
Jay McCarthy (Ed.)

 123

LN
CS

 8
32

2

14th International Symposium, TFP 2013
Provo, UT, USA, May 2013
Revised Selected Papers

Trends in
Functional Programming

Lecture Notes in Computer Science 8322
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Jay McCarthy (Ed.)

Trends in
Functional Programming
14th International Symposium, TFP 2013
Provo, UT, USA, May 14-16, 2013
Revised Selected Papers

13

Volume Editor

Jay McCarthy
Brigham Young University
Computer Science Department
3361 TMCB, P.O. Box 26576
Provo, UT 84602-6576, USA
E-mail: jay.mccarthy@gmail.com

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-45339-7 e-ISBN 978-3-642-45340-3
DOI 10.1007/978-3-642-45340-3
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013956014

CR Subject Classification (1998): D.1, D.3, F.3, E.1

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2014

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

From the Crossroads of the West, the 14th Symposium on Trends in Functional
Programming took place on the Brigham Young University campus in Provo,
Utah, May 14–16, 2013. The program included presentations of 27 papers sub-
mitted by researchers from many nations and an invited talk by Jeremy Siek on
gradual typing. Most of the authors submitted revisions of their papers, based
in part on responses to their presentations. The revisions were reviewed and dis-
cussed in detail by the Program Committee, and 10 of them were accepted for
publication in this volume. About half of the revisions accepted for publication
were student papers (that is, papers with a student as first author).

TFP aspires to be a forum for new directions in functional programming
research. This year was no exception. Presentations covered new ideas for dis-
tributed systems, education, functional language implementation, hardware syn-
thesis, static analysis, testing, and total programming.

The editor wants to thank the Program Committee and all of the referees
for their diligence and for their well-considered reviews. We also want to thank
Brigham Young University for their generous support. Finally, we thank the
participants for their lively attention during the symposium. Again we leave
you, from within the shadows of the everlasting hills; may peace be with you,
this day and always.

November 2013 Jay McCarthy

Organization

Program Committee

Sergio Antoy Portland State University, USA
James Caldwell University of Wyoming, USA
John Clements California Polytechnic State University, USA
Wolfgang De Meuter Vrije Universiteit Brussel, Belgium
Marko van Eekelen Open University of the Netherlands and

Radboud University Nijmegen,
The Netherlands

Andy Gill University of Kansas, USA
Arjun Guha Cornell University, USA
Jurriaan Hage Universiteit Utrecht, The Netherlands
Suresh Jagannathan Purdue University, USA
Rita Loogen Philipps-Universität Marburg, Germany
Jay McCarthy (chair) Brigham Young University, USA
Keiko Nakata Institute of Cybernetics at Tallinn University

of Technology, Estonia
Henrik Nilsson University of Nottingham, UK
Tom Schrijvers Ghent University, Belgium
Clara Segura Complutense University of Madrid, Spain
Nikhil Swamy Microsoft Research, USA
Viktória Zsók Eötvös Loránd University, Budapest, Hungary

Additional Reviewers

Ki Yung Ahn
Nada Amin
Kenichi Asai
Jasmin Blanchette
Nicolás Cardozo
Theo D’Hondt

Mischa Dieterle
Simon Frankau
Nicolas Frisby
Thomas Horstmeyer
Bas Joosten
Magnus Madsen

Manuel Montenegro
Aseem Rastogi
K.C. Sivaramakrishnan
Josef Urban
Bernaard van Gastel
Robert Zinkov

Sponsoring Institutions

Brigham Young University (USA)

Table of Contents

Total Functional Software Engineering: Overview Paper 1
Baltasar Trancón y Widemann

Using Rewriting to Synthesize Functional Languages
to Digital Circuits . 17

Christiaan Baaij and Jan Kuper

Distributed Places . 34
Kevin Tew, James Swaine, Matthew Flatt,
Robert Bruce Findler, and Peter Dinda

Bytecode and Memoized Closure Performance . 58
Marco T. Morazán

Towards Efficient Abstractions for Concurrent Consensus 76
Carlo Spaccasassi and Vasileios Koutavas

Blame Prediction . 91
Dries Harnie, Christophe Scholliers, and Wolfgang De Meuter

Model-Based Shrinking for State-Based Testing . 107
Pieter Koopman, Peter Achten, and Rinus Plasmeijer

Control-Flow Analysis with SAT Solvers . 125
Steven Lyde and Matthew Might

A Survey of Polyvariance in Abstract Interpretations 134
Thomas Gilray and Matthew Might

Functional Video Games in CS1 III: Distributed Programming
for Beginners . 149

Marco T. Morazán

Author Index . 169

Total Functional Software Engineering

Overview Paper

Baltasar Trancón y Widemann

Programming Languages and Compilers
Ilmenau University of Technology
baltasar.trancon@tu-ilmenau.de

Abstract. Methods for mathematically basic and precise description
of system behavior at discrete interfaces have been developed by David
Parnas and his groups and collaborators over many years. Total func-
tions can play a crucial role as constructive and effectively executable
semantics for various levels of these descriptions. Straightforward analy-
sis and transformation techniques for functional programs, particularly
effective for total functions, can be used as significant steps towards auto-
mated generation of implementations. Theoretical claims are supported
by practical examples. The focus is on insight into applications from the
functional perspective rather than on innovations in functional program-
ming itself.

1 Introduction

The software engineer David Parnas has been influential, besides many other
areas, in the development of a particular, mathematically sound methodology
for the description and specification of system behavior. The general style of the
work of his groups in the Software Quality Research Laboratories at McMaster
University, Ontario and the University of Limerick, and many collaborators, can
be summarized in the following two maxims:

1. The essential complexity of real-world systems must be acknowledged, and
met with appropriately scalable methods, but

2. the mathematics underlying these methods must be as simple and rigorous
as possible.

In recent years, it has emerged that many of the proposed methods can be
understood in a framework of total functional programming. This paradigm shift,
away from the original presentation in elementary set theory, implies multiple
illuminating changes in perspective:

1. Algebraic structure is uncovered.Method design choices that have been based
on practical experience and justified pragmatically by mathematical fitness
and economy, can be strengthened theoretically by being mapped to natural
algebraic constructs.

J. McCarthy (Ed.): TFP 2013, LNCS 8322, pp. 1–16, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

2 B. Trancón y Widemann

2. Executability is emphasized. In contrast to descriptive set-theoretic mod-
els where effective evaluation procedures are implicit meta-information, the
functional programming view puts denotational and operational semantics
on equal footing.

3. Tools are leveraged. Beyond executability in principle, actual implementa-
tions are needed at the end of the day, to serve as test oracles, simulators
or prototypes. In the traditional set-theoretic approach, there is a choice be-
tween confinement to some theorem prover sandbox, and naive translation
to a general-purpose programming language, with all the associated pitfalls.
The tried and proven tools of functional programming language implementa-
tion support symbolic evaluation and code generation in a way that is both
reliable and flexible.

The current state of the art is such that the theoretical basis is established
fairly comprehensively. By contrast, the practical side of real tools is just aca-
demic prototypes with limited scope and service life-time. The purpose of the
present paper is to serve as a conceptual reference for future implementations.

The following three sections each discuss one particular method, from ba-
sic to advanced. Note that the focus here is on the application of functional
technologies outside their principal programming domain. Most of the material
discussed in the following is of little novelty from the functional programming
perspective proper, but summarizes, condenses, and in places even improves the
understanding of the subject with respect to its traditional presentation.

2 Predicate Logic

The Parnas approach to algebraic–logical language [22] differs from most other
software engineering methodologies by treating algebraic (value-level) expres-
sions as partial, but logic (truth-level) expressions as total.

2.1 Two Worlds

The algebraic world is one of strict partial functions: An expression of the form
f(e1, . . . , en) is defined if and only if all subexpressions ei are defined, and the
tuple (v1, . . . , vn) of their respective values is in the domain of f . Denotationally,
every value type has a bottom element. By contrast, the logic world is one of total
predicates: An expression of the form p(e1, . . . , en) is true if all subexpressions
ei are defined, and the tuple (v1, . . . , vn) of their respective values is in the
extension of p, and false otherwise. That is, the type of truth values has no
bottom element. Case distinction operators have condition arguments of truth
value type, reflexively embedding the logic world in the algebraic world.

This account of partiality is in line with the IEEE754 standard for floating-
point arithmetics, where comparison operators on numbers totalize in the same
way with respect to the bottom value NaN. It is, however, distinct from the Z [9]
approach, where logic is three-valued with an undetermined bottom element,

Total Functional Software Engineering 3

predicates are strict, but logical connectives are non-strict in both arguments. For
example, in the expression (0/0 = 1)∨ (1 = 1), the first clause is false according
to [22], but undetermined according to Z, whereas the whole expression is true
in either case, albeit for different reasons.

The special role of the bottom element has profound implications on evalu-
ation strategies, which can be seen clearly from basic considerations of deno-
tational semantics of functional programs: A definedness predicate can be for-
malized within the language, simply as “defined e ≡ t” which entails that each
evaluation strategy must

– either have a solvable halting problem, making the predicate defined total,
– or wrongly assign the value bottom rather than zero to some instances of

the expression scheme “if then else(defined e, 1, 0)” by failing to terminate.

2.2 Enter Total Functions

An elegant solution of this dilemma is to restrict the expression language such
that it can be interpreted in a strongly normalizing calculus, thus reducing the
halting problem to triviality.

Such calculi define total rather than partial functions; the partiality of alge-
braic expressions is emulated adequately by the monad M = 1 + , known as
Maybe in Haskell. In the standard category-theoretic notation, it comes with
the natural transformations ηX : X → M(X) (unit, return in Haskell) and
μX : M2(X) → M(X) (multiplication, join in Haskell), as well as the family of
constants ⊥X ∈ M(X) as left injections. Partial functions of type A � B are
encoded as A → M(B). Values of type A are encoded as M(A). Strict, checked
application is given by the operator

e : M(A) f : A → M(B)

e � f : M(B)
e � f = μB

(
M(f)(e)

)

known as bind (�=) in Haskell. An emulation of the intended partial language
can then be given by induction over the syntactic structure of expressions:

– Constants and variables are taken to be always defined.

c : A

c† : M(A)
c† = ηA(c)

– The pseudo-constant ∗ denotes an atomic undefined expression.

∗A : A

∗†A : M(A)
∗†A = ⊥A

– Tupling (only binary shown for simplicity) is strict.

(e1, e2) : A1 ×A2

(e1, e2)† : M(A1 ×A2)
(e1, e2)

† = e†1 �
(
λx1. e

†
2 �

(
λx2. ηA1×A2(x1, x2)

))

4 B. Trancón y Widemann

– References to partial functions are Kleisli-extended.

f : A � B

f † : M(A) → M(B)
f † = � f

– References to predicates are totalized sending bottom to false.

p : A → B

p† : M(A) → B
p† = [p, const f]

where [g, h] : A+B → C combines cases f : A → C and g : B → C.
– Emulation distributes over application.

(
s(e1, . . . , en)

)†
= s†

(
(e1, . . . , en)

†)
It is easy to see that this emulation preserves well-typing, and extends to

equational definitions of functions and predicates.

2.3 Simplification

The administrative operations inserted by the emulation complicate the struc-
ture of expressions considerably at first sight. But fortunately, a substantial part
can be eliminated by straightforward partial evaluation and simplifications using
the monad laws. In particular we have:

f †(η(x)) = η(x) � f = f(x) p†
(
η(x)

)
= [p, const f]

(
η(x)

)
= p(x)

Note that such program transformations are rather easier, and can be applied
more aggressively, in a strongly normalizing setting. For instance, consider a
definition of partial function composition:

compose(g, f)(x) = (g(f(x)))† = g†(f †(x†)) = η(x) � f � g = f(x) � g

Here the inner application is reduced to unchecked form because x is necessarily
defined, seeing that applications to undefined arguments are handled at the call
site. The outer application needs to remain checked for spontaneous undefined-
ness of the subexpression f(x).

If additionally f is total by construction, that is f = η◦f ′—not an uncommon
case, see for example the definition of tupling as a (strict) partial function given
above—, then we can reduce this further and eliminate another check:

compose(g, η ◦ f ′)(x) = η
(
f ′(x)

)
� g = g

(
f ′(x)

)
In summary, a reflexive combination of partial algebraic and total logical lan-

guage can be represented faithfully in a calculus of total functions, by using a
well-known monadic lifting. Locally total subexpressions are reduced to their
natural form by straightforward simplification of the resulting monadic expres-
sions. This is of course a fairly banal insight in a functional programming context.
But it is nowhere nearly as automatic and self-evident in contexts of set-theoretic
proof systems or ad-hoc code generators, the standard tools of system engineers,
where partiality is an implicit side condition rather than integral part of data
flow.

Total Functional Software Engineering 5

2.4 Discussion: Expressive Power

Of course the proposed framework, based on a calculus of total functions, has
a significant limitation: The language that can be interpreted in it has to be
quite restricted, compared with the full power of first-order predicate logic that
would be available (albeit incompletely operationalized) in a theorem prover
environment. Expressing any nontrivial algorithm in terms of constructively total
functions is known to be a difficult task.

Fortunately, the existing method base definitions and the examples suggest
that very simple data structures and algorithms go a long way. Simple alge-
braic datatypes and primitive recursive access functions, whose representation in
strongly normalizing calculi is well-understood, make up most of the framework.
By contrast, particularly troublesome features, notably infinite set comprehen-
sions and general recursive function definitions, are apparently not required.

This finding suggests an interesting, open philosophical question: is the com-
putational simplicity just a happy coincidence, or are mathematically more in-
volved constructs pragmatically ill-suited to the task of behavioral description
of systems, because they are harder to understand for the human engineer, or
less evident from empirical observation?

3 Tabular Expressions

Classical mathematics are heavily biased in terms of algebraically simple func-
tions which have a homogeneous representation as a simple expression with one
or more variables over their whole domain. Mildly heterogeneous definitions such
as piecewise definitions for a domain partitioned into intervals are admissible,
but more general case distinctions are generally avoided. By contrast, the theory
of computation in computer science is discrete by nature, and case distinctions
feature pervasively and nestedly in function definitions.

Where case distinctions are made in logically rigorous descriptive formalisms,
it is important to ascertain that cases are non-contradictory and complete. Func-
tional programming provides a notation for case distinction that is powerful,
theoretically elegant and easy to implement, namely by pattern matching on
algebraic datatypes. Unfortunately this approach has little acceptance in system
engineering contexts. Engineers traditionally favor a different form, namely tab-
ular expressions, where alternative cases are laid out spatially as columns or rows
of a table. The tabular notation has attractive pragmatic advantages [21,24]:

1. It scales from simple two- and three-way distinctions to extremely complex
expressions where many-way and/or hierarchical case distinctions along mul-
tiple, more or less orthogonal criteria are combined.

2. It is fairly easy and intuitive to read for domain experts without formal
training in symbolic programming, and can be used, edited and archived
effectively in paper form.

3. It supports manual and machine-supported inspection, validation and veri-
fication of descriptions by systematic coverage of rows, columns or cells; ap-
plications include soundness and completeness proofs as well as inspection of

6 B. Trancón y Widemann

safety-critical procedures [23], protocol checks for concurrent systems [18,19]
and test suite design [5,6,7].

The discussion here summarizes material exposed in more detail in [28].

3.1 Simple Example

Fig. 1 shows a simple real-world tabular expression. It appeared in inspection
documents of the Darlington Nuclear Power Generation Station [16,15]. In the
shutdown system, parts of the monitoring logic only apply near maximum power.
The pertaining sensors are “conditioned in” (activated) above a certain power
level and “conditioned out” (deactivated) below. To avoid a jitter effect (high-
frequency switching events), the respective threshold levels Kin and Kout are
set to slightly different values, thus introducing artificial hysteresis. Between the
two, the previous value is maintained. See the top half of Fig. 1 for an illustration
of the behavior, and the bottom half for the tabular description as a function of
the threshold parameters, the current power level and the previous value.

The function definition is organized as a one-dimensional decision table. The
top (header) (1 × 3)-grid of truth-level expressions specifies a three-way case
distinction. The bottom (main) (1 × 3)-grid of value-level expressions contains
the respective function results. Note that values are Boolean by accident, but the
main grid is three-valued (true, false,⊥) whereas the header grid is two-valued.

The function is simple in structure and does not appear to merit the tabular
form at first sight. But closer inspection reveals a subtlety that illustrates why
symmetric case distinctions, as expressed by a header grid, are sometimes supe-
rior to if-then-else cascades or first-fit pattern matching: The cases in the upper
grid are only consistent and complete under the implicit constraint Kout < Kin .
Hence a thorough inspection of the table, either by a human expert or by a
theorem prover (such as PVS, which found the error in actual fact [15]), will
reveal that the description is formally deficient. By contrast, a cascading defini-
tion where each case implies the negation of the preceding, would just silently
go wrong.

3.2 Complex Example

Fig. 2 shows a complex tabular expression. It specifies a test procedure for com-
puter keyboards [1]. The general idea is fairly simple: all keys are to be pressed
in order, and if all registered keycodes correspond to the expected sequence, the
keyboard passes the test. This homogeneous principle is then complicated by
provisions for correcting errors both of the hardware and of the human tester
by pressing the escape key, without exempting the escape key from the test se-
quence. The tabular expression is the result of a formal analysis of several pages
of prose, eliminating several ambiguities, inconsistencies and loopholes.

The function N specifies the number of the next key to be pressed or a ver-
dict (Pass or Fail), depending on the sequence T of keys pressed so far. The

Total Functional Software Engineering 7

t

Power

PwrCnd

Kout

Kin

PwrCnd(Prev : bool ;Power ,Kin ,Kout : real) : bool ≡

Power ≤ Kout Kout < Power < Kin Power ≥ Kin

false Prev true

Fig. 1. Simple tabular expression: power conditioning for sensors

N(T) ≡
T =

T �=
N

(
p(T)

)
= 1 1 < N

(
p(T)

)
< L N

(
p(T)

)
= L

keyOK (T) N
(
p(T)

)
+ 1 Pass

¬keyOK (T)

¬keyEsc(T)

pkeyOK (T)

N
(
p(T)

) − 1
¬pkeyOK(T)∧
pkeyEsc(T)∧

ppkeyOK (T)

¬pkeyOK(T)∧

N
(
p(T)

)

pkeyEsc(T)∧
¬ppkeyOK(T)

¬pkeyOK(T)∧
1¬pkeyEsc(T)

keyEsc(T)

¬pkeyEsc(T)

pekeyEsc(T)

pkeyEsc(T)∧
Fail¬pekeyEsc(T)

where keyOK (T) ≡ r(T) = N
(
p(T)

)
keyEsc(T) ≡ r(T) = Esc

pkeyOK (T) ≡ keyOK
(
p(T)

)
pkeyEsc(T) ≡ keyEsc

(
p(T)

)

ppkeyOK (T) ≡ keyOK
(
p2(T)

)
pekeyEsc(T) ≡ N

(
p2(T)

)
= Esc

Fig. 2. Complex tabular expression: computer keyboard checking procedure

8 B. Trancón y Widemann

constant denotes the empty sequence. Nonempty sequences T can be decon-
structed into a most recent event r(T) and a previous sequence p(T).

The tabular form highlights several features that are hard to emulate in func-
tional programming style or any other textual format:

1. The table is two-dimensional: the chosen variant depends on two more or less
orthogonal case distinctions. They are specified by the top and left header
grids of truth-level expressions, respectively. Together they select a value-
level cell of the bottom-right main grid at the spatial intersection of their
axes. The choice which of these to evaluate first is completely arbitrary.

2. Each header is hierarchical, having a binary decision tree structure ending in
flat two-or-more-way distinctions. The choice of decision criteria and order
of flat distinctions is logically arbitrary, but pragmatically highly relevant
for good readability of the resulting table: Related cases should end up close
together, ideally in adjacent cells of the main grid. Note that the presentation
in Fig. 2 improves over the original from [1] in this respect by reordering rows.

3. Homogeneous regions of cases in the main grid, or “modes” of the system,
are indicated by invisible cell boundaries. Missing expressions indicate un-
satisfiable conditions; those are an artifact of the headers not being fully
independent.

4. Case distinctions make effective use of undefined values, discussed in the
previous section, for keeping things simple. For instance, all auxiliary pred-
icates involve equations whose parts are defined for nonempty sequences T
only; hence the only row that is satisfiable for the column corresponding to
T being empty is the fifth, where all predicates occur in negative form. The
header expression T
= is redundant and included for making complete-
ness more obvious. More generally, nested distinctions can always be read as
conjunctions and simplified accordingly, which would be difficult in logically
three-valued frameworks, because one clause may govern the definedness of
another.

3.3 Table Combinators

A connection between tabular expressions and functional programming has al-
ready been noted by [14]. There, a combinator approach is followed: a collection
of compositional table construction operators is given, with executable Haskell
implementation for operational semantics, and proof support in the Isabelle sys-
tem for denotational semantics. While both theoretically elegant and technically
effective, the approach suffers from severe limitations regarding the shapes of
tables that can be constructed; a drawback shared with both other practical
tools such as [25] and theoretical formalizations such as [10,12,11,4].

3.4 General Table Model

The examples have already shown a weakness, or rather looseness, of the tabular
notation: Considerable amounts of semantic detail are implicit in the graphical

Total Functional Software Engineering 9

Content [I, J,X, Y] = Map[I,Map[J,Expr [X,Y]]]

TType[I, J,X, Y] =

(
wellf : Content [I, J,X, Y]×X → bool ;
eval : Content [I, J,X, Y]×X � Y

)

Table[I, J,X, Y] =

(
content : Content [I, J,X, Y];
type : TType [I, J,X, Y]

)

Fig. 3. Table model as functional datatype

layout or the conventions of users. This is typically adequate for a team of
experts, but not for broader communication, formal verification or automated
evaluation. Support for certain ad-hoc tabular formats has been built into many
engineering tools. These may be pragmatically useful, but there is no theoretical
boundary of what should be included; the examples already show both plain
one- and two-dimensional forms, and several advanced features, such as branch-
ing headers [8,27], and shared and empty main grid cells. Various generalizations
(for instance extension to n dimensions, grids with circular or otherwise fancy
topology, and specialized case distinctions such as C-style switch) are mathemat-
ically straightforward, but defeat the capabilities of implemented, hard-wired
table models.

A unified theoretical approach [13] defines tabular expressions abstractly as a
formal structure of three components:

1. The content of the table as an indexed set of indexed grids containing cell
expressions. Both grid and cell indices are abstract; no layout geometry is
implied. This is the only component particular to a concrete table.

2. A well-formedness predicate that decides whether the table content conforms
to given shape and consistency constraints. This component is shared among
tabular expressions of a common type.

3. One or more evaluation functions that interpret the cell content, conditional
on its well-formedness, as a function of its argument variables. This compo-
nent is also shared among tabular expressions of a common type.

Examples of content, with a conventional graphical layout, are depicted in
Fig. 1 and 2. Examples of the other, more generic, components are given infor-
mally in section 3.2. An early tool prototype is described in [26].

3.5 Functional Table Model

The general table model also translates smoothly to a total functional con-
text [28]. Fig. 3 shows a datatype definition for table models. Type parameters
are I, J for grid and cell indices, and X,Y for domain and range, respectively.

The function argument may occur in each table cell subexpression. Whereas
first-order tools default to symbolic representations, in higher-order functional
programming the obvious encoding technique is lambda lifting : every cell con-
tains an individual function of the global arguments. The transformation is trivial

10 B. Trancón y Widemann

because cell contents are independent (neither individually not mutually recur-
sive). Consequently we simply have Expr [X,Y] = (X � Y).

The well-formedness predicate may contain both static and dynamic con-
straints. These could be separated by binding time analysis, in order to be
checked as early as possible; cf. [2]. For n-dimensional regular function tables,
which subsume the two given examples with n = 2, the types parameters are
chosen such that:

1. The cell indices of each header grid are sets of finite paths closed under
prefixes.

2. The cell indices of the main grid are the Cartesian product of the cell indices
of the header grids.

The well-formedness constraints are:

1. There are n+1 grids. The first n grids are headers and contain truth-valued
expressions. The last grid is the main grid and contains Y -valued expressions.

2. In each header, the respective conjunctions of formulas along maximal paths
partition the function domain.

3. For each main index (j1, . . . , jn), if the formulas indexed by ji in the i-th
header, respectively, are jointly satisfiable for all i, there is a corresponding
cell; other main cells may be omitted.

We treat hierarchical header structure as a syntactic abbreviation for simplicity.
The corresponding evaluation function is:

1. For each i-th header grid, find the maximal path ji such that the conjunction
of all formulas in cells along the path is satisfied.

2. Evaluate the main grid cell at (j1, . . . , jn).

The table type effectively defines a semantic checker and interpreter for the
table content. Obviously when both type and content are provided, these algo-
rithms can be simplified drastically by partial evaluation of the pair. Assume
well-formedness is split by binding time analysis into a static and a dynamic
part

swellf : Content [I, J,X, Y] → bool ;

dwellf : Content [I, J,X, Y]×X → bool

Then we can partially evaluate the table type components applied to the con-
crete content, obtaining the following record of table operations, which hides the
defining content completely:

⎛
⎝pswellf : bool ;

pdwellf : X → bool ;
peval : X � Y

⎞
⎠

Possibly more static safety is required, such as a guarantee that the “com-
piled” evaluation function peval is defined whenever the dynamic well-formedness

Total Functional Software Engineering 11

check pdwellf holds. The strong connection between total function calculi and
constructive proof systems, exemplified in tools such as Coq or Agda, could be
used to resolve these issues statically. Simple but useful prover support has been
given for the table combinators of [14], by virtue of their inductive structure.
No practical attempts to perform these tasks manually or automatically for the
general table model have been documented so far.

4 Trace Function Method

The trace function method is a formalism for black-box description of observ-
able system or component behavior at an interface; see for instance [17]. It is
intended as a mathematically simple and direct replacement for algebraic and
automata-theoretic approaches, as well as the earlier trace assertion [3,20] and
trace rewriting [33,32] methods.

A trace is a sequence of relevant events at some interface, where each event
is a discrete point in time at which interface variables may change their values.
Input and output variables under control of the environment and the system,
respectively, are unified. Valid system behavior is specified by giving, for each
output variable, a trace function or relation, which maps traces to possible output
values for the final event. The set of valid traces is then defined inductively:

– The empty trace is valid.
– A valid trace can be extended by a following event if and only if all output

variables of that event conform to the respective trace functions.

Having the trace, that is the sequence of preceding interface events, instead of
internal state as the causal determinant of future behavior makes this approach
mathematically and epistemologically very abstract and elegant. However, there
are a couple of logical, philosophical and technical issues:

1. Trace functions specify part of an event, namely the value of one output
variable, in terms of traces ending in that event; how can we avoid circularity?

2. The proposed way to avoid circularity is to include only the input part of
the most recent event in the argument to trace functions; is that solution
natural, and is it uniquely so?

3. Trace functions take syntactically well-formed, as opposed to valid, traces
as their arguments (necessarily to avoid meta-circularity); how do counter-
factual values in invalid traces (“fake history”) affect the specification of
behavior?

4. A trace function has two distinct ways of depending recursively on its own
value for trace prefixes, namely by retrieval from events and by recursive
self-application; are they exchangeable, and if not, which one is preferred?

5. Trace functions can depend on variables in past events in many ways: on
the last event only, on a fixed sliding window, on the most recent event
matching a certain pattern, etc.; which (space) complexity classes are there
with respect to implementation as a state system, and can efficient iterative
representations be derived automatically?

12 B. Trancón y Widemann

All of these can be addressed by rephrasing trace functions, with their peculiar
recursive structure, in a recursion scheme for total functions, namely course-of-
values iteration, in category-theoretic presentation [31].

The formal scheme, in a nutshell, is as follows: Consider an endofunctor F
whose initial algebra (μF, inF : FμF → μF) is a datatype of interest. The
simplest total recursion scheme over F is iteration: For every F -algebra (C,ϕ :
FC → C) there is a unique function (|ϕ|) : μF → C such that

(|ϕ|) = ϕ ◦ F (|ϕ|) ◦ in−1
F

The canonical example is the functor N = 1 + with the initial algebra
(N, [0, succ]). EveryN -algebra (C,ϕ = [z, s]) gives rise to a function (|ϕ|) : N → C
with (|ϕ|)(n) = sn(z), hence the name iteration for the scheme. Written as an
explicitly self-referential definition, this gives

(|ϕ|)(n) =
{
z n = 0

s
(
(|ϕ|)(n− 1)

)
n > 0

That is, the function may depend recursively on its own value for the immediate
predecessor(s) of the current argument value. The recursive tabular expression
depicted in Fig. 2 is easily seen to be of this form.

The scheme of course-of-value iteration generalizes ordinary iteration to func-
tions that depend on their own value for all transitive predecessors of the current
argument value. Consider the composite functor CF = C×F () and a final CF -
coalgebra (νCF, outCF : νCF → CFνCF) as a (co)datatype. Then for every
map ψ : FνCF → C there is a unique function {|ψ|} : μF → C whose precise
definition and characterizing universal property are discussed in detail in [31].
The theory seems like overkill for many applications, where actually infinite
sequences are irrelevant

Coming back to the previous example, we find that νCN ∼= C+ ∪Cω (the set
of non-empty finite and infinite sequences over C) and NνCN ∼= C∗∪Cω . Then
we have specifically

{|ψ|}(n) = ψ
(
〈{|ψ|}(n− 1), . . . {|ψ|}(0)〉

)
(1)

The canonical example is C = N and

ψ(s) =

⎧⎪⎨
⎪⎩
0 |s| = 0

s0 + 1 |s| = 1

s0 + s1 |s| > 1

where s = 〈s0, s1, . . . 〉, which generates the Fibonacci function {|ψ|}.
Let I, O be the record type of inputs/outputs of an interface, respectively,

and write IO = I ×O. Defining a functor T = IN = I × (1 +) gives μT ∼= I+.
Consequently νOT ∼= IO+∪IOω and TνOT ∼= I×(IO+∪IOω). In words, TνOT
differs from IO∗∪IOω only in the fact that the first O element is missing. A map

Total Functional Software Engineering 13

bag(T) ≡

T =
0

r(T).op =

clr

cnt n

inc min(n+ 1, B)

dec max (n− 1, 0)

where n ≡ bag
(
p(T) � r(T).arg

)

T � x ≡
T =

r(T).op = clr ∨ r(T).arg = x T

r(T).op �= clr ∧ r(T).arg �= x p(T) � x

Fig. 4. Trace function specification of multiset data structure

of the form ψ : TνOT → O maps such a partial trace to the (missing) output,
and hence defines a trace function {|ψ|} with

{|ψ|}(〈i0, . . . , in〉) = ψ
(
i0,

〈(
i1, {|ψ|}(〈i1, . . . , in〉)), . . . , (in, {|ψ|}(〈in〉)

)〉)
(2)

It can be seen, analogously to equation (1), that values for either infinite or
illegal traces are irrelevant for the result.

The following simple but nontrivial example specifies the behavior of a mu-
table multiset component that can hold elements of some type E. Its interface
supports four operations op ∈ {clr, cnt, inc, dec} which completely remove all el-
ements, count the multiplicity of a given element arg , and add or remove one
instance of arg, respectively. Each operation returns the resulting multiplicity
of the given element. Real-world constraints are added with requirements for
robust behavior: No element may exceed a fixed multiplicity B, and removal
of non-existent elements is ignored. These simple but natural constraints break
naive attempts at algebraic specification: the algebraic structure may be correct,
but is too complicated and irregular to be considered truly adequate.

Fig. 4 depicts a trace function specification of the multiset component. It
is explicitly recursive via the auxiliary term n, but not in ordinary iteration
form: the recursive argument is some predecessor of the current one, determined
dynamically by the auxiliary function T � x which implements the (ordinarily
iterative) search “subtrace of T up to the most recent event that affects the
multiplicity of element x”. This definition is easily transformed to a course-of-
value generator map ψ, by replacing recursive calls with retrievals of recorded
output values from the trace.

The functor for the recursion scheme of trace functions can be simplified
from T to N , at the price of complicating the range type from O to OI+∪Iω

,
thus making trace function recursion a higher-order iteration [29]. The functor
N is distinguished because for each of its course-of-value iterations, there is a

14 B. Trancón y Widemann

whole category of simulating deterministic transition systems with more or less
elaborate state space [30], which form a semantic framework for both prototypic
and production-quality implementations.

The selection of a particular implementation is a trade-off between ease of
derivation and efficiency of execution, and cannot be automated straightfor-
wardly. The initial implementation, which simply accumulates inputs and out-
puts, has unbounded space requirements, and may not be acceptable for any but
the most prototypic uses. But practical hints can be gained from the analysis
of access patterns to recursive predecessors: For instance, if there is a horizon
such that each output depends only on the preceding k, then a ring buffer of
size k is a fairly good state space for canonical implementation. In the Fibonacci
example, we have k = 2 for the standard imperative implementation.

Other, more dynamic access patterns such as in the multiset example could
possibly be classified according to their complexity and associated implementa-
tion techniques. For instance, the access pattern encoded in the operation T � x
is of the very common variety “most recent event fulfilling ϕ”, where ϕ here is a
predicate depending with x : E free. This suggests a map-like state with domain
type E, which is already the implementation of choice for many applications.

5 Conclusion

The three levels of Parnas-style mathematical description of system behavior
form a stack of methods, where each layer benefits from a (total) function view-
point in a particular way. Predicate logic with partial value level and total truth
level requires an implementation in terms of total (strongly terminating) func-
tions because of the mutual dependencies between the levels. Tabular expression
scale inhomogeneous function definitions up to very complex case distinctions.
Their generic definition requires datatypes to contain explicit functions for check-
ing and evaluation, and implicit functions for cell expressions with free variables.
The generic parts can be fused with concrete contents to form specific table se-
mantics by means of standard specialization techniques such as binding time
analysis and partial evaluation. Finally, the trace function method employs tab-
ular expressions with a particular recursion scheme over traces represented as
sequences of hypothetical past events, for the description of component behav-
ior without explicit reference to internal state. The precise form and meaning of
this recursion scheme is given by categorical course-of-value iteration, for which
rough but general implementation guidelines can be given, depending on the
pattern of access to the past.

An interesting, informal but deep observation on all levels is that what ap-
pears as fundamental and directly understandable to the human reader of math-
ematical descriptions of behavior coincides largely with what can be expressed in
constructive calculi of total functions. It seems plausible that this relation will be
shown to apply even more widely by future experience in practical tool-making.

Acknowledgments. Thanks to David Parnas, Michael Hauhs, and several
anonymous referees for valuable comments and suggestions.

Total Functional Software Engineering 15

References

1. Baber, R., Parnas, D., Vilkomir, S., Harrison, P., O’Connor, T.: Disciplined meth-
ods of software specification: A case study. In: Proc. ITCC 2005, vol. 2, pp. 428–437.
IEEE Computer Society (2005)

2. Balat, V., Danvy, O.: Strong normalization by type-directed partial evaluation
and run-time code generation. In: Leroy, X., Ohori, A. (eds.) TIC 1998. LNCS,
vol. 1473, pp. 240–252. Springer, Heidelberg (1998)

3. Bartoussek, W., Parnas, D.L.: Using assertions about traces to write abstract spec-
ifications for software modules. In: Bracchi, G., Lockemann, P.C. (eds.) ECI 1978.
LNCS, vol. 65, pp. 211–236. Springer, Heidelberg (1978)

4. Desharnais, J., Khédry, R., Mili, A.: Interpretation of tabular expressions using
arrays of relations. In: Relational Methods for Computer Science Applications, pp.
3–13. Physica Verlag (2001)

5. Feng, X., Parnas, D.L., Tse, T.H.: Tabular expression-based testing strategies: A
comparison. In: Proc. MUTATION 2007. IEEE Computer Society (2007)

6. Feng, X., Parnas, D.L., Tse, T.H.: Fault propagation in tabular expression-based
specifications. In: Proc. COMPSAC 2008, pp. 180–183. IEEE Computer Society
(2008)

7. Feng, X., Parnas, D.L., Tse, T.H., O’Callaghan, T.: A comparison of tabular
expression-based testing strategies. IEEE Trans. Software Eng. 37(5), 616–634
(2011)

8. Furusawa, H., Kahl, W.: Table algebras: Algebraic structures for tabular notation,
including nested headers. Programming science technical report, AIST (2004)

9. ISO/IEC: Information Technology – Z Formal Specification Notation – Syntax,
Type System and Semantics (2002)

10. Janicki, R.: Towards a formal semantics of parnas tables. In: Proc. ICSE 1995, pp.
231–240. ACM (1995)

11. Janicki, R., Khédry, R.: On a formal semantics of tabular expressions. Sci. Comp.
Progr. 39(2-3), 189–213 (2001)

12. Janicki, R., Parnas, D.L., Zucker, J.: Tabular representations in relational docu-
ments. In: Relational Methods in Computer Science, pp. 184–196. Springer (1997)

13. Jin, Y., Parnas, D.L.: Defining the meaning of tabular mathematical expressions.
Sci. Comput. Program. 75(11), 980–1000 (2010)

14. Kahl, W.: Compositional syntax and semantics of tables. SQRL Report 15, Mc-
Master University (2003)

15. Lawford, M., Froebel, P., Moum, G.: Application of tabular methods to the speci-
fication and verification of a nuclear reactor shutdown system. Formal Methods in
System Design (2001) (accepted for publication, 2004)

16. Lawford, M., McDougall, J., Froebel, P., Moum, G.: Practical application of func-
tional and relational methods for the specification and verification of safety critical
software. In: Rus, T. (ed.) AMAST 2000. LNCS, vol. 1816, pp. 73–88. Springer,
Heidelberg (2000)

17. Liu, Z., Parnas, D.L., Trancón y Widemann, B.: Documenting and verifying sys-
tems assembled from components. Frontiers of Computer Science in China 4(2),
151–161 (2010)

18. Pantelic, V., Jin, X., Lawford, M., Parnas, D.L.: Inspection of concurrent systems:
Combining tables, theorem proving and model checking. In: Proc. SERP 2006, pp.
629–635 (2006)

16 B. Trancón y Widemann

19. Pantelic, V.: Combining tables, theorem proving and model checking. Msc thesis,
McMaster University (2006)

20. Parnas, D.L., Wang, Y.: The trace assertion method of module interface specifica-
tion. CIS Report 89-261, Queen’s University (1989)

21. Parnas, D.L.: Tabular representation of relations. CLR Report 260, McMaster Uni-
versity (1992)

22. Parnas, D.L.: Predicate logic for software engineering. IEEE Trans. Software
Eng. 19(9), 856–862 (1993)

23. Parnas, D.L.: Inspection of safety-critical software using program-function tables.
In: IFIP Congress, vol. (3), pp. 270–277 (1994)

24. Parnas, D.L., Madey, J., Iglewski, M.: Precise documentation of well-structured
programs. IEEE Trans. Software Eng. 20(12), 948–976 (1994)

25. Parnas, D.L., Peters, D.K.: An easily extensible toolset for tabular mathematical
expressions. In: Cleaveland, W.R. (ed.) TACAS/ETAPS 1999. LNCS, vol. 1579,
pp. 345–359. Springer, Heidelberg (1999)

26. Peters, D., Lawford, M., Trancón y Widemann, B.: An ide for software development
using tabular expressions. In: Proc. CASCON 2007, pp. 248–251. ACM (2007)

27. Sepehr, S.: Adding Nested Headers and a Proper Gtk-Based GUI to The Haskell
Table Tools. Master’s thesis, McMaster University (2010)

28. Trancón y Widemann, B., Parnas, D.L.: Tabular expressions and total func-
tional programming. In: Chitil, O., Horváth, Z., Zsók, V. (eds.) IFL 2007. LNCS,
vol. 5083, pp. 219–236. Springer, Heidelberg (2008)

29. Trancón y Widemann, B.: The recursion scheme of the trace function method. In:
Proc. ENASE 2012, pp. 146–155 (2012)

30. Trancón yWidemann, B.: State-based simulation of linear course-of-value iteration.
In: Proc. CMCS 2012. Tallinn University of Technology (2012); short contribution

31. Uustalu, T., Vene, V.: Primitive (co)recursion and course-of-value (co)iteration,
categorically. Informatica, Lith. Acad. Sci. 10(1), 5–26 (1999)

32. Wang, Y., Parnas, D.L.: Simulating the behaviour of software modules by trace
rewriting. In: Proc. ICSE 1993, pp. 14–23. IEEE Computer Society (1993)

33. Wang, Y., Parnas, D.L.: Trace rewriting systems. In: Rusinowitch, M., Remy, J.-L.
(eds.) CTRS 1992. LNCS, vol. 656, pp. 343–356. Springer, Heidelberg (1993)

Using Rewriting to Synthesize

Functional Languages to Digital Circuits

Christiaan Baaij and Jan Kuper

Department of Electrical Engineering, Mathematics, and Computer Science,
University of Twente, Postbus 217, 7500AE Enschede, The Netherlands

{c.p.r.baaij,j.kuper}@utwente.nl

Abstract. A straightforward synthesis from functional languages to dig-
ital circuits transforms variables to wires. The types of these variables
determine the bit-width of the wires. Assigning a bit-width to polymor-
phic and function-type variables within this direct synthesis scheme is
impossible. Using a term rewrite system, polymorphic and function-type
binders can be completely eliminated from a circuit description, given
only minor and reasonable restrictions on the input. The presented term
rewrite system is used in the compiler for CλaSH: a polymorphic, higher-
order, functional hardware description language.

1 Introduction

This paper describes the use of a Term Rewriting System (TRS) in the compiler
for CλaSH [1, 2]. CλaSH is a polymorphic, higher-order, functional hardware
description language. The purpose of the CλaSH compiler is to transform a
description in a functional language to a format from which lithography machines
can build an actual chip. The CλaSH compiler actually only provides a part
of this transformation. It creates a low-level representation of the hardware,
called a netlist; industry-standard tools are used for further processing. The
translation from a (functional) description to a netlist is called synthesis in
hardware literature. And the set of rules/transformations that together describe
the conversion procedure from description to netlist is called a synthesis scheme.

The synthesis scheme used by the CλaSH compiler produces a specific normal
form of the description. One aspect of this normal form is that the arguments
and results of functions must have a representable type: a type whose values can
be encoded by a fixed number of bits. This paper only describes the TRS that
is used by the CλaSH compiler to eliminate, in a meaning-preserving manner,
non-representable values from a functional description. Neither the exact normal
form, the simplification TRS used to achieve this normal form, nor the complete
synthesis scheme, are however presented. These aspects will be described in a
future paper. This paper focuses on the TRS for non-representable value elimi-
nation, because it, among other things, transforms higher-order descriptions to
first-order descriptions. Because first-order programs are susceptible to a greater
range of analysis techniques [3], the described TRS has value in a broader con-
text.

J. McCarthy (Ed.): TFP 2013, LNCS 8322, pp. 17–33, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

18 C. Baaij and J. Kuper

The next subsection gives both a definition for netlists, and an introduction
to synthesis schemes by describing a specific instance for a small functional
language. The definition and introduction are both informal, but hopefully instil
an intuition for the process of transforming a functional description to actual
hardware.

1.1 Netlists and Synthesis

A netlist is a textual description of a digital circuit [4]. It lists the components
that a circuit contains, and the connections between these components. The con-
nection points of a component are called ports, or pins. The ports are annotated
with the bit-width of the values that flow through them. A netlist can either
be hierarchical or flattened. In a hierarchical netlist, sub-netlists are abstracted
to appear as single components, of which multiple instances can be created. By
instantiating all of these instances, a flattened netlist can be created.

A synthesis scheme defines the procedure that transforms a (functional) de-
scription to a netlist. Synthesis schemes defined for different languages, which
nonetheless have common aspects, will be called a synthesis scheme family. The
CλaSH compiler uses a synthesis scheme, called TCλ, that is an instance of the
larger synthesis scheme family that will be referred to as T . The following aspects
are shared by all instances of T :

– It is completely syntax-directed.
– It creates a hierarchical netlist.
– Function definitions are translated to components, where the arguments of

the function become the input ports, and the result is connected to the
output port.

– Function application is translated to an instance of the component that rep-
resents the corresponding function. The applied arguments are connected to
the input ports of the component instance.

To demonstrate T , a simple functional language, L, is introduced in Fig. 1. L is
a pure, simply-typed, first-order functional language. A program in L consists of
set of function definitions, which always includes the main function. Expressions
in L can be: variable references, primitives, or function application. Fig. 3 shows
a small example program defined in the presented functional language.

The synthesis scheme for L, called TL, is defined by two transformations:
� �p and � �e, in which � �p is initially applied to the main function to create
the hierarchical netlist. A graphical, informal, definition of the � �p and � �e
transformations is depicted in Fig. 2. Again, the purpose of this subsection is to
give an intuition for the synthesis process, not to give a formal account of TL. � �p
creates a component definition for a function f , where input ports correspond to
the argument of f . � �p also creates an output port for the result of the expression
e, which is connected to the outcome of the � �e transformation applied to e.

Fig. 2 shows that � �e transforms an argument reference x to a connection
with an input port x. Function application of a function f is transformed to a
component instance of f . � �p will be called for the definition of f in case there

Using Rewriting to Synthesize Functional Languages to Digital Circuits 19

p ::= f x = e; p Function definitions
| ∅

e ::= x Argument reference
| ⊗ e Primitive
| f e Function application

Fig. 1. L: a simple functional language

�x�e
�f e�e

�⊗ e�e

⇒

⇒

⇒

�f�p�e0�e
�en�e
�e0�e
�en�e

�f x = e�p ⇒

f

�e�e
xn

x0

x

Fig. 2. TL: A synthesis scheme for L

double x = x ∗ x
main x y = (double x) + (double y)

Fig. 3. Example program in L

double

x ∗

main

x

+

y

double

double

Fig. 4. Netlist of the example program in Fig. 3, created by TL

is no existing component definition. Arguments to f are recursively transformed
by � �e, and the outcome of these transformations are connected to the input
ports of the component f . The process for the transformations of primitives
is analogous to that of functions, except that � �p will not be called for the
definitions.

Applying the synthesis scheme TL to the example program given in Fig. 3 re-
sults in the (graphical representation of the) netlists depicted in Fig. 4. The
netlist representation of main shows that synthesis schemes belonging to T

20 C. Baaij and J. Kuper

exploit the implicit parallelism present in (pure) functional languages: as there
are no dependencies between the operands of the addition, they are instantiated
side-by-side. During the actual operation of the circuit, electricity flows through
all parts simultaneously, and the instances of double will actually be operating
in parallel.

Synthesis of CλaSH. CλaSH has a syntax and a semantics similar to the
programming language Haskell [5] including some of language extensions of the
Glasgow Haskell Compiler (GHC) [6]. These extensions include higher-rank poly-
morphism and existential datatypes. CλaSH and Haskell are so similar that every
valid CλaSH description is also a valid Haskell program. Because CλaSH uses a
synthesis transformation belonging to T , called TCλ, the reverse relation does not
hold. There are (many) Haskell programs that are not valid CλaSH descriptions.
For example, recursive functions are not valid CλaSH descriptions: under TCλ,
recursive application of a function f would lead to a recursive instance of the
component f. Flattening the netlist would lead to infinitely many instantiations
of the component f. Because such a netlist cannot be realized, the corresponding
recursive function is currently deemed an invalid CλaSH description. Recursively
defined (non-function) values are however allowed as they can be synthesized to
feedback loops.

CλaSH uses an instance of the T family of synthesis schemes because it ex-
ploits the implicit parallelism of the functional descriptions, as shown earlier in
Fig. 4. An important aspect of T is that the arguments and results of functions
become the input and output ports of components. These ports are annotated
with a bit-width so that it is known how many wires are needed to make connec-
tions between ports. Because CλaSH is a polymorphic, higher-order language,
the arguments and results can however contain polymorphic or function-typed
values. It is generally impossible or impractical to represent such values by a fixed
number of bits.

In order to run TCλ, all values that cannot be represented by a fixed bit-width,
will have to be eliminated from the functional description. The focus of this paper
is a TRS that transforms the functional description in a meaning-preserving
manner so that all non-representable values are eliminated. The presented TRS
achieves its goal using both inlining and specialisation transformations [3].

The remainder of this paper is structured as follows: related work is described in
the next section. CλaSH is desugared to a smaller Core language, and it is the
Core language on which the TRS operates; Sect. 3 describes this Core language.
Section 4 defines the (data)types which are considered non-representable, and the
general process required for their meaning-preserving elimination. The rewrite
rules of the TRS are described in Sect. 4.1. Properties of the TRS, including its
non-termination, and the subsequent measures taken in the CλaSH compiler are
discussed in Sect. 5. Conclusions are presented in Sect. 6.

Using Rewriting to Synthesize Functional Languages to Digital Circuits 21

2 Related Work

Functional Hardware Description Languages. SAFL [7] is a first-order
hardware description language. As opposed to TCλ, which is used by CλaSH,
SAFL uses a synthesis scheme that does not create a new component instance
for every application of a function f . Instead, a component f is instantiated only
once, and additional control and scheduling logic is inferred to safely approximate
concurrent access.

BlueSpec SystemVerilog [8] is a hardware description language with a syntax
similar to IEEE SystemVerilog standard. It has features also found in functional
languages, such as higher-order functions and parametric polymorphism. The
compilation from description to netlist is performed in two stages, which corre-
sponds to the static and dynamic semantics of the language:

– A description is partially evaluated according to the static semantics, this
includes the elimination/propagation of higher-order functions.

– The resulting description after partial evaluation is actually a set of rewrite
rules. The second synthesis transformation instantiates all these rules in
parallel, and adds scheduling logic in case there are conflicting preconditions
[9].

So where the CλaSH compiler uses a TRS to eliminate non-representable val-
ues (such as those with a function type), the BlueSpec compiler uses a partial
evaluator. There is however no account of the exact details of then partial eval-
uation mechanism in the Bluespec compiler, nor is there an exhaustive list of
restrictions / requirements on the input programs.

Lava [10, 11] is a domain specific language embedded in Haskell. A hardware
description in Lava is actually a Haskell program that uses combinators made
available by the Lava library. These combinators wrap constructors of a graph
datatype that represents a netlist. Synthesis of Lava descriptions is not performed
in the traditional sense of transforming a description to a netlist. By running the
Lava description, a Haskell program, the complete graph representing the netlist
is simply calculated/constructed. Consequently, Lava gets the synthesis of higher-
order, and recursive functions, for free: as long as the function calculating the
graph terminates, a netlist can be created. Being an embedded language, Lava
has disadvantages compared to a compiled language such as CλaSH:

– Because a program calculating the netlist graph cannot observe the (applica-
tion of) individual functions, there can be no intuitive function-to-component
mapping. As a result, only flattened netlists can be created.

– The rich set of choice-constructs in Haskell (also present in CλaSH), such as
pattern-matching, cannot be reflected down to the netlists. Haskell’s choice
construct can be used to guide the construction of the netlist graph, but they
cannot be observed. Consequently, a developer using Lava only has access to
choice-functions offered by the Lava library.

Verity is a higher-order functional hardware description language with sup-
port for recursion (using a fix-point combinator) and mutable reference-cells.

22 C. Baaij and J. Kuper

Verity uses a semantics-directed synthesis scheme called Geometry of Synthesis
(GoS) [12]. GoS assumes a linear type system, that restricts the use of iden-
tifiers to exactly once. That means that arguments with a function type need
to be instantiated only once, an aspect GoS exploits during synthesis. Given a
higher-order function f , which has a function-type argument g, the component
corresponding to f is given extra input and output ports. The extra output ports
correspond to the input ports for g, and the extra input ports correspond to the
output ports of g. When f is applied to a function h, an instance of both the
f and h component are created, and the components are correctly connected
to each other. CλaSH does not have a linear type-system, meaning an identifier
with a function type can be applied multiple times. Because of this, the CλaSH
compiler cannot use the synthesis approach for function-typed arguments as
promoted by GoS.

Higher-Order Removal Methods. Reynolds-style defunctionalisation [13] is
a well-known method for generating an equivalent first-order program from a
higher-order program. Reynolds’ method creates datatypes for arguments with
a function-type. Instead of applying a higher-order function to a value with a
function-type, it is applied to a constructor for the newly introduced datatype.
Application of the functional argument is replaced by the application of a mini-
interpreter. Given the following higher-order program:

uncurry f (a, b) = f a b
main x = (uncurry (+) x) + (uncurry (−) x)

Reynolds’ method creates the following behaviourally equivalent first-order pro-
gram:

data Function = Plus | Sub
apply Plus a b = (+) a b
apply Sub a b = (−) a b

uncurry f (a, b) = apply f a b
main x = (uncurry Plus x) + (uncurry Min x)

Reynolds’ method works on all programs, removes all functional arguments, and
preserves sharing (a subject that will be discussed later). Although commonly
defined and studied in the setting of the simply typed lambda calculus, there are
also variants [14,15] of Reynolds’ methods that are correct within a polymorphic
type system. The disadvantage of Reynolds’ method is the introduction of the
mini-interpreter (which takes on the form of the apply function in the example).
Due to the parallel nature of TCλ, this interpreter and all of its corresponding
functionality will be instantiated at the use sites of the interpreter. For the
above example it means that the interpreter will be instantiated twice; and so

Using Rewriting to Synthesize Functional Languages to Digital Circuits 23

will the included functionality: the adder and the subtracter. This method, in
combination with TCλ, thus creates a lot of redundant hardware; it is this aspect
that has precluded the use of Reynolds’ method in the CλaSH compiler.

Many of the rewrite rules used by the TRS described in this paper can also
be found in optimizing compilers for functional languages, such as GHC [16].
The rewrite rules presented by Peyton Jones and Santos [16] do however not
guarantee a first-order normal form, which the TRS presented in this paper
does (given certain restrictions on the input program).

Mitchell and Runciman [3] present a defunctionalisation method based on a
TRS, which, like the TRS presented in this paper, also uses specialisation and
inlining. The presented TRS can thus be seen as an extension to the work of
Mitchell and Runciman:

– It provides transformations that additionally perform monomorphisation,
which includes the specialisation of: higher-rank polymorphic arguments and
existential datatypes.

– It can deal with recursive let-expressions.
– It works on a typed language, and uses this type information to determine

when transformations should be applied.

3 Core Language

The syntactically rich CλaSH language is desugared to a smaller Core language,
called CoreHW (Fig. 5), by the CλaSH compiler. It is a Church-style polymorphic
lambda-calculus extended with primitives, algebraic datatypes in combination
with case-decomposition, and recursive let-bindings. Case-decompositions are
either exhaustive in the constructors of the matched datatype, or include the
default pattern. Recursive let-bindings are needed to define values/expressions
that are self-referencing and are used to describe feedback loops. Fig. 5 gives
the language definition of CoreHW, and uses, just like the rest of this paper, the
notation described in Fig. 6.

CλaSH supports existential datatypes, and this aspect of the language is re-
flected in CoreHW. A data constructor K, for an existential datatype T α, is
first abstracted over the universally quantified type-variables α, followed by the
existentially quantified type-variables β. The type variables β brought into scope
by a pattern in a case-decomposition correspond to the existentially-quantified
type-variables of the datatype.

3.1 Synthesis of CoreHW Using TCλ

The synthesis scheme TCλ exploits all the implicit parallelism available in the
CoreHW language. It does this by instantiating all expressions in a let-binding,
and all alternatives of a case-decomposition, side-by-side (Fig. 7). TCλ creates
anchor points for let-binders so that variable references can be synthesized to
connections to these anchor points.

24 C. Baaij and J. Kuper

Local variables: x, y, z Data Constructor Types:

Global Variables: f, g K : ∀α.∀β.τ → T α
Type Variables: α, β

Types: Expressions:

τ, σ ::= e, u ::=
α Variable reference x | f Variable reference

| τ → σ Function Type | K | ⊗ Data Constructor / Primitive

| T Datatype | Λα.e | e τ Type abstraction / application

| τ σ Type application | λx : σ.e | e u Term abstraction / application

| ∀α.σ Polymorphic type | let x : σ = e in u Recursive let-binding

| case e of p → u Case-decomposition

Patterns:
p ::= Default case

| K β x : σ Match data constructor

Fig. 5. The CoreHW calculus

T σ ≡ T σ1 ... σn e u ≡ e u1 ... un

τ → σ ≡ τ1 → ... → τn → σ λx : σ.e ≡ λx1 : σ1. ... λxn : σn.e
∀α.σ ≡ ∀α1. ... ∀αn.σ x : σ = e ≡ {x1 : σ1 = e1, ... , xn : σn = en}

p → u ≡ {p1 → u1, ... , pn → un}
K β x : σ ≡ K β1 ... βn (x1 : σ1) ... (xm : σm)

Fig. 6. Notation

�let x : σ = e in u� ⇒
�e1�
�en�

x1

xn

�u�
�case e of p → u� �u1�

�un�

�e�
⇒

Fig. 7. Synthesis of let and case

Completely elaborating TCλ falls outside of the scope of this paper. To at least
convey an intuition for the synthesis performed by TCλ, an example program,
and the corresponding netlist are shown in Fig. 8 and 9 respectively. The simul-
taneous presence of all alternatives in a case-decomposition, and all binders in
a let-binding, has consequences for the sharing behaviour of expressions.

Sharing is normally defined as the re-use of the result of a computation by
other expressions. In a digital circuit, sharing means connecting the output port
of one component to the input ports of multiple other components. This aspect
can be observed in Fig. 9, where the result of the multiplication is shared by the
addition and the subtraction. Results that can be shared, instead of recomputed,

Using Rewriting to Synthesize Functional Languages to Digital Circuits 25

λx : Bool .λy : Int ◦ let
z : Int = y ∗ y

in case x of
True → z + 1
False → z + 1

Fig. 8. Example program using let and case

z∗
+

−
1

1

x

y

Fig. 9. Netlist of the example program in Fig. 8, created by TCλ

will reduce the total size of the circuit. The rewrite rules of the TRS should thus
take the effects of sharing under TCλ into account, as any loss in sharing increases
the size of the circuit.

4 Eliminating Non-representable Types

TCλ can only synthesize functional descriptions if arguments and results of ex-
pressions can be given a fixed bit-encoding. There are straightforward encodings
for certain primitive datatypes, and certain algebraic datatypes. Datatypes with
a fixed bit-encoding are called representable. Deriving a fixed bit-encoding for
the following types is either not desired, or not possible:

– Function types
– (Higher-rank) polymorphic types
– Recursively defined datatypes.
– Datatypes that are composed of types that are not representable.

This section shows the TRS that eliminates non-representable values from the
function hierarchy. It eliminates such values completely given that the input
adheres to the following restriction:

– That both the arguments and the result of the main function, and the argu-
ments and result of the used primitives, are representable.

The TRS uses a combination of inlining and specialisation, where specialisation
takes on two forms:

– Specialisation of a function on one of its arguments.

26 C. Baaij and J. Kuper

– Elimination of a case-decomposition based on a known constructor.

The rewrite rules in this paper are presented using the format depicted in
Fig. 10. In all of these rewrite rules, the expression above the horizontal bar is

Name of the Rewrite Rule

Matched Expression 〈Additional Preconditions〉
Resulting Expresson 〈Additional Definitions〉

〈Updated Environment〉

Fig. 10. Format for Rewrite Rules

the expression that has to be matched before performing the rewrite rule, and the
expression below the horizontal bar is the result after applying the rewrite rule.
Some rewrite rules have additional preconditions, and the rewrite is only applied
when these preconditions hold. Other rewrite rules have additional definitions
which they use in the resulting expressions. All rewrite rules always have access
to the global environment, Γ , which holds all top-level binders. There are some
rewrite rules that create new top-level binders, and therefore update the global
environment.

The rewrite rules have access to the following functions:

FV e Calculates the free variables; works for types and terms.
e [x := u] A capture-free substitution of a variable reference x, by

the expression or type u, in the expression e.
Γ@f The expression belonging to a global binder f in the

environment Γ .
NONREP τ Determines if τ is a non-representable type.

Before the TRS starts, all variables are made unique, and all variable refer-
ences are updated accordingly. Any new variables introduced by the rewrite rules
will be unique by construction. Having hygienic expressions prevents accidental
free-variable capture, and makes it easier to define meaning-preserving rewrite
rules.

4.1 Rewrite Rules

The first three rewrite rules, τ-reduction, LetTyApp, andCaseTyApp, prop-
agate type information downwards into an expression. By either removing type-
variables, propagating type-information to a location for specialisation, or prop-
agating type information to a primitive or constructor, these rewrite rules aid in
the elimination of polymorphism.

Using Rewriting to Synthesize Functional Languages to Digital Circuits 27

τ-Reduction (Λα.e) τ

e [α := τ]

LetTyApp (let x : σ = e in u) τ

let x : σ = e in (u τ)

CaseTyApp (case e of p → u) τ

case e of p → (u τ)

The next three rewrite rules, LamApp, LetApp, and CaseApp, propa-
gate values, including non-representable ones, downwards into the expression.
LamApp is preferred over β-reduction to preserve sharing. CaseApp creates
a let-binding, instead of propagating the applied expression towards all alter-
natives, to preserve sharing. The next rewrite rule, LiftNonRep, removes
let-binders introduced by LamApp and CaseApp in case they bind non-
representable values.

LamApp (λx : σ.e) u

let {x = u} in e

LetApp (let x : σ = e in u) e0

let x : σ = e in (u e0)

CaseApp (case e of p → u) u0

let {x = u0} in (case e of p → (u x))

LiftNonRep removes a let-binder, xi : σi = ei (with a non-representable
type σi), and substitutes references to xi in the rest of the let-binding with an
(application of a) variable reference to a new, global, binder: f . The new global
binder, f , binds the original expression ei which is abstracted over the free local
(type) variables of ei; all references to xi are substituted with an (application of
a) variable reference to f . The LiftNonRep rewrite rule uses the ∪α operator
to indicate that the global environment is only updated with the new binder,
f , if an α-equivalent expression is not already present. In case an α-equivalent
expression is present in the environment, the transformed expression will refer
to that existing global binder instead.

28 C. Baaij and J. Kuper

LiftNonRep

let {b1; ...; bi−1;xi : σi = ei; bi+1; ...; bn} in u Preconditions: NONREP(σi)

(let {b1; ...; bi−1; bi+1; ...; bn} in u) [x := f α z]

Definitions: (α, y) = FV(ei); z = y − {xi}
New Environment: Γ ∪α {(f, Λα.λz.ei[xi := f α z])}

The previous rewrite rules either propagated non-representable values down-
wards into the expression, or lifted those values out of the expression. The
next two sets of rewrite rules remove non-representable values by specialisa-
tion. The TypeSpec and NonRepSpec provide function argument specialisa-
tion. CaseLet, CaseCase, InlineNonRep, and CaseCon, together achieve
specialisation by eliminating case-decompositions of known constructors (of non-
representable datatypes).

The TypeSpec rewrite rule matches on a type application of a variable ref-
erence to a global binder, f . The application is replaced by a reference to the
new global binder f ′. The new binder f ′ is defined in terms of the body of f
specialized on the type τ . NonRepSpec behaves similarly to TypeSpec for the
application on non-representable arguments. The difference is that the expres-
sion of the new binder, f ′, is abstracted over the free variables of the specialised
argument; the transformed expression also takes these free variables into account.

Both TypeSpec and NonRepSpec use the ∪α operator to indicate that
the global environment is only updated with a new binder if an α-equivalent
specialization is not already present. In case an α-equivalent specialisation is
present in the environment, the transformed expression will refer to that existing
global binder instead.

TypeSpec (f e) τ Preconditions: FV(τ) ≡ ∅
f ′ e

New Environment: Γ ∪α {(f ′, λx.(Γ@f) x τ)}

NonRepSpec (f e) (u :σ) Preconditions: NONREP(σ) ∧ FV(σ) ≡ ∅
f ′ e y Definitions: y = FV(u)

New Environment: Γ ∪α {(f ′, λx.λy.(Γ@f) x u)}

The CaseLet is required in specialising expressions that have a non-represen-
table datatype. Taking the let-binders out of the case-decomposition does not
affect the sharing behaviour so can be applied blindly. There is no free variable
capture in the alternatives because all variables are made unique before running
the TRS.

Using Rewriting to Synthesize Functional Languages to Digital Circuits 29

The CaseCase rewrite rule is only applied if the subject of a case-decomposi-
tion has a non-representable datatype. CaseCase is not applied blindly because
the alternatives in a case-decomposition are evaluated in parallel in the eventual
circuit. So the CaseCase rewrite rule generates a larger number of alternatives
than present in the matched expression. A larger number of alternatives results
in a larger circuit. Even thoughCaseCasemakes the circuit larger, the intention
of CaseCase is to eventually expose the constructor of the non-representable
datatype to CaseCon. CaseCon eliminates the case-decomposition, and sub-
sequently amortizes the increase in circuit size induced by CaseCase.

InlineNonRep is only applied if the subject of a case expression is of a non-
representable datatype, as inlining breaks down the component hierarchy. All
bound variables in the inlined expression are regenerated, and variable references
updated accordingly. This preserves the assumptions made by the other rewrite
rules that all variables are unique.

The CaseCon rule comes in two variants:

– A case-decomposition with a constructor application as the subject, and a
matching constructor pattern.

– A case-decomposition with a constructor application as the subject, with no
matching constructor pattern.

CaseCon only creates a let-binding if the constructor in the subject exactly
matches the constructor of an alternative. When the default pattern is matched,
the case-decomposition is simply replaced by the expression belonging to the
default alternative. Case-decompositions in CoreHW are exhaustive, either by
enumerating all the constructors, or by including the default pattern. This means
that when a constructor applications is the subject of a case-decomposition,
CaseCon will always remove that case-decomposition.

CaseLet case (let x : σ = e in e1) of p → u

let x : σ = e in (case e1 of p → u)

CaseCase Preconditions: NONREP(σ)

case (case e of {p1 → u1; ... ; pn → un} : σ) of p → u

case e of{p1 → case u1 of p → u; ... ; pn → case un of p → u}

InlineNonRep Preconditions: NONREP(σ)

case (f e) : σ of p → u

case ((Γ@f) e) of p → u

30 C. Baaij and J. Kuper

CaseCon case Ki τ∀ τ∃ e of {...;Ki β x : σ → ui; ...}
(let x : σ = e in ui) [β := τ∃]

case Ki τ∀ τ∃ e of {pj �=i → u; → u0}
u0

5 Discussion

5.1 Completeness

The first set of rewrite rules (τ-Reduction - LiftNonRep) propagates or re-
moves non-representable values for those syntactical elements on which the spe-
cialisation rewrite rules do not match. The second set of rewrite rules (TypeSpec
- CaseCon) remove the non-representable values through specialisation. All
rewrite rules together hence remove all non-representable values from the func-
tion hierarchy (given the restrictions in Section 4).

The restrictions on primitives are needed because those cannot be specialized
on their argument, nor can their definitions be inlined. The restriction that the
result type of main cannot be a non-representable datatype, ensures that any
expression calculating a non-representable datatype is either:

– the subject of a case-decomposition, which will be removed by the TRS,
– or, unreachable, and can be removed by dead-code elimination.

The CλaSH compiler applies the transformations in a specific order: a traver-
sal with TypeSpec, followed by a traversal with NonRepSpec, are applied
after all the other transformations have been applied exhaustively. Neither the
correctness of the individual transformations, nor the guarantee of a first-order
normal form, are dependent on this specific ordering of transformations. The
argument-specialisation rewrite rules are applied last, so that the fewest number
of new functions is introduced, and the original function hierarchy is preserved
as much as possible. Because TypeSpec and NonRepSpec do not create ex-
pressions on which the other rewrite rules match, all rewrite rules have been
applied exhaustively after the traversals with TypeSpec and NonRepSpec.

5.2 Termination

All rewrite rules are exhaustively applied during a (repeated) bottom-up traver-
sal of an expression. InlineNonRep has to be applied using a bottom-up traver-
sal, as a top-down traversal could lead to non-termination when inlining a
recursive function. Using a bottom-up traversal for TypeSpec and NonRep-
Spec introduces the fewest number of lambda-abstraction in the specialized
expressions.

There are several (combinations of) rewrite rules that induce non-termination
of the unconstrained TRS. The CλaSH compiler has heuristics in place that

Using Rewriting to Synthesize Functional Languages to Digital Circuits 31

constrain the application of certain rewrite rules to ensure termination. When
one of the termination measures is triggered, non-representable values remain
present in the description. TCλ will not be able to transform the description to
a netlist when that happens.

It should be noted that these termination measures are only trigged on func-
tions that contain (mutually) recursive function calls, or have a (mutually) recur-
sive datatype as a result; functions which cannot be synthesized by TCλ anyway.
It can hence be said that the unconstrained TRS terminates for all usefull pro-
grams.

InlineNonRep Restriction. The precondition of InlineNonRep already lim-
its the locations where inlining is applied, exhaustive application of this rewrite
rule can however still induce non-termination when dealing with recursive func-
tions. Additionally, although the TRS does not contain β-reduction as one of
the rewrite rules, LamApp, LiftNonRep, InlineNonRep, and CaseCon to-
gether behave like β-reduction. This means that the typed version of (λx →
x x) (λx → x x):

data T = C (T → Int)
(λx → case x of C h → h x) (C (λx → case x of C h → h x))

induces non-termination. To prevent either situation from happening, a function
f can only be inlined once at all use sites within a function g, for every pair of f
and g.

NonRepSpec Restriction. Specialization performed by NonRepSpec can
induce non-termination when a recursive function f has an argument that ac-
cumulates non-representable values. To ensure termination, a NonRepSpec is
only applied to a function m number of times, where m can be set by the user
of the CλaSH compiler.

6 Conclusions

The CλaSH compiler uses a synthesis scheme, TCλ, that produces a descrip-
tion that has specific normal from. One aspect of this normal form is that ar-
guments and results of expressions have types for which a fixed bit-encoding
exists. For TCλ, non-representable values are those values for which no fixed bit-
encoding can be determined. The TRS presented in this paper removes all non-
representable values from a function hierarchy while preserving the behaviour,
given only minor restrictions on this function hierarchy. These restrictions are:
that neither the main function nor the primitives of CλaSH, can have arguments
or results of a non-representable type. These restrictions do however not limit
the use polymorphism or higher-order functionality in the rest of the descrip-
tion. We, the authors of this paper, deem these restrictions reasonable for the
application domain of CλaSH: creating digital circuits.

32 C. Baaij and J. Kuper

Although the CλaSH compiler cannot synthesize recursive function, this limi-
tation is (slightly) amortized by a set of primitives that capture certain recursive
patterns. Such functions / primitives include the map and foldl functions for
fixed-length vectors. Using custom rules for these primitives, the CλaSH com-
piler can correctly synthesize the residual higher-order functionality that is left
after normalization. A restriction that still holds for the use of these primitives
is that they should not have a non-representable result.

Future Work. The complete TCλ synthesis scheme, the normal-form of the
CoreHW language which TCλ produces, and the simplification TRS of the CλaSH
compiler will be described in a future paper. To reduce the number of traversals
needed to reach the first-order normal from, the strategy of the presented TRS
and its implementation within the CλaSH compiler are also subject to further
investigation. Aside from improving the TRS, we are also extending the CλaSH
compiler to support the synthesis of recursive functions that can be unrolled at
compile-time.

References

1. Baaij, C.P.R., Kooijman, M., Kuper, J., Boeijink, W.A., Gerards, M.E.T.: CλaSH:
Structural Descriptions of Synchronous Hardware using Haskell. In: Proceedings of
the 13th Conference on Digital System Design, USA, pp. 714–721. IEEE Computer
Society (September 2010)

2. Gerards, M.E.T., Baaij, C.P.R., Kuper, J., Kooijman, M.: Higher-Order Abstrac-
tion in Hardware Descriptions with CλaSH. In: Proceedings of the 14th Conference
on Digital System Design, USA, pp. 495–502. IEEE Computer Society (August
2011)

3. Mitchell, N., Runciman, C.: Losing Functions without Gaining Data. In: Proceed-
ings of the Second Symposium on Haskell, pp. 13–24. ACM (September 2009)

4. Frankau, S.: Hardware Synthesis from a Stream-Processing Functional Language.
PhD thesis, University of Cambridge (July 2004)

5. Peyton Jones, S. (ed.): Haskell 98 Language and Libraries. Journal of Functional
Programming, vol. 13 (2003)

6. The GHC Team: The GHC Compiler, version 7.6.1 (January 2013),
http://haskell.org/ghc

7. Mycroft, A., Sharp, R.: A Statically Allocated Parallel Functional Language. In:
Montanari, U., Rolim, J.D.P., Welzl, E. (eds.) ICALP 2000. LNCS, vol. 1853, pp.
37–48. Springer, Heidelberg (2000)

8. Nikhil, R.S.: Bluespec: A General-Purpose Approach to High-Level Synthesis Based
on Parallel Atomic Transactions. In: Coussy, P., Morawiec, A. (eds.) High-Level
Synthesis - From Algorithm to Digital Circuit, pp. 129–146. Springer, Netherlands
(2008)

9. Hoe, J.C., Arvind.: Hardware Synthesis from Term Rewriting Systems. In: Pro-
ceedings of the tenth International Conference on VLSI, pp. 595–619 (1999)

10. Bjesse, P., Claessen, K., Sheeran, M., Singh, S.: Lava: Hardware Design in Haskell.
In: Proceedings of the Third International Conference on Functional Programming
(ICFP), pp. 174–184. ACM (1998)

http://haskell.org/ghc

Using Rewriting to Synthesize Functional Languages to Digital Circuits 33

11. Gill, A.: Type-Safe Observable Sharing in Haskell. In: Proceedings of the Second
Haskell Symposium, pp. 117–128. ACM (September 2009)

12. Ghica, D.R.: Geometry of Synthesis: A structured approach to VLSI design. In:
Proceedings of the 34th Annual Symposium on Principles of Programming Lan-
guages (POPL), pp. 363–375. ACM (2007)

13. Reynolds, J.C.: Definitional Interpreters for Higher-Order Programming Languages.
In: Proceedings of the 25th ACM National Conference, pp. 717–740. ACM Press
(1972)

14. Pottier, F., Gauthier, N.: Polymorphic Typed Defunctionalization. In: Proceedings
of the 31st Symposium on Principles of Programming Languages (POPL), pp.
89–98. ACM (2004)

15. Bell, J.M., Bellegarde, F., Hook, J.: Type-Driven Defunctionalization. In: Proceed-
ings of the Second International Conference on Functional Programming (ICFP),
pp. 25–37 (1997)

16. Peyton Jones, S., Santos, A.: Compilation by Transformation in the Glasgow
Haskell Compiler. In: Functional Programming Workshops in Computing, pp.
184–204. Springer (1994)

Distributed Places

Kevin Tew1, James Swaine2, Matthew Flatt3, Robert Bruce Findler2, and Peter Dinda2

1 Brigham Young University
tew@byu.edu

2 Northwestern University
JamesSwaine2010@u.northwestern.edu, robby@eecs.northwestern.edu,

pdinda@northwestern.edu
3 University of Utah
mflatt@cs.utah.edu

Abstract. Distributed Places bring new support for distributed, message-passing
parallelism to Racket. This paper gives an overview of the programming model
and how we had to modify our existing, runtime-system to support distributed
places. We show that the freedom to design the programming model helped us
to make the implementation tractable. The paper presents an evaluation of the
design, examples of higher-level API’s that can be built on top of distributed
places, and performance results of standard parallel benchmarks.

1 Introduction

Dynamic, functional languages are important as rapid development platforms for solv-
ing everyday problems and completing tasks. As programmers embrace parallelism in
dynamic programming languages, the need arises to extend multi-core parallelism to
multi-node parallelism. Distributed places delivers multi-node parallelism to Racket by
building on top of the existing places [18] infrastructure.

The right extensions to dynamic, functional languages enable the introduction of a
hierarchy of parallel programming abstractions. Language extension allows these par-
allel programming abstractions to be concisely mapped to different hardware such as
a shared memory node or a distributed memory machine. Distributed places are not
an add-on library or a foreign function interface (FFI). Instead, Racket’s places and
distributed places are language extensions on which higher-level distributed program-
ming frameworks can easily be expressed. An RPC mechanism, map reduce, MPI, and
nested-data parallelism are all concisely and easily built on top of distributed places.
These higher-level frameworks meld with the Racket language to create extended lan-
guages, which describe different types of distributed programming.

The distributed places API allows the user to spawn new execution contexts on
remote machines. Distributed places reuse the communication channel API for intra-
process parallelism to build a transparent distributed communication system over a
underlying sockets layer. Racket’s channels for parallel and distributed communica-
tion are first-class Racket events. These channels can be waited on concurrently with
other Racket event objects such as file ports, sockets, threads, channels, etc. Together,
Racket’s intra-process and distributed parallelism constructs form a foundation capable
of supporting higher-level parallel frameworks.

J. McCarthy (Ed.): TFP 2013, LNCS 8322, pp. 34–57, 2014.
© Springer-Verlag Berlin Heidelberg 2014

Distributed Places 35

2 Design

Programming with parallelism should avoid the typical interference problems of threads
executing in a single address space. Instead, parallel executions contexts should execute
in isolation. Communication between execution contexts should use message-passing
instead of shared-memory in a common address space. This isolated, message-passing
approach positions the programmer to think about the data-placement and communica-
tion needs of a parallel program to enable sustained scalability. Distributed places ex-
tend our existing implementation of isolated, message-passing parallelism which, until
now, was limited to a single node. As a program moves from multi-core parallelism to
multi-node parallelism latency increases and bandwidth decreases; data-placement and
communication patterns become even more crucial.

Much of a distributed programming API is littered with system administration tasks
that impede programmers from focusing on programming and solving problems. First,
programmers have to authenticate and launch their programs on each node in the dis-
tributed system. Then they have to establish communication links between the nodes in
the system, before they can begin working on the problem itself. The work of the dis-
tributed places framework is to provide support for handling the problems of program
launch and communication link establishment.

Racket’s distributed places API design is centered around machine nodes that do
computation in places. The user/programmer configures a new distributed system using
declarative syntax and callbacks. By specifying a hostname and port number, a pro-
grammer can launch a new place on a remote host. In the simplest distributed-places
programs, hostnames and port numbers are hard-wired. When programmers need more
control, distributed places permits complete programmatic configuration of node launch
and communication link parameters.

Distributed Places adopt Erlang’s failure model of fail fast. When a place dies or
throws an unhandled exception, its execution ends. Parent places’ are notified when a
spawned place dies, but the user is responsible for recovery from errors.

The hello world example in figure 1 demonstrates the key components of a places
program. Appearing first, the hello-world procedure is called to create hello-world
places. The main module follows and contains the code to construct and communicate
with a hello-world place.

Looking closer at the main module, the hello-world place is created using
dynamic-place.

(dynamic-place module-path start-proc) → place?
module-path : module-path?
start-proc : symbol?

The dynamic-placeprocedure creates a place to run the procedure that is identified by
module-path and start-proc . The result is a place descriptor value that represents
the new parallel task; the place descriptor is returned immediately. The place descriptor
is also a place channel to initiate communication between the new place and the creating
place.

The module indicated by module-path must export a function with the name
start-proc . The exported function must accept a single argument, which is a place

36 K. Tew et al.

1 #lang racket/base
2 (require racket/place
3 racket/place/distributed)
4

5 (provide hello-world)
6

7 (define (hello-world ch)
8 (printf/f "hello-world received: ∼a\n"
9 (place-channel-get ch))

10 (place-channel-put ch "Hello World\n")
11 (printf/f "hello-world sent: Hello World\n"))
12

13 (module+ main
14 (define p (dynamic-place
15 (quote-module-path "..")
16 ’hello-world))
17

18 (place-channel-put p "Hello")
19 (printf/f "main received: ∼a\n"
20 (place-channel-get p))
21 (place-wait p))

Fig. 1. Place’s Hello World

Distributed Places 37

channel that corresponds to the other end of communication for the place channel that
is returned by dynamic-place.

The (quote-module-path "..") and ’hello-world arguments on lines 15 and
16 of figure 1 specify the procedure address of the new place to be launched. In this
example, the (quote-module-path "..") argument provides the module path to the
parent module of main, where the ’hello-world procedure is located.

Places communicate over place channels which allow structured data communica-
tion between places. Supported structured data includes booleans, numbers, charac-
ters, symbols, byte strings, Unicode strings, filesystem paths, pairs, lists, vectors, and
“prefab” structures (i.e., structures that are transparent and whose types are universally
named)1.

(place-channel-put ch v) → void?
ch : place-channel?
v : place-message-allowed?

(place-channel-get ch) → place-message-allowed?
ch : place-channel?

The place-channel-put function asynchronously sends a message v on channel ch
and returns immediately. The place-channel-get function waits until a message is
available from the place channel ch .

(place-wait p) → void?
p : place?

Finally the place-wait procedure blocks until p terminates.

13 (module+ main
14 (define n (create-place-node
15 "host2"
16 #:listen-port 6344))
17 (define p (dynamic-place
18 #:at n
19 (quote-module-path "..")
20 ’hello-world))
21 ...)

Fig. 2. Distributed Hello World

The distributed hello world example in figure 2 shows the two differences between a
simple places program and a simple distributed places program. The create-place-
node procedure uses ssh to start a new remote node on host2 and assumes that ssh is

1 http://docs.racket-lang.org/guide/define-struct.html?q=prefab#
(tech._prefab)

http://docs.racket-lang.org/guide/define-struct.html?q=prefab#(tech._prefab)
http://docs.racket-lang.org/guide/define-struct.html?q=prefab#(tech._prefab)

38 K. Tew et al.

configured correctly. Upon launch, the remote node listens on port 6344 for incoming
connections. Once the remote node is launched, a TCP connection to port 6344 on the
new node is established. The create-place-node returns a node descriptor object,
n, which allows for administration of the remote node. The remote place is created
using dynamic-place. The new #:at keyword argument specifies the node on which
to launch the new place.

Remotely spawned places are private. Only the node that spawned the place can
communicate with it through its descriptor object. Named places allow programmers
to make a distributed place publicly accessible. Named places are labeled with a name
when they are created.

(define p (dynamic-place
#:at n
#:named ’helloworld1
(quote-module-path "..")
’hello-world))

Any node can connect to a named place by specifying the destination node and name
to connect to. In this example, node is a node descriptor object returned from create-
place-node.

(connect-to-named-place node ’helloworld1)

3 Higher Level APIs

The distributed places implementation is a foundation that can support a variety of
higher-level APIs and parallel processing frameworks such as Remote Procedure Calls
(RPC), Message Passing Interface (MPI) [13], MapReduce [4], and Nested Data Paral-
lelism [2]. All of these higher-level APIs and frameworks can be built on top of named
places.

3.1 RPC via Named Places

Named places make a place’s interface public at a well-known address: the host, port,
and name of the place. They provide distributed places with a form of computation
similar to the actor model [10]. Using named places and the define-named-remote-
server form, programmers can build distributed places that act as remote procedure
call (RPC) servers. The example in figure 3 demonstrates how to launch a remote Racket
node instance, launch a remote procedure call (RPC) tuple server on the new remote
node instance, and start a local event loop that interacts with the remote tuple server.

The create-place-node procedure in figure 3 connects to "host2" and starts
a distributed place node there that listens on port 6344 for further instructions. The
descriptor to the new distributed place node is assigned to the remote-node variable.

Distributed Places 39

1 #lang racket/base
2 (require racket/place/distributed
3 racket/class
4 racket/place
5 racket/runtime-path
6 "tuple.rkt")
7 (define-runtime-path tuple-path "tuple.rkt")
8

9 (module+ main
10 (define remote-node (create-place-node
11 "host2"
12 #:listen-port 6344))
13 (define tuple-place
14 (dynamic-place
15 #:at remote-node
16 #:named ’tuple-server
17 tuple-path
18 ’make-tuple-server))
19

20 (define c (connect-to-named-place
21 remote-node
22 ’tuple-server))
23 (define d (connect-to-named-place
24 remote-node
25 ’tuple-server))
26 (tuple-server-hello c)
27 (tuple-server-hello d)
28 (displayln
29 (tuple-server-set c "user0" 100))
30 (displayln
31 (tuple-server-set d "user2" 200))
32 (displayln (tuple-server-get c "user0"))
33 (displayln (tuple-server-get d "user2"))
34 (displayln (tuple-server-get d "user0"))
35 (displayln (tuple-server-get c "user2")))

Fig. 3. Tuple RPC Example

40 K. Tew et al.

Next, the dynamic-place procedure creates a new named place on the remote-node.
The named place will be identified in the future by its name symbol ’tuple-server.

The code in figure 4 contains the use of the define-named-remote-server form,
which defines a RPC server suitable for invocation by dynamic-place. The RPC
tuple-server allows for named tuples to be stored into a server-side hash table and
later retrieved. It also demonstrates one-way “cast” procedures, such as hello, that do
not return a value to the remote caller.

1 #lang racket/base
2 (require racket/match
3 racket/place/define-remote-server)
4

5 (define-named-remote-server tuple-server
6

7 (define-state h (make-hash))
8 (define-rpc (set k v)
9 (hash-set! h k v)

10 v)
11 (define-rpc (get k)
12 (hash-ref h k #f))
13 (define-cast (hello)
14 (printf "Hello from define-cast\n")
15 (flush-output)))

Fig. 4. Tuple Server

For the purpose of explaining the tuple-server implementation, figure 5 shows the
macro expansion of the RPC tuple server. Typical users of distributed places do not need
to understand the expanded code to use the define-named-remote-server macro.
The define-named-remote-server form, in figure 5, takes an identifier and a list
of custom expressions as its arguments. A place function is created by prepending the
make- prefix to the identifier tuple-server. The make-tuple-server identifier is
the symbol given to the dynamic-place form in figure 3. The define-state custom
form translates into a simple define form, which is closed over by the define-rpc
forms.

The define-rpc form is expanded into two parts. The first part is the client stubs
that call the RPC functions. The stubs can be seen at the top of figure 5. The client func-
tion name is formed by concatenating the define-named-remote-server identifier,
tuple-server, with the RPC function name, set, to form tuple-server-set. The
RPC client functions take a destination argument which is a remote-connection%de-
scriptor followed by the RPC function’s arguments. The RPC client function sends the

Distributed Places 41

RPC function name, set, and the RPC arguments to the destination by calling an inter-
nal function named-place-channel-put. The RPC client then calls named-place-
channel-get to wait for the RPC response.

The second part of the expansion part of define-rpc is the server implementation
of the RPC call. The server is implemented by a match expression inside the make-
tuple-server function. Messages to named places are placed as the first element
of a list where the second element is the source or return channel to respond on. For
example, in (list (list ’set k v) src) the inner list is the message while src
is the place-channel to send the reply on. The match clause for tuple-server-set
matches on messages beginning with the ’set symbol. The server executes the RPC
call with the communicated arguments and sends the result back to the RPC client. The
define-cast form is similar to the define-rpc form except there is no reply message
from the server to client.

The named place, shown in the tuple server example, follows an actor-like model by
receiving messages, modifying state, and sending responses. Racket macros enables the
easy construction of RPC functionality on top of named places.

3.2 Racket Message Passing Interface

RMPI is Racket’s implementation of the basic MPI operations. A RMPI program be-
gins with the invocation of the rmpi-launch procedure, which takes two arguments.
The first is a hash from Racket keywords to values of default configuration options. The
rmpi-build-default-config helper procedure takes a list of Racket keyword argu-
ments and forms the hash of optional configuration values. The second argument is a list
of configurations, one for each node in the distributed system. A configuration is made
up of a hostname, a port, a unique name, a numerical RMPI process id, and an optional
hash of additional configuration options. An example of rmpi-launch follows.

(rmpi-launch
(rmpi-build-default-config

#:racket-path "/tmp/mplt/bin/racket"
#:distributed-launch-path
(build-distributed-launch-path

"/tmp/mplt/collects")
#:rmpi-module "/tmp/mplt/kmeans.rkt"
#:rmpi-func ’kmeans-place
#:rmpi-args
(list "/tmp/mplt/color100.bin"

#t 100 9 10 0.0000001))

(list (list "n1.example.com" 6340 ’kmeans_0 0)
(list "n2.example.com" 6340 ’kmeans_1 1)
(list "n3.example.com" 6340 ’kmeans_2 2)
(list "n4.example.com" 6340 ’kmeans_3 3

(rmpi-build-default-config
#:racket-path "/bin/racket"))))

The rmpi-launch procedure spawns the remote nodes first and then spawns the
remote places named with the unique name from the config structure. After the nodes

42 K. Tew et al.

1 (module named-place-expanded racket/base
2 (require racket/place racket/match)
3 (define/provide
4 (tuple-server-set dest k v)
5 (named-place-channel-put
6 dest
7 (list ’set k v))
8 (named-place-channel-get dest))
9 (define/provide
10 (tuple-server-get dest k)
11 (named-place-channel-put
12 dest
13 (list ’get k))
14 (named-place-channel-get dest))
15 (define/provide
16 (tuple-server-hello dest)
17 (named-place-channel-put
18 dest
19 (list ’hello)))
20 (define/provide
21 (make-tuple-server ch)
22 (let ()
23 (define h (make-hash))
24 (let loop ()
25 (define msg (place-channel-get ch))
26 (match
27 msg
28 ((list (list ’set k v) src)
29 (define result (let ()
30 (hash-set! h k v)
31 v))
32 (place-channel-put src result)
33 (loop))
34 ((list (list ’get k) src)
35 (define result
36 (let ()
37 (hash-ref h k #f)))
38 (place-channel-put src result)
39 (loop))
40 ((list (list ’hello) src)
41 (define result
42 (let ()
43 (printf
44 "Hello from define-cast\n")
45 (flush-output)))
46 (loop)))
47 loop)))
48 (void))

Fig. 5. Macro Expansion of Tuple Server

Distributed Places 43

and places are spawned, rmpi-launch sends each spawned place its RMPI process id,
the config information for establishing connections to the other RMPI processes, and
the initial arguments for the RMPI program. The last function of rmpi-launch is to
rendezvous with RMPI process 0 when it calls rmpi-finish at the end of the RMPI
program.

The rmpi-init procedure is the first call that should occur inside the #:rmpi-func
place procedure. The rmpi-init procedure takes one argument ch, which is the initial
place-channel passed to the #:rmpi-func procedure. The rmpi-init procedure
communicates with rmpi-launch over this channel to receive its RMPI process id and
the initial arguments for the RMPI program.

(define (kmeans-place ch)
(define-values (comm args tc) rmpi-init ch)
;;; kmeans rmpi computation ...
(rmpi-finish comm tc))

The rmpi-init procedure has three return values: an opaque communication struc-
ture which is passed to other RMPI calls, the list of initial arguments to the RMPI
program, and a typed channel wrapper for the initial place-channel it was given. The
typed channel wrapper allows for the out of order reception of messages. Messages are
lists and their type is the first item of the list, which must be a racket symbol. A typed
channel returns the first message received on the wrapped channel that has the type
requested. Messages of other types that are received are queued for later requests.

The rmpi-comm structure, returned by rmpi-init, is the communicator descriptor
used by all other RMPI procedures. The RMPI informational functions rmpi-id and
rmpi-cnt return the current RMPI process id and the total count of RMPI processes,
respectively.

> (rmpi-id comm)
3

> (rmpi-cnt comm)
8

The rmpi-send and rmpi-recv procedures provide point-to-point communication be-
tween two RMPI processes.

> (rmpi-send comm dest-id ’(msg-type1 "Hi"))

> (rmpi-recv comm src-id)
’(msg-type1 "Hi")

44 K. Tew et al.

With the rmpi-comm structure, the programmer can also use any of the RMPI collective
procedures: rmpi-broadcast, rmpi-reduce, rmpi-allreduce, or rmpi-barrier
to communicate values between the nodes in the RMPI system.

The (rmpi-broadcast comm 1 (list ’a 12 "foo")) expression broadcasts
the list (list ’a 12 "foo") from RMPI process 1 to all the other RMPI processes
in the comm communication group. Processes receiving the broadcast execute (rmpi-
broadcast comm 1) without specifying the value to send. The (rmpi-reduce comm
3 + 3.45) expression does the opposite of broadcast by reducing the local value 3.45
and all the other procesess local values to RMPI process 3 using the + procedure to do
the reduction. The rmpi-allreduce expression is similar to rmpi-reduce except that
the final reduced value is broadcasted to all processes in the system after the reduction is
complete. Synchronization among all the RMPI processes occurs through the use of the
(rmpi-barrier comm) expression, which is implemented internally using a simple
reduction followed by a broadcast.

Distributed places are simply computation resources connected by socket communi-
cations. This simple design matches MPI’s model and makes RMPI’s implementation
very natural. The RMPI layer demonstrates how distributed places can provide the foun-
dations of other distributed programming frameworks such as MPI.

3.3 Map Reduce

Our MapReduce implementation is patterned after the Hadoop [1] framework. Key
value pairs are the core data structures that pass through the map and reduce stages of
the computation. In the following example, the number of word occurrences is counted
across a list of text files. The files have been preprocessed so that there is only one word
per line.

Figure 6 shows the different actors in the MapReduce paradigm. The program node P
creates the MapReduce workers group. When a map-reduce call is made, the program
node serves as the controller of the worker group. It dispatches mapper tasks to each
node and waits for them to respond as finished with the mapping task. Once a node has
finished its mapping task, it runs the reduce operation on its local data. Given two nodes
in the reduced state, one node can reduce to the other; freeing one node to return to the
worker pool for allocation to future tasks. Once all the nodes have reduced to a single
node, the map-reduce call returns the final list of reduced key values.

The first step in using distributed place’s MapReduce implementation is to create a
list of worker nodes. This is done by calling the make-map-reduce-workers proce-
dure with a list of hostnames and ports to launch nodes at.

(define config (list (list "host2" 6430)
(list "host3" 6430)))

(define workers (make-map-reduce-workers config))

Once a list of worker nodes has been spawned, the programmer can call map-reduce
supplying the list of worker nodes, the config list, the procedure address of the mapper,
the procedure address of the reducer, and a procedure address of an optional result
output procedure. Procedure addresses are lists consisting of the quoted-module-path
and the symbol name of the procedure being addressed.

Distributed Places 45

Map Reduce Program
P

Map Reduce Workers

worker pool
1 2 3 4

1 3 2 4

1 3 2 4

1 2

1

P program node

worker nodes

mapping step

reducing step

Fig. 6. MapReduce Program

(map-reduce
workers
config
tasks
(list (quote-module-path "..") ’mapper)
(list (quote-module-path "..") ’reducer)
#:outputer (list (quote-module-path "..")

’outputer))

Tasks can be any list of key value pairs. In this example the keys are the task numbers
and the values are the input files the mappers should process.

(define tasks (list (list (cons 0 "/tmp/w0"))
(list (cons 1 "/tmp/w1"))
...))

The mapper procedure takes a list of key value pairs as its argument and returns the
result of the map operation as a new list of key value pairs. The input to the mapper,
in this example, is a list of a single pair containing the task number and the text file
to process, (list (cons 1 "w0.txt")). The output of the mapper is a list of each
word in the file paired with 1, its initial count. Repeated words in the text are repeated
in the mappers output list. Reduction happens in the next step.

46 K. Tew et al.

;;(->
;; (listof (cons any any))
;; (listof (cons any any)))
(define/provide (mapper kvs)
(for/first ([kv kvs])

(match kv
[(cons k v)
(with-input-from-file

v
(lambda ()
(let loop ([result null])

(define l (read-line))
(if (eof-object? l)

result
(loop (cons (cons l 1)

result))))))])))

After a task has been mapped, the MapReduce framework sorts the output key value
pairs by key. The framework also coalesces pairs of key values with the same key into a
single pair of the key and the list of values. As an example, the framework transforms the
output of the mapper ’(("house" 1) ("car" 1) ("house" 1)) into ’(("car"
(1)) ("house" (1 1)))

The reducer procedure takes, as input, this list of pairs, where each pair consists of
a key and a list of values. For each key, the reducer reduces the list of values to a list
of a single value. In the word count example, an input pair, (cons "house" ’(1 1 1
1)) will be transformed to (cons "house" ’(4)) by the reduction step.

;;(->
;; (listof (cons any (listof any)))
;; (listof (cons any (listof any))))
(define/provide (reducer kvs)
(for/list ([kv kvs])

(match kv
[(cons k v)
(cons k (list (for/fold ([sum 0])

([x v])
(+ sum x))))])))

Once each mapped task has been reduced, the outputs of the reduce steps are further
reduced until a single list of word counts remains. Finally, an optional output procedure
is called which prints out a list of words and their occurrence count and returns the total
count of all words.
(define/provide (outputer kvs)
(displayln

(for/fold ([sum 0]) ([kv kvs])
(printf "∼a - ∼a\n" (car kv) (cadr kv))
(+ sum (cadr kv)))))

Distributed Places 47

3.4 Nested Data Parallelism

The last parallel processing paradigm implemented on top of distributed places is nested
data parallelism [9]. In this paradigm recursive procedure calls create subproblems that
can be parallelized. An implementation of parallel quicksort demonstrates nested data
parallelism built on top of distributed places.

The distributed places, nested data parallelism API – ndp-get-node, ndp-
sendwork, ndp-get-result, and ndp-return-node – is built on top of the RMPI
layer. The main program node, depicted as P in figure 7, creates the ndp-group. The
ndp-group consists of a coordinating node, 0, and a pool of worker nodes 1, 2, 3,
4. The coordinating node receives a sort request from ndp-sort and forwards the re-
quest to the first available worker node, node 1. Node 1 divides the input list in half
and requests a new node from the coordinator to process the second half of the input.
The yellow bars on the right side of figure 7 show the progression as the sort input is
subdivided and new nodes are requested from the coordinator node. Once the sort is
complete, the result is returned to the coordinator node, which returns the result to the
calling program P.

NDP Quicksort Program
P

NDP Group
ndp coordinator node

0

ndp worker pool
1 2 3 4

1

1 2

1 3 2 4

P program node

coordinator node

worker nodes

divide progression

Fig. 7. NDP Program

Like the previous two examples, the nested data parallel quicksort example begins
by spawning a group of worker processes.

48 K. Tew et al.

(define config
(list (list "host2" 6340)

(list "host3" 6340)
(list "host4" 6340)
(list "host5" 6340)
(list "host6" 6340)))

(define ndp-group (make-ndp-group config))

Next the sort is performed by calling ndp-qsort.

(displayln (ndp-qsort (list 9 1 2 8 3 7 4 6 5 10)
ndp-config))

The ndp-qsort procedure is a stub that sends the procedure address for the ndp-
parallel-qsort procedure and the list to sort to the ndp-group. The work of the
parallel sort occurs in the ndp-parallel-sortprocedure in figure 8. First, the partit
procedure picks a pivot and partitions the input list into three segments: less than the
pivot, equal to the pivot, and greater than the pivot. If a worker node can be obtained
from the ndp-group by calling ndp-get-node, the gt partition is sent to the newly
obtained worker node to be recursively sorted. If all the worker nodes are taken, the
gt partition is sorted locally using the ndp-serial-qsort procedure. Once the lt
partition is sorted recursively on the current node, the gt-part is checked to see if
it was computed locally or dispatched to a remote node. If the part was dispatched
to a remote node, its results are retrieved from the remote node by calling ndp-get-
result. After the results are obtained, the remote node node can be returned to the
ndp-group for later use. Finally, the sorted parts are appended to form the final sorted
list result.

4 Implementation

A key part of the distributed place implementation is that distributed places is a layer
over places, and parts of the places layer are exposed through the distributed places
layer. In particular, each node, in figure 9, begins life with one initial place, the mes-
sage router. The message router listens on a TCP port for incoming connections from
other nodes in the distributed system. The message router serves two primary purposes:
it multiplexes place messages and events on TCP connections between nodes and it
services remote spawn requests for new places.

There are a variety of distributed places commands which spawn remote nodes and
places. These command procedures return descriptor objects for the nodes and places
they create. The descriptor objects allow commands and messages to be communicated
to the remote controlled objects. In Figure 10, when node A spawns a new node B, A is
given a remote-node% object with which to control B. Consequently, B is created with
a node% object that is connected to A’s remote-node% descriptor via a TCP socket
connection. B’s node% object is the message router for the new node B. A can then
use its remote-node% descriptor to spawn a new place on node B. Upon successful
spawning of the new place on B, A is returned a remote-place% descriptor object. On

Distributed Places 49

(define (ndp-parallel-qsort l ndp-group)
(cond

[(< (length l) 2) l]
[else
(define-values (lt eq gt) (partit l))

;; spawn off gt partition
(define gt-ref

(define node (ndp-get-node ndp-group))
(cond
[node

(cons #t (ndp-send-work
ndp-group
node
(list

(quote-module-path)
’ndp-parallel-qsort)

gt))]
[else

(cons #f (ndp-serial-qsort gt))]))

;; compute lt partition locally
(define lt-part

(ndp-parallel-qsort lt ndp-group))

;; retrieve remote results
(define gt-part

(match gt-ref
[(cons #t node-id)
(begin0

(ndp-get-result ndp-group node-id)
(ndp-return-node
ndp-group
node-id))]

[(cons #f part) part]))

(append lt-part eq gt-part)]))

Fig. 8. NDP Parallel Sort

50 K. Tew et al.

Node
node% place

message
router

compute
place

compute
place

compute
place

Node
node% place

message
router

compute
place

compute
place

compute
place

Node
node% place

message
router

compute
place

compute
place

compute
place

Node
node% place

message
router

compute
place

compute
place

compute
place

Fig. 9. Distributed Places Nodes

node B, a place% object representing the newly spawned place is attached to B’s node%
message-router. The remote-connection% descriptor object represents a connection
to a named place. At the remote node, B, a connection% object intermediates between
the remote-connection% and its destination named-place.

Machine A Machine B
remote-node% node%

remote-place% place%

remote-connection% connection%

Fig. 10. Descriptor (Controller) - Controlled Pairs

To communicate with remote nodes, a place message must be serializable. As a
message-passing implementation, places send a copy of the original message when
communicating with other places. Thus, the content of a place message is inherently
serializable and transportable between nodes of a distributed system.

Distributed Places 51

To make place channels distributed, place-socket-bridge% proxies need to be
created under the hood. The place-socket-bridge%s listen on local place channels
and forward place messages over TCP sockets to remote place channels. Each node
in a Racket distributed system must either explicitly pump distributed messages by
registering each proxy with sync or bulk register the proxies, via the remote-node%
descriptor, with a message router which can handle the pumping in a background thread.

Figure 11 shows the layout of the internal objects in a simple three node distributed
system. The node at the top of the figure is the original node spawned by the user. Early
in the instantiation of the top node, two additional nodes are spawned, node 1 and node
2. Then two places are spawned on each of node 1 and node 2. The instantiation code
of the top node ends with a call to the message-router form. The message-router
contains the remote-node% instances and the after-seconds and every-seconds
event responders. Event responders execute when specific events occur, such as a timer
event, or when messages arrive from remote nodes. The message router de-multiplexes
events and place messages from remote nodes and dispatches them to the correct event
responder.

Finally, function overloading is used to allow place- functions, such as place-
channel-get, place-channel-put, and place-wait, to operate transparently on
both place and distributed place instances. To accomplish this, distributed place descrip-
tor objects are tagged as implementing the place<%> interface using a Racket structure
property. Then place- functions dynamically dispatch to the distributed place version
of the function for distributed place instances or execute the original function body for
place instances.

5 Distributed Places Performance

Two of the NAS Parallel Benchmarks, IS and CG, are used to test the performance of
the Racket distributed places implementation. The Fortran/C MPI version of the bench-
marks were ported to Racket’s distributed places. Performance testing occurred on 8
quad-core Intel i7 920 machines. Each machine was equipped with at least 4 gigabytes
of memory and a 1 gigabit Ethernet connection.

Performance numbers are reported for both Racket and Fortran/C versions of the
benchmarks in figure 12. Racket’s computational times scaled appropriately as addi-
tional nodes were added to the distributed system. Computational times are broken out
and graphed in isolation to make computational scaling easier to see.

Racket communication times were larger than expected. There are several factors,
stacked on top of one another, that explain the large communication numbers. First, five
copies of the message occur during transit from source to destination. In a typical oper-
ation, a segment of a large flonum vector needs to be copied to a destination distributed
place. The segment is copied (1) out of the large flonum vector into a new flonum vector
message. The message vector’s length is the length of the segment to be sent. Next, the
newly constructed vector message is copied (2) over a place channel from the compu-
tational place to the main thread which serializes and copies (3) the message out a TCP
socket to its destination. When the message arrives at its destination node, the mes-
sage is deserialized and copied (4) a fourth time over a place channel to the destination

52 K. Tew et al.

node% - top
message-router

remote-node% - 1
spawned-process%

socket-connection%
remote-places
remote-place%

parent-node
place-socket-bridge%

remote-place%
parent-node

place-socket-bridge%

after-seconds

every-seconds

remote-node% - 2
spawned-process%

socket-connection%
remote-places
remote-place%

parent-node
place-socket-bridge%

remote-place%
parent-node

place-socket-bridge%

node% - 1
socket-connection%
superivised places

place%
place-socket-bridge%

place%
place-socket-bridge%

node% - 2
socket-connection%
superivised places

place%
place-socket-bridge%

place%
place-socket-bridge%

Fig. 11. Three Node Distributed System

Distributed Places 53

computational place. Finally, the elements of the message vector are copied (5) into the
mutable destination vector.

Racket’s MPI implementation, RMPI, is not as sophisticated as the standard
MPICH [14] implementation. MPICH has nonblocking sends and receives that allow
messages to flow both directions simultaneously. Both the NAS Parallel Benchmarks
used, IS and CG, use non-blocking MPI receives. RMPI on the other hand, always fol-
lows the typical protocol design of sending data in one direction and then receiving data
from the opposite direction.

The largest contributor to Racket’s excessive communication times is the serializa-
tion costs of the Racket primitive write. On Linux, serialization times are two orders
of magnitude larger than the time to write raw buffers. One solution would be to replace
distributed place’s communication subsystem with FFI calls to an external MPI library.
This solution would bypass the expensive write calls currently used in distributed
places. Another viable solution would be to recognize messages that are vectors of
flonums and use a restricted-form of write that could write flonum vectors as efficiently
as raw buffers. Finally, it should be noted that using Racket’s write is advantageous in
cases where the message to be sent is a complex object graph instead of a simple raw
buffer.

6 Related Work

Erlang [16] Erlang’s distributed capabilities are built upon its process concurrency
model. Remote Erlang nodes are identified by name@host identifiers. New Erlang pro-
cesses can be started using the slave:start procedure or at the command line. Erlang
uses a feature called links to implement fault notification. Two processes establish a link
between themselves. Links are bidirectional; if either process fails the other process dies
also. Erlang also provides monitors which are unidirectional notifications of a process
exiting. Distributed Places and Erlang share a lot of similar features. While Erlang’s dis-
tributed processes are an extension of its process concurrency model, Distributed Places
are an extension of Racket’s places parallelism strategy. Erlang provides a distributed
message passing capability that integrates transparently with its inter-process message
passing capability. The Disco project implements map reduce on top of an Erlang core.
User level Disco programs, however, are written in Python, not Erlang. In contrast, the
implementation and user code of distributed places’ map reduce are both expressed as
Racket code. Erlang has a good foundation for building higher-level distributed comput-
ing frameworks, but instead Erlang programmers seem to build customized distributed
solutions for each application.

MapReduce [4] is a specialized functional programming model, where tasks are au-
tomatically parallelized and distributed across a large cluster of commodity machines.
MapReduce programmers supply a set of input files, a map function and a reduce
function. The map function transforms input key/value pairs into a set of intermedi-
ate key/value pairs. The reduce function merges all intermediate values with the same
key. The framework does all the rest of the work. Google’s MapReduce implementation
handles partitioning of the input data, scheduling tasks across distributed computers,
restarting tasks due to node failure, and transporting intermediate results between com-

54 K. Tew et al.

Fortran Wall-clock Time
Integer Sort (IS) Conjugate Gradient (CG)

Processes

Se
co
nd
s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

S 1 2 3 4 5 6 7 8

Processes

Se
co
nd
s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

S 1 2 3 4 5 6 7 8

Total Time ComputeTime Communication Time
Fortran Compute Wall-clock time

Integer Sort (IS) Conjugate Gradient (CG)

Processes

Se
co
nd
s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

S 1 2 3 4 5 6 7 8

Processes

Se
co
nd
s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

S 1 2 3 4 5 6 7 8

Racket Wall-clock time
Integer Sort (IS) Conjugate Gradient (CG)

Processes

Se
co
nd
s

0
10
20
30
40
50
60
70
80
90

S 1 2 3 4 5 6 7 8

Processes

Se
co
nd
s

0
2.5
5
7.5
10
12.5
15
17.5
20
22.5
25
27.5
30

S 1 2

Total Time ComputeTime Communication Time
Racket Compute Wall-clock time

Integer Sort (IS) Conjugate Gradient (CG)

Processes

Se
co
nd
s

0

2

4

6

8

10

12

14

S 1 2 3 4 5 6 7 8

Processes

Se
co
nd
s

3

3.5

4

4.5

5

5.5

6

6.5

S 1 2

Fig. 12. IS, CG, and MG class A results

Distributed Places 55

pute nodes. The MapReduce model can be applied to problems such as word occurance
counting, distributed grep, inverted index creation, and distributed sort.

Termite [8] Termite is a distributed concurrent scheme built on top of Gambit-
C Scheme. Direct mutation of variables and data structures is forbidden in Termite.
Instead mutation is simulated using messages and suspended, lightweight processes.
Lookup in Termite’s global environment is a node relative operation and resolves to
the value bound to the global variable on the current node. Termite supports process
migration via serializable closures and continuations. Termite follows Erlang’s style of
failing hard and fast. Where Erlang has bidirectional links, Termite has directional links
that communicate process failure from one process to another. Failure detection only
occurs in one direction from the process being monitored to the monitoring process.
Termite also has supervisors which like supervisors in Erlang, restart child processes
which have failed. Distributed Places could benefit from Termites superior serialization
support, where nearly all Termite VM objects are serializable.

Akka [19] is a concurrency and distributed processing framework for Scala and Java.
Like Erlang, Akka is patterned after the Actor model. Akka supports Erlang like super-
visors and monitors for failure and exit detection. Like Erlang, Akka leaves the creation
of higher-level distributed frameworks to custom application developers.

Kali [3] is a distributed version of Scheme 48 that efficiently communicates pro-
cedures and continuations from one compute node to another. Kali’s implementation
lazily faults continuation frames across the network as they are needed. Kali’s prox-
ies are really just address space relative variables. Proxies are identified by a globally
unique id. Sending a proxy involves sending only its globally unique id. Retrieving a
proxies value returns the value for the current address space. Kali allow for retrieval of
the proxy’s source node and spawning of new computations at the proxy’s source.

Distributed Functional Programming in Scheme (DFPS) [17] uses futures seman-
tics to build a distributed programming platform. DFPS employs the Web Server collec-
tion’s serial-lambda form to serialize closures between machines. Unlike Racket fu-
tures, DFPS’ touch form blocks until remote execution of the future completes. DFPS
has a distributed variable construct called a dbox. For consistency, a dbox should only
be written to once or a reduction function for writes to the dbox should be provided.
Once a dbox has be set, the DFPS implementation propagates the dbox value other
nodes that reference the dbox,

Cloud Haskell [5, 6] is a distributed programming platform built in Haskell. Cloud
Haskell has two layers of abstraction. The lowest layer is the process layer, which is a
message-passing distributed programming API. Next comes the tasks layer which pro-
vides a framework for failure recovery and data locality. Communication of serialized
closures requires explicit specification from the user of what parts of environment will
be serialized and sent with the code object.

On top of its message-passing process layer, Cloud Haskell implements typed chan-
nels that allow only messages of a specific type to be sent down the channel. A Cloud
Haskell channel has a SendPort and a ReceivePort. ReceivePorts are not serializable
and cannot be shared, which simplifies routing. SendPorts, however, are serializable
and can be sent to multiple processes, allowing many to one style communication.

56 K. Tew et al.

High-level Distributed-Memory Parallel Haskell (HdpH) [12] builds upon Cloud
Haskell’s work by adding support for polymorphic closures and lazy work stealing.
HdpH does not require a special language kernel or any modifications to the vanilla
GHC runtime. It simply uses GHC’s Concurrent Haskell as a systems language for
building a distributed memory Haskell.

Dryad [11] is an infrastructure for writing coarse-grain data-parallel distributed pro-
grams on the Microsoft platform. Distributed programs are structured as a directed
graph. Sequential programs are the graph vertices and one-way channels are the graph
edges. Unlike Distributed Places, Dryad is not a programming language. Instead it pro-
vides a execution engine for running sequential programs on partitioned data at compu-
tational vertices. Although Dryad is not a parallel database, the relational algebra can be
mapped on top of a Dryad distributed compute graph. Unlike distributed places which is
language centric, Dryad is infrastructure piece, which doesn’t extend the expressiveness
of any particular programming language.

Jade [15] is a implicitly parallel language. Implemented as a extension to C, Jade is
intended to exploit task-level concurrency. Like OpenMP, Jade consists of annotations
that programmers add to their sequential code. Jade uses data access and task granularity
annotations to automatically extract concurrencyandparallelize theprogram.AJade front
end then compiles the annotated code and outputs C. Programs parallelized with Jade
continue to execute deterministically after parallelization. Jade’s data model can interact
badly with the programs that write to disjoint portions of a single aggregate data structure.
In contrast, Distributed Places is an explicitly parallel language where the programmer
must explicitly spawn tasks and explicitly handle communication between tasks.

Dreme [7] is a distributed Scheme. All first-class language objects in Dreme are mo-
bile in the network. Dreme describes the communication network between nodes using
lexical scope and first class closures. Dreme has a network-wide distributed memory
and a distributed garbage collector. By default, Dreme sends objects by reference across
the network, which can lead to large quantities of hidden remote operations. In contrast,
distributed places copies all objects sent across the network and leaves the programmer
responsible for communication invocations and their associated costs.

7 Conclusion

Building distributed places as a language extension allows the compact and clean con-
struction of higher-level abstractions such as RPC, MPI, map reduce, and nested data
parallelism. Distributed places programs are more compact and easier to write than tra-
ditional C MPI programs. A Racket MPI implementation of parallel k-means was writ-
ten with distributed places using less than half the lines of code of the original C and
MPI version. With distributed places, messages can be heterogeneous and serialization
is handled automatically by the language.

In addition to distributed parallel computing, Racket has many features that make it
a great coordination and control language. Racket provides a rich FFI (foreign function
interface) for invoking legacy C code. Racket also includes extensive process exec ca-
pabilities for launching external programs and communicating with them over standard
IO pipes. Racket’s FFI, process exec capabilities, and distributed places gives program-
mers a powerful distributed coordination and workflow language.

Distributed Places 57

With distributed places, programmers can quickly develop parallel and distributed
solutions to everyday problems. Developers can also build new distributed computing
frameworks using distributed places as a common foundation. Distributed places ex-
tension of places augments the Racket programmer’s toolbox and provides a road map
other language implementers to follow.

References

[1] Apache Software Foundation. Hadoop (2012), http://hadoop.apache.org
[2] Blelloch, G.E.: Programming Parallel Algorithms. Communications of the ACM (1996)
[3] Cejtin, H., Jagannathan, S., Kelsey, R.: Higher-Order Distributed Objects. ACM Transac-

tions on Programming Languages and Systems, TOPLAS (1995)
[4] Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clusters. In:

OSDI 2004: Sixth Symposium on Operating System Design and Implementation (2004)
[5] Epstein, J., Black, A.P., Peyton-Jones, S.: Haskell for the Cloud. In: Proceedings of the 4th

ACM Symposium on Haskell, Haskell 2011 (2011)
[6] Epstein, J.: Functional programming for the data centre. MS thesis, University of Cam-

bridge (2011)
[7] Fuchs, M.: Dreme: for Life in the Net. PhD dissertation, New York University (1995)
[8] Germain, G., Feeley, M., Monnier, S.: Concurrency Oriented Programming in Termite

Scheme. In: Proc. Scheme and Functional Programming (2006)
[9] Blelloch, G.E., Hardwick, J.C., Chatterjee, S., Sipelstein, J., Zagha, M.: Implementation of

a portable nested data-parallel lang. In: Proceedings of the Fourth ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming, PPOPP 1993 (1993)

[10] Hewitt, C., Bishop, P., Steiger, R.: A Universal Modular ACTOR Formalism for Artificial
Intelligence. In: Proceedings of the 3rd International Joint Conference on Artificial Intelli-
gence, IJCAI 1973 (1973)

[11] Isard, M., Budiur, M., Yu, Y., Birrell, A., Fetterly, D.: Dryad: Distributed Data-Parallel Pro-
grams from Sequential Building Blocks. In: European Conference on Computer Systems,
EuroSys (2007)

[12] Maier, P., Trinder, P., Loidl, H.-W.: High-level Distributed-Memory Parallel Haskell in
Haskell. In: Symposium on Implementation and Application of Functional Languages
(2011)

[13] Message Passing Interface Forum. MPI-2: Extensions to the Message-Passing Interface
(2003), http://www.mpi-forum.org/docs/mpi2-report.pdf

[14] MPICH. MPICH (2013), http://www.mcs.anl.gov/mpich2
[15] Rinard, M.C., Lam, M.S.: The Design, Implementation, and Evaluation of Jade. ACM

Transactions on Programming Languages and Systems 20(1), 1–63 (1998)
[16] Sagonas, K., Wilhelmsson, J.: Efficient Memory Management for Concurrent Programs that

use Message Passing. Science of Computer Programming 62(2), 98–121 (2006)
[17] Schwendner, A.: Distributed Functional Programming in Scheme. MS thesis, Mas-

sachusetts Institute of Technology (2010),
http://groups.csail.mit.edu/commit/papers/2010/alexrs-meng-thesis.pdf

[18] Tew, K., Swaine, J., Flatt, M., Findler, R.B., Dinda, P.: Places: Adding Message-Passing
Parallelism to Racket. In: Dynamic Language Symposium (2011)

[19] Typesafe Inc. Akka (2012), http://akka.io

http://hadoop.apache.org
http://www.mpi-forum.org/docs/mpi2-report.pdf
http://www.mcs.anl.gov/mpich2
http://groups.csail.mit.edu/commit/papers/2010/alexrs-meng-thesis.pdf
http://akka.io

Bytecode and Memoized Closure Performance

Marco T. Morazán

Seton Hall University, South Orange, NJ, USA
morazanm@shu.edu

Abstract. This article describes a new project to study the memory
performance of different closure-implementation strategies in terms of
memory allocation and runtime performance. At the heart of the project
are four new implementation strategies for closures: three bytecode clo-
sures and memoized flat closures. The project proposes to compare the
new implementation strategies to the classical strategy that dynamically
allocates flat closures as heap data structures. The new bytecode closure
representations are based on dynamically creating specialized bytecode
instead of allocating a data structure. The first new strategy creates spe-
cialized functions by inlining the bindings of free variables. The second
uses memoization to reduce the number of dynamically created functions.
The third dynamically creates memoized specialized functions that treat
free variables as parameters at runtime. The fourth memoizes flat clo-
sures. Empirical results from a preliminary byetcode-closure case-study
using three small benchmarks are presented as a proof-of-concept. The
data suggests that dynamically created bytecode closures in conjunc-
tion with memoization can allocate significantly less memory, as much
as three orders of magnitude less memory in the presented benchmarks,
than a flat closure implementation. In addition to studying the memory
footprint of the different closure representations, the project will also
compare runtime efficiency of these new strategies with traditional flat
closures and flat closures that are unpacked onto the stack.

1 Introduction

In functional languages functions are first-class. This means that functions can be
passed as arguments to functions and can be returned as the result of evaluating
a function. One of the consequences of first-class functions that programming
language implementors must resolve is how to represent functions that may be
applied outside of their lexical scope. Care must be taken to represent functions,
because they may contain references to free variables1. For example, consider
the function in Figure 1. The function mk-mapper declares the variable f which
is free in the returned function. Notice that the returned function can only be
applied outside the lexical scope of f. Therefore, f must be “remembered” by the
returned function.

1 A variable, x, is free in a function, f , if f references x, f does not declare x, and x
is declared by an ancestor of f in the program’s parse tree.

J. McCarthy (Ed.): TFP 2013, LNCS 8322, pp. 58–75, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Bytecode and Memoized Closure Performance 59

(define (mk-mapper f)

(define (mapper L)

(cond [(null? L) L]

[else (cons (f (car L)) (mapper (rest L)))]))

mapper)

Fig. 1. A function that returns a function

In the λ-calculus [1], β-reduction is used as the mechanism for remembering
the bindings of free variables. The β-rule

(λx.e)x0 → e{x0/x}

states that all free occurrences of x in e are replaced by x0. Typical implemen-
tations of functional languages, however, do not perform actual substitutions in
e and, instead, use an environment to track what should have been substituted
[2]. Thus, to represent a function, with references to free variables, that may
be applied outside its lexical scope, the creation of a closed package, called a
closure [19], is required. The closure captures the bindings of the free variables
by storing (a pointer to) an environment. For example, in Figure 1 a closure is
created to retain the binding of f for the returned function mapper.

Closures, in this context, are functions that are represented using a data struc-
ture in order to avoid performing actual substitutions. Part of the data structure
represents the function itself (i.e., the code to be evaluated) and part of the data
structure represents the environment that gives meaning to the function. This
representation facilitates the compilation of functions given that the structure
of the function remains constant at runtime (i.e., the bindings of the free vari-
ables do not change the compiled function). In contrast, substitution changes
the structure of a compiled function every time the bindings of the free variables
are different requiring the creation of a new function specialized for the bindings
of its free variables.

An alternative to using a data-structure closure to represent a function, of
course, is to perform actual substitutions to create a specialized function. Such
an approach has been investigated in the past, but implementations to date
have led to excessive memory allocation [6,10]. The project described in this
article aims to study three strategies for implementing dynamically created
byetcode closures instead of dynamically allocating data-structure closures. The
memory-efficient strategies are expected to come from a controlled form of actual
substitutions employing memoization [17]. This article introduces these imple-
mentation strategies using a small, pure, and strict functional language and com-
pares the strategies using small benchmarks–as a preliminary proof-of-concept.
The presented empirical data suggests that memory-wise memoized dynami-
cally allocated bytecode closures can be a viable alternative to flat closures. The
project also aims to compare the memory allocation of byetcode closures with
memoized flat closures. In addition to studying the memory footprint of the dif-
ferent closure representations, the project aims to compare the runtime efficiency

60 M.T. Morazán

of these new strategies with traditional flat closures and with flat closures that
are unpacked onto the stack. Finally, the article ends with other, longer term,
interesting lines of research to be pursued.

2 Closures: Representation and Issues

Typically, closures are heap-allocated data structures that are created every
time a function with free variables needs to be represented. Historically, closures
have been implemented in a number of ways. Early implementations of func-
tional languages, like Henderson’s Lisp [11] using a SECD machine [19], used
linked closures (a.k.a deep closures). In a linked closure, a list of frames (i.e.,
the existing environment) is used to store the bindings of the free variables.
The attractive feature of this approach is that closure creation is done in con-
stant time. Accessing the binding of a free variable, however, requires an O(n)
traversal of the list of frames, where n is the lexical offset of the free-variable
reference. The space required to store a closure is proportional to the size of
the environment–amortized over all the closures that share the environment.
This closure representation makes closure creation fast at the expense of mak-
ing resolving variable references slower [23]. In addition, bindings that are no
longer relevant to a computation are unnecessarily kept alive (i.e., not garbage
collected) by storing (a pointer to) the entire existing environment as part of the
closure.

An alternative to linked closures, used for example by the Functional Ab-
stract Machine (FAM) [3,13], are flat closures (a.k.a. display closures [23]). A
flat closure employs an array to store the bindings of free variables. Free vari-
ables are accessed by a fixed displacement within the array in constant time.
Closure creation requires copying the bindings of free variables into the closure.
Therefore, flat-closure creation is O(vf), where vf is the number of free variables
the function depends on. The space required to store a closure is proportional
to the number of free variables a function depends on which is always less than
or equal to the size of the environment. This closure representation makes the
resolution of references to free variables faster at the expense of closure creation
time. In addition, this representation only stores the part of the environment
that is relevant to the remaining computation and, thus, allows a garbage col-
lector to be more effective by allowing the recycling of memory space used by
bindings that are known to no longer be relevant to the computation.

Shao and Appel observed that flat-closure creation may require many values
to be copied repeatedly from closure to closure [25]. To avoid this copying, they
developed safely linked closures that allow for bindings to be shared between
closures. Free variables referenced by more than one function are grouped to-
gether into a shareable record. Their representation strategy guarantees that the
nesting of safely linked closures never exceeds two. The space required to store
a closure is proportional to the number of free variables a function depends on,
but when multiple functions have free variables in common the space required
is reduced by (f − 1) ∗ n, where f is the number of functions that share free

Bytecode and Memoized Closure Performance 61

f

mapper

(lambda (L) (cond . . .))

(lambda (x) (+ x 1))

Fig. 2. Conceptual View of the Flat Closure for (mk-mapper (lambda (x) (+ x 1)))

variables and n is the number of free variables the functions share. This clo-
sure representation makes closure creation faster than flat-closure creation at
the expense of adding overhead to the resolution of references to free variables.
In addition, bindings are only kept alive while they may still be relevant to the
computation allowing the space they occupy to be recycled as soon as possible
by a garbage collector.

Always allocating a closure data structure to represent a function with free
variables can lead to excessive memory allocation. This is why many modern
implementations of functional languages attempt to eliminate closure alloca-
tions whenever possible. For instance, MzScheme [8], which uses flat closures
[7], inlines functions and adds free variables as arguments to functions whenever
all applications of a function are visible [21]. In addition to reducing memory
allocation, providing fast access to free variables is another goal of modern im-
plementations. This has led to a variety of methods to access the bindings of
free variables. In MzScheme, for example, the bindings of free variables are not
accessed directly from the closure. Instead, the bindings are unpacked onto the
stack whenever the closure is applied [7]. Some language implementations make
free variables explicit by performing program transformations such as lambda
lifting [12,15] and closure conversion [14]. Lambda lifting explicitly adds free
variables as parameters to functions. Accesses to free variables in the source
program are turned into parameter accesses as done in MzScheme. Closure con-
version explicitly adds an environment parameter to functions. The bindings
of free variables in the source program are accessed through the environment
parameter.

3 Intuitive Data-Structure Closure Elimination

When closures are implemented as data structures, heap memory is allocated
every time a function with free variables needs to be represented. For example,
consider the code in Figure 1 and the evaluation of:

(mk-mapper (lambda (x) (+ x 1))).

62 M.T. Morazán

This expression returns the closure displayed in Figure 2. This conceptual view
of the flat closure has f bound to the representation of the combinator that
adds 1 to its input. In addition, it has mapper bound to the closure itself, thus,
enabling the self-reference (i.e., recursive application) in the body of the function
the closure represents.

Instead of allocating and returning a data structure closure, a specialized
version of the returned function, based on the binding of f, can be dynamically
created. Specifically, if substitutions were performed the function returned would
be semantically equivalent to this new function:

(define (mapper-f-x-x+1 L)

(cond [(null? L) L]

[else (cons ((lambda (x) (+ x 1)) (car L))

(mapper-f-x-x+1 (rest L)))])).

In this example, the returned function, mapper-f-x-x+1, has the same structure
as,mapper, the function specialized. In general, however, the returned specialized
function does not require the same structure2. The important point is that the
returned function is a combinator. That is, it lacks references to free variables
and, as such, does not require a data-structure closure to store the bindings of
free variables.

Studying variations of three basic strategies to dynamically create such a
combinator as a bytecode function, coined a bytecode closure, is a primary focus
of the project. The three strategies are outlined as follows:

– The first strategy inlines the bindings of the free variables into the returned
function as suggested by β-reduction. The advantage of this implementation
strategy is that the resolution of free variables is transformed to accessing
constants in specialized functions. A potential disadvantage is that inlining
may lead to code explosion and require more memory allocation than flat
closures when the functions being specialized are large relative to the number
of free variables referenced.

– The second strategy attempts to reduce memory consumption by memoizing
inlined functions. That is, the dynamically-created specialized functions of
the first strategy are memoized and reused.

– The third strategy breaks away from inlining functions in the source code.
Instead, references to free variables in the source code are transformed to
parameter references. Specialized bytecode closures inlined with the bindings
of free variables that push these bindings onto the stack are memoized. When
compared to using flat closures or inlined source functions, the advantages
of this implementation strategy are that the resolution of free variables is
faster than using flat closures by treating free variables as parameters, that
the memory dynamically allocated for specialized functions is proportional
to the number of free variables (not the size of the specialized function) as
it is for flat closures, and that the structure of compiled λ-terms does not

2 This can be the result, for example, of performing δ-reductions.

Bytecode and Memoized Closure Performance 63

program → def∗

def → (define (symbol+) def∗ expr)
expr → number

→ symbol
→ boolean
→ (if expr expr expr)
→ (expr+)
→ (lambda (symbol∗) expr)

Fig. 3. The BNF Grammar of the Source Core Language

change. A potential disadvantage, unlike inlining, is that a jump is required
to transfer control from the function that pushes the bindings of the free
variables to the function that utilizes these bindings

Comparing the performance of bytecode closures with memoized flat closures
and the unpacking of flat (both memoized and not memoized) is part of the
project. Memoized flat closures eliminate the need for the jump required by the
third strategy at the expense of increasing the access time to free variables.
Unpacking a closure may make access to free variables faster when amortized
over a relatively large number of references. Empirical data will be collected to
determine when, if ever, one implementation strategy is superior to the others.

4 Illustrating the Compilation Process

The BNF grammar for a small core language is displayed in Figure 3. This core
language is used for the preliminary results presented in this article. A program
consists of zero or more definitions. A definition consists of a header which
contains the function name and the parameters, zero or more local definitions,
and a body which is an expression. An expression is a number, a symbol, a
boolean, an if expression, an application expression, or a lambda expression.

The architecture of the proof-of-concept compiler is displayed in Figure 4. A
source program is first parsed. The parse tree is given as input to a δ-reducer.
The δ-reducer replaces a primitive function applied to its required known argu-
ments by a result. This transformation reduces the size of the resulting program
by evaluating primitive application expressions and by eliminating dead code
(e.g., when the condition of an if -expression can be evaluated at compile time).
The δ-reduced parse tree is given as input to a lambda lifting function (e.g.,
[15]). Lambda lifting makes the free variables of a function explicit and, thus,
the variables by which to specialize functions at runtime. Given that functions
are not curried, the resulting lambda lifted program may contain functions with
a nested lambda expression. The parameters of a lifted function are the original
function’s free variables in the source program and the parameters of the nested
lambda expression are the parameters of the original source function. The result-
ing lambda lifted parse tree is passed to the code generator to produce bytecode.

64 M.T. Morazán

Parser δ-Reducer Lambda Lifter Code Generator

Fig. 4. The General Architecture of the Proof-of-Concept Compiler

To illustrate the process, consider a function common in environment-passing
interpreters to evaluate the arguments of an application expression. The func-
tion takes as input a list of expressions to be evaluated and the environment
(implemented as a list of frames) in which to evaluate the expressions. It returns
a list containing the results of evaluating each expression. Using the syntax of
Figure 3, the function is implemented as follows:

(define (eval-operands rands env)

(map (lambda (e) (eval-expr e env)) rands))

After parsing, the δ-reducer discovers that there are no primitive application
expressions that can be evaluated and produces as output the original parse tree.
Lambda lifting hoists the lambda expression to the global level. Since env is the
only free variable in this function, env is the only parameter in the lifted function.
The body of the lifted function is itself the original lambda expression. In the
body of eval-operands, the lambda-expression is substituted with an application
expression that applies the lifted function to its free variable. After lambda
lifting, the parse tree represents the following program:

(define (eval-rands rands env) (map (lifted1 env) rands))

(define (lifted1 env) (lambda (e) (eval-expr e env))).

The lambda lifted parse tree is passed to the code generator to produce the
bytecode displayed in Figure 5. The displayed code is generated assuming the
use of flat closures and, to aid readability, Figure 5 omits the proper handling
of tail calls. Bytecode is generated for 3 functions: eval-rands, lifted1, and the
nested lambda expression in lifted1 (i.e., FN19 in the bytecode). The compiled
code for eval-rands sets up an activation record on the stack for the call to map
and another for the call to lifted1. For lifted1, env (i.e., PACC 2) is pushed onto
the stack and control-flow registers are updated before the call is made. After
returning from lifted1, the bytecode pushes rands, the first parameter, onto the
stack (i.e., PACC 1), updates control-flow registers, and calls map. The bytecode
generated for lifted1 allocates a closure of size 1 for FN19 (i.e., the nested lambda
expression), populates the closure with the binding of the first parameter, and
returns this closure after popping off its activation record with 1 parameter (i.e.
FRETURN 1). The code for FN19 sets up an activation record for the call to
eval-expr, pushes e, its parameter, and the free variable env onto the stack (i.e.,
FVACC 1), updates control-flow registers, and makes the call to eval-expr.

Bytecode and Memoized Closure Performance 65

eval-rands lifted1 FN19

FCALL ACLOSURE FN19 1 FCALL

FCALL COPY2CLOSURE 1 1 PACC 1

PACC 2 FRETURN 1 FVACC 1

<update registers> <update registers>

GOTO lifted1 GOTO eval-expr

PACC 1

<update registers>

GOTO map

Fig. 5. Compiled Code for the MT Virtual Machine

5 Bytecode Closures Implementation Strategies

This section describes the three strategies to dynamically create bytecode clo-
sures. It is important to remember that the code generator expects lambda lifted
programs in which a lambda expression only exists as the body of a global func-
tion and in which lambda expressions contain at least one reference to each of
the parameters of its enclosing global function. It is these anonymous functions
that are specialized at runtime.

5.1 Strategy I: Inlined Functions

In strategy I, anonymous functions (i.e., compiled λ-terms) are treated as tem-
plates with holes. These templates are never executed at runtime and are only
used to generate specialized versions of the anonymous function. The holes are
the instructions to access free variables (i.e., FVACC instructions in the byte-
code).

To generate a specialized function from a template, the bytecode of the tem-
plate is copied. The holes of the template, however, are filled with instructions
to push a constant onto the stack based on the binding of the free variable ref-
erenced. That is, specialized functions are inlined with the bindings of the free
variables wherever free variables are referenced. Care must be taken to handle
jumps to labels correctly (e.g., in the compiled code of an if-expression). Branch
instructions that refer to labels can not simply be copied, because that would
mean branching into the template instead of a location in the specialized func-
tion. The fact that the template and the specialized function have the same
number of instructions means that simple address arithmetic solves the problem
at runtime.

This strategy uses the blind policy of always generating a specialized function
whenever a flat closure would be generated. Dynamic function creation using
this implementation strategy is O(n), where n is the size of the function being
specialized. That is, the time it takes to create a specialized function is propor-
tional to the number of bytecode instructions in the function and not the number
of free variables the function references. In general when the size of specialized

66 M.T. Morazán

(define (eval-expr expr env)

(if (literal? expr)

expr

...

(if (app-expr? expr)

(apply-proc (eval-expr (proc-expr expr) env)

(cons (eval-operands (ops-expr expr) env) env))

...)))

(define (eval-operands rands env)

(map (lambda (e) (eval-expr e env)) rands))

Fig. 6. Program Fragment of an Environment-Passing Interpreter

(define (lifted1-1 e) (eval-expr e ’(((x 2) (y 2)))))

(define (lifted1-2 e) (eval-expr e ’(((x 2) (y 2)))))

(define (lifted1-3 e) (eval-expr e ’((b (f 2)) ((x 2) (y 2)))))

(define (lifted1-4 e) (eval-expr e ’((b (f 2)) ((x 2) (y 2)))))

(define (lifted1-5 e)

(eval-expr e ’(((i (g (f 2))) (j (g (f 2)))) ((x 2) (y 2)))))

Fig. 7. Five Dynamically Created Inlined Functions

functions is large relative to the number of free variables referenced, it is ex-
pected for such an implementation to be inefficient when compared to using flat
closures for two reasons. The first is that programs allocate more memory. The
second is that specialized function creation takes longer than closure creation.

To illustrate this strategy, consider the program fragment in Figure 6 for an
environment-passing interpreter and the evaluation of

(eval-expr ’(h (g (f x)) (g (f y))) ’(((x 2) (y 2)))),

where f, g, and h are user-defined functions, and the environment binds x and
y to 2. The function eval-operands3 is called 5 times: once for h, twice for g,
and twice for f. The evaluation of both applications of f is done with the same
environment (i.e., the displayed environment). Likewise, the evaluation of both
applications of g is done with the same environment (i.e., value-wise). The result
at runtime is the generation of the 5 functions4 displayed in Figure 7. Notice that
the generated functions for f, lifted-1 and lifted-2, and the generated functions
for g, lifted-3 and lifted-4, are, respectively, semantically equivalent. This means
that three specialized functions can be generated, instead of five, to evaluate
the expression. Generated functions that are semantically equivalent to needed
functions can be re-used to reduce memory allocation.

3 This function is lambda lifted as described in Section 4.
4 In the interest of readability, source syntax is used in this example.

Bytecode and Memoized Closure Performance 67

5.2 Strategy II: Memoized Inlined Functions

The second implementation strategy does not blindly create specialized func-
tions. Instead of always generating a function when a closure would be allocated,
specialized functions are memoized and functions are only dynamically created
when needed. Specialized function memoization requires a cache of specialized
functions to be maintained. If a specialized function is needed and is found in
this cache, then the previously generated specialized function is re-used. Oth-
erwise, a new specialized function is generated and this new function is added
to the cache of specialized functions. Determining function equality is achieved
by exploiting the naming convention used for specialized functions. Instead of
simply generating a fresh identifier, the fresh identifier is a linear combination
of the name of the function being specialized and of the types and the bindings
of the free variables.

To illustrate how memoized function specialization works, once again, consider
the program fragment in Figure 6 for an environment-passing interpreter and
the evaluation of:

(eval-expr ’(h (g (f x)) (g (f y))) ’(((x 2) (y 2)))).

As before, the function eval-operands is called five times, but only three special-
ized functions are generated5:

(define (lifted1-list-100-2400 e)

(eval-expr e ’(((x 2) (y 2)))))

(define (lifted1-list-3000-5000 e)

(eval-expr e ’(((b (f 2))) ((x 2) (y 2)))))

(define (lifted1-list-7500-8150 e)

(eval-expr e ’(((i ((g (f 2)))) (j ((g (f 2)))))

((x 2) (y 2))))).

Notice that in this example we have a 40% reduction in the number of dynami-
cally generated functions when compared to using strategy I.

5.3 Strategy III: Memoized Auxiliary Inlined Functions

In strategy III, λ-terms are not treated as templates with holes. Instead, these
anonymous functions are executable and are converted to combinators. Free-
variable references become parameter references. In this context, a specialized
byetcode function has two roles. The first is to push the bindings of free variables
needed by an anonymous function onto the stack (akin to unpacking a flat clo-
sure). The second is to transfer control to the anonymous function for which it
was created. A specialized function, in other words, completes the construction
of the front rib of the environment for an anonymous function.

5 The function names are based on the linear combination convention mentioned
above.

68 M.T. Morazán

lifted1

GENF FN19 1

FRETURN 1

FN19

FCALL

PACC 1

PACC 2

<update registers>

GOTO eval-expr

Fig. 8. Strategy III Lambda Expression

lifted1-list-100-2400

PUSHLIST 100 2400

GOTO FN19

lifted1-list-3000-5000

PUSHLIST 3000 5000

GOTO FN19

lifted1-list-7500-8150

PUSHLIST 7500 8150

GOTO FN19

Fig. 9. Strategy III Specialized Functions

The third implementation strategy makes dynamic function creation memory
efficient by making the size of specialized functions proportional to the size of the
flat closures they substitute. A specialized function is a collection of instructions
to push constants onto the stack followed by a jump instruction. At compile time,
the order in which constants are to be pushed onto the stack by a specialized
function is determined. This order corresponds to the order of the parameters
of a lambda-lifted function that has an anonymous function in its body. Every
parameter of such a function must be referenced by the λ-expression in its body.
Therefore, to create a specialized function, the runtime system only needs to
examine the first rib of the environment to assemble the instructions to push
constants onto the stack in the right order and to add a jump to the anonymous
function.

To illustrate how function specialization works using strategy III, once again,
consider the program fragment in Figure 6 and the evaluation of

(eval-expr ’(h (g (f x)) (g (f y))) ’(((x 2) (y 2)))).

The compiled code for lifted1 and its nested anonymous function (i.e., FN19) are
displayed in Figure 8. Observe that the compiled code for FN19 is almost the
same as the compiled code in Figure 5. The only difference is that the reference to
the first free variable (i.e., FVACC 1) is now a reference to the second parameter
(i.e., PACC 2). The compiled code for lifted1 generates a specialized function
for FN19 that adds one parameter to FN19’s activation record (i.e., GENF FN19
1). As for strategy II, the function eval-operands is called 5 times and only 3
specialized functions are generated which are displayed using bytecode in Figure
9. One function is generated for each of the different bindings for env. Each
generated function pushes the binding of env onto the stack and transfers control
to FN19. It is straightforward to see that the specialized versions of lifted1 are
smaller than their counterparts using strategies I or II and are proportional in
size to flat closures.

6 Preliminary Empirical Results

This section presents preliminary memory allocation empirical results obtained
from three small benchmarks. These results are intended solely as an indication

Bytecode and Memoized Closure Performance 69

that there is fertile ground for exploration using larger benchmarks. First, the
benchmarks are briefly described. Second, the performancemeasurements are pre-
sented. The benchmarks naively use higher-order functions to test extreme ends
of the memory allocation spectrum. The lambda lifted versions of the benchmarks
are found in the appendix in section 8.

6.1 Benchmarks

AP. This benchmark traverses a list of pairs of integers to produce a list that
contains the sums of each pair. The presented measurements are for a list
of 9,999 pairs with each pair containing two randomly generated integers in
[0..9999].

ST. This benchmark traverses a binary tree of integers and scales each integer
in the tree by its depth in the tree. The presented measurements are for the
scaling of a full binary tree of depth 15.

TK. This is the triply recursive integer function related to the Takeuchi func-
tion, one of Gabriel’s benchmarks [9], that has been modified to maximize
the use of anonymous functions. The presented measurements are for (tak
18 12 6).

Each benchmark was executed 4 times for a total of 12 experiments on a
non-distributed version of the MT virtual machine [16]. The benchmarks were
executed using flat closures and each of the three strategies for bytecode closures
described in the previous section, denoted by Strategy I, Strategy II, and Strategy
III.

6.2 Measurements and Analysis

For each benchmark, Figure 10 displays the relative difference, fca−bsa
bsa , in mem-

ory allocation between flat closures allocations (fca) and each bytecode strategy
allocation (bsa). A negative relative difference means that the flat-closure-based
implementation allocated less memory.

For each benchmark, strategy I incurs the maximum number of allocations.
The total excess memory allocation ranges from about 20% to about 90% when
compared to the flat-closure-based implementation. This occurs, as expected,
because the number of dynamically created functions is the same as the number
of closures allocated and the size of a specialized function is larger than the size
of a flat closure. These numbers clearly suggest that such a naive implementa-
tion of bytecode closures is neither efficient nor feasible for industrial-strength
implementations.

Strategies II and III significantly outperform the flat-closure-based imple-
mentation (as well as Strategy I). For the AP benchmark, the flat closure based
implementation allocates about 33% more memory than either of these strate-
gies. The savings in memory allocation are due to memoization exploiting the
modest amount of repetition in the generation of random numbers in [0..9999].

70 M.T. Morazán

Relative Difference

AP Strategy I -0.6190

AP Strategy II 0.3325

AP Strategy III 0.3332

TK Strategy I -0.8889

TK Strategy II 79.13

TK Strategy III 794.3

ST Strategy I -0.1998

ST Strategy II 0.2497

ST Strategy III 0.2900

Fig. 10. Relative Difference with Flat Closures

Strategies II and III virtually exhibit the same performance with strategy III dis-
playing slightly less memory allocation. The observed performance is so close,
because the function being specialized is small and a specialized inlined function
generated with strategy II is only one bytecode instruction larger than a special-
ized function generated with strategy III. This benchmark clearly suggests that
memoization of dynamic functions may significantly reduce memory allocation
when compared to flat closures and that further study is justified.

For the ST benchmark, the flat closure base implementation allocates about
25% more memory than strategy II and 29% more memory than strategy III.
For this benchmark, memory allocation is dominated by allocation to build a
list-based structure (i.e., a full binary tree). For strategies II and III, only a
small number of functions, 16, are dynamically created. In essence, only one
specialized function is created per tree level due to memoization. The savings
observed are attributed to the large number of flat closures allocated by the
the classical implementation (one for each node in the full binary tree). The
difference between strategy II and strategy III is due to the smaller functions
generated by the latter. This benchmark clearly suggests that even for programs
in which first-class functions only play a small role, memoized bytecode closures
may significantly reduce memory allocation and that further study is warranted.

For the TK benchmark, we observe the largest gain in performance over the
flat-closure-based implementation. For strategy II the flat-closure-based imple-
mentation allocates about 7,913% more memory (i.e., two orders of magnitude
more memory) while for strategy III the excess allocation by the flat-closure-
based implementation reaches 79,430% (i.e., three orders of magnitude more
memory). The difference is quite significant and occurs because the Takeuchi
triply recursive function makes many recursive calls with the same arguments.
This benchmark presents the ideal conditions under which memoization is most
effective. Strategy III significantly outperforms strategy II by about 1 order of
magnitude. This difference occurs, because the inlined specialized functions gen-
erated using strategy II are significantly larger than the specialized functions
generated by strategy III. The TK benchmark clearly suggests that memoized

Bytecode and Memoized Closure Performance 71

dynamically generated functions may lead to significantly less memory allocation
than flat closures and that such performance potential deserves further study.

The preliminary empirical data clearly suggests that the thesis that memoized
bytecode closures can exhibit significantly better memory performance than flat
closures and deserve further study. Furthermore, the data also suggests that
keeping the size of dynamically created bytecode closures proportional to the
number of free variables is important.

7 Related Work

Feeley and Lapalme first suggested generating code instead of allocating data
structure closures [6]. In their work, a specialized function only pushes the bind-
ings of free variables onto the stack and these bindings are accessed like parame-
ters by a compiled lambda expression akin to strategy III described in this article.
Their performance measurements indicate that for their implementation strategy
memory allocated for specialized functions increases by up to 25% when com-
pared to a closure-based implementation. The major differences between with
the approach described in this article and their work is the use of memoization
and lambda lifting. Memoization can significantly reduce memory allocation as
argued in the previous section. Lambda lifting reduces the complexity of com-
piling for specialization, but at runtime exactly the same specialized functions
are created by both approaches. Finally, Feeley and Lapalme also address the
problems introduced by assignment and propose pushing the address to a muta-
ble box instead of a binding to extend the technique to support assignment. A
similar approach would work with the memoization-based strategies described
in this article.

More recently, Grabmüller developed a prototype system to implement clo-
sures using runtime code generation for a strict (and pure) functional language
[10]. Instead of compiled code, this approach uses abstract syntax trees at run-
time to create specialized functions. The runtime code generator inlines func-
tions with the bindings of their free variables akin to strategy I described in this
article. The use of abstract syntax trees is intended to simplify common opti-
mizations (e.g., reduction to normal form and dead code elimination) that can
be performed by the runtime code generator once the bindings of free variables
are known. It is unclear, based on the preliminary work done with their proto-
type, if any runtime analysis of an abstract syntax tree can not be done a priori
to indicate to the code generator what optimizations to perform. Grabmüller’s
performance evaluation indicates that the system runs out of memory space
for some benchmarks, but provides no other indication on memory allocation
performance.

There have been several approaches, far too many to reference here, to runtime
code generation that have not focused on eliminating data-structure closures.
Lee and Leone’s FABIUS compiler specialize curried functions by inlining the
bindings of arguments as they are received [20]. Consel and Noël have used
runtime specialization for C programs that uses templates with holes to inline

72 M.T. Morazán

and partially evaluate functions [4]. Poletto et al. have also used dynamic code
generation to improve the performance of a superset of C called ’C that requires
programmers to annotate their code [22]. The work on ’C has been extended to
a dialect of Java called DynJava to generate type safe specialized classes [18].

8 Concluding Remarks

This article describes a new project to study the memory performance of repre-
senting closures as dynamically allocated bytecode functions and as memoized
flat closures. The preliminary empirical data presented suggests that memoized
bytecode closures can significantly reduce memory allocation. The magnitude of
the savings increases for programs in which first-class functions play a signif-
icant role at runtime reaching up to three orders of magnitude less allocation
than flat closures in the presented benchmarks. The inescapable conclusion is
that memoized bytecode closures is a technology worthy of future study. In ad-
dition, note that the memoization strategy described in this article does not
break the high-level of abstraction provided by functional languages. That is, it
does not require the programmer to be aware of the memoization process nor to
annotate programs for function specialization to occur.

In addition to studying the memory performance of bytecode closures, this
work will pursue several other interesting lines of research such as:

Memoized Flat Closures. What impact do memoized flat closures have on
performance? Clearly, the number of flat closures will be the same as for
Strategy III bytecode closures. Their memory footprint and their allocation
time will also be similar given that both are proportional to the number of
free variables. The difference, if any, will be marked by free-variable access
time.

Runtime Performance. How do the different closure representations impact
running time? It is a generally accepted that a smaller memory footprint is
better. This project will collect empirical evidence to quantify the impact.
Furthermore, we will compare unpacking closures onto the stack with the
representation used in Strategy III.

Inflation of Parameters. The bytecode closures presented in this article are
based on a compiler that performs lambda lifting. Danvy and Schultz showed
that lambda lifting may present efficiency difficulties due to parameter infla-
tion which led them to propose lambda dropping[5]. A fundamental line of
research is to determine if bytecode closures overcome the efficiency problems
raised by the inflation of parameters.

Continuations. It is common for functional programs to be transformed to
continuation-passing style (CPS) [24,26,27]. A continuation can be repre-
sented as a function that knows how to complete the rest of the compu-
tation. Many implementations, however, transform continuations to a data
structure representation. Another fundamental line of research is whether or
not bytecode closures eliminate the need for this change.

Bytecode and Memoized Closure Performance 73

Garbage Collection. The performance of memoized bytecode closures hinges
on their reuse. Performance, however, also hinges on the recycling of memory
by a garbage collector. How should memoized closures be garbage collected
(whether of the bytecode nature or the data structure nature)? What rules or
heuristics can be used to prevent premature recycling of memoized closures?

Acknowledgements. The author thanks Olivier Danvy for his thoughtful com-
ments over the years on the research questions posed by what is now this new
project.

References

1. Barendregt, H.P.: The Lambda Calculus: Its Syntax and Semantics, Revised edn.
Studies in Logic and the Foundations of Mathematics. North-Holland (1984)

2. Biernacka, M., Danvy, O.: A Concrete Framework for Environment Machines. ACM
Trans. Comput. Logic 9(1) (December 2007)

3. Cardelli, L.: Compiling a Functional Language. In: Proceedings of the 1984 ACM
Conference on LISP and Functional Programming, pp. 208–217. ACM Press, New
York (1984)

4. Consel, C., NoëL, F.: A General Approach for Run-time Specialization and its
Application to C. In: 23rd Annual ACM SIGACT-SIGPLAN Symposium on the
Principles of Programming Languages, pp. 145–156. ACM Press (1996)

5. Danvy, O., Schultz, U.P.: Lambda-Dropping: Transforming Recursive Equations
into Programs with Block Structure. Theoretical Computer Science 248(1-2),
243–287 (2000)

6. Feeley, M., Lapalme, G.: Closure Generation Based on Viewing Lambda as Epsilon
Plus Compile. Journal of Computer Languages 17(4), 251–267 (1992)

7. Matthew Flatt. Private Communication (May 2007)
8. Flatt, M.: PLT MzScheme: Language Manual. Technical Report PLT-TR2008-1-

v4.1, PLT Scheme Inc. (2008), http://www.plt-scheme.org/techreports/
9. Gabriel, R.P.: Performance and Evaluation of Lisp Systems. MIT Press, Cambridge

(1985)
10. Grabmüller, M.: Implementing Closures Using Run-time Code Generation. Re-

search report 2006-02 in Forschungsberichte Fakultät IV – Elektrotechnik und In-
formatik, Technische Universität Berlin (February 2006)

11. Henderson, P.: Functional Programming: Application and Implementation.
Prentice-Hall International, Englewood (1980)

12. Johnsson, T.: Lambda Lifting: Transforming Programs to Recursive Equations.
In: Proc. of a Conf. on Functional Prog. Lang. and Comp. Arch., pp. 190–203.
Springer-Verlag New York, Inc. (1985)

13. Cardelli, L.: The Functional Abstract Machine. Technical Report No.107, Bell Lab-
oratories (April 1983)

14. Minamide, Y., Morrisett, G., Harper, R.: Typed Closure Conversion. In: Proc. of
he 23rd ACM Symp. on Principles of Progr. Lang., pp. 271–283. ACM Press (1996)

15. Morazán, M.T., Schultz, U.P.: Optimal Lambda Lifting in Quadratic Time. In:
Chitil, O., Horváth, Z., Zsók, V. (eds.) IFL 2007. LNCS, vol. 5083, pp. 37–56.
Springer, Heidelberg (2008)

http://www.plt-scheme.org/techreports/

74 M.T. Morazán

16. Morazán, M.T., Troeger, D.R.: The MT Architecture and Allocation Algorithm. In:
Michaelson, G., Trinder, P., Loidl, H.-W. (eds.) Trends in Functional Programming,
Bristol, UK, vol. 1, pp. 97–104. Intellect (2000)

17. Norvig, P.: Techniques for Automatic Memoization with Applications to Context-
Free Parsing. Comput. Linguist. 17(1), 91–98 (1991)

18. Oiwa, Y., Masuhara, H., Yonezawa, A.: DynJava: Type Safe Dynamic Code Gen-
eration in Java. In: Third JSSST Work. on Progr. and Progr. Lang. (March 2001)

19. Landin, P.J.: The Mechanical Evaluation of Expressions. The Computer Jour-
nal 6(4), 308–320 (1964)

20. Lee, P., Leone, M.: Optimizing ML with Run-Time Code Generation. In: Proc. of
the ACM SIGPLAN Conf. on Progr. Lang. Design and Impl., pp. 137–148. ACM
Press (May 1996)

21. PLT Scheme Inc. Guide: PLT Scheme (2008),
http://docs.plt-scheme.org/guide/index.html

22. Poletto, M., Hsieh, W.C., Engler, D.R., Kaashoek, M.F.: ‘C and tcc: A Language
and Compiler for Dynamic Code Generation. ACM Transactions on Programming
Languages and Systems 21(2), 324–369 (1999)

23. Kent Dybvig, R.: The Development of Chez Scheme. In: Proc. of the Eleventh
ACM SIGPLAN Int. Conf. on Funct. Prog., pp. 1–12 (September 2006)

24. Reynolds, J.C.: The Dicoveries of Continuations. Lisp and Symbolic Computa-
tion 6(3/4) (1993)

25. Shao, Z., Appel, A.W.: Space Efficient Closure Representations. In: Proc. of the
1994 ACM Conf. on LISP and Funct. Prog., pp. 150–161. ACM Press, New York
(1994) ISBN 0-89791-643-3

26. Strachey, C., Wadsworth, C.P.: Continuations: A Mathematical Semantics for Han-
dling Full Jumps. Higher-Order and Symbolic Computation 13(1/2) (2000)

27. Sussman, G.J., Steele Jr., G.L.: Scheme: An Interpreter for Extended Lambda
Calculus. In: MEMO 349, MIT AI LAB (1975)

http://docs.plt-scheme.org/guide/index.html

Bytecode and Memoized Closure Performance 75

A Appendix

A.1 The AP Benchmark

(define (g x) (lambda (y) (+ x y)))

(define (f x) ((g (car x)) (cdr x)))

(define (mklist len modus)

(if (= len 0) ’()

(cons (cons (random modus) (random modus))

(mklist (- len 1) modus))))

(define (benchmark n modus) (map f (mklist n modus)))

A.2 The TK Benchmark

(define (tak-y x) (lambda (y) (tak-z y x)))

(define (tak-z y x)

(lambda (z) (if (not (< y x)) z

(tak

(tak (- x 1) y z)

(tak (- y 1) z x)

(tak (- z 1) x y)))))

(define (tak x y z) (((tak-y x) y) z))

A.3 The ST Benchmark

(define (scaleT-by-depth T) (scale 0 T))

(define (scale d T) (map (scale-function d) T))

(define (scale-function d)

(lambda (t) (if (number? t) (* d t) (scale (+ d 1) t))))

(define (mkbt d)

(if (= d 0) ’()

(cons d (cons (mkbt (- d 1))

(cons (mkbt (- d 1)) ’())))))

(define (benchmark x) (scaleT-by-depth (mkbt x)))

Towards Efficient Abstractions

for Concurrent Consensus�

Carlo Spaccasassi�� and Vasileios Koutavas� � �

Trinity College Dublin, Ireland
{spaccasc,Vasileios.Koutavas}@scss.tcd.ie

Abstract. Consensus is an often occurring problem in concurrent and
distributed programming. We present a programming language with sim-
ple semantics and build-in support for consensus in the form of commu-
nicating transactions. We motivate the need for such a construct with a
characteristic example of generalized consensus which can be naturally
encoded in our language. We then focus on the challenges in achieving
an implementation that can efficiently run such programs. We setup an
architecture to evaluate different implementation alternatives and use it
to experimentally evaluate runtime heuristics. This is the basis for a re-
search project on realistic programming language support for consensus.

Keywords: Concurrent programming, consensus, communicating
transactions.

1 Introduction

Achieving consensus between concurrent processes is a ubiquitous problem in
multicore and distributed programming [8, 6]. Among the classic instances of
consensus is leader election and synchronous multi-process communication. Pro-
gramming language support for consensus, however, has been limited. For ex-
ample, CML’s first-class communication primitives provide a programming lan-
guage abstraction to implement two-party consensus. However, they cannot be
used to abstractly implement consensus between three or more processes [11,
Thm. 6.1]—this needs to be implemented in a case-by-case basis.

Let us consider a hypothetical scenario of generalized consensus, which we
will call the Saturday Night Out (SNO) problem. In this scenario a number of
friends are seeking partners for various activities on Saturday night. Each has
a list of desired activities to attend in a certain order, and will only agree for
a night out if there is a partner for each activity. Alice, for example, is looking
for company to go out for dinner and then a movie (not necessarily with the
same person). To find partners for these events in this order she may attempt
to synchronize on the “handshake” channels dinner and movie:

� Student project paper (primarily the work of the first author).
�� Supported by MSR (MRL 2011-039)

� � � Supported by SFI project SFI 06 IN.1 1898.

J. McCarthy (Ed.): TFP 2013, LNCS 8322, pp. 76–90, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Towards Efficient Abstractions for Concurrent Consensus 77

Alice
def
= sync dinner; sync movie

Here sync is a two-party synchronization operator, similar to CSP synchroniza-
tion. Bob, on the other hand, wants to go for dinner and then for dancing:

Bob
def
= sync dinner; sync dancing

Alice and Bob can agree on dinner but they need partners for a movie and
dancing, respectively, to commit to the night out. Their agreement is tentative.

Let Carol be another friend in this group who is only interested in dancing:

Carol
def
= sync dancing

Once Bob and Carol agree on dancing they are both happy to commit to going
out. However, Alice has no movie partner and she can still cancel her agreement
with Bob. If this happens, Bob and Carol need to be notified to cancel their
agreement and everyone starts over their search of partners. An implementation
of the SNO scenario between concurrent processes would need to have a special-
ized way of reversing the effect of this synchronization. Suppose David is also a
participant in this set of friends.

David
def
= sync dancing; sync movie

After the partial agreement between Alice, Bob, and Carol is canceled, David
together with the first two can synchronize on dinner, dancing, and movie and
agree to go out (leaving Carol at home).

Notice that when Alice raised an objection to the partial agreement between
her, Bob, and Carol, all three participants had to restart. However, if Carol was
taken out of the agreement (even after she and Bob were happy to commit their
plans), David would have been able to take Carol’s place and the work of Alice
and Bob until the point when Carol joined in would not need to be repeated.

Programming SNO between an arbitrary number of processes (which can form
multiple agreement groups) in CML is complicated. Especially if we consider
that the participants are allowed to perform arbitrary computations between
synchronizations affecting control flow, and can communicate with other parties
not directly involved in the SNO. For example, Bob may want to go dancing
only if he can agree with the babysitter to stay late:

Bob
def
= sync dinner; if babysitter() then sync dancing

In this case Bob’s computation has side-effects outside of the SNO group of pro-
cesses. To implement this would require code for dealing with the SNO protocol
to be written in the Babysitter (or any other) process, breaking modularity.

This paper shows that communicating transactions, a recently proposed mech-
anism for automatic error recovery in CCS processes [13], is a useful mechanism
for modularly implementing the SNO and other generalized consensus scenar-
ios. They provide a construct for non-isolated (communicating), all-or-nothing
(transactional) computation, with which we can give implementations of the

78 C. Spaccasassi and V. Koutavas

T ::= unit
∣∣ bool ∣∣ int ∣∣ T ×T

∣∣ T →T
∣∣ T chan Types

v ::= x
∣∣ () ∣∣ true ∣∣ false ∣∣ n ∣∣ (v, v) ∣∣ fun f(x) = e

∣∣ c Values

e ::= v
∣∣ (e, e) ∣∣ e e

∣∣ op e
∣∣ letx = e in e

∣∣ if e then e else e Expressions∣∣ send e e
∣∣ recv e

∣∣ newChanT

∣∣ spawn e∣∣ atomic
�
e�k e

� ∣∣ commit k

P ::= e
∣∣ P ‖ P

∣∣ νc.P ∣∣ �
P �k P

� ∣∣ co k Processes

op ::= fst
∣∣ snd ∣∣ add ∣∣ sub ∣∣ mul

∣∣ leq Operators

E ::= []
∣∣ (E, e)

∣∣ (v,E)
∣∣ E e

∣∣ v E
∣∣ op E

∣∣ letx = E in e Eval. Contexts∣∣ ifE then e1 else e2
∣∣ sendE e

∣∣ send v E
∣∣ recvE

∣∣ spawnE

where n ∈ N, x ∈ Var , c ∈ Chan , k ∈ K

Fig. 1. TCML syntax

SNO participants that resemble the above pseudocode. Previous work on com-
municating transactions focused on behavioral theory with respect to safety and
liveness [13, 14]. However, the effectiveness of this construct in a pragmatic pro-
gramming language has yet to be proven. One of the main milestones to achieve
on this direction is the invention of efficient runtime implementations of com-
municating transactions. Here we describe the challenges and our first results in
a recently started project to investigate this direction.

In particular, we equip a simple concurrent functional language with com-
municating transactions and use it to discuss the challenges in making an effi-
cient implementation of such languages (Sect. 2). This language contains a novel
combination of sequential evaluation and communicating transactions, making
it more appropriate for programming compared to the CCS-based calculus of
previous work [13, 14]. In this language we give a modular implementation of
consensus scenarios such as the SNO example, where participants are oblivious
of their environment and can communicate with arbitrary processes (such as
the Babysitter process) without the need to add code for the SNO protocol in
those processes. Moreover, the above more efficient, partially aborting strategy
is captured in this semantics.

Our semantics of this language is non-deterministic, allowing different runtime
scheduling strategies of processes, some more efficient than others. To study their
relative efficiency we have developed a skeleton implementation of the language
which allows us to plug in and evaluate such runtime strategies (Sect. 3). We
describe several such strategies (Sect. 4) and report the results of our evalua-
tions (Sect. 5). Finally, we summarize related work in this area and the future
directions of this project (Sect. 6).

2 The TCML Language

We study TCML, a language combining a simply-typed λ-calculus with π-
calculus and communicating transactions. For this language we use the abstract
syntax shown in Fig. 1 and the usual abbreviations from the λ- and π-calculus.

Towards Efficient Abstractions for Concurrent Consensus 79

If-True if true then e1 else e2 ↪→ e1
If-False if false then e1 else e2 ↪→ e2
Let letx = v in e ↪→ e[v/x]
Op op v ↪→ δ(op, v)
App fun f(x) = e v2 ↪→ e[fun f(x) = e/f][v2/x]

Step E[e] −→ E[e′] if e ↪→ e′

Spawn E[spawn v] −→ v () ‖ E[()]
NewChan E[newChanT] −→ νc.E[c] if c �∈ fc(E[()])
Atomic E[atomic

�
e1 �k e2

�
] −→

�
E[e1] �k E[e2]

�
Commit E[commit k] −→ co k ‖ E[()]

Fig. 2. Sequential reductions

Values in TCML are either constants of base type (unit, bool, and int), pairs
of values (of type T ×T), recursive functions (T →T), and channels carrying
values of type T (T chan). A simple type system (with appropriate progress and
preservation theorems) can be found in an accompanying technical report [12].

Source TCML programs are expressions in the functional core of the language,
ranged over by e, whereas running programs are processes derived from the
syntax of P . Besides standard lambda calculus expressions, the functional core
contains the constructs send c e and recv c to synchronously send and receive
a value on channel c, respectively, and newChanT to create a new channel of
type chan T . The constructs spawn and atomic, when executed, respectively
spawn a new process and transaction; commitk commits transaction k—we will
shortly describe these constructs in detail.

A simple running process can be just an expression e. It can also be con-
structed by the parallel composition of P and Q (P ‖ Q). We treat free channels
as in the π-calculus, considering them to be global. Thus if a channel c is free in
both P and Q, it can be used for communication between these processes. The
construct νc.P encodes π-calculus restriction of the scope of c to process P . We
use the Barendregt convention for bound variables and channels and identify
terms up to alpha conversion. We also write fc(P) for the free channels in P .

Process
�
P1�kP2

�
encodes a communicating transaction. This can be thought

of as the process P1, the default of the transaction, which runs until the trans-
action commits. If, however, the transaction aborts then P1 is discarded and the
entire transaction is replaced by its alternative process P2. Intuitively, P2 is the
continuation of the transaction in the case of an abort. TCML provides a mech-
anism for P1 to communicate with its environment. This mechanism guarantees
that P1 has an all-or-nothing behavioral semantics (see [14]). Hence the name
communicating transactions. As we will see, commits are asynchronous, requir-
ing the process co k in the language. The name k of the transaction is bound in
P1. Thus only the default of the transaction can potentially spawn a co k. The
meta-function ftn(P) gives us the free transaction names in P .

Processes with no free variables can reduce using transitions of the form
P −→Q. These transitions for the functional part of the language are shown
in Fig. 2 and are defined in terms of reductions e ↪→ e′ (where e is a redex) and

80 C. Spaccasassi and V. Koutavas

eager, left-to-right evaluation contexts E whose grammar is given in Fig. 1. Due
to a unique decomposition lemma, an expression e can be decomposed to an
evaluation context and a redex expression in only one way. Here we use e[u/x]
for the standard capture-avoiding substitution, and δ(op, v) for a meta-function
returning the result of the operator op on v, when this is defined.

Rule Step lifts functional reductions to process reductions. The rest of the
reduction rules of Fig. 2 deal with the concurrent and transactional side-effects
of expressions. Rule Spawn reduces a spawn v expression at evaluation position
to the unit value, creating a new process running the application v (). The type
system of the language guarantees that value v here is a thunk. With this rule
we can derive the reductions:

spawn(λ(). send c 1); recv c −→(λ(). send c 1) () ‖ recv c−→ send c 1 ‖ recv c

The resulting processes of these reductions can then communicate on channel c.
As we previously mentioned, the free channel c can also be used to communicate
with any other parallel process. Rule NewChan gives processes the ability to
create new, locally scoped channels. Thus, the following expression will result in
an input and an output process that can only communicate with each other:

letx = newChanint in (spawn (λ(). send x 1); recv x)
−→ νc. (spawn (λ(). send c 1); recv c)−→∗ νc. (send c 1 ‖ recv c)

Rule Atomic is a novel rule that deals with the combination of communicating
transactions and sequential computations. This rule applies when a new trans-
action is started from within the current (expression-only) process, engulfing the
entire process in it, and storing the abort continuation in the alternative of the
transaction. Rule Commit spawns an asynchronous commit. Transactions can be
arbitrarily nested, thus we can write:

atomic
�
spawn(λ(). recv c; commitk)�k ()

�
;

atomic
�
recv d; commit l �l ()

�
−→

�
spawn(λ(). recv c; commitk); atomic

�
recv d; commit l �l ()

�
�k (); atomic

�
recv d; commit l �l ()

� �
−→∗ �

(recv c; commitk) ‖
�
recv d; commit l �l ()

�
�k (); atomic

�
recv d; commit l �l ()

� �

This process will commit the k-transaction after an input on channel c and
the inner l-transaction after an input on d. As we will see, if the k transaction
aborts then the inner l-transaction will be discarded (even if it has performed
the input on d) and the resulting process (the alternative of k) will restart l:
(); atomic

�
recv d; commit l�l ()

�
. The effect of this abort will be the rollback

of the communication on d reverting the program to a consistent state.
Process and transactional reductions are handled by the rules of Fig. 3. The

first four rules (Sync, Eq, Par, and Chan) are direct adaptations of the reduc-
tion rules of the π-calculus, which allow parallel processes to communicate, and
propagate reductions over parallel and restriction. These rules use an omitted

Towards Efficient Abstractions for Concurrent Consensus 81

Sync

E1[recv c] ‖ E2[send c v]−→E1[v] ‖ E2[()]

Eq
P ≡ P ′ −→Q′ ≡ Q

P −→Q

Par
P1 −→P ′

1

P1 ‖ P2 −→P ′
1 ‖ P2

Chan
P −→P ′

νc.P −→ νc.P ′

Emb

P1 ‖
�
P2 �k P3

�
−→

�
(P1 ‖ P2) �k (P1 ‖ P3)

�
Step
P −→P ′
�
P �k P2

�
−→

�
P ′ �k P2

�

Co
P1 ≡ co k ‖ P ′

1�
P1 �k P2

�
−→P ′

1/k

Abort

�
P1 �k P2

�
−→P2

Fig. 3. Concurrent and Transactional reductions (omitting symmetric rules)

structural equivalence (≡) to identify terms up to the reordering of parallel pro-
cesses and the extrusion of the scope of restricted channels, in the spirit of the
π-calculus semantics. Rule Step propagates reductions of default processes over
their respective transactions. The remaining rules are taken from TransCCS [13].

Rule Emb encodes the embedding of a process P1 in a parallel transaction�
P2 �k P3

�
. This enables the communication of P1 with P2, the default of k. It

also keeps the current continuation of P1 in the alternative of k in case it aborts.
To illustrate the mechanics of the embed rule, let us consider the above nested
transaction running in parallel with the process P = send d (); send c ():

�
(recv c; commitk) ‖

�
recv d; commit l �l ()

�
�k (); atomic

�
recv d; commit l �l ()

� �
‖ P

After two embedding transitions we will have

�
(recv c; commitk) ‖

�
P ‖ recv d; commit l �l P ‖ ()

�
�k P ‖ . . .

�

Now P can communicate on d with the inner transaction:

�
(recv c; commitk) ‖

�
send c () ‖ commit l �l P ‖ ()

�
�k P ‖ . . .

�

Next, there are (at least) two options: either commit l spawns a co l process
which causes the commit of the l-transaction, or the input on d is embedded in
the l-transaction. Let us assume that the latter occurs:

� �
(recv c; commitk) ‖ send c () ‖ commit l

�l (recv c; commitk) ‖ P ‖ ()
�

�k P ‖ . . .
�

−→∗ � �
co k ‖ co l �l . . .

�
�k . . .

�

The transactions are now ready to commit from the inner-most to the outer-most
using rule Commit. Inner-to-outer commits are necessary to guarantee that all
transactions that have communicated have reached an agreement to commit.

82 C. Spaccasassi and V. Koutavas

This also has the important consequence of making the following three pro-
cesses behaviorally indistinguishable:

�
P1 �k P2

�
‖

�
Q1 �l Q2

�
�
P1 ‖

�
Q1 �l Q2

�
�k P2 ‖

�
Q1 �l Q2

� �
� �

P1 �k P2

�
‖ Q1 �l

�
P1 �k P2

�
‖ Q2

�

Therefore, an implementation of TCML, when dealing with the first of the three
processes can pick any of the alternative, non-deterministic mutual embeddings
of the k and l transactions without affecting the observable outcomes of the
program. In fact, when one of the transactions has no possibility of committing
or when the two transactions never communicate, an implementation can decide
never to embed the two transactions in each-other. This is crucial in creating
implementations that will only embed processes (and other transactions) only
when necessary for communication, and pick the most efficient of the avail-
able embeddings. The development of implementations with efficient embedding
strategies is one of the main challenges of our project for scaling communicating
transactions to pragmatic programming languages.

Similarly, aborts are entirely non-deterministic (Abort) and are left to the
discretion of the underlying implementation. Thus in the above example any
transaction can abort at any stage, discarding part of the computation. In such
examples there is usually a multitude of transactions that can be aborted, and
in cases where a “forward” reduction is not possible (due to deadlock) aborts are
necessary. Making the TCML programmer in charge of aborts (as we do with
commits) is not desirable since the purpose of communicating transactions is to
lift the burden of manual error prediction and handling. Minimizing the number
aborts and picking aborts that rewind the program minimally but sufficiently to
reach a successful outcome is another major challenge in our project.

The SNO scenario can be simply implemented in TCML using restarting
transactions. A restarting transaction uses recursion to re-initiate an identical
transaction in the case of an abort:

atomicrec k

�
e
� def

= fun r() = atomic
�
e�k r ()

�

A transactional implementation of the SNO participants we discussed in the
introduction simply wraps their code in restating transactions:

let alice = atomicrec k

�
sync dinner; sync movie; commitk

�
in

let bob = atomicrec k

�
sync dinner; sync dancing; commitk

�
in

let carol = atomicrec k

�
sync dancing; commitk

�
in

let david = atomicrec k

�
sync dancing; sync movie; commitk

�
in

spawn alice; spawn bob; spawn carol; spawn david

Here dinner, dancing, and movie are implementations of CSP synchronization
channels and sync a function to synchronize on these channels. Compared to a
potential ad-hoc implementation of SNO in CML the simplicity of the above

Towards Efficient Abstractions for Concurrent Consensus 83

Sched. Gath.
Transaction

trie

e1 ene2 . . .

abort,
embed,
commit

side-effect notif.
& ack

Fig. 4. TCML runtime architecture

code is evident (the version of Bob communicating with the Babysitter is just as
simple). However, as we discuss in Sect. 5, this simplicity comes with a severe
performance penalty, at least for straightforward implementations of TCML.
In essence, the above code asks from the underlying transactional implementa-
tion to solve an NP-complete satisfiability problem. Leveraging existing useful
heuristics for such problems is something we intend to pursue in future work.

In the following we describe an implementation where these transactional
scheduling decisions can be plugged in, and a number of heuristic transactional
schedulers we have developed and evaluated. Our work shows that advanced
heuristics bring measurable performance benefits but the exponential number
of runtime choices require innovative compilation and execution techniques to
make communicating transactions a realistic solution for programmers.

3 An Extensible Implementation Architecture

We have developed an interpreter for the TCML semantics in Concurrent Haskell
[7, 10] to which we can plug-in different decisions about the non-deterministic
transitions of our semantics with the runtime architecture in Fig. 4.

The main Haskell threads are shown as round nodes in the figure. Each con-
current functional expression ei is interpreted in its own thread according to the
sequential reduction rules in Fig. 2 of the previous section. Side-effects in an ex-
pression are handled by the interpreting thread, creating new channels, spawning
new threads, and starting new transactions. Our implementation of synchronous,
dynamically created channels is on top of Haskell’s MVars, and guarantees that
only processes within the same transactions can communicate.

Except for channel creation, the evaluation of all other side-effects in an ex-
pression will cause a notification (shown as dashed arrows in Fig. 2) to be sent
to the gatherer process (Gath.). This process is responsible for maintaining a
global view of the state of the running program in a Trie data-structure. This
data-structure essentially represents the transactional structure of the program;
i.e., the logical nesting of transactions and processes inside running transactions:

data TTrie = TTrie { threads :: Set ThreadID,
children :: Map TransactionID TTrie, ... }

A TTrie node represents a transaction, or the top-level of the program. The
main information stored in such a node is the set of threads (threads) and trans-
actions (children) running in that transactional level. Each child transaction

84 C. Spaccasassi and V. Koutavas

has its own associated TTrie node. An invariant of the data-structure is that
each thread and transaction identifier appears only once in it. For example the
complex program we saw on Fig. 3:

�
(recv c; commitk)tid1 ‖

�
(recv d; commit l)tid2 �l ()

�
�k (); atomic

�
recv d; commit l�l ()

� �
‖ P tidP

will have an associated trie:

TTrie{threads = {tidP},
children = {k �→ TTrie{threads = {tid1},

children = {l �→ TTrie{threads = {tid2},
children = ∅}}}}}

The last ingredient of the runtime implementation is the scheduler thread
(Sched. in Fig. 4). This makes decisions about the commit, embed and abort
transitions to be performed by the expression threads, based on the information
in the trie. Once such a decision is made by the scheduler, appropriate signals
(implemented using Haskell asynchronous exceptions [10]) are sent to the running
threads, shown as dotted lines in Fig. 4. Our implementation is parametric to the
precise algorithm that makes scheduler decisions, and in the following section
we describe a number of such algorithms we have tried and evaluated.

A scheduler signal received by a thread will cause the update of the local
transactional state of the thread, affecting the future execution of the thread.
The local state of a thread is an object of the TProcess data-type:

data TProcess = TP {
expr :: Expression,
ctx :: Context,
tr :: [Alternative] }

data Alternative = A {
tname :: TransactionID,
pr :: TProcess }

The local state maintains the expression (expr) and evaluation context (ctx)
currently interpreted by the thread and a list of alternative processes (repre-
sented by objects of the Alternative data-type). This list contains the contin-
uations stored when the thread was embedded in transactions. The nesting of
transactions in this list mirrors the transactional nesting in the global trie and is
thus compatible with the transactional nesting of other expression threads. Let
us go back to the example of Fig. 3:

�
(recv c; commitk)tid1 ‖

�
(recv d; commit l)tid2 �l ()

�
�k (); atomic

�
recv d; commit l�l ()

� �
‖ P tidP

where P = send d (); send c (). When P is embedded in both k and l, the thread
evaluating P will have the local state object

TP{expr = P, tr = [A{tname = l, pr = P}, A{tname = k, pr = P}]}

recording the fact that the thread running P is part of the l-transaction, which
in turn is inside the k-transaction. If either of these transactions aborts then

Towards Efficient Abstractions for Concurrent Consensus 85

the thread will rollback to P , and the list of alternatives will be appropriately
updated (the aborted transaction will be removed).

Once a transactional reconfiguration is performed by a thread, an acknowledg-
ment is sent back to the gatherer, who, as we discussed, is responsible for updat-
ing the global transactional structure in the trie. This closes a cycle of transac-
tional reconfigurations initiated from the process (by starting a new transaction
or thread) or the scheduler (by issuing a commit, embed, or abort).

What we described so far is a simple prototype architecture for an interpreter
of TCML. Improvements are possible; for example, the gatherer is a message
bottleneck, and together with the scheduler they are single points of failure in
a potential distributed setting. But such concerns are beyond the scope of this
paper. In the following section we discuss various policies for the scheduler which
we then evaluate experimentally.

4 Transactional Scheduling Policies

Our goal here is to investigate schedulers that make decisions on transactional
reconfiguration based only on runtime heuristics. We are currently working on
more advanced schedulers, including schedulers that take advantage of static
information extracted from the program, which we leave for future work.

An important consideration when designing a scheduler is adequacy [15,
Sec. 11.4]. For a given program, an adequate scheduler can produce all outcomes
that the non-deterministic operational semantics give for that program. How-
ever, this does not mean that the scheduler should be able to produce all traces
of the non-deterministic semantics. Many of these traces will unnecessarily abort
and restart the computations. Previous work on the behavioral theory of com-
municating transactions has shown that all program outcomes can be reached
with traces that never restart a computation [13]. Thus a goal for schedulers is
to minimize re-computations by minimizing aborts.

Moreover, as we discussed at the end of Sect. 2, many of the exponential
number of embeddings can be avoided without altering the observable behavior
of a program. This can be done by embedding a process inside a transaction
only when this embedding is necessary to enable communication between the
process and the transaction. We take advantage of this in a communication-
driven scheduler we describe in this section.

Even after reducing the number of possible non-deterministic choices faced
by the scheduler, in most cases we are still left with a multitude of alternative
transactional reconfiguration options. Some of these are more likely to lead to
efficient traces than other. However, to preserve adequacy we cannot exclude
any of these options since the scheduler has no way to foresee their outcomes. In
these cases use heuristics to assign different, non-zero probabilities to available
choices, which leads to measurable performance improvements without violating
adequacy. Of course some program outcomes might be more likely to appear than
others. This approach trades quantitative fairness for performance improvement.

However, the probabilistic approach is theoretically fair. Every finite trace
leading to a program outcome has a non-zero probability. Diverging traces due

86 C. Spaccasassi and V. Koutavas

to sequential reductions also have non-zero probability to occur. The only traces
with zero probability are those in the reduction semantics that have an infinite
number of non-deterministic reductions. Intuitively, these are unfair traces that
abort and restart transactions ad infinitum, even if other options are possible.

Random Scheduler (R). The first scheduler we consider is the random sched-
uler, whose policy at each point is to simply select one of all available non-
deterministic choices with equal probability, with no exception. Any available
abort, embed, or commit actions are equally likely to happen. For example, this
scheduler might decide at any time to embed Bob into Carol’s transaction, or
abort David. As one would expect, this is not particularly efficient; it is, how-
ever, obviously adequate and fair according to the discussion above. If a reduction
transition is available infinitely often, scheduler R will eventually select it.

There is much room for improvement. Suppose transaction k can commit:�
P ‖ co k �k Q

�
. Since R makes no distinction between the choices of commit-

ting and aborting k, it will often unnecessarily abort k. All processes embedded
in this transaction will have to roll back and re-execute; if k was a transaction
that restarts, the transaction will also re-execute. This results to a consider-
able performance penalty. Similarly, scheduler R might preemptively abort a
long-running transaction that could have committed, given enough time and
embeddings.

Staged Scheduler (S). The staged scheduler partially addresses these issues by
prioritizing its available choices. Whenever a transaction is ready to commit,
scheduler S will always decide to send a commit signal to that transaction be-
fore aborting it or embedding another process in it. This does not violate ade-
quacy; before continuing with the algorithm of S, let us examine the adequacy
of prioritizing commits over other transactional actions with an example.

Example 1. Consider the following program in which k is ready to commit:�
P ‖ co k �k Q

�
‖ R. If embedding R in k leads to a program outcome, then

that outcome can also be reached after committing k from the residual P ‖ R.
Alternatively, a program outcome could be reachable by aborting k (from the

process Q ‖ R). However, the co k was spawned from one of the previous states
of the program in the current trace. In that state, transaction k necessarily had
the form:

�
P ′ ‖ E[commit k] �k Q

�
, and the abort of k was enabled. Therefore,

the staged interpreter indeed allows a trace leading to the program state Q ‖ R
from which the outcome in question is reachable. ��

If a transaction T cannot commit, S prioritizes embeddings into T over abort
of T . This decision is adequate because transactions that take an abort reduction
before an embed step have an equivalent abort reduction after that step. When
no commit nor embed options are available, the staged interpreter lets the trans-
action run with probability 0.95 to progress more in the current trace, and aborts
it with probability 0.05—these numbers have been fine-tuned experimentally.

This heuristic greatly improves performance byminimizing unnecessary aborts.
Its drawback is that it does not abort transactions often, thus program outcomes

Towards Efficient Abstractions for Concurrent Consensus 87

reachable only from transactional alternatives are less likely to appear. Moreover,
this scheduler does not avoid unnecessary embeddings.

Communication-Driven Scheduler (CD). To avoid spurious embeddings, sched-
uler CD improves over R by performing an embed transition only if it is necessary
for an imminent communication. For example, at the very start of the SNO ex-
ample the CD scheduler can only choose to embed Alice into Bob’s transaction or
vice versa, because they are the only processes ready to synchronize on dinner.
Because of the equivalence

�
P �k Q

�
‖ R ≡cxt

�
P ‖ R �k Q ‖ R

�
which we

previously discussed, this scheduler is adequate.
For the implementation of this scheduler we augment the information in the

trie data-structure (Sect. 3) with channels with a pending communication opera-
tion (if any). In Sect. 5 we show that this heuristic noticeably boosts performance
because it greatly reduces the exponential number of embedding choices.

Delayed-Aborts Scheduler (DA). The final scheduler we report is DA, which adds
a minor improvement upon scheduler CD. This scheduler keeps a timer for each
running transaction k in the trie, and resets it whenever a non-sequential opera-
tion happens inside k. Transaction k can be aborted only when its timer expires.
This strategy benefits transactions that perform multiple communications before
committing. The CD scheduler is adequate because it only adds time delays.

5 Evaluation of the Interpreters

We now report the experimental evaluation of interpreters using the preceding
scheduling policies. The interpreters were compiled with GHC 7.0.3, and the
experiments were performed on a Windows 7 machine with Intel R© CoreTMi5-
2520M (2.50 GHz) and 8GB of RAM. We run several versions of two programs:

1. The three-way rendezvous (3WR) in which a number of processes compete
to synchronize on a channel with two other processes, forming groups of
three which then exchange values. This is a standard example of multi-party
agreement [11, 3, 5]. In the TCML implementation of this example each pro-
cess nondeterministically chooses between being a leader or follower within a
communicating transaction. If a leader and two followers communicate, they
can all exchange values and commit; any other situation leads to deadlock
and eventually to an abort of some of the transactions involved.

2. The SNO example of the introduction, as implemented in Sect. 2, with mul-
tiple instances of the Alice, Bob, Carol, and David processes.

To test scheduler scalability, we tested versions of the above programs with a
different number of competing parallel processes. Each process in these programs
continuously performs 3WR or SNO cycles and our interpreters are instrumented
to measure the number of operations in a given period, from which we compute
the mean throughput of successful operations. The results are shown in Fig. 5.

Each graph in the figure contains the mean throughput of operations (in log-
arithmic scale) as a function of the number of competing concurrent TCML

88 C. Spaccasassi and V. Koutavas

5 10 15
10−3

10−2

10−1

100

101

102

Number of concurrent processes

C
om

m
it
te
d
op

s/
se
co
n
d

Three-Way Rendezvous

5 10 15 20

10−1

100

101

102

Number of concurrent processes

SNO Example

R
S
CD
DA
ID

Fig. 5. Experimental Results

processes. The graphs contain runs with each scheduler we discussed (random
R, staged S, communication-driven, CD, and communication-driven with delayed
aborts DA) as well as with an ideal non-transactional program (ID). The ideal
program in the case of 3WR is similar to the TCML, non-abstract implemen-
tation [11]. The ideal version of the SNO is running a simpler instance of the
scenario, without any Carol processes—this instance has no deadlocks and there-
fore needs no error handling. Ideal programs give us a performance upper bound.

As predictable, the random scheduler (R)’s performance is the worst; in many
cases R could not perform any operations in the window of measurements (30sec).

The other schedulers perform better than R by an order of magnitude. Even
just prioritizing the transactional reconfiguration choices significantly cuts down
the exponential number of inefficient traces. However, none of the schedulers
scale to programs with more processes; their performance deteriorates exponen-
tially. In fact, when we go from the communication-driven (CD) to the delayed
aborts (DA) scheduler we see worst throughput in larger process pools. This is
because with many competing processes there is more possibility to enter a path
to deadlock; in these cases the results suggest that it is better to abort early.

The upper bound in the performance, as shown by the throughput of ID is
one order of magnitude above that of the best interpreter, when there are few
concurrent processes, and (within the range of our experiments) two orders when
there are many concurrent processes. The performance of ID is increasing with
more processes due to better utilization of the processor cores.

It is clear that in order to achieve a pragmatic implementation of TCML
we need to address the exponential nature in consensus scenarios as the ones we
tested here. Our exploration of purely runtime heuristics shows that performance
can be improved, but we need to turn to a different approach to close the gap
between ideal ad-hoc implementations and abstract TCML implementations.

Towards Efficient Abstractions for Concurrent Consensus 89

6 Related Work and Conclusions

Consensus is common problem in concurrent and distributed programming. The
need for developing programming language support for consensus has already
been identified in previous work on transactional events (TE) [3], communi-
cating memory transactions (CMT) [9], transactors [4] and cJoin [1]. These
approaches propose forms of communicating transactions, similar to those de-
scribed in Sect. 2. All approaches can be used to an extent to implement general-
ized consensus scenarios, such as the instance of the Saturday Night Out (SNO)
example in this paper. Without such constructs the programmer needs to devise
and implement complex low-level protocols for consensus. Stabilizers [16] add
transactional support for fault-tolerance in the presence of transient faults but
do not directly address consensus scenarios such as the SNO example. Our work
here is based on communicating transactions which is the only construct to date
with a provably intuitive behavioral theory [13, 14].

TE extends CML events with a transactional sequencing operator; transac-
tional communication is resolved at runtime by search threads which exhaus-
tively explore all possibilities of synchronization. CMT extends STM with asyn-
chronous communication, maintaining a directed dependency graph mirroring
communication between transactions; STM abort triggers cascading aborts to
transactions that have received values from aborting transactions. Transactors
extend actor semantics with fault-tolerance primitives, enabling the composition
of systems with consistent distributed state via distributed checkpointing. The
cJoin calculus extends the Join calculus with isolated transactions which can
merge at runtime; merging and aborting are managed by the programmer, offer-
ing a manual alternative to TCML’s nondeterministic transactional operations.

Reference implementations have been developed for TE, CMT, and cJoin (in
JoCaml). The discovery of efficient implementations for communicating trans-
actions can be equally beneficial for all approaches.

This paper presented TCML, a simple functional language with build-in sup-
port for consensus via communicating transactions. This is a construct with
a robust behavioral theory supporting its use as a programming language ab-
straction for automatic error recovery [13, 14]. TCML has a simple operational
semantics and can simplify the programming of advanced consensus scenarios;
we introduced such an example (SNO) which has a natural encoding in TCML.
We have motivated this construct as a programming language solution to the
problem of programming consensus. To our knowledge, this is the most intri-
cate and general application of such constructs in a concurrent and distributed
setting. However, communicating transactions could address challenges in other
application domains, such as speculative computing [2].

The usefulness of communicating transactions in real-world applications, how-
ever, depends on the invention of efficient implementations. This paper described
the obstacles to overcome and our first results in a recently started project. We
gave a framework and a modular implementation to develop and evaluate cur-
rent and future schedulers of communicating transactions, and used it to examine
schedulers based solely on runtime heuristics. We have found that some of them

90 C. Spaccasassi and V. Koutavas

improve upon the performance of a naive randomized implementation but do
not scale to programs with significant contention, where exponential numbers of
computation paths lead to necessary rollbacks. It is clear that purely dynamic
strategies do not lead to sustainable performance improvements.

In future work we intend to explore the extraction of information from the
source code to guide the language runtime. This information can include an
abstract model of the communication behavior of processes in order to predict
their future communication pattern. A promising approach is the development
of technology in type and effect systems and static analysis. Although scheduling
communicating transactions is theoretically computationally expensive, realistic
performance in many programming scenarios could be achievable.

References

[1] Bruni, R., Melgratti, H., Montanari, U.: Nested commits for mobile calculi: Ex-
tending join. In: Levy, J.-J., Mayr, E.W., Mitchell, J.C. (eds.) Expl. New Frontiers
of Theor. Informatics. IFIP, vol. 155, pp. 563–576. Springer, Heidelberg (2004)

[2] Bruni, R., Melgratti, H., Montanari, U.: Theoretical foundations for compensa-
tions in flow composition languages. In: POPL, pp. 209–220. ACM, NY (2005)

[3] Donnelly, K., Fluet, M.: Transactional Events. In: ICFP, pp. 124–135. ACM, NY
(2006)

[4] Field, J., Varela, C.A.: Transactors: a programming model for maintaining globally
consistent distributed state in unreliable environments. In: POPL, pp. 195–208.
ACM, NY (2005)

[5] Harris, T., Marlow, S., Jones, S.P.L., Herlihy, M.: Composable memory transac-
tions. Commun. ACM, 91–100 (2008)

[6] Herlihy, M., Shavit, N.: The art of multiprocessor programming. Kaufmann (2008)
[7] Jones, S.P.L., Gordon, A.D., Finne, S.: Concurrent Haskell. In: POPL, pp.

295–308. ACM, NY (1996)
[8] Kshemkalyani, A.D., Singhal, M.: Distributed Computing: Principles, Algorithms,

and Systems. Cambridge University Press (2008)
[9] Lesani, M., Palsberg, J.: Communicating memory transactions. In: PPoPP 2011,

pp. 157–168. ACM, NY (2011)
[10] Marlow, S., Jones, S.P.L., Moran, A., Reppy, J.H.: Asynchronous exceptions in

Haskell. In: PLDI 2001, pp. 274–285. ACM, NY (2001)
[11] Reppy, J.H.: Concurrent programming in ML. Cambridge University Press (1999)
[12] Spaccasassi, C.: Transactional Concurrent ML. Tech. Rep. TCD-CS-2013-01,

Trinity College Dublin (2013)
[13] de Vries, E., Koutavas, V., Hennessy, M.: Communicating Transactions. In: Gastin,

P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 569–583. Springer,
Heidelberg (2010)

[14] de Vries, E., Koutavas, V., Hennessy, M.: Liveness of Communicating Transac-
tions. In: Ueda, K. (ed.) APLAS 2010. LNCS, vol. 6461, pp. 392–407. Springer,
Heidelberg (2010)

[15] Winskel, G.: The Formal Semantics of Programming Languages: An Introduction.
Foundations of computing. MIT Press (1993)

[16] Ziarek, L., Schatz, P., Jagannathan, S.: Stabilizers: a modular checkpointing ab-
straction for concurrent functional programs. In: Reppy, J.H., Lawall, J.L. (eds.)
ICFP, pp. 136–147. ACM, NY (2006)

Blame Prediction

Dries Harnie�, Christophe Scholliers, and Wolfgang De Meuter

Software Languages Lab, Vrije Universiteit Brussel, Belgium
{dharnie,cfscholl,wdmeuter}@vub.ac.be

Abstract. Static type systems are usually conservative. Therefore, many
interesting programs are rejected by the static type system, even though
they may execute without errors. Dynamic type systems allow such ill-
typed programs to run, at the cost of run-time errors. The cause of
runtime errors is often far removed from the place where the type errors
are raised, making the program hard to debug. We present a novel typing
discipline called blame prediction which transforms programs in order to
detect runtime type errors as soon as they are guaranteed to happen.
These type errors relate the future type error with its cause, aiding in
debugging. As a proof of concept, we have applied blame prediction to
a functional Scheme-like language and evaluated our system against soft
typing.

Keywords: type systems, dynamic typing, blame prediction.

1 Introduction

In recent years there has been a surge in the use of dynamically typed program-
ming languages. Developers are building large systems for all kinds of purposes,
taking advantage of the fast prototyping and short edit-run-debug cycles offered
by these languages. These advantages are attributed to the fact that all dynam-
ically typed programs are allowed to run. The interpreter detects and reports
errors at runtime. When a program halts on a runtime error, the developer has to
figure out the expression that caused the error solely from the error description
and a stack trace.

In the meantime, researchers have developed expressive type systems that
attempt to ascribe types to ever-increasing subsets of dynamically typed pro-
gramming languages. This research focused on Scheme-like languages in the
nineties [1,2,3], but recent research has focused on other languages like Ruby
and Javascript [4,5].

Static and dynamic approaches aim to achieve different goals: static typing
approaches are conservative and report type errors up front, but they only allow
programs to run if no type errors can be found. By contrast, dynamic typing
approaches allow every program to run, but report runtime errors when the
type tests in primitive operations fail. This means that statically identifiable
type errors will only be reported long after they could have been reported.
� Funded by the Prospective Research For Brussels program of Innoviris, Brussels.

J. McCarthy (Ed.): TFP 2013, LNCS 8322, pp. 91–106, 2014.
© Springer-Verlag Berlin Heidelberg 2014

92 D. Harnie, C. Scholliers, and W. De Meuter

In this paper we present blame prediction: a hybrid technique that makes
primitive type tests explicit and performs them as early as possible. The key
insight of blame prediction is that primitive operations can be decoupled from
the type tests they need to perform, which allows these type tests to be performed
much earlier. When a type test fails and all code paths after the test require
it to succeed, a blame prediction error is raised. This error references both the
faulty expression and the primitive operations that depend on the type test.
Using these blame prediction errors, programmers can more easily debug their
code. We have implemented a proof-of-concept blame prediction transformation
for a functional core of Scheme. We are convinced that blame prediction can
be also applied to a whole class of dynamic programming languages and type
systems.

The rest of this paper is structured as follows: we describe the motivation
and the idea behind blame prediction in sections 2 and 3. Section 4 defines the
blame prediction transformation. Related work is examined in section 6. Finally,
we perform a first evaluation of blame prediction in section 5.

2 Motivation

In this section we explain the tension between dynamic and static typing by
exploring a small example: a number guessing game. This game consists of the
user trying to guess a hidden target number, for every guess the program gives
feedback like “too high” or “too low”. If the user guesses the number, the game
is over. Consider the following Scheme implementation of the number guessing
game:

(define (guess target)
(let ((input (read)))

(cond ((eq? input 'quit) 'quit)
((< input target)

(display "Too low!\n") (guess target))
((> input target)

(display "Too high!\n") (guess target))
(else

(display "Correct!\n") 'done))))

Listing 1.1. Simple number guessing game in Scheme

This program uses the read primitive function to read input from the user
and parse it as a Scheme value. If this input is the symbol 'quit, the game
is immediately stopped. Otherwise the input is assumed to be a guess, so it
is compared to the target number. If the guess was correct, the game ends,
otherwise a feedback message is printed and the game continues.

The following steps will occur when applying a static type discipline to the
program: first of all, because the read primitive can return a value of any type,
the type of input is inferred as � (which represents all Scheme types). In the
first branch of the cond, the eq? check narrows the type of input to symbols,
as the eq? primitive requires two input expressions of the same type. Then,

Blame Prediction 93

in the second branch, input is numerically compared to target, which needs
two numeric arguments. As this requires input to have a numeric type while it
already has type symbol, a type error is signaled and the program is rejected.
Since the program is rejected, we cannot run the program.

A dynamic typing discipline has the opposite result: the program runs nor-
mally, but type tests are performed at runtime and errors are raised if they
fail. In this case, after the read primitive returns a value, it is compared to the
symbol quit. This does not require a runtime type test, only a pointer equality
test. The calls to <, > and = all verify that both input and target are numbers
before they execute the actual comparison code. If these type tests fail, an error
is signaled and evaluation is aborted.

Both approaches fall short: static typing simply rejects the program, while
dynamic typing accepts the program but it will crash if given the wrong input.
We require a hybrid approach: one that applies static typing for the most part,
while shielding expressions that might raise errors with type tests. One way of
making this program safer is by inserting dynamic type checks in the right places.
For example, the code assumes that the input variable is either a number or a
symbol, as evidenced by the eq? and < tests. The programmer could therefore
insert a type test into the code, right below the let:

(define (guess target)
(let ((input (read)))

(if (not (or (symbol? input) (number? input)))
(error "Invalid type for input")
(cond ...))))

Listing 1.2. Guessing game with an extra type test

If the user now enters an unexpected kind of input, an error is raised immediately.
This program has properties of both the static and dynamic approaches: it allows
the program to run as long as no runtime type errors are raised, but an error is
raised as soon as possible if errors can be predicted. We discuss how to mechanize
this transformation in the next section.

3 Blame Prediction

In this section we specify blame prediction for a functional subset of Scheme
called Schemeβ . Its syntax and semantics are described in Figure 1, in the style
of Felleisen and Hieb [6]. Note that the syntax is assumed to be in administrative
normal form (ANF)[7,8], which makes the order of evaluation — and that of type
tests — explicit.

The most important evaluation rule here is E-Apply, which is responsible
for applying both primitive operations and user-defined functions. Evaluation
of an application happens as follows: both the function and its arguments are
evaluated and then passed to the δ function. If the function being applied is a
primitive operation like +, the types of the arguments are tested and a err-not-int
error is raised if one of the arguments is not an integer. A second case is when

94 D. Harnie, C. Scholliers, and W. De Meuter

a user-defined function is invoked, in which case the number of arguments must
match the arity of the function. Otherwise an err-args-λ error is raised. Finally,
application of a non-function value results in a err-not-λ error. Note that — just
like in Scheme — these errors are raised at the time of application and propagate
outwards, halting the evaluation process.

e ∈ Exp ::= s simple expressions
(s s1 . . . sn) application
(if s e e) conditional
(let (x e) e) let

s ∈ Simp ::= x variables
#f | #t | n constants and literals
(lambda (x1 . . . xn) e) lambda expressions

v ::= #f | #t | n | λx1 . . . xn.e Runtime values
E ::= � | (let (x E) e) Evaluation contexts

(E-If-False) E〈(if #f e1 e2)〉 → E〈e2〉
(E-If-True) E〈(if v e1 e2)〉 → E〈e1〉 if v �= #f

(E-Let) E〈(let (x v) e)〉 → E〈e[v/x]〉
(E-Lambda) E〈(lambda (x1 . . . xn) e)〉 → E〈λx1 . . . xn.e〉
(E-Apply) E〈(vf v1 . . . vn)〉 → E〈δ(vf , v1, . . . , vn)〉
(E-Error) E〈err-ω(v)〉 → err-ω(v)

δ(+, v1, v2) = v1 + v2 if int?(v1) ∧ int?(v2)
δ(+, v1, v2) = err-not-int(v1) if ¬int?(v1)
δ(+, v1, v2) = err-not-int(v2) if ¬int?(v2)

δ(λx1 . . . xm.e, v1, . . . , vn) = e[v1 . . . vn/x1 . . . xm] if m = n
δ(λx1 . . . xm.e, v1, . . . , vn) = err-args-λ(λx1 . . . xm.e) if m �= n

δ(v, . . .) = err-not-λ(v) if ¬function?(v)
Fig. 1. Syntax and evaluation rules of Schemeβ

Throughout this and the next section we will use a synthetic example (Listing 1.3)
to demonstrate blame prediction. This function switches its operation (and thus
its return type) according to the truth value of the mode parameter: it either
adds one to a number, or prepends a string with “Hello”. Note that this functions
happens to be in ANF already.
(define (inc-or-greet mode y)
(if mode

(+ y 1)
(string-append "Hello " y)))

Listing 1.3. Running example

Consider the expression (inc-or-greet #t (read)). The read primitive
reads input from the user and passes it to the inc-or-greet function, along
with the boolean value #t. Inside this function, the true branch is taken and the
+ primitive is applied to y. If y is not a number, the interpreter raises an error
along the lines of “non-numeric value passed to +: y”.

Blame Prediction 95

One observation is that despite the branch inside inc-or-greet, the type
of the y parameter must be int or string. If this is not the case, the invo-
cation of inc-or-greet always produces an error. Since the type tests for
+ and string-append only happen right before they are invoked, users of
inc-or-greet receive a type error too late. Therefore, the program can per-
form a check (see Listing 1.4) on y upon entering the function and error out if
the test returns false:

(define (inc-or-greet mode y)
(check (or (string? y) (number? y))

(if mode
(+ y 1)
(string-append "Hello " y))))

Listing 1.4. inc-or-greet, transformed

This check macro raises an error if its first argument is #f , otherwise it is
equivalent to its second parameter. Note that there is no check on mode, as the
if-expression in Schemeβ accepts any type of value.

A second observation is that the return type of inc-or-greet depends on
1) the path taken through the function (based on the runtime value of mode); and
2) the type of the y parameter.While the first cannot be predicted, an analysis
can deduce that if y is of type int or of type string and the evaluation of the
body does not result in an error, its return type is the same as that of y. We can
write down the type of inc-or-greet as a disjunction of two conditional types,
where (τ ∼ var) · τr means “if var has type τ , the result type is τr”.

inc-or-greet(mode, y) :: ((int ∼ y) · int) ∨ ((string ∼ y) · string)

This formulation allows users of inc-or-greet to check types up front:

(let ((input (read)))
(check (or (string? input) (number? input))

... other code here ...
(inc-or-greet #t input)))

Listing 1.5. transformed application of inc-or-greet

4 The Blame Prediction Transformation

In this section we describe the transformation that enables blame prediction.
This transformation makes the primitive type tests performed by the runtime
system explicit, and aims to perform them as soon as possible. This transforma-
tion has two important properties:

Blame May Only Be Signaled If All Possible Paths Result in an Error.
This property forms the main distinction between blame prediction and a
type system: a type system performs all its type tests at verification time
and rejects (parts of) programs if they might cause a runtime error. By

96 D. Harnie, C. Scholliers, and W. De Meuter

contrast, blame prediction allows programs to run up until the point where
all execution paths must result in an error. For example, upon entering
(inc-or-greet #t "hi"), some paths could still succeed so no blame is
predicted. Once execution reaches the true branch of the if-expression, blame
is predicted as all possible paths (namely (+ y 1)) result in an error. This
property ensures that blame-predicted programs only raise errors if their
original versions do.

Blame Prediction May Resolve Type Tests Statically.
Blame predicted programs are allowed to elide type tests when the inferred
type of a variable is exactly the requested type. Likewise, blame prediction
is allowed to replace expressions with type tests that will always fail by a
static error message. For example, (inc-or-greet #t #t) will always fail
with a type error, so blame can be predicted without entering the function.

The blame prediction transformation has three stages: type infer-
ence (subsection 4.1), insertion of type tests (subsection 4.2), and moving
type tests upwards (subsection 4.3). The rest of this section assumes that the
input is free of variable shadowing.

4.1 Type System

The transformation first analyzes the program and associates each expression
with a type. Such a type encodes a primitive type like other type systems do,
but also records all type tests that lead up to that expression. The types returned
by this analysis are listed in Figure 2. Union types combine the types returned
by the branches of if-expressions. The most unconventional part of this type
system are the conditional types (τ1 ∼ τ2)

lb
lc
· τt: they represent a value that only

exists if τ1 is equivalent to τ2. Note that the τ1 will always be either a ground
type (int or string) or a function type.

The blame label lb and cause label lc respectively identify the source loca-
tions of a function application and one of its operands. At a later step in the
transformation, type tests will be performed earlier in the program, predicting
blame to the expression at lb if the tests fail. The cause label lc associates the
operand to be tested with the conditional type. The Label and Expr functions
map expressions to labels and vice versa.

There are also function types that represent the different paths through a
function along with the type tests they make and their return types. Their
arguments are represented by type variables, which get embedded in type tests
and return types. Applying these functions yields a type-level application, which
substitutes argument types for type variables. If the function type being applied
is a type variable, the type-level application is left unresolved until the function
type is known. We will point out how each kind of type can be generated by the
type rules, shown in Figure 3.

– Rules T-const and T-var are defined as usual.
– Rule T-if enables if-expressions to combine the types of both branches using

a union type.

Blame Prediction 97

τ ::= int | string ground types
| τ ∨ τ union types
| α type variable
| Πα1...n.τ function type
| (α τ1 . . . τn) function type application
| (τ ∼ τ)ll · τ conditional type

α, β ⊆ TVar
l ∈ Lab

Label : Exp �→ Lab labels of expressions
Expr : Lab �→ Exp expressions at labels

Fig. 2. Types

– Rule T-let is different from normal type systems because it needs to ensure
that the type of the whole let-expression is guarded by the type tests made
by ex

1. For example, the type of (let (x (+ y 1)) #t) should record the
fact that y is used as a number, even though it is not used in the let body. In
order to record this, this type rule uses the Leaves helper function to extract
the types at the leaves (τL) of ex. The rationale behind this is that all type
tests in ex have happened by the time the body is evaluated. The let body is
then inferred with the x bound to the type leaves τL, yielding a body type
τ . Finally, the type of the let-expression is attached to the type tests in the
type of ex using the Chain function. This preserving the type tests made by
ex in the larger let type.

– Rule T-lambda infers the type of the body with the arguments bound
to type variables α1 . . . αn. This type is then wrapped in a type function
with these type variables as arguments. Any type tests performed on the
arguments are recorded in the type of the body as well. When this type
function is eventually applied (see rule T-apply below), the type tests are
propagated to the application site and can be eliminated or moved up.

– Rule T-apply analyzes function application. This rule infers the type of the
called function and its arguments and tries to apply the type function to the
arguments using the Apply type function discussed in the next section. This
rule does not use the Leaves and Chain functions of T-let, as the entire
type of the function application is returned.
For bookkeeping purposes, each type τi passed into the Apply function is
associated with the label of its expression lτi . The label of the function
application itself is lf . This enables the type tests generated by Apply to
assign blame to the correct part of the program if they fail.

The Apply function. The various cases of the Apply function are considered from
top to bottom, and the first eligible case is executed. In the simplest case, the
Apply function is invoked with a τf that is statically known to be a function.
The return type is then constructed by substituting the actual types τ1 . . . τn

1 Note that the equality between (let (x ex) e) and ((lambda (x) e) ex) holds because
the latter must always be ANF-converted into the former.

98 D. Harnie, C. Scholliers, and W. De Meuter

Γ � e : τ

c ∈ {#t,#f, n}
Γ � c : Typeof(c)

(T-const)
Γ (x) = τ

Γ � x : τ
(T-var)

Γ � e1 : τ1 Γ � e2 : τ2

Γ � (if s e1 e2) : τ1 ∨ τ2
(T-if)

Γ � ex : τ1 Γ, x : τL � e : τ τL = Leaves(τ1)
Γ � (let (x ex) e) : Chain(τ1, τ)

(T-let)

Γ, x1 : α1, . . . , xn : αn � e : τ

Γ � (lambda (x1 . . . xn) e) : Πα1...n.τ
(T-lambda)

Γ � sf : τf Γ � si : τi ∀i ∈ [1 . . . n]
lf = Label((sf s1 . . . sn))

Γ � (sf s1 . . . sn) : Apply(τf , lf , τ1 . . . τn)
(T-apply)

Auxiliary definitions
Apply(Πα1...m.τf , lf , τ1 . . . τn) = τf [τ1 . . . τn/α1 . . . αm][lτ1 . . . lτm/lα1 . . . lαm] if m = n
Apply(Πα1...m.τf , lf , τ1 . . . τn) = error(lf) if m �= n
Apply(τα ∨ τβ , lf , τ1 . . . τn) = NoError(Apply(τα, lf , τ1 . . . τn), Apply(τβ, lf , τ1 . . . τn))

Apply(α, lf , τ1 . . . τn) = ((Πα1...n._) ∼ α)
lf
lα

· (α τ1 . . . τn)

Apply(τ, lf , τ1 . . . τn) = error(lf)

Chain(τ1 ∨ τ2, τc) = Chain(τ1, τc) ∨ Chain(τ2, τc)
Chain((τt ∼ τ1)

lb
lc

· τ, τc) = (τt ∼ τ1)
lb
lc

· Chain(τ, τc)
Chain(τ, τc) = τc

Leaves(τ1 ∨ τ2) = Leaves(τ1) ∨ Leaves(τ2)
Leaves((τt ∼ τ) · τ1) = Leaves(τ1)
Leaves(τ) = τ

NoError(error(lf), τβ) = τβ
NoError(τα, error(lf)) = τα
NoError(τα, τβ) = τα ∨ τβ

Fig. 3. Blame prediction: type inference rules and auxiliary definitions

Blame Prediction 99

for the type variables α1 . . . αn in the function type. Additionally, the labels
attached to these types are replaced by the labels of the arguments. Below are
some examples of Apply:

Apply(Πα.((string ∼ α)
_
lα

· string), lf , string) = ((string ∼ string)
lf
lstring

· string) (1)

Apply(string ∨Πα.α, lf , int) = NoError(error(lf), int) = int (2)

Apply(α, lf , boolean, (string ∨ int)) = ((Πα1, α2._) ∼ α)
lf
lα
·

(α boolean (string ∨ int)) (3)

If there are too few or too many arguments given to a a function, Apply
returns an error type. If the first argument to Apply is a union type, Apply
is called recursively while preserving the original structure of the type. This
can result in invalid function applications — for example in example 2 above
— which are replaced with error types. After invoking Apply on a union type,
only the non-error parts are retained by the NoError function. If all parts of a
union type result in error, the entire type is error. Normal type systems would
reject such programs immediately, but blame prediction must continue as such
an expression might be buried in a function that is never called or only on some
paths. Expressions that are assigned the type error will be guarded by a runtime
test that always fails.

Finally, a type variable might be the type function being applied to several
type arguments. This can happen as a result of the user creating higher-order
functions, which are common in functional languages. The type of such an ap-
plication is a type-level function application, as in example 3 above. Type-level
function applications remain in the type until their type variable is replaced by
a concrete type, at which point Apply is called anew. This mechanism enables
blame prediction to deal with higher-order functions.

After assigning types to all expressions of the program, a round of simplifica-
tion is performed on the types:

– Elimination of trivially true type tests such as string ∼ string in example 1;
– Elimination of repeated type tests :

((string ∼ n) · (int ∨ (string ∼ n) · string) becomes (string ∼ n) · (int ∨ string))
– Merging of union types with equivalent branches (int∨ int becomes just int);

4.2 Separation of Code and Type Tests

After inferring types for the program, blame prediction then makes type tests
explicit by separating type tests from applications of both primitive- and user-
defined functions. Every type test is annotated with two labels: a blame label
that references the function whose preconditions are being checked, and a cause
label that points to the expression being tested. For example, in a type test for
the expression (f x), the blame label points to the definition of f and the cause
label points to x.

Figure 4 extends the syntax presented earlier with a check construct, which
evaluates its second argument if the checks in the first argument are true. As a

100 D. Harnie, C. Scholliers, and W. De Meuter

e ∈ Exp ::= . . . as in Figure 1
(check C e) check expression

C ::= (τ? x/c)L type test
#t empty test
C ∨ C disjunction
C ∧ C conjunction
blame(l) static blame

x/c ::= x | c
L ⊂ Lab

Shorthand notation
[C]e ≡ (check C e)

Fig. 4. Expression syntax with explicit checks

shorthand, we write [C]e for (check C e). Checks can either be a type test on a
variable or constant x/c with a set of blame labels L, the “always-true” test #t
and a conjunction or disjunction of checks. When an expression has type error,
a corresponding “static blame” check is generated which always assigns blame if
it is reached. The residual type at each application site is converted to a check
C as follows:

convert((τ ∼ _)lblc · τf) = (τ? sc)
{lb} ∧ convert(τf) (where (sc) = Expr(lc))

convert(τ1 ∨ τ2) = convert(τ1) ∨ convert(τ2)
convert(error(l)) = blame(l)
convert(τ) = #t

Other elements of the syntax tree receive the check #t. Remember from
subsection 4.1 that each type test is associated with a cause label lc and a blame
label lb, both referring to source locations. To construct an actual check, the
cause label lc is looked up using Expr — the inverse of Label — yields the ex-
pression ec the label refers to. This expression is always a variable or a constant,
as cause labels point to the simple arguments of function applications. The blame
label lb becomes the sole element of the blame labels associated with the type
test.

After conversion, every check is simplified according to the normal logic for-
mulas for conjunctions and disjunctions: #t is removed from conjunctions, and
disjunctions with #t in one of the branches are entirely replaced by #t.
After type test introduction, the inc-or-greet example becomes as shown in
Listing 1.6.

(define (inc-or-greet mode y)
(if mode

[(int? y){l+}] (+ y 1)
[(string? y){lstring−append}]

(string-append "Hello " y)))

Listing 1.6. inc-or-greet example after separating code from type tests

Blame Prediction 101

4.3 Moving Type Tests Upwards

The last step of the blame prediction transformation attempts to move the check
nodes as far up the evaluation tree as possible. This process (called “flotation”)
is applied to the expression tree in a bottom-up fashion. Flotation rules are of
the form e �→ e′ ↑ C, meaning that expression e can be rewritten to expression
e′, floating check C upwards. Checks cannot float past the top of the program.
The flotation rules — listed in Figure 5 — are described as follows:

– Rules F-const and F-var are for completeness: as we only introduce check
nodes at function application sites, constants and variables will never give
rise to a type test.

– The F-apply rule simply floats its checks upwards.
– Rule F-if floats the disjunction of the checks performed by both nodes, while

still performing these checks in the branches themselves. This enables the
inc-or-greet example to predict blame if y variable contains something
not of type int or string.

– Rule F-let ensures that let-expressions only float checks upwards which do
not involve the bound variable. Any checks that do involve the variable x
are replaced by #t. A copy of the original checks C remains in the let body.

– Rule F-lambda stops checks from floating past lambda-expressions, as these
type tests would only be performed when the function is actually applied.

c �→ c ↑ #t (F-const) x �→ x ↑ #t (F-var)

[C](s s1 . . . sn) �→ (s s1 . . . sn) ↑ C (F-apply)

e1 �→ e′1 ↑ C1 e2 �→ e′2 ↑ C2

(if s e1 e2) �→ (if s [C1]e
′
1 [C2]e

′
2) ↑ C1 ∨ C2

(F-if)

ex �→ e′x ↑ Cx e �→ e′ ↑ C C′ = [#t/(τ? x)]C

(let (x ex) e) �→ (let (x e′x) [C]e
′) ↑ Cx ∧ C′ (F-let)

e �→ e′ ↑ C

(lambda (x1 . . . xn) e) �→ (lambda (x1 . . . xn) [C]e
′) ↑ #t

(F-lambda)

Fig. 5. Rules for floating checks up the evaluation tree

Floating type tests in the inc-or-greet example finally yields the following
program, which is what we wanted to accomplish in section 3.
(define (inc-or-greet mode y)
(check (or (int? y){l+} (string? y){lstring−append})

(if mode
(check (int? y){l+} (+ y 1))
(check (string? y){lstring−append}

(string-append "Hello " y)))))

Listing 1.7. inc-or-greet example after floating type tests up

102 D. Harnie, C. Scholliers, and W. De Meuter

The algorithm as presented generates a lot of redundant tests: in general,
each use of a variable results in a type test regardless of whether it has been
performed before. Therefore, a number of simplifications are performed:

1. Repeated tests in the same precondition are merged into the first top-level
occurrence of that test. Their blame labels are added to the first test’s blame
labels and the duplicate tests are replaced by #t. Finally, the preconditions
are simplified.

2. Preconditions of the form #t∨C or C∨#t are replaced by #t. These kinds
of tests are formed when one branch of an if expression returns a constant
or variable and the other branch is more complex. They do not contribute
anything to the blame prediction as they are always true.

3. Finally, the program is walked from top to bottom in order to remove re-
peated tests on the same variable across nested check expressions. As with
the first step, the blame labels of the lower tests are merged with those of
the tests higher up.

Remember from subsection 4.1 that trivially true type tests (e.g. int? 5) are
eliminated as part of the simplification, while leaving alone type tests that always
fail (e.g. int? "hello"). These last type tests are introduced and floated upwards
together with the other constraints. It is tempting to introduce a simplification
that replaces these expressions by #f and subsequently prunes preconditions,
but this causes misleading predictions.

Applying the full blame prediction transformation to the guess example from
the introduction results in Listing 1.8.

(define (guess target) ; type is Πα.symbol ∨ ((int ∼ α) · symbol)
(let ((input (read)))

(if (eq? input 'quit)
'quit
(check

(and (number? input){<,>} (number? target){<,>})
(if (< input target)

(begin (display "Too low!\n")
(guess target))

(if (> input target)
(begin (display "Too high!\n")

(guess target))
(begin (display "Correct!\n")

'done)))))))

Listing 1.8. guess after blame prediction

5 Evaluation

To support our claim of moving type tests up, we have compared the output of
soft typing [9] to that of blame prediction for selected examples from the Gabriel
benchmarks [10]. This comparison is done along two dimensions (Figure 6):

Blame Prediction 103

1. The number of dynamic type tests remaining in the program, with the un-
transformed program as baseline (100%).

2. The “computational distance” between a type test and the primitive appli-
cation that needs it, counted as steps in the spine of the ANF-transformed
program. Since variables can be tested multiple times, we show the mini-
mum, median and maximum distance encountered for select variables in the
program.

Cpstak
Destruct

Div
FFT
Tak
Takl

0% 25% 50% 75% 100%

% of remaining dynamic checks (less is better)

Soft Typing Blame Prediction

Name Computational distance (min/med/max)
Cpstak y(2/3/8), x(2/3/5), z(1/1/3), k(0/0/0)

Destruct l1(3/6/10), l(3/5/13), l2(4/5/7), a(1/4/7), b(3/4/6)
Div l(1/4/6), n(1/2/7), i(1/2/6)

FFT ar(19/56/60), i(1/10/13), ai(3/7/11), l(1/5/6), j(1/2/6)
Tak z(4/4/5), x(2/3/5), y(2/3/6), n(1/1/3)
Takl z(4/4/5), n(2/3/5), y(2/3/4), x(1/2/3)

Fig. 6. Comparison of blame prediction to soft typing with respect to type tests

As the graph in Figure 6 shows, soft typing is a more advanced type system that
can eliminate type tests statically. However, the basic type system presented in
subsection 4.1 is also capable of removing about forty percent of the type tests in
an average program. A majority of the remaining type tests can be attributed to
lack of precision when dealing with data structures: in the fft example, just over
half of the remaining type tests verify the types of vector elements. Of the tests
that remain most can be moved up three to four levels, which already makes a
difference in these small programs.
Our implementation can be downloaded from https://github.com/botje/crystal;
blame prediction can be tried online at http://bit.ly/blame-sandbox.

6 Related Work

As mentioned in the introduction, there exists a huge body of work [4,5] on ever
more expressive type systems for dynamically typed programming languages,
with the ultimate goal of being able to statically type all dynamic programs.

https://github.com/botje/crystal
http://bit.ly/blame-sandbox

104 D. Harnie, C. Scholliers, and W. De Meuter

These approaches limit themselves to a subset of the language they are studying,
resulting in an inability to type whole classes of programs that will never raise
a runtime error. The outcome of this body of work can be used to improve the
static capabilities of blame prediction, at least for programs that can be typed
successfully.

Soft typing [9] was among the first attempts at inserting type tests into dy-
namically typed programs. Their type system featured guarded primitives like
CHECK-car and also marked subexpressions as “will always fail”. The primary
motivation for inserting these type tests is to allow type inference to proceed,
but errors are only reported if faulty expressions are evaluated. The type system
of soft typing is much more powerful than ours: it supports arbitrary recursive
types and negative types to represent information about the absence of types in
a union type. However, blame prediction floats the remaining type tests up as
much as possible, reporting errors earlier.

Recently, gradual typing [11] has acknowledged that programmers may want
to gradually convert their programs to static typing. In the cases where normal
type systems cannot reason over the entire program, gradual typing can be used
to statically type check parts of the program. Parts that cannot be typechecked
are assigned the unknown type � and interactions with statically typed code
is guarded by a type conversion such as 〈x ⇐ τ〉. Gradual typing was a big
inspiration for this research, with the observation that the type tests performed
by a gradually typed program can be performed earlier in the control flow. A
similar idea was raised by [12], which uses contracts to reconcile typed and
untyped code. We plan to build a more elaborate version of blame prediction
on top of gradual and/or soft typing, equipping these type systems with better
error prediction.

Contract systems are closely related to blame prediction. In higher-order con-
tracts [13] it is often the case that when a contract violation is detected at
runtime, the point in the program where the violation is detected (e.g. line num-
ber) is not related to the point in the program that caused the problem. Blame
assignment [13] helps the programmer in relating the point where the error is
detected to its cause. The big difference to blame prediction is that contract sys-
tems point out errors back in time, while blame prediction assigns blame ahead
of time.

Aside from primitive operations, explicit type tests can also be used to deduce
type information in a dynamically typed language. The work in [4] sidesteps the
“one variable, one type” restriction that is present in many type systems, instead
opting to make types flow-sensitive. We plan to incorporate manual type tests
in later versions of blame prediction to better estimate types, thus eliminating
more type tests and floating tests up even further.

A recent addition to the Glasgow Haskell Compiler has lead to deferred type
errors [14]. Rather than halting compilation when a type error is discovered, the
program is compiled as normal but the wrongly-typed expressions are replaced
by “holes”. When such a hole is accessed by the runtime system, an error is raised

Blame Prediction 105

as before. These errors are only raised as they are accessed however, even if the
compiler can predict that the hole must be entered.

7 Conclusion

In this paper, we presented a novel typing discipline called blame prediction.
The key insight of this research is that dynamically typed programs perform
type tests on expressions only at the call site of primitive operations, while these
tests could be performed considerably earlier. We have developed this insight
into a typing discipline that makes type tests an integral part of expressions’
types. These types are used to steer a program transformation that makes type
tests explicit in code. The end result is a program that performs dynamic type
tests well before they can raise errors, with pointers to the failing expression and
the code that needs it. This in turn helps developers debug their applications
faster.

Acknowledgements. The authors would like to thank Matthias Felleisen for
input on an early draft of this paper. We are also grateful to the anonymous
reviewers for input on the second draft.

References

1. Cartwright, R., Fagan, M.: Soft typing. In: Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation, pp. 278–292
(1991)

2. Aiken, A., Wimmers, E.L., Lakshman, T.K.: Soft typing with conditional types.
In: Proceedings of the 21st ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pp. 163–173 (1994)

3. Flanagan, C., Felleisen, M.: A new way of debugging lisp programs. 40th Anniver-
sary of Lisp (Lisp in the Mainstream) (1998)

4. Guha, A., Saftoiu, C., Krishnamurthi, S.: Typing Local Control and State Using
Flow Analysis. In: Proceedings of the 20th European Symposium on Programming,
pp. 256–275 (2011)

5. Furr, M., An, J., Foster, J., Hicks, M.: Static type inference for Ruby. In: Proceed-
ings of the ACM Symposium on Applied Computing, pp. 1859–1866 (2009)

6. Felleisen, M., Hieb, R.: The revised report on the syntactic theories of sequential
control and state. Theoretical Computer Science 103(2), 235–271 (1992)

7. Sabry, A., Felleisen, M.: Reasoning about programs in continuation-passing style.
LISP and Symbolic Computation 6(3-4), 289–360 (1993)

8. Flanagan, C., Sabry, A., Duba, B.F., Felleisen, M.: The essence of compiling with
continuations. In: Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation, pp. 237–247 (1993)

9. Wright, A.K., Cartwright, R.: A practical soft type system for Scheme. In: Proceed-
ings of the ACM Conference on LISP and Functional Programming, pp. 250–262
(July 1994)

10. Gabriel, R.P., Masinter, L.M.: Performance of Lisp systems. In: Proceedings of the
ACM Symposium on LISP and Functional Programming, pp. 123–142 (1982)

106 D. Harnie, C. Scholliers, and W. De Meuter

11. Siek, J.G., Taha, W.: Gradual typing for functional languages. In: Proceedings of
the Workshop on Scheme and Functional Programming, pp. 81–92 (2006)

12. Tobin-Hochstadt, S., Felleisen, M.: Interlanguage migration: from scripts to pro-
grams. In: Proceedings of the 21st ACM International Conference on Object Ori-
ented Programming Systems Languages and Applications, pp. 964–974 (2006)

13. Findler, R.B., Felleisen, M.: Contracts for higher-order functions. In: Proceedings
of the 7th International Conference on Functional Programming, pp. 48–59 (2002)

14. Peyton Jones, S., Vytiniotis, D., Magalhães, J.P.: Equality proofs and deferred type
errors: A compiler pearl. In: Proceedings of the 17th International Conference on
Functional Programming, pp. 341–352 (2012)

Model-Based Shrinking for State-Based Testing

Pieter Koopman, Peter Achten, and Rinus Plasmeijer

Institute for Computing and Information Sciences (iCIS),
Radboud University Nijmegen, The Netherlands

{pieter,p.achten,rinus}@cs.ru.nl

Abstract. Issues found in model-based testing of state-based systems
are traces produced by the system under test that are not allowed by the
model used as specification. It is usually easier to determine the error
behind the reported issue when there is a short trace revealing the issue.
Our model-based test system treats the system under test as a black box.
Hence the test system cannot use internal information from the system
under test to find short traces. This paper shows how the model can be
used to systematically search for shorter traces producing an issue based
on some trace revealing an issue.

1 Introduction

In model-based testing of state-based systems there is a model that specifies the
allowed transitions between states. Each transition in an extended state machine
is labeled with an input and the corresponding output. The conformance relation
restricts the allowed outputs by the system under test to output covered by the
model for the inputs specified for each reachable state [9, 11].

In a state-based system the reaction of the system under test and the model
on some input depends on the current state and hence on the history. The list of
previous transitions, the trace, determines the current state. When the observed
output for some transition of the system under test is not covered by the model
we have determined nonconformance. In the testing jargon this is called an issue.
In an ideal test world such an issue indicates an error in the system under test. In
the real world issues can also indicate errors in the model or interfacing problems
between the system under test and the test system.

In simple cases the error indicated by a discovered issue is obvious. This
happens for instance when it is clear that the output that is generated by the
system under test is not allowed in the reached state. Often it is less obvious
what caused the illegal transition. In such situations we have to take the trace
in consideration since it determines how we arrived in the current state. It is
obvious that analysing such issues is in general much easier when we have a
short trace indicating the issue.

In an unguided test situation the test system has no idea where to search
potential nonconformance and takes transitions in a pseudorandom order. This
can result in fairly long traces of several thousands of transitions. In this paper
we discuss strategies for finding smaller traces indicating an issue based on such

J. McCarthy (Ed.): TFP 2013, LNCS 8322, pp. 107–124, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

108 P. Koopman, P. Achten, and R. Plasmeijer

a long trace. The technique to find smaller counterexamples based on an already
found counterexample in model-based testing is called shrinking.

The shrinking algorithm used for traces showing an issue acknowledges that
the state of the system under test can be quite different from the state of the
model. Nevertheless, similar states for the model can correspond to similar states
in the system under test. The contribution of this paper is that it shows how
to generate candidate traces to be tested based on the trace that is known to
reveal an issue. We introduce effective ways to generate test suites by elimi-
nating individual transitions from the trace and by eliminating all transitions
corresponding to a cycle in the model.

2 Conformance

A trace σ is a sequence of inputs and associated outputs from a given state.
The empty trace, ε, connects a state to itself: s

ε
=⇒ s. We write s

σ
=⇒ to indicate

∃u . s σ
=⇒ u and s

i/o−−→ ≡ ∃u . s i/o−−→ u. Often we are especially interested in the
inputs to be supplied to the state machine and only list the inputs of the trace
rather than the complete trace. For deterministic systems the rest of the trace
can always be deduced.

The inputs for which a transition is possible in state s are given by the set

init(s) ≡ { i | ∃ o . s i/o−−→}. The states after applying trace σ in state s are given

by s after σ ≡ { t | s σ
=⇒ t}. The traces starting in state s are given by traces(s) =

{ σ | s σ
=⇒}. Operations like init and after are overloaded for sets of states. Note

that there are infinitely many traces and an infinitely long trace if the state
machine contains a loop, that is ∃ s, σ . s

σ
=⇒ s, even if the machine is a finite

state machine.
For conformance between a model and a system under test sut the observed

output of the sut should be allowed by the model for each input i in the init
after every trace σ. Formally, conformance of the sut to the specification model
is defined as:

sut conf model ≡ ∀σ ∈ tracesmodel(s0).∀i ∈ init(s0 aftermodel σ).∀o ∈ O.

(t0 aftersut σ)
i/o−−→⇒ (s0 aftermodel σ)

i/o−−→

Here s0 is the initial state of the specification and t0 is the initial state of the
system under test. Note that this conformance relation compares inputs and
outputs. The actual states of the system under test are never used, hence the
system under test is treated as a black box. Comparing inputs and outputs of
the model and the system under test implies that they have to use identical
types of inputs and outputs. The states however, can be completely different.

The conformance relation states that the system under test should accept
at least the traces allowed by the specification. In particular the system under
test should accept an input if the specification states that it is allowed after
the observed sequence of transitions. Many systems under test will be input

Model-Based Shrinking for State-Based Testing 109

enabled ; the system accepts any input in every state. This is obvious for most
inputs corresponding to physical buttons or messages sent to a system. In a
graphical user interface an input can only occur when the corresponding button
or text field is visible. Such a system is not input enabled, but the system under
test should accept any input that is allowed by the specification.

2.1 Testing Conformance

Testing state-based machines is built on the conformance relation introduced
above. Model-based testing checks the conformance relation for a finite number
of finite traces. Since there can be infinitely many or infinitely long traces, testing
conformance is in general an approximation of the relation conf .

Instead of generating traces of the specification and verifying whether they
are accepted by the system under test, the test algorithm of our model-based
test tool G∀st, testConf, maintains the after states of the current trace [9, 11].
It determines for n transitions on a single trace on-the-fly whether the observed
behaviour of the system under test conforms to the model [13, 14]. If there are
no after states testing has determined nonconformance. If the remaining number
of steps to do is zero, testing this trace is terminated without any conformance
problems. Testing a trace is also finished if there are no transitions possible from
the current state; the init for the current state is empty. Otherwise, we choose an
arbitrary input that is accepted by the specification in one of the current states,
apply it to the system under test and observe the corresponding output. The
new set of states for the specification is the set of states that is obtained after
the transition. The algorithm continues testing with one step less and the new
set of states. Expressed in the lazy functional programming language Clean [12]
this becomes:

: : Verdict // possible test results
= Pass // non problem in the current trace
| Fail // nonconformance found
| Truncate // testing the given trace is interrupted

testConfRandom : : Int [s] t → Verdict
testConfRandom n [] t = Fail // no current state: issue found
testConfRandom 0 ss t = Pass // counter for transitions to do is 0
testConfRandom n ss t

| isEmpty inputs = Pass // init is empty: no transition from this state
| otherwise = testConfRandom (n−1) (after ss i o) t2

where inputs = i n i t ss
i = elemFrom inputs // input selection
(o , t2) = sut t i // output and new state of sut

In this definition s is the type of the state of the specification and t is the state
of the system under test.

In order to test conformance we evaluate testConfRandom N [s0] t0 for M
traces. When there is a test goal (some specific behaviour) we use this to select

110 P. Koopman, P. Achten, and R. Plasmeijer

the input i from the current init, otherwise the test system selects a pseudoran-
dom element. The real implementation of this algorithm in G∀st is more involved
since it is parameterized by the system under test and model, it collects the trace,
guides input selection, allows pseudorandom input selection, etc. When a trace
is found that proves nonconformance, the trace is shown together with the inter-
mediate model states on the trace. The system under test is treated as a black
box, hence its states cannot be shown.

There is another mode of conformance testing that is relevant for this paper.
Here we have a given list of inputs (instead of generating it on-the-fly) and
check whether there is conformance of system under test and the model for this
sequence of inputs. If the input at some point is not part of the init of the model
at some point testing this sequence is truncated; there is no issue found, but we
can neither continue the conformance check.

testConfGiven : : [I] [S] T → Verdict
testConfGiven n [] t = Fail
testConfGiven [] ss t = Pass
testConfGiven [i : r] ss t

| isMember i inputs = testConfGiven r (after ss i o) t2
| otherwise = Truncate

where inputs = i n i t ss
(o , t2) = sut t i

In order to use model-based testing for abstract data types with a state ma-
chine as specification, the system under test must behave as a state machine.
For the system under test we construct a very simple machine that stores the
actual abstract data type as its state. For the model we use a state machine with
a state that contains enough information to check the transitions. Such a state
is typically a näıve implementation of the interface offered by the abstract data
type, or an abstraction of it.

2.2 Models for G∀st

For our model-based test tool G∀st a specification is just a function taking the
current state and input as arguments and yields a list of allowed transitions.
In a deterministic system the list of allowed transitions for each reachable state
and input combination is a singleton. When this list is empty for some reachable
state and input combinations we have reached the end of a trace. When there
are multiple transitions possible for one reachable state and input, the model is
nondeterministic; all listed transitions are allowed.

A transition is either a pair transition, Pt, containing a list of outputs and a
new state, or a function transition, Ft, that contains a function that determines
the target states based on the given list of outputs from the system under test.

: : Spec state input output :== state input → [Trans output state]
: : Trans output state = Pt [output] state | Ft ([output]→ [state])

Model-Based Shrinking for State-Based Testing 111

The Ft construct is particularly useful when many outputs are allowed. For
instance, a specification that allows any output containing a single element as
reaction on the input Go is specified by the function model:

model : : State Input → [Trans Output State]
model s Go = [Ft singleton]
where

singleton [o] = [{ state & output = o}]
singleton out = []

model s i = . . .

Section 6.1 contains a complete specification of a simple vending machine.

3 The Desire for Small Traces

Theoretically all traces showing nonconformance are equally good to falsify con-
formance. In practice however, small traces are highly preferable since directly
after spotting nonconformance one starts investigating the source of this issue.

Since G∀st immediately stops testing when nonconformance is observed, it is
always the last transition of the trace showing the issue. In rare situations it is
obvious that the observed combination of input and output is incorrect and we
only have to consider the last transition of the sequence showing the issue. In
most situations the output is correct in the current state of the system under
test, but the system is in another state than it is supposed to be. This implies
that in some previous transitions the model produced an approved output, but
has gone to the wrong state. Since the system under test is a black box, the
test system cannot observe the wrong state. In order to analyse these issues we
need to investigate how the system ended up in the state where this issue was
observed. For a short trace this is obviously easier than a long one.

Well-known algorithms to find shortest paths in a tree are breadth-first search
and iterative deepening depth-first search. These and similar algorithms are used
to find minimal counterexamples in model checking [2]. Most model checkers use
clever optimisations of these brute force approaches. In model-based testing we
are not able to check as thoroughly as in model checking, either because the
state space is too big (e.g. infinite due to parameterized states), time constraints
do not allow us to check the entire state space, or the system under test is non-
deterministic. Nondeterminism in the system under test is either a true random
choice of the system, or due to partial knowledge of the state of the system.
For instance, a vending machine that delivers an item if it is in stock, or other-
wise an ‘out of stock’ message is completely deterministic. However, when we do
not know the amount of goods in stock, the vending machine seems to behave
nondeterministically. The vending machine example used in this paper has 10
different inputs in each state. This implies that there are 10l different paths of
length l. Since the state is parameterized by an integer and the product chosen,
an exhaustive search of the state space is unfeasible.

Since short traces showing an issue are very desirable and exhaustive search
is not feasible we have to rely on heuristics to obtain short traces. Below we
discuss some heuristics and measure their effect.

112 P. Koopman, P. Achten, and R. Plasmeijer

3.1 Assumptions

In the comparison of heuristics for shrinking and measurement of their results
we use the following assumptions:

– The system under test is assumed to behave deterministically during the
search for smaller traces. This guarantees that each trace that produces an
issue will always produce that issue in a new test, and vice versa.

– Testing an actual transition is more time-consuming than some simple calcu-
lations to select the next transition to be tested. Testing a transition typically
requires the transformation of the input to a suitable form for the interface,
calling the system under test as an external program, waiting for the re-
sponse, and transforming the output to the proper type for the test system.
This implies that it is worthwhile to compute smart test traces, instead of
just brute force exploration of the search space.

– In this paper the system under test is assumed to be input enabled ; every
input can be given in any state. As a consequence any trace is a valid trace
that can be tested. The system under test is usually input enabled since
it is hard to prevent that a particular input is given to the system, e.g., by
pushing a button or sending a message. The model does not have to be input
enabled. One can decide to omit the transition for some state and input pairs
deliberately from the model. Such a partial model of the behaviour can be
very useful, but is not input enabled. When such an undefined transition
occurs during testing the trace is truncated at that spot. For such partial
models it is worthwhile to check whether the sequence of inputs generated is
a valid trace of the model before the more expensive tests with the system
under test are executed. For dynamically generated (on-the-fly) inputs we
select an input that happens to be accepted in the current state of the model.

4 Binary Search for Minimal Traces

Until we implemented shrinking we used a form of binary search to find small
traces. When testing with a high upper-bound of the trace length yields an issue
it is obvious that there is nonconformance. Hence, it is worthwhile to look for a
short trace revealing the issue.

When the system finds an issue with a trace of length n, we try to find an
issue with length n/2 as upper-bound from scratch. If this succeeds we continue
with n/4 as upper-bound, otherwise we continue with 3n/4 as upper-bound. By
repeating this we can find relatively small traces revealing an issue.

Although this algorithm finds smaller traces showing an issue, it does not scale
well in finding minimal traces. When there are c choices for the input in a state
and the minimal trace has length l, the chance of finding a minimal trace by
pseudorandom input selection is c−l. A complicating factor is that the minimum
length l is not known, hence we can only approximate it. The advantage of this
approach is that it is very simple to implement, we just have to repeat the tests

Model-Based Shrinking for State-Based Testing 113

with another seed for the pseudorandom generation and the desired upper-bound
on the trace length.

In order to measure the effect of this algorithm we have executed tests with
10 erroneous vending machine implementations described in Section 6.2 with 10
different seeds. The average ratio between the longest and shortest trace showing
nonconformance is 17. On average the shortest trace showing an issue is a factor
of 6 shorter than the average trace for that system under test. This indicates
that this approach works quite well. It is definitely worthwhile to apply this
algorithm when nothing else is available.

Despite the success of using several random seeds, there are also limitations
that makes it worthwhile to develop better algorithms to find short traces show-
ing nonconformance. First of all this algorithm finds the shortest trace possible
to reveal the issue only when that trace is extremely short. Typically the limit
is only two transitions. The best path found by using different seeds is on aver-
age a factor of 6 longer than the shortest path showing nonconformance. These
numbers rapidly increase when the systems become more complex and require
a longer path to show nonconformance. Moreover, trying various seeds for the
pseudo random generation in order to find a short trace showing nonconformance
requires many transitions of the system under test. The testing labour can be
slightly reduced by using the length of the best trace found until now as upper-
bound for the trace length during the tests of new traces. Bigger reductions of
the testing job can be achieved by employing more information from the trace
found that shows nonconformance.

5 Shrinking

The technique to find smaller traces showing nonconformance based on a previ-
ously found counterexample in model-based testing is called shrinking. It is well
known from QuickCheck [1,4,6]. Shrinking systematically generates candidate test
cases based on a test value that is known to falsify the property at hand. There
is a class shrink x : : x → [x] that generates a list of smaller test values based
on the given value of type x. Typically there are instances of shrink for all data
types used in the tests. The default shrinking algorithm for lists is:

instance shrink [i] | shrink i where
shrink : : [i] → [[i]] | shrink i
shrink [] = []
shrink [a:x] = [x: [[a:y] \\ y ← shrink x]] // omit single element

++ [[b:x] \\ b ← shrink a] // shrink single element

This function tries to eliminate the list elements one by one as well as to shrink
the list elements themselves. When a smaller counterexample is found, we can
try to shrink it again by the same algorithm until it is sufficiently small. There
are many successful applications of this algorithm. For example Hritcu et. al.
used this successfully to shrink counterexamples for an abstract machine [5].

Our test system G∀st has no shrinking. For the branch of G∀st based on logical
properties as model, shrinking is not needed since test cases are generated from

114 P. Koopman, P. Achten, and R. Plasmeijer

small to large [10]. This implies that the counterexamples found are already
minimal. This paper focusses on the other branch of G∀st that uses extended
state machines as model.

Since all we need for the trace is a list of inputs, we can use this shrinking
algorithm also for traces. The drawback of this algorithm is that it does not use
any information from the model. Only when this algorithm is applied multiple
times we can use information about the model in the selection of inputs to shrink.
The set of traces generated by this implementation of shrink removes at most
one input element. We would need very many of these shrinking steps to reduce
the length of the trace revealing an issue significantly.

In this paper we try to shrink traces by eliminating elements. The individual
inputs in the list are not changed since this usually results in other behaviour
of the system. This implies that we do not need the last line in the shrinking
algorithm for lists. Initial experiments have shown little or no effect of shrinking
elements for the examples used in this paper. A thorough exploration of input
element shrinking is a subject of future research.

5.1 Implementing Shrinking

In order to have a general implementation of shrinking that allows easy experi-
mentation with various algorithms a binary tree for shrinking is defined:

: : Shrinks i = Shrinks [i] (Shrinks i) (Shrinks i) | NoShrinks

G∀st tests the sequence of inputs, [i] , in the node Shrinks. If this sequence of
inputs shows an issue, shrinking continues with the first subtree, otherwise it
continues with the second subtree. In this way we achieve a separation between
the generating of candidate traces and the execution of the associated tests.
Hence, one can implement shrinking strategies without detailed knowledge of
test execution. Lazy evaluation prevents excessive use of memory for those trees.

5.2 Eliminating Single Transitions

When the states in the model before and after a transition are identical, the
transition is most likely a query on the state. There is no guarantee whatsoever
that the states in the system under test for such a transition are identical, but
the trace where such a transition is removed is a good candidate for testing.

Based on this idea we can systematically try to eliminate inputs from a trace.
Without looking at the states of the model we get an algorithm that resembles a
repeated version of the basic shrinking algorithm very much. In order to obtain
a somewhat efficient algorithm we use a greedy elimination algorithm; when the
issue remains after removing a specific input element, this element is removed
permanently. Otherwise, it will be part of the trace during the entire shrinking
process. The algorithm use to generate the associated shrink tree is:

elemElimination : : [i] → Shrinks i
elemElimination inputs

Model-Based Shrinking for State-Based Testing 115

= elim 0 (length inputs) inputs
where

elim n len inputs
| n < len

= Shrinks inputs2 (elim n (len−1) inputs2) (elim (n+1) len inputs)
= NoShrinks

where inputs2 = removeAt n inputs

The index n scans all inputs in the given list of inputs. When inputs2 , with
element n removed, also yields nonconformance we remove it forever. Otherwise,
we keep it in the list and continue with the next element. The head to tail order
in this algorithm is an arbitrary choice, we have no arguments why this would
in general be better than any other order.

This shrinking algorithm appears to be very effective in removing individual
transitions. On average the traces in our example in Section 6.3 are reduced by
a factor of 33. The length of the obtained trace is largely independent of the
initial trace. After shrinking the maximum difference in the length of the trace
revealing an issue is 2. There is no correlation between the length of the initial
trace revealing the issue and the trace after shrinking. Apparently this algorithm
is able to remove many more transitions than just query transitions that do not
change the state.

For a trace of length N there are O(N) elements to consider as candidates
to be removed. Testing whether each of these traces still produces an issue re-
quires O(N) transitions. Hence, shrinking with this algorithm requires O(N2)
transitions of the system under test. The measurements show that the actual
number of transitions needed grows indeed rapidly with the length of the initial
trace. For initial traces longer than 450 the test system needs typically more
that 100,000 transitions.

5.3 Eliminating Larger Chunks of Inputs

Based on the success of the previous algorithm to shorten traces revealing non-
conformance, it is worthwhile to look for an algorithm that achieves this effect
more quickly. The algorithm binElemElimination below tries to remove chunks of
the trace from large to small. When removing some chunk succeeds we remove N
elements in one step; otherwise we try to remove the first and second half of that
chunk. The algorithm maintains a list of chunks as candidates to be eliminated.
Each chunk is indicated by the index of the first element and its length.

When testing with this chunk yields an issue, the entire chunk is eliminated.
The rest of the chunks is adjusted by changing all starting indices. The next
chunk is split in two parts since it cannot also be removed completely. If it could
be removed also, the original chunk would not be split in two parts.

When removing this chunk also removes the issue, the current chunk is split
in two parts. These parts are new candidate chunks and are added to the list
of chunks. The function binElemElimination constructs the associated shrinking
tree. This function ensures that the last input element is never removed since
that is the input revealing the issue.

116 P. Koopman, P. Achten, and R. Plasmeijer

binElemElimination : : [i] → Shrinks i
binElemElimination inputs

| len > 1
= elim [(0 , len − 1)] inputs
= NoShrinks

where
len = length inputs

elim [(f , d) : rest] inputs
= Shrinks inputs2 (elim (adjust d rest) inputs2)

(elim (i f (d > 1) [(f , d / 2) , (f + d / 2, d − d / 2) : rest]
rest) inputs)

where inputs2 = s l i c e f d inputs
elim [] inputs = NoShrinks

adjust d [(f , e) : rest]
| e > 1

= [(f − d , e / 2) , (f − d + e / 2, e − e / 2) : rest1]
= rest1

where rest1 = [(x − d , y) \\ (x , y) ← rest]
adjust d [] = []

s l i c e : : Int Int [a] → [a]
s l i c e 0 d l i s t = drop d l i s t
s l i c e f d [a: x] = [a: s l i c e (f − 1) d x]

The effect of this algorithm is very significant. On average the number of transi-
tions needed to show nonconformance is reduced by a factor of 39 in the running
example. The effect is bigger for large initial traces. The produced final traces
are almost always identical with the previous algorithm. Due to the different
elimination order of inputs the resulting minimal traces can sometimes be a few
transitions longer or shorter.

The binary search strategy is often used in computer science. For instance
to find minimal counterexamples in the context of constraint solving problems,
CSP [3, 7]. Here we use it to find minimal paths through a state machine that
shows nonconformance in model-based testing. In contrast to CSP the order of
elements is relevant here. Especially the last transition is essential in model-based
testing since it is known to show nonconformance.

Although this algorithm works much better than the previous one in our ex-
periments, its worst case complexity is not better. For instance, when the initial
trace contains only needed inputs, or exactly every second input can be removed,
we must continue by dividing chunks until their size is one. Hence, in worst case
trying to remove the bigger chunks is no improvement. The experiments show
that the actual reduction in transitions to be done is quite significant.

5.4 Eliminating Cycles

The previous algorithms are both based on the list of inputs and do not take
any knowledge of the system into account. In particular it is worthwhile to try

Model-Based Shrinking for State-Based Testing 117

to remove cycles in the model and system under test. A cycle is a subtrace
starting and ending in the same state of the model. These cycles are excellent
candidates for elimination since there is a fair change that cycle in the model is
mirrors a cycle in the system under test, or has at least very similar states at its
begin and end. By definition a cycle in a state machine can be removed without
changing the remainder of the behaviour. In contrast to the previous algorithm,
cycle removal uses educated guesses of the input chunks to be removed.

Based on the list of inputs it is impossible to identify cycles properly. Only
when a subsequence occurs twice (or more), it likely that we have spotted a
cycle. There are huge limitations on cycle detection based on the inputs. First,
it is only possible to identify cycles that are used two or more times, a single
tour over a cycle cannot be detected. Second, any intermediate input that only
queries the system but does not alter the state spoils this cycle detection. Third,
it is very well possible that inputs have to be repeated for the proper behaviour
of the system. For instance, a vending machine can require two or more coins.
Any repeated input in the trace and looks like a cycle, but it is not actually a
cycle for the machine states.

Since the system under test is a black box we cannot observe its state. Hence,
we cannot detect cycles there. For the model however, the test system knows
everything. Apart from the inputs used in the trace, we can also record the states
visited during the trace. As soon as we discover the same model state twice in
the trace we have found an cycle. Next we can test if this cycle in the model can
be removed. There is no guarantee whatsoever that a cycle in the model is also
a cycle in the system under test.

In general there can be many cycles in a trace. In particular there can be
small cycles in a bigger cycle, and cycles that are traversed more than once. For
that reason the cycle removal algorithm sorts the cycles from large to small and
tries to remove them in that order.

The function cycleElimination takes the list of inputs and corresponding
model states as argument and produces a shrink tree. The first argument of
this function is another shrinking algorithm to be used as continuation after
cycle elimination. We explain its use below.

cycleElimination : : ([i]→Shrinks i) [i] [s]→Shrinks i | gEq{|�|} ,gLess{|�|} s
cycleElimination cont [] = NoShrinks
cycleElimination cont [i] = NoShrinks
cycleElimination cont inputs states = elim (findCycles states) inputs
where

elim [c=: (f , t) :cyc les] inputs
= Shrinks inputs2 // test case

(elim (updateCycles f t cycles) inputs2) // Success
(elim cycles inputs) // Failure

where inputs2 = cut f t inputs // remove inputs from f to t
elim [] inputs = cont inputs

The function findCycles gets the list of states corresponding to the current trace
as argument and produces a sorted list of indices that identify the cycles found.

118 P. Koopman, P. Achten, and R. Plasmeijer

findCycles : : [s] → [(Int , Int)] | gEq{|�|} , gLess{|�|} s
findCycles [] = []
findCycles [s] = []
findCycles states = sortBy (λ(a ,b) (c ,d) . b − a > d − c) (mkCycles groups)
where

pairs = sortBy (λ(i , s) (j , t) . s < t)
[(i , s) \\ i ← [0 . .] & s ← i n i t states]

groups = groupby (snd (hd pairs)) [] pairs

mkCycles : : [[a]] → [(a ,a)]
mkCycles [] = []
mkCycles [[] : r] = mkCycles r
mkCycles [[i : r] :next] = reverse [(j , i) \\ j ← r] ++ mkCycles [r:next]

When a cycle is removed from the input, the indices of all other cycles have to
be adapted by updateCycles. When one of the other cycles is inside the cycle
removed, the smaller cycle is removed completely. Otherwise, only the indices
are adapted to the removal of the cycle from the trace.

updateCycles : : Int Int [(Int , Int)] → [(Int , Int)]
updateCycles f t [(x , y) : r]

| y < f // new cycle before current cycle
= [(x , y) : updateCycles f t r]

| x > t // new cycle after current cycle
= [(x − t + f , y − t + f) : updateCycles f t r]

| otherwise // cycles overlap: remove new cycle
= updateCycles f t r

updateCycles f t [] = []

The experiments show that about half of the cycles found in this way can be
removed. In some ways cycle removal is more powerful than the previous ele-
ment removal algorithms. In a number of situations it is possible to remove an
entire cycle in one go, while removing the cycle element by element or in ar-
bitrary chunks fails. However, some individual transitions that can be removed
are not signalled by the cycle removal algorithm. For this reason the cycle re-
moval algorithm is equipped with a continuation. After all cycles that can be
removed are gone, we can try to remove individual transitions by one of the
previous algorithms. In the next section we show the effect of using different
continuations.

It is of course also possible to switch the order of these algorithms: first remove
as many individual elements as possible and next try to remove any remaining
cycles. Since cycle removal can remove large chunks at reasonable costs we apply
the algorithms in the given order. For the effect on the final trace it does not
matter, but the number of transitions needed to find the short trace is usually
lower.

6 Measuring the Effect of Shrinking

In order to determine the effect of the various shrinking techniques we measured
their effect for a number of examples. In this paper we discuss the experiments

Model-Based Shrinking for State-Based Testing 119

with a vending machine in detail since it is sufficiently small to treat thoroughly
and illustrates the effects well.

6.1 Vending Machine Specification

The vending machine is an extended state machine. The possible inputs are coins
with value 1 or 2, the choice for some product, a reset button, an information
button, and a go button to start the preparation of the selected product:

: : Input = Coin1 | Coin2 | Choice Product | Reset | Info | Go
: : Product = Coffee | Espresso | Double | French | Wiener

The possible outputs are either a cup of one of the products, an amount of
change, or some text giving information to the user.

: : Output = Cup Product | Change Int | Text String

The input and output are identical for the model and the system under test.
The states of those machines can be completely different.

The state of the model contains the select product, if any, and an integer for
the balance.

: : State = {product : : Maybe Product , balance : : Int}

The function spec is the specification of the vending machine used by G∀st.
For the inputs Coin1 and Coin2 the balance is incremented accordingly. When a
product p is chosen, this choice is stored in the state. On the input Reset state of
the model becomes state0, when there was a positive balance in the system the
appropriate amount of change is produced. On the input Info there is a function
transition. The function used accepts any list of outputs that contain exactly one
arbitrary text. When the Go input is given, the model checks whether a product
is chosen and the balance is sufficient for that product. If these conditions hold,
the output is a cup of the previously chosen product and the state is updated
accordingly. Otherwise, there is no output and the state is not changed.

spec : : State Input → [Trans Output State]
spec s Coin1 = [Pt [] {s & balance = s.balance + 1}]
spec s Coin2 = [Pt [] {s & balance = s.balance + 2}]
spec s (Choice p) = [Pt [] {s & product = Just p}]
spec s Reset = [Pt (i f (s.balance > 0) [Change s.balance] []) state0]
spec s Info = [Ft accept] where accept [Text] = [s] ; accept = []
spec s Go

= case s.product of
Just p | s.balance ≥ value p

= [Pt [Cup p] {state0 & balance = s.balance − value p}]
= [Pt [] s]

state0 = {product = Nothing , balance = 0}

120 P. Koopman, P. Achten, and R. Plasmeijer

6.2 Vending Machine Implementations

In order to measure the effect of shrinking we made a correct implementation,m0,
of this specification in Clean and 10 mutants containing some erroneous transi-
tions. The correct implementation mirrors the specification as much as possible.
Instead of a list of allowed transitions, a system under test yields a pair of a
list of outputs and the new state. The system under test can be some external
program that, for instance in Java, as long as there is communication via some
protocol with that implementation. Here we keep it as simple as possible and
use the same state as the model. The only real difference between model and im-
plementation corresponds to the input Info . The implementation has to decide
what the output is. In this case it it shows the machine state (line 6).

1m0 : : State Input → ([Output] , State)
2m0 s Coin1 = ([] , {s & balance = s.balance+1})
3m0 s Coin2 = ([] , {s & balance = s.balance+2})
4m0 s (Choice p) = ([] , {s & product = Just p})
5m0 s Reset = (i f (s.balance > 0) [Change s.balance] [] , state0)
6m0 s Info = ([Text (show1 s)] , s)
7m0 s Go
8= case s.product of
9Just p
10| s.balance ≥ value p
11= ([Cup p] , {state0 & balance = s.balance − value p})
12= ([] , s)

Mutants of the Vending Machine Implementation For the mutants we
only list the differences with the correct implementation m0.

m1 remembers the product chosen after preparing a cup of product p. Line 11
form m0 is replaced by:

= ([Cup p] , {s & balance = s.balance − value p})

m2 loses any remaining balance after producing a product. Line 11 becomes:

= ([Cup p] , state0)

m3 incorrectly increments the balance after inserting a Coin2. This typical copy-
paste error is reflected in the new line 3:

m3 s Coin2 = ([] , {s & balance = s.balance+1})

m4 has an incomplete reset functionality. The balance (if any) is returned, but
this machine remembers the chosen product. Line 5 is replaced by:

m4 s Reset = (i f (s.balance > 0) [Change s.balance] [] , {s & balance=0})

m5 uses a uniform price of 3 for all products. This is correct for all products
apart from coffee which has a value 2. This is reflected in line 11:

= ([Cup p] , {state0 & balance = s.balance − 3}

Model-Based Shrinking for State-Based Testing 121

m6 yields coffee independent of the requested product. Line 11 reads here:

= ([Cup Coffee] , {state0 & balance = s.balance − 2})

m7 inserting a Coin2 in this machine erases the choice to nothing. Line 3 of this
machine is:

m7 s Coin2 = ([] , {s & product = Nothing , balance = s.balance+2})

m8 inserting a Coin2 sets the product choice to coffee. In this machine line 3 is
replaced by:

m8 s Coin2 = ([] , {s & product = Just Coffee , balance = s.balance+2})

m9 omits the balance check of line 10. This machine will produce the requested
product even if no coins are inserted.

m10 remembers the product if there is money left in the machine after produc-
ing a product. The last function alternative is:

m10 s Go
= case s.product of

Just p
| s.balance > value p

= ([Cup p] , {s & balance = s.balance − value p})
| s.balance == value p

= ([Cup p] , state0)
= ([] , s)

6.3 Measurements

Table 1 contains the results of our measurements of the effect of shrinking with
the different algorithms for the systems under test. The first two rows contain
the number of transitions for using 10 different random seeds and the length of
the shortest trace found. The next two rows contain the average number of tran-
sitions and average length of traces found by shrinking the results from random
testing by element elimination by elemElimination. The next two rows contain
the average number of transitions and average trace length for binary elimina-
tion by binElemElimination. The following sets of two rows contain those results
for cycle elimination, cycleElimination, cycle elimination followed by element
elimination, and cycle elimination followed by binary elimination.

The shrinking result with the shortest average length is printed bold and
underlined. When several algorithms find the same minimal trace, the one which
does this in the lowest number of transitions is underlined, the other shortest
lengths are only bold. For m2 the optimal result is plain binary elimination, for
all other cases this is cycle elimination followed by binary elimination.

6.4 AVL Storage Testing

We repeated those measurements for a state-based system to test AVL-tree im-
plementations. The input actions are to insert an element in the storage, remove

122 P. Koopman, P. Achten, and R. Plasmeijer

Table 1. Number of transitions and length of traces for the various shrinking algo-
rithms and vending machines from Section 6.2

algorithm m1 m2 m3 m4 m5 m6 m7 m8 m9 m10

random trans 3716 567 183 3307 1265 452 1409 1006 274 3690
seed best 70 11 4 55 11 8 40 15 2 70

element trans 88591 2067 222 91954 12688 1303 12792 7469 692 97162
elimination avg 7 6 2 5 6 4 4 2 2 7

binary trans 1073 275 47 1219 377 128 300 203 55 1140
elimination avg 7 6 3 5 6 4 4 2 2 7

only cycle trans 625 188 58 909 279 99 192 126 36 724
elimanation avg 13 14 9 10 14 12 10 7 4 13

cycle + trans 739 297 95 967 397 167 231 146 43 829
element avg 7 6 2 5 5 4 3 2 2 7

cycle + trans 731 289 71 948 364 140 216 133 40 821
binary avg 7 6 2 5 5 4 3 2 2 7

an element, and check the presence of an element. The model stores the ele-
ments in a list. This makes those operations O(n) in the number of arguments
stored, but very easy to implement correctly. The 30 different systems under test
store the elements in the AVL-tree are implementations made by our students
as homework assignments [8].

The results are very similar to the results in Table 1. The only significant
difference is that the effect of removing cycles is much stronger for those storages
than for the vending machine. Space limitations prevents the listing of those
results in this paper.

6.5 Observations

By comparing the shrinking results we make the following observations:

1. All heuristics used here have significant effects in finding shorter traces.
2. Trying different random seeds is the simplest, but least successful heuristic.

The number of transitions required is high and the effect on the minimal
path length is limited. It scales badly, O(n2); for longer minimal paths it is
less effective and relatively more expensive.
Nevertheless the average ratio between the length of the longest and shortest
path with 10 different seeds for the pseudorandom generation is 17. Given
the minimal implementation effort this is a good return of investment.

3. In all but one case even the best path found by random walk is considerably
longer than the shortest paths found by other algorithms. The average path
found by random walk is a factor of 33 longer than that path after shrinking.
On average the length of the shortest path found by trying different random
seeds can be reduced by a factor of 6 with respect to the other shrinking
algorithms. Only when the shortest trace is extremely short, length 2, there
is a fair chance to find the shortest path by a random walk.

Model-Based Shrinking for State-Based Testing 123

4. The measurements show that it is not worthwhile to select the minimal
trace by trying different seeds for the pseudorandom generation to have a
better starting point for the real shrinking algorithms. Typically the shrink-
ing algorithms are able to find a minimal trace independently of the initial
trace. Searching a better starting point just increases the total number of
transitions required.

5. Single element elimination, binary elimination, and cycle elimination fol-
lowed by one of those heuristics are often equally effective. The difference
in the length of the obtained trace in Table 1 is at most two transitions.
For the AVL-trees the gain of cycle removal can be bigger. When there is a
difference in effect, cycle elimination followed by single element elimination,
or binary elimination is always more effective.

6. There are huge differences in the number of transitions needed to find mini-
mal traces. Single element elimination is the most expensive. Binary elimina-
tion achieves almost the same effect (in worst case 2 additional transitions)
faster, on average a factor of 39. For longer paths the reduction is bigger.

7. Cycle elimination alone is less effective than element elimination methods,
but it is usually the cheapest heuristic to execute. Cycle elimination is a
model-based shrinking technique that appears to scale very well.

8. Cycle elimination followed by binary element elimination combines best of
both worlds. It yields typically the optimum shrinking result with a low num-
ber of transitions. Single and binary element elimination after cycle elimina-
tion are much cheaper due to the smaller initial trace for those algorithms.

7 Conclusion

To simplify the identification of errors based on issues found by model-based
testing it is worthwhile to shrink the traces found. All heuristics tried in this
paper have a significant shrinking effect. Typically the length of the trace re-
vealing an issue is reduced by more than an order of magnitude. On average
the reduction effect increases with the length of the trace. The best result-cost
ratio is achieved by removing cycles based on repeated states in the trace of the
model, followed by binary element elimination. This algorithm uses information
from the model instead of only the list of inputs to guide the shrinking.

The examples used in this paper are representative for real world systems, but
relatively small. In future research we will investigate whether the best shrinking
results of this paper scales to real world applications. Since all the shrinking
algorithms work with a shrink tree that monotonically decreases the size of the
trace, it is possible to interrupt the algorithm if that would be necessary and
still have a shrinking effect on the trace.

Acknowledgement. Special thanks to Thomas Arts of QuviQ for an interest-
ing discussion about shrinking in model-based testing of state-based systems.
We would like to express our gratitude to the anonymous referees and to the
participants of TFP 2013 for their valuable feedback and suggestions.

124 P. Koopman, P. Achten, and R. Plasmeijer

References

1. Arts, T., Castro, L.M., Hughes, J.: Testing Erlang data types with Quviq
Quickcheck. In: Proceedings of the 7th ACM SIGPLAN Workshop on ERLANG,
ERLANG 2008, pp. 1–8. ACM, New York (2008)

2. Baier, C., Katoen, J.-P.: Principles of Model Checking (Representation and Mind
Series). The MIT Press (2008)

3. Bradley, A.R., Manna, Z.: Property-directed incremental invariant generation.
Form. Asp. Comput. 20(4-5), 379–405 (2008)

4. Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing of
Haskell programs. In: Proceedings of the 5th International Conference on Func-
tional Programming, ICFP 2000, Montreal, Canada, pp. 268–279. ACM Press
(2000)

5. Vytiniotis, D., de Azevedo Amorim, A., Lampropoulos, L.: Testing noninterference,
quickly. In: Proceedings of the 18th ACM SIGPLAN International Conference on
Functional Programming, ICFP 2013, pp. 455–468. ACM, New York (2013)

6. Hughes, J.: Software testing with quickcheck. In: Horváth, Z., Plasmeijer, R., Zsók,
V. (eds.) CEFP 2009. LNCS, vol. 6299, pp. 183–223. Springer, Heidelberg (2010)

7. Junker, U.: Quickxplain: Conflict detection for arbitrary constraint propagation
algorithms. In: IJCAI 2001 Workshop on Modelling and Solving Problems with
Constraints (2001)

8. Koopman, P., Achten, P., Plasmeijer, R.: Model based testing with logical proper-
ties versus state machines. In: Gill, A., Hage, J. (eds.) IFL 2011. LNCS, vol. 7257,
pp. 116–133. Springer, Heidelberg (2012)

9. Koopman, P., Plasmeijer, R.: Testing reactive systems with Gast. In: Gilmore, S.
(ed.) Proceedings of the 4th Symposium on Trends in Functional Programming,
TFP 2003, pp. 111–129. Intellect Books (2004) ISBN 1-84150-122-0

10. Koopman, P., Plasmeijer, R.: Generic generation of elements of types. In: Pro-
ceedings of the 6th Symposium on Trends in Functional Programming, TFP 2005,
Tallin, Estonia, September 23-24, pp. 163–178. Intellect Books (2005) ISBN 978-
1-84150-176-5

11. Koopman, P., Plasmeijer, R.: Fully automatic testing with functions as specifica-
tions. In: Horváth, Z. (ed.) CEFP 2005. LNCS, vol. 4164, pp. 35–61. Springer,
Heidelberg (2006)

12. Plasmeijer, R., van Eekelen, M.: Clean language report, version 2.1 (2002),
http://clean.cs.ru.nl

13. de Vries, R., Tretmans, J.: On-the-fly conformance testing using SPIN. Software
Tools for Technology Transfer, STTT 2(4), 382–393 (2000)

14. van Weelden, A., Oostdijk, M., Frantzen, L., Koopman, P., Tretmans, J.: On-the-
fly formal testing of a smart card applet. In: Sasaki, R., Qing, S., Okamoto, E.,
Yoshiura, H. (eds.) SEC 2005. IFIP AICT, vol. 181, pp. 564–576. Springer, Boston
(2005); Also available as Technical Report NIII-R0428

http://clean.cs.ru.nl

Control-Flow Analysis with SAT Solvers

Steven Lyde and Matthew Might

University of Utah, Salt Lake City, Utah, USA

Abstract. Control-flow analyses statically determine the control-flow
of programs. This is a nontrivial problem for higher-order programming
languages. This work attempts to leverage the power of SAT solvers
to answer questions regarding control-flow. A brief overview of a tra-
ditional control-flow analysis is presented. Then an encoding is given
which has the property that any satisfying assignment will give a con-
servative approximation of the true control-flow, along with additional
ideas to improve the precision and efficiency of the encoding. The results
of the encodings are then compared to those of a traditional implementa-
tion on several example programs. This approach is competitive in some
instances with hand-optimized implementations. Finally, the paper con-
cludes with a discussion of the implications of these results and work
that can build upon them.

1 Introduction

A control-flow analysis determines the control-flow of a program. This is a dif-
ficult problem in higher order languages, because data-flow affects control-flow
and control-flow affects data-flow. To address this issue, much work has been
done. The first major effort was k-CFA as created by Shivers [8]. It is a family of
algorithms where the chosen value of k determines the precision of the analysis.
A higher value of k gives greater precision but at the cost of a greater runtime.
When k = 0, the algorithm, more commonly known as 0CFA, has been shown
to be cubic [9]. For k ≥ 1, it has been shown that the algorithm is complete for
EXPTIME [10].

We present an alternative approach to the problem by encoding a control-flow
analysis into SAT. The results are more similar to 0CFA than k-CFA as SAT is
a NP-hard problem, while k-CFA is EXPTIME-hard. Similar work that took the
idea of encoding k-CFA into another problem for performance reasons was done
by Prabhu et al. [7]. They run the analysis on a GPU by encoding the problem
into matrix operations. Another work that will feel similar to the work presented
in this paper is constraint based 0CFA analysis as summarized by Nielson [6].
They formulate 0CFA using constraints on sets and then provide an algorithm
for solving these constraints. This work differs in that the constraints are not
not encoded using matrices or sets, but propositional logic.

1.1 Motivation

Many problems are readily encoded into SAT and even though satisfiability is
NP-complete, fast implementations are available. Every year there is considerable

J. McCarthy (Ed.): TFP 2013, LNCS 8322, pp. 125–133, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

126 S. Lyde and M. Might

work being done to create efficient SAT solvers A CFA implementation based on
satisfiability could benefit directly from that work.

1.2 Accomplishments

This work attempts to leverage the power of SAT solvers to answer questions
regarding control-flow. It presents an encoding and compares its results to two
traditional 0CFA implementations.

2 Preliminaries

In order to understand this work, you will need a passing understanding of
continuation-passing style (CPS) lambda calculus and k-CFA. Brief descriptions
of both will be given. The original formulation of k-CFA operates on CPS lambda
calculus and this work operates on the same language.

CPS is similar to the untyped lambda calculus but with additional constraints:
functions never return, all calls are tail calls; where a function would normally
return, the current continuation is invoked on the return value; and when calling
a function, the caller must supply a continuation procedure. There are three
types of terms: applications, anonymous functions, and variables. The grammar
for CPS lambda calculus follows.

call ∈ Call ::= (f e . . .)

f, e ∈ Exp = Var+ Lam

v ∈ Var is a set of identifiers

lam ∈ Lam ::= (λ (v . . .) call)

The abstract state space and the abstract semantics of k-CFA reformulated as
an operational semantics are easily accessible [3]. The idea is to take an abstract
machine and abstract it by making the number of addresses finite. Successor
states are then generated, starting at the initial state of the program, until
all the states have been visited. Because the number of addresses is finite the
abstract state space is finite and the exploration will terminate.

3 Encodings

This section describes the devised encoding scheme. Here is a simple program
we will work with in describing the encodings. In the following explanation, each
lambda term will be identified by its label.

((lambda1 (x)

((lambda2 (y)

(y (lambda3 (z) (x z)))) x))

(lambda4 (a) (a a)))

Control-Flow Analysis with SAT Solvers 127

For the encoding, we introduce a variable for every variable lambda pair in the
program. The variable will be true if the lambda flows to the variable, and false
if it doesn’t. We will assume that the program has been alphatised, meaning
that each variable is only bound by a single lambda. In the example we have
four variables and four lambda terms, resulting in sixteen variables. Lambdas
use their label as their subscript.

λ1 λ2 λ3 λ4

a a1 a2 a3 a4
x x1 x2 x3 x4

y y1 y2 y3 y4
z z1 z2 z3 z4

To generate the clauses of our encoding we look at each point where bind-
ing occurs in lambda calculus, at application sites. From the grammar of CPS
lambda calculus we can see that there are four cases which need to be considered.
The function and the arguments at an application can either be a lambda term
or a variable.

Case 1: Lambda Lambda The first case to consider is the simplest, when
there is a lambda term in both function and argument position. The top level
application of the sample program is an example of this.

((lambda1 (x) call) (lambda4 (a) (a a)))

We know that the lambda in argument position flows to the parameter of the
lambda in function position. For this call site, we would add the clause x4.

Case 2: Lambda Variable The second case to consider is when there is still
a lambda in function position but a variable in argument position. Observe the
following call site from the example.

((lambda2 (y) call) x)

If we know a lambda flows to x, then we know that it must flow to y. We must
assume that any lambda can flow to x, so we must create a clause for each
lambda. This results in the following clauses: x1 → y1, x2 → y2, x3 → y3,
x4 → y4.

Case 3: Variable Lambda The third case to consider is having a variable in
function position and a lambda term in argument position. Observe the following
call site from the example.

(y (lambda3 (z) call))

We must assume that any variable can flow to y. Thus we need to create a
clause for each lambda in the program. We infer that if a lambda term flows to
y, then λ3 will flow to the parameter of that lambda. This results in the following
clauses: y1 → x3, y2 → y3, y3 → z3, y4 → a3.

128 S. Lyde and M. Might

Case 4: Variable Variable The most complicated case is when we have a
variable in both function and argument position. Observe the following call site
from the example program.

(x z)

We must assume that any lambda can flow to x and any lambda can flow to z.
If we know that two flows are true for x and z, we can infer a third flow. For
example, if we know λ2 flows to x and λ4 flows to z, we can infer that λ4 flows
to y, the parameter of λ2. Thus we create the clause x2 ∧ z4 → y4. Since there
are four lambda terms, there are 16 total such clauses that need to be generated.

4 Additional Encoding Details

The generated clauses described above are necessary but not sufficient. The
problem is that every variable can be set to true and the formula is still satisfied.
What we really want is the lowest possible number of flows set to true that still
satisfy all the generated clauses. However, the SAT solver is free to give any
satisfying solution. In the end, we have constraints that will never give us false
negatives, but we need constraints that will ideally never give us false positives,
or at least limit them. Note that in an anlysis, having false positives is still
sound; only in having false negatives does the analysis become unsound.

4.1 Additional Encodings

For each case we will show additional clauses that can be added which will limit
the number of false positives.

Case 1: Lambda Lambda Since the program is alphatised we not only know
that the given flow must be true, but we know that all other flows to that variable
must be false. For the above example we add the clauses: ¬x1, ¬x2, ¬x3.

Case 2: Lambda Variable In the description found above, we said you could
infer an additional flow if a given lambda flows to the variable in argument
position. But more can be inferred since the program is alphatised. The clauses
are not just implications, because the call site is the only place where the binding
of the variable can occur. Thus we can change the clauses to equivalences: x1 ↔
y1, x2 ↔ y2, x3 ↔ y3, x4 ↔ y4.

Case 3: Variable Lambda

Unlike the previous case, we cannot turn the inference described in the previous
section for case 3 into an equivalence. The issue is that because the lambda
which flows to the variable in function position can flow to other application
sites where there is a variable in function position, this is not the only place
where a binding can occur. However, we can infer the disjoin of all the call sites
where the binding could occur. An example will be be given below.

Control-Flow Analysis with SAT Solvers 129

Case 4: Variable Variable

Much like the previous case, we cannot infer equivalences because bindings can
happen at any call site where there is variable in function position. However, like
the above case, additional clauses can still be created; we can infer the disjoin
of all the call sites where the binding could occur. For example, if λ3 flows to z
it would mean that either λ3 flows to y, λ3 flows to a, or that λ3 flows to x and
λ3 flows to z. Thus we would add the following clause: z3 → y3 ∨ a3 ∨ (x3 ∧ z3).

4.2 Enhancements

The encodings presented above give way to some enhancements that can be used
to make the encoding more efficient, by generating less clauses.

– Not all lambdas can flow. Lambdas that appear in function position cannot
be bound to variables, thus we do not need to create a variable for pairs
involving lambdas in function position.

– Not all lambdas are compatible. Although the example shows lambda terms
with only one parameter, the lambda terms can have any number of param-
eters. When there is a variable in function position, only lambdas with the
same number of parameters as there are arguments at the application site
need to be considered.

– Some clauses will be trivially true. While iterating through every lambda,
when faced with a variable at an application site, some of the implications
will involve the same pairs on both sides, thus they are trivially true and
can be omitted.

In the implementation, the first two enhancements were used, but the third
was omitted.

4.3 Complexity

In the described encoding, many clauses can be generated. However, it is bounded
by a polynomial of the size of the program. The worst case to consider is when you
have a variable in both function and argument position. You must consider each
lambda flowing to each variable. If there are n terms in the program, there are
at most n call sites and n lambda terms. Thus the number of generated clauses
will be bound by n3. This seems logical as one of the simplest formulations of
0CFA is “nearly” cubic: O(n3/ logn) [2].

5 Implementation and Evaluation

We implemented the encoding in Scala using the back end of the analyzer written
by Might et al. for parsing and preprocess transformations [5]. We compared
its runtimes to those of that same analyzer, which closely follows the formal
semantics, as well as a fast Racket implementation, which employs abstract

130 S. Lyde and M. Might

Church encodings and binary CPS lambda calculus [7]. MiniSat was used for
solving the constructed encodings. All experiments were run on a 2.7 GHz Intel
Core i7 on Ubuntu.

The first experiments were run on synthetic programs, which in a constructive
complexity proof are shown to be the worst case for k-CFA when k ≥ 1 and
difficult for 0CFA [9,10]. The results can be found in the Table 1. The first
column is the number of terms in the program. The second column is the runtime
of the optimized Racket implementation. The Scala column is the runtime of the
traditional Scala implementation. The SAT column is the time taken to encode
and solve the problem using SAT. This column is broken down into its two
components in the last two columns. The Encode column is the time taken to
create the encoding. The Solve column is the time taken by MiniSat to solve the
encoding.

Table 1. Runtime comparison of a control-flow analysis using a fast Racket implemen-
tation, a Scala implementation and using MiniSAT

Terms Racket Scala SAT Encode Solve

37 0.008s 1.059s 0.730s 0.725s 0.005s
63 0.016s 1.056s 0.796s 0.792s 0.004s
115 0.046s 1.454s 1.025s 1.017s 0.008s
219 0.222s 2.338s 1.418s 1.387s 0.031s
427 1.374s 5.337s 2.759s 2.642s 0.117s
843 8.396s 44.873s 11.337s 10.481s 0.856s
1675 49.029s 12m34.301s 1m15.984s 1m9.222s 6.762s
3339 4m46.726s >6h 8m50.671s 8m43.103s 7.568s

We also looked into the sensitivity of the encoding to different SAT solvers,
using SAT solvers that were some of the best performers from the 2011 inter-
national SAT competition. See Table 2. We report the time taken to solve the
encoding, the number of flows that agree with the Scala implementation and the
number of flows that disagree. When there is a disagreement, the encoding says
that the flow does occur but the traditional 0CFA reports that it does not.

From the results in Table 1, we see encoding the problem and solving it with
MiniSat takes about the same amount of time as the fast Racket implementation.
However, this is not always the case. Experiments were also run on more tradi-
tional benchmarks. To run these, the language on which the encoding operates
had to be enriched. Additional constructs were added (e.g., if and set!) as well
as support for Scheme primitives. The fast Racket implementation could not be
run on these examples without using Church encodings, as it only supports pure
binary CPS lambda calculus. See Table 3.

The first two benchmarks test common functional patterns; sat is a simple
SAT solver; rsa is a RSA implementation; prime is a Solovay-Strassen primality
tester; scm2java is a Scheme to Java compiler; interp is a Scheme interpreter.

These benchmarks provide a stark contrast to the previous examples in perfor-
mance. Further investigation is needed to find the source of this large difference

Control-Flow Analysis with SAT Solvers 131

Table 2. Runtime and precision results from some of the best performers from the
2011 international SAT competitions

Solver Results n = 37 n = 63 n = 155 n = 219 n = 237 n = 843 n = 1675

minisat

Time 0.005s 0.007s 0.012s 0.039s 0.133s 0.848s 6.714s
Agree 96 280 936 3400 12936 50440 199176

Disagree 0 0 0 0 0 0 0

3S

Time 2.548s 2.570s 2.554s 2.777s 5.952s 1m15.335s >2m
Agree 96 280 936 3400 12936 50440 -

Disagree 0 0 0 0 0 0 -

cirminisat

Time 0.004s 0.005s 0.009s 0.031s 0.152s 1.312s 11.299s
Agree 96 280 936 3400 12936 50440 199176

Disagree 0 0 0 0 0 0 0

clasp

Time 0.004s 0.005s 0.010s 0.029s 0.152s 1.055s 7.959s
Agree 54 150 486 1734 6534 25350 165378

Disagree 42 130 450 1666 6402 25090 33798

cryptominisat //

Time 0.007s 0.011s 0.026s 0.086s 0.413s 3.598s >2m
Agree 96 280 936 3400 12936 50440 -

Disagree 0 0 0 0 0 0 -

csls //

Time 0.006s 0.006s 0.034s 0.579s 32.656s >2m >2m
Agree 60 216 711 2754 12936 - -

Disagree 36 64 225 646 0 - -

eagleup

Time 0.004s 0.006s 0.017s 0.063s 0.541s 18.500s >2m
Agree 70 192 674 2566 9479 36639 -

Disagree 26 88 262 834 3457 13801 -

glucose

Time 0.011s 0.012s 0.020s 0.050s 0.198s 1.415s 4.805s
Agree 96 280 936 3400 12936 50440 199176

Disagree 0 0 0 0 0 0 0

glueminisat

Time 0.004s 0.005s 0.011s 0.036s 0.164s 1.363s 11.640s
Agree 96 280 936 3400 12936 50440 199176

Disagree 0 0 0 0 0 0 0

lingeling

Time 0.006s 0.010s 0.024s 0.078s 0.454s 1.980s 10.365s
Agree 96 280 936 3400 12936 50440 199176

Disagree 0 0 0 0 0 0 0

march rw

Time 0.007s 0.010s 0.033s 0.466s 18.936s >2m >2m
Agree 54 150 486 1734 6534 - -

Disagree 42 130 450 1666 6402 - -

plingeling

Time 0.009s 0.012s 0.028s 0.096s 0.477s 2.851s 19.695s
Agree 96 280 936 3400 12936 50440 199176

Disagree 0 0 0 0 0 0 0

plingeling //

Time 0.010s 0.017s 0.037s 0.083s 0.465s 3.551s 30.653s
Agree 96 280 574 1992 7813 30463 120112

Disagree 0 0 362 1408 5123 19977 79064

ppfolio

Time 0.006s 0.009s 0.010s 0.051s 0.341s 2.453s 14.588s
Agree 78 280 936 3400 12936 50440 165378

Disagree 18 0 0 0 0 0 33798

ppfolio //

Time 0.007s 0.007s 0.012s 0.028s 0.178s 0.989s 7.409s
Agree 92 280 936 3400 12936 50440 165378

Disagree 4 0 0 0 0 0 33798

qutersat

Time 0.035s 0.042s 0.061s 0.134s 0.638s 4.786s 41.886s
Agree 96 280 936 3400 12936 50440 199176

Disagree 0 0 0 0 0 0 0

sattime2011

Time 0.005s 0.008s 0.021s 0.093s 0.796s 10.857s 0.020s
Agree 83 230 805 2919 11275 44001 -

Disagree 13 50 131 481 1661 6439 -

sparrow2011

Time 0.013s 0.007s 0.029s 0.100s 3.034s >2m >2m
Agree 72 266 936 3400 10846 - -

Disagree 24 14 0 0 2090 - -

132 S. Lyde and M. Might

Table 3. Runtime comparison between a traditional abstract interpreter and deter-
mining the control-flow usining MiniSAT

Program Terms Scala SAT Encode Solve

eta 79 0.879s 0.805s 0.801s 0.004s
map 182 0.879s 0.805s 0.801s 0.004s
sat 250 1.311s 1.216s 1.198s 0.018s
rsa 609 1.805s 1.427s 1.396s 0.031s

prime 891 2.258s 4.584s 4.269s 0.315s
scm2java 2505 3.845s 1m6.550s 1m0.090s 6.460s
interp 4484 6.314s 5m6.519s 4m26.078s 40.441s

in performance. One possible explanation is that the Scheme primitives are not
well modelled. Also, the traditional small step abstract interpreter is able to use
widening to converge to the minimum fixed point faster. In addition, since its
analysis is directed by the syntax of the program more closely, it can explore
less spurious flows.

For the first set of benchmarks, the results returned by the encoding are ex-
actly the same as those provided by the traditional implementations. However,
running #SAT on the encodings, revealed that there are multiple valid interpre-
tations. Thus the encoding does not exactly encode traditional 0CFA, which has
a unique minimum fixed point.

5.1 Alternative Approach Using BDDs

Another approach attempted was to use a binary decision diagram (BDD) in-
stead of a SAT solver to solve the constraints. The constraints are encoded in
the same way, but the approach has the benefit that the minimum prime im-
plicant is readily available from the structure of the BDD. The minimum prime
implicant provides an equivalent solution as 0CFA. However, in practice, using
a BDD requires large amounts of memory and time for even simple examples.

5.2 Alternative Approach Using MaxSAT

Another approach that could be promising is to use a MaxSAT solver instead of
a traditional SAT solver. The additional clauses from Section 4 could be elided
and only the clauses from Section 3 would be needed. The partial maximum
satisfiability problem has two types of clauses, hard and soft. The hard clauses
must be satisfied, while the soft clauses can be relaxed. The solver finds the
assignment with maximum number of soft clauses satisfied. All the clauses from
Section 3 would be hard clauses and then for each variable, its negation would
be added as a soft clause. A satisfying assignment from this formulation would
be equivalent to 0CFA.

Control-Flow Analysis with SAT Solvers 133

6 Conclusion

This work has presented an encoding for control-flow analysis of CPS lambda
calculus. It has shown that in some cases, the approach can be as fast as a
highly optimized solution. While the soundness of the encoding was not proven,
empirical results showed it to be accurate.

This work also provides a solid basis for additional work. Many avenues exist
which can build upon it. Better encoding schemes can be developed, which pos-
sibly could be even more precise than 0CFA, given the extra power provided by
SAT solvers being able to solve NP-complete problems. Van Horn and Mairson
give a reduction from SAT to k-CFA, effectively showing how to do SAT solving
with k > 1 CFA, which merits further investigation [9]. Also, while this work
operates on CPS lambda calculus, the encoding could easily be adapted to work
on a more direct style language, such as ANF lambda calculus [1], as analyzed
by Might and Prabhu [4].

This work was supported by the DARPA programs APAC and CRASH.

References

1. Flanagan, C., Sabry, A., Duba, B.F., Felleisen, M.: The essence of compiling with
continuations. In: PLDI 1993: Proceedings of the ACM SIGPLAN 1993 Conference
on Programming Language Design and Implementation, pp. 237–247. ACM, New
York (1993)

2. Midtgaard, J., Van Horn, D.: Subcubic control flow analysis algorithms. Tech. rep.,
Roskilde Unversitet (2009)

3. Might, M.: Environment Analysis of Higher-Order Languages. PhD thesis, Georgia
Institute of Technology (June 2007)

4. Might, M., Prabhu, T.: Interprocedural dependence analysis of higher-order pro-
grams via stack reachability. In: Proceedings of the 2009 Workshop on Scheme and
Functional Programming, Boston, Massachussetts, USA (2009)

5. Might, M., Smaragdakis, Y., Van Horn, D.: Resolving and exploiting the k-CFA
paradox: Illuminating functional vs. object-oriented program analysis. In: PLDI
2010: Proceedings of the 2010 ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI 2010, pp. 305–315. ACM Press (2010)

6. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis, cor-
rected ed. Springer (December 2004)

7. Prabhu, T., Ramalingam, S., Might, M., Hall, M.: EigenCFA: Accelerating flow
analysis with GPUs. In: Proceedings of the 38th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, vol. 38, pp. 511–522. ACM
Press, New York (2011)

8. Shivers, O.G.: Control-Flow Analysis of Higher-Order Languages. PhD thesis,
Carnegie Mellon University, Pittsburgh, PA, USA (1991)

9. Van Horn, D., Mairson, H.G.: Relating complexity and precision in control flow
analysis. In: ICFP 2007: Proceedings of the 12th ACM SIGPLAN International
Conference on Functional Programming, pp. 85–96. ACM, New York (2007)

10. Van Horn, D., Mairson, H.G.: Deciding k-CFA is complete for EXPTIME. In:
ICFP 2008: Proceedings of the 13th ACM SIGPLAN International Conference on
Functional Programming, pp. 275–282. ACM Press (2008)

A Survey of Polyvariance

in Abstract Interpretations

Thomas Gilray and Matthew Might

University of Utah
tgilray@cs.utah.edu, might@cs.utah.edu

Abstract. Abstract interpretation is an efficient means for approximat-
ing program behaviors before run-time. It can be used as the basis for
a number of different useful techniques in static analysis more broadly,
and can thus in-turn be used to prove properties needed for security or
optimization. Polyvariance represents a way of obtaining higher precision
in an abstract interpretation by producing multiple abstract states for
each function or lexical point of interest in the program. This paper ex-
plores the role of polyvariance in these analyses and how it is manifested,
unifying the disparate presentations in the literature.

1 Abstract Interpretation

An abstract interpretation is a non-deterministic interpretation of a program
that determines abstract flow-sets, each representing all possible values a given
expression could refer to during any particular concrete execution. The result is
a finite abstract state-space which conservatively approximates a usually infinite
number of different concrete state-spaces.

All valid paths in the program are guaranteed to be represented in a sound
analysis. Above and beyond these genuine executions, imprecision is manifested
as spurious traces which are indicated by the analysis but which do not exist in
any concrete execution.

1.1 CPS λ-Calculus

For our survey of polyvariance, we will be using a simple language with familiar
abstract semantics at each step to stay consistent. Call-sites are marked with a
unique label which refers to its containing lambda. Consider the CPS λ-calculus:

call ∈ Call ::= (ae ae . . .)l | (halt)
ae ∈ AE ::= x | lam

lam ∈ Lam ::= (λ (x . . .) call)

x ∈ Var ::= set of program variables

l ∈ Label ::= set of unique labels

The grammar structurally distinguishes between atomic expressions and call-
sites to permit only calls in tail position. This constrains the language to a

J. McCarthy (Ed.): TFP 2013, LNCS 8322, pp. 134–148, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Survey of Polyvariance 135

continuation-passing-style (CPS) form. Abstract interpretation can be imple-
mented for any language so long as we have a concrete (in our case, operational)
semantics to abstract. CPS is used here (as it was in its original formulation)
purely for the purposes of simplifying our discussion. We can compactly represent
its semantics using a CES-style machine:

ς ∈ State = Call× Env × Store × T ime

ρ ∈ Env = Var ⇀ Addr

σ ∈ Store = Addr ⇀ V alue

t ∈ T ime = Label∗

a ∈ Addr = Var × T ime

v ∈ V alue = Lam× Env

and a single small-step transition:

〈(λ (x1 . . . xj) call), ρ′〉 = A(aef , ρ, σ)

((aef ae1 . . . aej)l, ρ, σ, t) ⇒ (call, ρ′′, σ′, t′)

where ρ′′ = ρ′[xi �→ ai]

σ′ = σ[ai �→ A(aei, ρ, σ)]

ai = (xi, t′)
t′ = l : t

where A is a concrete atomic-expression evaluator:

A(x, ρ, σ) = σ(ρ(x))

A(lam, ρ, σ) = 〈lam, ρ〉

Each state (machine configuration) contains a call-site, a binding environment,
a value-store, and a timestamp. Each state transitions to a new state when
a function can be invoked at the current call-site, or fails to transition and
terminates when a (halt) is reached. The atomic-expression in call-position aef
is evaluated to a closure and evaluation transitions to its body, another call-
site. The closure’s binding environment is augmented with addresses for each
function-argument, and the store maps each of these to the value being bound.
Each address is guaranteed to be unique because it is being paired with the new
timestamp t′. t′ is constructed by prefixing the current timestamp with a label
for the current call-site. Because this call-history increases in length with each
transition, no two values will share a binding.

1.2 0-CFA

0-CFA is the monovariant form of the k-CFA algorithm as presented in Shivers’
seminal paper [25] [16]. We use an abstract version of our concrete semantics to

136 T. Gilray and M. Might

compute a conservative approximation of program behavior. In order to make
this state-space finite, we need only to bound the size of our timestamp or call-
history. k-CFA uses a k-length approximation of call-history, and 0-CFA merges
all histories together.

As a repercussion of bounding T̂ ime, multiple values will now share a single
address. Our abstract store maps addresses to flow-sets: sets of abstract values.
All possible values for a particular variable now share the same address:

ς̂ ∈ Ŝtate = Call× Ênv × Ŝtore × T̂ ime

ρ̂ ∈ Ênv = Var ⇀ Âddr

σ̂ ∈ Ŝtore = Âddr ⇀ P(V̂ alue)

t̂ ∈ T̂ ime = Label0

â ∈ Âddr = Var × T̂ ime

v̂ ∈ V̂ alue = Lam× Ênv

The abstract transition function is non-deterministic, as multiple closures can
be referenced by a single variable:

〈(λ (x1 . . . xj) call), ρ̂′〉 ∈ Â(aef , ρ̂, σ̂)

((aef ae1 . . . aej)l, ρ̂, σ̂, ()) ≈> (call, ρ̂′′, σ̂′, ())

where ρ̂′′ = ρ̂′[xi �→ âi]

σ̂′ = σ̂ � [âi �→ Â(aei, ρ̂, σ̂)]

âi = (xi, ())

The abstract atomic-exppression evaluator returns flow-sets:

Â(x, ρ̂, σ̂) = σ̂(ρ̂(x))

Â(lam, ρ̂, σ̂) = {〈lam, ρ̂〉}

When discarding typographical differences, the two semantics are almost identi-
cal. There are essentially only two fundamental changes we’ve made to achieve a
finite approximation: we use a finite set of abstract addresses to bound the size
of our store, and introduce merging between values at each address. If we were
including other basic types, we could also replace them with a finite abstraction.
An unbounded set of numbers might become just {num} to differentiate from
other basic types, or perhaps elaborated slightly to {+, 0,−} in order to perform
a sign analysis.

In our case, the only types involved are closures, which thanks to our abstrac-
tion for addresses, are now drawn from a finite set. These however, are now being
merged together at bindings in our abstract store. Where before we indicated a
strong-update of our concrete store, we now use function-join to indicate merg-
ing sets of values together via set-union. In this way, all values which have have

Survey of Polyvariance 137

ever been bound to an address are kept. In 0-CFA there is a single address for
each program-variable. If some argument z is bound to 3 different closures in our
analysis, all 3 need to be represented by the same address z upon completion
[29].

1.3 Soundness

Soundness of an abstract interpretation entails showing that all possible concrete
executions are represented by the final analysis in general, for all inputs. Its

embarrassing imprecision notwithstanding, λx.V̂ alue is an example of a trivially
sound store because it does indeed represent all possible flows in any concrete
execution of any program.

Showing that a more precise analysis is sound in general involves introducing
a bit more machinery we won’t bother with fully, and so we’ll not attempt to
do more than give a very rough sketch of the proof here. A proof of soundness
relies on defining the relationship between the concrete and abstract domains.
This relationship is a pair of functions for abstraction and concretization known
as a Galois Connection. Previous work has shown the use of this model in both
proving an existing analysis sound, and in producing analyses which are correct
by construction. Methods have been developed for automatically constructing
abstract approximations of concrete machines through the composition of these
Galois Connections [29] [15] [12].

To specify the correspondence between our abstract semantics and our con-
crete semantics, we would need to provide at least an abstraction function α
which maps concrete states to their most precise abstract representative:

α : State → Ŝtate

With this specification we can prove a statement for each concrete transi-
tion ς ⇒ ς ′, there exists an abstract transition ς̂ ≈> ς̂ ′ such that α(ς) � ς̂
and α(ς ′) � ς̂ ′ which shows that simulation is preserved across transition. The
soundness proof for k-CFA has been published for both a denotational [25] and
an operational [16] style of semantics.

1.4 Complexity

Termination is guaranteed because the search is being performed over a finite
state-space.

0-CFA is known specifically to be of worst-case cubic complexity. To determine
whether or not an abstract closure flows to a variable, requires examining at most
each call site in the program O(n). There are then at most O(n) ∗O(n) of these
possible flows because the number of variables is bounded by the size of the
program, as is the number of lambdas [16]. The number of abstract closures
in the monovariant analysis is the same as the number of lambdas since each
abstract binding environment is fixed by the free variables in its function which
can be determined lexically.

138 T. Gilray and M. Might

VanHorn and Mairson reduce the circuit value problem to an instance of the
0-CFA control flow problem, proving it to be PTIME-hard [27].

2 Polyvariance

In 0-CFA, each syntactic callsite is represented by a single abstract state. Poly-
variance, in general terms, is the degree to which an analysis breaks up these
syntactic points in the program and represents them with multiple differentiated
abstract states.

2.1 k-CFA

k-CFA is the broader heirarchy of algorithms to which 0-CFA belongs. All forms
of this algorithm where k ≥ 1 represent increasingly polyvariant analyses. k-CFA
differentiates states with the addition of an abstract history, or calling-context,
referred to in its original presentation as an “abstract contour” [25].

The semantics below introduce a k-length calling-context t̂ at each state which
serves to differentiate like variables with unlike calling histories. Each calling-
context is a tuple of call-site labels which represents the abstract history of calls
that lead to a given state. The state’s successors then get a calling-context which
has lost its oldest callsite, and has been appended with the label for the most re-
cent callsite. This new history is then included in the abstract addresses for these
new states, differentiating their flow-sets and giving our binding environment a
purpose for the first time.

ς̂ ∈ Ŝtate = Call× Ênv × Ŝtore × T̂ ime

ρ̂ ∈ Ênv = Var ⇀ Âddr

σ̂ ∈ Ŝtore = Âddr ⇀ P(V̂ alue)

â ∈ Âddr = Var × T̂ ime

v̂ ∈ V̂ alue = Lam× Ênv

t̂ ∈ T̂ ime = Labelk

〈(λ (x1 . . . xj) call), ρ̂
′〉 ∈ Â(aef , ρ̂, σ̂) t̂ = (l1 . . . lk)

((aef ae1 . . . aej)l, ρ̂, σ̂, t̂) ≈> (call, ρ̂′′, σ̂′, t̂′)

where ρ̂′′ = ρ̂′[xi �→ âi]

σ̂′ = σ̂ � [âi �→ Â(aei, ρ̂, σ̂)]

âi = (xi, t̂′)

t̂′ = (l l1 . . . lk−1)

A state (calll9, ρ̂, σ̂, (l2 l5 l6)) would mean that l9 could be reached by a call
from l2, when reached after a call from l5 and so-forth. A calling-context like

Survey of Polyvariance 139

this if found in an address (x, (l2 l5 l6)) would indicate that the values stored at
this address were bound to x following the above history. Values in k-CFA are
only merged once the fixed amount of call-history has been exceeded.

Consider an example where there are two calls of indirection in front of a
function:

(λx. (λy. (λz. . . .) y) x)

Here, if x is bound to two different values in a 2-CFA analysis, by the time they
reach z, the original context for the call to λx will have been lost and the values
will be merged. If multiple values reach a recursive function, no matter how
long a context is used, the values will eventually merge assuming the analysis
cannot determine a bound on the calling depth before the context runs out.
Using sufficiently precise abstract values to make this possible in the general
case would tend to make the analysis impractical to compute.

2.2 Exponential Complexity for k ≥ 1

The use of these call-string histories pays dividends where unlike call-sites pro-
vide a lambda with unlike abstract values. Where the history used is sufficient to
capture these differences, they will be kept apart in the store, avoiding the usual
merging and loss of precision. The major downside of k-CFA for k ≥ 1 is that
its precision against run-time trade-off comes at too great a price: polyvariant
k-CFA is intractible for real world inputs.

Though long suspected, the proof that k-CFA is EXPTIME-complete came
only recently in another work by Van Horn and Mairson [27].

3 Object Sensitivity

Object Sensitivity is an alternative notion of context for object-oriented lan-
guages which can be used in place of call-string histories or in conjunction
with them [21]. There are various presentations of this strategy with sub-
tle differences. The flavor which best fulfills the original intentions of the
technique, and which has appeared most effective in practice is k-full-object-
sensitivity by Smaragdakis, Bravenboer, and Lhotak [26]. This method differ-
entiates argument-bindings by the allocation-history of a member-function’s
receiving object. This requires syntactic allocation-points to be stored inside
the abstract representation of an object upon creation, so they can be retrieved
later when one of its methods is invoked. When k = 0, object-sensitivity is
equivalent to 0-CFA.

Consider a 1-full-object-sensitive analysis of Java. The abstract value for an
object will store its allocation-point internally and when a method is invoked on
the object, its bindings are made specific to this saved context. Take for example:

Object obj = new Object();l3

The abstract value which flows into obj contains an allocation-history (l3). When
a method obj.m(. . .) is invoked, its bindings are unique to this program-point.

140 T. Gilray and M. Might

To extend this strategy to deeper levels of context sensitivity, we include
allocation-history from the object which performs the allocation. If we instead
wish to perform a 3-full-object-sensitive analysis on the same program, our ad-
dtional context is drawn from the variable this at the allocation-site. For exam-
ple, if this contains an allocation-history (l8 l4 l9), the variable obj is represented
by an object with a timestamp (l3 l8 l4).

3.1 Closure Sensitivity

We cannot easily modify our previous analysis to faithfully represent true object-
sensitivity because the CPS λ-calculus does not include objects or classes. In-
stead we present a purely functional analog of this technique we call closure-
sensitivity. Just as object instances are the building blocks of object-oriented
programs, closures are the building blocks of functional programs. Objects can
be implemented as a closure which accepts an additional parameter for selecting
the method to invoke. Likewise, flat-closures can be implemented as an object
with a single method. The allocation-point of a function is thus the syntactic
position of the lambda, its point of closure-creation.

With this in view, we can produce a context-sensitve analysis of our language
where abstract closures directly contain their allocation history.

v̂ ∈ V̂ alue = Lam× Ênv × T̂ ime

Instead of appending a label for the current call-site to our timestamp, an ab-
stract transition simply pulls the allocation-context out of our closure and uses
this for new bindings.

〈(λ (x1 . . . xj) call), ρ̂′, t̂′〉 ∈ Â(aef , ρ̂, σ̂, t̂)

((aef ae1 . . . aej)l, ρ̂, σ̂, t̂) ≈> (call, ρ̂′′, σ̂′, t̂′)

where ρ̂′′ = ρ̂′[xi �→ âi]

σ̂′ = σ̂ � [âi �→ Â(aei, ρ̂, σ̂, t̂)]

âi = (xi, t̂′)

When a lambda is atomically evaluated, this allocation-point is combined with
the current context and stored inside the abstract closure. This requires a slight
modification so the current context t̂ is available to the atomic-expression eval-
uator:

Â(x, ρ̂, σ̂, t̂) = σ̂(ρ̂(x))

Â(laml, ρ̂, σ̂, (l1 . . . lk)) = {〈lam, ρ̂, (l l1 . . . lk−1)〉}

This analysis has the same fundamental complexity as k-CFA, but where call-
sensitivity causes merging, closure-sensitivity might not and vice versa. As the
basic technique has proved more effective than k-CFA in practice for languages
like Java [26], our analog may have something to offer in the functional realm.

Survey of Polyvariance 141

4 The Cartesian Product Algorithm

The Cartesian Product Algorithm (CPA) was originally introduced as an en-
hancement to a type inference algorithm which itself can be viewed as a spe-
cialization of the abstract interpretation concept: one where dynamic program
types are used as constituents of the abstract value domain. We will present the
source of imprecision that the original formulation attempts to address, gener-
alize the solution as a form of polyvariance in abstract interpretations (as was
suggested in publications which followed), and discuss CPA’s complexity and
precision relative to k-CFA.

4.1 The Problem / Original Formulation

In an abstract interpretation using types for values, where polymorphism is
non-existent each flow-set could contain a maximum of one value each, and the
algorithm reduces to a straightforward type-inference. Therefore, the authors of
CPA introduce it as an enhancement to a basic flow-set based type-inference
algorithm where polymorphic functions introduce merging and thus spurious
concrete variants. They turn a single polymorphic call in the analysis into mul-
tiple monomorphic calls, preserving the precise values across function calls, and
their inter-argument relationships.

The basic algorithm that CPA enhances works similarly to an abstract inter-
pretation over types. It also assigns a flow-set of dynamic types for each variable
in the program, but it then establishes constraints based on the program text,
and propagates values until all these constraints have been met. The primary
method for overcoming this merging, is introduced as the p-level expansion al-
gorithm of Palsberg and Schwartzbach – a kind of type-inference analog to call-
string histories in k-CFA, where the use of p parallels that of k. This is shown to
be insufficient however, as the authors of CPA give a case of merging which can-
not be overcome by any sized p. Their motivating example is the polymorphic
max function:

max(a, b) = if a > b then a else b

Here, the only constraint for an input to max is that it support comparison,
so a call max(“abc”, “xyz”) makes as much sense as a call max(3, 5). However,
if both these calls are made with a sufficient amount of obfuscating call-history
behind them, merging will cause the flow-sets for both a and b to each include
both string and int. This is imprecise as it implies that a call max(int, string)
is possible when it is not.

The solution that CPA proposes is to replace flow-sets of per-argument types,
with flow-sets of per-function tuples of types. In such an analysis, the func-
tion max itself would be typed {(int, int), (string, string)} preserving inter-
argument patterns and eliminating spurious concrete calls like (int, string) [1].

142 T. Gilray and M. Might

4.2 Abstract Contour Formulation

In essence, this change makes flow-sets for each argument specific to the entire
tuple of types received in a call. This suggests an abstract contour representation
which pairs variables with tuples of abstract values in the store, instead of pairing
them with call histories as in k-CFA [17].

Ŝtore = Âddr ⇀ V̂ alue

T̂ ime = V̂ alue
∗

This would seem to maintain perfect precision; exact values would be known
for any given address. The problem with this approach is that it introduces
recursion into our state-space making it again unbounded. Closures contain en-
vironments containing contours made of closures. Our analysis again becomes a
concrete interpreter using arbitrarily precise values to differentiate one another
in the store.

To faithfully extend this algorithm to a higher-order language, in the spirit of
its original presentation, we reduce abstract values to their types. An abstract
value like string could potentially remain as it is, but closures must be limited to
a finite set of types. We’ve chosen to reduce them to only their syntactic lambda,
merely dropping environments, on the assumption that this point in the program
is associated with a single type signature – whether it is known pre-analysis or
not.

Ŝtore = Âddr ⇀ P(V̂ alue)

T̂ ime = P(T̂ ype)∗

T̂ ype = Lam

A helper function can be defined which performs this reduction:

T̂ : P(V̂ alue) → P(T̂ ype)

At each call, a new contour is formed by reducing each of the flow-sets of the
atomically-evaluated function arguments:

〈(λ (x1 . . . xj) call), ρ̂
′〉 ∈ Â(aef , ρ̂, σ̂)

((aef ae1 . . . aej)l, ρ̂, σ̂, t̂) ≈> (call, ρ̂′′, σ̂′, t̂′)

where ρ̂′′ = ρ̂′[xi �→ âi]

σ̂′ = σ̂ � [âi �→ Â(aei, ρ̂, σ̂)]

âi = (xi, t̂′)

t̂′ = (T̂ (Â(ae1, ρ̂, σ̂)) . . . T̂ (Â(aej , ρ̂, σ̂)))

The semantics for a CPA-like abstract interpretation are fundamentally that of

k-CFA with the exception that our abstract contours in T̂ ime are now tuples of

Survey of Polyvariance 143

abstract values. This preserves the exact flows from function to function and the
only merging now possible is exists in the predetermined merging inherent to
our abstract values. Essentially, each abstract address is already specific to the
exact abstract value it points to in the store, thus flows are no longer sets, and
non-determinism can no longer occur at a call-site. Non-determinism would in
practice be reintroduced by the addition of practical language constructs such
as primitive operations on basic values, conditionals/if-statements, etc. Each of
these would need abstract transition rules which produce multiple monomorphic
abstract calls as opposed to making a single call which sends a set of abstract
values.

4.3 Precision and Complexity

It is straightforward to see intuitively that CPA is more precise than k-CFA,
as is discussed in the original publication. For any pre-determined value of k, a
program can be constructed which nests calls passed this call depth and causes
merging. Any such merging, even when completely precise at the level of a par-
ticular argument, can produce spurious inter-argument patterns. CPA on the
other hand differentiates functions directly based on the full tuple of arguments
they receive and obtains perfect precision for a given finite set of abstract values.

That no length call-history can match the precision of CPA has also been
formally demonstrated on an object-oriented language [2]. It is important to note
that k-CFA contains context information which CPA does not and which might
be useful for its own sake. k-CFA may also be more general and amenable to
infinitely wide value domains, while CPA may rely more directly on the finiteness
of the abstract values used to ensure computability.

CPA is of-course, like k-CFA, of exponential complexity, and exceedingly im-
practical for use on sufficiently complex input programs. Somewhat ironically,
where CPA improves precision, it is also fastest, and where CPA is unnecessary
and delivers no improvement over k-CFA, it is enormously inefficient. For a func-
tion like max, one where the types of the arguments should match, CPA might
require as few as one flow per-type; just as with k-CFA, except carries a vast
improvement in precision. For a function where all combinations of arguments
are possible, CPA requires each to be explicitly made, while k-CFA implies them
for equal precision at far greater efficiency.

5 Practical Polyvariance

In contrast to CPA’s attempt to improve on the precision of abstract call-string
histories, attempts have been made to bring a degree of call-string history poly-
variance to an analysis without incurring the full cost of 1-CFA.

5.1 Polymorphic Splitting

Polymorphic Splitting is a compromise between 0-CFA and k-CFA where the
length of the contour used varies on a per-function basis. Lambdas which have

144 T. Gilray and M. Might

been let-bound are analyzed with a contour length 1-greater than that of their
parent expression. In this way, let-bindings can be used as a heuristic for guiding
the length of the contour used within a function during analysis. Because the
number of let forms within-which an expression can be nested is bound by the
program’s size, the maximum length of k is likewise fixed.

In order to give a semantics for polymorphic splitting which will work on our
simple language, make it quickly understandable to the reader, and comparable
to the other analyses discussed here, we imagine our program has been CPS-
converted from a direct-style language with a let-form, and we add a k annotation
to call-sites which indicate their function’s let-depth:

call ∈ CALL ::= (ae . . .)lk

This annotation can then be used to direct the amount of polyvariance used in
our abstract transition:

〈(λ (x1 . . . xj) callk′), ρ̂′〉 ∈ Â(aef , ρ̂, σ̂) t̂ = (l1 . . . lk)

((aef ae1 . . . aej)lk′′ , ρ̂, σ̂, t̂) ≈> (call, ρ̂′′, σ̂′, t̂′)

where ρ̂′′ = ρ̂′[xi �→ âi]

σ̂′ = σ̂ � [âi �→ Â(aei, ρ̂, σ̂)]

âi = (xi, t̂′)

t̂′ = (take (l l1 . . . lk) k
′)

Â(x, ρ̂, σ̂) = σ̂(ρ̂(x))

Â(lam, ρ̂, σ̂) = {〈lam, ρ̂〉}

We have added a subscript k′ to the call-site found in a closure for aef which
determines the length of the contour we’ll use for our new argument bindings.
The function (take lst n) removes all but the first n entries from lst.

This presentation of polymorphic splitting may perhaps introduce a confusion
as to how we know that k′ is not greater than k+1; that there is enough history
for us to use at each transition. This concern is unlikely to arise from looking at
the original semantics. We know a call into a let-bound function is unreachable
above that let form’s body, and since that let form’s body shares the contour
length of its parent expression, it can be at most one less than the contour length
of the let-bound function.

The complexity of polymorphic spitting remains exponential, as it easily de-
volves into doing all the work of a k-CFA analysis in the worst-case, however it
has been empirically shown to be practical for sizable benchmarks. The authors
found its precision comparable to that of a 1-CFA, while its running times were
closer to that of 0-CFA. That it even beat the running time for 0-CFA in some
test-cases can be attributed to its higher precision culling spurious paths which
would have otherwise been explored by the monovariant analysis [30].

Survey of Polyvariance 145

5.2 Polynomial-Time 1-CFA

Polynomial-time 1-CFA differentiates each state with a single call history, as 1-
CFA does, but only allows free variables in a closure’s environment to remember
this history for a single closure creation deep. Each time a function is called, its
abstract contour is updated and all the flows for its free variables are propagated
to the new history for that call. They then share a history with the latest ar-
guments to be sent in all new closures created. An environment in this analysis
boils down to the single abstract contour it maps all variables onto. We simplify
this and pair lambdas directly with a single contour to form a closure:

ς̂ ∈ Ŝtate = CALL× Ŝtore × T̂ ime

v̂ ∈ V̂ alue = LAM× T̂ ime

t̂ ∈ T̂ ime = Label

〈(λ (x1 . . . xj) call), t̂
′
b〉 ∈ Â(aef , t̂, σ̂)

((aef ae1 . . . aej)l, σ̂, t̂) ≈> (call, σ̂′, t̂′)

where σ̂′ = σ̂ � [(xi, t̂
′) �→ Â(aei, t̂, σ̂)]

�
⊔

{[(y, t̂′) �→ Â(y, t̂b, σ̂)] | y ∈ free(call)}

t̂′ = l

Â(x, t̂, σ̂) = σ̂((x, t̂))

Â(lam, t̂, σ̂) = {〈lam, t̂〉}

Because the closure is updated at each call, the binding environment previously
in the second position of our abstract state is redundant with the single call-
history in the final position, so we omit it. Likewise, the creation of a new
binding environment (previously called ρ̂′′) is no longer needed as it was in k-
CFA since it would simply be set to λ .t̂′ and so is subsumed here by t̂′ itself.
Our updated store is one joined with the bindings formed by the function call,
along with bindings which propagate values for the free variables in the function
to their new contour.

Polynomial-time 1-CFA improves on 0-CFA in many of the usual places. Func-
tion parameters given different values at different callsites are analyzed polyvari-
antly. Where it compromises as compared with full 1-CFA is in the addresses
used for free variables. When a function is closed over its free variables, they
are differentiated by the call-history of the containing lambda. Upon invocation
however, these values are propagated to addresses using the most recent callsite.
This means if we call a function λx.λy.x more than once, we may obtain multiple
different abstract closures, but if we invoke each of them at the same callsite l,
all these variants of x will be merged together into an address (x, l).

Polynomial-time 1-CFA has not yet been empirically investigated, but its
complexity has an upper bound of O(n6) [8].

146 T. Gilray and M. Might

6 The Future

The potential for new explorations into this area looks bright. The recent paper A
posteriori soundness by Might and Manolios [20] has provided an exceptionally
general guarantee of soundness for abstract allocation functions which allows
for nearly any form of merging or differentiation in the store which could be
conceived. Even methods which tune a live analysis directly for precision are
allowed for, so no fully pre-defined strategy would even be necessary.

6.1 A Posteriori Soundness

The usual process for demonstrating the soundness of an abstract interpretation
is a priori in the sense that the concrete and abstract transition relations along
with the abstraction map relating the two state-spaces have been defined in
advance, and are then justified as sound before any analysis is produced. A pos-
teriori soundness differs from this in that a portion of the justifying abstraction
map cannot be known until after the analysis is run.

The a posteriori soundness proof relies on factoring apart the concrete seman-
tics, abstract semantics, and their correspondence. A portion of the abstraction
map α is isolated which represents the correspondence between concrete ad-
dresses and abstract addresses: αL. A portion of the transition relation is also
factored out which represents the process of producing bindings. The abstract
transition relation can then be parameterized by an allocation-policy π̂ which
determines this process for a given abstract state. The crux of the argument is
then that given a non-deterministic selection of π̂, a justifying αL can always
be produced after the fact, which proves the prior selection sound – whatever
it might have been. This means that so long as the remaining analysis follows
a single liberal soundness condition: the choice of allocation policy π̂ is entirely
arbitrary as far as the correctness of the analysis is concerned [20].

6.2 Precision-Adaptive Analyses

The implication of this is that the allocation policy π̂ of an abstract interpre-
tation can be selected entirely with precision and complexity in view. A policy
can even adapt to the source text itself to make these choices without soundness
needing to be proven for each specific program. If soundness needed to be proved
a priori, this would not be possible since the mechanics of the proof would rely
upon aspects of specific programs which could not be known in advance. The
work thus not only simplifies deciding that a new form of polyvariance would be
sound, but makes it possible to produce polyvariant analyses which use different
amounts of history for different functions, different kinds of history for different
functions, and which make these decisions while the analysis is still live.

7 Conclusion

The concept of polyvariance in abstract interpretations covers a wide array
of techniques which allows for an analysis to be tuned up or down along the

Survey of Polyvariance 147

precision/complexity trade-off. Merging and differentiation of flow-sets in the
store, beyond one address per variable, requires a value on which to base the
differentiation: in the case of k-CFA this is Shivers’ abstract contour. It has since
been proved that any basis for differentiation which obeys a single liberal con-
straint will remain sound, and a number of specific variants on the traditional
contour have already been discussed in the literature each offering a unique
trade-off in precision.

References

1. Agesen, O.: The cartesian product algorithm: Simple and precise type inference of
parametric polymorphism. In: Echtle, K., Powell, D.R., Hammer, D. (eds.) EDCC
1994. LNCS, vol. 852, pp. 2–26. Springer, Heidelberg (1994)

2. Besson, F.C.: beats ∞-CFA. Formal Techniques for Java-like Programs, p. 7 (July
2009)

3. Cousot, P.: The calculational design of a generic abstract interpreter. In: Broy,
M., Steinbrüggen, R. (eds.) Calculational System Design. NATO ASI Series F, pp.
421–506 (1999)

4. Cousot, P.: Types as Abstract Interpretations. In: Symposium on Principals of
Programming Languages, pp. 316–331 (1997)

5. Cousot, P., Cousot, R.: Abstract Interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Symposium
on Principals of Programming Languages, pp. 238–252 (1977)

6. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In:
Symposium on Principals of Programming Languages, pp. 269–282 (1979)

7. Felleisen, M., Findler, R., Flatt, M.: Semantics Engineering with PLT Redex (Au-
gust 2009)

8. Jagganathan, S., Weeks, S.: A Unified Treatment of Flow Analysis in Higher-Order
Languages. In: ACM Symposium on Principles of Programming Languages, pp.
393–407. ACM Press (January 1995)

9. Jones, N.D.: A flexible approach to interprocedural data flow analysis and programs
with recursive data structures. In: Symposium on Principles of Programming Lan-
guages, pp. 66–74 (1982)

10. Jones, N.D., Muchnick, S.: Flow analysis of lambda expressions (preliminary ver-
sion). In: Even, S., Kariv, O. (eds.) ICALP 1981. LNCS, vol. 115, pp. 114–128.
Springer, Heidelberg (1981)

11. Midtgaard, J.: Control-Flow Analysis of Functional Programs. ACM Computing
Surveys 44 (June 2012)

12. Midtgaard, J., Jensen, T.: A Calculational Approach to Control-Flow Analysis
by Abstract Interpretation. In: Alpuente, M., Vidal, G. (eds.) SAS 2008. LNCS,
vol. 5079, pp. 347–362. Springer, Heidelberg (2008)

13. Midtgaard, J., Van Horn, D.: Subcubic Control Flow analysis Algorithms. Higher-
Order and Symbolic Computation (May 2009)

14. Midtgaard, J., Jensen, T.: Control-ow analysis of function calls and returns by
abstract interpretation. In: International Conference on Functional Programming
(2009)

15. Might, M.: Abstract interpreters for free. In: Cousot, R., Martel, M. (eds.) SAS
2010. LNCS, vol. 6337, pp. 407–421. Springer, Heidelberg (2010)

148 T. Gilray and M. Might

16. Might, M.: Environment Analysis of Higher-Order Languages. Ph.D. Dissertation.
Georgia Institute of Technology (2007)

17. Might, M.: Logic-Flow Analysis of Higher-Order Programs. In: Principals of Pro-
gramming Langauges, pp. 185–198 (January 2007)

18. Might, M., Shivers, O.: Environment analysis via ΔCFA. In: Symposium on the
Principals of Programming Languages, pp. 127–140 (January 2006)

19. Might, M., Shivers, O.: Improving flow analyses via ΓCFA: Abstract garbage col-
lection and counting. In: International Conference on Functional Programming,
pp. 13–25 (September 2006)

20. Might, M., Manolios, P.: A posteriori soundness for non-deterministic abstract
interpretations. In: Jones, N.D., Müller-Olm, M. (eds.) VMCAI 2009. LNCS,
vol. 5403, pp. 260–274. Springer, Heidelberg (2009)

21. Milanova, A., Rountev, A., Ryder, B.G.: Parameterized object sensitivity for
points-to analysis for Java. ACM Transaction on Software Engineering and
Methodology, 1–41 (2005)

22. Nielson, F., Nielson, H.R., Hankin, C.: Principals of Program Analysis. Springer
(1999)

23. Palsberg, J., Pavlopoulou, C.: From Polyvariant Flow Information to Intersection
and Union Types. In: Principals of Programming Languages, pp. 197–208 (1998)

24. Shivers, O.: Control-flow analysis in Scheme. In: Programming Language Design
and Implementation,pp. 164–174 (June 1988)

25. Shivers, O.: Control-Flow Analysis of Higher-Order Languages. PhD dissertation.
School of Computer Science, Carnegie-Mellon University, Pittsburgh, Pennsylva-
nia, Technical Report CMUCS-91-145 (May 1991)

26. Smaragdakis, Y., Bravenboer, M., Lhotak, O.: Pick your contexts well: under-
standing object-sensitivity. In: Proceedings of the 38th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pp. 17–30. ACM,
New York (2011)

27. Van Horn, D., Mairson, G.H.: Deciding k-CFA is complete for EXPTIME. In:
International Conference on Functional Programming, pp. 275–282 (September
2008)

28. Van Horn, D., Mairson, H.G.: Flow analysis, linearity, and PTIME. In: Alpuente,
M., Vidal, G. (eds.) SAS 2008. LNCS, vol. 5079, pp. 255–269. Springer, Heidelberg
(2008)

29. Van Horn, D., Might, M.: Abstracting Abstract Machines. In: International
Conference on Functional Programming 2010, Baltimore, Maryland, pp. 51–62
(September 2010)

30. Wright, A.K., Jagannathan, S.: Polymorphic splitting: An effective polyvari-
ant flow analysis. ACM Transactions on Programming Languages and Systems,
166–207 (January 1998)

Functional Video Games in CS1 III

Distributed Programming for Beginners

Marco T. Morazán

Seton Hall University, South Orange, NJ, USA
morazanm@shu.edu

Abstract. This article advocates that developing distributed multi-
player video games using functional programming should be a new trend
in the CS1 classroom. This is premised on two facts: most students
are excited by video game development and distributed programming
is now common and not beyond the abilities of beginning students. A
design recipe for the development of distributed applications is presented
which has successfully been used at Seton Hall University over the past
few semesters. The primary goal is to expose students to distributed
programming and to have students think about some of the problems
programmers face when writing distributed applications. To the CS1
instructor, this article presents a model for developing their own dis-
tributed programming module.

1 Introduction

The explosion in development of internet applications (such as social media sites
and associated games) and the arrival of multicore processors to the mass market
make it clear that the use of distributed programming is a trend that is likely
to become as common as the use of the light bulb. Therefore, it is desirable
for a CS1 course to introduce students to distributed programming. The key in
CS1 is to expose students without expecting them to become experts–expertise
is developed in a more advanced course. To be successful, however, distributed
programming must be made appealing to students and must be presented in a
manner that is accessible to them.

This article argues that developing distributed multiplayer video games using
functional programming ought to be a new trend in the CS1 classroom. This is
premised on two facts: most students are excited by video game development
and distributed programming is now common and not beyond the abilities of
beginning students. The approach implemented at Seton Hall University (SHU)
using the Program by Design methodology presented in How to Design Programs
(HtDP) is described. A novel design recipe for the development of distributed
applications is presented. This new design recipe is used to illustrate how first-
year students can be led to develop a multiplayer Space-Invaders-like game called
Aliens Attack. The development of the game builds on letting students develop
code that contains subtle distributed programming bugs, like process synchro-
nization and communication overhead, which motivate refinements.

J. McCarthy (Ed.): TFP 2013, LNCS 8322, pp. 149–167, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

150 M.T. Morazán

2 Background

2.1 Student’s Design and Programming Experience

At SHU, the introductory Computer Science courses focus on problem solving
using a computer [9,10]. The languages of instruction are the successively richer
subsets of Racket known as the student languages which are tightly-coupled with
HtDP [5]. Before being introduced to distributed programming, students have
studied topics such as: primitive data, primitive functions, programmer defined
functions and variables, programmer defined data, processing finite compound
data, processing arbitrarily large compound data and structural recursion, and
abstraction with higher-order functions. These topics are covered following much
of the structure of HtDP [5]. There are two 75-minute lectures every week and
the typical classroom has between 20 to 30 students. In addition to the lectures,
the instructor is available to students during office hours (3 hours/week) and via
e-mail.

The curriculum, however, also varies in significant ways from HtDP by includ-
ing a module for distributed programming. Distributed programming is intro-
duced after structural recursion for two reasons: our experience suggests that stu-
dents that have developed some programming expertise do not find distributed
programming intimidating and from a student’s perspective much more inter-
esting video games can be developed after knowing how to design programs that
process data of arbitrary size. The curriculum also places a great deal of empha-
sis on iterative refinement with a video game going through versions that grow
in complexity as the course advances culminating in a multiplayer distributed
version.

2.2 The Universe Teachpack

The course uses the universe teachpack [6] for video game development which pro-
vides the functionality to develop distributed games. The clients/players/worlds
in a universe exchange messages with a server. The universe teachpack provides
two functions to create messages: make-package and make-bundle. The first is
used by a client to create a pair that contains a (possibly new) game state and
a message to the server. The second is used by the universe server to create
a structure that contains a (possibly new) server state, a list of mails to any
of the clients, and a list of worlds to be disconnected from the universe. The
constructor for a mail, make-mail, requires the recipient client and the message.
Any message transmitted must be an S-expression. This means that students
must design and implement functions to marshal and unmarshal their data–a
topic first-year students can understand and will encounter later in an operating
systems course [12]. This set-up also forces students to program using a specific
API which is a useful skill to have them develop.

The syntax required to create a player’s world specifies handlers that update
the game or render the game to the screen. Version 1 of the game requires:

Functional Video Games in CS1 III 151

(big-bang

INIT-WORLD ;; initial world

(on-draw draw-world) ;; handler for drawing the world

(on-key process-key) ;; handler for key events

(on-tick update-world) ;; handler for clock ticks

(stop-when game-over?) ;; handler to test for game end

(register LOCALHOST) ;; registers with the server

(on-receive process-message) ;; handler for incoming messages

(name MY-ID)) ;; name of this world

During development students use LOCALHOST as the address of the server, but
at play time they may also use an internet address to specify where the server
is running.

The syntax for the universe server is similar and specifies the event handlers.
For version 1 of distributed Aliens Attack the following syntax is required:

(universe

initU ;; the initial universe

(on-new add-new-world) ;; handler for new worlds joining

(on-msg receive-message) ;; handler for incoming messages

(on-disconnect rm-world)) ;; handler for worlds disconnecting

This syntactical set-up provides a framework to get students started. Specifically,
students identify the handlers which are needed and must write each handler
along with any auxiliary functions that may be needed. Readers interested in
further details about the universe teachpack are referred to the help pages in
DrRacket [8] and the modest guide on how to design worlds [4].

3 A Design Recipe for Distributed Computing

After developing a single player Aliens Attack [9], students ask if it is possible
to have multiple players. Figure 1 displays a snapshot of a multiplayer version
of Aliens Attack that they have in mind. Students are generally excited about
the possibility of playing together which sets the stage to discuss distributed
programming.

Students are led through an informal discussion of what is needed to write
a multiplayer Aliens Attack. The idea of the game being distributed naturally
comes to our students given their experience with internet games. They realize
the need to send and to receive messages as well as the need for a server that
provides support to coordinate all the players/clients. The following design recipe
for distributed programming is presented:

1. Divide the problem into components.
2. Draft data definitions for the different components and the server.
3. Design a communication protocol.
4. Design and implement marshalling-unmarshalling functions and create data

definitions for messages.

152 M.T. Morazán

Fig. 1. A Snapshot Illustrating Multiplayer Aliens Attack

5. Design and implement the components (starting with handlers)
6. Design and implement a server (starting with the handlers).

7. Test your program.

One of the main goals of the above design recipe is to gently introduce students
to distributed programming. Students are explained that, as any other design
recipe seen earlier in the course, each step has a specific outcome. This new
design recipe, however, is more akin to the design recipe for generative recursion
in HtDP (which provides less guidance on how to complete the steps) than to
the design recipes for structural recursion. Like generative recursion, distributed
programming requires the development of insight into a problem in order to
identify components and to understand how to integrate components. The first
four steps are intended to help students develop such insight which guides the
actual development of code for individual components and the server using the
design recipes in HtDP.

In Step 1, they must define what each component/client as well as the server
does. In Step 2, they must draft data definitions for the data that each compo-
nent/server is to manipulate. In Step 3, they must define a communication pro-
tocol specifying when a client sends a message to the server and when the server
sends mail to a client. An efficient way to achieve this is by using protocol diagrams
that illustrate when communication occurs. In step 4, students must develop mar-
shalling and unmarshalling functions. This step provides an excellent opportunity
to help students make a connection with a topic they have studied in their Math-
ematics courses given that a marshalling and the corresponding unmarshalling
function are inverses of each other. Another important result of this step is data
definitions for different kinds of messages. In step 5, students must design and im-
plement the handlers as well as any necessary auxiliary functions for each client.

Functional Video Games in CS1 III 153

In step 6, students design and implement the server. In step 7, students must test
their programs and redesign/reimplement if necessary. In this step, students must
consider the subtle problems that arise in distributed programming such as pro-
cess synchronization, communication overhead, and speed.

4 Multiplayer Aliens Attack Version 1

Students are asked to think about how to make a multiplayer game from their
single player Aliens Attack [9]. By an overwhelming margin, the most common
answer is to add to each single player the other players. That is, each player
runs their game and others can join. The details of how to do this are, of course,
fuzzy at best and they are invited to use the new design recipe.

4.1 Problem Components

Students identify each player as a component that is responsible for rendering
the state of the game, moving a single rocket, moving the aliens, changing the
direction the aliens are moving in, and moving the shots. In addition, each com-
ponent must provide support for a list of allies and must receive messages to
reproduce the actions taken by other players. This component decomposition
is very attractive to students, because it means that they can re-use code they
have written for a single player Aliens Attack by making a small number of
changes and additions (e.g., the development of a message processing handler).
This turns out to be important to keep frustration low with what some students
view as a Herculean task at the beginning.

Student-guided class discussion leads to the server being responsible for re-
ceiving messages from the players indicating their rocket moving and shooting
actions and for broadcasting said messages to all the other players. That is, a
thin-server is the intuitive choice for (most) students. In addition, the server
sends the initial army of invading aliens to the first player that joins the game.

4.2 New Data Definitions

For a player, the new data definitions are displayed in Figure 2. For the server,
the only new data definition is for a universe (of players/worlds/clients):

;; A universe is a (listof iw), where iw is an iworld.

An iworld is the internal representation used by the universe teachpack for the
clients that join the server. All these data definitions are in familiar territory for
the students and require the development of examples and function templates.

4.3 Communication Protocol Design

A communication protocol is described to beginning students as a collection of
communication chains. A communication chain is defined as a series of messages

154 M.T. Morazán

;; A rocket is a non-negative number.

;; An ally rocket, (make-ar x n), is a structure where x is a number

;; and n is a string for the name of the player that controls it.

(define-struct ar (x name))

;; A list of ally rockets (loar) is a (listof ar).

;; An alien is a posn.

;; A list of aliens (loa) is a (listof alien).

;; An alien army (aa) is either ’uninitialized or a loa.

;; A world is a structure, (make-world r l a d s), where r is a rocket,

;; l is an loar, a is an aa, d is a string, and s is a los.

(define-struct world (rocket allies aliens dir shots))

Fig. 2. Player Data Definitions for Multiplayer Aliens Attack Version 1

Fig. 3. Communication Protocol for a Rocket Move

that are exchanged between the server and the clients. These chains are sparked
by either an action taken by a client or an action taken by the server. A com-
munication chain is visualized using a protocol diagram–a diagram illustrating
the messages in a chain. This abstraction is understood by students and allows
for a well-focused discussion during classroom development.

In Aliens Attack, a player sparks a communication chain when a key event
occurs. That is, when a rocket move or shot is made by, pi, the ith player. For
example, when pi moves the rocket, a rocket-moved message is sent to the server
that includes the new ally rocket1. The server forwards the message to all the
other players. Figure 3 displays the protocol diagram for a rocket move. A similar
protocol diagram is developed for shot creation.

1 To all other players a move made by pi is a move made by an ally rocket.

Functional Video Games in CS1 III 155

Fig. 4. Joining an empty universe Fig. 5. Joining a non-empty universe

The server sparks a communication chain when its state changes. Classroom
analysis reveals that this occurs two times: when a new player joins the game
and when a player disconnects from the game. Two cases are distinguished when
a player, pi, joins the universe. In the first case, the new player is the first
in the universe and the server only needs to send the initial alien army. This
communication chain is captured in the protocol diagram in Figure 4. In the
second case, pi, joins a non-empty universe. In this case, the server requests the
state of the game from an existing player, pj such that i
= j, with a mail that
includes i. The server also sends a new-ally message to all the worlds already in
the universe. After the server receives a message from pj that includes the state
of the game and the destination for said state (i.e., i), the server forwards the
game state to pi. This communication chain is captured in the protocol diagram
in Figure 5. A similar analysis leads to the communication chain required when
a player leaves the game.

4.4 Design Marshalling and Unmarshalling Functions and Data
Definitions for Messages

Students are now ready to design and implement marshalling and unmarshalling
functions as well as to develop data definitions for messages. Marshalling is done
by converting data into an S-expression and appropriately tagging the message.
Unmarshalling is done by removing the tag and reconstructing the original data.

There are two types of messages: To-Server messages and To-Client messages.
To-Server messages are identified by incoming arrows to the server in the protocol
diagrams. Likewise, To-Client messages are identified by incoming arrows to the
clients. Each set of clients that can receive different kinds of messages must
have their own To-Client message data definition. In Aliens Attack this task is

156 M.T. Morazán

A To-Server Message is either:

1. (list ’rocket-move rocket string)

2. (list ’new-shot number number)

3. (list ’world

string

(list-of (list-of number string))

(list-of (list-of number number))

string

(list-of (list-of number number)))

Fig. 6. To-Server Message Data Definition

simplified since all clients are the same. Thus, only one To-Client data definition
is required which is ideal for pedagogy in CS1.

Consider the communication chain in Figure 3. The protocol requires that
a rocket-move message be sent to the server that includes the new ally rocket
created by the move. This means that an ally rocket must be marshalled and
unmarshalled. Since an ally rocket is a structure with a number, n, and a string,
s, a To-Server rocket-move message is defined as a list containing the symbol
rocket-move, n, and s. The corresponding marshalling and unmarshalling func-
tions are:

; ally-rocket --> message

(define (marsh-rckt-mv an-ar)

(list ’rocket-move (ar-x an-ar) (ar-name an-ar)))

; message --> rocket

(define (unmarsh-rckt-mv m)

(make-ar (first (rest m)) (first (rest (rest m)))))

Repeating this process for every incoming arrow to the server labeled dif-
ferently in the protocol diagrams leads students to a complete data definition
for a To-Server message as displayed in Figure 6, to the development of mar-
shalling and unmarshalling functions, and to a function template for functions
that process To-Server messages.

To develop the data definition for messages to clients, observe in the protocol
diagrams that any To-Server messages is echoed to the clients. Therefore, a To-
Client message can be a To-Server message. The protocol diagrams also inform
us that that the server can send a player a message to request the world, to
send the initial alien army, and to inform a player of a new ally or of an ally
lost. The To-Client message data definition is displayed in Figure 7 from which
a corresponding function template is developed.

4.5 Component Implementation

Each different component is independently implemented. For Aliens Attack all
clients are the same except for their identifying name (a string). This simplifies

Functional Video Games in CS1 III 157

A To-Client Message is either:

1. To-Server Message

2. (cons ’init-army (listof (listof number number)))

3. (list ’rm-ally string)

4. (list ’req-world string)

5. (list ’new-ally number string)

Fig. 7. To-Client Message Data Definition

the task for students given that only one component needs to be developed.
Furthermore, students can see that their task now is to refine their single player
code into multiplayer code. This requires updating functions that process data
whose definition has been refined, adding communication code to functions that
make changes to the state of the game, and the creation of a message processing
function. For the students, the updates are not hard nor intellectually obscure.
Previously in the course, students have had to refine their code when a refinement
has been made to a data definition. This step is not surprising to them, but some
do find it tedious and time-consuming.

The addition of communication code is, however, a new element for them.
For any arrow in the protocol diagrams that goes from a player to the server,
communication code must be added. For example, the protocol diagram in Figure
3 tells us that a rocket-movemessage must be sent to the server when the rocket is
moved. This means that their original key event handler requires small updates:
updating the function signature to return a package and updating the function
body to create a package by marshalling the rocket move. The updated code is
displayed in Figure 8. As the reader can observe, adding communication code to
the client is not complex for students after a communication protocol has been
designed. Performing the same work for all out-going arrows from a player to
the server yields the refined functions for player-sparked communication chains.

The final step implements a handler to process To-Client messages. This func-
tion is written by specializing the function template for To-Client messages which
contains a conditional statement to distinguish among the variety of messages.
This handler takes as input a world and a message and it returns a (new) world.
For example, when a rocket moved message arrives the list of allies is updated
and a new world is produced. This snippet illustrates the idea:

[(symbol=? ’rocket-move (first mess))

(make-world (world-rocket w)

(update-allies (unmarsh-rckt-mv mess)

(world-allies w))

(world-aliens w)

(world-dir w)

(world-shots w))]

158 M.T. Morazán

; process-key: world key --> package

; Purpose: Handler to process key events.

(define (process-key a-world key)

(cond

[(key=? "up" key) (process-up-key a-world)]

[else (local [(define new-world

(make-world

(move-rocket (world-rocket a-world) key)

(world-allies a-world)

(world-aliens a-world)

(world-dir a-world)

(world-shots a-world)))]

(make-package new-world

(marsh-rckt-mv

(make-ar (world-rocket new-world)

MY-ID)))]))

Fig. 8. Refined Key-Processing Handler for Multiplayer Aliens Attack

4.6 Server Implementation

The server is implemented in a top-down manner starting with the handlers
and consulting the protocol diagrams. For example, the handler used when a
player joins the game is based on the protocol diagrams of Figures 4 and 5.
This function takes as input a universe and a joining iworld and produces a
bundle. To create the new universe, the joining world is added to the list of
current worlds. The mails that must be generated depend on the state of the
universe. According to Figure 4, if the universe is empty the server sends the
joining world the initial alien army. According to Figure 5, if the universe is not
empty the server requests the game state from an existing world and sends a new
ally message to all the current players in the universe. There are no worlds that
need to be disconnected from the universe. The resulting handler is displayed in
Figure 9. The handler for a world disconnecting from the game is developed in
the same fashion.

The server’s message processing handler is developed using the template for
functions on a To-Server message. For example, for the communication chain in
Figure 5 the following snippet of code is written:

[(symbol=? (first msg) ’world)

(make-bundle

u

(list (make-mail (get-world (first (rest msg)) u) msg))

empty)]

This snippet keeps the universe unchanged, forwards the world message to the
player indicated in the message, and removes no players from the universe.

Functional Video Games in CS1 III 159

; add-new-world: universe iworld --> bundle

(define (add-new-world u w)

(make-bundle

(cons w u)

(cond [(not (empty? u))

(cons (make-mail (first u) (marsh-req-world (iworld-name w)))

(map (lambda (iw)

(make-mail iw (marsh-new-ally (iworld-name w))))

u))]

[else (list (make-mail w (marsh-loa INIT-ALIEN-ARMY)))])

empty))

Fig. 9. The Server’s New Player/World Handler

4.7 Testing

Students are advised that testing is two-fold: the testing they are familiar with
checking that functions produce the correct output (using Racket’s check-expect
library) and testing for bugs that only arise in distributed programming such as
synchronization, communication overhead, and deadlock.

The distributed programming bugs are tested for by running the game. Stu-
dents see on their screens a working game with allies, but unlike the experienced
reader they do not realize there is a synchronization bug. The instructor ought
to let the students discover the bug by joining the game and projecting the in-
structor’s screen to the class. It does not take long for students to realize that
not all players have the game in the same state. This approach makes process
synchronization a real concern for students and with some class discussion they
realize that messages take time to travel from the source to the destinations.
While the messages travel, the source player continues changing the state of
their game. Thus, different players have different states.

5 Multiplayer Aliens Attack Version 2

Students quickly realize that a possible solution is for the game state to reside in
one location and this strongly motivates the next refinement. It is important to
note that this refinement is not prescribed by the instructor based on knowledge
that students do not have. Instead, this refinement has its genesis in the students
based on their results from version 1 of the multiplayer game.

5.1 Problem Components

Students identify each player as a component that is responsible for rendering
the state of the game to the screen and for processing key events. Players do not
update the state of the game and, therefore, do not need a handler to update the
world every time the clock ticks. When a key event occurs, a message is sent to

160 M.T. Morazán

the server requiring a new key event handler. The syntax required for a player
is:

(big-bang INIT-WORLD

(on-draw draw-world)

(on-key process-key)

(on-receive process-message)

(register LOCALHOST)

(name MY-ID)

(stop-when game-over?))

As in version 1, the server needs handlers to add new players, to remove play-
ers, and to process messages. The server is now also responsible for maintaining
the state of the game, thus, requiring a handler for clock ticks. When the state of
the game changes, the players are sent the new state. In essence, the students are
defining a thick-server that is solely responsible for all the necessary computing.
The required syntax for the server is:

(universe initU

(on-new add-new-world)

(on-msg receive-message)

(on-disconnect rm-this-world)

(on-tick update-univ))

5.2 Draft Data Definitions

Students are led to see that in this refinement there is no need to distinguish
between a rocket and the allies. For the server, all the players are allies each
of which is still controlled by a single player. In addition, students include a
boolean in the game state to indicate if the game has ended. The following is
the refined data definition for the game state:

;; A world is a structure, (make-world l a d s o), where

;; l is a loar, a is a aa, d is a string, s is a los, and

;; o is a boolean.

(define-struct world (allies aliens dir shots over))

Given the added work done by the server, the representation of the state of
the server must also be refined to include both the state of the game and, as
before, the players represented as iworlds. The refined data definition for the
state of the server is:

;; A univ is a structure, (make-univ l w), where l is a

;; (listof iworld) and w is a world

(define-struct univ (worlds state))

5.3 Communication Protocol Design

Students are asked when does a player initiate a communication chain and are
asked to develop protocol diagrams. Figure 10 displays the protocol diagram

Functional Video Games in CS1 III 161

Fig. 10. Version 2 Protocol Diagram for a Rocket Move

students develop for a rocket move. A player sends the server a rocket move
message containing the direction of the move. The server processes the move
and sends all players an updated world. A similar diagram is developed for new
shots.

Students realize that the server starts a communication chain when a player
joins the game, a player disconnects from the game, and when the game state is
updated after a clock tick. The protocol diagrams are easy to visualize with the
server always sending the game state to all the players.

5.4 Design Marshalling and Unmarshalling Functions and Data
Definitions for Messages

The protocol diagrams reveal to students that there is only one variety for a To-
Client message and only two varieties for To-Server messages in this refinement:

A To-Client message is:

(list ’world

(listof (listof number string))

(listof (listof number number))

string

(listof (listof number number))

boolean)

A To-Server message is either:

1. (list ’rckt-move string)

2. (list ’new-shot number number)

This means only three pairs of marshalling-unmarshalling functions. For exam-
ple, for a rocket move we have:

162 M.T. Morazán

; process-key: world key --> package or world

; Purpose: This function is the handler to process key events.

(define (process-key a-world key)

(cond [(key=? "up" key)

(make-package

a-world

(marsh-shot (make-posn (get-my-x (world-allies a-world))

ROCKET-Y)))]

[(or (key=? "left" key) (key=? "right" key))

(make-package a-world (marsh-rckt-move key))]

[else a-world]))

Fig. 11. Player key-event handler for version 2

; string --> message

(define (marsh-rckt-move direction) (list ’rckt-move direction))

; message --> string

(define (unmarsh-rckt-move m) (first (rest m)))

The most complex pair is the one for a world which provides the opportunity to
reinforce lessons using lambda expressions and higher-order functions like map.

5.5 Component Implementation

Implementing the components means updating the handlers for processing key
events and for rendering the game state using the refined data definition for
world. In addition and according to the protocol diagrams, communication code
must be added for key event handling and message handling. As before, one goal
is to reuse as much code as possible.

Figure 11 displays the handler for key events developed by the students during
class discussion using the protocol diagrams. If the “up” key is pressed, the state
of the game is not changed by the player and a message with a new marshalled
shot is sent to the server. Similarly, if the “left” or “right” key are pressed the
state of the game is not changed and a marshalled rocket move is sent to the
server. If any other key is pressed, the state of the game is unchanged and no
message is sent to the server (which means a package is not constructed).

Given that there is only one type of To-Client message the message handler
is very straightforward:

; process-message: world message --> world

(define (process-message w mess)

(cond [(symbol=? ’world (first mess)) (unmarsh-world mess)]

[else (error "World received an unknown message" mess)]))

Similarly the handler to check if the game has ended is also straightforward for
students at this point in the course:

Functional Video Games in CS1 III 163

; univ --> univ

(define (update-univ u)

(cond [(game-over? (univ-state u))

(make-bundle

u

(map (lambda (iw)

(make-mail iw (marsh-world (mk-end-wrld (univ-state u)))))

(univ-worlds u))

empty)]

[else

(local [(define new-w (update-world (univ-state u)))]

(make-bundle

(make-univ (univ-worlds u) new-world)

(map (lambda (iw) (make-mail iw (marsh-world new-w)))

(univ-worlds u))

empty))]))

Fig. 12. Clock tick handler for version 2

; world --> boolean

(define (game-over? w) (world-over w))

5.6 Server Implementation

The four handlers for the server are implemented during class in the same manner
as version 1. The handler to add a new world dispatches on whether the state of
the universe has an empty list of iworlds or not. The message handler dispatches
on the two varieties of To-Server messages. The handler used when a player
disconnects, creates a bundle with a new list of iworlds that does not contain
the disconnected player and a new game state in which the disconnected player
is not one of the allies.

The clock tick handler is the most complex. It dispatches on whether or not
the game has come to a end. If the game is over, then a world in which the
over flag is set is mailed to all the players. Otherwise, the state of the server is
updated by updating the state of the game. This updated game state is mailed
to all the worlds. A sample implementation developed by students is displayed
in Figure 12.

5.7 Testing

Testing reveals that the synchronization problem appears resolved. We say ap-
pears, because we do not prove that it is resolved2. An instructor can, indeed,
leave it at that and move on. Students have done enough to get them started
thinking about synchronization. There is, of course, an additional issue that can

2 Program correctness is not yet woven into CS1 at SHU.

164 M.T. Morazán

be pointed out to students. In the case of Aliens Attack, the order in which shots
are added to the game state does not matter. In a different distributed applica-
tion, however, order may very well matter and students are made aware that in
such cases mutual exclusion must be guaranteed. This topic is not thoroughly
discussed, but students are told that solutions will be studied, for example, in
an operating systems course.

More importantly for our purpose, testing also reveals a most annoying char-
acteristic for students: the game is much slower. The issues of bottleneck and
communication overhead are brought forward during class discussion. This mo-
tivates the development of a third version of the game.

6 Multiplayer Aliens Attack Version 3

The development of version 2 marks the end of lecturing in the distributed-
programming module in CS1 at SHU. Students now have some experience with
a complex communication protocol (version 1), with a simple communication
protocol (version 2), and with some important bugs that arise in distributed
programming. It is time for them to test their skills and their understanding on
their own.

The next refinement of the game is assigned as a group project. Students are
divided into groups of 2 or 4 students. Each group is further divided into two
subgroups. One subgroup is responsible for developing the components (i.e., the
players) and the other is responsible for developing the server. The subgroups
must work together to agree on the data definitions, the communication protocol,
and the marshalling functions. Then each subgroup develops their own code.
When both subgroups are ready, they get together to test their program and,
hopefully, enjoy the game and/or fix bugs.

The programs developed by students have been extremely encouraging. Stu-
dents submit working games that employ a communication protocol that can
be described as middle of the road between version 1 and version 2. That is,
they keep the components of version 2, but do not transmit the whole state of
the game every time a server makes an update. Instead, they only transmit the
part of the state that is changed. This type of communication protocol has been
implemented in practice by, for example, Quake 3 [11]. Having CS1 students
writing distributed applications on their own is nothing short of amazing.

7 Student Assessment

After each semester of CS1 at SHU, students are asked to fill out a short survey
to evaluate the distributed-programming module. On a scale from 1 (low) to five
(high), students are asked if distributed programming is intellectually stimulat-
ing. The average of the distribution to date is 3.35 with 76% of the students
answering 3-5. The middle 50% of the students are in the range 3-4. Surprisingly
(to the author), a follow-up question reveals that students felt that in terms
of intellectual stimulus distributed programming was much like what they have

Functional Video Games in CS1 III 165

been doing all semester. From the student’s perspective, the module contained
new interesting material, but the transition to distributed programming required
mostly tasks they had done before. This can only be interpreted as a success for
the described methodology. The introduction to distributed programming is gen-
tle enough that students feel it is a natural progression that builds on what they
have learned.

Students are also asked to rank how much more difficult distributed program-
ming is to non-distributed programming on a scale from 1 (not more difficult
at all) to 5 (a lot more difficult). The average of the distribution to date is 3.9
with the middle 50% in the range 3-5. A follow-up question revealed that the
top reason distributed programming is harder is error messages that are not very
informative. This type of problem occurred mostly when there were bugs in the
marshalling and unmarshalling functions that led to “unknown message” errors
or errors trying access parts of a message that did not exist. The difficulty lies
in that a message that, for example, causes the server to crash is not always
fixed in the server’s code. Instead, it may have to be fixed in the client’s code.
Students, however, tend to only search for the bug in the code that signals the
error (i.e., the server’s code in this example). Another reason cited as to why dis-
tributed programming is harder by some students is that they felt that keeping
track of a communication protocol was a lot of work. That is, they had to add
communication code to “a lot” of functions and had to write message processing
functions.

Finally, students were asked about their level of excitement to develop a multi-
player video game on a scale from 1 (not at all excited) to 5 (extremely excited).
The average of the distribution to date is 3.5 with the middle 50% in the range
3-4 and with 76% of the students in the range 3-5. The overwhelming majority of
students in the top half of the range clearly indicates that the use of multiplayer
video games can serve as great motivation for students to explore distributed
programming.

8 Related Work

Teaching distributed programming in CS1 was virtually unheard of a few years
ago. Now, there is a growing group of academics attempting it. The developers
of DrRacket and HtDP have taught distributed programming in CS1 and have
briefly described their approach using a step-locked game3 to control a UFO [6].
In contrast, the work presented in this article aims to expose students to both
distributed programming and to some of its pitfalls like synchronization and
communication overhead. Exposing students to such pitfalls is difficult to do
with step-lock games like the UFO game [6] and Chat Noir [7]. In addition, the
work described in this article can be used by educators “in the trenches” focusing
on the actual deployment of a distributed functional video game module in the
classroom that is tightly-coupled with other work developed by students during
the semester.

3 A game in which players take discrete turns.

166 M.T. Morazán

A modest introduction to distributed programming for novices, with some
previous exposure to programming, is found in Realm of Racket (ROAR) [2].
This book is intended as a general introduction to programming using video
games and uses Racket (not the student languages) as the programming medium.
ROAR presents the development of a distributed video game, Hungry Henry, in
which players run around the screen eating cupcakes. Like the work presented
in this article, ROAR advocates that distributed programming is a natural part
of an introduction to programming. In contrast to the work presented in this
article, ROAR exposes readers only to the thick-server model (used in version 2
of Aliens Attack) and does not discuss the pitfalls of distributed programming.
The development outlined in ROAR is in the spirit of the design recipe presented
in this article, but does not explicitly put forth a design recipe for distributed
programming nor does it make explicit how to develop a distributed program
through a series of verifiable steps.

The use of functional video games in CS1 is a little more extensive, but still
just beginning to flourish. Soccer-Fun, developed using Clean, aims to motivate
students by having them write programs to play soccer games [1]. There have
been no reported efforts to make the platform distributed in order to allow
players to compete against each other nor has this platform been used in CS1.
Yampa is a language embedded in Haskell used to program reactive systems
such as video games [3]. The use of Yampa in the classroom appears to have
been mostly discontinued, but work using functional video games in CS1 [9,10]
has sparked an interest to reignite the use of Yampa in education. In previous
work, the author presents how to use video games to teach programming using
primitive data, structures, and structural recursion [9] and using generative and
accumulative recursion [10].

9 Concluding Remarks

Distributed programming ought and can be an integral part of CS1. The need
for distributed programming in CS1 is based on the undeniable fact that the use
of distributed computing is becoming ubiquitous. The argument for success with
distributed computing in CS1 is based on the illustrative development of a non-
trivial functional multiplayer video game in SHU’s CS1. Not a single function
needed for the presented multiplayer game is beyond the ability of students that
have studied structural recursion and the associated design recipes in HtDP. One
of the major advantages of including distributed functional video game develop-
ment in CS1 is that students become very excited about programming. There
is no doubt that students feel empowered when they can develop a distributed
application in a realm that is of interest to them. Another advantage is that stu-
dents think about programming issues early in their undergraduate years, thus,
providing a solid foundation for advanced courses.

Acknowledgements. The author thanks the plt-scheme and the plt-edu mail-
ing list community for the many frank and eye-opening discussions about teach-
ing programming, about HtDP, and about interesting programming projects for

Functional Video Games in CS1 III 167

students. The author also thanks Matthias Felleisen for our discussions about
distributing programming in CS1, for his feedback on the approach described in
this article, and for the “code walk” done with students at Seton Hall University
that implemented distributed Aliens Attack.

References

1. Achten, P.: Teaching Functional Programming with Soccer-Fun. In: FDPE 2008,
pp. 61–72. ACM, New York (2008)

2. Bice, F., De Maio, R., Florence, S., Lin, F.-Y.M., Lindeman, S., Nussbaum, N.,
Peterson, E., Plessner, R., Van Horn, D., Felleisen, M., Barski, C.: Realm of Racket.
No Starch Press (2013)

3. Courtney, A., Nilsson, H., Peterson, J.: The Yampa Arcade. In: Haskell 2003, pp.
7–18. ACM, New York (2003)

4. Felleisen, M., Findler, R., Fisler, K., Flatt, M., Krishnamurthi, S.: How to Design
Worlds (2008), http://world.cs.brown.edu/1/

5. Felleisen, M., Findler, R., Flatt, M., Krishnamurthi, S.: How to Design Programs:
An Introduction to Programming and Computing. MIT Press, Cambridge (2001)

6. Felleisen, M., Findler, R., Flatt, M., Krishnamurthi, S.: A Functional I/O System
or, Fun for Freshman Kids. In: ICFP 2009, pp. 47–58 (2009)

7. Findler, R.: CS 15100 Fall 2008 Project 3: ChatNoir. Dept. of Electr. Engr. and
Comp. Sci., Northwestern University (2008),
http://www.eecs.northwestern.edu/robby/uc-courses/15100-2008-fall/

proj3. pdf

8. Findler, R., Clements, J., Flanagan, C., Flatt, M., Krishnamurthi, S., Steckler, P.,
Felleisen, M.: DrScheme: A Programming Environment for Scheme. J. of Functional
Programming 12(2), 159–182 (2002)

9. Morazán, M.T.: Functional Video Games in the CS1 Classroom. In: Page, R.,
Horváth, Z., Zsók, V. (eds.) TFP 2010. LNCS, vol. 6546, pp. 166–183. Springer,
Heidelberg (2011)

10. Morazán, M.T.: Functional Video Games in CS1 II. In: Peña, R., Page, R. (eds.)
TFP 2011. LNCS, vol. 7193, pp. 146–162. Springer, Heidelberg (2012)

11. Fabien Sanglard. Quake 3 Source Code Review: Network Model (June 2012),
http://fabiensanglard.net/quake3/network.php

12. Silberschatz, A., Galvin, P.: Operating System Concepts. Addison-Wesley, Reading
(1994)

http://world.cs.brown.edu/1/
http://www.eecs.northwestern.edu/robby/uc-courses/15100-2008-fall/proj3.pdf
http://www.eecs.northwestern.edu/robby/uc-courses/15100-2008-fall/proj3.pdf
http://fabiensanglard.net/quake3/network.php

Author Index

Achten, Peter 107

Baaij, Christiaan 17

De Meuter, Wolfgang 91
Dinda, Peter 34

Findler, Robert Bruce 34
Flatt, Matthew 34

Gilray, Thomas 134

Harnie, Dries 91

Koopman, Pieter 107
Koutavas, Vasileios 76
Kuper, Jan 17

Lyde, Steven 125

Might, Matthew 125, 134
Morazán, Marco T. 58, 149

Plasmeijer, Rinus 107

Scholliers, Christophe 91

Spaccasassi, Carlo 76
Swaine, James 34

Tew, Kevin 34

Trancón y Widemann, Baltasar 1

	Preface
	Organization
	Table of Contents
	Total Functional Software Engineering Overview Paper
	1 Introduction
	2 Predicate Logic
	2.1 Two Worlds
	2.2 Enter Total Functions
	2.3 Simplification
	2.4 Discussion: Expressive Power

	3 Tabular Expressions
	3.1 Simple Example
	3.2 Complex Example
	3.3 Table Combinators
	3.4 General Table Model
	3.5 Functional Table Model

	4 Trace Function Method
	5 Conclusion
	References

	Using Rewriting to Synthesize Functional Languages to Digital Circuits
	1 Introduction
	1.1 Netlists and Synthesis

	2 Related Work
	3 Core Language
	3.1 Synthesis of CoreHW Using

	4 Eliminating Non-representable Types
	4.1 Rewrite Rules

	5 Discussion
	5.1 Completeness
	5.2 Termination

	6 Conclusions
	References

	Distributed Places
	1 Introduction
	2 Design
	3 HigherLevelAPIs
	3.1 RPC via Named Places
	3.2 Racket Message Passing Interface
	3.3 Map Reduce
	3.4 Nested Data Parallelism

	4 Implementation
	5 Distributed Places Performance
	6 Related Work
	7 Conclusion
	References

	Bytecode and Memoized Closure Performance
	1 Introduction
	2 Closures: Representation and Issues
	3 Intuitive Data-Structure Closure Elimination
	4 Illustrating the Compilation Process
	5 Bytecode Closures Implementation Strategies
	5.1 Strategy I: Inlined Functions
	5.2 Strategy II: Memoized Inlined Functions
	5.3 Strategy III: Memoized Auxiliary Inlined Functions

	6 Preliminary Empirical Results
	6.1 Benchmarks
	6.2 Measurements and Analysis

	7 Related Work
	8 Concluding Remarks
	References

	Towards Efficient Abstractions for Concurrent Consensus
	1 Introduction
	2 The TCML Language
	3 An Extensible Implementation Architecture
	4 Transactional Scheduling Policies
	5 Evaluation of the Interpreters
	6 Related Work and Conclusions
	References

	Blame Prediction
	1 Introduction
	2 Motivation
	3 Blame Prediction
	4 The Blame Prediction Transformation
	4.1 Type System
	4.2 Separation of Code and Type Tests
	4.3 Moving Type Tests Upwards

	5 Evaluation
	6 Related Work
	7 Conclusion
	References

	Model-Based Shrinking for State-Based Testing
	1 Introduction
	2 Conformance
	2.1 Testing Conformance
	2.2 Models for G∀st

	3 TheDesireforSmallTraces
	3.1 Assumptions

	4 Binary Search for Minimal Traces
	5 Shrinking
	5.1 Implementing Shrinking
	5.2 Eliminating Single Transitions
	5.3 Eliminating Larger Chunks of Inputs
	5.4 Eliminating Cycles

	6 Measuring the Effect of Shrinking
	6.1 Vending Machine Specification
	6.2 Vending Machine Implementations
	6.3 Measurements
	6.4 AVL Storage Testing
	6.5 Observations

	7 Conclusion
	References

	Control-Flow Analysis with SAT Solvers
	1 Introduction
	1.1 Motivation
	1.2 Accomplishments

	2 Preliminaries
	3 Encodings
	4 Additional Encoding Details
	4.1 Additional Encodings
	4.2 Enhancements
	4.3 Complexity

	5 Implementation and Evaluation
	5.1 Alternative Approach Using BDDs
	5.2 Alternative Approach Using MaxSAT

	6 Conclusion
	References

	A Survey of Polyvariance in Abstract Interpretations
	1 Abstract Interpretation
	1.1 CPS
	1.2 0-CFA
	1.3 Soundness
	1.4 Complexity

	2 Polyvariance
	2.1 k-CFA
	2.2 Exponential Complexity for k ≥ 1

	3 Object Sensitivity
	3.1 Closure Sensitivity

	4 The Cartesian Product Algorithm
	4.1 The Problem / Original Formulation
	4.2 Abstract Contour Formulation
	4.3 Precision and Complexity

	5 Practical Polyvariance
	5.1 Polymorphic Splitting
	5.2 Polynomial-Time 1-CFA

	6 TheFuture
	6.1 A Posteriori Soundness
	6.2 Precision-Adaptive Analyses

	7 Conclusion
	References

	Functional Video Games in CS1 III Distributed Programming for Beginners
	1 Introduction
	2 Background
	2.1 Student’s Design and Programming Experience
	2.2 The Universe Teachpack

	3 A Design Recipe for Distributed Computing
	4 Multiplayer Aliens Attack Version 1
	4.1 Problem Components
	4.2 New Data Definitions
	4.3 Communication Protocol Design
	4.4 Design Marshalling and Unmarshalling Functions and Data Definitions for Messages
	4.5 Component Implementation
	4.6 Server Implementation
	4.7 Testing

	5 Multiplayer Aliens Attack Version 2
	5.1 Problem Components
	5.2 Draft Data Definitions
	5.3 Communication Protocol Design
	5.4 Design Marshalling and Unmarshalling Functions and Data Definitions for Messages
	5.5 Component Implementation
	5.6 Server Implementation
	5.7 Testing

	6 Multiplayer Aliens Attack Version 3
	7 Student Assessment
	8 Related Work
	9 Concluding Remarks
	References

	Author Index

