
An Infrastructure

for the Design and Development
of Open Interaction Systems

Daniel Okouya1, Nicoletta Fornara1, and Marco Colombetti1,2

1 Università della Svizzera Italiana,
via G. Buffi 13, 6900 Lugano, Swizterland

{daniel.okouya,nicoletta.fornara,marco.colombetti}@usi.ch
2 Politecnico di Milano,

Piazza Leonardo da Vinci 32, 20135 Milano, Italy
marco.colombetti@polimi.it

Abstract. We propose an infrastructure for the design and development
of Open Interaction Systems (OISs), based on solutions from Service
Oriented Architecture, Semantic Technologies, and Normative Multia-
gent Systems. OISs are open to diverse types of participants (software
agents), and enable them to interact with each other to achieve their ob-
jectives. To do so the participants are allowed to interact in compliance
with previously agreed-upon regulations provided by the system and on
the basis of the semantics of the communicative acts performed, both of
which are enforced by the system. The infrastructure we propose, based
on the OCeAN metamodel of Artificial Institutions, involves four layers:
(i), the Messaging Layer, which enables observable ACL message ex-
changes between heterogeneous participants while respecting ownership
boundaries; (ii), the Core Service Layer, which enables the participants
to perform observable non-communicative actions relevant to the ongoing
application; (iii), the Bridging Layer, in charge of interpreting the partic-
ipants’ actions in a form suitable for regulation; and (iv), the Regulation
Layer, which holds the regulations and enforces them with respect to the
participants’ activities.

Keywords: Open Interaction System, Artificial Institution, Ontology,
Normative System, Agent Communication.

1 Introduction

Open Interaction Systems (OISs) are distributed systems which diverse types
of participants (i.e., software agents) can freely join with the goal of interacting
with each other to achieve their personal objectives. To do so the participants
are allowed to interact by exchanging messages with rigorously defined syntax
and semantics, in compliance with previously agreed-upon norms provided by
the system; both the norms and the syntax and semantics of the communication
language are enforced by the system.

M. Cossentino et al. (Eds.): EMAS 2013, LNAI 8245, pp. 215–234, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



216 D. Okouya, N. Fornara, and M. Colombetti

In our past work we have proposed the OCeAN metamodel [13] for the spec-
ification of OISs. In this paper we describe an infrastructure, currently under
development, for the actual implementation of such systems. In designing this
infrastructure we aim at guaranteeing openness and interoperability, while ex-
ploiting as far as possible technologies that are sufficiently mature and stable,
and are already adopted by a large industrial community. Among such technolo-
gies we include standard Service Oriented Technologies [5] and Semantic Web
Technologies [15].

The infrastructure we propose involves four layers: (i), the Messaging Layer,
which enables heterogeneous participants to interact with each other through
communicative actions while respecting ownership boundaries; (ii), the Core Ser-
vice Layer, which allows the participants to exploit the support services offered
by the OIS to perform non-communicative actions; (iii), the Bridging Layer, in
charge of interpreting the participants’ actions in a form suitable for regulation;
and (iv), the Regulation Layer, which holds the norms regulating the interactions
and enforces them relative to the participants’ actions. More specifically:

– The Messaging Layer provides a Messaging Protocol based on standard tech-
nologies (HTTP, SOAP, WSDL) and uses Web Service Technologies for the
transfer of messages between participants, by prescribing the use of a specific
message transfer service exposed via WSDL; messages realize communicative
or institutional acts and comply with OCeAN-ACL [11], an Agent Commu-
nication Language based on Semantic Web Technologies, and on OWL 2 DL
in particular.

– The Core Service Layer makes certain complementary services available to
the participants (e.g., an OIS realizing an e-marketplace may offer services
related to payment, product delivery, and so on), and thus allows them
to perform observable non-communicative actions relevant to the ongoing
interaction.

– The Bridging Layer interprets the participants’ communicative and non-
communicative actions in a form suitable for regulation; coherently with the
OCeAN metamodel, such actions either result into commitments (like in the
case of acts of informing, requesting, etc.) or are regarded as attempts to
perform institutional actions relying on suitable count-as rules.

– Finally, the Regulation Layer realizes a normative context (again according
to the OCeAN metamodel), that is, a set of artificial institutions specifying
the institutional actions that can be performed and the set of norms that
have to be followed.

In this paper we provide a detailed specification of all layers and describe
the implementation, currently under development, of an infrastructure oriented
to the implementation of an open e-marketplace. A graphical representation of
the layered architecture is given in Figure 1; the components, the ontologies, and
the relationships among the components shown in the figure will be explained
in the sections describing the corresponding layers. The paper is organized as
follows. In Section 2 we describe the functionalities pertaining to the Messaging



An Infrastructure for Open Interaction Systems 217

Layer and how we implement them by exploiting standard Web Service Tech-
nology. In Section 3 we briefly sketch how the core services offered by the OIS
can be actually realized, considering an e-marketplace as an example. In Section
4 we describe the functionalities pertaining to the Regulation Layer and how we
implement them by exploiting Semantic Web Technologies, and OWL ontologies
in particular. In Section 5 we explain how relevant events taking place at either
the Messaging or the Core Service Layer are made available to the Regulation
Layer. In Section 6 we review some related works. Finally in Section 7 we draw
some conclusions and briefly describe our plans for future work.

Fig. 1. An Architecture for Open Interation Systems

2 The Messaging Layer

In an OIS, a large part of the participants’ interactions is carried out through
the exchange of suitable messages. Therefore the bottom layer of our infrastruc-
ture provides the means to enable heterogeneous participants to interact with
each other by exchanging messages in a fully interoperable fashion. In addition,



218 D. Okouya, N. Fornara, and M. Colombetti

it does so in such a way that it ensures the observability of these interactions,
to the purpose of regulation.

To this end our infrastructure integrates principles from Service Oriented Ar-
chitecture (SOA) and from Multiagent Systems (MAS). First, a message trans-
fer approach is prescribed that is neutral to the internals of the participants,
and leverages standard technologies to facilitate widespread adoption. This is in
contrast with approaches based on some of the most well known ready-to-use
messaging technologies like JMS1, RMI2, and CORBA [18], which bind either
to a particular programing language [14] or to a programing language paradigm
[18]. Such approaches do not fully decouple the end-point implementation from
the messages, thus limiting interoperability [20,3]. Our architecture, following
SOA’s principles of loose coupling, solely prescribes a message format together
with its transfer protocol, both of them strictly decoupled from the end-point
implementation, while insisting as much as possible on the adoption of standard
technologies [6,5,23].

Next, we add to the architectural prescriptions a combination of the SOA
concept of a message, as comprised of carrying and content information, with
the MAS idea of a powerful and flexible Agent Communication Language (ACL),
to enable the participants to interact through the performance of communicative
acts in a totally interoperable way. More precisely, we take the content part of a
SOA message to represent the various components of a suitably designed ACL,
in which the application-independent and application-dependent components are
clearly distinguished.

Finally, to enable the observability of the communicative acts performed by
the participants to the purpose of regulation, this layer includes a Communi-
cation Channel (CC) in charge of mediating message exchanges between par-
ticipants. More precisely, to communicate with other registered participants, a
registered participant shall send its messages to the address of the CC, with the
name of the desired participants as the recipients. The CC receives the message
which, if approved by the regulative process of the infrastructure, is then deliv-
ered to the intended participants. If the message is not approved, the CC rejects
it and sends a suitable explanation back to the sender.

These architectural requirements are met in the infrastructure as follows. In
the first place, the infrastructure provides for a messaging protocol based on
standard neutral technologies: HTTP, SOAP3, and WSDL4. In other words,
Web Service Technology is adopted for message transfer between participants,
by specifying a message transfer service, exposed via WSDL, in which HTTP is
used for the transport of messages and SOAP for their structure. Our choice is
motivated by the fact that this technology represents a standard approach for
making available over the network functionalities that are triggered or delivered
by exchanging messages.

1 http://docs.oracle.com/javaee/6/tutorial/doc/bncdr.html
2 http://docs.oracle.com/javase/7/docs/technotes/guides/rmi/index.html
3 http://www.w3.org/TR/soap
4 http://www.w3.org/TR/wsdl

http://docs.oracle.com/javaee/6/tutorial/doc/bncdr.html
http://docs.oracle.com/javase/7/docs/technotes/guides/rmi/index.html
http://www.w3.org/TR/soap
http://www.w3.org/TR/wsdl


An Infrastructure for Open Interaction Systems 219

In the second place, the infrastructure implements the messages of our ACL5

as the body of SOAP messages. From the syntactic point of view, the ACL
we propose is very close to KQML6 and FIPA ACL7, from which however it
substantially departs as far as semantics is concerned (see Section 5). As with
FIPA standards, our ACL comes with a separate Content Language (CL). Our
CL is defined as an OWL Ontology, the Content Language Ontology [11], which
plays a role similar to FIPA-RDF in FIPA ACL.

Thus, realizing the first two requirements, we define a WSDL file with only
one service, which is the delivery of an ACL message, carried in the body of a
SOAP message. The WSDL contract represents all message forms that can be
exchanged between entities of our OIS, with the requirement that the message
contains the address to reply to according to the same contract. Communication
between participants is only allowed through the use of this service; consequently,
all participants are required to be equipped with a suitable communication mod-
ule, composed of: (i), a listening point, that is, a web-service provider exposing
a message delivery service defined according to our WSDL contract; and (ii), a
talking point, that is, a web-service client that requests the delivery of a message
in conformance with that contract [10].

A crucial advantage of this approach is the provision of a messaging protocol
in the form of a WSDL contract, which is both human readable and machine
processable. Such a contract can be easily handled with the support of runtime
frameworks coming along with Web Service Technology, such as Apache CXF
[1,16]. We use CXF to automatically generate the core of the communication
module of the participating component of our infrastructure; hence anyone can
easily generate the necessary facilities to handle the transmission of messages
abiding to the exposed messaging protocol and adapt it to their need, in order
to participate in the OIS.

Finally, to deal with message transfer the infrastructure provides an imple-
mentation of the CC as a Java component, developed with CXF as exposed
above.

3 The Core Service Layer

As we have already remarked, in an OIS a large part of the participants’ interac-
tions is carried out by exchanging suitable messages; as required by the Messag-
ing Layer, in our infrastructure such messages are always ACL messages realizing
communicative acts. However, most types of applications will also require the ex-
ecution of actions that are not strictly speaking communicative. We identify these
actions as non-communicative acts and classify them into two categories: first,
non-communicative acts concerning the interaction between the participants and
certain components of the infrastructure, designed to provide support to the par-
ticipants’ activities (as we shall see, these non-communicative acts are typically

5 http://www.people.lu.unisi.ch/okouyad/AclOverSoapHttpMP.wsdl
6 http://www.csee.umbc.edu/csee/research/kqml/
7 http://www.fipa.org/repository/aclspecs.html

http://www.people.lu.unisi.ch/okouyad/AclOverSoapHttpMP.wsdl
http://www.csee.umbc.edu/csee/research/kqml/
http://www.fipa.org/repository/aclspecs.html


220 D. Okouya, N. Fornara, and M. Colombetti

application independent); second, application-specific non-communicative acts
concerning the interaction between participants.

More specifically, on the one hand some of the application-independent non-
communicative acts are intended to support the enforcement of ownership bound-
aries between participants, enabling them to connect with each other without
introducing dependencies. For example, the infrastructure provides for a Registry
component (see below), through which the participants can register or deregis-
ter by performing suitable actions. Although the registration and deregistration
processes do require the performance of certain communicative acts (more pre-
cisely, of the request to be registered or deregistered), the actions of registering
or deregistering a participant are not themselves communicative; rather, they
are non-communicative actions made available to the participants by the in-
frastructure, through the provision of services that may be invoked using com-
municative acts (requests). On the other hand, some of the application-specific
activities (i.e., some of the activities that are carried out between the partici-
pants) may require the performance of application-specific non-communicative
actions which, as in the case of communicative acts, must be made observable
to the infrastructure. In an e-marketplace system, for example, when engaging
in a purchasing activity, after settling a contract by performing suitable com-
municative acts, the buyer may be required to carry out a payment, while the
seller may be required to deliver a product. Both of these are non-communicative
actions inherent to the purchasing activity, and as such must also be visible to
the infrastructure.

To sum up, the objective of this layer is to equip the infrastructure so that:
(i), it enables the participants with performing all the infrastructure-specific
non-communicative actions belonging to the direct interactions between the par-
ticipants and the infrastructure itself; and (ii), it can observe the performance
of the application-specific non-communicative actions inherent to some of the
activities occurring between the participants. In order to achieve these goals our
infrastructure requires that the participant register to the IOS; to this end it
provides a Registry component, implemented in Java, to serve as a White Pages
Service. The Registry provides, among others, for the registering and deregister-
ing actions; as this component is endowed with ACL-processing capabilities, the
participants can request its services using ACL messages.

In unison with the approach used for the communicative acts (i.e., that
the actions occurring between the participants are mediated by the infrastruc-
ture), the infrastructure can also mediate the non-communicative actions that
are application-specific. In this respect, however, the Core Service Layer pro-
ceeds differently than the Messaging Layer. Indeed, the different communica-
tive actions that can be performed by the participants are the same across
applications; thus, the observation process necessary to handle them is also
application-independent, and therefore can be achieved by a generic component
(the Communication Channel). In contrast, non-communicative acts occurring
between participants are typically application dependent: their presence, what
they achieve, and how they achieve it, always depend on the application being



An Infrastructure for Open Interaction Systems 221

realized. Therefore unlike communicative acts that are always available to the
participants, the presence of non-communicative actions is application-specific;
for instance, the availability of a shipping action could be irrelevant for certain
applications, such as an e-market for computational services. Moreover, when
present the performance of non-communicative acts can substantially vary de-
pending on the requirements of the applicatios in which they are performed. In
the case of a payment, for instance, while one application may require a sys-
tem like PayPal, another one may require a direct bank-to-bank transfer or a
cheque payment, which would need to go through different steps and to supply
different information. Another important difference is that, unlike communica-
tive acts, non-communicative actions can also vary in nature, that is, they can
be electronic, physical, or involve both aspects.

Hence, to mediate non-communicative actions the infrastructure must take
into account their fundamental application-oriented features, as well as the
fact that they can involve any combination of physical and electronic aspects.
To achieve this, our architecture prescribes that the Core Service Layer pro-
vides for the incorporation of observable application-specific components, of-
fering to the participants specific services of mediation for application-specific,
non-communicative actions. These components must be such that they seem-
ingly interoperate with the participants for the invocation of the actions that
they mediate, whose performances must be observable by the infrastructure.

To this purpose, on the one hand this layer specifies the interfaces of the medi-
ating components, so that the relevant parts of the infrastructure can take into ac-
count the performance of the non-communicative actions they are in charge of; on
the other hand, it prescribes the characteristics that the components must posses
so that their services can be seemingly consumed. In support of that latter point,
the layer mandates the use of communicative acts to invoke the mediation ser-
vices; that is, theses services are invoked using ACL messages, which brings the
advantage of providing a unique invocation protocol, independently of the nature
and level of complexity of the services. Of course, this implies that the mediating
components must be able to process certain ACL messages. This contrasts with
the message-transfer mediation service provided by the Communication Channel,
which is invoked using a SOAP message (as a typical web-service).

Meanwhile, it is important to remark that our infrastructure does not require
that the mediating components directly perform the non-communicative actions
they supply: indeed they may do so, or guarantee that they are performed by
certain external systems, or simply acknowledge their external realization when
so informed by a group of participants who have agreed to exploit an external
service. In this regard, the layer classifies theses services into two distinct cat-
egories: internal services and external services. In the former case, the service
is internally managed by the component itself; this means that when requested
by a participant, the component takes charge of the execution of the activities
involved in the service. In the latter case, which represent a very decentralized
approach providing more freedom to the participants, the execution is guaran-
teed by the participants themselves, which then inform the infrastructure of the



222 D. Okouya, N. Fornara, and M. Colombetti

results. Here mediation plays the role of a neutral authority that acknowledges
the realization of services taking place out of its direct control, according to the
specific rules governing the application.

4 The Regulation Layer

Once heterogeneous participants, possibly belonging to different owners, can
interact with each other as exposed above, it is necessary that they get pro-
vided with some form of harnessing framework defining norms that regulate
their interactions. This is particularly important as it allows the participants
to have reasonable expectations with respect to the interactions they engage
in order to achieve their objectives. Moreover given that we target systems as
e-marketplaces, taking in account the sensitive nature of their activities, the ar-
chitecture prescribes the realization of a neutral third-party component in charge
of analyzing the participants’ interactions (by using the information received by
the Bridging Layer as described in Section 5), with the aim of monitoring the
evolution of the interaction and specifying and enforcing the norms of the regu-
lating context.

To realize all these functionalities we introduce in the proposed architecture
the Regulation Layer. This is based on the OCeAN metamodel [12], in which
regulating contexts are defined as artificial institutions that provide a high-level
representation of a specific set of institutional actions together with the norms
that govern them, and of the institutional objects that need to be observed to
monitor the evolution of the state of the interactions. For every specific appli-
cation, such institutions are operationalized by grounding them in the current
domain [13,8].

The Regulation Layer must possess a formal representation of the state of the
interaction suitable to carry out automated reasoning. In particular this rep-
resentation has to include specifications of: (i), the regulating context in force;
(ii), the types of events and actions the application is dealing with; (iii), the
application-independent and application-dependent knowledge defining the rel-
evant objects and their states during the interaction; and (iv), the instances of
the institutional actions and events that actually take place in the system. Rea-
soning will then allow the system to monitor the evolution of the state of the
interaction, detecting in particular norm fulfillments and violations.

Our infrastructure meets these requirements in the following way. We define
our regulating context as an OCeAN artificial institution. The first regulating
context we have operationalized so far is the Commitment Institution, which reg-
ulates agent interactions in terms of the commitments they make to each other by
performing communicative acts [8,9]. This is an application-independent foun-
dational institution, from which more specific application-dependent institutions
(like for example the institutions formalizing different types of auctions) can be
defined. The Commitment Institution specifies commitments as institutional ob-
jects, together with their life-cycle rules and the institutional actions that allow
an agent to create, cancel, or otherwise manipulate them; this enables us to mon-
itor the state of an interaction in term of the evolution of the commitments that



An Infrastructure for Open Interaction Systems 223

the participants make to each other. Application-dependent regulating contexts
(like for example those relevant to e-commerce) are also represented as OCeAN
institutions.

In our infrastructure, institutions as well as domain entities (e.g., the products
that are exchanged in the e-market) are represented by ontologies specified in
OWL 2 DL [15], the standard language for defining ontologies in the Semantic
Web. Also the state of an interaction is represented in an OWL ontology, that we
call the Interaction Ontology, which is continually updated while the interaction
proceeds (see Section 5). More precisely, the Interaction Ontology contains a
representation of the institutional objects defined by the institutions in force,
together with the institutional actions that can create and manipulate them. To
serve this purpose, the Interaction Ontology imports:

– an Upper Ontology specifying common application-independent concepts like
agent, action, event, and object;

– the SWRL Temporal Ontology8 used for representing and reasoning on in-
stants and intervals of time;

– the OWL ontologies used for representing the relevant artificial institutions,
like in particular the Commitment Institution Ontology9;

– the Domain Ontology used for representing relevant domain knowledge.

Some of these ontologies are described in details in [11]. The ontology imports
are realized according to an architecture [11] that we have crafted specifically
to avoid conflicts and duplications of the application-independent concepts (like
agent, action, temporal interval, etc.) on which several ontologies overlap.

Using OWL 2 DL reasoning, our representation makes it possible to monitor
the state of the interactions according to the rules of the context. Thus, equipped
with it, in compliance with the prescriptions of the architecture which require
a neutral third-party component to enact this functionality, our infrastructure
provides for a regulation component which plays the role of interaction man-
ager, in charge of monitoring regulations and requesting their enforcement when
necessary. To this purpose, the regulation component relies on the Pellet OWL
2 reasoner10, used in conjunction with the OWL-API11. When started with the
paths to the relevant ontologies as parameters, it loads them and creates the ini-
tial Interaction Ontology. Then, a suitable assertion is added to the ABox and
the reasoning process is triggered every time a relevant event happens, such as
the elapsing of a pertinent instant of time, or the realization of an institutional
or non-institutional action or event. As we shall see below (Section 5), suit-
able representations of relevant actions and events are provided by the Bridging
Layer.

Implementing interaction monitoring by OWL 2 DL reasoning is not straight-
forward. First, as participants interactions have to be represented over time, it is

8 http://protege.cim3.net/cgi-bin/wiki.pl?SWRLTemporalOntology
9 http://www.people.lu.unisi.ch/okouyad/CommitmentOntology.owl

10 http://clarkparsia.com/pellet/
11 http://owlapi.sourceforge.net/

http://protege.cim3.net/cgi-bin/wiki.pl?SWRLTemporalOntology
http://www.people.lu.unisi.ch/okouyad/CommitmentOntology.owl
http://clarkparsia.com/pellet/
http://owlapi.sourceforge.net/


224 D. Okouya, N. Fornara, and M. Colombetti

necessary to carry out some kind of temporal reasoning. For instance, if a partic-
ipant is committed to another agent to realize a given action before a deadline,
in order to deduce that after the deadline the commitment is either fulfilled or
violated it is necessary to deduce that the deadline has elapsed. This cannot be
specified by OWL axioms alone; therefore, SWRL12 rules containing temporal
built-ins have been added to perform suitable temporal inferences. Such rules ex-
ploit the SWRL Temporal Ontology developed by the Protege group [17], which
provides a time representation format that is suitable for calculation, is aligned
with the current XSD standards, and defines a rich set of temporal builts-ins that
can be used to extend our OWL ontologies with SWRL rules. However, given
that these built-ins are not SWRL standards, they are not natively supported by
reasoning engines; as the Protege group has provided an implementation for rea-
soning with these built-ins only with the Jess rule engine, we have developed our
implementation for extending the reasoning capabilities of the Pellet reasoner
by using the custom built-ins definition mechanism provided with it.

Representing the evolution of the state of interactions (including for example
the new commitments that the participants bring about), by means of a continu-
ous update of the Interaction Ontology at run-time [9], is a delicate task because
it may introduce inconsistencies. More specificaly, in our formalization of the
Commitment Institution Ontology9 (presented in [7] with the name Obligation
ontology), we specify that an actioncommitment (i.e., a commitment to perform
an action, intuitively equivalent to an obligation), has an associated temporal
interval, within which the action must be executed. Determining this interval
can involve several steps depending on the properties inherited by the commit-
ment at its creation. In certain situations, such as when the action-commitment
is conditional, it only becomes activated if a specific triggering event or action
takes place; when this activation occurs, the beginning and the end instants of
the interval associated to the action-commitment have to be set. For example, if
the exchange of a message commits a participant to deliver a product within two
days, on condition that the receiver of the product performs a payment, then
the action-commitment will be created as soon as the message is exchanged,
but will only be activated when the payment takes place. At activation time
the interval will be determined as follows: (i), its beginning is set at the time
instant of the activation; and (ii), its end is set at the beginning plus two days.
In principle, all this may be expressed by a suitable SWRL rule. However, if
several actions belonging to the activation class of the obligation take place, the
SWRL rule will be activated several times and the interval of the obligation
will be represented incorrectly. It turned out that this problem cannot be solved
inside the OWL ontology, even if additional SWRL rules are used; therefore we
regulate the activation of the relevant SWRL rule with an external Java program
that exploits the OWL-API to check that an interval that is already set is not
further changed. In short, some reasoning steps and calculations have to be made
outside of the reasoner, in order to properly manage the Interaction Ontology.

12 http://www.w3.org/Submission/SWRL/

http://www.w3.org/Submission/SWRL/


An Infrastructure for Open Interaction Systems 225

5 The Bridging Layer

To regulate the interactions it is necessary to capture the participants’ actions
and other relevant events that take place in the system, and represent them in
a form that suits the abstraction level at which regulation operates. This is the
purpose of the Bridging Layer (or Bridge, for short). This layer, which shares
with the Regulation Layer the definition of the institutions in force, operates as
detailed in the sequel.

First, all events (inclusive of the participants’ actions) that are relevant for reg-
ulation must be observed by the Bridge. These events take place either at theMes-
saging Layer or at the Core Service Layer. As far as the former is concerned, the
relevant events consist in exchanges of ACL messages, which are made available
for observation by the CC (Communication Channel) component of the Messag-
ing Layer. To the purpose of regulation, it is crucial that all message exchanges
between participants take place through the CC provided by the infrastructure.
As we have already remarked, however, message exchanges are not the only events
that need regulation. Among these also certain non-communicative events are in-
cluded, like for example the actions of paying or delivering a product. These events
are made observable by the Core Service Layer.

The observed events have to be represented in a form that is suitable for
regulation. In particular, given that the Regulation Layer relies on artificial in-
stitutions, representing an actual observed event in a form suitable for regulation
involves producing a representation that is compatible with the specification of
the artificial institution.

In the OCeAN metamodel, artificial institutions deal with two types of events,
that we respectively call basic and institutional events. An institutional event
Y is an event that is brought about by the performance of a lower level event
X , thanks to suitable counts-as rules, provided that certain enabling conditions
C hold. For example, an artificial institution may specify that a certain type
of message sent by a suitably empowered agent A will count as an institutional
action of opening an auction. Contrastingly, a basic event is an event that can
be directly produced by a participant, without the need of realizing it through
the performance of another, lower level event. For example, performing the con-
crete action of sending a message to another participant is represented in the
institution as a basic event of message exchange.

Transforming an observed concrete event in a form suitable for regulation
requires producing a representation of either a basic or institutional event. In
the Regulation Layer, both artificial institutions and the concrete domains over
which they operate are specified as OWL ontologies. Thus the infrastructure
transforms the actual observed event into OWL individuals that belong to classes
of events pertaining either to the institution ontologies or to the domain on-
tologies. More accurately, as institutional events are always grounded on basic
events, this transformation process consists of: (i), creating an OWL individual
representing the basic event; and (ii), creating an OWL individual representing
the institutional event, if this is dictated by a count-as rule belonging to the
institution in force.



226 D. Okouya, N. Fornara, and M. Colombetti

As specified by the OCeAN metamodel, we provide a set of application-
independent counts-as rules that associate to message exchanges (considered
as basic events) the creation of suitable commitments (considered as institu-
tional events): these rules are part of the Commitment Institutions and specify
the application-independent component of the semantics of OCeAN-ACL. In
general, according to the semantics of OCeAN-ACL the exchange of a message
is interpreted as an attempt to perform an institutional action of commitment
manipulation, which is precisely specified by a counts−as rule; such an attempt
will be successful if, and only if, the enabling conditions C associated to the rules
hold. For example, the exchanges of commissive messages (like promises) and of
directive messages (like requests) are interpreted in the Commitment Institution
as attempts to perform institutional actions that create action commitments
[22], that is, commitments to perform the action described in the content part
of the message. Commitments of this type can be considered as equivalent to
obligations ; for example, if agent A promises to agent B to pay a given sum of
money M for a given product P , the communicative act will be interpreted as
an attempt to create an obligation of agent A to pay M euros to B for product
P 13. When the Bridging Layer delivers this institutional action to the Regulation
Layer, the Interaction Ontology will be updated with a new institutional object
of type Obligation, with A as the debtor, B as the creditor, and the payment of
M euros for P as the content. Thereafter, the obligation will be monitored for its
fulfillment, violation or cancellation as part of the process of interaction monitor-
ing carried out by the Regulation Layer. Requests are treated in a similar way,
except that they involve one more step; more precisely, a request is interpreted
as the attempt to create an action precommitment (or preobligation), which in
turn leads to an attempt to create an obligation for the receiver, if the receiver
accepts the request (i.e., the preobligation).

Assertive communicative acts (like the acts of informing) are conceptually
different from commissives and directives, because they introduce propositional
commitments [22], which cannot be interpreted as ordinary obligations. For ex-
ample, if agent A informs agent B that the product delivered is damaged, this
commits A to the truth of what is said (i.e., that the product is indeed dam-
aged), but does not immediately obligate A to perform any predefined action
(in particular, of course, it does not obligate A to damage the product). We
have not yet worked out a representation of propositional commitments for our
infrastructure: this issue is therefore deferred to future works.

Finally, there is another type of communicative acts, which following the ter-
minology of Searle’s Speech Act Theory [21] we call declarations ; examples are
declaring that an auction is open, or that a specific agent is the winner of an

13 Note that a message exchange, considered as an attempt to perform an institutional
action, is successful only if the enabling conditions associated to the relevant counts−
as rule hold; for example, as specified by the OCeAN metamodel, a message stating
that a commitment is cancelled will be successful if it is sent by the creditor of the
commitment to its debtor, while it will fail to achieve the cancellation if it is sent
by the debtor to the creditor.



An Infrastructure for Open Interaction Systems 227

auction run. Declarations are carried out by exchanging suitable ACL messages,
with declaration as the performative, and a content that represents the institu-
tional action whose performanceis being attempted. Coherently with the OCeAN
metamodel, such messages are interpreted within an artificial institution through
a counts-as rule, which generates the declared institutional action provided that
certain enabling conditions hold. Typically, a condition for the successful perfor-
mance of a declaration is that the actor has the institutional power to perform
the declared institutional action (e.g., only an auctioneer can possibly open an
auction). Such institutional powers are associated at design time to the different
roles that can be played by a participant in an institution, and are checked at
runtime by the Regulation Layer.

In practice, to achieve this transformation from basic events to institutional
events, the OWL specifications of application-independent concepts (such as
agent, action, event, object, time instant, time interval, etc.) are shared be-
tween the Content Language Ontology (see Section 2), the relevant Institution
Ontologies, and the Domain Ontologies over which the ongoing application op-
erates and on which the institutions are grounded. Sharing is achieved thanks
to the ontological architecture introduced in the Regulation Layer, which elim-
inates all the ontological mapping hurdles that would have otherwise been nec-
essary to handle for the full transformation process to take place. Indeed it
allows to seemingly go from one representation to another; for instance, going
from the communicative action promise(A,B, pay(book01, 5)) (which involves
the Content Language Ontology and a concrete Domain Ontology) to the insti-
tutional action create− obligation(A,B, pay(A,B, book01, 5), instant01) (which
involves the Commitment Institution Ontology and the same Domain Ontology)
is achieved smoothly thanks to the underlying shared concepts of agent, action,
and object. If these concepts were not shared appropriately, mappings would
have been necessary between the specifications of these concepts in different on-
tologies. The same principle applies, for example, when a non-communicative
action of payment takes place: the actual action is represented by the OWL
individual pay01 of class Pay, suitably related with individuals A as its actor,
B as its recipient, book01 of class Book as its object, 5 as its amount in eu-
ros, and instant01 as its instant of performance; this individual can imply the
institutional event tranfer−ownership(B,A, book01, instant01) of a hypothet-
ical Ownership Institution (where the target representation is understood as B
transferring the ownership of book01 to A at instant01).

In sum, to perform this bridging process so as to update the regulation com-
ponent, the Bridge is launched with the paths to all the relevant ontologies (that
it loads using the the OWL-API), and a reference to the regulation component.
The process is then triggered each time it receives updates from the the Com-
munication Channel or a Core Service component.

6 Related Work

Among the recent multiagent infrastructures focused on OISs, which in partic-
ular share the aim of providing the regulation of the participants’ interactions



228 D. Okouya, N. Fornara, and M. Colombetti

in the form of a neutral third-party functionality as part of the overall support
that they deliver, the Magentix2 Open multi-agent systems platform14[4] repre-
sents the state of the art on the matter. In particular it is the most advanced
operational infrastructure, which includes many of the recent advances in the
OIS area. Interestingly, we happen to share strong architectural similarities. We
therefore start by exhaustively comparing it with our infrastructure. Then we
will provide another comparison with a promising infrastructure currently under
development, 2COOM, which exemplifies the rising trend of environment-based
MAS infrastructures.

At a very abstract level our infrastructure and Magentix2 share the same
architectural approach. More precisely, although their respective layered archi-
tecture are slightly differently structured, they present the same abstract organ-
isation: a top part concerned with regulation specification and management, a
bottom part concerned with the support of observable interactions between het-
erogeneous participants, and a middle part concerned with the monitoring of the
participants’ interactions according to the rules in force and their enforcement
when deemed appropriate. Consequently, differences only appear in the way the
parts are concretely realized, with the most fundamental of them occurring in
the middle part. This reflects a common vision of the role of the infrastructure,
but divergences on how its different parts may concretely operate to achieve it.

More specifically, at the top level, Magentix2 adopts the metamodel of vir-
tual organizations, which specifies roles with norms including platform generic
roles such as OMS (Organization Management System) and DF (Directory Fa-
cilitator), for the specification of a regulation structure. Our infrastructure also
defines a regulation structure at this level, but one that is based on the OCeAN
metamodel of artificial institutions (see Section 4). While a thorough comparison
of the two metamodels is outside the scope of this paper, it can be safely said
that both infrastructure intend to provide similar regulating structures, which
in particular are centered on non-regimented norms, to harness the participants’
activities.

At the bottom level, both infrastructures provide an observable vehicle for the
participants to interact with each other. To that end, they use similar approaches,
but differ in the general understanding of interactions. Indeed the OCeAN meta-
model classifies actions into communicative and non-communicative ones, which
Magentix2 does not, in that it only considers communicative actions. Conse-
quently, while we divide the bottom part of the infrastructure into two layers
(Messaging and Core Service), with the upper one devoted to non-communicative
actions and the lower one devoted to communicative ones, Magentix2 only pro-
vides one interaction level which corresponds to our lower layer.

As far as communicative interactions are concerned, the two infrastructures
operate in a similar manner (as they both provide an end-point neutral messag-
ing protocol with a broker for interoperable communication between heteroge-
nous participants), but diverge in the choice of the technology. Where we use
Web Service Technology (SOAP, HTTP, WSDL) with the SOAP body structure

14 http://www.gti-ia.upv.es/sma/tools/magentix2/

http://www.gti-ia.upv.es/sma/tools/magentix2/


An Infrastructure for Open Interaction Systems 229

defined as an OCeAN-ACL message for messages exchange, Magentix2 adopts
the Advanced Message Queuing Protocol (AMQP)15, with the message body
structure defined as a FIPA-ACL message. The use of Web Service Technology
is more widespread and therefore we expect its adoption to be less problematic
than that of AMQP.

As previously mentioned, the sharpest differences between the infrastructures
occur in the middle part, whose functionalities can be summarized as follows:
(i), observing actual events such as message exchanges or core-service events;
(ii), representing observed events in a form suitable for regulation; (iii), checking
them against the regulations for monitoring purposes; and (iv), enforcing the
relevant regulations when deemed appropriate. It is with (ii) and (iii) that the
two infrastructures differ substantially.

With our infrastructure, checking against regulations is done by means of rea-
soning over a representation of the state of the interaction, carried out within
an OWL ontology that includes the institutions in force and the norms coming
along. While our norms and their instantiations (in terms of obligations and
prohibitions) are represented as OWL individuals, their activation, cancellation,
fulfillment and violation conditions are represented as event types (i.e., as sub-
classes of class Event). With this approach we can use the full power of DL
reasoning to match the representations of actual events and actions with the
conditions and contents of norms. This process is much more powerful than the
one adopted by Magentix2, which relies on the matching of a restricted subset
of first-order logic formulas.

A further important difference between Magentix2 and our infrastructure
is that the latter does not rely on an application-independent semantics of
ACL messages. In our infrastructure, based on the OCeAN metamodel, the
application-independent part of messages (i.e., all the components of an ACL
message with the exception of its content) is given a uniform semantics across ap-
plications. Moreover, such semantics allows for a representation of messages (pro-
duced by the Bridging Layer) that immediately relates message exchanges to the
Regulation Layer. This means that only application-specific non-communicative
events will need to receive a special treatment in different applications of the in-
frastructure. Conversely, Magentix2 does not provide for any application-indepen-
dent connection between the participants’ actions and regulation, thus making
the conversion to different application more expensive and error prone.

Another relevant infrastructure for OISs currently under development is
2COMM [2] which, similarly to ours, firmly relies on the principle of artificial
institutions to structure interactions. 2COMM is mainly build on top of the
CArtAgO framework [19], which is based on the Agents & Artifacts metamodel,
and to a lesser extent on the JADE infrastructure. In its essence, 2COMM pro-
poses to use the programmable artifacts of CArtAgO to provide for a mediated
communication between participants and to model the institutional framework.
More specifically, an artifact provides for a set of operations, which in the case of
2COMM are communicative actions, and it also manages the institutional inter-

15 http://www.amqp.org/

http://www.amqp.org/


230 D. Okouya, N. Fornara, and M. Colombetti

pretation andmonitoring of those actions in terms of operations on commitments;
this is the reason why those artifacts are called commitment-based communication
artifacts. The set of available actions, together with the roles to which they be-
long and their institutional interpretation, constitute what 2COMM calls a com-
mitment protocol. 2COMMprovides for an abstractBasicCommitmentCommuni-
cationArtifact, defining agent available operations such as enacting or deacting a
role, as well as the internal operations to manage commitments (create, realize,
and so on). Then, through an inheritance process, a designer can define every spe-
cific commitment-based communication artifact protocol that will be available to
the participants, like for example the Contract Net Protocol communication arti-
fact ; the inheritance process consists in adding specific pairs of public operations-
internal commitment operations grouped by roles. 2COMM also provides for the
necessarymanagement infrastructure, thus enabling agents to use the protocols in
a coherent fashion by means of the ArtifactManager Jade Agent, which communi-
cates with the requesting agents via FIPA-ACL messages (as provided by Jade).

Although the infrastructure proposed in this paper and the 2COMM one share
similar intents, they are sharply different and they significantly diverge in the
way we use institutions to harness the interactions, but also in some specific
supports that our infrastructure provides. These differences can be delineated as
follows. First, at the lowest level, while we provide intrinsic interoperability as a
support to openness, 2COMM, due to its dependence on the CArtAgO and the
JADE infrastructure, does not. Indeed, on one hand, initiating the CArtAgO
services, entering the workspaces where the artifacts are situated, as well as
programming or using such artifacts, can only be done through the use of Java
code. For instance, artifact operations must be implemented as Java methods,
called using introspection through a Java API made available by the CArtAgO
framework. Therefore, given that the agents that interact with a CArtAgO En-
vironment should be developed using Java, the resulting infrastructure is not
completely interoperable with agents developed using other programming lan-
guages. We think that this is an important aspect in the realization of OIS in
the domain of electronic marketplace, which in essence tries to reach out to as
many participants as possible. Indeed even if our infrastructure is developed in
Java, its usage does not prescribe agents developed in Java or somehow using
it, nor does its customization to a specific application (i.e., the development of
new service providers for the core service layer). For no participating component
(i.e., core service provider or OIS participant) we make any assumption on how
they should be realized, and simply require that they abide to our interoperable
messaging protocol.

At a higher level, the differences could be articulated around the following
points: (i), how we represent and monitor institutions; (ii), how we use insti-
tutions, in particular in the light of the commitment-based semantics of com-
municative acts; (iii), the set of mechanisms for mediating the interactions at
run-time; and (iv), the type of communication.



An Infrastructure for Open Interaction Systems 231

A fundamental aspect that differentiates our infrastructure is on the approach
used for the representation and monitoring of institutions. As previously dis-
cussed also in the comparison with Magentix2, we use OWL 2 DL to represent
institutions. For instance, we model commitment as OWL individuals, with their
contents and conditions modeled as OWL classes. This makes it possible that
actions or events that are not known in details in advance, but are simply de-
scribed by means of a class, will fulfill certain commitments. More generally,
we use OWL 2 DL to reason on the evolution of the state of the interaction.
Differently, 2COMM uses Java objects to represent both the commitments and
the other facts that are relevant to manage the evolution of the overall state of
the institution. In particular, a fact has a string field to represent the name of
a predicate it represents, and an argument field that is a list of objects. This
representation implies a matching process to check whether the content or the
condition of a commitment is satisfied (a combination of syntactic string and
java object matching). Moreover our model allows to express and manage com-
mitment deadlines, which allows us to detect violations, an aspect that is not
tackled in the 2COMM approach.

A second difference is on how institutions are used for the specification of
the semantics of communicative acts. Indeed, we make a clear distinction be-
tween the application-independent Basic Institution (i.e., our definition of an
application-independent commitment semantics for OCeAN-ACL) which spec-
ifies no norms, and the special-purpose institutions (e.g., auction, ownership)
which are fully fledged normative institutions. 2COMM through the use of com-
mitment protocols (i.e., operationalized institution) seems to mix the semantics
of communicative acts with the normative aspect of fully fledged institutions.
This may have the negative effect of nullifying the advantages of defining a
commitment-based semantic of communicative acts. In fact instead of having
agents able to freely choose the communicative acts to perform, the 2COMM
approach guides the course of message exchange. For instance, an initiator in a
Contract-Net protocol can only perform the call for proposals act and it cannot
perform any other act that is not in its role. We believe that the normative di-
mension should be reserved to aspects that are exclusive to the special-purpose
institutions. For instance, in an auction only the auctioneer has the power to open
an auction. However, if in the meantime a participant performs a communicative
act (e.g., an inform, request, promise, or call for proposal), its institutional ef-
fects should be retained. In other words, we want to let the agents free to explore
any course of message exchange that they see fit to reach their objectives.

Thanks to the use of the CArtAgO environment, the 2COMM framework pro-
vides an efficient checking of the powers for performing institutional actions and
the runtime mechanisms for letting the agents to perceive the state of the inter-
action. Our infrastructure has yet to provide for it, we plan to realize it as part
of the ongoing build-up of the support we are providing for the special-purpose
institutions. Another difference is on how communication is conducted in the two



232 D. Okouya, N. Fornara, and M. Colombetti

infrastructures. On one hand, while we both claim to mediate communicative ac-
tions, we actually operate differently. Our infrastructure forward ACL messages
between participants. It records the actions if necessary, and most importantly
their institutional effects. Differently 2COMM does not transfer messages. Ac-
tually, messages are Java method call on the artifact, which modifies its state
depending on certain conditions. The possible modification can be: the record of
the fact that a method was called, the fact that a communicative act was per-
formed, or its institutional effects. Then, it is that change that will be observed
by the participating agents. A final observation is that the proposed infrastruc-
ture is more agile, because it firmly separates concerns (messaging, core service,
bridge, regulation) whereas the 2COMM infrastructure do not, as it combines
everything in an artifact. Moreover, by using method calls 2COMM loses the
flexibility gained in separating the various components of an agent communica-
tion language (i.e., ACL syntax, Content Language, and Domain Ontologies).

We can conclude that, aside from the interoperability issues discussed above,
only empirical studies will reveal whether one of the two approaches, or perhaps
a mixture of the two, is better and in which domain.

7 Conclusions

In this paper we have presented an infrastructure for Open Interaction Systems,
based on the OCeAN meta-model and currently under implementation. Our
main concerns in the development of the infrastructure are, on the one hand to
guarantee openness and interoperability, and on the other hand to rely as much
as possible on technologies that are sufficiently mature and stable, like Service
Oriented and Semantic Web Technologies, to facilitate adoption by the industry.

The infrastructure has been divided into components to separate different
concerns, which brings several advantages: on the one side, it enables us to dis-
tribute the infrastructure and to use techniques of dynamic adaptation (such as
cloning and self-deletion) to manage overhead issues; on the other side it en-
ables us to provide targeted upgrades and developments of the infrastructure.
So far, for prototyping purposes the infrastructure is being implemented as a
monolithic multi-threaded Java application; nevertheless, the different compo-
nents are present and well separated so that they could be easily extracted to
provide a fully distributed infrastructure.

In the near future we intend to complete the implementation and test of the
prototype. In particular we plan to complete the formalization in OWL of the
semantics of the various type of communicative acts, to separate the various
component of the prototype, and to test it with the formalization and execution
of an e-marketplace, inclusive of the OWL ontologies representing the relevant
institutions and domain knowledge.



An Infrastructure for Open Interaction Systems 233

References

1. Balani, N., Hathi, R.: Apache CXF Web Service Development. Packt Publishing
(2009)

2. Baldoni, M., Baroglio, C., Capuzzimati, F.: 2COMM: a commitment-based MAS
architecture. In: Cossentino, M., El Fallah Seghrouchni, A., Winikoff, M. (eds.)
EMAS 2013. LNCS (LNAI), vol. 8245, pp. 38–57. Springer, Heidelberg (2013)

3. Chiarabini, L.: CORBA vs. Web Services (May 2004),
http://www.itu.dk/~oladjones/mastersthesis/materialsfromportals/

corbaversuswebservices.pdf (accessed March 14, 2013)
4. Criado, N., Argente, E., Noriega, P., Botti, V.: MaNEA: A Distributed Architec-

ture for Enforcing Norms in Open MAS. Engineering Applications of Artificial
Intelligence 26(1), 76–95 (2012)

5. Erl, T.: Service-Oriented Architecture (SOA): Concepts, Technology, and Design.
Prentice Hall (August 2005)

6. Erl, T.: SOA Principles of Service Design (The Prentice Hall Service-Oriented Com-
puting Series from Thomas Erl). Prentice Hall PTR, Upper Saddle River (2007)

7. Fornara, N.: Specifying and Monitoring Obligations in Open Multiagent Systems
Using Semantic Web Technology. In: Elçi, A., Koné, M.T., Orgun, M.A. (eds.)
Semantic Agent Systems. SCI, vol. 344, pp. 25–45. Springer, Heidelberg (2011)

8. Fornara, N., Colombetti, M.: Specifying Artificial Institutions in the Event Cal-
culus. In: Dignum, V. (ed.) Handbook of Research on Multi-Agent Systems: Se-
mantics and Dynamics of Organizational Models, ch. XIV. Information Science
Reference, pp. 335–366. IGI Global (2009)

9. Fornara, N., Colombetti, M.: Representation and monitoring of commitments and
norms using OWL. In: AI Communications - European Workshop on Multi-Agent
Systems (EUMAS) 2009, vol. 23(4), pp. 341–356 (2010)

10. Fornara, N., Okouya, D., Colombetti, M.: A Framework of Open Interactions based
on Web Services and Semantic Web Technologies. In: Proceedings of the 9th Eu-
ropean Workshop on Multi-Agent Systems, EUMAS 2011 (2011)

11. Fornara, N., Okouya, D., Colombetti, M.: Using OWL 2 DL for Expressing ACL
Content and Semantics. In: Cossentino, M., Kaisers, M., Tuyls, K., Weiss, G. (eds.)
EUMAS 2011. LNCS, vol. 7541, pp. 97–113. Springer, Heidelberg (2012)

12. Fornara, N., Viganò, F., Colombetti, M.: Agent communication and artificial in-
stitutions. Autonomous Agents and Multi-Agent Systems 14(2), 121–142 (2007)

13. Fornara, N., Viganò, F., Verdicchio, M., Colombetti, M.: Artificial institutions: a
model of institutional reality for open multiagent systems. Artif. Intell. Law 16(1),
89–105 (2008), doi:10.1007/s10506-007-9055-z

14. Hapner, M., Burridge, R., Sharma, R., Fialli, J., Stout, K.: Java Message Service
Specification Version 1.1. Sun Microsystems, Inc. (April 2002)

15. Hitzler, P., Krötzsch, M., Rudolph, S.: Foundations of Semantic Web Technologies.
Chapman & Hall/CRC (2009)

16. Kent, T.K.: Developing Web Services with Apache CXF and Axis2, 3rd edn.
Lulu.com (2010)

17. O’Connor, M.J., Das, A.K.: A Method for Representing and Querying Temporal
Information in OWL. In: Fred, A., Filipe, J., Gamboa, H. (eds.) BIOSTEC 2010.
CCIS, vol. 127, pp. 97–110. Springer, Heidelberg (2011)

http://www.itu.dk/~oladjones/mastersthesis/materialsfromportals/corbaversuswebservices.pdf
http://www.itu.dk/~oladjones/mastersthesis/materialsfromportals/corbaversuswebservices.pdf


234 D. Okouya, N. Fornara, and M. Colombetti

18. OMG. The Common Object Request Broker: Architecture and Specification. The
Object Management Group, pp. 1–712 (November 1999)

19. Ricci, A., Piunti, M., Viroli, M.: Environment programming in multi-agent systems:
an artifact-based perspective. Autonomous Agents and Multi-Agent Systems 23(2),
158–192 (2011)

20. Scordino, C.: How Web Services relate to the well established CORBA Mid-
dleware (April 2004), http://retis.sssup.it/~scordino/documents/corba.pdf
(accessed March 14, 2013)

21. Searle, J.R.: Speech Acts: An Essay in the Philosophy of Language. Cambridge
University Press, Cambridge (1969)

22. Walton, D.N., Krabbe, E.C.: Commitment in Dialogue: Basic concept of interper-
sonal reasoning. State University of New York Press, Albany (1995)

23. Weerawarana, S., Curbera, F., Leymann, F., Storey, T., Ferguson, D.F.: Web
Services Platform Architecture: SOAP, WSDL, WS-Policy, WS-Addressing, WS-
BPEL, WS-Reliable Messaging and More. Prentice Hall PTR, Upper Saddle River
(2005)

http://retis.sssup.it/~scordino/documents/corba.pdf

	An Infrastructure for the Design and Development
of Open Interaction Systems
	1 Introduction
	2 The Messaging Layer
	3 The Core Service Layer
	4 The Regulation Layer
	5 The Bridging Layer
	6 Related Work
	7 Conclusions
	References




