Engineering Pervasive Multiagent Systems
in SAPERE

Ambra Molesini', Andrea Omicini', Mirko Viroli!, and Franco Zambonelli?
! Dipartimento di Informatica-Scienza e Ingegneria (DIST)
ALMA MATER STUDIORUM-Universita di Bologna, Ttaly
{ambra.molesini,andrea.omicini,mirko.viroli}@unibo.it
% Dipartimento di Scienze e Metodi dell'Ingegneria (DISMTI)
Universita degli Studi di Modena e Reggio Emilia, Italy
franco.zambonelli@unimore.it

Abstract Given the growth of agent-based models and technologies in
the last decade, nowadays the applicability of agent-oriented techniques
to the engineering of complex systems such as pervasive computing ones
critically depends on the availability and effectiveness of agent-oriented
methodologies. Accordingly, in this paper we take SAPERE pervasive
service ecosystems as a reference, and introduce a novel agent-oriented
approach aimed at engineering SAPERE systems as multi-agent systems.

1 Introduction

The ICT landscape has dramatically changed with the advent of mobile and per-
vasive computing technologies. The dense spread in our everyday environment
of sensor networks, RFID tags, along with the mass diffusion of always-on-line
smart phones and mobile social networking, is contributing to shape an integ-
rated infrastructure that can be used for the provisioning of innovative general-
purpose digital services [I2]. In particular, such infrastructure will be used to
ubiquitously access services improving interaction with the surrounding physical
world as well as the social activities therein. Users will be expectedly able to de-
ploy customised services, making the overall infrastructure as open as the Web
currently is [3].

According to the above trends, a great deal of research activity in pervasive
computing and service systems has been recently devoted to solve problems asso-
ciated to the design and development of effective pervasive service systems. They
include: supporting self-configuration and context-aware spontaneous composi-
tion; enforcing context-awareness and self-adaptability; and ensuring that ser-
vice frameworks can be highly-adaptive and very long-lasting [4]. Unfortunately,
most of the solutions so far are proposed in terms of “add-ons” to be integrated
in existing frameworks [B6I7]. The result is often an increased complexity of
current frameworks and, in the end, a lack of clean and usable methodological
approaches to the engineering of complex pervasive services systems.

Against this background, here we elaborate on the SAPERE novel approach
to the engineering of complex pervasive service system [8]. SAPERE (short for

M. Cossentino et al. (Eds.): EMAS 2013, LNAI 8245, pp. 196-EI4] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

Engineering Pervasive Multiagent Systems in SAPERE 197

“Self-Aware PERvasive service Ecosystems”) tackles the problem of engineer-
ing distributed pervasive service systems by a foundational re-thinking of dis-
tributed systems, i.e., grounding on a nature-inspired [910], and specifically
bio-chemically inspired approach, to effectively support context-awareness, spon-
taneous service composition, and self-adaptivity. Specifically, SAPERE attacks
the program of engineering adaptive pervasive service systems by:

— Modelling and architecting a pervasive infrastructure as a non-layered spa-
tial substrate, hosting the execution of an ecosystem of distributed soft-
ware agents, each associated to the various individual components of the
infrastructure—e.g., devices, sensors, or software services.

— Exploiting the spatial substrate as a sort of shared coordination medium
[11] for the agents of the ecosystem. Such a substrate embeds the basic co-
ordination laws (eco-laws), which have a bio-chemical inspiration (i.e., agents
manifest their activities by data-items acting as sort of chemical molecules
that interact by bonding with each other and diffusing across space).

— Making the overall ecosystem behaviour be driven by the spontaneous dy-
namics resulting from applying the eco-laws, leading to the unplanned, i.e.,
self-organising, composition of distributed components, and inherently sup-
porting dynamic context-aware and self-adaptive behaviour.

The SAPERE approach makes it easy to develop adaptive pervasive, due to both
its rather intuitive programming model and its clean accompanying software
engineering methodology.

Accordingly, the remainder of this paper is organised as follows. Section 2] mo-
tivates the SAPERE approach and sketches its overall agent-based architecture.
Section [3 overviews and exemplifies the underlying programming model along
with its coordination model based on eco-laws. Section E] presents the meth-
odology defined to support the design and development of complex pervasive
service systems as multi-agent systems (MAS) based on the SAPERE approach.
Section [discusses some related work, then Section [6] concludes the paper.

2 MAS for Pervasive Service Ecosystems in SAPERE

SAPERE targets emerging pervasive computing scenarios based on agent-based
abstractions. This calls for specific requirements for SAPERE systems (Subsec-
tion[ZTl), and also leads to a specific agent-oriented meta-model (Subsection 2.2]).

2.1 Basic Requirements

The first key requirement is situatedness in the physical and social environment.
In SAPERE pervasive systems, each agent represents individuals, software, and
data tightly linked to a given space-time situation, which should affect the overall
system only based on some notion of locality that can take into account physical
issues (such as the position in an articulated environment) or social ones (such

198 A. Molesini et al.

as who triggered some activity, and which are his/her social profile and relation-
ships). Accordingly, the underlying meta-model should make sure that agents
can access to (and influence) only a limited portion of the overall environment.

The second key requirement is self-adaptivity. The overall MAS should ex-
hibit the inner ability to intercept relevant distributed situations, even those not
explicitly considered at design-time, and accordingly react with no global super-
vision to achieve the overall system goals—both implicit and explicit ones. This
should be achieved by spontaneous re-distribution and re-shaping of the overall
system information and activities.

Finally, since emergent pervasive computing scenarios are based on the op-
portunistic encounter of devices, humans, data, and activities, with no prior
knowledge of each other, a high degree of openness is required, which should
reflect in the use of semantic-based and fully-decoupled interaction mechanisms.

2.2 The SAPERE Meta-model

Once the main requirements for SAPERE systems are introduced, the main
abstractions of the SAPERE meta-model can be defined, which tailors multi-
agent systems (MAS) for pervasive computing scenarios.

Agents — Agents are the main abstraction in the SAPERE model. As the loci
encapsulating autonomy and control, agents are the natural means to model
sensors and actuators of pervasive computing system, as well as software
services (i.e., web services, situation recognisers, local monitors), and the
software managing handheld devices carried by humans.

LSA — Because of the need of coordinating different kinds of entities in an
open way and without global supervision, a cornerstone of the SAPERE
approach is that agents manifest their existence in the MAS by a uniform
representation called a Live Semantic Annotation (LSA). An LSA exposes
every information about the agent (state, interface, goal, knowledge) that is
pertinent for the system: it is live since it should continuously reflect changes
in the agent state; it is semantic since it should be implicitly or explicitly
connected to the context in which such information is produced, interpreted
and manipulated; and it has the form of an annotation, i.e., a structured
piece of information resembling a resource description—as in RDF.

LSA-space — Manifestation of LSAs is supported by the so-called LSA-space,
acting as the true fabric of all interactions. There, LSAs are injected by
agents, float, and evolve, ultimately reifying all the required information
about system activities and processes. The LSA-space is distributed among
all devices of the pervasive computing system: the portion of the LSA-space
that represents a single locality of the environment is called local LSA-space.

LSA bonding — In order to make any agent act in a meaningful way with
respect to the context in which it is situated, special mechanisms are needed
to control the sphere of influence of each agent. To this end, LSAs can include
bonds (i.e., references) to other LSAs in the same context. Only via a bond
to another LSA an agent can read its information, inspect the state/interface
of another agent, and act accordingly.

Engineering Pervasive Multiagent Systems in SAPERE 199

Eco-laws — Because of adaptivity, while agents enact their individual be-
haviour by observing their context and updating their LSAs, global
behaviour (i.e., global coordination in the MAS) is enacted by rules
manipulating the LSA-space, called eco-laws. FEco-laws can perform
deletion/update/movement/re-bonding actions applied to a small set of
LSAs in the same locality—similarly to how chemical laws affect molecules.

Thus, agents inject LSAs in the space, which by proper diffusion and aggregation
eco-laws establish fields data structures [I2[T3|14] of LSAs, which cover subparts
of the network and carry information about the originating LSAs (and agent)
and its position in the network. Any agent interested in reading such information
will then autonomously manifest this fact in its LSA, which by proper bonding
eco-laws will then bond to the local LSA of the field. After all the required
information has been read, the agent can affect the field originator by injecting
itself an LSA, which spreads back, reach the originator’s side, and is read through
the same bonding mechanism.

3 Programming SAPERE Systems: API and Examples

In this section we overview how SAPERE applications can be programmed, by
introducing some of the API of the SAPERE middleware and exemplifying its
usage. While the whole articulation of SAPERE programming cannot be fully
described here, we intend at least to give readers a clue, and also enable them
to better understand the overall SAPERE development methodology.

As for any distributed environment, the execution of SAPERE applications is
supported by a middleware infrastructure [15]. The infrastructure is lightweight,
and enable a SAPERE node to be installed in tablets and smartphones. From
the operational point of view, all SAPERE nodes are at the same level since
the middleware code they run could support the same services, and provides the
same set of functions—i.e., hosting the LSA space and the eco-laws engine.

From the viewpoint of the individual agents constituting the basic execution
unit, middleware provides them with an API for advertising themselves via LSAs,
and to support LSA continuous updating. In addition, API enables agents to
detect local events, such as the change of some LSAs, or, the enactment of some
eco-laws on available LSAs. Eco-laws are built as a set of rules embedded in
SAPERE nodes, each hosting a local LSA-space. For each node, the same eco-
laws apply to rule the dynamics of both local LSAs (in the form of bonding,
aggregation, and decay), and non-locally-situated LSAs (via the spreading eco-
law that can propagate LSAs through distributed nodes).

From the viewpoint of the underlying network infrastructure, the middleware
transparently absorbs dynamic changes at the arrival/dismissing of supporting
devices, without affecting the individual perception of the spatial environment.

3.1 The SAPERE API

In the SAPERE model, each agent executing on a node takes care of (i) initial-
ising at least one LSA, and possibly more, (i) injecting them on the local LSA

200 A. Molesini et al.

AgentNoiseSensor {
init() {
float nl = sample();
injectLSA([sensor-type = noise; accuracy = 0.1; noise-level = nl]);

}
run() {
while(true) {
sleep (100);
float nl = sample();
updateLSA(noise-level = nl);
LS

Fig. 1. Pseudo-code of a noise sensor

space, and (%) keeping the values of such LSAs updated to reflect its current
situation. Each agent can modify only its own LSAs, and eventually read the
LSAs to which has been linked to by a proper bonding eco-law. Moreover, LSAs
can be manipulated by eco-laws, as explained in the following sections.

The SAPERE middleware provides agents with the following API:

— injectLSA(1lsa) is used by agents to inject an LSA into the tuple space.
Each agents must inject at least one LSA at initialisation to exist within the
SAPERE ecosystem.

— updatelLSA(field, new-value) makes agents atomically update some fields
of an LSA to keep it alive. The idea is that specific threads inside agents are
launched to ensure that the values of LSAs to be kept alive are promptly
updated.

— A set of onEcoLawEvent (1sa) methods makes it possible for an agent to
sense and handle whatever events occur on its LSAs. For example, the
onBond (1sa) method allows the event represented by the LSA to be bond
with another LSA matching the former.

As a first example, Figure [l reports the (pseudo-)code of an agent that acts as
a noise sensor, injecting an LSA with noise level, and periodically updating it.

3.2 Matching and Bonding

More generally, LSAs are built as descriptive tuples made by a number of fields
in the form of “name-value” properties, and possibly organised in a hierarchical
way: the value of a property can be a SubDescription—a set of “name-value”
properties, again. By building over tuple-based models [IT], the values in a LSA
can be either actual — yet possibly dynamic and changing over time (which makes
LSAs live), or formal, that is, not tied to any actual value unless bond to one
and representing a dangling connection (typically represented with a “?7).
Pattern matching between LSAs — which is at the basis of the triggering of
eco-laws — happens when all the properties of a description match, i.e., when
for each property whose names correspond (i.e., are semantically equivalent)
the associated values match. As in classical tuple-based approaches, a formal

Engineering Pervasive Multiagent Systems in SAPERE 201

Agent AccessNoiseInformation {
init() {
injectLSA(sensor-type = noise; noise-level = "?");
}
onBond(LSA b) {
float nl = b.noise-level();
print("current level of noise = "+ nl);

} }

Fig. 2. An agent that inject an LSA matching with that of the noise sensor and enables
it to access the corresponding noise-level information

value matches with any corresponding actual value [I1]. For instance, the LSA
of the noise sensor in Figure[lcan match the following (sensor-type = noise;
noise-level = 7), expressing a request for acquiring the current noise level.
The properties in the first LSA (e.g., accuracy) are not taken into account by
the matching function which considers only inclusive match. The basic reaction
of the LSA-space in the presence of two matching LSAs is to bond them.

Bonding upon match is the primary form of interaction among co-located
agents in SAPERE—i.e., within the same LSA-space. In particular, bonding
can be used to locally discover and access information, as well as to get in touch
with and access local services—all of which with a single and unique adaptive
mechanism. Basically, the bonding eco-law implements a sort of a virtual link
between LSAs, whenever two LSAs (or some SubDescriptions within) match, by
connecting the respective formal and actual values in a sort of bidirectional and
symmetric link: the two agents holding bond LSAs can read each other’s LSAs,
thus enabling exchange of information.

Thus, once a formal value of an LSA matches with an actual value in an LSA it
is bound to, the corresponding agent can access the actual values associated with
the formal ones. For instance, the AccessNoiseInformation agent in Figure
injects an LSA matching that of Figure [l thus enabling AgentNoiseSensor in
Figure [l to access the corresponding noise level information.

Bonding is automatically triggered upon match—that is, the middleware looks
for possible bonding upon any relevant change to the LSAs. Analogously, de-
bonding takes place automatically whenever matching conditions no longer hold
due to some changes to the actual “live” values of some LSAs.

3.3 From Bonding to Service Composition

The above example shows how to program SAPERE agents and, depending on
the LSAs injected by such agents, how bonding takes place along with exchange
of information. However, it is also possible to express a formal field with the
syntax “!”, to represent a field that is formal unless the other “?” field has been
bond. This makes it possible for an LSA to express parameterised services, where

202 A. Molesini et al.

“?” represents the parameter of the service, and “!”field represents the answer
that it is able to provide once it has been filled with the parameters.

It should be noted that the bonding eco-law mechanism can be used to enable
two agents to spontaneously get in touch with each other and exchange inform-
ation with a single operation—and, in the case of “!”, automatically composing
two components and have the first one automatically invoking the services of
the second one. That is, unlike traditional discovery of data and services, bond-
ing makes it possible to compose services without distinguishing between the
roles of the involved agents, and subsuming the traditionally-separated phases

of discovery and invocation.

3.4 Aggregation, Decay, and Spreading

The additional eco-laws of aggregation, spreading, and decay can be triggered by
agents simply by injecting LSAs with specific properties.

The aggregation eco-law means to aggregate LSAs together so as to compute
summaries of the current system context. An agent can inject an LSA with
an aggregate and type properties. The aggregate property identifies a function to
base the aggregation upon. The type property identifies which LSAs to aggregate.
In particular, it identifies a numerical property of LSAs to be aggregated. In the
current implementation, the aggregation eco-law is capable of performing most
common order and duplicate insensitive (ODI) aggregation functions [16/I7].

The decay eco-law enables the vanishing of components from the SAPERE
environment: it applies to all LSAs that specify a decay property to update the
remaining time to live according to the specific decay function, or actually re-
moving LSAs that, based on their decay property, are expired. For instance,
[sensor-type = noise; noise-level = 10; DECAY=1000], makes LSAs be
automatically deleted after a second.

The spreading eco-law — unlike the two above that act on a single LSA space
— enable non-local interactions, and specifically provides a mechanism to send
information to remote LSA spaces, and make it possible to distribute information
and results across LSA spaces. One of the primary usages of the spreading eco-
law is to enable searches for components that are not available locally, and vice
versa to enable the remote advertisement of services. For an LSA to be subject
to the spread eco-law, it has to include a diffusion field, whose value (along
with additional parameters) defines the specific type of propagation.

3.5 Towards Self-organisation Patterns

The eco-laws described above represent a necessary and complete to effectively
support self-organising, nature-inspired interactions. In fact, by shaping LSAs
so as to properly trigger eco-laws in a combined way, it is possible to realise a
variety of self-adaptive and self-organising patterns.

For example, aggregation applied to the multiple copies of diffused LSAs can
reduce the number of redundant LSAs so as to form a distributed gradient struc-
ture, also known as computational force fields [18]. As detailed in [TOT2/13], many

Engineering Pervasive Multiagent Systems in SAPERE 203

different classes of self-organised motion coordination schemes, self-assembly, and
distributed navigation can be expressed in terms of gradients. By bringing also
the decay eco-law into play, it is possible to build pheromone-based distributed
data structures. Further examples can be found in [I4].

4 Engineering SAPERE Systems: The Methodology

According to Osterweil [20] “software processes are software t00”: so, in order to
build the SAPERE methodology, we follow a path that corresponds to the design
of a software system. Thus, we first define the set of the SAPERE methodology
requirements (Subsection [1)); then we design the SAPERE methodology process
(Subsection E2).

4.1 Requirements for the SAPERE Methodology

The first, obvious requirement is that the SAPERE methodology should support
the design and development of SAPERE pervasive service ecosystems according
to the above-mentioned meta-model (Subsection [Z2)). From the analysis of the
state-of-the-art in the Software Engineering area [21] the following methodology
requirements can be pointed out:

— Due to the nature of the application domain, the more appealing process
model is seemingly the iterative model, allowing engineers to iterate the dif-
ferent phases in order to obtain the best design.

— The SAPERE process should be organised in five main phases (Require-
ments Analysis, Analysis, Architectural Design, Detailed Design, and Imple-
mentation) in order to maintain the coherence with the general structure
of standard design methodologies. This would make it easier understanding
the methodology also for non-domain experts.

— The first two phases (Requirements Analysis, Analysis) should be very sim-
ilar to the traditional analysis phases. On the one hand, this should make
the adoption of the methodology easier to non-domain expert; on the other
hand, it is generally understood that the analysis phase investigates the so
called “problem domain”, and the “problem” is not directly related to the
technologies adopted for resolving it.

— The methodology should provide specific activities supporting the designer
in the choice of architectural patterns and self-x mechanisms, in order to
address the modelling of coordination and services. Coordination should be
considered as an emergent property, so that a specific self-organising pattern
could be chosen in order to obtain the required coordination goal.

— Since SAPERE deals with the investigation of self-aware pervasive eco-
systems, the SAPERE methodology should deal with specific activities of
simulation and validation in the Architectural Design phase. In particular,
simulation should take inspiration from the existing related works such as
[2223], where a suite of activities such as “Exact Verification”, “Simula-
tion”, and “Tuning” are already defined in a method fragment. However, the

204

4.2

A. Molesini et al.

SAPERE methodology should not adopt the proposed fragment as is, but
should instead provide a specific version of the aforementioned activities—
namely, “Exact Prediction”, “Approximate Prediction”, “Simulation”, and
“Tuning”. Also, the methodology should provide specific activities for “Val-
idation” and “Quantitative Measures” (respectively, in the Detailed Design
and in the Implementation phases) which could provide engineers with ef-
fective data and information about the behaviour of the running system.
From the meta-model point of view, taking inspiration from the work done
in the AOSE field [21], the methodology meta-model should be created ac-
cording to the transformational structure — i.e., each phase/domain should
feature its own set of abstractions as in Model-Driven Engineering — for the
sake of clarity, and to make it easier to move from one phase to another.
The meta-model abstractions belonging to the Requirements Analysis and
Analysis phases should come both from traditional problem analysis and
from some AOSE methodologies where environment abstractions and envir-
onment topology are first-class abstractions. This allows the environment to
be taken into account since the first phases of the process.

The meta-model abstractions belonging to Architectural Design and Detailed
Design should be created ez-novo drawing from the SAPERE meta-model
described in Section[2 In particular, the work done in [8] about the chemical
metaphor is very useful for the identification of the design abstractions.

The SAPERE Process

The SAPERE methodology is illustrated according to the IEEE-FIPA Stand-

ard

Design Process Documentation Template (DPDT) [24], developed as an

internationally-recognised standard in order to facilitate the understanding of

the

methodology, as well as the comparison with others. For the sake of brevity,

in the following we outline just the main features of the SAPERE methodology.

. R ‘—I » '7' D t I d
equirements : Archltectural ctaile
Analysis Analysis Design Design

Implementation

Y

Fig. 3. The SAPERE methodology lifecycle

Engineering Pervasive Multiagent Systems in SAPERE 205

I Actor | | Requirement | I Relation I Legacy Environment Requirements
= = — Analysis

o

\/ / =
SelfOrganising Pattern I | n
1

f@w—frffiii‘ 3

\/
| SelfOr ising Mechanism I An
I 1 I
L | L

/ Manifest !
J == -
\ \‘
_______________ l__________4________________L_______T____________.
|
\
" |
Eco‘-/law LA Bo;d I |
== ‘ ‘

_| Global LSA-Space

Fig. 4. The SAPERE methodology meta-model

The Lifecycle. The SAPERE methodology lifecycle is an iterative process
composed by five main phases: Requirements Analysis, Analysis, Architectural
Design, Detailed Design, and Implementation (Figure []).

The Meta-model. The meta-model of the SAPERE methodology is reported
in Figure[l On the one hand, it complies with the transformational structure (see
Subsection ELT)); on the other hand, it is organised in four different domains re-
flecting the first four methodology phases. Regarding the Implementation phase,
a specific meta-model is not required here since the design abstractions have to
be mapped onto the SAPERE middleware abstractions. Here we only report the
ideas that inspired the meta-model construction. In particular, the abstractions

206 A. Molesini et al.

of the Detailed Design phase come from the SAPERE abstract model, whereas
the abstractions of the Architectural Design have many sources: (i) the SAPERE
abstract model — Annotation, Manifest, Context, Behaviour, Place, Topology —,
(#i) the self-organisation domain — SelfOrganising Pattern, and SelfOrganising
Mechanism —, and (iii) the AOSE methodologies—Role.

For the abstractions of the Analysis phases we take inspiration from the main
AOSE methodologies [21]. In particular, for the environmental and interaction
aspects we adopt the SODA style, since the SODA methodology [25] specifically
focuses on the modelling and design of environment and interaction [26]. Envir-
onment modelling starts since the Requirements Analysis phase (Legacy Envir-
onment), then during the Analysis phase we derive the services (Service) from
both the system requirements (Requirement) identified in the previous phase,
and from legacy resources. Also, the environment topology is modelled since the
Analysis phase (Virtual Topology).

Interaction issues are captured in the Requirements Analysis by the Relation
concept, which represents any kind of relationships among requirements, and
between requirement and legacy environment. In the Analysis phase, the Relation
generates — red arrow in Figure[d— both Interaction and Constraint. Interactions
represent the acts of interaction among Tasks, among Services and between Tasks
and Services; Constraints, instead, enable and bound the entities’ behaviour.

Finally, in order to correctly model the requirements, in the Analysis phase
we decided to perform first a goal-oriented analysis (Goal), then to derive tasks
(Task) by goals—as done in [27].

The Phases. Here we introduce the five SAPERE methodology phases, by
shortly discussing the high-level process diagrams.

Figure [(left) presents the process diagram of the Requirements Analysis
phase, composed by three main activities, namely: Requirements Modelling, Leg-
acy Enviroment Modelling, Relations Modelling. There, requirements, legacy re-
sources and relations, and dependencies among them are analysed. In this phase,
traditional techniques coming from the AOSE field are adopted for analysing
both the requirements and the legacy environment.

Figure Bl(right) presents the process diagram of the Analysis phase. The Ana-
lysis is composed by five main activities. In particular, Goals Analysis and Task
Analysis lead the engineers to identify firstly the system’s goals and then the
tasks necessary to accomplish them. Services Analysis is devoted to derive and
to analyse the system’s services coming both from the legacy environment and
from the system’s requirements, while Virtual Topology Analysis analyses the
system’s environment topology. Finally, Interactions Analysis and Constraints
Analysis respectively accounts for the interactions among system’s entities and
the possible constraints about entities behaviours, or about the system environ-
ment.

Figure[@l presents the process diagram of the Architectural Design phase. This
phase is composed by nine main activities, namely: Topologies Design, SelfOr-
ganisations Design, Roles Design, Context Awareness Design, Models Extraction,
Exact Prediction, Approzimate Prediction, Simulation, and Tuning. The process

Engineering Pervasive Multiagent Systems in SAPERE 207

Goals Analysis Services Analysis V""f‘ ‘Topology
\nalysis
25 =5 '
R i &5
Tasks Analysis.
=5
&5
Relations i A
Modelling
Are the models well specified? =
55
* Constraints
yes no Analysis
@ . |
E B acivi Are the models well specified?
v _—g ctivity v
o yes ' no

Fig. 5. Requirements Analysis (left) and Analysis (right) activities diagrams

here is more complex since the system, following problem analysis, have to be de-
signed according to the SAPERE approach. In particular, the first four activities
— Topologies Design, SelfOrganisations Design, Roles Design, Context Awareness
Design — define the models for system roles (their behaviours and interactions),
the self-organisation mechanisms for the services identified in the analysis, the
requisite context or situation recognition in terms of roles and their communica-
tions, and the topological structure of the environment. Then, taking inspiration
from [22I23], we design five activities (Models Extraction, Exact Prediction, Ap-
proximate Prediction, Simulation, and Tuning) devoted to system prediction and
simulation. Thus, the effect of the architectural design on the system behaviour
could be verified through the study of emerging properties. Adopting simulation
during architectural design makes it possible for engineers the early discovery of
problems due to either unsatisfactory architectural choice or inaccurate problem
analysis.

Figure [M(left) presents the process diagram of the Detailed Design phase.
This phase is composed by five main activities, namely: Eco-Laws Design, Agents
Design, Neighbourhood Design, Bonds Design, Validation. The first four activities
are devoted to the detailed design of system according to the SAPERE abstract
model, while Validation allows engineers to effectively validate the behaviour of
the whole system entities before starting the implementation phase.

Finally, Figure [l(right) presents the process diagram of the Implementation
phase. This phase is composed by six main activities, namely: Middleware Adapt-
ation, Coding, WhiteBoz Testing, BlackBox Testing, SystemTesting, and Quant-
itative Measures. Middleware Adaptation plays a key role in this phase since in

208 A. Molesini et al.

T Modelling Refined

= B3 B &3

Awareness

SelfOrganisations Roles Design Design

Topologies Design Design

4‘}—*@5_-5*]

Models Extraction
|

Exact Prediction?

Are the models well specified? es =
p o + y e —

Exact Prediction

Approximate Prediction?

no yes yes
——— I%
LSS
Approximate
no Prediction

P

Simulation

Are the mode|s well specified?

5

Tuning
Remodelling

Fig. 6. The Architectural Design activities diagram

this activity the detailed design entities have to be mapped onto the middle-
ware entities. This activity should be “trivial” —i.e., one-to-one mapping — if the
middleware totally supports the detailed design entities, otherwise it could be
very complex and require a lot of re-engineering work, such as the ex-novo cre-
ation of ad hoc self-organisation mechanisms. Then, Coding has to start before
WhiteBox Testing and BlackBox Testing, but after that their executions could
be interleaved. WhiteBox Testing represents the classical test activity conducted
by the system developers during the implementation, while BlackBox Testing is
conducted by team members not directly involved in the development of the sys-
tem part under test. SystemTesting represents the test of the whole system for
evaluating the system requirements satisfaction accuracy. Only when the system
developing is concluded it is possible to execute specific Quantitative Measures
— Quantitative Measures activity — for measuring system performances.

Engineering Pervasive Multiagent Systems in SAPERE 209

L r

E)rj Whitebox Testing? —

&5 E5 B5

Eco-laws Design Agents Design Neighborhood l

Design
E5

Coding
4

&5 e

Bonds Design
System Testing

v
Arel tests ok?
no

5 yes
Validation Ej

| Quantitative

Measures
ified?
Are the models*well specified? Are Measires ok?

0
es n @ yes ‘ no ®

WhiteBox Testing

s

BlackBox Testing

Is the codg¢ finished?

Are tests ok? | yes

Fig. 7. The Detailed Design (left) and Implementation (right) activities diagram

5 Related Works in the AOSE Field

As far as software engineering is concerned, the key implication is that the design
and development of software systems according to a (new) paradigm can by
no means rely on conceptual tools and methodologies conceived for a totally-
different (old) paradigm [28]. Even though it is indeed possible to develop a
complex distributed system in terms of objects and client-server interactions,
such a choice appears odd and complicated when the system is a Multi-Agent
System (MAS), or, it can be assimilated to a MAS. Rather, a brand new set of
conceptual and practical tools — specifically suited to the agent-oriented abstrac-
tions — is needed to facilitate, promote, and support the development of MASs,
and to fulfil the huge potential of agent-based computing as a general-purpose
approach to the modelling and engineering of complex systems.

The definition of agent-specific methodologies is definitely one of the most
explored topics in Agent-Oriented Software Engineering (AOSE), and a large
number of AOSE methodologies — describing how the process of building a MAS
should/could be organised — has been proposed in the literature, which should
be compared to the SAPERE approach presented in this paper. For a rather
exhaustive survey of all the related activities in the AOSE field, we refer the
interested reader to [21].

210 A. Molesini et al.

Meta-model. In the same way as the SAPERE one, AOSE methodologies typ-
ically start by defining their own meta-model, identifying the basic abstractions
to be exploited in development (e.g., agents, roles, environment, organisational
structures). Based on this, they exploit and organise such abstractions so as to
define guidelines on how to proceed in the analysis, design, and development,
and on the output to produce at each stage.

Actually, several works [29)30] are focussing on the identification of appropri-
ate meta-models for AOSE methodologies and process models—where a meta-
model is intended as a rational analysis and identification of the abstractions
used in MAS development. Those efforts aims at unifying the different abstrac-
tions adopted in existing methodologies and the process models, and also at
identifying which relationships may exist among them. This may be used to
better understand the real usefulness of the abstractions, and also to improve
or unify processes and methodologies. Furthermore, those effort may help re-
searchers and practitioners to identify and develop conceptual instruments and
practical tools for an efficient processes management.

Process model. Among the different methodologies developed both in the tradi-
tional software engineering — such as Rational Unified Process (RUP) [31], OPEN
[32], Object Process Methodology (OPM) [33], OMT [34], Fusion [35] — and in
the agent-oriented world — such as PASSI [36], Gaia [37], INGENIAS [38], MES-
SAGE [39], Adelfe [40], Tropos [41], MaSE [42], SODA [25/43|44l45] etc. —, there
is a general agreement on organising the methodology process according to two
main phases: Analysis and Design. However, the different methodologies often
introduce other phases or sub-phases. In particular, the Analysis phase is typic-
ally split into Requirements Analaysis and Analysis, while the Design is typically
organised in terms of Architectural Design and Detailed Design [46]. In addition,
different methodologies guide the system development until the implementation
phase—among them RUP, OPEN, PASSI, INGENIAS, and ADELFE.

As discussed in Subsection[£.2] according to the general agreement on the main
phases of a development process, the SAPERE methodology is organised in five
main phases: Requirements Analysis, Analysis, Architectural Design, Detailed
Design, and Implementation.

Meta-model vs. process model. Quite different and heterogeneous abstractions
are adopted by the different methodologies for modelling complex MAS: typic-
ally, in the AOSE world, each methodology defines its own set of abstractions.
This is why AOSE methodologies typically start by providing the so-called ab-
stractions meta-model [30/47] that shows all the abstractions adopted by the
methodology, along with their mutual relationships.

Names for abstractions are used quite liberally: different names sometimes
refer to similar abstractions, whereas identical names may denote quite diverse
abstractions—even within one single methodology, when the same name is some-
times used for abstractions holding different meanings, depending on the different

Engineering Pervasive Multiagent Systems in SAPERE 211

process phases they belong to. For instance, the “agent” concept, quite unsur-
prisingly, is exploited by all AOSE methodologies. However, whereas in some
methodologies — such as PASSI, MaSE, and ADELFE — the agent abstraction
appears since the Analysis phase, in other methodologies — such as Tropos, Gaia,
and SODA — the agent is a concept occurring only in the Design phases. So, the
issue is not merely which abstractions meta-model is adopted by a given AOSE
methodology: but, more precisely, which abstractions are used in each phase
of the methodology, and how the different resulting abstractions meta-models
relate to each other.

Even more, also the structure of the abstractions meta-model differs a lot
among the methodologies. For example, PASSI and SODA adopt a “transforma-
tional” structure — i.e., each phase/domain has its own particular set of abstrac-
tions — taking inspiration from the Model-Driven Engineering ideas. Instead,
other methodologies such as ADELFE use the same set of abstractions, which
are refined by each phase. For a more detailed work about the study, comparison,
and fusion of some AOSE methodologies meta-models, we refer the interested
reader to [27].

Taking inspiration from the work done in the AOSE field, the SAPERE meth-
odology meta-model was in fact defined according to the transformational struc-
ture: this allow each phase to be more clearly specified, and makes it easier to
move from one phase to another—see Subsection

6 Conclusion

The definition of a novel and coherent methodological process for the engineering
of SAPERE pervasive service ecosystems was the main motivation behind this
work. In order to allow the reader to fully understand the SAPERE process, in
this paper we first introduce the SAPERE model, then discuss how a SAPERE
system could be programmed, by providing some simple examples, finally we
illustrate the SAPERE methodology, by defining the software development pro-
cess according to the IEEE-FIPA Standard Design Process Documentation Tem-
plate (DPDT) [24].

The space available for this paper is obviously not enough to provide the
reader with all the details of the SAPERE methodology: for a full account of
the SAPERE methodology we refer the interested reader to [48]. In this paper
we discuss the main issues of the engineering of pervasive service ecosystems ac-
cording to the SAPERE approach, thus showing how agent-oriented technologies
and methodologies can be effective in the design and development of complex
software systems.

Acknowledgements. This work has been supported by the EU-FP7-FET Pro-
active project SAPERE — Self-Aware PERvasive service Ecosystems, under con-
tract no. 256873.

212

A. Molesini et al.

References

10.

11.

12.

13.

14.

15.

16.

17.

. Krumm, J.: Ubiquitous advertising: The killer application for the 21st century.

IEEE Pervasive Computing 10(1), 66-73 (2011)

Zambonelli, F.: Toward sociotechnical urban superorganisms. Computer 47(8),
76-78 (2012)

Zambonelli, F.: Pervasive urban crowdsourcing: Visions and challenges. In: 2011
IEEE International Conference on Pervasive Computing and Communications
Workshops (PERCOM Workshops), pp. 578-583. IEEE CS Press (2011)
Zambonelli, F., Viroli, M.: A survey on nature-inspired metaphors for pervasive
service ecosystems. International Journal of Pervasive Computing and Communic-
ations 7(3), 186-204 (2011)

Babaoglu, O., et al.: Design patterns from biology for distributed computing. ACM
Transaction on Autonomous Adaptive Systems 1(1), 26-66 (2006)

Mamei, M., Menezes, R., Tolksdorf, R., Zambonelli, F.: Case studies for self-
organization in computer science. Journal of Systems Architecture 52(8), 443-460
(2006)

Kari, L., Rozenberg, G.: The many facets of natural computing. Communications
of the ACM 51, 72-83 (2008)

Zambonelli, F., Castelli, G., Ferrari, L., Mamei, M., Rosi, A., Di Marzo Seru-
gendo, G., Risoldi, M., Tchao, A.E., Dobson, S., Stevenson, G., Ye, Y., Nardini,
E., Omicini, A., Montagna, S., Viroli, M., Ferscha, A., Maschek, S., Wally, B.: Self-
aware pervasive service ecosystems. Procedia Computer Science 7, 197-199 (2011),
Proceedings of the 2nd European Future Technologies Conference and Exhibition
2011 (FET 2011)

Parunak, V.: Go to the ant: Engineering principles from natural multi-agent sys-
tems. Annals of Operations Research 75, 69-101 (1997)

Omicini, A.: Nature-inspired coordination for complex distributed systems. In:
Fortino, G., Badica, C., Malgeri, M., Unland, R. (eds.) Intelligent Distributed
Computing VI. SCI, vol. 446, pp. 1-6. Springer, Heidelberg (2012)

Gelernter, D.: Generative communication in Linda. ACM Transactions on Pro-
gramming Languages and Systems 7(1), 80-112 (1985)

Mamei, M., Zambonelli, F.: Programming pervasive and mobile computing ap-
plications: The TOTA approach. ACM Transactions on Software Engineering and
Methodology 18(4) (July 2009)

Viroli, M., Casadei, M., Montagna, S., Zambonelli, F.: Spatial coordination of
pervasive services through chemical-inspired tuple spaces. ACM Transactions on
Autonomous and Adaptive Systems 6(2), 14:1-14:24 (June 2011)
Fernandez-Marquez, J.L., Di Marzo Serugendo, G., Montagna, S., Viroli, M., Ar-
cos, J.L.: Description and composition of bio-inspired design patterns: A complete
overview. Natural Computing 12(1), 43-67 (2013)

Zambonelli, F., Castelli, G., Mamei, M., Rosi, A.: Integrating pervasive middleware
with social networks in sapere. In: 2011 International Conference on Selected Topics
in Mobile and Wireless Networking, pp. 145-150 (October 2011)

Nath, S., Gibbons, P.B., Seshan, S., Anderson, Z.R.: Synopsis diffusion for robust
aggregation in sensor networks. In: 2nd International Conference on Embedded
Networked Sensor Systems (SenSys 2004), pp. 250-262. ACM, New York (2004)
Bicocchi, N., Mamei, M., Zambonelli, F.: Self-organizing virtual macro sensors.
ACM Transaction on Autonomous Adaptive Systems 7(1) (2012)

18.

19.

20.

21.

22.

23.

24.
25.
26.

27.

28.

29.

30.

31.

32.
33.

34.

35.

36.

Engineering Pervasive Multiagent Systems in SAPERE 213

Mamei, M., Zambonelli, F.: Field-Based Coordination for Pervasive Multiagent
Systems. In: Models, Technologies, and Applications. Springer Series in Agent
Technology. Springer (March 2006)

Beal, J., Bachrach, J.: Infrastructure for engineered emergence on sensor/actuator
networks. IEEE Intelligent Systems 21(2), 10-19 (2006)

Osterweil, L.J.: Software processes are software too. In: 9th International Con-
ference on Software Engineering (ICSE 1987), pp. 2-13. IEEE Computer Society
Press, Los Alamitos (1987)

Molesini, A., Omicini, A.: Early methodology. Technical Report TR.WP1.2012.6,
EU-FP7-FET Proactive project SAPERE Self-Aware PERvasive service Ecosys-
tems (2012), http://www.sapere-project.eu/TR.WP1.2012.6.pdf

Gardelli, L., Viroli, M., Casadei, M., Omicini, A.: Designing self-organising envir-
onments with agents and artefacts: A simulation-driven approach. International
Journal of Agent-Oriented Software Engineering 2(2), 171-195 (2008), Special Is-
sue on Multi-Agent Systems and Simulation

Molesini, A., Casadei, M., Omicini, A., Viroli, M.: Simulation in agent-oriented
software engineering: The SODA case study. Science of Computer Programming
(August 2011), Special Issue on Agent-oriented Design methods and Programming
Techniques for Distributed Computing in Dynamic and Complex Environments
IEEE-FIPA: Design Process Documentation Template (January 2012),
http://fipa.org/specs/fipa00097/SCO0097B. pdf

SODA: Home page, http://soda.apice.unibo.it

Molesini, A., Omicini, A., Viroli, M.: Environment in Agent-Oriented Software En-
gineering methodologies. Multiagent and Grid Systems 5(1), 37-57 (2009), Special
Issue “Engineering Environments in Multi-Agent Systems

Dalpiaz, F., Molesini, A., Puviani, M., Seidita, V.: Towards filling the gap between
AOSE methodologies and infrastructures: Requirements and meta-model. In: Bal-
doni, M., Cossentino, M., De Paoli, F., Seidita, V. (eds.) 9th Workshop From Ob-
jects to Agents (WOA 2008), Palermo, Italy, Seneca Edizioni, pp. 115-121 (Novem-
ber 2008)

Zambonelli, F., Omicini, A.: Challenges and research directions in agent-oriented
software engineering. Autonomous Agents and Multi-Agent Systems 9(3), 253-283
(2004), Special Issue: Challenges for Agent-Based Computing

Henderson-Sellers, B.: Evaluating the feasibility of method engineering for the cre-
ation of agent-oriented methodologies. In: Péchoucek, M., Petta, P., Varga, L.Z.
(eds.) CEEMAS 2005. LNCS (LNAI), vol. 3690, pp. 142-152. Springer, Heidelberg
(2005)

Bernon, C., Cossentino, M., Gleizes, M.P., Turci, P., Zambonelli, F.: A study of
some multi-agent meta-models. In: Odell, J.J., Giorgini, P., Miiller, J.P. (eds.)
AOSE 2004. LNCS, vol. 3382, pp. 62-77. Springer, Heidelberg (2005)

Kruchten, P.: The Rational Unified Process: An Introduction, 3rd edn. Addison-
Wesley Professional (December 2003)

OPEN: Home page, http://www.open.org.au/

Dori, D.: Object-Process Methodology: A Holistic System Paradigm. Springer
(2002)

Rumbaugh, J.E., Blaha, M.R., Premerlani, W.J., Eddy, F., Lorensen, W.E.:
Object-Oriented Modeling and Design. Prentice-Hall (1991)

Coleman, D., Arnold, P., Bodoff, S., Dollin, C., Gilchrist, H., Hayes, F., Jeremaes,
P.: Object-Oriented Development. The Fusion Method. Prentice-Hall (1994)
Cossentino, M.: From requirements to code with the PASSI methodology. In: [49],
ch. IV, pp. 79-106

http://www.sapere-project.eu/TR.WP1.2012.6.pdf
http://fipa.org/specs/fipa00097/SC00097B.pdf
http://soda.apice.unibo.it
http://www.open.org.au/

214

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

A. Molesini et al.

Zambonelli, F., Jennings, N., Wooldridge, M.: Multiagent systems as computa-
tional organizations: the Gaia methodology. In: [49], ch. VI, pp. 136-171

Pavon, J., Gomez-Sanz, J.J., Fuentes, R.: The INGENIAS methodology and tools.
In: [49], ch. IX, pp. 236276

Garijo, F.J., Gomez-Sanz, J.J., Massonet, P.: The MESSAGE methodology for
agent-oriented analysis and design. In: [49], ch. VIII, pp. 203-235

Picard, G., Bernon, C., Gleizes, M.P.: Cooperative agent model within ADELFE
framework: An application to a timetabling problem. In: Jennings, N.R., Sierra,
C., Sonenberg, L., Tambe, M. (eds.) AAMAS,, July 19-23, vol. 3, pp. 1506-1507.
ACM Press, New York (2004)

Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J., Perini, A.: Tropos: An
agent-oriented software development methodology. Autonomous Agent and Multi-
Agent Systems 8(3), 203236 (2004)

Wood, M.F., DelLoach, S.A.: An overview of the multiagent systems engineer-
ing methodology. In: Ciancarini, P., Wooldridge, M.J. (eds.) AOSE 2000. LNCS,
vol. 1957, pp. 207-221. Springer, Heidelberg (2001)

Omicini, A.: SODA: Societies and infrastructures in the analysis and design of
agent-based systems. In: Ciancarini, P., Wooldridge, M.J. (eds.) AOSE 2000.
LNCS, vol. 1957, pp. 185-193. Springer, Heidelberg (2001)

Molesini, A., Omicini, A., Ricci, A., Denti, E.: Zooming multi-agent systems.
In: Miiller, J.P., Zambonelli, F. (eds.) AOSE 2005. LNCS, vol. 3950, pp. 81-93.
Springer, Heidelberg (2006)

Molesini, A., Omicini, A., Denti, E., Ricci, A.: SODA: A roadmap to artefacts. In:
Dikenelli, O., Gleizes, M.-P., Ricci, A. (eds.) ESAW 2005. LNCS (LNAI), vol. 3963,
pp. 49-62. Springer, Heidelberg (2006)

Cernuzzi, L., Cossentino, M., Zambonelli, F.: Process models for agent-based devel-
opment. Engineering Applications of Artificial Intelligence 18(2), 205-222 (2005)
Cossentino, M., Gaglio, S., Galland, S., Gaud, N., Hilaire, V., Koukam, A., Seidita,
V.: A MAS metamodel-driven approach to process fragments selection. In: Luck,
M., Gomez-Sanz, J.J. (eds.) AOSE 2008. LNCS, vol. 5386, pp. 86-100. Springer,
Heidelberg (2009)

Molesini, A., Omicini, A., Viroli, M., Pianini, D., Montagna, S.: The complete
methodology. Technical Report TR.WP1.2013.1, EU-FP7-FET Proactive project.
SAPERE Self-Aware PERvasive service Ecosystems (2013),
http://www.sapere-project.eu/TR.WP1.2013.1.pdf

Henderson-Sellers, B., Giorgini, P. (eds.): Agent Oriented Methodologies. Idea
Group Publishing, Hershey (2005)

http://www.sapere-project.eu/TR.WP1.2013.1.pdf

	Engineering Pervasive Multiagent Systems in SAPERE
	1 Introduction
	2 MAS for Pervasive Service Ecosystems in SAPERE
	2.1 Basic Requirements
	2.2 The SAPERE Meta-model

	3 Programming SAPERE Systems: API and Examples
	3.1 The SAPERE API
	3.2 Matching and Bonding
	3.3 From Bonding to Service Composition
	3.4 Aggregation, Decay, and Spreading
	3.5 Towards Self-organisation Patterns

	4 Engineering SAPERE Systems: The Methodology
	4.1 Requirements for the SAPERE Methodology
	4.2 The SAPERE Process

	5 Related Works in the AOSE Field
	6 Conclusion
	References

