
Massimo Cossentino
Amal El Fallah Seghrouchni
Michael Winikoff (Eds.)

 123

LN
AI

 8
24

5

First International Workshop, EMAS 2013
St. Paul, MN, USA, May 2013
Revised Selected Papers

Engineering
Multi-Agent Systems

Lecture Notes in Artificial Intelligence 8245

Subseries of Lecture Notes in Computer Science

LNAI Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbrücken, Germany

LNAI Founding Series Editor

Joerg Siekmann
DFKI and Saarland University, Saarbrücken, Germany

Massimo Cossentino
Amal El Fallah Seghrouchni
Michael Winikoff (Eds.)

Engineering
Multi-Agent Systems
First International Workshop, EMAS 2013
St. Paul, MN, USA, May 6-7, 2013
Revised Selected Papers

13

Volume Editors

Massimo Cossentino
ICAR/CNR
Viale delle Scienze, ed.11
90128 Palermo, Italy
E-mail: cossentino@pa.icar.cnr.it

Amal El Fallah Seghrouchni
University Pierre and Marie Curie, LIP6
4, Place Jussieu
75252 Paris Cedex 0, France
E-mail: amal.elfallah@lip6.fr

Michael Winikoff
University of Otago
P.O. Box 56
Dunedin 9054, New Zealand
E-mail: michael.winikoff@otago.ac.nz

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-45342-7 e-ISBN 978-3-642-45343-4
DOI 10.1007/978-3-642-45343-4
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013955252

CR Subject Classification (1998): I.2.11, I.2, D.2, D.1, F.3

LNCS Sublibrary: SL 7 – Artificial Intelligence

© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in its current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains the papers presented at EMAS 2013: the First International
Workshop on Engineering Multi-Agent Systems held during May 5–6, 2013, in
Saint Paul, Minnesota.

Although much progress has been made, the design, implementation, and
deployment of multi-agent systems still poses many challenges. Some of these
concern design and software engineering aspects, for example, how to effectively
design agents and their interactions? Other challenges concern implementation,
for instance, how to effectively implement multi-agent coordination or organiza-
tions? Further challenges concern use of logic-based techniques for verification
of agent systems.

It is increasingly apparent that there are benefits in considering design and
implementation challenges together. For example, design artifacts can be used
to support and assist with debugging and testing. Another example is the devel-
opment of agent-oriented programming languages that result in programs that
are more readily verifiable. A final example is the use of declarative techniques
that span design and implementation. This unveils a tight interlacement among
the different research issues in multi-agent systems engineering.

This naturally resulted in a workshop that brought together the previously
separate topics (but overlapping communities) that focus on software engineer-
ing aspects (AOSE), programming aspects (ProMAS), and the application of
declarative techniques to design, programming, and verification (DALT).

Furthermore, a natural complement to research papers on engineering multi-
agent systems is application papers that describe developed applications and
lessons learned as well as the engineering challenges identified in building and
deploying the applications.

The EMAS workshop thus explicitly pursued three goals:

1. To progress and further develop the understanding of how to engineer multi-
agent systems.

2. To bring together the communities that are concerned with different aspects
of engineering multi-agent systems, and by doing so, allow for better in-
terchange of ideas between the communities, thus exploiting the synergies
discussed above.

3. To provide a venue where people who have developed applications could
articulate the lessons learned and engineering challenges identified in building
and deploying their applications, and have these lessons influence further
research in the field.

The call for papers explicitly addressed application papers and research pa-
pers that were concerned with any aspect of the engineering of multi-agent

VI Preface

systems, specifically including any topics that would fall within the scope of one
or more of the three parent workshops:

– Agent-Oriented Software Engineering (AOSE)
– Declarative Agent Languages and Technologies (DALT)
– Programming Multi-Agent Systems (ProMAS)

EMAS 2013 received 31 submissions (one was withdrawn before being re-
viewed). Each paper was reviewed by three reviewers, and we accepted 19 papers,
including two application papers. The papers were presented at the workshop,
and then revised and extended for these post-proceedings. The revised and ex-
tended post-proceeding versions were reviewed by one of the original reviewers.
Of the 19 papers presented at EMAS 2013, 14 appear in revised and extended
form in these post-proceedings. One of the papers presented at the workshop (by
Gerard et al.) is, by the authors’ request, not included in the proceedings in full
form, but as an extended abstract, and can be found in the front matter of this
volume.

In addition to the papers that were presented at EMAS, these post-proceedings
also include a paper contributed by the workshop’s invited speaker, Associate
Professor Luciano Baresi, and his colleagues.

Additionally, following the tradition of previous ProMAS editions, these post-
proceedings also include material from the agent competition (http://
multiagentcontest.org/), organized by Tobias Ahlbrecht, Jürgen Dix, Michael
Köster, and Federico Schlesinger (all from Clausthal University of Technology)
in September 2013. After an overview of the contest by the organizers, there are
five papers from this year’s participants. This part of the proceedings concludes
with another paper that compiles the answers of all the teams to 50 questions
stated by the organizers. These questions concern almost all engineering aspects
of multi-agent systems and help to compare and put into perspective the different
approaches selected by the five teams.

The EMAS 2013 chairs would like to acknowledge the great review work done
by members of the Program Committee. Reviews were in general detailed (and,
we hope, useful to the authors), and there was a very high degree of consensus
amongst the reviewers.

October 2013 Massimo Cossentino
Amal El Fallah Seghrouchni

Michael Winikoff

Organization

Steering Committee

EMAS is overseen by a (merged) Steering Committee from the three “parent”
workshops (original Steering Committee indicated below).

Matteo Baldoni DALT, Italy
Rafael Bordini ProMAS, Brazil
Mehdi Dastani ProMAS, The Netherlands
Jürgen Dix ProMAS, Germany
Amal El Fallah Seghrouchni ProMAS, France
Paolo Giorgini AOSE, Italy
Jörg P. Müller AOSE, Germany
M. Birna Van Riemsdijk DALT, The Netherlands
Tran Cao Son DALT, USA
Gerhard Weiss AOSE, The Netherlands
Danny Weyns AOSE, Sweden
Michael Winikoff DALT and AOSE, New Zealand

EMAS 2013 Workshop Chairs

Massimo Cossentino National Research Council of Italy, Italy
Amal El Fallah Seghrouchni LIP6 - Pierre and Marie Curie University,

France
Michael Winikoff University of Otago, New Zealand

Program Committee

Natasha Alechina University of Nottingham, UK
Matteo Baldoni Università degli Studi di Torino, Italy
Cristina Baroglio Università degli Studi di Torino, Italy
Jeremy Baxter QinetiQ, UK
Olivier Boissier ENS Mines Saint-Etienne, France
Rafael Bordini Pontifical Catholic University of Rio Grande do

Sul, Brazil
Lars Braubach University of Hamburg, Germany
Rem Collier University College Dublin, Ireland
Mehdi Dastani Utrecht University, The Netherlands
Scott Deloach Kansas State University, USA
Louise Dennis University of Liverpool, UK

VIII Organization

Virginia Dignum Delft University of Technology,
The Netherlands

Jürgen Dix Technische Universität Clausthal, Germany
Giancarlo Fortino University of Calabria, Italy
Jorge J. Gomez-Sanz Universidad Complutense de Madrid, Spain
Aditya Ghose University of Wollongong, Australia
Paolo Giorgini University of Trento, Italy
Adriana Giret Universidad Politécnica de Valencia, Spain
Marie-Pierre Gleizes IRIT, University of Toulouse, France
Christian Guttmann IBM Research, Australia
James Harland RMIT University, Australia
Vincent Hilaire Université de Technologie de Belfort

Montbéliard, France
Koen Hindriks Delft University of Technology,

The Netherlands
Benjamin Hirsch Ebtic/Khalifa University, United Arab

Emirates
Tom Holvoet KU Leuven, Belgium
Michael Huhns University of South Carolina, USA
Jomi Hübner Federal University of Santa Catarina (UFSC),

Brazil
Joao Leite New University of Lisbon, Portugal
Yves Lespérance York University, Canada
Brian Logan University of Nottingham, UK
Viviana Mascardi Università degli Studi di Genova, Italy
Philippe Mathieu University of Lille 1, France
Felipe Meneguzzi Pontifical Catholic University of Rio Grande do

Sul, Brazil
John-Jules Meyer Utrecht University and the Alan Turing

Institute Almere, The Netherlands
Frédéric Migeon IRIT, University of Toulouse, France
Ambra Molesini Università di Bologna, Italy
Pavlos Moraitis Paris Descartes University, France
Haralambos Mouratidis University of East London, UK
Jörg P. Müller Technische Universität Clausthal, Germany
Peter Novák Delft University of Technology,

The Netherlands
Andrea Omicini Università di Bologna, Italy
Julian Padget University of Bath, UK
Lin Padgham RMIT University, Australia
Fabio Patrizi Sapienza Università di Roma, Italy
Juan Pavón Universidad Complutense Madrid, Spain
Michal Pěchouček Czech Technical University in Prague,

Czech Republic
Alexander Pokahr University of Hamburg, Germany

Organization IX

Enrico Pontelli New Mexico State University, USA
Alessandro Ricci Università di Bologna, Italy
Ralph Rønnquist Real Thing Entertainment Pty. Ltd., Australia
Chiaki Sakama Wakayama University, Japan
Valeria Seidita University of Palermo, Italy
Onn Shehory IBM Haifa Research Lab, Israel
Guillermo Ricardo Simari Universidad Nacional del Sur in Bahia Blanca,

Argentina
Tran Cao Son New Mexico State University, USA
Nikolaos Spanoudakis Technical University of Crete, Greece
Pankaj Telang North Carolina State University, USA
Paolo Torroni Università di Bologna, Italy
M. Birna van Riemsdijk Delft University of Technology,

The Netherlands
Wamberto Vasconcelos University of Aberdeen, UK
Jørgen Villadsen Technical University of Denmark, Denmark
Gerhard Weiss University of Maastricht, The Netherlands
Danny Weyns Linnaeus University, Sweden
Wayne Wobcke University of New South Wales, Australia
Pınar Yolum Bogazici University, Turkey
Neil Yorke-Smith American University of Beirut, Lebanon and

University of Cambridge, UK

Additional Reviewers

Arman Noroozian
Luca Sabatucci

Composing Commitment Protocols

(Extended Abstract)

Scott N. Gerard1, Pankaj R. Telang2, Anup K. Kalia2, and Munindar P. Singh2

1 IBM, Research Triangle Park, Durham, NC 27709, USA
sgerard@us.ibm.com

2 Department of Computer Science, NC State University, Raleigh, NC 27695, USA

ptelang@gmail.com, {akkalia,singh}@ncsu.edu

Keywords: Commitments, Agent communication, Verification of multiagent
systems, Communication protocols, Model checking.

We consider (commitment) protocols specified formally in terms of their roles,
their messages, and the meanings of their messages (expressed as commitments).
Although protocols offer significant benefits over traditional approaches, proto-
cols are not fully viable for the following reasons. One, specifying in one shot
an adequate protocol for a complex scenario is nontrivial. Two, implementing
agents who can play roles in such a comprehensive protocol is difficult because
the differing details of the protocols complicate reusing parts of agent implemen-
tations.

In an important advance over previous work, we show how to compose com-
plex protocols from existing constituent protocols, thereby facilitating reuse. We
address two role-specific aspects of composition: (1) role requirements, capturing
the benefits a role receives from the composite protocol; and (2) role accountabil-
ity, capturing the commitments a role makes to other roles—to promote their
joint enactments of the composite protocol. Our approach yields benefits in busi-
ness requirements elicitation (natural abstraction); enactment (flexibility); and
compliance and validation (ascribing accountability for each requirement to a
specific role).

Our approach, Positron, extends our previous Proton work [3]. Positron
(a) provides a formal language in which to express composite protocols based on
existing constituent protocols; (b) recursively expands nested constituent proto-
cols; (c) introduces composite protocol diagrams (CPDs) as a graphical notation,
conveying important features of the composite protocol to business and technical
stakeholders; (d) introduces role requirements and role accountabilities ; (e) incor-
porates a methodology for composing commitment protocols; and (f) implements
a decision procedure and mechanical verification of protocols with respect to role
requirements, role accountabilities, and enactments, compiling formulas to CTL
temporal logic, and employing MCMAS [4], a leading model checker, to verify if
the composite protocol satisfies those formulas.

To demonstrate the broad applicability of Positron, our methodology suc-
cessfully creates composite protocols for scenarios from three different business
domains: AGFIL, automobile insurance claims processing [2]; Quote To Cash,

XII S.N. Gerard et al.

an important business process for manufacturing supply chains [5]; and ASPE,
a healthcare process for breast cancer diagnosis [1]. Positron successfully verifies
all role and enactment requirements.

Positron gains an advantage over traditional approaches by focusing on high-
level business relationships realized as constituent protocols, and by focusing on
commitments rather than control flow. Because role accountabilities are stated as
commitments, if a requirement fails, we can trace the failure back to a specific role.
CPDs summarize relevant details about a composite protocol and we expect they
will prove valuable, because they bring together both technical and business de-
scriptions of protocols, helping bridge the Business-IT Divide [6].

References

1. ASPE. The importance of radiology and pathology communication in the diagnosis
and staging of cancer: Mammography as a case study (November 2010), Office of the
Assistant Secretary for Planning and Evaluation, U.S. Department of Health and
Human Services, http://aspe.hhs.gov/sp/reports/2010/PathRad/index.shtml

2. Browne, S., Kellett, M.: Insurance (motor damage claims) scenario. Document D1.a,
CrossFlow Consortium (1999)

3. Gerard, S.N., Singh, M.P.: Formalizing and verifying protocol refinements. ACM
Transactions on Intelligent Systems and Technology, TIST (2013)

4. Lomuscio, A., Qu, H., Raimondi, F.: Mcmas: A model checker for the verification of
multi-agent systems. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643,
pp. 682–688. Springer, Heidelberg (2009)

5. Oracle. Automating the Quote-to-Cash process (June 2009),
http://www.oracle.com/us/industries/045546.pdf

6. Smith, H., Fingar, P.: Business Process Management: The Third Wave. Megan-Kiffer
Press, Tampa (2002)

Table of Contents

SeSaMe: Towards a Semantic Self Adaptive Middleware for Smart
Spaces . 1

Luciano Baresi, Sam Guinea, and Adnan Shahzada

Propagating AUML Protocols to Detailed Design . 19
Yoosef Abushark and John Thangarajah

2COMM: A Commitment-Based MAS Architecture 38
Matteo Baldoni, Cristina Baroglio, and Federico Capuzzimati

Benchmarking Communication in Actor- and Agent-Based
Languages . 58

Rafael C. Cardoso, Jomi Fred Hübner, and Rafael H. Bordini

Applying an O-MaSE Compliant Process to Develop a Holonic
Multiagent System for the Evaluation of Intelligent Power Distribution
Systems . 78

Denise Case and Scott DeLoach

Embedding Agents in Business Processes Using Enterprise Integration
Patterns . 97

Stephen Cranefield and Surangika Ranathunga

Belief Caching in 2APL . 117
Mehdi Dastani and Marc van Zee

Deciding between Conflicting Influences . 137
Andreas Schmidt Jensen

A Multi-agent Approach to Professional Software Engineering 156
Marco Lützenberger, Tobias Küster, Thomas Konnerth,
Alexander Thiele, Nils Masuch, Axel Heßler, Jan Keiser,
Michael Burkhardt, Silvan Kaiser, Jakob Tonn,
Michael Kaisers, and Sahin Albayrak

Alternatives to Threshold-Based Desire Selection in Bayesian BDI
Agents . 176

Bernardo Luz, Felipe Meneguzzi, and Rosa Vicari

Engineering Pervasive Multiagent Systems in SAPERE 196
Ambra Molesini, Andrea Omicini, Mirko Viroli, and
Franco Zambonelli

XIV Table of Contents

An Infrastructure for the Design and Development of Open Interaction
Systems . 215

Daniel Okouya, Nicoletta Fornara, and Marco Colombetti

GoalSPEC: A Goal Specification Language Supporting Adaptivity and
Evolution . 235

Luca Sabatucci, Patrizia Ribino, Carmelo Lodato,
Salvatore Lopes, and Massimo Cossentino

Mutation Operators for the GOAL Agent Language 255
Sharmila Savarimuthu and Michael Winikoff

Automatic BDI Plan Recognition from Process Execution Logs and
Effect Logs . 274

Hongyun Xu, Bastin Tony Roy Savarimuthu, Aditya Ghose,
Evan Morrison, Qiying Cao, and Youqun Shi

Multi-Agent Programming Contest 2013 . 292
Tobias Ahlbrecht, Jürgen Dix, Michael Köster, and
Federico Schlesinger

SMADAS: A Team for MAPC Considering the Organization and the
Environment as First-Class Abstractions . 319

Maicon Rafael Zatelli, Maiquel de Brito, Tiago Luiz Schmitz,
Marcelo Menezes Morato, Kaio Siqueira de Souza,
Daniela Maria Uez, and Jomi Fred Hübner

Engineering a Multi-Agent System in GOAL . 329
Jørgen Villadsen, Andreas Schmidt Jensen,
Nicolai Christian Christensen, Andreas Viktor Hess,
Jannick Boese Johnsen, Øyvind Grønland Woller, and
Philip Bratt Ørum

Improving the LTI-USP Team: A New JaCaMo Based MAS for the
MAPC 2013 . 339

Mariana Ramos Franco and Jaime Simão Sichman

Multi-Agent Programming Contest 2013: TUB Team Description 349
Sebastian Werner, Christian Bender-Saebelkampf,
Hendrik Heller, and Axel Heßler

Prior State Reasoning in Multi-agent Systems and Graph-Theoretical
Algorithms . 356

Chengqian Li and Lu Liu

Table of Contents XV

Multi-Agent Programming Contest 2013: The Teams and the Design
of their Systems . 366

Tobias Ahlbrecht, Christian Bender-Saebelkampf,
Maiquel de Brito, Nicolai Christian Christensen,
Jürgen Dix, Mariana Ramos Franco, Hendrik Heller,
Andreas Viktor Hess, Axel Heßler, Jomi Fred Hübner,
Andreas Schmidt Jensen, Jannick Boese Johnsen,
Michael Köster, Chengqian Li, Lu Liu, Marcelo Menezes Morato,
Philip Bratt Ørum, Federico Schlesinger,
Tiago Luiz Schmitz, Jaime Simão Sichman,
Kaio Siqueira de Souza, Daniela Maria Uez, Jørgen Villadsen,
Sebastian Werner, Øyvind Grønland Woller, and
Maicon Rafael Zatelli

Author Index . 391

SeSaMe: Towards a Semantic Self Adaptive
Middleware for Smart Spaces�

Luciano Baresi, Sam Guinea, and Adnan Shahzada

Politecnico di Milano
Dipartimento di Elettronica, Informazione e Bioingegneria

Piazza L. da Vinci, 32 - 20133 Milano, Italy
{baresi,guinea,shahzada}@elet.polimi.it

Abstract. Smart spaces are inherently complex and dynamic systems,
where diverse devices, sensors, actuators and computational elements
need to interact with one another. A middleware infrastructure can pro-
vide suitable abstractions that simplify the task, and allow designers to
ignore the details of the underlying elements. Unfortunately, however,
existing middleware solutions do not generalize well to different kinds of
spaces, since they often fail to address the scalability and dynamism of
such spaces.

In this paper we propose SeSaMe, a semantic and self-adaptive mid-
dleware infrastructure for highly dynamic and massive smart spaces.
SeSaMe establishes a “backbone” to let components connect to the sys-
tem without any prior knowledge of its topology. It is capable of main-
taining the system’s overall reliability, even when multiple components
leave or fail unexpectedly, and of coping with message congestion, by
dynamically altering the system’s topology. SeSaMe also provides a sim-
ple declarative language for defining how one wants the system to evolve
over time, and semantic technologies for harmonizing the interaction of
different kinds of components. The main new features of SeSaMe are ex-
emplified on two example smart spaces with significantly different char-
acteristics.

1 Introduction

The pervasive use of information and communication technologies is transform-
ing the environments in which we live into smart spaces. A smart space is thus
“a physical world that is richly and invisibly interwoven with sensors, actuators,
displays and computational elements, embedded seamlessly in the everyday ob-
jects of our lives, and connected through a network.” [24]. The resulting system is
a live entity where users interact with the environment through dedicated appli-
cations that are hosted, for example, on their mobile terminals. The space can act
� This research was partially funded by the European Commission, Programme

IDEAS-ERC, Project 227977 SMScom. Adnan Shahzada is supported by the Joint
Open Lab “S-Cube”, sponsored by Telecom Italia S.p.A. - Innovation division, Milan,
Italy.

M. Cossentino et al. (Eds.): EMAS 2013, LNAI 8245, pp. 1–18, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

2 L. Baresi, S. Guinea, and A. Shahzada

as a problem solver, in particular moments, help users live better and healthier
lives, foster sustainable behaviors, or help accomplish tasks more efficiently.

The term smart space can refer to radically different situations. Houses and
offices are usually characterized by a small (limited) number of users, low dy-
namism, and scarce turnover. In contrast, subway stations, malls, museums, and
exhibition centers must serve a high (or even huge) number of users that form
big, dynamic communities. In both cases, the ecosystem of interconnected de-
vices must provide its services seamlessly, and all users should be treated equally.

Such live and dynamic systems come with severe requirements in terms of
device integration, scalability, flexibility, and reliability. A proper identification
of the actual requirements, and a careful design of the foreseen solution, must be
fostered by a smart middleware infrastructure. This infrastructure must provide
a robust and reliable backbone to integrate the different devices, while hiding
their peculiarities, offer well-defined abstractions and interfaces for the develop-
ment of user-oriented applications, and supply efficient solutions to coordinate
and organize the large number of interacting entities. The middleware must also
help the system self-configure and self-adjust its behavior according to differ-
ent needs: for example, continuous care must be paid to load balancing and
congestion control.

This paper paves the ground to SeSaMe, our proposal of a SEmantic, Self-
Adaptive MiddlewarE infrastructure for highly dynamic and massive smart
spaces. SeSaMe borrows its roots from A-3 [11], a middleware developed by the
first two authors. A-3 is a self-organizing distributed middleware for designing
and implementing distributed systems that are inherently dynamic in nature, and
large in scale and volume. It presents a group-based solution for coordinating dis-
tributed components (from now on “nodes”) that might need to join or leave the
system unexpectedly. An A-3 group clusters nodes with “similar” characteristics.
These groups can be exploited in various ways to cluster devices, and/or users, so
that they can act as single coordinated entities. For each group, A-3 chooses a su-
pervisor node that is in charge of coordinating the group’s elements, and of com-
municating with other existing groups (i.e., with other supervisors). Since each
node can play different roles in the system, a node can participate in different
groups at the same time. A-3 also offers basic self-organizing primitives that can
be used to specify how groups can be re-organized at runtime.

SeSaMe extends A-3 in several directions. It will offer a set of new abstractions
and interfaces that ease the creation of user-oriented applications. In particular,
it will provide means for components to connect to the system with no prior
knowledge of its topology, and it provides means to ensure reliability and avoid
message congestion in the wake of high component churn rates. At run-time,
the idea is to separate the behavior of the middleware from its configuration.
For this we define a special-purpose language for defining how groups should be
formed with respect to the different nodes’ characteristics, how they can be split
or merged, and how nodes should be replicated to improve reliability.

SeSaMe also tackles the problem of harmonizing device heterogeneity in a
smart space. SeSaMe will provide a semantic layer, based on RDF (Resource

SeSaMe: Towards a Semantic Self Adaptive Middleware for Smart Spaces 3

Description Framework) to ease the integration of diverse devices, but also to
facilitate the communication with users that “speak” particular languages. This
has an impact both on basic group setup, and on how a group transitions from
one configuration to the next, since we must absolutely avoid losing significant
information. The same kinds of problems apply when we want to move certain
nodes from one smart space to another, and/or compose independent smart
spaces after the user moves or changes his/her preferences.

We are also working on self-adaptive and self-healing capabilities, to both
optimize the behavior of the system, and to be able to cope with unforeseen
situations and faults. All these features go in the direction of a more robust and
stable system that can offer its services in “any” situation.

These new features are exemplified on two examples: a smart office and an
exhibition center. The first represents a simple, static smart space with a limited
number of users, while the second embeds the characteristics of a fully dynamic
and massive space.

The rest of the paper is organized as follows. Section 2 presents the two exam-
ple smart spaces. Section 3 provides a brief summary of the key characteristics
of A-3, while Section 4 introduces the requirements behind SeSaMe and the new
features we are working on. Section 5 surveys the state of the art in the field,
and Section 6 concludes the paper.

2 Smart Spaces

Smart spaces can vary in terms of complexity, dynamism, scale, mobility, and
type of services offered to their users. This is why we present two different
smart spaces that have quite different characteristics; the reader should consider
them as representatives of two different families of systems. We will use them
throughout the paper to exemplify the features provided by SeSaMe.

In a typical smart office most of the devices are static, and mobility is only
on the user’s part. The idea is to leverage the automation facilities provided
by the building. Each room is equipped with lights, air conditioning, heating,
and shutters; and provides appropriate light, temperature, and smoke sensors.
Some rooms also have printers. Each person entering the space has a badge, and
dedicated sensors detect his/her presence in a room.

The first scenario is about adjusting the light in various rooms according to
user activities and overall energy consumption. If there are no users in a room,
all the lights should be turned off; while if one or more users enter the office, the
lights should be switched on accordingly. Moreover, if the amount of ambient
light goes above a given threshold, more lights should not be turned on, in order
to save energy. Similarly, the light and shutters should also be adjusted based
on the intensity of light, and on the activities being pursued. For example, lights
can be dimmed, and shutters can be closed, during a presentation.

The second scenario deals with the efficient use of heating and air conditioning
to avoid waisting energy. The temperature should be managed according to the
preferences of the actual users in a room, but it should also be distributed

4 L. Baresi, S. Guinea, and A. Shahzada

uniformly among the various rooms. The thermostat in each room must adopt a
compromise between a purely local policy and a building-wide solution, to avoid
waisting energy with useless and dangerous spikes.

Finally, the system must also take into account the smart management of
available printers. The system offers a single “virtual” printer. This means that
every time someone wants to print something, s/he is told which physical printer
will actually serve the request. This allows people to use the closest printer
currently available, and to avoid printers that are out of order or congested.

In contrast, a typical exhibition center must manage thousands of visitors
each day. Usually, there are multiple areas and stands for different companies
and products. Visitors have different interests, most of them are usually only
interested in some specific areas of an exhibition, and sometimes they are unable
to find where they want to go.

To help visitors with their visit, we assume everyone is provided with an RFID
tag for localization, and a smartphone/tablet that can run an application they
can use to register, declare their interests, get navigational help, and discover
new and different opportunities.

This technology-assisted navigation helps visitors save time, and provides
them with a more useful experience. Moreover, it can also help the organiz-
ers manage the crowd by properly distributing the different groups of people,
and avoiding tedious queues. The exhibition also provides big displays to help
people find the right directions (the use of mobile devices is not always conve-
nient). These screens can detect the presence of people in their surrounding, and
can provide useful information such as directions, advertisements, and further
information on when and how to leave the area.

The same smart infrastructure can also be used to coordinate people in the
case of an emergency. It can help evacuate people in a well coordinated manner
by providing information about the safest and nearest exits, and by telling people
to use all the emergency exits uniformly.

3 A-3 in a Nutshell

A-3 is a middleware for the design and implementation of distributed systems
that comprise very large numbers of components. In particular, it allows system
designers to develop highly scalable systems, that can also cope with components
(or nodes) that enter and/or leave the system with extremely high churn rates.

A-3 is entirely based around the notion of “group”. The group is an abstrac-
tion that allows us to cluster nodes that have similar qualities, needs, or goals.
As a result, we obtain an entity that is intrinsically less dynamic, and easier to
manage, than a single node.

Each A-3 group is made up of a supervisor node, which can be selected either
statically or dynamically, and of multiple follower nodes. The supervisor and
its followers use a special connector to communicate, as shown in Figure 1.
The connector supports asynchronous messaging with virtual synchrony, but
limits communication in the following way: followers can only send messages to

SeSaMe: Towards a Semantic Self Adaptive Middleware for Smart Spaces 5

their supervisor, while a supervisor can target a selected follower, or broadcast
a message to all the nodes in its group. The idea is that a follower will send
messages to its supervisor to inform it about its behavior, while a supervisor
will send messages to it followers to inform them about any new coordination
directives.

A group provides an abstraction for reasoning about the coordination and
management of a single set of nodes. It does not, however, allow us to coor-
dinate or manage the entire system. To enable global coordination, A-3 allows
group to be “composed”. Group composition is achieved by allowing a node to
belong to more than one group at a time, and by allowing it to play different roles
in different groups (e.g., a node can be a supervisor in group A and a follower
in group B). This way designers can construct different kinds of organizational
structures, depending on the application’s coordination needs. Figure 2 shows
some of the possible organizational structures (e.g., hierarchical, circular, flat).
These structures allow groups to share “local” knowledge, and, through appro-
priate compositional design, reach a “global” understanding and coordination of
the entire system. In the figure, black circles represent supervisors, white circles
represent followers, and circles that are half black and half white are components
that play both the supervisor and the follower role, in different groups.

Fig. 1. Group Abstraction Fig. 2. Group Compositions

In A-3, group participants are also always kept up-to-date with regards to
what nodes are entering or leaving the group’s virtual boundaries. On the one
hand, this information can be used by the supervisor to manage the group more
intelligently. For example, a supervisor can decide to split the group into smaller
sub-groups, to avoid congestion; or it can decide to merge groups that are too
small into larger ones, to ensure that the topology does not become too suscep-
tible to high node churn rates. On the the other hand, this information can also
be used by followers to react to supervisor failures. For example, A-3 allows su-
pervisors to store coordination data directly to their groups; this is achieved by
replicating the data across the group’s own nodes. This way, when a supervisor
fails, the followers can initiate a distributed leader-election algorithm, and the
new supervisor can recover the stored data and reprise any ongoing coordination
activities.

6 L. Baresi, S. Guinea, and A. Shahzada

4 SeSaMe

SeSaMe is a distributed middleware for smart spaces that borrows some basic con-
cepts from A-3, while adding new features that specifically target the peculiar
needs of smart spaces. To this end, SeSaMe proposes a better separation of con-
cerns between the sensing/actuating infrastructure and the components in charge
of its efficient, autonomic management. Sensors, actuators, displays and compu-
tational elements define the Components Layer, while special-purpose components
Smart Space Managers (SSM) define the Management Layer. At both levels,
components are still divided into supervisors and followers, grouped together ac-
cording to common needs and goals, and groups are composed properly. The two
layers impose that each lower-level group be (indirectly) managed by an upper
level node. This means that each supervisor of a group of components is connected,
as a follower, to an SSM. This way it can receive updates from the management
layer as to how it should coordinate its group. The SSMs can also be connected
among themselves to share information, which can then be used to better manage
the groups.

Components Layer

Management Layer

S1

S2

S3 S4

SSM1 SSM2

Fig. 3. Example configuration of a Smart Space

Figure 3 shows an example of a SeSaMe topology. As we can see, the com-
ponents layer comprises 4 groups —supervised by nodes S1, S2, S3, and S4,
respectively— that are composed to satisfy their reciprocal needs. The manage-
ment layer is made up of two SSMs: SSM1 and SSM2. Each is configured to be
a supervisor of the other, thus ensuring a two-way information exchange between
them.

The two layers come from the idea of distinguishing between (more) stable,
static components, which provide the “backbone” of the system, and the dynamic
ones that correspond to the different devices (users) that enter and leave the
system. If the physical infrastructure allows for the identification of stable peers,
the management layer is also in charge of the reliability of the whole systems:
clearly situations like first-responder solutions cannot count on these reliable
backbone and dedicated solutions must be put in place. However we consider
this last case to be future work, and, therefore, out of the scope of this paper.

SeSaMe: Towards a Semantic Self Adaptive Middleware for Smart Spaces 7

The management layer becomes responsible for different management tasks.
The first consists in managing new node connections. Every time a new node
connects to the system, the SSMs collaborate to find the most appropriate com-
ponent group in which to include it, depending on its needs, goals, and capabili-
ties. The second consists in managing node disconnections, to ensure the overall
system reliability. In practice, the SSMs can collaborate to modify the system’s
topology accordingly. The third consists in managing congestion, to ensure that
messaging is always achieved efficiently throughout the system.

Figure 4 presents the high-level architecture of SeSaMe and introduces two
further novel contributions. The first is a new declarative language that one can
use to explain what groups should be present in the system (Config rules), how
they should be composed, and how they should evolve over time. The second
is an ontology-based semantic layer that allows different kinds of sensors, actu-
ators, and computational elements to become part of the system and interact
seamlessly.

Fig. 4. The SeSaMe Architecture

Before we provide more details regarding SeSaMe’s novel contributions, we
provide the initial setups of the components layers of our smart office and ex-
hibition center scenarios. In the office scenario we have groups that depend on
component types (e.g., lights, air conditioners, shutters and heaters), and we
have groups that depend on the desired functionality (e.g., temperature man-
agement, light adjustments, spatial adjustments, etc.). As shown in Figure 5,

8 L. Baresi, S. Guinea, and A. Shahzada

some of the devices actually participate in more than one group at a time (e.g.,
the shutters belong to both the light and temperature adjustment groups). Sim-
ilarly, in the exhibition center scenario, people (their devices) are grouped based
on their interests and on their location, and can belong to more than one group
at a time.

Fig. 5. Initial Configuration of the Smart Office

4.1 Management Layer

Within the management layer, a supervisor is responsible for managing the
overall system’s topology, while a follower, which is a supervisor within the
components layer, defines how the components should interact with their cor-
responding SSM. In practice, these followers send periodic status updates to
their corresponding SSMs, so that they can take important decisions regarding
changes in the system, such as assigning appropriate supervisors and groups to
new components to maintain an optimized network topology.

Due to their group-based arrangement, the SSMs provide a unified view of
the middleware to the application designer (see Figure 4). The topological or-
ganization of the management layer is completely transparent to the system’s
components, which can initially connect through any of the SSMs, which act
as proxies to the whole infrastructure. SeSaMe allows one to use multiple gov-
erning structures, that is, ways of organizing groups. They can be hierarchical,
flat, or any other possible option. The connecting component is automatically
associated with the correct group, and, as a consequence, to the correct SSM.
The management layer can also autonomously change its topology according to
the dynamic behavior of the components, to better ensure the reliability and
load balancing of the various system components. We shall now go into more
detail as to how the management layer helps the smart space system cope with
dynamism and self-configuration, reliability, and congestion management.

Dynamism and Self Configuration. The management layer deals with dy-
namism by supporting the automated formation of new groups. A new compo-
nent can connect to any existing group, or create a new one. This means that
SeSaMe automatically identifies the right group supervisor (follower at man-
agement level) and links the new component to it. If the component can play

SeSaMe: Towards a Semantic Self Adaptive Middleware for Smart Spaces 9

different roles, that is, it can belong to different groups, the management layer
will decide its group memberships according to all its roles. Note that group
formation is handled by maintaining shared lists of the existing groups and su-
pervisors within the management layer.

SeSaMe takes many different aspects into account when selecting what group
a component should join. Let us first consider the case in which the new compo-
nent can only play a single supervisor role. When it connects, the selected SSM
searches for the corresponding group in the shared group list. If such a group
does not exist, it creates a new group with that component as the supervisor,
asks the component to activate its (management) follower role, and updates the
lists of shared groups and supervisors. If, on the other hand, one or more ac-
ceptable groups already exist, the management layer will decide, based on the
system’s desired configuration (see Section 4.2), how to add the component to
the already existing groups. Based on performance and resource utilization, the
management layer will select the group with less followers, and less message
exchanges.

If the new component can play multiple supervisor and follower roles, the man-
agement layer enacts the above procedures for each and every one of
the component’s roles. This implies that the component will become part of all
the groups that it can be part of, at that particular time. If a component can play
both the supervisor and the follower role in a specific group, the management
layer will decide its role based on the system’s overall needs. The component
will become a supervisor if any of the existing groups are congested. Otherwise,
the new component will become a follower.

In the exhibition center scenario, whenever a user connects to the system
(space), the user’s interests are matched to the various existing groups, and s/he
is assigned to a group (or to a set of groups) accordingly. This happens if this
does not affect the balance and efficiency of the network. For example, if a user
can be part of both the “Technology” and the “Sports” groups, and the group
for technology oriented stands is congested, the management layer will start by
adding the user to the sports group. If the new component happens to become
a supervisor in that group, then it will also start executing the (management)
follower role.

Reliability. SeSaMe is capable of automatically managing situations in which
components leave the system unexpectedly. If the node leaving the system is a
follower, the SSM in charge of it decides whether this should cause any groups
to merge or re-organize to satisfy the desired system configuration.

If the component leaving the system is a supervisor, SeSaMe has three pos-
sibilities. In the first, it communicates the event to its followers, so that they
can reconnect to the system by interacting with any of the SSMs in the manage-
ment layer. In the second, one of the orphaned followers is called to substitute
the failing supervisor. Orphaned components start by simply reconnecting to
the management layer. The first component to reconnect, that can also play the
supervisor role, gets promoted to supervisor status. From there on, the SSMs
collaborate to progressively send all the orphaned components to this new group.

10 L. Baresi, S. Guinea, and A. Shahzada

In the third, the SSM that was responsible for the failing supervisor takes its
place. The SSMs in the management layer then collaborate to send all the recon-
necting orphans to that SSM, which will hold on to them until a new supervisor
becomes available.

For example, in our office scenario, we can use these techniques to tackle
printer failures by providing a “virtual” printer. If a device attempts to use a
failed printer, the SSM replacing that printer can take care of the printing jobs
by collaborating with other SSMs to find a substitute printer. This ensures that
the service is provided reliably. Similarly, if a display in the exhibition scenario
fails, the SSMs can collaborate to connect users to other displays in the vicinity.

Moreover, the ability of a component to be part of multiple groups at a time
raises the problem that it may receive conflicting directives from the different
supervisors. For example, it might be the case that the light adjustment group
may prefer a shutter to be opened whereas the temperature adjustment group
wants it to be closed. SeSaMe fosters the idea that a well designed system would
not have to face these situations. However, the interactions among the differ-
ent groups, and the system-specific composition of the commands issued by the
different supervisors provide a further way to manage them. The last option is
that the internal logic of each single component can always specify how to deal
with these spurious, conflicting cases. This means that either the groups are
composed in such a way that the commands issued by the temperature supervi-
sors can filter those issued by the light managers. Otherwise, the shutter itself
can be programmed to decide that the commands received from a temperature
supervisor override the commands received from the other supervisors.

Congestion Management. As previously stated, the SSMs are continuously
updated by the components’ supervisors so that they can take decisions regard-
ing the system’s topology. These updates include the number of messages that
the components’ supervisors have received and sent in a given time, the size of
the group they are supervising, and the number of groups they are a member
of. The SSMs process this information and act according to the desired system
configuration. For instance, if an SSM finds out that the size of a given group of
components has exceeded the maximum size limit or that the number of mes-
sages that are sent or received by the supervisor in a given time has been higher
than the specified threshold, it will split that group by finding another appro-
priate supervisor and will distribute the components among the two groups. In
case no other group of that type is available, the SSM will try to select a com-
ponent of the original group that can take the role of supervisor and will then
split the components by changing the role of that component from follower to
supervisor within the components layer. Note that the new supervisor will also
act as a follower of the SSM and the management layer will then be updated of
the status of this new group. Similarly, if the SSM finds out that a group is too
small or it only exchanged few messages in a given amount of time, it tries to
find another similar group and merges the two together.

SeSaMe: Towards a Semantic Self Adaptive Middleware for Smart Spaces 11

In the exhibition scenario, the system will guide a group of users to their
desired destinations, but if the system finds out that a group (of people) is ex-
ceeding the set highest limit, it can split the group into multiple sub-groups,
and guide them to the locations in a way that avoids message, and people con-
gestion. For example, it can route different sub-groups differently within the
exhibitions’ premise. If an emergency situation ever arises, the same techniques
can be used to route people to different exits, avoiding, once again, message and
people congestion.

4.2 Declarative Configuration of the Management Layer

One of SeSaMe’s main novel contributions is that it allows one to declaratively
express his/her desiderata for the system’s topology. All the decisions taken at
the management layer are made according to this specification. The language
can express component group types, their initial topology, and various thresholds
for group merging and splitting. We call these thresholds the self-organizing
parameters (SOPs). Our simple declarative language has the following syntax:

<configuration> =:> <groups definition> ; <initial topology>; <parameters>
<groups definition> =:> Groups ; <groups>
<groups> =:> <group> | <group>; <groups>
<group> =:> <group Info> | <group Info>; <parameters>
<group Info> =:> GroupDescription GroupSupervisorRole GroupFollowerRole
<initial topology> =:> Topology ; <topology>
<topology> =:> <initial group> | <topology>
<initial group> =:> GroupId <group> ; <components>
<components> =:> <component> | <components>
<component> =:> componentId ; <role>
<role> =:> Supervisor | Follower
<parameters> =:> Parameters ; <parameter definition>
<parameter definition> =:> <group size>; <max no. of messages>;

<update frequency>;
<min no. of messages>;
<group size> =:> groupSize <size>
<max no. of messages> =:> maxNoMsgs <no. of msgs>
<update frequency> =:> updateFrequency <frequency in milliseconds>
<min no. of messages> =:> minNoMsgs <no. of msgs>

Each group is defined by a group description, its corresponding supervisor and
follower roles, and its SOP values. If no SOP values are defined for a particular
group, SeSaMe uses a default set of SOP values. The SOPs include the maximum
group size, the status update frequency, and the maximum and minimum num-
ber of messages per time unit accepted by the group’s supervisor. The maximum
group size limits the number of components that can be accepted within a group;
if a group exceeds this limit, either it is split into new subgroups, or some of its
components are re-assigned to another group with the same characteristics. The
maximum and minimum number of messages determine the acceptable commu-
nication load for a group’s supervisor. The group will split if the communication

12 L. Baresi, S. Guinea, and A. Shahzada

load exceeds the higher threshold to avoid congestion; two groups will merge, if
possible, when one or both of them go below their thresholds.

We now provide an example of how our language can be used to define the
initial topology and evolution rules of our smart office scenario (please refer to
Figure 5).

Groups
LightSensorsGroup LightSensorSupervisor LightSensorFollower
TempSensorsGroup TempSensorSupervisor TempSensorFollower
LightsGroup SupervisorLight FollowerLight
ShuttersGroup SupervisorShutter FollowerShutter
ACsGroup SupervisorAC FollowerAC
LightAdjustment LightingSupervisor LightingFollower
TempAdjustment TempSupervisor TempFollower

Topology
Group1 LightSensorsGroup LightSensorSupervisor LightSensorFollower
LightSensor Supervisor
LightSensor2 Follower
LightSensor3 Follower

Group2 LightsGroup LightSensorSupervisor LightSensorFollower
Light1 Supervisor
Light2 Follower
Light3 Follower
Light4 Follower

Group3 TempSensorsGroup TempSensorSupervisor TempSensorFollower
TempSensor1 Supervisor
TempSensor2 Follower
TempSensor3 Follower

Group4 ShuttersGroup SupervisorShutter FollowerShutter
Shutter1 Supervisor
Shutter2 Follower
Shutter3 Follower
Shutter4 Follower

Group5 LightAdjustment LightingSupervisor LightingFollower
LightingSV Supervisor
Light1 Follower
Shutter1 Follower

Parameters
groupSize 15
maxNoMsgs 200
updateFrequency 2
maxNoMsgs 20

SeSaMe: Towards a Semantic Self Adaptive Middleware for Smart Spaces 13

4.3 Harmonizing Heterogeneous Components

Interaction and information exchange among large numbers of heterogeneous
devices is a major issue while developing applications for smart spaces. Our
middleware provides a semantic layer for enabling diverse devices to communi-
cate and exchange information with each other. The devices will use a set of
common semantic models, based on Resource Description Framework (RDF), to
enable easy linking of cross-domain data. In practice, we define both the com-
ponents and their messages in terms of RDF-based semantic ontologies, so that
SeSaMe can integrate and organize the devices. All components have access to
a common repository that stores the data in a format supported by RDF.

Sensor

valuetimeStamp

measures

takes

Location

at
has

at
is

Fig. 6. The Sensor Ontology

In our smart office example, each room has its own set of sensors; they feed
information into the system using a specified model, and, thanks to that model,
all the other components can interpret their values. Figure 6 shows a simple ex-
ample ontology model for the sensors. Each sensor is defined by its location, the
physical property it measures, the range within which its values can be output,
the actual reading, and a timestamp. An example of how this sensor ontology
can be used to represent information in RDF is shown in Figure 7. The RDF
graph shows the property measurements of two sensors S1 and S2, located in
Room01 and Room02, respectively. Both these sensors measure temperatures;
S1 can sense temperatures between −100 and 100 degrees, whereas S2 can mea-
sure temperatures between −50 and 100 degrees. The graph also shows one
measurement for each sensor (i.e., the value and its timestamp). Thanks to this
model the sensors can “speak” the same language, and the system can digest the
information they generate. Similarly, the semantic model is also used to define
roles for various components, so that the SSMs can associate the components
with relevant groups by matching relevant ontological information.

5 Related Work

Many researchers [19,1] have investigated and developed middleware solutions
for smart spaces. Due to the inherent complexity of these spaces, the task of

14 L. Baresi, S. Guinea, and A. Shahzada

Fig. 7. The RDF graph of a semantic model for sensors

developing a robust and self-adaptive middleware is not trivial. In literature, we
find that various architectural approaches, such as service oriented architecture,
multi-agent systems, nature-inspired computing, and many others have been
employed.

A lot of work has been done to devise service-oriented middleware solu-
tions [22,26,12]. SOCRADES [3] is a service oriented middleware infrastruc-
ture that provides a web-service-based interface to interact with heterogeneous
devices over the network. The SOCRADES integration architecture (SIA) [21]
features a sophisticated event-driven messaging system that enables applications
to consume data on specific events, from devices whose functionality is abstracted
as web services. It does not, however, support contextual information, and it does
not show how the system will scale and organize itself in dynamic environments.
Reyes and Wong also propose a service-oriented middleware [20] for integrating
various sensors and actuating devices within a smart home setting. It exposes
different devices as services that can be used by the application designer to build
various applications. The proposed architecture is very restrictive and domain
specific, and does not generalize well to various kinds of smart spaces. RUNES [9]
offers a publish-subscribe middleware solution with dynamic reconfiguration ca-
pabilities, and targets sensor networks and embedded systems. It has good device
coordination mechanisms, but it does not optimize the network’s behavior, for
example by delegating more tasks to devices with more resources. The problem
with most of these systems is that they are usually static and operate without
knowledge of their environments, and they are unable to adapt themselves to
evolving needs and requirements [25]. Therefore, it is generally difficult to deploy
these systems in the real-time dynamic and large scale systems we are interested
in as they lack the self-organization and self-adaptive capabilities.

Multi-agent systems is another paradigm that has been used intensively in
attempt to build middleware infrastructures of highly dynamic, autonomous
and mobile smart spaces. ASPECS [8] is a comprehensive agent-oriented soft-
ware process for engineering complex systems. It is based on a holonic orga-
nizational meta-model, and provides a step-by-step modeling guide and tools
for all the development phases, from requirements gathering to implementation.

SeSaMe: Towards a Semantic Self Adaptive Middleware for Smart Spaces 15

ASPECS is similar to our approach, in a sense that holons of agents also compose
to create new holons, but it focuses on systems with hierarchical configurations.
We, on the other hand, advocate that the self-adaptive organization of com-
ponents is more flexible, since it can support linear, circular, hierarchical con-
figurations, and more. Similarly, SETH [16] is also an agent-based hierarchical
architecture for smart spaces. The architecture can be deployed in layers, which
allows one to create complex smart environments by means of inheritance and
aggregation relationships. Every smart space in SETH is represented by a Smart
Space Agent Platform (SSAP) that hosts all other smart space and system level
agents.Though it provides the hierarchical and location-based aggregation of dif-
ferent spaces and groups of devices, it does not provide any self-configuration
abilities and does not offer any reliability in case of component failures. Rubén
et. al propose a multi-agent architecture [10] that considers sensors in a space
as devices used by the controller agents residing in an upper layer. It is built
upon INGENIAS [14], a Model Driven Engineering methodology for the develop-
ment of multi-agent systems. Agents are organized according to roles related to
aspects such as component management, communication, and data processing.
Such an organization ensures the separation of concerns for different compo-
nents, and it decouples data management from network dynamics. This system
targets scalability and uses roles and groups to address non-functional require-
ments, but is mostly focused towards wireless sensor networks. EasyMeeting [7]
extends Vigil [15] by adding context-aware support for assisting speakers and
audiences during presentation meetings and it exploits the Cobra [6] architec-
ture for context management. The issues that are yet to be addressed with the
proposed architecture are the scalability of knowledge sharing in distributed and
dynamic environments, and performance analysis in the presence of large scale
networks. In general, multi-agent systems exhibit autonomic, self-configuration
and self-adaptation characteristics, but they do not guarantee the reliable inte-
gration and provision of devices and services in a smart space. Unlike traditional
distributed systems where fault tolerant techniques are often employed at low
level and usually they are part of the infrastructure, in multi-agent systems we
need to implement these decision making policies at a more abstract level of de-
sign and this involves planning and cooperation of agents that are autonomous
in their behavior and hence can lead to uncertain states in case agents fail to
understand their role at either activity or organization level.

ASCENS [25] describes a systematic approach to engineer ensembles, that is,
software systems with large amounts of heterogeneous devices operating in open
and non-deterministic environments, and in which there are complex interac-
tions among nodes, humans, or other systems. The proposed approach is focused
on the fact that these systems should be reliable and should be able to adapt
themselves according to the changing environment and unforeseen situations.
It provides tools and languages for requirements modeling, service composition
and adaptation. The project is still active and they are developing self-awareness
and self-adaptation capabilities for the current model.

16 L. Baresi, S. Guinea, and A. Shahzada

There is another research dimension for self-adaptive middleware for smart
spaces that puts forward the idea of using nature-inspired computing [4,23,2,13].
Most of these solutions are inspired by ecological systems, bio-chemical pro-
cesses, and social networks. Miorandi et al. [18] outline some of the work done
with project BIONETS. Nature is inherently capable of handling problems such
as scale, heterogeneity, dynamism, and high complexity, and sustaining equilib-
rium and balance without a central controlling authority. The paper describes
some of the nature-inspired computing paradigms such as chemical comput-
ing, artificial chemistry, evolutionary games and artificial embryogenesis. The
SAPERE model [4,5] promotes self-adaptivity by means of spatially-situated
and chemically-inspired interactions between services and devices. It models a
pervasive service environment as a spatial substrate that makes use of natural
laws. [27,23] argue that in the next few years there will be a very high density
of sensors and other smart mobile devices, and that the conventional service-
oriented architecture will not be able to support such dynamic and large-scale
systems. These nature-inspired architectures are very interesting theoretically,
but there is no infrastructure that provides all the functional and non-functional
requirements of a smart space. Instead of trying to evolve ambitious ecosystems
of heterogeneous devices and computational elements, we are working on incor-
porating some of these nature-inspired algorithms to enhance the self-adaptive
and self-healing capabilities of SeSaMe. We believe this approach to be more
realistic and practical.

6 Conclusions and Future Work

This paper outlines SeSaMe, a semantic and self-adaptive middleware for large,
dynamic smart spaces. SeSaMe extends the capabilities of A-3 by providing a
distributed management layer, on top of the existing group-based coordination
model, which takes care of autonomic organizational decisions. The management
layer supports automated group formation, group self-configuration and self-
healing, and congestion management. We provide a declarative language that
one can use to define rules as to how SeSaMe should coordinate the evolution of
the topology of the system. SeSaMe also addresses the issue of managing commu-
nication between heterogeneous components by providing a semantic layer, based
on RDF, that simplifies the integration of different kinds of devices. We also pre-
sented two example smart spaces, with different functional and non-functional
requirements, and explained how our proposed middleware can support various
kinds of applications in different domains and situations.

As for future work, we intend to incorporate nature and bio-inspired comput-
ing techniques, to enhance the self-organization and self-adaptation capabilities
of our middleware. For example, swarm intelligence follows the principle of hav-
ing decentralized, coordinated, and self-organizing agents working autonomously
for a greater goal. It resembles our approach, in the sense that we also believe that
every system component should act autonomously, according to its role in the
system, and to the components with which it is grouped. We are also interested

SeSaMe: Towards a Semantic Self Adaptive Middleware for Smart Spaces 17

in studying means to aggregate multiple smart spaces, and build smart digital
cities in which we have many smart spaces interacting and sharing knowledge
and services.

References

1. Atzori, L., Iera, A., Morabito, G.: The Internet of Things: A survey. Computer
Networks 54(15), 2787–2805 (2010)

2. Babaoglu, O., Canright, G., Deutsch, A., Caro, G.A., Ducatelle, F., Gambardella,
L.M., Ganguly, N., Jelasity, M., Montemanni, R., Montresor, A., Urnes, T.: De-
sign Patterns from Biology for Distributed Computing. ACM Transactions on Au-
tonomous and Adaptive Systems 1(1), 26–66 (2006)

3. Cannata, A., Gerosa, M., Taisch, M.: Socrades: A Framework for Developing Intel-
ligent Systems in Manufacturing. In: Proceedings of IEEE International Conference
on Industrial Engineering and Engineering Management, pp. 1904–1908 (2008)

4. Castelli, G., Mamei, M., Rosi, A., Zambonelli, F.: Pervasive Middleware Goes So-
cial: The SAPERE Approach. In: Proceeding of 5th IEEE Conference on Self-
Adaptive and Self-Organizing Systems, Workshops, pp. 9–14 (2011)

5. Castelli, G., Mamei, M., Zambonelli, F.: The Changing Role of Pervasive Middle-
ware: From Discovery and Orchestration to Recommendation and Planning. In:
Proceedings of 9th IEEE International Conference on Pervasive Computing and
Communications, Workshops, pp. 214–219 (2011)

6. Chen, H.: An Intelligent Broker Architecture for Pervasive Context-Aware Systems.
PhD thesis, University of Maryland, Baltimore County (December 2004)

7. Chen, H., Finin, T., Joshi, A., Kagal, L., Perich, F., Chakraborty, D.: Intelligent
Agents Meet the Semantic Web in Smart Spaces. IEEE Internet Computing 8(6),
69–79 (2004)

8. Cossentino, M., Gaud, N., Hilaire, V., Galland, S., Koukam, A.: Aspecs: An Agent-
oriented Software Process for Engineering Complex Systems. Autonomous Agents
and Multi-Agent Systems 20(2), 260–304 (2010)

9. Costa, P., Coulson, G., Gold, R., Lad, M., Mascolo, C., Mottola, L., Picco, G.P.,
Sivaharan, T., Weerasinghe, N., Zachariadis, S.: The RUNES Middleware for
Networked Embedded Systems and Its Application in a Disaster Management Sce-
nario. In: Proceedings of the Fifth IEEE International Conference on Pervasive
Computing and Communications, pp. 69–78 (2007)

10. Fuentes-Fernendez, R., Guijarro, M., Pajares, G.: A Multi-Agent System Architec-
ture for Sensor Networks. Sensors 9(12), 10244–10269 (2009)

11. Guinea, S., Saeedi, P.: Coordination of Distributed Systems through Self-
Organizing Group Topologies. In: Proceedings of the 7th International Sympo-
sium on Software Engineering for Adaptive and Self-Managing Systems, pp. 63–72
(2012)

12. Gurgen, L., Roncancio, C., Labbé, C., Bottaro, A., Olive, V.: Streamware: A
Service-oriented Middleware for Heterogeneous Sensor Data Management. In: Pro-
ceedings of the 5th International Conference on Pervasive Services, pp. 121–130
(2008)

13. Herold, S., Klus, H., Niebuhr, D., Rausch, A.: Engineering of IT Ecosystems: De-
sign of Ultra-Large-Scale Software-Intensive Systems. In: Proceedings of the 2nd
International Workshop on Ultra-large-scale Software-Intensive Systems, pp. 49–52
(2008)

18 L. Baresi, S. Guinea, and A. Shahzada

14. Juan, P., Jorge, J.G., Rubén, F.: The INGENIAS Methodology and Tools. In:
Agent-Oriented Methodologies, pp. 236–276. Idea Group Publishing (2005)

15. Kagal, L., Undercoffer, J., Perich, F., Joshi, A., Finin, T., Yesha, Y.: Vigil: Pro-
viding Trust for Enhanced Security in Pervasive Systems, NTIS Technical Report
(2002)

16. Marsa-Maestre, I., Lopez-Carmona, M., Velasco, J., Paricio, A.: Mobile Devices for
Personal Smart Spaces. In: Proceedings of the 21st International Conference on Ad-
vanced Information Networking and Applications Workshops, vol. 2, pp. 623–628
(2007)

17. Marsa-Maestre, I., Lopez-Carmona, M.A., Velasco, J.R.: A Hierarchical, Agent-
based Service-oriented Architecture for Smart Environments. Service Oriented
Computing and Applications 2(4), 167–185 (2008)

18. Miorandi, D., Carreras, I., Altman, E., Yamamoto, L., Chlamtac, I.: Bio-Inspired
Approaches for Autonomic Pervasive Computing Systems. In: Liò, P., Yoneki, E.,
Crowcroft, J., Verma, D.C. (eds.) BIOWIRE 2007. LNCS, vol. 5151, pp. 217–228.
Springer, Heidelberg (2008)

19. Raychoudhury, V., Cao, J., Kumar, M., Zhang, D.: Middleware for Pervasive Com-
puting: A Survey. Pervasive Mobile Computing 9(2), 177–200 (2013)

20. Reyes Alamo, J., Wong, J.: Service-oriented Middleware for Smart Home Applica-
tions. In: Proceedings of IEEE Wireless Hive Networks Conference, pp. 1–4 (2008)

21. Spiess, P., Karnouskos, S., Guinard, D., Savio, D., Baecker, O., Souza, L., Trifa,
V.: SoA-based Integration of the Internet of Things in Enterprise Services. In:
Proceedings of the IEEE International Conference on Web Services, pp. 968–975
(2009)

22. Teixeira, T., Hachem, S., Issarny, V., Georgantas, N.: Service Oriented Middleware
for the Internet of Things: A Perspective. In: Abramowicz, W., Llorente, I.M.,
Surridge, M., Zisman, A., Vayssière, J. (eds.) ServiceWave 2011. LNCS, vol. 6994,
pp. 220–229. Springer, Heidelberg (2011)

23. Villalba, C., Rosi, A., Viroli, M., Zambonelli, F.: Nature-Inspired Spatial
Metaphors for Pervasive Service Ecosystems. In: Proceedings of the 2nd IEEE In-
ternational Conference on Self-Adaptive and Self-Organizing Systems, Workshops,
pp. 332–337 (2008)

24. Weiser, M., Gold, R., Brown, J.S.: The Origins of Ubiquitous Computing Research
at PARC in the Late 1980s. IBM System Journal 38(4), 693–696 (1999)

25. Wirsing, M., Hölzl, M., Tribastone, M., Zambonelli, F.: ASCENS: Engineering
Autonomic Service-Component Ensembles. In: Beckert, B., Bonsangue, M.M. (eds.)
FMCO 2011. LNCS, vol. 7542, pp. 1–24. Springer, Heidelberg (2012)

26. Yuebin, B., Haixing, J., Qingmian, H., Jun, H., Depei, Q.: Midcase: A Service-
oriented Middleware Enabling Context-awareness for Smart Environment. In: Pro-
ceedings of International Conference on Multimedia and Ubiquitous Engineering,
pp. 946–951 (2007)

27. Zambonelli, F., Viroli, M.: From Service-Oriented Architectures to Nature-Inspired
Pervasive Service Ecosystems. In: Proceedings of the 11th National Workshop from
Objects to Agents (2010)

Propagating AUML Protocols

to Detailed Design

Yoosef Abushark� and John Thangarajah

School of Computer Science and IT, RMIT University, Melbourne, Australia
{yoosef.abushark,john.thangarajah}@rmit.edu.au

Abstract. The interaction between agents is a key aspect of multi-agent
systems. AUML sequence diagrams are commonly used to specify these
interactions between agents in terms of interaction protocols. Whilst most
of the popular agent oriented software engineering methodologies such
as Prometheus, Tropos, O-MaSE, INGENIAS and GAIA support AUML
protocol specifications in the design, the supportive tools do not provide
any mechanisms for ensuring that the detailed design, and consequently
the implementations, faithfully follow these protocols. In this paper, we
show how AUML protocol specifications in the Prometheus methodology
can be automatically propagated to the detailed design of the method-
ology by creating appropriate artefacts. The approach is general to all
design methodologies that follow the BDI model of agents. We empiri-
cally show that the manual translation of protocols to the detailed design
even for a simple AUML protocol can be a tedious and error-prone task
for even relatively experienced users. The evaluation shows that our au-
tomated approach address these issues to a large extent.

Keywords: AOSE Methodology, Multi-agent system, Inter-Agent
Interaction Protocols.

1 Introduction

Intelligent Agent Systems are gaining popularity for building complex applica-
tions such as Unmanned Aerial Vehicles [20] and Electronic trading agents [22].
Features such as autonomy, proactivity, flexibility, robustness and social abil-
ity, are what makes these multi-agent systems (MAS) suitable for developing
applications that operate in highly dynamic environments. However, these very
features also makes developing and testing multi-agent systems a difficult and
challenging task.

A number of architectures have been proposed to developing MAS, in par-
ticular, the popular Belief-Desire-Intention (BDI) agent architecture [21] where
agents are developed using mental attitudes of beliefs, goals, plans, events, and
so on. A number of agent oriented software engineering (AOSE) methodolo-
gies have been proposed for designing and implementing systems based on the

� Aknowledges King Abdulaziz University for scholarship.

M. Cossentino et al. (Eds.): EMAS 2013, LNAI 8245, pp. 19–37, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

20 Y. Abushark and J. Thangarajah

BDI model of agency. Amongst them, Prometheus [17], Tropos[3], O-MaSE [7,6],
INGENIAS [18] and GAIA[25,12] are some of the most commonly used.

In multi-agent systems inter-agent interaction plays a significant role. For ex-
ample, in an agent-based trading system, the buyer and seller agents need to
communicate with each other in order to complete a sale transaction. The above
agent design methodologies allow the designers to capture these interactions in
the form of interaction protocols. A common representation of interaction pro-
tocols, in the context of AOSE, is AUML (Agent Unified Modelling Language)
sequence diagrams [15], as adopted by the above mentioned design methodolo-
gies. An AUML sequence diagram captures all the possible legal exchange of
messages between agents including the temporal aspects.

Although most of the AOSE methodologies consider agent interaction proto-
cols an essential part of the methodology, they provide little (if any) support
for ensuring that the interaction protocols are faithfully translated from speci-
fication to the detailed design artefacts. It is up to the designer to ensure that
the protocols are indeed followed by the system, which can be a tedious and
error-prone task that often result in a mismatch between the specification and
implementation.

In this paper we present an approach to address the above. In most of the
AOSE methodologies, the detailed design (the lowest level) is the closest to im-
plementation and often can be auto-generated to skeleton code. In this work, we
provide a mechanism for automatically creating these detailed design structures
from the AUML protocol specification. We base our approach on the Prometheus
methodology. For example, in the Prometheus methodology the development of
protocols occurs in the ‘Architectural Design’ phase, but they do not get mapped
fully to the detailed design phase of each agent which will be eventually trans-
lated to skeleton code in the JACK agent language [23].

In the following section, we briefly describe the AUML protocol specification
and how it relates to the current AOSE methodologies. We then describe some
of our propagation mechanisms in Section 3 including the factors that influence
the algorithms. We then evaluate our approach in Section 4 and show that even
for a simple protocol, relatively experienced users take a considerable amount
of time to manually translate protocols to implementation and also produce a
number of errors in terms of not adhering to the protocol specification. Our
approach overcomes these drawbacks and provides a significant time saving as
well as a more reliable system with respect to protocols.

2 Background

AUML sequence diagrams are a popular way of representing protocols and
has been adopted by many AOSE methodologies. There are however other ap-
proaches such as the Finite State Machine approach used in the work on Elec-
tronic Institutions [1].

In this section we briefly describe the AUML protocol notation and the current
support for protocol development in some of the most common AOSE method-
ologies; Tropos, O-MaSE, INGENIAS, GAIA and Prometheus.

Propagating AUML Protocols to Detailed Design 21

2.1 AUML Protocol Specification

AUML is an extension of the standard Unified Modelling Language (UML) used
in the object-oriented paradigm [15]. The purpose of AUML is to generate arte-
facts that support the development environment throughout the development
lifecycle. Even though the AUML notation supports the entire development life-
cycle, in this work we are only concerned with the AUML notation for modelling
agent interaction protocols. More specifically, the AUML sequence diagrams.

AUML sequence diagrams [13], also called a Protocol Diagrams [2], is one of
the dynamic AUML models that shows the flow of messages between agents and
the order of those messages. Agents that implement the protocol must be able to
send and receive the messages in the order specified. AUML sequence diagrams
are similar to UML sequence diagrams that are used in the Object-Oriented
paradigm. However, instead of having instances of objects as the main entities
of the diagram, agents (or agent roles) are the main entities [16].

In addition to message flow, AUML sequence diagrams also allow constructs
and guards to be specified. Constructs control the execution flow of messages
specified and guards specify when a particular sequence of messages is valid (or
not). The AUML sequence diagram has eight different constructs, as follows:

– ALT (alternative): can have multiple regions, with only one region that is
executed based on the region’s guard (the condition that must be true for the
region to be executed). It is possible that none of the Alternative’s regions
get executed. To overcome such a situation, the ‘else option’ needs to be
forced [13].

– OPT (option): is a single region that may or may not occur based on the
guard of the construct.

– LOOP: indicates the repetition of a sequence of messages for a fixed number
of iterations based on a number or a logical condition.

– BREAK: shows that the communication has been interrupted and termi-
nated.

– STOP: indicates the end of the agent’s lifeline.

– PAR (parallel): allows the communication to be made in parallel.

– REF (reference): enables the designer to include another sub-protocol within
the modelled protocol by referring to the name of that sub-protocol.

– Continues [goto / label]: is used to control the execution of the sequence of
a protocol through two directives: ‘goto’ and ‘label’. The designer can make
the sequence jump to a specific point within the protocol.

AUML sequence diagrams can be constructed in two ways; using either graphical
or textual notations [24]. Figure 1 shows a simple AUML sequence diagram in
both its graphical and textual notations. The figure illustrates the interaction
between two player agents in a gold mining game. ‘Player:A’ agent asks ‘Player:B’
agent whether it has gold or not. The ‘Player:B’ agent may reply with either
‘Yes’ or ‘No’, based on the ‘Carrying Gold’ boolean predicate. Thus, the reply
is embedded in an ‘ALT’ construct.

22 Y. Abushark and J. Thangarajah

Fig. 1. AUML Sequence Diagram & Textual Notation

Whilst the graphical notation is an intuitive form to visualize the protocol,
the textual notation is a structured way of constructing the protocol that is fast,
easy to write and edit. In order to textually construct an AUML interaction pro-
tocol the written AUML textual notations must be well structured according to
the rules specified in [24]. The Prometheus Design Tool (PDT) which supports
the Prometheus designmethodology allows the users to specify protocols using the
textual notation and generates the visual diagram from it. We use the structured
textual notation for implementing our protocol propagation techniques outlined in
Section 3.

2.2 AOSE Methodologies and Protocols

In AOSE, there has been little research into ensuring the faithful implementation
of protocol specifications.We consider here five of the most commonly used AOSE
methodologies: Tropos, O-MaSE, INGENIAS, GAIA and Prometheus. Despite
the fact that thesemethodologies do offer development environments through their
supported tools, none of them adequately support the propagation of the interac-
tion protocols to lower design levels. We explore each of them below:

Tropos Methodology : In Tropos, the interaction protocols are specified in
AUML as a part of the capability modelling activity in the detailed design phase.
The Tropos methodology has many tools to support the methodology [14] and
help with generating the design artefacts. One of these is the TAOM4e tool [7].
This tool has a code generation feature that takes a detailed design and provides
skeleton code in the JADE agent language [14].

The UML2JADE code generator, which is part of TAOM4e, is used to gen-
erate JADE agent code with respect to the agent interaction diagrams. The
JADE agent code is generated through the transformation from the interaction
diagrams meta-model to the JADE meta-model that leads to the creation of
a XMI (XML Metadata Interchange) file that helps to produce the capability
files [19]. This meta-model propagation is limited to propagating the messages
exchanged between the agents within the protocol but does not enforce the or-
dering specified in the protocols which is the key contribution of the work we
present. Given that no ordering is enforced, the AUML constructs are also not
considered in the propagation.

Further, the limited transformation is done directly from the AUML specifica-
tion to code, rather than to the lower design levels, which precludes the designer

Propagating AUML Protocols to Detailed Design 23

from being able to modify and control the protocol elements at a design level.
For example, a plan that sends a particular message in a protocol may perform
other tasks that need to be modelled at the design level.

O-MaSE Methodology : O-MaSE consists of three design phases: require-
ments, analysis and design. Protocol development occurs in the design stage
which has seven tasks[9]: model agent classes, model protocols, model plans,
model policies, model capabilities, model actions and model services. O-MaSE
uses AUML sequence diagrams for modelling the interaction protocols between
agents[6].

The O-MaSE methodology offers a development environment for developing
agent-based systems through agentTool III (aT 3) [14]. aT 3 provides a complete
code generation facility that produces an implementation skeleton code of the
intended agent-based system according to the detailed models of that system[14].
However, it does not support the propagation of the modelled protocols to these
detailed models [8].

INGENIAS Methodology : The INGENIAS methodology considers agent sys-
tems from five viewpoints: organisation, agent, goals/tasks, interactions and en-
vironment [18]. The designers are provided a set of concepts and relationships to
describe each viewpoint in terms of design elements. These viewpoints represent
the meta-models of the intended system. The definition of interaction protocols
in this methodology is part of the interaction viewpoint designing process. Even
though the methodology has its own notations (Grasia) for modelling protocols,
it accepts AUML sequence diagrams to model the interactions [18].

The INGENIAS Development Kit (IDK) is an integrated development envi-
ronment that supports the methodology’s development life-cycle [10]. The tool
provides code generation capability that transforms the system’s meta-models
into implementation code that targets the JADE platform [18]. Thus, the tool
does not support the diagrammatic propagation of the design elements. Since the
code generator can only identify the Grasia notations [11] and the IDK does not
support the transformation of the AUML notations to Grasia, the propagation
of AUML protocols is not supported in INGENIAS.

GAIA Methodology : The GAIA methodology enables agent designers to anal-
yse and design an agent-based system through two main phases: the analysis and
design phases[25]. In the analysis phase, the designers elicit all the possible en-
tities of the intended system by using abstract concepts from the requirement
statements. One of these entities is the roles that are needed in the system and
the interaction between them[25]. Thus, two models result from the analysis
phase: roles, which are later mapped to agents, and interaction models that
capture the communication between agents in the system. In the design phase,
the models derived from the analysis phases get detailed to a lower level of
abstraction[25]. Three models are generated as the design phase’s output as
follows: the agent model, the service model and the acquaintance model that

24 Y. Abushark and J. Thangarajah

Fig. 2. PDT V 0.4 Notations Legend

defines the communication links between agents. Even though GAIA uses its own
notations for modelling interaction protocols, the integration of AUML within
the methodology has been recommended [4].

The GAIA for Eclipse designing tool (GAIA4E) aids the agent designers in
documenting the activities of the methodology in terms of design artefacts [5].
The GAIA4E tool does not support the propagation of the created models, in-
cluding the interaction models, in the earlier phases to the later phases of the
methodology.

Prometheus Methodology : The Prometheus methodology consists of three
phases: the system specification phase, the architectural design phase and the
detailed design phase [17].

In the system specification phase, a translation of the problem that the in-
tended system needs to solve is done based on the user requirements. Briefly,
the requirements are taken as an input and the initial picture of the system is
drawn by defining the goals and the basic functionalities of the system. In this
phase, the external entities (actors), system inputs (percepts) and system out-
puts (actions) of the intended system are defined. The primary output from this
phase comprises two parts: system goals and scenarios.

The architectural design phase concerns the internal architecture of the sys-
tem. Based on the system goals and scenarios from the previous phase, the roles
and agent types of the system are determined. The system overview diagram cap-
tures the agents of the system, for each agent the events it handles and actions it
generates, and the interaction protocols between those agents that communicate.
Interaction protocols are modelled using AUML sequence diagrams.

In the detailed design phase, each agent type identified in the architectural
design phase is designed in detail to fulfill its responsibilities according to the
system overview diagram. Each agent has its own agent overview diagram where
the agent is designed and detailed in terms of events, plans and belief sets.

The Prometheus Design Tool (PDT)1 [16] is a graphical tool that supports
each phase of the methodology and provides designers with many features, such
as visual editing, type safety, information propagation, report generation, cross-
checking, and so on [16]. The code generation feature transforms the detailed
design to skeleton code in the JACK agent language [23].

In PDT, protocols are specified using the AUML textual notation and AUML
diagrams are generated by the tool. PDT currently supports the propagation of

1 The PDT version used in this paper is 0.4 (refer to Figure2 for the design notions).

Propagating AUML Protocols to Detailed Design 25

Fig. 3. Single Message Propagation

the agent and message entities in a protocol to lower level design diagrams. The
propagation of the protocol trigger, the sequence flow and protocol constructs
are however not supported. The onus is on the designer to manually map these
elements to the detailed design phase which will then be translated to code.
In this paper, we present an approach for propagating complete AUML protocol
specifications to the detailed design phase of the Prometheus methodology.

3 Propagation Mechanism

We now describe the mechanisms for propagating protocols from the AUML
specification to the detailed design in the Prometheus methodology. Although,
we chose Prometheus as the target methodology the approach is applicable to
any approach that follows the general BDI model. In our approach we consider:
(i) protocols that contain the ALT and OPT constructs only (including those
with multiple such constructs), as they are two of the most commonly used
protocol constructs; and (ii) simple AUML protocols without such constructs.
We do not consider nested constructs at this stage which we leave as future work.

We begin by describing the factors that influence the propagation mechanisms
and then describe the propagation mechanism by illustrating some examples.

3.1 The Factors

The automated protocol propagation task is to create the necessary design arte-
facts, that is, events and plans in the respective agent overview diagrams such
that the sequence of message flow specified in the protocol (including constructs
if any) is adhered to. The detailed design is then translated to code. There are
three factors that influence the protocol propagation to the detailed design:

– protocol participants.
– protocol trigger.
– protocol sequence flow.

Protocol Participants: The messages in a protocol are between two partici-
pants (internal agents or actors that are external to the system) and there can
be many participants in a single protocol.

Where a participant is denoted as an agent in the AUML textual notation (see
Figure 1 for an example) an ‘Agent’ entity is created in the System Overview
diagram, if it does not already exist. The details of each agent, that is, the

26 Y. Abushark and J. Thangarajah

Fig. 4. AUML Protocol With No Con-
structs

Fig. 5. Protocol triggered by multiple
agents

messages that it receives and sends, the data that it accesses and so on are
detailed in the individual agent’s Agent Overview diagram.

In a protocol an agent can play two roles: Sender or Receiver for a particular
message. The sender agent needs to be able to send the message and the receiver
agent needs to be able to receive and handle (act upon) the received message.
The message therefore needs to be propagated into both the agents together with
a plan in the sender agent that sends the message and a plan in the receiver agent
to handle the message. For example, Figure 3 shows the propagation of a single
message from one agent to another.

Protocol Trigger: The protocol trigger is the event (possibly external) that trig-
gers the posting of the first message of the protocol, thus initiating the execution
of the protocol. It is important to factor this into the protocol propagation. It
is often the case that the protocol trigger is captured by the agent that sends
the first message of the protocol. However, in some cases it may be captured by
more than one agent.

For example, in Figure 4 the first message (‘M1’) is sent by ‘Agent-A’, hence,
the protocol trigger would be captured only by ‘Agent-A’. However, the first
message of the protocol in Figure 5 might be ‘M1’ from ‘Agent-A’ or ‘M2’ from
‘Agent-B’ depending on the construct’s guards. Hence, both agents need to cap-
ture the protocol’s trigger with the guards propagated to the respective plans as
context conditions2 that handles the trigger of each agent.

Protocol Sequence Flow: The sequence flow of an interaction protocol is the
execution order of the communication between the participants. Thus, the prop-
agation of the interaction protocols must ensure this sequence flow. When there
are multiple messages, there are 3 distinct cases that influence the propagation
mechanism: (1) Multiple messages sent in sequence from one agent, (2) Partici-
pants exchange messages and (3) Protocol contains constructs (ALT/OPT).

1. Multiple messages sent in sequence from one agent
The first case is where an agent sends multiple messages to other agents contin-
uously, for example, ‘M3’ and ‘M4’ in Figure 4. The significant point here is to

2 Context conditions are logical conditions that determine the applicability of plans,
much like pre-conditions in traditional planning systems.

Propagating AUML Protocols to Detailed Design 27

Fig. 6. Agent Overview diagrams for the protocol in Figure 3

ensure that ‘Agent-A’ posts these messages in the same order specified, in other
words, ‘Agent-A’ must not post ‘M4’ before posting ‘M3’.

Currently in the Prometheus methodology (and PDT) there is no mechanism
for specifying such an ordering, hence we introduce a new notation, a dashed-
arrow, between the messages indicating the order of posting. For example, see
Figure 6 which illustrates the propagation for the protocol in Figure 4. In ‘Agent-
A’ overview diagram, ‘M3’ is posted prior to ‘M4’.

Note that, even if the messages were posted by different plans, we show the
ordering of messages via dashed-arrows between messages rather than between
the plans, as the protocol only specifies ordering of messages, not plans. Fur-
ther, ordering the plans is too strict, unnecessary and possibly undesirable as
the plans may contain steps other than the posting of the message and are often
executed concurrently.

2. Participants exchange messages
The second situation is when the protocol participants exchange messages be-
tween each other. For example, see the order of messages ‘M1’, ‘M2’ and ‘M3’ in
Figure 4. In this case, it is important to ensure that ‘Agent-A’ sends ‘M3’ after
receiving ‘M2’ and that ‘Agent-B’ sends ‘M2’ after receiving ‘M1’.

We enforce this ordering when messages are exchanged by having the plan
that handles the incoming message post the outgoing message. For example, for
the protocol in Figure 4, ‘Agent-A’ will have ‘M1’ posted by the protocol trigger
handler plan as it is the first message of the protocol, and ‘M3’, ‘M4’ posted by
the ‘M2 Handler’ plan. Similarly ‘Agent-B’ has a plan that handles ‘M1’ and
posts ‘M2’, ensuring that ordering (see Figure 6).

3. Protocol contains a construct
The third situation arises when an interaction protocol contains a construct. In
addition to enforcing the control specified in the construct (which we describe
in the next subsection), having messages before and/or after a construct also
affects the propagation mechanisms.

Before: If there are messages before the construct, then the last message before
the construct is treated as the trigger for the construct which is created as an
internal event. To illustrate this consider the protocol in Figure 7, which shows
the protocol and the propagated ‘Agent-A Overview Diagram’. The plan that
posts the message ‘M1’ will also post an internal event ‘ALT trigger’ to trigger

28 Y. Abushark and J. Thangarajah

Fig. 7. Message before a construct

the ALT construct. This internal event is handled by two plans with the guards
of the ALT construct posting ‘M2’ and ‘M3’ respectively.
After: In the cases where there are messages after a construct, the propagation
mechanism needs to consider the fact that the construct in some instances may
not occur. For example, in the protocol specified in Figure 8, if the guards ‘X1’
and ‘X2’ both evaluate to false, the ALT construct will not execute and the
message flow should continue on past the construct.

Considering the direction of the first and last message of a construct’s regions,
the occurrence of messages before and after a construct and the direction of those
messages, provides many combinations of unique cases to be considered when
propagating protocols (though, some of the cases are uncommon and unlikely to
appear in practice).

In developing the propagation techniques we discovered nineteen unique cases
for a protocol with just an ALT construct, and twelve unique cases for the
OPT construct. Due to spatial reasons we do not attempt to describe all these
cases nor the full details of the algorithms in this paper. However, in order
to illustrate the propagation algorithms we step through a particular example
with an ALT construct in the next section. We also highlight a situation where
designer intervention is necessary. For a full list of all the different cases in-
cluding cases where a protocol contains multiple constructs we refer the reader
to a detailed appendix which we have placed online (anonymously) at http:

//tinyurl.com/propagation-cases. Similarly, the algorithms in the form of
pseudo-code can be found at http://tinyurl.com/propagation-algorithms.

3.2 ALT Construct Example

The ALT construct consists of at least two regions, each with its own execution
condition (region guard). Only one of the construct’s regions will be executed
(possibly none). A region may have more than a single message within it, in
which case the guard is applicable to the first message of the region. In this
particular example, we consider the protocol shown in Figure 8 where the ALT
construct is at the start of the protocol and there is a message that follows it. The
complete Agent Overview diagrams generated by our propagation mechanism is
shown in Figure 9.

The protocol propagation must consider the propagation factors discussed
earlier: protocol participants, protocol trigger and protocol sequence flow.

http://tinyurl.com/propagation-cases
http://tinyurl.com/propagation-cases
http://tinyurl.com/propagation-algorithms

Propagating AUML Protocols to Detailed Design 29

Fig. 8. AUML Protocol (ALT Example)

Fig. 9. Agent Overview Diagrams (ALT Example)

The protocol participants are propagated by creating ‘Agent-A’ and ‘Agent-
B’ in the System Overview diagram.

The protocol trigger in this case triggers the ALT construct as it is at the
start of the protocol. Given that the first message of both the regions in the
ALT construct is sent from ‘Agent-A’, the trigger is propagated to the ‘Agent-A
Overview Diagram’ as follows:

– A ‘Protocol Trigger’ event is created.

– Three plans are created to handle the trigger event: ‘ALT Region#1’ plan,
‘ALT Region#2’ plan and ‘Else Option’ plan. The first two plans are given
as context conditions the guards of the respective ALT regions. The last plan
is created to handle the case where neither of the ALT regions execute, hence
the context condition is the negation of the conjunction of the two guards
(that is, !(X1&&X2)).

The sequence flow is then considered. First the ALT construct is dealt with
as follows:

– First, plans for dealing with the two regions of the ALT construct and a
plan to handle the case when the construct does not get executed needs
to be created. However, these were already created when propagating the
protocol trigger.

– Each region contains just one message, each sent from ‘Agent-A’ to ‘Agent-
B’. Thus, messages ‘M1’ and ‘M2’ are added to the ‘Agent-A Overview Di-
agram’ and attached to the corresponding ALT region plans as messages
posted. These messages are also added to the ‘Agent-B Overview Diagram’
as incoming messages and plans ‘M1-Handler’ and ‘M2-Handler’ are created
to handle them.

30 Y. Abushark and J. Thangarajah

Fig. 10. Illustration of the Special Case

– If the ALT construct does not execute (else-option) then the sequence flow
is such that ‘Agent-B’ sends ‘R1’ to ‘Agent-A’. In order for this to occur,
‘Agent-A’ needs to notify ‘Agent-B’ that the ALT construct has ended.
Hence, we add an event ‘End of ALT’ that is sent by the ‘Else Option’
plan in ‘Agent-A’ and handled by a plan in ‘Agent-B’.

Having propagated the ALT construct, we then propagate the message ‘R1’ to
‘Agent-B’ as sent by all three plans that signifies the end of the ALT construct
and to ‘Agent-A’ as an incoming message handled by plan ‘R1-Handler’.

A Special Case: In the situation where the messages of the ALT regions are
not sent in the same direction, for example as in Figure 10, forcing the else-
option as done above presents the following challenge. The plan that enforces
the else-option in ‘Agent-A’ for example, will have as the context the negation of
both the guards. The guard ‘X2’ however, may be local to ‘Agent-B’ as the rele-
vant message is sent from that agent. The designer therefore, needs to take this
into consideration and ensure that the else-option plans do have access to the
necessary guard conditions. To address this issue, the propagation algorithms
create a note3 attached to the else-option plan that face this issue, as shown in
Figure 10.

4 Evaluation

In this section, we perform a simple evaluation to validate that:

– manually propagating protocols from specification to detailed design and
subsequently code can be a time-costly and error-prone task; and

– our automated propagation mechanisms significantly reduces these costs.

We do this by creating a simple system with a basic protocol specification and
have it propagated to the detailed design and code in two ways: (i) by using the
proposed automated approach and (ii) by using two human participants that are
relatively experienced in using Prometheus and the JACK agent language. The
first participant was a recent graduate who had studied agent programming and

3 A design artefact in PDT that allows the designer to attach comments to any entity
in the design.

Propagating AUML Protocols to Detailed Design 31

Fig. 11. Sale Transaction AUML Diagram

design, and had worked on projects across a year using PDT and JACK. The
2nd participant had 2.5+ years experience as a software developer using PDT
and JACK. We then compare the relative costs and examine the correctness of
the different solutions.

4.1 Experimental Setup

We developed a prototype ‘eTrading-System’ as a multi-agent system with three
agents; ‘Seller Agent’, ‘Buyer Agent’ and ‘Bank Agent’. We specified one interac-
tion protocol, ‘Sale Transaction’ where the agents communicate with each other
as shown in Figure 11. The system was designed in PDT up until the System
Overview diagram. The task was then to complete the Agent Overview diagrams,
auto-generate code, and complete the implementation. Completing the system
code from the auto-generated code involves implementing:

– the context conditions of the plan4.

– the body of the plan which posts the relevant messages.

– the protocol trigger that initiates the protocol.

The participants were given these instructions. Participants also tested and de-
bugged their systems and finished when they were confident that their systems
followed the protocol specification.

4 If the context condition was specified in the design it would be propagated as a
comment into the plan.

32 Y. Abushark and J. Thangarajah

Fig. 12. Seller Overview Diagrams

In order to determine whether the automated approach does save development
time, we observed the participants and recorded the following timing information:

– Propagation time: time taken for propagating the protocol to the detailed
design phase (first draft).

– Implementation time: time taken for completing the code including the
plans’ contexts, plan bodies and protocol trigger.

– Debugging time: time taken for testing and debugging the completed sys-
tem. This testing includes executing suitable test cases and when errors are
found, fixing the agent’s detailed design by adding and removing entities
(events and plans). By error we mean, when the protocol is not followed. We
also record here the number of iterations between code and design.

The implementation and execution of the systems were done locally on a
client machine, without any external entities, such as servers. After all three
systems (the three versions of ‘eTrading-System’ that were developed by the two
human participants and the proposed automated approach) were completed, we
augmented the plans and agent code with log statements to keep track of the
activity of the system.

Propagating AUML Protocols to Detailed Design 33

Table 1. Time costs

— Automated 1st 2nd

Propagation Time Instantaneous 75 minutes 50 minutes

Implementation Time 30 minutes 64 minutes 80 minutes

Testing & Debugging

Time

25 minutes with 0 iter-
ation

130 minutes with 5
iterations

120 minutes with 3
iteration

Total Time 55 minutes 296 minutes 250 minutes

Table 2. Number of errors in the systems

Approach Used Automated 1st 2nd

Errors 0 18 6

4.2 Results

Due to spatial reasons we do not attempt to show and analyze the detailed design
of the agents produced in each of the three systems, however, in Figure 12 we
present the Agent Overview digram of the ‘Seller’ agent as detailed in the three
systems.

Table 1 shows the time-cost for developing the 3 systems. As evident from the
results, even for the relatively simple protocol with just two constructs, there is a
significant saving in development time when the automated propagation is used
(over three hours of savings for even an experienced agent program developer like
the 2nd participant). For a system that contains a number of protocols, including
more complex protocols than our test system, the time savings would indeed be
much greater.

The marked difference is in the ‘Propagation Time’ and ‘Debugging Time’.
The propagation time is instantaneous using the automated approach, whilst
the manual propagation by the human participants took over an hour for each.

The debugging time when using the automated approach is for testing the
system. As the tests did not result in any errors, there were no iterations between
code and design. This was not the case for the manual propagation by the test
participants.

Note that, neither of the propagation time nor the number of iterations be-
tween code and design for debugging will increase as the number of protocols
increase when using the automated approach5. However, they will increase (on
average linearly) with the number of protocols when manually propagating.

We see that there is also a significant saving (more than 50%) in ‘Implementa-
tion Time’ when using the automated approach. This is due to the fact that the
protocol trigger and context conditions of plans are propagated to the detailed
design from the protocol specification. The overhead for the test participants
was to figure these aspects out.

5 There may be exceptional situations where protocol specific debugging is required.

34 Y. Abushark and J. Thangarajah

4.3 Error Analysis

To test whether the implemented systems did indeed follow the protocol spec-
ification, we ran each system with 6 different test cases that represent the 6
different sequence flows6 as specified by the protocol. By following the activity
logs and cross-checking with the protocol specification we determined if there
were any errors in the test execution and recorded these errors. We considered
the following as errors in the interaction:

– if any message that is expected to be sent is not sent.

– if any message that is expected to be sent once gets sent many times.

– if any message sent is not handled.

Table 2 shows the total number of errors detected in testing the three systems.
As shown, the system that followed the automated propagation mechanisms pro-
duced no errors, which validates the correctness of the propagation algorithms
for the protocol specified. The systems developed by the test participants how-
ever, produced 18 and 6 errors, respectively. As with the time-costs we would
expect these errors to increase with an increase in the number of protocols and
their complexity.
Cause of errors: The first participant made errors in handling the sequence
flow between the OPT and ALT construct and also did not implement some of
the messages in the protocol as messages.

His implementation was such that after the ‘Give-Price’ message is sent, the
ALT is always triggered. The ALT is also triggered after the OPT gets executed,
thus executing the ALT construct twice (resulting in 6 errors). In our proposed
approach, we avoid this issue by creating an event that triggers the OPT and
ALT constructs appropriately (similar to what is described in Section 3.2).

There were also two messages (‘Accept-The-Price’ and ‘Refuse’) that were not
implemented as messages in the system, instead they were embedded as business
logic in plans (resulting in 12 errors).

The more experienced second participant also made a few mistakes. His imple-
mentation resulted in the message before the OPT (‘Give-Price’) and the OPT
construct being exclusive. This meant that only one of them ever got executed,
even though, both should be executed in the case where the guard of the OPT
is true. In our proposed approach the plan that posts the ‘Give-Price’ message
also posts a trigger for the OPT construct which is handled by a plan that gets
executed only if the guard of the OPT is true.

We note also that there were several mismatches between the design and the
code for both participants.

5 Conclusion

Interaction between agents is a central aspect of multi-agent systems. AUML
sequence diagrams are a popular means for specifying these interactions and

6 There are 3 guards that result in 6 different combinations.

Propagating AUML Protocols to Detailed Design 35

is the adopted model in current AOSE methodologies. The lack of support for
propagating these protocols to more detailed design level of these methodolo-
gies, means that the onus is on the designers to ensure that the protocols are
faithfully implemented. In this paper, we showed empirically that this manual
propagation of protocols is a time consuming and error-prone task even for a
relatively experienced agent system programmer.

To overcome the above, in this paper we proposed an approach for automating
the process of propagating the protocol specifications to the detailed design
levels in the Prometheus methodology. We identified the factors that influence
the propagation, the different cases that the mechanism needs to consider and
the algorithms that performs the automated propagation. This approach can be
extended to other AOSE methodologies that follow the BDI model of agency.

The evaluation that we conducted showed that by automating this process,
the development time is significantly reduced and the resulting system is more
reliable than the manual process. Whilst the evaluation was not comprehensive
in terms of the number of participants and variation of protocol specifications,
it provided a good indication of the kind of benefits that our automated ap-
proach provides and the difficulty of the manual propagation. We note that, one
of the participants was an experienced programmer and hence envisage novice
programmers to encounter much more difficulty. Further, the test system con-
tained a single protocol, with just two constructs. It is fair to assume that a
larger system with many more protocols, some, more complex, will see a greatly
increased benefit in adopting such an automated approach.

In this work, we only considered two of the AUML protocol constructs in
our propagation mechanisms. As future work, we will extend this to all the
constructs and also consider nested protocol structures. In addition, we will find
ways to overcome the ‘Special Case’ in section 3.2 . Currently, we do not check for
the correctness of the protocol specification before we perform the propagation.
Hence, errors in specification will result in errors in the detailed design and
subsequently the implementation.

We are investigating mechanisms by which we can check the validity of the
protocol specification. specifically, in the case where the system has multiple
protocols, as conflicting specifications amongst protocols may occur. In our ap-
proach, we did not consider timeouts, which are important for some systems, we
will investigate how timeouts may be handled. Further, as future work we will
investigate the issue of scalability and performance of our approach which we do
not address in this work.

References

1. Arcos, J., Esteva, M., Noriega, P., Rodŕıguez-Aguilar, J., Sierra, C.: An integrated
development environment for electronic institutions. In: Software Agent-Based Ap-
plications, Platforms and Development Kits, pp. 121–142 (2005)

2. Bergenti, F., Poggi, A.: Exploiting UML in the design of multi-agent systems.
In: Omicini, A., Tolksdorf, R., Zambonelli, F. (eds.) ESAW 2000. LNCS (LNAI),
vol. 1972, pp. 106–113. Springer, Heidelberg (2000)

36 Y. Abushark and J. Thangarajah

3. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos: An
agent oriented software development methodology. Autonomous Agents and Multi-
Agent Saytems 8(3), 203–236 (2004)

4. Cernuzzi, L., Zambonelli, F.: Experiencing AUML in the GAIA methodology. In:
Proceedings of the 6th ICEIS, pp. 283–288. Citeseer (2004)

5. Cernuzzi, L., Zambonelli, F.: GAIA4e: A tool supporting the design of mas using
gaia. In: ICEIS (4), pp. 82–88 (2009)

6. DeLoach, S., Oyenan, W., Garcia-Ojeda, J., Valenzuela, J.: O-MaSE: A customiz-
able approach to developing multiagent development processes (2007)

7. DeLoach, S., Padgham, L., Perini, A., Susi, A.: Using three AOSE toolkits to
develop a sample design. International Journal of Agent-Oriented Software Engi-
neering 3(4), 416–476 (2009)

8. Garcia-Ojeda, J., DeLoach, S., et al.: agentTool III: from process definition to code
generation. In: Proceedings of the 8th International Conference on Autonomous
Agents and Multi-Agent Saytems, vol. 2, pp. 1393–1394. International Foundation
for Autonomous Agents and Multi-Agent Saytems (2009)

9. Garcia-Ojeda, J.C., DeLoach, S.A., Robby, Oyenan, W.H., Valenzuela, J.: O-maSE:
A customizable approach to developing multiagent development processes. In:
Luck, M., Padgham, L. (eds.) Agent-Oriented Software Engineering VIII. LNCS,
vol. 4951, pp. 1–15. Springer, Heidelberg (2008)

10. Gomez-Sanz, J., Fuentes, R., Pavón, J., Garćıa-Magariño, I.: INGENIAS develop-
ment kit: a visual multi-agent system development environment. In: Proceedings
of the 7th International Joint Conference on Autonomous Agents and Multi-Agent
Saytems: Demo Papers, pp. 1675–1676. International Foundation for Autonomous
Agents and Multi-Agent Saytems (2008)

11. Gómez-Sanz, J.J., Pavón, J.: Implementing multi-agent systems organizations with
INGENIAS. In: Bordini, R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A.
(eds.) PROMAS 2005. LNCS (LNAI), vol. 3862, pp. 236–251. Springer, Heidelberg
(2006)

12. Gorodetsky, V., Karsaev, O., Samoylov, V., Konushy, V.: Support for analysis,
design, and implementation stages with MASDK. In: Luck, M., Gomez-Sanz, J.J.
(eds.) AOSE 2008. LNCS, vol. 5386, pp. 272–287. Springer, Heidelberg (2009)

13. Huget, M.-P., Odell, J.: Representing agent interaction protocols with agent UML.
In: Odell, J.J., Giorgini, P., Müller, J.P. (eds.) AOSE 2004. LNCS, vol. 3382,
pp. 16–30. Springer, Heidelberg (2005)

14. Morandini, M., Nguyen, D.C., Perini, A., Siena, A., Susi, A.: Tool-supported
development with tropos: The conference management system case study. In:
Luck, M., Padgham, L. (eds.) AOSE 2007. LNCS, vol. 4951, pp. 182–196. Springer,
Heidelberg (2008)

15. Odell, J.J., Van Dyke Parunak, H., Bauer, B.: Representing agent interaction pro-
tocols in UML. In: Ciancarini, P., Wooldridge, M.J. (eds.) AOSE 2000. LNCS,
vol. 1957, pp. 121–140. Springer, Heidelberg (2001)

16. Padgham, L., Thangarajah, J., Winikoff, M.: Prometheus design tool. In: Proceed-
ings of the 23rd AAAI Conference on AI, pp. 1882–1883 (2008)

17. Padgham, L., Winikoff, M.: Developing intelligent agent systems: a practical guide,
vol. 1. Wiley (2004)

18. Pavón, J., Gómez-Sanz, J.J.: Agent oriented software engineering with INGENIAS.
In: Mař́ık, V., Müller, J.P., Pěchouček, M. (eds.) CEEMAS 2003. LNCS (LNAI),
vol. 2691, pp. 394–403. Springer, Heidelberg (2003)

Propagating AUML Protocols to Detailed Design 37

19. Penserini, L., Perini, A., Susi, A., Mylopoulos, J.: From stakeholder intentions to
software agent implementations. In: Martinez, F.H., Pohl, K. (eds.) CAiSE 2006.
LNCS, vol. 4001, pp. 465–479. Springer, Heidelberg (2006)

20. Pěchouček, M., Mař́ık, V.: Industrial deployment of multi-agent technologies: Re-
view and selectedcase studies. Journal of Autonomous Agents and Multi-Agent
Systems 17, 397–431 (2008)

21. Rao, A., Georgeff, M., et al.: BDI agents: From theory to practice. In: Proceedings
of the First International Conference on Multi-Agent Systems (95), San Francisco,
pp. 312–319 (1995)

22. Wellman, M.P., Greenwald, A., Stone, P.: Autonomous Bidding Agents: Strategies
and Lessons from the Trading Agent Competition. MIT Press (2007)

23. Winikoff, M.: JACK intelligent agents: An industrial strength platform. In: Multi-
Agent Programming, pp. 175–193 (2005)

24. Winikoff, M.: Towards making agent UML practical: a textual notation and a tool.
In: Fifth International Conference on Quality Software, pp. 401–406 (2005)

25. Wooldridge, M., Jennings, N., Kinny, D.: The GAIA methodology for agent ori-
ented analysis and design. Autonomous Agents and Multi-Agent Saytems 3(3),
285–312 (2000)

2COMM: A Commitment-Based MAS

Architecture

Matteo Baldoni, Cristina Baroglio, and Federico Capuzzimati

Università degli Studi di Torino — Dipartimento di Informatica
c.so Svizzera 185, I-10149 Torino (Italy)

{matteo.baldoni,cristina.baroglio,federico.capuzzimati}@unito.it

Abstract. Social expectations and social dependencies are a key char-
acteristic of interaction, which should be explicitly accounted for by the
agent platform, supporting the coordination of the involved autonomous
peers. To this aim, it is necessary to provide a normative characteriza-
tion of coordination and give a social meaning to the agents’ actions. We
focus on one of the best-known agent platforms, Jade, and show that
it is possible to account for the social layer of interaction by exploiting
commitment-based protocols, by modifying the Jade Methodology so as
to include the new features in a seamless way, and by relying on the
notion of artifact, along the direction outlined in the Mercurio proposal.

Keywords: Commitment-based Interaction Protocols, Agents & Arti-
facts Model, JADE, JADE Methodology, Agent-Oriented Software
Engineering.

1 Introduction and Motivation

Interaction creates social expectations and dependencies in the involved partners
[38,18,34,23]. These should be explicitly accounted for by the agent platform to
allow the coordination of autonomous entities. In order to create social expecta-
tions on the agents’ behavior, it is necessary to introduce a normative character-
ization of coordination and give a social meaning to their actions. An agent that
understands such a specification and that publicly accepts it (i.e. that declares it
will behave according to it) allows reasoning about its behavior [21]. This is the
key to the development of open environment systems, made of autonomous and
heterogeneous components. By not supplying such abstractions, current plat-
forms do not supply agents the means for observing or reasoning about such
meanings of interaction, and do not supply the designers the means to explicitly
express and characterize them when developing an interaction model.

One prominent example is JADE [10,11], which is a well-established develop-
ment environment for multi-agent systems, FIPA-compliant and actually used
for industrial applications, and which notoriously does not provide of a social
and observational semantics. One of the aims of the Mercurio framework [4,3] is
to fill this gap by introducing in JADE the means for exploiting commitments
and commitment-based protocols, which are well-known for featuring the social

M. Cossentino et al. (Eds.): EMAS 2013, LNAI 8245, pp. 38–57, 2013.
© Springer-Verlag Berlin Heidelberg 2013

2COMM: A Commitment-Based MAS Architecture 39

and observational semantics [34,35,41], JADE lacks of. Our starting point for
introducing commitment-based protocols inside JADE is the JADE Methodol-
ogy [30]. This methodology is particularly interesting because it is intrinsically
agent-oriented and it is not the adaptation of an object-oriented methodology,
and it combines a top-down approach with a bottom-up one, possibly allowing
the integration with legacy, non agent-based systems. It concerns two of the four
main phases of the standard software development cycle: the analysis phase and
the design phase.

Following [4], we rely on a form of indirect communication among agents
that envisages the use of artifacts : commitment-based communication artifacts
implement interaction protocols as well as monitoring functionalities for the ver-
ification that the on-going interaction respects the protocol, for detecting viola-
tions and violators, and so forth. Artifacts, therefore, encode the social layer of
the multi-agent system: as a programmable communication channel an artifact
contains what in the terminology of commitment protocols is called “the social
state”, and captures it as an interaction session among the parties. Artifacts
also supply agents the social actions that are necessary to the interaction – that
is, actions that allow agents to enter into and to comply with commitments –
together with their social meaning and, as a consequence, they capture the co-
ordination rules of the protocol. The reification of commitment protocols allows
agents to act on them, e.g. to examine them (for instance, to decide whether to
play one of the foreseen roles), use them (which entails that they explicitly ac-
cept the corresponding regulation), negotiate their construction, specialize them,
and compose them. The advantage of relying on indirect communication is that
it allows more variegated ways of interacting, not hindering message exchange
when necessary.

In this paper we show that our proposal can be integrated seamlessly within
the JADE Methodology, simply by substituting the selection of JADE FIPA
protocols with the selection/construction of appropriate communication arti-
facts. We also use the methodology to show the differences between these two
alternatives with the help of an example from a financial setting.

Section 2 reports the relevant background, necessary to understand the pro-
posal. Section 3 is the core of the paper, containing the original proposal. Sec-
tion 4 applies the concepts to an illustrative example, from a financial setting.
A discussion also involving related works ends the paper.

2 Background

We briefly report the technical, methodological and theoretical background re-
quired for our work. We use the proposal in [4] as a high-level reference architec-
ture. In this work, the authors outline the basic ideas for an interaction-oriented
agent framework, grounding the social semantics of interaction on commitments,
and proposing the A&A (Agents and Artifacts) Metamodel as a means to obtain
a form of indirect, observable communication. Let us, then, explain the funda-
mental bricks to build our architecture, whose overview is reported in Figure 1.

40 M. Baldoni, C. Baroglio, and F. Capuzzimati

JADE framework. JADE is a popular and industry adopted agent framework.
It offers to developers a Java middleware 100% FIPA-compliant (Foundation
for Intelligent Physical Agents, [1]) plus a set of command-line and graphical
tools, supporting development and debugging/testing activities. Its robustness
and well-proven reliability makes JADE a preferred choice in developing MAS.
It is currently used in many research and industrial projects jointly with its
most popular and promising extension, WADE [17]. A JADE-based system is
composed of one or more containers, each grouping a set of agents in a logical
node and representing a single JADE runtime. The overall set of containers is
called a platform, and can spread across various physical hosts. The resulting
architecture hides the underlying layer, allowing support for different low-level
frameworks (JEE, JSE, JME, etc.). The platform reference container is called
main container, and represents the entry point to the system. JADE provides
communication and infrastructure services, allowing agents, deployed in different
containers, to discover and interact with each other, in a transparent way from
the developer’s logical point of view.

Commitment Protocols. Agents share a social state that contains commitments
and other literals that are relevant to their interaction. A commitment C(x, y, r, p)
denotes a contractual relationship between a debtor x and a creditor y: x com-
mits to y to bring about the consequent condition p when the antecedent condi-
tion r holds. A commitment, when active, functions as a directed obligation from
a debtor to a creditor. However, unlike a traditional obligation, a commitment
may be manipulated, e.g., delegated, assigned, or released [37]. Importantly, com-
mitments have a regulative value: the social expectation is that agents respect
the commitments which involve them and, in particular, the debtor is considered
responsible of realizing the consequent condition. Thus, the agents’ behavior is
affected by the commitments that are present in the social state. A commitment
protocol usually consists of a set of actions, whose semantics is shared (and agreed
upon) by all of the interacting agents [41,40,20]. The semantics of the social ac-
tions is given in terms of operations which modify the social state by, e.g., adding
a new commitment, releasing another agent from some commitment, satisfying a
commitment, see [41].

CArtAgO. CArtAgO is a framework based on the A&A model. It extends the
agent programming paradigm with the first-class entity of artifact : a resource
that an agent can use, and that models working environments ([32]). In order to
properly model a MAS, CArtAgO proposes to explicitly model the environment
where pro-active agents live, work, act and communicate. It provides a way to
define and organize workspaces, logical groups of artifacts, that can be joined by
agents at runtime and where agents can create, use, share and compose artifacts
to support individual and collective, cooperative or antagonistic activities. The
environment is itself programmable as a dynamic first class abstraction, it is
an active part of a MAS, encapsulating services and functionalities. The A&A
model decouples the notion of agent from the notion of environment. The overall
engineering of the MAS results more flexible, easy to understand, modular and

2COMM: A Commitment-Based MAS Architecture 41

reusable. CArtAgO provides an API to program artifacts that agents can use,
regardless of the agent programming language or the agent framework used. This
is possible by means of the agent body metaphor: CArtAgO provides a native
agent entity, which allows using the framework as a complete MAS platform as
well as it allows mapping the agents of some platform onto the CArtAgO agents,
which, in this way, becomes a kind of “proxy” in the artifacts workspace. The
developed agent is the mind, that uses the CArtAgO agent as a body, interacting
with artifacts and sensing the environment. An agent interacts with an artifact
by means of public operations. An operation can be equipped with a guard : a
condition that must hold so that the operation will produce its effects. It is not
an execution condition: when the guard does not hold the action is performed
anyhow but without consequences.

3 Reifying Commitment Protocols with Artifacts

Artifacts naturally lend themselves to provide a suitable means for realizing me-
diated communication channels among agents. To this aim, it is necessary to
encode inside the communication artifacts a normative characterization to the
actions it offers to agents and that allow them to interact. We propose to inter-
pret commitment protocols as environments, within which agents interact. The
public interface of artifacts allows agents to examine the encoded interaction
protocol. As a consequence, the act of using an artifact can be interpreted as
a declaration of acceptance of the coordination rules. This will generate social
expectations about the agent’s behavior and agrees with the characterization
of norms in [21]. Moreover, the fact that the behavior of agents on artifacts is
observable and that interactions only occur through artifacts, agrees with the
view that regulations can only concern observable behavior [22]. The resulting
programmable environment provides a flexible communication channel that is
suitable for realizing open systems. Notice that the use of a programming envi-
ronment does not mean that the social state will necessarily be centralized: an
artifact can be composed by a distributed network of artifacts.

Figure 1 sketches the way in which we propose to use CArtAgO so as to ac-
count also for social commitments inside JADE. We named this first realization
of the Mercurio architecture 2COMM (standing for “Communication & Com-
mitment”). 2COMM realizes mediated interaction by means of communication
artifacts, which, in our proposal, replace the JADE-based FIPA protocols and
which reify commitment-based protocols [4]. At the bottom level, the JADE
framework supplies standard agent services: message passing, distributed con-
tainers, naming and yellow pages services, agent mobility. When needed, an
agent can enact a certain protocol role, thus using a communication artifact by
CArtAgO. This provides a set of operations by means of which agents participate
in a mediated interaction session. Each artifact (protocol enactment) maintains
a social state, that is, a collection of social facts and commitments involving the
roles of the corresponding protocol, following Yolum and Singh’s commitment
protocol model [40].

42 M. Baldoni, C. Baroglio, and F. Capuzzimati

Agent
1

Agent
2

Agent
3

Agent
4

CommitmentProtocol
ARTIFACT A

CommitmentProtocol
ARTIFACT B

CommitmentProtocol
ARTIFACT C

RoRolele x x RoRolele y y
RoRolele z z

RoRolele w w

RoRolele h h
RoRolele n nRoRolele m m

enacts

CARTAGO

JADE

SOCIAL STATES

Commitments
[1…*]

Social Facts
[0…*]

Commitments
[1…*]

Social Facts
[0…*]

Commitments
[1…*]

Social Facts
[0…*]

Fig. 1. A sketch of 2COMM

3.1 Communication Artifact

We follow the ontological model for organizational roles proposed in [13,14],
which is characterized by three aspects: (1) Foundation: a role must always be
associated with an institution it belongs to and with its player; (2) Definitional
dependence: the definition of the role must be given inside the definition of
the institution it belongs to; (3) Institutional empowerment : the actions defined
for the role in the definition of the institution have access to the state of the
institution and of the other roles, thus, they are called powers ; instead, the
actions that a player must offer for playing a role are called requirements.

Communication artifacts realize a kind of mediated interaction that is guided
by commitment-based protocols. Figure 2 shows the UML schema of the super-
type of communication artifacts implementing specific interaction protocols (e.g.,
Contract Net, Net Bill, Brokering): the CommitmentCommunicationArtifact. We
call an instance of an artifact of type CommitmentCommunicationArtifact an
interaction session. It represents an on-going protocol interaction, with a specific
social state that is observable by the interacting agents, that play the protocol
roles. The CommitmentCommunicationArtifact presents an observable property,
enactedRoles, that is the collection of the roles of the protocol (definitional de-
pendence [13,14]). Actions have a social effect only when they are executed by the

2COMM: A Commitment-Based MAS Architecture 43

commitments: Commitment [0…*]
facts: SocialFact [0…*]
context:
 CommitmentCommunicationArtifact

SocialState

+ getFacts ()
+ getCommitments()
+ addFact (fact: SocialFact)
+ addCommitment (commit: Commitment)
+ removeFact (fact: SocialFact)
+ removeCommitment (commit: Commitment)
+ getContext()

id: RoleId
agent: AID
artid: ArtifactId

Role

+ createArtifact (artifactName: String,
artifactClass: Class<? extends
Artifact) : void
+ enact (roleName: String, artifact:
ArtifactID, agent: AID) : Role
+ deact (role: RoleId, artifact:
ArtifactID, agent: AID) : void

predicate: String
arguments: Object [0…*]

SocialFact

+ getPredicate ()
+ setPredicate (pred: String)
+ getArguments ()
+ setArguments (list: Object [1…*])
+ getFact ()

*

1
1

0…*

1
0…*

0…1

1…*

Fig. 2. The UML Class diagram for the core of 2COMM

role they are assigned to, but actions are not defined at this super level, rather
they are provided by the instantiations of the CommitmentCommunicationAr-
tifact, i.e. by artifacts implementing specific protocols. Each protocol action is
implemented as a public operation, which is associated to a role by means of an
operation guard (institutional empowerment [13,14]): the guard checks who is
performing the operation; if the agent is not the one playing the right role, the
action simply has no effect, otherwise, the fact that the action was executed is
registered in the social state together with its meaning. An action can have some
additional guards, implementing context preconditions : this condition specifies
the context in which it makes sense that the action produces the described so-
cial effect. An artifact can be monitored by an observer agent, that, following the

44 M. Baldoni, C. Baroglio, and F. Capuzzimati

CArtAgO terminology, is focusing on that artifact, particularly on one or more
public properties. A change of one of these properties causes a signal, from
the artifact to the observer agents, about the property that changed: the agents
perceive the new artifact state. In particular, when the creation of a commitment,
involving an agent as a debtor, is signaled to it, this agent is expected to behave
so as to satisfy the commitment. The agent is free to decide how (and if) it will
handle the satisfaction of its commitments. Therefore, the requirement is that
an agent has the capability to behave so as to achieve the involved conditions
[13,14]. An agent who does not show such capabilities is bound to violate its
commitments.

CommitmentCommunicationArtifact provides a property, tracking the iden-
tity of the agents actually playing the various role. Two operations are provided,
by class Role, in order to manage the association between an agent’s identity and
a role: enact and deact, by means of which an agent can explicitly assume/cease a
protocol role (foundation [13,14]). After enacting a role, the use of the associated
operations on the artifact will have social consequences.

The communication artifact has an observable property, social state, that is
a set of zero or more elements of type Commitment or Social Fact. As we can
see in Figure 2, these structures are simple Java objects, representing the actual
social state. The artifact is responsible to manage the Social State structure,
i.e. the Commitments life-cycle, as well as the assertion or retraction of social
facts, via methods called on commitment and on social fact objects. For Commit-
ment management, we refer to the basic operations of commitment manipulation
[40]: create, discharge, cancel, release, assign, delegate. The operations regard-
ing the commitments life-cycle are implemented as artifact internal operations,
therefore, the agents cannot modify commitments explicitly. The communication
artifact exposes the social state, whose evolution is controlled by the agents via
the protocol-provided actions. Finally, communication artifacts provide service
operations, which can be performed only by the ArtifactManager Agent (see
below) for managing the protocol roles and the identities of their players.

When the social state property changes, due to the execution of a protocol
action (an artifact operation) on the communication artifact, all of the agents
using the artifact will be notified, allowing them to react (or not) to the evolution
of the interaction. This mechanism is a core part of the CArtAgO framework.

The ArtifactManager Agent plays the role of a Yellow Pages Agent for com-
munication artifacts, or, in other terms, of an artifact broker. It has a crucial
role: it is a “communication channel” broker, gathering requests for both focused
or broadcasting calls for interaction. As such, it provides a collection of utility
services. It supplies information about the interaction protocols (e.g. it provides
the XML describing a given protocol, it allows a search for a protocol, a list
of active communication channels, a list of interacting agents); it answers to
requests about the status of an existing interaction session; it notifies the sub-
scriber agents a particular session availability, and so on. Its main purpose is to
prepare the communication artifact among the interacting agents, and to supply

2COMM: A Commitment-Based MAS Architecture 45

it to the requesting agents. It can also enable other interested agents to monitor,
audit, or, more generally, observe the social state evolution. The communications
between the ArtifactManager Agent and the requesting agents is realized via
FIPA-ACL messages: when a requester sends a request ACL message to the
ArtifactManager Agent, specifying the protocol and the role it wants to enact,
the latter will do the following steps:

1. Check if the requested protocol is available;
2. Check if the requested role is foreseen by the protocol;
3. Create/retrieve a communication artifact of the requested type;
4. Set the requested artifact role field to the agent identifier (AID) of the re-

quester;
5. Respond to the requester with the artifact’s reference;
6. Possibly inform other interested agents of the availability of the communi-

cation artifact.

The initialization procedure is modeled as a simple FIPA Request Interaction
Protocol, where the content of messages consists of the communication artifact
request parameters. After this phase, the agent can use the enact operation to
start playing the requested role. The use of an agent does not necessarily imply
a centralization of the yellow pages: agents may directly create communication
artifacts; yellow pages can be federated.

3.2 Using Mediated Communication at Runtime

In the following, we show a scenario in which a communication artifact is used,
to better explain how to leverage the communication artifacts and the Artifact-
Manager Agent. We adopt the well-known FIPA Contract Net Protocol (CNP),
modeling it as a commitment-based protocol and implementing a corresponding
artifact. The scenario is depicted in Figure 3.

The JADE infrastructure is extended with the ArtifactManager Agent, that
provides a Yellow Pages service for communication artifacts. It can respond to
ACL Messages, that encode requests of a new Communication Atifact, either
with a Failure message or an Agree message. In the latter case, it will either
prepare a new instance of the requested communication artifact, or it will return
an already existing artifact. For instance, suppose that agent A1 has to assign a
task, and agents A2 and A3 have the capability of performing it. Suppose that
A2 and A3 already registered to the ArtifactManager Agent (ArA for brevity),
and that this has already instantiated a Contract Net Protocol communication
artifact (CNPCA for brevity). At this time, the (partial) state of CNPCA is:

– Initiator: null
– Participants: {A2.AID, A3.AID}

where AID is the JADE Agent Identifier. A1, then, asks ArA for a CNPCA,
following the procedure described before, without specifying a particular partic-
ipant. ArA matches this request with the already prepared CNPCA: the match

46 M. Baldoni, C. Baroglio, and F. Capuzzimati

CNP
Initiator

CNP
Participant

ArtifactManager
Agent

[JADE]
Directory
Facilitator

+ cfp (task: Task)
+ propose (proposal: Proposal)
+ refuse
+ accept
+ reject
+ done
+ failure

initiator: Role [0…*]
participant: Role [0…*]

<<CommitmentCommunicationArtifact>>
Contract Net Protocol

<register><register>

Request CNP artifact

Provide CNP artifact

Request CNP artifact

Provide CNP artifact

Focus
on Social State

Signal
on Social State

Manage/
Instantiate

Query

Focus
on Social State

Signal
on Social State

Manage
Signal

Manage
Signal

Fig. 3. Possible interactions between the main elements of our proposal, in a CNP
example

is successful, inasmuch the Initiator role is not played by any agent. So, ArA
stores A1.AID in the Initiator property of CNPCA, and returns its reference
to A1. Following the CArtAgO terminology, agents A1, A2 and A3 focus on
the SocialState property of CNPCA immediately after having its reference. This
means that any change to the social state will be signaled to the three agents,
who can take decisions accordingly. The agents interact with one another via
operations on CNPCA, and observe the social state evolution in order to reason
about which actions to take.

An agent can stop playing a protocol role at anytime by executing the deact
operation. The artifact unregisters its AID from the AID-role mapping list. On
the other hand, an agent may enact a partially executed role within an interac-
tion session. What about commitments in such cases? In this work we focused
only on the communicational and interaction-related aspects of playing protocol
roles: sanctions or other action concerning the institutional (or organizational)
levels are not accounted for yet. Simply, since responsibilities are associated to
roles, deacting a role yields that the resigning agent will not need anymore to
fulfill them, while a substituting agent needs to accept the current commitments
of the role it is assuming [40]. A reference model to include, in the future, also
institutional aspects could be the JaCaMo proposal [15].

2COMM: A Commitment-Based MAS Architecture 47

3.3 Using Mediated Communication at Design Time

We assume that MAS designers know a collection of communication artifacts,
each representing a commitment-based protocol. Each protocol is enriched with
an XML-based description of it, a Protocol Manual, available both at design- and
at run-time. It is an add-on to the CArtAgO artifact manual, with orthogonal
scopes and purposes. It can be used by MAS and agent designers as a guideline
for understanding whether an agent is suitable for a protocol role as well as for
understanding whether a protocol role suits the purposes of an agent. From a
methodological point of view, the designer needs the Protocol Manual to know
the social consequences of the actions supplied by an artifact, in terms of social
facts and commitments, so he/she can design agent behaviors accordingly. Then,
depending on the implemented behavior, the agent will decide how to use infor-
mation about the social state evolution, how to fulfill commitments, which social
action (i.e. a public artifact operation) to execute and when. Ideally, the designer
should equip the agent with the behaviors that are necessary to bring about the
conditions of the commitments it will possibly take. This protocol-centric design,
jointly with the commitment nature of protocols, avoids a critical facet of JADE
protocols. Here, a pattern of interaction is projected on a set of JADE behaviors,
one for each role, thus making a global view of the protocol and its maintenance
difficult, and binding the very interaction to ad-hoc behaviors. Consequently,
the risk of conflicting behaviors, not devised at design time, increases. This way,
the designer can leverage a library of programmable communication artifacts,
focusing on the internal agent behavior without being concerned about ad-hoc
shaped communication behaviors.

4 JADE Methodology Revised

The JADE Methodology is a JADE founded agent-oriented software engineer-
ing methodology. It proposes a fully agent-based approach, instead of adapting
Object-Oriented techniques (like MASE [39], Adelfe [12] or MESSAGE [16]). It
concerns the analysis and the design phases of the software development life
cycle. The methodology considers agents as “pieces of autonomous code, able to
communicate with each other” [30], thus following a weak notion of agency; it
does not account for mentalistic/humanistic agents properties.

In the analysis phase, the first step is the identification of use cases, i.e.
functional requirements of the overall system, which are captured as standard
Use-cases UML Diagrams (Figure 4). Starting from this, the designer can point
out an initial set of agent types: an agent type for each user/device and for
each resource. The agent paradigm foresees that even external devices and soft-
ware/hardware resources (e.g. legacy systems, databases, external data sources)
are represented with an agent. The designer, then, identifies responsibilities, i.e.
the activities provided by system each agent is responsible for; and acquain-
tances, that is relationships between agents aimed at fulfilling some responsi-
bility. The results are a Responsibility table and an Agent diagram (Figure 5)
with initial acquaintances. No distinction is made between acquaintances and

48 M. Baldoni, C. Baroglio, and F. Capuzzimati

Investor

FinancialMAS

Check
Portfolio

Search
Investment

Data
Insertion

Withdraw

Accept
Proposal

Investment

Classify
Products

Investor
Profiling

<include>

<extends>

Financial
Promoter

Bank

<include>

<include>

<utilizza>

Fig. 4. The FinancialMAS Use Cases

responsibilities: in fact, the mentioned table will contain both. The analysis is
completed by executing activities related to agents/acquaintances refinement, to
define discover services and to add management/deployment information. The
design phase starts with the interaction specification step, where an interaction
table is produced. It refers to the responsibility table in order to define interac-
tions between JADE agents, specifying the interacting agents, the protocol and
protocol role (e.g. Initiator or Responder), the reference responsibility, and a
triggering condition.

Investor

Financial
Promoter

Bank

Investor
Agent

Financial Provider
Agent

Bank
Agent

Financial
DB

Financial
Promoter

Agent

Integrator Agent

Bank
Legacy

Informative
System

Fig. 5. The FinancialMAS Agent Type Diagram

It is suggested to use, when possible, standard JADE protocol behaviors,
that must be added to an agent’s behavior set to implement the corresponding
protocol role. The subsequent steps focus on the specification of agent interac-
tions with users and resources; the definition of a yellow page services, using
the JADE Directory Facilitator; the implementation of agent behaviors, starting

2COMM: A Commitment-Based MAS Architecture 49

Table 1. Responsibility Table for FinancialMAS

Agent Type No. Responsibility

Investor agent (IA)

1 Let investor search for investments proposals
2 Assist investor in setting search parameters and data
3 Support the individuation of the investor’s risk profile
4 Support in proposal acceptance
5 Withdraw from an investment contract

Financial Promoter agent (FP)
1 Respond to investment searches

2 Assist financial promoter in risk-classifying finan-
cial products

3 Determine the investor’s profile
4 Support individuation of the investor’s risk profile

Bank agent (BA)
1 Support bank in investment contract subscription
2 Assist bank in investment conclusion

Financial Provider agent (FV) 1 Provide financial and aggregate news information

Integration agent (IntA) 1
Serve and support integration with legacy bank
informative systems

Table 2. Interaction Table for FinancialMAS: who interacts with whom, to fulfill which
duty, by using which protocol

Interaction R.ty Interaction
Protocol

Role With When

Investor Agent
Search Investment 1 CNP Initiator FP Investor searches an investment
Profiling 3 Query Participant FP Investor chose a Financial Promoter
Proposal Acceptance 4 Query Participant BA Investor chose a financial product
Withdraw 5 Request Initiator BA After Investor accepted a proposal

Financial Promoter Agent
Respond to Search 1 CNP Participant IA Investor searches an investment
Profiling 3 Query Initiator IA Investor chose a Financial Promoter
Fin. Prod. Classif. 2 Query Initiator FV FP starts fin. prod. classif.

Bank Agent
Proposal Acceptance 1 Query Initiator IA Investor chose a financial product
Withdraw 3 Request Participant IA After Investor accepted a proposal

Financial Provider Agent
Fin. Prod. Classif. 1 Query Participant FP FP starts fin. prod. classif.

from JADE protocol behaviors related to responsibilities. A last effort is the
definition of a shared, system-wide ontology.

We show how it is possible to integrate, within the JADE Methodology [30],
an account of commitment-based protocols with the help of a real-world scenario,
we call FinancialMAS. For brevity, we show only the fundamental steps needed
to draft the system and to highlight the benefits of reifying commitment-based
protocols by means of artifacts, and thus based on mediated interaction. By
applying the steps of the methodology, we obtained an initial design prototype for
FinancialMAS, concerning an initial set of agents and the so called responsibility
table (Table 1). In the terminology of the JADE Methodology, responsibilities
amount to functional duties, agents are responsible for, from an overall MAS
point of view. To handle them, agents possibly need to interact with one another.
The result of this analysis is an Interaction table (Table 2). At this point, instead
of realizing protocols via distributed JADE behaviors, we implement them via

50 M. Baldoni, C. Baroglio, and F. Capuzzimati

commitment-based communication artifacts. We assume to have already designed
artifacts for common interaction protocols, like the Contract Net Protocol, the
Query Protocol, and the Request Protocol. The resulting model is depicted in
Figure 6. For the sake of comparison, in Figure 7 we zoomed into the one of the
commitment artifacts, the Contract Net Protocol artifact, reported as a UML
diagram, while in Figure 8 we highlight the very same protocol, implemented
via pure JADE behaviors.

SOCIAL STATE

Investor
Agent

Financial
Promoter

Agent

Bank
Agent

CommitmentProtocol
ARTIFACT QUERY

CommitmentProtocol
ARTIFACT REQUEST

PaPartrticicipipanantt

enacts

CartAgo

JADE

CommitmentProtocol
ARTIFACT CONTRACT-NET-PROTOCOL

InInititiaiatotorr PaPartrticicipipananttInInititiaiatotorr PaPartrticicipipananttInInititiaiatotorr

JAJA

Financial
Provider

Agent

Commitments [1…*]

Social Facts [0…*]

Commitments [1…*]

Social Facts [0…*]

Commitments [1…*]

Social Facts [0…*]

Fig. 6. FinancialMAS Commitment-based Interaction Architecture

2COMM proposes a clear notion of Role that an agent must enact to partici-
pate in an interaction session, so the designer must only implement the behaviors
for fulfilling the commitments caused by the execution of a protocol actions. We
refer to the following description of CNP based on commitment protocols (this
is just an example, alternatives and variants can be found in papers like [42,24]):

cfp means create(C(i, p, propose, accept ∨ reject))
accept means none
reject means release(C(p, i, accept, done ∨ failure))
propose means create(C(p, i, accept, done ∨ failure))
refuse means release(C(i, p, propose, accept ∨ reject))
done means none
failure means none

In the case of CNP, two roles are foreseen, Initiator (i) and Participant (p).
Playing a role gives an agent powers, in terms of social state modification (i.e.
the state of the interaction session) as a consequence of its actions, and the

2COMM: A Commitment-Based MAS Architecture 51

socialState: SocialState
enactedRoles: Role [1…*]

<< Artifact >>
CommitmentCommunicationArtifact

+ send(message: Message): void
+ receive(): Message
#
discharge (commit: Commitment)
cancel (commit: Commitment)
release (commit: Commitment)
assign (commit: Commitment, role: Role)
delegate (commit: Commitment, role: Role)
assertFact (fact: LogicalExpression)

<< Artifact >>
CNP

+ cfp (proposal: Proposal) : void
+ accept () : void
+ reject (): void
+ propose(proposal: Proposal): void
+ refuse(task: Task): void
+ done(): void
+ failure(): void

tupleSet: Tuple [0…*]

<< Artifact >>
AbstractTupleSpace

+ out (tuple: Tuple) : void
+ in (label: String) : Tuple
+ inp (label: String) : Tuple
+ rd (label: String) : Message
+ rdp (label: String) : Message

id: RoleId
agent: AID
artid: ArtifactId

Role

+ createArtifact (artifactName: String,
artifactClass: Class<? extends Artifact) : void
+ enact (roleName: String, artifact: ArtifactID,
agent: AID) : Role
+ deact (role: RoleId, artifact: ArtifactID, agent:
AID) : void

Initiator

+ cfp(task: Task): void
+ accept(): void
+ rejecet(): void

Participant

+ propose(proposal: Proposal): void
+ refuse(task: Task): void
+ done(): void
+ failure(): void

+

+

CArtAgO

2COMM

<<plays>>

<<plays>>

JADEJADEjade.core.Behaviourjade.core.Agent

Agent1

Agent2

Agent1Behaviour

JADE

Contract Net Protocol

Agent2Behaviour

Fig. 7. The UML diagram for the 2COMM implementation of CNP

agent designer can use them if, when and how he/she wants. For instance, for
what concerns the update of the social state, when an agent playing the role
Initiator executes the artifact action cfp, the social state is modified by creating
the commitment C(i, p, propose, accept ∨ reject). On the one hand, this change
binds i to either accept or reject a proposal, if one is received; the agent is free to
decide not only which course of action to take but also how to realize acceptance
or rejection. On the other hand, this change is signaled to the agent playing the
role Participant, who will handle it in some manner (depending on its behaviors)
and decide whether sending a proposal. Instead, when a accept is executed the
raised event automatically discharges a commitment created by a cfp.

This approach is illustrated in Figure 7. We modeled CNP as a Commitment
Communication Artifact. Roles are inner classes within the artifacts, allowing
JADE agents to use them. The protocol consists of a set of social actions, each
of which has both an impact on the social state of the interaction and on the
communication between agents. Actions are attributed to roles. For instance,
action cfp is attributed to the role Initiator. For what concerns communication,
the execution of a social action amounts to sending the content to be communi-
cated through the tuple space provided by CArtAgO. This result is obtained by
exploiting the method send of the CommitmentCommunicationArtifact. Com-
mitments are handled as an instance of the class SocialState which is part
of the CommitmentCommunicationArtifact. For example, consider the social

52 M. Baldoni, C. Baroglio, and F. Capuzzimati

jade.core.Behaviour

+handlePropose()
+handleRefuse()
+handleInform()
+handleFailure()

ContractNetInitiatorBehaviour

+handleAcceptProposal()
+handleRejectProposal()
+prepareResultNotification()

ContractNetParticipantBehaviour

jade.core.Agent

Agent1

Agent2

+prepareCfps(ACLMessage cfp)
+handlePropose()
+handleRefuse()
+handleInform()
+handleFailure()

Agent1Behaviour

+handleCfp(ACLMessage cfp)
+handleAcceptProposal()
+handleRejectProposal()
+prepareResultNotification()

Agent2Behaviour

<<hasBehaviour>>

<<hasBehaviour>>

Contract Net Protocol

JADE

Fig. 8. UML diagram for the JADE implementation of CNP

action cfp, whose execution creates a commitment. This result is achieved through
the execution of the following artifact operation:

@OPERATION

public void cfp(Task task, Role initiator, Role participant) {

Message cfp = new Message();

// setting of cfp parameters

send(cfp);

create(new Commitment(initiator, participant, new Fact(‘‘propose’’),

new CompositeExpression(LogicalOperatorType.OR,

new Fact(‘‘accept’’), new Fact(‘‘reject’’))));

}

The first part of the operation manages the communication level, while the
latter manages the creation of the commitment. The action cfp attributed to the
role Initiator merely calls the described artifact operation.

An agent that will to play as a certain role can inspect the commitments that
are required by the role itself, which are the commitments it will possibly be
involved in as a debtor. In order to be able to satisfy them, the agent needs to
have appropriate behaviors, otherwise its role execution is bound to fail. Notice
that the agent is autonomous in selecting which social actions to execute and
when as well as how to behave in order to satisfy its commitments.

2COMM: A Commitment-Based MAS Architecture 53

Looking at Figure 8, the reader can perceive a major drawback of the original
JADE approach: being part of an interaction protocol entails the adoption of an
entire behavior, that must be added to the set of the internal agent behaviors.
The resulting agent design breaks the autonomy of the agent, since the agent has
an additional behavior for each role of each interaction it takes part to, increasing
the possibility of conflicts between behaviors, and increasing the overall agent
design complexity. In fact, being such behaviors FSMBehaviors, they implement
Finite State Machines, i.e. they rigidly prescribe the sequences of actions that
the agent is allowed to execute without any flexibility. Thus, it is not possible to
intervene on the logic by which actions are sequentialized but only to realize the
methods that the predefined behavior requires to redefine, which roughly corre-
spond to decision points. Furthermore, this approach hinders the observability
of the interaction, unless the designer adds specific sniffing or audit agents to log
every message passed. In performance-critical applications, having more agents
and producing a message overhead can produce undesirable scenarios.

5 Related Works, Discussion and Future Work

2COMM is a first step towards the implementation of the Mercurio architec-
ture, proposed in [3,4]. It realizes a programmable communication channel by
means of artifacts, which is interaction-centric, exploits the social meaning of
interaction supplied by commitment protocols, and enables the development of
monitoring functionalities. The realization of roles is inspired by [8,9]. The use
of commitments gives a normative value to the encoded protocol, while the act
of using a communication artifact amounts to the explicit acceptance, by the
agent, of the rules of the protocol. This makes the current proposal very differ-
ent from [7], whose aim was the introduction of the notion of role, as in [8,9],
inside JADE. The proposal conjugates the flexibility and the openness that are
typical of MAS with the need of modularity and compositionality that are typ-
ical of design and development methodologies. The realization of commitment
protocols as artifacts is an advancement of research on commitment-based ap-
proaches, w.r.t. approaches like [19], where commitment management resides
in a middleware which, in turn, relies on a message-exchange communication
infrastructure. Even though the function of the middleware recalls that of our
artifacts, artifacts are, by their nature, distributed (and not centralized), they
can be the result of the composition of other artifacts, can be manipulated and
customized by the agents themselves. Moreover, the adoption of tuple spaces
allows more variegated forms of communication where communication actions
are not limited to utterances.

We believe that a commitment approach brings relevant advantages in terms
of design and modeling flexibility, modularity and traceability. The resulting
artifact explicitly provides a notion of Role that is decoupled from the interacting
agent, instead of cabling it into an agent behavior (as in the JADE Methodology)
or of composing different atomic roles to build an agent type (as in the GAIA
Methodology [43]). Both approaches break into inner agent definitions, hindering

54 M. Baldoni, C. Baroglio, and F. Capuzzimati

the agent autonomy and the openness of the system. The artifact entity supplies
a natural way for logging and audit purposes, leveraging the concept of social
state (and its evolution). In a pure agent environment (like JADE), a similar
result is obtained via a massive use of either message-sniffing agents and/or
auditing agents, with a consequent overhead of the number of messages that
are passed. This is, for example, the case of the proposal in [29]. By being an
observable property, the social state provides the agent society a clear vision of
who is responsible of what, in which protocol interaction, and when an agent
acted so as to fulfill its commitments.

2COMM focuses on the interaction protocol layer, leaving aside issues concern-
ing the society of agents in which the interaction takes place. Thus, it does not,
for instance, tackle how to deal with violations of commitments. In order to prop-
erly handle these aspects it would be interesting to combine its use with proposals
from the area of e-institutions. Concerning this field 2COMM would provide an
improvement in that it would introduce the possibility to account for indirect
forms of communication. As [25] witness, there is an emerging need of defin-
ing a more abstract notion of action, which is not limited to direct speech acts,
whose use is not always natural. Along this direction, it is relevant to mention the
OCeAN meta-model for artificial institutions [26], which encompasses a notion of
commitment, and for which a possible architecture is discussed in [31]. For what
concerns organizations, instead, there are some attempts to integrate them with
artifacts, e.g. ORA4MAS [27] and JaCaMo http://jacamo.sourceforge.net,
which also accounts for BDI agents. Following the A&A perspective, artifacts
are concrete bricks used to structure the agents’ world: part of which is the orga-
nizational infrastructure, part amounts to artifacts introduced by specific MAS
applications, including entities/services belonging to the external environment.
In [27] the organizational infrastructure is based on Moise+, which allows both
for the enforcement and the regimentation of the rules of the organization. This
is done by defining a set of conditions to be achieved and the roles that are per-
mitted or obliged to perform them. The limit of this approach is that it cannot
capture contexts in which regulations are, more generally, norms because norms
cannot be restricted to achievement goals. Recently, the use of a communica-
tion infrastructure based on artifacts has been proposed to define, in an explicit
and clear way, interaction in JaCaMo [33]. Nevertheless, the proposal does not
supply a normative account of communication.

Finally, we think that our proposal can give significant contributions in
industrial applicative contexts, for the realization of business processes and,
in particular, of human-oriented workflows, whose nature is intrinsically social
and where the notion of commitment plays a fundamental role [28].
In [36], the authors present LoST, a commitment-based model for the definition
of declarative protocols, which is based on local history vectors of sent/received
messages, associated to each of the interacting agents. LoST enables the repre-
sentation and monitoring of (business) protocols when it is necessary to transfer
local knowledge about occurring interactions between the agents. It works as an
adapter for message transfer between agents. 2COMM, instead, provides agents

http://jacamo.sourceforge.net

2COMM: A Commitment-Based MAS Architecture 55

an environment by which they communicate and, if this is requested, they can
perform actions which do not amount to utterances but still entail social effects.

As a future work, we devise an extension of 2COMM for tackling a more
expressive protocol language, with support for temporal constraints, see also [2].
This goal can easily be achieved by defining new artifact types that provide
developers the appropriate protocol language primitives, such as those offered
by 2CL [6][5].

Acknowledgments. The authors would like to thank the reviewers for their
comments and the participants to the EMAS 2013 workshop for the discussions.

References

1. FIPA specifications, http://www.fipa.org
2. Baldoni, M., Baroglio, C.: Some Thoughts about Commitment Protocols. In: Bal-

doni, M., Dennis, L., Mascardi, V., Vasconcelos, W. (eds.) DALT 2012. LNCS,
vol. 7784, pp. 190–196. Springer, Heidelberg (2013)

3. Baldoni, M., Baroglio, C., Bergenti, F., Marengo, E., Mascardi, V., Patti, V., Ricci,
A., Santi, A.: An interaction-oriented agent framework for open environments. In:
Pirrone, R., Sorbello, F. (eds.) AI*IA 2011. LNCS, vol. 6934, pp. 68–79. Springer,
Heidelberg (2011)

4. Baldoni, M., Baroglio, C., Marengo, E., Patti, V., Ricci, A.: Back to the future:
An interaction-oriented framework for social computing. In: First Int. Workshop
on Req. Eng. for Social Computing, RESC, pp. 2–5. IEEE (2011)

5. Baldoni, M., Baroglio, C., Capuzzimati, F., Marengo, E., Patti, V.: A generalized
commitment machine for 2CL protocols and its implementation. In: Baldoni, M.,
Dennis, L., Mascardi, V., Vasconcelos, W. (eds.) DALT 2012. LNCS, vol. 7784, pp.
96–115. Springer, Heidelberg (2013)

6. Baldoni, M., Baroglio, C., Marengo, E., Patti, V., Capuzzimati, F.: Engineering
commitment-based business protocols with 2CL methodology. J. of Autonomous
Agents and Multi-Agent Systems (to appear, August 2013)

7. Baldoni, M., Boella, G., Genovese, V., Mugnaini, A., Grenna, R., van der Torre,
L.: A Middleware for Modeling Organizations and Roles in Jade. In: Braubach, L.,
Briot, J.-P., Thangarajah, J. (eds.) ProMAS 2009. LNCS, vol. 5919, pp. 100–117.
Springer, Heidelberg (2010)

8. Baldoni, M., Boella, G., van der Torre, L.W.N.: Bridging agent theory and ob-
ject orientation: Agent-like communication among objects. In: Bordini, R.H., Das-
tani, M., Dix, J., El Fallah Seghrouchni, A. (eds.) PROMAS 2006. LNCS (LNAI),
vol. 4411, pp. 149–164. Springer, Heidelberg (2007)

9. Baldoni, M., Boella, G., van der Torre, L.: Interaction between Objects in power-
java. Journal of Object Technology 6(2) (2007)

10. Bellifemine, F., Poggi, A.: JADE A FIPA-compliant agent framework. In: Proceed-
ings of PAAM (1999)

11. Bellifemine, F., Poggi, A., Rimassa, G.: Developing multi-agent systems with
a FIPA-compliant agent framework. Software-Practice and Experience, 103–128
(July 1999, 2001)

12. Bernon, C., Gleizes, M.P., Peyruqueou, S., Picard, G.: Adelfe: A methodology for
adaptive multi-agent systems engineering. In: Petta, P., Tolksdorf, R., Zambonelli,
F. (eds.) ESAW 2002. LNCS (LNAI), vol. 2577, pp. 156–169. Springer, Heidelberg
(2003)

http://www.fipa.org

56 M. Baldoni, C. Baroglio, and F. Capuzzimati

13. Boella, G., van der Torre, L.W.N.: An agent oriented ontology of social reality. In:
Procs. of Formal Ontologies in Information Systems (FOIS). IOS Press (2004)

14. Boella, G., van der Torre, L.W.N.: The ontological properties of social roles in
multi-agent systems: definitional dependence, powers and roles playing roles. Ar-
tificial Intelligence and Law 15(3), 201–221 (2007)

15. Boissier, O., Bordini, R.H., Hbner, J., Ricci, A., Santi, A.: Multi-agent oriented
programming with jacamo. Science of Computer Programming (2011)

16. Caire, G., Coulier, W., Garijo, F.J., Gomez, J., Pavón, J., Leal, F., Chainho, P.,
Kearney, P.E., Stark, J., Evans, R., Massonet, P.: Agent Oriented Analysis Using
Message/UML. In: Wooldridge, M.J., Weiß, G., Ciancarini, P. (eds.) AOSE 2001.
LNCS, vol. 2222, pp. 119–135. Springer, Heidelberg (2002)

17. Caire, G., Gotta, D., Banzi, M.: Wade: a software platform to develop mission
critical applications exploiting agents and workflows. In: AAMAS (Industry Track),
pp. 29–36. IFAAMAS (2008)

18. Castelfranchi, C.: Principles of Individual Social Action. In: Contemporary Action
Theory: Social Action, vol. 2, pp. 163–192. Kluwer, Dordrecht (1997)

19. Chopra, A.K., Singh, M.P.: An Architecture for Multiagent Systems: An Approach
Based on Commitments. In: Proc. of ProMAS (2009)

20. Chopra, A.K.: Commitment Alignment: Semantics, Patterns, and Decision Pro-
cedures for Distributed Computing. PhD thesis, North Carolina State University,
Raleigh, NC (2009)

21. Conte, R., Castelfranchi, C., Dignum, F.: Autonomous Norm Acceptance. In:
Papadimitriou, C., Singh, M.P., Müller, J.P. (eds.) ATAL 1998. LNCS (LNAI),
vol. 1555, pp. 99–112. Springer, Heidelberg (1999)

22. Dastani, M., Grossi, D., Meyer, J.-J.C., Tinnemeier, N.: Normative multi-agent
programs and their logics. In: Meyer, J.-J.C., Broersen, J. (eds.) KRAMAS 2008.
LNCS, vol. 5605, pp. 16–31. Springer, Heidelberg (2009)

23. Dietz, J.L.G.: Understanding and Modeling Business Processes with DEMO. In:
Akoka, J., Bouzeghoub, M., Comyn-Wattiau, I., Métais, E. (eds.) ER 1999. LNCS,
vol. 1728, pp. 188–202. Springer, Heidelberg (1999)

24. El-Menshawy, M., Bentahar, J., Dssouli, R.: Symbolic model checking commitment
protocols using reduction. In: Omicini, A., Sardina, S., Vasconcelos, W. (eds.)
DALT 2010. LNCS, vol. 6619, pp. 185–203. Springer, Heidelberg (2011)

25. Fornara, N., Viganò, F., Colombetti, M.: Agent communication and artificial in-
stitutions. Autonomous Agents and Multi-Agent Systems 14(2), 121–142 (2007)

26. Fornara, N., Viganò, F., Verdicchio, M., Colombetti, M.: Artificial institutions: a
model of institutional reality for open multiagent systems. Artif. Intell. Law 16(1),
89–105 (2008)

27. Hubner, J.F., Boissier, O., Kitio, R., Ricci, A.: Instrumenting multi-agent organi-
sations with organisational artifacts and agents: “Giving the organisational power
back to the agents”. Autonomous Agents and Multi-Agent Systems 20 (2009)

28. Medina-Mora, R., Winograd, T., Flores, R., Flores, F.: The action workflow ap-
proach to workflow management technology. Inf. Soc. 9(4), 391–404 (1993)

29. Nguyen, M.T., Fuhrer, P., Pasquier-Rocha, J.: Enhancing e-health information
systems with agent technology. Int. J. Telemedicine Appl. 2009, 1:1–1:13 (2009)

30. Nikraz, M., Caire, G., Bahri, P.A.: A Methodology for the Analysis and Design of
Multi-Agent Systems using JADE (May 2006)

31. Okouya, D., Fornara, N., Colombetti, M.: An infrastructure for the design and de-
velopment of open interaction systems. In: Cossentino, M., El Fallah Seghrouchni,
A., Winikoff, M. (eds.) EMAS 2013. LNCS (LNAI), vol. 8245, pp. 217–236.
Springer, Heidelberg (2013)

2COMM: A Commitment-Based MAS Architecture 57

32. Ricci, A., Piunti, M., Viroli, M.: Environment programming in multi-agent systems:
an artifact-based perspective. Autonomous Agents and Multi-Agent Systems 23(2),
158–192 (2011)

33. Rodrigues, T.F., da Rocha Costa, A.C., Dimuro, G.P.: A Communication Infras-
tructure Based on Artifacts for the JaCaMo Platform. In: Cossentino, M., El Fallah
Seghrouchni, A.,Winikoff,M. (eds.) EMAS 2013. LNCS (LNAI), vol. 8245, Springer,
Heidelberg (2013)

34. Singh, M.P.: An Ontology for Commitments in Multiagent Systems. Artif. Intell.
Law 7(1), 97–113 (1999)

35. Singh, M.P.: A social semantics for agent communication languages. In: Dignum,
F.P.M., Greaves, M. (eds.) Issues in Agent Communication. LNCS, vol. 1916,
pp. 31–45. Springer, Heidelberg (2000)

36. Singh, M.P.: LoST: Local Transfer - An Architectural Style for the Distributed
Enactment of Business Protocols. In: Proc. of the 9th Internactional Conference
on Web Services, pp. 57–64. IEEE Computer Society (2011)

37. Telang, P.R., Singh, M.P.: Specifying and Verifying Cross-Organizational Business
Models: An Agent-Oriented Approach. IEEE Transactions on Services Computing,
1–14 (2011)

38. Winograd, T., Flores, F.: Understanding computers and cognition - a new founda-
tion for design. Addison-Wesley (1987)

39. Wood, M.F., DeLoach, S.A.: An overview of the multiagent systems engineer-
ing methodology. In: Ciancarini, P., Wooldridge, M.J. (eds.) AOSE 2000. LNCS,
vol. 1957, pp. 207–221. Springer, Heidelberg (2001)

40. Yolum, P., Singh, M.P.: Designing and executing protocols using the event calculus.
In: Proc. of the 5th Int. Conf. on Autonomous Agents, AGENTS 2001, pp. 27–28
(2001)

41. Yolum, P., Singh, M.P.: Commitment Machines. In: Meyer, J.-J.C., Tambe, M.
(eds.) ATAL 2001. LNCS (LNAI), vol. 2333, pp. 235–247. Springer, Heidelberg
(2002)

42. Yolum, P.: Design time analysis of multiagent protocols. Data Knowledge Engi-
neering 63(1), 137–154 (2007)

43. Zambonelli, F., Jennings, N.R., Wooldridge, M.: Developing multiagent systems:
The gaia methodology. ACM Trans. Softw. Eng. Methodol. 12(3), 317–370 (2003)

Benchmarking Communication

in Actor- and Agent-Based Languages

Rafael C. Cardoso1, Jomi F. Hübner2, and Rafael H. Bordini1

1 FACIN–PUCRS
Porto Alegre - RS, Brazil

rafael.caue@acad.pucrs.br
r.bordini@pucrs.br

2 DAS–UFSC
Florianópolis - SC, Brazil
jomi@das.ufsc.br

Abstract. This paper presents the results of communication bench-
marks comparing an agent-oriented programming language and two actor-
oriented programming languages. It is based on an existing benchmark
for programming languages and two variations on that benchmark. We
selected Erlang and Akka (using the Scala interface) to represent ac-
tor languages, and Jason as the agent language representative. We also
present those three scenarios and the respective results in regards to
time, core usage, and memory. Even though BDI engines typically used
for agent languages provide sophisticated programming abstractions that
require significant platform overhead to facilitate the development of
complex agents, our initial results show that Jason has reasonable per-
formance for this type of benchmark, where actor-based languages were
expected to do significantly better than agent languages.

Keywords: benchmarking, agents, actors, Jason, Erlang, Akka, Scala.

1 Introduction

Jason is one of the best-known platforms for the development of multi-agent
systems based on agent-oriented programming. Various authors have included
Jason in their comparisons and analyses of agent programming languages. For
example, Jason was included in a qualitative comparison of features available in
Erlang, Jason, and Java [21]; in a universal criteria catalog for agent development
artifacts [11]; in a quantitative analysis of 2APL, GOAL, and Jason regarding
their similarity and the time it takes for them to reach specific states [7]; a per-
formance evaluation of Jason when used for distributed crowd simulations [17];
an approach to query caching and a performance analysis of its usage in Jason,
2APL, and GOAL [3]; and finally an implementation of Jason in Erlang and a
benchmark for evaluating its performance [16]. In those cases where performance
was considered, Jason typically showed excellent results.

M. Cossentino et al. (Eds.): EMAS 2013, LNAI 8245, pp. 58–77, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Benchmarking Communication in Actor- and Agent-Based Languages 59

However, there is no quantitative analysis — to the best of our knowledge
— of how well agent languages can do compared actor languages. Because the
actor approach is by design lighter than agents and because actor languages
have been improved over a much longer period than modern agent programming
languages, comparing performance on traditional programming language bench-
marks is a much harder challenge for Jason than those it previously faced, and
this is precisely what we do in this paper.

Our motivation for this recent line of work came from the idea of doing some
benchmarking experiments in order to investigate whether some variations of
usual benchmarking scenarios, taking into consideration features of agent pro-
gramming, would allow us to conclude whether certain scenarios could be more
appropriate for actors rather than agents and vice-versa, both in terms of nat-
uralness of the paradigm for developing the applications and in terms of actual
performance for the natural solutions in both paradigms. Even if it turns out
that we cannot immediately find a scenario that is intrinsically more appropriate
for agents, we could still use the outcome of our work to point out some flaws
or deficiencies in current agent-based languages, and learn something from the
longer experience with actor-based languages, thus making it possible to improve
performance for agent-based languages in the future.

We started by taking an Erlang program for a token passing problem available
in the Computer Language Benchmarks Game website (http://shootout.
alioth.debian.org/) and we wrote a Jason and Akka version for it. We then
changed that benchmark to a different scenario where the only difference is that
a number of tokens were being passed simultaneously, and all three programs
were changed accordingly. While Jason had the worst performance in regards
to elapsed time, it matched closely the performance of Akka, at least for our
current experiments. Erlang showed the best performance in all cases, which
was expected as it is known to have an efficient virtual machine and used in
industrial applications. Finally, for the third scenario, we added a notion of
token types in order to assess the reactivity of each language1.

The results reported in this paper were obtained from runs on a dedicated
computer with six physical cores (no hyperthreading). We also show the results
for the same scenarios but limiting the number of cores to three, with the pur-
pose of analysing the difference that it makes to run the same experiment on
increasing numbers of cores. The experiments presented in this paper are not
supposed to stress-test the languages but rather to compare them in normal
day-to-day usage measuring the performance, scalability, and reactivity of the
communication aspect of the languages. Because this comparison cannot be done
directly, as the actor model is by design lighter than the agent model and each
language has a different runtime environment, we make use of scale factors to
compare the languages.

1 The code for all scenarios/languages used in this paper is available at
https://github.com/rafaelcaue/
Actor-Agent-based-benchmark-for-communication.

http://shootout.alioth.debian.org/
http://shootout.alioth.debian.org/
https://github.com/rafaelcaue/Actor-Agent-based-benchmark-for-communication
https://github.com/rafaelcaue/Actor-Agent-based-benchmark-for-communication

60 R.C. Cardoso, J.F. Hübner, and R.H. Bordini

We also considered including JACK [12] as a second agent language represen-
tative, but we decided not to do all of the experiments with JACK because of
two main reasons: first, unlike the other selected languages, JACK is commercial
software; and second, the results for JACK in the first two scenarios showed that
it seems not to take advantage of multiple cores, so it cannot be compared to
the other three languages used for these experiments. A summary of the results
for those experiments can be found at the end of Sections 4.1 and 4.2.

In summary, this paper aims to present results about the performance of
agent-based languages, particularly Jason, against actor-based languages, using
variations of a well-known benchmark for communication in programming lan-
guages. It also aims to instigate the agent programming community to further
benchmark various aspects of agent-oriented programming languages.

In a previous short version of this paper [13], the Scala Actors library for
actor programming was used, but at the time of writing this paper it is no longer
the default actor library in Scala 2.10 and it will be deprecated in Scala 2.11.
Therefore, in our experiments we replaced Scala Actors with the new default
library for Scala actor programming, Akka. Although they are similar, both being
Scala libraries, Akka implements an actor system [31] whereas Scala Actors does
not.

The remainder of this paper is organised as follows. The next section pro-
vides a brief summary of related work. Section 3 gives an introduction to the
three programming languages we compare in this paper. Section 4 shows the
description of each scenario used in the experiments as well as all the results ob-
tained. Section 5 includes an analysis of the results, and we conclude the paper
in Section 6.

2 Related Work

In this section we will show several benchmarks and evaluations about actor
and agent programming languages found in the literature, but to the best of our
knowledge there is none that focus on benchmarking both the actor and agent
models together.

A strictly qualitative analysis of multi-agent system development kits can be
found in [8], where they assign weights to criteria in five categories: sociality,
advanced attitudes, software engineering, implementation, and technical issues.
Each development kit is ranked based on that criteria with values 100, 50, and
0 that correspond to the level of support as a percentage. The overall results
indicated that the development kits with the best values were, in descending
order: AgentBuilder, JACK, AgentSheets, and OpenCybele. That study did not
include any quantitative analysis.

A more varied study is that in [28], focusing on criteria such as Java sup-
port, performance evaluation, development support, and performance on mes-
sage passing. The benchmark is on the message transport system: a sender for-
mulates a message and sends it to a receiver, recording the starting time, and
when the receiver gets the message he sends it back to the sender. This process

Benchmarking Communication in Actor- and Agent-Based Languages 61

is repeated up to 4000 messages and the sender records the time at the end.
The benchmarked toolkits were Jade, Zeus, and JACK, and this benchmark was
run on a computer with a single core and 256 MB of RAM, which is what was
commonly available at the time that study was conducted, but does not take
advantage of the concurrency that the agent model is capable of.

An extensive performance evaluation of agent communication is available
in [2]. It tries to provide some explanations for weaknesses found during the ex-
periments in three multi-agent platforms: Jade, Madkit, and AgentScape. The
results concluded that all three multi-agent platforms performed poorly and with
low scalability. As in the studies above, the computer used to run the experi-
ments had a single core, thus not taking proper advantage of concurrency and
multi-core processors that are now common.

In [22], several actor-oriented programming languages are benchmarked, using
the threadring and the chameneos-redux benchmarks from the Computer
Language Benchmarks Game website, as well as a simple implementation of the
fibonacci sequence. There is also a qualitative analysis of the actor properties
that are present in each of those language that uses the Java Virtual Machine
(JVM); those languages are: SALSA, Scala Actors, Kilim, Actor Architecture,
JavAct, ActorFoundry, and Jetlang. Erlang does not use JVM, but was included
in the benchmarks as it was the most widely used Actor language at the time.
Kilim and Erlang displayed the best performance overall, but Kilim only provides
basic message passing support. For those experiments, a dual core processor was
used.

Finally, in [27], an agent-oriented programming language called simpAL is
introduced, aiming to integrate autonomous and reactive behaviour; the authors
claim that this is a problem not easily achievable with object-oriented and actor-
oriented languages. The results of a brief benchmark where an agent reacts to a
message by incrementing a counter and printing a message are presented, com-
paring simpAL with Jason, Erlang, and ActorFoundry. As in the study above,
a dual core processor was used.

Some of the studies mentioned here were conducted with much older versions
of the languages used in our experiments, and computer hardware has changed
significantly since then, in particular for multi-core technology that has become
commonplace.

3 Agent and Actor Programming Languages

In this section, we briefly discuss the main aspects of the three programming
languages that we chose for this comparison work. We only present some of
the fundamentals of each language, which can help understand the scenarios
implemented in the experiments. However, we assume some familiarity of the
reader with the actor and agent paradigms and, of course, prior knowledge of
those three programming languages (as well as functional programming and
Java) would be helpful.

62 R.C. Cardoso, J.F. Hübner, and R.H. Bordini

Actor-oriented programming languages are based on the actor model [1], with
an actor being a lightweight process that does not share state with other actors
and communicates by asynchronous message passing through mailboxes. Agent-
oriented programming languages are based on the agent model [30], which is an
extension of the actor model. While both agents and actors are lightweight pro-
cesses and reactive, agents are more complex entities, typically capable of “prac-
tical reasoning” (i.e., logic-based reasoning about the best action to take) [9,10].

3.1 Jason

Jason is a platform for the development of multi-agent systems that is based
on an agent-oriented programming language. The logic-based BDI-inspired lan-
guage AgentSpeak, initially conceived by Rao [26], was later extended in a series
of publications by Bordini, Hübner, and colleagues, so as to make it suitable as
a practical agent programming language. These extensions led to the variant of
AgentSpeak that is made available in Jason [10]. Jason is implemented in Java,
thus its programs run on a JVM, which also allows support for user-defined “in-
ternal actions” that are programmed in Java and run internally within an agent
rather than changing the environment, as normal actions do.

In Jason, an agent is an entity composed of a set of beliefs, representing agent’s
current state and knowledge about the environment in which it is situated, a set
of goals, which correspond to tasks the agent has to perform/achieve, a set of
intentions, which are tasks the agent is committed to achieve, and a set of plans
which are courses of actions triggered by events.

Events can be related to changes in either the agent’s belief base or its goals.
The agent reacts to the events creating new intentions, provided there is an
applicable plan for that event. Therefore, each intention represents a particular
“focus of attention” for the various tasks currently being done by the agent: they
all compete for the agent’s choice of intention to be further executed in a given
execution step. Last, we must mention the “pool of threads” functionality of Ja-
son, declared by using (pool,x) next to the infrastructure of choice. Enabling
a pool of thread means that rather than creating a thread for each agent, Jason
creates only a fixed number of threads that agents compete for (unless they have
nothing to do). In our experiments, we chose the size of the thread pool to be
the number of cores used in each experiment, in order to increase performance
on multi-core processors (x was either 3, 6, or 12 depending on the experiment).

3.2 Erlang

Erlang [5], acronym for Ericsson Language (where it was developed), is a func-
tional language with dynamic typing. Erlang is supported by an extensive library
collection know as OTP, originally an acronym for Open Telecom Platform (be-
fore 2000 when Erlang became open source). The Erlang Run-Time System
(ERTS) application is responsible for low-level operations, including the Erlang
virtual machine called Bodgan’s Erlang Abstract Machine (BEAM) [4].

Benchmarking Communication in Actor- and Agent-Based Languages 63

Concurrent programming is the focus of Erlang, using processes (the con-
currency model usually referred by Erlang users is the process model, but it
corresponds directly to the actor model) that are as much lightweight as possi-
ble. It even has its own scheduler in the virtual machine, so a process in Erlang
has nothing to do with heavyweight operating system processes.

Communication between processes is based on message passing, with each
process having its own mailbox that is used to store the messages. Messages
can be sent asynchronously and if a message matching the pattern is found in
the queue, it is processed and its variables instantiated before the expressions
in the body are evaluated. Functions are also defined by pattern matching and
expressions as usual in functional languages. For further details, we refer the
interested reader to [23,14].

3.3 Akka

Akka can be used either with Scala or directly with Java. In this paper we
chose to use the Akka library for Scala as it provides a syntax that is similar
to other common actor programming languages. Scala is considered a multi-
paradigm language, as it combines features of object-oriented and functional
programming languages. It differs from Erlang on its type system, as Scala is
a statically typed language, and intended as a general purpose programming
language. The name Scala comes from “scalable language”, as it was designed
to help the development of systems where scalability is an issue. Scala programs
run on a JVM, so it has direct integration with Java, allowing the use of existing
Java code within Scala systems [24].

This facilitates extensibility of the language, and resulted in the creation of
many libraries, such as Scala Actors (currently to be deprecated) and Akka: two
libraries that provides concurrent programming based on actors for Scala pro-
gramming. An actor can communicate asynchronously with another by exchang-
ing messages through the actor’s mailbox; an actor then generates an appropriate
response for each message it receives [18].

It is important to note that the actors used in the experiments reported in
this paper are event-based actors, not thread-based actors. In Scala Actors the
expression we used in the control loop for an event-based actor is react, while
for thread-based actors the expression would be receive [19]. In Akka, this
option is part of the MessageDispatcher, a mechanism responsible for opti-
mally dividing CPU resources among tasks. The default event-based dispatcher
is fork-join-executor, while the thread-based dispatcher is thread-pool-executor.
Although Scala has many other interesting concepts, only the basics that suffice
for some understanding the scenarios in Section 4 are covered here. For a more
in-depth reading of Scala, we refer the reader to [29] and, more specifically for
Akka, [31].

64 R.C. Cardoso, J.F. Hübner, and R.H. Bordini

4 The Benchmarking Experiments

The Computer Language Benchmarks Game (http://shootout.alioth.
debian.org/) provides performance evaluation for approximately twenty four
languages on various benchmark problems. Although they evaluate the perfor-
mance on computers with multiple cores, the tasks and most of the languages
are not appropriate for concurrent programming. A python script is available
on their website that does repeated measurements of CPU time, elapsed time,
resident memory usage, and CPU load for each core. It does so for various pro-
grams written in different programming languages, the script then summarises
those measurements on a sheet for easy viewing.

Each program is run as a child-process of a Python script using Popen. The
script is fully customisable and it is easy to add new languages, so we were able
to adapt it to our experiments. For the experiments described below, we chose
to take three measurements with the script: CPU load for each core, elapsed
time, and resident memory. The script measures the percentage load of a core
through the GTop library, on Unix systems, taking the CPU-idle and CPU-total
values before forking the child-process and after it exits, where the percentage
represents the time that a core was not-idle; elapsed time uses time.time()
to get the time before forking and after exiting; and resident memory is mea-
sured by sampling GLIBTOP PROC MEM RESIDENT for the program every
0.2 seconds.

The scenarios described in the next sections focus on the message passing
aspect of communication, testing the support for asynchronous message pass-
ing, concurrency and reactivity of each language; features that are essential for
actor- and agent-based languages alike. To run the experiments, we used an
Intel R©Xeon R©Six-Core E5645 CPU @ 2.40GHz (6 physical, 12 logical cores with
HyperThreadring) machine with 12B of DDR3 1333 MHz RAM, 1TB hard disk
drive, running the operating system Ubuntu 12.10 64 bits; the versions of the
languages used were Jason 1.3.9, Erlang R16B01 erts 5.10.2, Scala 2.10.2, and
Akka 2.1.4; the additional software used was Java OpenJDK 64-Bit Server VM,
Java 1.7.0 21, and Python 2.7.3.

4.1 Scenario 1

The first scenario is a simple case of passing one token N times through a ring of
“workers” (i.e., agents, processes, or actors, depending on the language). Each
program for this scenario should:

– create 500 linked workers (named 1 to 500);
– worker 500 should be linked to worker 1, forming an unbroken ring;
– pass a token to worker 1;
– each worker passes the token to its neighbouring worker;
– the program halts when the token has been passed (between any two workers)

N times.

http://shootout.alioth.debian.org/
http://shootout.alioth.debian.org/

Benchmarking Communication in Actor- and Agent-Based Languages 65

As an additional memory experiment, we also varied the number of workers.
We measured time and core load for this variation, but omitted them in this pa-
per since they did not show anything different from the other experiments. The
Erlang code for this scenario is that available at (http://shootout.alioth.
debian.org/), except that we removed unnecessary print statements, and
changed the number of workers to 500, simply because it represents an inter-
mediate value between the number of tokens used later in Scenario 2 and the
number of workers needed for the memory experiments.

We ran experiments for Scenario 1 with six different configurations for N ,
measuring elapsed time, core load, and memory: N = 500; N = 5, 000; N =
50, 000; N = 500, 000; N = 5, 000, 000; and N = 50, 000, 000. And again with
three different configurations of number of workers (W), this time with N fixed
at 5 million, for memory measurements: W = 50; W = 500; and W = 5, 000.

Table 1. Elapsed time in seconds – Scenario 1, varying N

6 cores 500 5k 50k 500k 5m 50m

Jason 0.818 1.33 1.99 5.393 37.973 360.07
Erlang 0.137 0.139 0.163 0.382 2.537 21.63
Akka 1.139 1.688 2.256 4.799 29.038 278.934

3 cores 500 5k 50k 500k 5m 50m

Jason 0.911 1.355 2.036 5.954 42.891 410.622
Erlang 0.12 0.124 0.144 0.345 2.338 22.602
Akka 1.089 1.65 2.095 3.895 20.062 183.994

0,1

1

10

100

1000

N = 500 N = 5k N = 50k N = 500k N = 5m N = 50m

El
ap

se
d

Ti
m

e
(s

ec
on

ds
)

Configuration

Jason

Erlang

Akka

Fig. 1. Elapsed time – Scenario 1

The results for the first benchmark (Scenario 1), using the Python “bencher”
script, can be seen in the following graphs2. All the numbers shown are based on
the results collected through 5 repeated measurements of each program with each
of the six configurations; in particular, the numbers shown represent the turn
with lowest (best) value of elapsed time among the 5 different runs. Figure 1
presents the measurements of elapsed running time in seconds based on the

2 All the graphs presented in this paper are in logarithmic scale, given that N grows
exponentially.

http://shootout.alioth.debian.org/
http://shootout.alioth.debian.org/

66 R.C. Cardoso, J.F. Hübner, and R.H. Bordini

values in Table 1. Figure 2 shows the CPU load measurements for each of the
six cores, for the three languages we are comparing. To improve readability we
present core loads only for the three highest values of N . Jason used on average
39% of each core in all three configurations; Erlang used mostly one core, 72%
for N = 500k, 95% for N = 5m and 99% for N = 50m; Akka used on average
61% of each core for the first configuration, 79% for the second, and 82% for the
last configuration. We show the memory results in Figure 5.

0%

50%

100%

Jason

Erlang

Akka

Co
re

 Lo
ad

N = 500k

N = 5m

N = 50m

Fig. 2. Core load – Scenario 1

We also show the results for the same configurations running with only three
cores; see Figures 3 and 4. In regards to CPU load using three cores, Jason used
on average 67% of each core; Erlang again used mostly only one core, 69% for
the first configuration and 100% for the last two; Akka averaged 78% for the first
configuration and 97% for the last two. Memory use is presented in Figure 6.

0,1

1

10

100

1000

N = 500 N = 5k N = 50k N = 500k N = 5m N = 50m

El
ap

se
d

Ti
m

e
(s

ec
on

ds
)

Configuration

Jason

Erlang

Akka

Fig. 3. Elapsed time – Scenario 1, three
cores

0%

50%

100%

Jason

Erlang

Akka

Co
re

 Lo
ad

N = 500k

N = 5m

N = 50m

Fig. 4. Core load – Scenario 1, three cores

For the sake of readability we present the results for the extra memory exper-
iments (Figure 13), where we vary the number of workers, in Section 4.2 next to
the memory experiments for Scenario 2. The numbers used represent the average
resident memory used in megabytes collected through 5 repeated measurements.

As reported in Section 1, we also considered using JACK for the experiments,
as in this first scenario it had 9.72 seconds for the measurement of elapsed time
with N = 500,000, which was only 4.3 seconds slower than Jason. JACK used,
on average, 28% of each core in this experiment, and a surprising 1035 MB of
resident memory.

Benchmarking Communication in Actor- and Agent-Based Languages 67

0,5
1
2
4
8

16
32
64

128
256
512

1024

N = 500 N = 5k N = 50k N = 500k N = 5m N = 50m

M
em

or
y

(m
eg

ab
yt

es
)

Configuration

Jason

Erlang

Akka

Fig. 5. Memory – Scenario 1

0,5
1
2
4
8

16
32
64

128
256
512

1024

N = 500 N = 5k N = 50k N = 500k N = 5m N = 50m

M
em

or
y

(m
eg

ab
yt

es
)

Configuration

Jason

Erlang

Akka

Fig. 6. Memory – Scenario 1, three cores

4.2 Scenario 2

This scenario is a minor variation of Scenario 1, where we added more tokens
and allowed them to be passed concurrently. So rather than passing only one
token, in Scenario 2 at the start of a run 50 tokens are distributed around the
ring using the following equation:

I ∗ (W/T)

where I is the number of the current token to be sent, W is the total number
of workers, and T is the total number of tokens. Each of these 50 tokens have
to be passed N times, and because neither agents nor actors share state, an
extra agent or actor is needed for counting the tokens that have finished: this is
necessary because in order for the Python bencher script to carry on running all
the experiments it needs the programs to halt, which can only happen when all
50 tokens have been passed N times each.

The results for the second benchmark are shown in the following graphs;
as before, we pick the run with the lowest elapsed time. Figure 7 shows the
measurements of elapsed running time in seconds based on the values in Table 2.
Figure 8 shows the measurements for the six cores, for each of the languages:
Jason averaged 96% in all three configurations; Erlang averaged 83% for N =
500k, 85% for N = 5m and 91% for N = 50m; and Akka averaged 93% for
the first, 95% for the second, and 96% for the last configuration. In Figure 11,
we show the resident memory used in megabytes, collected through 5 repeated
measurements. We show the results for three cores in Figures 9, 10, and 12.
In regards to CPU load using three cores only, the three languages averaged
98%. Finally, we vary W as shown in Figure 14 for the memory experiments.

Although JACK had average results in Scenario 1, it could not effectively
handle the concurrency in Scenario 2, taking 228.476 seconds for the measure-
ment of elapsed time for N = 500,000, which was far off from the results of
any of the other three languages. JACK used, on average, 43% of each core in
this experiment, and 1242 MB of resident memory, which is also much higher
than any of the other languages for this configuration. This disparity between
the results for the two scenarios was an important factor in JACK not being
included in the rest of the experiments.

68 R.C. Cardoso, J.F. Hübner, and R.H. Bordini

Table 2. Elapsed time in seconds – Scenario 2, varying N

6 cores 500 5k 50k 500k 5m 50m

Jason 1.315 1.769 4.761 32.575 321.694 3269.337
Erlang 0.141 0.165 0.421 2.89 26.964 260.868
Akka 1.522 2.048 3.956 23.613 220.796 2291.755

3 cores 500 5k 50k 500k 5m 50m

Jason 1.684 2.417 7.944 60.471 604.162 6009.822
Erlang 0.128 0.158 0.424 3.074 29.534 295.334
Akka 1.758 2.255 4.595 25.906 243.17 2370.131

0,1

1

10

100

1000

10000

N = 500 N = 5k N = 50k N = 500k N = 5m N = 50m

El
ap

se
d

Ti
m

e
(s

ec
on

ds
)

Configuration

Jason

Erlang

Akka

Fig. 7. Elapsed time – Scenario 2

0%

50%

100%

Jason

Erlang

Akka

Co
re

 Lo
ad

N = 500k

N = 5m

N = 50m

Fig. 8. Core load – Scenario 2

4.3 Scenario 3

As a follow up to Scenario 2, this time N is fixed at 500 and a new type of token
was introduced in the ring; we call it “token type 1”. The 50 previous tokens from
Scenario 2 are now referred to as “token type 2” and they work exactly the same
way as in the previous scenario. We created 1,000 type 1 tokens, two per worker,
to simulate the “mundane tasks” that the workers would normally be doing
while waiting for the “special” type 2 tokens to arrive. When a worker acquires
a token type 1 it starts a loop simulating a computing load (we used an empty
loop of 1000 iterations), and when it finishes that work load on the type 1 token,

Benchmarking Communication in Actor- and Agent-Based Languages 69

0,1

1

10

100

1000

10000

N = 500 N = 5k N = 50k N = 500k N = 5m N = 50m

El
ap

se
d

Ti
m

e
(s

ec
on

ds
)

Configuration

Jason

Erlang

Akka

Fig. 9. Elapsed time – Scenario 2, three
cores

90%

95%

100%

Jason

Erlang

Akka

Co
re

 Lo
ad

N = 500k

N = 5m

N = 50m

Fig. 10. Core load – Scenario 2, three
cores

0,5
1
2
4
8

16
32
64

128
256
512

1024

N = 500 N = 5k N = 50k N = 500k N = 5m N = 50m

M
em

or
y

(m
eg

ab
yt

es
)

Configuration

Jason

Erlang

Akka

Fig. 11. Memory – Scenario 2

0,5
1
2
4
8

16
32
64

128
256
512

1024

N = 500 N = 5k N = 50k N = 500k N = 5m N = 50m

M
em

or
y

(m
eg

ab
yt

es
)

Configuration

Jason

Erlang

Akka

Fig. 12. Memory – Scenario 2, three cores

1
2
4
8

16
32
64

128
256
512

1024

W = 50 W = 500 W = 5000

M
em

or
y

(m
eg

ab
yt

es
)

Configuration

Jason

Erlang

Akka

Fig. 13. Memory – Scenario 1, varying W

1
2
4
8

16
32
64

128
256
512

1024
2048

W = 50 W = 500 W = 5000

M
em

or
y

(m
eg

ab
yt

es
)

Configuration

Jason

Erlang

Akka

Fig. 14. Memory – Scenario 2, varying W

it passes that token on to the next worker in the ring, but the token counter
is not decreased so that tokens of type 1 never stop moving around the ring.
On the other hand, if a worker acquired a token type 2, as soon as it realises
it, the worker would pass that token directly to the next worker in the ring.
A run of Scenario 3 ends when all 50 tokens type 2 have been passed 500 times
each.

These modifications were introduced mainly to evaluate the reaction time
when receiving a token type 2 while still busy with the tokens of type 1 (i.e., to
assess the reactivity to communication for each platform), so we decided to take
the fastest configuration of Scenario 2, N = 500, which could then be compared
with the new results obtained for Scenario 3.

70 R.C. Cardoso, J.F. Hübner, and R.H. Bordini

In Jason, this reactivity comes naturally: when one token of any type arrives, it
generates a new intention that is executed concurrently with the other intentions
of that same agent. That is not the case with Erlang and Akka, as they need3 to
create a “subactor” for each token that arrives, except for tokens type 2 which
do not require additional work before passing. If instead the actor did not create
subactors, it would be blocked working on all of the tokens type 1 it previously
received before getting the message that a token type 2 arrived. As before, we
pick the run with the lowest elapsed time from 5 separate runs.

Table 3. Elapsed time in seconds – Scenario 3

6 cores 3 cores

Jason 13.925 23.776
Erlang 0.501 0.808
Akka 3.906 5.110

It is important to note that each of the three languages used a different mech-
anism to simulate the work load of tokens type 1. In Jason the loop was made
through plan recursion, in Erlang through tail recursive functions, and in Akka
with a simple for loop in Java. Because a worker will always be working on at
least one token type 1, these variations of the implementation of a simulated work
load do not interfere with our results because we will not compare the values of
different languages, we will compare them with their respective results from Sce-
nario 2. The results of elapsed time for Scenario 3 are presented in Table 3, with
N = 500 for using both six and three cores. Using six cores, in regards to core
load, Jason averaged 90%, Erlang 77%, and Akka 79%. In regards to memory us-
age, Jason used 1790MB, Erlang 21MB, and Akka 362MB. Using three cores, in
regards to core load, Jason averaged 95%, Erlang 91%, and Akka 90%. In regards
to memory usage, Jason used 1843MB, Erlang 20MB, and Akka 360MB.

5 Analysis of the Results

The elapsed time graphs for Scenario 1 (Figure 1) and Scenario 2 (Figure 7) show
Jason and Akka close to each other, while Erlang remains distant as the fastest
language. In both cases, Jason actually managed to be faster than Akka in the
first configurations, even if by a low margin. When limiting the number of cores
to three, Scenario 1 is improved for Akka as its elapsed time lowers considerably
with each configuration. This can be explained by the time spent switching
threads to cores, but not so for Erlang that was already using mostly only one
core when it had six available, and Jason that had a lower CPU load (average
39%) than Akka (average 82%) in the last configuration. Because this scenario
is not concurrent, Erlang’s behaviour is the optimal one, as using mostly one

3 Of course this is not the only way to implement such reactivity in the actor languages,
but it would be the most “natural” and easiest to program in that paradigm.

Benchmarking Communication in Actor- and Agent-Based Languages 71

core allows it to maintain its performance when the number of available cores
changes. The results for three cores in Scenario 2 indicate a major decline in
performance for Jason, which makes sense since Scenario 2 requires concurrency
and having fewer processors should increase the elapsed time, although that is
not exactly the case with Erlang and Akka as their performance only drops by
a small margin.

Such performance becomes clearer when observing the scale factors in Table 4
for Scenarios 1 and 2. Scale factors represent the proportional increase in time
when scaling up the experiment configurations such as number of token passes,
and denotes the degradation of performance. For example, Jason’s scale factor
9.482 (six cores) from 5m to 50m in Scenario 1 is calculated by dividing its
elapsed time in 50m, 360.07 seconds, by its elapsed time in 5m, 37.973. These
variations between configurations, i.e. changes in the number of token passes,
represent an increase in the amount of message passing that characterise the
communication aspect analysed in this paper. We selected only the three highest
values for N due to the fact that the other configurations only showed small
variations between them.

The scale factors for Scenario 1 show Erlang as the language with the lowest
increase in scale factors: 1.86 (i.e. the scale factor from configuration 5m to 50m,
8.526, minus the scale factor from 500k to 5m, 6.641) compared to 2.44 for Jason
and 3.56 for Akka. Those differences change when limiting the number of cores
to three, as Jason becomes the one with the lowest increase in scale factor: its
difference between scale factors is 2.37, followed by 2.89 for Erlang and 4.02 for
Akka. A low difference value between scale factors is desirable as it represents
good scalability between scenario configurations, which in this case is represented
by an increase in the number of messages that have to be passed as the number
of token passes increases. When looking at the results for Scenario 2, with six
cores, Jason takes the lead with a difference factor of 0.29 compared to 0.35 for
Erlang and 1.03 for Akka. Those difference factors get even smaller when using
only three cores, which suggests that in concurrency-based scenarios such as this,
the languages allow better scaling with lower numbers of cores, even though the
elapsed time of each program is faster with more cores.

The scale factors for Scenario 3 are presented in Table 6; for example, Akka
scale factor of 2.566 (six cores) is calculated by taking the elapsed time of 3.906
in Scenario 3 and dividing it by the elapsed time of 1.522 for the similar con-
figuration of Scenario 2, where N = 500. This particular scale factor represents
the reactivity that was possible for each language in Scenario 3 when compared
to its non-reactive counterpart, and shows Akka as the most reactive language,
followed by Erlang and then Jason. However, note that Jason did not require
any extra programming effort in order to obtain the reactive behaviour.

Regardless of whether the scenario is concurrent or not, Jason manages to
match closely the performance of the actor languages, and even surpasses them in
some cases. The scale factors in Table 5 represent the performance degradation of
moving from a scenario with only 1 token (non-concurrent) to a scenario with 50
tokens (concurrent). For example, the scale factor for Jason with N = 500k using

72 R.C. Cardoso, J.F. Hübner, and R.H. Bordini

six cores means that its elapsed time in Scenario 1, multiplied by 6.04, results
in its elapsed time of Scenario 2 for the same configuration. Using six cores,
Jason also displays a smaller variation between configurations when compared
to the other two languages, but when using only three cores we can observe a
substantial increase in the scale factors of the three languages, suggesting the
importance of using as many cores as possible, which is even more evident in the
case of Jason and Akka.

Table 4. Scale factors for Scenario 1 and 2

Scenario 1 Scenario 2
6 Cores 500k to 5m 5m to 50m 500k to 5m 5m to 50m
Jason 7.041 9.482 9.875 10.163
Erlang 6.641 8.526 9.33 9.675
Akka 6.051 9.606 9.351 10.379

3 Cores 500k to 5m 5m to 50m 500k to 5m 5m to 50m
Jason 7.203 9.574 9.891 9.947
Erlang 6.777 9.667 9.608 10
Akka 5.151 9.171 9.387 9.747

Table 5. Scale factors between Scenar-
ios 1 and 2

6 Cores 500k 5m 50m

Jason 6.04 8.472 9.08
Erlang 7.565 10.522 12.06
Akka 4.92 7.604 8.216

3 Cores 500k 5m 50m

Jason 10.156 14.086 14.636
Erlang 8.91 12.632 13.067
Akka 6.651 12.121 12.882

Table 6. Scale factors for Scenario 3

6 cores 3 cores

Jason 10.589 14.119
Erlang 3.553 6.313
Akka 2.566 2.907

The results in Figure 2 show that Jason and Akka have an even distribution of
core load, while Erlang uses for the most part only one core. We should consider
that Scenario 1 does not require concurrency, so it is acceptable that mostly one
core is used. The same behaviour holds when we use only three cores, except
that the load of each core gets higher for Jason and Akka, as they now have less
cores available to use.

Moving to the CPU-load graph for Scenario 2 (Figure 8), we can see that
Erlang starts to use all the six cores evenly as the number of token passes in-
creases, with both Erlang and Jason having higher core load than in Scenario 1,
while Akka maintained its high usage of each core. Using three cores in this case
pushed the core load higher, especially for N = 500k and N = 5m, which were
the cases that Erlang was not using to the maximum all the cores. As the the
number of token passes increased, the core load also increased for both Erlang

Benchmarking Communication in Actor- and Agent-Based Languages 73

and Akka, but remained constant for Jason in both scenarios with six and three
cores.

Memory in Scenario 1 (Figure 5) was constant during the initial variations
of N , but had a quick increase in the heavier configurations. For Scenario 2
(Figure 11), such increase happened in an earlier configuration, remaining con-
stant after that, possibly due to garbage collecting in the JVM for Jason and
Akka, and BEAM for Erlang. Because we were only varying the number of to-
ken passes (N) — that is, the programs were only running for a longer period of
time with each configuration — it makes sense for the languages to present this
pattern of having a single episode of sharp memory increase and then maintain-
ing it constant. In Scenario 3, however, Jason used a lot more memory than the
other languages, which is to be expected when compared to Erlang as it has its
own virtual machine, but Akka is also based on Java and runs on a JVM just
as Jason does. This is possibly due to the fact that in Jason the empty loop of
Scenario 3 is implemented as plan recursion, which means that each goal gener-
ates an intention that would be executed along with the intentions of the tokens
type 2 and which is formed by a stack of plans that grows with each recursion,
differently from the actor languages that would simply create a subactor for the
loop when needed.

When we consider the memory experiments varying W , all three languages
had the expected increase in used memory with the increase in the number of
workers. Jason has the highest memory usage of the three languages, which was
predictable since each agent has a more complex internal structure than an actor.
In Scenario 2, however, where we also have an increase in the number of tokens
passed and they can be passed concurrently, Jason surprisingly starts to follow
closely the performance of Akka. As both languages are implemented in Java,
this suggests that the garbage collector and the JVM play an even bigger role
in memory management as the previous experiments already suggested.

The experiments presented in the previous section were made with hyper-
threading disabled, i.e. only physical cores were used. As an additional experi-
ment, we also ran all the experiments with hyperthreading on, which means that
there were a total of 12 logical cores available in the machine with 6 physical
cores. The elapsed time results for Scenario 1 and 2 are presented in Figures 15
and 16, respectively, based on the values in Table 7. The results for Scenario 1
shows the same as the previous experiments: Jason and Akka present a drop in
performance, as having more cores in a non-concurrent scenario can be detri-
mental to their performance; Erlang maintains its performance as it mostly uses
one core. The main advantage of hyperthreading, however, is to improve perfor-
mance for threaded applications, so it would be a fair assumption to say that
with the concurrency of Scenario 2 the results were expected to be improved.
It did improve by a small margin for Jason and Erlang, but presented a major
decrease in performance for Akka, even though Akka had the highest core load
usage of the languages. We do not present the rest of the results for the hyper-
threading experiments as they had similar results as the experiments with six
cores in regards to core load and memory usage.

74 R.C. Cardoso, J.F. Hübner, and R.H. Bordini

0,1

1

10

100

1000

N = 500 N = 5k N = 50k N = 500k N = 5m N = 50m

El
ap

se
d

Ti
m

e
(s

ec
on

ds
)

Configuration

Jason

Erlang

Akka

Fig. 15. Elapsed time – Scenario 1, 12
cores

0,1

1

10

100

1000

10000

N = 500 N = 5k N = 50k N = 500k N = 5m N = 50m

El
ap

se
d

Ti
m

e
(s

ec
on

ds
)

Configuration

Jason

Erlang

Akka

Fig. 16. Elapsed time – Scenario 2, 12
cores

Table 7. Elapsed time in seconds – Scenarios 1 and 2, 12 cores

Scenario 1 500 5k 50k 500k 5m 50m

Jason 0.856 1.374 2.105 5.787 38.983 401.122
Erlang 0.14 0.141 0.168 0.393 2.637 21.812
Akka 1.151 1.727 2.313 5.032 31.166 303.815

Scenario 2 500 5k 50k 500k 5m 50m

Jason 1.384 2.04 4.875 33.201 305.213 3258.409
Erlang 0.141 0.167 0.425 2.966 26.871 269.051
Akka 1.508 2.002 4.561 29.417 282.356 2827.483

Having its own virtual machine and runtime environment execution certainly
helps Erlang to achieve the performance presented in this paper, although we
cannot say to what extent this may affect its overall performance. Clearly there
are advantages in using Java and the JVM for Jason and Akka, but this places a
limit on the performance that they can achieve, especially in regards to memory
and core load management.

On a more qualitative note, it is interesting to observe the code size of the
solutions. In all scenarios, Jason uses significantly fewer lines of code compared
to Erlang and Akka, and – although this is subjective – the programs seem
more intuitive, simpler, and readable. The interested readers can see all pro-
grams used for the three languages at https://github.com/rafaelcaue/
Actor-Agent-based-benchmark-for-communication.

6 Conclusion

In this paper, we presented an analysis of the results from experiments on three
different communication scenarios. Scenario 1, where a token is passed sequen-
tially, Scenario 2 where multiple tokens are passed concurrently, and Scenario 3,
where reactivity is needed for tokens type 2 to be passed faster. Where scaling
between configurations were considered, Erlang did better in almost all cases,
with Jason close to it, followed by Akka. Erlang stood distant as the one with
significantly better performance than the other two languages at both elapsed

https://github.com/rafaelcaue/Actor-Agent-based-benchmark-for-communication
https://github.com/rafaelcaue/Actor-Agent-based-benchmark-for-communication

Benchmarking Communication in Actor- and Agent-Based Languages 75

time and memory used for these scenarios. Jason, as a representative from a
“heavier” paradigm, did not disappoint, following closely on both aspects, scal-
ability and performance, and even surpassing the two actor languages in some
aspects, showing that agent-oriented programming languages can perform sur-
prisingly close to its predecessors as far as communication is concerned. For
Erlang and Akka, at least in our current experiments, its more efficient to have
a processor with a higher clock speed than with more cores, while Jason takes
more advantage of having extra cores instead of the higher clock speed.

Future work includes running the experiments reported here on machines with
a higher number of cores, and analyzing other issues such as fairness. Further-
more, we intend to benchmark also other agent and actor programming lan-
guages, including 2APL [15], GOAL [20], and Jadex [25] in the agent language
representatives, and ActorFoundry [6] in the actor languages. To complement
the work on benchmarking, we also aim to consider the fundamentals of pro-
gramming languages for a more qualitative comparison of the languages.

There has been very little research on benchmarking for agent programming
languages, so we expect to report various other results in the near future, and we
also expect to see similar efforts by other research groups, covering the great vari-
ety of agent programming languages. In order to support such efforts, we have de-
veloped a website — http://www.inf.pucrs.br/maop.benchmarking/
— to serve as a repository of benchmarks specifically designed for comparison
of the existing agent programming languages. Benchmarking programming lan-
guages can sometimes lead to performance improvements, and is an important
step towards mainstreaming of the agent model.

Acknowledgments. We are grateful for the support given by CAPES and by
CNPq (grant numbers 306301/2012-1 and 308095/2012-0).

References

1. Agha, G.: Actors: a model of concurrent computation in distributed systems. MIT
Press, Cambridge (1986)

2. Alberola, J.M., Such, J.M., Garcia-Fornes, A., Espinosa, A., Botti, V.: A perfor-
mance evaluation of three multiagent platforms. Artif. Intell. Rev. 34(2), 145–176
(2010)

3. Alechina, N., Behrens, T., Hindriks, K., Logan, B.: Query Caching in Agent Pro-
gramming Languages. In: Proceedings of ProMAS-2012, Held with AAMAS 2012,
Valencia, Spain, pp. 117–131 (June 2012)

4. Armstrong, J.: Programming Erlang: Software for a Concurrent World. Pragmatic
Bookshelf (2007)

5. Armstrong, J.: Erlang. Commun. ACM 53(9), 68–75 (2010)

6. Astley, M.: The Actor Foundry: A Java-based Actor Programming Environment.
Open Systems Laboratory, University of Illinois at Urbana-Champaign (1998)

7. Behrens, T.M., Hindriks, K., Hübner, J., Dastani, M.: Putting APL Platforms to
the Test: Agent Similarity and Execution Performance. Technical Report IfI-10-09,
Clausthal University of Technology (2010)

http://www.inf.pucrs.br/maop.benchmarking/

76 R.C. Cardoso, J.F. Hübner, and R.H. Bordini

8. Bitting, E., Carter, J., Ghorbani, A.A.: Multiagent System Development Kits:
An Evaluation. In: Proceedings of the 1st Annual Conference on Communication
Networks and Services Research (CNSR 2003), CNSR Project, pp. 80–92 (2003)

9. Bordini, R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A. (eds.): Multi-Agent
Programming: Languages, Tools and Applications. Springer (2009)

10. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-agent Systems
in AgentSpeak Using Jason . Wiley Series in Agent Technology. John Wiley &
Sons (2007)

11. Braubach, L., Pokahr, A., Lamersdorf, W.: A Universal Criteria Catalog for Eval-
uation of Heterogeneous Agent Development Artifacts. In: Jung, B., Michel, F.,
Ricci, A., Petta, P. (eds.) From Agent Theory to Agent Implementation (AT2AI-
6), pp. 19–28 (2008)

12. Busetta, P., Ronnquist, R., Hodgson, A., Lucas, A.: JACK Intelligent Agents -
Components for Intelligent Agents in Java AgentLink News (2) (1999)

13. Cardoso, R.C., Hübner, J.F., Bordini, R.H.: Benchmarking Communication in
Agent- and Actor-Based Languages (Extended Abstract). In: Proceedings of the
AAMAS 2013, Saint Paul, Minnesota, USA, pp. 1267–1268 (2013)

14. Cesarini, F., Thompson, S.: ERLANG Programming, 1st edn. O’Reilly Media, Inc.
(2009)

15. Dastani, M.: 2APL: a practical agent programming language. Autonomous Agents
and Multi-Agent Systems 16(3), 214–248 (2008)

16. Dı́az, Á.F., Earle, C.B., Fredlund, L.-Å.: eJason: An Implementation of Jason in
Erlang. In: Dastani, M., Hübner, J.F., Logan, B. (eds.) ProMAS 2012. LNCS,
vol. 7837, pp. 1–16. Springer, Heidelberg (2013)

17. Fernández, V., Grimaldo, F., Lozano, M., Orduña, J.M.: Evaluating Jason for Dis-
tributed Crowd Simulations. In: Filipe, J., Fred, A.L.N., Sharp, B. (eds.) ICAART
(2), pp. 206–211. INSTICC Press (2010)

18. Haller, P., Odersky, M.: Event-based programming without inversion of control.
In: Lightfoot, D.E., Ren, X.-M. (eds.) JMLC 2006. LNCS, vol. 4228, pp. 4–22.
Springer, Heidelberg (2006)

19. Haller, P., Odersky, M.: Scala Actors: Unifying thread-based and event-based pro-
gramming. Theor. Comput. Sci. 410(2-3), 202–220 (2009)

20. Hindriks, K.V., de Boer, F.S., van der Hoek, W., Meyer, J.-J.C.: Agent Program-
ming with Declarative Goals. In: Castelfranchi, C., Lespérance, Y. (eds.) ATAL
2000. LNCS (LNAI), vol. 1986, pp. 228–243. Springer, Heidelberg (2001)

21. Jordan, H., Botterweck, G., Huget, M.-P., Collier, R.: A feature model of ac-
tor, agent, and object programming languages. In: Proceedings of AGERE 2011,
pp. 147–158. ACM, New York (2011)

22. Karmani, R.K., Shali, A., Agha, G.: Actor frameworks for the JVM platform:
a comparative analysis. In: Proceedings of the 7th International Conference on
Principles and Practice of Programming in Java, PPPJ 2009, pp. 11–20. ACM,
New York (2009)

23. Logan, M., Merritt, E., Carlsson, R.: Erlang and OTP in Action. Manning (Novem-
ber 2010)

24. Odersky, M., et al.: An Overview of the Scala Programming Language. Technical
Report IC/2004/64, EPFL Lausanne, Switzerland (2004)

25. Pokahr, A., Braubach, L., Lamersdorf, W.: Jadex: Implementing a bdi-
infrastructure for jade agents. EXP - in search of innovation (Special Issue on
JADE) 3(3), 76–85 (2003)

Benchmarking Communication in Actor- and Agent-Based Languages 77

26. Rao, A.S.: AgentSpeak(L): BDI Agents Speak Out in a Logical Computable Lan-
guage. In: Perram, J., Van de Velde, W. (eds.) MAAMAW 1996. LNCS, vol. 1038,
pp. 42–55. Springer, Heidelberg (1996)

27. Ricci, A., Santi, A.: Programming abstractions for integrating autonomous and
reactive behaviors: an agent-oriented approach. In: Proceedings of AGERE! 2012,
pp. 83–94. ACM, New York (2012)

28. Shakshuki, E., Jun, Y.: Multi-agent Development Toolkits: An Evaluation. In:
Orchard, B., Yang, C., Ali, M. (eds.) IEA/AIE 2004. LNCS (LNAI), vol. 3029,
pp. 209–218. Springer, Heidelberg (2004)

29. Suereth, J.: Scal. In: Depth. Manning Publications Co. (2012)
30. Wooldridge, M., Jennings, N.R.: Intelligent Agents: Theory and Practice. Knowl-

edge Engineering Review 10, 115–152 (1995)
31. Wyatt, D.: Akka Concurrency. Artima Incorporation, USA (2013)

M. Cossentino et al. (Eds.): EMAS 2013, LNAI 8245, pp. 78–96, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Applying an O-MaSE Compliant
Process to Develop a Holonic Multiagent System

for the Evaluation of Intelligent Power Distribution
Systems

Denise Case and Scott DeLoach

Department of Computing and Information Sciences
Kansas State University,

234 Nichols Hall, Manhattan, Kansas, USA
{dmcase,sdeloach}@ksu.edu

Abstract. This paper describes the application of an Organization-based Mul-
tiagent System Engineering (O-MaSE) compliant process to the development of
a holonic multiagent system (MAS) for testing control algorithms for an intelli-
gent power distribution system. The paper describes the Adaptive O-MaSE
(AO-MaSE) process, which provides architects and developers a structured
approach for testing and iteratively adding functionality in complex, adaptive
systems. The paper describes the holonic MAS architecture for the intelligent
power distribution system, the challenges encountered while developing the
holonic architecture, the lessons learned during the project, and demonstrates
how the application of the process enhanced project development.

Keywords: Agent-oriented software engineering, holonic multi-agent systems,
adaptive systems, smart infrastructure, intelligent power distribution systems.

1 Introduction

Multiagent systems (MAS) are getting significant attention for Power Distribution
Systems (PDS) and there is a growing interest in the application of holonic multiagent
systems (HMAS) to PDS [22]. HMAS are adaptive, communicative, and autonomous
– traits they receive from their MAS heritage – and their hierarchical, recursive struc-
ture is a natural fit for PDS systems. Holonic comes from the Greek word holon, a
union formed from holos meaning whole and on meaning parts [19]. Thus, holons are
parts that are also wholes. In an HMAS, the holon indicates an agent participating in
one organization that also represents an entire organization itself. The overall organi-
zation of nested holonic organization agents is called a holarchy [8]. This hierarchical
composition mechanism defines a powerful framework for distributing intelligence
and finding local solutions in a recursive manner.

The primary goal of the Intelligent Power Distribution System (IPDS) project
at Kansas State University is to demonstrate an HMAS architecture capable of adap-
tively controlling future PDS that are expected to include a large number of renewable
power generators, energy storage devices, and advanced metering and control devices.

 Applying an O-MaSE Compliant Process to Develop a Holonic Multiagent System 79

Specifically, we are considering PDS with a high penetration (between 25% and 75%)
of home-based PV systems. The HMAS architecture will also be used to support new
analytical algorithms aimed at limiting the impact of information delay, quality and
flow on the PDS. The purpose of this paper is to present the O-MaSE compliant soft-
ware engineering process that we used while developing our prototype HMAS archi-
tecture for the IPDS project.

2 Background

Power distribution is estimated to account for approximately 40% of the capital in-
vestment in power systems worldwide, roughly comparable to the amount invested in
generation, and about twice that invested in transmission assets [22]. PDS automation
has lagged the advances in generation, due in part to the distributed nature and the
massive number of components that make up the system. Power distribution begins
with the primary circuit leaving a substation. It includes a distribution network of
3-phase feeder lines that branch into single-phase lateral lines and a variety of sup-
porting equipment. Lateral lines distribute power through shared transformers that
ultimately feed a set of electricity consumers, such as individual homes. Traditionally,
control of the system, like the energy, has flowed from the central power source out-
ward and downward toward the end consumer.

However, the increasing presence of renewable, distributed energy resources
creates a bidirectional flow of power in the system. Rather than solely consuming
power, home owners are installing increasing numbers of rooftop photovoltaic (PV)
systems that generate power from solar radiation. The PV electricity generated during
peak hours of the day can be greater than what is consumed by the associated home
and creates an opportunity for homeowners to sell excess power into the grid. Distri-
buted energy suppliers introduce a need for enhanced information flows, including
online auctioning of power between growing numbers of market participants. At the
same time, distributed energy sources are subject to intermittency. Wind fluctuation
and passing clouds can introduce rapid variation in the amount of power flowing into
the system. Rapid change in generation creates significant challenges for maintaining
voltages within desired ranges. However, coordinated volt/var control can help pro-
vide consistent voltage to consumers while reducing rapid cycling of equipment,
improving efficiency, and reducing the overall cost of power generation.

Centralized control is supported by load tap changers (LTC) near the substation
that have a limited number of setting changes per day (more rapid cycling is expen-
sive and shortens the equipment life). Distributed control can be supported by the
addition of smart inverters that moderate a PV system’s reactive power to offset gen-
eration changes and by line capacitors employed in various places along the grid.

Distributed control equipment coupled with centralized, large impact devices like
the LTCs create an excellent opportunity for distributed intelligent systems that can
adapt reactively and proactively to offer substantial benefits. In addition, distributed
intelligent systems can help the increasingly connected remote nodes that are both
electricity producers and consumers (prosumers) work together when disconnected
from the grid. During this islanded mode participants can work together to provide
electricity to critical loads, even though the lack of a stable power source (i.e., power
from the grid) creates additional challenges for power supply and quality.

80 D. Case and S. DeLoach

Fig. 1. Application of Holonic MAS in a Power Distribution System

The mapping of our prototype HMAS architecture to a physical distribution system
is shown in Fig. 1. The left side of Fig. 1 illustrates the HMAS holarchy of adaptive
agent organizations and the right side illustrates the physical system. The lowest level
of the holarchy shows peer agents representing single homes acting within a local
organization at the neighborhood level (assumed to be represented by the pole trans-
former serving that set of homes). Each neighborhood organization is represented by a
corresponding neighborhood organization agent in the higher lateral-level organiza-
tion. Nested organizations reflect the physical system from the originating substation
down to individual consumer homes. The holarchy, like the physical network, recur-
sively aggregates the systems and organizations to provide an integrated model of the
system and provides a framework that allows the IPDS be able to learn and support
adaptive, distributed control.

3 Related Work

3.1 Smart Infrastructure Optimization with Agents

Smart infrastructure optimization involves some of the most complex and critical sys-
tems in modern society [22]. Agent technology offers a way to manage the inherent
complexity of such systems. Agents can be used to represent simple variables in a com-
puter program as well as complex, distributed, intelligent objects involving potentially
infinite numbers of states, decisions, and actions and reactions [23]. When modeling
power systems, we are especially interested in agent traits such as autonomy, hetero-
geneity, adaptivity, social ability, communicability, flexibility, and concurrence [26].
Agents implement goal-based behavior and IPDS agents must demonstrate the ability to
support the objectives of their respective owners while also acting cooperatively to
achieve common objectives, such as maintaining critical loads and system efficiency.

 Applying an O-MaSE Compliant Process to Develop a Holonic Multiagent System 81

Current research projects include a variety of studies involving the application of
MAS to power systems, with active research projects focusing on power auctioning,
negotiating, volt/var control, distributed communications, and other focus areas [3, 13,
18, 20, 23, 24, 25]. Recent research has also applied HMAS to PDS [2, 15, 17], some-
times in concert with specific agent-oriented software engineering methodologies. Pow-
er flow, quality, and control lends itself to distributed, recursive optimization where
possible. Some local optimization can be distributed and may not result in propagation
throughout the hierarchy, while the system as a whole may be impacted by larger, more
centralized control options such as load tap changes. Using a flexible, holonic architec-
ture will allow us to evaluate a variety of control algorithms and strategies.

3.2 Agent-Oriented Software Engineering Methodologies

For the IPDS project, we needed a reactive, proactive, model-driven, proven MAS
framework with a supporting formal process methodology. Several agent-oriented
engineering methodologies are available for developing complex, adaptive systems
and the methodologies include the metamodels and process flows that provide the
structure necessary to engineer MAS. Methodologies that have been successfully
employed include ADELFE, ASPECS, INGENIAS, O-MaSE, PASSI, Prometheus,
SODA, and Tropos [8]. Some methodologies, such as ASPECS and ANEMONA
support holonic concepts [1, 7, 11] and O-MaSE enables hierarchical decomposition
via organizational agents. We selected O-MaSE and the associated Organization-
based Agent Architecture (OBAA) for our foundations because of the unique tools
and process flexibility provided. Together with the agentTool3 integrated develop-
ment environment, they offer a flexible, extensible system to support reactive control
as well as predictive capabilities and proactive control.

4 Foundations

4.1 O-MaSE Process Framework

O-MaSE is an organization-based, role-centered process framework that consists of
three main components: a metamodel, method fragments, and guidelines [10]. The
metamodel describes system components as shown in Fig. 2. Method fragments define
engineering roles, their activities, and the resulting work products, such as the goal
models, role models, and plan diagrams that define the system. Each aspect of O-
MaSE is supported by agentTool3 modeling tools, which support method creation and
maintenance, model creation and verification, and code generation and maintenance.

Linnenberg et al. used the O-MaSE methodology and agentTool3 to develop
DEMAPOS (DEcentralized MArket Based POwer Control System) [19] for power
trading and we have followed the DEMAPOS convention of combining entities capa-
ble of producing and/or consuming electricity into the notion of prosumer agents.

82 D. Case and S. DeLoach

Fig. 2. The O-MaSE Metamodel (multiplicities not shown)

4.2 Holonic Multiagent Architectures

Holonic multiagent architectures introduce additional elements to MAS. Cossentino et
al. describe the multilevel interplay between local organizations [7] where an agent
participating locally in an organization may represent the entire lower-level organiza-
tion while also participating as an agent in a higher-level organization. A holonic
organization agent may play different roles in different organizations simultaneously as
shown in Fig. 4. Participation in multiple organizations is not unique to holonic agents;
rather it is the recursive representation of progressively distributed agent organizations
that made the holonic approach desirable for evaluating IPDS.

We evaluated a variety of existing systems to provide core MAS functionality and
selected the Organization-based Agent Architecture (OBAA) as our foundation.
OBAA has been employed in a variety of adaptive systems [21]. OBAA agents in-
clude a shared control component enabling basic communication capabilities within
the local organization coupled with an embedded knowledge representation of
the organization in which the agent operates. In OBAA, each control component
coordinates with the team and maintains a complete copy of the local organization
knowledge. Each OBAA agent also has a domain-specific execution component that
manages roles and capabilities as shown in Fig. 3.

The primary objective of the generic OBAA architecture is to offer a general
framework of classes from which domain-specific adaptive systems can be built. The
OBAA framework is built on the Organization Model for Complex, Adaptive Systems,
OMACS [10], and includes an executable goal model, GMODS [9]. The control com-
ponent parts provide the functionality for agents to get initialized, register with an
acting supervisor and, once the registration process is complete, to begin executing
their assigned tasks. An initial agent registration process was defined to get the system
running; it will be enhanced to incorporate leader election as the project continues.

 Applying an O-MaSE Compliant Process to Develop a Holonic Multiagent System 83

Fig. 3. Each participating OBAA agent includes a control component and a domain-specific
execution component to enable participation in the organization

Fig. 4. A holonic organization agent (OAgent) serves as the master agent in its lower-level
organization (blue) and a peer agent in a higher-level organization (purple)

5 AO-MaSE: An O-MaSE Compliant Process

O-MaSE provides a foundation supporting tailored software engineering implementa-
tions. A compliant process must meet the following requirements: (1) no new
constraints may be placed on existing entities and relationships in the O-MaSE meta-
model, (2) the method guideline pre-conditions must not become stronger or post-
conditions made weaker, and (3) no existing metamodel entities, tasks, work products,
or method-roles may be eliminated [9].

84 D. Case and S. DeLoach

MAS and HMAS are complex models of complex systems. Getting started with
such frameworks can be challenging [16]. The Adaptive O-MaSE software engineer-
ing process (AO-MaSE) provides a set of recommendations for dealing with that
complexity by applying some of the principles commonly associated with agile
processes [4]. Several of these agile principles are associated with MAS in general
and include an ability to respond to changes, an ability to participate in ongoing
collaboration, a recognition of the importance of interaction between autonomous
participants, and a focus on goal-driven, executable components. In a similar way, the
AO-MaSE approach focuses on adaptability and the structured evolution of a working
system. Other systems such as PASSI have gone further to incorporate agile processes
[5]. Agile PASSI research confirmed that agile processes tend to spend less time
on design and correspondingly more in coding and testing and found that a quicker
move to implementation was helpful when addressing high-risk areas [5]. In addition,
research at the University of Vigo in Spain has adapted the INGENIAS methodology
to follow the agile process SCRUM with promising results [12].

In AO-MaSE, the architect begins by creating a fully executable but limited
scope vertical spike through the system to create a working version early which
offers a solid core from which increasingly complex analyses and behavior can
evolve. AO-MaSE follows the O-MaSE compliant process includes three iterations
that includes the tasks and work products shown in Fig. 5. The process follows four
key strategies:

• Start simply and add incrementally; in the OBAA framework, agents given
even simple goals require a significant infrastructure to execute.

• Apply recommended process conventions to enhance clarity and consistency.
• Follow models with code construction to get working systems early.
• Expand, enhance, and refactor as functionality evolves.

By following the AO-MaSE approach and detailed implementation guidelines, the
full set of required components can be implemented early, and form a basis for
expanding and enhancing the system. Completing the connections in a working sys-
tem provides examples of how components connect the various models and drive the
behavior of the system. For example, event triggers on the goal model may appear as
transitions in the plan diagrams and domain objects may appear in method parameters
in plan states and associated capabilities. A working version that connects the
parts provides a concrete example for software engineers and developers that have
little experience in agent-oriented engineering. The method construction guidelines
provide the ability for a team of software engineers and subject matter experts to work
collaboratively to select key elements for implementation and to develop associated
work products including requirements specifications, goal models, organization
models, domain models, role models, role plans, plan states, capabilities, protocols,
policies, and code.

 Applying an O-MaSE Compliant Process to Develop a Holonic Multiagent System 85

Fig. 5. AO-MaSE Iterative Process (tasks are shown as rectangles, work products are shown as
rounded rectangles)

86 D. Case and S. DeLoach

6 Applying AO-MaSE in the Development of IPDS

The AO-MaSE process was developed and implemented during the production of the
initial IPDS architecture. AO-MaSE design conventions, recommended practices, and
guidelines are described and illustrated.

6.1 Iteration 1 – Getting Started

In addition to the infrastructure of the component parts, an OBAA-based system of-
fers significant initial agent functionality, but introduces some additional embedded
complexity. System behavior develops in response to a variety of events such as goal
triggers, agent registrations, and organizational events. Early execution can help soft-
ware engineers get a better understanding of the system.

The first iteration results in a streamlined implementation that provides an early
executable model of the system. The following summarizes the AO-MaSE recom-
mended practices for an initial iteration.

1. Define one top-level goal to reflect the overall behavior desired by the system;
add a small number of terminal goals (without subgoals) to represent core
objectives.

2. Define the initial set of interfaces to the overall organization.
3. Define roles to achieve each terminal goal.
4. Define plans to perform each role.
5. Define capabilities specific to each plan; define a local domain-specific com-

munication capability and an external controller communication capability.
6. Assign role requirements. Most roles require control communication (for

OBAA agents), the local domain-specific communication, and the appropriate
role-specific capability. Certain roles will require external controller communi-
cation capability.

7. Define a limited number of plan states, e.g. INIT, EXECUTE, and STOP.
8. Define plan state transitions and state behaviors by defining and calling

capability methods.
9. Define agent classes based on the problem domain.

10. Configure agent instances with associated capabilities and attributes.
11. Configure environment object instances such as sensors and actuators.
12. Implement code components by extending the OBAA framework.
13. Configure, implement, debug, test, and execute the initial vertical spike.
14. Where possible, follow parallel, explicit naming conventions that differ only in

type (as shown in the IPDS models).

The project began with the specification of requirements. From the set of require-
ments for the initial phase of the project we selected an initial focus that allowed us
to test core functionality – the distribution and management of goals within a local
organization.

 Applying an O-MaSE Compliant Process to Develop a Holonic Multiagent System 87

Since achieving each goal requires substantial infrastructure, we started with a
small set of core objectives. The top goal of each recursive organization is Support
IPDS, as shown in It will guide agent organizations while connected to the grid and
while running in islanded mode.

The organization model was developed to define the boundaries and interfaces for
the system. Each IPDS would seek an external controller that would both receive
requests and send requests/guidelines down to the system, enabling centralized con-
trol and communications from the primary energy supplier. Inputs were provided to
characterize the organization’s goals. The goal model was drafted and then refined to
show the supervisor triggering a manage instance goal for each participant. The do-
main model began to reflect the objects in the environment and included a smart me-
ter object and a PV system, along with equipment attributes and unique identifiers.

Following the guidelines, we created a role for each terminal goal, a plan for each
role, and gave each plan three initial states: (1) INIT for performing actions that will
only need to be done once, (2) a role-specific state that captures the main work of the
role, and (3) a STOP state consisting of behaviors to be executed when finishing the
plan. The recommended capabilities were defined. As plan states were developed in
the plan diagrams, we were specifying the methods required of each capability. Paral-
lel naming conventions for goals, roles, plans, and role-specific default capabilities
aided clarity and were used to employ additional code automation. Agent classes did
not parallel the goal or plan names. Instead, they reflected the physical installation or
focus of the agent type. We began with a Neighborhood Agent class, expected to run
on or near a transformer serving 2-6 homes, and a Prosumer agent class, expected to
be installed on or near a home-based smart meter.

As the OMACS components developed, they were implemented in the OBAA-
based IPDS framework. Agent and Environment configuration files were used to
instantiate specific agents and objects for a variety of test cases.

The OBAA framework can be employed immediately if one control component
master is declared for any local organization. We began with one supervisor neigh-
borhood agent (the control component master) and two prosumer agents (both control
component slaves) to test the ability of the system to solve adapt to changing local
conditions. Some key models from Iteration 1 are shown in Fig. 6. The models illu-
strate the parallel naming conventions between goals, roles, and plans, and although
only a small subset of the models created are included, helps illustrate the infrastruc-
ture support underlying an agent-based adaptive system.

6.2 Iteration 2 – Filling in the Framework

With a working simulation provided during Iteration 1, the focus in Iteration 2 shifted
to adding functionality to address a variety of potential challenges. We began working
with the new holonic organization agents and the development focused on enhancing
the plan states and capability method calls. Additional capability classes were added,
providing additional differentiation and room for expanded functionality. Capabilities
were implemented with simple algorithms that served to define the expected interfac-
es that would be required to support more complex optimization algorithms that were
being developed in parallel research projects.

88 D. Case and S. DeLoach

Fig. 6. Partial set of first-iteration IPDS models with AO-MaSE conventions

The goal model was enhanced to include parameterized goals with the external con-
troller providing combined guidelines for the organization. Additional triggers were
added to the refined goal model. The supervise goal, which had been distributing com-
bined goals among participants during the INIT state, was enhanced to adapt participant
goals during the SUPERVISE state in response to each participant’s simulated history.

Organization guidelines were grouped into objects with defined purposes, making
the system easier to expand as requirements were added. Three types of guidelines
were given to each organization: combined load guidelines, combined power quality
guidelines, and evaluation guidelines that reflected desired feedback intervals and
forecast horizons. As a holarchy, the combined organization guidelines could be
adapted in response to temporal conditions just as local participant guidelines were
adapted. Plan states continued to evolve to reflect more complex logic and additional
actions and events were added to define the transitions between states. Objects and
attributes were added to the domain model as more external devices were defined.

Capabilities grew in functionality as plan state logic developed. Capability
methods were enhanced to include simulation interfaces and smart meter sensor
capabilities began obtaining simulated device data from MatLab®. As capabilities

 Applying an O-MaSE Compliant Process to Develop a Holonic Multiagent System 89

became more complex, they were refactored into smaller, more specific capabilities
that in turn began to grow in functionality. An IPDS Builder component was added to
support the reliable generation of test cases.

6.3 Iteration 3 – Extending Functionality

The third iteration focused on extending the refined goal model; introducing forecast-
ing goals and adding supporting agent types. Although goal changes represent a
relatively major change to the IPDS design, by following the guidelines and recom-
mended process and code policies, we were able to add new features more easily.
Additional goals brought additional triggering events and goal parameters. The
expanding goal models and role models are shown in Fig. 7.

As communications are added to plan diagrams, they include the specification of
the performative, the type of message content, and the role of the agent with which
the communication takes place. Message classes and their associated message content
classes were implemented for each communication capability.

Fig. 7. IPDS neighborhood-level goal and role models after Iteration 3 (abbreviated)

90 D. Case and S. DeLoach

As an IPDS organization starts up, agents participating in the organization register
with the control component master. The specification goal tree gets instantiated and
activates the top level goal along with any non-triggered, non-preceded leaf goals. For
example, as the goal plan for the Supervise Prosumers goal is executed, the Supervise
Prosumers Plan INIT state triggers an instance of the Manage Prosumer goal for each
participant. As each home agent gets assigned to a Manage Prosumer Role, it first
enters the Manage Prosumer Plan INIT state, and then triggers a new instance of an
associated Forecast Prosumer goal.

The home agent then transitions to the Manage Prosumer MANAGE state and
begins sensing consumption and generation readings, which it reports back to the
Supervisor, alerting the Supervisor if it detects an out-of-bounds condition. The
supervisor optimizes combined local guidelines within the organization, adapting
participant goals to maximize compliance. If guidelines cannot be met within the local
organization, the supervisor will raise a request to the external controller who will,
in turn, attempt to address the request from within the controller agent’s local organi-
zation, recursively raising requests up the holarchy until a solution is available.

Fig. 8 shows a view into a running IPDS system. There is one debug window for
each organization agent. The organization goals appear in each top left panel. Roles
appear in the top center panel. Participating agents are shown in the lower right panel.
In the center bottom panel, the assignments are displayed, indicating that each agent
has been assigned to a specific instance goal based on their capabilities and attributes
as defined in the agent configuration file. In this assignment panel, we can see
the current values of the agent’s goal parameters as they are adjusted by their
local organization supervisor. At this point in the simulation, the prosumer goals are
being distributed in accordance with each participant’s demand. Maximum kW guide-
lines may be positive or negative. Negative upper boundaries can be assigned to a
participant generating more PV power than the participant is consuming.

The extended system has passed a variety of tests and demonstrates the operation
of multiple goal models and assignments. During this most recent iteration, the sys-
tem has been extended to additional levels of the holarchy in preparation for the eval-
uation of the initial test case shown in Fig. 9, involving 62 location-based hosts and
approximately 46 local IPDS organizations. This test case is based on the IEEE Dis-
tribution System Analysis Subcommittee 37-Node Test Feeder case [14] that begins
with the substation node labeled “1”. Electricity is distributed out along the 3-phase
feeder lines. Extensions to the IEEE test case have been made to test the system down
to the home level. In our version, we have added four nodes along a single-phase
lateral line (39–42), four nodes corresponding to agents running on neighborhood
transformers (43,48,53,58), with four homes being supplied by each transformer. In
our first trials, one of each of the four homes is equipped with roof-mounted solar PV
panels. For example, Home 44 will have solar generation capabilities, but Home 45,
46, and 47 under Neighborhood Transformer 43 will not.

 Applying an O-MaSE Compliant Process to Develop a Holonic Multiagent System 91

Fig. 8. Simple IPDS Holarchy (Substation, Feeder, Laterals, Neighborhoods)

Each number on the test case diagram corresponds to a physical location or node
that could host IPDS agents. These locations may have sensors and/or actuators de-
pending on the physical configuration being simulated. Generally, we assume that
real power (P) and reactive power (Q) consumption (load) values are available by
phase at each of the nodes. In addition, homes equipped with PV may have sensor
readings available for the real power generated. Actuators or controllable equipment
range from a single load tap changer at the top of the distribution network, down
through capacitors on the three-phase feeders to smart inverters, which allow for some

92 D. Case and S. DeLoach

moderation of the reactive power at each PV-equipped home. Reactive power is
typically “non-useful” power but can be used to help manage the power quality cha-
racteristics during periods of drastic changes in generation associated with intermit-
tent clouds. In addition, voltage readings may be used to help minimize losses and
optimize efficiency. A summary of the eleven data values calculated by the MatLab
simulation engine is shown in Table 1. The simulation will receive new simulated
readings every second for each of the 62 nodes shown above. A similar array will be
used to provide calculated control values back to the MatLab data simulation in order
to calculate the next set of simulated sensor readings.

7 Software Engineering Challenges

Architecting complex, adaptive systems can be challenging. Employing existing
components can facilitate design, but a true understanding of the interrelationships
between framework components may take a while to develop. Designing a new or-
ganization-based HMAS for IPDS required developing a detailed understanding of
the O-MaSE metamodel, the OBAA framework, and GMoDS, and understanding the
connections between the various elements, how they were related to code structures
and most importantly, how they drive behavior during execution. Initial attempts took
longer than expected. The AO-MaSE process was developed as a way to illustrate the
system design in a concrete manner. Standards have allowed greater automation and
agentTool3 has been updated. The process of debugging configuration files resulted

Fig. 9. Initial 62-Node IEEE Test Case

 Applying an O-MaSE Compliant Process to Develop a Holonic Multiagent System 93

in the creation of IPDS builder factories that were used to generate additional test
cases. Strict naming and documentation requirements improve clarity and consisten-
cy. Although the number of classes required is substantial, the focus of each is such
that enhancements have been proceeding in parallel. The IPDS simulation must be
able to evaluate control strategies that are not yet defined and the ability to quickly
respond to new requirements and system enhancements will continue to be crucial.
Additional automated testing offers support for evolutionary refactoring as the system
functionality expands and initial experiments with new specification and testing
frameworks appears promising.

8 Results

The project resulted in the development of a standard, repeatable process for imple-
menting IPDS simulations. The AO-MaSE process and the model-driven tools
provide a complete path through the design, specification, implementation, and execu-
tion of a MAS. The process was used to test implementation of the required goals,
roles, capabilities, and plans required for the initial IEEE test cases developed by the
electrical engineering simulation team. The AO-MaSE process was employed during
the development of a new type of organization that will allow the additional imple-
mentation of self-management capabilities for agents participating in multiple organi-
zations. The process and tools provided a path that has allowed implementation of
new iterations of end-to-end functionality within days. A comparison of O-MaSE
compliant systems, some of which were developed using the AO-MaSE guidelines
and some of which were not, is shown in Table 2.

Table 1. Simulated Second-by-Second Data Values (calculated in MatLab)

Abbrev Description Phase Type Value

PA Column 1 - Phase A - P (load) A Load P

QA Column 2 - Phase A - Q (load) A Load Q

PB Column 3 - Phase B - P (load) B Load P

QB Column 4 - Phase B - Q (load) B Load Q

PC Column 5 - Phase C - P (load) C Load P

QC Column 6 - Phase C - Q (load) C Load Q

PG Column 7 - P (generation) - Gen P

QG Column 8 - Q (generation) - Gen Q

VA Column 9 - Voltage Phase A A Load Voltage

VB Column 10 - Voltage Phase B B Load Voltage

VC Column 11 - Voltage Phase C C Load Voltage

94 D. Case and S. DeLoach

9 Conclusions

This paper describes the iterative design and construction of an architecture prototype
for an intelligent power distribution system with the AO-MaSE process. It describes a
recommended software engineering process employing specific design conventions
that begin simply and focus on moving sooner from initial concepts to code construc-
tion while creating an evolving, iterative framework suited to the development of
complex, adaptive, intelligent, autonomic systems.

The effort includes policy recommendations and detailed guidelines that produce a
vertical slice of a complex system earlier in the process, forming a working core that
enables early feedback into the behavior of a complex, recursive HMAS. Architec-
tures that do not perform as expected can be abandoned sooner and alternate versions
can be tested. The process is compliant with the proven O-MaSE process framework
and enables the full functionality needed for complex control systems yet offers a
structured path towards implementation that addresses several challenges encountered
when developing MAS. Specific recommendations are included with examples taken
from the initial IPDS implementation.

Table 2. Implementation of O-MaSE-compliant MAS with and without AO-MaSE

Feature
AO-MaSE
initial iterations

O-MaSE
final implementation

Goal – role
correspondence.

Direct 1-1 correspondence faci-
litates initial modeling and
subsequent debugging.

No correspondence re-
quired; multiple roles
may achieve a goal.

Roles – plan
correspondence.

Direct 1-1 correspondence faci-
litates initial modeling and
subsequent debugging.

No correspondence re-
quired.

Plans and plan
state consistency.

Plans initially implemented
using automated INIT-
EXECUTE-STOP template.

Plans created and refined
independently as flexible
finite state models.

Post-fix object
type naming
standards.

Consistent application of post-
fix object type names (e.g.
SmartMeterCapability, Mana-
gePowerGoal) improves code
readability and maintainability.

Post-fix object type
names not required.
Less code clarity and
increased need for com-
menting or familiarity
for implementation and
debugging.

Clearly-defined
design process.

Yes. Application of process
framework and agentTool3
modeling tools clearly de-
scribed.

Yes. Application of
process framework and
agentTool3 modeling
tools clearly described.

Clearly-defined
implementation
process.

Yes. Well-defined and struc-
tured implementation process
and guidelines provided.

Flexible process for
implementation; few
direct guidelines.

 Applying an O-MaSE Compliant Process to Develop a Holonic Multiagent System 95

10 Future Work

Our initial iterations have allowed us to test several critical issues early. The next
phase will involve an initial assessment of potential self-organizing abilities, grid-
based leader election algorithms, implementation of voltage/var control strategies
during periods of renewable intermittency, initial critical power supply strategies, and
reconnection approaches after islanded operation. A real-time visualization of PDS
operation will be created and agent negotiation and support capabilities will be tested
between complementary lateral power lines in our 62-node test case and additional
extended test cases. The AO-MaSE process will continue to be employed and refined
to support a more adaptive implementation of evolving functionality. Additional im-
plementation of agile-recommended testing strategies may be included as well, based
on some of the interesting work being done with SADAAM, test agents, and test-
driven development in agile agent-oriented software engineering [6].

References

1. Argente, E., Julian, V., Botti, V.: MAS modeling based on organizations. In: Luck, M.,
Gomez-Sanz, J.J. (eds.) AOSE 2008. LNCS, vol. 5386, pp. 16–30. Springer, Heidelberg
(2009)

2. Asano, H.: Holonic Energy Systems: Coevolution of Distributed Energy Resources and
Existing Network Energy. In: International Symposium on Distributed Energy Systems
and Micro Grids, The University of Tokyo, December 7-8 (2005)

3. Baxevanos, I.S., Labridis, D.P.: Implementing multiagent systems technology for power
distribution network control and protection management. IEEE Transactions on Power
Delivery 22(1), 433–443 (2007)

4. Beck, K., Beedle, M., Van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M.,
Thomas, D.: Manifesto for agile software development. The Agile Alliance, 2002-04
(2001)

5. Chella, A., Cossentino, M., Sabatucci, L., Seidita, V.: Agile PASSI: An agile process for
designing agents. International Journal of Computer Systems Science & Engineer-
ing 21(2), 133–144 (2006)

6. Clynch, N., Collier, R.: Sadaam: Software agent development-an agile methodology.
In: Proceedings of the Workshop of Languages, Methodologies, and Development Tools
for Multi-agent Systems (LADS 2007), Durham, UK (2007)

7. Cossentino, M., Gaud, N., Hilaire, V., Galland, S., Koukam, A.: ASPECS: an agent-
oriented software process for engineering complex systems. J. of Auton. Agents and Mul-
tiagent Syst. 20, 260–304 (2009)

8. Cossentino, M., Gleizes, M.-P., Molesini, A., Omicini, A.: Processes Engineering
and AOSE. In: Gleizes, M.-P., Gomez-Sanz, J.J. (eds.) AOSE 2009. LNCS, vol. 6038,
pp. 191–212. Springer, Heidelberg (2011)

9. Cossentino, M., Gaud, N., Galland, S., Hilaire, V., Koukam, A.: A holonic metamodel
for agent-oriented analysis and design. In: Mařík, V., Vyatkin, V., Colombo, A.W. (eds.)
HoloMAS 2007. LNCS (LNAI), vol. 4659, pp. 237–246. Springer, Heidelberg (2007)

10. DeLoach, S.A., Garcia-Ojeda, J.C.: O-MaSE: A customisable approach to designing and
building complex, adaptive multi-agent systems. International Journal of Agent-Oriented
Software Engineering 4(3), 244–280 (2010)

96 D. Case and S. DeLoach

11. Gaud, N., Galland, S., Hilaire, V., Koukam, A.: An organisational platform for holonic and
multiagent systems. In: Hindriks, K.V., Pokahr, A., Sardina, S. (eds.) ProMAS 2008.
LNCS, vol. 5442, pp. 104–119. Springer, Heidelberg (2009)

12. Gómez-Rodríguez, A.M., González-Moreno, J.C.: Comparing agile processes for agent
oriented software engineering. In: Ali Babar, M., Vierimaa, M., Oivo, M. (eds.) PROFES
2010. LNCS, vol. 6156, pp. 206–219. Springer, Heidelberg (2010)

13. Huang, K., Cartes, D.A., Srivastava, S.K.: A multiagent-based algorithm for ring-
structured shipboard power system reconfiguration. IEEE Transactions on Systems,
Man, and Cybernetics, Part C: Applications and Reviews 37(5), 1016–1021 (2007)

14. IEEE Power and Energy Society: Distribution Test Feeders,
http://ewh.ieee.org/soc/pes/dsacom/testfeeders/

15. Ionita, S.: Multi Agent Holonic Based Architecture for Communication and Learning
about Power Demand in Residential Areas, Machine Learning and Applications. In: 2009
Fourth International Conference on Machine Learning and Applications, pp. 644–649
(2009)

16. Jennings, N.R.: On agent-based software engineering. Artificial intelligence 117(2),
277–296 (2000)

17. Jiang, Z.: Agent-based power sharing scheme for active hybrid power sources. Journal of
Power Sources 177(1), 231–238 (2008)

18. Kim, H.M., Kinoshita, T.: Multiagent system for Microgrid operation based on power
market environment. In: 31st International Telecommunications Energy Conference
(INTELEC), pp. 1–5. IEEE (2009)

19. Linnenberg, T., Wior, I., Schreiber, S., Fay, A.: A market-based multi-agent-system
for decentralized power and grid control. In: 2011 IEEE 16th Conference on Emerging
Technologies & Factory Automation (ETFA), September 5-9, pp. 1–8 (2011)

20. Malekpour, A.R., Pahwa, A.: Reactive power and voltage control in distribution systems
with photovoltaic generation. In: North American Power Symposium (NAPS), pp. 1–6
(September 2012)

21. Oyenan, W.H., DeLoach, S.A.: Towards a systematic approach for designing autonomic
systems. Web Intelligence and Agent Systems 8(1), 79–97 (2010)

22. Pahwa, A., DeLoach, S.A., Das, S., Natarajan, B., Ou, X., Andresen, D., Schulz, N.,
Singh, G.: Holonic multi-agent control of power distribution systems of the future.
In: CIGRE Grid of the FutureSymposium (2012)

23. Vishwanathan, V., McCalley, J., Honavar, V.: A multiagent system infrastructure and
negotiation framework for electric power systems. In: 2001 IEEE Porto Power Tech
Proceedings, vol. 1, p. 6. IEEE (2001)

24. Zabet, I., Montazeri, M.: Decentralized control and management systems for power indus-
try via multiagent systems technology. In: 2010 4th International Power Engineering and
Optimization Conference (PEOCO), pp. 549–556 (2010)

25. Zhong, Z., McCalley, J.D., Vishwanathan, V., Honavar, V.: Multiagent system solutions
for distributed computing, communications, and data integration needs in the power indus-
try. Power Engineering Society General Meeting 1, 45–49 (2004)

26. Zhou, Z., Chan, W.K.V., Chow, J.H.: Agent-based simulation of electricity markets: a
survey of tools. Artificial Intelligence Review 28(4), 305–342 (2007)

Embedding Agents in Business Processes
Using Enterprise Integration Patterns

Stephen Cranefield and Surangika Ranathunga

Department of Information Science, University of Otago, Dunedin, New Zealand
{scranefield,surangika}@infoscience.otago.ac.nz

Abstract. This paper addresses the issue of integrating agents with a variety of
external resources and services, as found in enterprise computing environments.
We propose an approach for interfacing agents and existing message routing and
mediation engines based on the message endpoint pattern from the enterprise inte-
gration patterns of Hohpe and Woolf. A design for agent percept, action and mes-
sage endpoints is presented, and an architecture for connecting the Jason agent
platform to the Apache Camel enterprise integration framework using these types
of endpoint is described. The approach is illustrated by means of a business pro-
cess use case, and a number of Camel routes are presented. These demonstrate
the benefits of interfacing agents to external services via a specialised message
routing tool that supports enterprise integration patterns.

1 Introduction

This research is based on the premise that agents could play a valuable role in enhancing
business processes with adaptive and goal-directed behaviour. However, most research
in this direction tends to be revolutionary in approach (e.g. commitment-based models
of business processes [12]), and there is little current uptake of agent technology in
enterprise computing. While there could be great benefits for implementing business
processes using multi-agent systems, in this paper we focus on the shorter-term goal of
facilitating the inclusion of agents as components of business processes, within standard
enterprise computing environments. This goal raises a number of challenges:

1. Modern enterprise computing environments comprise a diverse range of middle-
ware and server technologies. How can we support agent programmers in interact-
ing with this diversity of external systems?

2. Industry experience with enterprise application integration (EAI) has shown the
benefits of separating service coordination and application logic. How can we
achieve this separation when integrating agents with external enterprise services?

3. Agent programmers are a scarce resource. How can we facilitate mainstream EAI
programmers to encode the logic for coordinating agents with external services,
leaving the agent programmers to focus on core agent concerns (e.g. goals and
plans)?

The current solutions for integrating agents with external computing infrastructure
are: (a) to access these resources and services directly from agent code (if using a con-
ventional programming language), (b) to implement user-defined agent actions or an

M. Cossentino et al. (Eds.): EMAS 2013, LNAI 8245, pp. 97–116, 2013.
© Springer-Verlag Berlin Heidelberg 2013

98 S. Cranefield and S. Ranathunga

... Centralised service
integration and
orchestration

Local agent /
external system

integration

…… … …

…

Service(s) used
only by agents

Enterprise services
(e.g. message
brokers, mail

servers, DBMSs)

Enterprise
applications

Fig. 1. The proposed MAS integration model1

environment model to encapsulate these interactions, (c) to provide custom support in
an agent platform for specific types of external service, or (d) to provide a generic in-
terface for calling external resources and services, either using a platform-specific API
[11] or by encapsulating them as agents [5], artifacts [10] or active components [8].
However, none of these approaches are a good solution when agents need to be inte-
grated with a range of technologies. They either require agent developers to learn a
variety of APIs, or they assume that agent platform developers or their users will pro-
vide wrapper templates for a significant number of commonly used technologies.

Motivated by the above challenges, this paper proposes an alternative approach: the
use of a direct bridge between agents and the mainstream industry technology for enter-
prise application integration: message routing and mediation engines, and in particular,
those that support the enterprise integration patterns (EIP) of Hohpe and Woolf [6].
Our integration approach is illustrated in Figure 1. In this figure, each “pipes” graphic
represents a messaging-based service coordination tool, such as an enterprise service
bus [4]. The larger one represents an organisation’s existing message-based infrastruc-
ture for managing business processes by coordinating information passing between ap-
plications and services. We propose that agents can be embedded into this infrastructure
by integrating them with their own local message-routing and mediation engines, such
as the lightweight Java-based Apache Camel enterprise integration framework [7]. This
integration is based on the EIP message endpoint pattern, and in this paper we present
the design of endpoints that can translate agent action executions and messages to EIP
messages, and from EIP messages to agent percepts and messages.

We describe an implemented architecture for connecting the Jason agent platform [3]
to Camel using these “agent endpoints”. The approach is illustrated by means of a busi-
ness process use case, which we address by integrating Jason agents with a database
management system, a mail server, a message broker and the Apache ZooKeeper coordi-

1 Pipes photo by Hervé Cozanet, source: http://commons.wikimedia.org/wiki/
File:Piping system on a chemical tanker.jpg (CC BY-SA 3.0)

Embedding Agents in Business Processes Using Enterprise Integration Patterns 99

nation server. A number of Camel routes handling aspects of this use case are presented
to demonstrate the benefits of interfacing agents to external services via a specialised
message routing tool that supports enterprise integration patterns.

2 Enterprise Integration Patterns

Enterprise computing environments typically comprise hundreds and possibly thou-
sands of applications [6]. These may use a variety of communication protocols and
interface technologies due to departmental autonomy (e.g. to acquire “best of breed” ap-
plications for specific business problems), incremental and opportunistic growth, merg-
ers, etc. To preserve loose coupling between the diverse applications involved in the
automation of business processes, and thus facilitate maintenance and extensibility, the
use of middleware products based on asynchronous message-passing has emerged as
the mainstream approach for enterprise application integration. In this approach, ap-
plications interact by sending and receiving structured messages to and from named
queues or publish-subscribe ‘topics’ managed by (possibly federated) message brokers.
Message routing and transformation rules can be executed by the message broker or
by specialised message routing and mediation engines, thus providing a single location
for the specification of business processes. The concept of the enterprise service bus
extends this idea further by integrating message brokers with middleware for deploying
and interacting with various type of service, such as web services [4].

Hohpe and Woolf [6] have identified 65 “enterprise integration patterns” (EIPs) for
solving basic problems that commonly arise in messaging-based enterprise application
integration, such as the scatter-gather pattern: “How do you maintain the overall mes-
sage flow when a message needs to be sent to multiple recipients, each of which may
send a reply?” A number of middleware tools have direct support for these patterns,
including Apache Camel.

3 Apache Camel

Camel is an open source Java framework for executing message routing and mediation
rules that are defined using domain-specific languages (DSLs) based on Java and Scala,
or by using XML configuration files. In the work reported in this paper we have used
the Java DSL.

Camel is based on the EIP concepts of routes and endpoints. A Camel application
comprises a set of route definitions that are executed by the Camel engine. Each route
receives messages from a consumer endpoint, performs a sequence of processing steps
on each message, such as filtering and transforming messages, and then either sends the
processed messages to one or more producer endpoints or sends it back as a response
to the consumer endpoint. Endpoints can be “direct” links to other routes in the applica-
tion (i.e. messages leaving one route may flow directly into another route) or they may
represent connections to external resources and services. For example, a mail endpoint
may be used as a consumer to receive messages representing unread mail in a specified
account on a mail server, or as a producer that sends mail to a server. Camel has more

100 S. Cranefield and S. Ranathunga

than 130 components defined to provide a variety of endpoint types. These enable send-
ing and/or receiving messages to and from external resources such as files, databases,
message brokers, generic web services, specific Amazon and Google services, RSS and
Atom feeds, and Twitter. To enable this diversity of endpoint types, Camel’s concept of
a message is very general: a message has headers (a map from names to Java objects),
a body (which can be any Java object) and optional attachments.

The code below defines two simple Camel routes. These use the agent component
described in this paper to enable “local” agents (those running within the same process
as the Camel routes) to communicate with remote agents via a message broker.

from("agent:message")
.setHeader("CamelJmsDestinationName",

simple("$headers.receiver.split(\" \")[0]"))
.to("jms:dummy")

from("jms:"+containerId).to("agent:message");

These routes are defined using Camel’s Java DSL. This is a Java API for constructing
routes via a sequence of method calls. The from method creates a consumer endpoint
and the to method creates a producer endpoint. Endpoints are specified using uniform
resource identifiers (URIs), with the first part of the URI (the scheme) identifying the
type of the endpoint. Other parts of the URI provide additional details, and the various
endpoint types provided by Camel make use of URI parameters to provide configuration
details for the instantiation of the endpoint. The routes shown above use two types of
endpoint: our agent message endpoints described in Section 5.2, and standard Camel
JMS endpoints for sending and receiving messages from a message broker using the
Java Message Service.

The first route definition above creates an endpoint that receives all messages sent
by local agents. For each agent message received, this endpoint copies the message
content into the body of a new Camel message, and records the other message details
using Camel message headers namedsender, receiver and illoc_force (these
correspond directly to Jason message properties).

Our architecture allows multiple distributed instances of Camel, each with their own
set of local agents running within an agent container, so all agents are created with
names of the form containerId__localName. The second and third lines of the
first route above use Camel’s “Simple” expression language to extract the first part of
the name, which identifies the agent container that the message recipient is attached
to, and stores this as the value of a specific header predefined by the JMS component.
When the message is processed by the JMS producer endpoint, this header is used to
override the queue or topic name that appears as a mandatory component of a JMS
endpoint URI (hence the “dummy” message queue name at the end of the first route
above). This illustrates two aspects of the use of message headers in Camel: they are
commonly used within routes to store information needed later in the route, and they
can affect the handling of messages by endpoints.

The second route definition above creates a JMS endpoint that receives messages
from a message broker (the address of the broker is provided to Camel’s JMS compo-
nent on initialisation). The endpoint listens to a specific queue, which is named after

Embedding Agents in Business Processes Using Enterprise Integration Patterns 101

the unique identifier for the local agent container (note that there may be agent con-
tainers associated with other Camel instances running elsewhere on the network or in
other processes). The JMS consumer endpoint copies the body and the message headers
from the received JMS messages to create Camel message objects. The route specifies
that these messages flow from the JMS consumer endpoint directly to an agent message
producer endpoint. This endpoint generates agent messages corresponding to the Camel
messages and delivers them to the appropriate agents. The agent producer endpoint does
the reverse of the Camel-to-agent message mapping described above.

Note that Camel routes can be significantly more complicated than those shown
above, as later examples in this paper will demonstrate. In particular, the Java DSL
includes methods for conditional branching, exception-handling and for starting, stop-
ping, suspending and resuming routes. In addition, an important feature of Camel is the
provision of methods that can be used singly or in combination to implement enterprise
integration patterns such as splitting and aggregating messages, or to “enrich” messages
with content obtained by making synchronous calls to other services via endpoints.

4 The Jason BDI Agent Platform

Jason [3] is an open source Java-based development platform for BDI agents written
using an extension of the AgentSpeak programming language. A Jason agent consists
of a set of beliefs (which may include Prolog-like Horn clauses for inferring beliefs from
other beliefs) and a set of plans. Here we give a brief overview of Jason’s plan structure,
syntax and execution cycle, to help readers understand the agent code appearing in the
discussion of our use case scenario (Listing 2). Jason plans have the following form,
where each element is a Prolog-like term:

Event : Condition <- BodyFormula1 ; . . . ; BodyFormulaN.

Event is the event that triggers the plan, provided that the (optional) Condition
(a query on beliefs) currently holds. Various types of events are supported, but most
commonly a plan is triggered by the addition of a belief to the belief base (indicated
by a ‘+’ prefix) or the creation of a new goal (indicated by a ‘+!’ prefix). The body
formulas can be queries on the belief base (if prefixed by ‘?’), the creation of new goals
(indicated by a ‘!’ prefix), or the execution of an action. A ‘.’ prefix on an action
indicates that it is part of Jason’s library of “internal actions”. These implement useful
predicates (such as list membership), allow agents to send messages to each other, and
provide operations that alter the state of the agent’s BDI execution engine.

Steps in the BDI execution cycle include getting percepts from the environment (an
instantiation of a class that the programmer must provide), storing any new percepts as
beliefs, and executing the body of plans in response to events. In each cycle, only one
body formula is executed, so a plan can take multiple cycles to execute. When a plan
creates a new goal, this goal must be successfully achieved by another plan execution
before the original plan can continue executing.

By default, a Jason agent automatically includes plans that respond to the arrival of
messages. In particular, a “tell” message results in its content being added as a new
belief, and an “achieve” message causes its content to be adopted as a new goal.

102 S. Cranefield and S. Ranathunga

5 A Jason/Camel Bridge

In this section we briefly describe the architecture of our Jason/Camel bridge and dis-
cuss how we map between the conceptual models of agents and Camel. In particular,
we describe the design and interpretation of agent endpoints for Camel (and other EIP-
based message routing middleware).

5.1 Application Architecture

Our Jason/Camel bridge2 consists of an “agent component” for Camel and an applica-
tion template that integrates the Jason BDI interpreter with a Camel context. The agent
component for Camel is a factory for creating both consumer and producer agent end-
points.

Our integration architecture extends the structure of a standard Camel application
by adding an agent container. On initialisation, this container locates all Jason agent
source (.asl) files in a given directory3 and, for each agent, instantiates our extension
of the SimpleJasonAgent class4. This class allows the Jason BDI interpreter to be
used without any of the existing Jason “infrastructures” for agent communication. It
is responsible for providing the BDI interpreter with methods to call to get percepts,
to perform actions, and to send and check for messages. We chose this as the most
lightweight approach for embedding Jason agents into business processes via Camel.

Our SimpleJasonAgent class maintains concurrently accessible queues for per-
cepts of two types (transient and persistent—see Section 5.2) and for incoming mes-
sages. Messages and percepts on these queues are read when the BDI interpreter calls
the agent’s methods for getting percepts and messages. The agent container writes mes-
sages and percepts to the queues for the relevant agents after receiving them from
agent:message and agent:percept endpoints that appear in Camel routes. An
endpoint for producing percepts chooses whether percepts are transient or persistent
based on the endpoint URI parameters and/or the headers of the Camel message being
processed. Transient percepts are cleared after an agent has perceived them, whereas
persistent ones will be repeatedly perceived (but may be overwritten by other percepts
with the same functor—see the discussion of the updateMode URI parameter and
message header in Section 5.2).

On construction, each agent is passed a list of agent consumer endpoints, and these
are used to deliver messages and actions—the endpoints are responsible for selecting
which of these match their configuration parameters. The resulting Camel messages are
processed using Camel’s InOnly message exchange pattern (implementing a one-way
message flow), unless specified otherwise by a route or an endpoint URI.

Inter-agent messaging via a message broker, as implemented by the routes shown
earlier in Section 3, requires the existence of a separate message queue for each agent

2 http://github.com/scranefield/camel-agent
3 This simple approach could be replaced in the future by the use of OSGi “bundles” to package

and deploy Camel contexts together with their associated agents.
4 http://jason.sourceforge.net/faq/
faq.html#SECTION00057000000000000000

http://github.com/scranefield/camel-agent
http://jason.sourceforge.net/faq/faq.html#SECTION00057000000000000000
http://jason.sourceforge.net/faq/faq.html#SECTION00057000000000000000

Embedding Agents in Business Processes Using Enterprise Integration Patterns 103

container. To enable this functionality, our application class has a optional configuration
parameter specifying that an Apache ZooKeeper5 server should be used to dynamically
obtain a unique identifier for the container.

A ZooKeeper server maintains a set of named nodes, arranged in a tree structure, to
which system configuration information can be read and written by clients. The nodes
are kept in memory to enable high performance, but transaction logs and persistent
snapshots are also used to provide reliability. The data can be replicated across a cluster
of ZooKeeper servers. Nodes can be persistent or ephemeral—a node of the latter type
is automatically deleted if the client session that created it is no longer maintaining a
“heartbeat”. Nodes can also be sequential. These have a unique number appended to the
specified node name, based on a counter associated with the parent node. A client can
place a watch for changes to the data recorded in a node, the existence of a node, or
the set of children of a node. Together, these features can be used to implement a range
of distributed coordination mechanisms, such as distributed queues, barriers and locks,
maintaining lists of active group members, and electing group leaders.

Our application class obtains the agent container identifier by requesting the creation
of a ZooKeeper ephemeral sequence node with the path containers/container
and receives in response the name of the created node with a sequence number
appended.

ZooKeeper servers can also be accessed from within Camel routes, via ZooKeeper
endpoints. This functionality is illustrated in the business process use case presented in
Section 6.

5.2 Agent Endpoint Design

We support two types of agent consumer endpoints: action and message endpoints. End-
points of these types are configured by their URI parameters to receive selected ac-
tion invocation and message sending events from the connected agents. The endpoints
translate these events to Camel messages to be processed by routes. The details of the
agent messages and actions are encoded in the headers and body of the Camel message,
as shown in Table 1. For example, the content of an agent message is placed in the
body of the Camel message, and the illoc_force (illocutionary force), sender,
receiver, msg_id and annotations properties of the agent message are stored
on the Camel message using headers with these names.

A route definition creates these types of endpoints by calling the from method
with an argument that is a string of the form "agent:message?options" or
"agent:action?options". The options are specified using the standard URI
query parameter syntax ?opt1=v1&opt2=v2. . . . Camel messages are only gener-
ated by these endpoints if the selection criteria specified by the optional parameters are
satisfied. The parameters recognised by these endpoint types are shown in Table 1 and
explained below.

We also support two types of agent producer endpoints, which generate messages
and percepts, respectively, for the local agents. These messages and percepts are created
from Camel messages that reach the endpoints via Camel routes, and their content is

5 http://zookeeper.apache.org/

http://zookeeper.apache.org/

104 S. Cranefield and S. Ranathunga

Table 1. Agent endpoint types

Consumer endpoints

Endpoint type Optional parameters Camel headers set Camel body contains
agent:message illoc force,

sender, receiver,
annotations,
match, replace

illoc force,
sender, receiver,
annotations,
msg id

The message content
(as a string)

agent:action actor,
annotations,
match, replace,
resultHeaderMap

actor,
annotations,
actionName,
params

The action term
(as a string)

Producer endpoints

Endpoint type Optional parameters Camel headers used Camel body expected
to be

agent:message illoc force,
sender, receiver,
annotations

illoc force,
sender, receiver,
annotations

The message content
(as a string)

agent:percept receiver,
annotations,
persistent,
updateMode

receiver,
annotations,
persistent,
updateMode

The percept (as a string)

taken from the body and headers of those Camel messages and the endpoint URI param-
eters. As shown in Table 1, the URI parameters supported for the producer endpoints
are mirrored by the headers that the endpoints check. This is because these message
headers can be used to override the URI parameters when converting a Camel message
to an agent message or percept. This allows Camel routes to dynamically control the
delivery and construction of agent messages and percepts.

The URI endpoint parameters and Camel message headers are used as agent message
and action selectors (for consumer endpoints) or to specify generated percepts or agent
messages (for producer endpoints). Below, we provide some additional details for some
of the parameter and header options.

receiver: We interpret the value “all” for this URI parameter and message header
as meaning that only broadcast messages should be selected by a message consumer
endpoint or that the message should be sent to all local agents from a message or percept
producer endpoint. This is the default value for a producer. No agent can have this name
because the agent container identifier is prepended to the names of all agents on creation.
The receiver value can also be a comma-separated list of recipients when provided
to a message or percept producer endpoint.
annotations: Jason supports the attachment of a list of annotation terms to a lit-
eral. An annotations URI parameter or header can be specified for controlling the
selection of messages or actions by a consumer endpoint or to trigger the generation of
annotations by a producer endpoint. The values are specified as a comma-separated list
of strings (for the parameter) or as a Java list of strings (when using a header).

Embedding Agents in Business Processes Using Enterprise Integration Patterns 105

match and replace: These are used on consumer endpoints. A match parameter
specifies a regular expression, and a Camel message is only generated if this matches
the incoming message or action (in string format). The Java regular expression syntax
is used, and pairs of parentheses may be used to specify ‘groups’ in the pattern. The
values corresponding to these groups in the matched string are recorded and used when
processing a replace parameter (if present). A replace parameter specifies a string
to be used as the body of the generated Camel message. This can contain group variables
(in the form $n), and these are replaced with the values that were recorded during
matching.
resultHeaderMap: An action consumer endpoint supports both synchronous and
asynchronous actions. An asynchronous action corresponds to a Jason external action
(which cannot contain variables), and the endpoint always returns the result true to
the agent that performed the action. In order to allow the handling of agent actions with
variables that are instantiated during execution, we implemented a Java class that pro-
vides a new Jason internal action: camelagent.syncAction (see Listing 2). This
takes an action term as an argument, sends this to an action consumer endpoint that is
configured to receive that action, waits for Camel to finish processing it, and then uses
the response message from Camel to ground the arguments of the action term6. An ac-
tion endpoint processing this type of action must have a resultHeaderMap endpoint
parameter. Its value should be a comma-separated list of header-name:argument-index
pairs. When a Camel message completes the route, for each of these pairs, the value of
the header with name header-name is unified with the argument of the action term at
index argument-index.
persistent and updateMode: As described in Section 5.1, percepts delivered
to agents by a percept producer endpoint can be transient (the default) or persistent.
The choice is controlled by the persistent URI parameters or a message header
with that name. In addition, persistent percepts with the same functor and arity but
different argument values can either accumulate in an agent’s persistent percepts list
(the default), or each new percept of that form can replace previous ones. The latter
case is useful for percepts that represent the state of an external resource. This can also
apply to transient beliefs to prevent multiple percepts with the same functor and arity
being queued up between consecutive perceptions by an agent. A value of “replace”
for an updateModeURI parameter or a Camel message header with that name can be
used to specify the percept replacement behaviour.

Figure 2 illustrates the four combinations that are possible for these two parameter
settings, along with some example uses for each case. 1) A norm violation event might
be encoded as a transient accumulating percept if the agent needs to perceive all vio-
lations that occurred since it last polled for percepts. 2) In contrast, a sensor reading
might be treated as a transient percept that replaces any previous readings since the
agent’s last perception if the agent is only interested in receiving the most recent sensor
reading. In these two cases we have assumed that the events are not being modelled as
part of the persistent state of the environment—an agent must choose to record the vio-
lation events and sensor readings as self-authored beliefs (“mental notes”) if it wishes

6 For this to be possible, the Camel route processing the action invocation must be configured to
use Camel’s InOut “message exchange pattern” (see Listing 1).

106 S. Cranefield and S. Ranathunga

C
am

el
 ro

ut
es

Transient percept store

Persistent percept store

to("agent:percept")

to("agent:percept
?persistent")

to("agent:percept
?persistent
&updateMode=

replace")

to("agent:percept
?updateMode=

replace")

Periodic sensing
by agents

(clears transient
percepts)

violation(…)

group_member(…)

temperature(…)

sensor_reading(…)

Agent percept
producer endpoints

Fig. 2. Persistence and update mode options for percept producer endpoints

to remember them. The final two cases are for percepts that are modelled as part of the
environment’s state, rather than events. 3) The structure of an organisation, including
information about the membership of groups, might be modelled as state that is directly
perceivable by agents as percepts. As multiple group memberships will exist, new per-
cepts of this type should accumulate rather than replace old ones7. 4) The final case
is for percepts representing persistent state that should not accumulate between agent
perceptions. For example, an agent might expect to directly perceive the temperature,
but only need the current value.

6 A Business Process Use Case

In this section we illustrate the use of the Jason/Camel bridge by describing a hypothet-
ical business process in which agents could play a valuable role by performing flexible
rule-driven decision making. This use case addresses the problem of achieving more
targeted information flow within an organisation and reducing the overuse of the CC
header in email messages8. Our solution, shown in Figure 3, assumes the existence of a
specific “to.share” email account. Users with information they think may be of interest
to others can mail it to this account. These messages are monitored by a set of agents,
with each agent responsible for considering the interests and needs of a subset of users.
The sets of users assigned to the agents form a partition of the complete user base. The

7 In this case it will also be necessary to remove percepts relating to group memberships that no
longer hold. In future work we will add a delete percept update mode and a more refined
version of the replace update mode that specifies which arguments of the percept should
match when selecting old percepts to replace.

8 Our approach could equally well be used to allow agents to monitor other communication
channels, e.g. Camel supports Twitter endpoints.

Embedding Agents in Business Processes Using Enterprise Integration Patterns 107

Mail server

ZooKeeper
server cluster

Prefs.

Prefs.

Prefs.Prefs.

Prefs.

Prefs.

Application server

DBMS

Agent clusters

Message broker

Fig. 3. Architecture of our use case

agents base their decision on knowledge of the roles of users and the organisational
structure (stored in a database), as well as specific rules that may optionally be pro-
vided by users to encode their preferences for receiving information. We assume that
these rules are created using a graphical web interface that provides end users with an
abstraction layer on top of Jason’s Prolog-like rule syntax. Once the agents have deter-
mined which users might be interested in an email message, the message is forwarded
to those users’ mail accounts via SMTP.

Our system design for implementing this business process involves coordinated use of
agents, a mail server, a database management system, a message broker and ZooKeeper,
with the coordination performed by Camel routes. The key routes are as follows9.

1. On start-up, each agent calls camelagent.syncAction to perform
synchronous actions to retrieve (respectively) the current list of users and a set
of Jason rules defining predicates related to the organisation structure ontology that
is used in later stages of agent processing. These actions are mapped to database
queries by Camel routes configured to use Camel’s InOut message exchange pat-
tern, this allowing a result to be returned and the arguments of the actions instanti-
ated. The agents then record this information as beliefs. The route that implements
the get_users(Users) action is shown in Listing 1.

2. On start-up, each agent also performs a register action. A route maps this
to the creation of an ephemeral sequential node in ZooKeeper (under the node
/agents).

3. A route is watching the children of the ZooKeeper node/agents. Whenever there
is a change (due to Camel contexts and their associated agent containers starting
and stopping), the route sends an updated list of active agents to its local agents

9 Note that the two example routes presented earlier in Section 3 are not used because agents in
this application do not send messages to each other. Instead the distributed instances of Camel
act as mediators, using agent messaging to request their local agents to evaluate the relevance
of each new email message to their allocated users.

108 S. Cranefield and S. Ranathunga

Listing 1. Camel route for implementing an action as a database query

from("agent:action?&actionName=get_users" +
"&resultHeaderMap=result:0" +
"&exchangePattern=InOut")

.setBody(constant("select username from users"))

.to("jdbc:userinfo")

.setHeader("result").groovy(
"request.body.collect{it['USERNAME']}");

as a persistent percept in replace mode. This, and the route described in the
previous paragraph, are shown in Listing 3.

4. The agents have a plan that reacts to changes in their beliefs about the currently
registered and running agents. When a change occurs, they each run an algorithm
(common to all agents) to divide the list of users amongst them, based on their own
position in the list of agents. They maintain a belief recording the users they are
responsible for, and then invoke a synchronous action to obtain from the database
the rules provided by those users (or default rules provided by the organisation) for
evaluating the relevance of email messages to them. These rules are asserted into
the belief base.

5. Whenever there is a change to the information in the database, a notification of the
change is sent to a specific publish-subscribe topic on a message broker (a topic
is needed rather than a queue to allow all running Camel contexts to receive the
message). A route monitors this topic for changes to different database tables, and
notifies the local agents using transient percepts. The route also suspends the email
polling route (see below) for a period of time to give agents a chance to respond to
these percepts by reloading the information from the database.

6. A set of routes polls the “to.share” email account for new mail using a mail con-
sumer endpoint, and then uses the scatter-gather pattern to send a message to all
local agents asking them to evaluate which of their assigned users the message is
relevant for, waits for the replies until a given timeout, and then aggregates the lists
of recommended users. The email message is then sent via an SMTP endpoint to
this list of users. These routes are illustrated graphically in Figure 4 and shown in
Listing 4.

This design illustrates an important feature of our approach to integrating agents
with Camel: Camel can act as both the environment for agents (i.e. it can be a source
of percepts and can execute agent actions) and as a communicating agent itself (i.e. it
can send and receive messages). In the latter case Camel routes can initiate requests
to agents and process their responses, as in the use of the scatter-gather pattern in this
example. Alternatively, as shown in Section 3, Camel can act as message-routing mid-
dleware to interconnect agents, e.g. using a message broker. We believe this flexibil-
ity is a strength of our endpoint-based integration approach, and the choice of which
types of agent endpoint (percept, action or message) to use for any given application is
application-dependent. In our solution design above, we have opted to treat ZooKeeper

Embedding Agents in Business Processes Using Enterprise Integration Patterns 109

2. “Scatter”
(request to
agents)

3. “Gather”
(responses
from agents)

1. New email
retrieved from

“to.share” account

Apache Camel

from("imap:...")
…
.to("direct:ask-agents",
"seda:forward-msg")

from("direct:ask-agents")
… // Create ACL msg asking agents to evaluate
… // the email’s relevance to their assigned users
.to("agent:message?illoc_force=achieve")

from("agent:message?illoc_force=tell&…")
… // Aggregate replies
.to("seda:forward-msg")

from("seda:forward-msg")
… // Overwrite “to” header of original email with
… // list of users suggested by agents
.to("smtp://...")

Agents

...

4. Email message
forwarded to users
recommended by

agents

Fig. 4. Mail forwarding based on recommendations from agents and the scatter-gather patttern

and the database as part of the agent environment, so agents interact with these compo-
nents using actions and percepts. In contrast, the routes that handle the scatter-gather
pattern are treated as a pseudo-agent that communicates via agent messaging.

We have implemented the core functionality of our solution design, excluding the
interaction with users to create email-evaluation rules (we assume these already exist
in the database) and the integration with a message broker to receive and handle noti-
fications that information in the database has changed. The Jason code (common to all
agents) can be seen in Listing 2. As the coordination logic is factored out and encoded in
the Camel routes, the agent code is significantly simpler than would be needed without
the use of our Jason/Camel bridge. Most of the agent behaviour is to react to percepts
sent from Camel by performing actions (e.g. to fetch an updated list of users). In re-
sponse to the goal to evaluate a message, the agent must call the users’ rules, record the
users recommended by these rules in a list, and send this in a message to Camel. The
coordination of the scatter-gather process is handled by Camel routes, using Camel’s
high-level support for the aggregation of messages.

Listings 1, 3 and 4 show the routes for three aspects of the system’s functional-
ity. We underline the beginnings of the agent endpoint URIs to highlight where the
integration with agents occurs. Listing 1 shows how the execution of an agent ac-
tion invocation with a free variable can be implemented by a Camel route with the
InOut message exchange pattern (specified using the standard Camel URI parameter
exchangePattern). The route sends an SQL query to a pre-configured database
connection, the returned result is converted to an AgentSpeak list of strings using a
Groovy expression, and then the result header is used to store the result. The con-
sumer endpoint URI has a resultHeaderMap parameter specifying that the end-
point should unify the value of the result header with the argument of the action
literal at index 0.

110 S. Cranefield and S. Ranathunga

Listing 2. Jason agent code for the mail forwarding use case

1 /** Initial beliefs **/
2 // Omitted: rules defining list-handling predicates used when
3 // extracting assigned users from list of all users
4

5 /** Initial goal **/
6 !start.
7

8 /** Plans **/
9 /* Start-up plan */

10 +!start <-
11 // Get list of users from database and store as a belief
12 camelagent.syncAction(get_users(Users));
13 +users(Users);
14 // Get rules defining predicates used in user's rules from DB
15 camelagent.syncAction(get_global_rules(RulesAsStrings));
16 for (.member(RuleAsString, RulesAsStrings)) {
17 rules.add_rule(RuleAsString); // Add rules to belief base
18 };
19 register. // Register self with ZooKeeper - see Listing 3
20

21 /* Handle changes to registered agents detected by ZooKeeper */
22 +registered_agents(L) : .my_name(Me) & not .member(Me, L) <-
23 .abolish(my_users(_)).
24

25 +registered_agents(L): .my_name(Me) & index(Me, L, I) <-
26 // Omitted: code to select agent's assigned users (MyUsers)
27 -+my_users(MyUsers);
28 // Get rules defining 'role' and 'relevant' predicates from DB
29 camelagent.syncAction(get_rules(MyUsers, RulesAsStrings));
30 // Update belief base with new rules (replacing old ones)
31 .abolish(role(_,_,_));
32 .abolish(relevant(_,_,_,_));
33 for (.member(RuleAsString, RulesAsStrings)) {
34 rules.add_rule(RuleAsString);
35 }.
36

37 /* Find relevant users for an email message. This goal is
38 generated by an 'achieve' message sent from a Camel route. */
39 +!check_relevance(ID, From, Subject, Body) <-
40 ?my_users(Users);
41 .findall(User, (.member(User, Users) &
42 relevant(User, From, Subject, Body)),
43 RelevantUsers);
44 .println("Relevant users: ", RelevantUsers);
45 if (RelevantUsers \== []) {
46 .send(router, tell, relevant(ID, RelevantUsers))
47 }.

Embedding Agents in Business Processes Using Enterprise Integration Patterns 111

Listing 3. Camel routes for tracking active agents via ZooKeeper

1 // Implement registration by creating a new ZooKeeper sequence
2 // node with the agent name as its content
3 from("agent:action?actionName=register")
4 // Process only one register action from each agent
5 .idempotentConsumer(
6 header("actor"),
7 MemoryIdempotentRepository.memoryIdempotentRepository(100)
8).eager(true)
9 .setBody(header("actor")) // Put actor name in message body

10 .to("zookeeper://" + zkserver + "/agents/agent" +
11 "?create=true&createMode=EPHEMERAL_SEQUENTIAL");
12

13 //Watch agents node in ZooKeeper for changes to list of children
14 from("zookeeper://" + zkserver + "/agents" +
15 "?listChildren=true&repeat=true")
16 .setHeader("numChildren", simple("${body.size}"))
17 .split(body()) // Split agent node list into separate messages
18 .process(new Processor() {
19 public void process(Exchange exchange) throws Exception {
20 // Map the ZooKeeper node name for an agent to the agent
21 // name by getting the content of the ZooKeeper node
22 ConsumerTemplate consumer = camel.createConsumerTemplate();
23 String agentName =
24 consumer.receiveBody("zookeeper://"+zkserver+"/agents/"
25 + exchange.getIn().getBody(),
26 String.class);
27 exchange.getIn().setBody(agentName);
28 }})
29 // Aggregate mapped names into a single message containing a
30 // list of names. All messages will have the same headers - any
31 // will do as the message correlation id
32 .aggregate(header("numChildren"),
33 new ArrayListAggregationStrategy()
34).completionSize(header("numChildren"))
35 .setBody(simple("registered_agents(${bodyAs(String)})"))
36 .to("agent:percept?persistent=true&updateMode=replace");

112 S. Cranefield and S. Ranathunga

Listing 4. Camel routes for forwarding email based on agent recommendations

1 // Poll for email messages
2 from("imaps://mail.bigcorp.com?username=to.share"
3 +"&password="+mailPassword+"&delete=true©To=processed")
4 .setHeader("id", simple("\"${id}\""))
5 .removeHeader("to")
6 .to("seda:forward-message", "direct:ask-agents");
7

8 // Request agents to evaluate message on behalf of their
9 // allocated users

10 from("direct:ask-agents")
11 .convertBodyTo(String.class)
12 .setBody(
13 simple("check_relevance(" +
14 "${header.id}, " +
15 "\"${headerAs('from',SanitisedString)}\", " +
16 "\"${headerAs('subject',SanitisedString)}\", " +
17 "\"${bodyAs(SanitisedString)}\")"))
18 .setHeader("receiver", constant("all"))
19 .setHeader("sender", constant("router"))
20 .to("agent:message?illoc_force=achieve");
21

22 // Receive responses from agents and aggregate them to get a
23 // single lists of relevant users
24 from("agent:message?illoc_force=tell" +
25 "&receiver=router" +
26 "&match=relevant\\((.*),(.*)\\)" +
27 "&replace=$1:$2")
28 .setHeader("id", simple("${body.split(\":\")[0]}"))
29 .setBody(simple("${body.split(\":\")[2]}"))
30 .aggregate(header("id"),
31 new SetUnionAggregationStrategy()
32).completionTimeout(2000)
33 .setHeader("to").groovy("request.getBody(String)[1..-2]")
34 .to("seda:forward-message");
35

36 // Aggregate original mail message with message summarising
37 // interested users in "to" header, and send it
38 from("seda:forward-message")
39 .aggregate(header("id"),
40 new CombineBodyAndHeaderAggregationStrategy("to")
41).completionSize(2)
42 .setHeader("from", constant("to.share@bigcorp.com"))
43 .to("smtp://to.share@mail.bigcorp.com?password="+mailPassword);

Embedding Agents in Business Processes Using Enterprise Integration Patterns 113

Listing 3 illustrates how Camel provides a convenient way to use ZooKeeper to mon-
itor the active members of a distributed group of agents, and to map this information to
agent percepts. The first route (lines 3–11) implements the agent register action by
creating an ephemeral sequential node (see Section 5.1) in a ZooKeeper server to rep-
resent the agent and storing its name in that node. Camel’s support for the idempotent
receiver enterprise integration pattern provides a simple way to filter out duplicate regis-
tration requests from agents. The second route (lines 14–36) is triggered by changes to
the set of ZooKeeper sequence nodes representing agents. On each change, it receives a
message listing the current sequence nodes. The splitter pattern is used (line 17) to ob-
tain a separate message for each node, and each of these triggers a query to ZooKeeper
to get the agent name stored at that node (lines 22–27). Finally (lines 32–34), the ag-
gregator pattern is used to combine the names into a list stored in the body of a single
message, and that is sent to the local agents as the argument of a percept (lines 35–36).
For brevity we have omitted some more verbose code that is needed to temporarily sus-
pend the receipt of email while agents react to changes in the list of registered agents
(and therefore the allocation of users to agents).

In the first route in Listing 4, the to.share mail account is polled for new mail (lines 2–
3). A Camel message representing each new mail message is generated and the Camel
message exchange identifier is written to a message header for latter use in correlating
the agent responses with this Camel message (line 4). The message is then forwarded to
two other routes (line 6). One is started asynchronously (via a “seda” endpoint, which
queues incoming messages) and the other synchronously (via a “direct” endpoint). The
second route (lines 10–20) sends an achieve request to the local agents, asking them
to consider whether the mail is relevant to any of their allocated users. The third route
(lines 24–34) handles messages sent by agents in response to this goal, which contain
lists of potentially interested users. The aggregator pattern (lines 30–32) is used to
produce, for each email message, a single message containing a combined list of users
to forward it to. This is sent to the final route (lines 38–43), which also has (in a queue)
the Camel message containing the email message that is waiting to be forwarded. This
route uses the aggregator pattern again to combine the email message and the list of
users to send the message to (stored in the to header). Finally, an SMTP endpoint is
used to send the mail to these users.

7 Related Work

One of the oldest approaches to integrating agents with other technologies is the use
of wrappers or transducers that make the functionality of all the tools to be intercon-
nected available through agent communication [5]. The overall system coordination can
then be treated as a pure multi-agent system coordination problem. However, this ap-
proach has not gained traction in industry and we do not see it as a viable approach for
integrating agents into enterprise computing environments.

A pragmatic but low-level approach for integrating agents with external systems is
to call them directly from the agent program. If an agent platform is a framework for
using a mainstream programming language for agent development (e.g. JADE10), then

10 http://jade.tilab.com/

http://jade.tilab.com/

114 S. Cranefield and S. Ranathunga

it is possible for agents to use whatever protocols and client libraries are supported
in that language to invoke external services directly from within agents or to monitor
for external events. An interpreter for a specialised agent programming language may
allow user-defined code in the underlying implementation language to implement func-
tionality called by the agent program. For example, new “internal actions” for Jason
can be developed in Java, and these can use any Java communication libraries for exter-
nal interaction. An agent’s environment abstraction is another potential location for user
customisation. For example, a Jason developer can implement an environment class that
acts as a facade for external interaction, e.g. to connect agents to a virtual world [9].

The integration of agents with web services has been an important topic over the last
decade, and some agent platforms provide specific support for this. For example, the
online documentation for the JADE platform includes tutorials on calling web services
from JADE and exposing agent services as web services, and the Jack WebBots [1]
framework allows web applications to be built using agents.

More generally, it would be possible for the developers of an agent platform (or
its community) to provide support for connecting agents to a range of external resource
and service types. For example, the IMPACT agent platform [11] includes a module that
provides a uniform interface for connecting agents to external services, with support for
a small number of service types already implemented.

The A&A (Agents and Artifacts) meta-model extends the concept of an agent en-
vironment to include artifacts. These represent resources and tools with observable
properties and specific operations that agents can invoke. These can be used to pro-
vide services internal to an MAS, or as an interface to external services, such as web
services [10]. However, it is unlikely that the developer and user community for any
agent-specific technology, whether a specific platform like IMPACT or a more general
approach such as A&A, could rival the scale and diversity provided by a more main-
stream integration technology such as Camel, which supports more than 130 endpoint
types. Also, for the case of A&A, an agent developer would need to learn multiple APIs
(for each artifact type) when integrating agents with different types of external service.
This is not the case in our approach (see Section 8).

The active components paradigm is a combination of a component model with agent
concepts [8]. Active components can communicate via method calls or asynchronous
messages and may be hierarchically composed of subcomponents. They run within a
management infrastructure that controls non-functional properties such as persistence
and replication. They may have internal architectures of different types, and this hetero-
geneity, combined with a uniform external interface model, facilitates the interoperation
of different types of system that are encapsulated as active components. As with arti-
facts, the success of this approach for large-scale integration rests on the availability of
active components encapsulating a wide range of service types.

Behrens et al. [2] present a proposal for an environment interface standard (EIS) for
connecting agent platforms to arbitrary environments, based on an analysis of the en-
vironment interfaces offered by existing agent platforms and a set of desirable design
principles. This work could pave the way for portability of environments between agent
platforms. However, this is orthogonal to our integration approach, which is based on
using configuration of endpoints rather than an API to interface agents with external

Embedding Agents in Business Processes Using Enterprise Integration Patterns 115

components. While Camel could be interfaced with agents via the EIS (or encapsulated
within an active component or artifact), all this would achieve is to allow Camel to be
used from agents that are not programmed in Java. The interface would need to repro-
duce the Camel API for defining and executing routes, and an agent endpoint design
such as the one presented in Section 5.2 would still be needed. However, the proposed
EIS includes the use of an standard “interface intermediate language” to represent ac-
tions, percepts and events. This could be used in our endpoint design to ensure that
Camel routes using our agent endpoints could connect to multiple agent platforms.

8 Conclusion

In this paper we have proposed a novel approach, based on accepted enterprise integra-
tion patterns, for integrating agents with external resources and services using capabili-
ties of existing enterprise integration technology. By using a mainstream technology we
can benefit from the competitive market for robust integration tools (or the larger user
base for open source software), and can have access to a much larger range of pre-built
components for connecting to different resource and service types. This is evidenced by
Camel’s large number of available endpoint types.

We presented the design of an interface between agents and the Camel integration
framework in terms of the “endpoint” enterprise integration pattern. This can serve as a
pattern for interconnecting agents with any type of message-based middleware.

In our approach, the logic for integrating agents with external systems makes use of
the expressive Camel DSL, with its high-level support for common message-processing
patterns, and the configuration options for Camel’s many endpoint types. The latter rep-
resents a trade-off: configuring an endpoint by URI parameters and message headers
is unlikely to provide the full capabilities of an API for interacting with that type of
external system, but it provides the most commonly used functionality and the configu-
ration options can be learned with much less effort than an API. However, there will still
be applications that need a more traditional API-based approach for accessing external
systems from agents.

We described an implemented architecture for this approach and illustrated its practi-
cal use in a hypothetical (but, we think, plausible) business process use case. The Camel
routes we presented demonstrate the benefits of using a specialist coordination tool such
as Camel for handling the coordination of distributed agents and services, leaving the
agent code to provide only the high level adaptive business logic. This division of re-
sponsibilities also enables a division of implementation effort: the coordination logic
can be developed by business process architects using a programming paradigm that
directly supports common enterprise integration patterns, and less development time is
needed from (currently scarce) agent programmers. An agent programmer using our
framework does not need to learn any APIs for client libraries or protocols—the agent
code can be based entirely on the traditional agent concepts of messages, actions and
plans. The developer of the message-routing logic does not need to know much about
agents except the basic concepts encoded in the agent endpoint design (message, illo-
cutionary force, action, percept, etc.) and the syntax of the agent messages to be sent
from and received by the message routes.

116 S. Cranefield and S. Ranathunga

Currently, in our architecture Camel replaces the agent environment and the message-
passing middleware. This is not essential to our approach. The architecture could be
extended to include a traditional agent environment as well as a Camel engine that exe-
cutes routes containing agent endpoints. In this hybrid approach, agents would receive
percepts from both the environment and Camel, and any actions not handled by a Camel
route would be executed in the environment.

References

1. Agent Oriented Software: JACK Intelligent Agents WebBot manual (2011),
http://www.aosgrp.com/documentation/jack/WebBot_Manual_WEB/

2. Behrens, T.M., Hindriks, K.V., Dix, J.: Towards an environment interface standard for agent
platforms. Annals of Mathematics and Artificial Intelligence 61, 261–295 (2011)

3. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-Agent Systems in Agent-
Speak using Jason. Wiley (2007)

4. Chappell, D.: Enterprise Service Bus: Theory in Practice. O’Reilly (2004)
5. Genesereth, M.R., Ketchpel, S.P.: Software agents. Communications of the ACM 37(7),

48–53 (1994)
6. Hohpe, G., Woolf, B.: Enterprise Integration Patterns: Designing, Building, and Deploying

Messaging Solutions. Addison-Wesley (2004)
7. Ibsen, C., Anstey, J.: Camel in Action. Manning (2010)
8. Pokahr, A., Braubach, L., Jander, K.: Unifying agent and component concepts. In: Dix, J.,

Witteveen, C. (eds.) MATES 2010. LNCS, vol. 6251, pp. 100–112. Springer, Heidelberg
(2010)

9. Ranathunga, S., Cranefield, S., Purvis, M.: Interfacing a cognitive agent platform with Sec-
ond Life. In: Beer, M., Brom, C., Dignum, F., Soo, V.-W. (eds.) AEGS 2011. LNCS (LNAI),
vol. 7471, pp. 1–21. Springer, Heidelberg (2012)

10. Ricci, A., Piunti, M., Viroli, M.: Environment programming in multi-agent systems: an
artifact-based perspective. Autonomous Agents and Multi-Agent Systems 23(2), 158–192
(2011)

11. Rogers, T.J., Ross, R., Subrahmanian, V.: IMPACT: A system for building agent applications.
Journal of Intelligent Information Systems 14, 95–113 (2000)

12. Telang, P.R., Singh, M.P.: Comma: A commitment-based business modeling methodology
and its empirical evaluation. In: Proceedings of the 11th International Conference on Au-
tonomous Agents and Multiagent Systems, pp. 1073–1080. IFAAMAS (2012)

http://www.aosgrp.com/documentation/jack/WebBot_Manual_WEB/

Belief Caching in 2APL

Mehdi Dastani1 and Marc van Zee2

1 Department of Information and Computing Science,
Utrecht University, The Netherlands

m.m.dastani@uu.nl
2 Department of Individual and Collective Reasoning,

University of Luxembourg, Luxembourg
marc.vanzee@uni.lu

Abstract. The BDI-oriented multi-agent programming language 2APL
allows the implementation of an agent’s beliefs in terms of logical facts
and rules. An agent’s beliefs represent information about its surrounding
environment including other agents. Repeated querying of the beliefs by
the 2APL interpreter causes unnecessary overhead resulting in poor run-
time performance of the interpreter. We propose an extension to 2APL to
reduce the number of such queries by using belief caching. We show that
our proposal implements belief caching and extends an existing caching
proposal. Moreover, we provide formal proofs establishing that our ex-
tension does not affect the execution behavior of 2APL. Benchmarking
results indicate that belief caching leads to significant improvements.

1 Introduction

The multi-agent programming language 2APL1 supports the implementation of
individual agents that can perform high-level reasoning and deliberation about
their information (i.e., beliefs) and objectives (i.e., goals to achieve) in order to
decide what actions to perform [4]. Beliefs and goals in 2APL are declarative;
Beliefs are represented by a set of Horn clauses and goals are represented by
conjunctions of first-order atoms. While this allows the development of flexi-
ble and declarative agent programs, repeated inferencing triggered by queries to
the beliefs can result in poor performance. When developing multi-agent sys-
tems for time critical applications, performance issues are often a key concern,
potentially adversely impacting the adoption of BDI-based agent programming
languages and platforms as an implementation technology [1]. For example, if
agent programming languages want to provide better support for implementing
autonomous robots, one of the requirements is real-time reactivity to events,
which is currently lacking [10].

We present an inference method based on caching within the 2APL interpreter
that reduces the number of belief queries. Our motivation for this approach is
based on the observation that belief queries are responsible for most of the
deliberation time within a 2APL deliberation cycle and that most belief queries

1 For more information, see: http://apapl.sourceforge.net/

M. Cossentino et al. (Eds.): EMAS 2013, LNAI 8245, pp. 117–136, 2013.
© Springer-Verlag Berlin Heidelberg 2013

http://apapl.sourceforge.net/

118 M. Dastani and M. van Zee

are redundant because they are being performed repeatedly while relevant parts
of the belief base do not change such that the result of such queries remains the
same. Using the notion of caching is therefore likely to be an optimization. We
implement belief caching in the 2APL interpreter by performing a belief query
only if the belief base has been updated in a way that is relevant to this query.
We exploit the fact that both belief queries and belief updates are static in 2APL
programs, which makes it possible to determine what belief update will change
what belief query at compile-time. In order to do this, we define the notion of
relevance for belief queries by making use of query dependency sets in the belief
base.

Recently, it is shown [1] that it is theoretically possible to improve the run-
time execution of BDI-based agent programs using belief caching. However, this
proposal focuses purely on the optimization of belief queries within one so-called
update cycle, which consists of a query phase and an update phase. Our approach
specializes this idea to an update cycle for each individual query that may cover
multiple deliberation cycles. We show that the update cycle of [1] is contained in
our proposal and that our proposal is more fine-grained leading to an increased
number of queries answered by the cached beliefs.

The idea of using query dependencies to optimize the performance of logic
programs, or theorem proving in general, is not new. For instance, this idea is
applied to Datalog program [6] where the problem of detecting independence of
queries from updates is reduced to the equivalence problem, i.e., proving that
the program before the update is equivalent to the program after the update.
In particular, the notion of query reachability that is used in [6] is similar to
our notion of query relevance, although our approach is based on Prolog as the
inference engine, which is considerably more expressive than Datalog (e.g., more
complex terms, no constraints on negation).

Another related work is [7,8] where the notion of relevance reasoning is used
to reason with the relevant parts of a knowledge base. They discuss the problem
of deriving irrelevant facts for a Horn-rule knowledge base using a tool called
the query tree. This query tree is the used in two ways: 1) to determine which
facts are relevant to a query and 2) to guide the inference engine by determining
in which sequence the rules should be applied. The main difference between this
idea and our approach is that [7] and [8] consider a single query for a set of
Horn clauses and asks what are the irrelevant parts. We extend this by iteratively
caching queries and only executing them when the relevant part of the knowledge
base has been changed.

A well-known form of caching that is used in the logic programming commu-
nity is called tabled logic programming2, which uses memorization to optimize
performance and prevent non-termination by avoiding infinite and redundant
paths of computation. The central data structure is a table in which encountered
subgoals and corresponding solutions are stored. One can see our approach as
applying tabling on a “meta-level”, storing the results of substitutions in the

2 See http://www.cs.cmu.edu/~twelf/guide-1-4/twelf_5.html

for more information.

http://www.cs.cmu.edu/~twelf/guide-1-4/twelf_5.html

Belief Caching in 2APL 119

2APL interpreter, and not in the inference engine as done in logic programming.
We do not change the working of the inference engine, but we reduce the number
of calls to this engine by caching queries.

We have implemented our belief caching approach into the latest version of
2APL.3 Additionally, we have implemented a generative benchmarking tool,
which allows the reader to test the working of belief caching easily. The manual
for the benchmarking tool can be found in the 2APL manual.

The structure of this paper is as follows. In Section 2, we introduce 2APL to-
gether with the parts that are relevant to our analysis. In Section 3, we introduce
our belief caching approach, compare it with the abstract performance model
as proposed in [1], and show how our approach can be seen as an extension to
this work. In Section 4 we will give a formal characterization of our proposal
and show that it does not affect the execution behaviour of 2APL. Finally, we
provide implementation details and benchmarking results in Section 5.

2 2APL - A Practical Agent Programming Language

The programming language 2APL is developed to implement multi-agent sys-
tems [4]. In 2APL, individual agents are programmed in terms of beliefs, goals,
actions, plans, events, and three types of practical reasoning rules. The beliefs
and goals of 2APL agents are implemented in a declarative way, while plans
are implemented in an imperative style. The declarative part of the program-
ming language supports the implementation of an agent’s reasoning task and the
update of its mental state. The imperative part of the programming language
facilitates the implementation of plans, control flow, and mechanisms such as
procedure calls, recursion, and interfacing with legacy codes. 2APL agents can
perform different types of actions such as belief and goal update actions, be-
lief and goal test actions (belief and goal queries), external actions (including
sense actions) and communication actions. The practical reasoning rules can be
applied to generate plans. The first type of rules is designed to generate plans
for achieving goals (so-called Planning Goal rules, or PG rules), the second to
process external events, messages and abstract actions (so-called Procedure Call
rules, or PC rules), and the third to process internal events for repairing failed
plans (so-called Plan Repair rules, or PR rules). Each practical reasoning rule
has a belief query that specifies the belief state in which the rule can be applied.

2APL agents are autonomous in the sense that they continuously deliber-
ate on their mental states (beliefs, goals and plans) in order to decide which
plans to select and execute. This deliberation mechanism, which is an integral
part of the 2APL interpreter, iterates over a reasoning cycle, depicted in Fig-
ure 1. The reasoning cycle starts by applying applicable PG rules of an agent
program in order to generate plans to achieve the agent’s goals. The reasoning
cycle continues by executing the generated plans. Then, the received internal
and external events and messages are processed by applying PC and PR rules.

3 The sources of the latest 2APL version can be downloaded from
http://www.apapl.sourceforge.net/

http://www.apapl.sourceforge.net/

120 M. Dastani and M. van Zee

We would like to emphasize that the application of all practical reasoning rules
as well as the execution of belief test actions require queries to the belief base.
The fact that the application of practical reasoning rules is the core activity of
each reasoning cycle implies that the belief query actions constitute the most fre-
quent operations in the reasoning cycle. Therefore, any significant reduction in
the number of belief queries is expected to improve the performance of the 2APL
interpreter. Moreover, repeated queries occur often in 2APL [1]. This means that
belief queries not only occur often, but it will also be possible to perform caching
over the repeated queries.

Fig. 1. The 2APL deliberation cycle

2.1 Belief Queries

Belief queries can occur at two places in a 2APL program: as guards in the
practical reasoning rules and as belief test actions in a plan. We will discuss
each of them separately. In what follows, we denote a belief query with β and
substitutions with τ .

Practical Reasoning Rules. As mentioned, 2APL programs may involve three
kinds of practical reasoning rules, each of which contains a belief query. The three
types of practical reasoning rules share the same syntax. A practical reasoning
rule in 2APL has the form H ← β | π where H is the head of the rule, β
is the guard of the rule representing a belief query, and π is the body of the
rule representing a plan. The representation of H is different for each rule type.
In case of the PG rule, H is a goal expression represented by a conjunction of
positive first-order atoms. For a PC rule, H is either a message, an event or
an abstract action represented by a first-order atom. Finally, in case of a PR
rule, H is a plan whose execution has failed and is represented by a sequence of
actions containing variables. The belief query β may contain conjunctions and
disjunctions of first-order literals. A successful query of this guard results in a
substitution that can be applied to instantiate variables that occur in the body
of the rule. Finally, π is the plan that will be added to the plan base if the rule
is applied. The complete description of 2APL constructs can be found in [4].

Belief Caching in 2APL 121

beliefs:
dist(50).
new_speed(X) :- X is int(random(10)).

fuel(1000).
enough_fuel(X) :- fuel(Y), X =< Y.

beliefupdates:
{ dist(X) and fuel(F) } Forward(Y) { not dist(X), not fuel(F), dist(X - Y), fuel(F - Y) }
{ dist(X) and fuel(F) } Backward(Y) { not dist(X), not fuel(F), dist(X + Y), fuel(F - Y) }

goals:
driveForward(5).

pgrules:
driveForward(Speed) <- enough_fuel(Speed) and dist(D) | {
Forward(Speed);
if B(D <= 0 and new_speed(NewSpeed)) {

dropgoal(driveForward(Speed));
adopta(driveBackward(NewSpeed));

}
}

driveBackward(Speed) <- enough_fuel(Speed) and dist(D) | {
Backward(Speed);
if B(D >= 100 and new_speed(NewSpeed)) {

dropgoal(driveBackward(Speed));
adopta(driveForward(NewSpeed));

}
}

Fig. 2. Driver: Example 2APL program

An example of a 2APL program is depicted in Figure 2. This program consists
of a single agent that will repeatedly move towards and away from a target until
it runs out of fuel. The distance X of the agent from the target is represented
by the belief fact dist(X). Initially, the agent is halfway from the target (the
distance is 50) and will start moving forward with a speed of 5 (represented by the
goal driveForward(5)). This will select the first PG rule, which is applied with
the substitution [Speed/5] resulting from the unification of the head with the
goal base, and the substitution [D/50] resulting from the unification of the belief
query in the guard of the rule with the belief base. This rule is repeatedly applied
until the agent reaches the target (D <= 0). Then the goal driveForward(5)
will be replaced with the goal driveBackward(NewSpeed), where NewSpeed is a
random integer between 0 and 10. This will activate the second PG rule, which
does exactly the opposite as the first PG rule. This process will repeat until the
agent runs out of fuel (i.e. enough fuel(Speed) can no longer be entailed from
the belief base).

As this example might suggest, practical reasoning rules are applied in 2APL
in the following way. First the head is instantiated, resulting in a substitution,
which we will denote by τ1. In case of our example, applying the first PG rule
with the head driveForward(Speed) results in substitution τ1 = [Speed/5].
Subsequently, the substitution τ1 is applied to the guard of the rule, creat-
ing a new belief query, which in case of our example is enough fuel(5) and

distance(D). Note that the application of τ1 to the guard of a rule does not
necessarily instantiate all variables involved in the guard (in case of our example

122 M. Dastani and M. van Zee

variable D) such that querying the guard to which τ1 is applied can result in a new
substitution, which we will denote by τ2. Finally, we would like to emphasize that
if there are multiple substitutions for a query possible, then the first substitution
is returned. In the case of our example, the new substitution is τ2 = [D/50].

Belief Test Action. A belief test action occurs in a plan and checks whether
the agent has certain beliefs. A belief test action is an expression of the form
B(φ), where φ is a belief query represented by a conjunction or disjunction of
first-order literals. The execution of a belief test action is basically a belief query
to the belief base that can generate a substitution. Since a belief test action
occurs in a plan, it may be preceded by some other actions that share variables.
This means that some of the variables of a belief test action may already have
value instantiation through earlier computed substitutions, which we denote by
τ1 (e.g., substitution resulted from the guard of the practical reasoning rule
whose application has generated the plan, or from earlier actions in the same
plan). Similar to practical reasoning rules, we first apply the earlier computed
substitution τ1 to the query of the belief test action and then use the new query
to check the belief base. The new query will result in a new substitution which
we denote by τ2.

In the case of our example, the belief test action B(D <= 0 and new speed

(NewSpeed)) contains the variable D that is instantiated when the PG rule is
applied. This means that τ1 will contain a substitution for D. It also contains the
variable NewSpeed that is not instantiated before the belief query is performed,
which means that it will be instantiated by the belief query. Therefore, τ2 will
contain a substitution for NewSpeed.

2.2 Belief Updates

2APL contains two different types of belief update actions. The first type of
belief update action requires a belief update specification. Each belief update
specification is characterized by a triple consisting of the action name represented
as a first-order atom starting with a capitalized letter, a precondition represented
by a set of first-order literals, and a post-condition that is also represented by a
set of first-order literals. One of the belief updates of the example in Figure 2 is:

{ dist(X) and fuel(F) } Forward(Y) { not dist(X), not fuel(F), dist(X - Y), fuel(F - Y) }

This triple specifies that any belief update action that unifies with this action
name (e.g. Forward(5)) can be executed when the pre-condition can be derived
from the belief base (when dist(X) and fuel(F) can be derived from the belief
base for some substitution of the variables X and F, for instance distance(50)

and fuel(1000)). The execution of the belief update action ensures that the
post-condition is derivable from the belief base (e.g. not dist(50) and not

fuel(1000) and dist(45) and fuel(995) is derivable from the belief base af-
ter the execution of Forward(5)). Note that the action call Forward(5) will in-
stantiate the variable Y and that variable Y in the post-condition is instantiated
with the same value.

Belief Caching in 2APL 123

The second type of belief update action does not require a belief update
specification and consists of a first-order atom preceded by either the plus (+) or
the minus (−) operator. An update action with the plus operator adds the atom
to the agent’s belief base while an update action with the minus operator will
remove the atom from the agent’s belief base. For example, the plan “-dist(50);
+dist(45);” will remove the fact dist(50) from the belief base and add the
fact dist(45) to it. Note that the syntax of simple update actions is the same
as the syntax of belief updates in Jason [2].

3 Extending 2APL with Belief Caching

In the previous section, we observed that repeated belief queries demand a sub-
stantial amount of processing time of each deliberation cycle and we analyzed
belief queries and belief updates in 2APL in order to infer when the result of a
belief query will not change and caching can be applied. The answer of a belief
query remains unchanged if the following three conditions are satisfied: 1) the
part of the belief base that is relevant for the query is not changed, 2) in the
case of a practical reasoning rule where the head and the guard share variables,
the unification of the head provides a substitution that assigns the same values
as the cached values to the shared variables, and 3) in the case of a belief test
action that shares variables with some actions that precede it, the substitution
originating from the preceding actions assigns the same value as the cached val-
ues to the shared variables. As long as these conditions are fulfilled for a belief
query β, repeated querying of β returns the same substitutions for its involved
variables, such that the query can be cached until one of the conditions is no
longer met.

We will illustrate these conditions using the example in Figure 2. Consider
the belief query in the guard of the first PG rule (enough fuel(Speed) and

dist(D)). The first condition states that the relevant part of the belief base
should not be changed for this belief query. This will ensure that two identical
belief queries provide the same result. If one of the belief updates Forward(Y) or
Backward(Y) is successfully executed, it will update the value of dist(X) in the
belief base and thus possibly change the result of the query in the guard of the
rule, because this guard contains dist(D). Therefore, the query will have to be
performed again and caching does not apply. The second condition states that
the substitution of the variables that occur both in head and the guard of the
rule should remain unchanged. This means that the substitution of the variable
Speed in the rule head should be the same as the previous query, which will
ensure that the new belief query in the rule guard enough fuel(Speed) and

dist(D) is the same as previous query. The third condition does not apply.
We consider now the belief query action B(D <= 0 and new speed(NewSpeed)).

The first condition states again that the belief base should not change in a relevant
way. Since no belief update action can update the value of the predicate new speed

in the belief base, the result of this query cannot be affected by a belief update
action. This means that the first condition is always fulfilled. The second condition

124 M. Dastani and M. van Zee

does not apply. The third condition states that the variables shared with earlier
actions (in this case the instantiation of D) should have the same instantiated value
as in the previous execution of the query. In our case this means that the earlier
substitution resulted from the execution of the belief query enough fuel(Speed)

and dist(D) should contain the same value instantiation for the variable D as in
the current substitution for D.

In order to verify whether the first condition holds it is necessary to determine
which facts are relevant to belief queries. For this, we calculate the dependency
sets for all belief queries in a program. The dependency set of a belief query
contains all the atoms that can possibly affect the result of the query. Moreover,
we calculate the relevant queries for a belief update action as follows: If the post-
condition of a belief update action contains an atom that is in the dependency
set of a belief query, this query will be added to the list of relevant queries for this
belief update action. We build our idea of belief caching based on the relevant
queries of the update actions. In particular, when the belief update action is
invoked, a changed flag will be set in its relevant queries. Thus, if the belief base
has changed in a relevant way for a belief query, the changed flag will be true

for this query.
Note that it is possible to calculate the dependency sets of the queries and rel-

evant queries for the belief update actions at compile-time because belief update
actions and belief queries are static in 2APL, i.e., no new atoms will be added
to the belief base at run-time. This means that this extension will be practically
costless in terms of run-time performance. The extension we propose is two-fold.
Firstly, the belief queries are extended with a cache to store previous substitu-
tions, a changed flag and a decision mechanism to apply caching. Secondly, the
definition of a belief update is extended such that it is possible to determine the
relevant queries for each belief update. We will explain each extension in more
detail in the next two sections.

3.1 Extended Belief Queries

Recall from Section 2.1 that both types of belief queries (guards of practical
reasoning rules and belief test actions) involve two substitutions τ1 and τ2. τ1
is the substitution that contains all variables that have been instantiated before
the belief query, while τ2 is the substitution that contains all variables resulting
from executing the query to the belief base.

To distinguish between belief queries that contain variables which are already
instantiated, i.e. belief queries that contain variables that occur in τ1, and those
that do not, we introduce the flag shared for each belief query β and use β.shared
to refer to this flag. This flag is set (i.e., it has the value true) when the code
fragment before the query and the query itself share variables. In the case that
the query occurs in the guard of a practical reasoning rule, this code fragment
is the head of the practical reasoning rule. In the case that the query occurs in
a belief query action, the code fragment is the actions that precedes the belief
query action.

Belief Caching in 2APL 125

Definition 1 (Shared belief query). Let H ← β | π be a practical reasoning
rule and V ar(X) is the set of variables that occur in expression X. The flag
shared of the belief query β is set iff H and β share variables, i.e.:

V ar(H) ∩ V ar(β) �= ∅ =⇒ β.shared = true,

Moreover, let π (the body of the practical reasoning rule) be a plan of the form
π′;B(β);π′′. Then, the flag shared of the belief query β is set iff π′ and β share
variables, i.e.:

V ar(π′) ∩ V ar(β) �= ∅ =⇒ β.shared = true,

For example, in Figure 2 the belief queries in both PG rules are shared because
the variable Speed occurs both in the rule head and rule guard. Similarly, the
belief query actions in both rules are shared because the variable D occurs both
in the rule guard and the belief query action.

In order to perform caching, both substitutions τ1 and τ2 are stored for each
query β so that they can be re-used for the next query of β. Therefore we intro-
duce for each query β the substitutions τ1 and τ2. We cache these substitutions
related to query β and denote them by β.τ1 and β.τ2. We would like to empha-
size that it may also be possible to store a history of substitutions τ1 and τ2 in
order to reduce even more queries. This is particularly effective for when τ1 and
τ2 share variables and τ1 changes, and the belief base does not change. Next, we
introduce for each belief query β the flag changed that will be set whenever the
belief base has been updated in relevant way, which means that caching does not
apply and the query β should be executed with respect to the belief base. The
flag changed associated with the belief query β is denoted by β.changed. This
flag is set by belief update actions, which we will discuss in the next section. For
now we simply assume that this flag always has the correct value.

β.shared?

(β.τ1 = τ1 ∧ ¬β.changed)?

nop query

t f

β.changed?

query nop

t f

t f

Fig. 3. The belief query caching mechanism

Using these variables it is possible to define a decision mechanism that imple-
ments belief caching for the belief queries (Figure 3). If the relevant part of the
belief base has been changed for the query β (i.e., β.changed is true), the belief

3 When a leaf contains nop, this means that no operation is performed.

126 M. Dastani and M. van Zee

query will always be executed. If query β is shared and the cached substitution
β.τ1 is different from the current substitution τ1, the belief query β is executed
as well. The reason for this is that the cached substitution β.τ1 applied to β
will result in a different query than applying the new substitution τ1 (which is
different from β.τ1) to β. After executing each belief query β, the corresponding
flag β.changed is set to false.

3.2 Extended Belief Updates

In this section we will define precisely how the caching flag β.changed is set for
the belief queries. Recall from Section 2 that the only way in which the belief
base can be updated is by belief updates. We will make use of dependency sets
for queries, which we will now introduce. These dependency sets are defined for
the belief base of 2APL, which is a general logic program.

Definition 2 (Atom dependency [9]). An atom a depends on an atom b in
a logic program P iff (i) there exists a clause C in P such that a is the head of
C and b occurs in the body of C, or (ii) there exists a clause C in P such that
a is the head of C and there is an atom c in the body of C that depends on b.

Note that the second condition of Definition 2 is recursive, meaning that an
atom a can depend on an atom b via any number of clauses C1, C2, ..., Cn, given
that a occurs in the head of C1, the head of each clause Ci occurs in the body
of the previous clause Ci−1 (given that i > 1) and b occurs in the body of Cn.

Let π(P) be the set of atoms occurring in the general logic program P . The
atom dependencies in P is a binary relation Rdpd ⊆ π(P)× π(P).

Definition 3 (Dependency set [9]). The dependency set for an atom a in a
logic program P , denoted by R∗

dpd(a), contains all atoms b that a depends on.

We can calculate the atom dependency set for an atom a using the following two
steps, which are a reformulation of the conditions given in Definition 2: 1) Add
the atom a in the atom dependency set, 2) Add all atoms occurring in the body
of clauses in which atoms in the dependency set occur in the head. Step (2) is
repeated until this set does no longer grow. We can straightforwardly extend the
definition of an atom dependency set for a belief query.

Definition 4 (Query dependency set). The query dependency set for a
query β to a general logic program P , denoted by R∗

dpd(β), is the union of the
atom dependency set of each atom that occurs in β.

R∗
dpd(β) =

⋃
a∈β

R∗
dpd(a).

Suppose a query β is executed at deliberation cycles C1 and C2 and that the
previous substitution β.τ1 is equal to the current substitution τ1. The only way
in which the result of this query can change is if the substitution in C2 of a

Belief Caching in 2APL 127

variable X that occurs in an atom in the dependency set of β is different from
the substitution of X in C1. So, if an atom that occurs in the post-condition of
a belief update is a member of the query dependency set of a belief query, then
that belief update action can affect the substitution of such a variable X .

Consider for instance the belief query enough fuel(Speed) and dist(D)

that occurs in the guard of the first PG rule in the example program in
Figure 2. According to Definition 4, the query dependency set for a query β is the
union of the atom dependency set of each atom that occurs in this query. In this
case, this is the union of the atom dependency sets of the atoms enough fuel

and dist. This is calculuated using the belief base:

dist(50).

new_speed(X) :- X is int(random(10)).

fuel(1000).

enough_fuel(X) :- fuel(Y), X =< Y.

We calculate the atom dependency set using the algorithm that we stated di-
rectly after Definition 3. First add enough fuel to the set. Then add all atoms
occurring in the body of rules in which enough fuel occurs in the head. This
means that fuel is added to the set, because the last rule in the logic pro-
gram fulfills this condition. The atom dependency set is now {enough fuel,

fuel}. After this step, adding atoms that occur in the body of rules in which
enough fuel or fuel occur in the head does not increase the size of the set,
which means that the atom dependency set is complete. Because the atom dist

does not occur in any clause where there are atoms in the body, the atom depen-
dency set of this atom is simply {dist}. This means that the query dependency
set of enough fuel(Speed) and dist(D) is {enough fuel, fuel, dist}.

Now, if an atom that occurs in the post-condition of a belief update is a
member of this set as well, it can affect the result of this query. Recall that the
belief updates of Figure 2 are:

{ dist(X) and fuel(F) } Forward(Y) { not dist(X), not fuel(F), dist(X - Y), fuel(F - Y) }
{ dist(X) and fuel(F) } Backward(Y) { not dist(X), not fuel(F), dist(X + Y), fuel(F - Y) }

Since both belief updates contain the atom dist and the atom fuel and
both these atoms occur in the query dependency set of the belief query
enough fuel(Speed) and dist(D), both belief updates are relevant for this
query. We make the concept of belief query relevance more clear in the following
definition.

Definition 5 (Belief query relevance). A belief update α is relevant for a
belief query β if there exists an atom a that occurs both in the postcondition of
α and in the dependency set of β.

All relevant queries for a belief update are put in a set and activated whenever
the belief update action is executed by setting the changed flag of these queries
to true.

Definition 6 (Extended belief update). We add to each belief update α a
set relevantQueries containing belief queries and execute the algorithm depicted

128 M. Dastani and M. van Zee

in Algorithm 1 at compile-time. We also add for each belief update the algorithm
depicted in Algorithm 2 that is executed when the belief update action is executed.
Call the resulting belief update an extended belief update.

Algorithm 1. Collect relevant queries for each belief update action

1: procedure collectRelevantQueries()
2: for all beliefupdate α do
3: for all query β do
4: if ∃p : p ∈ R∗

dpd(β) ∧ p ∈ postcondition(α) then
5: α.relevantQueries.put(β)
6: end if
7: end for
8: end for
9: end procedure

Algorithm 2. Reset caching for relevant queries for each belief update action

1: procedure setRelevantQueries (α)
2: for query β in α.relevantQueries do
3: β.changed ← true

4: end for
5: end procedure

3.3 Abstract Performance Model

The abstract performance model for logic-based agent programming languages,
as proposed in [1], can be used in order to measure the effect of belief caching.
According to this model, the three steps in the deliberation cycle of a 2APL
agent can be mapped onto two kinds of knowledge representation functionality:
the query phase and the update phase. Together, they constitute an update cycle
(Figure 4). The query phase is a phase in which one or more belief queries
are performed, and in which no belief updates take place. As soon as a single
belief update occurs, the model switches to the update phase. It will remain
in the update phase until a single belief query takes place. The belief caching
mechanism proposed in [1], which we will call the original caching mechanism,
is to cache the queries within one query phase by making use of a hash table
that contains all queries that have been performed in this query phase. This will
ensure that the belief base has not been changed, simply because no belief update
has occurred. The complete cache is cleared as soon as the model switches to
the update phase, i.e. a single belief update takes place.

Our implementation is more fine-grained, though, since it refines the general
update cycle of [1] to an update cycle for each individual belief query. This
means that each single belief query goes through the update cycle of Figure 4.
Therefore the number of update cycles for individual queries are independent,

Belief Caching in 2APL 129

Fig. 4. The abstract performance model [1]

while in the case of [1] a single belief update will reset the cache of all queries.
This means that our proposal will lead to more belief caching in the case that
the update cycles of the individual belief queries are not identical, a situation
which frequently occurs.

4 Formal Characterization

The execution of a 2APL program, which is based on the 2APL deliberation
cycle [4], results in a sequence of program states. We consider the execution

of a 2APL program as a sequence of states C0
x1→ C1

x2→ C2
x3→ . . ., where Ci

denotes the configuration of an agent after the i-th execution step, and xi is a
(meta-) operation such as a belief query or a belief update (see [4] for other
2APL operations). We use the definition of an agent’s state from the original
2APL operational semantics (see [4], Definition 1).

Definition 7. (Individual agent configuration) The configuration of an individ-
ual 2APL agent is defined as C = 〈ι, σ, γ,Π, θ, ξ〉 where ι is a string representing
the agent’s identifier, σ is the belief base, γ is the goal base, Π is the agent’s
plan base, θ is a ground substitution, and ξ is the agent’s event base.

For this paper, we are only interested in the changes of the belief base and
the substitutions that are resulted from querying the belief base during the
program execution. We denote the belief base and the substitution base of an
individual agent configuration C with Cσ and Cθ, respectively. Moreover, we
use query(σ, β) to denote the belief query (meta-) operation which performs the
query β on the belief base σ and results in a substitution τβ . In the following,
we use τβ = query(σ, β) to denote that τβ is the substitution resulting from
querying β from belief base σ . In the context of this paper, the relevant 2APL
transitions are related to belief query and belief update operations.

Definition 8. (State transition) Let Ci be the an individual 2APL agent con-
figuration, and let Cσ

i and Cθ
i be the belief base and the substitution base, respec-

tively. Let α be an update operation, β be a query operation, Cσ
i · α be the belief

base Cσ
i updated with action α, and θ · query(Cσ

i , β) be the substitution base θ
updated with the substitution resulted from querying β on belief base Cσ

i . The
following two 2APL transition rules define the effects of belief query and belief
update operations.

1. Ci
α−→ Ci+1, where Cσ

i+1 = Cσ
i · α and Cθ

i+1 = Cθ
i

2. Ci
β−→ Ci+1, where Cσ

i+1 = Cσ
i and Cθ

i+1 = Cθ
i · query(Cσ

i , β)

130 M. Dastani and M. van Zee

Note that the transition rule for belief update operations modifies only the be-
lief base and the transition rule for belief query operations modifies only the
substitutions.

The execution of 2APL programs with caching is obtained by modifying the
standard 2APL program states, to include the cache and the changed flags of the
queries, and 2APL transitions related to update and query of the belief base.
In the following, we use Queries(P) = {β1, . . . , βn} to denote the set of all
queries occurring in the 2APL program P and β.changed = V to indicate that
the value of the changed flag of query β is V ∈ {�,⊥}. Using this information and
the notions introduced in Section 3, we can now define the 2APL configuration
states extended with caching.

Definition 9. (Extended agent configuration) The configuration of an extended
2APL agent is defined as C = 〈ι, σ, γ,Π, θ, ξ,F ,H〉 where ι, σ, γ,Π, θ and ξ are
the same as in Definition 7, and F = {β.changed = V | β ∈ Queries(P)} and
H = {τβ1 , . . . , τβk

| βi ∈ Queries(P)} are sets storing the values of the query
flags and the substitutions of the cached queries, respectively.

We will write CF and CH to denote the set of caching flags and the set
of cached queries, respectively. Based on the definition of an extended agent
configuration, the relevant transitions for 2APL with caching are defined as
follows.

Definition 10. Let Ci be a state of 2APL program with caching, C
H
i · τβ be

the cache CH
i updated with the substitution τβ , and CF

i · F be a set of query
flag values CF

i updated with new values for some of the query flags F where
F ⊆ {β.changed | β ∈ Queries(P)}. For 2APL with caching, the following
two transition rules replace the belief query and belief update transition rules of
standard 2APL, as presented in Definition 8.

1. Ci
α−→ Ci+1, where Cσ

i+1 = Cσ
i · α , Cθ

i+1 = Cθ
i , and

CF
i+1 = CF

i · {β.changed = � | β ∈ α.relevantQueries}
2. Ci

β−→ Ci+1, where Cσ
i+1 = Cσ

i and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

τβ = query(Cσ
i , β) , if β.changed = �

Cθ
i+1 = Cθ

i · τβ ,

CH
i+1 = CH

i · τβ ,

CF
i+1 = CF

i · {β.changed =⊥}

Cθ
i+1 = Cθ

i · τβ , τβ ∈ H if β.changed =⊥

.

The first transition defines the effect of a belief update operation, which be-
sides updating the belief base, sets the changed flags of all relevant queries to
true, meaning that they are all excluded from caching in the next execution step.

Belief Caching in 2APL 131

The second transition defines the effect of a belief query operation, conditioned
on the value of the changed flag of this query. In particular, if this flag is set to
true, i.e., when a part of the belief base that is relevant to the query has changed
such that the query should be executed again, the query β is executed against
the belief base, the substitution is stored in the cached queries base, and the
changed flags of all relevant queries are set to true. If the changed flag associ-
ated with the query is false (i.e., if the part of the belief base that is relevant to
the query has not changed since the last query), then the query can be answered
by using the cached value of the query. Initially, the changed flags of the set of
all belief queries that occur in a 2APL program is set to true.

Definition 11. (Initial Configuration) The initial configuration of an extended
2APL agent is defined as a tuple C0 = 〈ι, σ0, γ0, Π0, θ0, ξ0,F0,H0〉, where C0 =
〈ι, σ0, γ0, Π0, θ0, ξ0〉 is the initial configuration of a standard 2APL agent (see
Definition 7). The changed flag of all belief queries that occur in the 2APL
program are initially set to true, i.e. ∀β ∈ CF

0 : β.changed = �. The set of
cached queries is initially empty, i.e. CH

0 = ∅.

The standard 2APL execution, performed by the 2APL interpreter, is modified
by replacing the belief update and belief query transition rules with the modified
transition rules as presented in Definition 10. We assume that all other transi-
tions have the same effect on the belief base and substitution base of the program
states, i.e., if 〈ι, σ, γ,Π, θ, ξ〉 x−→ 〈ι′, σ′, γ′, Π ′, θ′, ξ′〉 is a transition in an execution
of 2APL without caching and x is any operation different from a belief query
and a belief update, then 〈ι, σ, γ,Π, θ, ξ,F ,H〉 x−→ 〈ι′, σ′, γ′, Π ′, θ′, ξ′,F ,H〉 is the
transition in the corresponding execution of 2APL with caching.

In order to show that the execution behaviour of 2APL programs do not
change under the caching modifications, we need to prove that replacing the
standard transition rules for belief update and belief query operations, as pre-
sented in Definition 8, with the new transition rules, as presented in Definition 10,
does not change the sequence of program states with respect to the belief base
and the substitution base. In order to do this, we need to define when a program
state without caching is equivalent to a program state with caching.

Definition 12. Let C be a state of a 2APL program without caching and C be
a state of a 2APL program with caching. We say that C is equivalent with C

with respect to the belief base and the substitution base, denoted as C ∼ C, iff
C = 〈ι, σ, γ,Π, θ, ξ〉 and C = 〈ι, σ, γ,Π, θ, ξ,F ,H〉.
Note that a standard 2APL program state is equivalent with a 2APL program
state extended with cache if all state components, except the set of changed flag
values and the cache, are identical.

Theorem 1. Let C0
x1→ C1

x2→ C2
x3→ . . . be the execution of a 2APL program

without caching and C0
x1→ C1

x2→ C2
x3→ . . . be the execution of the same 2APL

program with caching. We have ∀i ≥ 0 : Ci ∼ Ci.

Proof. We provide the sketches of a proof which is based on induction.

132 M. Dastani and M. van Zee

– (Base step:) C0 ∼ C0. Follows directly from Definition 11.

– (Induction step:) Suppose Ci ∼ Ci, then we prove that Ci+1 ∼ Ci+1 for i > 0.
We first note that all transitions of 2APL executions with caching are the same
as the corresponding transitions of 2APL without caching, except transitions
for belief update and belief queries operations. This means that if Ci ∼ Ci,
Ci

x−→ Ci+1 is a 2APL execution transition without caching, x is an operation

different than belief update or belief query, andCi
x−→ Ci+1, thenCi+1 ∼ Ci+1.

What remains is to show is that this equivalence holds for transitions of belief
update and belief query operations as well. For belief update operation we
need to show that if Ci ∼ Ci, Ci

α−→ Ci+1, and Ci
α−→ Ci+1, then Ci+1 ∼ Ci+1.

This means that we have to show that Cσ
i+1 = Cσ

i+1 and Cθ
i+1 = Cθ

i+1

(Definition 12). From Definition 8 and 10 we can immediately conclude that
a belief update in 2APL without caching has exactly the same effect on its
belief base Cσ and the substitution base Cθ as 2APL with caching on its
belief base Cσ and substitution base Cθ. Thus, Ci+1 ∼ Ci+1 in the case that
the transition is a belief update.

For the belief query operation we need to show that if Ci ∼ Ci, Ci
β−→ Ci+1

and Ci
β−→ Ci+1, then Ci+1 ∼ Ci+1. First, we observe that a belief query β

has no effect on the belief bases of both 2APL with caching and 2APL
without caching, that is, Cσ

i = Cσ
i+1 and Cσ

i = Cσ
i+1. Since we assumed

Ci ∼ Ci we obtain Ci+1 ∼ Ci+1. For the substitution base, we consider
two cases: β.changed = � and β.changed =⊥. In the first case, both the
substitution bases are updated with the query β on the belief base, that is,
Cθ

i+1 = Cθ
i · query(Cσ

i , β) and Cθ
i+1 = Cθ

i · query(Cσ
i , β), which means that

we have Ci+1 ∼ Ci+1.

In the second case where β.changed =⊥, the transition without caching
updates the substitution base Cθ with query(Cσ, β) while the transition with
caching updates the substitution base by the cached substitution τβ ∈ C

H.
We thus need to show that query(Cσ, β) = τβ . Consider the last transition
in the 2APL program execution with caching that was based on a belief
query operation and through which the changed flag of query β is set to

false. Let this transition be Ck
β−→ Ck+1 and its corresponding transition

without caching be Ck
β−→ Ck+1 for k < i. Note that in program state k + 1

it holds that query(Cσ, β) = τβ and that τβ is stored in CH. Because there
have been no belief base updates relevant for the belief query β between
program states k+1 and i (otherwise the changed flag of β would have been
true, see Definition 5 on query relevance), we can conclude that query(Cσ, β)
provides one and the same substitution in all program states C between Ck+1

and Ci and thus also in all program states C between Ck+1 and Ci. Note
also that τβ is not modified between program states Ck+1 and Ci, because
we assumed that the transition from state k to state k + 1 was the last
transition in which the changed flag of query β was set to false. This implies
that query(Cσ, β) in program state Ci is the same as τβ in program state
Ci and thus Cθ · query(Cσ, β) = Cθ · τβ such that Ci+1 ∼ Ci+1. �

Belief Caching in 2APL 133

5 Experimentation

We have analyzed the working of belief caching using a benchmarking tool that
was developed for this work. We have tested belief caching for three increasingly
realistic programs.4

5.1 Experimental Setup

The first program (driver) has been developed to demonstrate the working
of belief caching specifically. The code of this program is almost identical to
Figure 2, except that the body of the Prolog rule enough fuel has been replaced
by a computationally heavy calculation involving integers. The second program
(storage) has been written for this task as well but is more realistic. It consists
of a multi-agent system with 10 different agents that each can store items in
a storage list. Agents will attempt to keep their items stock constant while
they receive items from the environment. The last program (marketplace) is an
existing and more sophisticated version of a multi-agent system in which agents
have items that they can sell, and have items that they want to buy. Agents can
bid for items they desire and sell an item when a bid of another agent meets
their demands.

We have compared the results between 2APL with and without belief caching.
We use “2APL” to refer to 2APL with no belief caching, and “2APL*” to refer
to 2APL with belief caching. All experiments have been performed on a 2.4GHz
Intel Core i5, 6 GB 667 MHz DDR3, running Windows 7 and Java 1.6. When
showing the benchmarking results, we use d to denote the number of deliberation
steps, Qb for belief queries, Ub for belief updates. CPG for PG rule calls, CPC

for PC rules calls, CPR for PR rule calls, and B for the run-time of the program,
which we will also refer to as the benchmarking time.

5.2 Results

Driver Program. We plot the number of deliberation steps per second for a
benchmarking time of 50 seconds (Figure 5a). The average value of 2APL lies
around 450 deliberation steps per second, and the one of 2APL* around 6500,
which is around fifteen times as much.5

The only rules that are being used in the driver program are PG rules.
Therefore, it is of interest to see whether the PG rules are being processed faster
because of belief caching. When we plot these values (Figure 5b), we see that
2APL* processes PG rules much faster than 2APL. Where 2APL has an average
value of around 7.5 ms per call, the average of 2APL* is around 0.5 ms, which
more than 14 times faster.
4 The sources for the used programs can be downloaded from
http://www.marcvanzee.nl/2apl/2apl_beliefcaching_examples.rar

5 The noise in the results is mainly due to the fact that Java has no automatic garbage
collection, which means that this will be done whenever Java judges it appropriate,
independent from the benchmark points.

http://www.marcvanzee.nl/2apl/2apl_beliefcaching_examples.rar

134 M. Dastani and M. van Zee

(a) Deliberation steps per second. (b) Average processing time of a PG rule.

Fig. 5. (Driver) Results for B=50s

Fig. 6. (Driver) Total number of calls for all operations (B=240s)

The reason why PG rules are being processed much faster in 2APL* is because
less time is spent on performing belief queries. For completeness, the graph
showing the total number of calls in 50 seconds for all relevant operations is
depicted in Figure 6, which shows that indeed the number of calls have increased
drastically for 2APL*.

Storage Program. Figure 7a shows the number of calls for the relevant op-
erations at a benchmark time of 50 seconds. As we can see, the number of
deliberation steps has improved with a factor of about 4 for 2APL*, which is
significant. The number of belief queries has remained more or less constant,
but since much more deliberation steps have been executed, the number of be-
lief queries per deliberation step has decreased a lot. This is shown more clearly
in Figure 7b, where we see that the belief queries take up much less processing
time in the case of 2APL*.

Marketplace. The last program that we have tested contains much simpler
belief queries. The question that we would like to answer is whether such a
program could also be improved using belief caching. As we see in Figure 8a,
the number of deliberation steps increases slightly when using 2APL*, while the
number of belief queries decreases with half. This makes sense, because while
we save many belief queries, there is not much increase in run-time because the
queries are very simple and not time-consuming. This becomes more clear in

Belief Caching in 2APL 135

(a) (Storage) Number of calls. (b) (Storage) Processing time.

Fig. 7. (Storage) Benchmarking results for B=200s

(a) Number of calls. (b) Processing time.

Fig. 8. (Marketplace) Benchmarking results for B=50s

Figure 8b, where the processing time of the different operations is shown. As we
can see, the operation time of the belief queries is very small and this does not
affect the efficiency of the program greatly.

6 Conclusion

We have implemented belief caching into 2APL and showed that it extends the
abstract performance model of [1]. Instead of single-cycle caching, our implemen-
tation keeps track of an update cycle for each individual belief query. We have
implemented belief caching into the latest version of 2APL. The benchmarking
results show that belief caching can optimize a 2APL program significantly, be-
cause it is an effective way to reduce the number of belief queries. To what extent
this decrease will contribute to an increase in deliberation speed depends on the
complexity of the belief queries. Our contribution is that the implementation
will never lead to a worse performance, because the dependencies between the
belief updates and the belief queries can be calculated at compile-time. Logic-
based agent programming language are based on a combination of imperative
programming with logic-based knowledge bases. Because this approach is rela-
tively new, there has not been much research dedicated towards the optimization
of the communication between these two formalisms. Our approach has shown

136 M. Dastani and M. van Zee

that it can be very beneficial to optimize this. We therefore see it as a first step
towards increasing the efficiency of logic-based agent programming languages so
that they will become better applicable to practical domains.

We plan to continue our optimization work on 2APL by building goal caching
mechanism as well as a mechanism that decreases the set of applicable practical
reasoning rules. It should be noted that the current 2APL interpreter checks at
each deliberation cycle which practical reasoning rule is applicable. This is done
by checking the head and guard of the rules which requires queries to belief, goal,
and event bases. Any mechanism that keeps track of non-applicable rules may
reduce the number of applicable practical reasoning rules and thus the number
of time consuming queries. We believe that our caching mechanism is not limited
to 2APL. It can be implemented into logic-based agent programming languages
such as Jason [2], GOAL [5], or other multi-agent programming languages that
combine logic-based knowledge bases with imperative programming (see [3] for
an overview), as long as the set of plan rules do not change at run-time. We
leave this issue for further research.

References

1. Alechina, N., Behrens, T., Hindriks, K.V., Logan, B.: Query Caching in Agent
Programming Languages. In: Dastani, M., Hübner, J.F., Logan, B. (eds.) ProMAS
2012. LNCS, vol. 7837, pp. 123–137. Springer, Heidelberg (2013)

2. Bordini, R., Wooldridge, M., Hübner, J.: Programming Multi-Agent Systems in
AgentSpeak using Jason (Wiley Series in Agent Technology). John Wiley & Sons
(2007) ISBN 0470029005

3. Bordini, R., Dastani, M., Dix, J., Seghrouchni, A.E.F. (eds.): Multi-Agent Pro-
gramming: Languages, Tools and Applications. Springer (2009)

4. Dastani, M.: 2APL: a practical agent programming language. In: Autonomous
Agents and Multi-Agent Systems, pp. 214–248 (2008)

5. Hindriks, K.: Programming Rational Agents in GOAL. In: Multi-Agent Program-
ming: Languages and Tools and Applications (see [3]), pp. 119–157 (2009)

6. Levy, A.Y., Sagiv, Y.: Queries Independent of Updates. In: Proceedings of the 19th
International Conference on Very Large Data Bases, pp. 24–27 (1993)

7. Levy, A.: Creating Abstractions Using Relevance Reasoning. In: Proceedings of the
Twelfth National Conference on Artificial Intelligence, pp. 588–594 (1994)

8. Levy, A.Y., Fikes, R.E., Sagiv, Y.: Speeding Up Inferences Using Relevance Rea-
soning: A Formalism and Algorithms. Journal of Artificial Intelligence, 97–1 (1997)

9. DeRaedt, L.: Interactive theory revision: an inductive logic programming approach.
Academic Press Ltd. (1992) ISBN 0-12-210730-6

10. Ziafati, P., Dastani, M., Meyer, J.-J., van der Torre, L.: Agent Programming
Languages Requirements for Programming Autonomous Robots. In: Dastani, M.,
Hübner, J.F., Logan, B. (eds.) ProMAS 2012. LNCS, vol. 7837, pp. 35–53. Springer,
Heidelberg (2013)

Deciding between Conflicting Influences

Andreas Schmidt Jensen

Department of Applied Mathematics and Computer Science,
Technical University of Denmark, Kongens Lyngby, Denmark

ascje@dtu.dk

Abstract. This paper investigates an approach of decision making in-
ternally in an agent where a decision is based on preference and expecta-
tion. The approach uses a logic for qualitative decision theory proposed
by Boutilier to express such notions. To make readily use of this we de-
scribe a simple method for generating preference and expectation models
that respect certain rules provided by the agents, and we briefly dis-
cuss how to integrate the approach into an existing agent programming
language.

1 Introduction

Agents taking part in a multi-agent system are usually seen as intelligent
entities that autonomously are able to bring about (from their own perspec-
tives) desirable states. The designer is in a fixed setting with a controlled num-
ber of agents and globally desirable states often able to implement the agents
such that their own desirable states coincide with the globally desirable states.
In open societies, agents often come from different sources and their desires can-
not as such be assumed to match the global desires. A suggestion is to impose an
organization on the agents, which can influence the actions of the agent toward
the desires of the organization.

When agents are constrained by an organization, their own goals may con-
flict with those of the organization and they need in such cases to be able to
decide which of the conflicting goals to pursue. In some of the previous work
toward resolving such conflicts, desires and obligations are ordered a priori, so
that an agent either prefers desires over obligations or obligations over desires.
This results in agents that are always selfish (considering own goals more impor-
tant than organizational goals) or always social (vice versa). We argue in this
paper that such distinction can be too hard; even a selfish agent could in some
cases benefit from preferring certain obligations to its desires. We consider an
approach on how to resolve such (and other) conflicts, based on work in the area
of qualitative decision theory by Boutilier [4], where the expected consequences
of bringing about a state are considered. We show that this result in agents that
are not always either social or selfish, but instead are able to decide based on
the consequences of bringing about a state.

Our focus is on a general approach toward deciding between different kinds of
influences, with the aim to show that although agents are subject to influences

M. Cossentino et al. (Eds.): EMAS 2013, LNAI 8245, pp. 137–155, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

138 A.S. Jensen

from different entities, they are able to make decisions based on the current
situation, their preferences and the expected consequence of bringing about a
state. We do not focus explicitly on the choice between an agent’s desires and
the obligations from an organization, but emphasize that the approach is useful
in this situation and other situations as well.

To make the approach readily useful we furthermore describe a simple method
for generating models for preference and expectation based on basic rules, such
as “I prefer to drive to work when it rains”, specified by the agents.

The paper is organized as follows: In section 2, we discuss the issues that arise
when an agent has to make a decision between conflicting influences. In section
3, we present a new approach on how to solve such conflicts without having to
put the agents into the categories “selfish” or “social”. We present a method
for generating models that conform to the agent’s preferences in section 4. In
section 5, we discuss a case in which agents have conflicting influences and show
that our method enables them to make a decision using their own preference
and the expected consequence of bringing about each state. We briefly discuss
how to implement the system and integrate it in an existing agent programming
language in section 6. Finally, we conclude our work and discuss future research
directions in section 7.

2 Conflicting Influences

Agents entering an environment will be subject to influences from multiple
sources: their own desires, requests from other agents, and obligations from an
organization. In the well-known BDI model, an agent’s desires become inten-
tions, when the agent commits to bringing about these desires. One could argue
that if an agent wants to accept requests from other agents, or if it wants to
adhere to the obligations of an organization, these influences are merely desires
as well, i.e. the agent simply desires to do so. The incentives for doing so are
however not clear, since there should be different reasons for committing to ac-
tual desires and to requests or obligations “disguised” as desires. For example,
if an agent has a desire to move a box from A to B, it typically wants to do
so. However if the agent wants to pay a bill before its due date, this “desire”
has more likely arisen from the fact that the agent does not want to pay a fine,
rather than being an actual desire to pay the bill. In such a situation, the desire
may actually be an obligation or a request to pay the bill, which means that the
agent should reason differently since the actual desire is to avoid paying a fine.

Furthermore, consider an agent that receives an undesirable request from an
agent that it desires to help. It may choose to commit to the task even though the
task itself is not desirable, because the desire to help the other agent is stronger than
the desire not to perform the task (the consequence of not helping the other agent
might be a bad reputation). Similarly, if an agent is obligated to perform certain
tasks for an organization, it should not only be able to consider whether the task is
desirable, but also weigh this against the penalty for violating the obligation.

We call something that the agent might choose to intend to do a “decision
influence” rather than a desire since it, as argued above, may stem from many

Deciding between Conflicting Influences 139

different sources rather than being merely desires. The agent naturally has to
consider its desires since it would be irrational to ignore them, but the con-
sequence of not reasoning about e.g. obligations might be intolerable so these
influence the agent as well. This also means that the agent is not supposed to be
reasoning explicitly about whether it should commit to bringing about an arbi-
trary obligation or desires; they are merely considered influences, and the agent
is not concerned with the different types of influences: only the fact that they
affect the decision process matters. Several approaches are proposed on how to
let agents choose between specific types of influences (typically obligations and
desires) [2,5,6,7,8], so we briefly discuss how our approach differs.

In [5] conflicts between beliefs, obligations, intentions and desires are discussed
with a focus on a distinction between internal conflicts, e.g. contradictory beliefs,
conflicting obligations and external conflicts, such as a desire which is in conflict
with an obligation. The solution proposed, the BOID architecture, imposes a
strict ordering between beliefs, obligations, intentions and desires, such that the
order of derivation determines the agent’s attitude. Thus different agent types
emerge; an agent deriving desires before beliefs is a wishful-thinking agent, while
an agent deriving obligations before desires is social.

We believe this ordering is too strong; if an agent is social, it will always
choose obligations over desires, and vice versa for selfish agents. This might not
always be appropriate. For instance, a selfish agent might desire not to go to
work, but if the consequence of not fulfilling the obligation of going to work is
severe (i.e. getting fired), even a selfish agent should consider this consequence
before deciding not to go to work.

Dignum et al. suggests that “both norms and obligations should be explicitly
used as influences on an agent’s behavior” [7]. They represent obligations (and
norms) using Prohairetic Deontic Logic [10], a preference-based dyadic deontic
logic which allows for contrary-to-duty obligations (obligations holding in a sub-
ideal context). Furthermore, they propose a modified BDI-interpreter in which
selected events are augmented with potential deontic events, which, put simply,
are obligations and norms that may become applicable when choosing a plan. For
instance, if agent a has an obligation to perform a task for agent b, and a does
not intend to do so he ought to inform b about this. The modified interpreter
generates a number of options depending on these potential events and chooses
a relevant plan based on the agent’s attitude.

In [8] it is argued that the preference orderings induced by desires, obliga-
tions and norms should be combined into a single ordering. It is noted that a
common way to do so is to allow that a single preference ordering determine the
aggregate ordering, such that the agent might always put obligations over norms
and norms over desires, similarly to the BOID architecture. Another approach
is also discussed in which the orderings are mapped into a common scale, such
that very desirable situations could outweigh the cost of violating certain obli-
gations. Such ordering should be quite dynamic since, for example, obligations
toward a trusted agent should become less important if that agent becomes less
trustworthy. Simple rules are presented to deal with few alternatives, but it is

140 A.S. Jensen

noted that the situation is more complex if an agent has to choose between three
or more alternatives and none of the three orderings agree on a preferred alter-
native. A simple rule which orders the alternatives in a fixed order results in a
very simple-minded agent and it is suggested that the consequences of different
situations is considered, however this is not investigated further.

Different types of role enactments are identified in [6] and they describe an
approach for verification of consistency of agent goals and role goals. They work
with agents and roles in which goals are prioritized using an ordering and inves-
tigate what is required to make agents and roles are compatible. This leads to
role enacting agents that can prioritize own goals and role goals in a combined
ordering, thus not necessarily making agents explicitly selfish or social. They
define different enactment types, such as selfish enactment in which the agent
includes both own goals and role goals, but gives priority to own goals, and social
enactment in which priority is given to the rule goals.

2.1 Consequence-Based Decisions

Performing an action will in many cases result in one or more side effects that
may or may not be desirable for the agent performing the action. These side
effects are part of the consequences of performing the action, and the agent can
reason using more information by considering these consequences, thus enabling
it to make better decisions. This suggests that in order to reason about bringing
about a certain state, the agent should consider what consequences are expected
when bringing about that state.

We therefore suggest that the agent should reason about the expected conse-
quences of choosing to commit to a decision influence and furthermore that this
reasoning should be based on both preference and tolerance. We use preference for
influences and tolerance for expected consequences of influences, and the reason
for using tolerance instead of preference in the case of consequences is that the
agent should not need to desire the consequences of bringing about a state. Since
the consequences are merely side effects, they need not be desired in the same way
as the influences are. If a consequence is preferable, then clearly it is also tolerable
but the opposite need not be the case (the agent might tolerate going to work even
though prefers to stay at home). We define a situation as being tolerated when the
opposite is not preferred (e.g., working is tolerated if staying at home is not pre-
ferred over working). Using the influences, we can build two sets to base a decision
on: the set ofmost preferred influences,Pref, and the set of influenceswith themost
tolerable expected consequences, Tol. We can identify different strategies for how
to make a decision based on these sets, such as considering one set before the other
or by using a combination of the sets:

Pref > Tol (1)

Pref < Tol (2)

Pref ∪ Tol (3)

Pref ∩ Tol (4)

Deciding between Conflicting Influences 141

We can let preferences take precedence (1) such that if a single influence is most
preferred (in Pref) it is chosen, and only in case of multiple most preferred
influences will tolerance be taken into account, or we can let tolerance take
precedence (2), which gives the opposite situation. However, this means that
only in some cases are both preference and tolerance taken into account, so
an agent could choose to commit to something it prefers which leads to an
intolerable situations that could have been avoided if both sets were taken into
account. We could take the collective influences (3), but then the agent would
have to choose between things it prefer and things it tolerate even though the
former may be intolerable and the latter could be unwanted. Instead we could
let the decision be the influences that are both preferred and tolerated (4), thus
ensuring that the decision is preferred by the agent and that the consequences
can be tolerated. In certain situations, these sets may not coincide, and we argue
then that the safest decision is to choose something tolerated, since then even
though the influence might not be most preferred, at least it will not lead to
an intolerable state. Our approach makes use of the last strategy, i.e. taking
the intersection of the sets, since it incorporates both measures in all situations,
while not resulting in intolerable preferred states.

Note that our approach does not incorporate an explicit notion of organiza-
tions; the focus is on many different kinds of influences including the obligations
toward an organization. As a result, we model consequences as expectations from
the environment, that is, which possible world is the most expected, which is
the second most and so on. This means that if the consequences of the violation
of an obligation (i.e. sanctions) are specified in an organizational model, these
consequences are in our approach modeled such that worlds in which the vio-
lation has occurred and a sanction has been imposed are more expected than
the worlds where the violation has occurred without the agent being sanctioned.
This will be evident in the example in section 5 where all expected consequences
are incorporated into the same model.

3 Modeling Influence and Consequence

We base our work on the Logic for Qualitative Decision Theory (QDT) by
Boutilier [4]. We briefly describe the semantics of QDT and define a few new
abbreviations to be used in the decision-making.

The basic idea behind the QDT model is as follows. An agent has the ulti-
mate desire of achieving the goals to which it is committed. This can be modeled
by a possible worlds-model in which the agent has achieved its goal when it is
in a world where those goals hold. The most preferred world in an ideal set-
ting is the world in which the agent has achieved all of its goals. However, such
world is often unreachable since the agent could have contradicting goals, other
agents could prevent the agent from achieving all of its goals, an organization

142 A.S. Jensen

could impose obligations, which contradict the agent’s goals, etc. By ordering
the worlds in a preference relation, it is possible to choose the most preferred
world(s) in a sub-ideal situation.

In order to decide between influences the consequence of bringing about a
state should be taken into account. If the consequence of pursuing a personal
desire is to be fired from your workplace, it might not be reasonable to do so even
though the desire was more preferred than the obligations from work. We briefly
describe QDT below before moving on to modeling the expected consequence of
bringing about a state.

A QDT model is of the form:

M = 〈W,≤P ,≤N , π〉,

where W is the non-empty set of worlds, ≤P is the transitive, connected pref-
erence ordering1, ≤N is the transitive, connected normality ordering, and π is
the valuation function. The normality ordering is used to model how likely each
world is, e.g. it is normally cold when it is snowing, and the preference ordering
is used to model an agent’s preferences.

The semantics are as follows:

M,w |= p ⇐⇒ p ∈ π(w)

M,w |= ¬ϕ ⇐⇒ M,w �|= ϕ

M,w |= ϕ ∧ ψ ⇐⇒ M,w |= ϕ ∧M,w |= ψ

M,w |= �P ϕ ⇐⇒ ∀v ∈ W, v ≤P w,M, v |= ϕ

M,w |= ←
�P ϕ ⇐⇒ ∀v ∈ W,w <P v,M, v |= ϕ

M,w |= �N ϕ ⇐⇒ ∀v ∈ W, v ≤N w,M, v |= ϕ

M,w |= ←
�N ϕ ⇐⇒ ∀v ∈ W,w <N v,M, v |= ϕ

We can define the other operators (∨,→,�,
←
�) as usual. Finally, we can talk

about a formula being true in all worlds or some worlds:
↔
�P ϕ ≡ �P ϕ ∧ ←

�P ϕ

and
↔
�P ϕ ≡ �P ϕ ∨ ←

�P ϕ, respectively (similarly for normality). The following
abbreviations are defined [4]:

(1) I(ψ | ϕ) ≡ ↔
�P¬ϕ ∨ ↔

�P (ϕ ∧ �P (ϕ → ψ)) (Conditional preference)

(2) ϕ ≤P ψ ≡ ↔
�P (ψ → �Pϕ) (Relative preference)

(3) T (ψ | ϕ) ≡ ¬I(¬ψ | ϕ) (Conditional tolerance)

(4) ϕ ⇒ ψ ≡ ↔
�N¬ϕ ∨ ↔

�N (ϕ ∧�N (ϕ → ψ)) (Normative conditional)

The abbreviations state that (1) ψ is ideally true if ϕ is true, (2) ϕ is at least
as preferred as ψ, (3) ψ is tolerable given ϕ and (4) that ψ normally is the case
when ϕ is.

1 We adopt the notion by Boutilier and others that we prefer minimal models, so
v ≤P w denotes that v is at least as preferred as w.

Deciding between Conflicting Influences 143

In order to make decisions as motivated above, we define the following ab-
breviations, which allow us to specify different kinds of relative preference, and
relative tolerance.

ϕ �≤P ψ ≡ ¬(ϕ ≤P ψ) (Not as preferred)

ϕ ≈P ψ ≡ (ϕ ≤P ψ ∧ ψ ≤P ϕ)
∨ (ϕ �≤P ψ ∧ ψ �≤P ϕ) (Equally preferred)

ϕ ≤T (γ) ψ ≡ (T (ϕ | γ) ∧ ¬T (ψ | γ)) ∨
((T (ϕ | γ) ↔ T (ψ | γ)) ∧
(ϕ ≤P ψ ∨ ϕ ≈P ψ)) (Relative tolerance)

Relative tolerance is defined as ϕ being at least as tolerable as ψ w.r.t γ when
either ϕ is tolerable given γ and ψ is not, or both ϕ and ψ are tolerable given γ (or
both are not), and ϕ is at least as preferred as ψ, or they are equally preferable.
This means that even if neither is tolerable, they are still comparable.

3.1 Making a Decision

We now show how QDT can be used to decide between conflicting influences.
We define a model for an agent’s decision making as follows:

MC = 〈M,F,C,B 〉,

where M is a QDT-model as defined above, F is the set of influences, C is the
set of controllable propositions2, and B is the agent’s belief base.

The set of potential consequences C′ is defined such that if ϕ ∈ C then
ϕ,¬ϕ ∈ C′. That is, if ϕ is controllable, then one of ϕ,¬ϕ may be a consequence
of bringing about some state.

In order for a potential consequence to be an actual (expected) consequence
of ϕ, it has to follow from the most normal worlds where ϕ holds. That is, we
add ϕ to the belief base B, and the potential consequences that follow from the
expanded belief base are then the expected consequences. Assuming that ϕ and
B are consistent, we add ϕ to B using the expansion operator, +, of the AGM
theory [1], where B+ϕ means adding ϕ to a copy of B and closing the resulting
set under logical consequence. We work with a copy of the belief base since the
reasoning concerns what happens if the literal is added.

If, however, ϕ and B are not consistent, we can use the AGM revision operator,
+̇, which behaves like +, but if ϕ and B are not consistent, B is minimally
modified to make it consistent with ϕ, before adding ϕ.

As shown in [3], AGM belief revision can be efficiently implemented in rational
agents, making it suitable for our approach. We can now formally define the
expected consequence of bringing about a state.

2 A controllable proposition is, roughly, a proposition that the agent is able to influ-
ence, directly or indirectly, by an action. E.g., snow is not controllable and cannot
be a consequence of an action, whereas work is.

144 A.S. Jensen

Definition 1 (Expected consequences). Given an agent’s belief base B, the
set of potential consequences C′ and a literal ϕ. The expected consequences of
bringing about ϕ, denoted EC(ϕ), is given by:

EC(ϕ) =
∧

Cϕ for all Cϕ ∈ {Cϕ | (B +̇ ϕ ⇒ Cϕ) where Cϕ ∈ C′}

i.e. the conjunction of all literals Cϕ that are normally consequences of the cur-
rent belief base B expanded with ϕ, such that B remains consistent. If there are
no expected consequences, then EC(ϕ) = �.

Consider a normality ordering in which we have that

a ∧ x ⇒ b, a ∧ ¬x ⇒ c, d ∧ ¬x ⇒ e,

and belief base B = {x}. Then we have that EC(a) = b and EC(d) = �. If
B = {¬x}, then EC(a) = c and EC(d) = e.

Definition 2 (Most preferred influences). Given an agent’s set of influ-
ences F , the most preferred influences then are defined as the set Pref:

Pref = {ϕ | ϕ ∈ F ∧ ∀ψ ∈ F (ψ �= ϕ → ϕ ≤P ψ)}
Definition 3 (Most tolerable consequences). Given an agent’s set of in-
fluences F , the most preferred influences then are defined as the set Tol:

Tol = {ϕ | ϕ ∈ F ∧ ∀ψ ∈ F (ψ �= ϕ → EC(ϕ) ≤T (ϕ∨ψ) EC(ψ))}
An agent can make a decision by selecting the most preferred influences having the
most tolerable consequences from the set of potentially conflicting influences, F ,.

Definition 4 (Decision). Given a the set of influences F and the expected
consequences EC(ϕ) for all ϕ ∈ F , we can get the set of best influences (the
decision) the agent should choose from, Dec, as follows:

Dec =

{
Tol if Tol ∩ Pref = ∅
Tol ∩ Pref otherwise

Given a model MC , an agent can then choose an arbitrary literal from Dec,
since all of these will be preferred and have tolerable consequences (or at least
have tolerable consequences).

If there are no expected consequences of bringing about a certain proposition,
i.e. if EC(ϕ) = �, then ϕ is considered tolerable since we do not expect any con-
sequences. Therefore comparing the relative tolerance for all other consequences,
ψ, is reduced to comparing � ≤T (C) ψ and ψ ≤T (C) �. Note that T (� | ψ) is
true iff ψ is true in any world3. Furthermore, � ≤P ψ is always true, and ψ ≤P �
is true iff ψ is true in all worlds. Thus, it is possible to make a decision even if
some influences have no known consequences.

3 Since T (� | ψ) ≡ ↔
�Pψ ∧ ↔

�P (¬ψ ∨�P (ψ ∧ �).

Deciding between Conflicting Influences 145

In the following, we show that an agent given a model, MC can always make
a decision.

Lemma 1. Given expressions ϕ, ψ, and γ, the following relation holds for rel-
ative tolerance:

¬(ϕ ≤T (γ) ψ) → (ψ ≤T (γ) ϕ)

Proof. We assume ¬(ϕ ≤T (γ) ψ) and prove that (ψ ≤T (γ) ϕ). Based on the
assumption and the definition of relative tolerance, the following formulas hold:

¬(T (ϕ | γ) ∧ ¬T (ψ | γ)) (5)

¬((T (ϕ | γ) ↔ T (ψ | γ)) ∧ (ϕ ≤P ψ ∨ ϕ ≈P ψ)) (6)

1. Given (5), we have that either T (ϕ | γ) ↔ T (ψ | γ) or ¬T (ϕ | γ) ∧ T (ψ | γ)
holds. In the latter case we have that ψ ≤T (γ) ϕ by the definition of relative
tolerance. Otherwise they are equally tolerable and we have to consider the
second case.

2. Given (6), either ¬(T (ϕ | γ) ↔ T (ψ | γ)) or ¬(ϕ ≤P ψ ∨ ϕ ≈P ψ). If the
former is the case, then one is tolerated and the other is not. Because of (5),
we have that ¬T (ϕ | γ) ∧ T (ψ | γ) and therefore ψ ≤T (γ) ϕ. If the latter is
the case then we have that ¬(ϕ ≤P ψ) ∧ ¬(ϕ ≈P ψ). In that case we have
that ψ <P ϕ and therefore ψ ≤T (γ) ϕ. ��

Proposition 1. Given a non-empty set of influences F and the expected con-
sequence EC(ϕ) for each ϕ ∈ F , the set of best influences, Dec, is always non-
empty.

Proof. If |F | = 1 then Dec = F = Tol = Pref , since there are no ψ �= ϕ in F . If
|F | > 1 then we consider each case.

– If Tol ∩ Pref = ∅ then Dec = Tol and we have to show that Tol �= ∅. If
Tol = ∅ then there is no ψ such that EC(ϕ) is relatively more tolerated than
EC(ψ). Since |F | > 1 there is at least one ψ �= ϕ, and by lemma 1 we then
have that EC(ψ) is relatively more tolerated than EC(ϕ). Thus ψ ∈ Tol
and Tol �= ∅.

– If Tol ∩ Pref �= ∅ then, since Dec = Tol ∩ Pref , Dec cannot be empty. ��
Proposition 1 shows that the decision procedure will always produce a non-

empty result, meaning that we can use the procedure even in situations where
there is no conflict between influences.

4 Generating Models

The preferences of an agent are usually not described as a model shown above,
but will rather be expressions such as “I prefer that it does not rain” or “When it

146 A.S. Jensen

Algorithm 1. Atom retrieval

function retrieve atoms(F,R)
At ← positive(F)
checked ← ∅
for all ϕ ∈ At \ checked do

At ← At ∪ atoms rule(ϕ,R)
checked ← checked ∪ {ϕ}

return At

rains, I want to stay inside”. In order to utilize such preferences in the decision
procedure above, a transformation is required. In the following, we present a
method, which will generate a QDT-model that respects non-contradictory rules
specified by the agent.

Each agent specifies a set of rules of the form (ϕ, ψ), where ϕ and ψ are
standard propositional formulas. A rule, (ϕ, ψ), should be read as “if ϕ then
normally/preferably ψ”. Using the notion of possible worlds, we understand a
rule as follows. Worlds w, in which w |= ϕ∧ψ, are favored over worlds w′, where
w′ |= ϕ∧¬ψ. Thus, a rule is roughly interpreted as the conditionals for preference
and normality. In the following, we propose a method for generating preference
and normality orderings that respect such rules by utilizing this interpretation.
The generic definition of the conditional operators from the previous section is:

if ϕ then ψ ≡ ↔
�¬ϕ ∨ ↔

�(ϕ ∧ �(ϕ → ψ)).

From this definition, it is clear that there are two ways to ensure that a rule
(ϕ, ψ) is respected. Either (a) ϕ is never true or (b) in the most favored world(s)
where ϕ is true, ψ is also true. Option (a) is achieved easily; we simply remove all
worlds where ϕ is true. However, the agent does probably not intend this, since
the rules are most likely specified such that favored situations are actually also
possible situations. We therefore require that the method does not remove any
worlds from W . The method should ensure that after the application of a rule
we have M |= (ϕ, ψ). Another natural requirement is that previously applied
rules still hold after application of a new rule. If this is not possible, we say that
the new rule contradicts previously applied rule, and therefore discard the new
rule.

The aim is to generate a model respecting the rules, such that the agent
can make a decision based on the model. Given the modal nature of QDT,
the generation is based on the notion of possible worlds, W , so the first step
is to generate W . Instead of generating a general model in which all rules are
applicable, we create sub-models for different parts of the world. For exam-
ple, an agent’s preference concerning work might not be relevant for decisions
in a different context, such as a family party. Furthermore, certain situations
are not deemed possible, such as leaving work early and not going to work at
all. W is generated using the agent’s current influences F to decide which atoms

Deciding between Conflicting Influences 147

Algorithm 2. Rule application

function apply((ϕ,ψ),W,≤)
max ← max(≤)
for all w ∈ W do

if w |= ϕ ∧ ¬ψ then Wc ← w

if (w |= ϕ ∧ ψ) and ¬∃w′(w′ ∈ W ∧ (w′, w) ∈ lock) then
o(w) = max+ 1
Ws ← w

if Ws = ∅ then return ⊥
for all w ∈ Ws, w

′ ∈ Wc do lock(w,w′)

return �

are relevant for making a decision in the context of F and any impossible worlds
are removed. Algorithm 1 retrieves the relevant atoms from F and the set of
rules. positive(S) is the set of all literals in S with all negative literals made
positive, such that if ¬ϕ ∈ S then ϕ ∈ positive(S). atoms rule(ϕ,R) returns
a set of all atoms that appear in rules r ∈ R where ϕ also appears (e.g. if
R = {(ϕ, ψ1), (ϕ, ψ2)} then atoms rule(ϕ,R) = {ϕ, ψ1, ψ2}.

Given the set of relevant atoms, At, the set of possible worlds contains
a world for each set in 2At, where each set either contains the atom or its
negation. For instance, given At = {a, b}, the initial model will be 2At =
{{a, b}, {¬a, b}, {a,¬b}, {¬a,¬b}}. Impossible worlds are specified as simple for-
mulas, e.g. ¬a ∧ b. A world that entails such an expression is removed from W ,
which is then set of possible worlds given F .

An ordering, ≤, is the result of a mapping from a world to a natural number,
the o-value, denoted o : W → N , such that worlds with higher numbers are
more favored. Worlds can have the same o-value if they are equally favored. The
maximum o-value of an ordering ≤ is denoted max(≤).

We propose using a locking mechanism in which the ordering between two
worlds can be locked, such that if lock(w1, w2) then it must always be the
case that w1 < w2. We can use this to e.g. lock the ordering between worlds
w1 = {ϕ, ψ} and w2 = {ϕ,¬ψ} if a rule (ϕ, ψ) is applied by creating a lock,
lock(w1, w2), such that w1 is always favored over w2. Then if a rule (ϕ,¬ψ) is
applied, the ordering cannot be changed so that w2 is favored over w1 because
it would result in the previously applied rule no longer being respected (since ψ
would not be entailed by the most favored world where ϕ holds).

Rules are applied using the function apply : (R,≤) → {�,⊥} (algorithm
2). Applying a rule (ϕ, ψ) is done by finding all worlds in which both ϕ and ψ
holds (the sought worlds) and all worlds in which ϕ and ¬ψ holds (the contra-
dictory worlds). The sought worlds are given an o-value of max(≤) + 1 and all
contradictory worlds are locked in relative position to the sought worlds.

148 A.S. Jensen

A rule (ϕ, ψ) cannot be applied if there is no world w in which w |= ϕ ∧ ψ or
for all such worlds a lock, lock(w′, w), exists for some w′.

Proposition 2. Given an initial ordering ≤ and a set of rules R = {r1, . . . , rn}
where each ri is of the form (ϕi, ψi), the result of successfully applying rules r1
to ri, 0 < i ≤ n is an ordering which respects rules {r1, . . . , ri}.
Proof. When i = 1 no previous rules have been applied, so we only have to show
that the model respects rule r1 after successful application. We have o(w) = 1 for
all worlds w. Applying r1 can only fail if no worlds entail ϕ1 ∧ψ1 or all entailing
worlds are locked. Since lock = ∅ initially, only the former can be the case.
But then the rule would describe an impossible world and cannot be applied.
Otherwise, after applying r1, it is entailed by the model, since for all worlds w
where w |= ϕ1 ∧ ψ1 we have o(w) = 2 and the o-value of all other worlds is
unchanged. Thus the worlds entailing r1 are most preferred so the rule itself is
entailed by the model.

When i > 1 we assume that all rules up to and including ri−1 have been
applied successfully. We therefore have

M |= (ϕ1, ψ1) ∧ · · · ∧ (ϕi−1, ψi−1).

Let li = {(w,w′) | w |= ϕi ∧ ψi and w′ |= ϕi ∧ ¬ψi} be the set of locks between
worlds with contradictory consequents of a rule (ϕi, ψi). Before applying ri the
set lock contains

lock = l1 ∪ · · · ∪ li−1

Rule ri can then be applied if there is at least one world w in which w |= ri and
where w is not the second entry of a pair in lock (i.e. there is a world entailing
ri which is not locked by another world). If there is no such world then either
the rule describes an impossible world and should be rejected, or a previously
applied rule contradicts it, which also means it should be rejected. Otherwise
the rule will be successfully applied resulting in a model entailing all rules up to
and including ri:

M |= (ϕ1, ψ1) ∧ · · · ∧ (ϕi, ψi),

and a new lock set: lock′ = lock ∪ li. Assuming that the rule is successfully
applied we know that for all w in which w |= ri we have o(w) = max(≤) + 1.
Clearly ri is then entailed by the model. We then have to show that all rules up
to ri are still entailed as well.

Consider rule rj where 0 < j < i. Rule rj was entailed by the model before
applying ri. Therefore there are worlds wj where wj |= ϕj ∧ ψj and no lock of
it exists, and w′

j where w′
j |= ϕj ∧ ¬ψj , and for all such worlds we have that

o(wj) > o(w′
j) and (wj , w

′
j) ∈ lock. Thus all worlds contradicting rj are locked

relative to those entailing it. If w′
j ∈ Ws for some w′

j then some of the sought
worlds are locked by rj , but since Ws only contains unlocked worlds, this cannot
be the case. Therefore no worlds w′

j will be given a higher o-value than any wj

world. Furthermore, since w′
j contains all the worlds that could invalidate rj ,

clearly rj is still entailed after applying ri. ��

Deciding between Conflicting Influences 149

Algorithm 3. Model generation

function generate(F,P ,R)
At ← retrieve atoms(F,R)
W ← init(At,P)
≤ ← o(W)
R′ ← sort(R)
for all (ϕ,ψ) ∈ R′ do

apply((ϕ,ψ),W,≤)

return ≤

Even though we can successfully apply a set of rules, the function can be further
optimized to maximize the number of successful applications of rules. Note that
the use of a locking mechanism decreases the number of worlds that can be moved
around every time a rule is successfully applied. Therefore, by minimizing the
number of worlds being locked in each iteration, we maximize the number of
rules that can be applied. The function s : R → N gives each rule a score, where
rules with many propositions and operators receive higher scores than rules with
few.

s((�, ψ)) = s(ψ)− 1
s((ϕ, ψ)) = s(ϕ) + s(ψ)
s(ϕ ∧ ψ) = s(ϕ) + s(ψ) + 1
s(ϕ ∨ ψ) = s(ϕ) + s(ψ) + 1
s(¬ϕ) = s(ϕ) + 1
s(�) = 0
s(p) = 1

By applying the highest valued rules (the most specialized) first, we ensure that
as few worlds as possible are locked. Notice that that rules where the antecedent
is � will be penalized, since they are very general, whereas � in the consequent
is ignored.

The algorithm generate : (F,P ,R) → ≤ then works as follows (algorithm
3). Retrieve relevant atoms and generate an initial model of possible worlds. Sort
rules descending according to their s-value using sort(R). Each rule in R is then
applied using apply((ϕ, ψ),≤). Finally, the algorithm returns the ordering ≤,
which respects all successfully applied rules.

4.1 Application of Equally General Rules

The need for constraining the order of rule application touches upon a shortcom-
ing of the model generation; rule application may fail, if previously applied rules
have locked the matching worlds. In many cases this is actually a good thing,
since it does not make sense to first apply a rule r1 = (ϕ, ψ) and then later
r2 = (ϕ,¬ψ). r1 and r2 are clearly contradictory rules, and both should not be
applied at once, since we cannot both expect ψ and ¬ψ when ϕ is true. However,
if two rules receive the same score they will be applied in a non-deterministic

150 A.S. Jensen

order which could lead to a situation where applying the rules in one order re-
sults in one model, and applying in another order results in a different model. It
might even be the case that we can apply both rules using one ordering, while
another ordering rejects one of the rules.

Consider rules R = {(�, A), (�, B)} and possible worlds W = 2{A,B}. The
rules have equal score and they will therefore be applied in a non-deterministic
order. If (�, A) is applied first the ordering will be AB < AB < {AB,AB},
whereas the ordering will be AB < AB < {AB,AB} if (�, B) is applied first.
The rules satisfy the model in both cases; in the most preferred world(s) both A
and B hold, but the ordering of less preferred world differs. We argue that even
though this is the case, it is clear that as long as the rules have been successfully
applied they are satisfied by the model, which means that the model can be used
by the agent to reason about its influences by taking its preferences into account.
In situations where certain orderings might reject a rule while other orderings
would not, it is evident that the latter ordering is favored4. If this is the case, the
agent might simply monitor the rule application, and if the algorithm rejects a
rule given a certain ordering, the agent can attempt to apply the equally general
rules in a different order. However, if all orderings result in rejection of one of
the rules, this indicates that some of the rules contradict each other, suggesting
that not all the rules can be consistently applied to the model.

5 Case Study

In this section, we apply the model to a simple scenario. We consider a situation
in which agents are normally expected to go to work, but during snowy weather,
they are not expected to go to work. The agent Alice prefers that it does not
snow, but when it snows, she wants to stay at home. We have the following rules
for expectations of the environment and preferences of the agent:

REnv = {(�,work), (snow ,¬work)}
RAlice = {(�,¬snow), (snow ,¬work)}.

The environment expectation rules represent the expectations that originate
from different sources such as an organization or other agents.

In the following we let S abbreviate snow and W work. We denote negation
using an overline, e.g. S when it is not snowing and we write conjunctions by
writing literals next to each other, e.g. SW when it is snowing and the agent
is working. From the rules above it is clear that At = {W,S}. The orderings
≤P and ≤N are then generated using the algorithms described above. Figure 1
shows how Alice’s preference ordering is generated using her rules.

To make the situation more interesting we add the possibility of being fired
(F) and of leaving early (E):

RAlice = {(�, S), (S,W), (�, F), (W,E)}.
4 After all, the aim is to apply as many of the rules as possible.

Deciding between Conflicting Influences 151

SW SW SW SW =⇒
(S,W) SW SW SW

SW

=⇒
(�, S)

SW

SW

SW SW

lock

lock
lock

lock

Fig. 1.Generation of Alice’s preferences. Note that some of the locks have been omitted
for clarity, e.g. the lock between SW and SW .

EFSW EFSW EFSW EFSW

EFSW

EFSW

EFSW EFSW

(a) Alice’s preferences

EFSW EFSW EFSW EFSW

EFSW

EFSW EFSW

EFSW

(b) Expectation

Fig. 2. The preference and normality orderings generated using the rules and prohibi-
tions specified by the environment and Alice

Thus, she does not want to be fired, and in situations where she chooses to go
to work, she prefers to leave early. The rules of the environment are updated to
conform to this change; if it snows, one can stay home without being fired but
this is not the case when it does not snow.

REnv = {(�,W), (S, FW), (SW,F), (�, E), (W,F)}.
Furthermore, agents are not expected to leave early and will normally not be
fired if they work.

Certain worlds are not possible given the new rules; an agent will not be
working if it is fired, and if it is not working, it will not leave early. This is
represented by the set of prohibitions: P = {FW,EW}. Thus, the set of possible
worlds W is reduced to those worlds where none of the prohibitions above are
entailed. The preference and normality orderings resulting from these rules are
shown in figure 2(a) and 2(b).

Alice is now able to decide between her influences using the generated model.
Say Alice has a desire to stay at home, but an obligation toward her employer
to go to work, i.e. the set of influences is F = {W,W}. We then consider two
cases: one where it snows and one where it does not.

a) We have that B = {S} so all worlds in which it does not snow are ignored.
This leaves us with four possible worlds, where Alice’s most preferred world
is EFSW , thus Pref = {W}. The expected consequence of both going to

152 A.S. Jensen

work and not going to work is not to be fired, which means that each is
equally tolerable, thus Tol = {W,W}. The decision is then the intersection:
Dec = {W}.

b) We have that B = {S}, giving four possible worlds. In this case Alice’s most
preferred worlds are EFSW and EFSW , thus Pref = {W,W}. From the
expectations we see that EC(W) = EFS and EC(W) = EFS. Since not
being fired is more tolerable than being fired, Tol = {W}, and the decision
is then Dec = {W}.

Note that Alice was labeled neither “social” nor “selfish”. Her preference and
the expected consequences are taking into account, and this leads to the results
above. When she chooses to go to work, this does not mean that she is strictly
social. She might very well have a (selfish) desire to leave early, which she can
choose to do if she tolerates the consequences of doing so.

6 Toward an Implementation

The case study showed that agents are able to make decisions based on rules
of preference and expectation. We believe that the approach can be integrated
in existing agent systems to let agents make decisions based on their own pref-
erences and the external expectations. We are currently investigating how the
procedure can be integrated into the GOAL agent programming language [9].
While this is work in progress, we briefly discuss the work that has been done
and some of the implications such integration has.

In GOAL, the choice of committing to different goals and performing actions
is relatively simple; a program consists of a list of rules that are either evalu-
ated in linear or random order. This means that either the preference ordering
is specified a priori, or it is not specified at all. We believe that by integrating
the agents’ rules of preference and the expectations into the GOAL system, the
agents will be able to make decisions based on preferences in different situa-
tions thus providing a different kind of processing order of GOAL rules. This
requires that the system is able to understand a specification of preferences and
expectations.

We have taken the first steps toward an implementation by implementing a
prototype of the system in Prolog5. The reason for choosing Prolog is that (1) it
makes the implementation of the QDT models quite simple and (2) it allows us
to integrate the system directly into the GOAL agent’s knowledge base. The set
of rules is specified as a list of pairs, [(Phi,Psi),...]; prohibitions as simple
formulas; and a lock as a pair of lists, such that (L1,L2) represents that for all
worlds w1 in L1 and w2 in L2 is it the case that w1 < w2.

The basic operators (∧,¬,�) are implemented straightforwardly; ∧ and ¬ are
evaluated in the current world and � in all more preferred (or expected) worlds.

5 The Prolog code that follows has been slightly simplified to be more easily
comprehended.

Deciding between Conflicting Influences 153

Each abbreviation is then defined, e.g. the conditional preference operator is
defined as follows:

eval(I(ψ | ϕ), Ws, W, TV) :-

eval(
↔
�P¬ϕ ∨ ↔

�P (ϕ ∧�P (ϕ → ψ)), Ws, W, TV).

where Ws is the set of all worlds and W is the current world. eval succeeds if TV
can be unified with the truth-value of the formula.

The application of a rule is done using two findall-queries: one to build the
set Wc and one for Ws.

apply rule(Ws, Ord, (ϕ, ψ), Lock, W c, W s) :-

findall(W, (member(W,Ws), eval(ϕ∧¬ψ, Ws, W, t)), W c),

findall(W, (member(W,Ws), \+ (member((,Locked), Lock),

member(W, Locked)), eval(ϕ ∧ ψ, Ws, W, t)), W s).

where Ws is the set of all worlds, Ord is the current ordering, (ϕ, ψ) is the rule
being applied, Lock is the set of locks, and W c and W s are Wc and Ws, respec-
tively. The first query succeeds if W c can be unified with all worlds w in which
w |= ϕ ∧ ¬ψ. The second query succeeds if W s can be unified with all worlds w
where w |= ϕ ∧ ψ and w is not locked. A rule is successfully applied when W s

\= [], i.e. Ws �= ∅. The ordering can be changed by incrementing the o-value
for each w ∈ Ws, and the lock is updated to include the pair of lists (W s, W c).

Agents make a decision using the sets Pref and Tol, which are built by fol-
lowing their definitions closely. For example, the set Pref is built as follows:

pref([], , ,[]).

pref([ϕ|FTail], F, Ws, Pref) :-

checkpref(ϕ, F, Ws), !, Pref=[ϕ|Tail],
pref(FTail, F, Ws, Tail).

pref([|FTail], F, Ws, Pref) :- pref(FTail, F, Ws, Pref).

where F is the set of all influences, Ws is the set of all worlds, and checkpref(Phi,

F, Ws) succeeds if ϕ ≤P ψ for all ψ ∈ F . Pref is then unified with all ϕ ∈ F
that are most preferred. A similar predicate is defined for Tol. The final set, Dec,
is the intersection of Pref and Tol, or just Tol if the intersection is empty, and
a decision can then be made using the following Prolog query (here making a
decision based on the case study above):

?- decision([¬s], P, N, Dec).

Dec = [w].

where P and N are the generated preference and normality orderings, and Dec

corresponds to Dec.
The decision procedure can be used as-is within GOAL, meaning that GOAL

agents are able use the decision procedure. However, this also means that the
decision of which influence to commit to needs to be implemented directly in the
agent’s program, which suggests that the programmer will have to understand
the mechanisms of the procedure. A more ideal solution would be to integrate the

154 A.S. Jensen

procedure within GOAL, e.g. allowing for another GOAL rule evaluation order
(which would then choose a rule matching an influence in Dec), requiring only
that the programmer to specifies each agent’s preferences and the expectations
from the environment. This is however out of scope for this paper and is left for
future research.

7 Conclusion

We have argued that conflicts are prone to arise when agents interact in open
societies and enact roles in an organization, since their own desires may be in
conflict with obligations toward other agents or the obligations of the role(s) they
are enacting. We have discussed why obligations along with desires should be
considered influences on the agent’s behavior rather than being seen as desires
being imposed onto the agent by other entities. Since influences do not necessarily
represent states the agent wants to achieve, they should only be pursued if the
agent can tolerate their consequences.

Our approach to decide which influences to commit to, which is based on
qualitative decision theory, is an attempt to let the agent reason about the influ-
ences without taking into account that one influence is a desire, and another is
an obligation, since such bias can result in labeling the agent “selfish” or “social”
in advance. The approach works by including the consequence of bringing about
a state in the reasoning, thus letting the agent consider its preferences, without
choosing something that results in an intolerable state. We have argued that this
indeed lets the agents reach a decision without strictly preferring certain types
of influences to others.

To make the procedure readily available we furthermore have developed a
simple method that can generate models to be used in the reasoning process by
the use of expressions describing the agent’s preferences. By use of a simple lock-
ing mechanism, the method generates models, which respect non-contradictory
rules specified by the agent such that it is possible to make a decision among a
set of influences. The simple nature of the method also allows us to generate the
models on the fly, so that if the agent’s preferences change during execution a
new model can be generated. Since the method works by generating all possible
states of relevant sub-models, it may prove to be inefficient in cases that are
more complex. Even though we only consider sub-models, it would be natural to
investigate how to optimize this. Furthermore, since rules of equal generality are
applied non-deterministically, different models may emerge, though they satisfy
the same sets of rules; although our goal was to create models satisfying rules,
we believe a deterministic procedure is desirable and it could be an interesting
direction for future work.

Another direction for further research would be to investigate how to integrate
the prototype into the GOAL agent programming language. While we have al-
ready built a working prototype of the system in Prolog, much more work needs
to be done to successfully integrate it into a full-fledged programming language
such as GOAL.

Deciding between Conflicting Influences 155

Finally, the non-propositional case should be investigated such that reasoning
about the agent’s preferences can be done in cases that are more complex. For
instance, it should be possible for the agent to prefer being at home, at(home),
compared to other places such as work, while still being able to express that
being at a café is more preferred than being at home.

Acknowledgement. The author would like to thank the reviewers for their
useful comments and the attendants at the EMAS workshop for the interesting
discussion.

References

1. Alchourrón, C.E., Gärdenfors, P., Makinson, D.: On the logic of theory change: Par-
tial meet contraction and revision functions. The Journal of Symbolic Logic 50(2),
510–530 (1985)

2. Alechina, N., Dastani, M., Logan, B.: Programming Norm-Aware Agents. In: Pro-
ceedings of the 11th International Conference on Autonomous Agents and Multi-
agent Systems, AAMAS 2012, vol. 2, pp. 1057–1064. International Foundation for
Autonomous Agents and Multiagent Systems, Richland (2012)

3. Alechina, N., Jago, M., Logan, B.: Resource-bounded belief revision and contrac-
tion. In: Baldoni, M., Endriss, U., Omicini, A., Torroni, P. (eds.) DALT 2005.
LNCS (LNAI), vol. 3904, pp. 141–154. Springer, Heidelberg (2006)

4. Boutilier, C.: Toward a Logic for Qualitative Decision Theory. In: Proceedings of
the KR 1994, pp. 75–86. Morgan Kaufmann (1994)

5. Broersen, J., Dastani, M., Hulstijn, J., Huang, Z., Torre, L.v.d.: The BOID Archi-
tecture – Conflicts Between Beliefs, Obligations, Intentions and Desires. In: Pro-
ceedings of the Fifth International Conference on Autonomous Agents, pp. 9–16.
ACM Press (2001)

6. Dastani, M., Dignum, V., Dignum, F.: Role-assignment in open agent societies. In:
Proceedings of the Second International Joint Conference on Autonomous Agents
and Multiagent Systems, AAMAS 2003, pp. 489–496. ACM, New York (2003)

7. Dignum, F., Morley, D., Sonenberg, E.A., Cavedon, L.: Towards Socially Sophis-
ticated BDI Agents. In: Proceedings of the Fourth International Conference on
MultiAgent Systems (ICMAS 2000), pp. 111–118. IEEE Computer Society, Wash-
ington, DC (2000)

8. Dignum, F., Kinny, D., Sonenberg, L.: From Desires, Obligations and Norms to
Goals. Cognitive Science Quarterly 2 (2002)

9. Hindriks, K.V.: Programming Rational Agents in GOAL. Multi-Agent Program-
ming: Languages, Tools and Applications 2, 119–157 (2009)

10. van der Torre, L., Tan, Y.H.: Contrary-to-duty reasoning with preference-based
dyadic obligations. Annals of Mathematics and Artificial Intelligence 27(1-4),
49–78 (1999)

A Multi-agent Approach to Professional

Software Engineering

Marco Lützenberger, Tobias Küster, Thomas Konnerth, Alexander Thiele,
Nils Masuch, Axel Heßler, Jan Keiser, Michael Burkhardt, Silvan Kaiser,

Jakob Tonn, Michael Kaisers, and Sahin Albayrak

Technische Universität Berlin, DAI-Labor
firstname.lastname@dai-labor.de

Abstract. The community of agent researchers and engineers has pro-
duced a number of interesting and mature results. However, agent tech-
nology is still not widely adopted by industrial software developers or
software companies—possibly because existing frameworks are infused
with academic premises that rarely apply to industrial settings. In this
paper, we analyse the requirements of current industry-driven software
projects and show how we are able to cope with these requirements in
the Java Intelligent Agent Componentware agent framework, JIAC V.
We argue that the lack of industry-grade requirements and features in
other agent frameworks is one of the reasons for the slow acceptance
of agent technology in the software industry. The JIAC V framework
tries to bridge that gap—not as a final solution, but as a stepping stone
towards industrial acceptance.

Keywords: Agent Framework, MASDevelopment, Industrial Adoption.

1 Introduction

The concept of Agent Oriented Software Engineering, or AOSE, dates back as
far as 1997, when Michael Wooldridge published his seminal article [40] and
established an entirely new branch of research. Fifteen years later, we face nu-
merous theories, methodologies, tools and frameworks, each supporting the de-
velopment of agent-based software applications in the one or the other aspect.
Yet, despite intensifying research on AOSE, it is far from being audacious to say
that the agent community has as yet failed to convince the industry to adopt
their ideas [1]. The problem of agent-technology to gain foothold in industrial
processes has been discussed vigorously [29,33,38,39] and some reasons for this
problem were already identified. These reasons include poor awareness of in-
dustrial needs, disconnection from conventional software engineering, immature
technology, and a focus on research issues that are not necessarily required by
industry [39].

The Java Intelligent Agent Componentware (JIAC) was developed under the
premise to narrow the discrepancy between research and industry. In this paper,
we present the fifth incarnation of our agent framework, namely JIAC V [17].

M. Cossentino et al. (Eds.): EMAS 2013, LNAI 8245, pp. 156–175, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

A Multi-agent Approach to Professional Software Engineering 157

We are well aware that, after fifteen years of research, the enthusiasm for ‘yet
another agent framework’ can only be moderate. Yet, JIAC does not fall into
this category. We argue that—as opposed to well known and established agent
frameworks—JIAC was neither explicitly developed as a research framework
(cf. Jason [5]), nor streamlined towards the requirements of individual indus-
trial stakeholders (cf. JADE [3]). JIAC was developed under the premise to
cover a wide spectrum of requirements and to further the industrial adoption
process. The development was focused on the objective to provide a robust com-
munication infrastructure, even beyond the borders of homogeneous computer
networks. The modular assembly of JIAC agents allows for multi-agent system
(MAS) solutions that are tailored to the application context. JIAC currently of-
fers modules for migration, rule interpretation, persistence, scripting languages,
load measurement, OSGi-integration and human-agent communication, to name
but a few.

We do not consider JIAC to be an ultimate solution, but rather a step towards
industrial acceptance. We argue that, so far, state-of-the-art frameworks were
not able to convince the industry of the elegance of the agent paradigm and
alternative approaches are strongly required should AOSE ever gain foothold in
industrial processes.

We begin this paper with a brief description of different projects in which
JIAC was used and respectively mention features that were required for a suc-
cessful appliance (Section 2). Based on this analysis, we examine the capabilities
of well established agent frameworks to deal with the previously collected re-
quirements (Section 3). We use this analysis to substantiate our thesis, that
certain features are not sufficiently covered in state-of-the-art approaches. We
proceed by presenting the JIAC framework in more detail (Section 4), including
a description of standard features, the most relevant extension as well as de-
velopment tools. Subsequently, we describe selected appliances of JIAC in more
detail and respectively underline the technical integration of required framework
features (Section 5). Finally, we discuss the role of JIAC within the pool of well
established agent frameworks and the agent community and wrap up with a
conclusion (Section 6).

2 The Case of the JIAC V Framework

In this section we compile a list of requirements that were derived from applica-
tion projects which we concluded over the last couple of years. Following Weyns
at al. [39], there are many reasons that hamper industrial adoption of multi-agent
technology. These reasons include poor awareness of industrial needs, disconnec-
tion from conventional software engineering, immature technology and a focus
on research issues that are not necessarily required by industry [39].

To avoid these pitfalls we used industry-funded projects to develop and ex-
tend JIAC and discussed our intentions with our industry partners. In the fol-
lowing we give a short description of the projects in which JIAC V was used
and extended towards the requirements of the project and the project partners.

158 M. Lützenberger et al.

We also emphasise the different domains in which the framework was used and
conclude this section by explaining the requirements that arose from these very
applications and guided the development of JIAC V.

2.1 Project Summaries

The goal of the Service Centric Home (SerCHo) project was the development
of an open service platform that increases life quality at home. The platform was
intended to support the quick and easy delivery of new context sensitive services
into the home environment and the provisioning of a consistent user interface for
these services. In this project we extended JIAC’s capabilities to deal with the
service metaphor. As such, we have focused on developing a service engineering
methodology and tool suite as well as a service delivery platform to simplify
service development, deployment and maintenance [15].

The focus of the Multi Access – Modular Services, or MAMS+ project was
to allow non-technical persons to fast and easily create, deploy and manage ser-
vices, according to the users’ needs. We have developed a service delivery plat-
form based on our multi-agent framework [35]. The platform integrates modern
technologies like IMS/SIP, allows for service composition and features service
matching, load-balancing and self-healing mechanisms, to name but a few.

Within the project Gesteuertes Laden V2.0 (GL V2.0, Managed Charging
V2.0) [37] the goal was to develop a decentralised intelligent energy management
system that uses electric vehicle’s batteries as mobile energy storages. The pur-
pose of the developed planning algorithms was to stabilise the energy grid and
to maximise the amount of renewable energy within the electric vehicles (EVs)
in dependence to forecasts of available wind energy.

To maintain a good standard of living for senior citizens, new technologies have
been developed within the SmartSenior project. Our work included sensor-
based situation -detection, -reaction, -notification and remote management [34].
During a field study the solutions have been successfully installed and tested in
the home environments of more than thirty elderly participants.

The project Energy Efficiency Controlling in the Automotive Industry, or
EnEffCo, aims at the implementation of a modular software system [22] to
simulate operational modes of plant sections with relevant energy consumption.
The software serves as a tool for decision makers in manufacturing, to whom it
offers the identification and evaluation of strategies and tactics for establishing
cost- and energy-efficient production schedules.

Intelligent Solutions for Protecting Interdependent Critical Infrastructures
(ILIas) is a project aimed towards developing intelligent solutions for protecting
critical infrastructures that provide electricity and telecommunication services
to the general public [21]. These solutions need to be scalable and reconcile the
need for fast automated reaction with manual supervision for highly critical de-
cisions. Software solutions and protection mechanism efficiencies in large-scale
networks are evaluated using simulated disaster scenarios. The simulation models
are supplemented by a hardware test laboratory where exemplary interdepen-
dent energy and telecommunication infrastructures are set up.

A Multi-agent Approach to Professional Software Engineering 159

The on-going project BeMobility 2.0 investigates the integration of electric
vehicles (EVs) into urban transport and energy networks. In addition to the
development of concepts that will combine different mobility services (e.g., vehi-
cles, public transportation, etc.), an energy management system [11] for a Micro
Smart Grid is being developed, in which a variety of system components, such
as EVs, charging infrastructure, and energy sources, are taken into account.

The aim of the Connected Living project is to provide a system for integrat-
ing and managing ‘smart devices’ in future home environments:CL-OS. Besides
providing a layer of abstraction for controlling devices by diverse vendors, an-
other goal is to supply an infrastructure for developing, publishing and deploying
agents or coalition of agents to the users’ home environments to help future home
user to achieve its goals.

The objective of the project Extensible Architecture and Service Infrastruc-
ture for Cloud-aware Software, or EASI Clouds, is to provide a comprehensive
and easy-to-use cloud computing infrastructure with support for cloud interoper-
ability and federation. The infrastructure includes advanced SLA (Service Level
Agreement) management for all service layers, facilities for capacity planning,
heterogeneous provisioning as well as accounting and billing.

The Multi-Agent Programming Contest is an annual competition that started
in 2005 [2]. The contest is an attempt to stimulate research in the field of pro-
gramming multi-agent system. Our team has been participating since 2007. We
use it as a platform to teach students in the field of agent based design and
implementation using the JIAC V agent framework.

2.2 Requirements Derived from the Projects

During the process of domain analysis and system design of those projects,
several requirements have been identified and hence fulfilled in JIAC V. While
many of them are typical for industrial or business software frameworks, it is
our believe that a multi-agent framework does not have to stand behind.

In many projects the results had to be tested during field trials or user roll-
outs. Applications had to be running for months without problems. Therefore,
stability and robustness are key issues for a good user experience. A certain level
of robustness was important, especially in dynamic environments, e.g., deploying
and undeploying new services or agents should not affect other parts of the appli-
cation. The same holds true in a distributed context, e.g., when new nodes join or
leave a system or agents migrate between them. The framework has to be able to
handle a potentially large number of agents and agent nodes without a decrease
in performance, a requirement especially affecting communication infrastructure
and the distributed service directory. Several projects dealt with service delivery
and management of services, resulting in various requirements like support for
service life-cycle, management interfaces, runtime deployment and third-party
service integration. Additional requirements related to management and adap-
tive behaviour are monitoring and introspection. It has to be possible to retrieve
status information from all framework components in a standardised way. Cer-
tain functionalities were required in multiple projects so that component reuse

160 M. Lützenberger et al.

became necessary. Additionally, the framework needed to be extensible in order
to be able to integrate future requirements.

Industrial adoption of agent technology was already discussed in a couple
of surveys. These surveys conclude that technical maturity and coherence [39],
connections to regular software engineering techniques [38], a comprehensive tool
support [33] as well as robustness, feasibility and flexibility [29] are indispensably
required for industrial adoption of multi-agent technology. We identified similar
requirements and developed JIAC to counter well known problems of industrial
adoption and to demonstrate that an agent framework is able to meet industrial
requirements.

We proceed this work by emphasising conflicts between the capabilities of
other agent frameworks and the above-mentioned requirements for industrial
acceptance.

3 State of the Art

When we compare the requirements of our projects and those for a success-
ful adoption of agent technology to existing agent frameworks, the results are
twofold. On the one hand, platforms like Jason [4] or 3APL [14] have been cre-
ated on a very strong theoretical background. They feature elaborate implemen-
tations of cognitive concepts that are important for the agent research agenda as
a whole. On the other hand, even though there have been approaches to extend
these frameworks—e.g., JASDL [20] for Jason—they were never intended to be
used in an industrial context but geared towards research.

It is difficult to use these frameworks when implementing real world applica-
tions that are supposed to run for days, or even weeks. Consider the Gesteuertes
Laden V2.0 project as an example for such application (see Section 2 for a sum-
mary and also Section 5.1 for more details). In this project, we were supposed
to deploy autonomous decision-making software on the hardware of an electric
vehicle. At worse, a system crash may have disabled the charging functionality
of the vehicle—a non-tolerable situation, especially for the driver. Once a driver
has picked a vehicle, it is difficult to access its software and to reboot or update
malfunctioning agents. As such, we had to ensure a reliable operation. Academic
agent frameworks, however, were not developed under the objective to ensure a
reliable operation throughout days or weeks. To be clear about this, it is not our
intention to overly criticise the above mentioned frameworks but to emphasise
that those frameworks can not be used for the implementation of applications
where system crashes cause non-tolerable situations for (test-)users.

More pragmatic approaches such as JADE [3] or the JACK [8] framework
are more focused on the engineering and development aspects of applications.
The JADE framework in particular has a long list of extensions and additions,
such as the Web Service Integration Gateway [12], AgentOWL [24], WADE [9]
or the MASE framework [31]. On a point by point basis these extensions seem
to fulfil many of our requirements. Nevertheless, we still think it is difficult to
use these frameworks for our purpose as most extensions have been developed

A Multi-agent Approach to Professional Software Engineering 161

independently from each other. Using them within the same software project
will be tedious if not impossible. In order to convince software developers of the
agent paradigm a comprehensive programming framework is required. One can
not expect them to collect required extensions before any implementation can
be done. Especially the JADE framework with all of its extensions lacks the
coherence and unity that we would expect from a modern software framework.

A current agent architecture that tries to bridge the gap between agent tech-
nology and the software industry is the Jadex framework [32]. The developers of
Jadex have taken a number of approaches to improve Jadex in ways that make it
more compatible with industry standards [6]. For instance, cloud concepts were
integrated [7], an active component architecture was realised [6] and it is possible
to define workflows by means of BPMN (business process modeling notation) [6].

However, while we appreciate the approach to adapt the framework to indus-
try needs, we find that a number of design decisions do not comply with the
requirements for our projects. The decision to base the framework on the active
component model—with agents as the internal architecture of the components—
reverses the control architecture from our point of view. We regard agents as the
surrounding structure and expect them to have capabilities that enable commu-
nication and interaction. Furthermore, the integration of ontologies and work-
flows into Jadex is insufficient for us. In Jadex, ontologies are transformed into
ADF belief JavaBeans. This procedure decouples them from the actual ontolo-
gies on the web—as envisioned by OWL—and thus we consider it a proprietary
approach. Workflows on the other hand should be one way to describe capabili-
ties of an agent, not an agent type of their own. As a result, we found the Jadex
model to be too different from our vision of software agents, and thus could not
model our systems in the way we envision modern agent oriented technologies.

For the above reasons, existing agent frameworks either do not fulfil our re-
quirements for practical applications, or their models are too different from our
modelling approach for agent oriented applications. In the following we describe
the JIAC framework, which represents our approach to an agent architecture
that fulfils our needs.

4 The JIAC V Framework

JIAC V is a Java-based multi-agent development framework and runtime en-
vironment [27] that has been both developed and deployed in a number of ap-
plication projects. Based on the requirements of those projects (see Section 2)
particular emphasis has been placed on the following aspects:

– robustness, scalability, modularity and extensibility
– adoption of a service-oriented view and integration of third-party services,

e.g., provided as web services and/or OSGi bundles
– dynamically adding and removing services, agents, and nodes at runtime
– extensive tool support, both at design time (modelling and development)

and at runtime (management and monitoring)

In the following, we describe how these requirements were satisfied in JIAC.

162 M. Lützenberger et al.

4.1 Core Mechanisms of JIAC Agents

One of the core aspects of JIAC is the integration of agents with the Service Ori-
ented Architecture paradigm (SOA) [16]. Using a powerful discovery and messag-
ing infrastructure, JIAC agents can be distributed transparently, even beyond
network boundaries. An agent-platform comprises one or more ‘agent nodes’
which are physically distributed and provide the runtime environment for JIAC
agents (see Figure 1). New agents, services, as well as further agent nodes can
be deployed at runtime. Agents can interact with each other by means of service
invocation, by sending messages to individual agents or multicast-channels, and
by complex interaction protocols. Each individual agent’s knowledge is stored in
a tuple-space based memory. Finally, JIAC agents can be remotely monitored
and controlled at runtime via the Java Management Extension Standard (JMX).

Fig. 1. Structural elements of a JIAC V multi-agent system

Each agent contains a number of default components, such as an execution-
cycle, a local memory and the communication adaptors. The agents’ behaviours
and capabilities are implemented in a number of so-called AgentBeans, which
are controlled by the agent’s life cycle. Each AgentBean may:

– implement a number of life-cycle methods, which are executed when the
agent changes its life-cycle state, such as initialized, or started,

– implement an execute-method, which is called automatically at regular in-
tervals once the agent is running (i.e., cyclic behaviour),

– attach observers to the agent’s memory, being called for instance each time
the agent receives a message or its world model is updated, and

– provide action methods, or services, which are exposed to the directory and
can be invoked either from within the agent or by other agents.

Using these four mechanisms, it is possible to define all of the agents’ capabilities
and behaviours [18]. Furthermore, the structure of each agent contains a number

A Multi-agent Approach to Professional Software Engineering 163

of standard components, such as an execution-cycle, a local memory and the
communication adaptors. The entire multi-agent system, i.e., which agent has
which agent beans and how those agents are distributed to agent nodes, is then
set up using one or more Spring1 configuration files.

4.2 Default and Extension Components

JIAC agents contain a number of individual AgentBeans that are implemented as
described above as well as a set of standard AgentBeans that constitute the basic
capabilities of an agent. One such AgentBean each JIAC agent is equipped with
by default is the Communication Bean. First, this component manages the inter-
agent service communication; second, it allows the agents to exchange messages
with other agents or groups of agents on the network, addressing individual
agents or multi-casting to message channels. The messages are not restricted to
FIPA messages but can have any data as payload.

Complementary to the AgentBeans, there are NodeBeans, adding functional-
ity to the node as a whole. Each agent node is equipped with a Directory Node-
Bean, listing the actions of the different agents, and aMessage Broker NodeBean,
being the counterpart to the agent’s communication bean and allowing them to
transparently send messages from node to node using ActiveMQ.2

Other commonly used AgentBeans and NodeBeans can be added to a mul-
tiagent system by appending the respective bean to the agent’s configuration.
For the composition of services, JIAC includes an Interpreter AgentBean for the
execution of the high-level service-oriented scripting language JADL++ [17].
Reactive behaviour of agents can be enabled with a Drools3 rule engine that can
be synchronised with the agents’ memory.

Extensions to the capabilities of nodes and agents include a Migration Node-
Bean, that enables strong agent migration between agent nodes, a Persistence
NodeBean that saves the node configuration and allows for restarting the node
later on, and NodeBeans for Load Measurement and Load Balancing that provide
cross-node load information and distribute agents over nodes at start- and run-
time. In order to support application development, JIAC also provides generic
functionalities such as AgentBeans for User Management, Human Agent Inter-
faces, a Webserver NodeBean running an embedded Jetty-server, and a Web
Service Gateway AgentBean that exposes JIAC actions as web services and vice
versa. Last but not least, the OSGi Gateway allows JIAC nodes to be executed
within an OSGi framework and to access other OSGi services.

4.3 Development Methods and Tools

Since JIAC is a Java-based agent framework, the bulk of the development work
can be done using conventional Java development tools, such as Eclipse and

1 Spring: http://www.springsource.org/
2 ActiveMQ: http://activemq.apache.org/
3 JBoss Drools: http://www.jboss.org/drools/

http://www.springsource.org/
http://activemq.apache.org/
http://www.jboss.org/drools/

164 M. Lützenberger et al.

Maven, as well as supportive tools like XML editors. Still, to improve the ef-
ficiency in application development, some additional tools are provided, all of
which can be integrated directly into the Eclipse IDE.

A JIAC Project Wizard helps with creating new JIAC projects by generating a
uniform project structure, including a configured Maven pom.xml file, listing the
required dependencies, and a starter class for running the new JIAC application.
Further, several Eclipse views provide information about nodes currently running
on the network and the agents and services they contain, as well as the possibility
to start and to interact with newly created agents and services.

JIAC agents can also be modelled using two high-level graphical editors: The
Visual Service Design Tool (VSDT) and the Agent World Editor (AWE). Using
the VSDT, both the workflows of individual agents as well as their interactions
can be modelled as a series of BPMN diagrams [30]. Based on those diagrams,
executable JIAC AgentBeans or JADL++ services can be generated [23]. The
AWE can be used to create visual representations of an entire multi-agent-system
and its components, showing the different agents and agent nodes in a distributed
system and the individual services and AgentBeans they provide. From these
visual models, the tool can generate the corresponding Spring configuration files
as well as JIAC AgentBean stubs [26].

Finally, the running multi-agent system can be monitored and manipulated
using the ASGARD agent runtime monitor [36], providing a three-dimensional
view of all agents running in the local network.

An overview of JIAC’s core features and extensions, how they map to the
requirements derived from the projects, and how they are used within those
projects can be seen in Table 1.

5 Applications and Lessons Learned

Many features and components shown in the last section were developed as a
consequence of project requirement analyses. The resulting modular structure
of the JIAC system enables developers to tailor selected functionalities. In the
following, we present industry projects from different domains—namely energy,
electric mobility and health—and put emphasis on system engineering aspects.

5.1 Planning Electric Vehicle Charging Intervals

Description: The goal of Gesteuertes Laden V2.0 [37] was to use electric vehicles
as mobile and distributed energy storages in order to utilise wind energy and
to stabilise energy grids. As the driver’s inherent needs for mobility are always
the main objective to fulfil, a mechanism was needed that supports the users in
planning charging- and feeding intervals without limiting their flexibility. Our
solution was implemented as a live system including real EVs (three Mini-E
vehicles provided by the project partner BMW) and charging stations.

A Multi-agent Approach to Professional Software Engineering 165

Table 1. Project Requirements and use of JIAC V features in projects (bold: featured
project, see Section 5). The letters next to the features indicate the several requirements
the feature contributes to.

S
er
C
H
o

M
A
M
S
+

G
L

2
.0

S
m
a
rt

S
e
n
io
r

E
n
E
ff
C
o

IL
Ia

s

B
eM

o
b
il
it
y
2
.0

C
L
-O

S

E
A
S
I
C
lo
u
d
s

R
e
q
u
ir
e
m
e
n
ts

Robustness, Stability R x x x x x x x x x
Hot Deployment D x x - x x x - x x
Agent Migration A - - - - - x - - x
Scalability S x - x - x x - - x
Service Life Cycle Mngmt. L x x - x - - - x -
Third-party API integration T x x x x - - - - -
Introspection, Monitoring I - - x x x x - - x
Modularity, Reusability M x x x x x x x x x

J
IA

C
C
o
re

Distribution R AS M x x x x x x x - x
Node Deployment D S - x x - x - - - x
Services, SOA LT M x x x x - x x x x
Message-based Comm. R S x - - x x x x - x
Service Deployment D L - x - x - x - x -
Agent Deployment DAS - x - - - - - x x
Management & Monitoring R I - x x x x x x x x

J
IA

C
P
lu
g
in
s

Webserver T M - x - x - - - x -
Interpreter D L M - x - x - x - - -
Rule Engine D T M x - - x - x - x -
Migration DAS - x - - - - - - -
Persistence R L - x - x - - - x x
Load Balancing RDASL - x - - - - - - x
Webservice Gateway T x x x - - - x - -
OSGi Gateway T M x - - x - - - - x
Human Agent Interface I - x x - x - x - -
User Management S - x - - - - - x x

Implementation: In the project, a distributed mobility and energy management
system was designed in which each of the involved actors—such as driver, vehi-
cle manufacturer, energy provider, charging station, and grid operator—is rep-
resented by a software agent [19]. The system is able to create user-centric day
schedules containing journeys, charging and discharging events [28] and takes
into account actor-dependent preferences and constraints, such as the driver’s
appointments, wind forecasts, the EV, available charging stations, and energy
grid constraints.

The developed system contains eight software agents in the back-end and
three agents within each of the EVs (see Figure 2). More than 100 services are

166 M. Lützenberger et al.

Fig. 2. GL V2.0 System Architecture

running simultaneously, offering different tasks, ranging from simple information
services to complex planning algorithms. For each user and each electric vehicle
an additional agent representation is running in the back-end, taking the main
responsibility for developing user and vehicle schedules.

The data exchange between EV and back-end agents is based on unreliable
telecommunication networks (e.g., UMTS), therefore failover mechanisms en-
sure a reconnection after network stabilisation. The coordination of charging
and feeding events is processed by the EV agents interacting with the charg-
ing stations via power line communication. Third party services such as wind
forecasts and charging station status information were embedded into JIAC via
the Web Service Gateway. Furthermore, a generic MySQL database agent has
been developed. As the user interaction plays an important role, a smartphone
application has been developed. The integration into JIAC was done with the
Human Agent Interface.

Lessons Learned: The system was evaluated within a three-week field test [25].
During this time, the need for a maintainability component, which notifies the de-
velopers about the services’ availability, became apparent and was subsequently
developed and installed. Furthermore, the field test revealed, that the service
advertisement messages that propose or refresh the existence of services in each
of the local service directories aggregated to a significant amount of traffic. The
communication exceeded the bandwidth of the UMTS connection that was used
between the CarPC Nodes and Backend Nodes, thus, we decided to increase
the service advertisement interval. Given that we already encountered perfor-
mance issues when dealing with three electric vehicles, we also tried to assess

A Multi-agent Approach to Professional Software Engineering 167

the performance of large-scale distributed systems comprising thousands of elec-
tric vehicles. In this case the adaption of the advertisement message rate might
not be sufficient, since an extremely high interval would be necessary which in
turn would have the drawback that the disappearance of a service would be
recognised rather late. Two other possibilities were therefore discussed. On the
one hand the concept of the service advertisement messages could be changed.
In this case messages are only sent once a new node appears or disappears.
However, this approach bears risks in unreliable communication infrastructures,
thus we selected the second option, namely a more sophisticated group com-
munication concept. Instead of using one group per node we relaxed this strict
assumption and allow nodes to join multiple groups, but not to forward adver-
tisement messages between those. According to our project scenario, the CarPC
Nodes now only share a group with those nodes they are really interacting with.
The advertisement messages of all other nodes are not being sent via the UMTS
connection, which results in a considerably more effective communication.

5.2 Multi-agent Systems for an Ageing Society

Description: An ageing society causes high costs for health care and services
that can be addressed by modern IT. Also, elderly people can regain a higher
level of quality of life when using such IT, since dedicated health care will only be
required on few occasions. Such a system has been developed in the SmartSenior
project, where the focus was set to covering most aspects of daily needs while
keeping the system usable. It uses sensors, processors and effectors in order
to detect situations at home for performing appropriate (re-)actions [34]. The
system has been installed and tested during a field study in 32 apartments.

Implementation: In each apartment, two JIAC nodes containing several agents
were running. Both nodes have been wrapped as OSGi-Bundles and installed in
an OSGi-execution environment (Knopflerfish 3.1). Each agent was designed to
perform a specific task, and the interaction among these agents resolved into a
global system behaviour. Besides JIAC’s communication and service invocation
infrastructure, the system also makes use of the rule engine abstraction and
service interpreter agents. While it is beyond the scope of this work to explain
each agent in detail, an example will demonstrate the interaction and the features
of the JIAC framework that have been used.

The main task of the system is to detect and react to specific situations,
i.e., sets of specific sensor values in a certain time frame. The sensor values are
aggregated and enriched with additional semantic data by a Sensor Agent. This
information is then sent to both, a Database Agent, storing the values in a local
MySQL database, and the Detection Agent, using the Drools rule engine to
detect different situations in the sensor data. Those specific situations are then
sent to the Reaction Agent, triggering the appropriate reaction in the form of
a service, using the JADL++ interpreter. Finally, a number of different agents
provide means for, e.g., displaying a histogram of sensor values to the user,
sending out notifications, or integrating with other OSGi services.

168 M. Lützenberger et al.

The mapping between situations and reactions is modelled in BPMN [30]
using the Visual Service Design Tool (see Section 4.3). The processes, which
usually include a trigger for situations and a set of services to be executed, are
transformed to JADL++ scripts [16] and deployed to the runtime using the
distributed service directory and JIAC’s JMX interface.

Fig. 3. SmartSenior global architecture and deployment chain

In order to be able to remotely deploy (and delete) reaction scripts, each sen-
sor node connects to the back-end node (see Figure 3). The connection needs to
be static but fail-safe, therefore it is configured to reconnect every time a dis-
connect occurs. The back-end node functions as a gateway and provides services
to retrieve all registered sensor nodes or to deploy and undeploy reaction-scripts
to a specific sensor node. The VSDT connects to the back-end, and via several
Eclipse views a user can choose which services are to be deployed or undeployed
into which apartment.

Lessons Learned: During the eight weeks of the field study, the system was
running stable in 32 apartments with no significant errors. Just once, a problem
with already processed messages building up in the message queues required a
restart of the system after the bug was being fixed. Apart from that, there were
no further incidents and the entire system ran smoothly for the entire time.

5.3 Distributed Optimisation of Production Schedules

Description: The current rise in renewable energy production makes it neces-
sary to either store large amounts of energy in between periods of high energy
production, or to adapt energy consumption to energy production. This can be
helped by day-ahead energy markets such as the European Energy Exchange
AG (EEX), where prices for short-term energy procurement vary according to
demand and supply. This provides an incentive to the industry to adapt their
production schedules to the energy production that is reflected in the price pre-
dictions, e.g., by shifting energy-intense production activities to times with low

A Multi-agent Approach to Professional Software Engineering 169

energy prices, or by filling storage areas with intermediate products when prices
are low, to feed on them when energy is more expensive. The aim of the EnEf-
fCo project was to provide a system for optimising production schedules in this
regard.

Implementation: We developed an optimisation framework that takes as an in-
put a production process model and an energy price curve and produces the
optimal production schedule for that setup [22]. For modelling the various pro-
duction activities and their dependencies, a very simple model is used: Similar
to Petri nets, it consists primarily of activities (the individual production steps),
and resources (the parts and products consumed and created by those activi-
ties). Using this simple model, a wide range of processes can be specified and
optimised, from manufacturing processes to charging schedules for electric vehi-
cles [11].

Fig. 4. EnEffCo Process Model Editor and Optimisation GUI

Once the process has been modelled, it is sent to the actual optimisation
framework (Figure 4). After creating an initial, naive production schedule, evo-
lutionary algorithms are used for mutating and recombining those schedules, by
randomly inserting, moving and removing activities, until a satisfactory result
(w.r.t. overall energy consumption, energy price, etc.) is reached.

While the actual optimisation algorithm does not make use of the JIAC
framework, it is used for transparently distributing and connecting the sev-
eral components of the system. First, using a simple interaction protocol [22],
client agents can distribute their optimisation jobs to any number of optimisa-
tion server agents. This way, several ‘populations’ can be optimised in parallel,
improving the chances to find an optimal schedule without increasing the run-
ning time of the optimisation. Second, each of the other components of the En-
EffCo system, such as the process model editor, a Web frontend, or a database

170 M. Lützenberger et al.

holding energy consumption data for different activities, are connected to each
other using JIAC agents.

Lessons Learned: While the original plan was to have one agent for each pro-
duction step, and/or for each (intermediate) product, and to have those agents
negotiate when to produce what product, we soon came to the conclusion that
it would be much more pragmatic and practical to implement the performance-
critical optimisation algorithm in a traditional way and to use agent only at a
much higher level, for distributing and integrating the several components. This
way, the communication overhead could be reduced drastically.

5.4 Managing Cascading Failures in the Power Grid

Description: The main motivation behind the ILIas project is that modern in-
frastructures are interdependent, such as power and telecommunication (TC)
grids. In case of failures, this can create cascading effects in several or all of the
involved infrastructures. The objective of the project is to research and create in-
telligent and scalable management systems that provide prediction and reaction
to cascading failure effects, so that actions to stabilise the managed infrastruc-
ture can be taken. An example for this is the reaction to power outages and the
consequent failure of TC networks in the affected areas.

Implementation: The approach chosen in ILIas is an agent-based decentralised
smart grid management system [10] that observes and controls the grid. Each
smart grid entity is managed by a separate management agent that tries to main-
tain a best-as-possible state for its controlled entity and interacts with neighbour-
ing entities’ management agents to provide a balance between its own entities’
requirements and overall goals such as (sub-)network stability. As real-world
power and TC networks contain very large numbers of entities, scalability was
highly important requirement. Using a decentralised management system fulfils
the requirements of a scalable and flexible system, as processing load can be
distributed over a large number of systems. In addition to that, decentralisation
also provides a degree of overall stability, as single points of failure are avoided.

Prediction of grid behaviour is supplied by a simulation of power and TC
networks. The management agents are able to interact with both physical as
well as simulated smart grid entities, which allows for easy testing of even large
scale systems. This agent-based simulation is implemented using the NeSSi2

simulation framework [13] and is able to work both, offline, simulating a pre-
defined scenario, as well as online, by using the current grid state as a starting
point to calculate predictions. The human-machine interface is provided by a
visual monitoring application (Figure 5) that visualises the smart grid topology.

Lessons Learned: As JIAC was already a very mature framework when the IL-
Ias project started, the requirements of the project’s objectives did not influence
the development of JIAC significantly. Instead the system specification phase
revealed that the features offered by JIAC were matching the requirements in

A Multi-agent Approach to Professional Software Engineering 171

Fig. 5. Smart grid live monitoring in ILIas (image detail)

ILIas quite good. For the p2p based approach in ILIas, the most helpful char-
acteristics of the JIAC V Framework were the highly variable communication
mechanisms, as well as the general agent based models used. The former were
able to automatically adopt to changes in the infrastructure, e.g., when han-
dling failure scenarios, the latter allowed very easy and quickly reconfigurable
mappings of a given grid topology into a running management system. The re-
sulting system proved to be very reliable in regard to overall system stability.
The agent based models were also important for the required scalability of the
system, as they provided the possibility to balance system load by distributing
the agents over physically separated systems without any changes in the agent
implementations.

During the development of the ILIas solution, two weak points in JIAC that
require improvement were found. One of them was found in the lack of supported
database services. Occasionally larger amounts of data had to be handled, which
required database integration in the application development. As there was no
generic solution for this provided by JIAC, an application-specific solution had
to be implemented for the project. This functionality could be handled by the
framework in the future.

The other field of improvement was the underlying communication infras-
tructure. While it provided the required flexibility and stability for most of the
project’s objectives, one weakness was identified in the behaviour with unstable
connections, especially in scenarios where a connection would break away for a
short time. An improvement for this could consists of better connection failure
handling and improved reconnection times, to ensure basic functionality of the
agents even without communication as well as minimising times of disconnection.

172 M. Lützenberger et al.

6 Conclusion

In this paper we presented the JIAC V agent framework. The basic idea behind
JIAC was to provide an agent framework which meets industrial requirements
and is able to facilitate the industrial adoption of the agent paradigm.

We started with a brief description of industrial projects in which JIAC is
used and respectively emphasised features that were required for the techni-
cal realisation of each project. In doing so, we compiled a comprehensive list
of requirements that includes: robustness, stability, hot deployment, agent mi-
gration, scalability, service life cycle management, third-party API integration,
introspection and monitoring, modularity as well as reusability.

We compared the collected requirements to the capabilities of state-of-the-art
framework solutions and thus motivated the necessity of JIAC. To be clear about
this, we do not deem JIAC to be superior to other frameworks, though, some
(well established) frameworks (e.g., Jason [4] or 3APL [14]) have been created
on a very strong academic background and it has been argued that a focus on
research issues is not necessarily required by industry and may even hamper
industrial adoption [39]. Other frameworks that were geared towards industrial
projects (e.g., the JADE framework [3]) were extended without an overarching
concept and thus lack the coherence and unity that we would expect from a
modern software framework, though, technical maturity and coherence were also
identified as important factors on the way to industrial technology adoption [39].

After comparing the collected requirements to the capabilities of state-of-the-
art framework solutions, we presented JIAC V in more detail, describing the
architecture of JIAC multi-agent systems as well as the modular assembly of
JIAC agents. Furthermore, we mentioned basic and extending capabilities of
JIAC agents and nodes. Based on this description, we elaborated on selected
projects, namely GL 2.0, SmartSenior, EnEffCo, and ILIas and emphasised the
respective technical integration of required framework features.

As mentioned at the beginning, we certainly recognise that there are many
agent frameworks available—each one with a focus on particular multi-agent
system characteristics. Yet, as of today, the agent community was not able to
convince industrial players to adopt their ideas. As opposed to comparable frame-
works, JIAC was never intended to include the cutting edge of agent research but
to constitute a robust, reliable, homogeneous and well-documented foundation
for the development of agent-based software applications.

It was also our intention to equip JIAC with features that are generally re-
quired for extensive industrial appliances. Today, the JIAC framework provides
a set of well-evaluated and useful capabilities. Common requirements, such as
distribution or access to SOA-compliant services, were integrated as core func-
tionalities. Other, less broadly used features, were developed as optional modules.

We do not consider JIAC to be an ultimate solution for the discrepancy be-
tween agent research and the applying industry. Yet, given the fact that JIAC

A Multi-agent Approach to Professional Software Engineering 173

was originally streamlined towards industrial projects and also towards ease of
use, it is our opinion that JIAC has the potential to provide new incentives for
industrial stakeholders and users who are not all too familiar with the agent
paradigm to consider agent technology.

References

1. Balke, T., Hirsch, B., Lützenberger, M.: Assessing agent applications — r&D vs.
R&d. In: Ganzha, M., Jain, L.C. (eds.) Multiagent Systems and Applications —
Volume 1: Practice and Experience. Intelligent Systems Reference Library, vol. 45,
pp. 1–20. Springer, Heidelberg (2013)

2. Behrens, T., Köster, M., Schlesinger, F., Dix, J., Hübner, J.F.: The multi-agent
programming contest 2011: A résumé. In: Dennis, L., Boissier, O., Bordini, R.H.
(eds.) ProMAS 2011. LNCS, vol. 7217, pp. 155–172. Springer, Heidelberg (2012)

3. Bellifemine, F., Poggi, A., Rimassa, G.: JADE — A FIPA-compliant agent frame-
work. Internal technical report, CSELT (1999), Part of this report has been also
published in Proceedings of PAAM 1999, London, pp. 97–108 (April 1999)

4. Bordini, R.H., Hübner, J.F., et al.: Jason: A Java Based AgentSpeak Interpreter
Used with SACI for Multi-Agent Distribution over the Net (February 2007),
http://jason.sourceforge.net/Jason.pdf (last visited on March 15, 2013)

5. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-agent Systems
in AgentSpeak Using Jason. Wiley Series in Agent Technology. Wiley-Blackwell
(October 2007)

6. Braubach, L., Pokahr, A.: Addressing challenges of distributed systems using active
components. In: Brazier, F.M.T., Nieuwenhuis, K., Pavlin, G., Warnier, M., Badica,
C. (eds.) Intelligent Distributed Computing V. SCI, vol. 382, pp. 141–151. Springer,
Heidelberg (2011)

7. Braubach, L., Pokahr, A.: Conceptual integration of agents with WSDL and rEST-
ful web services. In: Dastani, M., Hübner, J.F., Logan, B. (eds.) ProMAS 2012.
LNCS, vol. 7837, pp. 17–34. Springer, Heidelberg (2013)

8. Busetta, P., Rönnquist, R., Hodgson, A., Lucas, A.: JACK — Components for
intelligent agents in java. Tech. rep., Agent Oriented Software Pty, Ltd. (1999)

9. Caire, G., Gotta, D., Banzi, M.: WADE: A software platform to develop mission
critical applications exploiting agents and workflows. In: Padgham, L., Parkes,
D.C., Müller, J., Parsons, S. (eds.) Proceedings of the 7th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2008), Estoril, Portugal,
pp. 29–36. IFAAMAS (2008)

10. Chinnow, J., Tonn, J., Bsufka, K., Konnerth, T., Albayrak, S.: A tool set for the
evaluation of security and reliability in smart grids. In: Cuellar, J. (ed.) Smart-
GridSec 2012. LNCS, vol. 7823, pp. 45–57. Springer, Heidelberg (2013)

11. Freund, D., Raab, A.F., Küster, T., Albayrak, S., Strunz, K.: Agent-based integra-
tion of an electric car sharing fleet into a smart distribution feeder. In: 3rd IEEE
PES International Conference and Exhibition on Innovative Smart Grid Technolo-
gies (ISGT Europe), Berlin, Germany, pp. 1–8. IEEE (October 2012)

12. Greenwood, D., Buhler, P., Reitbauer, A.: Web service discovery and composition
using the web service integration gateway. In: Proceedings of the 2005 IEEE In-
ternational Conference on e-Technology, e-Commerce and e-Service (EEE 2005),
Hong Kong, China, pp. 789–790. IEEE (2005)

http://jason.sourceforge.net/Jason.pdf

174 M. Lützenberger et al.

13. Grunewald, D., Lützenberger, M., Chinnow, J., Bye, R., Bsufka, K., Albayrak, S.:
Agent-based network security simulation (demonstration). In: Tumer, K., Yolum,
P., Sonenberg, L., Stone, P. (eds.) Proceedings of the 10th International Joint Con-
ference on Autonomous Agents and Multiagent Systems, Taipei, Taiwan, Taipei,
Taiwan, pp. 1325–1326 (Mai 2011)

14. Hindriks, K.V., Boer, F.S.D., der Hoek, W.V., Meyer, J.J.: Agent programming in
3APL. Autonomous Agents and Multi-Agent Systems 2(4), 357–401 (1999)

15. Hirsch, B., Konnerth, T., Hessler, A., Albayrak, S.: A serviceware framework for
designing ambient services. In: Mana, A., Lotz, V. (eds.) Developing Ambient In-
telligence (AmID 2006), pp. 124–136. Springer France (2006)

16. Hirsch, B., Konnerth, T., Burkhardt, M., Albayrak, S.: Programming service ori-
ented agents. In: Calisti, M., Dignum, F.P., Kowalczyk, R., Leymann, F., Unland,
R. (eds.) Service-Oriented Architecture and (Multi-)Agent Systems Technology.
Dagstuhl Seminar Proceedings, vol. 10021, Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, Germany (2010)

17. Hirsch, B., Konnerth, T., Heßler, A.: Merging agents and services — The JIAC
agent platform. In: Bordini, R.H., Dastani, M., Dix, J., Seghrouchni, A.E.F. (eds.)
Multi-Agent Programming: Languages, Tools and Applications, pp. 159–185. Mul-
tiagent Systems, Artificial Societies, and Simulated Organizations, Springer (2009)

18. JIAC Development Team: JIAC— Java Intelligent Agent Componentware, Version
5.1.3. DAI-Labor, TU Berlin (October 2012), http://www.jiac.de

19. Keiser, J., Lützenberger, M., Masuch, N.: Agents cut emissions – On how a multi-
agent system contributes to a more sustainable energy consumption. Procedia
Computer Science 10, 866–873 (2012)

20. Klapiscak, T., Bordini, R.H.: JASDL: A practical programming approach combin-
ing agent and semantic web technologies. In: Baldoni, M., Son, T.C., van Riems-
dijk, M.B., Winikoff, M. (eds.) DALT 2008. LNCS (LNAI), vol. 5397, pp. 91–110.
Springer, Heidelberg (2009)

21. Konnerth, T., Chinnow, J., Kaiser, S., Grunewald, D., Bsufka, K., Albayrak, S.:
Integration of simulations and MAS for smart grid management systems. In: Pro-
ceedings of the 3rd International Workshop on Agent Technologies for Energy
Systems (ATES 2012), Valencia, Spain, pp. 51–58 (2012)

22. Küster, T., Lützenberger, M., Freund, D., Albayrak, S.: Distributed evolutionary
optimisation for electricity price responsive manufacturing using multi-agent sys-
tem technology. Int. Journal on Advances in Intelligent Systems 7(1&2) (2013)

23. Küster, T., Lützenberger, M., Heßler, A., Hirsch, B.: Integrating process modelling
into multi-agent system engineering. Multiagent and Grid Systems 8(1), 105–124
(2012)

24. Laclavik, M., Babik, M., Balogh, Z., Hluchy, L.: AgentOWL: Semantic knowledge
model and agent architecture. Computing and Informatics 25, 419–437 (2006)

25. Lützenberger, M., Keiser, J., Masuch, N., Albayrak, S.: Agent based assistance for
electric vehicles an evaluation. In: Huang, R., Ghorbani, A.A., Pasi, G., Yamaguchi,
T., Yen, N.Y., Jin, B. (eds.) AMT 2012. LNCS, vol. 7669, pp. 145–154. Springer,
Heidelberg (2012)

26. Lützenberger, M., Küster, T., Heßler, A., Hirsch, B.: Unifying JIAC agent develop-
ment with AWE. In: Braubach, L., van der Hoek, W., Petta, P., Pokahr, A. (eds.)
MATES 2009. LNCS, vol. 5774, pp. 220–225. Springer, Heidelberg (2009)

http://www.jiac.de

A Multi-agent Approach to Professional Software Engineering 175

27. Lützenberger, M., Küster, T., Konnerth, T., Thiele, A., Masuch, N., Heßler, A.,
Keiser, J., Burkhardt, M., Kaiser, S., Albayrak, S.: JIAC V — A MAS frame-
work for industrial applications (extended abstract). In: Ito, T., Jonker, C., Gini,
M., Shehory, O. (eds.) Proceedings of the 12th International Conference on Au-
tonomous Agents and Multiagent Systems, Saint Paul, MN, USA (to appear, 2013)

28. Masuch, N., Keiser, J., Lützenberger, M., Albayrak, S.: Wind power-aware vehicle-
to-grid algorithms for sustainable ev energy management systems. In: Proceedings
of the IEEE International Electric Vehicle Conference, Greenville, SC, USA, pp.
1–7. IEEE (March 2012)

29. Mař́ık, V., McFarlane, D.: Industrial adoption of agent-based technologies. IEEE
Intelligent Systems 20(1), 27–35 (2005)

30. Object Management Group: Business process modeling notation (BPMN) version
1.2. Specification formal/2009-01-03, Object Management Group (January 2009)

31. Poggi, A., Tomaiuolo, M., Turci, P.: An agent-based service oriented architecture.
In: Baldoni, M., Boccalatte, A., Paoli, F.D., Martelli, M., Mascardi, V. (eds.) WOA
2007: Dagli Oggetti agli Agenti. 8th AI*IA/TABOO Joint Workshop ‘From Objects
to Agents’: Agents and Industry: Technological Applications of Software Agents,
Genova, Italy, September 24-25, pp. 157–165. Seneca Edizioni Torino (2007)

32. Pokahr, A., Braubach, L., Jander, K.: Unifying agent and component concepts. In:
Dix, J., Witteveen, C. (eds.) MATES 2010. LNCS, vol. 6251, pp. 100–112. Springer,
Heidelberg (2010)

33. Pěchoučyek, M., Mař́ık, V.: Industrial deployment of multi-agent technologies:
review and selected case studies. Autonomous Agents and Multi-Agent Sys-
tems 17(3), 397–431 (2008)

34. Raddatz, K., Schmidt, A.-D., Thiele, A., Chinnow, J., Grunewald, D., Albayrak,
S.: Sensor-basierte Erkennung und Reaktion im häuslichen Umfeld. In: Proceedings
of 5th German AAL Congress 2012, Berlin, Germany. VDE Verlag (2012)

35. Thiele, A., Kaiser, S., Konnerth, T., Hirsch, B.: MAMS service framework. In:
Kowalczyk, R., Vo, Q.B., Maamar, Z., Huhns, M. (eds.) SOCASE 2009. LNCS,
vol. 5907, pp. 126–142. Springer, Heidelberg (2009)

36. Tonn, J., Kaiser, S.: ASGARD – A graphical monitoring tool for distributed agent
infrastructures. In: Demazeau, Y., Dignum, F., Corchado, J.M., Pérez, J.B. (eds.)
Advances in PAAMS. AISC, vol. 70, pp. 163–173. Springer, Heidelberg (2010)

37. Vattenfall, BMW, TU Berlin, TU Chemnitz, TU Ilmenau: Increasing the effective-
ness and efficiency of the applications wind-to-vehicle (W2V) and vehicle-to-grid
(V2G) including charging infrastructure (Managed Charging V2.0). Technische
Universitätsbibliothek Hannover (TIB) (2011)

38. Weyns, D., Helleboogh, A., Holvoet, T.: How to get multi-agent systems ac-
cepted in industry? International Journal of Agent-Oriented Software Engineering
(IJAOSE) 3(4), 383–390 (2009)

39. Weyns, D., Van, H., Parunak, D., Shehory, O.: The future of software engineer-
ing and multi-agent systems. Special Issue on Future of Software Engineering and
Multi-Agent Systems, International Journal of Agent-Oriented Software Engineer-
ing, IJAOSE (2008)

40. Wooldridge, M.: Agent-based software engineering. IEE Proceedings — Soft-
ware 144(1), 26–37 (1997)

Alternatives to Threshold-Based

Desire Selection
in Bayesian BDI Agents

Bernardo Luz1, Felipe Meneguzzi2, and Rosa Vicari1

1 Informatics Institute, Federal University of Rio Grande do Sul
Av. Bento Gonçalves, 9500 – Porto Alegre, Brazil

{bernardo.luz,rosa}@inf.ufrgs.br
2 School of Computer Science, Pontifical Catholic University of Rio Grande do Sul

Av. Ipiranga, 6681 – Porto Alegre, Brazil
felipe.meneguzzi@pucrs.br

Abstract. Bayesian BDI agents employ bayesian networks to represent
uncertain knowledge within an agent’s beliefs. Although such models al-
low a richer belief representation, current models of bayesian BDI agents
employ a rather limited strategy for desire selection, namely one based on
threshold values on belief probability. Consequently, such an approach
precludes an agent from selecting desires conditioned on beliefs with
probabilities below a certain threshold, even if those desires could be
achieved if they had been selected. To address this limitation, we de-
velop three alternative approaches to desire selection under uncertainty.
We show how these approaches allow an agent to sometimes select desires
whose belief conditions have very low probabilities and discuss experi-
mental scenarios.

1 Introduction

Due to its computable representation of practical reasoning and its folk psycho-
logical abstraction to autonomous reasoning, the beliefs, desires and intentions
(BDI) model has been extensively studied within the autonomous agents com-
munity. Most traditional implementations of BDI agents include a logic-based
belief base representing the knowledge an agent has about the world, and plan
library that can be selected by an agent when it adopts certain desires. Once
a course of action is selected by an agent for execution, it becomes part of an
agent’s intention to which an agent commits to execute.

Beliefs are traditionally represented by a closed set of ground atomic liter-
als, each of which is associated with a truth value, and consequently does not
normally represent uncertainty. Nevertheless, there exist logical formalisms to
represent uncertainty regarding an agent’s beliefs. Bayesian networks [9] are a
popular way of representing uncertain information probabilistically, where parts
of it are conditioned on others (e.g., cause and consequence relationships, dis-
eases and symptoms). They are directed acyclic graphs (DAGs), whose nodes

M. Cossentino et al. (Eds.): EMAS 2013, LNAI 8245, pp. 176–195, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Alternatives to Threshold-Based Desire Selection in Bayesian BDI Agents 177

represent event variables associated with two or more possible states, and each
state has an explicit occurrence probability.

Given the lack of support for uncertainty in the BDI agent model and the
representational power of bayesian networks, there has been work focused on
extending the BDI agent model to reason with uncertainty using bayesian net-
works [4]. This type of agent model no longer relies solely on ground literals to
represent an agent’s belief base, but rather on a bayesian network.

Traditional BDI agents select desires (or plans with implicit desires) based
on a binary condition on the literals of the belief base, under the assumption
that this condition is minimal for the desire’s viability. The underlying idea is
that, if the context condition is not true, then a desire and its associated plans
have no chance of being successful. However, even if the context condition is
true, a desire might be impossible and an intention associated with it might fail.
Similarly, bayesian BDI agents are susceptible to selecting desires that cannot
be satisfied in the current world state. Previous approaches to bayesian BDI
reasoning [4] have relied on performing desire selection validation by applying
a threshold on the probability being evaluated (e.g., that of the desire itself),
so that if a certain logical query is less probable than the threshold, then the
desire does not meet the minimal requirement to being successful. However, in
a probabilistic world, context conditions are less crisply defined. In response,
we have developed three alternative desire selection strategies that relax the
requirement on the probability threshold for the context condition, and analyze
situations where these strategies might be advantageous.

This paper is organized as follows: Section 2.1 presents BDI agents, Section 2.2
presents bayesian networks, Section 2.3 presents bayesian BDI agents, Section 3
presents bayesian BDI reasoning, Section 3.1 presents a threshold-based desire se-
lection process, Section 4 presents alternative approaches to bayesian BDI desire
selection, Section 4.1 presents Probability Ranking desire selection, Section 4.2
presents Biased Lottery desire selection, Section 4.3 presents Multi-Desire Bi-
ased Random Selection, Section 5 presents an example, and Section 6 presents
our final considerations.

2 Background

In this section, we review previous efforts upon which our work is based. We
start by briefly explaining the BDI model, then proceed to introducing the basics
of bayesian networks and finally we enumerate existing work on bayesian BDI
agents.

2.1 BDI Agents

Autonomous agents are often defined as encapsulated computer systems situated
in an environment and capable of flexible autonomous action in this environment
in order to achieve certain goals [5]. The agent must adapt itself to a dynamic
environment, while seeking to fulfill its goals. In order to provide a stronger

178 B. Luz, F. Meneguzzi, and R. Vicari

computational grounding for this notion of agent, many architectures have been
proposed, among which, one of the most widely studied is the one centered
around the mental attitudes of beliefs, desires and intentions (or BDI) [2]. This
architecture was originally proposed as a philosophical model of human practical
reasoning, that is, reasoning aimed at deciding how to act in the world towards
achieving one’s goals.

Beliefs contain a representation, internal to the agent, of environment elements
considered relevant for the agent’s reasoning. The state of an agent’s beliefs may
contain either less information than the current state of the environment (e.g.,
because of limited sensing ability), or more (e.g., if the agent does additional
information processing on its sensing). Desires represent objectives that the agent
would like to achieve (i.e., they can be considered an agent’s motivation [11]).
Intentions are those desires that the agent has committed itself to achieving,
as well as the steps towards achieving these desires. Agents resist abandoning
their intentions, and, should a plan fail, it is often the case that they choose to
re-plan.

A BDI agent selects desires through a process that considers the current vi-
ability and the absence of conflict with existing intentions. Desires often have
preconditioning beliefs that indicate whether or not they should be selected by
the agent, as a matter of logical evaluation [8].

2.2 Bayesian Networks

Traditional first-order logic approaches to knowledge representation are insuf-
ficient to represent certain domains where there is uncertainty in the validity
of statements over time [6, 12]. Examples of reasons for this limitation are the
high cost of exhaustively representing all possible combinations of truth val-
ues using logic rules (laziness), the lack of a complete theory of the domain in
question (theoretical ignorance), and the potential impossibility or inviability of
performing all necessary tests to ascertain complete truth for certain statements
(practical ignorance).

The fact remains that people commonly reason with incomplete knowledge
and make decisions based on assumptions over unknown facts. This knowledge
comprises what is known to be true, what is not known and estimates based on
relationships between elements of the world. (author?) [9] devised a formalism
to represent partial knowledge based on the causal relationships between ele-
ments in the world, using probability theory to represent how knowledge about
one element in the world influences the certainty about others related to it.
Here, relationships between elements are represented in a network, and prob-
abilities between related elements are calculated using Bayes’ Rule, with the
resulting formalism being called a Bayesian Network. A bayesian network is a
type of causal network that allows the specification of knowledge where parts of
it are conditioned on others, supporting the update of probabilities when new
information (i.e., evidence) is obtained.

Given two events A and B, if we know the probability of A given B and
the probability of B, we can calculate the probability of seeing both A and B,

Alternatives to Threshold-Based Desire Selection in Bayesian BDI Agents 179

as shown in Equation 1, which represents the fundamental rule for probability
calculus. It can also be conditioned on another event C, as shown in Equation 2.1

P (A|B)P (B) = P (A ∩B). (1)

P (A|B ∩ C)P (B|C) = P (A ∩B|C). (2)

Equation 3 is the key equation behind bayesian networks: Bayes’ Rule. Bayes’
Rule makes it possible to update beliefs about an event A, provided that we
get information about another event B. Thus, P (A) is usually called the prior
probability of A, whereas P (A|B) is called the posterior probability of A given
B. There is also a general version of Bayes’ Rule, in a context C – exhibited as
Equation 4.

P (A|B) =
P (B|A)P (A)

P (B)
. (3)

P (A|B,C) =
P (B|A,C)P (A|C)

P (B|C)
. (4)

There may be evidence that a given variable is in a certain state. When this
happens, it is said that such a variable is instantiated. This kind of evidence is
called hard evidence. Conversely, if a statement about a variable state is made
based on dependencies rather than explicit knowledge, it is said that there is
soft evidence about that variable.

The d-separation property tells us if two variables are independent of each
other in the current state of the bayesian network. There are three types of con-
nection in the topology of a bayesian network: serial, diverging and converging.
Each connection type accounts for a specific reasoning as to whether variables
are d-separated or d-connected (what we call variables that are not d-separated)2.
In a serial connection, if we have no hard evidence about a variable, evidence
about its parent/child passes through it, affecting our beliefs about it and about
its uninstantiated child/parent. In a diverging connection, if we have no hard
evidence concerning the parent, evidence about one of its children affects our
beliefs about the other – uninstantiated – children. In a converging connection,
if we have no hard evidence about the child or one of its descendants, evidence
about a parent does not influence our beliefs about the other(s).

2.3 Bayesian BDI Agents

Although traditional implementations of BDI agents use a logic-based approach
to model the world, these approaches fail to account for the uncertainty inher-
ently associated with the real world. In order to address this shortcoming, work
has been carried out to switch from a purely logical view of the agent’s beliefs

1 The equations in Section 2.2 have been extracted from [6].
2 “d” is for “directed graph”.

180 B. Luz, F. Meneguzzi, and R. Vicari

based on traditional logic to a bayesian network, integrating it into the reasoning
process of BDI agents. Fagundes et al. [4] have created an ontology-based BDI
agent in which the belief base is replaced by a bayesian network and the desire
selection process relies on probability thresholds to adopt new desires. Kieling
and Vicari [7] integrate a bayesian network into an implementation of the Ja-
son [1] AgentSpeak(L) [11] interpreter. Finally, Carrera and Iglesias [3] focus on
the process of updating beliefs within a bayesian BDI agent.

3 Bayesian BDI Reasoning

In this section, we develop a reasoning cycle that should be general enough that it
could be used to describe the reasoning performed by previous work on bayesian
BDI agents [3, 4, 7]. Later, we describe a desire selection process that is built
around a threshold evaluation, as in [4], within such a reasoning cycle.

In this paper, we consider the belief base to correspond to an entire bayesian
network whereby the causal relations between beliefs are explicitly represented.
Moreover, given current evidence, we also explicitly represent the probability
that a certain variable is in a particular state. Each event variable has n possible
states, each with an associated probability, that either is readily available from
a conditional probability table if the state of all the parent variables is known
(i.e., there is hard evidence on each of them) or has to be calculated.

Desires in the bayesian BDI agent model refer to specific event variable states
in the bayesian network, and each desire has a preconditioning belief, indicating
when that desire can be adopted by the agent. Our choice of belief-preconditioned
desire representation follows the tradition of many implemented BDI systems
(e.g., [8, 11]). We present two types of desire for bayesian BDI agents: strong
and weak. Strong desires are desires on which there must be hard evidence so that
they can be considered fulfilled. There may not be any doubt, however small, on
whether or not a strong desire has been satisfied. Weak desires are those that are
not necessarily expected to be confirmed via hard evidence, but are expected to
be believed to be sufficiently likely to be true, i.e., to reach a certain minimum
probability value. These may be viewed as desires that accept soft evidence as
sufficient in order to be considered satisfied. Strong desires may be viewed as a
special case of what would otherwise be weak desires, where, given each desire
d, P (d) = 1.

Similarly to traditional BDI agents, intentions are desires to the fulfillment of
which the agent has committed itself. The agent will seek a plan – a sequence of
actions – that is applicable to the current situation: any plan that is aimed at sat-
isfying at least one of the intentions and whose preconditions are not conclusively
denied (i.e., preconditions that are not contradictory to hard evidence) is valid.

Algorithm 1 outlines a generic reasoning cycle for a bayesian BDI agent rea-
soning within an uncertain environment. First, the agent updates its belief base
(i.e., the probabilities in the bayesian network), according to the latest percep-
tions from the environment (Line 2). Second, the agent evaluates if each desire
has been satisfied, removing it from the list of desires if so (Line 3). The agent

Alternatives to Threshold-Based Desire Selection in Bayesian BDI Agents 181

Algorithm 1. Reasoning Cycle for Bayesian BDI Agents

1: procedure Generic BDI Reasoning Cycle

2: update beliefs based on percept
3: evaluate desire satisfaction and remove fulfilled desires
4: evaluate and possibly choose desires
5: seek plans that might satisfy the chosen desires
6: for each chosen desire, if an applicable plan has been found, create an intention

and associate it with the desire and the plan, which is therefore adopted
7: if a plan was not found, mark the desire as unsatisfiable at this time
8: if adopted plan failed, either seek another plan or remove the intention (subject

to commitment policy)
9: if adopted plan succeeded, remove the intention
10: end procedure

then proceeds to evaluate its possible desires (Line 4), and if a desire has been
selected, the agent must commit to it by adopting an intention. Once it has
committed it seeks plans capable of satisfying it (Line 5) and then executes the
plans in an attempt to achieve the goal (Line 6). For each chosen desire for
which no way of attempting to fulfill it has been found, mark it as “unsatisfiable
at this time” and refrain from creating an intention for it in the current cycle
(Line 7). If there is an adopted plan and it fails, then the agent may either seek
an alternate plan or give up on the corresponding intention altogether (Line 8).
This is subject to a commitment policy that may take into account whether
this happened before to the desire associated with this intention, to intentions
in general (there could conceivably be some kind of overall environment issue
behind the failures), the rate at which alternate plans have proven effective, the
computational cost for obtaining such plans – perhaps compared to the cost of
desire selection, etc.. Successful plan executions cause their associated intentions
to be removed (Line 9).

Since Bayesian BDI agents’ beliefs are extended with probabilistic data, it
is no longer sufficient to perform the logical evaluation for each desire’s pre-
conditions to determine those that are eligible for intention creation. Just as
there are degrees of probability in the beliefs, selecting a desire is now a deci-
sion made with varying degrees of confidence, which implies that preconditions
are no longer strictly about validity of selection, but also about confidence in
a selection that is made under uncertainty. The only case where it is a matter
of validity is when there is hard evidence against the desire’s precondition (i.e.,
evidence of a different state of the event variable).

Moser et al. [4] performs reasoning using a threshold-based evaluation: if the
probability being evaluated is equal to or greater than the threshold value, the
associated event variable state is considered valid; in that work, the existence of
a belief is dependent on this validation. Such reasoning involves checking if the
probability associated with the applicability of the desire satisfies the threshold;
if so, the desire may be selected; otherwise, the agent simulates hard evidence

182 B. Luz, F. Meneguzzi, and R. Vicari

on all combinations of the preconditioning event variable states – one state per
variable – to determine which such state combinations would, if supported by
hard evidence, allow for a threshold-satisfying probability of the event variable
state corresponding to the desire itself, if any. New desires are then created from
these states, connected to the original desire through causality.

Desires preconditioned on beliefs holding a probability that is exactly equal
to zero, i.e., as a result of hard evidence on a state other than the one referred to
by the belief in question, but associated with the same event variable, must not
be selected. It is important to point out that once an intention has been dropped
(i.e., not fulfilled), the desire is added back to the list of desires; without this,
failed desires would be lost. Although this is not shown in any of the selection
algorithms in this paper, as it is not a part of desire selection itself, it is an
underlying assumption of the reasoning cycle.

3.1 Threshold-Based Desire Selection

In this section we describe a desire selection process that is threshold-based,
which is a key characteristic in previous work [4], in terms of our reasoning
cycle. This process is summarized in the pseudocode of Algorithm 2, representing
a threshold-based desire selection algorithm in the context of a Bayesian BDI
agent. It takes as parameters the numeric threshold value and the list of available
desires (Line 1). The algorithm traverses the list of desires (Line 2) and, for each
one, evaluates whether the probability of its associated precondition is greater
than, or equal to the threshold (Line 3). If so, the desire in question is removed
from the list of desires (Line 4) and returned (Line 5), thereby refraining from
continuing to traverse the list, the implication being that this algorithm only
selects one desire. If the entire list of desires is traversed and no desire has been
selected (Line 7), the algorithm returns null (Line 8), denoting that no new
desire is pursued by the agent.

Algorithm 2. threshold-based selection

1: function ThresholdBasedSelection(threshold , desires)
2: for each desire such that desire ∈ desires do
3: if desire .preCondition.probability ≥ threshold then
4: desires .remove(desire)
5: return desire
6: end if
7: end for
8: return null
9: end function

4 Alternatives for Bayesian BDI Desire Selection

The threshold-based desire selection algorithm shown in Section 3 avoids selecting
desires whose belief preconditions do not meet a minimal degree of probabilistic

Alternatives to Threshold-Based Desire Selection in Bayesian BDI Agents 183

support. As such, it constitutes a relatively simplistic mechanism for desire se-
lection in a probabilistic section, and suffers from two key limitations. On the one
hand, as the selection threshold approaches one, the agent becomes extremely con-
servative, and may not select any desire and remain idle for long periods of time.

On the other hand, if the threshold approaches zero, the agent becomes less
strict in ensuring the viability of the desires it chooses to pursue. Importantly,
depending on the order in which the desires are checked, the agent might select
desires that are less likely than others.

Moser et al. [4] work with the notion of incompatible desires in Bayesian BDI
agents, which is beyond the scope of this work. These incompatible desires are
sorted by probability and the one with the highest probability is selected. The
selection process for multiple desires that are not considered incompatible is not
a concern in their work; there, competition is not assumed to be a part of the de-
sire selection process. For the algorithms presented in this paper, we assume that
there is a process that filters desires conflicting with existing intentions. More-
over, we assume competition among desires during selection, unless otherwise
specified.

In order to address the limitations of threshold-based selection, we propose
a number of alternative desire selection mechanisms that ensure a finer control
over an agent’s choice of desires while taking into consideration the probabilistic
nature of an environment. These approaches eliminate idleness and ensure that
more likely desires are selected more often. In the algorithms developed in this
section, similarly to the desire selection algorithm shown in Section 3, we assume
that once an intention is dropped the desire is added back to the list of desires.

4.1 Probability Ranking

This approach involves sorting the desire list in decreasing order of precondition
probability, resulting in a ranking from highest to lowest probability precondi-
tion, and picking up the desire backed by the belief most likely to be true. The
pseudocode in Algorithm 3 illustrates the Probability Ranking desire selection
algorithm. Its only parameter is a list of desires (Line 1). If there are any desires
(Line 2) the algorithm sorts them by precondition probability (rankedDesires,
Line 3), selects the first desire (Line 4), removes it from the list (Line 5) and,
if the probability of that desire’s precondition is greater than 0 (Line 6) – to
prevent a desire associated with a contradicted precondition from being selected
– returns that desire (Line 7). Otherwise, the algorithm returns null (Line 10).

4.2 Biased Lottery

Selecting desires by ranking them over their precondition probability as we show
in Section 4.1 helps ensure that an agent is never idle. However, it is still pos-
sible that certain desires will never be selected, even if they were possible but
were weakly supported by the agent’s beliefs. Situations where this is detrimen-
tal to the agent occur when the agent has not obtained enough evidence about
the environment, or has obtained the wrong evidence. In order to address that

184 B. Luz, F. Meneguzzi, and R. Vicari

Algorithm 3. Probability Ranking Selection

1: function ProbabilityRankingSelection(desires)
2: if desires .length > 0 then
3: rankedDesires := desires ordered by precondition probability
4: desire := rankedDesires .first()
5: desires .remove(desire)
6: if desire .preCondition.probability > 0 then
7: return desire
8: end if
9: end if
10: return null
11: end function

limitation, we now develop a technique that randomly picks desires using their
precondition probability to weight this selection. The idea is to randomly gen-
erate a number and use it to determine which desire to choose, according to a
probability distribution reflecting the probabilities of the desires’ preconditions.

In order to generate this probability distribution over the desires, we generate
a series of numeric intervals within the [0, 1] range assigning, for each belief, an
interval proportional to the probability of their belief precondition. The proba-
bilities, thus, serve as weights that create bias in what would otherwise constitute
a purely random selection; it is a nondeterministic desire selection that is subject
to bias from the precondition probability. This desire selection method neither
disregards desires backed by beliefs holding very low probabilities, nor is de-
signed to embrace them more often than common sense would permit – than
such probabilities would suggest. We formalize this selection mechanism in the
pseudocode of Algorithm 4, which uses the function described in Algorithm 5 to
generate the selection probability intervals. Algorithm 4 takes as input the list
of desires (Line 1) and generates a random numeric value (Line 2) and a list of
numeric values (Line 3) that correspond to the upper limits (boundaries) for the
numeric intervals used in desire selection; Function GenerateIntervals (Line 3)
is detailed in Algorithm 5. The algorithm proceeds to traverse the list of upper
interval limits (Lines 4–10); it uses the randomly generated number to select a
desire (Lines 5 and 6), which is then removed from the list of desires and re-
turned (Lines 7 and 8). If the entire list of upper interval limits is traversed and
the random value has not been found to belong to any of the intervals (Line 10),
the algorithm returns null (Line 11).

Algorithm 5 takes as input a list of desires (Line 1) and starts by creating a
list to store the upper numeric interval limits that will be calculated (intervals,
Line 2). Provided that there are elements in the input list, the algorithm pro-
ceeds to create a list that will contain the probabilities of the desires’ precondi-
tions (Lines 3 and 4). It also defines a variable sum that will be used to store
the sum of all such probabilities, initializing it to 0 (Line 5). It then traverses
the desire list (Lines 6–9) storing the probabilities of the desires’ preconditions

Alternatives to Threshold-Based Desire Selection in Bayesian BDI Agents 185

Algorithm 4. Biased Lottery

1: function BiasedLottery(desires)
2: randomValue := random number ∈ [0 , 1]
3: intervals := GenerateIntervals(desires)
4: for i = 0 to intervals .length do
5: if randomValue < intervals [i] then
6: desire := desires [i]
7: desires .remove(desire)
8: return desire
9: end if
10: end for
11: return null
12: end function

in the corresponding positions of probabilities and accumulating the probability
of all desire preconditions in the sum variable (Lines 7 and 8). If the sum is
greater than 1 (Line 10), it normalizes the probabilities and uses these values as
interval sizes while generating numeric intervals (Lines 12–14). If not (Line 15), it
generates numeric intervals using the probabilities as interval sizes (Lines 17–19).
Lines 11 and 13 are the normalized equivalents of Lines 16 and 18, calculating
and ultimately assigning upper interval limits to the positions in intervals.

We do not perform normalization when the sum of the precondition probabil-
ities is less than 1.0, as this would inflate selection probabilities for desires pre-
conditioned on insignificant events. For example, a single desire preconditioned
on a belief with 0.0001 probability would be treated as though its probability
were 1.0. Note that the numeric intervals for the desires are forced not to inter-
sect with one another, since the one randomly generated number (per selection
cycle) is expected to select, at most, one desire-associated numeric interval. Al-
though this algorithm now allows an agent to sometimes pick desires that would
not normally be selected, it is still limited to the choice of a single desire.

4.3 Multi-desire Biased Random Selection

of each other (e.g., full parallelism is possible), allowing multiple desires to be
selected simultaneously. This approach to desire selection removes competition
among desires, so long as they do not conflict. It considers non-conflicting desires
independently of each other, and allows for the selection of multiple desires at
once. We consider a conflict to exist between two desires if they refer to the same
event variable, but to different states – all states in the state space of an event
variable are mutually exclusive.

If a given desire being evaluated conflicts with a desire that is already des-
ignated to be selected at the end of the current selection process, we consider
it ineligible for selection. Otherwise, it gets a chance: given a desire Di precon-
ditioned on a belief holding a probability Pi, we say that Di is assigned a numeric

186 B. Luz, F. Meneguzzi, and R. Vicari

Algorithm 5. Biased Lottery – Desire Intervals

1: function BiasedLottery:GenerateIntervals(desires)
2: intervals [desires .length]
3: if desires .length > 0 then
4: probabilities [desires .length]
5: sum := 0
6: for i := 0 to desires .length do
7: probabilities [i] := desires [i].preCondition.probability
8: sum := sum + probabilities [i]
9: end for
10: if sum > 1 then
11: intervals [0] := probabilities [0]

sum

12: for i := 1 to intervals .length do
13: intervals [i] := intervals [i − 1] + probabilities [i]

sum

14: end for
15: else
16: intervals [0] := probabilities [0]
17: for i := 1 to intervals .length do
18: intervals [i] := intervals [i − 1] + probabilities [i]
19: end for
20: end if
21: end if
22: return intervals
23: end function

interval Ii = [0, Pi]. For every such desire Di, if a randomly generated numeric
value Ni in interval [0, 1] belongs to interval Ii, the desire is added to the set
of desires to be selected at the end of this selection cycle. Optionally, we may
order the desire list in ascending order of precondition probability, prior to the
execution of the algorithm, to let a desire supported by a lower precondition
have its chance unhindered by potentially conflicting desires that stand a better
chance of being selected. If the difference in precondition probabilities of conflict-
ing desires isn’t big, however, this may be considered an unwelcome bias, as it
could artificially make a supposedly less likely-to-be-selected desire get selected
more often than conflicting desire(s) in practice. Another option would be a pure
shuffle.

The pseudocode of Algorithm 6 formalizes our proposed approach for Multi-
Desire Biased Random Selection. It takes as input the list of desires (Line 1),
and creates a list that will be used to store any number of desires that may be
selected (selectedDesires, Line 2). This selection takes place by traversing the
list of desires (Lines 3–11), and, if they don’t conflict with any of the desires
already added to selectedDesires (Line 4), randomly picking desires based on
their precondition probability (Lines 5–8).

Alternatives to Threshold-Based Desire Selection in Bayesian BDI Agents 187

Algorithm 6. Multi-Desire Biased Random Selection

1: procedure MultiDesireBiasedRandomSelection(desires)
2: selectedDesires := {}
3: for each desire ∈ desires do
4: if desire does not conflict with any element in selectedDesires then
5: randomValue := random number ∈ [0 , 1]
6: if randomValue ≤ desire .preCondition.probability then
7: selectedDesires .add(desire)
8: desires .remove(desire)
9: end if
10: end if
11: end for
12: return selectedDesires
13: end procedure

5 Example

5.1 Description

In order to illustrate the effects of each desire selection strategy described in
Section 4, we now introduce a working example to show how an agent would re-
act to situations using our proposed algorithms. Our example scenario consists
of a watchman agent that is tasked with guarding an installation and reporting
anything out of the ordinary. The presence of suspicious people nearby increases
its estimate of a security breach. There is an alarm in the installation, that is
effective under normal circumstances. However, there are reports of occasional
electrical malfunctions in the installation, which may cause the alarm to ring for
no reason or not to ring when it is expected to. Moreover, the watchman be-
comes interested in seeking evidence that there is not an electrical malfunction
if it knows that there are suspicious people nearby. If an electrical malfunction is
detected, the watchman must report this. The surrounding area is known for in-
tense traffic, and accidents are more common than in most other areas, resulting
in noise that is almost always perceived by the agent. However, noise might be
caused by trespassers, though that is not very likely. If the watchman finds out
that an accident has occurred, this must be reported as well (e.g., so others keep
this in mind if they hear noise). In order to patrol the installation, the watchman
periodically chooses between the default and an alternate route, and it becomes
more inclined to patrol the alternate route as its belief that a security breach is
either imminent or already taking place increases, and conversely, the watchman
is more inclined to patrol the default route when everything looks calm. The
watchman is also expected to keep an eye open for electrical malfunctions and
accidents.

Regarding the relationships among the event variables in the network, we
note that: i) Evidence of the presence of suspicious people nearby increases the
probability of a security breach; ii) Evidence of the alarm activating increases

188 B. Luz, F. Meneguzzi, and R. Vicari

SecurityBreachAccident
TRUE 0.05

 FALSE 0.95

SuspiciousPeople
TRUE 0.7

FALSE 0.3

Elect r icalMalfunct ion

Noise

TRUE 0.05

FALSE 0.95

Alarm
Elect r icalMalfunct ion TRUE TRUE FALSE FALSE

Secur ityBreach TRUE FALSE TRUE FALSE

TRUE 0.7 0.4 0.99 0.01

FALSE 0.3 0.6 0.01 0.99

Accident TRUE TRUE FALSE FALSE

Secur ityBreach TRUE FALSE TRUE FALSE

TRUE 0.98 0.95 0.15 0.005

FALSE 0.02 0.05 0.85 0.995

SuspiciousPeople TRUE FALSE

TRUE 0.1 0.01

FALSE 0.9 0.99

Route
DEFAULT 0.9

ALTERNATE 0.1

Fig. 1. The Watchman agent’s beliefs

the probability of a security breach occurring, as well as the probability of there
being suspicious people nearby. This is still true if there is also evidence of
an electrical malfunction, but the probability increase for both event variable
states is smaller. If there is evidence that there is no electrical malfunction
(e.g., a notification about maintenance very recently performed), the probability
increase is the greatest of the three cases; iii) evidence of noise increases the
probability of a security breach. However, this increase is almost nullified upon
evidence of an accident, as this network tells us that an accident is a much more
probable cause of noise than a security breach, and the impact of a security
breach on the probability of noise if we already know of an accident is small;
and iv) An increase on the probability of a security breach (e.g., through evidence
of suspicious people and noise) increases the probability of the alarm activating,
even if there is an electrical malfunction, though then the probability increase is
smaller.

The bayesian belief base of the watchman encoding the domain knowledge
described in the scenario is represented in Figure 1. Do note that we do not
associate the Route variable with a belief about the environment state, but
rather we associate it with an internal belief associated with the agent’s currently
chosen route. It is not a part of the reasoning surrounding the probability of a
security breach or any of the other event variables, and this is the reason we left
it disconnected from all the other network nodes.

This watchman agent has two mutually exclusive strong desires that are pe-
riodically renewed:3 Route.default(SecurityBreach.false) and Route.alterna-
te(SecurityBreach.true). That is, the agent desires to patrol the default route if

3 We denote desires in the form <desire>(<preconditioning belief>), where both
elements are described as <event variable>.<state>.

Alternatives to Threshold-Based Desire Selection in Bayesian BDI Agents 189

it believes that there has not been a security breach, and the alternate one other-
wise. It also has the strong desire ElectricalMalfunction.false(SuspiciousPeo-
ple.true), i.e., the desire to believe (in other words, to find out) that there is no
electrical malfunction at the moment, conditioned on the presence of suspicious
people nearby, as well as the strong desire Accident.true(Noise.true), i.e., the
desire to discover that there has been an accident, if noise has been heard.

Note that evidence on event variables ElectricalMalfunction and Accident
alone does not affect the state probabilities of event variable SecurityBreach.
Only if evidence on Alarm is obtained does evidence on ElectricalMal-
function impact event variable SecurityBreach (e.g., from P (SecurityBreach|
ElectricalMalfunction = false) = P (SecurityBreach) = (0.073, 0.927)4 to
P (SecurityBreach|Alarm = true, ElectricalMalfunction = false) = (0.8863,
0.1137)), just as only if evidence on Noise is obtained does evidence on Accident
impact SecurityBreach (e.g., from P (SecurityBreach|Accident = false) =
(0.073, 0.927) to P (SecurityBreach|Noise = true,Accident = false) = (0.7026,
0.2974)). Both are cases of converging connections, from ElectricalMalfunction
and SecurityBreach to Alarm, and from Accident and SecurityBreach to
Noise, respectively. Additionally, if the state probabilities of event variable
SecurityBreach are updated, as in the cases just described, so are those of
SuspiciousPeople, if the latter is also uninstantiated.

5.2 Desire Selection

We now briefly present the result of using each of the four algorithms while work-
ing with an initial scenario – where what happens during the execution of each
algorithm is not carried over to the next – where there is no hard evidence of any
event. Since there is no hard evidence yet, P (SuspiciousPeople) = (0.7, 0.3),
and consequently P (SecurityBreach) = (0.073, 0.927); also, P (Noise) = (
0.0624, 0.9376). DesireRoute.default is preconditioned on a belief that Security-
Breach is false, which has a 0.927 probability; desire Route.alternate is precon-
ditioned on a belief that SecurityBreach is true, which holds a 0.073 prob-
ability; desire ElectricalMalfunction.false is preconditioned on a belief that
SuspiciousPeople is true, which holds a 0.7 probability; and desire Acci-
dent.true is preconditioned on a belief that Noise is true, which holds a 0.0624
probability.

First, let us consider threshold-based desire selection, with a threshold of 0.75.
This means that only Route.default(SecurityBreach.false) is an eligible desire
for selection, since P (SecurityBreach = false) = 0.927. In a scenario where
there is hard evidence of noise (i.e., P (Noise = true) = 1), the probability
of suspicious people nearby is increased: P (SuspiciousPeople = true|Noise =
true) = 0.7422. However, desire ElectricalMalfunction.false(SuspiciousPeo-
ple.true) still fails to satisfy our threshold even so (0.7422 < 0.75). A lower
threshold would work in this case, but a precondition’s probability might always
be smaller than the threshold, if evidence able to increase its probability enough

4 The probabilities of the event variable states – true and false, in this case.

190 B. Luz, F. Meneguzzi, and R. Vicari

is never obtained – this exemplifies how there may be desires that are never
selected using this criterion. One might suggest simply lowering the threshold to
an extremely low value, but without other criteria we would then simply have a
desire selection process that is indifferent to the various probabilities presented.

If we use Probability Ranking desire selection, we get the following ranking:

1. Route.default(SecurityBreach.false): 0.927
2. ElectricalMalfunction.false(SuspiciousPeople.true): 0.7
3. Route.alternate(SecurityBreach.true): 0.073
4. Accident.true(Noise.true): 0.0624

The agent will desire to patrol the default route, then to establish that there
is no electrical malfunction, then to patrol the alternate route, and finally to
verify if there has been an accident, in this order, unless a belief update (e.g.,
evidence that SecurityBreach = true) causes the ranking to be modified. Note
that although the preconditioning probabilities serve as a criterion for sorting
the desires, the probability values by themselves have no impact on how often the
desires may be selected, so Accident.true(Noise.true) will be promptly selected
in the absence of higher-ranked desires regardless of the fact that its precondition
holds a low probability.

If we use Biased Lottery, we get the following list of numeric intervals for the
desires (the order is irrelevant):

– Route.default(SecurityBreach.false): [0.0, 0.526)
– Route.alternate(SecurityBreach.true): [0.526, 0.5674)
– ElectricalMalfunction.false(SuspiciousPeople.true): [0.5674, 0.9646)
– Accident.true(Noise.true): [0.9646, 1.0]

The sum of the desires’ precondition probabilities is greater than 1, so these
values are normalized in the [0, 1] interval and used to generate the intervals.
Following the algorithm, a numeric value in the [0, 1] interval is generated,
and whichever interval it belongs to determines which desire is selected – if
there were not a normalization, it could also tell us that no desire should
be selected, by not belonging to any of the intervals. In this example, desire
Route.default(SecurityBreach.false) has a 0.526 probability of being selected,
desire Route.alternate(SecurityBreach.true) has a 0.0414 probability of be-
ing selected, desire ElectricalMalfunction.false(SuspiciousPeople.true) has
a 0.3972 probability of being selected, and desire Accident.true(Noise.true) has
a 0.0354 probability of being selected, each one competing with the others. So,
if the randomly generated number is 0.3 (and thus within the first interval), the
agent performs a patrol through the default route, or if the random number is
0.55, the patrol is through the alternate route.

If we use Multi-Desire Biased Random Selection, we get the following list of
numeric intervals for the desires (in any order):

– Route.default(SecurityBreach.false): [0.0, 0.927]
– Route.alternate(SecurityBreach.true): [0.0, 0.073]

Alternatives to Threshold-Based Desire Selection in Bayesian BDI Agents 191

– ElectricalMalfunction.false(SuspiciousPeople.true): [0.0, 0.7]
– Accident.true(Noise.true): [0.0, 0.0624]

For each of the four desires a numeric value in the [0, 1] interval is generated, and
if the numeric value belongs to the corresponding desire’s numeric interval, the
desire is selected. In this example, desiresRoute.default(SecurityBreach.false),
Route.alternate(SecurityBreach.true),ElectricalMalfunction.false(Suspici-
ousPeople.true) and Accident.true(Noise.true) have, respectively, 0.927, 0.073,
0.7 and 0.0624 probabilities of being selected when given the chance (i.e., when a
random number is generated and checked against the interval designated to the
desire). The selection of desires ElectricalMalfunction.false(SuspiciousPeo-
ple.true) and Accident.true(Noise.true) is fully independent of the others, while
desires Route.default(SecurityBreach.false) and Route.alternate(Security-
Breach.true) conflict with each other, and, in cases where one of them is se-
lected, this prevents the other from getting its chance.

As a subsequent step, we describe initial experiments using the Watchman
agent to gather data and analyze behavior obtained with the use of the presented
desire selection algorithms.

5.3 Experimentation

In order to further illustrate agent behavior while using the various presented
desire selection algorithms, we implement limited experiments5.

For our experiments, we create an environment corresponding to the installa-
tion, responsible for generating events and providing information on their occur-
rence to inquiring watchmen (agents). All agents in the experiments are mapped
to the same environment, and are thus faced with the same installation events,
despite the nondeterministic nature of the latter.

In each cycle, the installation computes the occurrence of a security breach, an
electrical malfunction and an accident, each with their own probabilities, which
are only visible to the environment. These probabilities do not have an obligation
to reflect the probabilities found in the watchman’s beliefs, as the latter are but
estimates. Nevertheless, conceptually speaking, we assume that, ordinarily, an
agent’s beliefs have at least some have merit to them, and therefore represent
information relating to the environment with some reliability. Our experiments
are limited in that the environment resets the agents every cycle, and these
select desires and execute the applicable plans all in one of their own cycles.
These plans may or may not be successful in fulfilling the corresponding desires.

The default route, which is the route associated with the belief that there is
not a security breach, has a much lower chance of letting the watchman encounter
one, but it is also significantly shorter, and the watchman usually chooses to pa-
trol it, under normal circumstances. The alternate route is the opposite: on it,

5 In the Java programming language, using jSMILE, the SMILE [10] library wrapper
for Java – SMILE is a library for reasoning in graphical probabilistic models, such
as bayesian networks. Our experiment implementation is available at
http://www.inf.ufrgs.br/~bmluz/.

http://www.inf.ufrgs.br/~bmluz/

192 B. Luz, F. Meneguzzi, and R. Vicari

the watchman has a greater chance of detecting a security breach, but its length
makes it so that a patrol without detecting a security breach is considered unde-
sirable. Aside from detecting security breaches, the watchman must also beware
of electrical malfunctions and accidents, making the appropriate investigations.
The data presents the desire selections and their implications, specially in terms
of detection counts and distance patrolled per security breach.

Our experiments run over 10000 cycles, with the installation having a 0.005
probability of a security breach along the default route, a 0.1 probability of
a security breach along the alternate route, a 0.05 probability of an electrical
malfunction and a 0.05 probability of an accident. Also, the assigned lengths
for the default and alternate routes are 10 and 30, respectively. We present data
from Experiments (i) and (ii) in Tables 1 and 2, where the columns refer to, from
left to right: the number of patrols on the default route (Pat(D)#), the number
of security breaches detected along the default route (SecBr(D)#), the number
of patrols on the alternate route (Pat(A)#), the number of security breaches
detected along the alternate route (SecBr(A)#), the average distance patrolled
per security breach detected (Dist:SecBr), the number of electrical malfunction
investigations (Inv(ElMa)#), the number of electrical malfunction detections
(ElMa#), the number of accident investigations (Inv(Acc)#), and the number of
accident detections (Acc#). Electrical malfunction and accident investigations
refer to the times when the corresponding desires have been selected and are
pursued. The rows refer to: an agent that uses threshold-based selection (THR),
an agent that uses ProbabilityRanking (PRK), the average of five agents that
use Biased Lottery (BLO) and the average of five agents that use Multi-Desire
Biased Random Selection (MDR). We use multiple agents for Biased Lottery
and Multi-Desire Biased Random Selection due to the variation that results
from their nondeterminism.

– Experiment (i): the environment does not provide evidence other than what
is necessary for desire satisfaction evaluation – i.e., evidence on event variables
Route, ElectricalMalfunction and Alarm, when the events in question do oc-
cur and the agent specifically asks about them (when executing a corresponding
plan – this invariably means attempting to obtain evidence, in our experiments).
In total, there are 54 security breaches along the default route, 1045 security
breaches along the alternate route, 504 electrical malfunctions and 491 accidents.
Agent THR puts all its efforts into patrolling the default route, ignoring all the
other desires, meaning that it does not ever investigate electrical malfunctions
or accidents; also, it presents a comparatively poor distance-to-security-breach
ratio. Agent PRK does the same, because each cycle the situation in the en-
vironment is renewed (all possible events are computed again) – meaning that
any updates to the agents in previous cycles become obsolete and the agents are
reset. Agent BLO divides its efforts among the desires following a probability
distribution that roughly resembles the sizes of the intervals generated using
the desires’ precondition probabilities (see Section 5.2) – an “ideal” run (one
without nondeterministic variations) would have 5260 patrols along the default
route (0.526 selection probability), 414 patrols along the alternate route (0.0414

Alternatives to Threshold-Based Desire Selection in Bayesian BDI Agents 193

selection probability), 3972 electrical malfunction investigations (0.3972 selec-
tion probability) and 354 accident investigations (0.0354 selection probability).
Agent MDR covers the possible desires following a probability distribution where
only the patrols actually compete with each other (as a result of conflict; we or-
der the list of desires in ascending order of precondition probability), i.e., this
watchman does not refrain from investigating electrical malfunctions and acci-
dents because of the patrols, and other than this the precondition probabilities
serve as references for the selection rates. Agents BLO and MDR present better
(i.e., smaller) distance-per-security-breach ratios than THR and PRK.

Table 1. Data gathered in Experiment (i)

Pat(D)# SecBr(D)# Pat(A)# SecBr(A)# Dist:SecBr Inv(ElMa)# ElMa# Inv(Acc)# Acc#

THR 10000 54 0 0 1851.8519 0 0 0 0
PRK 10000 54 0 0 1851.8519 0 0 0 0
BLO 5274 32 422 42 883.7838 3956 205 348 15
MDR 8606 47 702 68 931.4783 7009 351 630 29

– Experiment (ii): the environment always provides evidence of Alarm = true
to the agents, in addition to the cases expected in Experiment (i). In total, there
are 49 security breaches along the default route, 991 security breaches along the
alternate route, 488 electrical malfunctions and 547 accidents. Agent THR puts
all its efforts into investigating electrical malfunctions, doing nothing else. Agent
PRK does the same. Agent BLO divides its efforts among the desires now giving
less attention to the default route, more attention to the alternate route, less
attention to investigating electrical malfunctions and more attention to investi-
gating accidents – an ideal run would have 1364 patrols along the default route
(0.1364 selection probability), 3552 patrols along the alternate route (0.3552)
selection probability, 4333 electrical malfunction investigations (0.4333 selection
probability) and 751 accident investigations (0.0751 selection probability). Agent
MDR displays the same changes in behavior from Experiment (i) as agent BLO
in terms of desire selection rates, except that only the patrols compete with each
other.

Table 2. Data gathered in Experiment (ii) – Alarm = true

Pat(D)# SecBr(D)# Pat(A)# SecBr(A)# Dist:SecBr Inv(ElMa)# ElMa# Inv(Acc)# Acc#

THR 0 0 0 0 - 10000 488 0 0
PRK 0 0 0 0 - 10000 488 0 0
BLO 1369 7 3538 348 337.5493 4316 205 777 43
MDR 2736 14 5238 512 350.7605 8813 432 1550 85

Threshold-based selection is better suited to clinging to desires that are sup-
ported by high probabilities at the moment than the other algorithms, since they
are more prone to being “distracted” by other desires. Since in our experiments
the agent is reset every cycle, Probability Ranking yields the same practical re-
sults as threshold-based selection (there is always a desire selected by the latter),
instead of giving a chance to desires supported by low probabilities – this would

194 B. Luz, F. Meneguzzi, and R. Vicari

allow for particularly strong cases of said distraction. We can see that Biased
Lottery and Multi-Desire Biased Random Selection make the agent spread its
efforts among the desires, so they are more varied, less predictable and more
inclusive. Neither of these blindly cling to certain desires, and this can be a
strength or a weakness depending on the context. Multi-Desire Biased Random
Selection is the only algorithm here that usually selects more than one desire per
cycle, and in our experiments the agent in question immediately proceeds to deal
with them all in the same cycle, taking a more aggressive approach. If resources
were taken into account, however, this could be considered inappropriate.

6 Conclusions

From a conservative standpoint, one may argue that threshold-based selection
is sensible as it is, as resources will not be used without justification. However,
we believe that ignoring desires that are probabilistically irrelevant in desire
selection is not necessarily a rational choice, since it precludes an agent from
exploring an environment. In response, we have developed three desire selection
strategies that try to overcome this limitation.

In Probability Ranking selection, desires that would be ignored by threshold-
based selection do get a chance, though only after the ones that would be ac-
cepted by it. However, it might be undesirable to select a desire preconditioned
on a belief holding a very low probability just because there is no better alter-
native.

In Biased Lottery, we rely on nondeterminism to consider all desires while en-
suring that desires backed by beliefs holding high probabilities should be selected
more often than those backed by beliefs holding low probabilities, in proportion
to their probabilities. Ideally, the probability of selecting each desire would be
the same as the one associated with its precondition. However, in the cases where
the total sum of desire probabilities is greater than 1, the competition between
the desires in question proportionally reduces the individual probabilities of se-
lection for each desire.

In Multi-Desire Biased Random Selection, we also rely on nondeterminism for
the same reason. A key difference is that the number of desires possibly selected
is not limited to one, and non-conflicting desires are considered independently
of one another.

The nondeterministic nature of Biased Lottery and Multi-Desire Biased Ran-
dom Selection makes it so that the watchman agent’s behavior may not be
precisely anticipated by a third party (e.g., another agent) intent on exploit-
ing it. Such an exploitation could involve forging an accident to drive away
suspicion arising from a noise heard by the watchman, for instance. Hiring an
employee to plant false evidence of an electrical malfunction would also impact
the watchman’s beliefs, as a second, albeit more roundabout method of attempt-
ing to manipulate the watchman. This is an agent trait that we now describe as
unpredictable proactiveness : agent behavior at a specific point in time cannot
be completely determined by analyzing its beliefs, and is thus resistant to ex-
ploitation. Finally, our future work aims to evaluate the algorithms developed

Alternatives to Threshold-Based Desire Selection in Bayesian BDI Agents 195

in different scenarios, considering de-selection of desires, and to investigate joint
uses of Biased Lottery and Multi-Desire Biased Random Selection while consid-
ering desire incompatibilities.

References

[1] Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-Agent Systems
in AgentSpeak Using Jason. John Wiley & Sons, Ltd. (2007)

[2] Bratman, M., Israel, D.J., Pollack, M.E.: Plans and resource-bounded practical
reasoning. Computational Intelligence 4, 349–355 (1988)

[3] Carrera, Á., Iglesias, C.A.: B2DI A Bayesian BDI Agent Model with Causal Belief
Updating based on MSBN. In: Proceedings of the 4th International Conference on
Agents and Artificial Intelligence (ICAART 2012), pp. 343–346. SciTePress (2012)

[4] Fagundes, M.S., Vicari, R.M., Coelho, H.: Deliberation process in a BDI model
with bayesian networks. In: Ghose, A., Governatori, G., Sadananda, R. (eds.)
PRIMA 2007. LNCS, vol. 5044, pp. 207–218. Springer, Heidelberg (2009)

[5] Jennings, N.R.: On agent-based software engineering. Artificial Intelligence 117,
277–296 (2000)

[6] Jensen, F.V., Nielsen, T.D.: Bayesian Networks and Decision Graphs, 2nd edn.
Springer (2007)

[7] Kieling, G., Vicari, R.M.: Insertion of probabilistic knowledge into BDI agents
construction modeled in Bayesian Networks. In: International Conference on Com-
plex, Intelligent, and Software Intensive Systems (CISIS 2011), vol. 1, pp. 115–122.
Conference Publishing Services (CPS), Seoul, California (2011)

[8] Móra, M.C., Lopes, J.G., Viccari, R.M., Coelho, H.: BDI models and systems:
Reducing the gap. In: Papadimitriou, C., Singh, M.P., Müller, J.P. (eds.) ATAL
1998. LNCS (LNAI), vol. 1555, pp. 11–27. Springer, Heidelberg (1999)

[9] Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan-Kaufmann, San Mateo (1988)

[10] Decision Systems Laboratory - University of Pittsburgh: Genie & smile (May
2012), http://genie.sis.pitt.edu/

[11] Rao, A.S.: AgentSpeak(L): BDI agents speak out in a logical computable language.
In: Van de Velde, W., Perram, J.W. (eds.) MAAMAW 1996. LNCS, vol. 1038,
pp. 42–55. Springer, Heidelberg (1996)

[12] Russel, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice Hall,
New Jersey (1994)

http://genie.sis.pitt.edu/

Engineering Pervasive Multiagent Systems

in SAPERE

Ambra Molesini1, Andrea Omicini1, Mirko Viroli1, and Franco Zambonelli2

1 Dipartimento di Informatica–Scienza e Ingegneria (DISI)
Alma Mater Studiorum–Università di Bologna, Italy

{ambra.molesini,andrea.omicini,mirko.viroli}@unibo.it
2 Dipartimento di Scienze e Metodi dell’Ingegneria (DISMI)

Università degli Studi di Modena e Reggio Emilia, Italy
franco.zambonelli@unimore.it

Abstract Given the growth of agent-based models and technologies in
the last decade, nowadays the applicability of agent-oriented techniques
to the engineering of complex systems such as pervasive computing ones
critically depends on the availability and effectiveness of agent-oriented
methodologies. Accordingly, in this paper we take SAPERE pervasive
service ecosystems as a reference, and introduce a novel agent-oriented
approach aimed at engineering SAPERE systems as multi-agent systems.

1 Introduction

The ICT landscape has dramatically changed with the advent of mobile and per-
vasive computing technologies. The dense spread in our everyday environment
of sensor networks, RFID tags, along with the mass diffusion of always-on-line
smart phones and mobile social networking, is contributing to shape an integ-
rated infrastructure that can be used for the provisioning of innovative general-
purpose digital services [1,2]. In particular, such infrastructure will be used to
ubiquitously access services improving interaction with the surrounding physical
world as well as the social activities therein. Users will be expectedly able to de-
ploy customised services, making the overall infrastructure as open as the Web
currently is [3].

According to the above trends, a great deal of research activity in pervasive
computing and service systems has been recently devoted to solve problems asso-
ciated to the design and development of effective pervasive service systems. They
include: supporting self-configuration and context-aware spontaneous composi-
tion; enforcing context-awareness and self-adaptability; and ensuring that ser-
vice frameworks can be highly-adaptive and very long-lasting [4]. Unfortunately,
most of the solutions so far are proposed in terms of “add-ons” to be integrated
in existing frameworks [5,6,7]. The result is often an increased complexity of
current frameworks and, in the end, a lack of clean and usable methodological
approaches to the engineering of complex pervasive services systems.

Against this background, here we elaborate on the SAPERE novel approach
to the engineering of complex pervasive service system [8]. SAPERE (short for

M. Cossentino et al. (Eds.): EMAS 2013, LNAI 8245, pp. 196–214, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Engineering Pervasive Multiagent Systems in SAPERE 197

“Self-Aware PERvasive service Ecosystems”) tackles the problem of engineer-
ing distributed pervasive service systems by a foundational re-thinking of dis-
tributed systems, i.e., grounding on a nature-inspired [9,10], and specifically
bio-chemically inspired approach, to effectively support context-awareness, spon-
taneous service composition, and self-adaptivity. Specifically, SAPERE attacks
the program of engineering adaptive pervasive service systems by:

– Modelling and architecting a pervasive infrastructure as a non-layered spa-
tial substrate, hosting the execution of an ecosystem of distributed soft-
ware agents, each associated to the various individual components of the
infrastructure—e.g., devices, sensors, or software services.

– Exploiting the spatial substrate as a sort of shared coordination medium
[11] for the agents of the ecosystem. Such a substrate embeds the basic co-
ordination laws (eco-laws), which have a bio-chemical inspiration (i.e., agents
manifest their activities by data-items acting as sort of chemical molecules
that interact by bonding with each other and diffusing across space).

– Making the overall ecosystem behaviour be driven by the spontaneous dy-
namics resulting from applying the eco-laws, leading to the unplanned, i.e.,
self-organising, composition of distributed components, and inherently sup-
porting dynamic context-aware and self-adaptive behaviour.

The SAPERE approach makes it easy to develop adaptive pervasive, due to both
its rather intuitive programming model and its clean accompanying software
engineering methodology.

Accordingly, the remainder of this paper is organised as follows. Section 2 mo-
tivates the SAPERE approach and sketches its overall agent-based architecture.
Section 3 overviews and exemplifies the underlying programming model along
with its coordination model based on eco-laws. Section 4 presents the meth-
odology defined to support the design and development of complex pervasive
service systems as multi-agent systems (MAS) based on the SAPERE approach.
Section 5 discusses some related work, then Section 6 concludes the paper.

2 MAS for Pervasive Service Ecosystems in SAPERE

SAPERE targets emerging pervasive computing scenarios based on agent-based
abstractions. This calls for specific requirements for SAPERE systems (Subsec-
tion 2.1), and also leads to a specific agent-oriented meta-model (Subsection 2.2).

2.1 Basic Requirements

The first key requirement is situatedness in the physical and social environment.
In SAPERE pervasive systems, each agent represents individuals, software, and
data tightly linked to a given space-time situation, which should affect the overall
system only based on some notion of locality that can take into account physical
issues (such as the position in an articulated environment) or social ones (such

198 A. Molesini et al.

as who triggered some activity, and which are his/her social profile and relation-
ships). Accordingly, the underlying meta-model should make sure that agents
can access to (and influence) only a limited portion of the overall environment.

The second key requirement is self-adaptivity. The overall MAS should ex-
hibit the inner ability to intercept relevant distributed situations, even those not
explicitly considered at design-time, and accordingly react with no global super-
vision to achieve the overall system goals—both implicit and explicit ones. This
should be achieved by spontaneous re-distribution and re-shaping of the overall
system information and activities.

Finally, since emergent pervasive computing scenarios are based on the op-
portunistic encounter of devices, humans, data, and activities, with no prior
knowledge of each other, a high degree of openness is required, which should
reflect in the use of semantic-based and fully-decoupled interaction mechanisms.

2.2 The SAPERE Meta-model

Once the main requirements for SAPERE systems are introduced, the main
abstractions of the SAPERE meta-model can be defined, which tailors multi-
agent systems (MAS) for pervasive computing scenarios.

Agents — Agents are the main abstraction in the SAPERE model. As the loci
encapsulating autonomy and control, agents are the natural means to model
sensors and actuators of pervasive computing system, as well as software
services (i.e., web services, situation recognisers, local monitors), and the
software managing handheld devices carried by humans.

LSA — Because of the need of coordinating different kinds of entities in an
open way and without global supervision, a cornerstone of the SAPERE
approach is that agents manifest their existence in the MAS by a uniform
representation called a Live Semantic Annotation (LSA). An LSA exposes
every information about the agent (state, interface, goal, knowledge) that is
pertinent for the system: it is live since it should continuously reflect changes
in the agent state; it is semantic since it should be implicitly or explicitly
connected to the context in which such information is produced, interpreted
and manipulated; and it has the form of an annotation, i.e., a structured
piece of information resembling a resource description—as in RDF.

LSA-space — Manifestation of LSAs is supported by the so-called LSA-space,
acting as the true fabric of all interactions. There, LSAs are injected by
agents, float, and evolve, ultimately reifying all the required information
about system activities and processes. The LSA-space is distributed among
all devices of the pervasive computing system: the portion of the LSA-space
that represents a single locality of the environment is called local LSA-space.

LSA bonding — In order to make any agent act in a meaningful way with
respect to the context in which it is situated, special mechanisms are needed
to control the sphere of influence of each agent. To this end, LSAs can include
bonds (i.e., references) to other LSAs in the same context. Only via a bond
to another LSA an agent can read its information, inspect the state/interface
of another agent, and act accordingly.

Engineering Pervasive Multiagent Systems in SAPERE 199

Eco-laws — Because of adaptivity, while agents enact their individual be-
haviour by observing their context and updating their LSAs, global
behaviour (i.e., global coordination in the MAS) is enacted by rules
manipulating the LSA-space, called eco-laws. Eco-laws can perform
deletion/update/movement/re-bonding actions applied to a small set of
LSAs in the same locality—similarly to how chemical laws affect molecules.

Thus, agents inject LSAs in the space, which by proper diffusion and aggregation
eco-laws establish fields data structures [12,13,14] of LSAs, which cover subparts
of the network and carry information about the originating LSAs (and agent)
and its position in the network. Any agent interested in reading such information
will then autonomously manifest this fact in its LSA, which by proper bonding
eco-laws will then bond to the local LSA of the field. After all the required
information has been read, the agent can affect the field originator by injecting
itself an LSA, which spreads back, reach the originator’s side, and is read through
the same bonding mechanism.

3 Programming SAPERE Systems: API and Examples

In this section we overview how SAPERE applications can be programmed, by
introducing some of the API of the SAPERE middleware and exemplifying its
usage. While the whole articulation of SAPERE programming cannot be fully
described here, we intend at least to give readers a clue, and also enable them
to better understand the overall SAPERE development methodology.

As for any distributed environment, the execution of SAPERE applications is
supported by a middleware infrastructure [15]. The infrastructure is lightweight,
and enable a SAPERE node to be installed in tablets and smartphones. From
the operational point of view, all SAPERE nodes are at the same level since
the middleware code they run could support the same services, and provides the
same set of functions—i.e., hosting the LSA space and the eco-laws engine.

From the viewpoint of the individual agents constituting the basic execution
unit, middleware provides them with an API for advertising themselves via LSAs,
and to support LSA continuous updating. In addition, API enables agents to
detect local events, such as the change of some LSAs, or, the enactment of some
eco-laws on available LSAs. Eco-laws are built as a set of rules embedded in
SAPERE nodes, each hosting a local LSA-space. For each node, the same eco-
laws apply to rule the dynamics of both local LSAs (in the form of bonding,
aggregation, and decay), and non-locally-situated LSAs (via the spreading eco-
law that can propagate LSAs through distributed nodes).

From the viewpoint of the underlying network infrastructure, the middleware
transparently absorbs dynamic changes at the arrival/dismissing of supporting
devices, without affecting the individual perception of the spatial environment.

3.1 The SAPERE API

In the SAPERE model, each agent executing on a node takes care of (i) initial-
ising at least one LSA, and possibly more, (ii) injecting them on the local LSA

200 A. Molesini et al.

AgentNoiseSensor {

init() {

float nl = sample();

injectLSA([sensor-type = noise; accuracy = 0.1; noise-level = nl]);

}

run() {

while(true) {

sleep (100);

float nl = sample();

updateLSA(noise-level = nl);

} } }

Fig. 1. Pseudo-code of a noise sensor

space, and (iii) keeping the values of such LSAs updated to reflect its current
situation. Each agent can modify only its own LSAs, and eventually read the
LSAs to which has been linked to by a proper bonding eco-law. Moreover, LSAs
can be manipulated by eco-laws, as explained in the following sections.

The SAPERE middleware provides agents with the following API:

– injectLSA(lsa) is used by agents to inject an LSA into the tuple space.
Each agents must inject at least one LSA at initialisation to exist within the
SAPERE ecosystem.

– updateLSA(field, new-value)makes agents atomically update some fields
of an LSA to keep it alive. The idea is that specific threads inside agents are
launched to ensure that the values of LSAs to be kept alive are promptly
updated.

– A set of onEcoLawEvent(lsa) methods makes it possible for an agent to
sense and handle whatever events occur on its LSAs. For example, the
onBond(lsa) method allows the event represented by the LSA to be bond
with another LSA matching the former.

As a first example, Figure 1 reports the (pseudo-)code of an agent that acts as
a noise sensor, injecting an LSA with noise level, and periodically updating it.

3.2 Matching and Bonding

More generally, LSAs are built as descriptive tuples made by a number of fields
in the form of “name-value” properties, and possibly organised in a hierarchical
way: the value of a property can be a SubDescription—a set of “name-value”
properties, again. By building over tuple-based models [11], the values in a LSA
can be either actual – yet possibly dynamic and changing over time (which makes
LSAs live), or formal, that is, not tied to any actual value unless bond to one
and representing a dangling connection (typically represented with a “?”).

Pattern matching between LSAs – which is at the basis of the triggering of
eco-laws – happens when all the properties of a description match, i.e., when
for each property whose names correspond (i.e., are semantically equivalent)
the associated values match. As in classical tuple-based approaches, a formal

Engineering Pervasive Multiagent Systems in SAPERE 201

Agent AccessNoiseInformation {

init() {

injectLSA(sensor-type = noise; noise-level = "?");

}

onBond(LSA b) {

float nl = b.noise-level();

print("current level of noise = "+ nl);

} }

Fig. 2. An agent that inject an LSA matching with that of the noise sensor and enables
it to access the corresponding noise-level information

value matches with any corresponding actual value [11]. For instance, the LSA
of the noise sensor in Figure 1 can match the following (sensor-type = noise;

noise-level = ?), expressing a request for acquiring the current noise level.
The properties in the first LSA (e.g., accuracy) are not taken into account by
the matching function which considers only inclusive match. The basic reaction
of the LSA-space in the presence of two matching LSAs is to bond them.

Bonding upon match is the primary form of interaction among co-located
agents in SAPERE—i.e., within the same LSA-space. In particular, bonding
can be used to locally discover and access information, as well as to get in touch
with and access local services—all of which with a single and unique adaptive
mechanism. Basically, the bonding eco-law implements a sort of a virtual link
between LSAs, whenever two LSAs (or some SubDescriptions within) match, by
connecting the respective formal and actual values in a sort of bidirectional and
symmetric link: the two agents holding bond LSAs can read each other’s LSAs,
thus enabling exchange of information.

Thus, once a formal value of an LSA matches with an actual value in an LSA it
is bound to, the corresponding agent can access the actual values associated with
the formal ones. For instance, the AccessNoiseInformation agent in Figure 2
injects an LSA matching that of Figure 1, thus enabling AgentNoiseSensor in
Figure 1 to access the corresponding noise level information.

Bonding is automatically triggered upon match—that is, the middleware looks
for possible bonding upon any relevant change to the LSAs. Analogously, de-
bonding takes place automatically whenever matching conditions no longer hold
due to some changes to the actual “live” values of some LSAs.

3.3 From Bonding to Service Composition

The above example shows how to program SAPERE agents and, depending on
the LSAs injected by such agents, how bonding takes place along with exchange
of information. However, it is also possible to express a formal field with the
syntax “!”, to represent a field that is formal unless the other “?” field has been
bond. This makes it possible for an LSA to express parameterised services, where

202 A. Molesini et al.

“?” represents the parameter of the service, and “!”field represents the answer
that it is able to provide once it has been filled with the parameters.

It should be noted that the bonding eco-law mechanism can be used to enable
two agents to spontaneously get in touch with each other and exchange inform-
ation with a single operation—and, in the case of “!”, automatically composing
two components and have the first one automatically invoking the services of
the second one. That is, unlike traditional discovery of data and services, bond-
ing makes it possible to compose services without distinguishing between the
roles of the involved agents, and subsuming the traditionally-separated phases
of discovery and invocation.

3.4 Aggregation, Decay, and Spreading

The additional eco-laws of aggregation, spreading, and decay can be triggered by
agents simply by injecting LSAs with specific properties.

The aggregation eco-law means to aggregate LSAs together so as to compute
summaries of the current system context. An agent can inject an LSA with
an aggregate and type properties. The aggregate property identifies a function to
base the aggregation upon. The type property identifies which LSAs to aggregate.
In particular, it identifies a numerical property of LSAs to be aggregated. In the
current implementation, the aggregation eco-law is capable of performing most
common order and duplicate insensitive (ODI) aggregation functions [16,17].

The decay eco-law enables the vanishing of components from the SAPERE
environment: it applies to all LSAs that specify a decay property to update the
remaining time to live according to the specific decay function, or actually re-
moving LSAs that, based on their decay property, are expired. For instance,
[sensor-type = noise; noise-level = 10; DECAY=1000], makes LSAs be
automatically deleted after a second.

The spreading eco-law – unlike the two above that act on a single LSA space
– enable non-local interactions, and specifically provides a mechanism to send
information to remote LSA spaces, and make it possible to distribute information
and results across LSA spaces. One of the primary usages of the spreading eco-
law is to enable searches for components that are not available locally, and vice
versa to enable the remote advertisement of services. For an LSA to be subject
to the spread eco-law, it has to include a diffusion field, whose value (along
with additional parameters) defines the specific type of propagation.

3.5 Towards Self-organisation Patterns

The eco-laws described above represent a necessary and complete to effectively
support self-organising, nature-inspired interactions. In fact, by shaping LSAs
so as to properly trigger eco-laws in a combined way, it is possible to realise a
variety of self-adaptive and self-organising patterns.

For example, aggregation applied to the multiple copies of diffused LSAs can
reduce the number of redundant LSAs so as to form a distributed gradient struc-
ture, also known as computational force fields [18]. As detailed in [19,12,13], many

Engineering Pervasive Multiagent Systems in SAPERE 203

different classes of self-organisedmotion coordination schemes, self-assembly, and
distributed navigation can be expressed in terms of gradients. By bringing also
the decay eco-law into play, it is possible to build pheromone-based distributed
data structures. Further examples can be found in [14].

4 Engineering SAPERE Systems: The Methodology

According to Osterweil [20] “software processes are software too”: so, in order to
build the SAPERE methodology, we follow a path that corresponds to the design
of a software system. Thus, we first define the set of the SAPERE methodology
requirements (Subsection 4.1); then we design the SAPERE methodology process
(Subsection 4.2).

4.1 Requirements for the SAPERE Methodology

The first, obvious requirement is that the SAPERE methodology should support
the design and development of SAPERE pervasive service ecosystems according
to the above-mentioned meta-model (Subsection 2.2). From the analysis of the
state-of-the-art in the Software Engineering area [21] the following methodology
requirements can be pointed out:

– Due to the nature of the application domain, the more appealing process
model is seemingly the iterative model, allowing engineers to iterate the dif-
ferent phases in order to obtain the best design.

– The SAPERE process should be organised in five main phases (Require-
ments Analysis, Analysis, Architectural Design, Detailed Design, and Imple-
mentation) in order to maintain the coherence with the general structure
of standard design methodologies. This would make it easier understanding
the methodology also for non-domain experts.

– The first two phases (Requirements Analysis, Analysis) should be very sim-
ilar to the traditional analysis phases. On the one hand, this should make
the adoption of the methodology easier to non-domain expert; on the other
hand, it is generally understood that the analysis phase investigates the so
called “problem domain”, and the “problem” is not directly related to the
technologies adopted for resolving it.

– The methodology should provide specific activities supporting the designer
in the choice of architectural patterns and self-∗ mechanisms, in order to
address the modelling of coordination and services. Coordination should be
considered as an emergent property, so that a specific self-organising pattern
could be chosen in order to obtain the required coordination goal.

– Since SAPERE deals with the investigation of self-aware pervasive eco-
systems, the SAPERE methodology should deal with specific activities of
simulation and validation in the Architectural Design phase. In particular,
simulation should take inspiration from the existing related works such as
[22,23], where a suite of activities such as “Exact Verification”, “Simula-
tion”, and “Tuning” are already defined in a method fragment. However, the

204 A. Molesini et al.

SAPERE methodology should not adopt the proposed fragment as is, but
should instead provide a specific version of the aforementioned activities—
namely, “Exact Prediction”, “Approximate Prediction”, “Simulation”, and
“Tuning”. Also, the methodology should provide specific activities for “Val-
idation” and “Quantitative Measures” (respectively, in the Detailed Design
and in the Implementation phases) which could provide engineers with ef-
fective data and information about the behaviour of the running system.

– From the meta-model point of view, taking inspiration from the work done
in the AOSE field [21], the methodology meta-model should be created ac-
cording to the transformational structure – i.e., each phase/domain should
feature its own set of abstractions as in Model-Driven Engineering – for the
sake of clarity, and to make it easier to move from one phase to another.

– The meta-model abstractions belonging to the Requirements Analysis and
Analysis phases should come both from traditional problem analysis and
from some AOSE methodologies where environment abstractions and envir-
onment topology are first-class abstractions. This allows the environment to
be taken into account since the first phases of the process.

– The meta-model abstractions belonging to Architectural Design and Detailed
Design should be created ex-novo drawing from the SAPERE meta-model
described in Section 2. In particular, the work done in [8] about the chemical
metaphor is very useful for the identification of the design abstractions.

4.2 The SAPERE Process

The SAPERE methodology is illustrated according to the IEEE-FIPA Stand-
ard Design Process Documentation Template (DPDT) [24], developed as an
internationally-recognised standard in order to facilitate the understanding of
the methodology, as well as the comparison with others. For the sake of brevity,
in the following we outline just the main features of the SAPERE methodology.

Requirements
Analysis Analysis Architectural

Design
Detailed
Design

Implementation

Phase

Fig. 3. The SAPERE methodology lifecycle

Engineering Pervasive Multiagent Systems in SAPERE 205

Fig. 4. The SAPERE methodology meta-model

The Lifecycle. The SAPERE methodology lifecycle is an iterative process
composed by five main phases: Requirements Analysis, Analysis, Architectural
Design, Detailed Design, and Implementation (Figure 3).

The Meta-model. The meta-model of the SAPERE methodology is reported
in Figure 4. On the one hand, it complies with the transformational structure (see
Subsection 4.1); on the other hand, it is organised in four different domains re-
flecting the first four methodology phases. Regarding the Implementation phase,
a specific meta-model is not required here since the design abstractions have to
be mapped onto the SAPERE middleware abstractions. Here we only report the
ideas that inspired the meta-model construction. In particular, the abstractions

206 A. Molesini et al.

of the Detailed Design phase come from the SAPERE abstract model, whereas
the abstractions of the Architectural Design have many sources: (i) the SAPERE
abstract model – Annotation, Manifest, Context, Behaviour, Place, Topology –,
(ii) the self-organisation domain – SelfOrganising Pattern, and SelfOrganising
Mechanism –, and (iii) the AOSE methodologies—Role.

For the abstractions of the Analysis phases we take inspiration from the main
AOSE methodologies [21]. In particular, for the environmental and interaction
aspects we adopt the SODA style, since the SODA methodology [25] specifically
focuses on the modelling and design of environment and interaction [26]. Envir-
onment modelling starts since the Requirements Analysis phase (Legacy Envir-
onment), then during the Analysis phase we derive the services (Service) from
both the system requirements (Requirement) identified in the previous phase,
and from legacy resources. Also, the environment topology is modelled since the
Analysis phase (Virtual Topology).

Interaction issues are captured in the Requirements Analysis by the Relation
concept, which represents any kind of relationships among requirements, and
between requirement and legacy environment. In the Analysis phase, the Relation
generates – red arrow in Figure 4 – both Interaction and Constraint. Interactions
represent the acts of interaction among Tasks, among Services and between Tasks
and Services ; Constraints, instead, enable and bound the entities’ behaviour.

Finally, in order to correctly model the requirements, in the Analysis phase
we decided to perform first a goal-oriented analysis (Goal), then to derive tasks
(Task) by goals—as done in [27].

The Phases. Here we introduce the five SAPERE methodology phases, by
shortly discussing the high-level process diagrams.

Figure 5(left) presents the process diagram of the Requirements Analysis
phase, composed by three main activities, namely: Requirements Modelling, Leg-
acy Enviroment Modelling, Relations Modelling. There, requirements, legacy re-
sources and relations, and dependencies among them are analysed. In this phase,
traditional techniques coming from the AOSE field are adopted for analysing
both the requirements and the legacy environment.

Figure 5(right) presents the process diagram of the Analysis phase. The Ana-
lysis is composed by five main activities. In particular, Goals Analysis and Task
Analysis lead the engineers to identify firstly the system’s goals and then the
tasks necessary to accomplish them. Services Analysis is devoted to derive and
to analyse the system’s services coming both from the legacy environment and
from the system’s requirements, while Virtual Topology Analysis analyses the
system’s environment topology. Finally, Interactions Analysis and Constraints
Analysis respectively accounts for the interactions among system’s entities and
the possible constraints about entities behaviours, or about the system environ-
ment.

Figure 6 presents the process diagram of the Architectural Design phase. This
phase is composed by nine main activities, namely: Topologies Design, SelfOr-
ganisations Design, Roles Design, Context Awareness Design, Models Extraction,
Exact Prediction, Approximate Prediction, Simulation, and Tuning. The process

Engineering Pervasive Multiagent Systems in SAPERE 207

Requirements
Modelling

Legacy Environment
Modelling

Relations
Modelling

yes

Are the models well specified?

no

Activity

Goals Analysis Services Analysis

Interactions
Analysis

yes

Are the models well specified?

no

Tasks Analysis

Virtual Topology
Analysis

Constraints
Analysis

Fig. 5. Requirements Analysis (left) and Analysis (right) activities diagrams

here is more complex since the system, following problem analysis, have to be de-
signed according to the SAPERE approach. In particular, the first four activities
– Topologies Design, SelfOrganisations Design, Roles Design, Context Awareness
Design – define the models for system roles (their behaviours and interactions),
the self-organisation mechanisms for the services identified in the analysis, the
requisite context or situation recognition in terms of roles and their communica-
tions, and the topological structure of the environment. Then, taking inspiration
from [22,23], we design five activities (Models Extraction, Exact Prediction, Ap-
proximate Prediction, Simulation, and Tuning) devoted to system prediction and
simulation. Thus, the effect of the architectural design on the system behaviour
could be verified through the study of emerging properties. Adopting simulation
during architectural design makes it possible for engineers the early discovery of
problems due to either unsatisfactory architectural choice or inaccurate problem
analysis.

Figure 7(left) presents the process diagram of the Detailed Design phase.
This phase is composed by five main activities, namely: Eco-Laws Design, Agents
Design, Neighbourhood Design, Bonds Design, Validation. The first four activities
are devoted to the detailed design of system according to the SAPERE abstract
model, while Validation allows engineers to effectively validate the behaviour of
the whole system entities before starting the implementation phase.

Finally, Figure 7(right) presents the process diagram of the Implementation
phase. This phase is composed by six main activities, namely:Middleware Adapt-
ation, Coding, WhiteBox Testing, BlackBox Testing, SystemTesting, and Quant-
itative Measures. Middleware Adaptation plays a key role in this phase since in

208 A. Molesini et al.

Roles Design

yes

Are the models well specified?

no

Simulation

SelfOrganisations
DesignTopologies Design

Models Extraction

Exact Prediction?

 Exact Prediction

yes

Approximate
Prediction

Approximate Prediction?
yes

no

Modelling Refined

Tuning

Are the models well specified?

Remodelling

yes

no

Context
Awareness

Design

ConCCCCCCC tttext tt

Fig. 6. The Architectural Design activities diagram

this activity the detailed design entities have to be mapped onto the middle-
ware entities. This activity should be “trivial” – i.e., one-to-one mapping – if the
middleware totally supports the detailed design entities, otherwise it could be
very complex and require a lot of re-engineering work, such as the ex-novo cre-
ation of ad hoc self-organisation mechanisms. Then, Coding has to start before
WhiteBox Testing and BlackBox Testing, but after that their executions could
be interleaved. WhiteBox Testing represents the classical test activity conducted
by the system developers during the implementation, while BlackBox Testing is
conducted by team members not directly involved in the development of the sys-
tem part under test. SystemTesting represents the test of the whole system for
evaluating the system requirements satisfaction accuracy. Only when the system
developing is concluded it is possible to execute specific Quantitative Measures
– Quantitative Measures activity – for measuring system performances.

Engineering Pervasive Multiagent Systems in SAPERE 209

Eco-laws Design Agents Design

Bonds Design

yes

Are the models well specified?

no

Validation

Neighborhood
Design

Coding

Middleware
Adaptation

Quantitative
Measures

yes no

WhiteBox Testing

Are Measures ok?

 Whitebox Testing?

yes

BlackBox Testing

no

Are tests ok?

no

System Testing

yes

Are tests ok?

yes

no

Is the code finished?

no

yes

Fig. 7. The Detailed Design (left) and Implementation (right) activities diagram

5 Related Works in the AOSE Field

As far as software engineering is concerned, the key implication is that the design
and development of software systems according to a (new) paradigm can by
no means rely on conceptual tools and methodologies conceived for a totally-
different (old) paradigm [28]. Even though it is indeed possible to develop a
complex distributed system in terms of objects and client-server interactions,
such a choice appears odd and complicated when the system is a Multi-Agent
System (MAS), or, it can be assimilated to a MAS. Rather, a brand new set of
conceptual and practical tools – specifically suited to the agent-oriented abstrac-
tions – is needed to facilitate, promote, and support the development of MASs,
and to fulfil the huge potential of agent-based computing as a general-purpose
approach to the modelling and engineering of complex systems.

The definition of agent-specific methodologies is definitely one of the most
explored topics in Agent-Oriented Software Engineering (AOSE), and a large
number of AOSE methodologies – describing how the process of building a MAS
should/could be organised – has been proposed in the literature, which should
be compared to the SAPERE approach presented in this paper. For a rather
exhaustive survey of all the related activities in the AOSE field, we refer the
interested reader to [21].

210 A. Molesini et al.

Meta-model. In the same way as the SAPERE one, AOSE methodologies typ-
ically start by defining their own meta-model, identifying the basic abstractions
to be exploited in development (e.g., agents, roles, environment, organisational
structures). Based on this, they exploit and organise such abstractions so as to
define guidelines on how to proceed in the analysis, design, and development,
and on the output to produce at each stage.

Actually, several works [29,30] are focussing on the identification of appropri-
ate meta-models for AOSE methodologies and process models—where a meta-
model is intended as a rational analysis and identification of the abstractions
used in MAS development. Those efforts aims at unifying the different abstrac-
tions adopted in existing methodologies and the process models, and also at
identifying which relationships may exist among them. This may be used to
better understand the real usefulness of the abstractions, and also to improve
or unify processes and methodologies. Furthermore, those effort may help re-
searchers and practitioners to identify and develop conceptual instruments and
practical tools for an efficient processes management.

Process model. Among the different methodologies developed both in the tradi-
tional software engineering – such as Rational Unified Process (RUP) [31], OPEN
[32], Object Process Methodology (OPM) [33], OMT [34], Fusion [35] – and in
the agent-oriented world – such as PASSI [36], Gaia [37], INGENIAS [38], MES-
SAGE [39], Adelfe [40], Tropos [41], MaSE [42], SODA [25,43,44,45] etc. –, there
is a general agreement on organising the methodology process according to two
main phases: Analysis and Design. However, the different methodologies often
introduce other phases or sub-phases. In particular, the Analysis phase is typic-
ally split into Requirements Analaysis and Analysis, while the Design is typically
organised in terms of Architectural Design and Detailed Design [46]. In addition,
different methodologies guide the system development until the implementation
phase—among them RUP, OPEN, PASSI, INGENIAS, and ADELFE.

As discussed in Subsection 4.2, according to the general agreement on the main
phases of a development process, the SAPERE methodology is organised in five
main phases: Requirements Analysis, Analysis, Architectural Design, Detailed
Design, and Implementation.

Meta-model vs. process model. Quite different and heterogeneous abstractions
are adopted by the different methodologies for modelling complex MAS: typic-
ally, in the AOSE world, each methodology defines its own set of abstractions.
This is why AOSE methodologies typically start by providing the so-called ab-
stractions meta-model [30,47] that shows all the abstractions adopted by the
methodology, along with their mutual relationships.

Names for abstractions are used quite liberally: different names sometimes
refer to similar abstractions, whereas identical names may denote quite diverse
abstractions—even within one single methodology, when the same name is some-
times used for abstractions holding different meanings, depending on the different

Engineering Pervasive Multiagent Systems in SAPERE 211

process phases they belong to. For instance, the “agent” concept, quite unsur-
prisingly, is exploited by all AOSE methodologies. However, whereas in some
methodologies – such as PASSI, MaSE, and ADELFE – the agent abstraction
appears since the Analysis phase, in other methodologies – such as Tropos, Gaia,
and SODA – the agent is a concept occurring only in the Design phases. So, the
issue is not merely which abstractions meta-model is adopted by a given AOSE
methodology: but, more precisely, which abstractions are used in each phase
of the methodology, and how the different resulting abstractions meta-models
relate to each other.

Even more, also the structure of the abstractions meta-model differs a lot
among the methodologies. For example, PASSI and SODA adopt a “transforma-
tional” structure – i.e., each phase/domain has its own particular set of abstrac-
tions – taking inspiration from the Model-Driven Engineering ideas. Instead,
other methodologies such as ADELFE use the same set of abstractions, which
are refined by each phase. For a more detailed work about the study, comparison,
and fusion of some AOSE methodologies meta-models, we refer the interested
reader to [27].

Taking inspiration from the work done in the AOSE field, the SAPERE meth-
odology meta-model was in fact defined according to the transformational struc-
ture: this allow each phase to be more clearly specified, and makes it easier to
move from one phase to another—see Subsection 2.2.

6 Conclusion

The definition of a novel and coherent methodological process for the engineering
of SAPERE pervasive service ecosystems was the main motivation behind this
work. In order to allow the reader to fully understand the SAPERE process, in
this paper we first introduce the SAPERE model, then discuss how a SAPERE
system could be programmed, by providing some simple examples, finally we
illustrate the SAPERE methodology, by defining the software development pro-
cess according to the IEEE-FIPA Standard Design Process Documentation Tem-
plate (DPDT) [24].

The space available for this paper is obviously not enough to provide the
reader with all the details of the SAPERE methodology: for a full account of
the SAPERE methodology we refer the interested reader to [48]. In this paper
we discuss the main issues of the engineering of pervasive service ecosystems ac-
cording to the SAPERE approach, thus showing how agent-oriented technologies
and methodologies can be effective in the design and development of complex
software systems.

Acknowledgements. This work has been supported by the EU-FP7-FET Pro-
active project SAPERE – Self-Aware PERvasive service Ecosystems, under con-
tract no. 256873.

212 A. Molesini et al.

References

1. Krumm, J.: Ubiquitous advertising: The killer application for the 21st century.
IEEE Pervasive Computing 10(1), 66–73 (2011)

2. Zambonelli, F.: Toward sociotechnical urban superorganisms. Computer 47(8),
76–78 (2012)

3. Zambonelli, F.: Pervasive urban crowdsourcing: Visions and challenges. In: 2011
IEEE International Conference on Pervasive Computing and Communications
Workshops (PERCOM Workshops), pp. 578–583. IEEE CS Press (2011)

4. Zambonelli, F., Viroli, M.: A survey on nature-inspired metaphors for pervasive
service ecosystems. International Journal of Pervasive Computing and Communic-
ations 7(3), 186–204 (2011)

5. Babaoglu, O., et al.: Design patterns from biology for distributed computing. ACM
Transaction on Autonomous Adaptive Systems 1(1), 26–66 (2006)

6. Mamei, M., Menezes, R., Tolksdorf, R., Zambonelli, F.: Case studies for self-
organization in computer science. Journal of Systems Architecture 52(8), 443–460
(2006)

7. Kari, L., Rozenberg, G.: The many facets of natural computing. Communications
of the ACM 51, 72–83 (2008)

8. Zambonelli, F., Castelli, G., Ferrari, L., Mamei, M., Rosi, A., Di Marzo Seru-
gendo, G., Risoldi, M., Tchao, A.E., Dobson, S., Stevenson, G., Ye, Y., Nardini,
E., Omicini, A., Montagna, S., Viroli, M., Ferscha, A., Maschek, S., Wally, B.: Self-
aware pervasive service ecosystems. Procedia Computer Science 7, 197–199 (2011),
Proceedings of the 2nd European Future Technologies Conference and Exhibition
2011 (FET 2011)

9. Parunak, V.: Go to the ant: Engineering principles from natural multi-agent sys-
tems. Annals of Operations Research 75, 69–101 (1997)

10. Omicini, A.: Nature-inspired coordination for complex distributed systems. In:
Fortino, G., Badica, C., Malgeri, M., Unland, R. (eds.) Intelligent Distributed
Computing VI. SCI, vol. 446, pp. 1–6. Springer, Heidelberg (2012)

11. Gelernter, D.: Generative communication in Linda. ACM Transactions on Pro-
gramming Languages and Systems 7(1), 80–112 (1985)

12. Mamei, M., Zambonelli, F.: Programming pervasive and mobile computing ap-
plications: The TOTA approach. ACM Transactions on Software Engineering and
Methodology 18(4) (July 2009)

13. Viroli, M., Casadei, M., Montagna, S., Zambonelli, F.: Spatial coordination of
pervasive services through chemical-inspired tuple spaces. ACM Transactions on
Autonomous and Adaptive Systems 6(2), 14:1–14:24 (June 2011)

14. Fernandez-Marquez, J.L., Di Marzo Serugendo, G., Montagna, S., Viroli, M., Ar-
cos, J.L.: Description and composition of bio-inspired design patterns: A complete
overview. Natural Computing 12(1), 43–67 (2013)

15. Zambonelli, F., Castelli, G., Mamei, M., Rosi, A.: Integrating pervasive middleware
with social networks in sapere. In: 2011 International Conference on Selected Topics
in Mobile and Wireless Networking, pp. 145–150 (October 2011)

16. Nath, S., Gibbons, P.B., Seshan, S., Anderson, Z.R.: Synopsis diffusion for robust
aggregation in sensor networks. In: 2nd International Conference on Embedded
Networked Sensor Systems (SenSys 2004), pp. 250–262. ACM, New York (2004)

17. Bicocchi, N., Mamei, M., Zambonelli, F.: Self-organizing virtual macro sensors.
ACM Transaction on Autonomous Adaptive Systems 7(1) (2012)

Engineering Pervasive Multiagent Systems in SAPERE 213

18. Mamei, M., Zambonelli, F.: Field-Based Coordination for Pervasive Multiagent
Systems. In: Models, Technologies, and Applications. Springer Series in Agent
Technology. Springer (March 2006)

19. Beal, J., Bachrach, J.: Infrastructure for engineered emergence on sensor/actuator
networks. IEEE Intelligent Systems 21(2), 10–19 (2006)

20. Osterweil, L.J.: Software processes are software too. In: 9th International Con-
ference on Software Engineering (ICSE 1987), pp. 2–13. IEEE Computer Society
Press, Los Alamitos (1987)

21. Molesini, A., Omicini, A.: Early methodology. Technical Report TR.WP1.2012.6,
EU-FP7-FET Proactive project SAPERE Self-Aware PERvasive service Ecosys-
tems (2012), http://www.sapere-project.eu/TR.WP1.2012.6.pdf

22. Gardelli, L., Viroli, M., Casadei, M., Omicini, A.: Designing self-organising envir-
onments with agents and artefacts: A simulation-driven approach. International
Journal of Agent-Oriented Software Engineering 2(2), 171–195 (2008), Special Is-
sue on Multi-Agent Systems and Simulation

23. Molesini, A., Casadei, M., Omicini, A., Viroli, M.: Simulation in agent-oriented
software engineering: The SODA case study. Science of Computer Programming
(August 2011), Special Issue on Agent-oriented Design methods and Programming
Techniques for Distributed Computing in Dynamic and Complex Environments

24. IEEE-FIPA: Design Process Documentation Template (January 2012),
http://fipa.org/specs/fipa00097/SC00097B.pdf

25. SODA: Home page, http://soda.apice.unibo.it
26. Molesini, A., Omicini, A., Viroli, M.: Environment in Agent-Oriented Software En-

gineering methodologies. Multiagent and Grid Systems 5(1), 37–57 (2009), Special
Issue “Engineering Environments in Multi-Agent Systems

27. Dalpiaz, F., Molesini, A., Puviani, M., Seidita, V.: Towards filling the gap between
AOSE methodologies and infrastructures: Requirements and meta-model. In: Bal-
doni, M., Cossentino, M., De Paoli, F., Seidita, V. (eds.) 9th Workshop From Ob-
jects to Agents (WOA 2008), Palermo, Italy, Seneca Edizioni, pp. 115–121 (Novem-
ber 2008)

28. Zambonelli, F., Omicini, A.: Challenges and research directions in agent-oriented
software engineering. Autonomous Agents and Multi-Agent Systems 9(3), 253–283
(2004), Special Issue: Challenges for Agent-Based Computing

29. Henderson-Sellers, B.: Evaluating the feasibility of method engineering for the cre-
ation of agent-oriented methodologies. In: Pěchouček, M., Petta, P., Varga, L.Z.
(eds.) CEEMAS 2005. LNCS (LNAI), vol. 3690, pp. 142–152. Springer, Heidelberg
(2005)

30. Bernon, C., Cossentino, M., Gleizes, M.P., Turci, P., Zambonelli, F.: A study of
some multi-agent meta-models. In: Odell, J.J., Giorgini, P., Müller, J.P. (eds.)
AOSE 2004. LNCS, vol. 3382, pp. 62–77. Springer, Heidelberg (2005)

31. Kruchten, P.: The Rational Unified Process: An Introduction, 3rd edn. Addison-
Wesley Professional (December 2003)

32. OPEN: Home page, http://www.open.org.au/
33. Dori, D.: Object-Process Methodology: A Holistic System Paradigm. Springer

(2002)
34. Rumbaugh, J.E., Blaha, M.R., Premerlani, W.J., Eddy, F., Lorensen, W.E.:

Object-Oriented Modeling and Design. Prentice-Hall (1991)
35. Coleman, D., Arnold, P., Bodoff, S., Dollin, C., Gilchrist, H., Hayes, F., Jeremaes,

P.: Object-Oriented Development. The Fusion Method. Prentice-Hall (1994)
36. Cossentino, M.: From requirements to code with the PASSI methodology. In: [49],

ch. IV, pp. 79–106

http://www.sapere-project.eu/TR.WP1.2012.6.pdf
http://fipa.org/specs/fipa00097/SC00097B.pdf
http://soda.apice.unibo.it
http://www.open.org.au/

214 A. Molesini et al.

37. Zambonelli, F., Jennings, N., Wooldridge, M.: Multiagent systems as computa-
tional organizations: the Gaia methodology. In: [49], ch. VI, pp. 136–171

38. Pavòn, J., Gòmez-Sanz, J.J., Fuentes, R.: The INGENIAS methodology and tools.
In: [49], ch. IX, pp. 236–276

39. Garijo, F.J., Gòmez-Sanz, J.J., Massonet, P.: The MESSAGE methodology for
agent-oriented analysis and design. In: [49], ch. VIII, pp. 203–235

40. Picard, G., Bernon, C., Gleizes, M.P.: Cooperative agent model within ADELFE
framework: An application to a timetabling problem. In: Jennings, N.R., Sierra,
C., Sonenberg, L., Tambe, M. (eds.) AAMAS,, July 19-23, vol. 3, pp. 1506–1507.
ACM Press, New York (2004)

41. Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J., Perini, A.: Tropos: An
agent-oriented software development methodology. Autonomous Agent and Multi-
Agent Systems 8(3), 203–236 (2004)

42. Wood, M.F., DeLoach, S.A.: An overview of the multiagent systems engineer-
ing methodology. In: Ciancarini, P., Wooldridge, M.J. (eds.) AOSE 2000. LNCS,
vol. 1957, pp. 207–221. Springer, Heidelberg (2001)

43. Omicini, A.: SODA: Societies and infrastructures in the analysis and design of
agent-based systems. In: Ciancarini, P., Wooldridge, M.J. (eds.) AOSE 2000.
LNCS, vol. 1957, pp. 185–193. Springer, Heidelberg (2001)

44. Molesini, A., Omicini, A., Ricci, A., Denti, E.: Zooming multi-agent systems.
In: Müller, J.P., Zambonelli, F. (eds.) AOSE 2005. LNCS, vol. 3950, pp. 81–93.
Springer, Heidelberg (2006)

45. Molesini, A., Omicini, A., Denti, E., Ricci, A.: SODA: A roadmap to artefacts. In:
Dikenelli, O., Gleizes, M.-P., Ricci, A. (eds.) ESAW 2005. LNCS (LNAI), vol. 3963,
pp. 49–62. Springer, Heidelberg (2006)

46. Cernuzzi, L., Cossentino, M., Zambonelli, F.: Process models for agent-based devel-
opment. Engineering Applications of Artificial Intelligence 18(2), 205–222 (2005)

47. Cossentino, M., Gaglio, S., Galland, S., Gaud, N., Hilaire, V., Koukam, A., Seidita,
V.: A MAS metamodel-driven approach to process fragments selection. In: Luck,
M., Gomez-Sanz, J.J. (eds.) AOSE 2008. LNCS, vol. 5386, pp. 86–100. Springer,
Heidelberg (2009)

48. Molesini, A., Omicini, A., Viroli, M., Pianini, D., Montagna, S.: The complete
methodology. Technical Report TR.WP1.2013.1, EU-FP7-FET Proactive project.
SAPERE Self-Aware PERvasive service Ecosystems (2013),
http://www.sapere-project.eu/TR.WP1.2013.1.pdf

49. Henderson-Sellers, B., Giorgini, P. (eds.): Agent Oriented Methodologies. Idea
Group Publishing, Hershey (2005)

http://www.sapere-project.eu/TR.WP1.2013.1.pdf

An Infrastructure

for the Design and Development
of Open Interaction Systems

Daniel Okouya1, Nicoletta Fornara1, and Marco Colombetti1,2

1 Università della Svizzera Italiana,
via G. Buffi 13, 6900 Lugano, Swizterland

{daniel.okouya,nicoletta.fornara,marco.colombetti}@usi.ch
2 Politecnico di Milano,

Piazza Leonardo da Vinci 32, 20135 Milano, Italy
marco.colombetti@polimi.it

Abstract. We propose an infrastructure for the design and development
of Open Interaction Systems (OISs), based on solutions from Service
Oriented Architecture, Semantic Technologies, and Normative Multia-
gent Systems. OISs are open to diverse types of participants (software
agents), and enable them to interact with each other to achieve their ob-
jectives. To do so the participants are allowed to interact in compliance
with previously agreed-upon regulations provided by the system and on
the basis of the semantics of the communicative acts performed, both of
which are enforced by the system. The infrastructure we propose, based
on the OCeAN metamodel of Artificial Institutions, involves four layers:
(i), the Messaging Layer, which enables observable ACL message ex-
changes between heterogeneous participants while respecting ownership
boundaries; (ii), the Core Service Layer, which enables the participants
to perform observable non-communicative actions relevant to the ongoing
application; (iii), the Bridging Layer, in charge of interpreting the partic-
ipants’ actions in a form suitable for regulation; and (iv), the Regulation
Layer, which holds the regulations and enforces them with respect to the
participants’ activities.

Keywords: Open Interaction System, Artificial Institution, Ontology,
Normative System, Agent Communication.

1 Introduction

Open Interaction Systems (OISs) are distributed systems which diverse types
of participants (i.e., software agents) can freely join with the goal of interacting
with each other to achieve their personal objectives. To do so the participants
are allowed to interact by exchanging messages with rigorously defined syntax
and semantics, in compliance with previously agreed-upon norms provided by
the system; both the norms and the syntax and semantics of the communication
language are enforced by the system.

M. Cossentino et al. (Eds.): EMAS 2013, LNAI 8245, pp. 215–234, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

216 D. Okouya, N. Fornara, and M. Colombetti

In our past work we have proposed the OCeAN metamodel [13] for the spec-
ification of OISs. In this paper we describe an infrastructure, currently under
development, for the actual implementation of such systems. In designing this
infrastructure we aim at guaranteeing openness and interoperability, while ex-
ploiting as far as possible technologies that are sufficiently mature and stable,
and are already adopted by a large industrial community. Among such technolo-
gies we include standard Service Oriented Technologies [5] and Semantic Web
Technologies [15].

The infrastructure we propose involves four layers: (i), the Messaging Layer,
which enables heterogeneous participants to interact with each other through
communicative actions while respecting ownership boundaries; (ii), the Core Ser-
vice Layer, which allows the participants to exploit the support services offered
by the OIS to perform non-communicative actions; (iii), the Bridging Layer, in
charge of interpreting the participants’ actions in a form suitable for regulation;
and (iv), the Regulation Layer, which holds the norms regulating the interactions
and enforces them relative to the participants’ actions. More specifically:

– The Messaging Layer provides a Messaging Protocol based on standard tech-
nologies (HTTP, SOAP, WSDL) and uses Web Service Technologies for the
transfer of messages between participants, by prescribing the use of a specific
message transfer service exposed via WSDL; messages realize communicative
or institutional acts and comply with OCeAN-ACL [11], an Agent Commu-
nication Language based on Semantic Web Technologies, and on OWL 2 DL
in particular.

– The Core Service Layer makes certain complementary services available to
the participants (e.g., an OIS realizing an e-marketplace may offer services
related to payment, product delivery, and so on), and thus allows them
to perform observable non-communicative actions relevant to the ongoing
interaction.

– The Bridging Layer interprets the participants’ communicative and non-
communicative actions in a form suitable for regulation; coherently with the
OCeAN metamodel, such actions either result into commitments (like in the
case of acts of informing, requesting, etc.) or are regarded as attempts to
perform institutional actions relying on suitable count-as rules.

– Finally, the Regulation Layer realizes a normative context (again according
to the OCeAN metamodel), that is, a set of artificial institutions specifying
the institutional actions that can be performed and the set of norms that
have to be followed.

In this paper we provide a detailed specification of all layers and describe
the implementation, currently under development, of an infrastructure oriented
to the implementation of an open e-marketplace. A graphical representation of
the layered architecture is given in Figure 1; the components, the ontologies, and
the relationships among the components shown in the figure will be explained
in the sections describing the corresponding layers. The paper is organized as
follows. In Section 2 we describe the functionalities pertaining to the Messaging

An Infrastructure for Open Interaction Systems 217

Layer and how we implement them by exploiting standard Web Service Tech-
nology. In Section 3 we briefly sketch how the core services offered by the OIS
can be actually realized, considering an e-marketplace as an example. In Section
4 we describe the functionalities pertaining to the Regulation Layer and how we
implement them by exploiting Semantic Web Technologies, and OWL ontologies
in particular. In Section 5 we explain how relevant events taking place at either
the Messaging or the Core Service Layer are made available to the Regulation
Layer. In Section 6 we review some related works. Finally in Section 7 we draw
some conclusions and briefly describe our plans for future work.

Fig. 1. An Architecture for Open Interation Systems

2 The Messaging Layer

In an OIS, a large part of the participants’ interactions is carried out through
the exchange of suitable messages. Therefore the bottom layer of our infrastruc-
ture provides the means to enable heterogeneous participants to interact with
each other by exchanging messages in a fully interoperable fashion. In addition,

218 D. Okouya, N. Fornara, and M. Colombetti

it does so in such a way that it ensures the observability of these interactions,
to the purpose of regulation.

To this end our infrastructure integrates principles from Service Oriented Ar-
chitecture (SOA) and from Multiagent Systems (MAS). First, a message trans-
fer approach is prescribed that is neutral to the internals of the participants,
and leverages standard technologies to facilitate widespread adoption. This is in
contrast with approaches based on some of the most well known ready-to-use
messaging technologies like JMS1, RMI2, and CORBA [18], which bind either
to a particular programing language [14] or to a programing language paradigm
[18]. Such approaches do not fully decouple the end-point implementation from
the messages, thus limiting interoperability [20,3]. Our architecture, following
SOA’s principles of loose coupling, solely prescribes a message format together
with its transfer protocol, both of them strictly decoupled from the end-point
implementation, while insisting as much as possible on the adoption of standard
technologies [6,5,23].

Next, we add to the architectural prescriptions a combination of the SOA
concept of a message, as comprised of carrying and content information, with
the MAS idea of a powerful and flexible Agent Communication Language (ACL),
to enable the participants to interact through the performance of communicative
acts in a totally interoperable way. More precisely, we take the content part of a
SOA message to represent the various components of a suitably designed ACL,
in which the application-independent and application-dependent components are
clearly distinguished.

Finally, to enable the observability of the communicative acts performed by
the participants to the purpose of regulation, this layer includes a Communi-
cation Channel (CC) in charge of mediating message exchanges between par-
ticipants. More precisely, to communicate with other registered participants, a
registered participant shall send its messages to the address of the CC, with the
name of the desired participants as the recipients. The CC receives the message
which, if approved by the regulative process of the infrastructure, is then deliv-
ered to the intended participants. If the message is not approved, the CC rejects
it and sends a suitable explanation back to the sender.

These architectural requirements are met in the infrastructure as follows. In
the first place, the infrastructure provides for a messaging protocol based on
standard neutral technologies: HTTP, SOAP3, and WSDL4. In other words,
Web Service Technology is adopted for message transfer between participants,
by specifying a message transfer service, exposed via WSDL, in which HTTP is
used for the transport of messages and SOAP for their structure. Our choice is
motivated by the fact that this technology represents a standard approach for
making available over the network functionalities that are triggered or delivered
by exchanging messages.

1 http://docs.oracle.com/javaee/6/tutorial/doc/bncdr.html
2 http://docs.oracle.com/javase/7/docs/technotes/guides/rmi/index.html
3 http://www.w3.org/TR/soap
4 http://www.w3.org/TR/wsdl

http://docs.oracle.com/javaee/6/tutorial/doc/bncdr.html
http://docs.oracle.com/javase/7/docs/technotes/guides/rmi/index.html
http://www.w3.org/TR/soap
http://www.w3.org/TR/wsdl

An Infrastructure for Open Interaction Systems 219

In the second place, the infrastructure implements the messages of our ACL5

as the body of SOAP messages. From the syntactic point of view, the ACL
we propose is very close to KQML6 and FIPA ACL7, from which however it
substantially departs as far as semantics is concerned (see Section 5). As with
FIPA standards, our ACL comes with a separate Content Language (CL). Our
CL is defined as an OWL Ontology, the Content Language Ontology [11], which
plays a role similar to FIPA-RDF in FIPA ACL.

Thus, realizing the first two requirements, we define a WSDL file with only
one service, which is the delivery of an ACL message, carried in the body of a
SOAP message. The WSDL contract represents all message forms that can be
exchanged between entities of our OIS, with the requirement that the message
contains the address to reply to according to the same contract. Communication
between participants is only allowed through the use of this service; consequently,
all participants are required to be equipped with a suitable communication mod-
ule, composed of: (i), a listening point, that is, a web-service provider exposing
a message delivery service defined according to our WSDL contract; and (ii), a
talking point, that is, a web-service client that requests the delivery of a message
in conformance with that contract [10].

A crucial advantage of this approach is the provision of a messaging protocol
in the form of a WSDL contract, which is both human readable and machine
processable. Such a contract can be easily handled with the support of runtime
frameworks coming along with Web Service Technology, such as Apache CXF
[1,16]. We use CXF to automatically generate the core of the communication
module of the participating component of our infrastructure; hence anyone can
easily generate the necessary facilities to handle the transmission of messages
abiding to the exposed messaging protocol and adapt it to their need, in order
to participate in the OIS.

Finally, to deal with message transfer the infrastructure provides an imple-
mentation of the CC as a Java component, developed with CXF as exposed
above.

3 The Core Service Layer

As we have already remarked, in an OIS a large part of the participants’ interac-
tions is carried out by exchanging suitable messages; as required by the Messag-
ing Layer, in our infrastructure such messages are always ACL messages realizing
communicative acts. However, most types of applications will also require the ex-
ecution of actions that are not strictly speaking communicative. We identify these
actions as non-communicative acts and classify them into two categories: first,
non-communicative acts concerning the interaction between the participants and
certain components of the infrastructure, designed to provide support to the par-
ticipants’ activities (as we shall see, these non-communicative acts are typically

5 http://www.people.lu.unisi.ch/okouyad/AclOverSoapHttpMP.wsdl
6 http://www.csee.umbc.edu/csee/research/kqml/
7 http://www.fipa.org/repository/aclspecs.html

http://www.people.lu.unisi.ch/okouyad/AclOverSoapHttpMP.wsdl
http://www.csee.umbc.edu/csee/research/kqml/
http://www.fipa.org/repository/aclspecs.html

220 D. Okouya, N. Fornara, and M. Colombetti

application independent); second, application-specific non-communicative acts
concerning the interaction between participants.

More specifically, on the one hand some of the application-independent non-
communicative acts are intended to support the enforcement of ownership bound-
aries between participants, enabling them to connect with each other without
introducing dependencies. For example, the infrastructure provides for a Registry
component (see below), through which the participants can register or deregis-
ter by performing suitable actions. Although the registration and deregistration
processes do require the performance of certain communicative acts (more pre-
cisely, of the request to be registered or deregistered), the actions of registering
or deregistering a participant are not themselves communicative; rather, they
are non-communicative actions made available to the participants by the in-
frastructure, through the provision of services that may be invoked using com-
municative acts (requests). On the other hand, some of the application-specific
activities (i.e., some of the activities that are carried out between the partici-
pants) may require the performance of application-specific non-communicative
actions which, as in the case of communicative acts, must be made observable
to the infrastructure. In an e-marketplace system, for example, when engaging
in a purchasing activity, after settling a contract by performing suitable com-
municative acts, the buyer may be required to carry out a payment, while the
seller may be required to deliver a product. Both of these are non-communicative
actions inherent to the purchasing activity, and as such must also be visible to
the infrastructure.

To sum up, the objective of this layer is to equip the infrastructure so that:
(i), it enables the participants with performing all the infrastructure-specific
non-communicative actions belonging to the direct interactions between the par-
ticipants and the infrastructure itself; and (ii), it can observe the performance
of the application-specific non-communicative actions inherent to some of the
activities occurring between the participants. In order to achieve these goals our
infrastructure requires that the participant register to the IOS; to this end it
provides a Registry component, implemented in Java, to serve as a White Pages
Service. The Registry provides, among others, for the registering and deregister-
ing actions; as this component is endowed with ACL-processing capabilities, the
participants can request its services using ACL messages.

In unison with the approach used for the communicative acts (i.e., that
the actions occurring between the participants are mediated by the infrastruc-
ture), the infrastructure can also mediate the non-communicative actions that
are application-specific. In this respect, however, the Core Service Layer pro-
ceeds differently than the Messaging Layer. Indeed, the different communica-
tive actions that can be performed by the participants are the same across
applications; thus, the observation process necessary to handle them is also
application-independent, and therefore can be achieved by a generic component
(the Communication Channel). In contrast, non-communicative acts occurring
between participants are typically application dependent: their presence, what
they achieve, and how they achieve it, always depend on the application being

An Infrastructure for Open Interaction Systems 221

realized. Therefore unlike communicative acts that are always available to the
participants, the presence of non-communicative actions is application-specific;
for instance, the availability of a shipping action could be irrelevant for certain
applications, such as an e-market for computational services. Moreover, when
present the performance of non-communicative acts can substantially vary de-
pending on the requirements of the applicatios in which they are performed. In
the case of a payment, for instance, while one application may require a sys-
tem like PayPal, another one may require a direct bank-to-bank transfer or a
cheque payment, which would need to go through different steps and to supply
different information. Another important difference is that, unlike communica-
tive acts, non-communicative actions can also vary in nature, that is, they can
be electronic, physical, or involve both aspects.

Hence, to mediate non-communicative actions the infrastructure must take
into account their fundamental application-oriented features, as well as the
fact that they can involve any combination of physical and electronic aspects.
To achieve this, our architecture prescribes that the Core Service Layer pro-
vides for the incorporation of observable application-specific components, of-
fering to the participants specific services of mediation for application-specific,
non-communicative actions. These components must be such that they seem-
ingly interoperate with the participants for the invocation of the actions that
they mediate, whose performances must be observable by the infrastructure.

To this purpose, on the one hand this layer specifies the interfaces of the medi-
ating components, so that the relevant parts of the infrastructure can take into ac-
count the performance of the non-communicative actions they are in charge of; on
the other hand, it prescribes the characteristics that the components must posses
so that their services can be seemingly consumed. In support of that latter point,
the layer mandates the use of communicative acts to invoke the mediation ser-
vices; that is, theses services are invoked using ACL messages, which brings the
advantage of providing a unique invocation protocol, independently of the nature
and level of complexity of the services. Of course, this implies that the mediating
components must be able to process certain ACL messages. This contrasts with
the message-transfer mediation service provided by the Communication Channel,
which is invoked using a SOAP message (as a typical web-service).

Meanwhile, it is important to remark that our infrastructure does not require
that the mediating components directly perform the non-communicative actions
they supply: indeed they may do so, or guarantee that they are performed by
certain external systems, or simply acknowledge their external realization when
so informed by a group of participants who have agreed to exploit an external
service. In this regard, the layer classifies theses services into two distinct cat-
egories: internal services and external services. In the former case, the service
is internally managed by the component itself; this means that when requested
by a participant, the component takes charge of the execution of the activities
involved in the service. In the latter case, which represent a very decentralized
approach providing more freedom to the participants, the execution is guaran-
teed by the participants themselves, which then inform the infrastructure of the

222 D. Okouya, N. Fornara, and M. Colombetti

results. Here mediation plays the role of a neutral authority that acknowledges
the realization of services taking place out of its direct control, according to the
specific rules governing the application.

4 The Regulation Layer

Once heterogeneous participants, possibly belonging to different owners, can
interact with each other as exposed above, it is necessary that they get pro-
vided with some form of harnessing framework defining norms that regulate
their interactions. This is particularly important as it allows the participants
to have reasonable expectations with respect to the interactions they engage
in order to achieve their objectives. Moreover given that we target systems as
e-marketplaces, taking in account the sensitive nature of their activities, the ar-
chitecture prescribes the realization of a neutral third-party component in charge
of analyzing the participants’ interactions (by using the information received by
the Bridging Layer as described in Section 5), with the aim of monitoring the
evolution of the interaction and specifying and enforcing the norms of the regu-
lating context.

To realize all these functionalities we introduce in the proposed architecture
the Regulation Layer. This is based on the OCeAN metamodel [12], in which
regulating contexts are defined as artificial institutions that provide a high-level
representation of a specific set of institutional actions together with the norms
that govern them, and of the institutional objects that need to be observed to
monitor the evolution of the state of the interactions. For every specific appli-
cation, such institutions are operationalized by grounding them in the current
domain [13,8].

The Regulation Layer must possess a formal representation of the state of the
interaction suitable to carry out automated reasoning. In particular this rep-
resentation has to include specifications of: (i), the regulating context in force;
(ii), the types of events and actions the application is dealing with; (iii), the
application-independent and application-dependent knowledge defining the rel-
evant objects and their states during the interaction; and (iv), the instances of
the institutional actions and events that actually take place in the system. Rea-
soning will then allow the system to monitor the evolution of the state of the
interaction, detecting in particular norm fulfillments and violations.

Our infrastructure meets these requirements in the following way. We define
our regulating context as an OCeAN artificial institution. The first regulating
context we have operationalized so far is the Commitment Institution, which reg-
ulates agent interactions in terms of the commitments they make to each other by
performing communicative acts [8,9]. This is an application-independent foun-
dational institution, from which more specific application-dependent institutions
(like for example the institutions formalizing different types of auctions) can be
defined. The Commitment Institution specifies commitments as institutional ob-
jects, together with their life-cycle rules and the institutional actions that allow
an agent to create, cancel, or otherwise manipulate them; this enables us to mon-
itor the state of an interaction in term of the evolution of the commitments that

An Infrastructure for Open Interaction Systems 223

the participants make to each other. Application-dependent regulating contexts
(like for example those relevant to e-commerce) are also represented as OCeAN
institutions.

In our infrastructure, institutions as well as domain entities (e.g., the products
that are exchanged in the e-market) are represented by ontologies specified in
OWL 2 DL [15], the standard language for defining ontologies in the Semantic
Web. Also the state of an interaction is represented in an OWL ontology, that we
call the Interaction Ontology, which is continually updated while the interaction
proceeds (see Section 5). More precisely, the Interaction Ontology contains a
representation of the institutional objects defined by the institutions in force,
together with the institutional actions that can create and manipulate them. To
serve this purpose, the Interaction Ontology imports:

– an Upper Ontology specifying common application-independent concepts like
agent, action, event, and object;

– the SWRL Temporal Ontology8 used for representing and reasoning on in-
stants and intervals of time;

– the OWL ontologies used for representing the relevant artificial institutions,
like in particular the Commitment Institution Ontology9;

– the Domain Ontology used for representing relevant domain knowledge.

Some of these ontologies are described in details in [11]. The ontology imports
are realized according to an architecture [11] that we have crafted specifically
to avoid conflicts and duplications of the application-independent concepts (like
agent, action, temporal interval, etc.) on which several ontologies overlap.

Using OWL 2 DL reasoning, our representation makes it possible to monitor
the state of the interactions according to the rules of the context. Thus, equipped
with it, in compliance with the prescriptions of the architecture which require
a neutral third-party component to enact this functionality, our infrastructure
provides for a regulation component which plays the role of interaction man-
ager, in charge of monitoring regulations and requesting their enforcement when
necessary. To this purpose, the regulation component relies on the Pellet OWL
2 reasoner10, used in conjunction with the OWL-API11. When started with the
paths to the relevant ontologies as parameters, it loads them and creates the ini-
tial Interaction Ontology. Then, a suitable assertion is added to the ABox and
the reasoning process is triggered every time a relevant event happens, such as
the elapsing of a pertinent instant of time, or the realization of an institutional
or non-institutional action or event. As we shall see below (Section 5), suit-
able representations of relevant actions and events are provided by the Bridging
Layer.

Implementing interaction monitoring by OWL 2 DL reasoning is not straight-
forward. First, as participants interactions have to be represented over time, it is

8 http://protege.cim3.net/cgi-bin/wiki.pl?SWRLTemporalOntology
9 http://www.people.lu.unisi.ch/okouyad/CommitmentOntology.owl

10 http://clarkparsia.com/pellet/
11 http://owlapi.sourceforge.net/

http://protege.cim3.net/cgi-bin/wiki.pl?SWRLTemporalOntology
http://www.people.lu.unisi.ch/okouyad/CommitmentOntology.owl
http://clarkparsia.com/pellet/
http://owlapi.sourceforge.net/

224 D. Okouya, N. Fornara, and M. Colombetti

necessary to carry out some kind of temporal reasoning. For instance, if a partic-
ipant is committed to another agent to realize a given action before a deadline,
in order to deduce that after the deadline the commitment is either fulfilled or
violated it is necessary to deduce that the deadline has elapsed. This cannot be
specified by OWL axioms alone; therefore, SWRL12 rules containing temporal
built-ins have been added to perform suitable temporal inferences. Such rules ex-
ploit the SWRL Temporal Ontology developed by the Protege group [17], which
provides a time representation format that is suitable for calculation, is aligned
with the current XSD standards, and defines a rich set of temporal builts-ins that
can be used to extend our OWL ontologies with SWRL rules. However, given
that these built-ins are not SWRL standards, they are not natively supported by
reasoning engines; as the Protege group has provided an implementation for rea-
soning with these built-ins only with the Jess rule engine, we have developed our
implementation for extending the reasoning capabilities of the Pellet reasoner
by using the custom built-ins definition mechanism provided with it.

Representing the evolution of the state of interactions (including for example
the new commitments that the participants bring about), by means of a continu-
ous update of the Interaction Ontology at run-time [9], is a delicate task because
it may introduce inconsistencies. More specificaly, in our formalization of the
Commitment Institution Ontology9 (presented in [7] with the name Obligation
ontology), we specify that an actioncommitment (i.e., a commitment to perform
an action, intuitively equivalent to an obligation), has an associated temporal
interval, within which the action must be executed. Determining this interval
can involve several steps depending on the properties inherited by the commit-
ment at its creation. In certain situations, such as when the action-commitment
is conditional, it only becomes activated if a specific triggering event or action
takes place; when this activation occurs, the beginning and the end instants of
the interval associated to the action-commitment have to be set. For example, if
the exchange of a message commits a participant to deliver a product within two
days, on condition that the receiver of the product performs a payment, then
the action-commitment will be created as soon as the message is exchanged,
but will only be activated when the payment takes place. At activation time
the interval will be determined as follows: (i), its beginning is set at the time
instant of the activation; and (ii), its end is set at the beginning plus two days.
In principle, all this may be expressed by a suitable SWRL rule. However, if
several actions belonging to the activation class of the obligation take place, the
SWRL rule will be activated several times and the interval of the obligation
will be represented incorrectly. It turned out that this problem cannot be solved
inside the OWL ontology, even if additional SWRL rules are used; therefore we
regulate the activation of the relevant SWRL rule with an external Java program
that exploits the OWL-API to check that an interval that is already set is not
further changed. In short, some reasoning steps and calculations have to be made
outside of the reasoner, in order to properly manage the Interaction Ontology.

12 http://www.w3.org/Submission/SWRL/

http://www.w3.org/Submission/SWRL/

An Infrastructure for Open Interaction Systems 225

5 The Bridging Layer

To regulate the interactions it is necessary to capture the participants’ actions
and other relevant events that take place in the system, and represent them in
a form that suits the abstraction level at which regulation operates. This is the
purpose of the Bridging Layer (or Bridge, for short). This layer, which shares
with the Regulation Layer the definition of the institutions in force, operates as
detailed in the sequel.

First, all events (inclusive of the participants’ actions) that are relevant for reg-
ulation must be observed by the Bridge. These events take place either at theMes-
saging Layer or at the Core Service Layer. As far as the former is concerned, the
relevant events consist in exchanges of ACL messages, which are made available
for observation by the CC (Communication Channel) component of the Messag-
ing Layer. To the purpose of regulation, it is crucial that all message exchanges
between participants take place through the CC provided by the infrastructure.
As we have already remarked, however, message exchanges are not the only events
that need regulation. Among these also certain non-communicative events are in-
cluded, like for example the actions of paying or delivering a product. These events
are made observable by the Core Service Layer.

The observed events have to be represented in a form that is suitable for
regulation. In particular, given that the Regulation Layer relies on artificial in-
stitutions, representing an actual observed event in a form suitable for regulation
involves producing a representation that is compatible with the specification of
the artificial institution.

In the OCeAN metamodel, artificial institutions deal with two types of events,
that we respectively call basic and institutional events. An institutional event
Y is an event that is brought about by the performance of a lower level event
X , thanks to suitable counts-as rules, provided that certain enabling conditions
C hold. For example, an artificial institution may specify that a certain type
of message sent by a suitably empowered agent A will count as an institutional
action of opening an auction. Contrastingly, a basic event is an event that can
be directly produced by a participant, without the need of realizing it through
the performance of another, lower level event. For example, performing the con-
crete action of sending a message to another participant is represented in the
institution as a basic event of message exchange.

Transforming an observed concrete event in a form suitable for regulation
requires producing a representation of either a basic or institutional event. In
the Regulation Layer, both artificial institutions and the concrete domains over
which they operate are specified as OWL ontologies. Thus the infrastructure
transforms the actual observed event into OWL individuals that belong to classes
of events pertaining either to the institution ontologies or to the domain on-
tologies. More accurately, as institutional events are always grounded on basic
events, this transformation process consists of: (i), creating an OWL individual
representing the basic event; and (ii), creating an OWL individual representing
the institutional event, if this is dictated by a count-as rule belonging to the
institution in force.

226 D. Okouya, N. Fornara, and M. Colombetti

As specified by the OCeAN metamodel, we provide a set of application-
independent counts-as rules that associate to message exchanges (considered
as basic events) the creation of suitable commitments (considered as institu-
tional events): these rules are part of the Commitment Institutions and specify
the application-independent component of the semantics of OCeAN-ACL. In
general, according to the semantics of OCeAN-ACL the exchange of a message
is interpreted as an attempt to perform an institutional action of commitment
manipulation, which is precisely specified by a counts−as rule; such an attempt
will be successful if, and only if, the enabling conditions C associated to the rules
hold. For example, the exchanges of commissive messages (like promises) and of
directive messages (like requests) are interpreted in the Commitment Institution
as attempts to perform institutional actions that create action commitments
[22], that is, commitments to perform the action described in the content part
of the message. Commitments of this type can be considered as equivalent to
obligations ; for example, if agent A promises to agent B to pay a given sum of
money M for a given product P , the communicative act will be interpreted as
an attempt to create an obligation of agent A to pay M euros to B for product
P 13. When the Bridging Layer delivers this institutional action to the Regulation
Layer, the Interaction Ontology will be updated with a new institutional object
of type Obligation, with A as the debtor, B as the creditor, and the payment of
M euros for P as the content. Thereafter, the obligation will be monitored for its
fulfillment, violation or cancellation as part of the process of interaction monitor-
ing carried out by the Regulation Layer. Requests are treated in a similar way,
except that they involve one more step; more precisely, a request is interpreted
as the attempt to create an action precommitment (or preobligation), which in
turn leads to an attempt to create an obligation for the receiver, if the receiver
accepts the request (i.e., the preobligation).

Assertive communicative acts (like the acts of informing) are conceptually
different from commissives and directives, because they introduce propositional
commitments [22], which cannot be interpreted as ordinary obligations. For ex-
ample, if agent A informs agent B that the product delivered is damaged, this
commits A to the truth of what is said (i.e., that the product is indeed dam-
aged), but does not immediately obligate A to perform any predefined action
(in particular, of course, it does not obligate A to damage the product). We
have not yet worked out a representation of propositional commitments for our
infrastructure: this issue is therefore deferred to future works.

Finally, there is another type of communicative acts, which following the ter-
minology of Searle’s Speech Act Theory [21] we call declarations ; examples are
declaring that an auction is open, or that a specific agent is the winner of an

13 Note that a message exchange, considered as an attempt to perform an institutional
action, is successful only if the enabling conditions associated to the relevant counts−
as rule hold; for example, as specified by the OCeAN metamodel, a message stating
that a commitment is cancelled will be successful if it is sent by the creditor of the
commitment to its debtor, while it will fail to achieve the cancellation if it is sent
by the debtor to the creditor.

An Infrastructure for Open Interaction Systems 227

auction run. Declarations are carried out by exchanging suitable ACL messages,
with declaration as the performative, and a content that represents the institu-
tional action whose performanceis being attempted. Coherently with the OCeAN
metamodel, such messages are interpreted within an artificial institution through
a counts-as rule, which generates the declared institutional action provided that
certain enabling conditions hold. Typically, a condition for the successful perfor-
mance of a declaration is that the actor has the institutional power to perform
the declared institutional action (e.g., only an auctioneer can possibly open an
auction). Such institutional powers are associated at design time to the different
roles that can be played by a participant in an institution, and are checked at
runtime by the Regulation Layer.

In practice, to achieve this transformation from basic events to institutional
events, the OWL specifications of application-independent concepts (such as
agent, action, event, object, time instant, time interval, etc.) are shared be-
tween the Content Language Ontology (see Section 2), the relevant Institution
Ontologies, and the Domain Ontologies over which the ongoing application op-
erates and on which the institutions are grounded. Sharing is achieved thanks
to the ontological architecture introduced in the Regulation Layer, which elim-
inates all the ontological mapping hurdles that would have otherwise been nec-
essary to handle for the full transformation process to take place. Indeed it
allows to seemingly go from one representation to another; for instance, going
from the communicative action promise(A,B, pay(book01, 5)) (which involves
the Content Language Ontology and a concrete Domain Ontology) to the insti-
tutional action create− obligation(A,B, pay(A,B, book01, 5), instant01) (which
involves the Commitment Institution Ontology and the same Domain Ontology)
is achieved smoothly thanks to the underlying shared concepts of agent, action,
and object. If these concepts were not shared appropriately, mappings would
have been necessary between the specifications of these concepts in different on-
tologies. The same principle applies, for example, when a non-communicative
action of payment takes place: the actual action is represented by the OWL
individual pay01 of class Pay, suitably related with individuals A as its actor,
B as its recipient, book01 of class Book as its object, 5 as its amount in eu-
ros, and instant01 as its instant of performance; this individual can imply the
institutional event tranfer−ownership(B,A, book01, instant01) of a hypothet-
ical Ownership Institution (where the target representation is understood as B
transferring the ownership of book01 to A at instant01).

In sum, to perform this bridging process so as to update the regulation com-
ponent, the Bridge is launched with the paths to all the relevant ontologies (that
it loads using the the OWL-API), and a reference to the regulation component.
The process is then triggered each time it receives updates from the the Com-
munication Channel or a Core Service component.

6 Related Work

Among the recent multiagent infrastructures focused on OISs, which in partic-
ular share the aim of providing the regulation of the participants’ interactions

228 D. Okouya, N. Fornara, and M. Colombetti

in the form of a neutral third-party functionality as part of the overall support
that they deliver, the Magentix2 Open multi-agent systems platform14[4] repre-
sents the state of the art on the matter. In particular it is the most advanced
operational infrastructure, which includes many of the recent advances in the
OIS area. Interestingly, we happen to share strong architectural similarities. We
therefore start by exhaustively comparing it with our infrastructure. Then we
will provide another comparison with a promising infrastructure currently under
development, 2COOM, which exemplifies the rising trend of environment-based
MAS infrastructures.

At a very abstract level our infrastructure and Magentix2 share the same
architectural approach. More precisely, although their respective layered archi-
tecture are slightly differently structured, they present the same abstract organ-
isation: a top part concerned with regulation specification and management, a
bottom part concerned with the support of observable interactions between het-
erogeneous participants, and a middle part concerned with the monitoring of the
participants’ interactions according to the rules in force and their enforcement
when deemed appropriate. Consequently, differences only appear in the way the
parts are concretely realized, with the most fundamental of them occurring in
the middle part. This reflects a common vision of the role of the infrastructure,
but divergences on how its different parts may concretely operate to achieve it.

More specifically, at the top level, Magentix2 adopts the metamodel of vir-
tual organizations, which specifies roles with norms including platform generic
roles such as OMS (Organization Management System) and DF (Directory Fa-
cilitator), for the specification of a regulation structure. Our infrastructure also
defines a regulation structure at this level, but one that is based on the OCeAN
metamodel of artificial institutions (see Section 4). While a thorough comparison
of the two metamodels is outside the scope of this paper, it can be safely said
that both infrastructure intend to provide similar regulating structures, which
in particular are centered on non-regimented norms, to harness the participants’
activities.

At the bottom level, both infrastructures provide an observable vehicle for the
participants to interact with each other. To that end, they use similar approaches,
but differ in the general understanding of interactions. Indeed the OCeAN meta-
model classifies actions into communicative and non-communicative ones, which
Magentix2 does not, in that it only considers communicative actions. Conse-
quently, while we divide the bottom part of the infrastructure into two layers
(Messaging and Core Service), with the upper one devoted to non-communicative
actions and the lower one devoted to communicative ones, Magentix2 only pro-
vides one interaction level which corresponds to our lower layer.

As far as communicative interactions are concerned, the two infrastructures
operate in a similar manner (as they both provide an end-point neutral messag-
ing protocol with a broker for interoperable communication between heteroge-
nous participants), but diverge in the choice of the technology. Where we use
Web Service Technology (SOAP, HTTP, WSDL) with the SOAP body structure

14 http://www.gti-ia.upv.es/sma/tools/magentix2/

http://www.gti-ia.upv.es/sma/tools/magentix2/

An Infrastructure for Open Interaction Systems 229

defined as an OCeAN-ACL message for messages exchange, Magentix2 adopts
the Advanced Message Queuing Protocol (AMQP)15, with the message body
structure defined as a FIPA-ACL message. The use of Web Service Technology
is more widespread and therefore we expect its adoption to be less problematic
than that of AMQP.

As previously mentioned, the sharpest differences between the infrastructures
occur in the middle part, whose functionalities can be summarized as follows:
(i), observing actual events such as message exchanges or core-service events;
(ii), representing observed events in a form suitable for regulation; (iii), checking
them against the regulations for monitoring purposes; and (iv), enforcing the
relevant regulations when deemed appropriate. It is with (ii) and (iii) that the
two infrastructures differ substantially.

With our infrastructure, checking against regulations is done by means of rea-
soning over a representation of the state of the interaction, carried out within
an OWL ontology that includes the institutions in force and the norms coming
along. While our norms and their instantiations (in terms of obligations and
prohibitions) are represented as OWL individuals, their activation, cancellation,
fulfillment and violation conditions are represented as event types (i.e., as sub-
classes of class Event). With this approach we can use the full power of DL
reasoning to match the representations of actual events and actions with the
conditions and contents of norms. This process is much more powerful than the
one adopted by Magentix2, which relies on the matching of a restricted subset
of first-order logic formulas.

A further important difference between Magentix2 and our infrastructure
is that the latter does not rely on an application-independent semantics of
ACL messages. In our infrastructure, based on the OCeAN metamodel, the
application-independent part of messages (i.e., all the components of an ACL
message with the exception of its content) is given a uniform semantics across ap-
plications. Moreover, such semantics allows for a representation of messages (pro-
duced by the Bridging Layer) that immediately relates message exchanges to the
Regulation Layer. This means that only application-specific non-communicative
events will need to receive a special treatment in different applications of the in-
frastructure. Conversely, Magentix2 does not provide for any application-indepen-
dent connection between the participants’ actions and regulation, thus making
the conversion to different application more expensive and error prone.

Another relevant infrastructure for OISs currently under development is
2COMM [2] which, similarly to ours, firmly relies on the principle of artificial
institutions to structure interactions. 2COMM is mainly build on top of the
CArtAgO framework [19], which is based on the Agents & Artifacts metamodel,
and to a lesser extent on the JADE infrastructure. In its essence, 2COMM pro-
poses to use the programmable artifacts of CArtAgO to provide for a mediated
communication between participants and to model the institutional framework.
More specifically, an artifact provides for a set of operations, which in the case of
2COMM are communicative actions, and it also manages the institutional inter-

15 http://www.amqp.org/

http://www.amqp.org/

230 D. Okouya, N. Fornara, and M. Colombetti

pretation andmonitoring of those actions in terms of operations on commitments;
this is the reason why those artifacts are called commitment-based communication
artifacts. The set of available actions, together with the roles to which they be-
long and their institutional interpretation, constitute what 2COMM calls a com-
mitment protocol. 2COMMprovides for an abstractBasicCommitmentCommuni-
cationArtifact, defining agent available operations such as enacting or deacting a
role, as well as the internal operations to manage commitments (create, realize,
and so on). Then, through an inheritance process, a designer can define every spe-
cific commitment-based communication artifact protocol that will be available to
the participants, like for example the Contract Net Protocol communication arti-
fact ; the inheritance process consists in adding specific pairs of public operations-
internal commitment operations grouped by roles. 2COMM also provides for the
necessarymanagement infrastructure, thus enabling agents to use the protocols in
a coherent fashion by means of the ArtifactManager Jade Agent, which communi-
cates with the requesting agents via FIPA-ACL messages (as provided by Jade).

Although the infrastructure proposed in this paper and the 2COMM one share
similar intents, they are sharply different and they significantly diverge in the
way we use institutions to harness the interactions, but also in some specific
supports that our infrastructure provides. These differences can be delineated as
follows. First, at the lowest level, while we provide intrinsic interoperability as a
support to openness, 2COMM, due to its dependence on the CArtAgO and the
JADE infrastructure, does not. Indeed, on one hand, initiating the CArtAgO
services, entering the workspaces where the artifacts are situated, as well as
programming or using such artifacts, can only be done through the use of Java
code. For instance, artifact operations must be implemented as Java methods,
called using introspection through a Java API made available by the CArtAgO
framework. Therefore, given that the agents that interact with a CArtAgO En-
vironment should be developed using Java, the resulting infrastructure is not
completely interoperable with agents developed using other programming lan-
guages. We think that this is an important aspect in the realization of OIS in
the domain of electronic marketplace, which in essence tries to reach out to as
many participants as possible. Indeed even if our infrastructure is developed in
Java, its usage does not prescribe agents developed in Java or somehow using
it, nor does its customization to a specific application (i.e., the development of
new service providers for the core service layer). For no participating component
(i.e., core service provider or OIS participant) we make any assumption on how
they should be realized, and simply require that they abide to our interoperable
messaging protocol.

At a higher level, the differences could be articulated around the following
points: (i), how we represent and monitor institutions; (ii), how we use insti-
tutions, in particular in the light of the commitment-based semantics of com-
municative acts; (iii), the set of mechanisms for mediating the interactions at
run-time; and (iv), the type of communication.

An Infrastructure for Open Interaction Systems 231

A fundamental aspect that differentiates our infrastructure is on the approach
used for the representation and monitoring of institutions. As previously dis-
cussed also in the comparison with Magentix2, we use OWL 2 DL to represent
institutions. For instance, we model commitment as OWL individuals, with their
contents and conditions modeled as OWL classes. This makes it possible that
actions or events that are not known in details in advance, but are simply de-
scribed by means of a class, will fulfill certain commitments. More generally,
we use OWL 2 DL to reason on the evolution of the state of the interaction.
Differently, 2COMM uses Java objects to represent both the commitments and
the other facts that are relevant to manage the evolution of the overall state of
the institution. In particular, a fact has a string field to represent the name of
a predicate it represents, and an argument field that is a list of objects. This
representation implies a matching process to check whether the content or the
condition of a commitment is satisfied (a combination of syntactic string and
java object matching). Moreover our model allows to express and manage com-
mitment deadlines, which allows us to detect violations, an aspect that is not
tackled in the 2COMM approach.

A second difference is on how institutions are used for the specification of
the semantics of communicative acts. Indeed, we make a clear distinction be-
tween the application-independent Basic Institution (i.e., our definition of an
application-independent commitment semantics for OCeAN-ACL) which spec-
ifies no norms, and the special-purpose institutions (e.g., auction, ownership)
which are fully fledged normative institutions. 2COMM through the use of com-
mitment protocols (i.e., operationalized institution) seems to mix the semantics
of communicative acts with the normative aspect of fully fledged institutions.
This may have the negative effect of nullifying the advantages of defining a
commitment-based semantic of communicative acts. In fact instead of having
agents able to freely choose the communicative acts to perform, the 2COMM
approach guides the course of message exchange. For instance, an initiator in a
Contract-Net protocol can only perform the call for proposals act and it cannot
perform any other act that is not in its role. We believe that the normative di-
mension should be reserved to aspects that are exclusive to the special-purpose
institutions. For instance, in an auction only the auctioneer has the power to open
an auction. However, if in the meantime a participant performs a communicative
act (e.g., an inform, request, promise, or call for proposal), its institutional ef-
fects should be retained. In other words, we want to let the agents free to explore
any course of message exchange that they see fit to reach their objectives.

Thanks to the use of the CArtAgO environment, the 2COMM framework pro-
vides an efficient checking of the powers for performing institutional actions and
the runtime mechanisms for letting the agents to perceive the state of the inter-
action. Our infrastructure has yet to provide for it, we plan to realize it as part
of the ongoing build-up of the support we are providing for the special-purpose
institutions. Another difference is on how communication is conducted in the two

232 D. Okouya, N. Fornara, and M. Colombetti

infrastructures. On one hand, while we both claim to mediate communicative ac-
tions, we actually operate differently. Our infrastructure forward ACL messages
between participants. It records the actions if necessary, and most importantly
their institutional effects. Differently 2COMM does not transfer messages. Ac-
tually, messages are Java method call on the artifact, which modifies its state
depending on certain conditions. The possible modification can be: the record of
the fact that a method was called, the fact that a communicative act was per-
formed, or its institutional effects. Then, it is that change that will be observed
by the participating agents. A final observation is that the proposed infrastruc-
ture is more agile, because it firmly separates concerns (messaging, core service,
bridge, regulation) whereas the 2COMM infrastructure do not, as it combines
everything in an artifact. Moreover, by using method calls 2COMM loses the
flexibility gained in separating the various components of an agent communica-
tion language (i.e., ACL syntax, Content Language, and Domain Ontologies).

We can conclude that, aside from the interoperability issues discussed above,
only empirical studies will reveal whether one of the two approaches, or perhaps
a mixture of the two, is better and in which domain.

7 Conclusions

In this paper we have presented an infrastructure for Open Interaction Systems,
based on the OCeAN meta-model and currently under implementation. Our
main concerns in the development of the infrastructure are, on the one hand to
guarantee openness and interoperability, and on the other hand to rely as much
as possible on technologies that are sufficiently mature and stable, like Service
Oriented and Semantic Web Technologies, to facilitate adoption by the industry.

The infrastructure has been divided into components to separate different
concerns, which brings several advantages: on the one side, it enables us to dis-
tribute the infrastructure and to use techniques of dynamic adaptation (such as
cloning and self-deletion) to manage overhead issues; on the other side it en-
ables us to provide targeted upgrades and developments of the infrastructure.
So far, for prototyping purposes the infrastructure is being implemented as a
monolithic multi-threaded Java application; nevertheless, the different compo-
nents are present and well separated so that they could be easily extracted to
provide a fully distributed infrastructure.

In the near future we intend to complete the implementation and test of the
prototype. In particular we plan to complete the formalization in OWL of the
semantics of the various type of communicative acts, to separate the various
component of the prototype, and to test it with the formalization and execution
of an e-marketplace, inclusive of the OWL ontologies representing the relevant
institutions and domain knowledge.

An Infrastructure for Open Interaction Systems 233

References

1. Balani, N., Hathi, R.: Apache CXF Web Service Development. Packt Publishing
(2009)

2. Baldoni, M., Baroglio, C., Capuzzimati, F.: 2COMM: a commitment-based MAS
architecture. In: Cossentino, M., El Fallah Seghrouchni, A., Winikoff, M. (eds.)
EMAS 2013. LNCS (LNAI), vol. 8245, pp. 38–57. Springer, Heidelberg (2013)

3. Chiarabini, L.: CORBA vs. Web Services (May 2004),
http://www.itu.dk/~oladjones/mastersthesis/materialsfromportals/

corbaversuswebservices.pdf (accessed March 14, 2013)
4. Criado, N., Argente, E., Noriega, P., Botti, V.: MaNEA: A Distributed Architec-

ture for Enforcing Norms in Open MAS. Engineering Applications of Artificial
Intelligence 26(1), 76–95 (2012)

5. Erl, T.: Service-Oriented Architecture (SOA): Concepts, Technology, and Design.
Prentice Hall (August 2005)

6. Erl, T.: SOA Principles of Service Design (The Prentice Hall Service-Oriented Com-
puting Series from Thomas Erl). Prentice Hall PTR, Upper Saddle River (2007)

7. Fornara, N.: Specifying and Monitoring Obligations in Open Multiagent Systems
Using Semantic Web Technology. In: Elçi, A., Koné, M.T., Orgun, M.A. (eds.)
Semantic Agent Systems. SCI, vol. 344, pp. 25–45. Springer, Heidelberg (2011)

8. Fornara, N., Colombetti, M.: Specifying Artificial Institutions in the Event Cal-
culus. In: Dignum, V. (ed.) Handbook of Research on Multi-Agent Systems: Se-
mantics and Dynamics of Organizational Models, ch. XIV. Information Science
Reference, pp. 335–366. IGI Global (2009)

9. Fornara, N., Colombetti, M.: Representation and monitoring of commitments and
norms using OWL. In: AI Communications - European Workshop on Multi-Agent
Systems (EUMAS) 2009, vol. 23(4), pp. 341–356 (2010)

10. Fornara, N., Okouya, D., Colombetti, M.: A Framework of Open Interactions based
on Web Services and Semantic Web Technologies. In: Proceedings of the 9th Eu-
ropean Workshop on Multi-Agent Systems, EUMAS 2011 (2011)

11. Fornara, N., Okouya, D., Colombetti, M.: Using OWL 2 DL for Expressing ACL
Content and Semantics. In: Cossentino, M., Kaisers, M., Tuyls, K., Weiss, G. (eds.)
EUMAS 2011. LNCS, vol. 7541, pp. 97–113. Springer, Heidelberg (2012)

12. Fornara, N., Viganò, F., Colombetti, M.: Agent communication and artificial in-
stitutions. Autonomous Agents and Multi-Agent Systems 14(2), 121–142 (2007)

13. Fornara, N., Viganò, F., Verdicchio, M., Colombetti, M.: Artificial institutions: a
model of institutional reality for open multiagent systems. Artif. Intell. Law 16(1),
89–105 (2008), doi:10.1007/s10506-007-9055-z

14. Hapner, M., Burridge, R., Sharma, R., Fialli, J., Stout, K.: Java Message Service
Specification Version 1.1. Sun Microsystems, Inc. (April 2002)

15. Hitzler, P., Krötzsch, M., Rudolph, S.: Foundations of Semantic Web Technologies.
Chapman & Hall/CRC (2009)

16. Kent, T.K.: Developing Web Services with Apache CXF and Axis2, 3rd edn.
Lulu.com (2010)

17. O’Connor, M.J., Das, A.K.: A Method for Representing and Querying Temporal
Information in OWL. In: Fred, A., Filipe, J., Gamboa, H. (eds.) BIOSTEC 2010.
CCIS, vol. 127, pp. 97–110. Springer, Heidelberg (2011)

http://www.itu.dk/~oladjones/mastersthesis/materialsfromportals/corbaversuswebservices.pdf
http://www.itu.dk/~oladjones/mastersthesis/materialsfromportals/corbaversuswebservices.pdf

234 D. Okouya, N. Fornara, and M. Colombetti

18. OMG. The Common Object Request Broker: Architecture and Specification. The
Object Management Group, pp. 1–712 (November 1999)

19. Ricci, A., Piunti, M., Viroli, M.: Environment programming in multi-agent systems:
an artifact-based perspective. Autonomous Agents and Multi-Agent Systems 23(2),
158–192 (2011)

20. Scordino, C.: How Web Services relate to the well established CORBA Mid-
dleware (April 2004), http://retis.sssup.it/~scordino/documents/corba.pdf
(accessed March 14, 2013)

21. Searle, J.R.: Speech Acts: An Essay in the Philosophy of Language. Cambridge
University Press, Cambridge (1969)

22. Walton, D.N., Krabbe, E.C.: Commitment in Dialogue: Basic concept of interper-
sonal reasoning. State University of New York Press, Albany (1995)

23. Weerawarana, S., Curbera, F., Leymann, F., Storey, T., Ferguson, D.F.: Web
Services Platform Architecture: SOAP, WSDL, WS-Policy, WS-Addressing, WS-
BPEL, WS-Reliable Messaging and More. Prentice Hall PTR, Upper Saddle River
(2005)

http://retis.sssup.it/~scordino/documents/corba.pdf

GoalSPEC: A Goal Specification Language Supporting
Adaptivity and Evolution

Luca Sabatucci, Patrizia Ribino, Carmelo Lodato, Salvatore Lopes,
and Massimo Cossentino

ICAR-CNR, Consiglio Nazionale delle Ricerche, Palermo, Italy
{sabatucci,ribino}@pa.icar.cnr.it,

{c.lodato,s.lopes,cossentino}@pa.icar.cnr.it

Abstract. The characteristic of being autonomous and proactive makes the
agents able to explore a wide solution space, that dynamically changes or con-
tains uncertainty. We propose a language for describing system goals that may
be injected at run-time into the system. The novelty of our approach consists in
decoupling the business goals (what is expected) and their implementation (how
to address the desired behavior). Indeed relieving the tension between ’what’ and
’how’ provides more degrees of freedom to the system. On the occurrence, agents
of our system may exploit their features (mainly autonomy and proactivity, but
also learning and planning) for getting benefits from a wider solution space. The
result is that the system behavior may adapt to the current operating conditions.
Moreover, the injection mechanism contributes to reduce the effort in evolving
the system. This paper focuses on the goal specification language that is the base
for enabling both adaptivity and evolution.

1 Introduction

The current work arises in the context of the project Innovative Document Sharing
(IDS) 1, whose aim is the development of an adaptive and autonomous workflow en-
actment engine for improving task coordination and document management in small
and medium local companies. The project exploits the well-known BPMN standard [1],
among its assets, because the system will be used in real business contexts. Indeed the
BPMN is mainly targeted to humans, being very flexible and expressive and it includes
the notation for describing workflows as orchestration of both automatic services and
human tasks. Moreover, the business domain is a highly variable application context.
Business rules could change very frequently due to the evolution of business strategies,
to the change of company short/middle term goals, or due to the dynamic society with
its laws and regulations that must be respected. The BPMN does not support a dynamic
context. Every external change must be implemented into the workflow as a set of mod-
ifications. In other terms, the workflow must be re-designed for implementing any new
requirement, checking inter-dependencies and verifying the validity of the result.

It is a matter of fact that the task of designing and evolving business model is not
trivial: a great number of malfunctions in workflow systems depend on business analysis

1 The IDS project is funded by the Autonomous Region of Sicily (POR FESR Sicilia 2007-
2013).

M. Cossentino et al. (Eds.): EMAS 2013, LNAI 8245, pp. 235–254, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

236 L. Sabatucci et al.

errors [2–4]. Adopting a workflow system able to autonomously react to changes of the
context may simplify the work [2]. An adaptive workflow is conceived as a normal
workflow but it is also able to react to some changes in the environment [2]. The need
for self-adaptation is often linked to the need of reacting to exceptions [5]. Whereas
BPMN already provides mechanisms to specify how the system will react to expected
exceptions [1], it is more interesting to define how to react to unexpected exceptions.
Indeed these events can not be handled by traditional workflow engine. For all these
reasons, self-adaptation is particularly desirable for a workflow system.

In last years, self-adaptation has been gaining more and more attention specially in
agent-oriented software systems [6–8]. It is a fact that multi-agent systems encapsu-
late an adequate level of abstraction useful to implement software capable to react to
changes. Agent autonomy makes the system able to modify its behavior without su-
pervision. The agent ability to perceive its environment helps to monitor parameters of
the context that may variate. Finally agent pro-activity and the reasoning ability help to
plan the appropriate reaction strategy according to agent’s goals.

Generally agent goals are an higher level of abstraction with respect to the program-
ming language (for instance in Belief-Desire-Intention systems), so that they disappears
into agents’ code. More recently, an interesting feature of agent is the self-awareness,
that is the ability of agents to know its capacities and its goals. It is the direction of works
like that of Morandini et al. [7], or that of Buhler and Vidal [6], in which the agent se-
lects the most appropriate behavior by reasoning on a goal-model. Goal-models [9–11]
have been a great advance in requirement engineering, because they provide the ad-
equate level of abstraction to reason on the domain, its inhabitants and their needs,
translating all this in a precise set of requirements. It has been proved that self-adaptive
systems may benefits from relaxing the rigid constraints that is typical of traditional
requirement engineering [12–14]. Intuitively a system that must overcome an obsta-
cle must have space to change direction. A rigid set of system requirements could not
provide enough space to move around a possible obstacle.

The proposed approach consists in relaxing the link between what is expected the
system do (system goals) and how the system is expected to do that (system capabilities
and plans). By decoupling these two aspects it is up to the system to know how to
match a specific capability with the desired result. This responsibility may be satisfied
only if 1) the software is aware of its goals and its capabilities, 2) it is able to reason on
how to compose its behavior and 3) it is autonomous to operate without any supervision.
Multi-agent systems naturally offer all these characteristics. Such architecture requires a
specification language that enables this decoupling. To the best of our knowledge, none
of the existing languages for goal specification is completely suitable for our scope. This
paper focuses on GoalSPEC, the proposed language to express system requirements in
a form that supports adaptivity and system evolution.

The remaining of the paper is organized as follows. Section 2 describes the motiva-
tion of our work, and Section 3 presents a literature review of a selection of existing
goal-oriented languages. Section 4 describes the characteristic of GoalSPEC and its
application to the IDS project domain. Some discussions and final conclusions are pre-
sented in section 5.

GoalSPEC 237

C
us
to
m
er

S
er
vi
ce

Quote
Request

Classify Elaborate Approve

Customer
Notification

Correct

Doc
[available]

Doc
vailable]

Doc
[classified]

Doc
assified]

Attachment
[available]

achmen
vailable]

t
]

nt
]

Doc
[refined]

DocD
fined]e

approve(Doc)

incomplete(Doc)

reject(Doc)

quote_request(Doc) notify_result(Doc)

Fig. 1. Example of BPMN diagram from the IDS case study

2 Motivation

The IDS project aims at developing a workflow enactor system for improving task
coordination and document management in small and medium local companies. The
project is a benchmark for exploring real motivations since a workflow system shall
autonomously configure its behavior. In particular the requirements elicitation phase of
the project highlighted that the business domain is a high dynamic context, in which
company business goals and rules often vary. In addition the workflow engine runs in
a socio-technical context in which human and social factors are relevant. In particular
such systems operate in a society whose laws and regulations are frequently revised and
modified.

The business process in Fig. 1 models the process for quote request in a generic
company. The customer service receives requests from customers via telephone, fax,
email or traditional mail. The flow starts when the customer service fills a quote request
form. This generates a virtual document to be processed to satisfy the request. The
automatic task Classify tries to identify the input request type, when possible, by using
image processing techniques. Therefore, the classified document is manually elaborated
(Elaborate task) by the technical responsible who produces the quote as virtual attach-
ment. It is the commercial manager’s turn to supervise the attachment and to mark it
as approved, incomplete or rejected (Approve task). If the document is marked as in-
complete, a new revision loop is activated (Correct task). Conversely, if the document
is approved then the customer notification is responsible to contact the customer and to
provide the requested information.

The objective of this paper is to discuss how decoupling business goals and their
implementation for self-adaptation purposes. Whereas BPMN is extremely flexible to
define the implementation layer, it lacks of an explicit syntax for defining business
goals. We look at a goal specification language with the following characteristics.

238 L. Sabatucci et al.

REQ.1 - The language shall be powerful enough to represent requirements and con-
straints for information systems. System requirements describe the expected results
of the system and they can be articulated into functional and non-functional require-
ments. Whereas functional requirements describe the behavior in terms of the ex-
pected functionalities, non functional requirements generally describe the expected
performances of the system. This feature is central for our purposes since we want
to model BPMN goals as expected behavior of the workflow system. An important
aspect to consider is the massive presence of social factors into the system behav-
ior: system constraints are norms that specify what the system is obliged to do and
what is forbidden.

REQ.2 - The goal specification shall be independent on how the software system will
work. It is out of the scope of the language to describe how to address the spec-
ified goals. The focus must be on ’what’ is expected, so the language shall be in
a declarative fashion. We work under the hypothesis that the portion of the world
under interest is decomposed and described by a set of states and properties. For
our purposes, describing system goals means to describe the expected result by
grounding it on ontological bases.

REQ.3 - The language shall be context-free. Agents are the main consumers of the goal
specifications, because they are responsible to adapt their behavior to the goals.
Goals are not statically defined at design-time automatically, but can be modeled or
modified after agents’ life begins. Therefore, for our purposes, the goal language
must be interpreted at-run time by system agents, who must acquire the expected
result that is encapsulated in them. Agents that are aware of the expected state of
the world (that is desired by humans) can reason on how to adapt their behavior
according to perceptions and to desired goals.

REQ.4 - The goal specification shall be compatible with the expressiveness of the
BPMN language. The Business Process Model and Notation is a very expressive
graphical language that is able to express almost every process. It includes, among
the others, human and software collaborations, conversations and choreography,
concurrent task execution, task decomposition, persistent data, handling of error/-
compensation/escalation situations. We work under the hypothesis that in a process
every task is done because underlying goal exists, and we want to automatically ex-
tract these goals every time this is possible. The resulting goal must perfectly syn-
thesize its task, so the specification language must be expressive enough to cover
the whole specifications of BPMN.

REQ.5 - The language shall be attractive for a business audience. Goals will be au-
tomatically extracted (when possible) from the BPMN description of the business
process. However analysts want to maintain the control of the workflow execution.
For this reason they will want to verify and manually refine system goals before
these are injected into the system. For our purpose, the language must be simple
to learn, to understand and to use by non-technical people. We consider to use a
specification language that is closer to the natural language a better choice than a
formal language based on mathematics basis.

REQ.6 - The language shall be flexible enough to include points of uncertainty in
specifications. Traditional languages for goals specification generally adopt a strict
definition of the functional and non-functional requirements in order to avoid

GoalSPEC 239

ambiguities or uncertainty. Despite this is perfect for traditional system develop-
ment, this may represent a limitation for a self-adapting system. Indeed the adap-
tation mechanism need wider solution space where to move, in which many alter-
native solutions are possible, each with different trade-offs. For our purpose, we
want to increase the degrees of freedom of agents in finding the solution. We want
to allow the presence of points of uncertainty in the goal specification to let agents
relax some constraints on the necessity.

3 Review of Goal Specification Languages

We conducted a systematic literature review, according the principles of Wohlin et
al. [15]. The research question is about the expressiveness of goals in literature. In
particular we check if they match with the characteristics defined in Section 2.

We identified 30 among the most relevant papers in the area, that are distributed
according their topic in informal/semi-formal, formal approaches and implementation.
The table shown in Fig.1 summarizes the results of this comparison.

Totally informal approaches commonly express goal semantics by using natural lan-
guage expressions: they are similar (in our classification) to semi-formal representa-
tions that mix graphical and text based notation. These are the most frequently used
techniques for specifying goals because they facilitate the exchange of knowledge with
stakeholders.

Business Motivation Model (BMM) [16] is a meta-model and a standard for captur-
ing semantically rich business requirements, useful for analysis, querying, impact anal-
ysis, change management and business reasoning. It tries to highlight ”why the business
wants to do something, what it is aiming to achieve, how it plans to get there and how
it assesses the result”. Nevertheless, BMM does not come with a standard graphical
notation, it has a broader scope than just goal modeling and therefore it has too many
concepts (some of which are unclear or overlap with each other), it has no strong formal
basis and does not address at all goal analysis and reasoning issues. Finally its goals do
not ground on ontological bases and not support reasoning with uncertainty.

The Goal-Scenario Coupling [17] is a language that expresses a goal by a structured
natural language in which any clause has a main verb and several parameters. For exam-
ple Display (the error message)Obj(to the customer)Dest, where each parameter plays a
different role with respect to the verb. We note, among parameters, there are means and
manner that define how to address the goal satisfaction.

The i* [18] framework and Tropos [9] are semi-structured language in which goal
statement are free-text but relationships are formalized. In particular And/Or Decompo-
sition relations, means/end relationship (setting means to reach a goal), and contribution
relationships (expressing positive or negative contribution to goal achievement). The
language is perfectly suitable for requirement analysis, but the poor semantics of the
natural language goal definition makes it hard to move towards implementation phases.

To overcame this point the Formal Tropos [19] extension offers all the primitive con-
cepts of i* [18] but more expressive power, and in particular, temporal specifications.
As well as Tropos does, Formal Tropos describes all the relevant objects of the modeled
domains along with their relationships, but it also allows to represent dynamic aspects

240 L. Sabatucci et al.

of the model by a first order linear-time temporal logic with future and past time oper-
ators. The language offers existential and universal quantifiers for defining Constraints
(which restrict the valid executions of the system), Assertion (which are expected to
hold in all valid executions of the system) and Possibility (which are expected to hold
in at least one valid execution of the system).

Tropos has been also used in the field of self-adaptation [7]. Morandini et al. enriched
the goal model by specifying achievement conditions in relationship with the environ-
ment, and the possibility to model faults and corresponding recovery activities. They set
system goals as invariants, whereas variation points of the global behavior are granted
by decomposing the main goals into trees of alternative sub-goals. The system uses ad-
vanced decision techniques to select among many alternative strategies to address the
main goals. Moreover, the defined goals can be directly mapped to Jadex goals. The
technique of designing the expected exceptions was already comprised into the BPMN
specification but the main limitation, for our purposes, is that goals and plans are paired
at design time.

GRL [20] is also based on i*. It is a language for supporting goal and agent-oriented
modelling and reasoning about requirements, with an emphasis on dealing with non-
functional requirements (NFRs). In GRL, a goal can be either a business goal or a
system goal. A business goal express goals regarding the state of the business affairs
the individual or organization wishes to achieve. System goals describe the functional
requirements of the information system. GRL is a language more suitable for the first
phases of analysis. The goal specifications it provides are not suitable for agents. More-
over it not support adaptation and uncertainty factors.

Differently KAOS [21] is conceived to produce automated specifications of domain
knowledge. The framework grounds on a formal language where goals are defined by
means of real-time linear temporal logic (first-order logic with modalities referring to
time), that semantically captures maximal sets of desired behaviors. Goals are classi-
fied according to some patterns (Achieve, Avoid, Maintain, etc...); these verbs in KAOS
specify a temporal logic pattern for the goal name appearing as parameter. They implic-
itly specify that a corresponding target condition should hold some time in the future,
always in the future unless some other condition holds, or never in the future. This
expressivity makes the language suitable for formal proof of specification correctness.

Winikoff et al. [8] present a way to integrate declarative and procedural views of
goals in agent systems. They propose a plan notation called CAN (Conceptual Agent
Notation) along with a formal semantics expressing both goal aspects. In this paper a
goal is represented by means of two logical formulae about the agent’s beliefs repre-
senting the declarative aspects and a set of plans representing the procedural aspects of
goals. This kind of goal representation allows to capture several goal proprieties (such
as persistence, consistence, achievement etc . . .) but it does not encapsulate uncertainty
factors and it is not thought for adaptation and for BPMN mapping. Moreover, it encap-
sulates procedural aspects that GoalSpec deliberately avoids in order to allow adaptation
in our workflow enactor. Subsequently, the GOAL language [22] incorporates declara-
tive aspects of goals in an agent system in order to allow the agent to decide what to do.
A declarative goal specifies a state of the world that an agent wants to reach. Thus they
do not specify how to achieve such states. A feature of GOAL is that the set of goals is

GoalSPEC 241

not required to be consistent because not all goals have to be reached simultaneously.
Goals can be achieved at some moment in the near or distant future. These features
are very close to our needs, anyway whereas the GOAL language grounds on agent
mental states, we need a language to define business goals that are, in fact, humans’
goals. GoalSPEC should be designed to be attractive for business audience as specified
in Section 2. Moreover, our language want to be also a trade off between high-level goal
languages and implementation ones.

Finally, there is a lot of work about agent-oriented programming languages (such as
JACK [23], AgentSpeak(L) [24], Jason [25], 3APL [26] [27], Jadex [28], etc. . .) where
the goals play a central role. Many of them are associated to sophisticated reasoning
engines allowing to develop complex intelligent agents. But in these frameworks goals
are strictly linked to plans to reach them. In our system we do not specify a particular
representation of the plan. A plan could be as usual a simple sequence of agent actions,
a combination of web services, a set of procedures and so on. A strength of our work
lies on decoupling the declarative aspect of a goal from its procedural one allowing thus
a flexible plan composition in order to satisfy a declared goal.

Table 1 summarizes the results of the review. This table provides a kind of matching
between the analyzed goal languages and the requirement we need. At the best of our
knowledge, we have not found one approach that fully meets all our requirements. In
particular, the attempts to use Goal-based modeling for specifying adaptation do not
fully satisfy what we want to realize in our envisioned framework. Therefore, the next
section proposes a new language, named GoalSpec, that incorporates some features of
the reviewed languages but also it introduces new characteristics for our purposes.

Table 1. Comparison table among goal languages and features we are interested

I = Implementation

Legend

x = complete matching

v = partial matching

A = Analysis

KAOS TROPOS
/I*

Formal
TROPOS GRL Goal Scenario

Coupling
TROPOS for
adaptivity BMM BDI

Languages GOAL

Formal x x

x

I

v

A A A - I AGoal Type A - I A - I A - I

xAdaptivity x

Fe
at

u
re

s

Requirements/
Constraints
Representation

x x x x v x v

Oontological
Representation x x

Context-free
Grammar x x

Uncertainty x

Human Oriented x x x

 I

v

242 L. Sabatucci et al.

4 GoalSPEC: A Language to Specify System Goals

Here, we define a language for specifying system requirements and constraints. It has to
be general enough to cope with several aspects that are key elements in current systems.
To do this, we have incorporated some features of existing languages and we have
introduced new ones in order to address specific adaptation and business issues. For the
sake of clarity we refer to the whole language as an abstract package that contains two
sub-languages: GoalSPEC that focuses on specifying expected results of the system in
terms of functions, and NormSPEC that is a norm-based language for specifying non-
functional requirements and constraints that generate a boundary where the system is
limited to move. This paper focuses on GoalSPEC only, whereas the foundations of
NormSPEC are yet published in [29]. The common characteristics of both GoalSPEC
and NormSPEC are: (i) their grammar is a subset of the natural language; (ii) they
have context-free grammar, thus to be automatically parsed and translated into machine
instructions; (iii) some elements of the specifications can be relaxed by using fuzzy
modifiers. The concept of system goal is central to our language. Aligned with common
definitions we distinguish between business goals and system goals.

Def.1: Business Goals are enterprise strategic interests that motivate the execution
of business processes [11]. They are discovered in phase of analysis and they are useful
to model a strategic view of domain stakeholders and to elicit system requirements.

Def.2: System Goals are described as states of the world that the system desires to
achieve [9]. System goals are generally the subset of business goals that are delegated
to the workflow system in order to implement some kind of automation.

In the following, an extract of the BNF description of the GoalSPEC language is
reported:

goal_type : social_goal | system_goal;

social_goal : SOCIAL GOAL goalname ’:’ trigger_condition actors_list SHALL
ADDRESS final_state;

system_goal
: GOAL goalname ’:’ trigger_condition actor SHALL ADDRESS final_state;

trigger_condition : event
| trigger_condition AND trigger_condition
| trigger_condition OR trigger_condition
| NOT trigger_condition | ’(’ trigger_condition ’)’ ;

event : ON date | AFTER delay SINCE trigger_condition
| WHEN state ;

final_state : state
| final_state AND final_state
| final_state OR final_state
| NOT state | ’(’ final_state ’)’;

state : predicate
| message_sent_state
| message_received_state ;

message_sent_state : MESSAGE predicate SENT TO actor;

message_received_state : MESSAGE predicate RECEIVED FROM actor;

actors_list : actor AND actors_list | actor;
actor : THE_SYSTEM | THE characters ROLE;

GoalSPEC 243

Social goals and agent goals. The productions of the language allow to specify system
goals. The first production of the BNF describes a goal as composed by an initial trig-
gering condition, a list of actors that are involved and a desired final state of the world.
We consider two categories of system goals:

– agent goals are atomic goal, related to a specific outcome in the workflow instance;
they derive from Tasks in a workflow, and they can not be further decomposed into
sub goals. Addressing an agent goal produces an advancement for the achievement
of the workflow.

– social goals are goals that are decomposable into many sub-goals. These goals
derive from Processes or Subprocess in a workflow. A social goal is not necessary
satisfied when all its sub-goals are satisfied. It has its own final condition to verify
in order to be considered addressed.

For instance, the agent goal, for which the Elaborate task in Fig. 1 must be executed, is
the following:

GOAL doc_management.g2 :
(WHEN classified(Doc) AND WHEN done(classify))
THE worker ROLE SHALL ADDRESS
((refined(Doc) AND available(Attachment)) AND done(elaborate))

The actors section is strictly related to the concept of BPMN participant. It specifies
’who’ is the main responsible to address the given goal. GoalSPEC includes two differ-
ent categories of participant: human roles and the system. When the actor of a goal is the
system then the goal may be automatically addressed. On the other hand, when a human
role is responsible of a goal, the system can only monitor when the goal is successfully
addressed. A social goal, generally contains a list of actors that will collaborate to the
workflow enactment.
Triggering Conditions. Each goal specification starts with a set of conditions that must
hold in order to activate the goal. The BNF specifies that a condition may be a single
event or a composition of multiple events. Basic events may be:

– on < date >, triggers when a given day arrives. The date is a parameter that
follows the ISO 8601 specification [30] (International standard date and time nota-
tion). Examples are ’on 1995-02-04’, or ’on 2013-04-01/23:59:59’.

– after < delay > since < event >, triggers after an amount of time since a given
event has occurred. The delay parameter specifies a duration of delay according to
the ISO 8601 standard. For instance ’2W’ means 2 weeks.

– when < state >, triggers when a specified state of the world becomes true: an
example is ’when rejected(Doc)’. In the following, in this same section, the speci-
fication of state is explained in details.

States of the World. One of the main operative hypothesis of this work is that the por-
tion of the world under interest is described by using states and predicates. Indeed,
GoalSPEC adopts an ontological description of the world, and logic predicates play
a central role in the specification of elements and their properties. The BNF indicates
that each goal specification includes a final state that must be true in order to declare
the goal is finally satisfied. A state may range from a single logic predicate ’classi-
fied(Doc)’, to a composition of multiple predicates by and/or operators ’((refined(Doc)

244 L. Sabatucci et al.

AND available(Attachment)) AND done(elaborate))’. Also a NOT operator is included
to specify the state is true when the predicate is false. Two special occurrences of state
are produced by the MESSAGE keyword. These states occur when workflow messages
are exchanged (incoming or outgoing). Here two examples of message states:

– MESSAGE notify result(Doc) SENT TO THE customer service ROLE
– MESSAGE quote request(Doc) RECEIVED FROM THE customer service ROLE

We used Prolog as the dialect to define GoalSPEC first-order logic predicates in a
declarative fashion. This decision has been done also to be compliant with some BDI
(belief-desire-intention) frameworks such as the Jason architecture [31]. Prolog predi-
cates use atoms to represent: (i) particular individuals or objects (symbols starting with
lowercase, or numbers); (ii) variables (symbols starting with uppercase) that will as-
sume a value with the mechanism of unification; (iii) facts (functors followed by list
of arguments), used to represent properties or relationships. Let us consider the exam-
ple in Fig. 1. After the Approve task the document may assume three possible states:
approved(Doc), incomplete(Doc) or rejected(Doc). The value unified with the variable
Doc represents the specific instance of the working document. Matching and unifica-
tion are performed along the same set of goals specification, therefore, considering the
following goal:

GOAL doc_management.g5 :
(WHEN approved(Doc) AND WHEN done(approve))
THE SYSTEM SHALL ADDRESS
MESSAGE notify_result(Doc) SENT TO THE customer_service ROLE

It is worth noting that the variable of the predicate ’approved’ will be unified with
the variable of the predicate ’notify result’: in other worlds the document that will be
sent to the customer service is the same that has been approved and it is the same that
has been previously ’refined’ (see goal doc management.g2).
Human participants. Business processes describe sequences of operations. The BPMN
standard (in contrast with BPEL) allows to declare a human role as responsible of activ-
ities. Manual and user tasks are operations that are executed without (or with a limited
support) of the machine. In our vision all the activities in a workflow, including the
manual ones, exist in order to pursue a business goal, or in technical terms, to take the
world in a desired state.

GOAL doc_management.g3 :
(((WHEN refined(Doc) AND WHEN available(Attachment)) AND WHEN done(elaborate))
OR ((WHEN refined(Doc) AND WHEN available(Attachment)) AND WHEN done(correct)))
THE manager ROLE SHALL ADDRESS
(done(approve) AND (incomplete(Doc) OR approved(Doc) OR rejected(Doc)))

Whereas goals that derive from service tasks are directly delegated to one or more
agents of the system, goals of manual/user tasks can not be delegated: they must be
addressed by human resources. In these cases system goals differ from business goals,
indeed the role of the system is to monitor that the desired state is correctly addressed,
or when this is not feasible, to generate user interfaces where human operators may
notify their progresses.
Fuzzy modifiers. It is very interesting the work by Whittle et al. [13] who defined RE-
LAX, a language for requirement specifications that uses a declarative style for speci-
fying possible sources of uncertainty. Flexibility is obtained by relaxing the rigid ’shall’

GoalSPEC 245

form typical of requirements and by introducing uncertainty factors. RELAX is based
on three types of operators (temporal, ordinal and modal) to address uncertainty. The
semantics of RELAX expressions (AFTER, AS EARLY AS POSSIBLE, and so on...)
is formalized in terms of fuzzy branching temporal logic. The authors suggest that re-
quirements languages for self-adaptive systems should include explicit constructs for
specifying and dealing with the uncertainty inherent in self-adaptive systems.

Likewise in RELAX [13], the expressiveness of GoalSPEC language is extendable
to let the designer relax some constraints. This is possible by using ’fuzzy modifiers’
to increase the flexibility of the rigid unification operator. For instance, it is possible to
relax time constraints by specifying that a goal shall be addressed AS SOON AS POS-
SIBLE, or AS LATE AS POSSIBLE. This is particularly useful when the system deals
with many parallel goals and must optimize the global behavior by selecting the one
with highest priority. It is also possible to relax measures with the following modifiers:
AS CLOSE AS POSSIBLE, AS MANY AS POSSIBLE, AS FEW AS POSSIBLE. For
instance it is possible specifying the number of items in a list must be as close as pos-
sible to a given threshold. A value that is close to the threshold (but not equal) will not
raise an exception, as a traditional workflow engine would do, thus allowing the work-
flow to continue normally. The implementation of these modifiers is a work in progress
and is out the scope of this paper.

4.1 Translating BPMN into System Goals

Many times in this paper we mentioned BPMN [1] and BPEL [32] as the most common
specification languages for workflow. In the IDS project we adopted BPMN because
of its capability to describe human tasks whereas BPEL does not support. BPMN and
GoalSPEC are not in competition, but rather are complementary. Each of them has
a different role in the whole architecture. BPMN is the main interface for business
analysts to model their business processes. GoalSPEC is intended to model the business
goals that are not explicitly expressed in the BPMN process.

An important requirement gathered in the IDS project is avoiding additional burden
to the business analyst. For this reason we elaborated an algorithm that automatically
extracts goals from a BPMN specification of a business process. BPMN2GoalSPEC is
a Java component that translates the BPMN specification (XML) into a set of goals
according to the GoalSPEC grammar. This set of goals could be then manually revised
if necessary, however it represents a good starting point for the analyst.

In order to explain what is the idea underlying the extraction of goals, we can ob-
serve that a BPMN process can be seen as a graph, where nodes are Tasks, Events or
Gateways, and arcs are sequenceFlows. Sub-processes are special kind of Tasks that act
as container for other Tasks, Events and Gateways. We already discussed that a process
generates a social goal, since it describes a protocol of collaboration among many parts.
On the other hand every Task generates an agent goal that encapsulate the business ob-
jective to execute it. As a consequence a Sub-process generates both an agent goal and
a social goal.

246 L. Sabatucci et al.

In order to generate a social goal or an agent goal we have to extract both the trig-
gering condition and the final state for the specific goal. The triggering condition is the
condition needed for activating a specific goal and the final state is the state of the world
the goal indicates to be addressed. Working under the condition that both the triggering
condition and the final state could be expresses by considering the states of the world,
we want to measure the state at input and output of Task nodes.

We preliminary observed that:

– Gateways do not alter the state of the world. This means the input state of a gateway
is equal to the output state;

– Events can be distinguished in catching and throwing. Catching events block the
execution waiting that the desired input state triggers. On the contrary, throwing
events proactively generate the desired state as output;

– Tasks encapsulate both the waiting/generating behaviors. Indeed a task activates
when a given input condition (we call it the waiting condition) is true, whereas it
generates a given state as output (we call it the generated condition).

We easily measure the waiting/generated condition by observing at dataObjects, in-
putSets, outputSets, dataStores and Messages that are consumed as input of a task, or
that are produced as output by the task. For instance, the Classify task shown in Fig. 1
waits for the Doc dataObjects assumes the state ’available’ therefore the waiting con-
dition is WHEN available(Doc). Conversely the same task produces a new state for the
Doc dataObjects (’classified’), so the generated condition is classified(Doc).

Anyway waiting/generated conditions are different from triggering condition and
final state because we must also consider that a Task is immersed in a context with
predecessor and successor nodes that modify its state at input and output. In general
we can say that the triggering condition can be elaborated as the waiting condition
plus the backward condition, whereas the final state may be elaborated as the generated
condition plus the forward condition.

The backward condition is measured by looking backward at the target node follow-
ing the incoming sequenceFlow arcs, whereas the forward condition is measured by
looking forward at the target node following the outgoing sequenceFlow arcs. In this
analysis:

– Gateways propagate the state in both backward and forward directions;
– Throwing Events block the backward analysis, whereas Catching Events block the

forward analysis;
– Tasks block the propagation in both directions;
– eventual Conditional sequenceFlows also provide additional useful information

that have to be composed with backward/forward conditions.

Finally, the Algorithm 1 describes the goal generation technique. As an example of
goal generation, let us take in consideration the Approve task in Fig. 1.
Inferring the triggering events of a goal. The waiting condition for the goal is re-
lated to the presence of the refined(Doc), where the generated condition is the predicate
done(approve) (this is generated by default for each task to highlight the correct exe-
cution of an activity). To build the backward condition the algorithm selects the two

GoalSPEC 247

Data: the BPMN workflow graph
Result: set of GoalSPEC goals
forall the x, Task and Throwing Event in the workflow do

let be waiting(x) the waiting event;
let be generated(x) the generated state;
generate a new agent goal G;
add waiting(x) to triggering condition(G);
add generated(x) to final state(G);
forall the i, incoming SequenceFlow(x) do

let be cond(i) the sequence flow condition of i (when it exists);
calculate backward(i,source(i));
add cond(i) AND backward(i,source(i)) to triggering condition(G);

end
forall the j, outgoing SequenceFlow(x) do

let be cond(j) the sequence flow condition of j (when it exists);
calculate forward(j,target(j));
add cond(j) AND forward(j,source(j)) to final state(G);

end
end
forall the p, Process and SubProcess in the workflow do

generate a new social goal S;
forall the z, starting event and starting task of the workflow do

forall the i, outgoing SequenceFlow(z) do
calculate forward(i,target(i));
add forward(i,target(i)) to triggering condition(S);

end
end
forall the t, ending event and ending task of the workflow do

forall the j, incoming SequenceFlow(t) do
calculate backward(j,source(j));
add backward(j,source(j) to final state(S);

end
end

end
Algorithm 1. Extracting Goals from the Workflow

incoming sequenceFlows and, follows them back until reaching the source nodes: 1)
Elaborate and 2) Correct. Because of both are Tasks, the condition is equal to the gen-
erated condition. Therefore they are:
backward(1,Elaborate)=done(elaborate)ANDrefined(Doc) AND availabe(Attachment),
and
backward(2,Correct)=done(correct) AND refined(Doc) AND availabe(Attachment).
The whole triggering condition of the goal is the OR combination of these two results.

248 L. Sabatucci et al.

Inferring the resulting state of a goal. The generated condition of the goal is
done(approve) by default, since there is no explicitly produced output. For building the
forward condition the algorithm follows forward any outgoing sequenceFlow from the
task. In this case there is only one outgoing sequenceFlow that arrives to the exclusive
gateway. The gateway node does not alter the state, but it propagates in input the state
that is in output. Because it is an inclusive gateway the three outgoing sequenceFlows
will be in OR. The first flow is conditional (approved(Doc)) and arrives to a task that
blocks the forward analysis. The second flow is also conditional (rejected(Doc)) and
terminates to an end event. Finally the third flow is conditional (incomplete(Doc)) and
arrives to a task that again blocks the forward analysis. As a consequence the forward
condition is incomplete(Doc) OR approved(Doc) OR rejected(Doc).
GOAL doc_management.g3 :
(((WHEN refined(Doc) AND WHEN available(Attachment)) AND WHEN done(elaborate))
OR ((WHEN refined(Doc) AND WHEN available(Attachment)) AND WHEN done(correct)))
THE manager ROLE SHALL ADDRESS
(done(approve) AND (incomplete(Doc) OR approved(Doc) OR rejected(Doc)))

The complete goals set for the book management example (Fig. 1) is the following:
SOCIAL GOAL doc_management :
WHEN MESSAGE quote_request(Doc) RECEIVED FROM THE customer_service ROLE
THE worker ROLE AND THE manager ROLE AND THE customer_service ROLE AND THE SYSTEM
SHALLADDRESS((rejected(Doc) AND (done(approve)AND NOT done(costumer_notification)))
OR MESSAGE notify_result(Doc) SENT TO THE customer_service ROLE)

GOAL doc_management.g0 :
WHEN MESSAGE quote_request(Doc) RECEIVED FROM THE customer_service ROLE
THE SYSTEM SHALL ADDRESS
(available(Doc) AND done(quote_request))

GOAL doc_management.g1 :
(WHEN available(Doc) AND WHEN done(quote_request))
THE SYSTEM SHALL ADDRESS
(classified(Doc) AND done(classify))

GOAL doc_management.g2 :
(WHEN classified(Doc) AND WHEN done(classify))
THE worker ROLE SHALL ADDRESS
((refined(Doc) AND available(Attachment)) AND done(elaborate))

GOAL doc_management.g3 :
(((WHEN refined(Doc) AND WHEN available(Attachment)) AND WHEN done(elaborate))
OR ((WHEN refined(Doc) AND WHEN available(Attachment)) AND WHEN done(correct)))
THE manager ROLE SHALL ADDRESS
(done(approve) AND (incomplete(Doc) OR approved(Doc) OR rejected(Doc)))

GOAL doc_management.g4 :
((WHEN refined(Doc) AND WHEN available(Attachment)) AND (WHEN incomplete(Doc)
AND (WHEN done(approve) AND NOT WHEN done(costumer_notification))))
THE worker ROLE SHALL ADDRESS
((refined(Doc) AND available(Attachment)) AND done(correct))

GOAL doc_management.g5 :
(WHEN approved(Doc) AND WHEN done(approve))
THE SYSTEM SHALL ADDRESS
MESSAGE notify_result(Doc) SENT TO THE customer_service ROLE

4.2 The Proposed Architecture

We have anticipated that social and system goals are injected into the system at run-
time. This subsection provides a brief description of the architecture of the workflow

GoalSPEC 249

Fig. 2. Overview of the proposed system for enacting the workflow

engine. This overview is short because of space concerns, but it helps to provide a justi-
fication to the presented language and to answer the challenge introduced in Section 2.
The work assumes that, in a real working environment, BPMN is the main interface for
business analysts. We decided to accept BPMN as it is prescribed by the OMG group
and we avoid to create yet another extension or variation to its metamodel. Indeed, Fig-
ure 2 shows that a business analysts uses a BPMN 2.0 tool to edit the workflow. In the
meanwhile, a multi-agent system is already running and its members are greedy to use
their capabilities. Every agent in the system owns some specific capabilities and it is
aware of them. For instance, considering the IDS project, an agent is able to classify
documents, whereas a set of agents are able to communicate with the range of human
roles (’customer’, ’worker’, ’manager’). When a business process is ready, it is auto-
matically translated into a set of goals in GoalSPEC and then these goals are inserted
into a database. The agents of the system detect when new goals are in the database and
verify whether their capabilities are suitable to commit to one ore more goals. This trig-
gers a social auction for assigning goals to agents. When all the agent goals are assigned
to some agent, the relative social goal is activated and the workflow can be executed.

This architecture decouples the goals (the ’what’) from the capabilities (the ’how’)
and it lets the agents to autonomously decide if and how to employ their capabilities to
address them. The advantages are: (i) Exploration of alternatives - when more agents
have different implementations of the same ability (for example different classification
algorithms) they are in competition to get a goal assigned. Therefore, if the workflow
fails, for some reason, the commitment is retreated and re-assigned, thus to explore
different alternative tasks to the same objective. (ii) Learning - during their execution
agents learn from the result of their actions (by associating the success or failure to the
execution context). In this way, the social auction is won by the most capable agent
according to the current execution context. (iii) Evolution - new goals can be injected
into the database or existing goals can be retreated from it. Given that the commitment
is dynamic, it is not a big deal to reorganize the agents thus to make new goals satisfied.

250 L. Sabatucci et al.

5 Discussion and Conclusions

GoalSPEC has been developed to cover the requirements described in Section 2, in or-
der to implement the adaptive system shown in Fig.2. None of the existing languages
meet all those requirements. In the following we make some considerations on Goal-
SPEC and on other works close to our approach.

GoalSPEC supports Adaptivity. GoalSPEC is intended to be used within the lifecycle
of a business process from creation to maintenance. The scenario starts when business
analysts generate a preliminary version of business process by employing a BPMN vi-
sual tool. The tool generates a XML file that adopts the standard schema defined by
OMG. The BPMN2GoalSPEC component receives this file and it is able to automati-
cally generate a set of GoalSPEC social and system goals. GoalSPEC is created in the
context of adaptive workflow and it completely covers the whole BPMN expressivity
(REQ. 6), hence whatever process defined with BPMN, its business goals (functional
and non-functional) can be modelled with GoalSPEC (REQ. 1). Before being executed,
system goals are proposed to analysts in order to be revised. Since GoalSPEC is based
on natural language, and it is specifically been conceived to be attractive for a business
audience (REQ. 4), analysts can easily understand and modify the results. This is useful
since analysts may include other business goals missing in the BPMN specification.

Several time in this paper we have mentioned that social and system goals are in-
jected into the system at run-time. Indeed, the agent system is already running when
business analysts work. Agents are specialized workers (each with their specific skills)
waiting for something to do. When goals are released, agents perceive them into their
environment. They are also able to interpret GoalSPEC (REQ. 3) and to absorb goals
into their knowledge base. Even if the grammar is context-free, goal specification by
GoalSPEC is not rigid for two reasons. Firstly a goal does not specify how to oper-
ate but it rather defines the expected results in ontological terms (REQ. 2), that is the
final state of the world that is desired. In addition, some elements of the behavior spec-
ifications may be relaxed by using fuzzy modifiers (REQ. 5). In practice, agents can
potentially plan and propose more alternatives for addressing a goal. Social interactions
and individual planning capability are out the scope of this paper.

GoalSPEC supports Evolution. Agents are allowed to commit to the achievement of
injected goals as long as they are perceived into the environment. Certainly current
business process will change in the future, maybe as a cause of new business goals, new
laws and so on. In a traditional approach, analysts would revision their BPMN models
in accordance to changes. Any revision includes to check possible inter-dependencies
among related (sub)processes with a consequent hard work to ensure coherence. The
GoalSPEC approach is that the system intelligence will support this activity. Agents
ability to reason on the injected goals may also highlight possible incoherence or con-
flicts among them. Warning of conflicts are useful for the analysts to improve the pro-
cess. The workflow system will be always running, but the consequence of a goals revi-
sion is that agents will reorganize their behavior to address the new objectives. Probably
programmers will also introduce new agents into the system to cover the need for new
skills.

GoalSPEC 251

Considerations on the Expressiveness. GoalSPEC adopts an ontological description
of the business process. Logic predicates play a central role for the decomposition of
the domain in a set of possible states of the world. Comparing GoalSPEC to Tropos,
it appears that the second proposes a definitively richer semantics for the relationships
between goals. GoalSPEC does not include operators for and/or decomposition, contri-
butions and means/end. This choice has been deliberately done in order to make agents
able to automatically discover these relationships. Any Tropos relationship adds a con-
straint for the system working. Otherwise, system intelligence must search for alterna-
tive solutions that were not designed by analysts. Comparing GoalSPEC to KAOS, it
appears that the second uses a temporal logic, definitively more expressive than first
order logic. Temporal propositions, in fact, contain some references to time conditions
that GoalSPEC does not support. For example, we can’t specify that in the time between
the event E1 and the event E2 the action A can be executed at most twice. We accept
this limitation because our language needs to be more human oriented and feasible for
complex systems. Indeed, systems based on temporal logic are difficultly scalable up
and require formal verification. But, in order to further increase the goal expressiveness
GoalSpec also supports some fuzzy modifiers that may introduce uncertainty with the
aim to increase the agent degree of freedom in pursuing their goals.

Considerations on the Generality. The proposed language, although developed for a
specific project, can also be used in more general information systems. We assert this
because, it owns features that make it reusable in the general context in which workflows
have to be managed. As it is well known, any information system embeds some kind of
workflow even if sometimes that is not explicitly specified.

Considerations on other related approaches. Some proposals on the idea to link busi-
ness processes to goal models exist in literature. To the best of our knowledge, among
them those closest to our approach are presented in [33] and in [34].

G.Koliadis and A.Ghose [33] propose an approach, named GoalBPM, to relate
BPMN business process to KAOS goal models. In particular, they introduce informal
and manual techniques for establishing relations among high-level stakeholder goals
and business processes. These relationships are established through two steps that allow
to define traceability links between goals and activities and satisfaction links between
goals and processes. This method is used to support the evolution of business processes
and their consistency respect to the goal models. But the purpose of this approach is
quite different from our. In fact, GoalBPM can be used for verify the satisfaction of a
process model against a goal model when goal changes occurs. Whilst, our approach
based on GoalSpec transforms a BPMN process model into goals that can be easily in-
terpreted by a workflow engine able to satisfy these goals. The evolution of the business
processes results on new goals to be managed by the systems.

In [34], the authors propose an approach to business process management based on
BDI agent technology to realize agile processes (i.e. flexible and able to proactively
adapt themselves). They start with business processes expressed using GO-BPMN [35]
modeling language. Differently from BPMN, in GO-BPMN workflows are attached
to a goal they fulfill. Thus, this model is directly mapped into BDI agent with goals,
plans and beliefs. Similarly to our idea, the authors think that the agent technology can

252 L. Sabatucci et al.

provide an agile process execution. But what we want to realize is a workflow engine, in
which agents are aware of what they can do, but it is not established in any way how to
do it. They are able to find out how to complete their business process activities adapting
to the available resources. We do not create a static link between the declarative level
and the procedural one. By decoupling business goals and their implementation using
Goalspec and adopting the workflow engine architecture shown in Fig.2, we are able to
create a dynamic binding between goals and plans to reach them which are composed
at run-time. Moreover, this allow us to inject new goals in the system without changing
the implementation level. In addition, our approach based on a standard notation (i.e.
BPMN) to model business processes does not require furthers expertise to be owned by
business analysts.

Many other recent works [4,6,36,37] face with self-adaptive workflow engines. The
objective of self-adaptive workflows is to make the enactment engine able to recognize
anomalous situation that are not included in the specification. A promising approach
in literature is to incorporate multiple strategies into the system design and to let the
system to select the appropriate one that address the desired goal [7,38]. Indeed, a goal
may be generally addressed in many alternative ways, each with different trade-offs. A
representative approach [38] is that of modeling goals in a hierarchy that describes the
expected outcome of the system.This goal model is created at design time and then each
goal is instructed with the necessary implementing code which execution addresses the
target goal.

Surely, these approaches should obtain more precise results but they are less flexible
than our. Thus, we accept a small loss of precision in order to achieve greater flexibility
and dynamism.

Final Remarks. GoalSpec wants to be a step toward the definition of an agent frame-
work able to implement an adaptive workflow enactor in which goals may evolve be-
cause the user requirements are changed. Self-awareness is another important issue we
are addressing. We are working to realize a kind of agent that is able to decide its own
behavior with respect to evolving goals.

Acknowledgements. This work has been partially funded by the Innovative Document
Sharing (IDS) Project funded by the Autonomous Region of Sicily (PO FESR Sicilia
2007-2013).

References

1. BPMN, O.: Business process model and notation (bpmn) (2009),
www.omg.org/spec/BPMN/2.0/

2. Van der Aalst,, W., Basten, T., Verbeek, H.M.W., Verkoulen, P.A.C., Voorhoeve, M.: Adap-
tive workflow. In: Enterprise Information Systems. Kluwer Academic Publishers (1999)

3. Casati, F., Ceri, S., Pernici, B., Pozzi, G.: Workflow evolution. Data & Knowledge Engineer-
ing 24(3), 211–238 (1998)

4. Kammer, P., Bolcer, G., Taylor, R., Hitomi, A., Bergman, M.: Techniques for supporting
dynamic and adaptive workflow. Computer Supported Cooperative Work (CSCW) 9(3),
269–292 (2000)

www.omg.org/spec/BPMN/2.0/

GoalSPEC 253

5. Serral, E., Sabatucci, L., Leonardi, C., Valderas, P., Susi, A., Zancanaro, M., Pelechano, V.:
Applying a methodology for developing ami systems: the nursing home case study. In: Pro-
ceedings of the 20th International Conference on Information Systems Development Cutting
Edge Research on Information Systems (2011)

6. Buhler, P., Vidal, J.: Towards adaptive workflow enactment using multiagent systems. Infor-
mation Technology and Management 6(1), 61–87 (2005)

7. Morandini, M., Penserini, L., Perini, A.: Towards goal-oriented development of self-adaptive
systems. In: Proceedings of the 2008 International Workshop on Software Engineering for
Adaptive and Self-managing Systems, pp. 9–16 (2008)

8. Winikoff, M., Padgham, L., Harland, J., Thangarajah, J.: Declarative and procedural goals in
intelligent agent systems. In: International Conference on Principles of Knowledge Repre-
sentation and Reasoning, Morgan Kaufmann (2002)

9. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos: An agent-
oriented software development methodology. Autonomous Agents and Multi-Agent Sys-
tems 8(3), 203–236 (2004)

10. Van Lamsweerde, A.: Goal-oriented requirements engineering: A guided tour. In: Proceed-
ings of Fifth IEEE International Symposium on Requirements Engineering, pp. 249–262
(2001)

11. Yu, E., Mylopoulos, J.: Why goal-oriented requirements engineering. In: Proceedings of the
4th International Workshop on Requirements Engineering: Foundations of Software Quality,
pp. 15–22 (1998)

12. Cheng, B., de Lemos, R., Giese, H., Inverardi, P., Magee, J., Andersson, J., Becker, B.,
Bencomo, N., Brun, Y., Cukic, B., et al.: Software engineering for self-adaptive systems:
A research roadmap. Software Engineering for Self-Adaptive Systems, 1–26 (2009)

13. Whittle, J., Sawyer, P., Bencomo, N., Cheng, B.H.C., Bruel, J.M.: RELAX: a language to
address uncertainty in self-adaptive systems requirement. Requirements Engineering 15(2),
177–196 (2010)

14. Van Dyke Parunak, H., Brueckner, S.: Entropy and self-organization in multi-agent systems.
In: Proceedings of the Fifth International Conference on Autonomous Agents, pp. 124–130.
ACM (2001)

15. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Experimentation
in software engineering: An introduction. Kluwer Academic Publishers (2000)

16. Team, BMM: Business motivation model (bmm) specification. Technical report, Technical
Report dtc/06–08–03, Object Management Group, Needham, Massachusetts, USA (2006)

17. Rolland, C., Souveyet, C., Achour, C.: Guiding goal modeling using scenarios. IEEE Trans-
actions on Software Engineering 24(12), 1055–1071 (1998)

18. Yu, E.: Modelling strategic relationships for process reengineering. Social Modeling for Re-
quirements Engineering 11 (2011)

19. Fuxman, A., Pistore, M., Mylopoulos, J., Traverso, P.: Model checking early requirements
specifications in tropos. In: Proceedings of Fifth IEEE International Symposium on Require-
ments Engineering, pp. 174–181. IEEE (2001)

20. Yu, L.: From requirements to architectural design–using goals and scenarios. University of
Toronto (2001),
http://www.cs.toronto.edu/km/GRL/fromr2a/fromr2a/straw01.pdf

21. Dardenne, A., Van Lamsweerde, A., Fickas, S.: Goal-directed requirements acquisition. Sci-
ence of Computer Programming 20(1), 3–50 (1993)

22. Hindriks, K.V., de Boer, F.S., van der Hoek, W., Meyer, J.-J.C.: Agent programming with
declarative goals. In: Castelfranchi, C., Lespérance, Y. (eds.) ATAL 2000. LNCS (LNAI),
vol. 1986, pp. 228–243. Springer, Heidelberg (2001)

23. Howden, N., Rönnquist, R., Hodgson, A., Lucas, A.: Jack intelligent agents-summary of an
agent infrastructure. In: 5th International Conference on Autonomous Agents (2001)

http://www.cs.toronto.edu/km/GRL/fromr2a/fromr2a/straw01.pdf

254 L. Sabatucci et al.

24. Rao, A.: Agentspeak (l): Bdi agents speak out in a logical computable language. Agents
Breaking Away, 42–55 (1996)

25. Bordini, R.H., Hübner, J.F.: A java-based agentspeak interpreter used with saci for multi-
agent distribution over the net (2004)

26. Hindriks, K.V., De Boer, F.S., Van der Hoek, W., Meyer, J.J.C.: Agent programming in 3APL.
Autonomous Agents and Multi-Agent Systems 2(4), 357–401 (1999)

27. Dastani, M., van Riemsdijk, M.B., Dignum, F.P.M., Meyer, J.-J.C.: A programming language
for cognitive agents goal directed 3APL. In: Dastani, M., Dix, J., El Fallah-Seghrouchni, A.
(eds.) PROMAS 2003. LNCS (LNAI), vol. 3067, pp. 111–130. Springer, Heidelberg (2004)

28. Braubach, L., Pokahr, A., Moldt, D., Lamersdorf, W.: Goal representation for BDI agent
systems. In: Bordini, R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A. (eds.) PROMAS
2004. LNCS (LNAI), vol. 3346, pp. 44–65. Springer, Heidelberg (2005)

29. Ribino, P., Lodato, C., Lopes, S., Seidita, V., Hilaire, V., Cossentino, M.: A norm-governed
holonic multi-agent system metamodel. In: Müller, J.P., Cossentino, M. (eds.) AOSE 2012.
LNCS, vol. 7852, pp. 22–39. Springer, Heidelberg (2013)

30. ISO Technical Committee TC 154: Iso 8601 international standard date and time notation
(1998), http://www.iso.org/

31. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming multi-agent systems in AgentS-
peak using Jason, vol. 8. Wiley Interscience (2007)

32. TC OASIS: WS-BPEL - Web Services Business Process Execution Language (2007),
http://www.oasis-open.org

33. Ghose, A.K., Koliadis, G.: Relating business process models to goal-oriented requirements
models in kaos. Faculty of Informatics-Papers, 573 (2007)

34. Burmeister, B., Arnold, M., Copaciu, F., Rimassa, G.: Bdi-agents for agile goal-oriented
business processes. In: Proceedings of the 7th International Joint Conference on Autonomous
Agents and Multiagent Systems: Industrial Track, pp. 37–44. International Foundation for
Autonomous Agents and Multiagent Systems (2008)

35. Greenwood, D., Ghizzioli, R.: Goal-oriented autonomic business process modelling and ex-
ecution. Multiagent System (2009)

36. Chen-Burger, Y.H., Stader, J.: Formal support for adaptive workflow systems in a distributed
environment. In: Workflow Handbook 2003, p. 93 (2003)

37. Cao, J., Yang, J., Chan, W.: Exception handling in distributed workflow systems using mobile
agents. e-Business Engineering (2005)

38. Liaskos, S., Khan, S.M., Litoiu, M., Daoud Jungblut, M., Rogozhkin, V., Mylopoulos, J.:
Behavioral adaptation of information systems through goal models. Information Systems
(2012)

http://www.iso.org/
http://www.oasis-open.org

Mutation Operators for the GOAL Agent Language

Sharmila Savarimuthu and Michael Winikoff

University of Otago, New Zealand
{sharmila.savarimuthu,michael.winikoff}@otago.ac.nz

Abstract. Testing multi-agent systems is a challenge, since by definition such
systems are distributed, and are able to exhibit autonomous and flexible behaviour.
One specific challenge in testing agent programs is developing a collection of
tests (a “test suite”) that is adequate for testing a given agent program. In order
to develop an adequate test suite, it is clearly important to be able to assess the
adequacy of a given test suite. A well-established technique for assessing this is
the use of mutation testing, where mutation operators are used to generate vari-
ants (“mutants”) of a given program, and a test suite is then assessed in terms of
its ability to detect (“kill”) the mutants. However, work on mutation testing has
focussed largely on the mutation of procedural and object-oriented languages.
This paper is the first to propose a set of mutation operators for a cognitive agent-
oriented programming language, specifically GOAL. Our mutation operators are
systematically derived, and are also guided by an exploration of the bugs found
in a collection of undergraduate programming assignments written in GOAL. In
fact, in exploring these programs we also provide an additional contribution: evi-
dence of the extent to which the two foundational hypotheses of mutation testing
hold for GOAL programs.

Keywords: Mutation Testing, Agent-Oriented Programming Languages, GOAL.

1 Introduction

Testing multi-agent systems (MAS) is a challenge, since by definition such systems are
distributed, and are able to exhibit autonomous and flexible behaviour. For example,
Munroe et al. note that “However, the task [validation] proved challenging for several
reasons. First, agent-based systems explore realms of behaviour outside people’s ex-
pectations and often yield surprises . . . ” [12, Section 3.7.2]. Similarly, Pěchouček and
Mařı́k [16, Page 413] note that1: “Although the agent system performed very well in all
the tests, to release the system for production would require testing all the steel recipes
with all possible configurations of cooling boxes”.

There has been work on testing of multi-agent systems, especially in the last 4-5
years. Most of this work has focussed on tool support for executing (manually defined)
tests (e.g. [2,3]). However, some work has investigated test generation based on design
models [21], ontologies [13], or using evolutionary techniques [14]. Space precludes

1 On the other hand, for another application they note that: “Even though this negotiation pro-
cess has not been theoretically proved for cycles’ avoidance [sic], practical experiments have
validated its operation” [16, Page 407].

M. Cossentino et al. (Eds.): EMAS 2013, LNAI 8245, pp. 255–273, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

256 S. Savarimuthu and M. Winikoff

a detailed review of testing, and we refer the reader to [20, Section 8.1] for a review
of work on testing and debugging MAS. Overall, the conclusion of this review was
that “testing of agent based systems is an area where there is a need for substantial
additional work” [20, Section 8.1].

Given a collection of tests (a “test suite”), a key question when testing an agent
system is to what extent is the test suite adequate? A test suite is adequate to the extent
that it is able to distinguish between a correct and an incorrect program. In developing
an adequate test suite, it is obviously useful to be able to assess the adequacy of the test
suite. This assessment can assist a tester in detecting when a test suite is not sufficient
and needs to be refined or extended. It can also guide a tester in knowing when to stop
adding test cases.

So far, work on assessing the adequacy of test cases (e.g. [9,11,19]) has only con-
sidered the use of various coverage metrics to assess test suite adequacy. However,
although coverage is necessary, it is not sufficient. Knowing that a test suite covers a
certain portion of a program simply indicates that parts of the program were executed
by the tests. It doesn’t allow us to draw conclusions about whether these parts of the
program were tested in a way that allows errors in the program to be detected, i.e. to
distinguish between correct and incorrect programs.

An alternative, well-established, technique for assessing test suite adequacy is mu-
tation testing [6] (see Section 2.1). Mutation testing directly assesses the ability of a
test suite to distinguish between different programs, and is considered a more powerful
and discerning metric than coverage. For instance Mathur notes that “If your tests are
adequate with respect to some other adequacy criteria . . . then chances are that these
are not adequate with respect to most criteria offered by program mutation” [10, Page
503].

Most work on mutation testing of programs has focussed on programs in procedural
and object-oriented languages [6, Figure 5]. There has been a (very) small amount of
work on applying mutation to agents [18,1]. However, this work has not considered
mutating agent programs written in a cognitive agent-oriented programming language.

In this paper we propose a set of mutation operators for the cognitive agent-oriented
programming language GOAL (see Section 2.2 for a brief introduction to the language).
Although we derive mutation operators for a specific language, the process by which
the operators are derived is generic, and can easily be applied to other agent-oriented
programming languages (see Section 6).

In deriving our mutation operators we are guided by an exploration of actual bugs
in GOAL programs. We want mutation operators to generate “realistic” bugs, and we
assess this by considering a collection of GOAL programs (written by undergraduate
students at another university). Section 4 compares the bugs that exist in these programs
against the sorts of bugs that our mutation operators generate, and uses the results to
guide the selection of mutation operators. In fact, the results of this assessment of bugs
also forms an additional contribution, in that it provides evidence of the extent to which
the two foundational hypotheses of mutation testing hold for GOAL programs.

The remainder of this paper is structured as follows. We begin by briefly review-
ing mutation testing (Section 2.1) and introducing the GOAL programming language
(Section 2.2). We then present our mutation operators in Section 3. Section 4 looks at

Mutation Operators for the GOAL Agent Language 257

Program

Mutant 1

Mutant 2

Mutant 3

Test
Suite

Test
Suite

4. Compare

1. Test

3. Test

2. Mutation
Operators

Test Outputs

Test Outputs

Same

Same

Different
("killed")

5. Adequacy = #Different / Total
 = 1/3 = 33%

Fig. 1. Mutation Testing Process

a collection of GOAL programs and considers what bugs they contain. We then (Sec-
tion 5) describe an implementation of the mutation operators, and report the number
of mutants generated by different operators for a number of example GOAL programs.
Finally, we conclude with a discussion, including future work (Section 6).

2 Background

2.1 Mutation Testing

We now very briefly introduce the key ideas of mutation testing, which is a long es-
tablished field, going back to the 70s. For a detailed introduction to mutation testing
see Chapter 7 of [10], and for a recent review of the field see Jia & Harman [6]. In a
nutshell, mutation testing assesses the adequacy of a test suite by generating variants
(“mutants”) of the program being tested, and assessing to what extent the test suite is
able to distinguish the original program from its mutants (termed “killing the mutant”).
Given a test suite, a program P written in a programming language, and a set of mu-
tation operators for that programming language, the process of mutation testing is as
follows (see Figure 1):

1. Execute the program P against all tests in the test suite, recording the results;
2. Use the mutation operators to generate a set of mutant programs P1 . . . Pn from P

(where each Pi is the result of applying a single mutation);
3. Test each mutant Pi against the tests in the test suite;

258 S. Savarimuthu and M. Winikoff

4. Each mutant that behaves differently to the original program is flagged as having
been “killed”2;

5. The adequacy of the test suite is D/n where D is the number of killed mutants and
n is the number of mutants. A quality score of 1 (highest) is good, and 0 is bad.

The mutants are generated using mutation operators: rules that take a program and
modify it, yielding a syntactically valid variant. The key challenge in developing a mu-
tation testing scheme is the definition of a good set of mutation operators for the pro-
gramming language used. A set of mutation operators is good to the extent that it (1)
generates errors that are realistic; and (2) does so without generating a huge number of
mutants.

Mutation testing rests on two foundational hypotheses [6]. The first is the competent
programmer hypothesis, which states that programmers tend to develop programs that
are close to being correct. This hypothesis is important in that a consequent of it is that
a simple syntactic mutation is a good approximation of the faults created by competent
programmers. In other words, the competent programmer hypothesis is what justifies
the use of simple syntactical mutations as proxies for real bugs. The second foundational
hypothesis is the coupling effect hypothesis. This proposes that a test suite that can find
the simple faults in a program, will also find a high proportion of the program’s complex
faults [15]. This hypothesis justifies the generation of mutants by the application of
a single mutation operator instance, rather than having to consider the application of
multiple mutation operators to generate a mutant.

In Section 4 we consider a collection of GOAL programs and assess to what extent
these two foundational hypotheses hold. Although there is empirical evidence to sup-
port both these hypotheses for procedural programs, this paper is the first to consider
evidence for these hypotheses in the context of agent systems.

2.2 GOAL

This section briefly introduces GOAL (Goal Oriented Agent Language); for further de-
tails we refer the reader to the existing literature [5,4]. A Multiagent System in GOAL is
defined using a configuration file that specifies the environment, configuration options,
and a number of GOAL agents, each with a GOAL program. A GOAL agent program
consists of five components: domain knowledge (e.g. Prolog rules), initial beliefs, ini-
tial goals, action definitions, and a program. Note that both the domain knowledge and
the beliefs are specified using a knowledge representation language which can be varied
(the GOAL implementation uses SWI-Prolog). In this paper we focus on the program
component, both because it corresponds most closely to other agent-oriented program-
ming languages (AOPLs), and because that is usually where the complexity of the agent
is [17], and where errors are made (see Section 4).

2 Some mutants may be equivalent in behaviour to the original program (“equivalent mutants”),
and, since program equivalence is undecidable, identifying and removing these mutants is a
manual and partial process. This is a standard problem in the field of mutation testing but
there is evidence that most equivalent mutants are actually fairly easy to detect. A related issue
is where a mutant may be non-equivalent, but may still be correct. Mutation testing is not
concerned with whether a mutant is correct, but with whether it is different, and whether this
difference can be detected by a test suite.

Mutation Operators for the GOAL Agent Language 259

GOAL programs are built out of actions and mental state conditions. Actions in
GOAL are either user-defined (pre and post condition), or are one of the five built-in
actions that insert or delete beliefs, adopt or drop goals, or send a message. GOAL

also defines an achievement goal a-goal(φ) ≡ goal(φ) ∧ ¬bel(φ) and an achieved
goal goal-a(φ) ≡ goal(φ) ∧ bel(φ). A mental state condition (MSC) in GOAL is
built out of conditions over the agent’s beliefs and its goals. A GOAL program def-
inition then, in essence, consists of a sequence of rules of the form3 “if MSC then
action1 + . . .+ actionn” where the actions are performed in order4, and there can be at
most one user-defined action.

These rules are actually placed within modules. However, in this paper we do not
consider the mutation of modules, since the module construct is unique to GOAL, and
was not used in the programs we considered (see Section 4). The grammar in Figure 2
summarises the subset of the language that we focus on. It thus differs from the original
grammar given by Hindriks [5] in that it omits modules. It also differs in a couple of
places where it has been changed to match what the implementation supports (specif-
ically for drop(φ) the φ must not contain negations; and in fact in mentalatoms belief
conditions can actually contain disjunctions).

Semantics: A rule “if condition then action” is applicable if the condition holds,
and is enabled if the actions’ preconditions are met. Applicable and enabled rules are
options. The execution cycle consists of the following steps:

1. Clear previous cycle’s percepts.

2. Update percepts by executing all options (i.e. enabled rules) in the distinguished
event module.

3. Focus on the main module: compute the options, select one (by default rules are
evaluated in linear order and the first option is selected), and perform its actions.

4. Update goals by dropping goals that are believed to hold.

Compared with other cognitive agent programming languages, GOAL’s most dis-
tinctive (relevant) features are: (a) The limitation that an action rule can only result in a
sequence of actions, rather than a mixture of actions and subgoals; and (b) The lack of
a trigger condition. This makes GOAL action rules more general, in that a rule doesn’t
require a particular trigger. However, it also means that a rule can be applied repeatedly:
in, say, Jason a rule of the form +!goal : context ← planBody can be applied (if the
context is true) to deal with the creation of a goal. However, the rule will not be applied
subsequently unless the goal is re-posted. By contrast, in GOAL a rule of the form “if
goal(goal) then actions” can be applied repeatedly, as long as goal remains a goal of
the agent.

3 There is also a form “forall MSC do actions” used in the percept processing module.
4 The GOAL documentation states that “The actions that are part of a composed action may be

put in any order in the action part of a rule. However, the order the actions are put in is taken
into account when executing the composed action: The actions are executed in the order
they appear” (emphasis added).

260 S. Savarimuthu and M. Winikoff

program ::= actionrule+

actionrule ::= if mentalstatecond then actioncombo

| forall mentalstatecond do actioncombo

mentalstatecond ::= mentalliteral { , mentalliteral }∗
mentalliteral ::= true | mentalatom | not(mentalatom)

mentalatom ::= bel(litconj) | goal(litconj)

actioncombo ::= action { + action }∗
action ::= user-def-action | built-in-action | communication

user-def-action ::= id[parameters]

built-in-action ::= insert(litconj) | delete(litconj)

| adopt(poslitconj) | drop(poslitconj)

communication ::= send(id , poslitconj)

poslitconj ::= atom { , atom }∗ .

litdisj ::= litconj { ; litconj }∗ .

litconj ::= literal { , literal }∗ .

literal ::= atom | not(atom)

atom ::= predicate[parameters] | (litdisj)

parameters ::= (term { , term }∗)

Fig. 2. GOAL Agent Program syntax (adapted from [5]): term is a legal term and id is an identifier

3 Deriving GOAL Mutation Operators

“the design of mutation operators is as much of an art as it is science.” [10,
Page 530].

In deriving a set of mutation operators for GOAL we follow the approach of
Kim et al. [8] and derive mutation operators based on HAZOP and the syntax of the
language. HAZOP (Hazard and Operability Study) is a technique for identifying haz-
ards in systems by considering each element of the system and applying “guide words”
such as NONE, MORE, LESS, PART OF, AS WELL AS, or OTHER THAN. For ex-
ample, in a chemical processing system, engineers might consider what hazard exists if
a certain pipe carries MORE chemical than it should, or if there is a contaminant (“AS
WELL AS”). Kim et al. applied this idea to generating mutation operators by apply-
ing these guide words to the syntax of Java. For example, when considering a method
invocation, the guide word OTHER THAN suggests that the designer consider the pos-
sibility that a different method to the intended one is invoked. This then leads directly
to the definition of a mutation operator that rewrites a method invocation by changing
the method name. Figure 3 shows their interpretation of the HAZOP guide words (note
that some of the guide words, such as those to do with scope, or quantitative changes,
are not applicable to GOAL, and so have been left out of the figure).

Mutation Operators for the GOAL Agent Language 261

Guide Words Interpretation
NO/NONE No part of the intention is achieved. No use of syntactic components.
AS WELL AS Specific design intent is achieved but with additional results
PART OF Only some of the intention is achieved, incomplete
REVERSE Reverse flow - flow of information in wrong direction . . . negation of condition
OTHER THAN A result other than the original intention is achieved, complete but incorrect

Fig. 3. HAZOP guide words and their interpretation for software (copied from [8])

In deriving mutation operators for GOAL we actually go through two stages. We
firstly apply HAZOP to abstract syntactical classes in order to develop generic mutation
schemas (Figure 4). These are generic in that they are applicable to a wide range of
programming languages. We then apply these schemas to the GOAL syntax to generate
specific mutation rules for GOAL (Figure 5). The advantage of doing the derivation in
two stages is that we can then more easily derive mutation operators for other AOPLs
by applying the generic schemas.

In deriving our generic schemas we consider three generic syntactical types: a se-
quence of elements, a (binary) operator that has two sub-elements, and a unary operator.
For each of these generic syntactical types we consider what mutations are suggested by
the HAZOP guide words, which gives a set of generic mutation schemas for that syn-
tactical type. In addition, there is also a generic schema, suggested by the NO/NONE
HAZOP guide word, that can be applied to delete (“drop”) any syntactical type. For-
mally we write drop:x � ε to capture this: the “drop:” is a label, x is a variable for a
syntactical element, the arrow “�” indicates a mutation, and ε denotes the empty syn-
tactical construct of the appropriate form (e.g. empty sequence, “True” Boolean value).

Consider now a sequence of elements (x1 . . . xn). The HAZOP guide word PART OF
suggests that we consider removing an element in the sequence (“drop1” in Figure 4).
The OTHER THAN guide word suggests changing part of the sequence, specifically,
we select an element, and replace it with a variant (derived using other appropriate mu-
tation operators; “mut1”). The REVERSE suggests changing the order of the sequence.
However, in general reversing a sequence of syntactic elements doesn’t make much
sense, and instead we propose a rule to swap two adjacent elements in the sequence
(“seqswap”): note that we choose to only swap adjacent elements in order to avoid gen-
erating a large number of possible mutants (but see the discussion of program:seqtop
and seqbot later in this section). The AS WELL AS guide word suggests that we add an
item to the sequence. However, we prefer to avoid adding things because this raises the
issue of what to add? If we add, say, a new rule to a GOAL program, what rule should
we add? It is possible to define a way of creating a new rule from existing fragments in
the program, but this tends to result in a very large number of possible mutations. The
NO/NONE guide word has already been handled by a rule that applies to all syntactical
types, including sequences.

Consider now a binary operator (notation: x⊕ y or x ⊗ y, where we assume that ⊕
and ⊗ are different). Using similar reasoning, we are inspired by PART OF to consider
dropping either the left or right element (“dropL”, “dropR”); by REVERSE to swap the
elements (“swap2”); and by OTHER THAN to change either the operator (“op2”) or to
mutate one of the elements (“mutL”, “mutR”).

262 S. Savarimuthu and M. Winikoff

Finally, consider a unary operator (notation: �x or ♦x, assuming � �= ♦). Using
similar reasoning, we are inspired by the PART OF guide word to delete the operator
(“delop”); by OTHER THAN to change the operator (“op1”) or mutate the component
(“mut”). We also can add an operator (“addop”) which can be seen as inspired by the
“negation of condition” interpretation of the REVERSE guide word (e.g. F � ¬F).

Figure 4 shows the resulting generic mutation schemas. Recall that each rule is of
the form “keyword : x � y”. We also employ a convention that where we have p(x) �
p(x′), there is an implied “if x � x′”. In other words, the mut1 rule, for instance, is
really shorthand for “mut1: x1 . . . xj . . . xn � x1 . . . x

′
j . . . xn if xj � x′

j”.

drop: x � ε

seqswap: x1 . . . xj xj+1 . . . xn � x1 . . . xj+1 xj . . . xn

mut1: x1 . . . xj . . . xn � x1 . . . x
′
j . . . xn

drop1: x1 . . . xj xj+1 . . . xn � x1 . . . xj+1 . . . xn

dropL: x⊕ y � y dropR: x⊕ y � x swap2: x⊕ y � y ⊕ x
op2: x⊕ y � x⊗ y mutL: x⊕ y � x′ ⊕ y mutR: x⊕ y � x⊕ y′

addop: x � ♦x delop: ♦x � x op1: ♦x � �x mut: ♦x � ♦x′

Fig. 4. Generic Mutation Schemas

The second step is to apply these generic mutation schemas to the GOAL syntax in
order to derive a set of mutation operators specific to GOAL. In doing so, we sometimes
leave out rules that don’t make sense. For example, when a binary operator is commu-
tative, it doesn’t make sense to mutate by swapping its arguments (“swap2”). We now
proceed to consider in turn each syntactical element type in GOAL and consider how
the generic mutation schemas apply to it.

We begin by considering a GOAL program. This is a sequence of action rules, and
therefore the relevant generic mutation schemas are those for a sequence (seqswap,
mut1, drop1), as well as the universal “drop” schema. In this case, it doesn’t make
sense to drop the whole program, so we have three rules (labelled in Figure 5 “pro-
gram:seqswap”, “program:mut1” and “program:drop1”). For example, given a program
that consists of the rules r1r2r3 we could apply the mutation operator program:seqswap
to swap any two rules, for example swapping r1 and r2 to obtain the mutated program
r2r1r3. We could alternatively apply program:drop1 to remove a single rule, for in-
stance dropping r1 yielding the mutated program r2r3. A final option is to select a rule,
for instance r2, and mutate it using a rule mutation operator, yielding the mutated rule
r′2, and the overall mutated program r1r

′
2r3.

In fact, in our exploration of bugs in example GOAL programs, we also found that the
limitation to only swap adjacent rules in a program was too strong: there were a number
of cases where bugs corresponded to other sorts of changes to the order of rules in a
program. Although we do not want to introduce a mutation operator to allow arbitrary
reorderings of the rules in a program, we do propose a compromise that allows many of
the bugs seen to be generated by our mutation rules, whilst not increasing the number
of possible mutants too much. This compromise is to add mutation operators that allow

Mutation Operators for the GOAL Agent Language 263

a single rule in the program to be moved to the start (“program:seqtop”) or end (“pro-
gram:seqbot”) of the program. Applying these rules to the program r1r2r3r4r5 with rule
r3 being moved yield respectively the mutated programs r3r1r2r4r5 and r1r2r4r5r3.

Next we consider a GOAL action rule (abbreviated AR). An action rule is effectively
a binary connective with two sub-components, and hence the generic schemas for bi-
nary connectives apply (i.e. dropL, dropR, swap2, op2, mutL, mutR, as well as drop).
However, for an AR the components cannot be deleted, since a rule must have both a
condition and actions (although an MSC could be replaced with “true”), and they can-
not be swapped, so we only have rules for op2, mutL, and mutR. For op2 we consider
replacing “if MSC then AC” with “forall MSC do AC” (and vice versa), but only in the
context of the percept processing module. Note that op2 has two instances, and that it
is fairly specific to GOAL: other AOPLs don’t deal with percepts in the same way. The
universal “drop” rule isn’t needed for actionrules, since actionrules only occur within a
sequence, and we already have a rule to delete an element in the sequence. Thus, for an
action rule in the main module (i.e. not in the percept module), we can only mutate it by
selecting either its mental state condition or its action combo, and using an appropriate
mutation operator to mutate the selected element.

A mentalstatecond (MSC) is also a sequence. Here it does make sense to also con-
sider the overall drop rule, dropping the whole MSC, as well as the usual mut1 and
drop1 rules. However, in fact the result of dropping an MSC completely is rarely a valid
GOAL program: GOAL requires that variables appearing in the actions of a rule also
appear in that rule’s condition. Since this requirement only holds for a “true” condition
when the action list has no variables, the MSC:drop rule is unlikely to ever be applicable
(see Section 5). Note that we only consider mutation by dropping an MSC if it has more
than one element (otherwise the same effect is achieved by the ML:drop rule). Finally,
we did not initially define mutation operators to change the order of conditions in an
MSC, since in many cases the order doesn’t matter, for instance where each condition
has disjoint variables. However, in other cases the order may matter, and we could con-
sider extending our set of mutation operators with rules to change the order as future
work.

A mentalliteral (ML), as defined in the GOAL syntax, is an optional unary operator
(“not”) that is applied to a mental atom (which itself is either a bel or a goal operator
applied to a litconj). We can mutate a mentalliteral by dropping it completely. We can
also add or remove a “not” (“addop”, “delop”), or we can mutate the mental atom.
Mutating a mental atom (MA) can be done by either changing a bel to a goal (or vice
versa), or by mutating the literal conjunction. Note that we cannot mutate the “not” into
another operator, since there is no alternative operator.

An actioncombo (AC) is a sequence of actions. It cannot be entirely deleted. How-
ever, we can mutate an individual action or drop one. Note that the swap rule doesn’t
really make sense: although GOAL specifies that actions in an actioncombo are exe-
cuted sequentially, it would in fact be non-idiomatic to have a sequence of actions that
is order dependent.

An action (A) is either user defined (“id[parameters]”) or is one of the five built-in
actions: insert, delete, adopt, drop, send. Dropping an action completely is already cov-
ered by the rule AC:drop1, so we only consider mutating the parameters of the action,

264 S. Savarimuthu and M. Winikoff

or the action type. In mutating the action type we exclude changing a belief operation to
a goal operation and vice versa, since this doesn’t make sense, and is unlikely to yield
a sensible mutant. When mutating a message, we can mutate the message content, or
the recipient. Finally, we can mutate a user-defined action by mutating either the id (by
replacing it with a different user defined action or by mutating the parameters. In replac-
ing a user-defined action with a different user-defined action we need to ensure that the
two actions have the same number of parameters (which we term being “compatible”).
This condition also applies when mutating atoms by changing their predicate.

We did observe that some programs had “typos” (e.g having “at” instead of “at-
Block”) in predicates. However, we did not introduce a mutation operator to create
such typos for the simple reason that this operator would be redundant. Consider, for
example, replacing the action “delete(p)” with “delete(typo)”. This is actually equiv-
alent to just deleting the action. Similarly, replacing “bel(p)” with “bel(typo)” in an
MSC is equivalent to replacing it with “false”, i.e. with deleting the rule; and having
“adopt(typo)” is equivalent to a null action since the goal won’t have rules that handle
it, so won’t have any effect.

A poslitconj (PLC) and a litconj (LC) are both sequences (respectively of Atoms “At”
or Literals “Lit”), so we can remove an element of the sequence or mutate an element
of the sequence. As for MSCs, we did not define swapping operations, but these could
be considered as future work.

A Literal is an optional unary connective (“not”) applied to an Atom, and hence can
be mutated by adding or removing a negation, or by mutating the atom. Mutating an
atom can be done by mutating the predicate (replacing it with another predicate found
in the program), or by mutating the parameters. Parameters are a sequence of terms (we
abbreviate term to t), but we do not want to change the length of the sequence, hence
can only mutate individual terms. However, swapping terms is a reasonable mutation.

Mutating a list (of the form [t1|t2]) is done similarly to any other binary connective,
yielding the following rules (for space reasons, these are not shown in Figure 5):

termlist:drop1 [A|As] � A [A|As] � As
termlist:seqswap [A|As] � [As|A]
termlist:mut [A|As] � [A′|As] [A|As] � [A|As′]

Finally, we consider the mutation of terms (excluding lists). A term is of the form
f(t1, . . . , tn) and, viewed as a sequence of arguments, can be mutated by dropping a
sub-term (“term:drop1”), mutating a sub-term, or swapping adjacent sub-terms. There
is one special case: equality. For the term t1 = t2 it does not make sense to drop either
sub-term, nor to swap the sub-terms.

Figure 5 shows the collected mutation operators for GOAL. Recall that by convention
where we have p(x) � p(x′), there is an implied “if x � x′”. We also assume that
there are implicit checks for syntactic elements being of the correct type. For instance,
in the rule ML:addop, the element MA must be a MentalAtom, and hence cannot be
“true” or “not(MA)”. There is also a constraint: for those rules that involve an element
j+1 (i.e. the swap and drop1 rules) we have 1 ≤ j and j+1 ≤ n, and hence that n ≥ 2
(so we don’t drop the last element in a list). For other rules we have 1 ≤ j ≤ n. Finally,
the program:mut rule has an additional condition, discussed above, that all variables
appearing in the actions also appear in the rule’s condition.

Mutation Operators for the GOAL Agent Language 265

program:seqtop AR1 . . . ARj ARj+1 . . . ARn � ARj AR1 . . . ARj+1 . . . ARn

program:seqbot AR1 . . . ARj ARj+1 . . . ARn � AR1 . . . ARj+1 . . . ARn ARj

program:seqswap AR1 . . . ARj ARj+1 . . . ARn � AR1 . . . ARj+1 ARj . . . ARn

program:mut1 AR1 . . . ARj . . . ARn � AR1 . . . AR′
j . . . ARn (see text for condition)

program:drop1 AR1 . . . ARj ARj+1 . . . ARn � AR1 . . . ARj+1 . . . ARn

AR:op2 if msc then actioncombo � forall msc do actioncombo (only percept rules)
AR:op2 forall msc do actioncombo � if msc then actioncombo (only percept rules)
AR:mutL if msc then actioncombo � if msc′ then actioncombo
AR:mutR if msc then actioncombo � if msc then actioncombo′

AR:mutL forall msc do actioncombo � forall msc′ do actioncombo
AR:mutR forall msc do actioncombo � forall msc do actioncombo′

MSC:drop ML1 . . .MLj MLj+1 . . .MLn � true
MSC:mut1 ML1 . . .MLj . . .MLn � ML1 . . .ML′

j . . .MLn

ML:drop ML � true (if ML �= true)
ML:addop MA � not(MA) ML:delop not(MA) � MA
ML:mut MA � MA′ not(MA) � not(MA′)
MA:op1 bel(litconj) � goal(litconj) goal(litconj) � bel(litconj)
MA:mut ♦(litconj) � ♦(litconj′) where ♦ ∈ {bel, goal}
AC:mut1 A1 . . . Aj . . . An � A1 . . . A

′
j . . . An

AC:drop1 A1 . . . Aj Aj+1 . . . An � A1 . . . Aj+1 . . . An

A:op1 insert(litconj) � delete(litconj) delete(litconj) � insert(litconj)
A:op1 adopt(poslitconj) � drop(poslitconj) drop(poslitconj) � adopt(poslitconj)
A:mut ♦(litconj) � ♦(litconj′) where ♦ ∈ {insert, delete}
A:mut ♦(poslitconj) � ♦(poslitconj′) where ♦ ∈ {adopt, drop}
A:mut send(id , poslitconj) � send(id , poslitconj′)
A:mut send(id , poslitconj) � send(id′ , poslitconj)
A:mut(*) id[parameters] � id′[parameters]
A:mut id[parameters] � id[parameters′]

PLC:mut1 At1 . . . Atj . . . Atn � At1 . . . At′j . . . Atn
PLC:drop1 At1 . . . Atj Atj+1 . . . Atn � At1 . . . Atj+1 . . . Atn
LC:mut1 Lit1 . . . Litj . . . Litn � Lit1 . . . Lit

′
j . . . Litn

LC:drop1 Lit1 . . . Litj Litj+1 . . . Litn � Lit1 . . . Litj+1 . . . Litn

Lit:addop At � not(At) Lit:delop not(At) � At
Lit:mut At � At′ not(At) � not(At′)
At:mut(*) predicate[parameters]� predicate′[parameters]
At:mut predicate[parameters]� predicate[parameters′]
At:mut lit1; . . . ; litj ; . . . ; litn � lit1; . . . ; lit

′
j ; . . . litn

parameters:seqswap t1 . . . tj tj+1 . . . tn � t1 . . . tj+1 tj . . . tn
parameters:mut t1 . . . tj . . . tn � t1 . . . t

′
j . . . tn

term:drop1 f(t1 . . . tj , tj+1 . . . tn) � f(t1 . . . tj+1 . . . tn)
term:mut1 f(t1 . . . tj , tj+1 . . . tn) � f(t1 . . . tj , t

′, tj+1 . . . tn)
term:seqswap f(t1 . . . tj , tj+1 . . . tn) � f(t1 . . . tj+1, tj . . . tn)
term:mut X = Y � X ′ = Y X = Y � X = Y ′

Constraints: 1 ≤ j and j + 1 ≤ n for constraints that have j + 1, otherwise 1 ≤ j ≤ n
(*) = compatibility constraint (see text)

Fig. 5. Mutation Operators for GOAL

266 S. Savarimuthu and M. Winikoff

These rules have the property that when applied to a valid GOAL program, they
result in another valid program, since they always replace a syntactical element of a
certain type (e.g. MSC) with another valid syntactical element of the same type (see
also Section 5). Figure 6 shows an example GOAL rule and its mutations (generated by
the implementation described in Section 5).

Original: if not(goal(target(A, B))), bel(holding(C)) then adopt(target(C, table)).
ml:drop if true, bel(holding(A)) then adopt(target(A, table)).
ml:delop if goal(target(A, B)), bel(holding(C)) then adopt(target(C, table)).
ma:op1 if not(bel(target(A, B))), bel(holding(C)) then adopt(target(C, table)).
ml:addop if not(goal(target(A, B))), not(bel(holding(C))) then adopt(target(C, table)).
ma:op1 if not(goal(target(A, B))), goal(holding(C)) then adopt(target(C, table)).
lit:addop if not(goal(target(A, B))), bel(not(holding(C))) then adopt(target(C, table)).
at:mut if not(goal(target(A, B))), bel(block(C)) then adopt(target(C, table)).
a:op1 if not(goal(target(A, B))), bel(holding(C)) then drop(target(C, table)).
parameters:seqswap

if not(goal(target(A, B))), bel(holding(C)) then adopt(target(table, C)).

Fig. 6. GOAL clause and example mutations, with the changes highlighted

4 An Empirical Evaluation of Programs

We now turn to an empirical evaluation by examining a collection of GOAL programs.
The aim of this examination is primarily to assess how well the mutation operators
are able to generate realistic bugs. However, we also briefly consider what our em-
pirical evaluation tells us about the two foundational hypotheses of mutation testing
(Section 4.1).

Methodology: We obtained a collection of 55 GOAL programs, written as an as-
signment by first year undergraduate students at Delft university. These programs each
implement a solution to “Blocks World for Teams” (BW4T) [7]: a single5 agent that
moves around an environment with a number of rooms (see Figure 7), collecting blocks
of various colours, and delivering them to the “dropzone” in a specified order (e.g. a red
block, then a blue block). The environment (which runs in a separate process) provides
the agent with percepts (e.g. in(Room), color(BlockID, Color), holding(BlockID)), and
four actions (goTo(Location), goToBlock(BlockID), pickUp, and putDown).

We are interested in assessing how well the mutation operators are able to generate
realistic bugs. We therefore consider the collection of GOAL programs as being a source
of realistic buggy programs, and consider whether each of the buggy programs could
have been generated from a correct program by applying our mutation operators. We
therefore proceeded by testing each program to locate bugs, and then fixing the bugs. In
fixing bugs we were careful to only make changes that were necessary, and to consider
what alternative changes might be used to fix the bug. Once a bug was fixed we re-
tested the program to confirm that the fix was correct. When testing the programs we

5 We only considered the initial version of the assignment with one agent.

Mutation Operators for the GOAL Agent Language 267

Fig. 7. Blocks World for Teams

used a number of test suites: the two example scenarios that were used in the original
assignment, a set of ten randomly generated test cases, and a generated enumeration
of all possible starting configurations within a limited scope (for scope sizes 1 and 2).
Overall, we considered a program to be correct if it managed to deliver the desired
blocks in all runs. Note that in some cases programs were successful in delivering all
blocks, but had other issues, for example, a program might deliver incorrect blocks
along the way, or may require a large number of additional actions. However, as long
as it ended up delivering the desired blocks, we considered it to be “correct”. Of the
55 programs, 4 were excluded, since they did not run at all (e.g. syntax errors), and 15
further programs were excluded since they did not have any (detected) bugs. This left a
total of 36 buggy programs.

Before we consider how well the mutation operators are able to generate realistic
bugs (as represented by the 36 buggy programs), we need to consider the assumptions
that were made in developing the mutation operators. To what extent do these assump-
tions hold?

Recall that GOAL programs have a number of components (e.g. domain knowl-
edge, action definitions), and that we have focussed on the program rules, i.e. assumed
that errors only occur in the program rules. Is this a valid assumption? Out of the 36

268 S. Savarimuthu and M. Winikoff

programs with bugs, only 9 programs involved errors that related to non-supported
GOAL features. One of these 9 programs involved incorrect usage of nested rules, and
the remaining 8 programs had problems in the definition of actions, mostly incorrect
definitions of their pre/post conditions6. The somewhat surprising number of programs
with issues in defining actions may be due to a feature of the BW4T environment: the
environment is a separate process, and there is a delay between performing an action,
and the action actually taking place. This means that when defining an action, such as
pickUp, the action’s post-condition should be “true”, rather than, say, “holding(Block)”,
because the environment will, in due course, perform the action and inform the agent of
the action’s success (or failure) by sending suitable percepts (such as “holding(Block)”).
Having pickUp make holding(Block) true is a problem because in reality (i.e. in the en-
vironment) the agent may fail to pick up the block, or may take a while to succeed. If
holding(Block) is asserted immediately (by an incorrect post condition), then the agent
may then proceed to move to the dropzone, based on the false belief that it has already
picked up the block.

The second assumption that we made in developing the mutation operators was to
ignore certain features specific to GOAL, namely modules, nested rules, and macros.
This assumption was clearly reasonable: of the 36 buggy programs, only 6 programs
used nested rules (2 of these 6 also used macros). However, only one of these 6 programs
had a bug that was related to the use of nested rules.

Having considered, and evaluated, the assumptions, we now consider to what extent
the bugs that we observed could be seen as the result of one or more applications of
the defined mutation operators. As noted earlier, 27 out of the 36 buggy programs had
bugs that solely related to supported GOAL features. Of these 27 programs, 16 pro-
grams had errors that did not require additional mutation operators. The remaining 11
programs had errors that corresponded to the application of a number of mutation oper-
ator instances, where at least one of the operators was additional to the ones that we had
defined. The additional mutation operators were: (i) addition of elements (either actions
or literals) [7 programs]; (ii) changes to the order of rules in a program other than the
cases defined7 [3 programs]; (iii) mutating a variable to another (legal) variable name
[3 programs]; and (iv) replacing an “insert” with a “drop” [1 program]. As discussed
in Section 3, mutation operators that add to the program are problematic; however, the
other three types of rules could be easily added.

Finally, we consider which of the mutation operators are used to generate the ob-
served bugs. Figure 8 contains a summary of the number of times that each rule was
used in deriving buggy programs, summed up over the 36 programs. Note that since
some programs had bugs that corresponded to the application of multiple mutation oper-
ators, the sum of the number of rule applications (final row) is greater than the number of
buggy programs. As can be seen in Figure 8, many of the rules that we defined actually
do not correspond to the sorts of errors that we found in real buggy programs. Indeed,
as often appears to be the case in mutation testing, only a few rules account for most
of the bug types. For example, the four most commonly used rules (program:seqswap,

6 Of these 8, one also had an error in the domain knowledge where a “>” should have been “≥”,
and two had incorrectly defined actions using e.g. pickUp(Block) instead of pickUp.

7 These could, in principle, be regarded as repeated application of program:seqswap.

Mutation Operators for the GOAL Agent Language 269

Observed
Rule Bugs
a:mut 0
a:op1 0

ac:drop1 14
ar:op2 6
at:mut 4

lc:drop1 18
lit:addop 0
lit:delop 0
ma:op1 0

ml:addop 1
ml:delop 0
ml:drop 13

msc:drop 0
parameters:seqswap 0

plc:drop1 0
program:drop1 29
program:seqbot 9

program:seqswap 31
program:seqtop 5

term:drop1 0
term:seqswap 0

TOTAL 130

Fig. 8. Summary of observed bugs and the rules involved

program:drop1, LC:drop1, and AC:drop1, which are bolded in Figure 8) correspond to
71% of the mutation operator applications.

Overall, we conclude that: 75% (27 out of 36) of the programs had bugs that did not
involve excluded GOAL features, such as modules, action definitions, or nested rules;
59% of these (16 out of 27) had bugs that were able to be generated by the mutation
operators that we defined; and many (71%) of the mutation operator applications were
instances of only four rules.

One question that might be asked is whether we could derive the mutation operators
based on the buggy programs, rather than using the syntax-based approach discussed
in Section 3. The advantage of the approach that we used is that it is based on the
programming language itself, rather than on a given set of programs. In this case, since
we had programs that all solved the same problem, if we had derived the operators
based on the programs, there would be a danger that the operators would be biased to
this specific problem.

4.1 Evidence for the Foundational Hypotheses

Recall that the field of mutation testing rests on two foundational hypotheses. The com-
petent programmer hypothesis states that programmers write programs that are “almost
correct”, i.e. programs that are “a few mutants away from a correct program” [10, Page

270 S. Savarimuthu and M. Winikoff

Mutation
Operator

Applications # Programs
1 7
2 7
3 2
4 3
5 3
6 5
7 0
8 2
9 1
10 2
>10 4

Fig. 9. Number of programs that are N mutants away from being correct, for different values of
N (see also Figure 10)

7

7

2
3

3

5

0
2

1 2

4

1

2

3

4

5

6

7

8

9

10

>10

Fig. 10. Number of programs that are N mutants away from being correct, for different values of
N (see also Figure 9)

531]. Of the 36 buggy programs, we found that 27 programs (75%) were indeed a few
mutants away from a correct program (defining “a few” to be “6 or fewer”). Thus we
conclude that the there is evidence that the competent programmer hypothesis holds for
GOAL programs, even when they are written by first-year students. Figures 9 and 10
show how many programs were N mutation operators away from being correct. For in-
stance, 7 of the 36 buggy programs corresponded to the application of a single mutation
operator (first row of Figure 9), and 7 programs had 2 mutations (second row). The last
row indicates that there were 4 programs that required more than 10 mutation operator
applications: these required 11, 16, 20, and 22 applications respectively.

The coupling effect hypothesis states that a test set that is adequate with respect to
single mutations is also adequate for multiple mutations. Since it concerns test sets and
adequacy, this hypothesis is not easy to assess, and a full assessment is beyond the

Mutation Operators for the GOAL Agent Language 271

scope of this paper. However, we can provide some initial evidence: if, in fact, most of
the observed bugs are generated by the application of a single mutation, then this would
be evidence for the coupling effect hypothesis. Note that the converse is not true: even
if the observed bugs mostly involve the application of multiple mutations, this does not
mean that the coupling effect hypothesis fails to hold. There could be other mutants that
can be used to assess whether the test suite is adequate with respect to the given bug.
Considering the programs we found that of the 36 programs, 7 (19%) were generated
by a single mutation operator application.

5 Implementation

The mutation operators defined in Figure 5 have been implemented. The implementa-
tion reads in a GOAL program and generates a collection of mutated programs, each of
which is the result of applying a single mutation. The implementation considers muta-
tions in both the main module, and in the percept processing module. It changes a single
GOAL program rule, and then reassembles the complete program, including generating
a modified mas2g file to run the mutated program.

We have run the implementation on three example GOAL programs (we selected
the three longest examples in the GOAL distribution, excluding an example which uses
modules extensively). The results were used in two ways. Firstly, we ran the mutants
(for the 1st and 3rd programs) to check that each mutant was indeed a syntactically
valid GOAL program (we couldn’t do this for the 2nd program, because it could not be
run from the command line, due to the way the agent’s environment was implemented).
Secondly, we observed which of the mutation operators were applicable to each pro-
gram, and how many mutants were generated by the different rules. Figure 11 shows
how many mutants were generated by the application of each of the mutation operators.
Note that mutation operators that simply select part of a rule and invoke another muta-
tion operator to make the change are not shown, since they do not actually change the
program.

6 Discussion

We have presented rules for generating mutants of programs in a typical cognitive
agent-oriented programming language (namely GOAL). We have also presented ini-
tial evidence that the rules are able to generate a significant proportion of the realistic
bugs encountered in a simple problem, as well as evidence that supported the competent
programmer foundational hypothesis of mutation testing in an agent context.

There are a number of issues (threats to validity) that need to be acknowledged.
Firstly, we only considered a single problem, and although we considered 55 different
programs, all these programs only involved a single agent, and all were written by rela-
tively inexperienced programmers. Clearly, one area for future work is to revisit the em-
pirical evaluation using a wider range of problems, and a wider range of programmers.
Note that these limitations are the reason why we have derived the mutation operators
systematically based on the syntactical structure of GOAL, rather than by considering
what mutation operators correspond to errors in the GOAL programs.

272 S. Savarimuthu and M. Winikoff

Tower/ BW4T2/ Elevator/
Rule towerbuilder robot elevatoragent
a:mut 0 0 0
a:op1 16 8 8

ac:drop1 2 2 0
ar:op2 6 6 6
at:mut 11 27 40

lc:drop1 20 8 13
lit:addop 39 17 20
lit:delop 8 4 5
ma:op1 26 7 12

ml:addop 27 8 12
ml:delop 4 0 2
ml:drop 19 0 5

msc:drop 0 0 0
parameters:seqswap 29 2 9

plc:drop1 0 0 6
program:drop1 18 8 9
program:seqbot 16 6 7

program:seqswap 16 6 7
program:seqtop 16 6 7

term:drop1 8 0 6
term:seqswap 4 0 3

TOTAL 285 115 177

Fig. 11. Mutants generated by different operators for three example GOAL programs

Another area for future work is assessing the prevalence of equivalent mutants, and
whether equivalent mutants are generated by all mutation operators with roughly equal
likelihood, or by certain rules. We also intend to apply this approach to define mutation
operators for other AOPLs. Indeed, we have already defined mutation operators for
AgentSpeak, but space precludes presenting them here. More broadly, the data that we
have collected also tells us information on the sorts of mistakes that (novice) GOAL

programmers make. Analysing the data from this perspective would be valuable.

Acknowledgements. We would like to thank our colleagues at Delft university for pro-
viding access to the student projects, and for answering questions about GOAL, and
fixing bugs that we found in the BW4T environment.

References

1. Adra, S.F., McMinn, P.: Mutation operators for agent-based models. In: Proceedings of 5th
International Workshop on Mutation Analysis. IEEE Computer Society (2010)

2. Ekinci, E.E., Tiryaki, A.M., Çetin, Ö., Dikenelli, O.: Goal-oriented agent testing revisited.
In: Luck, M., Gomez-Sanz, J.J. (eds.) AOSE 2008. LNCS, vol. 5386, pp. 173–186. Springer,
Heidelberg (2009)

Mutation Operators for the GOAL Agent Language 273

3. Gómez-Sanz, J.J., Botı́a, J., Serrano, E., Pavón, J.: Testing and debugging of MAS interac-
tions with INGENIAS. In: Luck, M., Gomez-Sanz, J.J. (eds.) AOSE 2008. LNCS, vol. 5386,
pp. 199–212. Springer, Heidelberg (2009)

4. Hindriks, K.V.: Programming rational agents in GOAL. In: Bordini, R.H., Dastani, M.,
Dix, J., El Fallah Seghrouchni, A. (eds.) Multi-Agent Programming: Languages, Tools and
Applications, ch. 4, pp. 119–157. Springer (2009)

5. Hindriks, K.V.: Programming rational agents in GOAL (May 2011),
http://mmi.tudelft.nl/trac/goal

6. Jia, Y., Harman, M.: An analysis and survey of the development of mutation testing. IEEE
Transactions on Software Engineering 37(5), 649–678 (2011)

7. Johnson, M., Jonker, C., van Riemsdijk, B., Feltovich, P.J., Bradshaw, J.M.: Joint Activity
Testbed: Blocks World for Teams (BW4T). In: Aldewereld, H., Dignum, V., Picard, G. (eds.)
ESAW 2009. LNCS, vol. 5881, pp. 254–256. Springer, Heidelberg (2009)

8. Kim, S., Clark, J.A., McDermid, J.A.: The rigorous generation of Java mutation operators
using HAZOP. Technical Report 2/8/99, Department of Computer Science, University of
York (1999)

9. Low, C.K., Chen, T.Y., Rönnquist, R.: Automated test case generation for BDI agents. Journal
of Autonomous Agents and Multi-Agent Systems 2(4), 311–332 (1999)

10. Mathur, A.P.: Foundations of Software Testing. Pearson (2008) ISBN 978-81-317-1660-1
11. Miller, T., Padgham, L., Thangarajah, J.: Test coverage criteria for agent interaction testing.

In: Weyns, D., Gleizes, M.P. (eds.) Proceedings of the 11th International Workshop on Agent
Oriented Software Engineering, pp. 1–12 (2010)

12. Munroe, S., Miller, T., Belecheanu, R.A., Pěchouček, M., McBurney, P., Luck, M.: Crossing
the agent technology chasm: Lessons, experiences and challenges in commercial applications
of agents. Knowledge Engineering Review 21(4), 345–392 (2006)

13. Nguyen, C.D., Perini, A., Tonella, P.: Experimental evaluation of ontology-based test gen-
eration for multi-agent systems. In: Luck, M., Gomez-Sanz, J.J. (eds.) AOSE 2008. LNCS,
vol. 5386, pp. 187–198. Springer, Heidelberg (2009)

14. Nguyen, C.D., Perini, A., Tonella, P.: Goal-Oriented Testing for MASs. International Journal
of Agent-Oriented Software Engineering 4(1), 79–109 (2010)

15. Offutt, A.: Investigations of the software testing coupling effect. ACM Transactions on Soft-
ware Engineering and Methodology 1(1), 5–20 (1992)

16. Pěchouček, M., Mařı́k, V.: Industrial deployment of multi-agent technologies: review and
selected case studies. Journal of Autonomous Agents and Multi-Agent Systems 17, 397–431
(2008)

17. van Riemsdijk, M.B., Hindriks, K.V., Jonker, C.M.: An empirical study of cognitive agent
programs. Multiagent and Grid Systems 8(2), 187–222 (2012)

18. Saifan, A.A., Wahsheh, H.A.: Mutation operators for JADE mobile agent systems. In: Pro-
ceedings of the 3rd International Conference on Information and Communication Systems,
ICICS (2012)

19. Thangarajah, J., Sardiña, S., Padgham, L.: Measuring plan coverage and overlap for agent
reasoning. In: van der Hoek, W., Padgham, L., Conitzer, V., Winikoff, M. (eds.) International
Conference on Autonomous Agents and Multiagent Systems, AAMAS 2012, 3 Volumes,
Valencia, Spain, June 4-8, pp. 1049–1056. IFAAMAS (2012)

20. Winikoff, M., Padgham, L.: Agent oriented software engineering. In: Weiss, G. (ed.) Multi-
agent Systems, ch. 5, 2nd edn. MIT Press (2013)

21. Zhang, Z., Thangarajah, J., Padgham, L.: Automated unit testing for agent systems. In: 2nd
International Working Conference on Evaluation of Novel Approaches to Software Engi-
neering (ENASE 2007), pp. 10–18 (2007)

http://mmi.tudelft.nl/trac/goal

Automatic BDI Plan Recognition from Process

Execution Logs and Effect Logs

Hongyun Xu1,3, Bastin Tony Roy Savarimuthu2, Aditya Ghose3,
Evan Morrison3, Qiying Cao1, and Youqun Shi1

1 School of Information Science and Technology,
Donghua University, Shanghai, 201620, P.R. China

2 Department of Information Science,
University of Otago, P.O. Box 56, Dunedin, New Zealand
3 College of Computer Science and Software Engineering,

University of Wollongong, Wollongong, NSW, 2522, Australia
xjyc2007@gmail.com, tonyr@infoscience.otago.ac.nz,

aditya@uow.edu.au, {caoqiying,yqshi}@dhu.edu.cn

Abstract. Agent applications are often viewed as unduly expensive to
develop and maintain in commercial contexts. Organizations often set-
tle for less sophisticated and more traditional software in place of agent
technology because of (often misplaced) fears about the development and
maintenance costs of agent technology, and the often mistaken percep-
tion that traditional software offers better returns on investment. This
paper aims to redress this by developing a plan recognition framework
for agent program learning, where behavior logs of legacy applications
(or even manually executed processes) are mined to extract a ‘draft’ ver-
sion of agent code that could eventually replace these applications or
processes. We develop, implement and evaluate techniques for inferring
agent plans from behavior logs, with both positive and negative exam-
ples. After obtaining the plans, we resort to an effect log to identify the
context (i.e. precondition) for each plan. The experimental results show
that our framework generates a first draft of an agent program (i.e. the
code) which can then be modified as required by a developer.

1 Introduction

Agent applications are often viewed as unduly expensive to develop and
maintain in commercial contexts. Even in organizations where there is recog-
nition that the agent technology has benefits, people often settle for less sophis-
ticated, and more traditional software in place of agent technology because of
(often misplaced) fears about the development and maintenance costs of agent
technology, and the (often mistaken) perception that traditional software offers
better return on investment [8]. This paper posits that agent program learning
offers a solution to this problem. We define the general agent program learning
problem as follows:

M. Cossentino et al. (Eds.): EMAS 2013, LNAI 8245, pp. 274–291, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Automatic BDI Plan Recognition from Process Execution Logs 275

– Given: A behavior log describing the behavior of a system over a given audit
period, and an effect log1 describing the states of the system at some point
in time.

– Determine: An agent program such that if that agent program were executed
with the same set of inputs from the environment, the original behavior log
would be obtained (with the exception of failure instances, to be discussed
below, which would be avoided).

An agent program learning system can lead to significant improvements in pro-
grammer productivity. Instead of having to develop anagent program fromscratch,
which is an expensive and time-consuming proposition, especially in light of the
well-known knowledge acquisition problem [3, 13], an agent programmer would be
provided with an initial, ‘draft’ program, which the programmer could edit with
far less effort relative to writing a program from scratch to obtain a complete and
correct agent program. Agent technology is often deployed to ‘upgrade’ legacy ap-
plications [8]. The behavior logs required for an agent program learning system
could thus be obtained by auditing the behavior of the legacy system.

A typical BDI agent program consists of three components [9]: (1) A set of
beliefs, which may be dynamically generated by sensor inputs. (2) A set of plans,
where each plan contains a triggering event, context conditions and plan body (a
set of action sequences). (3) A set of goals that an agent wants to achieve. Each
goal can be achieved by executing plans in the plan library. The goals involved
are related to plans recognized and are given a unique label (e.g. goal g1 can be
achieved by executing plan p1).

Thus, the general agent program learning system which is the overarching
direction of our work, should have modules to support the following: (1) plan
recognition; (2) goal recognition; (3) preference recognition2. In this paper, we
only focus on plan recognition for learning a BDI agent program, as exemplified
by the BDI agent programming language AgentSpeak(L) [9]. In other words,
the plans of an agent program that are automatically created by our system will
conform to Jason’s AgentSpeak specification [1]. The plan recognition activity
comprises of two parts: a) plan body recognition and b) context recognition.
Our contributions to the field of the automatic plan recognition are two-fold: i)
we show how the plans are inferred both from positive and negative examples,
i.e. behavior logs containing both successful and failed actions; ii) we identify
contexts using effect logs to form the precondition for a plan.

This paper is organized as follows. Section 2 introduces the related work on plan
recognition. Section 3 provides an overviewof the plan recognition framework. Sec-
tion 4 describes how the plan body recognition works using an example from the
banking domain. Both positive and negative behavior logs of process executions

1 An effect log contains the resultant states of a program as it continues executing
different steps. In contrast, the behavior log contains details about actions that suc-
ceeded or failed. In other words, the behavior log captures actions that are executed
and the effect log captures the state of the system.

2 Each agent can have a set of preferences and these preferences contribute to the
selection of an appropriate plan from a set of available plans [2].

276 H. Xu et al.

are used as inputs for inferring plans. Section 5 presents the algorithm used for
context recognition. The algorithm uses the positive logs, effects logs and the plan
body inferred in the previous step as inputs to infer contexts. Section 6 presents
the pilot experiment we have conducted and discusses its results. Section 7 draws
conclusions from the results and discusses future research directions.

2 Preliminaries and the Overview of the Plan Recognition
Framework

2.1 WF-Nets

Petri nets [7] are a graphical andmathematicalmodeling notation that allows users
to describe business processes. Formally, a Petri net is a tuple (P, T, F), where P
is a set of places, T is a set of transitions (P ∩T = ∅), and F ⊆ (P ×T)∪ (T ×P)
is a set of arcs between the places and transitions. A Petri net which models the
control-flow dimension of a workflow, is called a WF-net. Let N = (P, T, F) be a
Petri net,N is a WF-net if and only if it satisfies the following three requirements.
(1) It has only one input place i ∈ P , such that •i = ∅3. (2) It has only one output
place o ∈ P , such that o• = ∅4. (3) If a new transition t′ is added to N , T ∪ {t′},
and t′ is used for connecting the output place to the input place, F ∪{(o, t′), (t′, i)},
such that the new net is strongly connected, N ′=(P, T ∪ t′, F ∪ {(o, t′), (t′, i)}).
The WF-net that we use in this work is a structured WF-net (SWF-net) [13].
A sample WF-net is given in Figure 2.

2.2 Norms Identification

Norms are the societal rules that govern the prescription and proscription of
certain behavior. In multi-agent systems, norms are viewed mostly as constraints
on the actions that an agent can perform. We focus here on two types of norms
that are obligation norms and prohibition norms. For obligation norms, it means
that a certain action must happens after a specified action. For prohibition
norms, it means that a certain action or some actions are prohibited to happen
before or after a correct action.

Savarimuthu et al. have proposed two algorithms, prohibition norm identifi-
cation (PNI) [10] and obligation norm identification (ONI) [11] respectively. The
starting point for ONI and PNI is sanction recognition. Once sanctions are rec-
ognized, the reasons for these sanctions are investigated (i.e. norm violations are
reasons for sanctions to occur). PNI algorithm [11] identifies those actions that
occur 100% of the time before the sanctions. ONI algorithm [10] identifies those
actions that fail to occur whenever a sanction occurs. In order to identify those
actions it compares two lists of action sequences, one containing missing actions

3 The expression •i = ∅ denotes that there are no incoming edges to the input place i
(the dot here represents a set of transitions).

4 The expression o• = ∅ denotes that there are no outcoming edges from the output
place o (the dot here represents a set of places).

Automatic BDI Plan Recognition from Process Execution Logs 277

(followed by sanctions) and the other containing the expected actions (without
sanctions). On comparing these lists, the algorithm identifies missing actions.
These algorithms were originally proposed to be used in artificial agent societies
where interacting avatars can automatically learn norms based on observation
of actions. For example, an agent that litters a park might be sanctioned by
another agent. An observer, based on actions observed can infer that littering is
prohibited. Also, an agent that does not tip (a violation of an obligation) might
be sanctioned. PNI and ONI algorithms identify two norms, i.e., prohibit(litter)
and obliged(tip)) respectively.

The PNI and ONI algorithms can not only identify norms but also precon-
ditions and post conditions of norms. This is useful in our context, because if
we view agents as entities being norm aware (e.g. action x is prohibited and ac-
tion y is obliged), then they need to make plans to adhere to norms. Hence, the
precondition and postcondition can be viewed as parts of a plan for achieving a
goal (normative goal in this case). Failures in business processes can happen be-
cause of many reasons such as equipment malfunction, actions happening out of
order or a required action not being performed. In this work, we assume failures
happen because of the latter two and the failures are recorded in behavior logs
(i.e. negative examples). We use the negative examples to infer plans.

2.3 Framework Overview

The goal of this work is to describe how a first draft of an agent’s plans can be
automatically recognized from actions recorded in the business process execution
log (i.e. a behavior log) and the effect log. The process of plan recognition is
shown in Figure 1. A plan consists of two main aspects, a plan body and a
context (i.e. precondition that results in the execution of a plan body when it
evaluates to true). These two aspects of plan recognition are carried out by two
modules namely the plan body recognizer and context recognizer.

A typical behavior log contains information about both successful process
executions and failures. In our work, from the log containing successful execu-
tions, we generate a workflow diagram (i.e., a WF-net) using the process mining
tool, ProM [14]. Then, we demonstrate how a plan body recognizer (a set of

Fig. 1. Overview of the plan recognition framework

278 H. Xu et al.

transformation rules and algorithms) can be used to infer BDI plans (without
context) from the WF-net in Section 3. Then, the context recognizer is used to
identify the context which takes an effect log, the behavior log, and the plan
body that was identified in the previous step (details provided in Section 4).
The plans obtained from the positive examples are hierarchical in nature (nested
plans with successful actions). Also, based on failure sequences, we demonstrate
how a data mining based approach previously used for norm extraction can be
used to identify sequential normative actions (obligations and prohibitions).

3 Plan Body Recognition

In this section, we first describe a motivating example that is used throughout the
paper. Then we present the plan body recognition, first from handling positive
behavior logs containing no failure information, and then from negative behavior
logs containing failure information.

3.1 Motivating Example

A typical banking system contains many business applications. We refer to two
of these business applications throughout the paper. They are the processes in a
banking system for loan applications and money transfers, respectively. Assume
that a banking system (or an agent) receives loan applications which are handled
according to the type of loan (e.g. personal and business loans). If a loan applica-
tion is for a personal loan, personal information such as credit history and the risk
(e.g. high, medium, low), will be evaluated and then a decision will be made. At
the end of the process, the applicant will be informed of the acceptance or rejec-
tion. If an application involves a business loan, the bank will check whether the
information provided is correct and also check other relevant sources in order to
assess the credibility of the business entity (e.g. whether it is registered member of
the chamber of commerce). The bankwill also audit and evaluate the business’s as-
sets. Then itwillmake a decision and also notify the business. If the banking system
receives a money transfer application during the handling process for loan applica-
tions, the account of the applicantwill be checked to see if themoney in the account
is enough to be transferred. Then it will check whether the target account speci-
fied in the application exists. Then, the money will be transferred by the banking
system. The examples includes a set of actions as follows: receive loan application,
check personal loan application, check business loan application, audit assets,
check credit, check risk, evaluate personal loan application, inform loan
applicant, receive money transfer application, check applicant account,
check target account and evaluate money transfer application.

3.2 Handling Positive Behavior Logs

In this sub-section, we describe how a behavior model is constructed from the
actions available in a behavior log, and then present the transformation rules
and the algorithms that transform a WF-net to BDI plans.

Automatic BDI Plan Recognition from Process Execution Logs 279

Behavior Model Construction. As shown in Table 1, there are five cases in
a positive behavior log from a banking system where each action in the behavior
log has a timestamp indicating the starting time of that action. For example, the
actions associated with case 1 are 〈receive loan application, check personal loan
application, check credit, check risk, evaluate personal loan application, inform
loan applicant〉. The actions appear in the order they were executed. The actions
logged for case 2 are 〈receive loan application, check personal loan application,
check risk, check credit, evaluate personal loan application, inform loan
applicant〉, and actions logged for cases 3 and 5 are 〈receive loan application,
check business loan application, audit assets, inform loan applicant〉, and the ac-
tions executed as a part of case 4 are 〈receive money transfer application,
check applicant account, check target account and evaluate money transfer
application〉.

Table 1. Sequential Behavior Log

Case ID Action ID TimeStamps(yyyy/mm/dd hh:mm)

case 1 receive loan application (rla) 2011/06/19 08:53 (t1)
case 1 check personal loan application (cpla) 2011/06/19 11:00 (t2)
case 2 receive loan application (rla) 2011/06/19 11:10 (t3)
case 1 check credit (cc) 2011/06/19 12:38 (t4)
case 3 receive loan application (rla) 2011/06/19 12:40 (t5)
case 2 check personal loan application (cpla) 2011/06/19 12:51 (t6)
case 4 receive money transfer application (rmta) 2011/06/19 13:28 (t7)
case 1 check risk (cr) 2011/06/19 13:56 (t8)
case 5 receive loan application (rla) 2011/06/19 14:01 (t9)
case 1 evaluate personal loan application (epla) 2011/06/19 14:53 (t10)
case 3 check business loan application (cbla) 2011/06/19 15:24 (t11)
case 4 check applicant account (caa) 2011/06/19 15:32 (t12)
case 1 inform loan applicant (ila) 2011/06/19 15:41 (t13)
case 3 audit assets (aa) 2011/06/19 15:59 (t14)
case 5 check business loan application (cbla) 2011/06/19 16:04 (t15)
case 4 check target account (cta) 2011/06/19 16:13 (t16)
case 2 check risk (cr) 2011/06/19 16:25 (t17)
case 5 audit assets (aa) 2011/06/19 16:30 (t18)
case 2 check credit (cc) 2011/06/19 16:48 (t19)
case 3 inform loan applicant (ila) 2011/06/19 16:55 (t20)
case 4 evaluate money transfer application (emta) 2011/06/19 17:08 (t21)
case 2 evaluate personal loan application (epla) 2011/06/19 17:10 (t22)
case 5 inform loan applicant (ila) 2011/06/19 17:17 (t23)
case 2 inform loan applicant (ila) 2011/06/19 17:34 (t24)

The plan recognition framework uses the ProM tool to construct a behavior
model, i.e., a WF-net that describes the behavior of a system based on the actions
recorded in the behavior log. ProM enables the extraction of information from
event logs, and it supports several process mining techniques in the form of plug-
ins, such as the Alpha-algorithm [13]. We exploit the Alpha-algorithm in ProM
to automatically generate a WF-net from the log.

280 H. Xu et al.

The WF-net shown in Figure 2, is constructed from the log given in Table 1
using the Alpha-algorithm in ProM. The start and end transitions as endpoints
are added automatically when there is no common start action (or actions) and
no common end action (or actions) among cases in the behavior logs. This is
required to tie-together distinct set of processes a system can execute (e.g. a
business system can run ten different processes at any point of time) and a
WF-net is a representation of all these different processes. The other transitions
in the diagram are the actions that an agent must perform. The places in the
WF-net are labeled p1, p2, . . ., p14 for easier referencing.

Fig. 2. A WF-net generated based on a behavior log

Transformation Rules and Algorithms. WF-nets are commonly used to
represent a process which is composed of various applications (e.g., different
business applications in the context of the banking example). The business pro-
cess when executed will produce different outputs depending upon the inputs
given to the process (e.g., the path taken for evaluating a personal loan will be
different from the path taken for evaluating money transfer application). That
is, the business process will produce different results (i.e. outputs) depending
on the triggering events (i.e., inputs). We argue that the behavior exhibited by
the traditional system could be viewed as the behavior exhibited by an agent
that follows some plans (i.e., plans for different goals are different). Different
triggering events could be handled by distinct plans. In Figure 2, the condition
in place p2 could be triggered by different external events such as submission of
personal loan application and money transfer application. Hence, we argue that,
it is reasonable to view the number of branches emanating p2 as the number of
plans for different goals. That is, the paths that originate from p2 can be differ-
ent, where each path represents a different goal (e.g., the plan involving actions
from case 4, represents the goal of transferring money from one account to an-
other). In our work, each inferred plan is a BDI plan, consisting of a sequence of
actions and/or subgoals. Before presenting the algorithms for generating plans
for a goal, we first present the types of sub WF-nets and the related rules for
inferring plans from WF-nets.

A sub WF-net starts at a nodeN and ends at node N ′ whereN,N ′ ∈ P∪T (as
per usual convention •N = ∅ and N ′• = ∅). The number of branches deviating
at N is greater than 1, i.e. |N • | > 1. At N ′ all of the branches join together,

Automatic BDI Plan Recognition from Process Execution Logs 281

i.e., | • N ′| > 1. A sub WF-net is called WNOP (WF-net for Optional Plans)
iff N,N ′ ∈ P , highlighted using solid boxes in Figure 2. And, a sub WF-net
is called WNPP (WF-net for Parallel Plans) iff N,N ′ ∈ T , highlighted using
the dotted box in Figure 2. The transformation rules for inferring plans from
WF-nets are as follows.

1. The number of top-level plans for achieving different goals are determined
by the number of branches emanating the node (the place), that is located
next to the start transition.

2. Each transition is viewed as an action in a plan, in other words, a transition
node has the same label as an action.

3. Each sub WF-net is considered as a subgoal in a plan.
4. If a subgoal is of WNOP type, the number of possible plans achieving the

subgoal is determined by the number of branches emanating the start node
in the sub WF-net, and these obtained plans are alternative plans, of which
only one will be chosen for execution at run-time.

5. If a subgoal isWNPP type, the number of possible plans relies on the number
of branches emanating the start node in the sub WF-net, and these plans
can be executed in parallel.

Algorithm 1. Recognize plans for one goal

Input: wf, i.e., a WF-net; currentNode
Output: planList, i.e., BDI agent-oriented plans
1: while currentNode �= wf.endNode do
2: if currentNode.type is transition AND currentNode.type �= wf.startNode then
3: put currentNode.name in a plan
4: end if
5: if count(currentNode.outgoingEdges)= 1 then
6: currentNode←currentNode.nextNode
7: else if count(currentNode.outgoingEdges)>1 then
8: generate a new subgoal in a plan
9: if currentNode.type is place then
10: planList← obtain plans for WNOP goal
11: else if currentNode.type is transition then
12: planList← obtain plans for WNPP goal
13: end if
14: end if
15: end while
16: planList ← planList ∪ {plan}
17: return planList

Algorithm 1, presents the process of inferring plans for one goal. If there are
multiple goals, the algorithm will be used iteratively (which is the case in our
work for the WF-net given in Figure 1). Also, note that top-level goals (first
iteration goals) are represented as goal1 and goal2. The next level goals are

282 H. Xu et al.

represented as subgoal1, subgoal2 and so on. The WF-net is encoded as a graph,
and the node after start transition in the WF-net is viewed as currentNode. Each
node has its type, i.e., place and transition, and its name. If the node type is
transition, its name will be viewed as an action label, which will be added in a
plan, following rule (2). If there exists a sub WF-net, a new subgoal is generated
in the plan, following rule (3). If a subgoal is WNOP type, the number of plans
for the subgoal depends on the number of branches emanating the start node of
the sub WF-net, as described in rule (4). Each branch constructs a new plan for
the subgoal, recursively using the Algorithm 1. Likewise, for the WNPP type of
subgoal, the number of plans for this subgoal depends on the number of branches
emanating from start node of the sub WF-net, as presented in rule (5). There
is no parallel construct in AgentSpeak(L) [1], hence we handle the WNPP type
of subgoal using the interleaved actions among the paths to obtain all possible
plans. In the running example, two actions E and F can be executed in parallel.
It means that, there are two possible ways in which these actions could have
been executed, E followed by F or F followed by E.

The results of using Algorithm 1 when the WF-net shown in Figure 2 is given
as the input (recursively for each goal) are given in Table 2. There are six plans
in total (p0 to p5). We can observe that there are two top-level goals achieved by
these plans, i.e., goal1 and goal2 (rule 1). The first goal, goal1 can be achieved
directly using plan p0, while the second goal goal2 can be achieved using p1 that
has a subgoal subgoal1. There are two alternative ways to achieve this subgoal
(either using plan p2 or using plan p3). Note that plans p0 and p1 are of WNOP
type. So are plans p2 and p3 that are used to achieve subgoal1. On the other hand
plans p4 and p5 are of WNPP type. They are used to achieve subgoal2. Note that
the preconditions for each of the plans is set to true. Identifying preconditions
of these plans is discussed in Section 5.

Table 2. Results of Plan Body Recognition

@p5 +!subgoal2: true ← check credit ; check risk.

@p4 +!subgoal2: true ← check risk ;check credit.

@p3 +!subgoal1: true ← receive personal loan application; !subgoal2;
evaluate personal loan application.

@p2 +!subgoal1: true ← check business loan application; audit assets.

@p1 +!goal2: true ← receive loan application; !subgoal1; inform loan applicant.

@p0 +!goal1: true ← receive money transfer application; check applicant account ;
check target account ; evaluate money transfer application.

3.3 Handling Negative Behavior Logs

In this sub-section, we discuss how plans are extracted from a behavior log that
contains failure information. Failures could be caused when obligated actions do
not occur or when prohibited actions are performed. We acknowledge that there
could be other reasons for failures such as a printer failing because of power
failure. We do not model those because those type of failures are explicit failures

Automatic BDI Plan Recognition from Process Execution Logs 283

and the reasons are known to the agent (i.e., power failure is the reason for failed
printing job). Obligated and prohibited actions can be identified using ONI and
PNI algorithms.

Failures in business process executions are logged in behavior logs (e.g. failure
of a task due to a mechanical error or human error). These failures are similar
to sanctions. When a sanction happens, a special event ($) gets recorded in the
norm identification framework. Similarly, in this work, when a failure happens a
special event (⊗) will be recorded. When these failures happen, the reasons for
the failures can be investigated. In our work we assume failures happen either
because a prohibited action is performed (i.e. the action that does not fit in
a sequence, such as sending rejection notification before decision is made) or
an obliged action does not happen (e.g. credit check is not performed before
a decision can be made). We use slightly modified versions of PNI and ONI to
identify the reasons for failures (prohibited and obliged actions respectively). The
modifications made are two fold. First, we eliminate the norm verification stage
(where an agent asks another agent to verify whether a norm holds) because
we only consider an action to be prohibited by setting the threshold for norm
identification to be 100% (i.e. only those actions that have the probability of 1
to be causing violations are considered). Second, we create two lists to handle
the two types of norms separately (details discussed in Algorithm 2).

Algorithm 2, describes the process for identifying plan sequences from a be-
havior log with failure using these two norm learning algorithms. First, the
correct entries without failure information are stored in a correct list, and are
also removed from the behavior log (lines 4-9). Second, the entries with failure
information are classified into two lists, prohibition list and obligation list. If a
failed sequence (i.e. a case) has a matching super sequence(s) in the correct list,
then that sequence will be added to the obligation list. Assume actions a,b and c
were supposed to happen in sequence. Let us assume that the observed sequence
is ac, resulting in a failure. Here action b is the obligated action. By identifying
the supersequence of ac (which is abc), we are able to identify the obliged action
(i.e. b). Otherwise, it will be added to a prohibition list (lines 10-17). Third, the
ONI and PNI algorithms are invoked (lines 18, 19). Given the correct list and
the obligation list as inputs to the ONI algorithm, it produces plan sequences
as outputs. Next, the PNI algorithm is invoked. Given the correct list and the
prohibition list as inputs, it produces plan sequences as output.

To demonstrate how Algorithm 2 works, a sample log with failure information
is given in Table 3. Note that ⊗ is used to indicate failures in the behavior log. If
there is a failure, then other steps of the process are not executed. The algorithm
first creates three empty lists (lines 1-3), the correct list, prohibition list and the
obligation list. The correct list is then populated with four entries: (rla, cpla,
cc, cr, epla, ila), (rla, cpla, cr, cc, epla, ila), (rla, cbla, aa, ila) and (rmta, caa,
cta, emta). Then the algorithm populates the obligation list which contains the
following entries: (rla, cpla, cc, cr, ila, ⊗), (cpla, cr, cc, ila, ⊗), (rla, cbla, ila, ⊗)
and (rla, cpla, cc, epla, ⊗). The prohibition list contains the following entries:
(rmta, Z, ⊗), (rmta, caa, cta, Y, ⊗), (rmta, caa, rmta, ⊗) and (rla, cbla, aa,

284 H. Xu et al.

Algorithm 2. Identifying plans from negative behavior logs

Input: bl, i.e., a behavior log containing failures
Output: ps, i.e., plan sequences with obligated actions or prohibited actions
1: Let correctList←∅ � entries without ⊗
2: Let prohibitionList←∅ � entries with prohibited actions
3: Let obligationList←∅ � entries with missing actions
4: for each entry E ∈ bl do
5: if E contains no ⊗ then
6: Add E to correctList
7: Remove E from bl
8: end if
9: end for
10: for each entry E ∈ bl do
11: remove ⊗ in E
12: if E has super sequence(s) in correctList then
13: Add E to obligationList
14: else
15: Add E to prohibitionList
16: end if
17: end for
18: ps←ONI Algorithm(correctList, obligationList)
19: ps←PNI Algorithm(correctList, prohibitionList)
20: return ps

L, ⊗). Then, the ONI and PNI are executed in sequence to identify plans. The
results of using the norm learning mechanisms are shown in the last column of
Table 3.

There are two benefits of the outputs obtained from the norm learning mech-
anisms. First, the outputs are the correct sequences (i.e. corrected failure se-
quences). For example, (rla, cpla, cc, cr, ila, ⊗) has been corrected to (rla, cpla,
cc, cr, epla, ila). So, the first benefit of norm learning mechanisms is their ability
to correct erroneous sequences. Second, the output produced by the algorithms
can be viewed as a plan which contains a precondition, an obliged/prohibited ac-
tion (or actions) and a postcondition. For example, the failure corrected version
of (rla, cpla, cc, cr, ila,) is (rla, cpla, cc, cr, Obliged(epla), ila). The precondition
of the norm Obliged (epla) is the occurrence of actions rla, cpla, cc, cr, and the
the post condition is the occurrence of action ila. A prohibition sequence only
contains a precondition and a normative action because there could be many
different post conditions depending upon which action should have occurred in
the place of the prohibited action.

In the future, agents in our framework can use the results generated to create
plans that ensure those already generated plans do not violate the normative
action(s) (e.g. none of the existing plans should execute action L after executing
actions rla, cbla and aa (entry 12 in Table 3)). This can be particularly valuable
when the human programmer modifies the first draft of agent code generated
by our framework to suit application needs (i.e. have plans to capture errors

Automatic BDI Plan Recognition from Process Execution Logs 285

accidentally introduced by the humans that could potentially violate the norms).
We note that some results obtained are incomplete (e.g. (rla, cpla, cc, epla, ⊗))
is corrected to be (rla, cpla, cc, cr, epla, ila) or (rla, cpla, cr, cc, epla, ila). The
complete sequence must be (rla, cpla, cc, cr, epla, ila) and (rla, cpla, cr, cc,
epla, ila). However, we address this problem by identifying supersequences of
the results in the correct list to produce the correct and complete sequence.

Table 3. A Log with Failure Information

Entry ID Sequence of Actions Results from Algorithm 2

1 (rla, cpla, cc, cr, epla, ila)

2 (rla, cpla, cr, cc, epla, ila)

3 (rla, cbla, aa, ila)

4 (rla, cpla, cc, cr, ila, ⊗) (rla, cpla, cc, cr, Obliged(epla), ila)

5 (rla, cpla, cr, cc, ⊗, ila) (rla, cpla, cr, cc, Obliged(epla), ila)

6 (rla, cbla, ila, ⊗) (rla, cbla, Obliged(aa), ila)

7 (rla, cpla, cc, epla, ⊗) (rla, cpla, Obliged(cr), cc, epla)
(rla, cpla, cc, Obliged(cr), epla)

8 (rmta, caa, cta, emta)

9 (rmta, Z, ⊗) (rmta, prohibited(Z))

10 (rmta, caa, cta, Y, ⊗) (rmta, caa, cta, prohibited(Y))

11 (rmta, caa, rmta, ⊗) (rmta, caa, prohibited(rmta))

12 (rla, cbla, aa, L, ⊗) (rla, cbla, aa, prohibited(L))

Table 4. Sample effect log

Time States Time States Time States Time States

t1 c3 ∧ c4 t7 c15 t13 c11 t19 c7 ∧ c8
t2 c5 ∧ c6 t8 c7 ∧ c8 t14 c13 ∧ c14 t20 c11
t3 c3 ∧ c4 t9 c3 ∧ ¬c4 t15 c12 ∧ ¬c20 t21 c18
t4 c1 ∧ c7 t10 c9 ∧ c10 t16 c17 t22 c9 ∧ c10
t5 c3 ∧ ¬c4 t11 c12 ∧ c20 t17 c1 ∧ c7 t23 c11
t6 c5 ∧ c6 t12 c16 t18 c13 ∧ c14 t24 c11

4 Context Recognition

In Section 4, we described how plans are recognized. However, the preconditions
of all the plans were true. Recognizing preconditions is a key part of plan recogni-
tion. We note that preconditions cannot be inferred from the behavior log alone.
So, we assume, in addition to behavior log we also have the effect log. Behavior
log contains actions that were executed and effect log contains the state of the
system. For example, the state of the system can contain information such as
the loan application of customer 1 was in the pending allocation state at time t1
and the state was changed to assigned to risk analyst at t2. By using effect log
in conjunction with the behavior log and the plan body of the all the recognized
plans, we demonstrate how preconditions for the plans can be identified.

286 H. Xu et al.

We assume that the sample effect log given in Table 4 can be obtained dur-
ing the execution of a traditional system. We model states using propositional
logic (states represented as a conjunction of propositions). We also assume that
timestamps of these states are recorded. For example, at timestamp t1, c3 and c4
hold (assume c3 is application received and c4 is data verified for completeness).

Algorithm 3. Mining preconditions in plans

Input: a) sblog - a behavior log; b) elog - an effect log; c) plans resulting from plan
body recognition

Output: plans with context
1: for each plan ∈ plans do
2: planTraces ← ∅
3: stateArr← ∅
4: if plan.planbody has subgoal then
5: planTraces ← obtain all possible plan traces
6: else
7: planTraces ← plan.planbody
8: end if
9: for each trace ∈ planTraces do
10: for each case ∈ sblog do
11: if case contains the trace then
12: Ta ← obtain the timeStamp of first action of the plan
13: if elog contains Ta then
14: stateArr ← states at Ta should be adding to stateArr
15: end if
16: end if
17: end for
18: end for
19: if stateArr.size >1 then
20: plan.context←compute common proposition
21: else
22: plan.context←stateArr
23: end if
24: end for
25: return plans

Algorithm 3 presents how preconditions of plans are recognized. The input to
the algorithm are a) the behavior log, b) the effect log and c) plan body of all
the recognized plans. The algorithm contains three main stages.

Stage 1 (lines 4-8) - For each plan, if it has subgoals, all the possible action
sequences for subgoals are identified. This is done by unfolding subgoals recur-
sively to the inner most plan with subgoals. The identified set of these action
sequences will be stored in an array called planTrace. Each entry in the planTrace
is a possible execution sequence of a plan (i.e. actions that would be executed if
a plan were to be invoked). Note that there there could be more than one plan
trace for a plan because a subgoal of a plan produce different results. If a plan

Automatic BDI Plan Recognition from Process Execution Logs 287

has no subgoals, the action sequence itself will be stored in planTrace as a plan
trace. For example, let us consider plan p5 which does not have any subgoal. In
this case, the planTrace contains actions ef. However, for plan p3 that contains
a subgoal in its plan body, there will be two plan traces (befg and bfeg) since
subgoal2 can be realized in two different ways.

Stage 2 (lines 9-18) - For each plan trace in planTrace, if there exists a case
in the behavior log, that contains either the same sequence of the plan trace, or
the supersequence of the plan trace, the timestamp of the first action in plan
trace is stored in Ta (a variable), and the entry corresponding to Ta in the effect
log is stored in an array called stateArr. Note that there could more than one
one result.

For plan p5, the planTrace contains the action sequence ef as described above.
There exists only case (case 1) containing the supersequence of ef which is abefgi.
Then we consider the first action of ef, i.e., action e, and obtain its timestamp in
case 1, which is t4. So, the context for p5, is the entry corresponding to t4 in the
effect log, which is c1&c7 (which gets stored in stateArr). For plan p3, there are
two plan traces befg and bfeg as described above. For the plan trace befg, case 1
has its supersequence, abefg. We obtain the timestamp corresponding to the first
action b which is t2. The entry corresponding to t2 in the effect log is c5&c6 which
is stored in stateArr. Similarly, case 2 contains the supersequence of bfeg which
is abfeg. The timestamp corresponding to the first action b is identified which is
t6. The entry c5&c6 in effect log at t6 is obtained. Note that for plan p3, there
are two entries in stateArr and both these entries have the same propositions
(c5 and c6).

Stage 3 (lines 19-23) - For a given plan, if the stateArr has only one entry,
then the entry is the precondition of the plan. If there are more than one entry,
then the propositions that are common to these entries will be computed to be
the context. For example, for plan p3, there were two entries in the stateArr.
Common propositions among these two entries are chosen as the preconditions
for p3 which are c5 & c6 in this case. For plan p5, there is only one entry in the
stateArr (c1&c7) which becomes its precondition.

5 Experiments and Results

Using the simplified motivating example throughout the paper, the plans result-
ing from context recognition are shown in Table 5, applying the positive behavior
log given in Table 1 and the effect log given in Table 4.

We can see that there are two different top-level goals to achieve for an agent,
under different contexts (i.e. goal1 and goal2). The context (i.e. precondition)
is the same for the parallel plans, p4 and p5, but is different for the optional
plans, p2 and p3. However, only one of the parallel plans should be executed
at run-time. Since AgentSpeak(L) does not allow two plans to be executed in
parallel, one of these plans is randomly picked for execution with respect to
our implementation. Note that the plans p2 and p3 for achieving subgoal1 have
different context conditions which mean that only one of them will be executed
at run time.

288 H. Xu et al.

Table 5. Results of Plan Body and Context Recognition

@p5 +!subgoal2: c1&c7 ← check credit ;check risk.

@p4 +!subgoal2: c1&c7 ← check risk ; check credit.

@p3 +!subgoal1: c6&c5 ← receive personal loan application; !subgoal2;
evaluate personal loan application.

@p2 +!subgoal1: c12 ← check business loan application; audit assets.

@p1 +!goal2: c3 ← receive loan application; !subgoal1; inform loan applicant.

@p0 +!goal1: c15 ← receive money transfer application; check applicant account ;
check target account ; evaluate money transfer application.

In order to evaluate the plans generated by our plan recognition framework, we
employed human subjects. A pilot study was conducted with eight participants.
A small-sized problem specification (including the functional requirements such
as the high level goals of the agent program and the expected behavior in terms
of output) was provided to the participants, who are students pursuing their
postgraduate research work in computer science. They had to handwrite the
BDI agent program to achieve these goals. We divided the participants into two
groups of four programmers. For one group (group A), we provided just the
specification. For the second group (group B) we provided both the specification
and the resulting ‘draft’ agent program code generated by our plan recognition
framework. Our results show that the average time for programmers in group B
to finish the program is much shorter than that of programmers in group A. On
average, programmers in group B finished 12 minutes earlier than group A. The
maximum time taken to finish the program in group A was 36 minutes, but in
group B it was only 17 minutes. The types of errors made by the groups A and
B were different. The errors made by programmers in group A include the wrong
ordering of actions, assigning wrong preconditions and assigning wrong actions.
Group B on the other hand, made few changes to preconditions (addition and
deletion). Some did not make changes to the body of the program since the
‘draft’ version provided was adequate in most cases. Since, group B did not
start a program from the scratch, they did not make many mistakes. So, the
average number of errors in group B was less than that of programmers in group
A. Thus, the initial results obtained from the pilot study is promising. However,
extensive studies with complex requirements with large number of participants
are required to firmly establish our initial findings.

6 Related Work

Very few work have addressed the problem of automatic recognition of plans in
the area of agent-oriented software engineering (e.g. [4]). The work in [4] proposes
an incremental plan recognition in an agent programming framework, which is
similar to our work. However, our work is distinct from theirs. They focus on the
formal model of plan recognition based on situation calculus and the ConGolog
agent programming language. In their work, the plans are filtered as more actions

Automatic BDI Plan Recognition from Process Execution Logs 289

are observed based on the existing plan library. In contrast, plans in our work
are generated from scratch and they are added to an initially empty plan library.
Also, we use a process mining approach to infer BDI plans from both positive
and negative examples in behavior logs produced by a traditional system. Our
goal is thus to create a framework that generates plans of an agent program
which when executed will produce the same behavior as that of a traditional
(legacy) system. This new program is the first cut of the ‘agentified’ version of
the traditional program.

A difference of our work when compared to the work of Traverso and Pistore
[12] where they convert a OWL-based business process to Hierarchical Task
Network (HTN) plans is the ability of our system to derive an agent program
just based on observed outputs and effects (i.e. we do not start with a process
involving a particular technology, i.e. OWL-S), and our approach is generic (i.e.
can involve composition). Meneguzzi and Luck [6] have investigated how context
conditions can be derived for plans in AgentSpeak(PL), which is similar to our
work. A difference between our work and their work is that the cited work
generates new plans using AgentSpeak(PL) when a plan in the plan library fails
or if an appropriate plan does not exist. However, in our work we start with
an empty plan library and add new plans generated by our plan recognition
system. Even though the context conditions derived in our work are also plans
in AgentSpeak(L), the process of obtaining the plan is different. Their work uses
an action model for context derivation (i.e., the precondition and postcondition
of actions are known), while our work requires an effect log for context derivation
(i.e., the state of a system is known at different points in time). Also, the work [6]
do not consider the identification of the erroneous conditions (i.e. the actions that
caused failure) and the possibility of creating plans to handle those failures.

There exist other work where method preconditions are learned using the
HTN [5, 15]. In [15], a set of constraints are constructed from observed decom-
position trees under partial observations, and then solved by a constraint solver.
HTN planning systems are related to BDI agent systems when it comes to know-
how information used, that is, learning preconditions for a method amounts to
learning context condition of a plan in BDI systems. As opposed to the work
in [15], our work utilizes a complete behavior log and an effect log for context
derivation. Also, we use propositional logic to represent the state of a system at
different timestamps, and the actions are without parameters. The work in [5]
learns preconditions from plan traces and HTN structures, where the task de-
composition is known a priori (i.e. task dependencies are known), while in our
work, we derive task composition according to a Workflow net (WF-net, see
Section 2.1) transformation rules (discussed in Section 3.2). They use a candi-
date elimination method to obtain a set of candidate predicates for precondi-
tions (contextual conditions) of plans. However, in our work, we derive context
conditions from effect logs obtained (i.e. resultant state of the system). More
importantly, our work encompasses a higher level objective of generating a first
draft of a plan library.

290 H. Xu et al.

7 Conclusions and Future Work

In this paper, we have proposed a novel plan recognition mechanism where BDI-
style plans are generated by our plan recognition framework. This plan recog-
nition is a part of a larger scope project which aims to learn agent programs
(i.e. automatically generate a first draft of an agent program) from the behavior
log and the effect log produced by a traditional (‘legacy’) system. The two main
aspects of our plan recognition framework are the plan body recognition and the
context recognition. In order to generate plans, first, a WF-net is generated from
a behavior log using ProM. Second, we have proposed a set of transformation
rules and a procedure (Algorithm 1), which transforms the WF-net into a set
of plans (without context). Then, we demonstrated how the preconditions for
the plans can be identified using an effect log (Algorithm 3). It should be noted
that we have demonstrated how both positive and negative examples can be
used to obtain plans. We leveraged existing norm learning mechanisms [10, 11]
to infer normative plans (with prohibited and obligated actions) in the context
of handling negative examples (Algorithm 2).

We have demonstrated that our plan recognition framework creates a ‘draft’
agent programwhich can then be extended by a programmer.We have conducted
a pilot study with eight participants and the results of the study are encouraging.
We believe the work presented here is an important step for BDI-type agent
systems development since it shows that agent programs can be developed for
existing traditional systems (or at least a draft version of the system can be
developed). Especially, these agent programs can be considered as an viable
alternative for ‘legacy’ systems that need to be redeveloped in an appropriate
language.

The plan recognition framework has some simplifying assumptions. First, busi-
ness processes with loops have not been considered in this work. That forms the
focus of our future work. Second, the propositional logic is used to demonstrate
the feasibility of the system. Other more expressive logics could be investigated
in the future. Also, parameterized actions and states can be included in the
behavior log and effect log respectively. In the future, we plan to evaluate our
plan recognition framework with complex applications (complex WF-nets). We
believe it is in those complex systems, our framework will offer significant ad-
vantages (i.e. reduction of programming time and effort). We will also conduct
extensive testing involving substantial number of developers.

References

1. Bordini, R.H., Hübner, J.F., Wooldridge, M.J.: Programming Multi-Agent Systems
in AgentSpeak using Jason. John Wiley & Sons, Ltd. (2007)

2. Dasgupta, A., Ghose, A.K.: BDI agents with objectives and preferences. In:
Omicini, A., Sardina, S., Vasconcelos, W. (eds.) DALT 2010. LNCS, vol. 6619,
pp. 22–39. Springer, Heidelberg (2011)

Automatic BDI Plan Recognition from Process Execution Logs 291

3. Gómez-Pérez, J.M., Erdmann, M., Greaves, M., Corcho, O., Benjamins, R.: A
framework and computer system for knowledge-level acquisition, representation,
and reasoning with process knowledge. International Journal of Human-Computer
Studies 68(10), 641–668 (2010)

4. Goultiaeva, A., Lespérance, Y.: Incremental plan recognition in an agent program-
ming framework. In: Working notes of the American Association for Artificial In-
telligence (AAAI) Workshop on Plan, Activity, and Intention Recognition, PAIR
(2007)

5. Ilghami, O., Nau, D.S., Aha, D.W.: Learning preconditions for planning from plan
traces and HTN structure. Computational Intelligence 21, 413 (2005)

6. Meneguzzi, F., Luck, M.: Leveraging new plans in agentSpeak(PL). In: Baldoni, M.,
Son, T.C., van Riemsdijk, M.B., Winikoff, M. (eds.) DALT 2008. LNCS (LNAI),
vol. 5397, pp. 111–127. Springer, Heidelberg (2009)

7. Murata, T.: Petri nets: Properties, analysis and applications. In: Proceedings of
the Institute of Electrical and Electronics Engineers (IEEE), vol. 77, pp. 541–580
(1989)

8. Pechoucek, M., Maŕık, V.: Industrial deployment of multi-agent technologies:
review and selected case studies. Autonomous Agents and Multi-Agent Sys-
tems 17(3), 397–431 (2008)

9. Rao, A.S., Georgeff, M.P.: BDI agents: From theory to practice. In: Proc. of
the First International Conference on Multiagent Systems (ICMAS), pp. 312–319
(1995)

10. Savarimuthu, B.T.R., Cranefield, S., Purvis, M.A., Purvis, M.K.: Obligation norm
identification in agent societies. Journal of Artificial Societies and Social Simulation
13(4) (2010)

11. Savarimuthu, B.T.R., Cranefield, S., Purvis, M.A., Purvis, M.K.: Identifying pro-
hibition norms in agent societies. Artificial Intelligence and Law 21, 1–46 (2012)

12. Traverso, P., Pistore, M.: Automated composition of semantic web services into ex-
ecutable processes. In: International Semantic Web Conference, pp. 380–394 (2004)

13. van der Aalst, W.M.P., Weijters, T., Maruster, L.: Workflow mining: Discover-
ing process models from event logs. IEEE Transactions on Knowledge and Data
Engineering 16(9), 1128–1142 (2004)

14. van Dongen, B.F., de Medeiros, A.K.A., Verbeek, H.M.W(E.), Weijters,
A.J.M.M.T., van der Aalst, W.M.P.: The proM framework: A new era in process
mining tool support. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS,
vol. 3536, pp. 444–454. Springer, Heidelberg (2005)

15. Zhuo, H.H., Hu, D.H., Hogg, C., Yang, Q., Muñoz-Avila, H.: Learning HTN
method preconditions and action models from partial observations. In: Proc. of
the Twenty-First International Joint Conference on Artificial Intelligence (IJCAI),
pp. 1804–1810 (2009)

Multi-Agent Programming Contest 2013

Tobias Ahlbrecht, Jürgen Dix, Michael Köster, and Federico Schlesinger

Department of Informatics, Clausthal University of Technology,
Julius-Albert-Str. 4, 38678 Clausthal-Zellerfeld, Germany

{dix,tobias.ahlbrecht,michael.koester,
federico.schlesinger}@tu-clausthal.de

Abstract. This is about the ninth edition of the Multi-Agent Program-
ming Contest1, an annual, community-serving competition that attracts
groups from all over the world. Our contest enables head-to-head com-
parison of multi-agent systems and supports educational efforts in the
design and implementation of such systems. This year we have gener-
ated a multitude of statistical data for each match and give a detailed
interpretation of them.

1 Introduction

In this paper we (1) briefly introduce the Contest, (2) elaborate on the 2013 sce-
nario and its differences with the 2012 edition, (3) introduce the five teams that
took part in the tournament, and (4) present many statistical data to interpret
the matches and the performance of the teams.

The Multi-Agent Programming Contest 1 (MAPC) is an annual international
event that has started in 2005 as an attempt to stimulate research in the field of
programming multi-agent system by 1) identifying key problems, 2) collecting
suitable benchmarks, and 3) gathering test cases which require and enforce coor-
dinated action that can serve as milestones for testing multi-agent programming
languages, platforms and tools. In 2013 the competition was organized and held
for the ninth time.

More detailed information about the strategies of the teams are to be found in
the subsequent five papers in this volume. In addition, we compiled a companion
paper [1] that contains short answers from each team to more than 50 questions
that allows the reader to easily compare the teams.

1.1 Related Work

For a detailed account on the history of the contest as well as the underlying
simulation platform, we refer to [2,7,5,6,10]. A quick non-technical overview ap-
peared in [3].

1 http://multiagentcontest.org

M. Cossentino et al. (Eds.): EMAS 2013, LNAI 8245, pp. 292–318, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://multiagentcontest.org

Multi-Agent Programming Contest 2013 293

Similar contests, competitions and challenges have taken place in the past
few years. Among them we mention Google’s AI challenge2 , the AI-MAS Win-
ter Olympics3, the Starcraft AI Competition4, the Mario AI Championship5 , the
ORTS competition6, the Planning Competition7, and the General Game Play-
ing8. Every such competition rests in its own research niche. Originally, our
Contest has been designed for problem solving approaches that are based on
formal approaches and computational logics. But this is not a requirement to
enter the competition.

1.2 The Contest from 2005–2013

Through the history of the Contest, changes to the scenarios were introduced
with every new edition, with three major redesigns.

From 2005 to 2007, a classical gold miners scenario was used [8]. We intro-
duced the MASSim platform: A platform for executing the Contest tournaments.

From 2008 to 2010 we developed the cows and cowboys scenario, which was
designed to enforce cooperative behavior among agents [4]. The topology of the
environment was represented by a grid that contained, besides various obstacles,
a population of simulated cows. The goal was to arrange agents in a manner that
scared cows into special areas, called corrals, in order to get points. While still
maintaining the core tasks of environment exploration and path planning, the
use of cooperative strategies was a requirement of this scenario.

In 2011, the agents on Mars scenario [5] was newly introduced. In short,
the environment topology was generalized to a weighted graph. Agents were
expected to cooperatively establish a graph covering while standing their ground
in an adversarial setting and reaching certain achievements. The basics of the
agents on Mars scenario remained until the 2013 edition discussed in this paper,
although several modifications were introduced to keep the Contest challenging.

2 MAPC 2013: Agents on Mars, Third Edition

For the 2013 edition of the Contest, a few significant modifications were made
to the agents on Mars scenario used in 2012, in order to keep the challenge up
to date. This section focuses on these modification; a more detailed description
of the scenario can be found in Appendix A.

The number of agents in each team was increased again this year, to a total
of 28 agents: 6 Explorers, 6 Repairers, 6 Sentinels, 6 Inspectors and only 4
Saboteurs. The 2012 edition comprised instead 4 agents of each role per team,

2 http://aichallenge.org/
3 http://www.aiolympics.ro/
4 http://eis.ucsc.edu/StarCraftAICompetition
5 http://www.marioai.org/
6 http://skatgame.net/mburo/orts/
7 http://ipc.icaps-conference.org/
8 http://games.stanford.edu/

http://aichallenge.org/
http://www.aiolympics.ro/
http://eis.ucsc.edu/StarCraftAICompetition
http://www.marioai.org/
http://skatgame.net/mburo/orts/
http://ipc.icaps-conference.org/
http://games.stanford.edu/

294 T. Ahlbrecht et al.

whereas in the 2011 edition there were only 2 vehicles for each role, totaling 10
vehicles per team.

A big addition to the 2013 edition was the introduction of ranged actions.
Agents could now act at a distance, i.e., having a target node that is different
than the one where the agent stands (probe), or having a target agent that
stands on a different node (inspect, attack and repair); these, as long as the
target is within the visibility range. The successful execution of ranged actions
depends on a probability factor that is based on both the distance to the target
and the visibility range of the executor.

A slightly more subtle change was made to the map-generating algorithm, to
get different (parametrized) levels of connectivity between the nodes that the
teams should adapt to.

On a more general level, not concerning directly with the playability of the
scenario, a lot of effort was invested in easing the development process to the
participants, by means of improving the visualization tools, as well as the feed-
back sent to the agents. The new visualization lets the viewer distinguish at
glance the roles of the agents, the last actions executed by each agent and their
success/failure, the executor and target of ranged actions, and the nodes that
were already probed by each team, all directly from the map.

3 The Tournament

Following the mode implemented in 2012, a qualification round was held prior
to the tournament, in which teams were required to show that they were able
to maintain good stability (i.e. timeout-rates below 5%) during a round of test
matches. Only then were they allowed to take part in the tournament.

3.1 Participants and Results

Five teams from around the world registered for the Contest and were able to
pass the qualification round, thus taking part in the tournament (see Table 1).

Table 1. Participants of the 2013 Edition

Team Affiliation Platform/Language

AiWXX Sun Yat-Sen University, China C++
GOAL-DTU Technical University of Denmark GOAL
LTI-USP University of Sao Paulo, Brazil Jason, CArtAgO, Moise
SMADAS-UFSC Federal University of Santa Jason, CArtAgO, Moise

Catarina, Brazil
TUB TU Berlin, Germany JIAC

Multi-Agent Programming Contest 2013 295

AiWXX: The team AiWXX [11] from Sun Yat-Sen University, China, took
part in the contest for the second time, slightly changing its name (formerly
AiWYX), and incorporating a second developer. The agents were developed
in C++, using no agent-specific technologies. The approach used is central-
ized, where one agent gets all the percepts from the other agents and makes
the decisions for the whole team.

LTI-USP: The team LTI-USP [9] from University of São Paulo, Brazil, also
competed for the second time; this time with two developers, one less than
in 2012. Agents were implemented using Jason, CArtAgO and Moise. There
is one agent that determines the best strategy, but each agent has its own
thread, with its own beliefs, desires and intentions. Agents broadcast new
percepts, but communication load decreases over time.

SMADAS-UFSC: The team SMADAS-UFSC [14] from Federal University of
Santa Catarina, Brazil, was the winner of the 2012 edition. It had 7 team
members (one more than in 2012). The language of choice for agent develop-
ment was Jason combined with CArtAgO and Moise. Besides normal agent-
communication provided by Jason, agents shared a common data-structure
(blackboard) for storing the graph topology.

GOAL-DTU: The team GOAL-DTU [12] from the Technical University of
Denmark is a regular contender of the Multi-Agent Programming Contest.
This incarnation counted with 7 team members. The language of choice (as
well as the team name) changed to GOAL for this edition, after having used
a Python-based system for the previous two editions. The agents follow a
decentralized approach, where coordination is achieved through distributed
algorithms, e.g. for auction-based agreement.

TUB: The team TUB [13], Technical University Berlin, Germany, is another
regular contender of the Multi-Agent Programming Contest, presenting this
time a team with 12 members (originally working as two separate groups).
The agents are developed in the JIAC V platform (which won the contest
several times in previous years).

The tournament took place on the 9th and 10th of September, 2013. Each day
each team played against two other teams so that in the end all teams played
against all others. We started the tournament each morning at 12 pm and finished
at around 6 pm. A match between two teams consisted of 3 simulations differing
in the size and connectivity level of the graph: the first simulation was always 550
nodes with a thinning factor9 of 10%, the second one 580 nodes with a thinning
factor of 20%, and the third one 600 nodes with a thinning factor of 30%. Teams
got 3 points for winning a simulation and 1 point in case of a draw. The results
of this year’s Contest are shown in Table 2.

All the participating teams of the 2013 edition had also participated in the
2012 edition (with a few different members in some cases), and the final results
remained very similar, in spite of the modifications to the scenario and the new
strategies implemented. SMADAS-UFSC was crowned champion for the second

9 The thinning factor is a configuration parameter that is inversely proportional to
the connectivity level of the graph.

296 T. Ahlbrecht et al.

Table 2. Results

Pos. Team Score Difference Points

1 SMADAS-UFSC 2702948 : 1455163 1247785 36
2 GOAL-DTU 2284575 : 1614711 669864 27
3 LTI-USP 2117299 : 2083105 34194 15
4 TUB 1412702 : 2238820 -826118 6
5 AiWXX 1516760 : 2642485 -1125725 6

consecutive time, improving their previous year’s performance and winning in
every single simulation they took part in. GOAL-DTU was again a clear second,
after winning every simulation except when they faced the Contest winners. LTI-
USP obtained a respectable third place surpassing TUB and this was the only
modification in the ranking of the five teams with respect to the 2012 edition.
Both TUB and AiWXX got six points, so no team ended the Contest empty
handed, but the difference in the simulation scores favoured the former to secure
the fourth place.

3.2 Overview of the Teams’ Strategies

In this section we collect a few facts about the participating teams. For more
detailed information we refer to the team description articles[11,12,9,14,13] and
to the joint paper[1] in these proceedings.

SMADAS-UFSC: The strategy can be divided into two phases: In the first
phase the agents explore the map to obtain achievement points and to find
good zones as early as possible. In this phase the agents try to build one
big zone. If occupying such a zone is not possible in the first 130 steps the
second phase is activated: The agents conquer the best nodes and try to pro-
tect several small zones. Additionally, the developers specified some special
algorithms for building zones when the map has only a few connections.

While implementing the team the developers defined five different strate-
gies and tested them with different maps against their team from last year
and decided for the particular one right before the contest.

They claim that occupying several small zones was one of the main reasons
why the performance was so good.

GOAL-DTU: The overall strategy was as follows: After around 70 steps one
Explorer computed the best positions for the Sentinels and Inspectors to
build a zone. After 150 steps the Explorer agents joined them. Saboteurs
and Repairers were responsible for destroying the opponent’s zones.

The team claims that their agents had two strong points: the ability to
control a zone and the preemptive repairing, i.e., the Repairers anticipate an
attack on a teammate and start repairing the agent right in that moment.
One of the weak points was that the Saboteurs had an unresolved bug.

LTI-USP: The main strategy was basically the same as last year, namely, to
divide the agents into three subgroups: two for occupying zones and one for

Multi-Agent Programming Contest 2013 297

sabotaging the enemy. However, the team organization was implemented in
a different way. Instead of using the roles (like Explorer, Sentinel, etc.) from
the scenario, additional roles with different strategies were defined. An agent
then could adopt a particular role and execute the associated strategies to
fulfill her mission.

The team believes that a strong point of their implementation was a de-
fensive strategy, resulting in more stable zones. The weak point was the size
of the zones.

TUB: The strategy was twofold: Each agent followed its own strategy for col-
lecting achievement points. Second, the team had a coordinator agent for
computing and building zones. The agents had various roles they can take
on, thus they could decide to help building a zone or to disturb the zone
building of the opponent.

The authors claim that a strong point of their implementation was that
the agents’ strategies could be easily replaced due to the modular implemen-
tation. One of the main weak points was the zone building strategy.

AiWXX: The main strategy of the team was to probe the whole map first and
then occupy several stable and valuable zones.

The team claims that one of the strong points was the computational
speed of their pure C++ implementation. However, a weak point was that
they did not take the actions of the opponent into account while developing
the agents and therefore did not specify a defense or counter-strategy.

4 Overview of Teams’ Performance

We collected a lot of data throughout the matches concerning the score and
the zones (discussed in Section 4.1), the achievements (cf. Section 4.2) and the
overall stability and reliability of the teams (see Section 4.3). Additionally, in
Section 4.4 we analyse the behaviour of the agents regarding their roles. The
underlying data can be downloaded from our web page10.

4.1 Score, Zone Values, and Zone Stability

In this section we analyse for each team the overall performance (summed
scores), the development of the achievement points and the zone stability.

All these values somehow depend on each other. The curves for the achieve-
ment points are usually quite flat but monotonically increasing: They could also,
due to buying actions, decrease, but this does not really show in our curves. The
reason is that this effect of buying is too small (i.e. the teams did not use it
extensively) to have a visible effect.

To interpret the curves for zone stability, one has to take into account that
monotonically increasing parts show that the zones are stable: the steeper it is,
the more stable it is. Dually, if parts of the curve are monotonically decreasing

10 http://multiagentcontest.org/downloads/

Multi-Agent-Programming-Contest-2013

http://multiagentcontest.org/downloads/Multi-Agent-Programming-Contest-2013
http://multiagentcontest.org/downloads/Multi-Agent-Programming-Contest-2013

298 T. Ahlbrecht et al.

this means that zones are attacked by the opponent and are unstable. So the
derivative of these curves gives a better picture.

This behaviour follows from the computation of the the values in the chart:
each node gets a counter that is initialised to 0 once the node belongs to a
zone. In each step, the counter is incremented if it still belongs to the zone. The
counter is set to 0 if the zone does not exist anymore. The values depicted in
the chart are the sum over all counters of all nodes.

SMADAS-UFSC. The winner of our contest, won all matches and scored
perfectly. GOAL-DTU came closest and the following figure shows the first sim-
ulation which was almost a draw.

Fig. 1. UFSC-SMADAS vs. GOAL-
DTU Simulation 1: Summed scores

Fig. 2. UFSC-SMADAS vs. GOAL-
DTU Simulation 1: Step-scores and
Achievement points

Fig. 3 shows that both teams were good in defending their zones and build-
ing up more (in the last third, SMADAS-UFSC was better in achieving this).
The step scores were also narrow and oscillating between the two teams. The
achievement points from SMADAS-UFSC were consistently better from early on
in the match.

Fig. 3. UFSC-SMADAS vs. GOAL-
DTU Simulation 1: Stability

Fig. 4. GOAL-DTU vs. LTI-USP Sim-
ulation 2: Summed scores

Multi-Agent Programming Contest 2013 299

GOAL-DTU. The runner up (for the third consecutive time) played very well
and this also shows in the charts. As a typical example we chose the second
simulation against LTI-USP. Fig 5 shows that green (GOAL-DTU) performed
consistently better than LTI-USP, both in the achievements as well as in the
step scores. This is even more immediate in the zone stability.

Fig. 5. GOAL-DTU vs. LTI-USP Sim-
ulation 2: Step-scores and Achievement
points

Fig. 6. GOAL-DTU vs. LTI-USP Sim-
ulation 2: Stability

In the paragraph above about SMADAS-UFSC, we discussed the first simula-
tion with GOAL-DTU which was a close match. Interestingly, GOAL-DTU did
not as well in the other two simulations. There, its zone stability was not on par
with its competitor.

LTI-USP. The team came third but showed some strong playing.

Fig. 7. LTI-USP vs. SMADAS-UFSC
Simulation 3: Step-scores and Achieve-
ment points

Fig. 8. LTI-USP vs. SMADAS-UFSC
Simulation 3: Stability

300 T. Ahlbrecht et al.

Figure 8 shows that zone stability worked well from the middle of the game to
almost the end (LTI-USP is blue). Also the scores are well over the achievement
points. A good result, only the opponent was a bit better in this match.

TUB. The german team did usually quite poor on zone stability. The following
figures show the first simulation of TUB against LTI-USP.

Fig. 9. TUB vs. LTI-USP Simulation
1: Step-scores and Achievement points

Fig. 10. TUB vs. LTI-USP Simulation
1: Stability

In Fig. 9 one notices that the score of the green team (TUB), consists mainly
of achievement points (the green curve is oscillating around or even under the
achievements line). The poor performance on zone stability is of course clearly
shown in Fig. 10.

However, TUB was doing much better in the third simulation against LTI-
USP, where it almost drawed: So it did much better on the bigger scenario (which
is usually more difficult to handle).

Fig. 11. TUB vs. LTI-USP Simulation
3: Summed scores

Fig. 12. TUB vs. LTI-USP Simulation
3: Step-scores and Achievement points

Multi-Agent Programming Contest 2013 301

AiWXX. Although AiWXX came last, a few games were very close. The next
figures show such a close match. The step scores in Fig. 13 show clearly that
AiWXX was performing on par until the middle of the game, when the scores
went quite dramatically down, and then up and down without stabilizing. The
same is showing in Fig. 14: the team was not able to defend their zones.

Fig. 13. AiWXX vs. LTI-USP Simu-
lation 2: Step-scores and Achievement
points

Fig. 14. AiWXX vs. LTI-USP Simula-
tion 2: Stability

Conclusion. This year we saw some very interesting matches. Some of them
were close to a draw. For some teams the building of zones did not work well
when the opponent was too agressive. It worked better against other teams.

4.2 Achievements

In general, all teams gave more priority to achievement points as part of the
score than as a resource to improve agents’ attributes. In fact, only two of the
five teams made use of the buy action at all, and they did it in a planned,
limited, and consistent manner: GOAL-DTU spent 14 achievement points per
simulation, and LTI-USP spent 20 points per simulation.

The average number of achievement points earned by each team, without
taking the buys into consideration, is consistent with the final ranking of the
contest: 71 points for SMADAS-UFSC, 70,5 for GOAL-DTU (56,5 after buys),
67,5 for LTI-USP (47,5 after buys), 64,5 for TUB and finally 56 for AiWXX.
Interestingly, these numbers varied only a little for each team in the different
simulations: they were not in any relation to the map sizes.

Figure 15 corresponds to Simulation 1 of the match between GOAL-DTU and
LTI-USP, and reflects how the different buying strategies of these two teams
affect the evolution of the achievement points. GOAL-DTU realizes all buys in
a single phase that starts at around step 140, whereas 4 peaks11 can be seen in
the graph for LTI-USP, the first one at the very beginning of the simulation and

11 The number of achievement point can only decrease through the buying action.

302 T. Ahlbrecht et al.

Fig. 15. GOAL-DTU vs. LTI-USP
Simulation 1: Achievement Points

Fig. 16. UFSC vs. TUB Simulation 3:
Achievement Points

the last one prior to step 90. Even though at the end of this simulation LTI-USP
manages to earn more achievement points than GOAL-DTU, it is clear that the
achievement points of GOAL-DTU had more effect on the final score.

Figure 16 on the other hand, shows the typical evolution of the achievement
points for teams that did not use the buying action. In these case, SMADAS-
UFSC and TUB are almost on par, with a slight margin in favor of the former.

Regarding the composition of the achievements, it is worth noting the
following:

– The survey action was the fastest to pay-off in terms of achievements, pro-
viding up to 10 achievement points in the very first step (up to surveyed160).

– The area achievements varied from simulation to simulation, but as expected,
the best-performing teams were the ones who earned these achievements
earlier.

– LTI-USP was markedly slower than the rest of the teams in probing more
than 320 nodes (probed320 achievement). The rest of the teams reached
this number in general at around step 140, almost always before step 200.
LTI-USP, on the other hand, never obtained this achievement before step
300, and often after step 400.

– The attack-related achievements were a major source of differences in the
final count of achievement points earned. Aggressive teams, for example
SMADAS-UFSC, performed better in this respect.

– Attack-related achievements were also the main source of achievement points
in the end of each simulation.

– AiWXX’s agents never used the parry action, and therefore never got any
parry achievements.

Conclusion. Differently from the previous edition, this year there were no
simulations in which the achievement points played a significant role in the final
score. Although some teams performed better than others, the differences were
much smaller than the differences in zone-score.

Multi-Agent Programming Contest 2013 303

Whether it really pays off to implement a buying strategy, is not clear. This
year’s winners proved that a team can do very well without one. At the same
time, the second and third ranked teams spent some of their achievement points
in improvements, and clearly outperformed the fourth and fifth, even though the
average achievement points remaining at the end of the simulations was better
for the latter. For the two teams that did use the buying action, however, the
strategy was rather conservative, and they kept most of the achievement points
for scoring.

4.3 Agents’ Reliability and Stability

In this section we analyse the success and failure of executing actions by the
agents. The set of failure codes can be divided into three classes: a random
failure, a technical failure, and a failure with rerspect to the semantics of the
simulation.

While the first failure is introduced by the scenario12 to ensure a certain
degree of stability of the agents’ perceive-think-act cycle (i.e. the agents are able
to detect a failure and act accordingly), the second one is directly connected
to the stability of the platform respectively to the agent program. If an agent
is not able to send her action in a reasonable time slot then it can be only
because of two reasons: the network communication was too slow or the agent
had some problems due to a crash or some computational issues. Indeed, in this
year’s competition the participants did not have any network problems but some
agents crashed during a run and had to be restarted and/or were using too much
time for their computations13.

The last class of failures is directly related to the game logic of the scenario.
An attack-action can fail when the attacked agent executes the parry-action.
A ranged action or goto-action can fail because the node or opponent is out
of range. Even if the agent is in range, it can fail with a certain probability
(determined by the visibility). Additionally, it fails in case of lack of resources,
when the agent got successfully attacked or the status or role does not allow
to execute a particular action. For the complete description of all actions and
failure codes we refer to the scenario description in Appendix A.

For the reliability and stability of the agent we will focus on the following
failure codes: We will look at all technical failures because they allow us to
directly deduce some stability properties. On the semantical level we will consider
the out of range failures, the unreachable failures, the status and role failures as
well as the resources failures. These failures show that the agent did not respect
her internal status or made some wrong conclusions regarding the environment
and allow us therefore to speak about the reliability of the agent.

Finally, we will mention the other failures only if their occurrence is much
higher than the average.

12 For this year we let 1% of the actions fail randomly.
13 The time limit was set to almost 4 seconds.

304 T. Ahlbrecht et al.

SMADAS-UFSC. Concerning the stability we can conclude from the data
that the SMADAS-UFSC agents were very stable. In total, only 12 actions were
not sent in time. Interestingly, it was one action per simulation. More precisely,
it was always the very same Inspector that did not send an action in the last
step.

When it comes to reliability there are only very few failures because of lack of
resources. Thus, we can say the agents were very reliable. However, one reason
might be that the UFSC team did not use the ranged actions—a potential source
of error—a lot.

Typical results for SMADAS-UFSC are shown in Figure 17 and Figure 19.

Reason SMADAS-UFSC % LTI-USP %

parried 812 3,87 514 2,45
out of range 69 0,33

random 206 0,98 226 1,08
resources 1 0 13 0,06
attacked 285 1,36 191 0,91

no action received 1 0
status 1 0
in range 1187 5,65

Fig. 17. LTI-USP vs. SMADAS-UFSC Simulation 1: Failed Actions

GOAL-DTU. The GOAL-DTU agents were also very stable. Around 0.5 per-
cent of the actions got lost due to computational issues and the agents did not
crash at all. From the scenario perspective the GOAL-DTU team made more
mistakes than the SMADAS-UFSC team. One reason for this was caused by
the use of ranged actions. Nevertheless the team was robust and did not try to
execute an action forbidden by the role or the current status. Figure 18 contains
some exemplary data of one simulation.

Reason TUB % GOAL-DTU %

parried 286 1,36 3 0,01
out of range 8 0,04 4 0,02

random 203 0,97 231 1,1
resources 4 0,02

unreachable 573 2,73
attacked 138 0,66 259 1,23

no action received 19 0,09
status 17 0,08
in range 52 0,25 118 0,56

Fig. 18. TUB vs. GOAL-DTU Simulation 2: Failed Actions

Multi-Agent Programming Contest 2013 305

LTI-USP. The stability of LTI-USP was in between the first two teams. While
SMADAS-UFSC was the most stable team in the field the LTI-USP was following
closely afterwards. In only two simulations (Simulation 3 against AiWXX and
Simulation 3 against GOAL-DTU) LTI-USP had some stability issues. Less than
0.1% and 0.8% respectively of actions failed due to that.

Regarding the failures depending on the scenario we can say that the number
of failures due to the lack of resources and the out of range actions was compara-
ble with the ones from GOAL-DTU, however the number of actions that failed in
range was significantly higher (around 5 Percent). Buying more visibility range
for the agents would have decreased that value.

Figure 17 shows an example.

TUB. The TUB team’s stability was similar to that from GOAL-DTU. In some
simulations the agents did not loose one action in others they lost some (but
always not more than 1%). Thus the agents were stable and answering normally
in time.

When it comes to the reliability of the agents’ code we noticed some differences
to the first three teams. The agents often tried to go to a node that was not
reachable from their position. This was especially the case in Simulation 1 against
GOAL-DTU. More than 6% of the actions returned that failure. Also, some
actions failed due to the status. Concerning the ranged actions and the resources
the results are comparable with GOAL-DTU.

Figure 18 depicts a typical result for TUB.

AiWXX. Finally, the stability of AiWXX (Example shown in Figure 19) was
the worst in the contest although (except for one simulation against LTI-USP
where the computer or the agents crashed) it was still in the range of 2 to 5
percent and therefore quite good.

The reliability was as for the other teams. One thing we noticed was that
quite some actions failed due to an attack of the opponent. So it might be that
a better strategy for parrying or avoiding attacks would have helped to get a
better position in the final ranking.

Reason AiWXX % SMADAS-UFSC %

parried 52 0,25
random 237 1,13 201 0,96

unreachable 3 0,01
attacked 261 1,24 39 0,19

no action received 1120 5,33 1 0
status 4 0,02
in range 7 0,03

Fig. 19. AiWXX vs. SMADAS-UFSC Simulation 1: Failed Actions

306 T. Ahlbrecht et al.

Conclusion. In summary, we can say that this year all teams were stable and
reasonable reliable. This was expectable since we only slightly changed the sce-
nario in the last two years and all teams from this year were participating last
year as well.

4.4 Actions Per Role

In this section we take a look at the frequency at which actions are executed per
agent role and team. For a description of the agents’ roles and their respective
available actions we refer to Appendix A. Sometimes, we shall mention the per-
centage of failed actions on a per role and a per team basis. For a more general
perspective of failed actions per team only, we refer to Section 4.3.

Explorer. The Explorer role’s inherent task is to scout the map and probe

nodes to get information about their value.
Comparing all teams, the actions goto and recharge are dominant over all

others. Most of the teams (all except AiWXX) execute a similar number of probe
actions in all simulations. Although maps of different sizes are played (550, 580
and 600 nodes each), the number of executed probe actions does not increase
proportionally and at times even decreases for those teams. Also, no Explorer
used the buy action and thus nobody was able to execute a ranged probing.

SMADAS-UFSC: This teams’ Explorers did not use the survey action at all.
Apart from this, the amount of probing was in line with most of the other teams
and settling down around 13% in each simulation. Most actions were goto and
recharge, however, neither one dominates the other in all simulations.

GOAL-DTU: This team’s Explorers used the least probe actions (directly
followed by LTI-USP), peaking below 10%. The amount of survey actions is
negligible and the most used action was recharge at 75% to 80%. From this
we can deduce that these Explorers seemingly always explored an equally sized
portion of the map. Since only a small percentage is left for the goto action, we
can further assume -also based on the overall outcome- that suitable zones were
found swiftly and could be held for a long time. A characteristic performance
of these Explorers is given in Figure 20. Each bar represents one action that is
available to the role. They allow for analyzing how often the respective actions
were used by the agents of the current role and team. The green colored part
indicates how many actions were successful while the red part represents the
failed actions. Above each bar are a couple of numbers. The blue ones describe
the total amount (in absolute and relative numbers) of usages of the action.
Accordingly, the green numbers below describe the successful actions.

LTI-USP: Everything said in the previous paragraph also applies for these
Explorers. The only difference to GOAL-DTU is the amount of goto actions
which ranges from 17% to 31% for LTI-USP. The behaviour of this team was
also very uniform over all simulations.

TUB: The TUB Explorers were the only ones to use an observable amount
of skip actions (which also holds for every other role of TUB). Usage of the

Multi-Agent Programming Contest 2013 307

Fig. 20. AiWXX vs. GOAL-DTU Simulation 1: GOAL-DTU Explorer Actions

recharge action might have proven to be a better alternative, however, there was
no case of unexceptionally many ’failed resources’ failures for TUB. The relative
number of probe and survey actions was uniform for all simulations. However,
one simulation showed a large number of failed survey actions. Nevertheless,
the number of successful survey actions in this simulation is comparable to that
of the other simulations.

AiWXX: Their Explorers used the probe action to a varying degree ranging
from 6% to as much as 30% which is the peak percentage of all teams. Besides
some simulations, in which they used the survey action more than every other
team, the majority of actions falls upon goto and recharge. However, there is
no clear favorite between these two actions regarding all simulations. This points
to a varied degree of mobility that is neither dependent on the opponent nor the
size of the map.

Inspector. The Inspector is the only role that is able to inspect, that is to
gain information about agents of the other team aside from their observable
properties.

The teams used the inspect action to a varying degree. However, SMADAS-
UFSC, GOAL-DTU and LTI-USP show a similar performance (of actions) over
all simulations.

308 T. Ahlbrecht et al.

SMADAS-UFSC, GOAL-DTU, LTI-USP:.These Inspectors used the survey

and inspect actions a negligible amount of times. Of these inspect actions,
only those of SMADAS-UFSC are mostly succeeding while those of the others
fail in approximately 2 out of 3 cases. The remaining actions are divided between
goto and recharge with recharge clearly dominating. From this we can derive
that the Inspectors were mainly used to occupy zones neglecting their special
feature. As an example, we refer to Figure 21, which looks quite similar to all
other simulations of these three teams.

Fig. 21. LTI-USP vs. SMADAS-UFSC Simulation 2: SMADAS-UFSC Inspector
Actions

TUB: The TUB Inspectors used the inspect action a lot more, ranging from
15% to 55%. In addition, these were mostly successful (i.e. more than 75% in
the worst case). Another distinction is the amount of goto actions dwarfing the
number of recharge actions. However, only these agents had a tendency to fail
at using this goto action making up for the increased usage.

AiWXX: These Inspectors used the inspect action only at 1-3% of times,
thus falling in line with every other team but TUB. The survey action was used
in 1-15% of steps and the remaining numbers of goto and recharge actions
were alternating over simulations, which differs from all other teams.

Multi-Agent Programming Contest 2013 309

Repairer. The Repairer is able to enable agents which have been disabled by
attacks from other teams. As this strongly depends on the performance of the
competitor, there is no uniform behavior over all simulations.

SMADAS-UFSC: This team was the one to use the repair action the least.
Aside from this, the survey and parry actions were used a few times leaving
the goto and recharge actions again with the greatest number of executions.
The latter actions were mostly used equally with no action dwarfing the other.
These Repairers showed a uniform performance over all simulations.

GOAL-DTU: The Repairers used the survey action more than the average.
The agents also parried the most. However, most of the parry actions failed.
The repairing ranged from 5% to 30% and most repair actions were successful.

LTI-USP: Their Repairers used 6 buy actions per simulation on average. The
recharge action was used at varying amounts, in one simulation even peaking
at 85%. The repair action was mostly used a lot, however, less than 50% of
these uses were successful. If the agents repaired more, the recharge action was
used less (probably only being the default action).

TUB: These Repairers did not parry at all. The repair action was used in
5% up to 40% of steps and mostly succeeded. The repair and recharge actions
were alternating similar to LTI-USP.

AiWXX: The AiWXX Repairers used the repair action the most. At times
it was used in more than 60% of steps and mostly successful. These agents also
did not parry at all (so, of course requiring more repairs). An example can be
seen in Figure 22.

Saboteur. The Saboteur is opposite to the Repairer, being able to disable other
agents if they do not parry.

Three of the teams did not make use of the buy action. However, those who
did were not affected by a higher percentage of failures in general.

SMADAS-UFSC: This team did not buy anything for the Saboteurs. The
attack action was used 25% to 50% and the success percentage depended on
the respective opponent. It was used more often than the recharge action.

GOAL-DTU: These agents used the buy action 7 times on average. An effect
of this is not reflected in the charts. The attack action was used in 20% to 50%
of steps and again failed according to the respective competitor. The survey

and parry actions were ignored.
LTI-USP: These Saboteurs used 4 to 5 buy actions per simulation. The attack

action was used in 15% to 55% of steps and failed quite often, except in one single
simulation. The independence of the opponent is possibly due to ranged attacks
that were not used by many other teams. Buying more visibility range would
have increased the number of successful attacks.

TUB: The TUB team did not use the buy action. The attack action was used
in 5% to 50% of steps. Slightly distinctive, the percentage of failures did not vary
per opponent but per simulation. An example can be seen in Figure 23.

310 T. Ahlbrecht et al.

Fig. 22. AiWXX vs. GOAL-DTU Simulation 3: AiWXX Explorer Actions

AiWXX: The attack action was used in 5% to 40% of steps without using a
bought upgrade. Similar to TUB, the failure percentage differed per simulation
and not per opponent.

Sentinel. The Sentinel role is best suited to defend a zone, since it can use the
parry action and has no other distinctive characteristic.

SMADAS-UFSC: This team parried in 12% of steps while succeeding at
around 75% of these actions. The dominant actions here were goto and recharge

with the latter occurring more often.
GOAL-DTU: This team parried more often, ranging from 3% to 30% of possi-

ble executions. However, the Sentinels were mostly succeeding in less than 50% of
these actions. This might be a sign of increased pre-emptive parrying. The most
used action again was recharge at 60-80%. This again underlines the tendency
of GOAL-DTU to use the fewest goto actions.

LTI-USP: These Sentinels used the parry action in 1 to 17% of steps. A
relation to the map size is not in evidence, however, exceptionally many parry

actions were used in the match against SMADAS-UFSC. An example of such
a match is given in Figure 24. This might be due to their Saboteurs being the
most aggressive ones in using the attack action against LTI-USP and shows a
certain degree of flexibility in adapting to the amount of incoming attacks.

Multi-Agent Programming Contest 2013 311

Fig. 23. TUB vs. GOAL-DTU Simulation 2: TUB Explorer Actions

TUB: The TUB agents were again the only ones to use the skip action. The
parry action was only used in 1-6% of steps and mostly failed. Also, the agents
used the survey action in 1% of steps. In two occasions, the percentage was 5%
and 15% respectively, however, the successful survey actions still made up only
1% of the total actions.

AiWXX: The parry action was not used at all. The agents performed a small
amount of survey actions and otherwise used the recharge and goto actions
in varying proportions.

Conclusion. We have seen that the teams did not use the actions as diverse as
one could have expected. For some teams and roles, the proportions of actions
were very similar. However, some teams (mostly the ones coming 4th and 5th)
showed completely different behavior. Also, some teams showed to behave similar
over all simulations while others varied more with respect to using the available
actions.

312 T. Ahlbrecht et al.

Fig. 24. LTI-USP vs. SMADAS-UFSC Simulation 1: LTI-USP Explorer Actions

5 Summary, Conclusion and Future of the Contest

This paper provides an overview of the most recent edition (2013) of the Multi-
Agent Programming Contest. We introduced the Contest in general, and we elab-
orated on the current scenario, with an emphasis on the changes to the last
edition in 2012.

In this year, we had a plethora of statistical data available that we carefully
analysed in the sections above. In a companion paper, [1], we collected the an-
swers to 50 questions posed to the teams. They are arranged in a way to facilitate
the comparison of the teams.

Here are a few observations, not just for this edition, but for the last three
(where we introduced the Mars scenario).

– In all three editions a dedicated Multi-Agent Programming language or plat-
form won.

– The runner-up in all three editions was the team headed by Jørgen Villadsen
(DTU). For the first two editions they used Python, for the third one GOAL
(a dedicated agent programming language which also won the first edition).

– We believe it is fair to say (taking all the results into account) that ad hoc
implementations seem to perform worse than MAS inspired systems.

– The introduction of a qualification round increased the stability of the teams
and therefore the whole contest a lot. We shall keep this feature.

Multi-Agent Programming Contest 2013 313

– Teams performing for the second time usually perform better. But all teams
performed in previous editions (sometimes only the team leader remained
and started with a new crew).

– The overall performance of the teams is improving with each new contest,
although we increased the complexity considerably (size of the map, number
of agents, difficulty of the task).

– Some teams were playing well when the opponent was not too agressive, but
they played very bad when the opponent attacked them.

– Only two teams (placed second and third) used the buy-actions and invested
money to improve agents. All others used achievements solely to improve the
overall score. The part of the score related to achievements did not play a
major role.

– Only one team, placed last, showed slight problems with the stability of the
agents. Otherwise this did not play any role.

– Only the team placed last did not use any parry action (to defend a zone).
– Compared with the cows and cowboys scenario, we see much more coopera-

tion among the agents, more dynamic behaviour, and a lot more interaction
with the opposing team. In addition, the data to be handled (observing the
environment, messages between the agents) has also increased a lot. While
we have not yet excluded centralized approaches, the sheer amount of data
makes it difficult for the systems to provide each agent with the central
memory for the whole system.
Also, in the current scenario, the computational costs of shortest path finding
is high so that it is not feasible for all agents to execute it at the same time.

How can we make the contest even more exciting?

Agents: Why not using a massive number of agents: many agents with different
roles and thus different capabilities. Not just 10-30, but hundreds of them.
This would allow us to take into account the scalability of agent-oriented
programming platforms.

Uncertainty: Up to now our environments were pretty observable, the amount
of failing actions or wrong sensors was small. This could be changed to more
indeterministic environments, where agents have to find out the effects of
their actions.

Communication: It might also be worthwhile to focus on agent communication
and to evaluate that aspect of the tournament by routing agent-messages
through the MASSim server for proper evaluation.

Last but not least, the most important part of the contest are the contestants:
This year, three teams started as student projects.

We hope to attract more teams and students in the future: the contest is an
excellent opportunity to learn about multi-agent systems.

Acknowledgements. We would like to thank Alfred Hofmann from Springer
for his support right from the beginning and for endowing the price of 500 Euro
in Springer books.

314 T. Ahlbrecht et al.

References

1. Ahlbrecht, T., et al.: Multi-Agent Programming Contest 2013: The Teams and the
Design of their System. In: Cossentino, M., El Fallah Seghrouchni, A., Winikoff,
M. (eds.) EMAS 2013. LNCS (LNAI), vol. 8245, pp. 366–390. Springer, Heidelberg
(2013)

2. Behrens, T., Dastani, M., Dix, J., Köster, M., Novák, P.: Special Issue about Multi-
Agent-Contest. Annals of Mathematics and Artificial Intelligence, vol. 59. Springer,
Netherlands (2010)

3. Behrens, T., Dastani, M., Dix, J., Hübner, J., Köster, M., Novák, P., Schlesinger,
F.: The multi-agent programming contest. AI Magazine 33(4), 111–113 (2012)

4. Behrens, T., Dastani, M., Dix, J., Novák, P.: Agent contest competition: 4th edi-
tion. In: Hindriks, K.V., Pokahr, A., Sardina, S. (eds.) ProMAS 2008. LNCS,
vol. 5442, pp. 211–222. Springer, Heidelberg (2009)

5. Behrens, T., Dix, J., Hübner, J., Köster, M., Schlesinger, F.: MAPC 2011 Documen-
tation. Technical Report IfI-12-01, Clausthal University of Technology (December
2012)

6. Behrens, T., Dix, J., Hübner, J., Köster, M., Schlesinger, F.: MAPC 2011 Evalu-
ation and Team Descriptions. Technical Report IfI-12-02, Clausthal University of
Technology (December 2012)

7. Behrens, T., Köster, M., Schlesinger, F., Dix, J., Hübner, J.F.: The Multi-agent
Programming Contest 2011: A Résumé. In: Dennis, L., Boissier, O., Bordini, R.H.
(eds.) ProMAS 2011. LNCS, vol. 7217, pp. 155–172. Springer, Heidelberg (2012)

8. Dastani, M., Dix, J., Novák, P.: The second contest on multi-agent systems based
on computational logic. In: Inoue, K., Satoh, K., Toni, F. (eds.) CLIMA 2006.
LNCS (LNAI), vol. 4371, pp. 266–283. Springer, Heidelberg (2007)

9. Franco, M.R., Sichman, J.S.: Improving the LTI-USP Team: A New JaCaMo Based
MAS for the MAPC 2013. In: Cossentino, M., El Fallah Seghrouchni, A., Winikoff,
M. (eds.) EMAS 2013. LNCS, vol. 8245, pp. 339–348. Springer, Heidelberg (2013)

10. Köster, M., Schlesinger, F., Dix, J.: The multi-agent programming contest 2012.
In: Dastani, M., Hübner, J.F., Logan, B. (eds.) ProMAS 2012. LNCS, vol. 7837,
pp. 174–195. Springer, Heidelberg (2013)

11. Li, C., Liu, L.: Prior State Reasoning in Multi-agent systems and Graph-
Theoretical Algorithms. In: Cossentino, M., El Fallah Seghrouchni, A., Winikoff,
M. (eds.) EMAS 2013. LNCS (LNAI), vol. 8245, pp. 356–365. Springer, Heidelberg
(2013)

12. Villadsen, J., Jensen, A.S., Christensen, N.C., Hess, A.V., Johnsen, J.B., Woller,
Ø.G., Ørum, P.B.: Engineering a Multi-Agent System in GOAL. In: Cossentino,
M., El Fallah Seghrouchni, A., Winikoff, M. (eds.) EMAS 2013. LNCS (LNAI),
vol. 8245, pp. 329–338. Springer, Heidelberg (2013)

13. Werner, S., Bender-Saebelkampf, C., Heller, H., Heßler, A.: Multi-Agent
Programming Contest 2013: TUB Team Description. In: Cossentino, M.,
El Fallah Seghrouchni, A., Winikoff, M. (eds.) EMAS 2013. LNCS (LNAI),
vol. 8245, pp. 349–355. Springer, Heidelberg (2013)

14. Zatelli, M.R., de Brito, M., Schmitz, T.L., Morato, M.M., de Souza, K.S., Uez, D.M.,
Hübner, J.F.: SMADAS: A Team for MAPC Considering the Organization and the
Environment as First-class Abstractions. In: Cossentino, M., El Fallah Seghrouchni,
A.,Winikoff, M. (eds.) EMAS 2013. LNCS (LNAI), vol. 8245, pp. 319–328. Springer,
Heidelberg (2013)

Multi-Agent Programming Contest 2013 315

A Scenario Description

It is now a tradition to accompany the technical description of each scenario with a
motivating little story:

In the year 2033 mankind finally populates Mars. While in the beginning the
settlers received food and water from transport ships sent from earth shortly
afterwards – because of the outer space pirates – sending these ships became too
dangerous and expensive. Also, there were rumors going around that somebody
actually found water on Mars below the surface. Soon the settlers started to
develop autonomous intelligent agents, so-called All Terrain Planetary Vehicles
(ATPV), to search for water wells. The World Emperor – enervated by the
pirates – decided to strengthen the search for water wells by paying money
for certain achievements. Sadly, this resulted in sabotage among the different
groups of settlers.

Now, the task of your agents is to find the best water wells and occupy the
best zones of Mars. Sometimes they have to sabotage their rivals to achieve
their goal (while the opponents will most probably do the same) or to defend
themselves. Of course the agents’ vehicle pool contains specific vehicles. Some
of them have special sensors, some are faster and some have sabotage devices
on board.

Last but not least, your team also contains special experts, e.g. the repairer
agents, that are capable of fixing agents that are disabled. In general, each agent
has special expert knowledge and is thus the only one being able to perform a
certain action. So your agents have to find ways to cooperate and coordinate
among them.

A.1 The Map

The environment’s topology is constituted by a weighted graph. Each edge has a weight,
which is a number that represents the costs of moving from one of its vertices to the
other. Each vertex has a unique identifier and a value indicated by a number from 1
to 10. The vertices’ values are crucial for calculating the values of zones. A zone is a
subgraph that is covered by a team of agents according to a coloring algorithm that is
based on a domination principle.

Several agents can stand on a single vertex. If a set of agents dominates such a vertex,
the vertex gets the color of the dominating team. A previously uncolored vertex that
has a majority of neighbors (at least 2) with a specific color, inherits this color as well.
Finally, if the overall graph contains a colored subgraph that constitutes a frontier or
border, such that there are no rival agents inside of it, all the nodes that are inside the
border are colored as well. This means that agents can color or cover a subgraph that
has more vertices than the overall number of agents. Figure 25 shows a screenshot of
a relatively small map, depicting, amongst other things, the graph coloring.

A.2 The Agents

Before elaborating on the agent roles we have to specify the effectoric capabilities of the
agents. Each agent, or vehicle, has a state that is defined by its position on the map, its
current energy available for executing actions and its current health, plus a visibility

316 T. Ahlbrecht et al.

Fig. 25. A screenshot of the agents on Mars scenario

range and a strength level. On top of that, each team has a budget for equipping the
vehicles during the simulation.

Of course, all the actions that cost energy will fail if the vehicle under consideration
does not have enough energy. When the health level drops to 0 (due to opponent
attacks), the vehicle becomes disabled until repaired: it can then only perform a subset
of the actions, and it does not count for node domination nor for zones calculation.

Actions. These actions are defined by the scenario:

– skip is the noop-action, which does not change the state of the environment,

– recharge increases the current energy of a vehicle by a fixed factor and can be
performed at any time without costs,

– attack decreases the health of an opponent that stands within the visibility range
from the attacker, if successfully executed, and decreases the current energy of the
attacker,

– parry parries an attack and decreases the energy of the defending agent,

– goto moves the vehicle to a neighboring vertex while decreasing its energy by the
weight of the traversed edge,

Multi-Agent Programming Contest 2013 317

– probe yields the exact value of a given vertex within the visibility range,14 and
decreases the vehicle’s energy,

– survey yields the exact weights of visible edges while decreasing the energy,
– inspect costs energy and yields the internals of all opponents standing on the

same node, or a given opponent within the visibility range,
– buy equips the vehicle with new components, which increase its performance, and

cost money, and
– repair repairs a given teammate in the visibility range, which, again, costs energy.

The actions that can act at a distance (probe, inspect, attack and repair) are
regarded as ranged actions. When the target of such actions is not the same node
where the agent stands nor is an agent standing on the same node, the action can fail
randomly following a probability factor, that is calculated based on the visibility range
and the distance to the target.

Roles. We have defined five different roles. Each role defines the vehicle’s internals and
its capabilities. The roles differ with respect to energy, health, strength and visibility
range. The effectoric capabilities are as follows:

– explorer can skip, move to a vertex, probe a vertex, survey visible edges, buy
equipment and recharge its energy,

– repairer can skip, move to a vertex, parry an attack, survey visible edges, buy
equipment, repair a teammate and recharge its energy,

– saboteur can skip, move to a vertex, parry an attack, survey visible edges, buy
equipment, attack an opponent and recharge its energy,

– sentinel can skip, move to a vertex, parry an attack, survey visible edges, buy
equipment and recharge its energy,

– inspector can skip, move to a vertex, inspect visible opponents, survey visible
edges, buy equipment and recharge its energy.

Each team consists of 28 agents: 6 Explorers, 6 Repairers, 6 Sentinels, 6 Inspectors
and only 4 Saboteurs.

A.3 The Scoring

A step-score is calculated for each team in every step, and the final score of a simulation
is the sum of all step-scores. The step-score is the sum of all area values plus the
achievement points that the team retains at the given step.

Achievements. Achievements are tasks that, when fulfilled, contribute to the teams’
budgets. We have defined a set of achievements that includes having zones with fixed
values, inspecting a specific number of vehicles, probing a number of vertices, surveying
a fixed number of edges and successfully performing and parrying a number of attacks.
The numbers needed to reach an achievement of a certain type increase exponentially,
making them harder to get as the game advances.

For every achievement, a team gets 2 achievement points. These can act as money,
that the team may opt to spend in improvements for the agents at any time of the
simulation. If not spent, these points contribute to the step-score.

14 It is required to probe a node in order to get its full value summed to score when
the node belongs to a zone. Otherwise, it only sums as 1 point.

318 T. Ahlbrecht et al.

A.4 The Execution Cycle

In each step, each vehicle is provided with its currently available percepts:

– the state of the simulation, i.e. the current step,
– the state of the team, i.e. the current scores and money,
– the state of itself, i.e. its internals,
– all visible vertices, i.e. identifier and team,
– all visible edges, i.e. their vertices’ identifiers,
– all visible vehicles, i.e. their identifier, vertices and team,
– probed vertices, i.e. their identifier and values,
– surveyed edges, i.e. their vertices’ identifiers and weights, and
– inspected vehicles, i.e. their identifiers, vertices, teams and internals.

After sending percepts, the server grants some time for deliberation. After that the
new state is computed. The simulation state transition is as follows:

1. collect all actions from the agents,
2. let each action fail with a specific probability,
3. execute all remaining attack and parry actions,
4. determine disabled agents,
5. execute all remaining actions,
6. calculate zones and step-score
7. prepare percepts,
8. deliver the percepts.

SMADAS: A Team for MAPC Considering
the Organization and the Environment

as First-Class Abstractions�

Maicon Rafael Zatelli, Maiquel de Brito, Tiago Luiz Schmitz,
Marcelo Menezes Morato, Kaio Siqueira de Souza, Daniela Maria Uez,

and Jomi Fred Hübner

Department of Automation and Systems Engineering
Federal University of Santa Catarina

CP 476, 88040-900 Florianópolis - SC - Brasil
{xsplyter,tiagolschmitz,marcelomenezes73,dani.uez}@gmail.com,

maiquel.b@posgrad.ufsc.br,kaiossouza@hotmail.com,
jomi.hubner@ufsc.br

Abstract. This paper describes the SMADAS team for the Multi-Agent Pro-
gramming Contest 2013. Throughout this paper we highlight the design, main
strategies, tools, and results of our team. For this year we used the JaCaMo plat-
form to develop the team, which is composed of Jason (to program the agents),
CArtAgO (to program the environment), and Moise (to program the organiza-
tion). We also improved the last year team with new strategies focused on the
updated “Agents on Mars” scenario.

1 Introduction

The Multi-Agent Programming Contest (MAPC) [6]1 is an important event to stimu-
late research in the multi-agent systems programming field. The MAPC 2013 used the
“Agents on Mars” scenario, which was improved from the last year scenario, therefore
the efforts must continue concentrated in cooperation, coordination, and decentraliza-
tion. Our agent team, called SMADAS, acronym for our research group, named Multi-
Agent Systems from Systems and Automation Department (in Portuguese, Sistemas
Multiagentes do Departamento de Automação e Sistemas) was developed by a group
formed by one PhD, four PhD students, and two undergraduate students from the Fed-
eral University of Santa Catarina (UFSC). This is our second participation in the contest
and we have two main aims this year: improve our MAS developing skills and evaluate
some proposals developed in our thesis.

2 System Analysis and Design

For this year’s contest, we opted for developing a new team using the JaCaMo [2] plat-
form instead of just improving the last year team. The programming model of JaCaMo

� We are grateful for the support given by CAPES and CNPq (grant numbers 140261/2013-3,
306301/2012-1).

1 http://multiagentcontest.org

M. Cossentino et al. (Eds.): EMAS 2013, LNAI 8245, pp. 319–328, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://multiagentcontest.org

320 M.R. Zatelli et al.

provides high-level support for developing MAS considering agents, environment, and
organization as first-class entities. The development of these three dimensions is based
on three different technologies: Jason [3], for programming the agents; CArtAgO [7],
for programming the environment; and Moise [5] for programming the organization.
Thus, this year the organization and environment, which were previously implemented
as part of the agent code, have now been programmed with proper organizational and
environmental elements according to the aforementioned models and technologies.

2.1 Organizational Dimension

As JaCaMo supports organizational programming, part of the coordination of team
agents is modeled in the organizational dimension instead of being modeled as skills
of the agents. The organization provides guidelines for the achievement of the overall
system goals, but the agents remain autonomous to decide how to achieve them. For
example, the organization informs that an agent is obligated to probe the vertices, but
the agent is autonomous about “how” to do it, based on its local knowledge about the
world. However, the autonomy can be constrained by means of organizational norms.

Fig. 1(a) shows the structural specification (SS) of the team using the Moise no-
tation. Notice that the SS is designed based on the roles of the contest scenario. The
team is divided into two sub-teams. Besides, the team has three minor subgroups: spe-
cial operations, special exploration, and pivots. An agent can play more than one role
at the same time. For example, an explorer can also play explorer leader and special
explorer roles. One agent plays the role leader and is responsible to manage the overall
organization (e.g. designating the roles of the other agents). The functional specification
(FS) (Fig. 1(b))) specifies the goals (i.e. specific states of affairs) that the agents must
achieve and distributes these goals to the agents (by means of missions). The overall
goal (domain mars) consists in a decomposition tree where the leaves are the goals that
can be achieved by the agents. The goals are grouped in four missions (m1, m2, m3,
and m4). Finally, the normative specification (NS) (Fig. 1(c)) relates roles to missions.
For example, as the explorer leader is obligated to commit to mission m4, it is obligated
to achieve the goals define initial hill, conclude first phase, and dismiss agent.

Along the development of the team, we performed some experiments introducing
count-as rules [4]. Count-as rules changes in the organization as the result of facts
occurring in the environment. For example, without count-as rules, a specific agent has
to set up the organizational infrastructure and explicitly adopt the role of leader. With
count-as rules, it is possible to state that such setup counts-as the adoption of the leader
role. In another example, without count-as rules, the agents have to reason about the
organizational structure, checking their roles, and committing to missions according to
that roles. With count-as rules, it is possible to model that playing of a specific role
counts-as the commitment to a specific mission. The use of count-as rules simplifies
the reasoning and action of the agents, as they do not need to perform some actions
on the organization (e.g. they do not need to reason and to act to commit to missions).
Besides, count-as rules contribute to keep the organization in a consistent state as some
organizational actions do not depend on the agents actions. Due to time constraints,
the count-as rules were not added to the tournament team. However, the experiments
indicate that the rules seem a suitable approach for further versions of the team.

SMADAS: A Team for MAPC Considering the Organization 321

(a) Structural specification

domain mars

define zonesdiscover all
saboteurs

le
ge

nd goal
[TTF]

sequential
decomposition

parallel
decomposition

mission

probe all
m1

definitive zonesfirst phase

m3

define initial
zone

conclude
first phase

define initial
hill

define initial
pivots inside

hill

dismiss
agents

define
initial
pivots

define
initial

islands
m4 m2

m4 m4 m2 m2

(b) Functional specification

norm role mission

n1 explorer obligation m1
n2 sentinelLeader obligation m2
n3 inspector obligation m3
n4 explorerLeader obligation m4

(c) Normative specification

Fig. 1. Organizational Specification

2.2 Environment Dimension

The environment for our agents has two parts. The first part provides integration with
the contest simulation by means of EISMASSim framework [1] and is well defined in
the contest documentation. The second part is provided by JaCaMo artifacts that agents
perceive and use to achieve their goals. In our team, the information about the inspected
enemies is managed by an artifact. We also conceived an artifact responsible to manage
all the graph structure. However, since we used the same graph structure and algorithms
of the last year, which were based on Java shared memory, we decided to not move this
previous implementation into a specific CArtAgO artifact because it would require more
time. Therefore, part of the environment is developed in CArtAgO and another part was
kept in “pure Java”, accessed by means of Jason internal actions, as we did last year. It
is a future work to unify all perceptions and actions under the CArtAgO approach.

2.3 Agent Dimension

The agents may behave proactively or reactively, in accordance with the needs. For
example, a damaged agent will proactively call a repairer and all agents promptly react
to the environment events, like the start of a new simulation step.

322 M.R. Zatelli et al.

Agents share information by two mechanisms: messages and blackboards. Since it
was not so appropriate to broadcast everything between the agents because we would
have 28 × 27 messages2, we chose to send messages about few things. For example,
when agents are disabled, they call a repairer; when enemies invade some team area,
the saboteurs are notified; and when some vertex is probed, the explorers broadcast the
value of the vertex. Some information is also important to exchange between agents
of the same kind to avoid them performing the same action. For example, when there
are two saboteurs with enemies in the same vertex, they need to communicate to decide
which enemy each one will attack. We used the same solution for explorers and repairers
to avoid repairing the same agent and to avoid probing the same vertex. Messages are
also used to inform agents about the zones they should help to conquer.

The second (indirect) communication mechanism is the use of blackboards and ar-
tifacts as commented on Sec. 2.2. In this case, the agents share the graph structure,
the information about the inspected agents, and the position of the enemies and team
mates. Finally, the remaining data, such as their own health, energy, zone scores, or
visible vertices, is private for each agent.

We defined a priority among the agents to avoid conflicting actions (like two agents
probing the same vertice). The agent with the highest priority chooses its action first and
informs the others of the same role about its decision. Then the agent with the second
highest priority does the same and so forth.3 However, actions like survey and inspect
do not follow this priority approach. That means two agents can inspect or survey at the
same target to try to guarantee some of them will be successful.

2.4 Testing

To develop the team we used a particular incremental process. We performed weekly
meetings to define the team strategies. These strategies were implemented and tested
during the week and, in the next meeting, these results were considered to define new
improvements. To evaluate the team strategies and ensure the competitiveness, we tested
our team by simulating a great amount (more than 1000) of matches against our 2012
team [8], the 2012 Python-DTU team, and previous versions of our current team. The
aim of the tests was to evaluate the overall performance of the team in different maps,
adopting different strategies and facing different strategies from the opponent. In addi-
tion, we participated in all test matches during the testing phase to evaluate the connec-
tion and a couple of strategies.

3 Software Architecture

As we done in the edition of 2012 [8], in the current edition of MAPC we used the EIS-
MASSim [1] to communicate with the contest server. However, while in the previous
edition the team was developed essentially using Jason, in the current edition, our team

2 The team is composed of 28 agents.
3 Notice that sharing the information about the chosen action is not enough to solve the problem.

Some coordination is required to efficiently solve it. Although this coordination is an organiza-
tional issue, this priority solution was coded in the agent dimension and it remains as a future
work to model it in the organizational dimension.

SMADAS: A Team for MAPC Considering the Organization 323

has been developed with JaCaMo platform. This was the main change in the software
architecture for this year. Furthermore, even with the increase number of agents, from
20 to 28, we were still able to run the agents in a single machine, therefore we decided
to avoid distributing the agents between several machines. We also made several con-
tributions for the tools that we used in this year. In Jason, we added features to handle
goals with deadlines, new mechanisms for the .wait internal action, and we fixed
some bugs. In Moise, we added a new feature to reset organizational goals to avoid
creating new schemes at runtime and we added an organizational monitor accessed via
HTTP, so that we were able to watch our team organization remotely.

The source code of the team has 3794 lines of Jason code, 135 for Moise, 96 for
CArtAgO, and 4434 for Java, totaling 8459 lines. Although the implemented strategies
of these year are more complex, we can notice that the number of lines coded in Jason
has decreased from 5504 in last year’s team to 3794 this year. It is an expected con-
sequence of the organization and the environment programming available in JaCaMo.
Coordination strategies that previously required several lines of Jason code, could now
be coded in a few lines of Moise, since Moise is a proper language for that. Not only
have we reduced the size of the programs, but the new approach has allowed us to debug
and change the organization of the team quite easily. Instead of monitoring the agents
internal state, we can now monitor the state of the organization, which is a more general
view of the state of the team. Since the organizational program is the same as the spec-
ification, to change the team sometimes is simply reduced to update the organization.
For instance, to change the order of organizational goals, we simply need to change the
scheme of Fig. 1(b).

4 Strategies, Details and Statistics

In this section, we describe the main strategies of our team (Sec. 4.1) and we highlight
the main results that we got (Sec. 4.2).

4.1 Team Strategies

The strategy of the team has two moments. In the former, the agents explore the map
to obtain achievement points and to define good zones as soon as possible. Thus, it is
possible to get a good score in the first steps. In the latter, the agents start to conquer and
protect several small zones. During the whole match, the saboteurs disturb the enemy
and the repairers help disabled agents.

The good zones are defined in terms of hills, pivots, and islands. A hill (the big zone
in Fig. 2(a)) is a zone formed by several vertices that have a good value and are in
the same region of the map. As in the 2012 team, the agents try to discover two hills.
The hills are defined as follows: for each vertex v of the graph, the algorithm sums the
values of all vertices up to two hops away from v, including v. The two vertices with
the highest sums are defined as the center of the hills, and then the agents try to stay
on the neighborhoods. The agents control the hills simply moving to the border of the
hills in order to expand them. If they break the zone, they come back to the previous
places and try to expand again. We also defined that the sentinels need to conquer the

324 M.R. Zatelli et al.

(a) Hill (b) Pivots (c) Islands

Fig. 2. Hills, pivots, and islands

best vertices in the hills and stay over them all the time until the strategy changes.
Sometimes, it induces the opponents to avoid those places and we guarantee a fixed
gain of scores of the hills, even if the enemy is disturbing. Moreover, the explorers of
the group special exploration prefer to probe first the vertices in the hills, because it
increases the gain of points in the first steps.

(a) (b) (c) (d)

(e)

Fig. 3. Protecting islands

Islands (Fig. 2(c)) are regions of the map that can be conquered by a single agent. An
island is a zone that has only one vertex (a cut vertex) in common with the remaining
graph. They are found by disconnecting the edges of each cut vertex of the graph. It
produces two disconnected subgraphs, and the smallest one, plus the cut vertex, are an
island. If there are enemies on the island, the controller agent will go to the same vertex
of the enemy. Thus, both teams do not get the points of that island. The figures 3(a),
3(b), 3(c), and 3(d) illustrate this situation. In addition, the controller agent notifies
the saboteur leader about the invader. If the saboteur leader is already busy protecting

SMADAS: A Team for MAPC Considering the Organization 325

another island, the saboteur leader calls the saboteur helper of the group special oper-
ations. If both are busy the saboteur leader keeps a list of islands with enemies for a
further attack. Fig. 3(e) illustrates a probable call of the saboteur leader (the diamond
not at the cut vertex) that is going to fight against an explorer (the circle) and a saboteur
(the diamond at the cut vertex).

Pivots (Fig. 2(b)) are regions of the map that can be conquered by just two agents. For
each pair of vertices (u,v) we search all vertices w connected to u and v. For all vertices
w (including u and v) we also search all vertices only connected to these vertices. For
example, if there is a vertice k connected only to the verticew, then k also belongs to the
pivot. Furthermore, if there is an island connected to some of these vertices we consider
all the vertices of the island. The best pivots are chosen considering the sum of all
vertices. The agents that control pivots do not move away from their places, since most
of the time the enemy does not stay fixed in those places. However, if the enemy stays
in the same vertex both teams do not get the points, and so our team also cancels the
enemy strategy. This is another reason to not leave the vertices. Otherwise the opponent
will get the points.

The hills are defined in the first phase of our strategy, until around step 130. We
chose to use hills instead of islands and pivots in the beginning of the match because
most of the vertices are still unprobed and so we would not get so many points. The
use of hills can keep all agents together and getting higher points because the zones
are bigger. After a while the agents start conquering pivots and islands. The agents also
need to decide if it is better to conquer two islands or one pivot. The decision is taken
by simply summing the value of two islands and comparing with the pivots. If the two
islands provide the same gain of the pivot or if they are more valuable, the agents will
prefer to conquer two islands instead of conquering one pivot. The pivots and islands
are very stable and so our agents are not disturbed by the enemy while our agents can
disturb their zones since it is harder to protect a big zone than several small zones.

Table 1. Implemented strategies by agent type

Action Repairer Saboteur Explorer Sentinel Inspector

attack x
repair x
parry x x
probe x
inspect x
recharge x x x x x
goto x x x x x
survey x x x x x

The achievements continue to be as important as in the last year. We decided do
not waste money buying items and get as much achievements as possible and as soon as
possible, since they accumulate in each step. We made this decision since in our tests we
did not see any advantage in buying items. Finally, the specific strategies of each kind
of agent are explained below while Table 1 summarizes the strategies implemented for
each kind of agent.

326 M.R. Zatelli et al.

Explorer: the explorers have an important role in the beginning of the match. They
need to probe all vertices as soon as possible. To do so, the explorers avoid per-
forming the survey action and conquering zones until they have probed all vertices.
Furthermore, the explorer leader defines the initial two hills.

Saboteur: the main aims of the saboteurs are to protect the islands and disturb the
enemy. The saboteur with the role saboteur chaser has the aim to attack mainly
explorers, inspectors, sentinels, and repairers to avoid staying in the same vertex
fighting against saboteurs all the time. The saboteurs with the roles saboteur leader
and saboteur helper have the main aim to protect islands against enemies. The
saboteur leader is also the main contact of the other agents to ask for help. In other
cases, the saboteurs simply search and destroy enemies. In addition, the saboteurs
attack following a priority. First of all they prefer to attack saboteurs, followed
by explorers, inspectors, repairers, and sentinels. The saboteurs prefer to attack
explorers and inspectors because they can not parry.

Repairer: the main aim of the repairers is to keep the agents enabled. All agents that
are disabled inform the repairer leader. The repairer leader asks all the other re-
pairers if they can help the disabled agents. If a repairer is not committed to an
agent and it is not getting high points and it is enabled, then it is apt to help the
other agent. All apt repairers inform the path size until the disabled agent and the
repairer leader chooses the closest repairer to help the disabled agent. To make the
repair operation faster, both the repairer agent and the disabled agent follow the
same path to meet each other. If there is some repairer next to the disabled agent,
that repairer will repair the agent and the agent will cancel the appointment with its
repairer. Finally, when the repairers are not helping the disabled agents, they also
go to the pivots or islands that they belong to.

Sentinel: the sentinels always protect the best zones, since they are harder to get dis-
abled and they can parry. They are usually avoided by the enemy because they do
not have an important role like repairers, explorers, and saboteurs. Therefore, the
sentinels are not disturbed so often. The sentinels also try to survey if they find
some vertex with edges with unknown value. Finally, the sentinel leader has the
aim to define the islands and pivots and inform the agents about it.

Inspector: the inspectors protect the next best zones, since they are also not so dis-
turbed by the enemies. Their aim is to inspect all the enemy agents and they do
it just once, since we do not care about what the enemy is buying. Doing so, the
inspectors can stay in the same vertices until the end of the match, getting more
points than by inspecting enemies.

4.2 Comparison to Other Teams

In order to highlight the main results of our strategy we chose to use some statistics
of the second match against the GOAL-DTU team 4, which got the second place. Due
our strategy of small zones, we can verify in the Fig. 4(b) that after step 325 our team
(blue) kept almost the same zones until the end of the match. This behavior is usual
in all matches against the other teams. The reason is that no matter what the opponent
does, our agents will rarely leave their positions.

4 http://multiagentcontest.org/downloads/func-startdown/1716/

http://multiagentcontest.org/downloads/func-startdown/1716/

SMADAS: A Team for MAPC Considering the Organization 327

(a) Scores (b) ZoneStabilities

(c) AchievementPoints (d) ZonesScores

Fig. 4. Statistics

Another interesting result can be drawn from the zones scores plot (Fig. 4(d)). We
can see that our team (blue) kept getting almost the same zone scores after step 350 and
always more than the opponent. The phase of hills can also be noticed in the beginning
of the match, between step 25 until around step 130, where the team is getting high
scores because of the big zones. After step 130 our team started to conquer small zones
(pivots and islands) and, therefore, spreading the agents out over the whole map. It is
also possible to see that, sometimes, our zone scores were lower than the enemies. This
was an expected behavior when the agents were still changing their positions because
the explorers were still probing new vertices. We can see it after step 250 and after
around step 315, where our team decreased the gain of zone scores. After probing all
vertices (around step 325), the agents started to get higher scores because they defined
the fixed zones and all agents were participating.

We can see the same behavior in Fig. 4(a), where the opponent score gets closer and
then the difference of scores increases again. Notice that after step 325 the difference
of scores increased continuously because all vertices were probed. On the other hand,
in the Fig. 4(c) we can see that our team always has more achievement points than the
opponent after step 125. It means we are getting more points because the opponent was
buying items while our team was saving money.

328 M.R. Zatelli et al.

5 Conclusion

In our second participation in the MAPC we had again a worthy experience. Our team
performed very well and we won the MAPC for the second consecutive year. The strat-
egy to get many small zones was the strongest point of our team and it became more
difficult for the opponents to disturb our zones because our agents were spread out over
the whole map while our saboteurs were able to disturb the opponent zones. However,
our team can be improved to perform better in maps with low thinning (less than 20%)
and with too many good vertices gathered in the same area. The best strategy for it
seems to be to conquer a big zone and defend it instead of building small zones.

We also had the opportunity to use new tools, such as the JaCaMo and to test some
issues related to our research topics, such as count-as rules. It was a good challenge and
we got positive results. The main results were (i) the contributions for the improvement
of the used tools and (ii) the concrete verification that considering the organization and
the environment as first-class entities has improved the team program quality.

Finally, as suggestions to improve the current scenario, we suggest that ranged ac-
tions be revised to balance the fail probability. So far, it is not a good strategy to use
ranged actions, since the agents need to buy several sensors to decrease this probability.

References

1. Behrens, T.M., Hindriks, K.V., Dix, J.: Towards an environment interface standard for agent
platforms. Annals of Mathematics and Artificial Intelligence 61(4), 261–295 (2011)

2. Boissier, O., Bordini, R., Hübner, J.F., Ricci, A., Santi, A.: Multi-agent oriented programming
with JaCaMo. Science of Computer Programming 78(6), 747–761 (2013)

3. Bordini, R.H., Wooldridge, M., Hübner, J.F.: Programming Multi-Agent Systems in AgentS-
peak using Jason. John Wiley & Sons (2007)

4. de Brito, M., Hübner, J.F., Bordini, R.H.: Programming institutional facts in multi-agent sys-
tems. In: Aldewereld, H., Sichman, J.S. (eds.) COIN@AAMAS 2012, pp. 31–25 (2012)

5. Hübner, J.F., Sichman, J.S., Boissier, O.: Developing organised multi-agent systems using the
MOISE+ model: Programming issues at the system and agent levels. International Journal of
Agent-Oriented Software Engineering 1(3/4), 370–395 (2007)

6. Köster, M., Schlesinger, F., Dix, J.: The multi-agent programming contest 2012. In: Dastani,
M., Hübner, J.F., Logan, B. (eds.) ProMAS 2012. LNCS, vol. 7837, pp. 174–195. Springer,
Heidelberg (2013)

7. Ricci, A., Piunti, M., Viroli, M.: Environment programming in multi-agent systems: an
artifact-based perspective. AAMAS 23, 158–192 (2011)

8. Zatelli, M.R., Uez, D.M., Neri, J.R., Schmitz, T.L., de Castro Bonson, J.P., Hübner, J.F.:
SMADAS: A cooperative team for the multi-agent programming contest using jason. In:
Dastani, M., Hübner, J.F., Logan, B. (eds.) ProMAS 2012. LNCS, vol. 7837, pp. 196–204.
Springer, Heidelberg (2013)

Engineering a Multi-Agent System in GOAL

Jørgen Villadsen�, Andreas Schmidt Jensen, Nicolai Christian Christensen,
Andreas Viktor Hess, Jannick Boese Johnsen, Øyvind Grønland Woller,

and Philip Bratt Ørum

Algorithms, Logic and Graphs Section
Department of Applied Mathematics and Computer Science

Technical University of Denmark
Matematiktorvet, Building 303B, DK-2800 Kongens Lyngby, Denmark

jovi@dtu.dk

Abstract. We provide a brief description of the GOAL-DTU system,
including the overall design, the tools and the algorithms that we used in
the Multi-Agent Programming Contest 2013. We focus on a description
of the strategies and on an analysis of the matches. We also evaluate our
experiences with the GOAL agent programming language. Our strategies
worked well in general and we earned a second place in the contest only
losing to the winning team. Finally we provide some suggestions for
future contests.

1 Introduction

This paper documents our work with the GOAL-DTU system, which partici-
pated in the Multi-Agent Programming Contest 2013.1 We also participated in
the contest in 2009 and 2010 as the Jason-DTU team [1,2], where we used the
Jason platform [5] and in 2011 and 2012 as Python-DTU where we used the
programming language Python [3,4].2 Our focus for the 2013 version of the con-
test was on developing even more specialized behavior for our agents as well as
gaining further experience with the GOAL agent programming language [6].3

We took the HactarV2 system [7] that won the contest in 2011 as a starting
point for our system.

The 2013 scenario is based on the scenario from 2012 and has only been
changed in a few ways. The most interesting changes are the increase in number
of agents from 20 to 28 agents per team and the introduction of ranged actions.

The paper is organized as follows. In section 2, we discuss some of the ideas
we have pursued. In section 3, we describe some of the facilities we have added
to improve the system. Section 4 describes in detail our strategies and analyses
our matches. Finally, we conclude our work by discussing possible improvements
of our system and the contest in section 5.

� Corresponding author.
1 http://multiagentcontest.org/2013 (the source code can be downloaded)
2 http://www2.compute.dtu.dk/~jovi/MAS/
3 http://ii.tudelft.nl/trac/goal

M. Cossentino et al. (Eds.): EMAS 2013, LNAI 8245, pp. 329–338, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://multiagentcontest.org/2013
http://www2.compute.dtu.dk/~jovi/MAS/
http://ii.tudelft.nl/trac/goal

330 J. Villadsen et al.

2 System Analysis and Design

GOAL-DTU is written in the GOAL agent programming language. It is based
on the 2011 HactarV2 system that won the MAPC 2011. It was reworked first for
the 2012 scenario, before being reworked again for the 2013 scenario. However,
our algorithms have changed substantially from HactarV2. The code for each
agent role has been rewritten, but the basic knowledge and the design of the
flow is still the same. Ideas from Python-DTU which took second place in the
contest in 2012 have also been incorporated into the code. The ideas behind
Python-DTU were discussed with the Python-DTU team. The most notable
idea which was incorporated into GOAL-DTU was the zone control algorithm.
GOAL-DTU was also tested against a slightly updated version of Python-DTU
which was compatible with the 2013 scenario.

The GOAL-DTU agents are separate entities that only communicate through
the GOAL messaging system. Messages are used to communicate new informa-
tion about the map as well as the status and position of all visible agents. The
only centralized information is each agent’s zone control position, which is known
by a single agent. This also means that no data structures are shared among the
agents.

The agents are able to autonomously decide which action to perform in any
given situation, based on their individual beliefs and knowledge, and by com-
munication. The GOAL-DTU agents are mostly reactive, for example, when
attempting to disrupt zones controlled by the enemy as they are noticed. The
Repairers attempt to be proactive in certain cases, for example, by assuming
that allied Saboteurs will be prioritized targets for the opponent. In cases where
a Repairer believes that a Saboteur will be attacked, and the Repairer has no
better repairing options, it will attempt to repair the Saboteur at the same time
as it believes it will be attacked. This works because of the way the server han-
dles actions. Attack actions and handling disabled agents happens before repairs
are handled. This effectively allows the Saboteurs to be attacked without taking
damage giving our agents an advantage in battles.

We have invested approximately 500 man hours and we wrote 1288 lines of
code (not counting comments and blank lines).

3 Software Architecture

We briefly discuss some of the more interesting aspects of our system, as well as
our solutions to some of the issues we encountered during development.

Pathfinding. In order to improve the performance of our system, we worked
on developing an efficient pathfinding algorithm. Our initial idea was to use an
implementation of the A* algorithm. A* repeatedly compares the cost of each
edge to how close it is to the goal and selects the best alternative. The algorithm
requires a suitable heuristic function, h(n), which returns a value describing how
close the node n is to the goal. If the coordinates of each node are known, the

Engineering a Multi-Agent System in GOAL 331

obvious choice for a heuristic function is the straight-line distance between n
and the goal node.

However, we are only provided with an identifier for each node in the sce-
nario, so an alternative heuristic is required. We considered various methods
such as triangulation using fixed nodes as reference points, but this proved to
be too inefficient. In the end, we decided that it was more efficient to not use
any heuristics. This effectively makes our algorithm equivalent to Dijkstra’s Al-
gorithm, but since the maps are relatively small, it is sufficient.

Unresolved Bugs. During the contest GOAL-DTU still had some unresolved
bugs. One severe bug was that our agents would sometimes recharge for several
consecutive steps despite being at full energy. By debugging we found that this
happens at several different places in the code, even though the agents should
be able to take other actions. This weakened some of our agents a great deal;
especially Saboteurs, who should almost always be attacking, were limited in
their potential.

Another bug was discovered in a part of the specialized code for our Saboteurs.
One Saboteur is able to adopt a goal, which makes it harass the enemy in order
to disrupt their zones. When the goal has been achieved, the agent should return
to its normal behavior. However, when a Saboteur decided to harass the enemy,
which then left the area, our agent would wander back and forth between nodes
aimlessly, instead of returning to normal behavior. We made one fix in order to
get rid of this bug, but it was not enough.

Implementing a Debugging Library. We implemented a separate debugging
library in GOAL which enabled us to log any data from the multi-agent system
to a file while running, along with a timestamp and the current step number.
For instance, it is possible to log the entire contents of a mail received by an
agent along with any relevant comments. After we implemented this, we were
able to find and remove bugs that were preventing our agents from performing
their actions in time, which in turn allowed us to qualify for and participate in
the contest.

4 Strategies, Details and Statistics

We describe our most important strategies, and discuss a number of interesting
situations from the simulations in the competition.

4.1 Team Strategies

Most of the strategies used by GOAL-DTU are able to be performed without
communication between the agents of the team, apart from, as stated above, gen-
eral information about the map and the agents, which is synchronized between
agents.

This communication consists of sending new information about new nodes,
probed nodes, or surveyed edges, and is sent to all agents of the team, such

332 J. Villadsen et al.

that everyone has the same knowledge about the map. The communication also
includes sending information about the status (role, health, and position) of all
agents, both allies and enemies (especially when an enemy is inspected).

The algorithms that are used to decide which target to repair or attack there-
fore avoid having multiple agents choosing the same target, without communica-
tion between the agents. This prevents, for example, that the same agent being
repaired multiple times unnecessarily in a single step.

Because of time constraints, we were unable to implement and test ranged
actions, apart from the inspect action.

Zone Control.After about 70 steps of the simulation have elapsed, one Explorer
will calculate the best positions for Sentinels and Inspectors to stand on for
controlling high-valued zones. Each position is then sent to the respective agent
which in turn adopts a goal making it move towards and stand on this position.
This ensures that the zones are stable.

After about 150 steps the Explorers will also join the controlled zones, but
first calculate new zones to control based on updated map information.

The Saboteurs and Repairers do not contribute to controlling zones as they
should be occupied with attacking and repairing agents respectively.

The best positions are calculated by first placing an agent on a high valued
node with the highest valued surrounding area, then successively placing one
agent on another node which contributes most to the zone score. However, only
the first two phases of the coloring algorithm are utilized. The calculation also
considers the number of connections to other agents when placing an agent, most
of the time sacrificing a higher zone score for a more resilient zone.

Buying Upgrades. After 140 steps of the simulation have elapsed, our Sabo-
teurs will consider buying health and strength depending on the health and
strength of the opposing team’s Saboteurs. They will buy these upgrades such
that our Saboteurs are able to disable enemy Saboteurs in one step while surviv-
ing at least one attack, assuming that the Saboteurs are attacking each other on
the same node. To prevent overspending, the Saboteurs determine if they should
buy upgrades by observing the values of the second highest strength and health
among the opposing team’s Saboteurs.

Probing. Our Explorers undergo three stages when probing the map:

1. Finding a highest valued node. At the beginning of the simulation each
Explorer moves towards a node with a higher value until it has probed a node
of value 10. It accomplishes this by successively moving towards a higher
valued neighboring node, probing if the node it stands on is unprobed, and
also backtracking to the previous node it were at if the current node has a
lower value than the previous.

2. Probing the area around the found highest valued node. When an
Explorer has found a node of value 10 it will calculate a list of neighbors
around this high value node that have not been probed yet. It will then

Engineering a Multi-Agent System in GOAL 333

probe those nodes. This ensures that the valuable nodes around a node of
value 10 are also probed, which is useful when deciding on zones to control.

3. Probing the rest of the map. The Explorers will find any nodes left on
the map that are not probed and then probe them, unless it is supposed to
aid in controlling zones.

After the three stages have been completed, or a sufficient amount of steps
have elapsed, the Explorers will join in controlling zones.

Attacking. To prevent the Saboteurs from attacking the same targets, the tar-
gets are delegated amongst the enabled Saboteurs by rank. This rank is deter-
mined by each agent’s position in a simple lexicographical ordering of the agents’
names. Since all enemies on a node are visible to all the Saboteurs there, it is
possible to sort the enemies and choose a target in the resulting list by order.
This ensures that the Saboteurs do not choose the same targets. Furthermore,
the targets are sorted by their role as not all roles are equal. The ordering is as
follows, in descending order of importance: Saboteurs, Repairers, Explorers and
Inspectors, Sentinels. In particular Sentinels have lower priority than Explorers
and Inspectors because they are able to parry.

If an enemy Saboteur has been seen near an allied agent in a zone, then one
of the Saboteurs will hunt the enemy Saboteur until it is disabled. This should
prevent our controlled zones from being destroyed.

Also, at least one Saboteur will consider moving towards and attacking an
enemy Sentinel, Explorer, or Inspector, if it has any previous knowledge about
their positions. By doing so, our agents are able to purposefully disrupt the
opponents controlled zones.

Repairing. Repairers will rank themselves among the Repairers on the same
node, such that they will choose different targets. This rank is calculated using
the same method that is used for ranking Saboteurs as explained above. They
prioritize repairing Saboteurs and Repairers as these are important to keep func-
tioning for winning battles.

To prevent neglecting disabled agents that are located far away, the Repairer
with the lowest rank, determined using the method described previously, will
adopt a goal to repair such agents and will prioritize this goal above every other
goal until the agent in question has been repaired.

An important part of the repairing strategy is that a Repairer will repair
an uninjured Saboteur if it anticipates that the Saboteur will be attacked in
the same step. This prevents the Saboteur from becoming disabled, because
the contest server processes attacks and determines disabled agents before it
processes repairs.

Other Strategies. The Inspectors attempt to inspect any uninspected oppo-
nent agent that is nearby, such that GOAL-DTU knows the role of each agent.
This information is then sent to all the other agents of the team. They also in-
spect Saboteurs multiple times so that our Saboteurs can determine if they need

334 J. Villadsen et al.

to buy upgrades or not. If there are no agents nearby to inspect, they will survey
unsurveyed nodes or aid in controlling zones if necessary.

The Sentinels will primarily survey and aid in controlling zones.

4.2 Comparison to Other Teams

We describe some interesting cases from the matches, which show both the
strengths and weaknesses of our team.

Performance Issues against AiWXX. In our match against AiWXX, they
unfortunately had connection problems. This became the main deciding factor
in those simulations, as our agents would score many points during the periods
where AiWXX was disconnected. During their periods of inactivity, our Sabo-
teurs were also able to disable a lot of AiWXX’s agents. However, AiWXX’s
connection issues also caused problems for some of our agents.

One problem was that a lot of the AiWXX agents would occasionally gather
on the same node. When our Saboteurs and Repairers moved to that node to
attack, the number of agents on the node caused some algorithms to run for a
long time. This delay caused some of our agents to occasionally miss the deadline,
which resulted in 285 missed actions over the course of the 3 simulations with
28 agents and 750 steps (the number of missed actions is from the statistics files
available for each simulation). This is a substantial increase compared to the
other simulations. Against USP we had only 2 missed actions, 3 against UFSC
and 20 against TUB. This indicates that some refinement and refactoring of the
code for Saboteurs and Repairers may be necessary to ensure that our agents do
not miss the deadline.

Agent Mobility in the Match against USP. Even after establishing our
zones, we continue to search the map for better locations. If we discover a better
place to establish our zone, we are often willing to adapt to the new information
and reposition ourselves even though this results in a temporary drop in zone
score; we know that having the better zone will benefit us more in the long run.
An excellent example of this behavior can be seen in the first simulation against
USP.

At the beginning of the simulation, we have a well-established zone in the
lower left corner, while USP has the mirrored zone in the lower right corner, as
can be seen in fig. 1. Eventually, our Explorers have probed enough of the map
to determine that the area at the top of the map contains a zone that is larger
and more valuable than our current zone.

This prompts our entire team of agents to uproot and migrate across the map,
leaving the previous area behind. This can be seen in fig. 2.

We quickly reach the valuable area at the top where we establish a new and
better zone (see fig. 3). As an added benefit, USP still seems to think we are
in the lower left for a while after we move. The increased zone score eventually
carries us to victory in the simulation.

Engineering a Multi-Agent System in GOAL 335

Fig. 1. The arrows indicate Explorers discovering a better zone (step 115)

Fig. 2. The swarm is moving towards a better location (step 165)

Fig. 3. The agents have taken full control of a high value zone (step 195)

336 J. Villadsen et al.

Observations from the Match against TUB. Even though we won all sim-
ulations against TUB, our team performed different than expected. There seems
to be a bug, or at least an unaccounted case, in the behavior of the Saboteurs
that makes them recharge for long periods of time. Furthermore, the harass
strategy did not seem to perform well. We expected at least one of the Saboteurs
to find and destroy enemy controlled zones instead of recharging. This is espe-
cially important against a team such as TUB that tries to cut off, and control,
a large part of the map and therefore receives a much larger zone score than
GOAL-DTU is capable of.

In the first and second simulation, however, as our agents were able to dis-
able many of TUB’s agents that were near our controlled zones, the Repairers
sometimes had nothing to do other than explore the map and survey unsurveyed
edges. This meant that one of our Repairers would eventually move into TUB’s
controlled zones, thereby collapsing it. TUB would then have to find another
zone to control, which prevented TUB from receiving the needed zone score to
win.

Shortcomings of Our Strategies against UFSC. UFSC was the only team
we lost to, and by analyzing the three simulations between GOAL-DTU and
UFSC we will describe some of the things that did not work for our team and
why they played a bigger role against the strategy employed by UFSC.

A huge issue is the recharge bug described earlier, which means that our agents
stand around doing nothing. When this happens our agents are not participating
in the overall strategy and are not contributing to the step score in an efficient
manner. Against a strong team like UFSC we cannot afford to lose points due
to bugs like this.

Even though our zone control strategy was very efficient against other teams,
the simulations against UFSC clearly reveal its limitations. As we seek to control
a single, larger area, preferring proximity between the agents, we will almost in-
evitably control some lower value nodes (see fig. 4, large orange area, simulation
2). UFSC’s strategy is a direct counter strategy to this approach on two fronts.

As we begin to settle on a zone to control it seems as if they are doing
the same, usually in the same area. This means that there will be fighting in
the area we want to control, which leads to a less stable zone score for us.
At some point UFSC will recall many of its agents except for Repairers and
Saboteurs from this area and scatter them around the map. These agents will
place themselves in small groups controlling extremely valuable clusters (see
fig. 4, smaller red areas). All the while they are earning points from several small
high value locations we are fighting them in the middle of our own (inferior) zone
(see fig. 4, purple area), leading to a lower step score for us. The reason all their
small zones are left alone is due to the other bug mentioned earlier. The Saboteur
responsible for harassing them is not reliable and so they are left to do as they
please. That said, one Saboteur might not be enough to prevent their strategy
from working.

Engineering a Multi-Agent System in GOAL 337

Fig. 4. GOAL-DTU zone strategy versus UFSC zone strategy (step 740)

5 Conclusion

By participating in this year’s contest we have gained further experience with
the GOAL agent programming language. In light of problems we encountered
in the GOAL system during development of our agent program, we are satisfied
with how it performed during the contest and with our team taking second place.

We attribute our good performance to the strong zone control strategy of
our system, which was robust and reliable in finding good zones. An additional
strength is our preemptive repairing, where our Repairers anticipate attacks on
our Saboteurs.

Unfortunately there was an unresolved bug in our Saboteurs that prevented
them from performing optimally. This meant that an important strategy for
harassing the enemy was not available to us.

338 J. Villadsen et al.

Suggestions. Part of our team feel that it would make the competition more
interesting if teams were rewarded more for maintaining larger zones. Based
on the results from the last years, we feel that agents that spread out across
the map have a significant advantage over agents that stay together since they
tend to ruin the enemy zone by default. It seems to us that the complex task
of cooperating to maintain and defend a zone should be rewarded more than
simply spreading out across the map.

Our concern is that the competition would eventually devolve into a game
of getting to the valuable nodes quickly enough, since that is the most efficient
strategy. We feel this would remove the point of having a multi-agent system.
We are not confident that there is enough data to support this, but we feel that
it is at least worth considering.

We would also suggest publishing the new scenario description as soon after
the contest as possible, to enable more teams to participate.

Acknowledgements. Thanks to Per Friis for IT support and to Koen Hindriks
for GOAL support and also for the HactarV2 system, which we have used as a
starting point.

References

1. Boss, N.S., Jensen, A.S., Villadsen, J.: Building Multi-Agent Systems Using Jason.
Annals of Mathematics and Artificial Intelligence, vol. 59, pp. 373–388. Springer
(2010)

2. Vester, S., Boss, N.S., Jensen, A.S., Villadsen, J.: Improving Multi-Agent Systems
Using Jason. Annals of Mathematics and Artificial Intelligence 61, 297–307 (2011)

3. Ettienne, M.B., Vester, S., Villadsen, J.: Implementing a Multi-Agent System in
Python with an Auction-Based Agreement Approach. In: Dennis, L., Boissier, O.,
Bordini, R.H. (eds.) ProMAS 2011. LNCS, vol. 7217, pp. 185–196. Springer, Heidel-
berg (2012)

4. Villadsen, J., Jensen, A.S., Ettienne, M.B., Vester, S., Andersen, K.B., Frøsig, A.:
Reimplementing a Multi-Agent System in Python. In: Dastani, M., Hübner, J.F.,
Logan, B. (eds.) ProMAS 2012. LNCS, vol. 7837, pp. 205–216. Springer, Heidelberg
(2013)

5. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-Agent Systems
in AgentSpeak Using Jason. John Wiley & Sons (2007)

6. Hindriks, K.V.: Programming Rational Agents in GOAL. In: Bordini, R.H., Dastani,
M., Dix, J., El Fallah Seghrouchni, A. (eds.) Multi-Agent Programming: Languages,
Tools and Applications, pp. 119–157. Springer (2009)

7. Dekker, M., Hameete, P., Hegemans, M., Leysen, S., van den Oever, J., Smits, J.,
Hindriks, K.V.: HactarV2: An Agent Team Strategy Based on Implicit Coordination.
In: Dennis, L., Boissier, O., Bordini, R.H. (eds.) ProMAS 2011. LNCS, vol. 7217,
pp. 173–184. Springer, Heidelberg (2012)

Improving the LTI-USP Team: A New JaCaMo

Based MAS for the MAPC 2013

Mariana Ramos Franco and Jaime Simão Sichman

Laboratório de Técnicas Inteligentes (LTI)
Escola Politécnica (EP)

Universidade de São Paulo (USP)
mafranko@usp.br, jaime.sichman@poli.usp.br

Abstract. This paper describes the architecture and core ideas of the
multi-agent system created by the LTI-USP team which participated in
the 2013 edition of the “Multi-Agent Programming Contest” (MAPC).
This is the third year of the “Agents on Mars” scenario, in which the
competitors must design a team of agents to find and occupy the best
zones of a weighted graph. The team was developed using the JaCaMo
multi-agent framework and it is an improvement of the system used in
the last year contest.

1 Introduction

The “Multi-Agent Programming Contest” (MAPC) is held every year in an at-
tempt to stimulate research in the field of programming Multi-Agent System
(MAS) [1] 1. In the MAPC, two teams of agents are located in the same environ-
ment and compete directly in a scenario set by the organizers. By being a direct
competition, it is an interesting scenario to evaluate and compare different sys-
tems, allowing to identify strengths and weaknesses, promoting the development
of all participants.

The LTI-USP, located at the University of São Paulo is one of the most
relevant research groups in multi-agent systems in Brazil. The group participated
in the 2009 [2], 2010 [3] and 2012 [4] MAPC editions. Since our first participation,
the MAPC has been used to evaluate platforms and tools, and to improve our
knowledge in developing MAS.

For this year’s contest the LTI-USP team was formed by only one M.Sc.
student (Mariana Ramos Franco), supervised by Prof. Jaime Simão Sichman;
and like last year our main motivation to participate in the Contest was to test
and evaluate the JaCaMo [5] framework.

JaCaMo2 is a platform for multi-agent programming which supports all le-
vels of abstractions – agent, environment, and organisation – that are required
for developing sophisticated multi-agent systems, by combining three separate

1 http://multiagentcontest.org
2 Available at http://jacamo.sourceforge.net/

M. Cossentino et al. (Eds.): EMAS 2013, LNAI 8245, pp. 339–348, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://multiagentcontest.org
http://jacamo.sourceforge.net/

340 M.R. Franco and J. Simão Sichman

technologies: Jason3 [6], for programming autonomous agents; CArtAgO4 [7],
for programming environment artifacts; and Moise5 [8], for programming multi-
agent organisations.

2 System Analysis and Design

The team was developed using the JaCaMo multi-agent framework and it is an
improvement of the system used in the last year.

In order to cope with the new rules, we changed the team, that is now com-
posed of 28 agents. Moreover, in contrast with our team that participated last
year, this new team is more decentralized. One agent, the coordinator, is still
responsible for determining which are the best zones in the map; however, each
agent decides by itself which empty vertex it will occupy in order either to create
a zone or to expand it.

In our team, each agent has its own view of the world, and communicates
with others for the following purposes: (i) informing the other agents about the
structure of the map; (ii) informing about the agent’s or the opponent’s position,
role and status; and (iii) asking for a repair.

The agents’ communication occurs via the speech acts provided by Jason and,
to reduce the communication overhead, agents broadcast to all others only the
new percepts, i.e., only percepts received from the contest server which produces
an update on the agent’s world model are broadcasted. For this reason, there
is a strong exchange of information between the agents in the beginning of the
match due to the broadcast of new percepts, specially those related to the map,
such as vertices and edges. However, the communication overhead decreases as
the agents’ world model starts to be more complete.

The agent architecture is based on the BDI model [9]. Each agent has its own
beliefs, desires, intentions and control thread.The agents are autonomous to decide
by themselves the next action to be performed, but in cooperationwith each other.
The agents have a proactive behaviour, for example, to find the better vertices in
the map, and to move to the closest repairer when they are damaged.

At each step, the agent decides which new plan will be executed to achieve
a determined goal given only the state of the environment and the results of
previous steps. There are no plans that last for more than one step and the
plan’s priority is determined by the order in which the plans were declared, i.e.,
the executed plan will be the first one to have its conditions satisfied. Some high
priority plans can be considered reactive, such as the one which tells the agent
to perform a recharge when running low on energy.

For the development of this project, we choose to not use any multi-agent
methodology, because we already had the 2012 team from where we start to
work, and mainly because we decided that it was better to spend our time to
improve the system performance.

3 Available at http://jason.sourceforge.net/
4 Available at http://cartago.sourceforge.net/
5 Available at http://moise.sourceforge.net/

http://jason.sourceforge.net/
http://cartago.sourceforge.net/
http://moise.sourceforge.net/

Improving the LTI-USP Team: A New JaCaMo Based MAS 341

To achieve this goal, first we changed the team to 28 agents and the coordina-
tion mechanism to form the zones. Next, we added to the agents the possibility
to perform some actions from a distance. Then, many strategies were tested,
such as: to divide or not the agents in groups to occupy more zones in the map,
to buy or not upgrades to the agents, and to use more or less agents to attack
the opponents. Finally, based on the results of our tests, we selected the best
team to use in the Contest.

Approximately 150 person hours were invested in the team development and
before the tournament we participated in some test matches set by the organizers
to ensure the stability of our team. Only during the competition we discussed
the design and strategies with the other teams, without performing any change
to our team from a match to another.

3 Software Architecture

The architecture of the LTI-USP team, showed in Figure 1, is the same used in
2012 [4]. In this architecture, the agents are developed using the Jason MAS plat-
form, which is a Java-based interpreter for an extended version of the AgentSpeak
programming language for BDI agents. Each agent is composed of plans, a belief
base and its own world model. The plans are specified in AgentSpeak and the
agent decides which plan will be executed according to its beliefs and the local
view of the world.

The world model consists of a graph developed in Java, using simple data
structures and classes. It captures every detail received from the MASSim con-
test server, such as: explored vertices and edges, opponents’ position, disabled
teammates, etc. At each step, the agent’s world model is updated with the per-
cepts received from the MASSim server, and with the information received from
the other agents.

Some of the percepts received from the MASSim server are also stored in the
agent’s belief base, such as the agent’s role, energy, position and team’s money,
thus allowing the agent to have a direct access to these information without have
to access its world model. Percepts about vertices, edges and other agents were
not stored in the belief base so as to not compromise the agent’s performance, as
it could be very expensive to update and to access the belief base with so much
information. Moreover, since we wanted to update a belief when a new instance
was inserted (instead of adding a second one), we decided to use an indexed
belief base in which some beliefs are unique and indexed for faster access.

Agents communicate with the MASSim server through the EISMASSim
environment-interface included in the contest software-package. EISMASSim is
based on EIS6 [10], which is a proposed standard for agent-environment inter-
action. It automatically establishes and maintains authenticated connections to
the server and abstracts the communication between the MASSim server and the
agents to simple Java-method-calls and call-backs. In order to use this interface,

6 Available at http://sourceforge.net/projects/apleis/

http://sourceforge.net/projects/apleis/

342 M.R. Franco and J. Simão Sichman

we extended the JaCaMo default agent architecture to perceive and to act not
only on the CArtAgO artifacts, but also on the EIS environment as well.

CArtAgO is a framework for environment programming based on the A&A
meta-model [11]. In CArtAgO, the environment can be designed as a dynamic
set of computational entities called artifacts, organized into workspaces, possibly
distributed among various nodes of a network [5]. Each artifact represents a
resource or a tool that agents can instantiate, share, use, and perceive at runtime.
For this project, we did not create any new artifact; we only made use of the
organisational artifacts provided in Moise.

Moise [8,12] is an organisational model for MAS based on three complemen-
tary dimensions: structural, functional and normative. The model enables a MAS
designer to explicitly specify its organisational constraints, and it can be also
used by the agents to reason about their organisation. We used the Moise model
to define the agent’s roles, groups and missions.

The code of our team can be found in the MAPC website 7, and consists of
approximately 2000 lines of code in Java and 1800 lines in AgentSpeak, and the
development was all carried on using the Eclipse IDE with the Jason plugin.
The main developer was already familiar with both the development and the
runtime platforms, i.e. the Eclipse IDE and the JaCaMo framework.

The agents were not distributed across several machines due to time con-
straints, but is our intention to work in the future on a distributed team, since
this is supported by JaCaMo.

4 Strategies, Details and Statistics

4.1 Team Strategies

For this year’s contest, we changed substantially the team organisation by adding
different roles to the agents, as shown in Figure 2.

We kept the strategy of distributing the agents in three subgroups (best zone,
second best zone and attack), two of them in charge of occupying the best
zones in the map, and the other one in charge of attacking the opponents. How-
ever, regarding the agents’ roles, we decided not to map the five types specified in
the scenario (explorer, inspector, repairer, saboteur and sentinel) directly to the
roles in our team. Instead, we defined additional different roles in our system
according to the adopted strategy. Each of these roles has a mission associ-
ated to it, and can be played by one or more type of agents. For example, the
map explorer role can be played only by the explorer type, while the soldier

role can be played by all types of agents. Below we describe the missions related
to each role:

7 Available at http://multiagentcontest.org/downloads/
Multi-Agent-Programming-Contest-2013/Sources/LTI-USP/

http://multiagentcontest.org/downloads/Multi-Agent-Programming-Contest-2013/Sources/LTI-USP/
http://multiagentcontest.org/downloads/Multi-Agent-Programming-Contest-2013/Sources/LTI-USP/

Improving the LTI-USP Team: A New JaCaMo Based MAS 343

Fig. 1. LTI-USP Team Architecture [4]

- map explorer (explorer): Explores the whole graph by probing every vertex
and surveying all edges on its path;

- map explorer helper (explorer): Helps the map explorer to explore the
graph, but only in the first 250 steps. After that, the agent leaves this role
to adopt the soldier role in the best zone subgroup;

- soldier (all types): Tries to occupy the best (or second best) zone in the
graph indicated by the coordinator agent. When all the vertices of the best
zone are occupied the soldier starts to look to the neighbour vertices of
the team’s zone in which he can move to increase its size;

344 M.R. Franco and J. Simão Sichman

Fig. 2. Moise structural specification of the LTI-USP team

- guardian (saboteur): Defends the best (or second best) zone by attacking
any opponent that is close to the team’s zone, or trying to invade it;

- medic (repairer): Occupies the center of the best (or second best) zone and
is responsible for repairing the agents in the group, or other agents which
eventually need to be repaired, such as the map explorer. In our team, the
damaged agents move to the repairers to be repaired;

- zone explorer (explorer): Explores the team’s zone by probing the vertices
which value is unknown. When all vertices are probed, the zone explorer

helps the soldiers to increase the zone size;
- saboteur (saboteur): Attacks any close opponent, or the opponent who
occupies a good vertex;

- sentinel (sentinel): Tries to sabotage the opponent by moving inside its
zone;

- repairer (repairer): Follows the saboteur, but always staying two vertices
away from it, in order to be prepared to repair the saboteur when necessary,
but without taking too much risk;

- coordinator (none): Agent internal to our system which does not commu-
nicate with the MASSim server. It builds its local view of the world through

Improving the LTI-USP Team: A New JaCaMo Based MAS 345

the percepts broadcasted by the other agents. Whenever the world model is
updated, it computes which are the two best zones in the graph and send
this information to the other agents. The coordinator is also responsible
for creating the organisational artifacts, in the beginning of the simulation,
and for distributing the groups, roles and missions among the other agents,
in order to eliminate the performance issues caused by two or more agents
trying to adopt the same role in a group, or trying to commit to the same
mission.

The best zone in the map is obtained by calculating for each vertex the sum of
its value with the value of all its direct and second degree neighbours. The vertex
with the greatest sum of values is the center of the best zone. Zones with the sum
of values below 10 are not considered in the calculation. The same computation
is performed again to determine if there is a second best zone, but this time
removing the vertices belonging to the first best zone from the analysis.

If two best zones are found, the coordinator agent will designate the first
best zone for the best zone subgroup, and the other for the second best zone

subgroup. Otherwise, the same zone will be assigned for the two groups.
At each step, the team’s score is computed by summing up the values of the

zones and the current money. Thus the money obtained by the team through
the achievement points has a big impact on its score. For this reason, we decided
to limit the buy action, allowing only the agents of type saboteur and repairer
to purchase an unique extension pack of sensors, in order to enable them to
attack or repair agents in neighbour vertices.

Figure 3, taken from the beginning of the first match against the TUB team,
shows the described strategies in action. It is possible to notice that the LTI-USP
team (in blue) occupies two different zones in the map, while in the right bottom
the saboteur (followed by the repairer) is going to attack the opponent. The
map explorer and sentinel are in the center of the map, and in the right top
the soldier attacks an opponent in the neighbour vertex.

4.2 Comparison to Other Teams

All other teams (AiWXX, GOAL-DTU, TUB and UFSC) participated in the
previous Contest as well, and their improvement was noteworthy. The LTI-USP
team finished the competition in the third place, behind UFSC and GOAL-DTU,
which had very strong teams.

The UFSC team won all matches against all teams thanks to their strategy of
creating many small zones distributed in the map, instead of only one or two big
zones. We also lost all matches against GOAL-DTU which had a very aggressive
team, in which all saboteurs and repairers attacked the opponent, while the other
agents were creating good scoring zones.

In the first day of the Contest, we won all the three matches against the TUB
team. During these matches, our team was able to defend itself very well from
the attacks of the other team, keeping a stable zone score, while the sentinel

agent sabotages the opponent’s zone, as shown in Figure 4.

346 M.R. Franco and J. Simão Sichman

Fig. 3. LTI-USP vs TUB (first match, step 69)8: Strategies in action

Fig. 4. LTI-USP vs TUB (third match, step 736)9: Sentinel invading the TUB’s zone

The AiWXX team came to the last day of the tournament with a very good
strategy of finding the map corners to create big zones. Despite this, even with
smaller zones, our team won the second match against them (ensuring the third
place), thanks to the stability of our team’s zone, and because we started to
score early (cf. Figure 5).

8 Available at http://multiagentcontest.org/downloads/func-startdown/1696/
9 Available at http://multiagentcontest.org/downloads/func-startdown/1704/

http://multiagentcontest.org/downloads/func-startdown/1696/
http://multiagentcontest.org/downloads/func-startdown/1704/

Improving the LTI-USP Team: A New JaCaMo Based MAS 347

Fig. 5. LTI-USP vs AiWXX (second match)10: Zone score by step

5 Conclusions

Participating in the MAPC was a great opportunity to improve our knowledge
on developing MAS, and on the JaCaMo framework.

Due to the modularity of the JaCaMo framework it was not complicated to
change our team for this year Contest. We could reuse all the architecture built
to communicate with the MASSim server, and to capture the agent’s local view
of the world. The main changes were in the team’s organisation, through the
Moise specifications, and in creating the plans for the new roles. We believe
that JaCaMo proved to be a flexible platform, allowing us to easily change our
strategy and to test some of its variations.

In summary, given the effort put to the development of the team,wewere pleased
with the final result.Comparingwith last year,we reached abetter zone stability by
(i) moving to amore decentralized approach, with the agents deciding by their own
were to move to create or expand the team’s zone, and by (ii) adopting a defensive
strategy, with the guardian ready to attack any close opponent, and the medic in
the center of the zone focused on repairing the agents.

Regarding possible improvements for the current scenario, we would propose
to increase the probability of success for the ranged actions, since we noticed
during the competition that these actions have a huge chance to fail, not being
worth to use them. Another idea is to change the score computation to consider
only the zones values. In this way, the buying strategy will not impact directly
the team score and it will be interesting to see how each team would invest their
achievement points.

10 Available at http://multiagentcontest.org/downloads/func-startdown/1671/

http://multiagentcontest.org/downloads/func-startdown/1671/

348 M.R. Franco and J. Simão Sichman

Acknowledgements. Jaime Simão Sichman is partially supported by CNPq
and FAPESP/Brazil.

References

1. Köster, M., Schlesinger, F., Dix, J.: The Multi-Agent Programming Contest 2012.
In: Dastani, M., Hübner, J.F., Logan, B. (eds.) ProMAS 2012. LNCS, vol. 7837,
pp. 174–195. Springer, Heidelberg (2013)

2. Bordini, R.H., Gouveia, G.P., Pereira, R.H., Picard, G., Piunti, M., Sichman, J.S.:
Using Jason, Moise, and CArtAgO to Develop a Team of Cowboys. In: Proceedings
of 10th International Workshop on Computational Logic in Multi-Agent Systems,
pp. 203–207 (2009)

3. Gouveia, G., Pereira, R., Sichman, J.: The USP Farmers herding team. Annals
of Mathematics and Artificial Intelligence 61, 369–383 (2011), doi:10.1007/s10472-
011-9238-x

4. Franco, M.R., Rosset, L.M., Sichman, J.S.: LTI-USP Team: A JaCaMo Based MAS
for the MAPC 2012. In: Dastani, M., Hübner, J.F., Logan, B. (eds.) ProMAS 2012.
LNCS, vol. 7837, pp. 224–233. Springer, Heidelberg (2013)

5. Boissier, O., Bordini, R.H., Hübner, J.F., Ricci, A., Santi, A.: Multi-agent oriented
programming with JaCaMo. In: Science of Computer Programming (2011)

6. Bordini, R., Hübner, J., Wooldridge, M.: Programming multi-agent systems in
AgentSpeak using Jason (2007)

7. Ricci, A., Piunti, M., Viroli, M.: Environment programming in multi-agent systems:
an artifact-based perspective. Autonomous Agents and Multi-Agent Systems 23(2),
158–192 (2010)

8. Hübner, J.F., Boissier, O., Kitio, R., Ricci, A.: Instrumenting multi-agent organ-
isations with organisational artifacts and agents. Autonomous Agents and Multi-
Agent Systems 20(3), 369–400 (2009)

9. Rao, A.S.: AgentSpeak(L): BDI agents speak out in a logical computable lan-
guage. In: Perram, J., Van de Velde, W. (eds.) MAAMAW 1996. LNCS, vol. 1038,
pp. 42–55. Springer, Heidelberg (1996)

10. Behrens, T.M., Dix, J., Hindriks, K.V.: The Environment Interface Standard for
Agent-Oriented Programming - Platform Integration Guide and Interface Imple-
mentation Guide. Department of Informatics, Clausthal University of Technology,
Technical Report IfI-09-10 (2009)

11. Omicini, A., Ricci, A., Viroli, M.: Artifacts in the A&A meta-model for multi-agent
systems. Autonomous Agents and Multi-Agent Systems 17(3), 432–456 (2008)

12. Hübner, J., Sichman, J., Boissier, O.: Developing organised multiagent systems
using the MOISE+ model: programming issues at the system and agent levels.
International Journal of Agent-Oriented Software Engineering, 1–27 (2007)

Multi-Agent Programming Contest 2013:

TUB Team Description

Sebastian Werner, Christian Bender-Saebelkampf, Hendrik Heller,
and Axel Heßler

Technische Universität Berlin, Germany

Abstract. We describe our contribution to the Multi-Agent Program-
ming Contest 2013, which has been developed by students and researchers
of the DAI-Labor at TU Berlin, Germany, using the JIAC V agent frame-
work and the agile JIAC methodology.

1 Introduction

Our team is called “TUB” and has participated consistently in the Multi-Agent
Programming Contest (MAPC)1 since 2007. Since our first participation, we
consider the contest a very good opportunity to evaluate our platform and tools.
The current team has been developed in the course ”Multi Agent Contest”2

by the following students: Christian Bender-Saebelkampf, Hendrik Heller and
Sebastian Werner supervised by the following agent researchers: Axel Heßler
(main contact). The students did not hear about agent programming nor the
contest before and started from scratch (only reusing the server communication
code from last year).

The DAI-Labor and the chair “Agent technologies in business applications
and telecommunication (AOT)” at the Technische Universität Berlin, headed
by Prof. Dr. Sahin Albayrak, perform research and development in the multi-
agent technologies field and its application to many real-world domains (see
e.g. [1]). Dr. Axel Heßler is part of the “Agent Core Technologies” research team
and is mainly interested in software engineering using agents in the design and
development of complex, distributed applications.

We have invested 840 man hours and wrote about 8000 lines of code approx-
imately to create the contest version of our system and we have seen that our
version is competitive but is still not winning.

2 System Analysis and Design

The methodology, which we have used during the course, borrows from the
JIAC methodology, and can be described as bottom-up and agile methodology:

1 http://multiagentcontest.org
2 Project 0435 L 774 at TU Berlin, Germany

M. Cossentino et al. (Eds.): EMAS 2013, LNAI 8245, pp. 349–355, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://multiagentcontest.org

350 S. Werner et al.

we start with domain analysis, which is to build a first ontology: find the con-
cepts of the domain, their structure and relationships with each other: agents,
own team, opponents, nodes, edges, visited, probed, surveyed, weight. As a sec-
ond step the methodology says: make a role model and a user interface (UI)
prototype. A role is specified by a number of capabilities or behaviors and the
relationships with other roles. Identifying the roles was an easy task because
they are easily collected from the scenario document. We then assigned simple
and basic capabilities to the roles. As many of them were identical in each role,
we created the generalized role of a Mars Agent, which is a collection of the
capabilities that all roles share, such as surveying, charging and moving. All
other roles inherit from the generalized role and add special capabilities such as
probing, inspecting, and so on.

The system is designed with the JIAC agent framework in mind. Both, method-
ology and framework, share the same agent meta-model, so concepts such as
agent, role component or service is the basic vocabulary of the agent developer
(see also [2]).

In principle, every contest agent in this role model could take every role, but
during this contest the roles are static properties given by the contest server to
every agent in the team at the beginning of each simulation. Based on the role
given to an Agent, JIAC would instantiate a DecisionAgentBean for this Agent
and a Strategy. A total of twelve strategy Classes were implemented, more than
one per role. Depending on the evaluation of the simulation at a given point a
strategy could be switched to alter the behavior of an agent. For instance after
the map was fully probed the ExplorerStategy would switch to a ZoneStrategy.
Special capabilities (probe, inspect, attack, repair) are implemented in the cor-
responding role specific component. Every agent instance has a specialization of
the ServerCommunicationBean component with the credentials for authentica-
tion.

The system can be distributed over several machines if available, without
changing any line of code, even at runtime. This is one of the features of the
JIAC agent framework that is usually used for MAS administration and self-
administration. However, we could not use this feature during the contest due
to a lack of available hardware.

The agent system that runs our bots is mostly decentralized. As we use a
component framework to build our agents, the functionalities for the roles are
implemented within a dedicated component for each role. However, in order to
simplify configuration, we decided to equip all of our agents with all components.
The agents then decide based on the first message from the server, which role
they take and keep that role for the remainder of the match. During the match,
the basic cycle of our agents was triggered by the perceptions from the server.
Whenever an agent receives a new perception, it starts the decision making cycle.
In this cycle, the current state is evaluated and the agent decides what to do,
based on its strategy it is using. This decision is then forwarded to all other team
members.

MAPC 2013: TUB Team Description 351

Regarding the communication strategy of our team, we followed our 2007 –
2009 successful approach [3,4] to distribute all perceptions and intentions among
all other agents, where we could reach an appreciable enhancement of the team
performance.

We have implemented general agent attributes such as autonomy, proactive-
ness and reactiveness as follows: JIAC V agents have their own thread of con-
trol and decide and act autonomously. We see the agents with low health level
proactively seeking the repairers’ help using a simple request, whereas probing,
repairing or surveying has been implemented as a simple reactive behaviour: if
the node is unprobed then goto it an probe. Finally, our team was tested during
the training matches that were organized before the tournament. During the test
matches we played against other competitors in order to ensure that the agents
run stable and can send their actions to the server within the allocated time.

3 Software Architecture

We have used the JIAC V agent framework to implement the contest MAS of our
TUB team. For our agent researchers the contest is always an excellent reliability
benchmarking of the framework, and also a test case for teaching principles of
agent programming. We used a set of dedicated JIAC V plugins for the Eclipse
IDE to create basic project structures and configurations. Then we added a
number of components that were already available form last years contest, such
as server communication. Finally, the biggest part of the work was invested in
implementing and tuning the algorithms that control the actual actions of the
agents. This was mostly done in Java, because the decisions and calculations
are time critical, and we wanted to avoid the overhead from interpreting our
declarative agent language.

As far as algorithms are concerned we used a modified Dijkstra path finding
algorithm where edges and nodes could be filtered from the Graph (e.g. to avoid
the opponents agents or costly edges). We used other algorithms such as breadth
first search to find agents or other targets in a limited range of a given node (for
example to determine if a repairer should move towards a team member to do
repairs).

4 Strategies, Details and Statistics

Every agent maintains its own world model. Once the perception arrives, un-
known vertices are added to the graph, which represents the physical world where
the agents act in. Already known vertices are updated with the values from the
perception. The perception is also shared with all other agents so that they can
update their world model with information that is not visible to them. The world
model also contains a number of agent lists, i.e. team bots and enemy bots. As
well as a list of zones, an ordered list which tells the ZoneStrategy where the
best zone is and a few more information that is important for some but not all
agents.

352 S. Werner et al.

Furthermore, the world model is updated by a number of zones that support
the decision process. As mentioned before, an agent’s decision is defined by
the strategy Class it is using. The main strategy of our team is twofold: First,
individual agents follow a simple, straightforward achievement collection strategy
based on their roles. And, second, there is an additional agent that calculates
the best zone that is free of enemies.

The single agent behavior is as follows:

Explorer. Find unprobed nodes and probe them, recharge when necessary, go
to the closest unprobed node first. Avoid other Explorers from our team to
avoid duplicate behavior. Seek repair if health is zero. Switch strategy if the
graph has been probed completely.

Repairer. There are two strategies for the repairer.
Simple Repairer. Search for hurt team members and go to the closest

one to heal. If no team member is hurt survey and participate in zone
building.

Craven Repairer. Same as the Simple Repairer but avoid enemy attackers
at all cost. Using a breath first search and a range, this repairer searches
for an enemy saboteur and avoid it.

Sentinel. used for Zoning, see Zoner.
AggressiveSaboteur. As the name suggests the Saboteur tries to attack as

many agents as possible.
ZoneDefender. This Agent is part of the zone and upon a detected intrusion

into the Zone, this agent tries to disable the intruder.
AnnoyInspector. This strategy tries to find enemy zones and plans paths

through those zones to destroy them while inspecting the enemy.
ZoneInspector. The inspector is part of the zone and if an intruder is detected

it tries to inspect the intruder.
Zoner. The Zone is a strategy which will build a Zone using the zoning algo-

rithm to identify a good Zone and coordinates all Zoner to build that zone.

The agents did not use the buying mechanism yet, so they did not improve
their skills or attributes. They were also not aware of the achievements they
collect.

4.1 Team Strategies

The only centralized or hierarchical part of the team organization is the zoning
calculation. While this calculation can be performed by every agent, we have
instead decided to create a new agent which receives all messages from its team
members and does the calculation of the best zone taking into account all free
agents (agents that switched to zoning strategy). Since this Agent is not bound
by the two second simulation cycle a more expensive calculation can be made in
parallel to the simulation. The result of this calculation is then shared with all
other agents.

MAPC 2013: TUB Team Description 353

Fig. 1. Illustration of the TUB Zoning algorithm (simulation 1 against AiWXX, step
468f.)

Our zoning algorithm samples a chosen length and count (i.e. 50 – 100) of
paths per step. A path is randomly generated and its zone and zone value is
calculated. The best path is the path of the samples with the best zone value.
To make the zone calculation independent from the agents, we use several other
threads: one for getting the best found zone (best zone thread) and several
others to calculate samples (sample threads). A sample thread is started every
step to calculate paths on the most recent informations about the graph. To
avoid enemy agents, the best zone thread can get their positions and give a zone
back, in which no enemy agent is.

In Figure 1 you can see how it works. The images are taken from the match
against AiWXX3 On the left image the agents position themselves along the
path that marks the zone border. When all agents have placed on the their node
the zone appears (right image).

4.2 Comparison to Other Teams

Comparing our zoning approach to the winner of the contest, UFSC, there is a
clear advantage of the UFSC zoning strategy (see Figure 2). The UFSC stategy
uses small teams of two agents to create small zones on many high-weighted
nodes. In contrast, our team creates on big zone with all available agents, which
is harder to create and maintain in the long run. Even if we destroyed one UFSC
zone, all others hold and bring a high zone score, whereas only one UFSC agent
is needed to destroy our big zone.

3 http://multiagentcontest.org/downloads/Multi-Agent-Programming-Contest-

2013/XMLs-for-MarsFileViewer/

http://multiagentcontest.org/downloads/Multi-Agent-Programming-Contest-2013/XMLs-for-MarsFileViewer/
http://multiagentcontest.org/downloads/Multi-Agent-Programming-Contest-2013/XMLs-for-MarsFileViewer/

354 S. Werner et al.

Fig. 2. Comparison of two different strategies to build a zone: UFSC team prefers
many small zones, whereas TUB team creates one big zone (sim 1, step 563)

5 Conclusion

The main experience in the 2013 MAPC was that we should have built fallback
systems for every important part of the MAS program. After the first simulation
during the contest our ZoneFinder stopped working due to a bug in our code. If
we had build a backup system for the ZoneFinding all agents that depended on
the ZoneFinder would have worked instead of doing random moves. Secondly, we
have learned that we should have made smaller zones as for example UFSC or
AiWXX did. That would have significantly increased our chance of Zone points.

We think the strongest point of our implementation was its flexibility. We
could switch relatively fast between agent implementations and test different
ideas out without changing much code. That led to our good Explorer and
Inspector behaviors. As mentioned above, our biggest weak point was the fact
that we were not able to recover from a system failure easily. The one best zone
strategy did not pay off: our implementation tried to build one zone with all
availabe agents instead of two or more zones.

The framework and the language were ideal for making fast iterations on the
code, sadly we did not had the time to improve the software to the maximum.

We definitely should improve zoning and recovery. A nice addition to the
current contest would be the ability to buy a role switch were you would give
the id of two agents and they would switch roles dynamically. Another interesting

MAPC 2013: TUB Team Description 355

feature in the contest setting would be to block edges. As long as an agent blocks
a node no other agent can enter or pass that edge. This could be especially
interesting for smaller maps.

References

1. Lützenberger, M., Küster, T., Konnerth, T., Thiele, A., Masuch, N., Heßler, A.,
Keiser, J., Burkhardt, M., Kaiser, S., Albayrak, S.: Jiac v — a mas framework for
industrial applications (extended abstract). In: Ito, T., Jonker, C., Gini, M., Shehory,
O. (eds.) Proceedings of the 12th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2013), Saint Paul, MN, United States of America
(2013)

2. Hirsch, B., Konnerth, T., Heßler, A.: Merging Agents and Services — the JIAC
Agent Platform. In: Bordini, R.H., Dastani, M., Dix, J., Seghrouchni, A.E.F.
(eds.) Multi-Agent Programming: Languages, Tools and Applications, pp. 159–185.
Springer (2009)

3. Hessler, A., Keiser, J., Küster, T., Patzlaff, M., Thiele, A., Tuguldur, E.-O.: Herding
agents - JIAC TNG in multi-agent programming contest 2008. In: Hindriks, K.V.,
Pokahr, A., Sardina, S. (eds.) ProMAS 2008. LNCS, vol. 5442, pp. 228–232. Springer,
Heidelberg (2009)

4. Heßler, A., Küster, T., Niemann, O., Sljivar, A., Matallaoui, A.: Cows and Fences:
JIAC V - AC’09 Team Description. In: Dix, J., Fisher, M., Novák, P., eds.: Pro-
ceedings of the 10th International Workshop on Computational Logic in Multi-Agent
Systems 2009. Volume IfI-09-08 of IfI Technical Report Series., Clausthal University
of Technology (2009)

Prior State Reasoning in Multi-agent Systems

and Graph-Theoretical Algorithms

Chengqian Li and Lu Liu

Dept. of Computer Science,
Sun Yat-sen University

Guangzhou 510006, China
{lichengq,liul63}@mail2.sysu.edu.cn

Abstract. The Multi-Agent Programming Contest is held every year to
stimulate research in the area of multi-agent systems. Our system mainly
exploits four strategies: prior state reasoning, task allocation optimiza-
tion, dijkstra with recharge and surrounding several stable and valuable
zones with shorter boundaries. With these strategies, our team is able
to conquer several large zones as early as possible, optimize collabora-
tion, and ensure efficiency. The system was implemented in C++, and
in this paper, we will introduce the design and architecture of AiWXX,
and discuss the algorithms and implementations for these strategies.

Keywords: multi-agent systems,prior state reasoning, graphalgorithms.

1 Introduction

The Multi-Agent Programming Contest (MAPC)1 is held annually, in order for
researchers to deepen the understanding about the cooperation and competition
among rational agents and also develop some powerful strategies in such envi-
ronments. This year, a team, called AiWXX, reached the fifth place. It consists
of two members, Chengqian Li and Lu Liu. They both are second-year postgrad-
uate students, whose research interests are random boolean satisfiability solver
(SAT solver), data structures and algorithms. Our motivation in participating in
this contest was to gain experiences in designing multi-agent systems to facilitate
our future research in this area. Last year Chengqian Li participated in MAPC
2012 and won the 5th place. This year we enhanced the strategy we used last
year, and the performance was even better than that for the strategy last year.

2 System Analysis and Design

We took part in the contest using the language C++, without using any multi-
agent programming languages, because we are proficient in this language which is
well-known for its efficiency. We started to use functional programming this year

1 http://multiagentcontest.org/2013

M. Cossentino et al. (Eds.): EMAS 2013, LNAI 8245, pp. 356–365, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://multiagentcontest.org/2013

Prior State Reasoning in Multi-agent Systems 357

because it is more efficient than object-oriented programming. We changed many
parts of the source codes we used last year into those of functional programming,
and it proved to be several times faster than before. Our implementation is a
decentralized solution, however, the current implementation is restricted because
we only deal with common knowledge base. When any agent’s knowledge state
is updated, other agents’ knowledge states will be updated synchronously. As
to how to implement such strategies on a computer, we apply for a piece of
main memory from the operating system, which stores the common knowledge.
Hence, each agent has the same authority to access this memory space in order
to communicate with other agents. Then agents communicate with each other by
this shared memory space because this is almost the most efficient way. Hence,
each agent has the same authority to access the knowledge base (KB) they shared
in order to communicate with other agents.

All agents decide their actions according to their knowledge state. If the envi-
ronment is changed, then their knowledge state will also be changed when they
realize the changes. This means that agents will response to the changes actively.
While such a team of agents is running in the competition, each agent has the
goal that her team should reach a score higher than that of their rival, and we
made strategies to ensure that agents tried to achieve this goal actively. Given
a task, when there is only one agent intending to accomplish it, she will act by
herself. Otherwise, if there are more than one agent intending to accomplish the
same type of tasks, all of them will collaborate to accomplish their tasks, that
is, the task will be allocated to the agents in an optimal way. Moreover, the
agents here are aggressive, that is, they keep exploring new areas of the world,
never passively waiting for changes of the environment. Finally, in any state of
the world, any agent will recognize her state, and she is able to perform some
action to approach her goal, which was ensured by our strategies.

To design and implement our system, we spent about 250 hours based on the
work last year[7]. During this period, we did not discuss the design and strategies
of our agents with others, because we focused on the cooperation of agents this
year rather than the competition with different strategies. Each agent has only
one private data structure, which stored the perceptions received from the server.
This is to avoid the data inconsistency in multiple threads.

3 Software Architecture

We used C++ as the programming language, because various mature data struc-
tures are easy to code in C++. Each of the agents runs a separate program which
is designed at four different levels. Level 1 is the coordination level, which gener-
ates proposals for agents to accomplish team work, and thus to prevent multiple
agents from achieving the same subgoal. Such a group of agents are to accomplish
a task which cannot be handled by a single agent.

Level 2 is the prior state reasoning level, at which agents will accept their
respective proposal, or generate an action according to the current state. Level
2 is the most significant level. There is always a potential problem when the

358 C. Li and L. Liu

Algorithm 1. Framework of Prior State Reasoning

input : KB
output: action

1 // if role=saboteur and Energy too low()

2 if KB |= state1 then return action1 // recharge

3 // if role=saboteur and health=0 and Repairer near me()

4 if KB |= state2 then return action2 // recharge

5 // if role=saboteur and Find enemy near me()

6 if KB |= state3 then return action3 // Attack enemy near me()

7 // if role=saboteur and Have destination()

8 if KB |= state4 then return action4 // Go to next node to destination()

9 ...
10 return recharge

agents are executing a plan: we may abort the plan being executed, and go to
do another plan instead. Too many unpredictable events may happen during a
plan execution. For example, suppose an agent wants to go to a node, and she
generates a plan to do so. However, on her way she suddenly finds out that her
energy is too low. After that she is attacked by an enemy, so she may become
dead or injured. Later she may find an enemy, and she wants to attack the enemy.
There are four strategies of different priorities in this long story. The most prior
strategy is recharging when the agent’s energy is too low since we value this
as the most emergent situation. The second most prior strategy, is finding a
repairer to repair herself if she is injured. The third most prior one, is attacking
the enemies she found. The least prior one, is moving to the destination if she
has one. In every step, she will scan her prior state table which maps every state
to an action, as shown in Algorithm 1. The comments in Algorithm 1 show an
example to merge these strategies. Now the agent can perform reasoning in her
KB, figure out what is her state and map the state to the respective action. The
key idea is that we will classify all possible states according to a given strategy.
The priority of the state should be valued as well, because it has an influence
on which action will be decided. After that we can decide an action according
to the strategy.

Level 3 is responsible for updating and reasoning upon the KB. When a per-
ception is received by an agent, Level 3 will automatically update the knowledge
base. On the other hand when being asked about the current state, it will retrieve
specific information from the KB, so we call it reasoning level. Level 4 (physical
level) contains various physical implementations, including KB, network commu-
nication (TCP/IP), and special algorithms such as string processing, a Dijkstra
algorithm [2], a breadth-first search algorithm [1], a minimum cost flow algorithm
[8], a Hungarian algorithm [3,6] and graph-theoretical algorithms [7].

We invested little time in learning development platforms and tools, because
we used Gedit Text Editor in the Linux system, together with the g++ compiler.
With the flexible C++ programming language, we were able to implement all

Prior State Reasoning in Multi-agent Systems 359

the features of our system quite efficiently, so no features were lost in our im-
plementation. We had to rent a virtual private server (VPS) since the network
performance between Germany and China is not satisfactory. Furthermore, shar-
ing memory in one computer is almost the most efficient way for communications
between agents. We could still run all our agents on a single computer, because
the size of the problem and the number of agents both were not so large to
require more. Therefore we did not distribute the agents on different machines.

We use multiple threads to receive perceptions from the server, and our strat-
egy ensures that the knowledge bases of different agents are always synchronized.
In the receive-percept period, no agents will perform reasoning until all agents
receive the new perception. The most difficult part of the whole development pro-
cess was the optimization of team strategies against different strategies. That is,
how to figure out the possible strategy of the other teams and find an optimal
strategy with respect to rivals. In total, we wrote 11,000 lines of C++ code for
our system.

4 Strategies, Details and Statistics

The main strategy of our agent system is that the whole team will try to probe
the whole map first, then occupy several stable and valuable zones, as was de-
scribed in Fig12. Our team occupied three corners of the map, and won this
match ultimately. There were two reasons for our success: (1) our system ex-
plored the map quite fast, so we were also able to obtain the achievements fast,
and our agents were more likely to discover and occupy those stable and valuable
zones; (2) the three zones we occupied were stable, so they were not easy to be
discovered and disturbed by our rival. According to our experiments, we found
that large zones, covering a great proportion of the nodes of the map, were often
discovered and disturbed by the enemies, so they were not stable, thus in this
year, we view zones not too large as stable ones. In implementations, we set an
argument γ, and we treat all zones covering a proportion not greater than γ as
stable ones. Fig23 shows the stabilities of both teams in one match involving our
system, indicating that our occupied zones were often more stable than those
of this rival. At the beginning of this match, the rival immediately started to
occupy zones nearby, while our system simply explored the map, so their zones
proved to be more stable. However, as we started to occupy the desirable zones
(at around Time Step 138), the stability of our zones quickly increased and
surpassed theirs significantly. Later, at Time Step 600, our stability decreased
abnormally, because network problems occurred and we restarted our program.
Next our agents would be allocated new tasks and failed to keep their already

2 http://multiagentcontest.org/downloads/Multi-Agent-Programming-Contest-

2013/SVG-Videos/Mars2013-AiWXXLTI-USP-contest-sim1-2013-09-10-14-49.tar/
3 http://multiagentcontest.org/downloads/Multi-Agent-Programming-

Contest-2013/Statistics/statistics-Mars2013-AiWXXLTI-USP-contest-

sim1-2013-09-10-14-49.tar/

http://multiagentcontest.org/downloads/Multi-Agent-Programming-Contest-2013/SVG-Videos/Mars2013-AiWXXLTI-USP-contest-sim1-2013-09-10-14-49.tar/
http://multiagentcontest.org/downloads/Multi-Agent-Programming-Contest-2013/SVG-Videos/Mars2013-AiWXXLTI-USP-contest-sim1-2013-09-10-14-49.tar/
http://multiagentcontest.org/downloads/Multi-Agent-Programming-Contest-2013/Statistics/statistics-Mars2013-AiWXXLTI-USP-contest-sim1-2013-09-10-14-49.tar/
http://multiagentcontest.org/downloads/Multi-Agent-Programming-Contest-2013/Statistics/statistics-Mars2013-AiWXXLTI-USP-contest-sim1-2013-09-10-14-49.tar/
http://multiagentcontest.org/downloads/Multi-Agent-Programming-Contest-2013/Statistics/statistics-Mars2013-AiWXXLTI-USP-contest-sim1-2013-09-10-14-49.tar/

360 C. Li and L. Liu

occupied zones, but they remembered those parts of the map having been ex-
plored. Agents will survey the edges and probe the nodes of the whole map to
search for available areas. If some agents find an enemy, a saboteur will go to her
node to attack her. If a certain agent gets injured, the agent will abort her task
and find a repairer to repair herself. To avoid redundant work and accomplish
tasks with the lowest cost, the agents will cooperate in an optimal manner to
explore a map or try to occupy some area.

Fig. 1. Step 308 of Mars2013 AiWXXLTI-USP contest-sim1

Because the visible range is limited, we may not know all the edges connected
to a visible node. To survey all the edges, agents will go to every node to perform
a survey action. It is worth noting that if a node is visited or inside the visible
range, then we know all the edges connected to this node. If all the edges of a
node are surveyed at its neighbor nodes, then we do not need to perform Survey
actions again at this node. This will reduce many steps to survey all the edges,
because many redundant Survey and Recharge actions have been avoided.

Because the agents can recharge energy at any time, and an agent can only
move to a neighbor node in any single time step, a path containing too many
nodes can be an undesirable option. So apart from the length between two nodes,
we also have to consider the number of edges in the path. In this sense given
a source and a destination, we are to compute a path through which an agent
spends the least time steps, breaking ties by preferring the one which costs the
least energy. To do this, we propose an adaption of the classic dijkstra algorithm
in order to compute a certain kind of costs from a root node to all other nodes,
which should be minimized to achieve our optimization goal. Given a map, the

Prior State Reasoning in Multi-agent Systems 361

Fig. 2. Zone Stabilities of Mars2013 AiWXXLTI-USP contest-sim1

set V of nodes, the set E of edges, the weight W(a,b) of each edge (a, b) ∈ E,
the root node root, the points r of energy recharged by an agent each time,
our adapted algorithm will return the minimum costs from root to every other
node (see Algorithm 2). It is worthwhile to note that the notion of cost here
loses its original meaning, the length between two particular nodes. It does not
have an intuitive meaning on the map, but is used technically to compute the
optimal paths. Although we only change a single line of the original dijkstra
algorithm, the result of this adaption is interesting, and our algorithm here has
the same time complexity as the Dijkstra Algorithm. Dijkstra algorithm [2] runs
in O(n2) time, where n is the number of vertices in a graph. This algorithm
can be enhanced with a priority queue, and if the Fibonacci heap [4] is used to
implement the priority queue then the time complexity becomes O(m+ n logn)
where m is the number of edges in the graph.

4.1 Expanding Zones

When a group of agents wants to occupy a zone, they need to find a promising
one. We improved the expand algorithm used last year[7] so that the agents can
occupy more than one zone and such zones will be more stable. Given a map, the
set V of nodes, the set E of edges, and the weight Wx of any node x ∈ V , the set
of nodes O is the set of the nodes occupied by enemies or some of our agents. We
set an argument γ, and we think a zone as unstable if its coverage percentage is

362 C. Li and L. Liu

Algorithm 2. dijkstra with recharge(V,E,W,r)

input : root, V, E, W, r
output: cost

1 Initialize elements of cost and in to be ∞ and false respectively
2 costroot ← 0; inroot ← true
3 Nx ← {y ∈ V |(x, y) ∈ E}
4 for i = 1 to |V | − 1 do
5 Bound ← {a ∈ V |in(a) = false and cost(a) �= ∞}
6 find a node a ∈ Bound such that costa ≤ costb,∀b ∈ Bound
7 foreach b ∈ Na do // Origin: costb ← max(costb, costa +W(a,b))

8 costb ← max(costb, costa +W(a,b) + r)

9 return cost

greater than γ. Expanding a boundary node P , means adding all adjacent nodes
of P into the current zone, and it can only be executed when the node P , as
well as its neighbor nodes, are not occupied by any agents, no matter enemies
or friends. The agents first choose a node not occupied as a point zone and then
repeat the following: find the boundary node P such that after expanding P
the boundary increases the least (possibly by a negative number, breaking ties
by preferring to the one which increases the value most), and then, expand it.
During the expanding process, we maintain the most valuable zones found for
different boundary lengths. In details, we have the following Algorithm 2. The
complexity of this algorithm is O(γN2M), where N is the number of nodes and
M is the number of edges in the graph. Note that Algorithm 3 can be made
distributed, in that the expanding procedure can simultaneously begin at any
number of nodes on the map. In particular, if we have as many machines as the
nodes, we allocate each machine a unique node and instruct it to run a separate
expanding procedure with that respective node.

4.2 Strategy Details

Given a set of all the nodes V and a threshold γ denoting the stability require-
ment of a zone. It is set to 0.15 in the contest. Formally below is the evaluation
function for computing the value of a zone:

valueZone =

{∑
i∈Zone valuei if

|Zone|
|V | ≤ γ,

0 otherwise.

Our system will find out several promising zones with Algorithm 3, and then
instruct the agents to move to the boundary of those zones and conquer them.
Among them, a saboteur will always attack an enemy who has not been targeted
by any friend saboteurs. If they are attacked by the enemies, they will recompute
a new area not occupied by the enemies, move there, and stand on the boundary
such that there is at least an agent at any two adjacent boundary nodes. Dur-
ing the procedure of path finding, we exploited Algorithm 2 and Breadth-First

Prior State Reasoning in Multi-agent Systems 363

Algorithm 3. Surround(V, E, W, O, γ)

input : V, E, W, O, γ
output: Best

1 Nx ← {y|(x, y) ∈ E} for each x ∈ V
2 NE ← {x|x ∈ O or O ∩Nx �= ∅ }
3 Initialise(Hash)
4 foreach v ∈ V do
5 Zone ← B ← {v}
6 while exists x s.t. x ∈ B and (Nx − Zone −O �= ∅) do
7 if B ⊆ NE then // no point can be Expanded

8 S ← {x ∈ B|∀y ∈ B, |Nx − Zone −O| ≤ |Ny − Zone −O|}
9 else

10 S ← {x ∈ B −NE|∀y ∈ B −NE, |Nx − Zone| ≤ |Ny − Zone|}
11 find x ∈ S s.t. ∀y ∈ S,

∑
a∈Nx−Zone−O Wa ≥ ∑

b∈Ny−Zone−O Wb

12 Zone ← Zone ∪ (Nx − Zone −O)
13 h ← Hash encode(Zone)
14 if |Zone| ≤ |V | × γ or Zone ∈ Hashh then break
15 Hashh ← Hashh ∪ Zone
16 B ← {x ∈ Zone|Nx �⊆ Zone}
17 if

∑
x∈Best|Zone|

Wx <
∑

x∈Zone Wx then Best|Zone| ← Zone

18 return Best

Search Algorithm, and we also used arrangement algorithm last year[7] to pre-
vent any two agents from exploring the same location. During the contest, no
agent will buy any facilities because our system prefers to save money. According
to empirical results, it is best not to buy any facilities. In the contest, we value
achievements, from which we are able to obtain some scores at each step, so we
try to acquire achievements swiftly, never spending them.

As mentioned earlier, all agents in our team are rational and perfect team
players, that is, each will always try to complete the mission of the group. More-
over, recall that all communications are perfect and no agents will perform any
actions when a certain perception is being used to update the knowledge base.
When a list of agents are applying for the same type of missions, one of them
will become a temporary project manager, which is responsible for allocating
the mission in an optimal way. Later this project manager will become an or-
dinary agent and each agent will accomplish her allocated mission separately.
Hence we organize our agents explicitly and no hierarchy is exploited. When an
agent encounters something emergent, she immediately interrupts her allocated
mission and tell all others in the group. The group will possibly relax the team
mission so that they are able to accomplish it without this agent. Our agents do
not perform any planning because we think the current planning technology is
not efficient enough to deal with on-line problem.

364 C. Li and L. Liu

5 Conclusion

The participation of this contest has greatly improved our knowledge of multi-
agent systems and stimulated our interests in conducting research in this area.
One strong point of our team is efficiency, in that it only cost about 0.2 second
to make all decisions, on the 500-node map, in a perfect network. Our framework
is compatible enough to develop more complex strategies in future contests. The
weaknesses of our team are that we do not observe the enemy and we are not
familiar with the other teams. Because there is a great number of agents and the
map is complex, our programs have to run with great efficiency. Hence we chose
C++, which is known for its efficiency and flexibility, supporting various data
structures and algorithms. Next year we will stick to this choice even after the
experience of this contest, because we have established the framework and many
multi-agent system (MAS) concepts have been encoded, so any improvements
will easily be implemented in C++. So far we do not think that there are big
problems in the overall design of our MAS, but we do lack of intelligent strategies
in our current system, so next year we are to develop some smarter strategies.
Next year we are going to observe the enemy and analyze the strategies of them.
And we will refer to the strategies of other teams rather than blind research.
The performance this year is not so satisfactory and there are many reasons. Our
VPS broke down during the final contest, so we lost 357,931 points in one match.
This was the second time for us to participate, and we did not have enough time
to implement all our ideas.

For the next year, we think some changes should be made to improve the
current scenario. Firstly, the perception should be compressed so as to relieve
the pressure of network communication. The XML style is unnecessary. And
the name in perception should be as short as possible. For example, an edge,
“< visibleEdge node1=“vertex0” node2=“vertex11”/>”, in the competition,
can simply be replaced by “e 0 11”, meaning that there is an edge between node
0 and node 11. When we read the letter “e” in the message, we will know that
there are two integer to read next. Secondly, the server should add an option that
allows a team to simply use one TCP connection to receive perception, since al-
most every team chose not to distribute their agents on different machines. This
may reduce the difficulties of network programming, and encourage more peo-
ple to participate in this contest. Compression algorithms like Haffman Coding
algorithm[5] should be used to reduce the size of the messages. And we think
the organizers should offer automatic test servers for us, so any two teams can
join in a test match whenever they want. The network performance is very poor
between Germany and some countries, so we need to rent a VPS to participate
in the contest. However, some team in some year may fail to afford the rents.
And as said before, our VPS broke down during the final contest. To encourage
more people from such countries, we strongly recommend that the organizers
should offer computers to these people like us. After all, these optimizations cost
the organizers very little.

Prior State Reasoning in Multi-agent Systems 365

Acknowledgements. We are deeply grateful to Yi Fan supported by NICTA
for his generous and valuable help with the writing of this paper. NICTA is
funded through the Australian Government’s Backing Australia’s Ability initia-
tive, in part through the Australian National Research Council.

References

1. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Section 22.2: Breadth-first
search. In: Introduction to Algorithms, pp. 531–539. MIT Press and McGraw-Hill
(2001)

2. Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Numerische
Mathematik, vol. 1, pp. 260–271. Springer (1959)

3. Edmonds, J.: Maximum matching and a polyhedron with 0,1 vertices. J. of Res. the
Nat. Bureau of Standards 69 B, 125–130 (1965)

4. Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network
optimization algorithms. Journal of the ACM (JACM) 34(3), 596–615 (1987)

5. Huffman, D.A.: A method for the construction of minimum-redundancy codes. Pro-
ceedings of the IRE 40(9), 1098–1101 (1952)

6. Kuhn, H.W., Yaw, B.: The Hungarian method for the assignment problem. Naval
Res. Logist. Quart., 83–97 (1955)

7. Li, C.: Conquering large zones by exploiting task allocation and graph-theoretical
algorithms. In: Dastani, M., Hübner, J.F., Logan, B. (eds.) ProMAS 2012. LNCS,
vol. 7837, pp. 234–244. Springer, Heidelberg (2013)

8. Orlin, J.B.: A faster strongly polynomial minimum cost flow algorithm. Operations
Research 41(2), 338–350 (1993)

Multi-Agent Programming Contest 2013:

The Teams and the Design of Their Systems

Tobias Ahlbrecht1, Christian Bender-Saebelkampf5, Maiquel de Brito6,
Nicolai Christian Christensen3, Jürgen Dix1, Mariana Ramos Franco4,

Hendrik Heller5, Andreas Viktor Hess3, Axel Heßler5, Jomi Fred Hübner6,
Andreas Schmidt Jensen3, Jannick Boese Johnsen3, Michael Köster1,

Chengqian Li2, Lu Liu2, Marcelo Menezes Morato6, Philip Bratt Ørum3,
Federico Schlesinger1, Tiago Luiz Schmitz6, Jaime Simão Sichman4,
Kaio Siqueira de Souza6, Daniela Maria Uez6, Jørgen Villadsen3,

Sebastian Werner5, Øyvind Grønland Woller3, and Maicon Rafael Zatelli6

1 Department of Informatics, Clausthal University of Technology,
Julius-Albert-Str. 4, 38678 Clausthal-Zellerfeld, Germany

2 Dept. of Computer Science,
Sun Yat-sen University

Guangzhou 510006, China
3 Algorithms, Logic and Graphs Section

Department of Applied Mathematics and Computer Science
Technical University of Denmark

Matematiktorvet, Building 303B, DK-2800 Kongens Lyngby, Denmark
4 Laboratório de Técnicas Inteligentes (LTI), Escola Politécnica (EP)

Universidade de São Paulo (USP)
5 Distributed Artificial Intelligence Laboratory

Technische Universität Berlin, Germany
6 Department of Automation and Systems Engineering

Federal University of Santa Catarina
CP 476, 88040-900 Florianópolis - SC - Brasil

Abstract. Five teams participated in theMulti-Agent Programming Con-
test in 2013: All of them gained experience in 2012 already. In order to
better understand which paradigms they used, which techniques they
considered important and how much work they invested, the organisers
of the contest compiled together a detailed list of questions (circa 50).
This paper collects all answers to these questions as given by the teams.

1 Introduction

One of the main aims of the Multi-Agent Programming Contest [1,2] is to test and
evaluate multi-agent systems: Are they better suited for decentralized scenarios
than more traditional approaches? Do they offer tools that can be easily used and
are still sufficiently scalable? Compared to pure Java based approaches, what do
we gain?

In the past, we have seen several teams not using multi-agent platforms. Some
of them have been chosen by students who wanted to participate in the contest,

M. Cossentino et al. (Eds.): EMAS 2013, LNAI 8245, pp. 366–390, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Multi-Agent Programming Contest 2013 367

but who did not have a deep background in multi-agent programming. This year,
only one team decided not to use any dedicated multi-agent programming lan-
guage and to stick to C++ (as they did last year). It is interesting to note that
the runner-up in 2011 and 2012, Python-DTU, did not use an agent program-
ming language, but many concepts and techniques from multi-agent reasoning
(programmed in Python).

An important point in the contest is the choice of the scenario. We do not
want to evaluate a particular smart strategy to solve the task, we would like
to evaluate the agent platform or software system that is used for the solution.
Therefore the scenario has to be sufficiently complex, otherwise we risk that a
smart team comes up with a clever solution that has noting to do with the tools
provided by the underlying programming language.

It is also obvious that we can test only some features of agent platforms and
languages. To evaluate the whole software development life-cycle, from require-
ments phase to deployment, we would have to evaluate all these phases, from the
design to the final software code. This is not possible and therefore we decided
only to test the final system. We hope that the questions and the answers that
we have collected here shed some light on these phases as well.

2 The Contest in 2013

All five contestants in 2013 (see Table 1) also participated in the contest in
2012. However, for TUB the team members changed completely. Only one of the
teams (AiWXX) did not use a multi-agent programming platform or language.
The winner in 2013 already won in 2012: SMADAS-UFSC. TUB, who came
fourth in 2013, won several times in the past (for different scenarios).

Table 1. Participants of the 2013 Edition

Team Affiliation Platform/Language

AiWXX[5] Sun Yat-Sen University, China C++
GOAL-DTU[6] Technical University of Denmark GOAL
LTI-USP[3] University of Sao Paulo, Brazil Jason, CArtAgO, Moise
SMADAS-UFSC[8] Federal University of Santa Jason, CArtAgO, Moise

Catarina, Brazil
TUB[7] TU Berlin, Germany JIAC

The person-hours invested to implement the teams range from 150 (LTI-USP),
250 (AiWXX), 400 (SMADAS-UFSC), 500 (GOAL-DTU) to 840 (TUB). The
lines of code written for the teams range from 1300 (GOAL-DTU), 4000 (LTI-
USP), 7996 (TUB), 8500 (SMADAS-UFSC), to 11000 (AiWXX).

LTI-USP and AiWXX used a centralized approach, TUB decided for a hy-
brid method, i.e., centralized regarding zone building, decentralized otherwise.

368 T. Ahlbrecht et al.

The remaining two teams, winner SMADAS-UFSC and runner-up GOAL-DTU
implemented a purely decentralized approach.

Table 2 shows the results. SMADAS-UFSC won again (after 2012) and GOAL-
DTU was again runner-up (but using this time a different agent programming
language).

Table 2. Results

Pos. Team Score Difference Points

1 SMADAS-UFSC 2702948 : 1455163 1247785 36
2 GOAL-DTU 2284575 : 1614711 669864 27
3 LTI-USP 2117299 : 2083105 34194 15
4 TUB 1412702 : 2238820 -826118 6
5 AiWXX 1516760 : 2642485 -1125725 6

When we introduced our Mars-scenario for the first time in 2011, a team
from the Netherlands (headed by Koen Hindriks) won using the agent language
GOAL. A detailed description of the team and the architecture of the system
recently appeared in [4].

When we introduced the Mars scenario in 2011, three teams used a multi-
agent platform (among them the winner and the third place) and six did not.
In 2012, again three teams used a multi-agent platform, the remaining four did
not. As the year before, the winner and third place in 2012 used a multi-agent
platform. Interestingly, the runner-up in both years (DTU) used Python and
not a dedicated agent programming language. In 2013, DTU used GOAL (the
language of the winning team in 2011) but again came second.

3 Questions and Answers

We have collected over 50 questions, arranged into five different groups: (1) in-
formation about the team (motivation, number of members and time invested,
background of team members), (2) system analysis and design (centralized or
not, multi-agent language or not, communication, mental states), (3) software ar-
chitecture (programming language, development/runtime tools, algorithms used,
reasoning of the agents, lines of code), (4) strategies and some details related
to the MARS scenario (strategy, information sharing, exploring the topology,
communication with the server, building zones, assigning roles to agents, chang-
ing behaviour at runtime, achievements, mental state of agents), and, finally, (5)
lessons learned (reasons for the performance of the team, weak and strong points
when compared with other teams, how to improve the contest in the future).

3.1 Teams and Their Background

This group of questions collects information about the motivation of the teams,
their size and their background.

Multi-Agent Programming Contest 2013 369

What was the motivation to participate in the contest?
SMADAS-UFSC: Testing the JaCaMo platform in the contest scenario and eval-

uate some other technologies developed in our master and PhD thesis.
GOAL-DTU: We participated in the contest because we find the contest very

interesting for both research and teaching.
LTI-USP: The main motivation to participate in the contest was to test and

evaluate the JaCaMo framework.
TUB: The main motivation was and is to test, benchmark and improve our

JIAC V agent framework; the contest was the first application of the frame-
work; we still need to improve a lot of things and the contest then says
whether it is with good performance or works reliably; the benefit of a solid
agent framework can be seen in many applications of the JIAC framework
in projects whenever a distributed architecture makes sense.

AiWXX: Our motivation was to gain a deeper understanding about Multi-agent
Systems.

What is the history of the team? (course project, thesis, . . .)
SMADAS-UFSC: Our team was formed by members from the Multi-Agent

Systems research group (called SMADAS) at Federal University of Santa
Catarina (UFSC).

GOAL-DTU: The team consists of both researchers/students from previous
years and students taking a special course.

LTI-USP: The LTI-USP participated in the 2012 edition of the MAPC and also
in previous years. Since our first participation, the MAPC has been used to
evaluate platforms and tools, and to improve our knowledge in developing
MAS. The previous Cows and Cowboys scenario was used in the last two
years of the Multi-Agent course held at the Department of Computer Engi-
neering and Digital Systems of the University of São Paulo.

TUB: We started participation in 2007 with the JIAC IV agent framework,
which was heavily loaded with AI concepts such as own ontology language,
trinary propositional calculus, first-order logic, situation calculus, reaction
rules, an own agent programming language (JADL), an own component sys-
tem. At this time, it was already clear that such a framework is not maintain-
able, too difficult to learn and to use. We then started a bottom-up approach
where we used a third-party component framework and added those compo-
nents that we really needed to make the agents and a programming language
people really use. One year later the contest was the first touchstone where
we tested if our concept holds in reality, and what nobody could envision we
won. In 2008 the contest helped us to get the teething troubles out of the
way and to develop really useful features that make the life of the program-
mer easier. We then started to offer a course on multi-agent programming
where we use the JIAC framework and the contest scenarios to teach agent
programming principles, usually to students that do not have experience nei-
ther in software engineering nor in agent programming. The schedule of this
course is to develop a solution for the Multi-Agent-Contest and participate
in the contest at the end of the semester, implicitly testing and improving
our agent framework.

370 T. Ahlbrecht et al.

AiWXX: Our team consists of two members, Chengqian Li and Lu Liu. Last
year Chengqian Li participated in MAPC 2012. And a Multi-Agent scenario
was used in his thesis.

How many developers and designers did you have? At what level of
education are your team members?

SMADAS-UFSC: Our team has seven developers and everyone was involved
with the system design. We have one PhD, four PhD students, and two
undergraduate students.

GOAL-DTU: We are 7 computer scientists: associate professor Jørgen Villad-
sen (PhD), Andreas Schmidt Jensen (PhD student), Nicolai Christian Chris-
tensen (MSc student), Andreas Viktor Hess (BSc student), Jannick Boese
Johnsen (MSc student), Øyvind Grønland Woller (BSc student) and Philip
Bratt Ørum (MSc student).

LTI-USP: The LTI-USP team was formed by Mariana Ramos Franco (M.Sc.
Student) and Jaime Simão Sichman (Professor).

TUB: During the course we had twelve students split into two teams. During
preparation to the contest our team consisted of three computer science stu-
dents: Hendrik Heller, Christian Bender-Seaelkampf and Sebastian Werner.
As well as the course supervisor Axel Heßler. The students start their fourth
Bachelor semester when they joined the course.

AiWXX: Our team consists of two second-year postgraduate students.

What is your field of research? Which work therein is related?
SMADAS-UFSC: All team members work with Multi-Agent Systems and Ar-

tificial Intelligence.
GOAL-DTU: Our field of research is AI with an emphasis on algorithms and

logic.
LTI-USP: The LTI-USP, located at the University of São Paulo, is one of the

most relevant research groups in multi-agent systems in Brazil. In coopera-
tion with other research groups in DAS/UFSC (Brazil) and ISCOD / LSTI /
ENSMSE (France), our group is one of the responsibles for the development
and maintenance of the Moise organisational model.

TUB: Main field is agent-oriented software engineering, distributed and com-
plex systems, we usually do more projects that apply agent principles and
methods than basic research.

AiWXX: Data structures, algorithms and the Boolean Satisfiability (SAT)
problem.

3.2 System Analysis and Design

Moreover, we wanted to know why (if at all) an agent approach has been chosen
and whether the approach was centralised or not. Did agents share some infor-
mation with others? How did the agents communicate and how were autonomy
and proactiveness implemented.

Multi-Agent Programming Contest 2013 371

Did you use multi-agent programming languages? Why?

SMADAS-UFSC: We used the JaCaMo framework. Thus, we used Jason for
implementing the agents, CArtAgO for the environment and the Moise orga-
nizational model to specify the organization.

GOAL-DTU: We use GOAL, which is a dedicated multi-agent programming
language.

LTI-USP: We developed our team using the JaCaMo framework. JaCaMo is
a platform for multi-agent programming which supports all levels of ab-
stractions - agent, environment, and organisation - that are required for
developing sophisticated multi-agent systems, by combining three separate
technologies: Jason, for programming autonomous agents; CArtAgO for pro-
gramming environment artifacts; and Moise for programming multi-agent
organisations.

TUB: No. The choice of language is up to the students. In fact, we use Java in-
tentionally, for several reasons: platform independence (usually students and
developer use an evil mix of operating systems, versions and distributions),
the JIAC framework is written in Java although we have several language
ports (e.g. JADL, Python, Scala, BPMN), most multi-agent programming
languages are logic-based and most students at that point in their studies
are not familiar with logic programming.

AiWXX: No, we did not because we are proficient in the C++ language which
is well-known for its efficiency.

If some multi-agent system methodology such as Prometheus, O-
MaSE, or Tropos was used, how did you use it? If you did not,
why?

SMADAS-UFSC: We did not use any existing AOSE method. The problem
seemed too easy and there was no need to use a complete methodology.

GOAL-DTU: We have not used a multi-agent system methodology as we based
our system analysis on the earlier Python-DTU system (2012) and our overall
design on the HactarV2 system (2011).

LTI-USP: For the development of this project, we chose to not use any multi-
agent methodology, because we already had the 2012 team from where to
start to work, and mainly because we decided that it was better to spend
our time improving the system than learning a methodology.

TUB: We use the JIAC development methodology (MIAC). MIAC focusses
on efficient and fast development and is closely related to the concepts and
architecture of the JIAC framework. Although most methodologies state to
be general, but implicitly they are build on an concrete (multi-)agent mod-
els and thus they are often not applicable in another context. Many agent
methodologies focus on design and thus often leave out important software
engineering disciplines such as requirement elicitation, implementation and
testing, deployment, management and maintenance. MIAC is still not com-
plete in that sense but gives developers useful guidelines for intuitive under-
standing of what to do based on what they already know about programming
and development and then they can focus on solving the problem.

372 T. Ahlbrecht et al.

AiWXX: No, we did not use any of them because we thought our framework
was good enough for almost every strategy. And we are proficient in C++
language which is well-known for its efficiency.

Is the solution based on the centralisation of coordination/information
on a specific agent? Conversely if you plan a decentralised solution,
which strategy do you plan to use?

SMADAS-UFSC: The coordination is mostly based on the Moise organiza-
tional structure. However, we use an agent - called coach, which adopts the
role of leader - that manages the organization and performs the setup of
organizational structure.

GOAL-DTU: Our solution is generally a decentralized system, though some
features are centralized. Our implementation uses the new multi-threading
feature of GOAL.

LTI-USP: Our team is decentralised. Each agent decides by itself which empty
vertex it will occupy in order to create the zone or expand it. There is no
centralisation of information. Each agent has its own view of the world.

TUB: The behaviour of the agents (i.e. the roles) is completely decentralised.
Each agent has its own world model and decides on its own what to do next.
The agent communicate their perception and their decision with each other,
so the world model is more complete. There is one exception, the calculation
of promising zones to be captured is done by an extra agent, which assigns
positions to agents that are free to build a zone.

AiWXX: Our framework is a decentralised solution. However, the current im-
plementation is restricted because we only deal with common knowledge.

What is the communication strategy and how complex is it?
SMADAS-UFSC: The agents use message exchange to call repairers, saboteurs

or inform others about good vertices and map regions. Other information is
shared through a blackboard.

GOAL-DTU: We aim to send as few messages between the agents as possible.
Our agents communicate the status of themselves and enemy agents as well
as map information.

LTI-USP: In our team, each agent has its own view of the world and they com-
municate with each other for the following purposes: (i) informing the other
agents about the structure of the map; (ii) informing about the agent’s or
the opponent’s position, role and status; (iii) asking for repair.
The agents’ communication occurs via the speech acts provided by Jason
and, to reduce the communication overhead, an agent broadcasts to all the
other agents only the new percepts, i.e., only percepts received from the con-
test server which produce an update of the agent’s world model are broad-
casted. For this reason, there is a strong exchange of information between the
agents in the beginning of the match due to the broadcast of new percepts,
specially those related to the map, such as vertices and edges. However, the
communication overhead decreases as the agents’ world model starts to be
more complete.

TUB: Each agent communicates its perception and decision with each other
agent. Thus, the complexity is 2n · (n− 1) where n is the number of agents

Multi-Agent Programming Contest 2013 373

in the setting and we are using multicast messaging to solve this. Addition-
ally, there is a communication for zoning: each free agent communicates its
availability to the zoning agent and is informed about the best position for
zoning as a reply, so complexity is 2n in the worst case.

AiWXX: When any agent’s knowledge state is updated, the other agents’
knowledge states will be updated in precisely the same way because of the
assumption of common knowledge.

How are the following agent features considered/implemented: au-
tonomy, proactiveness, reactiveness?

SMADAS-UFSC: Our agents are autonomous to decide how to achieve their
specific goals, but all of them have to attend to the organizational norms.
Similarly, the agents may behave proactively or reactively in accordance with
the needs. For instance, a damaged agent will call a repairer and all agents
react to the environment events like the start of a step.

GOAL-DTU: Agents do not cooperate in making choices. One proactive feature
is that Repairers repair agents that are likely to be attacked. Otherwise we
are mostly reactive.

LTI-USP: The agents are autonomous to decide by themselves the next action
to be performed, but in cooperation with each other, particularly with the
coordinator agent. The agents have a proactive behaviour, for example, to
find the better vertices in the map, and to move to the closest repairer when
they are damaged.
At each step, the agent decides which plan will be executed given only the
state of the environment and the results of previous steps. The plan’s priority
is determined by the order in which the plans were declared, and the executed
plan will be the first one to have its conditions satisfied. Some high priority
plans can be considered reactive, such as the one which tells the agent to
perform a recharge when running low on energy.

TUB: JIAC V agents have their own thread of control and decide and act
autonomously. We see the agents with low health level pro-actively seeking
the repairer’s help using a simple request, whereas probing or surveying has
been implemented as a simple reactive behaviour: if the node is unprobed
then probe.

AiWXX: Every agent chooses her action according to her state and no agent
can control other agents. If the environment is changed, their knowledge
state will also be changed as soon as they realize the changes. The agents
are aggressive, that is, they keep exploring new areas of the world, never
passively waiting for changes of the environment.

Is the team a truly multi-agent system or rather a centralised system
in disguise?

SMADAS-UFSC: Our team was developed as a true MAS composed by three
dimensions: agents, organization and environment.

GOAL-DTU: It is truly a multi-agent system.
LTI-USP: Our system is a true multi-agent system. Each agent has its own

beliefs, desires, intentions and control thread. Each agent decides by itself
its next action.

374 T. Ahlbrecht et al.

TUB: We consider it a true multi-agent system as the agents run independently
of each other in their own threads for life-cycle, sense-decide-act cycle, and
can be distributed over CPUs, CPU-cores and the network without change
to architecture, protocols and agent implementation.

AiWXX: We have exploited a decentralization framework in implementing var-
ious strategies, however, the implementation now is so restricted because we
only deal with common knowledge.

How much time (person hours) have you invested (approximately)
for implementing your team?

SMADAS-UFSC: Together, we used around 400 person hours divided between
tests and programming.

GOAL-DTU: We have invested approximately 500 person hours.
LTI-USP: Approximately 150 person hours were invested in the team develop-

ment.
TUB: Approximately 840 person hours.
AiWXX: About 250 person hours.

Did you discuss the design and strategies of you agent team with
other developers? To which extent did you test your agents playing
with other teams.

SMADAS-UFSC: We did not share our strategy in advance. However, we par-
ticipated in all test matches provided by the contest’s organization.

GOAL-DTU: We discussed our strategies with the creators of the Python-DTU
system and also tested against that system.

LTI-USP: Only during the competition did we discuss the designs and strategies
with the other participants, and before the tournament, we participated in
some test matches set by the organizers to ensure the stability of our team.

TUB: During the course we split the students into two teams that compared
their solutions every week, both in discussion and in simulation. We also used
the test games provided by the organizers of the contest, where we mainly
tested for reliability and conformance.

AiWXX: During this period, we did not discuss the design and strategies of our
agents with others because this year, we were focusing on the cooperation
of agents and not on the competition with different strategies.

What data structures are shared among the agents, and which are
private?

SMADAS-UFSC: Our agents share information about the graph structure,
the enemy position and inspected agents. Information about health, energy,
zones and others is private for each agent.

GOAL-DTU: No data structures are shared among the agents.
LTI-USP: Only the organisational artifacts are shared among the agents. Each

agent has its own world model.
TUB: Each agent maintains its own world model, i.e., it updates the world

model with perceptions and action results, then calculates the next step
and remembers the decision. Perceptions and decisions are shared among all
other agents and each agent also maintains the state of each other agent in

Multi-Agent Programming Contest 2013 375

its own world model. The exception is again the agent that calculates the
best zone. It also knows the perceptions and decisions of all other agents but
it is the only agent that knows the best zone. All other agents only know
their position in the best zone.

AiWXX: Each agent has only one private data structure, which stores the
perceptions received from the server.

3.3 Software Architecture

Here we are interested in the specific approach. Which agent platform or pro-
gramming language was used? How were agent-related concepts implemented?
Which tools, which algorithms were used? How is the reasoning of an agent
realized? What were the hardest problems and how many lines of code were
written?

Which programming language did you use to implement the multi-
agent system?

SMADAS-UFSC: Our Multi-Agent System is developed in JaCaMo platform,
using Jason, CArtAgO and Moise.

GOAL-DTU: We used the GOAL agent programming language to implement
the multi-agent system. As a knowledge representation language we used
SWI-Prolog.

LTI-USP: Java and AgentSpeak.
TUB: Java.
AiWXX: The C++ language.

How have you mapped the designed architecture (both multi-agent
and individual agent architectures) to programming codes, i.e.,
how did you implement specific agent-oriented concepts and de-
signed artifacts using the programming language?

SMADAS-UFSC:Weusedanenvironmentandorganizationalmulti-agent frame-
work, which provides abstractions to develop specific agent-oriented concepts,
environmental artifacts and organizational rules.

GOAL-DTU: We used the inherent architecture in the GOAL language since
it is a dedicated agent programming language.

LTI-USP: The agents are developed using the Jason MAS platform, which is a
Java-based interpreter for an extended version of the AgentSpeak program-
ming language for BDI agents. Each agent is composed of plans, a belief
base and its own world model. The plans are specified in AgentSpeak and
the agent decides which plan will be executed according to its beliefs and
the local view of the world. The world model consists of a graph developed
in Java, using simple data structures and classes.

TUB: Functionality in JIAC is implemented in components (AgentBeans), so
each function is an AgentBean: e.g. the communication with the contest
server (ServerCommunicationBean), each role is implemented as a differ-
ent Strategy managed by the DecisionAgentBean, the game concepts are
reflected by the ontology where we mapped them to Java classes.

376 T. Ahlbrecht et al.

AiWXX: Each of the agents runs a separate program which is designed at four
different levels, from the coordination level to the physical level.

Which development platforms and tools are used? How much time
did you invest in learning those?

SMADAS-UFSC: We used Eclipse platform with Jason 1.3.8 plug-in. These
tools were known by all team members. So we spent just a few hours learning
new features.

GOAL-DTU: We use the GOAL IDE as a development platform as well as
Eclipse as a code editor/IDE. We were already familiar with the platforms
from earlier projects.

LTI-USP: All our code was written using the Eclipse IDE with the Jason plugin.
All members were familiar with Eclipse.

TUB: We used the JIAC V framework. The frame implementation was given by
the course organizer, the rest was implemented by the students starting from
a message parser. We additionally used a Swarming approach for the visual
reconstruction of the graph, developed by our colleague Tobias Küster, as the
MarsViewer maps the graph to a grid, but this information is not available
to the agents.

AiWXX: Just Gedit Text Editor. We invested little time in learning it.

Which runtime platforms and tools (e.g. Jade, AgentScape, simply
Java, . . .) are used? How much time did you invest in learning
those?

SMADAS-UFSC: We used EISMASSim framework to communicate with the
environment, Jason centralized infrastructure for communication among the
agents and ORA4MAS, a CArtAgO and Moise based platform.

GOAL-DTU: We used Linux running the newest version of GOAL from the
GOAL SVN repository as the runtime platform for the competition.

LTI-USP: We have used the JaCaMo platform to run our team. The main de-
veloper was already familiar with JaCaMo.

TUB: We used the JIAC runtime platform, which usage is fairly easy and
straight forward. The platform manages the life cycle of the agents and the
communication infrastructure. With the ASGARD agent management tool
we can remotely control the life cycle and state of each agent.

AiWXX: Just the GCC compiler. We invested little time in learning it.

What features were missing in your language choice that would have
facilitated your development task?

SMADAS-UFSC: The JaCaMo framework provided most of the features needed.
To build graph algorithms we used Java because it is a powerful language
and it is quite simple to integrate with JaCaMo.

GOAL-DTU: Even though GOAL has debugging features these were not fully
functional at the time of the contest. For this reason we developed our own
debugging tools.

LTI-USP: The JaCaMo framework provided all the necessary features that we
needed to develop our team.

Multi-Agent Programming Contest 2013 377

TUB: We still miss an easy agent language at all, our approach to JADL++
was to combine powerful features of a logic language with C-like surface
syntax, which is not finished yet. A second point is the BDI decision cycle
which is implemented in the framework but is not been used and tested,
although we see every year that the decision component’s implementation
always produces similar solutions, so a generalizing concept is overdue.

AiWXX: We have implemented all proposed features efficiently due to the
flexibility of the C++ language.

Which algorithms are used/implemented?
SMADAS-UFSC:We implemented some graph algorithms like Dijkstra, breadth-

first search and identification of cut vertices.
GOAL-DTU: We use our own implementation of the A* algorithm for pathfind-

ing, but since there is no usable heuristic this is basically Dijkstra’s algo-
rithm.

LTI-USP: We used the breadth-first search algorithm to find the minimum
path between two vertices in the graph.

TUB: Path finding is based on Dijkstra, breadth-first search for finding agents
and other targets from a given node.

AiWXX: The breadth-first search, the dijkstra algorithm, the minimum cost
flow algorithm and the hungarian algorithm.

How did you distribute the agents on several machines? If not why?
SMADAS-UFSC: We did not distribute the agents on several machines. Our

agents run fast enough on a single machine for the contest.
GOAL-DTU: We did not distribute our agents on several machines since this

feature was not fully functional in GOAL.
LTI-USP: We did not distribute the agents over several machines due to time

constraints, but it is our intention to work after the tournament on a dis-
tributed team, since the JaCaMo framework facilitates this.

TUB: No, we didn’t. There was no need to. During the contest we used a
multi-core machine with huge RAM connected to a GigaBit switch.

AiWXX: We did not distribute the agents on several machines because sharing
memory in one computer is almost the most efficient way for communication
between agents.

Do your agents perform any reasoning tasks while waiting for re-
sponses from the server, or is the reasoning synchronized with the
receive-percepts/send-action cycle?

SMADAS-UFSC: While waiting for the server, our agents reason about some
information which is not used to perform an action, like the good zones
definition, graph synchronization, repairer allocation, etc.

GOAL-DTU: Our agents do not perform any reasoning while waiting for the
server since they are synchronized with the receive-percepts/send-action
cycle.

378 T. Ahlbrecht et al.

LTI-USP: At each step, the agent decides which action will be executed given
only the state of the environment and the results of previous steps. So the
reasoning agent is completely synchronized with the receive-percepts/send-
action cycle.

TUB: Almost all agent are synchronized to the server cycle, only the agent that
calculates the best zone is doing this all the time.

AiWXX: If an agent receives a new percept, any other agent will perform no
actions until this percept is updated to the knowledge base.

What part of the development was most difficult/complex? What
kind of problems have you found and how are they solved?

SMADAS-UFSC: The most difficult part was to decide which strategy to use
for the contest. We implemented several strategies and tested each one a lot.
As we used Moise and CArtAgO technologies, we also found issues to improve
on this technologies.

GOAL-DTU: The most difficult/time consuming part of development was fixing
bugs in both the GOAL system and our own code.

LTI-USP: Due to the modularity of the JaCaMo framework, it was not compli-
cated to change our team for this year’s contest. The most difficult part was
to remove the centralized coordination and define the rules that the agents
must obey to create the zone or expand it.

TUB: the most challenging part is to predict the behaviour of the enemy team
and then to derive the best strategy against it, e.g. in last years discussion
many participants believed holding a huge area was key to success, when
analysing the winners matches we realized that they maintained many small
zones only held by two agents on high-weighted nodes.

AiWXX: The most difficult part of the whole development process was the
optimization of team strategies against different strategies.

How many lines of code did you write for your software?
SMADAS-UFSC: We used 8459 lines to implement our team: 3794 for Jason

agents; 135 for Moise organization; 96 for CArtAgO environment and 4434
lines in Java.

GOAL-DTU: We wrote 1288 lines of code (not counting comments and blank
lines).

LTI-USP: Approximately 2000 lines in Java and 1800 lines in AgentSpeak.
TUB: About 7996 lines.
AiWXX: About 11,000 lines.

3.4 Strategies, Details and Statistics

The questions in this part are related to the particular approach used by each
team. How are the roles of the agents implemented, which strategies do they
follow? How are zones computed or conquered and defended? Is the buying-
mechanism considered important? Are achievements? Does the agent behaviour
emerge on an individual or the team level?

Multi-Agent Programming Contest 2013 379

What is the main strategy of your team?
SMADAS-UFSC: Our main strategy is to acquire achievement points and define

good zones as soon as possible. After that, we spread the agents in the map
and keep the agents in their places until the end of the game. We also use the
saboteurs to disturb the enemy and the repairers to help disabled agents.

GOAL-DTU: The main strategy is as follows. In the first part of a simulation
the agents explore the map to find the most valuable nodes. In the second
part our agents establish a zone of control on the most valuable clusters
of nodes. Meanwhile, our Saboteurs defend our zone as well as harass the
enemy to disrupt their zones.

LTI-USP: The main strategy was to divide the agents into three subgroups:
two in charge of occupying the best zones in the map, and the other one in
charge of sabotaging the opponents.

TUB: The main strategy of our team is twofold: First, individual agents follow a
simple, straightforward achievement collection strategy based on their roles.
And, second, there is an additional agent that calculates the best zone that
is free of enemies.

AiWXX: The whole team explores the entire map for available areas and then
tries to occupy several stable zones with higher values.

How does the overall team work together (coordination, information
sharing, ...)?

SMADAS-UFSC: We use an explicit organizational structure to coordinate the
agents. It defines the role for each agent and the goals they have to achieve. In
addition, we use an artifact where the information about the graph structure
is shared.

GOAL-DTU: Our agents work together by coordinating their behavior when
they have to establish a zone of control. They also communicate the status
of themselves and enemy agents as well as map information.

LTI-USP: One agent is responsible for determining which are the best zones in
the map. Then, each agent decides by itself what to do to create a zone in the
specified location. Each agent has its own world model, and only percepts
received from the contest server which produce an update of the agent’s
world model are broadcasted.

TUB: The basis of the team work is information sharing: perceptions and deci-
sions are communicated among all agents. There are simple conventions on
how a broken agent finds the repairer. The calculation of the best zone is
done by an extra agent on behalf of all interested agents (that are free to
zone).

AiWXX: We allocate to each agent a unique task. When any agent receives a
new percept, any other agent will not perform any actions until this percept
is passed to all of them. This ensures that all agents share a synchronized
knowledge base.

380 T. Ahlbrecht et al.

How do your agents analyze the topology of the map? And how do
they exploit their findings?

SMADAS-UFSC: We do not try to find a map topology. However, we identify
the cut vertices, which usually represent good zones that can be conquered
by a single agent.

GOAL-DTU: Our agents share information about probed and surveyed nodes
with each other. This way they know the structure of the whole map and
can find their way around more easily.

LTI-USP: The explorers probe all unknown vertices and the results of the map
analysis are exploited to find the best zones to be occupied.

TUB: Our first approach was to use a heat map to calculate the best zones. The
current implementation calculates about 50 to 100 paths, where the best one
is selected that separates the biggest enemy free zone from the rest of the
map depending of the number of free agents.

AiWXX: Each time an agent arrives at an unexplored location, it collects all
information about edges and nodes. Her strategy then is to move to those
nodes on the boundary, survey them and repeat this process again and again.

How do your agents communicate with the server?
SMADAS-UFSC: We used the EISMASSim libraries to communicate with the

server.
GOAL-DTU: Our agents communicate with the server using the provided EIS-

MASSim library (version 2.1).
LTI-USP: Using the EISMASSim interface.
TUB: Via IP sockets.
AiWXX: The agents generate multiple threads and use the TCP/IP protocol

to communicate with the server.

How do you implement the roles of the agents? Which strategies do
the different roles implement?

SMADAS-UFSC: Explorers are responsible to probe all vertices and they define
which is a good place to conquer. Saboteurs are responsible to protect the
zones and to attack enemies. Repairers are responsible to help damaged
agents. Inspectors are responsible to protect the best places and inspect the
enemies. Sentinels are responsible to protect the best places and the whole
team is responsible to survey the map.

GOAL-DTU: All agents share the same basic behavior. Depending on the role
given to them by the server, they access a part of the code that is specific
to their role. The agents implement strategies relevant to their role.

LTI-USP: We decided to not map the five types specified in the scenario (ex-
plorer, inspector, repairer, saboteur and sentinel) directly to the roles in
our team. Instead, we defined different roles in our system according to the
adopted strategy. Each role has a mission associated to it, and each role can
be played by one or more types of agents. For example, the map explorer

role can be played only by the explorer type, while the soldier role can be
played by all types of agents.

TUB: A role has at least one strategy, if it has more then one strategy role
switching is possible dynamically.

Multi-Agent Programming Contest 2013 381

Explorer Find unprobed nodes and probe them, recharge when necessary
go to the closed unprobed node first. Avoid other Explorers from our
team to avoid duplicated behaviour. Seek repair if health is zero. Switch
Strategy if the graph has been probed completely.

Repairer There are two strategies for the repairer.
Simple Repairer Search for hurt team members and go to the closest

one to heal. If no team member is hurt survey and zone.
Craven Repairer Same as the Simple Repairer but avoid enemy at-

tackers at all cost. Using a breath first search and a range that re-
pairer would search for a enemy attacker and if it would find one it
would create a path to avoid that agent.

Sentinel used for Zoning see Zoner
AggressiveSaboteur As the name suggests the Saboteur tries to attack as

many agents as possible.
ZoneDefender This Agent is part of the Zone and upon a detected intru-

sion into the Zone, this agent tries to disable the intruder.
AnnoyInspector This strategy tries to find enemy zones and plans paths

trough those zones to destroy them while inspecting the enemy.
ZoneInspector The inspector is part of the zone and if an intruder is de-

tected it tries to inspect the intruder.
Zoner The Zone is a strategy which will build a Zone using the zoning

algorithm to identify a good Zone and coordinates all Zoner to build
that zone.

AiWXX: The agent considers her role as a state. We have designed a particular
strategy for each of the five roles in the game. When an agent realizes that
it is acting in a certain role, say, repairer, it will follow the respective strat-
egy. Only explorers accept the mission of exploring the map and probe the
value of the newly encountered node. Only sentinels, inspectors and explor-
ers will occupy the zones. Repairers will run to the injured and repair their
teammates while saboteurs will go to the front line and fight with enemies.

How do you find good zones? How do you estimate the value of
zones?

SMADAS-UFSC: The good zones are defined in terms of hills, pivots and is-
lands. A hill is a zone formed by several vertices that have a good value and
are in the same region of the map. As in the 2012 team, the agents try to
discover two hills. The hills are defined as follows: for each vertex v of the
graph, the algorithm sums the values of all vertices up to two hops away
from v, including v. The two vertices with the highest sums are defined as
the center of the hills. Then, the agents try to stay on their neighborhoods.
Islands are regions of the map that can be conquered by a single agent. An
island is a zone that has only one vertex (a cut vertex) in common with the
remaining graph. They are found by disconnecting the edges of each cut ver-
tex of the graph. It produces two disconnected subgraphs, and the smallest
one, plus the cut vertex, is an island. Pivots are regions of the map that can

382 T. Ahlbrecht et al.

be conquered by just two agents. For each pair of vertices (u,v) we search
all vertices w connected to u and v. For all vertices w (including u and v)
we also search for all vertices only connected to these vertices. For example,
if there is a vertice k connected only to the vertice w, then k also belongs
to the pivot. Furthermore, if there is an island connected to some of these
vertices, we consider all the vertices of the island. The best pivots are chosen
considering the sum of all vertices.

GOAL-DTU: Our agents find several of the most valuable nodes on the map,
and they calculate the total value of the area around each of those nodes.

LTI-USP: The best zone is obtained by calculating for each vertex the sum of
its value with the value of all of its direct and second degree neighbors. The
vertex with the greatest sum of values is the center of the best zone. Zones
with the sum of values below 10 are not considered in the calculation.

TUB: see above.
AiWXX: First, we will choose each node as a point zone with no enemies stand-

ing at and then repeat the following: find the boundary node P such that
after expanding P the boundary increases the least (possibly by a negative
number), and then, expand it. During the expanding process, we maintain
the optimal zone ever found.

How do you conquer zones? How do you defend zones if attacked?
Do you attack zones?

SMADAS-UFSC: The agents which control islands do the following: if there
are enemies in the island, they go to the same vertex as the enemy, so both
teams do not get scores from that island. In addition, they call the saboteur
leader to fight against the enemy agent. If the saboteur leader is already
busy protecting another island, the saboteur leader calls the saboteur helper
of the group special operations. If both are busy, the saboteur leader keeps a
list of islands with enemies. The agents that control pivots do not move away
from their places, since most of the times, the enemy would not stay in the
same place. Therefore, we defined that these agents do not need to move. If
the enemy also continues in the same vertex, both teams do not get scores,
so our team also cancels the enemy strategy. The agents which control the
hills are simply moving to the border of the big zone in order to expand it. If
they break the zone, they come back to the previous places in order to try to
expand it again. We also defined the sentinels to stay in the same places all
the time in the big zones (hills) because it can make the enemies avoid those
places and we can get some fixed scores of the hills. Finally, our saboteurs
disturb the enemy all the time.

GOAL-DTU: The agents will move towards the most valuable zones regardless
of any enemy presence. Our Saboteurs engage enemy Saboteurs that get near
our zones. We try to find enemy zones and attack them with one dedicated
Saboteur.

LTI-USP: Given that the coordinator has assigned a zone for a group, all agents
of the groupmove to the specified location and then each agent decides by itself
which empty vertex it will occupy in order to create the zone or expand it.

Multi-Agent Programming Contest 2013 383

We have implemented a defense strategy, with the guardian agent ready to
attack any close opponent, and the medic in the center of the zone focusing
on repairing other agents.

We also developed a group to attack the opponent’s zone.
TUB: the main strategy here is to avoid enemy agents while zoning, only the

AnnoyInspector is trying to destroy enemy zones, the only approach to de-
fence at the moment is inspecting the intruding agent.

AiWXX: Our agents will compute several promising zones and then move to the
boundary and conquer it. Among them, the saboteurs will attack enemies
they found because this may attack the area occupied by the rival.

Can your agents change their behavior during runtime? If so, what
triggers the changes?

SMADAS-UFSC: The agents change their behavior in some pre-defined steps.
For instance, in step 7 the agents start to search for a good zone in order
to get as much achievement points as possible. In the step 130 they look
for the smallest ones. When all vertices are probed, all the agents start to
participate in conquering pivots and islands.

GOAL-DTU: Several of our agents change behavior by adopting new goals
during runtime. These changes can be triggered by reaching a specific step,
enemy behavior, disabled agents etc.

LTI-USP: Yes. In the beginning, one map explorer helper has the mission of
helping the map explorer to explore the graph. After the step 250, the agent
leaves this role to adopt the soldier role in the best zone subgroup.

TUB: Yes, role changing is possible, among all agents that have a server iden-
tity. They are configured as such that they can play all roles. But as the
setting is static according to the assigned role by the server it is not yet
necessary. Where we already use it is when switching between different role
implementations.

AiWXX: Yes. We set some random target to change their behaviors with a
relatively small probability at each step.

What algorithm(s) do you use for agent path planning?
SMADAS-UFSC: We used the Dijkstra algorithm to find the shortest path

between two vertices.
GOAL-DTU: We use an A* algorithm without heuristic for agent path plan-

ning.
LTI-USP: Breadth-first search algorithm.
TUB: Dijkstra.
AiWXX: Breadth-First Search Algorithm and our own algorithm mentioned in

the paper.

How do you make use of the buying-mechanism?
SMADAS-UFSC: We did not use the buying-mechanism.
GOAL-DTU: We buy strength and health for our Saboteurs when necessary.
LTI-USP: We decided to limit the buy action, allowing only the agents of type

saboteur and repairer to purchase a unique extension pack of sensors, in
order to be able to attack or repair agents in neighbouring vertices.

384 T. Ahlbrecht et al.

TUB: Not at all (this aspect was given a lower priority during development).
AiWXX: Our agents will not buy anything.

How important are achievements for your overall strategy?
SMADAS-UFSC: The achievements are important. We try to get most achieve-

ments as soon as possible, since they accumulate in each step. However, we
guess the achievements did not make the difference for our team in this year.

GOAL-DTU: Achievements are fairly important for our strategy, since we need
achievement points for our Saboteur buying strategy.

LTI-USP: The achievements were very important in the team score, which is
why we limited the buy action.

TUB: Not at all at the moment.
AiWXX: In the contest, we use achievements only for the score. So we save

them and do not buy anything.

Do your agents have an explicit mental state?
SMADAS-UFSC: Yes, our agents use a BDI architecture and use their beliefs

to decide on their actions.
GOAL-DTU: Our agents have explicit mental states.
LTI-USP: The agents’ mental states consist of internal beliefs, desires, inten-

tions, and plans.
TUB: In a sense, yes. The agents maintain their own world model on the basis

what they perceive and what they are told by other agents. The model
consists of the own status, the environment, and the own intention. To a
small extend they can predict what other agents are going to do based on
the role and their possibilities.

AiWXX: No.

How do your agents communicate? And what do they communicate?
SMADAS-UFSC: The agents communicate by message exchange and a black-

board. They use message exchange to call a repairer or a saboteur, to inform
about the good zones and vertices, to exchange information about probed
vertices and to communicate their current action (which prevents two agents
from performing the same action). The blackboard is used to share informa-
tion about the graph structure and the agents’ positions.

GOAL-DTU: Our agents communicate using the built-in messaging system in
GOAL. They communicate agent status and map information.

LTI-USP: The agents’ communication occurs via the speech acts provided by
Jason. They communicate with each other for the following purposes: (i)
informing the others agents about the structure of the map; (ii) informing
about the agent’s or the opponent’s position, role and status; (iii) asking for
a repair.

TUB: Agents share their perception and the next action using multicast com-
munication.

AiWXX: The agents communicate by sharing memory. They communicate
about the map, enemies, status of teammates and proposals of team work
missions.

Multi-Agent Programming Contest 2013 385

How do you organize your agents? Do you use e.g. hierarchies? Is
your organization implicit or explicit?

SMADAS-UFSC: To organize our agents we use a Moise organization model.
Also, the agents follow a hierarchy, since we defined a leader for each agent
kind and an overall leader.

GOAL-DTU: We do not organize our agents. We sometimes perform actions
based on a ranking system in order to prevent that several agents perform
the same action with the same target.

LTI-USP: We used the Moise model to explicitly specify the organizational
constraints of our team. We organized our agents in three groups: two in
charge of occupying the best zones in the map, and the other one in charge
of attacking the opponents.

TUB: Organization is implicit as there is no explicit organisational concept
except for roles. A role is the function that the agent plays in the MAS.

AiWXX: They share the same knowledge base at any time and act by them-
selves. They are all at the same status. Hence, we organize our agents ex-
plicitly and no hierarchy is exploited.

Is most of your agents’ behavior emergent on an individual or team
level?

SMADAS-UFSC: A team behavior is important for our agents’ strategy. Thus,
our agents’ behavior is mostly on the team level.

GOAL-DTU: The behavior of the Saboteurs and Repairers is mostly emergent
on an individual level. For the rest of the team it is on a team level.

LTI-USP: Each agent acts individually and they are autonomous to decide by
themselves the next action to be performed, but in cooperation with each
other.

TUB: No, mainly. We saw clotting as negative effect of the repairers’ and
saboteurs’ behaviour.

AiWXX: The behavior of our agents is mostly emergent on an individual level
because we think autonomy is the key idea of MAS.

If your agents perform some planning, how many steps do they plan
ahead.

SMADAS-UFSC: The agents do not plan in advance. Since the environment is
dynamic, the agents choose their action in each step.

GOAL-DTU: Our agents do not plan ahead.
LTI-USP: Our agents do not plan ahead.
TUB: A planned path holds path length steps unless something went wrong,

e.g. action fails or health status is down.
AiWXX: The agents do not perform any planning because we think that the

current planning technology is not efficient enough.

If you have a perceive-think-act cycle, how is it synchronized with
the server?

SMADAS-UFSC: We used EISMASSim to communicate with the server. After
getting the percepts, the agents reason about it and decide what action to
do. Both percepts and actions are performed by EISMASSim.

386 T. Ahlbrecht et al.

GOAL-DTU: Our perceive-think-act cycle is synchronized with the server by
preventing agents from performing more than one action each step.

LTI-USP: After sending an action, the agent waits until it receives new percepts
from the server and then starts a new perceive-think-act cycle.

TUB: The cycle must complete within the server cycle.

AiWXX: To synchronize with the server, agents listen to the message from
the server and the respective agent will decide which action to perform.
Furthermore, they will send the action to the server. Our program is so
efficient that any agent is always able to send its action to the server before
the next percept arrives.

3.5 And the Moral of It Is . . .

Finally, it is important to find out lessons learned. What are positive and negative
experiences of the particular approach? Given the performance in this contest,
critically evaluate your team. What was good, what was bad in the current
scenario? How can it be improved.

What have you learned from the participation in the contest?

SMADAS-UFSC: We learned more from MAS development and about the tech-
nologies we used, like Moise and CArtAgO. Also, the contest allowed us to
evaluate and improve these technologies.

GOAL-DTU: From the participation in the contest we gained further experi-
ence with the GOAL agent-programming language.

LTI-USP: Participating in the MAPC was a great opportunity to improve our
knowledge on developing MAS, and on the JaCaMo framework.

TUB: First, to have a simple implementation of each relevant aspect in the
contest that works reliable, then improve it. Second, to make more and
smaller zones: they are easier to form and to maintain.

AiWXX: The participation in this contest has greatly improved our knowledge
of multi-agent systems and stimulated our interest in conducting research in
this area.

Which are the strong and weak points of the team?

SMADAS-UFSC: The strategy to get many small zones was the strongest point
of our team and it turned out to be hard for the opponents to disturb our
zones since our agents were spread over the whole map while our saboteurs
were able to disturb the opponent zones. However, our team can be improved
to perform better in maps where there are too many good vertices gathered
in the same place. In that case, the best strategy seems to be to build a big
zone and defend it instead of building just small zones.

GOAL-DTU: One of the strong points of the team is our ability to control a
zone. Another is our preemptive repairing; our Repairers anticipate attacks
on our Saboteurs. One of the weak points is the harass strategy for our
Saboteurs because of unresolved bugs.

Multi-Agent Programming Contest 2013 387

LTI-USP: We believe that the strong point of our team was the defensive
strategy, since it resulted in more stable zones. The weak point was the size
of our zones.

TUB: The strong point is the easy exchange between strategies that makes an
easier and faster development cycle, the weakest point was the one best zone
strategy.

AiWXX: One strong point of our team is that it only costs about 0.2 seconds to
make all decisions, on a 500-node map, in a perfect network. Our framework
is compatible enough to develop more complex strategies in future contests.
The weaknesses of our team are that we do not observe the enemy and we
are not familiar with the strategies of the other teams.

How suitable was the chosen programming language, methodology,
tools, and algorithms?

SMADAS-UFSC: All the technologies we used are suitable to MAS develop-
ment. However, during tests we created some new features to improve these
technologies.

GOAL-DTU: The GOAL system performed excellent during the contest and
we only lost to USFC who used better algorithms. However, we encountered
a number of bugs and other issues in GOAL during the development of our
system.

LTI-USP: The JaCaMo framework proved to be a very complete platform for
the development of sophisticated multi-agent systems by providing all the
necessary features that we needed to developed our team.

TUB: The easy thing is that the student do not need to know about agent
theory, framework implementation details to solve the contest problem. The
agent metaphor is intuitive as such and the framework delivers the imple-
mentation so the student developers can concentrate on the domain specific
parts.

AiWXX: Our framework can support almost every strategy we can imagine.
The C++ language we used is suitable to MAPC, because we are proficient in
this language which is well-known for its efficiency and flexibility, supporting
various data structures and algorithms.

What can be improved in the contest for next year?
SMADAS-UFSC: The contest scenario should be released earlier and new fea-

tures should not be made after the release. In this contest, the scenario
changed (the thinning was added) after the first releases and it made us
change our strategies before the contest.

GOAL-DTU: The contest could be improved by presenting the description of
the specific scenario and the requirements for the contest as early in the year
as possible. Furthermore, test-matches should not be 750 steps but rather
300-400 steps.

LTI-USP: Besides the test matches, the organization could leave a server run-
ning set up with a dummy team, so that the participants could test the
connection and communication with the server at any time. We believe also
that the early release of the software package, given more time for the de-
velopment of the teams, can bring more participants for the contest.

388 T. Ahlbrecht et al.

TUB: Dynamic role assignment and role switching to a certain extend, in prin-
ciple, nearly every human can do nearly every job, and one can use a pencil
as a weapon, too.

AiWXX: Next year, we are going to observe the enemy and analyze the strategy
of the other teams.

Why did your team perform as it did? Why did the other teams
perform better/worse than you did.

SMADAS-UFSC: Our team performed very well, except in maps with low thin-
ning (below 20%) with most of the good vertices located in the same regions.
The other teams performed worse most of times because they tried to con-
quer big zones, which are harder to protect.

GOAL-DTU: We believe that our team had strong strategies for zone control,
Saboteurs, and Repairers. Some of the other teams did not have as stable
zone control strategies as we did, and performed worse. UFSC, who won,
had a very strong zone control strategy.

LTI-USP: Given the effort put to develop the team (only 150 hours and one
developer), we were pleased with final result. The two teams that performed
better had much more human resources to test different strategies.

TUB: We build the team from scratch, although there was an contest imple-
mentation of last year. Time is always a limiting factor, i.e. the overall time
to the contest and also the time that is then used for the implementation
and testing. We did not know where we are standing. And we also had an
avoidable bug in the first match, we should have won this.

AiWXX: The performance this year was not so satisfactory and there are many
reasons. Our VPS was down during the final contest and we did not have
enough time to implement all the ideas.

Which other research fields might be interested in the Multi-Agent
Programming Contest?

SMADAS-UFSC: Machine learning is one interesting field to improve our next
team.

GOAL-DTU: Other research fields such as algorithms, logic, game theory and
AI might be interested in the contest.

LTI-USP: Algorithms, Game development, Game theory, AI, Robotics.
TUB: Even within our institution people always produce central server solu-

tions in the following fields: information retrieval, HCI, home control.
AiWXX: Distributed algorithms, Game Theory.

How can the current scenario be optimized? How would those opti-
mizations pay off?

SMADAS-UFSC: The ranged actions should be revised in order to balance the
fail probability.

GOAL-DTU: The current scenario could be optimized by making upgrades
more viable. Furthermore, ranged actions should have fewer drawbacks.

Multi-Agent Programming Contest 2013 389

LTI-USP: Regarding possible improvements for the current scenario, we would
propose to increase the probability of success for the ranged actions, since
we noticed during the competition that these actions have a huge chance
to fail and it is not worth it to use them. Another idea is to change the
score computation to consider only the zones’ values. This way, the buying
strategy will not directly impact the team score and it will be interesting to
see how each team will invest their achievement points.

TUB: The very interesting part could be how can agents from different teams
work together? Could be interesting for the interoperability part of different
frameworks, toolkits, languages and libraries.

AiWXX: The perception should be compressed so as to relieve the pressure
of network communication. And the organizers should offer VPS for the
participants.

4 Conclusion

In this paper we have tried to put together detailed information about how the
participants of this years agent contest approached the Mars scenario. We did
this through a series of concrete questions and requested brief answers. By listing
for each question the answers of all teams one after another, we get a good
comparison of the similarities and distinctions of the individual systems. We
believe this information is helpful not only for future participants of the contest,
but also for other people who are interested to apply multi-agent technology to
similar problems.

References

1. Ahlbrecht, T., Köster, M., Schlesinger, F., Dix, J.: Multi-Agent Programming Con-
test 2013. In: Cossentino, M., El Fallah Seghrouchni, A., Winikoff, M. (eds.) EMAS
2013. LNCS (LNAI), vol. 8245, pp. 292–318. Springer, Heidelberg (2013)

2. Behrens, T., Dastani, M., Dix, J., Hübner, J., Köster, M., Novák, P., Schlesinger,
F.: The multi-agent programming contest. AI Magazine 33(4), 111–113 (2012)

3. Franco, M.R., Sichman, J.S.: Improving the LTI-USP Team: A New JaCaMo based
MAS for the MAPC 2013. In: Cossentino, M., El Fallah Seghrouchni, A., Winikoff,
M. (eds.) EMAS 2013. LNCS (LNAI), vol. 8245, pp. 339–348. Springer, Heidelberg
(2013)

4. Hindriks, K., Dix, J.: Goal: A multi-agent programming language applied to an
exploration game. In: Shehory, O., Sturm, A. (eds.) Research Directions Agent-
Oriented Software Engineering, pp. 112–137. Springer, Heidelberg (2013)

5. Li, C., Liu, L.: Prior State Reasoning in Multi-agent Systems and Graph-Theoretical
Algorithms. In: Cossentino, M., El Fallah Seghrouchni, A., Winikoff, M. (eds.)
EMAS 2013. LNCS (LNAI), vol. 8245, pp. 358–367. Springer, Heidelberg (2013)

6. Villadsen, J., Jensen, A.S., Christensen, N.C., Hess, A.V., Johnsen, J.B., Woller,
Ø.G., Ørum, P.B.: Engineering a Multi-agent System in GOAL. In: Cossentino, M.,
El Fallah Seghrouchni, A., Winikoff, M. (eds.) EMAS 2013. LNCS (LNAI), vol. 8245,
pp. 329–338. Springer, Heidelberg (2013)

390 T. Ahlbrecht et al.

7. Werner, S., Bender-Saebelkampf, C., Heller, H., Heßler, A.: Multi-Agent Pro-
gramming Contest 2013: TUB Team Description. In: Cossentino, M., El Fal-
lah Seghrouchni, A., Winikoff, M. (eds.) EMAS 2013. LNCS (LNAI), vol. 8245,
pp. 349–355. Springer, Heidelberg (2013)

8. Zatelli, M.R., de Brito, M., Schmitz, T.L., Morato, M.M., de Souza, K.S., Uez, D.M.,
Hübner, J.F.: SMADAS: A Team for MAPC Considering the Organization and the
Environment as First-Class Abstractions. In: Cossentino, M., El Fallah Seghrouchni,
A., Winikoff, M. (eds.) EMAS 2013. LNCS (LNAI), vol. 8245, pp. 319–328. Springer,
Heidelberg (2013)

Author Index

Abushark, Yoosef 19
Ahlbrecht, Tobias 292, 366
Albayrak, Sahin 156

Baldoni, Matteo 38
Baresi, Luciano 1
Baroglio, Cristina 38
Bender-Saebelkampf, Christian 349,

366
Bordini, Rafael H. 58
Brito, Maiquel de 319, 366
Burkhardt, Michael 156

Cao, Qiying 274
Capuzzimati, Federico 38
Cardoso, Rafael C. 58
Case, Denise 78
Christensen, Nicolai Christian 329, 366
Colombetti, Marco 215
Cossentino, Massimo 235
Cranefield, Stephen 97

Dastani, Mehdi 117
DeLoach, Scott 78
Dix, Jürgen 292, 366

Fornara, Nicoletta 215
Franco, Mariana Ramos 339, 366

Ghose, Aditya 274
Guinea, Sam 1

Heller, Hendrik 349, 366
Hess, Andreas Viktor 329, 366
Heßler, Axel 156, 349, 366
Hübner, Jomi Fred 58, 319, 366

Jensen, Andreas Schmidt 137, 329, 366
Johnsen, Jannick Boese 329, 366

Kaiser, Silvan 156
Kaisers, Michael 156
Keiser, Jan 156
Konnerth, Thomas 156
Köster, Michael 292, 366
Küster, Tobias 156

Li, Chengqian 356, 366
Liu, Lu 356, 366

Lodato, Carmelo 235
Lopes, Salvatore 235
Lützenberger, Marco 156
Luz, Bernardo 176

Masuch, Nils 156
Meneguzzi, Felipe 176
Molesini, Ambra 196
Morato, Marcelo Menezes 319, 366
Morrison, Evan 274

Ørum, Philip Bratt 329, 366
Okouya, Daniel 215
Omicini, Andrea 196

Ranathunga, Surangika 97
Ribino, Patrizia 235

Sabatucci, Luca 235
Savarimuthu, Bastin Tony Roy 274
Savarimuthu, Sharmila 255
Schlesinger, Federico 292, 366
Schmitz, Tiago Luiz 319, 366
Shahzada, Adnan 1
Shi, Youqun 274
Simão Sichman, Jaime 339, 366
Souza, Kaio Siqueira de 319, 366

Thangarajah, John 19
Thiele, Alexander 156
Tonn, Jakob 156

Uez, Daniela Maria 319, 366

van Zee, Marc 117
Vicari, Rosa 176
Villadsen, Jørgen 329, 366
Viroli, Mirko 196

Werner, Sebastian 349, 366
Winikoff, Michael 255
Woller, Øyvind Grønland 329, 366

Xu, Hongyun 274

Zambonelli, Franco 196
Zatelli, Maicon Rafael 319, 366

	Preface
	Organization
	Table of Contents
	SeSaMe: Towards a Semantic Self Adaptive Middleware for Smart Spaces
	1 Introduction
	2 Smart Spaces
	3 A-3inaNutshell
	4 SeSaMe
	4.1 Management Layer
	4.2 Declarative Configuration of the Management Layer
	4.3 Harmonizing Heterogeneous Components

	5 Related Work
	6 Conclusions and Future Work
	References

	Propagating AUML Protocols to Detailed Design to Detailed Design
	1 Introduction
	2 Background
	2.1 AUML Protocol Specification
	2.2 AOSE Methodologies and Protocols

	3 Propagation Mechanism
	3.1 The Factors
	3.2 ALT Construct Example

	4 Evaluation
	4.1 Experimental Setup
	4.2 Results
	4.3 Error Analysis

	5 Conclusion
	References

	2COMM: A Commitment-Based MAS Architecture
	1 Introduction and Motivation
	2 Background
	3 Reifying Commitment Protocols with Artifacts
	3.1 Communication Artifact
	3.2 Using Mediated Communication at Runtime
	3.3 Using Mediated Communication at Design Time

	4 JADE Methodology Revised
	5 Related Works, Discussion and Future Work
	References

	Benchmarking Communication in Actor- and Agent-Based Languages
	1 Introduction
	2 Related Work
	3 Agent and Actor Programming Languages
	3.1 Jason
	3.2 Erlang
	3.3 Akka

	4 The Benchmarking Experiments
	4.1 Scenario 1
	4.2 Scenario 2
	4.3 Scenario 3

	5 Analysis of the Results
	6 Conclusion
	References

	Applying an O-MaSE Compliant Process to Develop a Holonic Multiagent System for the Evaluation of Intelligent Power Distribution Systems
	1 Introduction
	2 Background
	3 Related Work
	3.1 Smart Infrastructure Optimization with Agents
	3.2 Agent-Oriented Software Engineering Methodologies

	4 Foundations
	4.1 O-MaSE Process Framework
	4.2 Holonic Multiagent Architectures

	5 AO-MaSE: An O-MaSE Compliant Process
	6 Applying AO-MaSE in the Development of IPDS
	6.1 Iteration 1 – Getting Started
	6.2 Iteration 2 – Filling in the Framework
	6.3 Iteration 3 – Extending Functionality

	7 Software Engineering Challenges
	8 Results
	9 Conclusions
	10 Future Work
	References

	Embedding Agents in Business Processes Using Enterprise Integration Patterns
	1 Introduction
	2 Enterprise Integration Patterns
	3 Apache Camel
	4 The Jason BDI Agent Platform
	5 A Jason/Camel Bridge
	5.1 Application Architecture
	5.2 Agent Endpoint Design

	6 A Business Process Use Case
	7 Related Work
	8 Conclusion
	References

	Belief Caching in 2APL
	1 Introduction
	2 2APL - A Practical Agent Programming Language
	2.1 Belief Queries
	2.2 Belief Updates

	3 Extending 2APL with Belief Caching
	3.1 Extended Belief Queries
	3.2 Extended Belief Updates
	3.3 Abstract Performance Model

	4 Formal Characterization
	5 Experimentation
	5.1 Experimental Setup
	5.2 Results

	6 Conclusion
	References

	Deciding between Conflicting Influences
	1 Introduction
	2 Conflicting Influences
	2.1 Consequence-Based Decisions

	3 Modeling Influence and Consequence
	3.1 Making a Decision

	4 Generating Models
	4.1 Application of Equally General Rules

	5 Case Study
	6 Toward an Implementation
	7 Conclusion
	References

	A Multi-agent Approach to Professional Software Engineering
	1 Introduction
	2 The Case of the JIAC V Framework
	2.1 Project Summaries
	2.2 Requirements Derived from the Projects

	3 State of the Art
	4 The JIAC V Framework
	4.1 Core Mechanisms of JIAC Agents
	4.2 Default and Extension Components
	4.3 Development Methods and Tools

	5 Applications and Lessons Learned
	5.1 Planning Electric Vehicle Charging Intervals
	5.2 Multi-agent Systems for an Ageing Society
	5.3 Distributed Optimisation of Production Schedules
	5.4 Managing Cascading Failures in the Power Grid

	6 Conclusion
	References

	Alternatives to Threshold-Based Desire Selectionin Bayesian BDI Agents
	1 Introduction
	2 Background
	2.1 BDI Agents
	2.2 Bayesian Networks
	2.3 Bayesian BDI Agents

	3 Bayesian BDI Reasoning
	3.1 Threshold-Based Desire Selection

	4 Alternatives for Bayesian BDI Desire Selection
	4.1 Probability Ranking
	4.2 Biased Lottery
	4.3 Multi-desire Biased Random Selection

	5 Example
	5.1 Description
	5.2 Desire Selection
	5.3 Experimentation

	6 Conclusions
	References

	Engineering Pervasive Multiagent Systems in SAPERE
	1 Introduction
	2 MAS for Pervasive Service Ecosystems in SAPERE
	2.1 Basic Requirements
	2.2 The SAPERE Meta-model

	3 Programming SAPERE Systems: API and Examples
	3.1 The SAPERE API
	3.2 Matching and Bonding
	3.3 From Bonding to Service Composition
	3.4 Aggregation, Decay, and Spreading
	3.5 Towards Self-organisation Patterns

	4 Engineering SAPERE Systems: The Methodology
	4.1 Requirements for the SAPERE Methodology
	4.2 The SAPERE Process

	5 Related Works in the AOSE Field
	6 Conclusion
	References

	An Infrastructure for the Design and Developmentof Open Interaction Systems
	1 Introduction
	2 The Messaging Layer
	3 The Core Service Layer
	4 The Regulation Layer
	5 The Bridging Layer
	6 Related Work
	7 Conclusions
	References

	GoalSPEC: A Goal Specification Language Supporting Adaptivity and Evolution
	1 Introduction
	2 Motivation
	3 Review of Goal Specification Languages
	4 GoalSPEC: A Language to Specify System Goals
	4.1 Translating BPMN into System Goals
	4.2 The Proposed Architecture

	5 Discussion and Conclusions
	References

	Mutation Operators for the GOAL Agent Language
	1 Introduction
	2 Background
	2.1 Mutation Testing
	2.2 GOAL

	3 Deriving GOAL Mutation Operators
	4 An Empirical Evaluation of Programs
	4.1 Evidence for the Foundational Hypotheses

	5 Implementation
	6 Discussion
	References

	Automatic BDI Plan Recognition from Process Execution Logs and Effect Logs
	1 Introduction
	2 Preliminaries and the Overview of the Plan Recognition Framework
	2.1 WF-Nets
	2.2 Norms Identification
	2.3 Framework Overview

	3 Plan Body Recognition
	3.1 Motivating Example
	3.2 Handling Positive Behavior Logs
	3.3 Handling Negative Behavior Logs

	4 Context Recognition
	5 Experiments and Results
	6 Related Work
	7 Conclusions and Future Work
	References

	Multi-Agent Programming Contest 2013
	1 Introduction
	1.1 Related Work
	1.2 The Contest from 2005–2013

	2 MAPC 2013: Agents on Mars, Third Edition
	3 The Tournament
	3.1 Participants and Results
	3.2 Overview of the Teams’ Strategies

	4 Overview of Teams’ Performance
	4.1 Score, Zone Values, and Zone Stability
	4.2 Achievements
	4.3 Agents’ Reliability and Stability
	4.4 Actions Per Role

	5 Summary, Conclusion and Future of the Contest
	References

	SMADAS: A Team for MAPC Considering the Organization and the Environment as First-Class Abstractions
	1 Introduction
	2 System Analysis and Design
	2.1 Organizational Dimension
	2.2 Environment Dimension
	2.3 Agent Dimension
	2.4 Testing

	3 Software Architecture
	4 Strategies, Details and Statistics
	4.1 Team Strategies
	4.2 Comparison to Other Teams

	5 Conclusion
	References

	Engineering a Multi-Agent System in GOAL
	1 Introduction
	2 System Analysis and Design
	3 Software Architecture
	4 Strategies, Details and Statistics
	4.1 Team Strategies
	4.2 Comparison to Other Teams

	5 Conclusion
	References

	Improving the LTI-USP Team: A New JaCaMo Based MAS for the MAPC 2013
	1 Introduction
	2 System Analysis and Design
	3 Software Architecture
	4 Strategies, Details and Statistics
	4.1 Team Strategies
	4.2 Comparison to Other Teams

	5 Conclusions
	References

	Multi-Agent Programming Contest 2013: TUB Team Description
	1 Introduction
	2 System Analysis and Design
	3 Software Architecture
	4 Strategies, Details and Statistics
	4.1 Team Strategies
	4.2 Comparison to Other Teams

	5 Conclusion
	References

	Prior State Reasoning in Multi-agent Systems and Graph-Theoretical Algorithms
	1 Introduction
	2 System Analysis and Design
	3 Software Architecture
	4 Strategies, Details and Statistics
	4.1 Expanding Zones
	4.2 Strategy Details

	5 Conclusion
	References

	Multi-Agent Programming Contest 2013: The Teams and the Design of Their Systems
	1 Introduction
	2 The Contest in 2013
	3 Questions and Answers
	3.1 Teams and Their Background
	3.2 System Analysis and Design
	3.3 Software Architecture
	3.4 Strategies, Details and Statistics
	3.5 And the Moral of It Is . . .

	4 Conclusion
	References

	Author Index

