
Functional Video Games in CS1 III

Distributed Programming for Beginners

Marco T. Morazán

Seton Hall University, South Orange, NJ, USA
morazanm@shu.edu

Abstract. This article advocates that developing distributed multi-
player video games using functional programming should be a new trend
in the CS1 classroom. This is premised on two facts: most students
are excited by video game development and distributed programming
is now common and not beyond the abilities of beginning students. A
design recipe for the development of distributed applications is presented
which has successfully been used at Seton Hall University over the past
few semesters. The primary goal is to expose students to distributed
programming and to have students think about some of the problems
programmers face when writing distributed applications. To the CS1
instructor, this article presents a model for developing their own dis-
tributed programming module.

1 Introduction

The explosion in development of internet applications (such as social media sites
and associated games) and the arrival of multicore processors to the mass market
make it clear that the use of distributed programming is a trend that is likely
to become as common as the use of the light bulb. Therefore, it is desirable
for a CS1 course to introduce students to distributed programming. The key in
CS1 is to expose students without expecting them to become experts–expertise
is developed in a more advanced course. To be successful, however, distributed
programming must be made appealing to students and must be presented in a
manner that is accessible to them.

This article argues that developing distributed multiplayer video games using
functional programming ought to be a new trend in the CS1 classroom. This is
premised on two facts: most students are excited by video game development
and distributed programming is now common and not beyond the abilities of
beginning students. The approach implemented at Seton Hall University (SHU)
using the Program by Design methodology presented in How to Design Programs
(HtDP) is described. A novel design recipe for the development of distributed
applications is presented. This new design recipe is used to illustrate how first-
year students can be led to develop a multiplayer Space-Invaders-like game called
Aliens Attack. The development of the game builds on letting students develop
code that contains subtle distributed programming bugs, like process synchro-
nization and communication overhead, which motivate refinements.

J. McCarthy (Ed.): TFP 2013, LNCS 8322, pp. 149–167, 2014.
c© Springer-Verlag Berlin Heidelberg 2014



150 M.T. Morazán

2 Background

2.1 Student’s Design and Programming Experience

At SHU, the introductory Computer Science courses focus on problem solving
using a computer [9,10]. The languages of instruction are the successively richer
subsets of Racket known as the student languages which are tightly-coupled with
HtDP [5]. Before being introduced to distributed programming, students have
studied topics such as: primitive data, primitive functions, programmer defined
functions and variables, programmer defined data, processing finite compound
data, processing arbitrarily large compound data and structural recursion, and
abstraction with higher-order functions. These topics are covered following much
of the structure of HtDP [5]. There are two 75-minute lectures every week and
the typical classroom has between 20 to 30 students. In addition to the lectures,
the instructor is available to students during office hours (3 hours/week) and via
e-mail.

The curriculum, however, also varies in significant ways from HtDP by includ-
ing a module for distributed programming. Distributed programming is intro-
duced after structural recursion for two reasons: our experience suggests that stu-
dents that have developed some programming expertise do not find distributed
programming intimidating and from a student’s perspective much more inter-
esting video games can be developed after knowing how to design programs that
process data of arbitrary size. The curriculum also places a great deal of empha-
sis on iterative refinement with a video game going through versions that grow
in complexity as the course advances culminating in a multiplayer distributed
version.

2.2 The Universe Teachpack

The course uses the universe teachpack [6] for video game development which pro-
vides the functionality to develop distributed games. The clients/players/worlds
in a universe exchange messages with a server. The universe teachpack provides
two functions to create messages: make-package and make-bundle. The first is
used by a client to create a pair that contains a (possibly new) game state and
a message to the server. The second is used by the universe server to create
a structure that contains a (possibly new) server state, a list of mails to any
of the clients, and a list of worlds to be disconnected from the universe. The
constructor for a mail, make-mail, requires the recipient client and the message.
Any message transmitted must be an S-expression. This means that students
must design and implement functions to marshal and unmarshal their data–a
topic first-year students can understand and will encounter later in an operating
systems course [12]. This set-up also forces students to program using a specific
API which is a useful skill to have them develop.

The syntax required to create a player’s world specifies handlers that update
the game or render the game to the screen. Version 1 of the game requires:



Functional Video Games in CS1 III 151

(big-bang

INIT-WORLD ;; initial world

(on-draw draw-world) ;; handler for drawing the world

(on-key process-key) ;; handler for key events

(on-tick update-world) ;; handler for clock ticks

(stop-when game-over?) ;; handler to test for game end

(register LOCALHOST) ;; registers with the server

(on-receive process-message) ;; handler for incoming messages

(name MY-ID)) ;; name of this world

During development students use LOCALHOST as the address of the server, but
at play time they may also use an internet address to specify where the server
is running.

The syntax for the universe server is similar and specifies the event handlers.
For version 1 of distributed Aliens Attack the following syntax is required:

(universe

initU ;; the initial universe

(on-new add-new-world) ;; handler for new worlds joining

(on-msg receive-message) ;; handler for incoming messages

(on-disconnect rm-world)) ;; handler for worlds disconnecting

This syntactical set-up provides a framework to get students started. Specifically,
students identify the handlers which are needed and must write each handler
along with any auxiliary functions that may be needed. Readers interested in
further details about the universe teachpack are referred to the help pages in
DrRacket [8] and the modest guide on how to design worlds [4].

3 A Design Recipe for Distributed Computing

After developing a single player Aliens Attack [9], students ask if it is possible
to have multiple players. Figure 1 displays a snapshot of a multiplayer version
of Aliens Attack that they have in mind. Students are generally excited about
the possibility of playing together which sets the stage to discuss distributed
programming.

Students are led through an informal discussion of what is needed to write
a multiplayer Aliens Attack. The idea of the game being distributed naturally
comes to our students given their experience with internet games. They realize
the need to send and to receive messages as well as the need for a server that
provides support to coordinate all the players/clients. The following design recipe
for distributed programming is presented:

1. Divide the problem into components.
2. Draft data definitions for the different components and the server.
3. Design a communication protocol.
4. Design and implement marshalling-unmarshalling functions and create data

definitions for messages.



152 M.T. Morazán

Fig. 1. A Snapshot Illustrating Multiplayer Aliens Attack

5. Design and implement the components (starting with handlers)
6. Design and implement a server (starting with the handlers).

7. Test your program.

One of the main goals of the above design recipe is to gently introduce students
to distributed programming. Students are explained that, as any other design
recipe seen earlier in the course, each step has a specific outcome. This new
design recipe, however, is more akin to the design recipe for generative recursion
in HtDP (which provides less guidance on how to complete the steps) than to
the design recipes for structural recursion. Like generative recursion, distributed
programming requires the development of insight into a problem in order to
identify components and to understand how to integrate components. The first
four steps are intended to help students develop such insight which guides the
actual development of code for individual components and the server using the
design recipes in HtDP.

In Step 1, they must define what each component/client as well as the server
does. In Step 2, they must draft data definitions for the data that each compo-
nent/server is to manipulate. In Step 3, they must define a communication pro-
tocol specifying when a client sends a message to the server and when the server
sends mail to a client. An efficient way to achieve this is by using protocol diagrams
that illustrate when communication occurs. In step 4, students must develop mar-
shalling and unmarshalling functions. This step provides an excellent opportunity
to help students make a connection with a topic they have studied in their Math-
ematics courses given that a marshalling and the corresponding unmarshalling
function are inverses of each other. Another important result of this step is data
definitions for different kinds of messages. In step 5, students must design and im-
plement the handlers as well as any necessary auxiliary functions for each client.



Functional Video Games in CS1 III 153

In step 6, students design and implement the server. In step 7, students must test
their programs and redesign/reimplement if necessary. In this step, students must
consider the subtle problems that arise in distributed programming such as pro-
cess synchronization, communication overhead, and speed.

4 Multiplayer Aliens Attack Version 1

Students are asked to think about how to make a multiplayer game from their
single player Aliens Attack [9]. By an overwhelming margin, the most common
answer is to add to each single player the other players. That is, each player
runs their game and others can join. The details of how to do this are, of course,
fuzzy at best and they are invited to use the new design recipe.

4.1 Problem Components

Students identify each player as a component that is responsible for rendering
the state of the game, moving a single rocket, moving the aliens, changing the
direction the aliens are moving in, and moving the shots. In addition, each com-
ponent must provide support for a list of allies and must receive messages to
reproduce the actions taken by other players. This component decomposition
is very attractive to students, because it means that they can re-use code they
have written for a single player Aliens Attack by making a small number of
changes and additions (e.g., the development of a message processing handler).
This turns out to be important to keep frustration low with what some students
view as a Herculean task at the beginning.

Student-guided class discussion leads to the server being responsible for re-
ceiving messages from the players indicating their rocket moving and shooting
actions and for broadcasting said messages to all the other players. That is, a
thin-server is the intuitive choice for (most) students. In addition, the server
sends the initial army of invading aliens to the first player that joins the game.

4.2 New Data Definitions

For a player, the new data definitions are displayed in Figure 2. For the server,
the only new data definition is for a universe (of players/worlds/clients):

;; A universe is a (listof iw), where iw is an iworld.

An iworld is the internal representation used by the universe teachpack for the
clients that join the server. All these data definitions are in familiar territory for
the students and require the development of examples and function templates.

4.3 Communication Protocol Design

A communication protocol is described to beginning students as a collection of
communication chains. A communication chain is defined as a series of messages



154 M.T. Morazán

;; A rocket is a non-negative number.

;; An ally rocket, (make-ar x n), is a structure where x is a number

;; and n is a string for the name of the player that controls it.

(define-struct ar (x name))

;; A list of ally rockets (loar) is a (listof ar).

;; An alien is a posn.

;; A list of aliens (loa) is a (listof alien).

;; An alien army (aa) is either ’uninitialized or a loa.

;; A world is a structure, (make-world r l a d s), where r is a rocket,

;; l is an loar, a is an aa, d is a string, and s is a los.

(define-struct world (rocket allies aliens dir shots))

Fig. 2. Player Data Definitions for Multiplayer Aliens Attack Version 1

Fig. 3. Communication Protocol for a Rocket Move

that are exchanged between the server and the clients. These chains are sparked
by either an action taken by a client or an action taken by the server. A com-
munication chain is visualized using a protocol diagram–a diagram illustrating
the messages in a chain. This abstraction is understood by students and allows
for a well-focused discussion during classroom development.

In Aliens Attack, a player sparks a communication chain when a key event
occurs. That is, when a rocket move or shot is made by, pi, the ith player. For
example, when pi moves the rocket, a rocket-moved message is sent to the server
that includes the new ally rocket1. The server forwards the message to all the
other players. Figure 3 displays the protocol diagram for a rocket move. A similar
protocol diagram is developed for shot creation.

1 To all other players a move made by pi is a move made by an ally rocket.



Functional Video Games in CS1 III 155

Fig. 4. Joining an empty universe Fig. 5. Joining a non-empty universe

The server sparks a communication chain when its state changes. Classroom
analysis reveals that this occurs two times: when a new player joins the game
and when a player disconnects from the game. Two cases are distinguished when
a player, pi, joins the universe. In the first case, the new player is the first
in the universe and the server only needs to send the initial alien army. This
communication chain is captured in the protocol diagram in Figure 4. In the
second case, pi, joins a non-empty universe. In this case, the server requests the
state of the game from an existing player, pj such that i �= j, with a mail that
includes i. The server also sends a new-ally message to all the worlds already in
the universe. After the server receives a message from pj that includes the state
of the game and the destination for said state (i.e., i), the server forwards the
game state to pi. This communication chain is captured in the protocol diagram
in Figure 5. A similar analysis leads to the communication chain required when
a player leaves the game.

4.4 Design Marshalling and Unmarshalling Functions and Data
Definitions for Messages

Students are now ready to design and implement marshalling and unmarshalling
functions as well as to develop data definitions for messages. Marshalling is done
by converting data into an S-expression and appropriately tagging the message.
Unmarshalling is done by removing the tag and reconstructing the original data.

There are two types of messages: To-Server messages and To-Client messages.
To-Server messages are identified by incoming arrows to the server in the protocol
diagrams. Likewise, To-Client messages are identified by incoming arrows to the
clients. Each set of clients that can receive different kinds of messages must
have their own To-Client message data definition. In Aliens Attack this task is



156 M.T. Morazán

A To-Server Message is either:

1. (list ’rocket-move rocket string)

2. (list ’new-shot number number)

3. (list ’world

string

(list-of (list-of number string))

(list-of (list-of number number))

string

(list-of (list-of number number)))

Fig. 6. To-Server Message Data Definition

simplified since all clients are the same. Thus, only one To-Client data definition
is required which is ideal for pedagogy in CS1.

Consider the communication chain in Figure 3. The protocol requires that
a rocket-move message be sent to the server that includes the new ally rocket
created by the move. This means that an ally rocket must be marshalled and
unmarshalled. Since an ally rocket is a structure with a number, n, and a string,
s, a To-Server rocket-move message is defined as a list containing the symbol
rocket-move, n, and s. The corresponding marshalling and unmarshalling func-
tions are:

; ally-rocket --> message

(define (marsh-rckt-mv an-ar)

(list ’rocket-move (ar-x an-ar) (ar-name an-ar)))

; message --> rocket

(define (unmarsh-rckt-mv m)

(make-ar (first (rest m)) (first (rest (rest m)))))

Repeating this process for every incoming arrow to the server labeled dif-
ferently in the protocol diagrams leads students to a complete data definition
for a To-Server message as displayed in Figure 6, to the development of mar-
shalling and unmarshalling functions, and to a function template for functions
that process To-Server messages.

To develop the data definition for messages to clients, observe in the protocol
diagrams that any To-Server messages is echoed to the clients. Therefore, a To-
Client message can be a To-Server message. The protocol diagrams also inform
us that that the server can send a player a message to request the world, to
send the initial alien army, and to inform a player of a new ally or of an ally
lost. The To-Client message data definition is displayed in Figure 7 from which
a corresponding function template is developed.

4.5 Component Implementation

Each different component is independently implemented. For Aliens Attack all
clients are the same except for their identifying name (a string). This simplifies



Functional Video Games in CS1 III 157

A To-Client Message is either:

1. To-Server Message

2. (cons ’init-army (listof (listof number number)))

3. (list ’rm-ally string)

4. (list ’req-world string)

5. (list ’new-ally number string)

Fig. 7. To-Client Message Data Definition

the task for students given that only one component needs to be developed.
Furthermore, students can see that their task now is to refine their single player
code into multiplayer code. This requires updating functions that process data
whose definition has been refined, adding communication code to functions that
make changes to the state of the game, and the creation of a message processing
function. For the students, the updates are not hard nor intellectually obscure.
Previously in the course, students have had to refine their code when a refinement
has been made to a data definition. This step is not surprising to them, but some
do find it tedious and time-consuming.

The addition of communication code is, however, a new element for them.
For any arrow in the protocol diagrams that goes from a player to the server,
communication code must be added. For example, the protocol diagram in Figure
3 tells us that a rocket-movemessage must be sent to the server when the rocket is
moved. This means that their original key event handler requires small updates:
updating the function signature to return a package and updating the function
body to create a package by marshalling the rocket move. The updated code is
displayed in Figure 8. As the reader can observe, adding communication code to
the client is not complex for students after a communication protocol has been
designed. Performing the same work for all out-going arrows from a player to
the server yields the refined functions for player-sparked communication chains.

The final step implements a handler to process To-Client messages. This func-
tion is written by specializing the function template for To-Client messages which
contains a conditional statement to distinguish among the variety of messages.
This handler takes as input a world and a message and it returns a (new) world.
For example, when a rocket moved message arrives the list of allies is updated
and a new world is produced. This snippet illustrates the idea:

[(symbol=? ’rocket-move (first mess))

(make-world (world-rocket w)

(update-allies (unmarsh-rckt-mv mess)

(world-allies w))

(world-aliens w)

(world-dir w)

(world-shots w))]



158 M.T. Morazán

; process-key: world key --> package

; Purpose: Handler to process key events.

(define (process-key a-world key)

(cond

[(key=? "up" key) (process-up-key a-world)]

[else (local [(define new-world

(make-world

(move-rocket (world-rocket a-world) key)

(world-allies a-world)

(world-aliens a-world)

(world-dir a-world)

(world-shots a-world)))]

(make-package new-world

(marsh-rckt-mv

(make-ar (world-rocket new-world)

MY-ID)))]))

Fig. 8. Refined Key-Processing Handler for Multiplayer Aliens Attack

4.6 Server Implementation

The server is implemented in a top-down manner starting with the handlers
and consulting the protocol diagrams. For example, the handler used when a
player joins the game is based on the protocol diagrams of Figures 4 and 5.
This function takes as input a universe and a joining iworld and produces a
bundle. To create the new universe, the joining world is added to the list of
current worlds. The mails that must be generated depend on the state of the
universe. According to Figure 4, if the universe is empty the server sends the
joining world the initial alien army. According to Figure 5, if the universe is not
empty the server requests the game state from an existing world and sends a new
ally message to all the current players in the universe. There are no worlds that
need to be disconnected from the universe. The resulting handler is displayed in
Figure 9. The handler for a world disconnecting from the game is developed in
the same fashion.

The server’s message processing handler is developed using the template for
functions on a To-Server message. For example, for the communication chain in
Figure 5 the following snippet of code is written:

[(symbol=? (first msg) ’world)

(make-bundle

u

(list (make-mail (get-world (first (rest msg)) u) msg))

empty)]

This snippet keeps the universe unchanged, forwards the world message to the
player indicated in the message, and removes no players from the universe.



Functional Video Games in CS1 III 159

; add-new-world: universe iworld --> bundle

(define (add-new-world u w)

(make-bundle

(cons w u)

(cond [(not (empty? u))

(cons (make-mail (first u) (marsh-req-world (iworld-name w)))

(map (lambda (iw)

(make-mail iw (marsh-new-ally (iworld-name w))))

u))]

[else (list (make-mail w (marsh-loa INIT-ALIEN-ARMY)))])

empty))

Fig. 9. The Server’s New Player/World Handler

4.7 Testing

Students are advised that testing is two-fold: the testing they are familiar with
checking that functions produce the correct output (using Racket’s check-expect
library) and testing for bugs that only arise in distributed programming such as
synchronization, communication overhead, and deadlock.

The distributed programming bugs are tested for by running the game. Stu-
dents see on their screens a working game with allies, but unlike the experienced
reader they do not realize there is a synchronization bug. The instructor ought
to let the students discover the bug by joining the game and projecting the in-
structor’s screen to the class. It does not take long for students to realize that
not all players have the game in the same state. This approach makes process
synchronization a real concern for students and with some class discussion they
realize that messages take time to travel from the source to the destinations.
While the messages travel, the source player continues changing the state of
their game. Thus, different players have different states.

5 Multiplayer Aliens Attack Version 2

Students quickly realize that a possible solution is for the game state to reside in
one location and this strongly motivates the next refinement. It is important to
note that this refinement is not prescribed by the instructor based on knowledge
that students do not have. Instead, this refinement has its genesis in the students
based on their results from version 1 of the multiplayer game.

5.1 Problem Components

Students identify each player as a component that is responsible for rendering
the state of the game to the screen and for processing key events. Players do not
update the state of the game and, therefore, do not need a handler to update the
world every time the clock ticks. When a key event occurs, a message is sent to



160 M.T. Morazán

the server requiring a new key event handler. The syntax required for a player
is:

(big-bang INIT-WORLD

(on-draw draw-world)

(on-key process-key)

(on-receive process-message)

(register LOCALHOST)

(name MY-ID)

(stop-when game-over?))

As in version 1, the server needs handlers to add new players, to remove play-
ers, and to process messages. The server is now also responsible for maintaining
the state of the game, thus, requiring a handler for clock ticks. When the state of
the game changes, the players are sent the new state. In essence, the students are
defining a thick-server that is solely responsible for all the necessary computing.
The required syntax for the server is:

(universe initU

(on-new add-new-world)

(on-msg receive-message)

(on-disconnect rm-this-world)

(on-tick update-univ))

5.2 Draft Data Definitions

Students are led to see that in this refinement there is no need to distinguish
between a rocket and the allies. For the server, all the players are allies each
of which is still controlled by a single player. In addition, students include a
boolean in the game state to indicate if the game has ended. The following is
the refined data definition for the game state:

;; A world is a structure, (make-world l a d s o), where

;; l is a loar, a is a aa, d is a string, s is a los, and

;; o is a boolean.

(define-struct world (allies aliens dir shots over))

Given the added work done by the server, the representation of the state of
the server must also be refined to include both the state of the game and, as
before, the players represented as iworlds. The refined data definition for the
state of the server is:

;; A univ is a structure, (make-univ l w), where l is a

;; (listof iworld) and w is a world

(define-struct univ (worlds state))

5.3 Communication Protocol Design

Students are asked when does a player initiate a communication chain and are
asked to develop protocol diagrams. Figure 10 displays the protocol diagram



Functional Video Games in CS1 III 161

Fig. 10. Version 2 Protocol Diagram for a Rocket Move

students develop for a rocket move. A player sends the server a rocket move
message containing the direction of the move. The server processes the move
and sends all players an updated world. A similar diagram is developed for new
shots.

Students realize that the server starts a communication chain when a player
joins the game, a player disconnects from the game, and when the game state is
updated after a clock tick. The protocol diagrams are easy to visualize with the
server always sending the game state to all the players.

5.4 Design Marshalling and Unmarshalling Functions and Data
Definitions for Messages

The protocol diagrams reveal to students that there is only one variety for a To-
Client message and only two varieties for To-Server messages in this refinement:

A To-Client message is:

(list ’world

(listof (listof number string))

(listof (listof number number))

string

(listof (listof number number))

boolean)

A To-Server message is either:

1. (list ’rckt-move string)

2. (list ’new-shot number number)

This means only three pairs of marshalling-unmarshalling functions. For exam-
ple, for a rocket move we have:



162 M.T. Morazán

; process-key: world key --> package or world

; Purpose: This function is the handler to process key events.

(define (process-key a-world key)

(cond [(key=? "up" key)

(make-package

a-world

(marsh-shot (make-posn (get-my-x (world-allies a-world))

ROCKET-Y)))]

[(or (key=? "left" key) (key=? "right" key))

(make-package a-world (marsh-rckt-move key))]

[else a-world]))

Fig. 11. Player key-event handler for version 2

; string --> message

(define (marsh-rckt-move direction) (list ’rckt-move direction))

; message --> string

(define (unmarsh-rckt-move m) (first (rest m)))

The most complex pair is the one for a world which provides the opportunity to
reinforce lessons using lambda expressions and higher-order functions like map.

5.5 Component Implementation

Implementing the components means updating the handlers for processing key
events and for rendering the game state using the refined data definition for
world. In addition and according to the protocol diagrams, communication code
must be added for key event handling and message handling. As before, one goal
is to reuse as much code as possible.

Figure 11 displays the handler for key events developed by the students during
class discussion using the protocol diagrams. If the “up” key is pressed, the state
of the game is not changed by the player and a message with a new marshalled
shot is sent to the server. Similarly, if the “left” or “right” key are pressed the
state of the game is not changed and a marshalled rocket move is sent to the
server. If any other key is pressed, the state of the game is unchanged and no
message is sent to the server (which means a package is not constructed).

Given that there is only one type of To-Client message the message handler
is very straightforward:

; process-message: world message --> world

(define (process-message w mess)

(cond [(symbol=? ’world (first mess)) (unmarsh-world mess)]

[else (error "World received an unknown message" mess)]))

Similarly the handler to check if the game has ended is also straightforward for
students at this point in the course:



Functional Video Games in CS1 III 163

; univ --> univ

(define (update-univ u)

(cond [(game-over? (univ-state u))

(make-bundle

u

(map (lambda (iw)

(make-mail iw (marsh-world (mk-end-wrld (univ-state u)))))

(univ-worlds u))

empty)]

[else

(local [(define new-w (update-world (univ-state u)))]

(make-bundle

(make-univ (univ-worlds u) new-world)

(map (lambda (iw) (make-mail iw (marsh-world new-w)))

(univ-worlds u))

empty))]))

Fig. 12. Clock tick handler for version 2

; world --> boolean

(define (game-over? w) (world-over w))

5.6 Server Implementation

The four handlers for the server are implemented during class in the same manner
as version 1. The handler to add a new world dispatches on whether the state of
the universe has an empty list of iworlds or not. The message handler dispatches
on the two varieties of To-Server messages. The handler used when a player
disconnects, creates a bundle with a new list of iworlds that does not contain
the disconnected player and a new game state in which the disconnected player
is not one of the allies.

The clock tick handler is the most complex. It dispatches on whether or not
the game has come to a end. If the game is over, then a world in which the
over flag is set is mailed to all the players. Otherwise, the state of the server is
updated by updating the state of the game. This updated game state is mailed
to all the worlds. A sample implementation developed by students is displayed
in Figure 12.

5.7 Testing

Testing reveals that the synchronization problem appears resolved. We say ap-
pears, because we do not prove that it is resolved2. An instructor can, indeed,
leave it at that and move on. Students have done enough to get them started
thinking about synchronization. There is, of course, an additional issue that can

2 Program correctness is not yet woven into CS1 at SHU.



164 M.T. Morazán

be pointed out to students. In the case of Aliens Attack, the order in which shots
are added to the game state does not matter. In a different distributed applica-
tion, however, order may very well matter and students are made aware that in
such cases mutual exclusion must be guaranteed. This topic is not thoroughly
discussed, but students are told that solutions will be studied, for example, in
an operating systems course.

More importantly for our purpose, testing also reveals a most annoying char-
acteristic for students: the game is much slower. The issues of bottleneck and
communication overhead are brought forward during class discussion. This mo-
tivates the development of a third version of the game.

6 Multiplayer Aliens Attack Version 3

The development of version 2 marks the end of lecturing in the distributed-
programming module in CS1 at SHU. Students now have some experience with
a complex communication protocol (version 1), with a simple communication
protocol (version 2), and with some important bugs that arise in distributed
programming. It is time for them to test their skills and their understanding on
their own.

The next refinement of the game is assigned as a group project. Students are
divided into groups of 2 or 4 students. Each group is further divided into two
subgroups. One subgroup is responsible for developing the components (i.e., the
players) and the other is responsible for developing the server. The subgroups
must work together to agree on the data definitions, the communication protocol,
and the marshalling functions. Then each subgroup develops their own code.
When both subgroups are ready, they get together to test their program and,
hopefully, enjoy the game and/or fix bugs.

The programs developed by students have been extremely encouraging. Stu-
dents submit working games that employ a communication protocol that can
be described as middle of the road between version 1 and version 2. That is,
they keep the components of version 2, but do not transmit the whole state of
the game every time a server makes an update. Instead, they only transmit the
part of the state that is changed. This type of communication protocol has been
implemented in practice by, for example, Quake 3 [11]. Having CS1 students
writing distributed applications on their own is nothing short of amazing.

7 Student Assessment

After each semester of CS1 at SHU, students are asked to fill out a short survey
to evaluate the distributed-programming module. On a scale from 1 (low) to five
(high), students are asked if distributed programming is intellectually stimulat-
ing. The average of the distribution to date is 3.35 with 76% of the students
answering 3-5. The middle 50% of the students are in the range 3-4. Surprisingly
(to the author), a follow-up question reveals that students felt that in terms
of intellectual stimulus distributed programming was much like what they have



Functional Video Games in CS1 III 165

been doing all semester. From the student’s perspective, the module contained
new interesting material, but the transition to distributed programming required
mostly tasks they had done before. This can only be interpreted as a success for
the described methodology. The introduction to distributed programming is gen-
tle enough that students feel it is a natural progression that builds on what they
have learned.

Students are also asked to rank how much more difficult distributed program-
ming is to non-distributed programming on a scale from 1 (not more difficult
at all) to 5 (a lot more difficult). The average of the distribution to date is 3.9
with the middle 50% in the range 3-5. A follow-up question revealed that the
top reason distributed programming is harder is error messages that are not very
informative. This type of problem occurred mostly when there were bugs in the
marshalling and unmarshalling functions that led to “unknown message” errors
or errors trying access parts of a message that did not exist. The difficulty lies
in that a message that, for example, causes the server to crash is not always
fixed in the server’s code. Instead, it may have to be fixed in the client’s code.
Students, however, tend to only search for the bug in the code that signals the
error (i.e., the server’s code in this example). Another reason cited as to why dis-
tributed programming is harder by some students is that they felt that keeping
track of a communication protocol was a lot of work. That is, they had to add
communication code to “a lot” of functions and had to write message processing
functions.

Finally, students were asked about their level of excitement to develop a multi-
player video game on a scale from 1 (not at all excited) to 5 (extremely excited).
The average of the distribution to date is 3.5 with the middle 50% in the range
3-4 and with 76% of the students in the range 3-5. The overwhelming majority of
students in the top half of the range clearly indicates that the use of multiplayer
video games can serve as great motivation for students to explore distributed
programming.

8 Related Work

Teaching distributed programming in CS1 was virtually unheard of a few years
ago. Now, there is a growing group of academics attempting it. The developers
of DrRacket and HtDP have taught distributed programming in CS1 and have
briefly described their approach using a step-locked game3 to control a UFO [6].
In contrast, the work presented in this article aims to expose students to both
distributed programming and to some of its pitfalls like synchronization and
communication overhead. Exposing students to such pitfalls is difficult to do
with step-lock games like the UFO game [6] and Chat Noir [7]. In addition, the
work described in this article can be used by educators “in the trenches” focusing
on the actual deployment of a distributed functional video game module in the
classroom that is tightly-coupled with other work developed by students during
the semester.

3 A game in which players take discrete turns.



166 M.T. Morazán

A modest introduction to distributed programming for novices, with some
previous exposure to programming, is found in Realm of Racket (ROAR) [2].
This book is intended as a general introduction to programming using video
games and uses Racket (not the student languages) as the programming medium.
ROAR presents the development of a distributed video game, Hungry Henry, in
which players run around the screen eating cupcakes. Like the work presented
in this article, ROAR advocates that distributed programming is a natural part
of an introduction to programming. In contrast to the work presented in this
article, ROAR exposes readers only to the thick-server model (used in version 2
of Aliens Attack) and does not discuss the pitfalls of distributed programming.
The development outlined in ROAR is in the spirit of the design recipe presented
in this article, but does not explicitly put forth a design recipe for distributed
programming nor does it make explicit how to develop a distributed program
through a series of verifiable steps.

The use of functional video games in CS1 is a little more extensive, but still
just beginning to flourish. Soccer-Fun, developed using Clean, aims to motivate
students by having them write programs to play soccer games [1]. There have
been no reported efforts to make the platform distributed in order to allow
players to compete against each other nor has this platform been used in CS1.
Yampa is a language embedded in Haskell used to program reactive systems
such as video games [3]. The use of Yampa in the classroom appears to have
been mostly discontinued, but work using functional video games in CS1 [9,10]
has sparked an interest to reignite the use of Yampa in education. In previous
work, the author presents how to use video games to teach programming using
primitive data, structures, and structural recursion [9] and using generative and
accumulative recursion [10].

9 Concluding Remarks

Distributed programming ought and can be an integral part of CS1. The need
for distributed programming in CS1 is based on the undeniable fact that the use
of distributed computing is becoming ubiquitous. The argument for success with
distributed computing in CS1 is based on the illustrative development of a non-
trivial functional multiplayer video game in SHU’s CS1. Not a single function
needed for the presented multiplayer game is beyond the ability of students that
have studied structural recursion and the associated design recipes in HtDP. One
of the major advantages of including distributed functional video game develop-
ment in CS1 is that students become very excited about programming. There
is no doubt that students feel empowered when they can develop a distributed
application in a realm that is of interest to them. Another advantage is that stu-
dents think about programming issues early in their undergraduate years, thus,
providing a solid foundation for advanced courses.

Acknowledgements. The author thanks the plt-scheme and the plt-edu mail-
ing list community for the many frank and eye-opening discussions about teach-
ing programming, about HtDP, and about interesting programming projects for



Functional Video Games in CS1 III 167

students. The author also thanks Matthias Felleisen for our discussions about
distributing programming in CS1, for his feedback on the approach described in
this article, and for the “code walk” done with students at Seton Hall University
that implemented distributed Aliens Attack.

References

1. Achten, P.: Teaching Functional Programming with Soccer-Fun. In: FDPE 2008,
pp. 61–72. ACM, New York (2008)

2. Bice, F., De Maio, R., Florence, S., Lin, F.-Y.M., Lindeman, S., Nussbaum, N.,
Peterson, E., Plessner, R., Van Horn, D., Felleisen, M., Barski, C.: Realm of Racket.
No Starch Press (2013)

3. Courtney, A., Nilsson, H., Peterson, J.: The Yampa Arcade. In: Haskell 2003, pp.
7–18. ACM, New York (2003)

4. Felleisen, M., Findler, R., Fisler, K., Flatt, M., Krishnamurthi, S.: How to Design
Worlds (2008), http://world.cs.brown.edu/1/

5. Felleisen, M., Findler, R., Flatt, M., Krishnamurthi, S.: How to Design Programs:
An Introduction to Programming and Computing. MIT Press, Cambridge (2001)

6. Felleisen, M., Findler, R., Flatt, M., Krishnamurthi, S.: A Functional I/O System
or, Fun for Freshman Kids. In: ICFP 2009, pp. 47–58 (2009)

7. Findler, R.: CS 15100 Fall 2008 Project 3: ChatNoir. Dept. of Electr. Engr. and
Comp. Sci., Northwestern University (2008),
http://www.eecs.northwestern.edu/robby/uc-courses/15100-2008-fall/

proj3. pdf

8. Findler, R., Clements, J., Flanagan, C., Flatt, M., Krishnamurthi, S., Steckler, P.,
Felleisen, M.: DrScheme: A Programming Environment for Scheme. J. of Functional
Programming 12(2), 159–182 (2002)

9. Morazán, M.T.: Functional Video Games in the CS1 Classroom. In: Page, R.,
Horváth, Z., Zsók, V. (eds.) TFP 2010. LNCS, vol. 6546, pp. 166–183. Springer,
Heidelberg (2011)

10. Morazán, M.T.: Functional Video Games in CS1 II. In: Peña, R., Page, R. (eds.)
TFP 2011. LNCS, vol. 7193, pp. 146–162. Springer, Heidelberg (2012)

11. Fabien Sanglard. Quake 3 Source Code Review: Network Model (June 2012),
http://fabiensanglard.net/quake3/network.php

12. Silberschatz, A., Galvin, P.: Operating System Concepts. Addison-Wesley, Reading
(1994)

http://world.cs.brown.edu/1/
http://www.eecs.northwestern.edu/robby/uc-courses/15100-2008-fall/proj3.pdf
http://www.eecs.northwestern.edu/robby/uc-courses/15100-2008-fall/proj3.pdf
http://fabiensanglard.net/quake3/network.php

	Functional Video Games in CS1 III Distributed Programming for Beginners
	1 Introduction
	2 Background
	2.1 Student’s Design and Programming Experience
	2.2 The Universe Teachpack

	3 A Design Recipe for Distributed Computing
	4 Multiplayer Aliens Attack Version 1
	4.1 Problem Components
	4.2 New Data Definitions
	4.3 Communication Protocol Design
	4.4 Design Marshalling and Unmarshalling Functions and Data Definitions for Messages
	4.5 Component Implementation
	4.6 Server Implementation
	4.7 Testing

	5 Multiplayer Aliens Attack Version 2
	5.1 Problem Components
	5.2 Draft Data Definitions
	5.3 Communication Protocol Design
	5.4 Design Marshalling and Unmarshalling Functions and Data Definitions for Messages
	5.5 Component Implementation
	5.6 Server Implementation
	5.7 Testing

	6 Multiplayer Aliens Attack Version 3
	7 Student Assessment
	8 Related Work
	9 Concluding Remarks
	References




