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Abstract. Consensus is an often occurring problem in concurrent and
distributed programming. We present a programming language with sim-
ple semantics and build-in support for consensus in the form of commu-
nicating transactions. We motivate the need for such a construct with a
characteristic example of generalized consensus which can be naturally
encoded in our language. We then focus on the challenges in achieving
an implementation that can efficiently run such programs. We setup an
architecture to evaluate different implementation alternatives and use it
to experimentally evaluate runtime heuristics. This is the basis for a re-
search project on realistic programming language support for consensus.
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1 Introduction

Achieving consensus between concurrent processes is a ubiquitous problem in
multicore and distributed programming [8, 6]. Among the classic instances of
consensus is leader election and synchronous multi-process communication. Pro-
gramming language support for consensus, however, has been limited. For ex-
ample, CML’s first-class communication primitives provide a programming lan-
guage abstraction to implement two-party consensus. However, they cannot be
used to abstractly implement consensus between three or more processes [11,
Thm. 6.1]—this needs to be implemented in a case-by-case basis.

Let us consider a hypothetical scenario of generalized consensus, which we
will call the Saturday Night Out (SNO) problem. In this scenario a number of
friends are seeking partners for various activities on Saturday night. Each has
a list of desired activities to attend in a certain order, and will only agree for
a night out if there is a partner for each activity. Alice, for example, is looking
for company to go out for dinner and then a movie (not necessarily with the
same person). To find partners for these events in this order she may attempt
to synchronize on the “handshake” channels dinner and movie:
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Alice
def
= sync dinner; sync movie

Here sync is a two-party synchronization operator, similar to CSP synchroniza-
tion. Bob, on the other hand, wants to go for dinner and then for dancing:

Bob
def
= sync dinner; sync dancing

Alice and Bob can agree on dinner but they need partners for a movie and
dancing, respectively, to commit to the night out. Their agreement is tentative.

Let Carol be another friend in this group who is only interested in dancing:

Carol
def
= sync dancing

Once Bob and Carol agree on dancing they are both happy to commit to going
out. However, Alice has no movie partner and she can still cancel her agreement
with Bob. If this happens, Bob and Carol need to be notified to cancel their
agreement and everyone starts over their search of partners. An implementation
of the SNO scenario between concurrent processes would need to have a special-
ized way of reversing the effect of this synchronization. Suppose David is also a
participant in this set of friends.

David
def
= sync dancing; sync movie

After the partial agreement between Alice, Bob, and Carol is canceled, David
together with the first two can synchronize on dinner, dancing, and movie and
agree to go out (leaving Carol at home).

Notice that when Alice raised an objection to the partial agreement between
her, Bob, and Carol, all three participants had to restart. However, if Carol was
taken out of the agreement (even after she and Bob were happy to commit their
plans), David would have been able to take Carol’s place and the work of Alice
and Bob until the point when Carol joined in would not need to be repeated.

Programming SNO between an arbitrary number of processes (which can form
multiple agreement groups) in CML is complicated. Especially if we consider
that the participants are allowed to perform arbitrary computations between
synchronizations affecting control flow, and can communicate with other parties
not directly involved in the SNO. For example, Bob may want to go dancing
only if he can agree with the babysitter to stay late:

Bob
def
= sync dinner; if babysitter() then sync dancing

In this case Bob’s computation has side-effects outside of the SNO group of pro-
cesses. To implement this would require code for dealing with the SNO protocol
to be written in the Babysitter (or any other) process, breaking modularity.

This paper shows that communicating transactions, a recently proposed mech-
anism for automatic error recovery in CCS processes [13], is a useful mechanism
for modularly implementing the SNO and other generalized consensus scenar-
ios. They provide a construct for non-isolated (communicating), all-or-nothing
(transactional) computation, with which we can give implementations of the
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where n ∈ N, x ∈ Var , c ∈ Chan , k ∈ K

Fig. 1. TCML syntax

SNO participants that resemble the above pseudocode. Previous work on com-
municating transactions focused on behavioral theory with respect to safety and
liveness [13, 14]. However, the effectiveness of this construct in a pragmatic pro-
gramming language has yet to be proven. One of the main milestones to achieve
on this direction is the invention of efficient runtime implementations of com-
municating transactions. Here we describe the challenges and our first results in
a recently started project to investigate this direction.

In particular, we equip a simple concurrent functional language with com-
municating transactions and use it to discuss the challenges in making an effi-
cient implementation of such languages (Sect. 2). This language contains a novel
combination of sequential evaluation and communicating transactions, making
it more appropriate for programming compared to the CCS-based calculus of
previous work [13, 14]. In this language we give a modular implementation of
consensus scenarios such as the SNO example, where participants are oblivious
of their environment and can communicate with arbitrary processes (such as
the Babysitter process) without the need to add code for the SNO protocol in
those processes. Moreover, the above more efficient, partially aborting strategy
is captured in this semantics.

Our semantics of this language is non-deterministic, allowing different runtime
scheduling strategies of processes, some more efficient than others. To study their
relative efficiency we have developed a skeleton implementation of the language
which allows us to plug in and evaluate such runtime strategies (Sect. 3). We
describe several such strategies (Sect. 4) and report the results of our evalua-
tions (Sect. 5). Finally, we summarize related work in this area and the future
directions of this project (Sect. 6).

2 The TCML Language

We study TCML, a language combining a simply-typed λ-calculus with π-
calculus and communicating transactions. For this language we use the abstract
syntax shown in Fig. 1 and the usual abbreviations from the λ- and π-calculus.
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If-True if true then e1 else e2 ↪→ e1
If-False if false then e1 else e2 ↪→ e2
Let letx = v in e ↪→ e[v/x]
Op op v ↪→ δ(op, v)
App fun f(x) = e v2 ↪→ e[fun f(x) = e/f ][v2/x]

Step E[e] −→ E[e′] if e ↪→ e′

Spawn E[spawn v] −→ v () ‖ E[()]
NewChan E[newChanT ] −→ νc.E[c] if c �∈ fc(E[()])
Atomic E[atomic

�
e1 �k e2

�
] −→ �

E[e1] �k E[e2]
�

Commit E[commit k] −→ co k ‖ E[()]

Fig. 2. Sequential reductions

Values in TCML are either constants of base type (unit, bool, and int), pairs
of values (of type T ×T ), recursive functions (T →T ), and channels carrying
values of type T (T chan). A simple type system (with appropriate progress and
preservation theorems) can be found in an accompanying technical report [12].

Source TCML programs are expressions in the functional core of the language,
ranged over by e, whereas running programs are processes derived from the
syntax of P . Besides standard lambda calculus expressions, the functional core
contains the constructs send c e and recv c to synchronously send and receive
a value on channel c, respectively, and newChanT to create a new channel of
type chan T . The constructs spawn and atomic, when executed, respectively
spawn a new process and transaction; commitk commits transaction k—we will
shortly describe these constructs in detail.

A simple running process can be just an expression e. It can also be con-
structed by the parallel composition of P and Q (P ‖ Q). We treat free channels
as in the π-calculus, considering them to be global. Thus if a channel c is free in
both P and Q, it can be used for communication between these processes. The
construct νc.P encodes π-calculus restriction of the scope of c to process P . We
use the Barendregt convention for bound variables and channels and identify
terms up to alpha conversion. We also write fc(P ) for the free channels in P .

Process
�
P1�kP2

�
encodes a communicating transaction. This can be thought

of as the process P1, the default of the transaction, which runs until the trans-
action commits. If, however, the transaction aborts then P1 is discarded and the
entire transaction is replaced by its alternative process P2. Intuitively, P2 is the
continuation of the transaction in the case of an abort. TCML provides a mech-
anism for P1 to communicate with its environment. This mechanism guarantees
that P1 has an all-or-nothing behavioral semantics (see [14]). Hence the name
communicating transactions. As we will see, commits are asynchronous, requir-
ing the process co k in the language. The name k of the transaction is bound in
P1. Thus only the default of the transaction can potentially spawn a co k. The
meta-function ftn(P ) gives us the free transaction names in P .

Processes with no free variables can reduce using transitions of the form
P −→Q. These transitions for the functional part of the language are shown
in Fig. 2 and are defined in terms of reductions e ↪→ e′ (where e is a redex ) and
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eager, left-to-right evaluation contexts E whose grammar is given in Fig. 1. Due
to a unique decomposition lemma, an expression e can be decomposed to an
evaluation context and a redex expression in only one way. Here we use e[u/x]
for the standard capture-avoiding substitution, and δ(op, v) for a meta-function
returning the result of the operator op on v, when this is defined.

Rule Step lifts functional reductions to process reductions. The rest of the
reduction rules of Fig. 2 deal with the concurrent and transactional side-effects
of expressions. Rule Spawn reduces a spawn v expression at evaluation position
to the unit value, creating a new process running the application v (). The type
system of the language guarantees that value v here is a thunk. With this rule
we can derive the reductions:

spawn(λ(). send c 1); recv c −→(λ(). send c 1) () ‖ recv c−→ send c 1 ‖ recv c

The resulting processes of these reductions can then communicate on channel c.
As we previously mentioned, the free channel c can also be used to communicate
with any other parallel process. Rule NewChan gives processes the ability to
create new, locally scoped channels. Thus, the following expression will result in
an input and an output process that can only communicate with each other:

letx = newChanint in (spawn (λ(). send x 1); recv x)
−→ νc. (spawn (λ(). send c 1); recv c)−→∗ νc. (send c 1 ‖ recv c)

Rule Atomic is a novel rule that deals with the combination of communicating
transactions and sequential computations. This rule applies when a new trans-
action is started from within the current (expression-only) process, engulfing the
entire process in it, and storing the abort continuation in the alternative of the
transaction. Rule Commit spawns an asynchronous commit. Transactions can be
arbitrarily nested, thus we can write:

atomic
�
spawn(λ(). recv c; commitk)�k ()

�
;

atomic
�
recv d; commit l �l ()

�

−→ �
spawn(λ(). recv c; commitk); atomic

�
recv d; commit l �l ()

�

�k (); atomic
�
recv d; commit l �l ()

� �

−→∗ �
(recv c; commitk) ‖ �

recv d; commit l �l ()
�

�k (); atomic
�
recv d; commit l �l ()

� �

This process will commit the k-transaction after an input on channel c and
the inner l-transaction after an input on d. As we will see, if the k transaction
aborts then the inner l-transaction will be discarded (even if it has performed
the input on d) and the resulting process (the alternative of k) will restart l:
(); atomic

�
recv d; commit l�l ()

�
. The effect of this abort will be the rollback

of the communication on d reverting the program to a consistent state.
Process and transactional reductions are handled by the rules of Fig. 3. The

first four rules (Sync, Eq, Par, and Chan) are direct adaptations of the reduc-
tion rules of the π-calculus, which allow parallel processes to communicate, and
propagate reductions over parallel and restriction. These rules use an omitted
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Sync

E1[recv c] ‖ E2[send c v]−→E1[v] ‖ E2[()]

Eq
P ≡ P ′ −→Q′ ≡ Q

P −→Q

Par
P1 −→P ′

1

P1 ‖ P2 −→P ′
1 ‖ P2

Chan
P −→P ′

νc.P −→ νc.P ′

Emb

P1 ‖ �
P2 �k P3

�−→ �
(P1 ‖ P2) �k (P1 ‖ P3)

�

Step
P −→P ′
�
P �k P2

�−→ �
P ′ �k P2

�

Co
P1 ≡ co k ‖ P ′

1�
P1 �k P2

�−→P ′
1/k

Abort

�
P1 �k P2

�−→P2

Fig. 3. Concurrent and Transactional reductions (omitting symmetric rules)

structural equivalence (≡) to identify terms up to the reordering of parallel pro-
cesses and the extrusion of the scope of restricted channels, in the spirit of the
π-calculus semantics. Rule Step propagates reductions of default processes over
their respective transactions. The remaining rules are taken from TransCCS [13].

Rule Emb encodes the embedding of a process P1 in a parallel transaction�
P2 �k P3

�
. This enables the communication of P1 with P2, the default of k. It

also keeps the current continuation of P1 in the alternative of k in case it aborts.
To illustrate the mechanics of the embed rule, let us consider the above nested
transaction running in parallel with the process P = send d (); send c ():

�
(recv c; commitk) ‖ �

recv d; commit l �l ()
�

�k (); atomic
�
recv d; commit l �l ()

� � ‖ P

After two embedding transitions we will have

�
(recv c; commitk) ‖ �

P ‖ recv d; commit l �l P ‖ ()
�

�k P ‖ . . .
�

Now P can communicate on d with the inner transaction:

�
(recv c; commitk) ‖ �

send c () ‖ commit l �l P ‖ ()
�

�k P ‖ . . .
�

Next, there are (at least) two options: either commit l spawns a co l process
which causes the commit of the l-transaction, or the input on d is embedded in
the l-transaction. Let us assume that the latter occurs:

� �
(recv c; commitk) ‖ send c () ‖ commit l

�l (recv c; commitk) ‖ P ‖ ()
�

�k P ‖ . . .
� −→∗ � �

co k ‖ co l �l . . .
�
�k . . .

�

The transactions are now ready to commit from the inner-most to the outer-most
using rule Commit. Inner-to-outer commits are necessary to guarantee that all
transactions that have communicated have reached an agreement to commit.
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This also has the important consequence of making the following three pro-
cesses behaviorally indistinguishable:

�
P1 �k P2

� ‖ �
Q1 �l Q2

�

�
P1 ‖ �

Q1 �l Q2

�
�k P2 ‖ �

Q1 �l Q2

� �

� �
P1 �k P2

� ‖ Q1 �l

�
P1 �k P2

� ‖ Q2

�

Therefore, an implementation of TCML, when dealing with the first of the three
processes can pick any of the alternative, non-deterministic mutual embeddings
of the k and l transactions without affecting the observable outcomes of the
program. In fact, when one of the transactions has no possibility of committing
or when the two transactions never communicate, an implementation can decide
never to embed the two transactions in each-other. This is crucial in creating
implementations that will only embed processes (and other transactions) only
when necessary for communication, and pick the most efficient of the avail-
able embeddings. The development of implementations with efficient embedding
strategies is one of the main challenges of our project for scaling communicating
transactions to pragmatic programming languages.

Similarly, aborts are entirely non-deterministic (Abort) and are left to the
discretion of the underlying implementation. Thus in the above example any
transaction can abort at any stage, discarding part of the computation. In such
examples there is usually a multitude of transactions that can be aborted, and
in cases where a “forward” reduction is not possible (due to deadlock) aborts are
necessary. Making the TCML programmer in charge of aborts (as we do with
commits) is not desirable since the purpose of communicating transactions is to
lift the burden of manual error prediction and handling. Minimizing the number
aborts and picking aborts that rewind the program minimally but sufficiently to
reach a successful outcome is another major challenge in our project.

The SNO scenario can be simply implemented in TCML using restarting
transactions. A restarting transaction uses recursion to re-initiate an identical
transaction in the case of an abort:

atomicrec k

�
e
� def

= fun r() = atomic
�
e�k r ()

�

A transactional implementation of the SNO participants we discussed in the
introduction simply wraps their code in restating transactions:

let alice = atomicrec k

�
sync dinner; sync movie; commitk

�
in

let bob = atomicrec k

�
sync dinner; sync dancing; commitk

�
in

let carol = atomicrec k

�
sync dancing; commitk

�
in

let david = atomicrec k

�
sync dancing; sync movie; commitk

�
in

spawn alice; spawn bob; spawn carol; spawn david

Here dinner, dancing, and movie are implementations of CSP synchronization
channels and sync a function to synchronize on these channels. Compared to a
potential ad-hoc implementation of SNO in CML the simplicity of the above
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Sched. Gath.
Transaction

trie

e1 ene2 . . .

abort,
embed,
commit

side-effect notif.
& ack

Fig. 4. TCML runtime architecture

code is evident (the version of Bob communicating with the Babysitter is just as
simple). However, as we discuss in Sect. 5, this simplicity comes with a severe
performance penalty, at least for straightforward implementations of TCML.
In essence, the above code asks from the underlying transactional implementa-
tion to solve an NP-complete satisfiability problem. Leveraging existing useful
heuristics for such problems is something we intend to pursue in future work.

In the following we describe an implementation where these transactional
scheduling decisions can be plugged in, and a number of heuristic transactional
schedulers we have developed and evaluated. Our work shows that advanced
heuristics bring measurable performance benefits but the exponential number
of runtime choices require innovative compilation and execution techniques to
make communicating transactions a realistic solution for programmers.

3 An Extensible Implementation Architecture

We have developed an interpreter for the TCML semantics in Concurrent Haskell
[7, 10] to which we can plug-in different decisions about the non-deterministic
transitions of our semantics with the runtime architecture in Fig. 4.

The main Haskell threads are shown as round nodes in the figure. Each con-
current functional expression ei is interpreted in its own thread according to the
sequential reduction rules in Fig. 2 of the previous section. Side-effects in an ex-
pression are handled by the interpreting thread, creating new channels, spawning
new threads, and starting new transactions. Our implementation of synchronous,
dynamically created channels is on top of Haskell’s MVars, and guarantees that
only processes within the same transactions can communicate.

Except for channel creation, the evaluation of all other side-effects in an ex-
pression will cause a notification (shown as dashed arrows in Fig. 2) to be sent
to the gatherer process (Gath.). This process is responsible for maintaining a
global view of the state of the running program in a Trie data-structure. This
data-structure essentially represents the transactional structure of the program;
i.e., the logical nesting of transactions and processes inside running transactions:

data TTrie = TTrie { threads :: Set ThreadID,
children :: Map TransactionID TTrie, ... }

A TTrie node represents a transaction, or the top-level of the program. The
main information stored in such a node is the set of threads (threads) and trans-
actions (children) running in that transactional level. Each child transaction
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has its own associated TTrie node. An invariant of the data-structure is that
each thread and transaction identifier appears only once in it. For example the
complex program we saw on Fig. 3:

�
(recv c; commitk)tid1 ‖ �

(recv d; commit l)tid2 �l ()
�

�k (); atomic
�
recv d; commit l�l ()

� � ‖ P tidP

will have an associated trie:

TTrie{threads = {tidP},
children = {k �→ TTrie{threads = {tid1},

children = {l �→ TTrie{threads = {tid2},
children = ∅}}}}}

The last ingredient of the runtime implementation is the scheduler thread
(Sched. in Fig. 4). This makes decisions about the commit, embed and abort
transitions to be performed by the expression threads, based on the information
in the trie. Once such a decision is made by the scheduler, appropriate signals
(implemented using Haskell asynchronous exceptions [10]) are sent to the running
threads, shown as dotted lines in Fig. 4. Our implementation is parametric to the
precise algorithm that makes scheduler decisions, and in the following section
we describe a number of such algorithms we have tried and evaluated.

A scheduler signal received by a thread will cause the update of the local
transactional state of the thread, affecting the future execution of the thread.
The local state of a thread is an object of the TProcess data-type:

data TProcess = TP {
expr :: Expression,
ctx :: Context,
tr :: [Alternative] }

data Alternative = A {
tname :: TransactionID,
pr :: TProcess }

The local state maintains the expression (expr) and evaluation context (ctx)
currently interpreted by the thread and a list of alternative processes (repre-
sented by objects of the Alternative data-type). This list contains the contin-
uations stored when the thread was embedded in transactions. The nesting of
transactions in this list mirrors the transactional nesting in the global trie and is
thus compatible with the transactional nesting of other expression threads. Let
us go back to the example of Fig. 3:

�
(recv c; commitk)tid1 ‖ �

(recv d; commit l)tid2 �l ()
�

�k (); atomic
�
recv d; commit l�l ()

� � ‖ P tidP

where P = send d (); send c (). When P is embedded in both k and l, the thread
evaluating P will have the local state object

TP{expr = P, tr = [A{tname = l, pr = P}, A{tname = k, pr = P}]}

recording the fact that the thread running P is part of the l-transaction, which
in turn is inside the k-transaction. If either of these transactions aborts then
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the thread will rollback to P , and the list of alternatives will be appropriately
updated (the aborted transaction will be removed).

Once a transactional reconfiguration is performed by a thread, an acknowledg-
ment is sent back to the gatherer, who, as we discussed, is responsible for updat-
ing the global transactional structure in the trie. This closes a cycle of transac-
tional reconfigurations initiated from the process (by starting a new transaction
or thread) or the scheduler (by issuing a commit, embed, or abort).

What we described so far is a simple prototype architecture for an interpreter
of TCML. Improvements are possible; for example, the gatherer is a message
bottleneck, and together with the scheduler they are single points of failure in
a potential distributed setting. But such concerns are beyond the scope of this
paper. In the following section we discuss various policies for the scheduler which
we then evaluate experimentally.

4 Transactional Scheduling Policies

Our goal here is to investigate schedulers that make decisions on transactional
reconfiguration based only on runtime heuristics. We are currently working on
more advanced schedulers, including schedulers that take advantage of static
information extracted from the program, which we leave for future work.

An important consideration when designing a scheduler is adequacy [15,
Sec. 11.4]. For a given program, an adequate scheduler can produce all outcomes
that the non-deterministic operational semantics give for that program. How-
ever, this does not mean that the scheduler should be able to produce all traces
of the non-deterministic semantics. Many of these traces will unnecessarily abort
and restart the computations. Previous work on the behavioral theory of com-
municating transactions has shown that all program outcomes can be reached
with traces that never restart a computation [13]. Thus a goal for schedulers is
to minimize re-computations by minimizing aborts.

Moreover, as we discussed at the end of Sect. 2, many of the exponential
number of embeddings can be avoided without altering the observable behavior
of a program. This can be done by embedding a process inside a transaction
only when this embedding is necessary to enable communication between the
process and the transaction. We take advantage of this in a communication-
driven scheduler we describe in this section.

Even after reducing the number of possible non-deterministic choices faced
by the scheduler, in most cases we are still left with a multitude of alternative
transactional reconfiguration options. Some of these are more likely to lead to
efficient traces than other. However, to preserve adequacy we cannot exclude
any of these options since the scheduler has no way to foresee their outcomes. In
these cases use heuristics to assign different, non-zero probabilities to available
choices, which leads to measurable performance improvements without violating
adequacy. Of course some program outcomes might be more likely to appear than
others. This approach trades quantitative fairness for performance improvement.

However, the probabilistic approach is theoretically fair. Every finite trace
leading to a program outcome has a non-zero probability. Diverging traces due
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to sequential reductions also have non-zero probability to occur. The only traces
with zero probability are those in the reduction semantics that have an infinite
number of non-deterministic reductions. Intuitively, these are unfair traces that
abort and restart transactions ad infinitum, even if other options are possible.

Random Scheduler (R). The first scheduler we consider is the random sched-
uler, whose policy at each point is to simply select one of all available non-
deterministic choices with equal probability, with no exception. Any available
abort, embed, or commit actions are equally likely to happen. For example, this
scheduler might decide at any time to embed Bob into Carol’s transaction, or
abort David. As one would expect, this is not particularly efficient; it is, how-
ever, obviously adequate and fair according to the discussion above. If a reduction
transition is available infinitely often, scheduler R will eventually select it.

There is much room for improvement. Suppose transaction k can commit:�
P ‖ co k �k Q

�
. Since R makes no distinction between the choices of commit-

ting and aborting k, it will often unnecessarily abort k. All processes embedded
in this transaction will have to roll back and re-execute; if k was a transaction
that restarts, the transaction will also re-execute. This results to a consider-
able performance penalty. Similarly, scheduler R might preemptively abort a
long-running transaction that could have committed, given enough time and
embeddings.

Staged Scheduler (S). The staged scheduler partially addresses these issues by
prioritizing its available choices. Whenever a transaction is ready to commit,
scheduler S will always decide to send a commit signal to that transaction be-
fore aborting it or embedding another process in it. This does not violate ade-
quacy; before continuing with the algorithm of S, let us examine the adequacy
of prioritizing commits over other transactional actions with an example.

Example 1. Consider the following program in which k is ready to commit:�
P ‖ co k �k Q

� ‖ R. If embedding R in k leads to a program outcome, then
that outcome can also be reached after committing k from the residual P ‖ R.

Alternatively, a program outcome could be reachable by aborting k (from the
process Q ‖ R). However, the co k was spawned from one of the previous states
of the program in the current trace. In that state, transaction k necessarily had
the form:

�
P ′ ‖ E[commit k] �k Q

�
, and the abort of k was enabled. Therefore,

the staged interpreter indeed allows a trace leading to the program state Q ‖ R
from which the outcome in question is reachable. ��

If a transaction T cannot commit, S prioritizes embeddings into T over abort
of T . This decision is adequate because transactions that take an abort reduction
before an embed step have an equivalent abort reduction after that step. When
no commit nor embed options are available, the staged interpreter lets the trans-
action run with probability 0.95 to progress more in the current trace, and aborts
it with probability 0.05—these numbers have been fine-tuned experimentally.

This heuristic greatly improves performance byminimizing unnecessary aborts.
Its drawback is that it does not abort transactions often, thus program outcomes
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reachable only from transactional alternatives are less likely to appear. Moreover,
this scheduler does not avoid unnecessary embeddings.

Communication-Driven Scheduler (CD). To avoid spurious embeddings, sched-
uler CD improves over R by performing an embed transition only if it is necessary
for an imminent communication. For example, at the very start of the SNO ex-
ample the CD scheduler can only choose to embed Alice into Bob’s transaction or
vice versa, because they are the only processes ready to synchronize on dinner.
Because of the equivalence

�
P �k Q

� ‖ R ≡cxt

�
P ‖ R �k Q ‖ R

�
which we

previously discussed, this scheduler is adequate.
For the implementation of this scheduler we augment the information in the

trie data-structure (Sect. 3) with channels with a pending communication opera-
tion (if any). In Sect. 5 we show that this heuristic noticeably boosts performance
because it greatly reduces the exponential number of embedding choices.

Delayed-Aborts Scheduler (DA). The final scheduler we report is DA, which adds
a minor improvement upon scheduler CD. This scheduler keeps a timer for each
running transaction k in the trie, and resets it whenever a non-sequential opera-
tion happens inside k. Transaction k can be aborted only when its timer expires.
This strategy benefits transactions that perform multiple communications before
committing. The CD scheduler is adequate because it only adds time delays.

5 Evaluation of the Interpreters

We now report the experimental evaluation of interpreters using the preceding
scheduling policies. The interpreters were compiled with GHC 7.0.3, and the
experiments were performed on a Windows 7 machine with Intel R© CoreTMi5-
2520M (2.50 GHz) and 8GB of RAM. We run several versions of two programs:

1. The three-way rendezvous (3WR) in which a number of processes compete
to synchronize on a channel with two other processes, forming groups of
three which then exchange values. This is a standard example of multi-party
agreement [11, 3, 5]. In the TCML implementation of this example each pro-
cess nondeterministically chooses between being a leader or follower within a
communicating transaction. If a leader and two followers communicate, they
can all exchange values and commit; any other situation leads to deadlock
and eventually to an abort of some of the transactions involved.

2. The SNO example of the introduction, as implemented in Sect. 2, with mul-
tiple instances of the Alice, Bob, Carol, and David processes.

To test scheduler scalability, we tested versions of the above programs with a
different number of competing parallel processes. Each process in these programs
continuously performs 3WR or SNO cycles and our interpreters are instrumented
to measure the number of operations in a given period, from which we compute
the mean throughput of successful operations. The results are shown in Fig. 5.

Each graph in the figure contains the mean throughput of operations (in log-
arithmic scale) as a function of the number of competing concurrent TCML
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Fig. 5. Experimental Results

processes. The graphs contain runs with each scheduler we discussed (random
R, staged S, communication-driven, CD, and communication-driven with delayed
aborts DA) as well as with an ideal non-transactional program (ID). The ideal
program in the case of 3WR is similar to the TCML, non-abstract implemen-
tation [11]. The ideal version of the SNO is running a simpler instance of the
scenario, without any Carol processes—this instance has no deadlocks and there-
fore needs no error handling. Ideal programs give us a performance upper bound.

As predictable, the random scheduler (R)’s performance is the worst; in many
cases R could not perform any operations in the window of measurements (30sec).

The other schedulers perform better than R by an order of magnitude. Even
just prioritizing the transactional reconfiguration choices significantly cuts down
the exponential number of inefficient traces. However, none of the schedulers
scale to programs with more processes; their performance deteriorates exponen-
tially. In fact, when we go from the communication-driven (CD) to the delayed
aborts (DA) scheduler we see worst throughput in larger process pools. This is
because with many competing processes there is more possibility to enter a path
to deadlock; in these cases the results suggest that it is better to abort early.

The upper bound in the performance, as shown by the throughput of ID is
one order of magnitude above that of the best interpreter, when there are few
concurrent processes, and (within the range of our experiments) two orders when
there are many concurrent processes. The performance of ID is increasing with
more processes due to better utilization of the processor cores.

It is clear that in order to achieve a pragmatic implementation of TCML
we need to address the exponential nature in consensus scenarios as the ones we
tested here. Our exploration of purely runtime heuristics shows that performance
can be improved, but we need to turn to a different approach to close the gap
between ideal ad-hoc implementations and abstract TCML implementations.
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6 Related Work and Conclusions

Consensus is common problem in concurrent and distributed programming. The
need for developing programming language support for consensus has already
been identified in previous work on transactional events (TE) [3], communi-
cating memory transactions (CMT) [9], transactors [4] and cJoin [1]. These
approaches propose forms of communicating transactions, similar to those de-
scribed in Sect. 2. All approaches can be used to an extent to implement general-
ized consensus scenarios, such as the instance of the Saturday Night Out (SNO)
example in this paper. Without such constructs the programmer needs to devise
and implement complex low-level protocols for consensus. Stabilizers [16] add
transactional support for fault-tolerance in the presence of transient faults but
do not directly address consensus scenarios such as the SNO example. Our work
here is based on communicating transactions which is the only construct to date
with a provably intuitive behavioral theory [13, 14].

TE extends CML events with a transactional sequencing operator; transac-
tional communication is resolved at runtime by search threads which exhaus-
tively explore all possibilities of synchronization. CMT extends STM with asyn-
chronous communication, maintaining a directed dependency graph mirroring
communication between transactions; STM abort triggers cascading aborts to
transactions that have received values from aborting transactions. Transactors
extend actor semantics with fault-tolerance primitives, enabling the composition
of systems with consistent distributed state via distributed checkpointing. The
cJoin calculus extends the Join calculus with isolated transactions which can
merge at runtime; merging and aborting are managed by the programmer, offer-
ing a manual alternative to TCML’s nondeterministic transactional operations.

Reference implementations have been developed for TE, CMT, and cJoin (in
JoCaml). The discovery of efficient implementations for communicating trans-
actions can be equally beneficial for all approaches.

This paper presented TCML, a simple functional language with build-in sup-
port for consensus via communicating transactions. This is a construct with
a robust behavioral theory supporting its use as a programming language ab-
straction for automatic error recovery [13, 14]. TCML has a simple operational
semantics and can simplify the programming of advanced consensus scenarios;
we introduced such an example (SNO) which has a natural encoding in TCML.
We have motivated this construct as a programming language solution to the
problem of programming consensus. To our knowledge, this is the most intri-
cate and general application of such constructs in a concurrent and distributed
setting. However, communicating transactions could address challenges in other
application domains, such as speculative computing [2].

The usefulness of communicating transactions in real-world applications, how-
ever, depends on the invention of efficient implementations. This paper described
the obstacles to overcome and our first results in a recently started project. We
gave a framework and a modular implementation to develop and evaluate cur-
rent and future schedulers of communicating transactions, and used it to examine
schedulers based solely on runtime heuristics. We have found that some of them
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improve upon the performance of a naive randomized implementation but do
not scale to programs with significant contention, where exponential numbers of
computation paths lead to necessary rollbacks. It is clear that purely dynamic
strategies do not lead to sustainable performance improvements.

In future work we intend to explore the extraction of information from the
source code to guide the language runtime. This information can include an
abstract model of the communication behavior of processes in order to predict
their future communication pattern. A promising approach is the development
of technology in type and effect systems and static analysis. Although scheduling
communicating transactions is theoretically computationally expensive, realistic
performance in many programming scenarios could be achievable.
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