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Abstract. In this paper an improved version of Particle Swarm Optimization 
(PSO) called Craziness based PSO (CRPSO) is considered as an efficient 
optimization tool for designing digital Infinite Impulse Response (IIR) filters. 
Apart from gaining better control on cognitive and social components of 
conventional PSO, the CRPSO dictates better performance due to incorporation 
of craziness parameter in the velocity equation of PSO. This modification in the 
velocity equation not only ensures the faster searching in the multidimensional 
search space but also the solution produced is very close to the global optimal 
solution. The effectiveness of this algorithm is justified with a comparative 
study of some well established algorithms, namely, Real coded Genetic 
Algorithm (RGA) and conventional Particle Swarm Optimization (PSO) with a 
superior CRPSO based outcome for the designed 8th order IIR low pass (LP), 
high pass (HP), band pass (BP) and band stop (BS) filters. Simulation results 
affirm that the proposed CRPSO algorithm outperforms its counterparts not 
only in terms of quality output, i.e., sharpness at cut-off, pass band ripple and 
stop band attenuation but also in convergence speed with assured stability. 

1 Introduction 

Signal carries information, but this information is getting contaminated with noise 
which is picked up mostly by electro magnetic means. So, at the receiving end to 
extract the information signal processing is executed on noise corrupted signal. 
Depending on nature of signal and point of application signal processing may be 
analog, digital or mixed in practice. Application of digital signal processing (DSP) 
has increased many folds as the production of DSP in bulk is easier as the basic 
operation is confined into mainly addition, multiplication and recalling of previous 
data. In digital filter design minimum number of discrete components are required 
that immunes the performance of designed filter from thermal drift. 

Digital filters are broadly classified into two main categories namely; finite 
impulse response (FIR) filter and infinite impulse response (IIR) filter [1-2]. The 
output of FIR filter depends on present and past values of input, so the name non-
recursive is aptly suited to this filter. On the other hand, the output of IIR filter 
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depends not only on previous inputs, but also on previous outputs with impulse 
responses continuing forever in time at least theoretically, so the name ‘recursive’ is 
aptly suited to this filter; anyway, a large memory is required to store the previous 
outputs for the recursive IIR filter. 

Hence, due to these aspects FIR filter realization is easier with the requirement of 
less memory space and design complexity. Ensured stability and linear phase 
response over a wide frequency range are the additional advantages. On the other 
hand, IIR filter distinctly meets the supplied specifications of sharp transition width, 
lower pass band ripple and higher stop band attenuation with ensured lower order 
compared to FIR filter. As a consequence, a properly designed IIR filter can meet the 
magnitude response close to ideal and more finely as compared to a FIR filter. Due to 
these challenging features with wide field of applications, performances of IIR filters 
designed with various optimization algorithms are compared to find out the 
effectiveness of algorithms and the best optimal IIR filter with assured stability.  

In the conventional design approach, IIR filters of various types (Butterworth, 
Chebyshev and Elliptic etc.) can be implemented with two methods. In the first case, 
frequency sampling technique is adopted for Least Square Error [3] and Remez 
Exchange [4] process. In the second method, filter coefficients and minimum order 
are calculated for a prototype low pass filter in analog domain which is then 
transformed to digital domain with bilinear transformation. This frequency mapping 
works well at low frequency, but in high frequency domain this method is liable to 
frequency warping [5]. 

IIR filter design is a highly challenging optimization problem. So far, gradient 
based classical algorithms such as steepest descent and quasi Newton algorithms have 
been aptly used for the design of IIR filters [6-7]. In general, these algorithms are very 
fast and efficient to obtain the optimum solution of the objective function for a 
unimodal problem. But the error surface (typically the mean square error between the 
desired response and estimated filter output) of IIR filter is multimodal and hence 
superior evolutionary optimization techniques are required to find out better near 
global solution. 

The shortfalls of classical optimization techniques for handling the multimodal 
optimization problem are as follows:  

• Requirement of continuous and differentiable error fitness function (cost or 
objective function), 

• Usually converges to the local optimum solution or revisits the same sub-optimal 
solution,  

• Incapable to search the large problem space,  
• Requirement of the piecewise linear cost approximation (linear programming),  

Highly sensitive to starting points when the number of solution variables is increased 
and as a result the solution space is also increased. 

So, it can be concluded that classical search techniques are only suitable for 
handling differentiable unimodal objective function with constricted search space. But 
the error surface of IIR filter is usually multimodal and non-differentiable. So the 
various evolutionary heuristic search algorithms are applied for filter optimization 
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problems, which are as follows: Genetic Algorithm (GA) is developed with the 
inspiration of the Darwin’s “Survival of the Fittest” strategy [8-9]; Simulated 
Annealing (SA) is designed from the thermodynamic effects [10]; Artificial Immune 
Systems (AIS) mimics the biological immune systems [11]; Ant Colony Optimization 
(ACO) simulates the ants’ food searching behaviour [12]; Bee Colony Optimization 
mimics the honey collecting behaviour of the bee swarm [13]; Cats Swarm 
Optimization(CSO) is based upon the behaviour of cats for tracing and seeking of an 
object [14]; and PSO and its variants simulate the behaviour of bird flocking or fish 
schooling [15-21]. 

Ecology based Predator-prey model as an evolutionary optimization technique is 
discussed in [22], where each prey is considered as a possible solution in search space 
which is chased by a predator in predefined region; Searching behaviour of human 
being is mimicked for the development of Seeker Optimization Algorithm (SOA) 
[23]; In Bacteria Foraging Optimization (BFO) technique food searching behaviour of 
E. Coli bacteria is mimicked [24]. 

Naturally, it is a vast area of research continuously being explored. In this paper, 
the capability of global searching and near optimum result finding features of GA, 
PSO and CRPSO are investigated thoroughly for solving 8th order IIR filter design 
problems. GA is a probabilistic heuristic search optimization technique developed by 
Holland [25]. The features such as multi-objective, coded variable and natural 
selection made this technique distinct and suitable for finding the near global solution 
of filter coefficients. 

Particle Swarm Optimization (PSO) is swarm intelligence based algorithm 
developed by Eberhart et al. [26-27]. Several attempts have been taken to design 
digital filter with basic PSO and its modified versions [15-21], [28-29]. The main 
attraction of PSO is its simplicity in computation and a few steps are required in the 
algorithm. 

The limitations of the conventional PSO are premature convergence and stagnation 
problem [30-31]. To overcome these problems an improved version of PSO called 
CRPSO is suggested by the authors for the design of 8th order digital IIR low pass 
(LP), high pass (HP), band pass (BP) and band stop (BS) filters. 

The paper is organized as follows: Basic structure of IIR filter along with the error 
fitness function is described in section 2. Different evolutionary algorithms namely, 
RGA, PSO and CRPSO are discussed in section 3. In section 4, comprehensive and 
demonstrative sets of data and illustrations are analyzed to make a floor of 
comparative study of performances among different algorithms. Finally, section 5 
concludes the paper.  

2 IIR Filter Design Formulation 

This section discusses the design strategy of IIR filter based on all concerned 
algorithms. The input-output relation is governed by the following difference  
equation [2].  
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where )( px and )( py  are the filter’s input and output, respectively, and )( mn ≥ is 

the filter’s order. With the assumption of coefficient, 10 =a  the transfer function of 

the IIR filter is expressed as: 
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Let .Ω= jez  Then, the frequency response of the IIR filter becomes 
 

                                                    





=

Ω−

=

Ω−

+
=Ω n

k

jk
k

m

k

jk
k

ea

eb
H

1

0

1
)(                                         (3) 

 

                        Ω−Ω−Ω−

Ω−Ω−Ω−

++++
++++=

Ω
Ω=Ω

jn
n

jj

jm
m

jj

ebeaea

ebebebb

X

Y
H

...1

...
)(
)(

)(
2

21

2
210                   (4) 

 

where 







=Ω

sf

fπ2  in [0, π] is the digital frequency; f is the analog 

frequency and sf is the sampling frequency. Different fitness functions are used for 

IIR filter optimization problems [32-34]. The commonly used approach to IIR filter 
design is to represent the problem as an optimization problem with the mean square 
error (MSE) as the error fitness function [34] expressed in (5). 
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where sN  is the number of samples used for the computation of the error fitness 

function; )( pd and )( py are the filter’s desired and actual responses, respectively. 

The difference )()()( pypdpe −= is the error between the desired and the actual 

filter responses. The design goal is to minimize the MSE )(ωJ  with proper 

adjustment of coefficient vector ω  represented as: 
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In this paper, a novel error fitness function given in (7) is adopted in order to 

achieve higher stop band attenuation and to have moderate control on the transition 
width. Using (7), it is found that the proposed filter design approach results in 
considerable improvement in stop band attenuation over other optimization 
techniques. 

 

    ( ) ( )( ) ( )( )1 1d p d sJ abs abs H abs H w
ω ω

ω ω δ δ   = − − + −        (7) 

 
For the first term of (7), ∈ω pass band including a portion of the transition band 

and for the second term of (7), ∈ω stop band including the rest portion of the 
transition band. The portions of the transition band chosen depend on pass band edge 
and stop band edge frequencies. 

The error fitness function given in (7) represents the generalized fitness function to 
be minimized using the evolutionary algorithms RGA, conventional PSO and the 

proposed CRPSO individually. Each algorithm tries to minimize this error fitness 1J  

and thus optimizes the filter performance. Unlike other error fitness functions as given 

in [32-34] which consider only the maximum errors, 1J involves summation of all 

absolute errors for the whole frequency band, and hence, minimization of 1J  yields 

much higher stop band attenuation and lesser pass band ripples. 

3 Evolutionary Algorithms Employed 

3.1 Real Coded Genetic Algorithm (RGA) 

Standard Genetic Algorithm (also known as real coded GA) is mainly a probabilistic 
search technique, based on the principles of natural selection and evolution built upon 
the Darwin’s “Survival of the Fittest” strategy [25]. Each encoded chromosome that 
constitutes the population is a solution to the filter designing optimization problem. 
These solutions may be good or bad, but are tested rigorously through the genetic 
operations such as crossover and mutation to evolve a global optimal or near global 
optimal solution of the problem at hand. Chromosomes are constructed over some 
particular alphabet {0, 1}, so that chromosomes’ values are uniquely mapped onto the 
real decision variable domain. Each chromosome is evaluated by a function known as 
fitness function, which is usually the fitness function or objective function of the 
corresponding optimization problem. Each chromosome has a probability of selection 
and has to take part in the genetic operation based upon the Roulette’s wheel strategy. 
In the genetic operations, crossover and mutation bring the variation in alleles of gene 
in the chromosome population along with the alleviation of trapping to local optimal 
solution. 
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Steps of RGA as implemented for the optimization of coefficient vector ω are as 
follows [35-36]: 

Step 1: Initialize the real coded chromosome strings (ω ) of pn = 120 population, 

each consisting of equal number of numerator and denominator filter coefficients 

kb and ka , respectively; total coefficients = (n+1)*2 for nth order filter to be 

designed; minimum and maximum values of filter coefficients, hmin = -2, hmax = 2; 

number of samples=128; =pδ 0.001, =sδ 0.0001; maximum iteration cycles= 400, 

n=8. 

Step 2: Decoding of the strings and evaluation of error fitness )(1 ωJ according  

to (7). 
Step 3: Selection of elite strings in order of increasing error fitness values from the 

minimum value. 
Step 4: Copying the elite strings over the non selected strings. 
Step 5: Crossover and mutation generate offspring. 
Step 6: Genetic cycle updating. 
Step 7: The iteration stops when maximum number of cycles is reached. The grand 

minimum error and its corresponding chromosome string or the desired solution 
having (n+1)*2 number of coefficients are finally obtained. 

3.2 Particle Swarm Optimization (PSO) 

PSO is flexible, robust, population based stochastic search algorithm with attractive 
features of simplicity in implementation and ability to quickly converge to a 
reasonably good solution. Additionally, it has the capability to handle larger search 
space and non-differential objective function, unlike traditional optimization methods. 
Eberhart et al. [26-27] developed PSO algorithm to simulate random movements of 
bird flocking or fish schooling. 

The algorithm starts with the random initialization of a swarm of individuals, 
which are known as particles within the multidimensional problem search space, in 
which each particle tries to move toward the optimum solution, where next movement 
is influenced by the previously acquired knowledge of particle best and global best 
positions once achieved by individual and the entire swarm, respectively. The features 
incorporated within this simulation are velocity matching of individuals with the 
nearest neighbour, elimination of ancillary variables and inclusion of 
multidimensional search and acceleration by distance. Instead of the presence of 
direct recombination operators, acceleration and position modification supplement the 
recombination process in PSO. Due to the aforementioned advantages and simplicity, 
PSO has been applied to different fields of practical optimization problems. 

To some extent, IIR filter design with PSO is already reported in [15-21], [28-29]. 

A brief idea about the algorithm for a D-dimensional search space with pn particles 

that constitutes the flock is presented here. Each thi particle is described by a position 
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vector as T
iDiii sssS ),...,,( 21= and velocity is expressed by 

T
iDiii vvvV ),...,,( 21= . 

The best position that the thi particle has reached previously                             
pbesti = (pi1, pi2,...,piD)T ,and group best is expressed as  gbest = (pg1, pg2,...,pgD)T. 

The maximum and minimum velocities are maxV , minV , respectively. 

T
DvvvV ),...,,( max2max1maxmax = and T

DvvvV ),...,,( min2min1minmin = . 

The positive constants ,1C 2C are related with accelerations and 21,randrand lie in 

the range [0, 1]. The inertia weight w is a constant chosen carefully to obtain fast 

convergence to optimum result. k denotes the iteration number. 

The basic steps of the PSO algorithm are as follows [19-21]: 

Step1: Initialize the real coded particles (ω ) of pn = 25 population, each consisting of 

equal number of numerator and denominator filter coefficients kb and ka , 

respectively; total coefficients D = (n+1)*2 for equal number numerator and 
denominator coefficients with nth order filter to be designed; minimum and maximum 
values of filter coefficients, hmin = -2, hmax = 2; number of samples=128; 

=pδ 0.001, =sδ 0.0001; maximum iteration cycles= 100 ; n= 8. 

Step 2: Compute the error fitness value for the current position iS of each particle 

Step 3: Each particle can remember its best position )( pbest which is known as 

cognitive information and that would be updated with each iteration. 

Step 4: Each particle can also remember the best position the swarm has ever 
attained )(gbest and is called social information and would be updated in each 

iteration. 

Step 5: Velocity and position of each particle are modified according to (8) and (9), 
respectively [26]. 

     ( 1) ( ) ( ) ( ) ( ) ( )
1 1 2 2{ } { }k k k k k k

i i i i i iV w V C rand pbest S C rand gbest S+ = ∗ + ∗ ∗ − + ∗ ∗ −  (8) 
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Step 6: The iteration stops when maximum number of cycles is reached. The grand 
minimum error fitness and its corresponding particle or the desired solution having 
(n+1)*2 number of coefficients are finally obtained. 



 An Efficient Craziness Based Particle Swarm Optimization Technique 237 

 

3.3 Craziness Based Particle Swarm Optimization (CRPSO) Technique 

The global search ability of above discussed conventional PSO is improved with the 
help of the following modifications. This modified PSO is termed as craziness based 
particle swarm optimization (CRPSO).  

The velocity in this case can be expressed as follows [37]: 
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where 1r , 2r  and 3r are the random parameters uniformly taken from the interval    

[0, 1] and )( 3rsign  is a function defined as: 
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The two random parameters 1rand   and 2rand  of (8) are independent. If both 

are large, both the personal and social experiences are over used and the particle is 
driven too far away from the local optimum. If both are small, both the personal and 
social experiences are not used fully and the convergence speed of the technique is 

reduced. So, instead of taking independent 1rand and 2rand , one single random 

number 1r  is chosen so that when 1r   is large, )1( 1r−  is small and vice versa. 

Moreover, to control the balance between global and local searches, another random 

parameter 2r is introduced. For birds’ flocking for food, there could be some rare 

cases that after the position of the particle is changed according to (9), a bird may not, 
due to inertia, fly towards a region at which it thinks is most promising for food. 
Instead, it may be leading toward a region which is in opposite direction of what it 
should fly in order to reach the expected promising regions. So, in the step that 
follows, the direction of the bird’s velocity should be reversed in order for it to fly 
back to the promising region. )( 3rsign  is introduced for this purpose. In birds’ 

flocking or fish schooling, a bird or a fish often changes directions suddenly. This is 
described by using a ‘‘craziness’’ factor and is modelled in the technique by using a 
craziness variable. A craziness operator is introduced in the proposed technique to 
ensure that the particle would have a predefined craziness probability to maintain the 
diversity of the particles. Consequently, before updating its position the velocity of 
the particle is crazed by, 
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where 4r  is a random parameter which is chosen uniformly within the interval      

[0, 1]; crazinessv is a random parameter which is uniformly chosen from the 
interval ],[ maxmin

ii vv ; and )( 4rp and )( 4rsign   are defined, respectively, as: 
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where crP  is a predefined probability of craziness. 

The steps of CRPSO algorithm are as follows: 
Step 1: Population is initialized for a swarm of np vectors, in which each vector 
represents a solution of filter coefficient values. 
Step 2: Computation of initial cost values of the total population, nP. 
Step 3: Computation of population based minimum cost value, i.e., the group best 
solution vector (gbest) and computation of the personal best solution vectors (pbest). 
Step 4: Updating the velocities as per (10) and (12); updating the particle vectors as 
per (9) and checking against the limits of the filter coefficients; finally, computation 
of the updated cost values of the particle vectors and population based minimum cost 
value. 
Step 5: Updating the pbest vectors, gbest vector; replace the updated particle vectors 
as initial particle vectors for step 4. 
Step 6: Iteration continues from step 4 till the maximum iteration cycles or the 
convergence of minimum cost values are reached; finally, gbest is the vector of 
optimal IIR filter coefficients. 
The justifications of choosing the value of different CRPSO parameters are as 
follows: 

Reversal of the direction of bird’s velocity should rarely occur; to achieve this, 

05.0r3 ≤  (a very low value) is chosen when ( )3rsign  will be -1 to reverse the 

direction. If crP  is chosen less or, equal to 0.3, the random number 4r  will have more 

probability to become more than crP , in that case, craziness factor ( )4rP  will be zero 

in most cases, which is actually desirable, otherwise heavy unnecessary oscillations 
will occur in the convergence curve near the end of the maximum iteration cycles as 

referred to (9). crazinessv  is chosen very small (=0.0001) as shown in Table 2. 
0.5r4 ≥  or, <0.5 is chosen to introduce equal probability of direction reversal of 

crazinessv as referred to (12). 
The design objective in this paper is to obtain the optimal combination of the IIR 

LP, HP, BP and BS filter coefficients, so as to acquire the maximum stop band 
attenuation with the least transition width. Here lies the author’s contribution that this 
design objective has been attained by the proposed CRPSO technique.  The values of 
the parameters used for RGA, PSO and CRPSO techniques are given in Table 2. 
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4 Simulation Results and Discussions 

Extensive simulation study has been performed for comparison of optimization 
performances of three algorithms namely, RGA, PSO, and CRPSO, respectively, for 
the 8th order IIR LP, HP, BP and BS filter optimization problems. The design 
specifications followed for all algorithms are given in Table 1. 

The values of the control parameters of RGA, PSO, and CRPSO are given in Table 
2. Each algorithm is run for several times to get the best solution and the best results 
are reported in this paper. All optimization programs are run in MATLAB 7.5 version 
on core (TM) 2 duo processor, 3.00 GHz with 2 GB RAM. 

Three aspects of the algorithms are investigated in this work namely, their 
accuracy, speed of convergence and stability. Figures 1, 4, 7 and 10 show the 
comparative gain plots in dB for the designed 8th order IIR LP, HP, BP and BS filters 
obtained for different algorithms. Normalized gain plots are shown in Figures 2, 5, 8 
and 11 for the comparative study of 8th order IIR LP, HP, BP and BS filters. The best 
optimized numerator coefficients )( kb and denominator coefficients )( ka obtained 

after completion of predefined iteration cycles are reported in Tables 3, 6, 9 and 12. 
The values of statistical parameters for stop band attenuation in dB for 8th order IIR 
LP, HP, BP and BS filters designed using RGA, PSO, and CRPSO, respectively, are 
presented in Tables 4, 7, 10 and 13. Tables 5, 8, 11 and 14 show the maximum pass 
band ripple (normalized), maximum, minimum, average stop band ripple 
(normalized), and the transition widths for 8th order IIR LP, HP, BP and BS filters 
designed using RGA, PSO and CRPSO, respectively. From the above tables and 
figures it can be explored that the proposed 8th order IIR filter designed with CRPSO 
attains the highest stop band attenuation in all cases with comparatively good figures 
for the rest of the parameters, such as stop band and pass band ripples, transition 
width etc. Figures 5, 8, 11 and 14 show the pole-zero plots for all 8th order IIR filters 
concerned with this paper for CRPSO based technique. These figures demonstrate the 
existence of poles within the unit circle which ensures the bounded input bounded 
output (BIBO) stability condition for the designed IIR filters. 
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Fig. 1. Gain plots in dB for 8th order IIR LP filter using RGA, PSO and CRPSO 
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Table 1. Design Specifications of IIR LP, HP, BP and BS Filters 

Filter 

Type 

Pass band 

ripple (δp) 

Stop band 

ripple (δs) 

Pass band 

normalized 

edge frequency 

(ωp) 

Stop band 

normalized 

edge frequency 

(ωs) 
LP [19] 0.001 0.0001 0.35 0.40 

HP 0.1 0.01 0.35 0.30 
BP 0.1 0.01 0.35 and 0.65 0.3 and 0.7 
BS 0.1 0.01 0.25 and 0.75 0.3 and 0.7 

  

Table 2. Control Parameters of RGA, PSO and CRPSO 

Parameters RGA PSO CRPSO 
Population size 120 25 25 
Iteration cycles 400 100 100 
Crossover rate 1 - - 

Crossover Two Point Crossover - - 
Mutation rate 0.01 - - 

Mutation Gaussian Mutation - - 
Selection Roulette - - 

Selection probability 1/3 - - 
C1, C2 - 2.05, 2.05 2.05, 2.05 

min
iv

, 

max
iv

 

- 0.01, 1.0 0.01, 1.0 

wmax, wmin - 1.0, 0.4 - 

crp
 

- - 0.3 

crazinessv  
- - 0.0001 

 

Table 3. Optimized Coefficients and Performance Comparison of Concerned Algorithms for 
8th Order IIR LP Filter 

Algorithms Num. Coeff. 

(bk) 

Den. Coeff. 

(ak) 

Max.  Stop  

 Band Attenuation (dB) 

RGA 
0.0167 0.0059 0.0434 
0.0234 0.0451 0.0302 
0.0277 0.0120 0.0092 

0.9996 -3.5213 7.1631 
-9.4231 8.7904 -5.7905 
2.6429 -0.7583  0.1066 

20.000 

PSO 
0.0165  0.0060 0.0423 
0.0237 0.0454  0.0286 
0.0275  0.0122 0.0073 

0.9996 -3.5201 7.1638 
-9.4233 8.7894 -5.7906 
2.6430 -0.7593 0.1072 

21.5683 

CRPSO 
0.0169  0.0054 0.0424 
0.0228  0.0456  0.0285 
0.0275  0.0115  0.0092 

0.9990 -3.5209 7.1621 
-9.4221 8.7896 -5.7908 
2.6431 0.7587  0.1072 

33.1170 

  
 
 



 An Efficient Craziness Based Particle Swarm Optimization Technique 241 

 

Table 4. Statistical Results for Stop Band Attenuation (dB) for 8th Order IIR LP Filter 

Algorithm Maximum Mean Variance Standard 

Deviation 
RGA 20.0000 42.9281 263.0129 16.2177 
PSO 21.5683 44.5499 264.6049 16.2667 

CRPSO 33.1170 48.3590 80.5940 8.9774 
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Fig. 2. Normalized gain plots for 8th order IIR LP filter using RGA, PSO and CRPSO 
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Fig. 3. Pole-zero plot of 8th order IIR LP filter using CRPSO 
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Table 5. Qualitatively Analyzed Results for 8th Order IIR LP Filter 

Algorithm Maximum  

Pass band ripple  

(normalized) 

Stop band ripple (normalized) Transition  

Width Maximum Minimum Average 

RGA 0.0214 0.1000 7.3286 ×10-4 5.0366×10-2 0.0341 
PSO 0.0500 0.0835 1.0000×10-3 4.2250×10-2 0.0216 

CRPSO 0.0086 0.0221 1.0000×10-4 1.1100×10-2 0.0370 

Table 6. Optimized Coefficients and Performance Comparison of Concerned Algorithms for 
8th order IIR HP filter 

Algorithms Num. Coeff. 

(bk) 

Den. Coeff. 

(ak) 

Max.  Stop   

Band Attenuation (dB) 

RGA 

0.1250 -0.7092 1.9588 

-3.3672 3.9090 -3.1264 

1.6821 -0.5585 0.0881 

0.9999 -2.1875 3.8221 

-3.6220 2.9095 -1.3332 

0.5678 -0.0861 0.0285 

46.2199 

PSO 

0.1252 -0.7091 1.9587 

-3.3671 3.9091 -3.1263 

1.6821 -0.5584 0.0881 

1.0001 -2.1874 3.8222 

-3.6220 2.9096 -1.3333 

0.5678 -0.0861 0.0285 

47.7018 

CRPSO 

0.1252 -0.7091 1.9587 

-3.3672 3.9090 -3.1263 

1.6820 -0.5584 0.0883 

1.0000 -2.1874 3.8223 

-3.6220 2.9094 -1.3334 

0.5679 -0.0861 0.0284 

49.9710 

Table 7. Statistical Results for Stop Band Attenuation (dB) for 8th Order IIR HP Filter 

Algorithm Maximum Mean Variance Standard 

Deviation 
RGA 46.2199 49.8589 13.2467 2.6391 
PSO 47.7018 50.7807 9.4796 3.0789 

CRPSO 49.9710 53.1421 3.8708 1.9674 
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Fig. 4. Gain plots in dB for 8th order IIR HP filter using RGA, PSO and CRPSO 
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Table 8. Qualitatively Analyzed Results for 8th Order IIR HP Filter 

Algorithm Maximum 

Pass Band Ripple 

(normalized) 

Stop Band Ripple (normalized) Transition 

Width Maximum Minimum Average 

RGA 0.0146 0.48863×10-2 0.39587×10-4 0.24629×10-2 0.0598 
PSO 0.0186 0.41201×10-2 0.47667×10-4 0.20839×10-2 0.0500 

CRPSO 0.0356 0.31726×10-2 6.2291×10-4 0.18978×10-2 0.0349 

Table 9. Optimized Coefficients and Performance Comparison of Concerned Algorithms for 
8th order IIR BP filter 

Algorithms Num. Coeff. 
(bk) 

Den. Coeff. 
(ak) 

Max. 
Stop Band 

Attenuation 
(dB) 

RGA 
0.1369 -0.0069 -0.0200 
-0.0043 0.1897 0.0069 
-0.0338 -0.0056 0.1253 

0.9971 -0.0075 1.5866 
-0.0094 1.7020 0.0000 
0.8246 -0.0025 0.2247 

18.2445 

PSO 
0.1274 0.0071 -0.0209 
0.008 0.1857 0.0001 

-0.0292 -0.0052 0.1299 

0.9927 -0.002 1.5940 
0.0029 1.6978 -0.0002 
0.8079 -0.0034 0.2058 

20.1389 

CRPSO 
0.1082 -0.0078 -0.0233 
0.0018 0.1561 -0.0033 
-0.0273 -0.0015 0.1037 

1.0001 -0.0062 1.6899 
0.0028 1.7556 -0.0023 
0.8516 -0.0078 0.2038 

22.7295 
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Fig. 5. Normalized gain plots for 8th order IIR HP filter using RGA, PSO and CRPSO 
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Fig. 6. Pole-zero plot of 8th order IIR HP filter using CRPSO 

Table 10. Statistical Results for Stop Band Attenuation (dB) for 8th Order IIR BP Filter 

Algorithm Maximum Mean Variance Standard Deviation 
RGA 18.2445 20.3032 4.2382 2.0587 
PSO 20.1389 21.4826 1.8054 1.3437 

CRPSO 22.7295 24.4450 1.1011 1.0493 
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Fig. 7. Gain plots in dB for 8th order IIR BP filter using RGA, PSO and CRPSO 
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Fig. 8. Normalized gain plots for 8th order IIR BP filter using RGA, PSO and CRPSO 
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Fig. 9. Pole-zero plot of 8th order IIR BP filter using CRPSO 

Table 11. Qualitatively Analyzed Results for 8th Order IIR BP Filter 

Algorithm Maximum 

Pass Band Ripple 

(normalized) 

Stop band ripple (normalized) Transition  

Width Maximum Minimum Average 

RGA 0.0134 12.24×10-2 12.0000×10-3 6.7200×10-2 0.0311 
PSO 0.0399 9.84×10-2 3.7771×10-3 5.1089×10-2 0.0277 

CRPSO 0.0578 7.30×10-2 1.4313×10-3 3.7200×10-2 0.0409 
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Table 12. Optimized Coefficients and Performance Comparison of Concerned Algorithms for 
8th order IIR BS filter 

Algorithms Num. Coeff.(bk) Den. Coeff. (ak) Max.  Stop  Band 

 Attenuation (dB) 

RGA 
0.2269 -0.0189 0.5039 
0.0170  0.6409 -0.0136 
0.4866  0.0093 0.2189 

1.0190 -0.0067 0.0968 
0.0109  0.8671  0.0180 
-0.0322  0.0177 0.1182 

17.4734 

PSO 
0.2142 -0.0058 0.4833 
-0.0008 0.6503 0.0097 
0.4976 0.0041 0.2091 

1.0073 -0.0069 0.0980 
-0.0077 0.8902 -0.0073 
-0.0198 -0.0048  0.1089 

21.9740 

CRPSO 
0.2144 -0.0083 0.4817 
-0.0055 0.6589  0.0001 
0.4841  0.0050 0.2162 

0.9959 -0.0061   0.0894 
0.0040  0.8909   0.0038 
-0.0273 -0.0003 0.1095 

23.8659 

Table 13. Statistical Results for Stop Band Attenuation (dB) for 8th Order IIR BS Filter 

Algorithm Maximum Mean Variance Standard 

Deviation 
RGA 17.4734 21.0867 13.0559 3.6133 
PSO 21.9740 24.1658 4.8038 2.1918 

CRPSO 23.8659 24.8641 0.5169 0.7190 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-60

-50

-40

-30

-20

-10

0

10

Frequency

M
ag

ni
tu

de
 (

dB
)

 

 

RGA
PSO
CRPSO

 

Fig. 10. Gain plots in dB for 8th order IIR BS filter using RGA, PSO and CRPSO 
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Fig. 11. Normalized gain plots for 8th order IIR BS filter using RGA, PSO and CRPSO 
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Fig. 12. Pole-zero plot of 8th order IIR BS filter using CRPSO 

Table 14. Qualitatively Analyzed Results for 8th Order IIR BS Filter 

Algorithm Maximum 

Pass Band Ripple 

(normalized) 

Stop Band Ripple (normalized) Transition  

Width Maximum Minimum Average 

RGA 0.0268 13.38×10-2 30.6000×10-3 8.2200×10-2 0.0535 
PSO 0.0303 7.97×10-2 5.8373×10-3 4.2769×10-2 0.0377 

CRPSO 0.0344 6.41×10-2 1.4978×10-3 3.2799×10-2 0.0410 
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Table 15. Comparison of Performance Criteria among algorithms published in relevant 
literatures 

Reference Proposed 
Algorithm 

Filter  
Type 

Order Stop Band  
Attenuation (dB) 

Max. Pass  
Band Ripple 

Max. Stop  
Band Ripple 

Transition  
Width 

Luitel et al.
[32]

DE-PSO LP 9th 25 0.257 0.259 NR*

Luitel et al.
[33]

PSO-QI LP 9th 27 0.808 0.793 NR*

Karaboga
et al. [34]

GA LP 9th 14 NR* NR* NR*

LP 6th 29 NR* NR* NR*Gao et al.
[38]

DC
HP 6th 42 NR* NR* NR*

Xue et al.
[39]

GA LP 7th 15 NR* NR* NR*

LP 8th 33.1170 0.0086 0.00221 0.0370
HP 8th 49.9710 0.0356 0.31726 e-2 0.0349
BP 8th 22.7295 0.0578 7.30 e-2 0.0409

Present
paper

CRPSO

BS [21] 8th 23.8659 0.0344 6.41 e-2 0.0410
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Fig. 13. Convergence profiles for RGA for 8th order IIR BS filter 
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Fig. 14. Convergence profiles for PSO for 8th order IIR BS 
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Fig. 15. Convergence profiles for CRPSO for 8th order IIR BS 

 
Comparative study of results in terms of order, maximum attenuation, transition 

width, pass band and stop band ripples of IIR filters designed with different 
approaches adopted in different published literatures are reported in Table 15. Luitel 
et al. [32] proposed DE-PSO algorithm for the design of 9th order LP filter and 
maximum stop band attenuation, pass band and stop band ripples of approximately 25 
dB, 0.257 and 0.259, respectively. Again, in [33], Luitel et al. proposed PSO-QI 
algorithm for the design of 9th order LP filter with the values of maximum stop band 
attenuation, pass band and stop band ripples of 27 dB, 0.808 and 0.793, respectively. 
Karaboga et al. proposed GA for the design of 9th order LP filter and the maximum 
value of stop band attenuation as 14 dB was reported in [34]. Gao et al. proposed 
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differential cultural algorithm for the design of 6th order LP and HP filters in [38]. 
Maximum stop band attenuations of 29 dB and 42 dB for LP and HP filters, 
respectively, were reported there. Xue et al. also proposed GA for the design of 7th 
order LP filter and maximum stop band attenuation of 15 dB was reported in [39]. In 
the present paper CRPSO is proposed for the design of 8th order LP, HP, BP and BS 
filters. With this optimization technique, values of maximum stop band attenuation 
are 33.1170 dB, 49.9710 dB, 22.7295 dB and 23.8659 dB; maximum pass band ripple 
are 0.0086, 0.0356, 0.0578 and 0.0344; maximum stop band ripple are 0.221×102, 
0.31726×10-2, 7.30×10-2 and 6.41×10-2 and transition widths are 0.0370, 0.0349, 
0.0409 and 0.0410 are obtained for LP, HP, BP and BS filters, respectively. So, 
CRPSO yields consistently higher stop band attenuation, lower stop band ripples with 
moderate control on the transition width and pass band ripples.  

4.1 Comparison of Effectiveness and Convergence Profiles of RGA, PSO and 
CRPSO 

Figures 13-15 depict the convergences of error fitness values obtained by RGA, PSO, 
and CRPSO for the 8th order IIR BS filter. Similar plots can also be obtained for the 
rest of the filters, which are not shown here. 

As shown in Figures 13-15, RGA, PSO and CRPSO take 379, 85 and 79 iteration 
cycles to reach the error value of 4.043, 2.105 and 1.461, respectively, from which it 
can be concluded the CRPSO based approach finds the near sub-optimal solution of 
filter coefficients most fleetly among others with ensured grand minimum error value. 
With consideration of above facts and Figures 13-15, it can be easily inferred that the 
proposed CRPSO based optimization technique not only obtains the lowest error 
fitness value but also fast enough to achieve that. With a view to the above fact, it 
may finally be concluded that the performance of the CRPSO is the best among the 
three mentioned algorithms. All optimization programs are run in MATLAB 7.5 
version on core (TM) 2 duo processor, 3.00 GHz with 2 GB RAM.  

5 Conclusions 

In this paper, a stochastic optimization algorithm, CRPSO, is applied to the optimal 
design of 8th order low pass, high pass, band pass and band stop IIR digital filters. 
The proposed filter design algorithm, CRPSO, is based upon the PSO in which pitfalls 
of conventional PSO have been judiciously managed with the perspective of closely 
mimicking the behaviour of fish in a school. The optimal filters thus obtained meet 
the stability criterion and show the best attenuation characteristics with reasonably 
good transition widths. The CRPSO algorithm converges very fast to the best quality 
optimal solution and reaches the lowest minimum error fitness value in the shortest 
number of iteration cycles. Statistically analysed results obtained for the CRPSO also 
justify the potential of the proposed algorithm for the realization of digital IIR filters.  
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