions
or literals) [7 programs]; (ii) changes to the order of rules in a program other than the
cases defined7 [3 programs]; (iii) mutating a variable to another (legal) variable name
[3 programs]; and (iv) replacing an “insert” with a “drop” [1 program]. As discussed
in Section 3, mutation operators that add to the program are problematic; however, the
other three types of rules could be easily added.

Finally, we consider which of the mutation operators are used to generate the ob-
served bugs. Figure 8 contains a summary of the number of times that each rule was
used in deriving buggy programs, summed up over the 36 programs. Note that since
some programs had bugs that corresponded to the application of multiple mutation oper-
ators, the sum of the number of rule applications (final row) is greater than the number of
buggy programs. As can be seen in Figure 8, many of the rules that we defined actually
do not correspond to the sorts of errors that we found in real buggy programs. Indeed,
as often appears to be the case in mutation testing, only a few rules account for most
of the bug types. For example, the four most commonly used rules (program:seqswap,

6 Of these 8, one also had an error in the domain knowledge where a “>” should have been “≥”,
and two had incorrectly defined actions using e.g. pickUp(Block) instead of pickUp.

7 These could, in principle, be regarded as repeated application of program:seqswap.
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Observed
Rule Bugs
a:mut 0
a:op1 0

ac:drop1 14
ar:op2 6
at:mut 4

lc:drop1 18
lit:addop 0
lit:delop 0
ma:op1 0

ml:addop 1
ml:delop 0
ml:drop 13

msc:drop 0
parameters:seqswap 0

plc:drop1 0
program:drop1 29
program:seqbot 9

program:seqswap 31
program:seqtop 5

term:drop1 0
term:seqswap 0

TOTAL 130

Fig. 8. Summary of observed bugs and the rules involved

program:drop1, LC:drop1, and AC:drop1, which are bolded in Figure 8) correspond to
71% of the mutation operator applications.

Overall, we conclude that: 75% (27 out of 36) of the programs had bugs that did not
involve excluded GOAL features, such as modules, action definitions, or nested rules;
59% of these (16 out of 27) had bugs that were able to be generated by the mutation
operators that we defined; and many (71%) of the mutation operator applications were
instances of only four rules.

One question that might be asked is whether we could derive the mutation operators
based on the buggy programs, rather than using the syntax-based approach discussed
in Section 3. The advantage of the approach that we used is that it is based on the
programming language itself, rather than on a given set of programs. In this case, since
we had programs that all solved the same problem, if we had derived the operators
based on the programs, there would be a danger that the operators would be biased to
this specific problem.

4.1 Evidence for the Foundational Hypotheses

Recall that the field of mutation testing rests on two foundational hypotheses. The com-
petent programmer hypothesis states that programmers write programs that are “almost
correct”, i.e. programs that are “a few mutants away from a correct program” [10, Page
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# Mutation
Operator

Applications # Programs
1 7
2 7
3 2
4 3
5 3
6 5
7 0
8 2
9 1
10 2
>10 4

Fig. 9. Number of programs that are N mutants away from being correct, for different values of
N (see also Figure 10)
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Fig. 10. Number of programs that are N mutants away from being correct, for different values of
N (see also Figure 9)

531]. Of the 36 buggy programs, we found that 27 programs (75%) were indeed a few
mutants away from a correct program (defining “a few” to be “6 or fewer”). Thus we
conclude that the there is evidence that the competent programmer hypothesis holds for
GOAL programs, even when they are written by first-year students. Figures 9 and 10
show how many programs were N mutation operators away from being correct. For in-
stance, 7 of the 36 buggy programs corresponded to the application of a single mutation
operator (first row of Figure 9), and 7 programs had 2 mutations (second row). The last
row indicates that there were 4 programs that required more than 10 mutation operator
applications: these required 11, 16, 20, and 22 applications respectively.

The coupling effect hypothesis states that a test set that is adequate with respect to
single mutations is also adequate for multiple mutations. Since it concerns test sets and
adequacy, this hypothesis is not easy to assess, and a full assessment is beyond the
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scope of this paper. However, we can provide some initial evidence: if, in fact, most of
the observed bugs are generated by the application of a single mutation, then this would
be evidence for the coupling effect hypothesis. Note that the converse is not true: even
if the observed bugs mostly involve the application of multiple mutations, this does not
mean that the coupling effect hypothesis fails to hold. There could be other mutants that
can be used to assess whether the test suite is adequate with respect to the given bug.
Considering the programs we found that of the 36 programs, 7 (19%) were generated
by a single mutation operator application.

5 Implementation

The mutation operators defined in Figure 5 have been implemented. The implementa-
tion reads in a GOAL program and generates a collection of mutated programs, each of
which is the result of applying a single mutation. The implementation considers muta-
tions in both the main module, and in the percept processing module. It changes a single
GOAL program rule, and then reassembles the complete program, including generating
a modified mas2g file to run the mutated program.

We have run the implementation on three example GOAL programs (we selected
the three longest examples in the GOAL distribution, excluding an example which uses
modules extensively). The results were used in two ways. Firstly, we ran the mutants
(for the 1st and 3rd programs) to check that each mutant was indeed a syntactically
valid GOAL program (we couldn’t do this for the 2nd program, because it could not be
run from the command line, due to the way the agent’s environment was implemented).
Secondly, we observed which of the mutation operators were applicable to each pro-
gram, and how many mutants were generated by the different rules. Figure 11 shows
how many mutants were generated by the application of each of the mutation operators.
Note that mutation operators that simply select part of a rule and invoke another muta-
tion operator to make the change are not shown, since they do not actually change the
program.

6 Discussion

We have presented rules for generating mutants of programs in a typical cognitive
agent-oriented programming language (namely GOAL). We have also presented ini-
tial evidence that the rules are able to generate a significant proportion of the realistic
bugs encountered in a simple problem, as well as evidence that supported the competent
programmer foundational hypothesis of mutation testing in an agent context.

There are a number of issues (threats to validity) that need to be acknowledged.
Firstly, we only considered a single problem, and although we considered 55 different
programs, all these programs only involved a single agent, and all were written by rela-
tively inexperienced programmers. Clearly, one area for future work is to revisit the em-
pirical evaluation using a wider range of problems, and a wider range of programmers.
Note that these limitations are the reason why we have derived the mutation operators
systematically based on the syntactical structure of GOAL, rather than by considering
what mutation operators correspond to errors in the GOAL programs.
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Tower/ BW4T2/ Elevator/
Rule towerbuilder robot elevatoragent
a:mut 0 0 0
a:op1 16 8 8

ac:drop1 2 2 0
ar:op2 6 6 6
at:mut 11 27 40

lc:drop1 20 8 13
lit:addop 39 17 20
lit:delop 8 4 5
ma:op1 26 7 12

ml:addop 27 8 12
ml:delop 4 0 2
ml:drop 19 0 5

msc:drop 0 0 0
parameters:seqswap 29 2 9

plc:drop1 0 0 6
program:drop1 18 8 9
program:seqbot 16 6 7

program:seqswap 16 6 7
program:seqtop 16 6 7

term:drop1 8 0 6
term:seqswap 4 0 3

TOTAL 285 115 177

Fig. 11. Mutants generated by different operators for three example GOAL programs

Another area for future work is assessing the prevalence of equivalent mutants, and
whether equivalent mutants are generated by all mutation operators with roughly equal
likelihood, or by certain rules. We also intend to apply this approach to define mutation
operators for other AOPLs. Indeed, we have already defined mutation operators for
AgentSpeak, but space precludes presenting them here. More broadly, the data that we
have collected also tells us information on the sorts of mistakes that (novice) GOAL

programmers make. Analysing the data from this perspective would be valuable.

Acknowledgements. We would like to thank our colleagues at Delft university for pro-
viding access to the student projects, and for answering questions about GOAL, and
fixing bugs that we found in the BW4T environment.
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