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LNCS Transactions on Computational Science

Computational science, an emerging and increasingly vital field, is now widely
recognized as an integral part of scientific and technical investigations, affecting
researchers and practitioners in areas ranging from aerospace and automotive re-
search to biochemistry, electronics, geosciences, mathematics, and physics. Com-
puter systems research and the exploitation of applied research naturally comple-
ment each other. The increased complexity of many challenges in computational
science demands the use of supercomputing, parallel processing, sophisticated
algorithms, and advanced system software and architecture. It is therefore in-
valuable to have input by systems research experts in applied computational
science research.

Transactions on Computational Science focuses on original high-quality re-
search in the realm of computational science in parallel and distributed en-
vironments, also encompassing the underlying theoretical foundations and the
applications of large-scale computation.

The journal offers practitioners and researchers the opportunity to share com-
putational techniques and solutions in this area, to identify new issues, and to
shape future directions for research, and it enables industrial users to apply
leading-edge, large-scale, high-performance computational methods.

In addition to addressing various research and application issues, the journal
aims to present material that is validated – crucial to the application and ad-
vancement of the research conducted in academic and industrial settings. In this
spirit, the journal focuses on publications that present results and computational
techniques that are verifiable.

Scope

The scope of the journal includes, but is not limited to, the following computa-
tional methods and applications:

• Aeronautics and Aerospace
• Astrophysics
• Bioinformatics
• Climate and Weather Modeling
• Communication and Data Networks
• Compilers and Operating Systems
• Computer Graphics
• Computational Biology
• Computational Chemistry
• Computational Finance and Econometrics
• Computational Fluid Dynamics



VI LNCS Transactions on Computational Science

• Computational Geometry
• Computational Number Theory
• Computational Physics
• Data Storage and Information Retrieval
• Data Mining and Data Warehousing
• Grid Computing
• Hardware/Software Co-design
• High-Energy Physics
• High-Performance Computing
• Numerical and Scientific Computing
• Parallel and Distributed Computing
• Reconfigurable Hardware
• Scientific Visualization
• Supercomputing
• System-on-Chip Design and Engineering



Editorial

The Transactions on Computational Science journal is part of the Springer series
Lecture Notes in Computer Science, and is devoted to the gamut of computa-
tional science issues, from theoretical aspects to application-dependent studies
and the validation of emerging technologies.

The journal focuses on original high-quality research in the realm of com-
putational science in parallel and distributed environments, encompassing the
facilitating theoretical foundations and the applications of large-scale computa-
tions and massive data processing. Practitioners and researchers share computa-
tional techniques and solutions in the area, identify new issues, and shape future
directions for research, as well as enable industrial users to apply the presented
techniques.

The current volume is devoted to recent advancements in the field of nature-
inspired computing and applications. The issue provides an in-depth overview
of current research on neurocomputing, evolutionary algorithms, swarm intelli-
gence, artificial immune systems, membrane computing, computing with words,
artificial life, and hybrid approaches. This special issue is aimed at practitioners,
researchers, and post-graduate students who are engaged in developing and ap-
plying advanced nature-inspired computational techniques from both theoretical
and practical points of view. Some articles are extended versions of conference
papers previously published at the Nature and Biologically Inspired Computing
(NaBIC) Congress, while others are direct submissions to the special issue.

We would like to extend our sincere appreciation to Guest Editor Prof. Ajith
Abraham, to all of the authors for submitting their papers to this special issue,
and the associate editors and referees for their valuable work. We would like to
express our gratitude to the LNCS editorial staff of Springer, who supported us
at every stage of the project.

It is our hope that the fine collection of papers presented in this special issue
will be a valuable resource for Transactions on Computational Science readers
and will stimulate further research into the vibrant area of computational science
applications.

October 2013 Marina L. Gavrilova
C.J. Kenneth Tan



Special Issue on Innovations in Nature-Inspired

Computing and Applications
Guest Editor’s Preface

Nature-inspired computation is a general term referring to computing inspired
by nature. It is an emerging interdisciplinary area in computer science and due to
its success in dealing with large, complex, and dynamic problems, it has become
a household name for solving real-world problems. The main idea is to mimic
the complex phenomena (concepts, principles, and mechanisms) occurring in
nature as computational processes in order to enhance the way computation is
performed from a problem solving point of view. Some of the key paradigms
falling under this umbrella are neurocomputing, evolutionary algorithms, swarm
intelligence, artificial immune systems, membrane computing, computing with
words, artificial life, hybrid approaches, etc. Articles were selected on the basis of
fundamental ideas and concepts rather than the direct usage of well-established
techniques. This special issue is aimed at practitioners, researchers, and post-
graduate students who are engaged in developing and applying advanced nature-
inspired computational techniques from a theoretical point of view and also to
solve real-world problems. It constitutes a collection of 15 articles reflecting some
of the current technological innovations in the field of nature-inspired computa-
tion and its real world applications. The papers are arranged as follows.

In the first article, Veenhuis presents a novel function optimization algorithm
inspired from Wikipedia, which uses a collaborative web community of authors
to improve the quality of articles. The author introduces a community opti-
mization algorithm by mimicking a collaborative web community, which edits or
improves a knowledge base. The knowledge base represents the problem to be
solved and the different decision variables represent different topics contained
in this knowledge base. The algorithm is tested on eight well-known benchmark
problems for lower as well as higher dimensions.

The diffusion of innovation theory explains how new ideas are disseminated
among social system members. Sampaio et al. in the second article propose the
use of evolutionary algorithms for the simulation of innovation diffusion within
organizations. To overcome some of the problems inherent in the conventional
evolutionary algorithm a probabilistic approach is also incorporated.

In the sequel, Jha et al. evaluate the performance of a robot by empowering
it with a decision-making capability, which uses synthetic emotions. The authors
attempted to make the robot perform high-profile tasks rather than menial ones
so as to increase its utility.

Biogeography-based optimization is a population-based algorithm that is
inspired by biogeography, which describes the immigration and emigration of
species between habitats. Goel et al. in the fourth article present a land cover
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feature extraction technique based on the extended species abundance model of
biogeography and the algorithm has been successfully tested on two different
multi-spectral satellite image datasets.

In the fifth paper, Madureira et al. describe the developing issues for ant-
colony system-based optimization tools to support decision-making processes
and solve the problem of generating a sequence of jobs that minimizes the total
weighted tardiness for a set of jobs to be processed in a single machine.

Many real-world optimization problems present themselves in a multi-
objective setting (where each of the objectives portrays different aspects of the
problem). Ganesan et al. in the sixth article propose the weighted sum scalar-
ization approach using differential evolution, chaotic differential evolution, and
gravitational search algorithms to generate the approximate Pareto frontier.

In the sequel, Dutta et al. present a real-coded multi-objective genetic al-
gorithm based K- clustering method, where a genetic algorithm is exploited to
search for suitable clusters and centers of clusters so that intra-cluster distance
and inter-cluster distances are simultaneously optimized. The authors attempted
to simultaneously tackle dimensionality reduction and optimization of objectives
using the multi-objective genetic algorithm.

The scheduling problem is considered to be an NP-complete combinatorial
optimization problem and during the past few decades, researchers have used
different meta-heuristics to solve such complex problems. However, most of these
meta-heuristic techniques require extensive parameter tuning, which is again a
very hard and time-consuming task to perform. Periera et al. in the eighth article
propose a case-based reasoning module to solve the parameter-tuning problem
in a multi-agent scheduling system.

Dı́az-Parra and Ruiz-Vanoye in the ninth paper propose a vertical transfer
algorithm for solving the school bus routing problem. The vertical transfer al-
gorithm uses the clusterization population pre-selection operator, tournament
selection, crossover-k operator, and an intelligent mutation operator.

In the tenth paper, Saha et al. propose craziness-based particle swarm op-
timization for designing digital Infinite Impulse Response (IIR) filters. Experi-
mental results illustrate that apart from gaining better control on cognitive and
social components of the conventional particle swarm optimization algorithm,
the craziness-based particle swarm optimization offers better performance.

The prisoner’s dilemma game has emerged as the most promising mathemat-
ical metaphor for studying cooperation. Wang et al. conduct simulations with
four different types of neighbourhood structures, and agents update their strate-
gies by probabilistically imitating the strategies of better performing neighbours.
During the evolution each agent can modify its own strategy and/or personal
feature via a particle swarm optimization approach in order to improve the
utility.

Polášek and Uhlár in the twelfth paper propose a method for extracting, iden-
tifying, and visualizing topics, code tiers, users, and authors in software projects.
The methodology can extract topics and visualize them in 3D graphs and then
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developers within and outside the teams can receive and utilize visualized infor-
mation from the code and apply it to their projects.

Navrat and Sabo present an approach, inspired by honey bees, that allows
exploring the World Wide Web by extracting keywords relevant to current news
stories. Honey bees cooperate together to select random keywords and carry
them from one article to another, landing only on the articles relevant to the
keyword.

In the fourteenth article, Raeesi and Kobti introduce the Variable Neighbor-
hood Search (VNS) metaheuristic. VNS is hybridized with Differential Evolution
(DE) incorporating explorative evolutionary operators and sub-populations to
improve the population diversity. The algorithms are then validated on classical
job shop scheduling problems.

In the final paper, Snasel et al. illustrate a growing self-organizing grid
method for knowledge discovery and visualization for the analysis of emergency
call-taking information systems and their data characteristics. To handle the
massive data, the growing grid algorithm is implemented in a parallel environ-
ment using compute unified device architecture. Experimental results illustrate
that the proposed method is very efficient.

I would like to thank our peer-reviewers for their diligent work and timely
efforts. We are also grateful to the Editor-in-Chief of Springer’s LNCS Transac-
tions on Computational Science, Prof. Marina Gavrilova, University of Calgary,
Canada, for her continued support and for the opportunity to organize this spe-
cial issue. We hope that the readers will enjoy reading this special issue and find
it useful.
Acknowledgments: This work was also performed within the framework of the
IT4 Innovations Centre of Excellence project, reg. no. CZ.1.05/1.1.00/02.0070
by operational programme ‘Research and Development for Innovations’ funded
by the Structural Funds of the European Union and state budget of the Czech
Republic, EU.

October 2013 Ajith Abraham



LNCS Transactions on Computational

Science – Editorial Board

Marina L. Gavrilova, Editor-in-Chief University of Calgary, Canada
Chih Jeng Kenneth Tan, Editor-in-Chief CloudFabriQ Ltd., UK
Tetsuo Asano JAIST, Japan
Brian A. Barsky University of California at Berkeley, USA
Alexander V. Bogdanov Institute for High Performance Computing

and Data Bases, Russia
Martin Buecker Aachen University, Germany
Rajkumar Buyya University of Melbourne, Australia
Hyungseong Choo Sungkyunkwan University, South Korea
Danny Crookes Queen’s University Belfast, UK
Tamal Dey Ohio State University, USA
Ivan Dimov Bulgarian Academy of Sciences, Bulgaria
Magdy El-Tawil Cairo University, Egypt
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Community Optimization

Christian B. Veenhuis

Berlin University of Technology
Berlin, Germany

veenhuis@googlemail.com

Abstract. In recent years a number of web-technology supported com-
munities of humans have been developed. Such a web community is
able to let emerge a collective intelligence with a higher performance
in solving problems than the single members of the community. Thus,
collective intelligence systems are explicitly designed to take advantage of
these increased capabilities. A well-known collective intelligence system
is Wikipedia, the web encyclopedia. It uses a collaborative web commu-
nity of authors, which improves and completes the content of articles.
The quality of a certain number of these articles comes close to some de-
gree to that of a famous printed encyclopedia. Based on such successes of
collective intelligence systems, the question arises, whether such a collab-
orative web community could also be capable of function optimization.

This paper introduces an optimization algorithm called Community
Optimization (CO), which optimizes a function by simulating a collabo-
rative web community, which edits or improves an article-base, or, more
general, a knowledge-base. The knowledge-base represents the problem
to be solved and is realized as a real valued vector. The different vector
components (decision variables) represent different topics contained in
this knowledge-base. Thus, the dimension of the problem is the num-
ber of topics to be improved by the simulated community, whereby the
dimension remains static. In order to realize this, CO implements a be-
havioral model of collaborative human communities derived from the hu-
man behavior that can be observed within certain web communities (e.g.,
Wikipedia or open source communities). The introduced CO method is
applied to eight well-known benchmark problems for lower as well as
higher dimensions. CO turns out to be the best choice in 9 cases and
the Fully Informed Particle Swarm Optimization (FIPS) as well as Dif-
ferential Evolution (DE) approaches in 4 cases. Concerning the high di-
mensional problems, CO significantly outperformed FIPS as well as DE
in 6 of 8 cases and seems to be a suitable approach for high dimensional
problems.

Keywords: Swarm Intelligence, Collective Intelligence, Web Commu-
nity, Collaborative Community, Human Community, Human Society,
Community Optimization, Behavioral Model, Knowledge Base, Contri-
bution Rule, Contribution Equation, Learning Rule, Learning Equation

M.L. Gavrilova et al. (Eds.): Trans. on Comput. Sci. XXI, LNCS 8160, pp. 1–45, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



2 C.B. Veenhuis

1 Introduction

In nature, social insects, fishes, birds and land animals form communities called
swarms to increase their probability of survival. These communities exhibit in-
telligent behavior created by the direct or indirect interplay between individuals
and their environment. For instance, a bird in a flock is directly manipulated by
the behavior of its neighbors, because the bird has to adapt its own direction to
avoid collisions. Ants communicate indirectly via the environment by depositing
pheromones, which control the behavior of other ants encountering them. Based
on these different forms of communication, intelligent strategies emerge on a
macroscopic level – the level of the whole swarm.

Humans also build communities, which show swarm properties. Humans solve
problems not only by taking into account their own knowledge and experiences,
but also by using communication to get the best experiences or beliefs of their
colleagues [7]. According to [7], intelligent behavior and knowledge processing
ability emerge from the interpersonal interaction in a society of humans. Kennedy
and Eberhart’s Particle Swarm Optimization (PSO) algorithm can be interpreted
as a model of this knowledge processing ability of human societies [6,7,9]. The
PSO algorithm also shows swarm properties similar to a flock of birds. This is
based on the social term used in PSO, which ensures that each particle moves
to its best neighbor to some degree. Keeping near to the neighbors (Flock Cen-
tering) is one of the rules of Reynold’s flock algorithm 1 [15], which models the
movement dynamics of a flock of birds. Thus, PSO’s dynamic resembles that of
a bird flock and this swarm analogy is widely used in literature.

Nowadays, communication technologies and networks are able to connect huge
groups of humans. The result is that new types of web-technology driven com-
munities of enormous size emerged. They can be classified into social networks
and collaborative communities, whose members collaboratively work on some-
thing. One example is the open source community, which collaboratively devel-
ops software systems or libraries. The contributing members of such an open
source project have different knowledge and levels of expertise and over time
their contributions lead to complex results such as the Linux operating system
[11]. Another very prominent example of a system that uses a collaborative web
community is the web encyclopedia Wikipedia [23], where a huge number of
participants develop the content of articles. Over time the articles are improved
and completed. In other words, the web community optimizes the articles suc-
cessively to reach a higher quality. This is achieved based on the following rules
(R) and human behaviors (B):

R1: Each human is allowed to contribute to each article and topic.
R2: Conflicts based on different opinions are resolved by discussion on a

special board.

1 The flock algorithm was initially created to visualize a bird flock within virtual
reality environments, because modeling the movement of each single bird by hand
was too difficult [15].
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B1: Typically, a human only contributes to a topic to which he feels
competent.

B2: Sometimes, a human overrates his competence and contributes non-
sense. Such nonsense is repaired by the competent ones after a short
while.

B3: While contributing, a human also learns from the contributions done
by others.

B4: Humans who are not contributing, also learn from all articles as well.

Note that behaviors B1 to B4 also describe the case of an open source com-
munity. There, an article is just a source code file and contributions are pieces
of code. Contributing nonsense in this context means to contribute source code
with bugs or being insufficient in some way. Thus, behaviors B1 to B4 can be
considered as a behavioral model describing collaborative human communities.

In [4] the findings of an investigation carried out by Nature are presented,
where Wikipedia articles and their related Encyclopaedia Britannica versions
were compared with respect to the number of contained errors and accuracy.
For this, 42 articles from Wikipedia were peer reviewed by a group of Nature
experts and compared. The given results are

Wikipedia Encyclopaedia Britannica
serious errors,
misinterpretations
of concepts 4 4
factual errors,
misleading statements,
omissions 162 123

Because it is not clear whether the chosen articles were representative 2, these
results have to be considered carefully. Nevertheless, it seems that the following
general conclusion can be drawn based on it:

The quality in terms of number of errors of a certain number ofWikipedia
articles comes close to some degree to that of their counterparts in En-
cyclopaedia Britannica.

This raises an interesting question: if a web community is able to collectively
optimize the content of articles in order to reach high quality, is such a commu-
nity also able to optimize functions?

2 Giles did not give any information about how the sample of 42 articles was chosen
(arbitrary?, based on their experts?, uniformly distributed over all Wikipedia arti-
cles?). Thus, it is not clear whether the chosen articles are representative or not.
Also, a clear definition of an ”error” is missing! Thus, the presented experiment
seems to be a bit arbitrary.
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In order to give the answer in advance: Yes, it is! In [22] an appropriate
optimization algorithm called Community Optimization (CO) was firstly intro-
duced, which is based on the behavioral model defined by B1 to B4. Thus, CO
optimizes a function by simulating a community of authors, which edits or im-
proves a knowledge-base, whereby the knowledge-base is a more general view on
a database of articles. The authors of the community contribute to the different
topics of the knowledge-base based on their expertise. Furthermore, the authors
improve their own knowledge by learning from the knowledge-base. The different
expertise ratings of an author grow with the success of his contributions.

The paper at hand is an extended version of [22] and is organized as fol-
lows. Section 2 reintroduces the Community Optimization algorithm. The used
testbed of benchmark functions is presented in section 3. Section 4 explains the
systematic of the employed parameter exploration to determine a suitable pa-
rameter set for the used testbed. The conducted experiments with their results
are presented in section 5. Finally, in section 6 some conclusions are drawn.

2 Community Optimization

The Community Optimization (CO) algorithm optimizes a function by simulat-
ing a community, which collaboratively optimizes a knowledge-base. It draws its
inspiration from the collective intelligence emerged by a web community like, for
instance, the Wikipedia authors who collaboratively edit and improve an article-
base. In CO, this article-base is a more general construct called ”knowledge-
base” and the term author is replaced by the more general term ”person”. The
knowledge-base is thought to represent the problem instance to be solved and is
realized as a real valued vector. The different vector components (or decision vari-
ables of the problem) represent different topics contained in this knowledge-base,
i.e., each single topic represents a single decision variable. Thus, the dimension of
the problem is the number of topics. In the following table, the analogy between
the CO model and function optimization is given:

CO Function Optimization
knowledge-base global-best vector
quality of knowledge-base fitness of global-best
community + knowledge-base population of vectors
topic decision variable
knowledge value of decision variable
number of topics dimension of vectors
person’s knowledge vector of population
expertise ratings -

At the core of the CO algorithm, two rules are employed. On the one hand, a
community of persons improves the different topics of the knowledge-base based
on the expertise ratings of the persons. The better a person’s expertise, the
higher the probability that he feels competent enough to edit a given piece of
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knowledge. After editing, the person’s expertise is adapted, if he improved the
quality of the given piece of knowledge. On the other hand, all persons improve
their own knowledge using the knowledge-base. This way, a sort of stigmergy 3 is
realized, because a person can change the knowledge-base (the environment) and
other persons take this new knowledge and change their own state and thus their
behavior. It can be stated that CO uses a swarm of persons, who change their
environment (knowledge-base) to influence themselves mutually, while changing
the environment additionally solves an optimization problem (see section 2.8).

2.1 Notation

Let D be the dimension of the problem (i.e., the dimension of the search space
R

D) and κ = (κ1, · · · , κt, · · · , κD) ∈ R
D the knowledge-base comprised of D

topics with κt denoting the contained knowledge of topic t. Then, let ε =
(ε1, · · · , εt, · · · , εD) ∈ R

D denote the levels of expertise with which the top-
ics were improved by the last person. Topic’s knowledge κt and expertise εt
correspond, i.e., ε1 belongs to κ1, ε2 to κ2 and so on.

Furthermore, let Npers denote the number of persons and C the set of persons
C = {P1, · · · , Pp, · · · , PNpers} forming the community. Each person Pp = (kp, ep)
has knowledge, which is a position in the search space (kp ∈ R

D) and expertise
ratings (ep ∈ R

D). The person’s knowledge (person’s expertise) w.r.t. a given
topic t is denoted by kpt (ept), whereby expertise ept corresponds to knowledge
kpt (again, ep1 belongs to kp1, ep2 to kp2, etc.).

Do not confuse expertise ept with εt. Expertise ept denotes the expertise of
a person w.r.t. a given topic t, whereas εt means the expertise by which the
knowledge κt of topic t was improved. So to speak, εt reflects the quality or level
of κt.

For each topic t a lower and upper bound is defined by Lt (lower bound) and Ut

(upper bound). Thus, for all topics t ∈ {1, · · · , D} we have that κt, kpt ∈ [Lt, Ut]
at least for the initial community.

In order to compute the objective value (or quality) of a knowledge-base, a
quality function

Q : RD → R

is used.

2.2 Algorithm

The main algorithm is quite the same as for most optimizers and reads:

1: Initialization
2:

3 The term stigmergy denotes the indirect communication via the environment as
used, e.g., by ants, which deposit pheromones to guide their colony mates [1].



6 C.B. Veenhuis

3: while termination criteria not fulfilled do
4:

5: Iteration
6:

7: end while

There are two sets of termination criteria used by CO:

1. Run until a prespecified number of iterations or a given quality is reached.
This means to run until the wished quality is reached, but no longer than
the given number of iterations.

2. Run until a pre-specified number of allowed function evaluations is reached.
This is used primarily to compare CO with other algorithms, which is done
by setting for all algorithms the same number of evaluation steps. The typical
size of population × number of iterations computation does not work with
CO as will be seen in section 5.

In the following two subsections, the procedures for Initialization and
Iteration are described.

2.3 Initialization

Firstly, an iteration counter G is set to 0. Then, the knowledge-base κ is ran-
domly set by uniformly drawing the knowledge of topics κt from U(Lt, Ut). The
corresponding expertise vector ε is set to a zero-vector. This way, all persons
of the community are allowed to contribute to all topics in the first iteration.
After initializing the knowledge-base κ, its quality is computed and stored in
variable Qκ ∈ R to avoid multiple calls to Q(·) for the same κ in the Iteration
procedure.

The community C is initialized with randomly created persons Pp, whereby
each kpt is drawn from U(Lt, Ut). The initial expertise vector ep is set to a
one-vector so a person has the same degree of expertise w.r.t. each topic (ep =
(1, 1, . . . , 1)). Algorithm (1) gives the pseudo-code of initialization.

2.4 Iteration

The iteration performs the two rules of CO:

Contribution Rule: Community contributes to knowledge-base,
Learning Rule: Community learns from knowledge-base.

They are executed in sequence w.r.t. the whole community. That means that
first all persons of the community follow the contribution rule. Afterwards, all
persons perform the learning rule. Both steps are described in the following sub-
sections. The iteration is also given as pseudo-code in Algorithm (2) to present
the interplay of all upcoming equations in more detail.
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Algorithm 1. Initialization of CO

1: G← 0
2:
3: for all t ∈ {1, · · · , D} do
4: κt ∼ U(Lt, Ut)
5: εt ← 0
6: end for
7:
8: Qκ ← Q(κ)
9:
10: for all p ∈ {1, · · · , Npers} do
11: for all t ∈ {1, · · · , D} do
12: kpt ∼ U(Lt, Ut)
13: ept ← 1
14: end for
15: end for

Contribution Rule. In the first step, all persons of the community have to
contribute their knowledge w.r.t. all topics to the knowledge-base. Typically, only
persons having a sufficient expertise contribute to a given topic. This is realized
by setting the person’s expertise in topic t into relationship to the quality of this
topic’s knowledge already in existence in the base (realizes behavior B1, page 2).
For this, a roulette-wheel sampling is performed between the person’s expertise
ept and the expertise level of the tth topic εt (Algorithm (2), lines 5-6). If the
person’s expertise is higher or similar to topic’s expertise level εt, the probability
is also high that the person feels competent enough to contribute his knowledge
to this topic. But if the expertise of the person is low, he rarely contributes.
Sometimes a person with a lower expertise will contribute successfully, which is a
source of diversification. But if this person contributes nonsense, his contribution
is discarded (realizes behavior B2, page 2).

In case the expertise ept of person Pp was selected by the roulette-wheel
sampling, person Pp contributes to the topic’s knowledge κt, whereby the new
knowledge κ′

t is computed by the contribution equation as

κ′
t ∼ N ( kpt , λC · |kpt − κt| ) (1)

with N (μ, σ) denoting the normal distribution with mean μ and standard de-
viation σ. Thus, the new knowledge κ′

t is sampled around the person’s knowledge
kpt, whereby the distance between the knowledge-base and the person influences
the range of sampling (σ). This range can be further controlled by the positive
factor λC , which denotes the degree of exploration while contributing to a topic.
The lower λC is, the narrower is the normal distribution and the nearer the new
knowledge κ′

t is placed to the person’s knowledge kpt. If λC is set to 0, then
κ′
t = kpt. Thus, a lower λC supports exploitation. The higher λC is, the wider is

the normal distribution, which supports exploration.
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After computing the new knowledge κ′
t for topic t, a greedy approach is used:

κ′
t is only kept, if it is better than the previous knowledge κt w.r.t. a given

tolerance of acceptance τ , otherwise κ′
t is discarded. In order to realize this, the

knowledge-base κ is copied to κ′ and Eq. (1) is applied to κ′. Then, it is checked
whether

Q(κ′)−Q(κ) < τ (2)

(in case of minimization). If so, the new knowledge-base κ′ replaces κ and the
expertise ratings are updated.

The person’s expertise ept is increased, if he could successfully contribute to
the given topic t. The new expertise e′pt is computed as

e′pt = ept + 1 (3)

counting this way successful contributions. After the person’s expertise is
updated, the topic’s expertise level εt needs to be updated as well. The new
expertise level ε′t is set to the new expertise of the contributing person:

ε′t = e′pt (4)

Note that if the successful contribution was realized by a person with an
expertise being lower than εt, the new topic’s expertise level can decrease. In
this case more persons with lower expertise ratings get a chance to contribute
to topic t.

Learning Rule. In the second step, all persons of the community have to im-
prove their knowledge w.r.t. all topics contained in the knowledge-base (realizes
behaviorsB3 andB4, page 2). This step enables new knowledge to spread within
the community and realizes a sort of stigmergy. The person’s new knowledge k′pt
w.r.t. topic t is updated by the learning equation as

k′pt ∼ N ( κt , λL · |κt − kpt| ) (5)

with N (μ, σ) again denoting the normal distribution with mean μ and stan-
dard deviation σ. Thus, the person’s new knowledge k′pt is sampled around the
knowledge κt, whereby the distance between the person and the knowledge-base
influences the range of sampling (σ). This range can be further controlled by the
positive factor λL, which denotes the degree of exploration while learning from
the knowledge-base. The lower λL is, the narrower is the normal distribution
and the nearer the person’s new knowledge k′pt is placed to the knowledge κt. If
λL is set to 0, then k′pt = κt. Thus, a lower λL supports exploitation. The higher
λL is, the wider is the normal distribution, which supports exploration.

2.5 Tolerance of Acceptance

While contributing to a topic, the quality of a newly computed knowledge-base
κ′ is checked against the quality of the current knowledge-base κ. This involves a



Community Optimization 9

Algorithm 2. Iteration of CO

1: // Contribution Rule: Each person tries to contribute to each topic
2: for all p ∈ {1, · · · , Npers} do
3: for all t ∈ {1, · · · , D} do
4:
5: r ∼ U(0, ept + εt) // expertise high enough?
6: if r < ept then
7:
8: κ′ ← κ
9:
10: κ′

t ∼ N ( kpt , λC · |kpt − κ′
t| )

11:
12: Qκ′ ← Q(κ′)
13:
14: if Qκ′ −Qκ < τ then
15:
16: ept ← ept + 1
17:
18: εt ← ept
19:
20: κ← κ′

21: Qκ ← Qκ′

22:
23: end if
24: end if
25: end for
26: end for
27:
28: // Learning Rule: Each person learns from knowledge-base
29: for all p ∈ {1, · · · , Npers} do
30: for all t ∈ {1, · · · , D} do
31:
32: kpt ∼ N ( κt , λL · |κt − kpt| )
33:
34: end for
35: end for
36:
37: G← G+ 1

greedy approach, which uses the tolerance of acceptance τ to control the strict-
ness of accepting new knowledge. A tolerance τ = 0 leads to a strict-greedy
approach, which only accepts contributions with a better quality:

τ = 0 ⇔ Q(κ′) < Q(κ) (6)

This is the default configuration of CO and is used in the experiments in
section 5. It works well in continuous spaces, which have a lot of gradients so
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new positions κ′ near a contributing person will have different qualities compared
to the person’s position or the current knowledge-base κ.

In more discrete spaces, which have plateaux, the strict-greedy approach could
perform sub-optimally. In Fig. 1 this is shown for a single topic t. There, the
whole community is situated on a plateau. Thus, the qualities around all person’s
positions as well as around the current knowledge-base κ are exactly the same. If
a person contributes (like P2 in Fig. 1), then the new knowledge-base κ′ is placed
near to this person. But because the person’s position and his neighborhood are
on the same plateau as the knowledge-base κ, the new knowledge-base κ′ will
have the same quality as well. The strict-greedy approach discards same qualities,
since it expects a clearly better quality (see Eq. (6)). In such situations, no person
is able to successfully contribute and the community stagnates.

In order to overcome such situations, the tolerance of acceptance τ was in-
troduced. A tolerance τ > 0 leads to a weak-greedy approach, which allows
the acceptance of contributions of same qualities as well as of worse ones. This
weak-greedy approach solves the problem of stagnation, because the commu-
nity as well as the knowledge-base κ are now allowed to move on the plateau.
This increases the probability that they come close enough to a border so the
community can leave the plateau.

Although on a plateau the actual value of τ does not matter, because every
one greater than 0 accepts contributions of same qualities, it could matter if the
community has left the plateau. Then, the community could be confronted with
gradients and in this situation a τ > 0 would allow to accept worse contributions
as well. What is needed for search spaces containing discrete regions is a τ value
that is greater than 0 to allow movements on plateaux, but is additionally small
enough to avoid accepting really worse qualities in gradient-like regions of the
search space. A reasonable trade-off could be to use a tolerance τ = 1e-300 as one
of the smallest values a double data-type of current programming languages can
represent. Such τ values lead to a lesser-strict-greedy approach, which allows the
movement on plateaux while having only a minor effect in gradient-like regions.
Thus, it practically approximates the ≤ relation:

τ = 1e-300 ≈> Q(κ′) ≤ Q(κ) (7)

2.6 Geometric Activity

The question arises, which geometric activity is realized by both rules of CO. In
order to depict this activity, let’s consider a two-dimensional problem (D = 2)
so there are two topics in the knowledge-base κ = (κ1, κ2). Furthermore, let’s
have a community C = {P1, P2, P3} of three persons. In Fig. (2), part (A), a
possible situation in the used search space is given. Let’s assume that person
P1’s expertise is not high enough for it to contribute to either topic, person P2

has a high expertise only for topic 1 (which is the x-axis) and person P3 only
for topic 2 (which is the y-axis). Then, performing the contribution rule leads to
the following behavior:
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t

Q(·) ◦ • • ◦
P1 κ

κ′

P2

Fig. 1. A community placed on a plateau in a search space. All entities have the same
quality: Q(κ′) = Q(κ) = Q(P1) = Q(P2). Thus, each κ′ on the plateau will be rejected
by the strict-greedy approach leading to stagnation.

1. Person P1 does not contribute to one of both topics so the knowledge-base
keeps unchanged.

2. Person P2 contributes to topic 1. According to Eq. (1) this means that κ1 is
moved in direction to P2’s position k21. In other words, person P2 pulls κ1 in
his direction. This is depicted in Fig. (2), part (B), by the arrow captioned
by ”1.”.

3. Person P3 contributes to topic 2. According to Eq. (1) this means that κ2

is moved in direction to P3’s position k32. Again, person P3 pulls κ2 in his
direction. This is depicted in Fig. (2), part (B), by the arrow captioned
by ”2.”.

What needs to be noted here is that the persons pull the knowledge-base only
for those dimensions for which they have an expertise being high enough. Also,
the persons contribute in their given order and not in parallel (first P2 changed
the base, then P3). In cases where several persons contribute to the same topic,
the later ones can eliminate the contribution of previous ones. This is not a weak
point of CO, but designed by full intention. The inspiration is a Wikipedia-like
system. There, the same effect takes place, because authors overwrite the work
done by others before. Even oscillations are possible in Wikipedia-like systems,
if two authors permanently change back the same piece of knowledge to their
personal opinion, if this piece was changed by the other one. This is called an
”edit war” [24]. Since in CO the persons do not have egos, because they are
simple entities, no mechanism against ”edit wars” is included yet, but one is
imaginable 4.

Performing the learning rule, depicted in Fig. (2), part (C), lets all persons
move to the position of the new knowledge-base. Note that this is also true for
person P1, although he did not contribute to the base. Thus, his movement (his
behavior) is influenced by the other persons who changed the base. Finally, the
following statements can be given:

4 This could be realized by rejecting further contributions of a person for a given topic
for a certain time (number of iterations), after his last contribution. But this would
need a centralized control, because a person would not respect such a rule in reality.
In section 2.8 it is argued that the person community is a swarm. This property
would get lost, if a centralized control would be established.
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S1: All persons try to pull the knowledge-base to their own position for
as many dimensions as possible.

S2: A person can specialize to subsets of topics, based on his expertise
vector.

S3: All persons contribute in a sequence.
S4: All persons move to the new knowledge-base in all dimensions.

◦ P3

κ • ◦ P2

◦ P1

t = 1

t = 2

x

y

◦ P3

• κ

◦ P2

◦ P1

1.

2.

x

y

◦ P3

• κ

◦ P2

◦ P1

x

y

(A) (B) (C)

Fig. 2. The geometric meaning of the contribution rule (A,B) and learning rule (C)

2.7 Boundaries

All knowledge of persons kpt as well as all topics of the knowledge-base κt are
initialized within the [Lt, Ut] bounds. But they can leave these boundaries while
optimizing. If the actual optimum of the problem at hand lies outside of the
chosen boundaries, the region near a boundary could become more attractive
than the actual region within the boundaries. Thus, the community of persons
would try to move to this boundary. Both, the community and the knowledge-
base could move beyond this boundary, because of the following reasons:

Knowledge-Base. Assumed the community is located near a boundary. If a
contributing person is placed close enough to this boundary so that the normal
distribution set over the person’s knowledge would reach out beyond the bound-
ary, then the knowledge-base could be placed outside the boundary, because the
normal distribution is symmetric.

Knowledge of Persons. Because the knowledge-base can move beyond the
boundaries by the contribution rule, a person’s knowledge can leave the bounded
region as well by the learning rule. Learning from the knowledge-base means to
place the person’s knowledge somewhere within the normal distribution set over
the knowledge-base. If the knowledge-base is located outside the boundaries,
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then the new person’s knowledge is also placed outside the boundaries near to
the knowledge-base. Even in case the knowledge-base is still within the bounded
region, but close enough to a boundary so that its normal distribution reaches
out beyond this boundary, a certain number of persons could be placed outside
this boundary.

This property of CO that the community can move over the whole search
space is an interesting feature, if CO shall be applied to a dynamic optimization
problem, where the actual optimum moves in the search space, too. But if, for
some reasons, it is necessary to keep the community within its boundaries, one
could use the clamping approach for velocities as used by PSO [9]. Note that
it is important not only to clamp all person’s knowledge (kpt), but also the
knowledge-base (κt). This could be done at line 35 in Algorithm (2). But in the
conducted experiments (see section 5) there was no need for this.

2.8 Is It Swarm Intelligence?

The question arises, whether the CO algorithm is (or uses) swarm intelligence
or not. A swarm can be defined as follows:

Definition 1 (Swarm). A swarm is a decentralized group of simply behaving
entities, which mutually influence themselves by some sort of communication.

There are two classes of communication distinguished in literature: the direct
communication between swarm mates and the indirect communication, e.g., by
changing the environment [1]. Thus, a swarm mate can change the state or
behavior of another swarm mate through direct interaction or by changing their
environment. The environment of the community in CO is the search space and
the contained knowledge-base as a movable point. The knowledge-base is an
inactive object and does not belong to the actual community, since it is merely
used by the persons and does not perform own activities, as can be seen in
Algorithm (2).

Furthermore, the community is a group of persons with rather simple behav-
ior: they can pull the knowledge-base object to their direction (statement S1,
page 12) and they can move to its location (statement S4, page 12). If a person
changes the position of this knowledge-base object, he changes the environment.
Since all persons move to the knowledge-base’s position by the learning rule,
the position of the knowledge-base influences the movements of the persons.
Thus, a person can influence the state and behavior of all others by pulling the
knowledge-base to his position. This is an indirect communication by changing
the environment and termed as stigmergy in literature [1]. Finally, the persons
are not under the influence of a centralized control. The whole concept is person-
related, i.e., the persons decide by themselves whether to contribute or not.

From all this follows that the community of persons is a stigmergy-based
swarm and thus CO can be classified as a swarm intelligence algorithm.
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3 Benchmark Functions

In order to evaluate the capabilities of CO, eight benchmark functions from a
test suite for large scale continuous optimization problems [5] were chosen. Since
many population-based approaches like PSO tend to perform best near the origin
(zero-vector) of a search space [13], only the shifted versions of these benchmark
functions were used, because it is not clear whether CO has this affinity to
the origin, too. The benchmarks out of [5], which are not shifted (Schwefel 1.2,
Schaffer) were transformed to shifted versions for this work. In Table 1 (page
14), the properties of all eight benchmarks are presented as given in [5], whereby
the last row summarizes the numbers of different properties.

Table 1. The properties of all used benchmark functions

fi Name Unimodal Separable Dimension-wise
Multimodal Non-separable Not Dimension-wise

f1 Shifted Sphere U S D
f2 Shifted Rosenbrock M N D
f3 Shifted Rastrigin M S D
f4 Shifted Griewank M N ND
f5 Shifted Ackley M S D
f6 Shifted Schwefel 2.21 U N ND
f7 Shifted Schaffer U N D
f8 Shifted Schwefel 1.2 U N ND

4 × U 3 × S 5 × D
4 × M 5 × N 3 × ND

The eight benchmark functions were chosen in a way to get a good balance
between unimodal / multimodal, separable / non-separable as well as dimension-
wise / not dimension-wise optimizable ones. They are defined in the following:

f1: Shifted Sphere

f1(< x1, · · · , xD >) =

D∑
t=1

z2t + fbias

zt = xt − c

fbias = −450

[Lt, Ut] := [−100, 100] (1 ≤ t ≤ D)

Global minimum : f1(< c, · · · , c >)
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f2: Shifted Rosenbrock

f2(< x1, · · · , xD >) =

D−1∑
t=1

[100 · (zt+1 − z2t )
2 + (zt − 1)2] + fbias

zt = xt − c

fbias = 390

[Lt, Ut] := [−100, 100] (1 ≤ t ≤ D)

Global minimum : f2(< c+ 1, · · · , c+ 1 >)

f3: Shifted Rastrigin

f3(< x1, · · · , xD >) = 10 ·D +

D∑
t=1

[z2t − 10 · cos(2 · π · zt)] + fbias

zt = xt − c

fbias = −330

[Lt, Ut] := [−5, 5] (1 ≤ t ≤ D)

Global minimum : f3(< c, · · · , c >)

f4: Shifted Griewank

f4(< x1, · · · , xD >) = 1 +

D∑
t=1

z2t
4000

−
D∏
t=1

cos(
zt√
t
) + fbias

zt = xt − c

fbias = −180

[Lt, Ut] := [−600, 600] (1 ≤ t ≤ D)

Global minimum : f4(< c, · · · , c >)

f5: Shifted Ackley

f5(< x1, · · · , xD >) = −20 exp(−0.2

√√√√ 1

D

D∑
t=1

z2t )− exp(
1

D

D∑
t=1

cos(2πzt))

+20 + e+ fbias

zt = xt − c

fbias = −140

[Lt, Ut] := [−32, 32] (1 ≤ t ≤ D)

Global minimum : f5(< c, · · · , c >)
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f6: Shifted Schwefel 2.21

f6(< x1, · · · , xD >) = max
t∈{1,··· ,D}

{|zt|}+ fbias

zt = xt − c

fbias = −450

[Lt, Ut] := [−100, 100] (1 ≤ t ≤ D)

Global minimum : f6(< c, · · · , c >)

f7: Shifted Schaffer

f7(< x1, · · · , xD >) =

D−1∑
t=1

[(z2t + z2t+1)
0.25 · (sin2(50 · (z2t + z2t+1)

0.1) + 1)] + fbias

zt = xt − c

fbias = 100

[Lt, Ut] := [−100, 100] (1 ≤ t ≤ D)

Global minimum : f7(< c, · · · , c >)

f8: Shifted Schwefel 1.2

f8(< x1, · · · , xD >) =

D∑
t=1

(

t∑
u=1

zu)
2 + fbias

zu = xu − c

fbias = 100

[Lt, Ut] := [−100, 100] (1 ≤ t ≤ D)

Global minimum : f8(< c, · · · , c >)

4 Parameter Exploration

Developing new algorithms often includes the introduction of parameters and
CO is no exception to this. Thus, the question arises, which parameter set
would be the best for a given problem at hand. The best ways of determin-
ing suitable parameter sets for a given problem are either using an optimizer
that optimizes the new algorithm’s parameters or to perform a systematic pa-
rameter exploration over suitable intervals. The strategy used in this work was
the second way: a systematic parameter exploration. But we are not interested
in specialised parameters that work only for a single benchmark. We want a
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more general parameter set, which can be applied to all benchmark functions
used in the experiments. Thus, the parameter set was determined by considering
all eight benchmark functions together by performing the following steps:

1. For each benchmark function f1, · · · , f8 a parameter exploration was con-
ducted by using the following intervals:

Parameter Values Numbers

Npers 5 , 10 , · · · , 30 6
λC 0.1 , 0.2 , · · · , 2.0 20
λL 0.1 , 0.2 , · · · , 2.0 20
Experiments: 2400

That means, for each of the n = 2400 parameter combinations an experi-
ment with 30 dimensions averaged over 10 independent runs was conducted
for each benchmark function. This led to eight archives A1, · · · , A8 contain-
ing the parameter combinations φi with their corresponding mean quality
values μQi:

Aj :=< (μQ1, φ1), · · · , (μQn, φn) >

A parameter combination φi is an element of the set of all parameter com-
binations Φ:

φi ∈ Φ = {(5, 0.1, 0.1), (5, 0.1, 0.2), · · · , (30, 2.0, 2.0)}
Each archive contains entries for all n parameter combinations.

2. After all eight archives were computed, they were sorted according to their
mean qualities. In a sorted archive, the (μQi, φi) tupel with the lowest mean
quality μQi is now placed at the top of the archive, that is, it has the lowest
index or rank 0. The one with the second lowest mean quality gets rank 1
and so on.

3. We are interested in the parameter combination φ∗ with the best perfor-
mance over all eight benchmark functions. Thus, what needs to be searched
for is a parameter combination that is as close to the top of a sorted archive
as possible and this for all archives in parallel. The strategy used in this
work was to compute the mean rank for each parameter combination over
all sorted archives. The best parameter combination φ∗ is the one with the
lowest mean rank (minimum of mean ranks), since in average it is nearest
to the top of all sorted archives.
More formally, let rj(φi) denote the sorted rank of parameter combination
φi within archive Aj . Then,

φ∗ = arg min
φi∈Φ

{ 1

8

8∑
j=1

rj(φi) } (8)
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After performing all above steps, the best parameter combination φ∗ was
obtained and the result is:

Mean Rank Npers λC λL

170.0 25 0.3 1.6

The mean rank over all sorted archives is quite high with about 170. But
note that this is rank 170 in archives containing 2400 entries. Nevertheless, the
obtained mean rank shows that this parameter set is quite general and by no
means too specialised to one of the eight benchmark functions. This was the aim
of this parameter exploration. Of course, by using a more general parameter set,
CO can not realize the best possible performance for one of the eight benchmark
functions used.

4.1 Parameter Sensitivity

After obtaining parameter set φ∗, one may wonder how sensitive are the pa-
rameters to changes, if for a new problem a more specialised parameter set is
searched. Thus, based on the parameter set φ∗, the different parameters were
analysed within their intervals of the parameter exploration, whereby one pa-
rameter was varied and the other both were kept. For example, the parameter
λC was varied over its interval {0.1, · · · , 2.0}, while the other two parameters
were kept to their values from φ∗. In Figs. 3 (page 20), 4 (page 21) and 5 (page
21) the results are illustrated. The used vertical dashed lines indicate the value
of the parameter set φ∗. Note that the quality values were normalized to be
able to present the graphs of all benchmark functions together in one diagram.
Unfortunately, for the λC parameter the diagram gets too crowded if it con-
tains all graphs. Thus, for the sake of readability, the graphs for this parameter
were spread over three diagrams. In the following, the observations out of the
diagrams are given:

λC : The three diagrams of Fig. 3 (page 20) show that four benchmark func-
tions (f3, f4, f6, f7) exhibit quite chaotic graphs, where neighboring points
show high differences in their quality values. For them, the λC parame-
ter can be considered as sensitive. The graphs of four benchmark functions
(f1, f2, f5, f8) are quite smooth up to approximately λC ≈ 1. But then,
they get as chaotic as the other four functions mentioned above (except
f1). Thus, for them, the λC parameter can be considered as partly sensi-
tive. Furthermore, the lowest quality values of half of the benchmark func-
tions (f1, f2, f5, f8) are concentrated on the left side of the diagrams with
the lower λC values, which support exploitation. Unfortunately, these four
benchmarks are well balanced unimodal / multimodal as well as separable /
non-separable functions. Thus, nothing can be drawn from these properties.
But three functions (f1, f2, f5) can be optimized dimension-wise and just
one (f8) not. Although both types of this property are covered, there seems
to be a tendency that dimension-wise optimizable functions benefit from a
lower λC value.
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λL: As revealed by Fig. 4 (page 21), the graphs of most benchmark functions
are quite smooth. Little changes of this parameter do not produce chaotic
jumps within the quality values. Thus, the λL parameter is not very sensi-
tive. Furthermore, the lowest quality values of all benchmark functions are
concentrated on the right side of the diagram with the higher λL values,
which support exploration.

Npers: As can be seen in Fig. 5 (page 21), the graphs of most benchmark func-
tions descent with an increase of the number of persons. Since increasing the
population size also increases the performance of other optimizers like PSO
or DE, CO behaves similarly to them. Two functions (f2, f8) show more
sensitive graphs. Their property in common is that both are non-separable.
But other non-separable functions (f4, f6, f7) show non-sensitive graphs so
nothing can be derived from it. The other six of the eight graphs of the
benchmark functions descent quite smoothly. Changing this parameter a bit
does not produce chaotic jumps within the quality values. Thus, the Npers

parameter is not very sensitive.

All in all, it can be stated that the λC parameter is sensitive, the λL parameter
is non-sensitive and Npers is mostly non-sensitive to changes.

Because the lowest quality values of half of the benchmark functions are ob-
tained with lower λC values and the lower quality values of the other half of the
benchmark functions are spread over the whole interval, it is recommended to
set λC ∈ [0, 1].

Since the performance of all used benchmark functions is best with higher
λL values, it seems that CO is best used with the learning rule performing an
exploration. Hence, the recommendation is to set λL ≥ 1.

It seems that in most cases the Npers parameter follows the intuitive rule:
the higher, the better. But for some functions it can be necessary to perform a
parameter exploration.

5 Experiments

For each of the benchmark functions as introduced in section 3, the CO algo-
rithm, the Fully Informed Particle Swarm (FIPS) method [12], the Differential
Evolution (DE) approach [17,18,19] as well as its self-adaptive variant SaDE [14]
were conducted.

FIPS is based on Clerc’s constricted PSO [2] and incorporates the information
of all members of a neighborhood so a particle is ”fully informed”. Because
this variant exhibits a better performance than the standard PSO method, the
standard PSO was omitted.

DE performs best for separable problems with a lower crossover rate (CR),
whereas a higher CR is better for non-separable problems [20]. There is no
optimal standard value for CR, which works well in all situations. Thus, the
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DE experiments were conducted with CR=0.5 as a trade-off. Additionally, the
self-adaptive differential evolution approach was used to allow for an automatic
adaptation of the CR and F parameters.

In order to get an impression of the performance, experiments were conducted
for the lower dimensions D = 10 , 20 , · · · , 100 as well as for the higher dimen-
sions D = 200 , 400 , · · · , 1000. For each benchmark function and dimension,
100 independent runs with 100000 evaluation steps were performed. In FIPS,
the number of evaluations is constant per iteration. Thus, the total number can
be computed by size of population × number of iterations. The same holds for
DE and SaDE. Unfortunately, in CO the number of evaluations per iteration
is not known a priori. It depends on the expertise of the person, whether for a
given topic a contribution is done or not. And the quality function is only used,
if a person contributes. Thus, the experiments were fixed to 100000 evaluation
steps in total for all used methods. In order to keep as comparable as possi-
ble, all methods used the same size of population. The numbers of iterations
were adapted to realize the needed number of evaluation steps. Furthermore,
the rates of perfect-hits were determined, whereby a perfect-hit is defined as
reaching a threshold of nearness to the global optimum. Some authors like [19]
call this threshold also VTR (value to reach) and their VTR=1e-6 was adopted
as threshold of nearness.

Since all used benchmark functions are shifted, the c parameter needs to be
adjusted. Following [3], c is set to be halfway between the origin and the upper
bound: c = Ut

2 .
All methods used standard parameters. The lower and upper bounds of all

methods were set according to the benchmark functions (see section 3). In Ta-
ble 2 the parameters are given in detail. The parameters of CO were the ones
determined by the systematic parameter exploration as presented in section 4.

In the following subsections, the ”winners” of the different benchmark func-
tions are collected. A method is considered to be a winner, if it has the best
performance for the highest number of dimensions. For example, let A and B be
two methods and A be the best in 3 cases (10-30 dimensions) and B be the best
for the remaining 7 cases (40-100 dimensions). Then, method B is the winner.
In cases where the two best methods are the best for the same number of dimen-
sions (e.g., both for 5), both are considered to be the winners. The performance
of a method is measured in terms of the mean quality. In cases where several
methods have equivalent mean qualities, the method with the smallest standard
deviation is chosen as winner.

5.1 Shifted Sphere (f1)

Figure 6 (page 26) reveals that the lower dimensions of the Shifted Sphere bench-
mark can be solved well by all four methods. Their qualities only differ w.r.t. the
standard deviation and the best two are DE followed by FIPS. Except SaDE, all
reached perfect-hit rates of 100% over all lower dimensions as illustrated in Fig.
8 (page 26). As can be seen in Fig. 7 (page 26) and Table 4 (page 27), the higher
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Table 2. The used parameters for CO, FIPS and all DE variants

CO:

Npers = 25
λC = 0.3
λL = 1.6
τ = 0
evaluations = 100000

FIPS:

particles = 25
χ = 0.729843788
Vmax = 4.1
c1 = 2.05
c2 = 2.05
Φmax = 4.1
topology = l-best
radius = 1
iterations = 4000

DE:

vectors = 25
F = 0.5
CR = 0.5
scheme = DE/rand/1/bin
iterations = 4000

SaDE:

vectors = 25
Fmean = 0.5 (sd: 0.3)
CRmean = 0.5 (sd: 0.1)
iterations = 4000

dimensions are best solved by CO and second best by FIPS. They significantly
outperformed both DE variants.

5.2 Shifted Rosenbrock (f2)

As presented in Fig. 9 (page 28), Shifted Rosenbrock is best solved by FIPS and
second best by SaDE for the lower dimensions up to 100. CO was outperformed
by all other methods. The obtained rates of perfect-hits as shown in Fig. 11
(page 28) reveal that the optimum of this benchmark was not reached by any
method but SaDE for 10 dimensions. The higher dimensions are best solved
by CO and second best by FIPS as depicted in Fig. 10 (page 28) and Table 5
(page 29).

5.3 Shifted Rastrigin (f3)

As depicted in Figs. 12 (page 30) and 14 (page 30), Shifted Rastrigin is best
solved by CO and second best by SaDE for the lower dimensions. As can be seen
in Fig. 13 (page 30) and Table 6 (page 31), the higher dimensions are best solved
by CO and second best by SaDE, too, whereby CO significantly outperformed
all other methods.
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5.4 Shifted Griewank (f4)

Figs. 15 (page 32) and 17 (page 32) reveal that Shifted Griewank is best solved
by DE and second best by FIPS for the lower dimensions. The higher dimensions
are best solved by CO and second best by FIPS, as shown in Fig. 16 (page 32).

5.5 Shifted Ackley (f5)

According to Table 8 (page 35) and Fig. 18 (page 34), the first half of the
lower dimensions (10-50) is best solved by DE and the second half (60-100) is
best solved by CO. The second best is FIPS. As shown in Fig. 20 (page 34),
CO reached always a 100% perfect-hit rate over the lower dimensions, whereby
DE and FIPS reached this performance only up to 60 dimensions. The higher
dimensions are best solved by CO and second best by SaDE as revealed by Fig.
19 (page 34). In fact, CO significantly outperformed all other methods, whereas
FIPS is the worse of all.

5.6 Shifted Schwefel 2.21 (f6)

According to Table 9 (page 37) and Fig. 21 (page 36), CO is the clear winner for
lower dimensions as well as for the best perfect-hit rates (see Fig. 23 (page 36)).
The second best is FIPS. As revealed by Fig. 22 (page 36), the higher dimensions
are best solved by FIPS and second best by SaDE.

5.7 Shifted Schaffer (f7)

As shown in Fig. 24 (page 38) and Table 10 (page 39), the lower dimensions are
best solved by DE and second best by CO. The FIPS approach was outperformed
by all other methods. As depicted in Fig. 25 (page 38), the higher dimensions
are best solved by CO, which significantly outperformed all other methods. The
second best was DE.

5.8 Shifted Schwefel 1.2 (f8)

According to Table 11 (page 41) and Fig. 27 (page 40), FIPS is the winner
and SaDE the second winner for lower dimensions. Although CO has the better
graph, SaDE is the second winner, because SaDE wins more dimensions (2) than
CO (0). As revealed by Fig. 28 (page 40), the higher dimensions are best solved
by FIPS and second best by CO.

5.9 Summary

In Table 3 (page 25) the winners of all eight benchmark functions are collected.
Additionally to the winners, the appropriate second bests are also contained in
the form like: (2nd: DE).
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Table 3. The winners of all benchmark functions. A winner is a method that reached
the best performance over the most dimensions. The methods written like (2nd: DE)

are the appropriate second bests. The properties of the functions are given like (U - S

- D), whereby the first letter can be Unimodal / Multimodal, the second one can be
Separable / Non-separable and the last one can be Dimension-wise / Not dimension-
wise (ND).

fi Name Lower Dimensions (10-100) Higher Dimensions (200-1000)

f1 Shifted Sphere DE CO
(U - S - D) (2nd: FIPS) (2nd: FIPS)

f2 Shifted Rosenbrock FIPS CO
(M - N - D) (2nd: SaDE) (2nd: FIPS)

f3 Shifted Rastrigin CO CO
(M - S - D) (2nd: SaDE) (2nd: SaDE)

f4 Shifted Griewank DE CO
(M - N - ND) (2nd: FIPS) (2nd: FIPS)

f5 Shifted Ackley CO , DE CO
(M - S - D) (2nd: FIPS) (2nd: SaDE)

f6 Shifted Schwefel 2.21 CO FIPS
(U - N - ND) (2nd: FIPS) (2nd: SaDE)

f7 Shifted Schaffer DE CO
(U - N - D) (2nd: CO) (2nd: DE)

f8 Shifted Schwefel 1.2 FIPS FIPS
(U - N - ND) (2nd: SaDE) (2nd: CO)∑

CO 3 6∑
FIPS 2 2∑
DE 4 0

For the lower dimensions, DE is the winner considered over all benchmark
functions used. But the differences to CO and FIPS are that small that actually
no one of the three methods is a clear winner. The performance of SaDE is only
good enough for three second places. It seems that the advantage of SaDE that
one does not need to adjust the F and CR parameters comes at the cost of
performance.

For the higher dimensions, CO is the clear winner considered over all used
benchmark functions. The second best is the FIPS approach. It seems that CO
is of high value for high dimensional problems.

Considered over all 16 different problems (eight benchmark functions for lower
as well as higher dimensions), the following results are obtained: CO is the winner
in 9 cases (3 low and 6 high dimensional problems), FIPS wins in 4 cases (2 low
and 2 high dimensional problems) and DE also wins in 4 cases (4 low and 0 high
dimensional problems).
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Table 4. The obtained results for the SHIFTED SPHERE benchmark averaged
over 100 independent runs. The columns ’Avg. Quality’ are the best quality values
reached on average and ’sd’ are the appropriate standard deviations.

CO FIPS DE SaDE
D Avg. Quality Avg. Quality Avg. Quality Avg. Quality

10 -4.500000e+002 -4.500000e+002 -4.500000e+002 -4.500000e+002
(sd:7.190187e-014) (sd:0) (sd:0) (sd:0)

20 -4.500000e+002 -4.500000e+002 -4.500000e+002 -4.500000e+002
(sd:7.958079e-014) (sd:2.126886e-014) (sd:0) (sd:2.273737e-014)

30 -4.500000e+002 -4.500000e+002 -4.500000e+002 -4.500000e+002
(sd:1.523149e-013) (sd:9.845569e-015) (sd:3.457650e-014) (sd:2.784747e-014)

40 -4.500000e+002 -4.500000e+002 -4.500000e+002 -4.500000e+002
(sd:2.239371e-013) (sd:9.845569e-015) (sd:5.511174e-014) (sd:6.938624e-014)

50 -4.500000e+002 -4.500000e+002 -4.500000e+002 -4.500000e+002
(sd:2.924537e-013) (sd:4.439613e-014) (sd:0) (sd:2.055815e-013)

60 -4.500000e+002 -4.500000e+002 -4.500000e+002 -4.500000e+002
(sd:3.442666e-013) (sd:5.824717e-014) (sd:0) (sd:1.031331e-011)

70 -4.500000e+002 -4.500000e+002 -4.500000e+002 -4.500000e+002
(sd:3.194883e-013) (sd:8.658132e-014) (sd:1.969114e-014) (sd:1.287300e-012)

80 -4.500000e+002 -4.500000e+002 -4.500000e+002 -4.500000e+002
(sd:3.815714e-013) (sd:1.215174e-013) (sd:4.987990e-014) (sd:6.487610e-011)

90 -4.500000e+002 -4.500000e+002 -4.500000e+002 -4.500000e+002
(sd:4.375467e-013) (sd:1.615794e-013) (sd:2.474485e-013) (sd:2.666406e-008)

100 -4.500000e+002 -4.500000e+002 -4.500000e+002 -4.500000e+002
(sd:4.776200e-013) (sd:2.381325e-013) (sd:6.145837e-011) (sd:2.286373e-004)

200 -4.500000e+002 -4.499999e+002 -4.498360e+002 -2.614953e+002
(sd:1.119360e-007) (sd:1.238909e-004) (sd:2.815927e-001) (sd:5.131776e+002)

400 -4.499929e+002 -4.387593e+002 2.996741e+003 3.493584e+004
(sd:1.546788e-002) (sd:5.856080e+000) (sd:1.714725e+003) (sd:1.371262e+004)

600 -4.492890e+002 -1.959629e+002 5.658269e+004 1.700624e+005
(sd:1.182685e+000) (sd:4.298016e+001) (sd:1.095679e+004) (sd:3.763572e+004)

800 -4.388396e+002 7.729272e+002 2.165145e+005 3.903596e+005
(sd:9.009993e+000) (sd:1.347133e+002) (sd:2.545970e+004) (sd:5.627727e+004)

1000 -3.890554e+002 3.049089e+003 5.103793e+005 6.750752e+005
(sd:1.928671e+001) (sd:2.565870e+002) (sd:7.437225e+004) (sd:7.924662e+004)
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Table 5. The obtained results for the SHIFTED ROSENBROCK benchmark av-
eraged over 100 independent runs. The columns ’Avg. Quality’ are the best quality
values reached on average and ’sd’ are the appropriate standard deviations.

CO FIPS DE SaDE
D Avg. Quality Avg. Quality Avg. Quality Avg. Quality

10 1.014814e+003 3.911184e+002 3.960845e+002 3.905231e+002
(sd:3.683167e+003) (sd:3.318371e-001) (sd:5.392485e+000) (sd:1.339300e+000)

20 6.952487e+002 4.032622e+002 4.143899e+002 4.007489e+002
(sd:1.083385e+003) (sd:1.016404e+000) (sd:2.293293e+001) (sd:1.192593e+001)

30 1.825208e+003 4.142498e+002 4.439706e+002 4.201108e+002
(sd:7.383815e+003) (sd:8.674111e-001) (sd:6.625716e+001) (sd:2.458557e+001)

40 1.011501e+003 4.248906e+002 4.587187e+002 4.439911e+002
(sd:2.788764e+003) (sd:1.409797e+000) (sd:6.957866e+001) (sd:3.591328e+001)

50 1.545018e+003 4.355404e+002 5.130391e+002 4.789255e+002
(sd:5.616539e+003) (sd:1.615432e+000) (sd:3.015181e+002) (sd:3.952624e+001)

60 1.363647e+003 4.457168e+002 6.167651e+002 5.135169e+002
(sd:2.685179e+003) (sd:1.473175e+000) (sd:8.651087e+002) (sd:8.084122e+001)

70 1.902235e+003 4.563187e+002 5.532552e+002 5.809877e+002
(sd:5.126389e+003) (sd:5.428972e+000) (sd:3.877393e+002) (sd:2.096486e+002)

80 1.083035e+003 4.660917e+002 7.105638e+002 8.158947e+002
(sd:2.096649e+003) (sd:1.444370e+000) (sd:9.494556e+002) (sd:1.679032e+003)

90 1.965833e+003 4.759197e+002 6.462474e+002 7.389693e+002
(sd:5.883145e+003) (sd:1.140886e+000) (sd:4.314112e+002) (sd:2.659029e+002)

100 1.750359e+003 4.877016e+002 7.832532e+002 2.091274e+003
(sd:3.899240e+003) (sd:8.371906e+000) (sd:1.326696e+003) (sd:1.248989e+004)

200 2.391920e+003 6.969935e+002 1.878450e+006 4.994059e+006
(sd:4.617019e+003) (sd:6.243538e+001) (sd:8.892477e+006) (sd:1.405947e+007)

400 2.608685e+003 1.483319e+005 3.128679e+009 8.055967e+009
(sd:3.656561e+003) (sd:5.184172e+004) (sd:1.768106e+009) (sd:4.765960e+009)

600 6.528941e+003 9.058607e+006 1.774271e+011 4.886980e+010
(sd:1.029473e+004) (sd:1.153290e+006) (sd:5.517890e+011) (sd:1.473563e+010)

800 2.373496e+004 1.297131e+008 3.150051e+012 1.393014e+011
(sd:6.546513e+004) (sd:1.421733e+007) (sd:2.446747e+012) (sd:2.700521e+010)

1000 8.005813e+004 7.837178e+008 6.404477e+012 2.583907e+011
(sd:1.091941e+005) (sd:6.927078e+007) (sd:1.748920e+012) (sd:3.563682e+010)
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Table 6. The obtained results for the SHIFTED RASTRIGIN benchmark averaged
over 100 independent runs. The columns ’Avg. Quality’ are the best quality values
reached on average and ’sd’ are the appropriate standard deviations.

CO FIPS DE SaDE
D Avg. Quality Avg. Quality Avg. Quality Avg. Quality

10 -3.295324e+002 -3.290894e+002 -3.299105e+002 -3.298209e+002
(sd:6.363850e-001) (sd:1.042462e+000) (sd:2.847391e-001) (sd:4.073261e-001)

20 -3.289752e+002 -3.132639e+002 -3.092145e+002 -3.294528e+002
(sd:1.028761e+000) (sd:5.453842e+000) (sd:8.789442e+000) (sd:1.047073e+000)

30 -3.282688e+002 -2.814818e+002 -2.376072e+002 -3.281494e+002
(sd:1.446083e+000) (sd:1.038143e+001) (sd:1.052276e+001) (sd:2.063283e+000)

40 -3.277514e+002 -2.371213e+002 -1.556737e+002 -3.263087e+002
(sd:1.668568e+000) (sd:2.009253e+001) (sd:1.168647e+001) (sd:3.144112e+000)

50 -3.269057e+002 -1.835899e+002 -7.010259e+001 -3.226970e+002
(sd:1.628179e+000) (sd:2.187269e+001) (sd:1.618482e+001) (sd:5.393398e+000)

60 -3.269111e+002 -1.247690e+002 2.052051e+001 -3.176725e+002
(sd:1.857835e+000) (sd:2.885090e+001) (sd:1.823677e+001) (sd:8.298072e+000)

70 -3.260639e+002 -5.434455e+001 1.219691e+002 -3.122997e+002
(sd:1.978296e+000) (sd:3.262892e+001) (sd:1.846041e+001) (sd:8.243492e+000)

80 -3.252322e+002 1.270795e+001 2.157519e+002 -3.050664e+002
(sd:2.228190e+000) (sd:3.420864e+001) (sd:2.144012e+001) (sd:1.069179e+001)

90 -3.243360e+002 8.816808e+001 3.143240e+002 -2.958154e+002
(sd:2.469812e+000) (sd:4.155467e+001) (sd:2.229105e+001) (sd:1.358818e+001)

100 -3.232379e+002 1.647245e+002 4.196112e+002 -2.765022e+002
(sd:2.703923e+000) (sd:4.785285e+001) (sd:2.865505e+001) (sd:1.920225e+001)

200 -3.119726e+002 1.064771e+003 1.512219e+003 1.251842e+002
(sd:4.164903e+000) (sd:8.369567e+001) (sd:5.653973e+001) (sd:3.985319e+001)

400 -2.715822e+002 3.308359e+003 3.883808e+003 1.447845e+003
(sd:6.916448e+000) (sd:1.577501e+002) (sd:1.204154e+002) (sd:9.001163e+001)

600 -2.041250e+002 5.770185e+003 6.475049e+003 3.077570e+003
(sd:1.146317e+001) (sd:2.440953e+002) (sd:2.105878e+002) (sd:1.247022e+002)

800 -1.089592e+002 8.383482e+003 9.298387e+003 4.832295e+003
(sd:1.420523e+001) (sd:2.960762e+002) (sd:2.677412e+002) (sd:2.455763e+002)

1000 1.012936e+001 1.110240e+004 1.226412e+004 6.580697e+003
(sd:2.036126e+001) (sd:2.874027e+002) (sd:3.597017e+002) (sd:3.099531e+002)
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Fig. 15. The quality for the Shifted Griewank Benchmark over all low dimensions
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Fig. 16. The quality for the Shifted Griewank Benchmark over all high dimensions
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Fig. 17. The perfect-hit rates for the Shifted Griewank Benchmark over all low
dimensions
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Table 7. The obtained results for the SHIFTED GRIEWANK benchmark averaged
over 100 independent runs. The columns ’Avg. Quality’ are the best quality values
reached on average and ’sd’ are the appropriate standard deviations.

CO FIPS DE SaDE
D Avg. Quality Avg. Quality Avg. Quality Avg. Quality

10 -1.799401e+002 -1.799294e+002 -1.799984e+002 -1.799966e+002
(sd:4.134539e-002) (sd:4.411139e-002) (sd:4.873407e-003) (sd:7.466981e-003)

20 -1.799496e+002 -1.799998e+002 -1.799995e+002 -1.799919e+002
(sd:4.460841e-002) (sd:1.037936e-003) (sd:2.099964e-003) (sd:1.337185e-002)

30 -1.799497e+002 -1.799998e+002 -1.799996e+002 -1.799856e+002
(sd:4.902744e-002) (sd:1.037581e-003) (sd:1.846288e-003) (sd:2.118928e-002)

40 -1.799451e+002 -1.799999e+002 -1.799999e+002 -1.799744e+002
(sd:5.152321e-002) (sd:7.463596e-004) (sd:7.358967e-004) (sd:3.878824e-002)

50 -1.799464e+002 -1.799996e+002 -1.800000e+002 -1.799431e+002
(sd:5.054002e-002) (sd:2.271104e-003) (sd:2.842171e-015) (sd:1.043619e-001)

60 -1.799465e+002 -1.799996e+002 -1.800000e+002 -1.799271e+002
(sd:5.852028e-002) (sd:1.817196e-003) (sd:0) (sd:1.212855e-001)

70 -1.799471e+002 -1.799995e+002 -1.799996e+002 -1.799267e+002
(sd:6.146186e-002) (sd:2.185108e-003) (sd:1.611930e-003) (sd:1.201846e-001)

80 -1.799540e+002 -1.799993e+002 -1.799998e+002 -1.798975e+002
(sd:5.818864e-002) (sd:2.049870e-003) (sd:1.261670e-003) (sd:1.666943e-001)

90 -1.799574e+002 -1.799997e+002 -1.799999e+002 -1.798214e+002
(sd:6.310732e-002) (sd:1.455247e-003) (sd:1.035446e-003) (sd:3.817112e-001)

100 -1.799648e+002 -1.799992e+002 -1.799992e+002 -1.798035e+002
(sd:5.386163e-002) (sd:2.465578e-003) (sd:6.849497e-003) (sd:3.111143e-001)

200 -1.799546e+002 -1.799783e+002 -1.799668e+002 -1.769174e+002
(sd:8.186290e-002) (sd:2.442928e-002) (sd:3.697388e-002) (sd:6.219243e+000)

400 -1.799596e+002 -1.765999e+002 -1.435568e+002 1.242539e+002
(sd:9.081599e-002) (sd:5.284919e-001) (sd:2.044130e+001) (sd:1.286640e+002)

600 -1.798772e+002 1.577781e+001 3.425431e+002 1.361870e+003
(sd:1.091613e-001) (sd:2.337765e+001) (sd:9.775039e+001) (sd:3.537492e+002)

800 -1.791875e+002 8.092041e+002 1.801778e+003 3.366892e+003
(sd:2.087905e-001) (sd:6.377247e+001) (sd:2.603267e+002) (sd:5.027938e+002)

1000 -1.784840e+002 2.113870e+003 4.515258e+003 5.946979e+003
(sd:2.061974e-001) (sd:1.032748e+002) (sd:7.227539e+002) (sd:6.796047e+002)
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Fig. 18. The quality for the Shifted Ackley Benchmark over all low dimensions
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Fig. 19. The quality for the Shifted Ackley Benchmark over all high dimensions
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dimensions
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Table 8. The obtained results for the SHIFTED ACKLEY benchmark averaged
over 100 independent runs. The columns ’Avg. Quality’ are the best quality values
reached on average and ’sd’ are the appropriate standard deviations.

CO FIPS DE SaDE
D Avg. Quality Avg. Quality Avg. Quality Avg. Quality

10 -1.400000e+002 -1.400000e+002 -1.400000e+002 -1.400000e+002
(sd:9.671737e-014) (sd:6.355287e-015) (sd:0) (sd:4.019437e-015)

20 -1.400000e+002 -1.400000e+002 -1.400000e+002 -1.399769e+002
(sd:1.594405e-013) (sd:0) (sd:0) (sd:1.617208e-001)

30 -1.400000e+002 -1.400000e+002 -1.400000e+002 -1.394264e+002
(sd:2.291255e-013) (sd:3.492518e-014) (sd:5.684342e-015) (sd:6.963515e-001)

40 -1.400000e+002 -1.400000e+002 -1.400000e+002 -1.385232e+002
(sd:1.904042e-013) (sd:6.272125e-014) (sd:2.770206e-014) (sd:6.670704e-001)

50 -1.400000e+002 -1.400000e+002 -1.400000e+002 -1.375221e+002
(sd:2.337848e-013) (sd:1.405014e-011) (sd:5.092168e-014) (sd:1.063325e+000)

60 -1.400000e+002 -1.400000e+002 -1.400000e+002 -1.367800e+002
(sd:1.999240e-013) (sd:2.748646e-011) (sd:8.965047e-012) (sd:1.342065e+000)

70 -1.400000e+002 -1.397847e+002 -1.397910e+002 -1.356196e+002
(sd:2.691822e-013) (sd:1.879027e+000) (sd:2.079796e+000) (sd:1.593818e+000)

80 -1.400000e+002 -1.385754e+002 -1.400000e+002 -1.352316e+002
(sd:1.065314e-012) (sd:4.275715e+000) (sd:3.102383e-005) (sd:1.625549e+000)

90 -1.400000e+002 -1.371323e+002 -1.399999e+002 -1.340940e+002
(sd:3.009068e-011) (sd:6.091536e+000) (sd:1.231362e-003) (sd:1.771462e+000)

100 -1.400000e+002 -1.340593e+002 -1.397890e+002 -1.333304e+002
(sd:2.695251e-010) (sd:7.895980e+000) (sd:2.098857e+000) (sd:1.752582e+000)

200 -1.400000e+002 -1.203831e+002 -1.375227e+002 -1.286100e+002
(sd:9.158325e-006) (sd:4.315355e-001) (sd:4.997207e+000) (sd:1.944420e+000)

400 -1.399934e+002 -1.196892e+002 -1.279517e+002 -1.273760e+002
(sd:3.520323e-003) (sd:1.240444e-001) (sd:4.159970e+000) (sd:1.164288e+000)

600 -1.398914e+002 -1.194773e+002 -1.232114e+002 -1.256143e+002
(sd:3.555859e-002) (sd:7.444760e-002) (sd:2.031766e+000) (sd:7.905553e-001)

800 -1.394189e+002 -1.193695e+002 -1.209179e+002 -1.236581e+002
(sd:9.910390e-002) (sd:4.414739e-002) (sd:1.025148e+000) (sd:4.525474e-001)

1000 -1.388388e+002 -1.193211e+002 -1.198350e+002 -1.217219e+002
(sd:9.619811e-002) (sd:4.799817e-002) (sd:6.157377e-001) (sd:7.267552e-001)
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Fig. 21. The quality for the Shifted Schwefel 2.21 Benchmark over all low
dimensions

-400

-380

-360

-340

-320

-300

 200  400  600  800  1000

F
itn

es
s

Dimension

CO
FIPS

DE
SaDE

Fig. 22. The quality for the Shifted Schwefel 2.21 Benchmark over all high
dimensions
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Fig. 23. The perfect-hit rates for the Shifted Schwefel 2.21 Benchmark over all low
dimensions
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Table 9. The obtained results for the SHIFTED SCHWEFEL 2.21 benchmark
averaged over 100 independent runs. The columns ’Avg. Quality’ are the best quality
values reached on average and ’sd’ are the appropriate standard deviations.

CO FIPS DE SaDE
D Avg. Quality Avg. Quality Avg. Quality Avg. Quality

10 -4.489104e+002 -4.500000e+002 -4.499584e+002 -4.500000e+002
(sd:1.084125e+001) (sd:4.755862e-014) (sd:2.611637e-001) (sd:1.488578e-008)

20 -4.500000e+002 -4.499937e+002 -4.479376e+002 -4.433669e+002
(sd:1.723247e-007) (sd:1.650810e-002) (sd:4.454956e+000) (sd:5.096988e+000)

30 -4.490855e+002 -4.484360e+002 -4.429598e+002 -4.258889e+002
(sd:8.569079e+000) (sd:1.044253e+000) (sd:7.161370e+000) (sd:6.500815e+000)

40 -4.464303e+002 -4.407844e+002 -4.336153e+002 -4.134643e+002
(sd:1.140033e+001) (sd:3.544000e+000) (sd:1.046324e+001) (sd:5.906191e+000)

50 -4.419887e+002 -4.310389e+002 -4.244601e+002 -4.027587e+002
(sd:1.202361e+001) (sd:2.889775e+000) (sd:1.138035e+001) (sd:5.703359e+000)

60 -4.339265e+002 -4.249005e+002 -4.170774e+002 -3.963494e+002
(sd:1.561768e+001) (sd:2.679366e+000) (sd:1.278055e+001) (sd:6.363289e+000)

70 -4.256561e+002 -4.195058e+002 -4.078050e+002 -3.912661e+002
(sd:1.544347e+001) (sd:2.645905e+000) (sd:1.151013e+001) (sd:5.473383e+000)

80 -4.197817e+002 -4.159261e+002 -4.006189e+002 -3.859185e+002
(sd:1.149723e+001) (sd:2.659169e+000) (sd:1.244508e+001) (sd:5.194362e+000)

90 -4.128266e+002 -4.126387e+002 -3.958927e+002 -3.842713e+002
(sd:9.896689e+000) (sd:2.503374e+000) (sd:9.457541e+000) (sd:5.239893e+000)

100 -4.046237e+002 -4.101617e+002 -3.906002e+002 -3.807847e+002
(sd:1.790226e+001) (sd:2.395554e+000) (sd:1.222260e+001) (sd:4.366847e+000)

200 -3.610515e+002 -3.960883e+002 -3.089553e+002 -3.696587e+002
(sd:1.712589e+001) (sd:2.005508e+000) (sd:7.035707e+000) (sd:3.775774e+000)

400 -3.310405e+002 -3.853219e+002 -3.019135e+002 -3.628508e+002
(sd:1.242192e+001) (sd:1.688922e+000) (sd:5.938256e-001) (sd:2.878341e+000)

600 -3.186619e+002 -3.805799e+002 -3.012224e+002 -3.600298e+002
(sd:9.011174e+000) (sd:1.519170e+000) (sd:4.026564e-001) (sd:3.102008e+000)

800 -3.129529e+002 -3.770601e+002 -3.009255e+002 -3.584252e+002
(sd:6.862525e+000) (sd:1.584371e+000) (sd:3.127022e-001) (sd:2.538747e+000)

1000 -3.091179e+002 -3.738526e+002 -3.007410e+002 -3.574285e+002
(sd:5.541339e+000) (sd:1.802341e+000) (sd:2.260200e-001) (sd:3.087123e+000)
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Fig. 24. The quality for the Shifted Schaffer Benchmark over all low dimensions
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Fig. 25. The quality for the Shifted Schaffer Benchmark over all high dimensions
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Fig. 26. The perfect-hit rates for the Shifted Schaffer Benchmark over all low
dimensions
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Table 10. The obtained results for the SHIFTED SCHAFFER benchmark averaged
over 100 independent runs. The columns ’Avg. Quality’ are the best quality values
reached on average and ’sd’ are the appropriate standard deviations.

CO FIPS DE SaDE
D Avg. Quality Avg. Quality Avg. Quality Avg. Quality

10 1.000380e+002 1.120205e+002 1.000000e+002 1.000003e+002
(sd:1.502848e-001) (sd:1.409892e+001) (sd:0) (sd:1.830224e-003)

20 1.000622e+002 2.133233e+002 1.000000e+002 1.000072e+002
(sd:2.490667e-001) (sd:1.434267e+001) (sd:0) (sd:3.038411e-002)

30 1.001193e+002 3.114448e+002 1.000018e+002 1.004810e+002
(sd:4.704398e-001) (sd:1.439638e+001) (sd:8.129451e-003) (sd:1.857596e+000)

40 1.001512e+002 4.126514e+002 1.000035e+002 1.025308e+002
(sd:4.489124e-001) (sd:1.457026e+001) (sd:1.383280e-002) (sd:5.334459e+000)

50 1.007304e+002 5.237790e+002 1.000241e+002 1.065268e+002
(sd:3.080524e+000) (sd:1.841096e+001) (sd:1.230472e-001) (sd:8.330295e+000)

60 1.002823e+002 6.299084e+002 1.001393e+002 1.099324e+002
(sd:6.556228e-001) (sd:1.795887e+001) (sd:7.861875e-002) (sd:1.104592e+001)

70 1.006115e+002 7.402884e+002 1.005813e+002 1.207612e+002
(sd:2.413036e+000) (sd:2.116258e+001) (sd:4.055406e-001) (sd:1.756741e+001)

80 1.005003e+002 8.486718e+002 1.018142e+002 1.228876e+002
(sd:9.277055e-001) (sd:2.060622e+001) (sd:4.937126e-001) (sd:2.226988e+001)

90 1.007153e+002 9.650093e+002 1.046122e+002 1.371699e+002
(sd:1.403277e+000) (sd:2.275197e+001) (sd:8.757239e-001) (sd:2.711086e+001)

100 1.007828e+002 1.078605e+003 1.095455e+002 1.395137e+002
(sd:1.103401e+000) (sd:2.472649e+001) (sd:1.782662e+000) (sd:2.787433e+001)

200 1.125500e+002 2.232428e+003 4.111508e+002 5.154736e+002
(sd:4.583578e+000) (sd:3.347757e+001) (sd:3.420258e+001) (sd:1.958782e+002)

400 2.369664e+002 4.615841e+003 2.155971e+003 2.726485e+003
(sd:2.059438e+001) (sd:4.709237e+001) (sd:1.213979e+002) (sd:1.992001e+002)

600 5.070452e+002 7.035535e+003 4.588681e+003 5.038908e+003
(sd:3.568611e+001) (sd:5.126754e+001) (sd:1.678681e+002) (sd:1.737125e+002)

800 8.780283e+002 9.473531e+003 7.151913e+003 7.442992e+003
(sd:4.741353e+001) (sd:6.236174e+001) (sd:2.098281e+002) (sd:1.815672e+002)

1000 1.376414e+003 1.191761e+004 9.858184e+003 9.803442e+003
(sd:7.811933e+001) (sd:7.084105e+001) (sd:2.538452e+002) (sd:1.729752e+002)
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Fig. 27. The quality for the Shifted Schwefel 1.2 Benchmark over all low dimensions
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Fig. 28. The quality for the Shifted Schwefel 1.2 Benchmark over all high
dimensions
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Fig. 29. The perfect-hit rates for the Shifted Schwefel 1.2 Benchmark over all low
dimensions
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Table 11. The obtained results for the SHIFTED SCHWEFEL 1.2 benchmark
averaged over 100 independent runs. The columns ’Avg. Quality’ are the best quality
values reached on average and ’sd’ are the appropriate standard deviations.

CO FIPS DE SaDE
D Avg. Quality Avg. Quality Avg. Quality Avg. Quality

10 1.000000e+002 1.000000e+002 1.000000e+002 1.000000e+002
(sd:1.817990e-013) (sd:3.521311e-014) (sd:0) (sd:1.503935e-014)

20 1.000004e+002 1.000000e+002 1.001896e+002 1.000000e+002
(sd:5.639871e-004) (sd:4.968346e-005) (sd:2.449396e-001) (sd:4.168713e-012)

30 1.016924e+002 1.003658e+002 5.591121e+003 1.000455e+002
(sd:1.716799e+000) (sd:2.308946e-001) (sd:2.933719e+003) (sd:3.601361e-001)

40 1.664022e+002 1.164544e+002 7.137664e+004 1.491467e+002
(sd:3.710328e+001) (sd:8.747295e+000) (sd:2.479809e+004) (sd:1.162605e+002)

50 4.857013e+002 2.147742e+002 2.152550e+005 1.063981e+003
(sd:2.176081e+002) (sd:4.432999e+001) (sd:5.158667e+004) (sd:1.130889e+003)

60 1.276157e+003 5.140837e+002 4.580507e+005 4.279357e+003
(sd:4.182165e+002) (sd:1.569317e+002) (sd:1.003927e+005) (sd:3.084658e+003)

70 2.675152e+003 1.013537e+003 7.813793e+005 1.114709e+004
(sd:7.003092e+002) (sd:2.152859e+002) (sd:1.565684e+005) (sd:5.399790e+003)

80 4.850910e+003 1.921741e+003 1.188364e+006 2.672155e+004
(sd:1.347817e+003) (sd:4.788760e+002) (sd:2.491462e+005) (sd:1.230631e+004)

90 7.861116e+003 3.075513e+003 1.655391e+006 4.064478e+004
(sd:1.810027e+003) (sd:6.263259e+002) (sd:2.918856e+005) (sd:1.390363e+004)

100 1.135344e+004 4.716127e+003 2.303213e+006 7.320724e+004
(sd:2.637208e+003) (sd:8.648291e+002) (sd:4.288531e+005) (sd:2.860607e+004)

200 8.525638e+004 3.489317e+004 1.699244e+007 9.004884e+005
(sd:1.126252e+004) (sd:3.934237e+003) (sd:2.839699e+006) (sd:2.574297e+005)

400 4.341353e+005 1.944655e+005 1.193405e+008 7.264158e+006
(sd:4.039150e+004) (sd:1.791380e+004) (sd:1.879186e+007) (sd:1.815895e+006)

600 1.038128e+006 5.088249e+005 3.778038e+008 2.437371e+007
(sd:1.047097e+005) (sd:4.861865e+004) (sd:6.527239e+007) (sd:5.998997e+006)

800 1.886925e+006 1.003089e+006 8.222648e+008 5.461155e+007
(sd:1.686144e+005) (sd:9.943659e+004) (sd:1.420139e+008) (sd:1.360876e+007)

1000 3.030751e+006 1.676365e+006 1.640714e+009 1.063401e+008
(sd:2.625794e+005) (sd:1.730802e+005) (sd:3.053816e+008) (sd:2.404315e+007)
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Concerning the properties of the benchmark functions, it seems that for higher
dimensions CO is not the best choice for non-separable unimodal functions that
can not be optimized dimension by dimension. FIPS performed better on them,
although in one of the two cases CO was at least the second best. But in all
other cases CO seems to be a good choice. For lower dimensions CO was the
best or second best for non-separable unimodal problems as well as for separable
multimodal problems, which can be optimized dimension-wise.

The FIPS approach performed well on non-separable unimodal problems that
can not easily be optimized dimension by dimension. Furthermore, FIPS won the
case of non-separable multimodal problems that can be optimized dimension-
wise. FIPS is also the second best in half of all cases for lower and higher
dimensions.

Low dimensional unimodal problems that can be optimized dimension-wise
were best solved by the DE algorithm. It also won two of the multimodal prob-
lems, whereby the other properties differ too much so nothing can be drawn from
this.

6 Conclusions

In this paper the Community Optimization algorithm was introduced, which
models and simulates the behavior of members of a collaborative community to
emerge their collective intelligence. As presented in section 5.9, CO is the winner
in 9 cases and FIPS as well as DE in 4 cases. Furthermore, CO is the winner of 6
of the 8 high dimensional problems. Thus, CO seems to be a suitable approach
for high dimensional problems. This could make CO an interesting optimizer
for problem domains, which typically suffer from high dimensional representa-
tions. The following are a few examples of domains that could possibly benefit
from CO:

Neural Networks:
Typically a neural network is trained by learning its weights, which are
encoded in a sequence for all neurons and hence easily reach hundreds of
dimensions, depending on the topology used.

Data Clustering:
Learning the centroids of a given data set is often realized by encoding them
as a sequence, too. For data sets with a higher number of clusters in a high
dimensional attribute space, this can lead to a high dimensional optimization
problem.

Polynomial Approximation:
In regression problems, which use a polynomial as model, the number of
coefficients can easily become high. Since they are typically encoded directly,
this leads to a high dimensional optimization problem, too.
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Implicit Data Structures:
In applications, where complex data structures are encoded as a vector, a
high dimensionality can be easily reached. An example could be to optimize
a matrix of weights, which is encoded as a vector containing all rows in a
sequence. In case of a quadratic matrix, the dimension of the vector would
grow exponentially. Another example could be to encode a static full tree as
a vector as done in [21]. Each node of that tree needs at least one dimen-
sion of the vector. With an increase of the depth and arity of the tree, the
dimensionality would grow exponentially, too.

Interestingly, the CO approach outperformed FIPS, although both can be
interpreted as a model of human behavior. FIPS as a PSO-variant uses a direct
communication between its swarm mates, whereas in CO stigmergy is employed.
This raises the question, whether high-dimensional problems are better solved
without direct communication. Of course, an answer can not be given only based
on eight benchmark functions as used in this work. Further studies are needed
to work out the differences between both approaches and their influences on the
performance.

The DE algorithm and its self-adaptive version SaDE did not perform too well
for higher dimensions. Both reached only 4 second places and were outperformed
by CO and FIPS. But for low dimensional problems DE was slightly better than
CO. Thus, one can recommend to use first DE and then CO for low dimensional
problems and first CO and then FIPS for high dimensional problems.

Finally, the presented CO approach is not just an optimizer. In fact, it is a
model based on the human behavior within a collaborative community (behav-
iorsB1 -B4, page 2). CO could be used to verify the effectiveness of mechanisms
within web communities, before implementing them into the appropriate collec-
tive intelligence system.

Acknowledgement. The author’s implementation of CO can be downloaded
as open source module written in ANSI-C under the terms of GNU GPL 3:

http://commopt.sourceforge.net

http://sourceforge.net/projects/commopt
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Abstract. The diffusion of innovation theory aims to explain how new
ideas and practices are disseminated among social system members. A
significant number of the existing models is based on the use of param-
eters which determine the process of innovation adoption, and rely on
simple mathematical functions centered in the observation and descrip-
tion of diffusion patterns. These models enable a more explicit diffusion
process study, but their use involves the estimation of diffusion coeffi-
cients, usually obtained from historical data or chronological series. This
raises some application problems in contexts where there is no data or
the data is insufficient. This paper proposes the use of evolutionary com-
putation as an alternative approach for the simulation of innovation dif-
fusion within organizations. To overcome some of the problems inherent
to existing models an evolutionary algorithm is proposed based on a
probabilistic approach. The results of the simulations that were done to
validate the algorithm revealed to be very promissing in this context.

Simulation experiment results are presented that reveals a very
promising approach of the proposed model.

Keywords: Diffusion, inovation, simulation, evolutionary computation.

1 Introduction

The diffusion of innovation (DOI) theory aims to explain how new ideas dis-
seminate within and among members of a social system [1–10]. Diffusion of
innovation, corresponds to the process whereby one innovation is communicated
through certain channels to the members of a social system along time [4, 6–10].

In last decades several models have been proposed, each one with different
sets of factors determinant to the process of innovation adoption. In general, the
focus of these models is the individual and/or the organization within a social
system. Some good examples are the models of Rogers [6], Moore and Benbasat
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[11], Venkatesh et al. [12] and Davis et al. [13]. Other models were proposed to
explain the DOI and to measure artifacts, diseases and the way some behaviors
are spread in adjacent areas [3].

Significant research efforts about the diffusion process are based on simple
mathematical functions centered in the observation and description of diffusion
patterns, and become relevant in the adoption phenomena. The resulting models
allow estimating the diffusion velocity, the innovation rates and mimicking rates.
Some examples are the logistic macro-models of Gompertz [2] and Bass [1–3, 6,
14]. Recently this topic research has gained more strength with the development
of more sophisticated network models and technologies, allowing a more explicit
study of the diffusion process [3].

The application of the previously mentioned functions in diffusion models
results in ‘S’ shape or sigmoid curves. However, frequently it is not possible
to determine empirically which function better represents the diffusion curve,
as any uni-modal distribution function generates a ‘S’ shape [2]. The use of
these models requires the estimation of diffusion coefficients. These are usually
estimated from historical data or chronological series. This could be a problem
in the absence of data or in case of insufficient data. Alternately, mean values
of certain characteristics from related innovations or the expert evaluation are
used [2], which does not favor much the estimation process.

Although there is a large number of articles in literature about DOI, only a
few were found using techniques based on evolutionary computation. O’Mahoney
[15] applies memetics algorithms to explain management innovation diffusion as
an evolutionary process. The work draws on qualitative evidence from two case-
studies of business process re-engineering implementation to illustrate that the
replication, selection and variation of management innovations can form evolu-
tionary algorithms (memes) which support diffusion processes. This clarifies the
ways in which innovations contribute to their own replication and explains how
the high failure rates associated with business process re-engineering can some-
times improve its chances of reproduction. Alkemade and Castaldi [16] studied
the innovations spread on a social network. The network consists of agents that
are exposed to the introduction of new products. Consumers decide whether
or not to buy a product based on their own preferences and influenced by their
neighbors. The aim of the work is to find out a directed-advertising firm strategy
from the network structure and consumer characteristics. A genetic algorithm is
used in [16] to model the strategy search and learning behavior of the firm.

This paper presents new results of a research work started in [17, 18], that ap-
plies evolutionary computation in the context of DOI simulation in organizations,
aiming to overcome some of the problems of the current existing models. The
remaining of the paper is organized as follows: section 2 presents the background
DOI theory principles; section 3 presents an evolutionary algorithm based on a
probabilistic approach; section 4 presents simulation results, and finally some
conclusions are outlined.
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2 Models for Diffusion of Innovation

The DOI concept was first studied by the French sociologist Gabriel Tarde (1843-
1904), in its work entitled ‘Les lois de limitation’. Since then, mainly from the
decade of 1940, several results have been published in this subject. Rogers [6],
in its 4th edition of ‘Diffusion of Innovations’, accounted for 3890 works about
this topic, distributed in eleven classical research areas, such as: anthropology;
sociology; education sciences; economical sciences. In 2004, about 5000 research
works were performed in a wide range of disciplinary areas [8].

Most of the first research projects about DOI, using simple time domain
mathematical functions are based both on the observation and description of
diffusion patterns in terms of pre-defined tendency or distribution functions.
Examples of the former are: the logistic from Gompertz, the accumulated nor-
mal distribution and the Bass distribution. These models are generally used
with diffusion models as they generate ‘S’ curves [2], and differ in terms of the
number of parameters and in the type of influence conducted in the diffusion
process. The first models assume that the diffusion process is totally conducted
by pure imitation, with the diffusion performed solely by interpersonal contacts.
The Bass model is assumed as a mixed model, taking into account external
influence factors as well as imitation factors. The external influence factors rep-
resent the decision process intrinsic tendency to adopt, or not, a certain innova-
tion, as well as the external factors effect. Examples of the former are: changing
agents influence; mass-media; governmental agencies; marketing agencies; among
others [2].

Accordingly to Mahajan and Peterson [2], conceptually it is possible to con-
sider the communication channels effect, which can be of the following type: ver-
tical; centralized; structured or formal. Accordingly to Young [14], innovation
is diffused through two channels: from the fonts internal to the group and/or
from the fonts external to the group. The intensity of these sources determine
the diffusion curve shape. The diffusion patterns of these models can be char-
acterized in function of two mathematical properties [2]: the symmetry of the
adoption rate curve and the inflection point location relatively to the adopters
accumulation.

Rogers model [6] was selected as the conceptual support of the current work,
as: it is one of the most referenced theories in research related to innovation
diffusion; and mainly as it is a general model, it can be applied to a wide range
of real world problems. This generality results, accordingly to Rogers [8], from
the consistent patterns and regular aspects in a large variety of conditions, in-
novations and cultures in the innovation diffusion process. Moreover, there is a
certain mathematical approximation of this model to others models. This ap-
proximation is performed by ‘S’ adoption rate curve (which is the accumulated
frequencies graphical representation of the number of individuals which adopt
one innovation through time, similar to the Gauss curve or normal accumulated
distribution). This represents the influence of a set of internal and external fac-
tors, expressed in dependent and independent variables, in the adoption and
diffusion process.
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Rogers [6] states that innovation is ‘an idea, practice or object that is per-
ceived as new by an individual or other unit of adoption’, and ‘the diffusion of
an innovation is defined as ‘the process by which an innovation is communicated
through certain channels over time among members of a social system’. The
social system is ‘a set of interrelated units that are engaged in joint problem-
solving to accomplish a common goal’. The social system members or units can
be individuals, informal groups, organizations and/or subsystems. From these
definitions, and from the Rogers model, a set of independent variables is identi-
fied, which explains the innovation and diffusion process and respective adoption
rate: innovation attributes; innovation decision type; communication channel
type; social system nature; members of social system (adopters type), extent of
change agents promotion efforts; and time. Nevertheless, the experience variable
vs. knowledge in relation to the innovations is not directly part of this set, it is
referred in Rogers work [6] in terms of ‘past experiences’.

In the next subsections a brief description for this set of variables is presented,
as they are key elements in the context of this work.

2.1 Innovation Attributes

The innovation attributes are the characteristics of one innovation perceived by
individuals, which help to explain the different adoption rates [6]: relative ad-
vantage – it is the perception degree regarding one innovation, of how better
the innovation is than the associated idea itself; compatibility – it is the percep-
tion degree of an innovation as being consistent with the existing values, past
experiences, the needs of potential adopters; complexity – it is the innovation
perception degree of how difficult it is to understand and use; trialability – the
degree of experimentation associated with one innovation in a limited base; ob-
servability – it is the degree of visibility of one innovation results for others.
Innovations considered as having a high level of relative advantage, compatibil-
ity, trialability, perceptibility and low complexity, can be adopted faster than
others.

2.2 Innovation-Decision Type

The decision making is a social process by which social behaviors are frequently
conducted by the social influences and consequences. The social context also
plays a global role in the decision-making processes [19]. Rogers [6] identifies
three types of decisions: optional – the decision of accepting or rejecting one
innovation is taken independently from other social systems members decision:
this is a personal decision; collective – the choices are taken in consensus among
social system members; authority – the decision is taken by some individuals
within the social system which have authority, status or knowledge in the matter
(the other members only implement the decision).
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2.3 Communication Channel Type

A communication channel is the medium whereby messages are transmitted
from one individual to another [6]. For Mahajan and Peterson [2] channels of
communication are mediums by which information is transmitted to or within
a social system. Two communication channels type can be identified: mass-
media and interpersonal communication channels. The first one involves the mass
media transmission information which includes radio, television, newspapers,
magazines, internet and many others. On the other hand, interpersonal com-
munication channels involve information exchange directly between two or more
individuals.

2.4 Social System Nature

A social system, according to Rogers [6], is ‘a set of interrelated units that are
engaged in joint problem-solving to accomplish a common goal’. Moreover, it
states that members or units of the social system may be individuals, infor-
mal groups, organizations and/or subsystems. In the same sense, Mahajan and
Peterson [2] considers a social system comprised by individuals, organizations,
or agencies that share a common ‘culture’, being potential adopters of an in-
novation. All members of the social system cooperate between them to solve a
common problem in order to achieve a common goal.

2.5 Type of Adopters

Based on adoption time and innovativeness degree (innovation predisposition) of
adopters, i.e., the degree in which an individual, or another unit, adopt new ideas
earlier than other members of the system, Rogers proposes five adopters types
[6]: innovators (risk takers), early adopters (hedgers), early majority (waiters),
late majority (skeptics), laggards (slowpokes).

2.6 Extent of Change Agents Promotion Efforts

A change agent is an individual who influences the decision-innovation process
towards the desired direction of the individual or organization responsible for
driving the innovation. The innovation adoption rate is affected by the promo-
tional efforts extent of change agents. However, this relationship is not direct nei-
ther linear, as it depends on certain innovation diffusion stages. Indeed, change
agents obtain the greater recognition of the promotion efforts when opinion lead-
ers adopt. An opinion leader is an individual who has the ability, in an informal
way, to influence the other individuals attitudes or change their behavior in the
sense that he intends to [6].

2.7 Time

The third element underlying Rogers model [6] is the time involved in the
innovation-decision process, in innovativeness degree and adoption rate. In the
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innovation-decision process the individual pursues through several stages. In in-
novativeness degree certain individuals or adoption units accept an innovation
earlier compared to other members of a social system. The adoption rate refers
to the relative velocity which an innovation is adopted by the members of a
social system.

2.8 Adoption Rate

The adoption rate is the relative adoption speed, per time, of an innovation
by the system members or social unit. Usually, it is measured by the system
members number that adopted the innovation in a given time period. This rate
becomes the indicator of innovation acceptability and success in a system [6, 7].

2.9 Acquired Experience

The individual or collective learning or experience is a factor to take into account
in the innovation diffusion. This factor cuts across several models [6, 13]. When
an individual or group learn to execute a particular activity, the knowledge of this
activity will grow cumulatively. Begins with an initial knowledge and increases,
over time, until mastering the activity, reaching therefore the depletion of the
natural level of learning.

3 Social and Personal Networks

Social and personal networks concepts [3, 6, 7] are fundamental in this work.
For Rogers [6], a social network is the set of individuals that are connected by
standardized information flows, whereas a personal area network consists on a
set of individuals that are connected by standardized flow communication to an
individual. Rogers defines two types of personal networks:

– Interlocking personal network – consists of a set of individuals in which all
interact with all;

– Radial personal networks – consist of a set of individuals connected to an
central individual, the radial individuals do not interact with each other.

Radial networks are more open to an individual environment and are more
important in the DOI [6]. The concept of networking and interpersonal close-
ness between pairs of individuals was addressed by Rogers [6, 7] as factors that
may facilitate or prevent innovation adoption in a social system, depending on
its nature, regarding particularly the communication structure. The proxim-
ity between pairs of individuals, integration, degree, radiality, inter-connectivity
and eigenvector have been used as centrality measures in social network studies
based on distance, providing indicators of network structure and how structure
influences individual behavior. These measures are important to determine who
occupies a relevant position in the network [20, 21].
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Recently Valente [22] proposed a bridging measure for the study of network
structure, dynamic network and network effects on the individuals behavior.
The technique consists in removing links instead of central nodes, and then
aggregating changes to the node. Detect connections between individuals and key
individuals that increase the cohesion may be an alternative and more efficient
to accelerate change or improve network performance.

The structure of social networks, as mentioned before, may influence innova-
tion adoption, as well as behavior change [5, 6, 9, 20, 23–25]. Thus, DOI occurs
in complex systems where the networks that connect individuals to a system are
overlapping, multiple and complex [9].

The idea that the DOI is supported by a network of social influences is used
by Valente [5] in his threshold model of social networks broadcast. This model
draws on the four categories of adopters proposed by Ryan and Gross [26], in
order to distinguish the collective behavior of adopters in the face of innovation,
namely: early adopters; early majority; late majority; and laggards. This cate-
gorization, based on innovativeness as a measure of adoption time, is performed
taking into account the networking concepts of social, exposure and threshold.
Specifically, for each category an adoption threshold is created, following the
same apportionment method used by Ryan and Gross [26] as for the adoption
time. Thus, individuals with very low and low threshold network have a thresh-
old of personnel network below μ − σ and in the range [μ − σ, μ], respectively,
where σ and μ are the standard deviation and average threshold, respectively.
On the other hand, individuals with high threshold network have the threshold
of network personnel value in the interval [μ, μ + σ]. Finally, individuals with
very high threshold have its value above μ+ σ. The average value is the thresh-
old mean of the social system adopters [5]. In this sense, adopters with a lower
threshold value are individuals who adopt sooner when compared to other ele-
ments of their personal network. Furthermore, individuals with high threshold
value tend to adopt an innovation much later. According to the four categories
of adopters proposed by Ryan and Gross [26], these two types correspond to
early and laggards adopters.

Exposure and threshold concepts assume an important role in this work.
Rogers proposed a definition of threshold [6, p. 333–334]. In this context im-
portant concepts are:

– Exposure in a network: as the neighbors (personal network) adopters of
an individual at a given moment. The exposure generally increases as time
passes and more individuals adopt the innovation in the social system, raising
the possibility of an individual to adopt;

– Adoption threshold: as the exposure at adoption time which varies from
individual to individual [3, 5].

Figure 1 illustrates the exposure of a personal network with respect to an inno-
vation. The network consists of five individuals and a weight based relationship
between the central individual and its neighbors [5, 27].

In Figure 1, the personnel network (a), taking as reference the central indi-
vidual as a potential adopter, indicates that when time t = 1 exposure is nil; in
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(a) Time t = 1,
expo-
sure = 0%

(b) Time t = 5, ex-
posure = 25%

(c) Time t = 8,
expo-
sure = 50%

(d) Time t = 9, ex-
posure = 75%

(e) Time t = 11,
exposure = 100%

(f) Time t = 15,
exposure = 100%

Fig. 1. Exposure degree of a Innovation in a personal network. Adapted from Coleman
et al. [27] and Valente [5].

plot (b) the individual has an exposure degree of 25%, i.e. 1/4 (1 adopter by
the total individual number of the personal network consisting of 4 neighbors)
at t = 5. In network (d) the exposure degree, for the t = 9, is 75%. Finally, in
plot (f) the individual adopts at time t = 15, when all its network partners have
already adopted, and the individual threshold exposure at that time is 100%.
In this example, the central individual adopted when all partners had already
adopted, but since the threshold varies from individual to individual, another
potential adopter could adopt, for instance, when t=9 with a 75% exposure. In
the example presented in figure 1, the network could be formed by two friends,
one discussion partner and one counseling partner.

In this study, the weight or intensity of relations with the central element
is random, following a probabilistic uniform distribution U(0, 1), thus varying
the individual exposure degree and threshold. The relationship intensity, of the
central individual, is evaluated from the influence of its peers and/or its recep-
tiveness to innovation. The simulated DOI is supported by a social network and,
in particular, the social influence process is accomplished by direct contact from
individual to individual. In harmony with this idea, Young [28] formalized a
relational model based on a graph of particular interest for the present work.
According to Young, a social network can be represented by a graph G consti-
tuted by a finite set of nodes V and a set of non-oriented arcs. Each node i
is an individual of the system. An arc {i, j} connects the individuals i and j,
if and only if i and j are neighbors. This means that actions are the outcome
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of mutual behavior. Each link {i, j} is supposedly endowed with an intensity
wji = wij , wij > 0. If wij > wik means that individual i gives more importance
to individual j actions than to individual k actions [28]. The model also uses
the stochastic function proposed by Blume [29], equated from game theory, to
represent the individuals decision-making. Individuals may opt for two different
types of behavior, A or B, for the perceived usefulness. Thus, the formalization
of Young, Valente and Rogers models concept, is an important support to the
work presented here.

4 Proposal of Innovation a New Evolutionary Algorithm
for the Diffusion of Innovation Simulation

Several diffusion models, including the aforementioned, follows the well known
‘S’–curve [2]. The application of such models involves the estimation of coef-
ficient diffusion parameters. These parameters are usually estimated from his-
torical data or time series. However, in some cases the historical data is not
available or the phenomena is not repeatable. To overcome this problem, the
historical estimation is often replaced by the average parameter values of other
similar innovations or is based on expert evaluation. For instance, in the Bass
model, the estimation of these parameters requires a time series having, at least,
the number of adopters in three different moments [2]. The Bass model, as a
mixed model, is based in three essential parameters [1, 2] and, as it have been
described, is not always possible to apply since this process depends on the in-
novation age, particularly if it is recent or not. However, other techniques, as for
example linear or non-linear regressions, can be used if historical data do exists.
Because of this, models based on the logistic equation are of restricted applica-
bility. Moreover, these macro-models become inaccurate by admitting a perfect
social mixing, where everyone interact with everyone, and neglect similar be-
haviors where people are linked together [3]. This structural dependence, which
is reflected in the parameters estimation, gives rise to several problems related
to DOI simulation and has motivated the present work: taking into account the
trends in a population adoption for a particular innovation. Evolutionary com-
putation is proposed to simulate the evolutionary process of innovation diffusion
here.

The general principle of an evolutionary algorithm (EA) is quite simple. A
set of N individuals randomly generated, form the initial population. Each in-
dividual has a certain performance, which represents the degree of individual’s
adaptation (fitness value) to its environment. The purpose of an EA is progres-
sively improving, generation after generation, the performance of each individual
using main evolution mechanisms [30], such as: selection, which favors the re-
production process and thus survival of the most adapted individuals to their
environment; reproduction, which allows recombination (or crossover) of parents
hereditary characteristics and mutation at the genetic heritage of the individual,
to create offspring with new skills.
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Each population, P (t) = {xt
1, . . . , x

t
n}, individual xt

i represents a potential
solution, for a certain problem in iteration t, is subjected to genetic operators
and evaluated using an objective function, allowing to establish its relative merit
in relation to other population individuals. The application of genetic operators
results in a new population in iteration t+1. The EA is executed for a pre-defined
number of generations [31, 32] or until a convergence threshold is achieved.

The contextual relationships between concepts, models and the evolutionary
basis of innovation diffusion, and the principles of EA, allowed to create an
algorithm structure, presented in algorithm 1 in order to meet the objectives of
this work, with the following elements:

1. A finite population consisting of N individuals, each one with three genes,
organized in a matrixP (N×3). The genes represent: the degree of knowledge
acquired by the individual, the degree of exposure of the individual and the
adoption (identifies whether an individual takes or not the innovation);

2. A R (n×m) matrix that represents a regular graph (social network), of type
torus (or ring), wherein each array element identifies a network node, i.e.,
an individual i. Each individual i can be influenced by a maximum of four
neighbors, which corresponds to a maximum exposure of 100%;

3. The fitness function, that measures the individual’s ability, is determined
from the influence of the closest peers and of the innovation degree
knowledge;

4. The improvement of the individual: the individual is subjected to various
types of changes over the generations in order to improve it;

5. A ‘selection’ mechanism: evaluates, from the fitness function, the individual’s
propensity for being an adopter.

The algorithm matrix size, the social network, can be configured in terms of
the number of rows and columns. In this work a 4 × 100, 20 × 20 and 40 × 10
matrix sizes are used.

For the proposed model experimentation, a social network of interactions was
defined with a constant neighborhood (4 individuals) represented as a ring grid.
This network is represented by an matrix R(n×m) with every element identify-
ing a grid node, and this node represents an individual. Population individuals
are organized in another matrix P(n × 3). The network matrix is initialized se-
quentially, with the line index (i) (individual position) of the population matrix
(see Figure 2), i.e., the index of the first individual (i = 1) from P is placed in
the first element of R(i → r1,1), the second individual (i = 2) is placed in the
second element (i → r2,1), and so on, column by column, until the last individ-
ual (i = n), occupies the last element of R(i → rn,m). As in the ring typology
all individual are interconnected, alternatively to another process, two columns
and two lines are added to the matrix R: one column to left of the first column
and the other to the right of the last column; one line above the first line and
another bellow the last line. In this way the dimension of matrix R was changed
to R(n+2×m+2). The individuals from the first column are duplicated in the
new right column and vice-versa, i.e., the last column elements are duplicated
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Data: Logit coeficients
/* Individuals initialization of matriz P(n× 3) */

pi,1 ← 0; pi,2 ← 0; pi,3 ← 0;
/* Inicialization of network R(n×m) from P(n× 3) (insert

individuals into the network) */

/* Random inicialization of early initial adopters (x) */

pi,1 ← 1; pi,2 ← 1; pi,3 ← 1;
while number of adopters (a) < N do

initialize random sequence of N individuals to be changed;
foreach Individual i do

if U(0, 1) < 0.001 then
Mutate adoption gene

end
change knowledge degree gene;
change exposure degree gene;
evaluate fitness if pm > 0.5 then

pi,3 ← 1
end

end
a← number of neighbors adopters;
t← t+ 1;
save the number of adoptants;

end

Algorithm 1. Proposed algorithm

in the new left column. The same procedure is applied to the new lines, closing
the ring network.

The innovators (early adopters) are randomly generated, following a uniform
distribution (X ∼ U(0, 1)), at the beginning of the algorithm. All individuals
genes are initialized with the value 1, indicated in this way that have already
adopted the innovation.

During the evolution, in each generation, the population individual genes
(known as exposure and knowledge degree) are updated following a random
uniform probability distribution. Therefore, the exposure degree gene is modified
according to both the adopters number in the neighborhood and the connection
weight between the individual and its neighbors. This update is cumulative, i.e.,
the exposure degree acquired by the individual in a previous generation, is added
with the exposure degree evaluated in the current generation. The knowledge
degree gene across generations memorizes the level of knowledge acquired by
the individual (is a real number that varies between 0 and 1). This gene is
updated from the logistic function of Verhulst [33, 34], often used to evaluate
the knowledge evolution of a person.

When the probability exceeds 0.5, the individual i has a strong adoption
likelihood. Therefore, the adoption gene takes the value 1.
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Fig. 2. Relation between the network matrix and population matrix

The individuals evaluation is based on the binary regression model. If the
adjusted logit proves significant and high quality as well as useful for the classi-
fication of new individuals, it is used in the respective simulation.

5 Simulation Results

Twenty independent simulations were performed for each used network sizes of
4 × 100, 20 × 20 and 40 × 10. For each case 5% and 10% initial adopters was
considered. Each subnetwork, or individual network, is formed by 5 individuals in
a radial topology connection, where all the participants have the same centrality
degree. This means that, each individual can be influenced, at most, by the 4
neighbors. When this influence occurs the exposure is maximum.

The network was constructed in order to model the contact and influence flow
according to the physical space available or according to organizational methods.
However, other network size could be adopted in order to represent other social
situations.

According to Bass [1], Mahajan and Peterson [2], Rogers [6], Valente [3] and
Young [14] the diffusion curves has a ‘S’ shape. The diffusion obtained curve
seems to follow the logistic, Gompertz and Bass models as can be seen by fig-
ures 3, 4 and 5. Therefore, the non-linear regression was used to estimate the
curves using the R-statistical software. The regression curves of the three models
reveals adjustements with high quality in the simulations performed. The R2 co-
efficients varies in the range [0.8099, 0.9972], [0.8916, 0.9963] and [0.9643, 0.9994]
for logistic, Gompertz and Bass models, respectively. Figures 6, 7 and 8 show
the adjustment of the curve for the experiments.

All the experiments performed, for each model, were considered since they
present high adjustment quality. Although, in most cases, the assumption of
non-linear regression for independence and random error was not verified. A fact
which is attributed to the high regularity inherent in the process of computer
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Fig. 3. Adoption evolution curves of 20 independent simulations in a 4× 100 network
size, for 5% and 10% of initial adopters

simulation. However, these models have created a more realistic picture of the
innovation diffusion, regardless of the innovation itself.

6 Conclusions

The currently existing DOI models require data that in some cases is unavailable
or does not exist. Therefore, it is pertinent to propose new models that allow,
in dataless situations, to perform innovation diffusion simulations with rigor.

In this context, a new evolutionary algorithm it was proposed based on a
probabilistic approach and conceptually based on the social system adoption
trends, when the system is exposed to innovation phenomena. The proposed
model describes the system in macro terms, at organizational and social levels.
Diffusion is supported, on one hand, by social networks of influences where the
influence process is carried out by direct contact between individuals in personal
networks. On the other hand, it is supported in the social system trends at micro
level (individual), based on the exposure level, the individual characteristics
evolution and on the factors that influence decision making.

The main advantage of the proposed model is not requiring, unlike the afore-
mentioned macro-models, to estimate the diffusion coefficients that materialize
the innovation transmission rate, the internal and external influences to describe
the innovation diffusion, since this is based on evolutionary trends of social sys-
tem adoption. This model is particularly interesting since it shows, from the
estimation of regression coefficients, the first generations adoption trend in each
new simulation. These early trends (coefficients set) will determine the adoption
rate or pace of a social system.
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Fig. 4. Adoption evolution curves of 20 independent simulations in a 20× 20 network
size, for 5% and 10% of initial adopters
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Fig. 5. Adoption evolution curves of 20 independent simulations in a 40× 10 network
size, for 5% and 10% of initial adopters
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Fig. 6. Adjustment quality of models: logistic, Gompertz and Bass in the model for a
simulation with 5% and 10% of initial adopters in the network 4× 100
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Fig. 7. Adjustment quality of models: logistic, Gompertz and Bass in the model for a
simulation with 5% and 10% of initial adopters in the network 20× 20
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Fig. 8. Adjustment quality of models: logistic, Gompertz and Bass in the model for a
simulation with 5% and 10% of initial adopters in the network 40× 10

7 Future Work

In future, considering the applicability of the theoretical probabilistic model
above mentioned and obtained: the logit and the respective explanatory variables
that contribute to explain the adoption; the mathematical models inherent in the
adoption trends of each variable (in this case the knowledge follows a logistic
function); and the network type and the networks for each individual and its
interpersonal influence weights (the relationship between the individual and their
partners) a real DOI simulation could be performed.

The algorithm, based on these foundations, could simulate the DOI evolution
in a social system, be it a set of businesses, schools, municipalities, etc.
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Abstract. Researchers have tried to embed synthetic emotions into
robot much like their biological counterparts. While many have shown
the effect of emotion on decision-making for the robot, the scenarios that
portray when to use emotions for robots are rare. In this paper, we evalu-
ate the performance of a robot by empowering it with a decision-making
capability which uses synthetic emotions. Since from the robot’s perspec-
tive the environment is stochastic, it needs to make the right decision
for survival. A Comfort level is defined as a metric which determines the
quality of life of the robot. The robot possesses various needs and urges
all of which influence its decisions. The main objective was to make the
robot perform high profile tasks rather than menial ones so as to increase
its utility. Results obtained from experiments conducted using a real sit-
uated robot with and without emotion indicate that emotion aids more
significantly when the environment has abundant resources.

Keywords: Artificial Life, Synthetic emotions, Behavior selection,
Robotics, Software agents, Softbots, Decision-making.

1 Introduction

Researchers are still yet to unravel the secrets of the complex phenomenon of
human emotions and its use. Theories suggest that emotions are caused due to
possible bio-chemical changes within the living body which in turn can change
the behavior and actions performed by the being [1]. Emotions possibly con-
tribute to a survival strategy of the being. Both decision-making and learning
have been known to be influenced by emotions [2]. Several attempts have been
made to embed emotions into robots and machines [3]. In [4], authors have
compared an emotion based decision-making methodology with the traditional
approaches and shown that the use of emotions incur a lower computational
cost for problem solving. Domenica et al. [5] have embedded emotion in the
form of a neural network to aid robots in decision-making. Lee et al. [6] have
used an emotion model to arbitrate predefined behaviors depending upon exter-
nal stimuli. Liang et al. [7] have proposed a fuzzy logic based artificial emotion
generation model (FLAEEM) for behavior selection by an agent to survive in
dynamically changing environment. Kim et al. [8] have proposed a Cognitive ap-
praisal theory based emotion generation model which uses a Partially Observable
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Markov Decision Process (POMDP) to model actions of the robot. The model
uses six predefined criterion which are pre-derived using POMDP from tasks that
a robot is expected to execute. They have concluded that if a robot has apriori
probabilistic information of state transitions and sensory observations then the
deliberative emotion generation process can be applied to enhance natural hu-
man interactions. Park et al. [9] have put forward an emotion generation model
which takes into account personality, mood and history of the emotion felt, using
predefined rules for personality and mood. Emotion is generated and expressed
using a simulated facial expression model based on FACS (Facial Action Coding
System) [10]. Emotion also seems to play a significant role in speeding up the
natural selection process [11]. Lv et al. [12] have used an emotion model derived
from psychological model of the emotional content of music. The model is used
to analyze the rhythm of music in dance performance. While many have worked
towards rendering emotions using robotic faces [13–15] few have proposed prac-
tical and viable models for their actual generation [16, 17].

Researchers have tried modeling emotion generation using agent-based con-
cepts. Zhenhua Cai et al. [18] have proposed a dynamic computational emotion
model for emotion generation. The model consists of simulated agents (avatars)
which interacts with environment and executes different tasks to satisfy de-
mands. The model generates emotions like Happy, Sad and Fear as a result
of interactions among the avatars and the environment. Becker et al. [19] show
how boredom can be used to augment emotions and hence the mood of an agent.
Räıevsky et al. [20] show the manner in which decision-making capabilities of
an agent are affected by emotions. Ricardo et al. [21] have used an agent based
emotion model to study how emotion supports functional adaptation to achieve
system autonomy. Nair et al. [22] have proposed a set of complex dynamics
to generate deep emotions using a multi-agent system. They have shown how
emotions can be churned by a set of agents running concurrently in a more
human-like manner.

Evolving multiple agents or autonomous robots using discrete event simu-
lations [23] falls in the domain of Artificial Life (AL). They involve biological
mechanisms, which in turn provide insights into the complex problems faced
in distributed networks, parallel computations and the realization of intelligent
systems. Though AL has been used in several applications including computer
viruses, autocatalytic nets, cellular automata, artificial nucleotides, immune sys-
tems and market simulations, it has not yielded significantly leaving several open
problems that are still to be tackled [24]. AL is realized using software agents
and autonomous robots to emulate or simulate the intricacies of a biological
organism and its ecosystem. The underlying techniques used to realize AL rely
mostly on bio-inspired mechanisms which include Evolutionary Algorithms, Ar-
tificial Neural Networks and Cellular Automata [23, 25–27]. Scheutz et al. [28]
lists 12 significant roles that emotion could play in AL and propose an agent
architecture that uses action selection, adaptation and social regulation. Nair et
al. [22, 29] have portrayed a dynamic model for emotion generation and shown
how it can be effectively used to control the speed of a robot on a terrain. In [30],
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the authors have used emotions for the survival of a robot in an artificial envi-
ronment. They have shown that emotions can possibly aid a robot to perform
better in terms of its utility in the environment. Their robot, which is situated
in an artificial-life-like environment, uses a set of linear equations for calculating
the internal urges coupled with a simple probabilistic model to motivate and
execute a relevant task.

This paper extends the work reported in [30] by improving on the manner of
computing the Urges and the decision-making process. By using the dynamics
for emotion generation, as proposed by Nair et al. [22] in a robot’s task selection
process, we also try and portray the utility of emotions in improving the perfor-
mance and survival of a robot in an artificial-life-like environment. We examine
the performance with a more robust and deterministic model for the robot as
opposed to the probabilistic model used in [30]. The calculation of Urges too
involves a one-to-one correspondence with the emotion model outputs rather
than a cumulatively derived quantity viz. Comfort level proposed in [30]. In the
work described herein, this Comfort level has been used to merely quantify the
state the robot in the environment and strictly for high level task selection. As
suggested in [31], we have evaluated our model by running experiments with and
without emotions and comparing the results. Further the paper presents a de-
tailed analysis of the utility of emotion along with the results obtained from real
experiments. Subsequent sections describe the emotion model, the environment
the robot is situated in and the related dynamics together with the experiments
performed and the results obtained.

Fig. 1. The Emotion model and its dynamics based on [22]

2 The Emotion Generating Model

In order to aid the robot situated in an environment, in the task selection pro-
cess, we have used the multi-agent emotion generation model proposed by Nair
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et al. [22]. This emotion model, unlike others is deep in nature as it features con-
current emotion generation by dedicated agents, stimulations and suppressions
for both positive and negative emotions which have their own respective life-
times, emotion decay based on a look-back into the past and an adrenalin based
sampling of the environment. The latter sampling method makes the model to
sample the environment at a faster rate when negative emotions predominate.
The emotion agents behave like biological glands wherein an emotion resource
regulates for the actual generation of emotion. This resource is charged intermit-
tently based on the conditions within and those perceived from the environment.
The agents generating the same type of emotion (positive or negative) stimulate
their own kind (e.g. positive stimulates positive) while suppressing their oppo-
sites (e.g. positive suppresses negative) eventually making the model to churn
out the resultant emotions.

Figure 1 shows the flow of information within the emotion model described
in [22]. It consists of a Referee agent that acts as the band-master and controls the
flow of signals, received internally as well as from the external environment, to the
actual emotion generating agents. The external inputs are derived from sensors
which the emoting robot uses to perceive its environment. The inputs are routed
to the emotion generating agents based on an internally generated mood which
triggers a sampling timer. When this internal Mood, which is the fuzzified version
of all the emotions generated, is low the sampling timer triggers more frequently
enabling the Latch accordingly consequently making the emotion agents to churn
out fresh emotions at a faster rate. This makes the emotion engine emulate
an adrenaline-like effect. The inputs perceived from the environment are also
fuzzified to sense the external ambience which charges the emotion resource
together with the rewards and penalties received from the environment. The
Referee agent also controls the rate of decay of emotion using a timer whose
value changes based on the state of the past emotions generated.

Equations that govern the dynamics of emotion generation as described in
[22] are given below.

The Intensity of an emotion e at time (t+ 1), Ie, is given by:

Ie(t+ 1) = Ie(t) + Fe(t) (1)

Fe(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
Pe(t)− Ie(t) + w1

∑E
k=1 Ske(t)− w2

∑E
k=1 S

′
ke(t)

)
(Re(t)/ReMax) ,

Pe(t) > Ie(t)(
w3Pe(t) + w4

∑E
k=1 Ske(t)− w5

∑E
k=1 S

′
ke(t)

)
(Re(t)/ReMax) ,

Pe(t) = Ie(t)

−
∣∣∣
(
Ie(t)− Pe(t) + w6

∑E
k=1 Ske(t)−w7

∑E
k=1 S

′
ke(t)

)
(Re(t)/ReMax)

∣∣∣ ,
Pe(t) < Ie(t),

and k �= e
(2)
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where Fe(t) is the fraction of resource extracted at time t which is calculated
using equation 2, Pe(t) is the input intensity, Ske and S

′
ke is the stimulation

and suppression respectively, Re(t) is the current resource of the emotion e and
ReMax is its maximum value.

Stimulation (or Suppression) of an emotion k received by an agent generating
emotion e:

Ske(t+ 1) =
∑M

x Sx
ke(t) + ske(t), k 
= e (3)

Stimulation and Suppressions generated by emotion e to be sent to other
emotions:

Se(t) = s
′
e(t+ 1)

=

{
[{Pe(t)− Ie(t)} /Ie(t)] {Re(t)/ReMax} ,

if Pe(t) > Ie(t)
0, otherwise

(4)

Decay of emotion Resource Re(t) of an emotion e at time t+ 1:

Re(t+ 1) = Re(t)− |Fe(t)| (5)

The decay in emotion intensity (Ie) of an emotion e at time t+ 1:

Ie(t+ 1) =

⎧⎪⎨
⎪⎩

(
Ie(t)− c1e

−Δe(t)
)
for Δe(t) > 0(

Ie(t)− c2e
−1

Δe(t)

)
for Δe(t) < 0

(Ie(t)− c3) for Δe(t) = 0

(6)

Δe is given by:

Δe(t+ 1) = c4

⎡
⎣ t∑
i=t−(B−1)

Ie(i)− Ie(i− 1)

⎤
⎦ /B − 1 (7)

where c1, c2, c3 and c4 are positive non-zero constants.

The resultant emotions are used to drive the corresponding actuators of the
robot. The emotion agents calculate their respective emotion intensities (Ie)
based on the inputs received via the latch using equation 1. The fraction of emo-
tion resource extracted Fe(t) is calculated using equation 2 where wi, i = 1...7,
are positive non-zero constants. The stimulations and suppressions are modeled
based on the equation 3. Re(t) is the resource of each emotion at time t while
ReMax is its maximum value. Stimulations and suppressions have a lifetime com-
ponent. As long as the lifetime is non zero, these stimulations and suppressions
continue to live within an emotion agent and affect one another. The overall
stimulation (or suppression) within an emotion agent is calculated using equa-
tion 3. The stimulations and suppressions generated due to interactions across
the agents are calculated using equation 4. The Resource, which forms the basis
of emotion generation, is depleted as and when the corresponding emotion is
generated and is governed by equation 5. It is charged as and when its associ-
ated timers triggers. The amount by which resource of an emotion is charged
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depends on its current value and the intensity of related input. Emotion decay is
affected by the Decay timer using equation 6 depending on the manner in which
the emotions change in a window of time in the past. The information on imme-
diate past of an emotion within a window of time is aggregated using equation 7.
Emotion resource, stimulations and suppressions and their life-times, charging
of resources, decay of emotions along with the adrenaline effect all contribute to
making the emotion model a deep one.

3 The Robot and Its Environment

Similar to an animat which inhabits in an artificial environment [32], the robot
herein is also situated in an artificial life-like environment. Just as its biological
counterpart, this robot has both physical needs and urges. Figure 2 shows the
various functional blocks and decision-making process within the robot. Needs
include the requirement of water and food, among which have thirst and hunger
as their correspondingly urges. The physical needs of the robot include:

Food This need creates a requirement within the robot to consume resources
from the environment.

Water This is similar to the need of Food except robot is requirement to
consume a different resource viz. water from the environment.

Energy Robot loses energy while performing different activities in the environ-
ment. A need for Energy makes the robot to convert the resources it
consumes from the environment into useful energy.

Recce The prime objective of the robot in the environment is to perform
useful tasks. A need to reconnoiter (Recce) is aggravated if the robot
is busy fulfilling its other needs viz. Food, Water or Energy instead of
carrying out any useful activity.

These needs are computed based on, which task the robot performs, its urges
and the condition of the environment. The corresponding meters (Figure 2)
reflect their respective amounts. The needs cause changes in the corresponding
urges which in turn effect the decision-making and hence the behavior of the
robot. A behavior is exhibited by executing a task. Urges form a set of entities
that are internally generated within the robot based on how comfortably it is
when it is situated within its environment. These include:

Hunger This urge motivates the robot to perform a task which involves con-
sumption of resources from the environment.

Thirst Robot is motivated to drink when its Thirst become high.

Explore This urge propels the robot to explore the environment in order to
perform useful tasks.

Relax This urge is associated with energy. The robot relaxes when this urge
becomes high and in turn generates energy.
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The environment supports the robot by providing Water, Grass and Shrubs
which when consumed generate the required energy for the robot to survive.
As the robot consumes these resources, they are once again topped up by three
simulated natural phenomena viz. Wind, Rain and Heat. While the former two
increase all the resources, the latter tends to decrease them. In our experiments
we have used the former two to simulate a tropical environment and the heat
from the sun to deplete the resources portraying a drought-like situation.

Fig. 2. Various functional blocks and decision-making process

Using on-board sensors the robot in the real world detects the following re-
sources in the environment:

1. Water : It is assumed that Water is blue in colour and is available as a blue
coloured patch in the environment. Robot detects Water using its colour
sensor.

2. Grass : A green coloured patch in the environment forms an area designated
as Grass. Grass is required by the robot to fulfil its need of Food.

3. Shrubs : Shrubs are designated in the environment as a yellow coloured
patch.

The robot is capable of performing two categories of tasks viz.

– Low profile tasks which include Eating and Drinking which in turn satisfy
its primary needs of generating energy.

– High profile tasks that include Exploring, Relaxing and Learning. These
tasks constitutes the performance of the robot in the environment. More
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the robot performs these high level tasks, more will be its productivity or
usefulness in the environment.

Exploration facilitates it to move around its environment to re-assess and
estimate the amount of current resources and also to discover the terrain. The
robot relaxes for two reasons - either to convert the food or water taken in, into
energy or simply because all its other needs have been satisfied. The task of
Learning is triggered when the Comfort level of the robot is high and its needs
and the corresponding urges (shown in Table 1) are low. Learning can act as a
feedback mechanism and influence the decision-making process thereby making
the robot perform better. The Comfort level of the robot is found by a fuzzy logic
based system that takes in either the physical need meter values or the emotions
generated by the emotion model and portrays how good the robot feels within
its environment.

In a true robotic environment a low profile tasks could stand for charging the
on-board batteries or cleaning the dust of its sensors, while high profile tasks
could refer to transmitting of the data gathered by the robot to the base station
or processing the same to find some meaningful rules which could in turn aid in
learning and adapting to the environment. Thus the main objective herein is to
force the robot to perform more of high level tasks than the mundane low level
ones during its life-time.

The overall success with which the robot lives and survives in the stochastic
environment depends greatly on the decisions it makes. As shown in Figure 2,
the decision-making process takes as input the current values of needs, urges
and the Comfort level and outputs the task to be performed. The Comfort level
(α) is a qualitative measure of the quality of life of the robot. A high Comfort
value signifies that all its physical needs are low and thus the robot has no real
requirements. Such a situation motivates the robot to perform high profile tasks
rather than the mere lower ones of Eating and Drinking. This Comfort level is
determined using a fuzzy system. Table 2 lists the fuzzy rules used to obtain the
value of Comfort level. While the needs signify the actual requirements of the
robot, urges act as dynamic thresholds to check on these requirements. When the
Switch S is connected to point A (Figure 2), the robot does not use the emotion
model for its decisions. While a connection at point B embeds the emotion model
within the decision-making loop of the robot. The switch thus aids in conducting
experiments with and without the emotion model to aid in the decision-making
process. The emotion model used herein is similar to the described by Nair et
al. [22] and uses three emotion agents to produce three emotion viz. Happy, Sad
and Surprise. The Physical Need Meters of the robot are provided as inputs to
the emotion model. While the Energy and Recce need meter values are fed to the
Happy and Surprise emotion agents respectively to produce the corresponding
outputs, Food and Water need meter values are added up and provided as input
to the Sad emotion agent to churn out the Sad emotion. After a task is selected,
the robot executes the tasks based on certain conditions derived from its needs,
internal urges and the availability of the concerned resource (Grass, Shrubs or
Water). Until these conditions remain true, the robot keep on executing the
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current task. For instance if the robot decided to eat then before performing this
task it would require to verify whether its need for Water, Recce and Energy are
below the thirst, explore and relax urges respectively. If it cannot execute the
task then it goes back to previous level to select another task. Performance of
a task causes the concerned resource in the environment to decrease and also
affects the corresponding needs. After the task is executed the cycle is repeated.

Table 1. Related Needs, Urges and Tasks

Needs (Υ ) Urges (Ω) Tasks (Γ )

Food (f) Hunger (H) Eating

Water (w) Thirst (T) Drinking

Recce (r) Explore (L) Exploring or Learning

Energy (g) Relax (X) Relaxing

Table 2. Fuzzy rules for deriving Comfort level

Recce Food/Water Energy Comfort Level

low low low super

low low medium super

low low high good

low medium low super

low medium medium good

low medium high okay

low high low good

low high medium good

low high high okay

medium low low good

medium low medium good

medium low high okay

medium medium low good

medium medium medium okay

medium medium high good

medium high low okay

medium high medium okay

medium high high bad

high low low okay

high low medium okay

high low high bad

high medium low okay

high medium medium bad

high medium high worst

high high low bad

high high medium worst

high high high worst

4 The Decision-Making Process

Table 1 shows the needs and their corresponding urges and the associated tasks.
The robot has to perform the associated task Sin order to satisfy the respective
needs and urges.
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The robot makes a decision to perform a task based on the following equations:

τ = argmin
t

{Wt} (8)

Wt =
(Qi−μj)×maxηi

ηi (9)

Qi = max ηi − ηi (10)

μH =
{Hmax − Q̃f} × k3

Q̃g
(11)

μT =
{Tmax − Q̃w} × k4

Q̃g
(12)

μL =
Q̃g × k1

Q̃r
(13)

μX =
{Emax − Q̃g} × k2

Emax − μH+μT

2

(14)

Q̃i = max ηi − E{ηi} (15)

i ∈ Υ, j ∈ Ω, t ∈ Γ
where,

− τ is the selected task.
− t is the task associated with need (ηi) and urge (μj).
− ηi is the value indicated by the need meters associated to the need i.
− μj is value of urge associated to the task t as shown in Table 1.
− max ηi is the maximum possible value of ηi.
− Qi signifies the actual amount of Food, Water, Recce and Energy available

within the robot.
− Q̃i = Qi when the emotion model in not used i.e. the switch S is at point A

in Figure 2.
− maxμH , maxμT and maxμX are the predefined maximum possible values

of μH , μT and μX respectively.
− k1, k2, k3 and k4 are positive non-zero constants.
− E{ηi} is the output of the emotion model for the input ηi.

The robot makes a decision to perform a task (τ) based on equation 8 which
selects the task having the minimum weight (Wt). It is evident from equations 8
and 9 that when the need for a task is high then its chances of selection are also
high. In equation 9 the numerator on the right hand side indicates the motivation
of the robot to perform a specific task which is scaled by its respective physical
need. If multiple Qi values are greater than their corresponding urges (μj) then
the task t associated with the max ηi is selected. Further, if the task selected
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Fig. 3. The State Diagram of Decision Process

is that of Exploration and the value of α is above an upper limit (αth) then
the robot is assumed to be in a very comfortable situation. In such a condition,
instead of continuing with the task of Exploration it exhibits its high comfort
by selecting the task of Learning.

The urges are calculated based on the equations 13 to 15. The urges always
try to pull down the needs if they are high and also try to lift them when they
are low. Thus the urges act as dynamic thresholds and maintain the internal
milieu of the robot in a dynamic equilibrium. Emotions play a vital role in
determining the urge to select a particular task which is why emotions have
been used to calculate the urges. The values of all the urges oscillate below an
upper limit. As can be seen from equations 11 and 12, the urges associated to
Hunger and Thirst are proportional to the corresponding requirements needed
to reach their maximum values and inversely proportional to the current energy.
The urge to Explore is directly proportional to the energy of the robot and
inversely proportional to the current Recce value. The urge to Relax depends
on the need to gain energy provided that the robot has enough Food and Water
(i.e. needs for Food and Water is low) to generate same.
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Once a decision to execute a task is made then the robot continues to execute
the same till any of the urges (μj) other than that of the current task exceeds
Qi. Figure 3 shows the state diagram for task selection by the robot. The robot
selects a task (τ) when it is in the Decision state and finally exits when the energy
becomes zero (Dead). As seen in Figure 3, the robot continues to perform the
same task as long as the associated condition to that state is true and goes back
to the Decision state when it is false. To continue execution of a particular task
in a state respective conditions of that state must be true. These conditions for
various task’s states are listed below:

REat : ∀
i,j
Qi ≥ μj , i ∈ Υ − {f}, j ∈ Ω − {H}∧Qf ≤ (max ηf

∧
(Qf

initial +

kE))
∧
(Grass

∧
Shrubs > 0)

RDrink : ∀
i,j
Qi ≥ μj , i ∈ Υ − {w}, j ∈ Ω − {T }∧Qw ≤ (max ηw

∧
(Qw

initial +

kD))
∧
(Water > 0)

RRelax : ∀
i,j
Qi ≥ μj , i ∈ Υ − {g}, j ∈ Ω − {X}∧Qg ≤ (max ηg

∧
(Qg

initial +

kR))
∧
Qf > 0

RExplore : ∀
i,j
Qi ≥ μj , i ∈ Υ−{r}, j ∈ Ω−{L}∧Qr ≤ (max ηr

∧
(Qr

initial+kX))

RLearn : ∀
i,j
Qi ≥ μj , i ∈ Υ , j ∈ Ω

∧
Number of Iteration ≤ kL

where kE , kD, kR, kX and kL are positive non-zero constants.
Thus to continue the task of Eating, all urges other than Hunger must be

satisfied (i.e. Qi ≥ μj), the need for Food must be non-zero and the robot
should have eaten less than kE units of Grass or Shrubs more than the initial
value of Food (Qf

initial) when it entered this state and the resources viz. Grass
and Shrubs in the environment must be non-zero. The rules for other tasks can
be explained similarly except that of Learning. The robot will continue to be in
Learning state provided all urges are low and the number of Learning iterations
(looping within the Learning state) has not exceeded kL.

5 Environment Dynamics

The environment of the robot is influenced by Heat, Rain and Wind all of
which effect the resources viz. Water, Shrubs and Grass. Heat depletes Water,
Shrubs and Grass present in the environment. On the contrary Rain catalyzes
the growth of Shrubs and Grass and restores Water within specific regions of
the environment. We characterize Wind as a phenomenon which only aids in the
growth of Shrubs and Grass. The total amount of resources added or depleted
to or from the environment is given by the equation:

R± = ξ × θ × d (16)
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where R± is the total amount of resources added or depleted to or from the
environment, θ is the increment or decrement rate at which the resources are
restored or depleted and can be positive or negative depending on the active
natural phenomenon (Heat, Rain or Wind). Thus when it rains θ is positive
while when heat is turned on it is negative. ξ is the intensity of environmental
phenomenon and d is the duration of the current phenomenon.

(a) (b)

Fig. 4. (a) The Lego NXTR© robot (b) The robot in its physical environment

Fig. 5. The simulated environment used to vary the resources

6 Experimental Setup

The basic objective of the experiments conducted was to find whether the new
set of dynamics for decision-making (non-probabilistic model) can in anyway
improve the performance of the robot described in [30]. Figure 4(a) shows the
LEGO R© MINDSTORM R© NXT robot used in the implementation. The robot
was armed with two sensors viz. a colour and a compass sensor. Communica-
tion to the main computer hosting the decision-making process, the emotion
model and the simulated environment was achieved using Bluetooth R©. Java 1.7
in conjunction with Lejos NXJ R© API was used for programming the robot. Fig-
ure 4(b) depicts the physical environment sensed by the robot. The green and
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the yellow strips constitute the Grass patches and Shrubs respectively while the
blue portions form the Water body. The black strip constitutes the home base
where the robot performs the tasks of Relaxing and Learning. The map of this
physical environment is embedded within the robot. Thus the robot is capable
of navigating towards the Water body, Grass and Shrubs within its environment
using its on-board sensors (colour sensor to detect the colour of the strips and
compass sensor for navigation). The natural phenomena (Wind, Rain and Heat)
and the restoration and depletion of the actual quantum of resources (Water,
Grass and Shrubs) were simulated by a program running on the computer host-
ing the decision-making process. A screen shot of the simulated environment is
depicted in Figure 5. The robot was made to perform tasks by physically moving
and sensing the environment.

The robot was programmed to be capable of performing the following tasks.
Each of these tasks are performed until the constraint given in Section 4 becomes
false, which is when a fresh decision-making process is invoked.

– Eating: This is a low profile task. Here the robot moves towards the Grass
or Shrubs patches (designated by green and yellow strips in the environment
as shown in Figure 4(b)) and stays on the patch to enact the process of
eating. By doing so, the robot augments its food reserve and thus fulfills its
hunger. Hence the need for Food is decreased while those for Water, Recce
and Energy is increased by constant non-zero values.

– Drinking: This low profile task makes the robot move to the Water (desig-
nated blue in the environment) and stays there to augments its water reserve.
By doing so, its need for Water decreases while those for Recce and Energy
are increased by constant non-zero values.

– Relaxing: This high profile task makes the robot to rest by moving towards
the black patch in the environment. Having rested in this region the robot is
made to inherently feel a gain in energy. This is done by decreasing its need
for Energy and increasing the needs for Food, Water and Recce by constant
non-zero values.

– Exploring: While exploring, the robot visits one of the resources in its physi-
cal environment. In the process it updates itself with the actual value of that
resource in the environment and decreases its need to Recce by a constant
non-zero value. By doing so, it loses its energy and the needs for Food, Water
and Energy are increased by constant non-zero values. Exploring provides
the robot with the actual amount of resource within its environment. This
value is used by the robot in its internal computations as a base till the exe-
cution of the next exploration task. It may be noted that the asynchronous
natural phenomena (Wind, Rain and Heat) may alter the actual amount
of resource, but since the robot can sense these changes only during an ex-
plorative task it depends on the values of the resources it sensed during its
last exploration. These inconsistent values are used by it during all decision-
making processes. Thus if the robot is forced to explore more frequently, its
internal model of the actual environment is bound to be more consistent.
This makes exploration a high level task.
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– Learning: This is a very high profile task which is performed when the Com-
fort level of the robot is high and its needs and urges for other tasks are low.
This task makes the robot to move towards the black patch and stays there
to enact the process of learning. Learning increases the need for Food, Water
and Energy and decreases the need to Recce by constant non-zero values.

It may be noted that the robot loses energy even while moving from one
location to another in its environment which in turn increase its need for the
same. When its energy becomes zero we assume the robot to be dead thus ending
the experiment.

Experiments were carried out in the absence (Switch at position A in Figure
2) and in the presence (Switch at position B in Figure 2) of the emotion model
as shown Figure 2. The physical need meter values were fed directly as inputs to
the urge generating block when the emotion model was not used. While using
the emotion model, the current Energy of the robot is fed to the positive emotion
agent while the need to recce and needs for Food and Water (combined) were
fed to the negative emotion agents respectively.

The parameters used in the experiments carried out are listed below:

Shrubs { θi = 0.3, Rmax=100, θd =-0.7, θr =-0.8},
Grass { θi =0.7 , Rmax =80, θd =-0.3, θr =-0.3},
Water { θi =0.7 , Rmax =100, θd =-0.3, θr =-0.2 },
Rain {10 < ξ ≤ 20, 5 < d ≤ 15},
Wind {5 < ξ ≤ 20, 1 < d ≤ 8},
Heat {5 < ξ ≤ 15, 1 < d ≤ 8},
max ηf = max ηw = max ηr = max ηg = maxμH = maxμT = maxμX = 100,
k1 = 30, k2 = 30, k3 = 30, k4 = 25.5, kE = kX = 40, kD = kR = 60, kL = 10,
1 ≤ α ≤ 10 and αth = 8

where, θi and θd are increment and decrement rates of the resources respectively
caused due to the environmental phenomenon (Rain, Water and Heat) while θr
is the reduction rate of the resources in the environment caused due to their
consumption (Eating or Drinking) by the robot.

7 Results and Discussions

The performance of the robot was tested in two scenarios of the environment:

1. Tropical: Tropical conditions were induced by varying Heat, Rain and Wind
in the manner shown in Figure 6. As mentioned earlier, Rain and Wind
catalyze the growth of Grass and Shrubs and thereby increase the resources
in the environment. In Figure 6, Heat is also introduced in the former and
later parts of the graph to curtail any excessive growth of resources. The
corresponding resources generated within this tropical environment is shown
in Figure 7. It can be seen here that these resources constantly remain on
the higher side indicating an abundant source of Water, Grass and Shrubs
for the robot.
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Fig. 6. Varying Natural phenomena in Tropical environment

Fig. 7. Variation of resources in Tropical environment

2. Drought: Drought-like conditions were created by initially allowing the re-
sources to grow to a high value by increasing both Rain and Wind for a cer-
tain period. Heat was constantly increased from a low value to its maximum
and made to extend beyond this period. The variations of Heat, Rain and
Wind induced to create a drought condition is shown in Figure 8. The cor-
responding variations of the resources under the drought condition is shown
in Figure 9. As can be seen beyond iteration 11 in Figure 8 Heat increase in
the absence of Rain and Wind causing rapid depletion in resources beyond
iteration 11 in Figure 9 eventually becoming zero beyond 15 and thus forcing
a drought-like condition.

The following experiments were conducted by placing the robot within the
Tropical and Drought environments:

– Condition 1: Tropical, with switch S at position A (emotion model absent).
– Condition 2: Tropical, with switch S at position B (emotion model present).
– Condition 3: Drought, with switch S at position A (emotion model absent).
– Condition 4: Drought, with switch S at position B (emotion model present).
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Fig. 8. Varying Natural phenomena in Drought environment

Fig. 9. Variation of resources in Drought environment

Since there is always some stochastic element in the form of noise induced while
physically sensing the environment, each of these experiments was repeated five
times and the corresponding values were averaged and graphs plotted accordingly.

A discussion on the comparisons of the Comfort Levels, Lifetimes, Tasks ex-
ecuted and their distribution over the robot’s lifetimes follows.

7.1 Comfort Levels, Lifetimes and Tasks

Since the Comfort level changes over the lifetime of the robot, an average value
of the Comfort level was found over the lifetime in an experiment for a spe-
cific Condition. Five such values obtained in the set of experiments were then
averaged to obtain the average mean of the Comfort level for that Condition.

The graph in Figure 10 shows the average mean of Comfort (α) levels of the
robot while that in Figure 11 shows the corresponding average lifetimes for each
of the Conditions. Figure 12 depicts the high and low profile tasks executed
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Fig. 10. Average Mean Comfort Levels of the robot for various environment Conditions

Fig. 11. Average lifetime of the robot in seconds in different Conditions

Fig. 12. Average duration (δt) for which High and Low profile tasks were performed
by the Robot
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Fig. 13. Average duration (δt) for which various tasks were performed by the robot in
different Conditions

and their averaged durations (
∑

δt) during the lifetime of the robot under the
different Conditions.

It can be clearly seen from the graph in Figure 10 that the Comfort level of
the robot with emotion is higher than those obtained without emotion in both
tropical and drought environments. It may be noted that the Comfort levels for
both with and without emotion in case of the drought environment (8.826 and
7.982) is higher than their respective counterparts in the tropical environment
(8.596 and 6.662). This anomaly is mainly because the lifetimes of the robot in
case of the drought environment is far less than those in case of the tropical
environment (as can be inferred from the graph in Figure 11) and the Comfort
values plotted herein are averaged over these lifetimes.

Though the lifetimes in tropical (with and without emotion) and likewise in
drought environments (with and without emotion) are almost same, the amount
of time the robot spends in performing the high and low level tasks is consistently
higher when the emotion model is used as shown in the graph in Figure 12. This

Fig. 14. Tasks performed by the robot having emotions during its lifetime in Tropical
environment



Driving Robots Using Emotions 83

Fig. 15. Tasks performed by the robot without emotions during its lifetime in Tropical
environment

Fig. 16. Tasks performed by the robot having emotions during its lifetime in Drought
environment

shows that in a given lifetime the robot using the emotion model out-performs
the one not using this model by performing more number of tasks (high and
low) irrespective of the environments (tropical and drought). We have assumed
the duration (δt) of a particular task t in a single decision step as the number of
iterations of that task performed until the robot switches back to the Decision
state (Figure 19).

Figure 13 shows the duration (
∑

δt) for which each task was performed for all
the Conditions. Except for the task of exploration the durations for which the
tasks are performed for both tropical and drought environments are consistently
higher when the emotional model is used. The high level task of Learning is
performed only when the task of Exploration is triggered and the Comfort level
is beyond an upper limit (αth) as mentioned in Section 4. As can be seen in
Figure 13, since this upper limit is not achieved the task of Exploration is done
for a higher period of time when emotion is not used. Accordingly the amount
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Fig. 17. Tasks performed by the robot without emotions during its lifetime in Drought
environment

of time for which Learning is performed is proportionately less. The converse is
true when the emotion model is used indicating clearly that αth is crossed more
often. Further Learning was never attempted in all experiments under Condition
4 (Drought, without emotion model) while the same for Condition 3 (Drought,
with emotion model) was performed for a substantial interval (20 iterations on
an average) considering the short life spans for which the robot lived in each of
the Conditions (319.4 and 304.2). It may thus be inferred that a higher value of
Comfort level makes the robot perform more number of tasks. More importantly,
emotion seems to increase the Comfort level thereby motivating the robot to
perform high level tasks even under extreme conditions.

Figures 14 - 17 show the times at which the various tasks were triggered for
each of the Conditions 1-4 in a sample experiment. Each task is plotted in the
graph along the Y-axis. Eating, Drinking, Relaxing, Exploring and Learning are
plotted as tasks 2, 3, 4, 5 and 6 respectively. At any point of time only one task
is triggered. Since the triggered tasks are to be executed at different locations
in the environment the robot needs to move from its current position to the
concerned position. For instance in order to eat, it has to move towards the
green patch from its current location. Some time is lost in such movements and
none of tasks from 2-6 are executed during these periods. The times consumed
in such movements is indicated as task numbered 1 in these graphs.

It can be seen that while the lower level tasks were performed quite frequently
and almost uniformly for the tropical cases with and without emotion (Figures
14 and 15), the higher level task of Learning was triggered more often when the
emotion model was used and is spread across the lifetime. The durations for
which the robot performs the task of Learning is approximately 30 seconds in
both the Conditions (Tropical, with and without emotions).

In case of the Drought Conditions (Figures 16 and 17) in the absence of emotion
since the αth value is not reached Learning is never triggered though-out its life-
span where with emotion Learning is triggered twice for a considerable amount of
contiguous time (28 seconds). It may also be observed that the sequence of tasks
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selected by the robot in bothwith andwithout emotion cases is almost the same ex-
cept that Learning is triggered in place of Explorationswhen emotion is used. This
sequence, Exploring-Drinking-Eating-Relaxing-Exploring/Learning-Drinking-..,
seems to be a logical one wherein Drinking and Eating is followed by Relaxing to
gain energy. Once the energy is high, it is motivated to Explore/Learn. Emotions
thus seem to play a significant role in forcing the robot to trigger the task of Learn-
ing during its lifetime.

Fig. 18. Utility of the robot in various Conditions

Fig. 19. Average number of decisions in different Conditions

7.2 Robot’s Utility and Decisions

The utility of the robot is calculated as the amount of work done by the robot
per unit of energy consumed. In the present case we have considered only the
more important tasks of Exploring and Learning to signify the real work done by
the robot in its environment. These two tasks have been equally weighted and
their respective durations have been taken into consideration in the calculation
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of the this utility. As can be seen from Figure 18, the utility of the robot is
always high (0.09 in Tropical and 0.1 in Drought) when emotions are embedded
within the robot. While the cases when the emotions are not used show a low
utility (0.06 in Tropical and 0.04 in Drought). Thus one may infer that emotion
motivates the robot to perform better in the environment.

The number of times the decision-making process is invoked in a lifetime of
a robot is a indirect indicator to the stability of the system. Too many and too
frequent decisions would necessarily mean that the robot is almost constantly
moving from one place to the other to execute a task in the environment. Such
movements result in a waste of energy and the robot does not perform any
meaningful tasks. Figure 19 shows the average number of times the decision-
making process was triggered by the robot in all the four Conditions. It is clear
from this graph that in the tropical case the number of times the robot with
emotion goes into the decision-making mode is far less than when it does not
use emotion. On the contrary in the drought environment the robot with emotion
seems to going to this mode more often than when it does not use emotions. From
this graph one may conclude that emotion may best be used for decision-making
under conditions of abundance as in the tropical case where resources are in
plenty. For cases when the resources are low as in case of the drought situation a
emotionless or logical decision-making procedure may be the best suited. This is
analogous to the advice given to a person, in an adverse or dangerous situation,
to suppress his/her emotions and act in a logical manner.

8 Real World Metaphors

The needs and tasks of the robot described in this paper can be mapped to their
real world equivalents. The need to go to areas where Grass, Shrubs, Water and
Energy are available could be looked upon as the need to search for battery
charging sources by a robot within its environments. As the robot inhabits its
environment it also collects data and preserve within. With limited amount of
memory available on-board the robot may feel the need to send and thus off-load
the data to its base or controlling station so as to make room for fresh data.

The task of exploration could mean mapping an unknown terrain and building
its map. Learning could be associated with high level optimization tasks or
mining of the data acquired.

9 Conclusions

The basic objective of the work described herein was to verify whether emotions
can play a significant role in enhancing the performance and utility of a situated
robot. In [30], the authors have presented some preliminary results that indicate
emotion to play a role in decision-making. In the present work too, it was found
that an increase in Comfort level motivates the robot to choose tasks having
higher profiles thereby increasing its utility. Based on results portrayed herein,
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one may infer that emotion plays a vital role in reducing the number of deci-
sions made when the environment offers an abundance of resources. This is clear
from the Tropical case with emotion. Since the number of times the decisions
taken is lower than that without emotion in Tropical case the robot seems to
be performing more useful higher level tasks rather than merely switching tasks.
However the converse is true in the case when there is a scarcity of resources in
the environment as in the Drought Condition. The amount of tasks both high
and low profile performed in abundant Tropical environment using emotion is
also for more than when emotion is not used. This difference in the number
of tasks performed in the Drought Conditions (with and without emotion) is
however not significant. Further emotion does not seem to play any significant
role in increasing the lifetime of the robot in either of the environments (Trop-
ical or Drought). One may thus conclude that under conditions of abundance
in the given environment it is preferable for the robot to opt for emotion based
decision-making.

We envisage to develop a learning model which could further aid the robot
to optimize the task selection process. The realization of a hybrid model which
causes the switch to move from A to B (in Figure 2) adaptively is also being
looked into so as to make the best use of emotion based model.
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Abstract. This paper presents a land cover feature extraction technique based 
on the extended species abundance model of biogeography [15, 18] where we 
consider the HSI as a function of different combinations of SIVs depending 
upon the characteristics of the habitat under consideration as an extension to the 
classical BBO [33, 39]. Making use of the proposed hypotheses, we calculate 
the  of each of the habitats representing the image pixels using two different 
functions namely entropy and standard deviation and hence maximize the 
classification efficiency achieved by adapting to dynamic changes in the HSI 
function definition. The proposed algorithm has been successfully tested 
on two different multi-spectral satellite image datasets. We also 
incorporate the above extended model in our previously designed hybrid bio-
inspired intelligent classifier [16] and compare its performance with the original 
hybrid classifier and twelve other classifiers on the 7-Band Alwar Image.  

Keywords: Biogeography, extinction, evolution, remote sensing, feature 
extraction, kappa coefficient. 

1 Introduction 

In recent years, many soft computing techniques like fuzzy sets [34], artificial neural 
network (ANN) [1], rough set theory [37, 38] and swarm intelligence techniques [10, 
32] of ant colony optimization (ACO) [4, 8, 9, 36], particle swarm optimization (PSO) 
[2, 5, 6], genetic algorithms (GA) [19], membrane computing [20] and biogeography 
based optimization (BBO) [33, 39, 40] etc. have been used for feature extraction or 
image classification in satellite remote sensing.  The swarm intelligence techniques of 
ACO [4, 8, 9, 36], PSO [2, 5, 6] and BBO [33, 39] and membrane computing [20] are 
based on the concepts of image clustering and heuristic method implementation and 
are more accurate when working with low spatial resolution images. Enhanced 
versions of these techniques have also been used for solving various engineering 
problems such as the improved PSO called as the immunity enhanced particle swarm 
optimization (IEPSO) for damage detection [24] wherein a damage detection method 
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based on combined data of static and modal tests using particle swarm optimization 
(PSO) is discussed. To improve the performance of PSO, some immune properties 
such as selection, receptor editing and vaccination are introduced into the basic PSO 
and an improved PSO algorithm is formed. The GA has been modified in the form of 
the real coded genetic algorithm for target sensing [35] wherein an evolutionary soft-
computing technique of real coded genetic algorithm is applied to solve the system of 
linear equations. The BBO technique has been extended as blended BBO [29] and has 
been adapted and modified for economic load dispatch analysis [3] to solve both 
convex and non-convex economic load dispatch (ELD) problems of thermal plants 
involving constraints such as transmission losses, ramp rate limits, valve point 
loading, multi-fuel options and prohibited operating zones.  

Our proposed work is based on extending the species abundance model of 
biogeography since the extensions of BBO which have been proposed till date do not 
consider the factors of evolution and extinction of species in determining the no. of 
species in a habitat at a time instant and only consider migration as a measure of 
species count. Hence, we introduce two additional factors, population evolution rate 
and population extinction rate, besides immigration and emigration in the calculation 
of the species count, for the characterization of a habitat with a high or a low HSI 
value. The mix of species and their evolution pattern has significant effect on the 
physical characteristics of habitat and their contribution to HSI [7]. For example, if a 
species for which a particular SIV was important is extinct now due to natural 
evolution or human activity or epidemic, then that particular SIV is no longer relevant 
to HSI calculation. We extend the original BBO by modeling these factors as several 
definitions of HSI of a habitat, each definition based on a different set of SIVs which 
simulates the effect of these other factors. In each iteration of the optimization 
process, one of these definitions of HSI is chosen for the purpose of HSI calculation, 
the decision of choice of HSI function being based on these other factors. Making use 
of the proposed hypotheses, we calculate the  of each of the habitat representing 
the image pixels using two different functions namely entropy and standard deviation 
and assume the. This means that the HSI function which decides the classified feature 
for each habitat changes based on the classification efficiency that is provided by it 
and hence, the proposed algorithm adapts to dynamic changes in the HSI (its 
definition / function) during the optimization process. Hence, we model the factors of 
evolution and extinction as the phenomenon which make the definition of HSI 
dynamic [15, 18] and propose the extended model of the biogeography based feature 
extraction technique as an extension to the original biogeography based feature 
extraction technique which modeled the HSI function as static [33].  

The organization of the paper is as follows: Section 2 presents a brief review of the 
biogeography based land cover feature extraction technique, the definitions, 
assumptions, the algorithm and the demonstration of the working of the feature 
extractor with the HSI function as ‘Standard deviation’ as well as ‘Entropy’ both. 
Section 3 presents the proposed extended species abundance model of biogeography 
based feature extraction, the proposed software architecture and the algorithm. 
Section 4 presents the classification results of the extended species abundance model 
of biogeography based feature extraction technique on two different datasets and 
compares its efficiency with the original model by analyzing their kappa coefficients.  
Also, this section presents a comparison of the proposed classifier with the traditional 
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probabilistic classifiers and other recent soft computing techniques. Section 5 presents 
the conclusion and future scope of the proposed work.  

2 Biogeography Based Land Cover Feature Extraction 

BBO is a population based evolutionary algorithm motivated by the migration 
mechanisms of ecosystems [7, 28, 30]. In BBO each individual solution or a habitat is 
characterized by a habitat suitability index [39] which is determined by factors called 
as the suitability index variables. Habitats with a high HSI are characterized by high 
species count, high species immigration rate, low species emigration rate and dynamic 
species distribution and vice-versa for habitats with a low HSI value. A good solution 
is analogous to an island with a high HSI and a poor solution indicates an island with 
a low HSI [28, 39]. High HSI solutions tend to share their features with low HSI 
solutions. Low HSI solutions accept a lot of new features from high HSI solutions 
[28, 39].  Thus, BBO is a swarm intelligence technique based on the concept of 
information sharing as discussed in our paper [14]. From our paper, we know that the 
concepts of sharing information in BBO can be adapted to suit to the problem of land 
cover feature extraction where it has been mentioned that BBO is well suited for 
natural terrain feature elicitation application and hence we modify the original BBO 
and adapt it to the problem of feature extraction. This section describes the details of 
the biogeography based land cover feature extraction process –the parameters settings 
and the algorithm used. Fig. 1 presents the algorithm for biogeography based land 
cover feature extraction [33]. 

 
Input –Multi-spectral satellite image  
Output – Classified image  
Classify image in elementary classes using fuzzy c- means and consider them 
as species of the universal habitat. Consider each feature as one habitat.    
Ecosystem = Total No. of Habitats = Universal Habitat + Feature Habitat 
Define HSI, Smax, Smin, immigration rate and emigration rate. 
Calculate HSI for each feature habitat. 
Select species from universal habitat and migrate it to one of the other habitat 
and recalculate HSI. 
If recalculated HSI is within threshold then absorb the species to that habitat 
else. 
Check for the other habitats and recalculate the HSI. 
If all species in universal habitat are checked then stop else go to step 4. 

Fig. 1. Algorithm for biogeography based land cover feature extraction 

The parameters which define the pre-processing steps of the biogeography based land 
cover feature extraction algorithm [33] are summarized below: 
1. It is assumed that the species Si refer to the image pixels of the Image I. 

I = {Si | ∀ i ∈ [1...(Size of image I)]}                              (1) 
2. An ecosystem is considered to be comprised of N habitats, Hi [33],  the Universal 
Habitat  H  which hosts all the image species such that                                          H = HN                                                       (2) 
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and the feature habitats (H  which are the labeled dataset/training dataset generated 
by   the expert.  
3. Each of the multispectral band of image represents one suitability index variable 
(SIV) of the habitat. Further, image in each band is a gray image; therefore, SIV∈ C 
is an integer and C ⊆ [0,255]. 
4. A habitat H ∈ SIVm  where, m is the total image bands.  
5. The image I is subjected to ‘n’ simple partitions Pi. The image may be partitioned 
into any number as per the individual preference.   

                                                I = {Pi… Pn}                                                     (3) 
Each Pi is subjected to unsupervised clustering so that based on some criteria derived 
from the Pi statistics, new smaller clusters are generated. The rough sets based 
clustering [37, 38] is performed to Pi, and new, unsupervised, clusters are generated. 
These are now known as the new habitats Hi.     
6. For application of BBO in a classification problem, it was found appropriate to 
choose either entropy or the standard Deviation as the HSI functions. For the 
calculation of entropy, we follow the procedure described next [12]. We copy the 
pixels of the species habitat (rough sets generated equivalence classes) for which the 
entropy has to be calculated, in an excel sheet and then divide the digital number 
(DN) values in the considered band into ‘m’ intervals. Next, we calculate the no. of 
pixels of the entire species habitat    falling in each of the ‘m’ ranges obtained above 
and hence, calculate the entropy of the particular habitat by using the equation below.  

         Entropy E P  log P                               (4) 
where, P =   N   where mk is the no. of pixels in the kth interval and  is the total no. of 

pixels in the species habitat. 
      For the HSI calculation using standard deviation or entropy functions, we proceed 
as explained next [21]. Let the average of the standard deviation / entropy of the 
species habitat Ci (or rough sets generated equivalence classes) from Hi of the 
Universal Habitat Π be represented by:   /      … … .  

 

(5) 
     where, , , , , … … . ,  are the standard deviations / entropy of the DN 
values of each of the  bands respectively of the ith species habitat in the Universal 
habitat . The standard deviation / entropy calculations for each habitat  in  can 
be performed similarly. Let σFj, be the average of the standard deviations /  entropies 
of any of the feature islands.   /      … … .  

 

(6)   /   /|    |  
(7) 
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3 Land Cover Feature Extraction Based on Extended Species 
Abundance Model of Biogeography  

This section presents the extended model of BBO by considering the fact that if we 
consider a standard definition of HSI, then some SIVs in it may be added or removed 
analogous to the species evolution and extinction on a habitat. This can be achieved 
by making the coefficient of the extinct SIV in the standard HSI function definition 
(containing all the SIVs) as zero and the evolved SIV as one. For the purpose, we 
calculate the factor of relevance of a particular SIV in the HSI calculation on different 
habitats and eliminate the SIVs for which the relevance factor value is below 50%. 
We extend the original BBO by modeling these factors as several definitions of HSI 
of a habitat and in each iteration of the optimization process, one of these definitions 
of HSI is chosen for the purpose of HSI calculation [15]. We therefore propose the 
following extended model of biogeography based algorithm in Fig. 2. in order to 
extract land cover features from the satellite image as an extension to the original 
biogeography based feature extraction algorithm [33]. The input to the proposed 
algorithm is the multi-spectral satellite image and the output is the extracted features 
from the image. The proposed architectural framework for our extended species 
abundance model of biogeography based land cover feature extractor is presented in 
Fig. 3 below and explained layer by layer next. The flowchart for the extended 
biogeography based feature extraction algorithm is presented in Fig. 4. The above 
layers of the software architecture of our proposed feature extractor (or classifier) are 
explained step by step below: 
 
Input Layer: A high resolution multi-spectral satellite image is taken as input. For 
our illustration, we used two different datasets that of the 7-band cartoset satellite 
image of size 472 X 546 of the Alwar Region in Rajasthan and the 4-band cartoset 
satellite image of size 472 X 576 of the Patalganga region in Himachal Pradesh.  
Ecosystem Initialization Layer: This layer is responsible for the initialization of the 
ecosystem for generating the input equivalence classes initialize our proposed 
extended biogeography based feature extractor. The sub-layers are described next.     
(a) Image Grid Division Layer: In this layer, the satellite image is divided into  
clusters.  
(b) Rough Sets Theory Applier: For the purpose, we use the rough sets part of the 
biogeography based land cover feature extraction algorithm [31, 33] (described in 
section 2) which uses multiple bands of the image (which represent the texture of 
each of the land cover features in the image clearly, hence, clustering is based on 
texture analysis) during the discretization and partitioning step [37, 38] to generate the 
unsupervised clusters called the equivalence classes. In the initial state of the 
ecosystem required to initialize our extended biogeography based feature extractor, 
we consider each of these equivalence classes as a member of the Universal habitat, 
‘Hu’, where ‘j’ ranges from 1 to ‘n’ where ‘n’ is the total no. of members in ‘Hu’.   
(c) Band Selector: Depending on our application, in other words depending on which 
feature we want to extract from the image most efficiently, we can choose the band 
for partitioning [11]. We have chosen the NIR and MIR bands of the 7-band image 
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since these bands contain a good amount of geo-spatial information and these are the 
bands in which the features are particularly more highlighted and best viewed [11].   
(d) Discretizor and Partitioner: Therefore, we use the NIR and the MIR bands for 
discretization and partitioning step in the semi –naïve algorithm used for creating 
rough set equivalence classes for each of the clusters. Each of these resultant classes 
are put in the universal habitat.      
Surface Entropy / Standard Deviation Representation Layer: In the extended 
model of original BBO for land cover feature extraction, we consider the fact that the 
HSI function can vary dynamically during optimization [15]. Making use of the 
proposed hypotheses, we calculate the  of each of the habitat   in the Universal 
habitat  using two different functions namely entropy and standard deviation and 
hence define the HSI function definition as {Entropy, Standard deviation} such that 
the  feature index decided by the function chosen achieves a smaller percentage 
difference value.  The sub-layers are described below: 
(a) HSI Based on Average Surface Entropy/ Average Standard Deviation 
Calculator for Species Habitat: The HSI calculation procedure using standard 
deviation and entropy functions for the species habitat is the same as described in 
section 2 [33].  
(b) Difference HSI with the Feature Habitat (Hf) Calculator: The standard 
deviation and entropy calculations for each habitat  in  can be performed 
similarly as explained in section 2. The difference in the HSI of the species habitat 
(  with the feature habitat (   is given by equation (7).  
Dynamic HSI Function Selection Layer: This layer is responsible for the selection 
of the suitable HSI function dynamically with each iteration. The HSI function which 
decides the classified feature for each species habitat  changes (evolves or becomes 
extinct) based on the classification efficiency that is provided by it. The detailed 
procedure for the dynamic HSI function modeler  layer  is described below.  
(a) Feature Habitat with Minimum Difference HSI Estimator: After calculating 
the difference between the HSI of the selected species   and each of the feature 
habitats  based on entropy and standard deviation separately, this layer is 
responsible for finding out the feature habitat with which    has the minimum 
difference i.e.    for which |    | is minimum for both entropy and standard 

deviation. 
(b) Percentage Difference Matrix Calculator Based on Entropy and Standard 
Deviation: This layer is responsible for calculating the percentage of this minimum 
difference value with the HSI of the species habitat  based on entropy and standard 
deviation separately and is given by the following expression. 
  /  / / 100  

(8)

(c) Normalized Percentage Difference Matrices Comparator: This layer compares 
the percentage difference matrices based on entropy and standard deviation. The 
output percentage difference values are dynamically decided based on the HSI 
function chosen for the equivalence class under consideration. For comparing the  
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percentage difference matrices, the values are normalized so that both the HSI 
function based on entropy return the percentage difference values that are scaled in 
the interval of the percentage difference values returned by the HSI function based on 
standard deviation.  Scaling factor for each of the table entries i.e. for the percentage 
difference values for each equivalence class used is defined as below: 
                                                                                                                      
 

 (9) 
where   represents the ith equivalence class. 
Feature Extractor Layer: This layer is responsible for feature extraction based on 
dynamic HSI function modeling.  
(a) Resultant Percentage Difference Matrix Calculator: This layer constructs the 
matrix of the output percentage difference values which will be mapped to the 
corresponding feature indices which will form the classified image. The function 
(entropy or standard deviation) which yields smaller percentage difference value is 
chosen as the HSI function. 
(b) Threshold Condition Satisfier: This layer checks if the HSI of the species 
habitat  for which the percentage difference is minimum is within the threshold ‘δ’ 
in order for the input equivalence class to be classified into the corresponding feature 
index. If the HSI calculated is within the threshold, then the input class is classified 
into  the corresponding feature and removed from ‘Hu’ otherwise, we further split the 
input class which remained in ‘Hu’ (since it could not be classified)  through rough 
sets  and repeat the above procedure for the input equivalence class left in the 
Universal habitat. Initialize a new ecosystem for the classification of the remaining 
classes in ‘Hu’. 
(c) Feature Index Assignor: This layer is responsible for assigning the feature index 
of the HSI function which has the smaller percentage difference value. These feature 
index values are the values into which the equivalence class is classified into finally 
based on the dynamically decided HSI function.  
(d) Color Codes Assignment Layer: Finally color codes are assigned for each pixel 
of the image corresponding to the classified feature of each pixel.  
Output Layer: Final classified image is obtained in .jpeg, .tiff or any other image 
format. 

4 Results and Discussion 

Next we discuss the applications of the proposed algorithm for land cover feature 
extraction using two different datasets of Alwar region in Rajasthan and Patalganga 
region in Shivalik ranges. The results and analyses for each of the case studies are 
described in the sections below.  
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Fig. 2. Software architecture of the proposed land cover feature extractor based on the extended 
species abundance model of biogeography  

4.1 Case Study of Alwar Region in Rajasthan 

We have used a multi-spectral, multi resolution and multi sensor image of Alwar area 
in Rajasthan with dimensions 472 X 576. The satellite image for seven different 
bands is taken. The Bands are Red, Green, Near Infra-Red (NIR), Middle Infra-Red 
(MIR), Radarsat-1 (RS1), Radarsat-2 (RS2) and Digital Elevation Model (DEM).  
The 7-Band satellite image of Alwar area in Rajasthan is shown in Fig. 5 is taken 
[25].   
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 Begin 
/* BBO ecosystem initialization */ 
Create a Universal habitat consisting of the rough set generated equivalence classes also 
called as the species (population) , , … ,  which comprises ; 
Create a Feature habitat consisting of the expert generated training set for each of the land 
cover features to be extracted ; 
/*Compute the corresponding  values */ 
While  
   Compute the  for each species  in  based on the corresponding function   
where  
    f HSI Entropy, Standard Deviation ; 
   Also, calculate the HSI for each of the feature habitat H . 
 End while 
/* End of BBO parameter initialization */ 
While not  T H  ! NULL    do  /* T  is the termination criterion */ 
For each species H  in the Universal habitat H   
  Select a species from H   
  For each of the feature habitat  H . 
    Migrate the specie H  to H . 
    Recalculate the HSI of the feature habitat  H  after the migration of the species H  to it 
based on entropy and standard deviation separately. 
End for 
 Calculate the percentage of the minimum difference obtained between the species H  and 
the feature habitat H  based on entropy and standard deviation both. 
     % Difference   %  Difference                      f HSI Entropy ;   FeatureI f HSI FeatureI Entropy ; 
 Else 
                f HSI Standard Deviation ;   FeatureI f HSI FeatureI Standard Deviation ;   
End   
Absorb the species  in the feature habitat .  
End for. 
End while. 
End 

  

Fig. 3. Algorithm for land cover feature extraction based on the extended species abundance 
model of biogeography 

We calculate the percentage difference values for the average entropies and the 
average standard deviations in the multi-spectral bands for each rough sets generated 
equivalence class with the equivalence class with which it has minimum difference 
with in each of the  
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Fig. 4. Flowchart representing the mechanism of biogeography based feature extraction based 
on the extended species abundance model 

‘n’ (n = 20) partitions of the image after the values have been normalized and scaled 
respectively (using equation (9)). 

4.2 Case study: Alwar Region in Rajasthan 

We calculate hence the output percentage difference values which will be mapped to 
the corresponding feature indices to form the classified image based on the  
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Table 1. Resultant Percentage Difference matrix based on the dynamically decided HSI 
function for the Alwar image 

Result % 
difference  
matrix  (based 
on dynamic HSI 
function) for 
equivalence 
class (i) /  
Partition (z) 

1 2 3 4 5 6 7 8 9 

1 3.1387 0.3156 2.6645 2.3874 1.0133 0.8855 1.4097 0.3414 0.3197 
2 2.5095 0.5967 3.1925 2.1780 1.2364 1.4634 1.3080 0.7829 0.6457 
3 3.3650 1.0817 2.4894 2.2944 2.1934 1.1082 0.0010 0.4121 0.5788 
4 3.4060 2.7764 1.4383 2.7176 2.4378 3.0953 1.4464 0.8451 1.1230 
5 2.9662 0.6659 1.2697 0.4937 3.1466 2.3419 1.7159 1.0119 0.8046 
6 2.7015 1.7846 0.7089 1.7502 2.5295 0.4444 0.0433 2.4822 2.2536 
7 0.9142 0.4377 0.9412 0.2463 1.5018 3.2462 0.0780 3.1369 1.0562 
8 0.3304 0.9013 3.0350 1.4279 1.9940 3.0107 0.0231 0.7091 1.8127 
9 0.4167 0.7449 4.0645 0.8191 1.1809 2.0885 1.3138 1.1681 1.0605 

10 2.8680 1.4106 1.2324 1.0254 2.4472 2.1280 1.3375 1.0379 1.1226 
11 1.2879 0.3028 2.9969 1.9558 2.8283 2.8712 3.5600 2.0904 0.0000 
12 0.0480 0.8665 0.0384 1.4400 2.3192 0.3045 0.0149 3.4109 0.9663 
13 4.7319 1.7193 4.0712 2.6879 2.1738 2.7199 0.2169 2.6836 1.0931 
14 0.3967 1.4640 3.9184 0.5054 1.2255 1.0397 0.4773 0.6835 1.0674 
15 2.7057 2.5381 1.7159 1.3473 0.1594 0.1044 0.7475 1.2777 1.8372 
16 1.8155 1.4522 1.5695 1.0300 3.2664 3.8690 3.1855 2.1780 0.0000 
17 1.5321 0.2648 2.5766 2.3653 2.3758 3.1161 0.0019 0.2038 3.3854 
18 3.6384 3.4229 0.4210 3.0027 2.7517 2.8416 3.8026 1.0664 0.9535 
19 1.9808 0.4728 1.1273 3.5561 2.3165 1.5299 1.3880 3.1042 1.6254 
20 4.2054 3.6353 1.4102 0.4450 2.0559 0.1914 0.5930 2.3053 1.2168 

 
 
 
 
dynamically decided HSI function. Fig. 6 presents the bar graph representing the 
percentage difference matrix based on HSI function ‘Entropy’ and ‘Standard 
Deviation’ for the Alwar Image. The color codes are red for entropy and blue for 
standard deviation. From the graphs, it can be observed that there is a significant 
difference between the percentage difference matrix plot of entropy and that of 
standard deviation for most of the equivalence classes and hence, the accuracy 
provided by these functions may vary significantly on these equivalence classes. This 
means that the classification accuracy of the HSI function entropy might be 
significantly less than the classification accuracy provided by the HSI function 
standard deviation and vice versa. Hence, our dynamic functioning in BBO is  
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guaranteed to improve the classification accuracy provided by either of the two HSI 
functions used independently which is what is reflected and also verified from the 
classification results of Alwar too. Table 1 presents the table of the output percentage  
difference values which will be mapped to the corresponding feature indices which 
will form the classified image. Table 2 represents the final feature index values for 
each of the equivalence classes based on the dynamically decided HSI function. The 
feature index codes are 1-Barren, 2-Rocky, 3-Urban, 4-Vegetation and 5-Waterbody. 
Table 3 carries the information about the HSI function that was chosen for each of the 
equivalence classes based on the criteria of maximization of classification accuracy at 
runtime. The HSI function codes are 1 is for entropy and 2 is for standard deviation.  

 
 
 

 

Fig. 5. 7-band satellite image of Alwar region in Rajasthan 

The classified image is obtained in Fig. 9 (Kappa Coefficient = 0.8271) which clearly 
shows the extraction of land cover features of water, urban, rocky, vegetation and 
barren. The yellow color represents rocky area, green color represents vegetation area, 
black color represents barren area and red color represents the urban area. The 
classified image through BBO with the HSI function as ‘Standard Deviation’ [33] is 
shown in Fig. 7 which has a kappa coefficient of 0.6751 and that with the HSI 
function as ‘Entropy’ [13] is shown in Fig. 8 which has a kappa coefficient of 0.7440 
which reflects that the proposed algorithm performs better than the original BBO used 
for land cover feature extraction [33]. From the Figs. 7, 8 and 9, it can also be seen 
that the encircled urban region in grey which was wrongly classified as mixture of 
barren with urban by the original BBO with HSI function ‘Standard deviation’ as well 
as the original BBO with the HSI as entropy, has been classified correctly by our 
proposed classifier. Also, the encircled barren region in pink which was wrongly 
classified as urban by the original BBO with HSI function ‘Standard deviation’ and as 
mixture of urban with barren by the original BBO with the HSI as entropy, has been  
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classified correctly by our proposed classifier. Also, the encircled urban region in blue 
which was wrongly classified by the original BBO (with HSI function ‘Standard 
deviation’) as barren has been classified correctly by original BBO with entropy as 
the HSI function as well as by our proposed extended biogeography based classifier.  
Tables 4 and 5 present the error matrices for the original BBO classifier with the HSI 
function ‘Standard deviation’ and the HSI function ‘Entropy’ respectively [12, 13, 
33]. Table 6 presents the error matrix for the proposed biogeography based classifier.  
 
 
 

Table 2. Classified feature index matrix 
based on dynamically decided HSI function 
for the Alwar image. The feature index codes 
are 1-Barren, 2-Rocky, 3-Urban, 4-
Vegetation and 5-Waterbody. 

Table 3. HSI functions chosen dynamically 
for each equivalence class in the Alwar 
image. The HSI function  codes are 1-
Entropy and 2-Standard Deviation. 

 
 
 
 
 



 Land Cover Feature Extraction of Multi-spectral Satellite Images 103 

 

 

Fig. 6. Bar graph representing the percentage Difference Matrix based on HSI function 
‘Entropy’ and ‘Standard Deviation’ for the Alwar Image. Color codes are: Red- Entropy and 
Blue-Standard Deviation. 
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Table 7 represents the producer’s accuracy of classification from which it is reflected 
that water pixels have been extracted most efficiently followed by barren and 
vegetation pixels, respectively.  Table 8 represents the user’s accuracy of 
classification from which it is observed that water shows 100% accuracy of 
classification followed by vegetation pixels. From the error matrix, the KHAT 
statistics of the extended biogeography based land cover feature extractor is 
calculated as 0.8271. This value is a substantial agreement between the ideal classifier 
and the proposed algorithm. The kappa (K) coefficient of the Alwar image is 0.8271 
which indicates that an observed classification is 82.71% better than one resulting 
from chance. 

 
 

 

Fig. 7. Final Classified image of Alwar after 
applying BBO for land cover feature 
extraction with the HSI function ‘Standard 
Deviation’. (Kappa Coefficient = 0.6751) 
[33] 

Fig. 8. Final Classified image of Alwar 
after applying original BBO for land cover 
feature extraction with HSI function 
‘Entropy’. (Kappa Coefficient = 0.7440) 
[13] 

 

 

Fig. 9. Final Classified image of Alwar after applying extended species abundance model of 
biogeography based land cover feature extraction (Kappa Coefficient = 0.8271) 
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The classified image is obtained in Fig. 9 (Kappa Coefficient = 0.8271) which clearly 
shows the extraction of land cover features of water, urban, rocky, vegetation and 
barren. The yellow color represents rocky area, green color represents vegetation area, 
black color represents barren area and red color represents the urban area. The 
classified image through BBO with the HSI function as ‘Standard Deviation’ [33] is 
shown in Fig. 7 which has a kappa coefficient of 0.6751 and that with the HSI 
function as ‘Entropy’ [13] is shown in Fig. 8 which has a kappa coefficient of 0.7440 
which reflects that the proposed algorithm performs better than the original BBO used 
for land cover feature extraction [33]. From the Figs. 7, 8 and 9, it can also be seen 
that the encircled urban region in grey which was wrongly classified as mixture of 
barren with urban by the original BBO with HSI function ‘Standard deviation’ as well 
as the original BBO with the HSI as entropy, has been classified correctly by our 
proposed classifier. Also, the encircled barren region in pink which was wrongly 
classified as urban by the original BBO with HSI function ‘Standard deviation’ and as 
mixture of urban with barren by the original BBO with the HSI as entropy, has been 
classified correctly by our proposed classifier. Also, the encircled urban region in blue 
which was wrongly classified by the original BBO (with HSI function ‘Standard 
deviation’) as barren has been classified correctly by original BBO with entropy as 
the HSI function as well as by our proposed extended biogeography based classifier.  
Tables 4 and 5 present the error matrices for the original BBO classifier with the HSI 
function ‘Standard deviation’ and the HSI function ‘Entropy’ respectively [12, 13, 
33]. Table 6 presents the error matrix for the proposed biogeography based classifier. 
Table 7 represents the producer’s accuracy of classification from which it is reflected 
that water pixels have been extracted most efficiently followed by barren and 
vegetation pixels, respectively.  Table 8 represents the user’s accuracy of 
classification from which it is observed that water shows 100% accuracy of 
classification followed by vegetation pixels. From the error matrix, the KHAT 
statistics of the extended biogeography based land cover feature extractor is 
calculated as 0.8271. This value is a substantial agreement between the ideal classifier 
and the proposed algorithm. The kappa (K) coefficient of the Alwar image is 0.8271 
which indicates that an observed classification is 82.71% better than one resulting 
from chance. 

 

Table 4. Error matrix of BBO with the HSI function ‘Standard deviation’ on Alwar region. 
(Kappa Coefficient = 0.6715) [33] 

 Vegetation Urban Rocky Water Barren Total 

Vegetation 127 9 0 0 2 138 

Urban 0 88 1 0 32 121 

Rocky 6 2 176 1 17 202 

Water 0 0 3 69 0 72 

Barren 17 91 20 0 119 247 

Total 150 190 200 70 170 780 
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Table 5. Error matrix of original BBO with the HSI function ‘Entropy’ on Alwar region. 
(Kappa Coefficient = 0.7440) [13] 

 Vegetation Urban Rocky Water Barren Total 

Vegetation 142 0 0 0 1 143 

Urban 3 66 8 0 4 81 

Rocky 0 14 185 1 4 204 

Water 0 0 0 69 0 69 

Barren 5 111 6 0 161 283 

Total 150 190 200 70 170 780

Table 6. Error matrix of the extended model of biogeography based feature extractor on Alwar 
region. (Kappa Coefficient = 0.8271) 

 Vegetation Urban Rocky Water Barren Total 

Vegetation 145 2 0 0 37 184
Urban 0 151 7 0 6 164
Rocky 0 10 182 1 2 194
Water 0 0 0 69 0 70
Barren 4 27 10 0 121 162
Total 149 190 199 70 166 774

 
 

Table 7. Producer’s Accuracy                                     Table 8. User’s Accuracy 

 

Feature 
Accuracy 

Calculation 
Producer’s  
Accuracy 

Vegetation 145/149 97.3% 

Urban 151/190 79.5% 

Rocky 182/199 91.5% 

Water 69/70 98.7% 

Barren 121/166 72.9% 
 

 

Feature Accuracy Calculation 
User’s 
Accuracy 

Vegetation 145/184 78.8% 

Urban 151/164 92.1% 

Rocky 182/194 93.8% 

Water 69/70 98.7% 

Barren 121/162 74.7% 

4.3 Case Study: Patalganga Region in Shivalik Ranges 

For Patalganga, area in Shivalik mountainous ranges is undertaken. We have used 4 
band images of Patalganga   taken from Landsat-I satellite with dimensions 508 X 
744. The bands are Red, Green, Near Infra-Red (NIR) and Middle Infra-Red (MIR) 
[25]. The 4-Band satellite image of Patalganga area in Shivalik ranges is shown in 
Fig. 10 is taken.   
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The image is subjected to ‘ ’ (here, we take  = 15) simple partitions, for the sake 
of simplicity. Table 9 presents the table of the output percentage difference values 
which will be mapped to the corresponding feature indices to form the classified 
image [12, 13, 33]. Table 10 represents the final feature index values for each of the 
equivalence classes. The feature index codes are 1-Rocky, 2-Snow and 3-Vegetation. 
Table 11 carries the information about the HSI function that was chosen for each of 
the equivalence classes based on the criteria of maximization of classification 
accuracy at runtime. The HSI function codes are 1 is for entropy and 2 is for standard 
deviation. Fig. 11 presents the bar graph representing the percentage difference matrix 
based on HSI function ‘Entropy’ and ‘Standard Deviation’ for the Patalganga Image. 
The color codes are red for entropy and blue for standard deviation.  

 
 

 

Fig. 10. 4 band image of Patalganga 

The classified image is obtained in Fig. 14 (Kappa Coefficient = 0.8014) which 
clearly shows the extraction of land cover features of snow, vegetation and rocky 
area. The yellow color represents rocky area, green color represents vegetation area, 
and red color represents the snowy area. The classified image through original BBO 
with the HSI function ‘Standard deviation’ [33] is shown in Fig. 12 which has a kappa 
coefficient of 0.7248 and that with the HSI function as ‘Entropy’ [12, 13] is shown in 
Fig. 13 which has a kappa coefficient of 0. 7870 which reflects that the proposed 
algorithm performs better than the original BBO used for land cover feature 
extraction [33]. From the Figs. 12, 13 and 14, it can also be seen that the encircled 
snowy region in black which was wrongly classified as rocky by the original BBO 
with HSI function ‘Standard deviation’ and as the mixture of rocky with snowy by the 
original BBO with the HSI as entropy, has been classified correctly by our proposed  
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classifier. Also, the encircled vegetation region in green which was wrongly classified 
as mixture of rocky with vegetation by the original BBO with HSI function ‘Standard  
deviation’ and as rocky region by the original BBO with the HSI as entropy, has been 
classified correctly by our proposed classifier. However, the encircled rocky region in 
blue which was wrongly classified by the original BBO (with HSI function ‘Standard 
deviation’) as snowy has been classified correctly by original BBO with entropy as 
the HSI function as well as by our classifier.  

 

Table 9. Resultant Percentage Difference matrix based on the dynamically decided HSI 
function for the Patalganga image 

Result % 
difference  
matrix  
(based on 
dynamic HSI 
function) for 
equivalence 
class (i) /  
Partition (z)  

1 2 3 4 5 6 7 8 9 10 

1 31.4595 32.6077 36.5877 2.6325 3.6958 13.1228 24.6765 17.4335 37.5536 46.3884 
2 37.2776 46.7695 14.0495 37.9567 1.4395 46.1176 18.3926 9.5926 10.4002 46.8037 
3 42.8281 54.0777 41.7646 1.2983 1.6602 39.7041 48.7101 58.2453 8.1338 18.5350 
4 5.7710 49.0691 38.2160 2.9689 22.6297 19.6380 34.2123 50.8345 7.3310 55.3811 
5 0.9113 19.5651 35.4748 41.1007 7.0122 45.2776 11.6049 53.9228 4.1491 46.6975 
6 25.1551 30.6992 20.6391 33.9123 35.5987 36.8342 56.0569 38.8241 10.7753 46.9550 
7 51.4970 33.1910 16.2469 46.1758 32.7724 29.1094 32.1576 0.8653 36.1015 49.0937 
8 4.6016 42.5368 39.3962 4.3798 0.3924 32.6203 27.8994 3.9418 16.9248 3.9046 
9 17.3630 26.9176 47.0444 18.6882 18.6694 35.8005 4.0049 22.6204 49.2508 30.5126 
10 43.8309 2.0041 37.3043 8.5308 45.3732 42.2212 3.0492 25.4183 6.4234 45.0970 
11 41.7998 20.9356 17.4706 17.3992 24.0679 32.6477 42.4163 14.5413 6.8747 1.4292 
12 22.2286 35.1091 12.8016 9.3076 0.2770 9.6848 40.1519 35.5811 54.4791 37.7329 
13 45.3393 18.7474 44.7532 38.8009 20.0577 18.6259 59.1142 47.8397 51.7726 45.5289 
14 41.7281 2.5363 13.5216 36.5922 15.6229 33.5431 21.8654 35.8845 29.6682 32.8326 
15 42.8897 43.5736 4.1505 45.3139 11.4804 13.5281 48.6938 22.5328 46.0053 46.1073 

 
 
 

Tables 12 and 13 present the error matrices for the original BBO classifier with the 
HSI function ‘Standard deviation’ and the HSI function ‘Entropy’ respectively. Table 
14 presents the error matrix for the proposed extended species abundance model of 
biogeography based classifier. Table 15 represents the producer’s accuracy of 
classification from which it is reflected that vegetation pixels have been extracted 
perfectly followed by rocky pixels. Table 16 represents the user’s accuracy of 
classification. From the error matrix, the KHAT statistics of the proposed land cover 
feature extractor is calculated as 0.8014.  
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Fig. 11. Bar graph representing the percentage Difference Matrix based on HSI function 
‘Entropy’ and ‘Standard Deviation’ for the Patalganga Image. Color codes are: Red- Entropy 
and Blue-Standard Deviation. 
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Table 10. Classified feature index matrix 
based on dynamically decided HSI function 
for the Patalganga image. The feature index 
codes are 1-Rocky, 2-Snow and 3-
Vegetation. 

Table 11. HSI functions chosen 
dynamically for each equivalence class in 
the Alwar image. The HSI function codes 
are 1-Entropy and 2-Standard Deviation. 

 

Classified 
Feature 
Index  
based on 
dynamic 
HSI 
function 
 for 
equivalence 
class (i) /  
Partition (z) 

1 2 3 4 5 6 7 8 9 10

1 2 2 2 2 2 1 1 1 2 2 
2 2 2 2 2 2 2 2 1 1 2 
3 2 2 2 2 2 2 2 2 1 2 
4 2 2 1 2 2 1 3 2 2 2 
5 3 2 3 2 1 2 1 2 2 2 
6 2 1 2 2 2 1 2 1 2 2 
7 2 2 2 2 2 2 2 3 1 2 
8 2 2 2 2 3 2 2 2 2 2 
9 1 2 3 2 2 2 2 1 2 1 

10 2 2 3 2 2 2 2 2 3 2 
11 2 2 2 1 1 1 3 2 1 2 
12 1 3 2 2 2 2 2 2 2 2 
13 2 2 2 1 2 2 2 2 2 2 
14 3 2 2 3 2 2 2 2 2 2 
15 2 2 2 2 2 1 2 2 2 2 

 

 

Dynamic 
HSI 
function for 
equivalence 
class (i) /  
Partition (z)

1 2 3 4 5 6 7 8 9 10 

1 2 2 2 2 2 2 2 2 2 2 
2 2 1 2 2 2 2 2 2 2 1 
3 1 2 2 2 2 2 2 1 2 2 
4 2 1 2 2 2 2 1 2 2 2 
5 2 2 1 1 2 1 2 1 2 1 
6 2 2 2 2 2 2 1 2 2 1 
7 1 2 2 1 2 2 2 2 2 1 
8 2 2 2 2 2 2 2 2 2 2 
9 2 2 1 2 2 2 2 2 2 2 

10 2 2 1 2 1 2 2 2 2 2 
11 1 2 2 2 2 2 1 2 2 2 
12 2 1 2 2 2 2 2 2 1 2 
13 2 2 1 2 2 2 1 1 1 2 
14 1 2 2 1 2 2 2 2 2 2 

15 2 1 2 1 2 2 1 2 1 1 

 
 

 

              

Fig. 12. Final Classified image of 
Patalganga after applying BBO with the HSI 
function ‘Standard Deviation’ for land cover 
feature extraction. (Kappa Coefficient = 
0.7248) [33] 

Fig. 13. Final Classified image of 
Patalganga after applying BBO with the 
HSI function ‘Entropy’ for land cover 
feature extraction. (Kappa Coefficient = 
0.7870) [13]
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Fig. 14. Final Classified image of Patalganga region after applying BBO with the HSI function 
‘Entropy’ for land cover feature extraction (Kappa Coefficient=0.7870) [13] 

Table 12. Error matrix of BBO with the HSI function ‘Standard deviation’ on Patalganga 
region. (Kappa Coefficient = 0.7248). [14, 33] 

 Vegetation Snow Rocky Total 
Vegetation 89 7 7 103 
Snow 48 181 4 224 
Rocky 24 5 189 227 
Total 161 200 200 561 

Table 13. Error matrix of BBO with the HSI function ‘Entropy’ on Patalganga region. (Kappa 
Coefficient = 0.7870) [12, 13] 

 Rocky Snow Vegetation Total 
Rocky 197,630 22,572 0 220,202 
Snow 18,330 121,008 0 139,338 
Vegetation 0 0 16,412 16,412 
Total 215,960 143,580 16,412 375,952 

Table 14. Error matrix of extended model of biogeography based feature extractor (Kappa 
Coefficient = 0.8014) on Patalganga region 

 Rocky Snow Vegetation Total 

Rocky 197,730 22,472 0 220,202 

Snow 18,130 121,208 0 139,338 

Vegetation 0 0 16,412 16,412 

Total 215,860 143,680 16,412 375,952 

Table 15. Table 15. Producer’s Accuracy  

Feature 
Accuracy  
Calculation 

Producer’s 
Accuracy 

Rocky 197,730/215,860 91.6% 

Snow 121,208/143,680 84.3% 

Vegetation 16,412/16,412 100% 
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Table 16. User’s Accuracy 

Feature 
Accuracy  
Calculation 

User’s 
Accuracy 

Rocky 197,730/220,202 89.8% 

Snow 121,208/139,338 86.9% 

Vegetation 16,412/16,412 100% 

4.4 Classification Comparison of Hybrid Classifier Based on Extended 
Species Abundance Model of Biogeography with the other Recent Soft 
and Hard Computing Classifiers 

In this section, we present the results of classification of the extended biogeography 
based hybrid classifier since the hybrid ACO2/PSO/BBO classifier is the best known 
classifier developed till date [9] and hence we study the result of substituting the 
original BBO with our proposed extended BBO in the design of this hybrid bio-
inspired intelligent classifier. We compare our results with all the recent soft 
computing and the traditional hard computing classifiers developed, on the 7-band 
cartoset satellite image of Alwar region in Rajasthan, India. The 7-band Alwar image 
is a benchmark image for testing the performance of a bio-inspired classifier on multi-
spectral satellite images since this image is a complete image in the sense that it 
contains all the land cover features that we need to extract and hence land cover 
feature extraction results are demonstrated and compared using this image as the 
standard image [25].  

From the discussion above, it is evident that the concept of dynamic HSI function 
in biogeography based optimization for the development of the proposed hybrid 
classifier produces better results than the other recent soft computing as well as the 
hard computing classifiers (traditional probabilistic classifiers such as the Minimum 
Distance to Mean Classification (MDMC) and the Maximum Likelihood Classifier 
(MLC) [27].) Also, the proposed classifier is an addition to the taxonomy of soft 
computing techniques that we proposed in our paper [17]. The satellite image 
classification results of the other recent soft and hard computing classifiers when 
applied on the Alwar region are shown below in Fig. 15. Figs. 15 (a) and (b) show the 
traditional MDMC and MLC classification of Alwar region which achieve a 
classification accuracy of 0.7364 and 0.7525 only [22, 27]. Figs. 15 (c) and (d) show 
the result of applying the fuzzy and the integrated rough-fuzzy classification of Alwar 
region which achieve the Kappa –Coefficients of 0.9134 and 0.9700 respectively [34, 
37, 38]. Fig. 15(e) applies the cAntMiner (ACO2) Algorithm on the Alwar Region 
which has a Kappa Coefficient of 0.964 [8, 9, 36]. Figs. 15(f) and (g) show the result 
of applying the hybrid ACO-BBO Technique and the hybrid ACO2/PSO technique on 
the Alwar Image which achieve kappa-coefficients of 0.96699 and 0.975 respectively 
[2, 10, 32]. Fig. 15 (h) presents the results of the semantic web based classifier on the 
image with a Kappa Coefficient of 0.9881 [26]. Fig. 15(i) presents the results of the  
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hybrid ACO2/PSO/BBO classifier on the image with a kappa coefficient of 0.9818 
[11, 16]. Fig. 15(j) presents the results of the biogeography based feature extractor 
with non-linear immigration and emigration rates on the image with a kappa 
coefficient of 0.6912 [21]. Figs. 15 (k) and (l) are the result of applying the membrane 
computing and the bacterial foraging algorithms (hybrid FPAB/BBO) and achieve 
accuracy of 0.6818 and 0.6970 respectively [20, 23]. Fig. 15(m) shows the 
classification results after applying the proposed hybrid ACO2/PSO/(ext-BBO) 
classifier which achieves the classification efficiency of 0.9916 and hence enhances 
the accuracy provided by the original hybrid ACO2/PSO/BBO classifier (which had a 
kappa coefficient of 0.9818). In fact, the hybrid ACO2/PSO/(ext-BBO) based on the 
proposed concept of dynamic HSI function in BBO achieves the highest classification 
efficiency of 99.16% and hence outperforms all the recent soft and the hard 
computing classifiers developed till date. Table 21 summarizes and compares the 
kappa coefficients of the proposed hybrid ACO2/PSO/(ext-BBO) classifier with the 
other recent classifiers. Table 17 presents the error matrix of the original hybrid 
ACO2/PSO/BBO classifier and Table 18 presents the error matrix of the proposed 
ACO2/PSO/ext-BBO classifier. Tables 19 and 20 present the producer’s and the 
user’s accuracies of this ACO2/PSO/ext-BBO classifier. 

Table 17. Error matrix of Hybrid ACO2/PSO/BBO on Alwar region. (Kappa Coefficient = 
0.9818) [16] 

 Vegetation Urban Rocky Water Barren Total 

Vegetation 142 0 0 0 0 142
Urban 5 190 0 0 0 195
Rocky 0 0 198 0 3 201
Water 0 0 0 70 0 70
Barren 2 0 1 0 163 166
Total 149 190 199 70 166 774

 

Table 18. Error matrix of Hybrid ACO2/PSO/(ext-BBO) on Alwar region. (Kappa Coefficient 
= 0.9917)  

 Vegetation Urban Rocky Water Barren Total 

Vegetation 142 0 0 0 0 142
Urban 1 190 0 1 0 192
Rocky 0 0 198 0 2 200
Water 0 0 0 69 0 69
Barren 0 0 1 0 163 164
Total 143 190 199 70 165 767
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Fig. 15. Classified Images of Alwar Region after applying various Soft Computing Techniques 
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Table 19. User’s Accuracy 

Feature 
Accuracy  
Calculation 

User’s 
Accuracy 

Vegetation 142/142 100.0% 

Urban 190/192 99.0% 

Rocky 198/200 99.0% 

Water 69/69 100% 

Barren 163/164 99.4% 

 

Table 20. Producer’s Accuracy 

Feature 
Accuracy 
Calculation 

Producer’s 
Accuracy 

Vegetation 142/143 99.3% 

Urban 190/190 100.0% 

Rocky 198/199 99.5% 

Water 69/70 98.6% 

Barren 163/165 98.8% 

 

Table 21. Kappa coefficients (k) of soft computing classifiers v/s probabilistic classifiers 

MDMC MLC Fuzzy 
set 

R-F 
Tie up 

ACO ACO/
PSO 

Semantic 
Web  
Based  

BBO Hybrid 
ACO-BBO  

Hybrid 
ACO 
/PSO/ 
BBO  

MC Non-
linear 
BBO  

FPAB  Hybrid 
ACO/PS
O/ 
(ext—
BBO) 
based  

0.74 0.75 0.91 0.97 0.96 0.975 0.988 0.67 0.967 0.982 0.682 0.69 0.68 0.9917 

5 Conclusion and Future Scope 

By taking the HSI function to be different and dynamic for each habitat, a lot of 
flexibility is brought in the choice of best solution. We demonstrate the performance 
of our extended species abundance model of biogeography based feature extraction 
technique by running it on two different satellite images. The results indicate that our 
proposed optimizer is highly effective in extracting land cover features and when 
compared with the original BBO with the HSI function ‘Standard deviation’ and with 
the HSI function ‘Entropy’ that was applied for land cover feature extraction [12, 33], 
it proves itself to be a much better classifier as shown in Table 21. We also present a 
comparative study of the results of substituting our extended-BBO classifier in the 
hybrid ACO2/PSO/BBO classifier with the other recent soft computing classifiers 
wherein it is observed that the hybrid ACO2/PSO/(ext-BBO) classifier based on the 
concept of dynamic HSI function in BBO achieves the highest classification 
efficiency of 99.16% and hence outperforms the recent soft and the hard computing 
classifiers developed till date. The future scope of the research includes proposing 
certain modification to the algorithm so that the Kappa coefficient can be improved  
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further. The current system is implemented using the simple heuristic techniques of 
standard deviation and entropy; the system performance can be increased by using 
other heuristic functions for building a dynamic model.  
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Abstract. This paper describes some developing issues for ACS based software 
tools to support decision making process and solve the problem of generating a 
sequence of jobs that minimizes the total weighted tardiness for a set of jobs to 
be processed in a single machine. An Ant Colony System (ACS) based algo-
rithm performance is validated with benchmark problems available in the OR 
library. The obtained results were compared with the optimal (best available  
results in some cases) and permit to conclude about ACS efficiency and  
effectiveness. The ACS performance and respective statistical significance was 
evaluated. 

Keywords: Scheduling, Optimization, Weighted Tardiness, Swarm Intelli-
gence, Ant Colony System. 

1 Introduction 

An important aspect of manufacturing organizations is the improvement of resource 
utilization. A classical approach of resource utilization optimization is through Sche-
duling Theory developments. As defined in Baker [1], scheduling is concerned with 
the problem of allocating scarce resources to activities over time. Scheduling prob-
lems are in general nontrivial and exhaustive enumeration of the scheduling solutions 
set is not usually efficient. 

Scheduling problems are generally complex, large scale, constrained, and multi-
objective in nature, and classical operational research techniques are often inadequate 
to effectively solving them [2]. With the advent of computation intelligence, there is a 
renewed interest in solving scheduling problems through Swarm Intelligence (SI) 
based techniques.    

SI is an innovative computational and behavioral paradigm for solving distributed 
problems based on self-organization. SI main principles are similar to those underly-
ing the behavior of natural systems consisting of many individuals, such as ant colo-
nies and flocks of birds [3][4]. SI is continuously incorporating new ideas, algorithms, 
and principles from the engineering and basic science communities [3][4]. 
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SI represents a family of approximate optimization techniques that gained a lot of 
popularity in the past two decades in Metaheuristics research area which is identified 
as a field of optimization in Computer Science and Operations Research that are re-
lated to algorithms and Theory of Computational Theory. They are among the most 
promising and successful optimization techniques. 

In this paper a set of general guidelines for developing a software tool for solving 
an optimization problem and support computational study and decision making is 
described. An Ant Colony System (ACS) based algorithm is proposed to solve the 
Single Machine Weighted Tardiness Scheduling Problem (WT) and its efficiency and 
effectiveness is analyzed.   

The remaining sections are organized as follows. In Section 2 the Weighted Tardi-
ness problem and some approaches presented in the literature for its resolution are 
presented. Theoretical foundations, the biological motivation and fundamental aspects 
of SI paradigm with focalization on the design and implementation of an ACS algo-
rithm and some recent applications of ACS to WT resolution are summarized in sec-
tion 3. Section 4 a set of general guidelines for developing a software tool for solving 
an optimization problem is systematized. In Section 5 the ACS proposed approach 
developing for WT is described. Section 6 presents computational study and discusses 
obtained results. Finally, the paper presents some conclusions and puts forward some 
ideas for future work. 

2 Problem Definition 

One important scheduling problem consists in sequencing a set of jobs for processing 
on a single processor or machine. The study of Single Machine Scheduling Problem 
(SMSP) is identified to be very important for several technological and economic 
reasons, probably the most relevant of which is that good solutions to this problem 
provide a relevant support to manage and model the behavior of complex systems. In 
these systems it is important to understand the working of their components, and quite 
often the SMSP appears as an elementary component in a larger scheduling problem 
[1][2]. Sometimes the basic SMSP is solved independently, and then results are in-
corporated into the larger and more complex problem. For example, in a multistage 
multiple machine problems there are often a critical machine, the bottleneck, whose 
processing capacity is lower than the necessary. The analysis and treatment of the 
bottleneck as a SMSP may determine the properties of the entire schedule. 

Let us consider the problem of scheduling n jobs for processing without interrup-
tion, on a single machine that can handle only one job at a time. For each job j 
(j=1,..,n), let pj be its processing time, dj its due date and wj the penalty incurred for 
each unit of time late. The processing of the first job begins at time t =1. The tardiness 
of a job is given by Tj=Max {tj + pj – dj, 0} where tj is the start time of job j. The  
objective is to find a sequence that minimizes the sum of Weighted Tardiness (WT) 
defined on equation 1: 

 ∑ , with , 0  (1) 
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The single machine problem, here considered is characterized by the following 
main conditions: 

• a set of n independent jobs (j=1,..,n) is available for processing at time zero and 
the job descriptors are known in advance; 

• a machine is continuously available and is never kept idle while working is  
waiting;  

• the set-up times for the jobs are independent of job sequence and can be in-
cluded in processing times;  

• jobs are processed to completion without preemption. 

Under these conditions there is a one-to-one correspondence between a sequence 
of these n jobs and a permutation of the job indices. In this work we consider a solu-
tion such a sequence of jobs where i is the ith job position in the sequence. The total 
number of different solutions to the SMSP under these conditions is n!. 

The SMSP for minimizing total weighted tardiness 1||WT is NP-complete [2][5]. 
Optimal algorithms for this problem would therefore require a computation time that 
grows exponentially with the problem size, presenting exponential complexity. 
Hence, only small sized instances of this problem can be solved in an efficient way. 
Several branch-and-bound procedures and dynamic programming techniques have 
been proposed in literature [5][6]. As indicated in [6] the simple dispatching heuristics 
(EDD, SWPT, COVERT or AU) do not consistently produce good quality solutions.  
In recent years, much attention has been dedicated to Metaheuristic that are consi-
dered to be efficient tools for solving hard combinatorial optimization problems.  

Ant Colony Optimization (ACO) is probably the most successful example of artifi-
cial/engineering Metaheuristic based optimization techniques with numerous applica-
tions to real-world problems[4], and for minimization of total weighted tardiness. 
Merkle and Middendorf [7] describe a contribution for solving permutation problems 
to SMSP for Total Weighted minimization. Liao and Juan [8] propose an ACO to 
minimize the tardiness in a SMSP with utilization of setup times. In Yagmahan and 
Yenisey [9] a multi-objective scheduling problem approach based on ACO for sche-
duling to reduce the total scheduling cost is proposed. Anghinolfi and Paolucci [10] 
describe a new ACO approach to face the single machine total weighted tardiness 
scheduling with sequence dependent setup times problem. In Srinivasa Raghavan and 
Venkataramana [11] a parallel processor scheduling for minimizing total weighted 
tardiness using ant colony optimization is proposed.  Additionally, some relevant 
works could be identified, see for example [1][12][13]. 

3 Ant Colony Optimization 

Ant Colony Optimization (ACO) has been formalized as a Metaheuristic by Dorigo 
and collaborators [3][14] that are inspired and  mimic natural metaphors to solve 
complex optimization problems . A Metaheuristic can be defined as a set of algorith-
mic concepts that can be used to define heuristic methods applicable to a wide range 
of different optimization problems [4].  
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A subset family of Metaheuristics, SI is considered an innovative and creative ap-
proach to problem solving that takes inspiration from the collective intelligence of 
swarm of biological populations, and was discovered through simplified social beha-
viors model simulation of insects and other animals [4][15]. ACO algorithm is among 
the most promising SI inspired optimization class of optimization techniques. 

Table 1. Analogy between Natural and Artificial Ants 

Natural Ant Colony Artificial Ant Colony 

Ant Agent 

Ant Colony Set of Ants/Iterations 

Pheromone Diversity Mechanism 

Path Solution 

Evaporation Pheromone update 

 
The ACO algorithm takes inspiration from the foraging behavior of some ant spe-

cies (Table 1). These ants deposit pheromone on the ground in order to mark some 
favorable path that should be followed by other members of the colony. ACO exploits 
a similar mechanism for solving optimization problems. The ACO algorithm is a 
probabilistic technique for solving computational problems which can be reduced to 
finding good paths through graphs. For this reason description of ACO algorithms are 
normally accompanied through Traveling Salesman Problem (TSP) notation and illu-
strative examples [16-18]. This algorithm, initially proposed by Marco Dorigo in his 
PhD thesis [14], is a member of ACO family and it constitutes some Meta-Heuristic 
optimizations. 

The first proposed ACO algorithm is known as Ant System [16] that was aiming to 
search for an optimal path in a graph. It was based on the foraging behavior of ants 
seeking a path between their colony and a source of food. The original idea has since 
diversified to solve a wider class of numerical problems, and as a result, several algo-
rithms have emerged, drawing on several aspects of the behavior of ants [4]. 

Table 2. Non-exhaustive ACO algorithms list [4] 

Algorithm Authors Year 

Ant System(AS) Dorigo et al. 1991 

Elitist AS Dorigo et al. 1992 

Ant-Q Gambardella & Dorigo 1995 

Ant Colony System Dorigo & Gambardella 1996 

MAX-MIN AS Stutzle&Hoos 1996 

Hyper-Cube AS Blum et al. 2001 
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The designation ACO is a generic term that includes algorithms based on the beha-
vior of ants. Since the early 90s, when the first ACO algorithm - Ant System - was 
proposed in [16], different algorithms (Table 2) and successful applications have been 
described and  a substantial theoretical results have becoming available that provides 
useful guidelines to researchers and practitioners in further applications of ACO based 
algorithms [17-19]. 

The general ACO algorithm is described in Table 3. After initialization, the ACO 
iterates over three main steps: at each iteration, a number of solutions are constructed 
by the ants; these solutions could be then improved, optionally, through a local 
search, and finally the pheromone is updated through two possible events: evapora-
tion and by increasing the pheromone levels associated with a chosen set of good 
solutions. 

Table 3. Ant Colony Optimization Algorithm 

Set ACO parameters.  

Initialize pheromone trails   

While termination criteria not met do 

Construct AntSolutions 

Apply Localsearch (optional) 

Update Pheromones 

EndWhile 

 
 
A more detailed description of the three phases can be stated as follows[4]: 

• ConstructAntSolutions: A set of m artificial ants constructs solutions from ele-
ments of a finite set of available solution components C = {cij }, i = 1, . . . , n,  
j = 1, . . . , |Di|. A solution construction starts from an empty partial solution  
sp = ∅. At each construction step, the partial solution sp is extended by adding a 
feasible solution component from the set N(sp) ⊆ C, which is defined as the set 
of components that can be added to the current partial solution sp without violat-
ing any of the constraints in Ω. The process of constructing solutions can be  
regarded as a walk on the construction graph GC = (V, E) as stated in [4]. The 
selection of a solution component from N(sp) is guided by a stochastic mechan-
ism, which is biased by the pheromone associated with each of the elements of 
N(sp). The rule for the stochastic choice of solution components vary across the 
different proposed ACO algorithms but, in all of them, it is inspired by the Goss 
model (experimental setup for the double bridge experiment) of the behavior of 
real ants assuming that at a given moment in time m1 ants have used the first 
bridge and m2 the second one, the probability p1 for an ant to choose the first 
bridge is given by [4] : 
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  (2) 

where parameters k and h are to be fitted to the experimental data. Monte Carlo 
simulations showed a very good fit for k ≈ 20 and h ≈ 2. 

• ApplyLocalSearch: Once solutions have been constructed, and before updating 
the pheromone, it is common to improve the solutions obtained by the ants 
through a local search. This phase, which is highly problem-specific, is optional 
although it is usually included in state-of-the-art ACO algorithms. 

• UpdatePheromones: The aim of the global pheromone update is to increase the 
pheromone values associated with good or promising solutions, and to decrease 
those that are associated with bad ones. Usually, this is achieved by decreasing 
all the pheromone values through pheromone evaporation, and by increasing the 
pheromone levels associated with a chosen set of good solutions. 

Several ACO algorithms have been proposed in the literature, which differ in some 
decisions characterizing the construction of solutions and update pheromone proce-
dures [4]. Among the most successful variants we have chosen the ACS algorithm to 
apply to the SMSP to WT resolution.    

The most interesting contribution of ACS [4][13] is the introduction of a local phe-
romone update and the pheromone update performed at the end of the construction 
process (named offline pheromone update). 

ACS algorithm can be stated as follows [13]: m ants are initially positioned on n 
cities chosen according to some initialization rule (randomly, for example). Each ant 
builds a tour (feasible solution) by repeatedly applying a stochastic greedy rule (the 
state transition rule). While constructing its tour/path, an ant also modifies the amount 
of pheromone on the visited edges (cities) by applying the local updating rule. Once 
all ants have terminated their tour/path, the amount of pheromone on edges/cities is 
modified again, by global updating rule applying. Ants are guided, in building their 
solutions, by both heuristic information (they prefer to choose short edges), and by 
pheromone information (an edge with a high amount of pheromone is a very desirable 
choice). The pheromone updating rules are designed to give more pheromone to 
edges/cities which should be visited by ants.  

The local pheromone update is performed by all ants after each construction step. 
Each ant applies it only to the last edge traversed: 

 1   .  .  (3) 

where ϕ ∈ [0,1]  is the pheromone decay coefficient, and τ0 is the initial value of 
the pheromone.  

The main goal of the local pheromone update is to introduce diversity in the search 
process performed by subsequent ants during an iteration by decreasing the phero-
mone concentration on the traversed edges, ants encourage subsequent ants to choose 
other edges and, hence, probably to produce different solutions. This mechanism 
makes it less likely that several ants produce identical solutions during one iteration. 
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The offline pheromone update, is applied at the end of each iteration by only one 
ant, which can be either the iteration-best(Lib) or the best-so-far(Lbs). However, the 
update formula is slightly different: 

  (4) 

where τij = 1/Lbest , where Lbest can be either Lib or Lbs. 
Another important difference between ACS and AS is in the decision rule used by 

the ants during the construction process. 

  (5) 

In ACS, the so-called pseudorandom proportional rule is used by the ants during 
the construction process: the probability for an ant to move from city i to city j de-
pends on a random variable q uniformly distributed over [0,1], and a parameter q0; if 

q≤q0,   otherwise Equation 5 is used. 

Additional information about ACO based algorithms details of implementation 
could be found in [4][13]. 

4 Developing Issues for Optimization Approaches 

The first aspect to be considered when identifying a decision making problem - opti-
mization problem - and the need for specifying a tool for its resolution refers to prob-
lem modeling.  

The mathematical model is built from the formulation of the problem and can be 
inspired by theoretical models related in the literature. This will reduce the problem to 
well-studied optimization models that are in general simplifications of real world 
problems.  

Once the problem is modeled, the following stages are considered relevant for op-
timization approaches development (Figure 1), following a set of general guidelines 
systematized by Talbi[20], for solving a given optimization problem. 

Initially should be addressed, based on the state of the art of optimization methods 
(exact or approximation), the question of which optimization technique is best suited 
to solve the problem considering the complexity and difficulty of the optimization 
problem (NP class, size and structure of the instances) and the requirements of the 
optimization problem (search time, quality of solutions and robustness). 

The use of exact methods is suitable when the identified instances of the problem 
are solved in the time required. Meta-heuristics are a feasible alternative to obtain 
satisfactory solutions in circumstances where the complexity of the problem or avail-
able search time did not allow the use of exact methods. 

 





 Δ+−

=
otherwise

tour, the best belongs toj)(i,if

ij

ijij
ij τ

τρτρ
τ

**)1(










∈

= 
∈

otherwise

SNcif

c
p

p
ij

SN
ijij

ijij

k
ij

p
ij

0

)(
*

*

)(

βα

βα

ητ

ητ

{ }βητ ililcij
j  N(Sp)argmax ∈=



126 A. Madureira, I. Pereira, and A. Abraham 

 

 

Fig. 1. Developing issues for optimization problem solving [20] 

From the moment the necessity of specifying a meta-heuristic is identified, some 
questions, common to all Meta-Heuristics, related to the encoding/representation of the 
solutions, the definition of objective function and constraints handling must be stated. 

The development of software tools for the MH is a relevant task considering the 
variety of optimization problems identified and continuous evolution of models asso-
ciated with optimization problems. The problem may be modified or require further 
refinements: some objectives and constraints can be inserted, deleted or changed. 

It is clear the interest and the need in developing systems or automatic tools for deci-
sion support based MH. For managers it is important to select, implement and apply opti-
mization algorithms without requiring deep knowledge on programming and optimization. 
For experts in optimization and software development is useful to evaluate and compare 
different algorithms, transform/adapt algorithms, develop new algorithms, combine and 
parallelize algorithms. Generally, the literature identifies three main approaches used for 
the development and implementation of Metaheuristics [20]: From scratch or no reuse 
(considering the simplicity of MH implementation, but requires time and effort and it is 
error prone); Code reuse (consists on reusing free programs codes and libraries Open 
Source, adapting to the treated problem is often time consuming, error prone, and the cod-
ing effort using libraries remains important); and Design and code reuse(Software frame-
works, its main objective is to overcome above  related problems). 

In general, the effective resolution of a problem requires the application of differ-
ent methods of tuning parameters among others. The tuning of parameters can allow 
greater flexibility and robustness but requires a careful initialization. The parameters 
can have a major influence on the efficiency and effectiveness of the search. Becomes 
not obvious, a priori, the setting of parameters to use. The values for the parameters 
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depend on the problem, instances structure and the time available to solve the prob-
lem. There are no universal values for the parameters considered for Metaheuristic 
based algorithms. Being widespread view that its definition must result from a careful 
experimental effort, towards their tuning. 

Performance analysis corresponds to the last stage of development of MH. The 
theoretical analysis based on the worst case and average provides some insights in 
solving some optimization models. However, it is considered that the performance 
evaluation of the MH must be supported by a comprehensive set of computational 
tests, following these aspects/phases: definition of the test plan (test objectives, selec-
tion of input variables and instances); definition of measurement criteria (quality of 
solutions, robustness and computational effort) and the reporting and analysis of re-
sults (graphic display of results, interpretation of results, statistical analysis). 

5 ACS Proposed Approach Developing for Weighted Tardiness 

The scheduling problem to deal with is included into the class of combinatorial optimiza-
tion problems common in industrial practice. Due to its complex nature and the resolution 
of such problems to optimality, in an acceptable time for the process of decision making, 
is virtually impossible. Thus, there is an important issue that refers to the resolution of this 
class of problems obtaining satisfactory quality solutions on reasonable computing time, 
for which there is no knowledge of the existence of efficient methods.  

A software tool was developed and implemented in Java, to perform the computa-
tional study aiming to analyse and evaluate the performance of ACS, on resolution of 
SMSP for minimization of total weighted tardiness. 

Table 4. Ant Colony System for WT 

Begin 

Set ACS parameters.  

Initialize pheromone trails   

While termination criteria not met do 

Construct Ant Solutions   

Each ant build a solution 

Apply LocalSearch 

Return Constructed Solution 

Apply Localsearch   

Global Update Pheromone 

EndWhile  

Return Best solution 

End 
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The solutions are encoded by the natural representation (string), each position cor-
responds to a job index and the position of the job index is the correspondent 
processing order. The number of positions on the string corresponds to the number of 
jobs (problem size). 

The initial colony generation process consists in applying some mechanism genera-
tor to a starting ant solution. The initial solution is defined by the priority rule EDD 
rule, in which an initial solution (ant) is defined by the due dates increasing ordering, 
thus giving priority to tasks with small due dates. 

As mentioned above, we implemented an ACS algorithm (Table 4) for WT resolu-
tion [21]. The ACS differs from the previous proposed Ant System due to three main 
aspects [11]: the state transition rule, the global updating rule, and the local updating 
rule. When applied to the SMSP for WT minimization, each ant constructs a feasible 
sequence by selecting an unscheduled job j to be on the ith position of the partial se-
quence constructed so far. This process is influenced by specific heuristic information 
ηij, as well as the pheromone trails τij.   

5.1 Solution Construction 

During the construction process the decision of adding job j to the partial sequence is 
made through ACS state transition rule, which is given by equation 6: 

 arg   .    if q q                                        otherwise (6) 

where ω is the set of unscheduled jobs, α controls the relative importance of the 
pheromone trails, β determines the influence of the heuristic information, q is a ran-
dom number uniformly distributed over [0,1], q0 is a parameter (q0∈[0,1]) and S is a 
job selected according to the probability defined by equation 7: 

 
 .∑  .         0                            otherwise (7) 

The state transition rule favors job selection in terms of pheromone amount versus 
heuristics information. The parameter q0 provides a way to balance between explora-
tion of new jobs and exploitation of accumulated knowledge. In other words, when 
ant m has to choose a job to append to the partial sequence, a random number q is 
generated, with q∈[0,1], and if q ≤ q0 the best job is chosen (exploitation), otherwise a 
job is chosen (exploration). 

The heuristic used by ants to compute the heuristic information is given by  
equation 8: 

  (8) 

where dij is the total weighted tardiness for the partial sequence of jobs generated 
so far. The proposed solution construction procedure could be summarized on  
Table 5. 
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Table 5. Solution Construction Algorithm 

Begin 

While number of jobs not met do 

Select a new job 

Add new job to the sequence 

Perform Local Pheromone Update 

EndWhile  

Apply LocalSearch 

Return Constructed Solution 

End 

 
The ants construct the solution as follows: each ant starts from a randomly selected 

job. Then, at each construction step the ant selects a new job through a transition rule 
(equation 6). Each ant keeps a “memory” of its path, and the subsequent job is chosen 
among the unscheduled jobs. At each construction step, an ant probabilistically choos-
es the next job to add to the sequence. The probabilistic rule is biased by pheromone 
values and heuristic information. Once a job is added to the sequence, the local phero-
mone is updated. This process is repeatedly applied until all jobs are scheduled. Before 
returning the generated solution, it still undergoes a local search algorithm.  The goal 
is to improve the current solution by iteratively moving to a neighbor solution selected 
from a neighborhood of solutions according to a defined rule, which in this case, is the 
minimization of the total weighted tardiness. This process is quite costly in terms of 
computational time, but improves significantly the generated solution. However, we 
will address this process in more detail in the subsequent sections.    

5.2 Pheromone Update Rule 

The ACS pheromone update rule consists of both local and global update rule. The 
local pheromone update is performed by each ant after adding a new job to the partial 
sequence, and is given by equation 9: 

 1  .  .  (9) 

where ρ ∈ [0,1]  is the pheromone decay coefficient, and τ0 is the initial trail inten-
sity (equation 10): 

  .  (10) 

where WT is the total weighted tardiness for a sequence generated by the EDD rule 
and n is the number of jobs. The main goal of the local update rule is to make the  
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decision of appending job j on position i less desirable for the others ants so that the 
exploration of different sequences is favored [12].   

The global pheromone update is applied at the end of each iteration by only one 
ant, which can be either the iteration-best or best-so-far [4].  We followed the best-
so-far strategy, where the ant with the best solution so far contributes to the phero-
mone trail update, according to the equation 11: 

 1  .  . ∆  (11) 

where ∆τij=1/WT* for all edges (i, j) belonging to the best solution found so far 
(WT* is the total weighted tardiness of the best solution). 

5.3 Local Search 

Local Search performs a blind search, since they only accept sequential solutions 
which improve the value of the objective function. Essentially, consists of moving 
from one solution to another, in the neighborhood, according to some defined rules or 
local changes. The sequence of solutions trajectory depends heavily on the initial 
solutions and on the neighborhood generation mechanisms adopted which defines the 
neighboring structure [22]. In this work, we considered adjacent pairwise interchange 
as a neighborhood structure to solve the problem at hand [21]. The main weakness of 
basic Local Search algorithms is their inability to escape from local optima. 

The local search strategy described above is applied to all sequences constructed 
by the artificial ants. This strategy produces better results but is more costly in terms 
of computational time.   

5.4 Illustrative Example 

A chemical industry produces different types of products, but can only make one at a 
time. The production manager has to decide on the issue of sequencing of 5 tasks on a 
single machine (Table 6). For each task j (j = 1, ..., 5), pj is the processing time, dj the 
delivery date and wj the penalty associated with task j per unit of time delay. The 
number of admissible solutions for this instance of problem is 5! = 120. The size of 
the problem is reduced to facilitate their understanding. It becomes clear that in this 
situation would be feasible the enumeration of all admissible solutions and select the 
best. However, this is no longer feasible for instances with larger dimension.  

Consider the ACS with 25 ants, a pheromone evaporation rate of 80%, α values 
(scale the heuristic value) and β (importance of pheromone) equal to 1. 
Initially the pheromone is zero. 

From proposed ACS execution, we obtained the solutions presented in Table 7, 
where it is possible to verify the quality evolution of the paths chosen by the ants. The 
paths are constructed incrementally and randomly according to the values of phero-
mone and heuristic information, with an increased probability of choosing a solution 
with better heuristic value and greater pheromone. It is possible to confirm that, in  
the end of the process, ants choose better paths, with a propensity to choose the best 
so far. 
 



 Developing Issues for Ant Colony System Based Approach for Scheduling Problems 131 

 

 

Table 6. Illustrative example 

Job j pj dj wj 

1 2 5 1 

2 4 7 6 

3 1 11 2 

4 3 9 3 

5 3 8 2 

 
 
 

Table 7. ACS Step by step 

Ant i Solutioni f 

1 [2 4 5 3 1]  12.0 

2 [1 3 2 4 5]  13.0 

3 [4 2 1 3 5]  14.0 

4 [1 2 4 3 5]  10.0 

5 [1 2 3 4 5]  13.0 

6 [4 3 2 5 1]  20.0 

7 [1 2 4 3 5]  10.0 

8 [3 1 2 4 5]  13.0 

9 [2 5 4 3 1]  11.0 

10 [1 3 2 4 5]  13.0 

11 [3 1 4 2 5]  28.0 

12 [3 1 2 4 5]  13.0 

13 [2 5 4 3 1]  11.0 

14 [3 4 2 5 1]  20.0 

15 [2 3 4 5 1]  14.0 

16 [4 5 2 3 1]  26.0 

17 [2 5 4 3 1]  11.0 

18 [2 5 3 4 1]  14.0 

19 [1 2 4 3 5]  10.0 

20 [3 1 2 4 5]  13.0 

21 [3 2 5 4 1]  14.0 

22 [1 2 4 3 5]  10.0 

23 [1 2 4 3 5]  10.0 

24 [3 1 2 4 5]  13.0 

25 [1 2 4 3 5]  10.0 
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Table 8. Final Pheromone Matix 

Job 1 2 3 4 5 

1 0,089 0,083 0,016 0,013 0,013 

2 0,011 0,011 0,011 0,1 0,013 

3 0,013 0,013 0,011 0,013 0,073 

4 0,013 0,013 0,083 0,011 0,013 

5 0,013 0,011 0,013 0,013 0,011 

 

 

Fig. 2. ACS scheduling plan 

At the end of the twenty five iterations, the path with more pheromone is [1 2 4 3 
5], with a heuristic f = 10, which represents the best solution found by ACS (Table 8). 
This path was chosen by 6 ants. The scheduling plan is illustrated in Figure 2. 

6 Computational Study 

A software tool was developed to perform the computational study aiming to analyse 
and evaluate the performance of ACS, on resolution of SMSP for minimization of 
total weighted tardiness. The computational tests were carried out on a PC with Intel 
Xeon W3565 at 3.20 GHz, with the ACS coded in Java. The ACS performance was 
tested on 75 benchmark instances of WT problem for different sizes n=40, n=50, 
n=100, available at OR-Library [23]. We select for testing the first 25 instances for 
each size and not their instances where better results were obtained. 

In this section a computational study is carried out in order to analyse SI based al-
gorithms – ACS - on the resolution of benchmark problems considering quality of 
solutions and computational times.  

Performance analysis of EC is a necessary task to perform and must be done on a 
fair basis. A theoretical approach is generally not sufficient to evaluate an MH based 
algorithm.  To evaluate the performance experimentally and/or comparing in a sys-
tematized way, the following three steps must, generally, be considered [20]: 

• Experimental Design: the goals of the experiments, the selected instances, and 
optimization criteria have to be defined. 

• Measurement: the measures to compute are selected. After executing the dif-
ferent experiments, statistical analysis is applied to the obtained results. The 
analysis of performance must be done based on state-of-the-art optimization al-
gorithms dedicated to the problem. 
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• Reporting: the results must be systematized in a comprehensive way, and an 
analysis is carried out following the defined goals. Another important issue is 
related with insurance of the reproducibility of the computational experiments. 

ACS based algorithm is evaluated on the resolution of WT instances and its effi-
ciency and effectiveness will be analysed. Statistical analysis is performed in order to 
estimate the significance and confidence of the obtained results.  

We pretend to evaluate the adequacy of Swarm Intelligence based algorithms to the 
WT resolution. ACS effectiveness and efficiency is evaluated on 75 benchmark in-
stances of WT problem for different sizes (25 instances with 40, 50 and 100 jobs, 
respectively).  

We consider that academic benchmark problems are an effective evaluation 
framework since they have been used by multiple authors and diverse application 
areas over the years, allowing an efficient comparing framework with previous work 
related on literature. Additionally, they permit an insight of global behavior and per-
formance on a class of scheduling problems which are our main objective. 

6.1 Parameter Tuning 

The ACS algorithm has a certain number of parameters that need to be set appro-
priately [18]. As such, we performed a preliminary study to identify which set of val-
ues would yield better results for minimizing total weighted tardiness, for each size in 
consideration.  The study focused on testing different values for α and β, which are 
used to regulate the relative influence of the pheromone and heuristic information; m, 
the number of ants; ρ, the pheromone evaporation rate; and q0, the probability of 
choosing the next job as defined on equation 6. In Table 9 we present the different 
tested values, as well as the standard deviation σ for obtained results. 

The tests were performed by using four different sets of values, following some 
conclusions referred in [10]. For each set we computed n=1 simulations for each in-
stance under analysis, as shown in Table 9. The conclusions from the obtained results 
could be summarized:      

• α: This parameter is usually set to 1, and most of the times is not even consi-
dered; 

• β: The value of β equal to 5 produced better results during most of the runtimes; 
• m: The value of ants defined for each instance resulted in a good anytime  

performance;  
• ρ: Higher values of ρ produced better results; 
• q0: Good values of q0 tend to be close to 1. As such, we used 0.98, which proved 

to be a good choice.  

The standard deviation presented in Table 9 shows the variation in the results rela-
tively to the average deviation from the optimum value. In fact, a low deviation indi-
cates that the results tend to be very close to the average value.  

After analyzing the results we concluded that the last set of values (highlighted in 
bold), could yield better results in the computational tests, as such the implemented 
ACS algorithm was parameterized with this values. The obtained results are presented 
and discussed in the next section. 
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Table 9. Parameter tuning 

No. jobs α β m ρ q0 Σ 

40 

1 1 30 0.80 0.90 0.1546 ± 0.1616 

1 2 30 0.10 0.98 0.1746 ± 0.1588 

1 5 30 0.30 0.98 0.1273 ± 0.0932 

1 5 30 0.60 0.98 0.0909 ± 0.0839 

50 

1 1 50 0.80 0.90 0.1939 ± 0.2582 

1 2 50 0.10 0.98 0.1942 ± 0.1948 

1 5 50 0.30 0.98 0.1688 ± 0.1523 

1 5 50 0.60 0.98 0.1226 ± 0.1073 

100 

1 1 80 0.80 0.90 0.5253 ± 0.5659 

1 2 80 0.10 0.98 0.4176 ± 0.3776 

1 5 80 0.30 0.98 0.4285 ± 0.3868 

1 5 80 0.60 0.98 0.3969 ± 0.3753 

6.2 Discussion of Results 

Initially, we developed n=5 simulations for each instance under analysis. In order to 
analyze the obtained results, performance measures were computed: the best, the av-
erage, and worst value and the deviation error from the best obtained value to the 
optimal (best known available in OR-Library [23]). The relative percentage of devia-
tion error is determined by %error= (Best-Optimal)/Best formula. 

Table 10. Results for 5 runs 

No. jobs Average time (s) σ No. of optimal 

40 15 0.0366 ± 0.0391 8 

50 50 0.0552 ± 0.0489 4 

100 1086 0.1872 ± 0.1714 0 

The obtained solutions values by the proposed ACS algorithm are presented in 
Figure 3 for n=40, Figure 4 for n=50 and Figure 5 for n=100, also in Table 10 is pre-
sented the average computational time, the standard deviation, and the number of 
optimum values.   

The following figures presents the results obtained from the performed tests. Each 
figure shows the average deviation, as well as the deviation of each intances from the 
optimum value. Through the figures is also possible to identify the instances were the 
optimum value was reached, i.e., the ones were the deviation value is zero. Some of 
this instances appear to have reached the optimum value, when in fact there is a slight 
deviation that is not noticeable in the figures. For that reason we present in Table 10 
the total number of optima for n=40, n=50, and n=100.  
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5. Results obtained with 5 runs for n=100 

Table 11. Results for 20 runs 
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performance on WT resolution for 40 jobs. This conclusion can be supported either 
by central tendencies and dispersion measures. This evidence can be observed even 
on median and dispersion indicators. Regarding variability, through standard devia-
tion and interquartile range analysis it possible to conclude that ACS presents similar 
variability. 
 

 

Fig. 9. Boxplot for WT with 40 jobs 

Considering a significance level α=5%, it is possible to conclude that, in general 
the difference in performance proposed ACS and optimal solution is not statistically 
significant. A paired-samples t-test indicated that, with a confidence level of 95%, 
there is no statistically significant difference between performance of ACS (M = 
48607.76, SD=46928.024), and optimal solutions related on literature (M=43494.40, 
SD= 44745.846)  t(24) = -1, p=.327. These results could suggest that ACS have been 
effective on WT resolution for 40 jobs, considering that does not exist statistical evi-
dence that its performance is significantly different than optimal solutions for the 
same instances for WT with 40 jobs. 

Table 12. Statistical Sampling Summary based on WT40 

Optimal ACS 

Mean 43494,40 48607,76 

Median 19312,00 26914,00 

Variance 2002190770,083 2202239475,023 

Std. Deviation 44745,846 46928,024 

Interquartile Range 70854 71289 

Skewness ,791 ,634 

Kurtosis -,737 -1,073 
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Fig. 10. Boxplot for WT with 50 jobs 

Table 13. Statistical Sampling Summary based on WIT50 

Optimal ACS 

Mean 67110,40 70139,44 

Median 43504,00 47627,00 

Variance 5296763112,167 5234325587,590 

Std. Deviation 72778,864 72348,639 

Interquartile Range 87856 91550 

Skewness 1,266 1,179 

Kurtosis ,724 ,564 

 
From boxplot, Figure 10, analysis we can conclude that there are outliers or ex-

treme values and the analysis of location, dispersion and asymmetry of data, making 
its synthesis by ACS, and optimal solutions,  that ACS has been effective on the 
resolution of WT considering that its obtained mean values were similar to the optim-
al solutions (in some instances the best known). It is not clear, from the graph analy-
sis, the existence of significant difference of the performance of ACS related with 
optimal solutions. 

From the analysis of statistical sampling summary based on WT minimization  
(Table 13), it is possible to conclude that exist some statistic evidence of the differ-
ence significance between optimal solutions and ACS performance on WT resolution 
for 50 jobs. This conclusion can be supported either by central tendencies and disper-
sion measures. This evidence can be observed even on median and dispersion indica-
tors. Regarding variability, through standard deviation and interquartile range analysis 
it possible to conclude that ACS presents different variability.  
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Considering a significance level α=5%, it is possible to conclude that, in general 
the difference in performance proposed ACS and optimal solution is significant.  

A paired-samples t-test indicated that, with a confidence level of 95%, there is sta-
tistically significant difference between performance of ACS (M=70139.44, 
SD=72348.64), and optimal solutions related on literature (M= 67110.40,  SD= 
72778,86)  t(24) = -4,652, p<0.001. These results suggest that ACS performance has 
decreased on WT resolution for 50 jobs when compared with 40 jobs considering that 
exist statistical evidence that its performance is significantly different than optimal 
solutions for the same instances for WT with 50 jobs. 

The boxplot from Figure 11 depicts the values of obtained solutions by ACS on the 
WT resolution of 25 instances in analysis with 100 jobs. From the boxplot analysis it 
is possible to conclude about difference of the performance of ACS related with op-
timal solutions. 

 

 

Fig. 11. Boxplot for WT with 100 jobs 

Table 14. Statistical Sampling Summary based on WT100 

Optimal ACS 

Mean 268357,52 302118,04 

Median 178840 249518 

Variance 69219509079,2 70906890332,5 

Std. Deviation 263096 266283,5 

Interquartile Range 462725 480355 

Skewness ,809 ,594 

Kurtosis -,337 -,711 
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From the analysis of statistical sampling summary based on WT minimization  
(Table 14), it is not possible to conclude about statistic evidence of the difference 
significance between optimal solutions and ACS performance on WT resolution for 
100 jobs. This conclusion can be supported either by central tendencies and dispersion 
measures. This evidence can be observed even on median and dispersion indicators. 
Regarding variability, through standard deviation and interquartile range analysis it 
possible to conclude about differences on performance by ACS when comparing with 
optimal solutions.  

Considering a significance level α=5%, it is possible to conclude that, in general 
the difference in performance proposed ACS and optimal solution is statistically sig-
nificant.  A paired-samples t-test indicated that, with a confidence level of 95%, there 
is statistically significant difference between performance of ACS (M=302118,04, 
SD=266283,5), and optimal solutions related on literature (M= 268357,5,  SD= 
263096,01)  t(24) = -5,959, p<0.001. These results suggest that exist statistical evi-
dence that its performance is significantly different than optimal solutions for the 
same instances for WT with 100 jobs. 

 

 

Fig. 12. Error Bar of the WT for all instances 

Table 15. Statostical Sampling Summary based on WT 

Optimal ACS 

Mean 126320,77 139080,95 

Median 53208,00 75267,00 

Variance 35134539958,2 38921816643,2 

Std. Deviation 187442,1 197286,1 

Interquartile Range 142301 139647 

Skewness 2,241 2,045 

Kurtosis 4,912 3,764 
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Previous computational and statistical tests indicate that ACS presents effective-
ness on the resolution of WT for 40 jobs, but its performance decreases for 50 and 
100 jobs, which can indicate that parameter tuning, must be improved in order to 
increase ACS performance for those class of instances. Following, in order to eva-
luate the overall performance of ACS on the resolution of 75 instances of WT sche-
duling problem with 40, 50 and 100 jobs, additional statistical analysis will be con-
ducted to compare the overall performance of ACS when compared with respective 
optimal solutions.  

From the analysis of statistical sampling summary based on WT minimization  
(Table 15), it is possible to conclude that exist statistic evidence of the difference on 
the ACS performance of WT resolution. This conclusion can be supported either by 
central tendencies and dispersion measures. This evidence can be observed even on 
median and dispersion indicators. Regarding variability, through standard deviation 
and interquartile range analysis it possible to conclude that ACS presents similar  
variability.  

Considering a significance level α=5%, it is possible to conclude that, in general 
the difference in performance proposed ACS and optimal solution is statistically sig-
nificant.  A paired-samples t-test indicated that, with a confidence level of 95%, there 
is statistically significant difference between performance of ACS (M= 139080.95, 
SD=197286.13), and optimal solutions related on literature (M=126320.77,  SD= 
187442.1)  t(74) = -5.000, p<0.001. These results suggest that exist statistical evi-
dence that its performance is significantly different than optimal solutions for the 
same WT instances with 100 jobs. 

From the obtained results we can conclude that proposed ACS and its parameteri-
zation is adequate for 40 jobs instances considering that obtained results indicate that 
the difference in performance of ACS and optimal solution is not statistically signifi-
cant. For instances with greater dimensions parameter tuning must be increased, con-
sidering a degradation of computational time. 

7 Conclusions and Future Work 

In this paper, we described some guidelines for ACS based software developing tools 
to study the effectiveness and efficiency of ACS in the optimization of total weighted 
tardiness for SMSP. More than developing algorithms with unquestionable practice 
utility, the main purpose of this paper was to illustrate, through more simple schedul-
ing problems, the potential effectiveness and efficiency of using MH approaches, with 
special emphasis on SI based techniques for scheduling problem solving. The ob-
tained results show that proposed ACS algorithm was effective for the instances stud-
ied, being possible to find good solutions in short time, i.e., a few CPU seconds. As 
future work, we will extend our ACS algorithm to the job-shop scheduling problem, 
where the jobs are distributed across different machines.   

Acknowledgments. This work is supported by FEDER Funds through the  
“Programa Operacional Factores de Competitividade - COMPETE” program and by 
National Funds through FCT “Fundação para a Ciência e a Tecnologia” under  
the project: FCOMP-01-0124-FEDER-PEst-OE/EEI/UI0760/2011 and PTDC/EME-



 Developing Issues for Ant Colony System Based Approach for Scheduling Problems 143 

 

GIN/109956/2009. . This work is partially supported in the framework of the IT4 
Innovations Centre of Excellence project, reg. no. CZ.1.05/1.1.00/02.0070 by opera-
tional programme ’Research and Development for Innovations’ funded by the Struc-
tural Funds of the European Union and state budget of the Czech Republic, EU. 

References 

1. Baker, K.R.: Introduction to Scheduling, Brussels, vol. 32 (1992) 
2. Baker, K.R., Trietsch, D.: Optimization methods for the single machine probelm. In: Prin-

ciples of Sequencing and Scheduling, 1st edn., pp. 34–56. Wiley, New York (2009) 
3. Dorigo, M.: Swarm Intelligence, vol. (4). Springer, New York (2007) 
4. Dorigo, M., Birattari, M., Stützle, T.: Ant Colony Optimization - Artificial Ants as a Com-

putational Intelligence Technique. IEEE Computational Intelligence Magazine (2006) 
5. Lawer, E.L.: A pseudopolinomial algorithm for sequencing Jobs to Minimize Total Tardi-

ness. Annals of Discrete Mathematics, 331–342 (1997) 
6. Reynolds, R.G.: An Introduction to Cultural Algorithms. In: Proceedings of the 3rd An-

nual Conference on Evolutionary Programming, pp. 131–139. World Scienfific Publishing 
(1994) 

7. Merkle, D., Middendorf, M.: On solving permutation scheduling problems with ant colony 
optimization. International Journal of Systems Science 36(5), 255–266 (2005) 

8. Liao, C., Juan, H.: An ant colony optimization for single-machine tardiness scheduling 
with sequence-dependent setups. Computers & Operations Research 34, 1899–1909 (2007) 

9. Yagmahan, B., Yenisey, M.M.: Ant colony optimization for multi-objective flow shop 
scheduling problem. Computers & Industrial Engineering 54, 411–420 (2008) 

10. Anghinolfi, D., Paolucci, M.: A new ant colony optimization approach for the single ma-
chine total weighted tardiness scheduling problem. International Journal of Operations Re-
search 5(1), 1–17 (2008) 

11. Srinivasa Raghavan, N.R., Venkataramana, M.: Parallel processor scheduling for minimiz-
ing total weighted tardiness using ant colony optimization. The International Journal of 
Advanced Manufacturing Technology 41(9-10), 986–996 (2009) 

12. den Besten, M., Stützle, T., Dorigo, M.: Ant colony optimization for the total weighted 
tardiness problem. In: Schoenauer, M., Deb, K., Rudolph, G., Yao, X., Lutton, E., Merelo, 
J.J., Schwefel, H.-P. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 611–620. Springer, Heidel-
berg (2000) 

13. Dorigo, M., Gambardella, L.M.: Ant Colony System: A cooperative learning approach to 
the traveling salesman problem. IEEE Transactions on Evolutionary Computation 1(1), 
53–66 (1997) 

14. Dorigo, M.: Optimization, Learning and Natural Algorithms, PhDThesis, Politecnico di 
Milano, Italy, in Italian (1992) 

15. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press (2004) 
16. Dorigo, M., Maniezzo, V., Colorni, A.: Positive feedback as a search strategy. Dipartimen-

todi Elettronica, Politecnico di Milano, Italy, Tech. Rep. 91-016 (1991) 
17. Dorigo, M., Gambardella, L.M.: Ant colonies for the traveling salesman problem. BioSys-

tems 43(2), 73–81 (1997) 
18. Gambardella, L.M., Dorigo, M.: Solving symmetric and asymmetric TSPs by ant colonies. 

In: Baeck, T., et al. (eds.) Proc. 1996 IEEE International Conference on Evolutionary 
Computation (ICEC 1996), pp. 622–627. IEEE Press, Piscataway (1996) 



144 A. Madureira, I. Pereira, and A. Abraham 

 

19. Stützle, T., et al.: Parameter Adaptation in Ant Colony Optimization, IRIDIA, Bruxelles, 
Belgium, Tech. Rep. TR/IRIDIA/2010-002 (January 2010) 

20. El-Ghazali Talbi, Metaheuristics – From Design to Implementation. Wiley (2009) 
21. Madureira, A., Pereira, I., Falcão, D.: Ant Colony System Based Approach to Single Ma-

chine Scheduling Problems — Weighted Tardiness Scheduling Problem. In: International 
Fourth World Congress on Nature and Biologically Inspired Computing (NaBIC 2012), 
México, de November 5-9 (2012) 

22. Pirlot, M.: General Local Search Method. European Journal of Operational Research 92, 
493–522 (1996) 

23. OR-Library - http://people.brunel.ac.uk/~mastjjb/jeb/info.html 
 
 



 

M.L. Gavrilova et al. (Eds.): Trans. on Comput. Sci. XXI, LNCS 8160, pp. 145–163, 2013. 
© Springer-Verlag Berlin Heidelberg 2013 

Multiobjective Optimization of Green Sand Mould 
System Using Chaotic Differential Evolution 

T. Ganesan1, I. Elamvazuthi2, Ku Zilati Ku Shaari1, and P. Vasant3 

1 Department of Chemical Engineering  
2 Department of Electrical & Electronics Engineering 

3 Department of Fundamental & Applied Sciences 
Universiti Teknologi Petronas, 31750 Tronoh, Perak, Malaysia 

tim.ganesan@gmail.com 

Abstract. Many industrial optimization cases present themselves in a multi-
objective (MO) setting (where each of the objectives portrays different aspects 
of the problem). Therefore, it is important for the decision-maker to have a so-
lution set of options prior to selecting the best solution. In this work, the 
weighted sum scalarization approach is used in conjunction with three meta-
heuristic algorithms; differential evolution (DE), chaotic differential evolution 
(CDE) and gravitational search algorithm (GSA). These methods are then used 
to generate the approximate Pareto frontier to the green sand mould system 
problem. The Hypervolume Indicator (HVI) is applied to gauge the capabilities 
of each algorithm in approximating the Pareto frontier. Some comparative stu-
dies were then carried out with the algorithms developed in this work and that 
from the previous work.  Analysis on the performance as well as the quality of 
the solutions obtained by these algorithms is shown here. 

Keywords: multi-objective (MO), industrial optimization, green sand mould 
system, weighted sum approach, differential evolution (DE), chaotic differential 
evolution (CDE), gravitational search algorithm (GSA), Hypervolume Indicator 
(HVI), approximate Pareto frontier. 

1 Introduction 

In recent times, many concerns have been raised when dealing with emerging tech-
nologies in engineering optimization which present themselves in a multi-objective 
(MO) setting [1], [2].  Strategies in MO optimization can be rudimentarily classified 
into two groups. First being methods that use the concept of Pareto-optimality to trace 
the non-dominated solutions at the Pareto curve, for instance in; Zitzler and Thiele’s 
[3] Strength Pareto Evolutionary Algorithm (SPEA) and Non-dominated Sorting Ge-
netic Algorithm II (NSGA-II) by Deb et al [4].  The second class of techniques is 
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known as the weighted (or scalarization) techniques. During the application of these 
methods, the objective functions are aggregated into a single weighted function which 
is then solved for various scalar (weight) values. Some well-known scalarization 
techniques include the Weighted Sum method [5], [6], Goal Programming [7] and 
Normal-Boundary Intersection method (NBI) [8].  Using these techniques, the scalars 
(or weights) are used to consign relative trade-offs to the objectives during the aggre-
gation procedure. Hence, alternative near-optimal solution options are generated for 
various values of the scalars.  See [9], [10] and [11] for detail investigations and 
explanations on MO techniques in engineering optimization. 

In MO optimization problems, determining the most efficient solution set can be a 
very daunting process. Many varieties of concepts (such as; diversity and conver-
gence) have been proposed in the last years. These ideas were then used as indicators 
to evaluate the solution set produced by the optimization algorithm [12]. Such evalua-
tions were then used to benchmark the algorithm’s performance. These concepts  
unfortunately could not absolutely state and rank the superiority of solution sets pro-
duced by an algorithm against other such sets by other algorithms.  The only concept 
that can be used generally for the overall ranking of solution sets is the idea of ‘Pare-
to-dominance’.  The Hypervolume Indicator (HVI) [13] is a set measure reflecting 
the volume enclosed by a Pareto front approximation and a reference set (see [14], 
[15], and [16]). The HVI thus guarantees strict monotonicity regarding Pareto domin-
ance [17], [18]. This makes the ranking of solution sets and hence algorithms possible 
for any given MO problem.  

This work aims to produce a set of solutions that dominantly approximates the Pa-
reto frontier in the objective space of the green sand mould system.  This problem 
was presented and attempted by using of genetic algorithm (GA) and particle swarm 
optimization (PSO) techniques (using weighted sum scalarization method) in Surekha 
et al [19]. 

In green sand mould systems, the quality of the product obtained from the mould-
ing process is very dependent on the physical properties of the moulding sand (such 
as; hardness, permeability, green compression strength and bulk density). Faulty ex-
tent of the mentioned properties may result in casting defects such as; poor surface 
finish, blowholes, scabs, pinhole porosity, etc. Controllable variables such as; percen-
tage of water, percentage of clay, grain fineness number and number of strokes heavi-
ly influence the physical properties of the moulded sand. Therefore, by classifying 
these parameters as the decision variables and the mould sand properties as the objec-
tive function, the MO optimization problem was formulated in Surekha et al [19]. The 
purpose of this formulation is for the determination of the best controllable parame-
ters for optimal final-product of the moulding process. A more rigorous study on the 
optimization and model development of mould systems can be seen in [20] and [21]. 

In this work, the green mould sand system problem was tackled using Differential 
Evolution (DE) [22] and Gravitational Search Algorithm (GSA) [23] in conjunction 
with the weighted sum approach to generate a series of solutions that dominantly 
approximate the Pareto frontier. The dominance ranking among the frontier approxi-
mations produced by the algorithms were carried out using the Hypervolume  
Indicator (HVI) metric [13], [24]. Comparison studies were then conducted on the  
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individual best solutions as well as the frontier approximations obtained in this work 
against those obtained in Surekha et al [19].  

Generic Search Algorithm (GSA) introduced recently by E.Rashedi et al [23] is 
currently among the most applied meta-heuristic techniques in industrial optimization. 
GSA belong to the group of swarm-based stochastic search methods (such as; Particle 
Swarm Optimization (PSO) [25] and Cuckoo Search Algorithm (CSA) [26]). GSA 
operates on a population of solutions based on Newtonian law of gravity and mass 
interactions. This algorithm regards agents as objects consisting of different masses.  
In recent times, GSA has been broadly applied in many industrial settings (see [27]).  

Differential Evolution (DE) population-based evolutionary algorithm that has been 
derived from Genetic Algorithms (GA)[28]. DE was developed in the nineties by 
Storn and Price [22]. DE has been used extensively to solve problems which are non-
differentiable, non-continuous, non-linear, noisy, flat, multidimensional, have many 
local minima, constraints or high degree of stochasticity. Lately, DE has been applied 
to a variety of areas including optimization problems in chemical and process engi-
neering [29],[30],[31].  

This paper is organized as follows. In Section 2 of this paper, the computational 
techniques are presented. In Section 3 the HVI metric is discussed and this is followed 
by the description on the green mould sand MO problem in Section 4. Section 5 dis-
cusses computational results and finally, the concluding remarks are given in Section 6.  

2 Computational Techniques 

2.1 Differential Evolution (DE) 

DE is a class of evolutionary meta-heuristic algorithms first introduced in 1995 by 
Storn and Price [22]. This core idea of this technique is the incorporation of perturba-
tive methods into evolutionary algorithms. DE starts by the initialization of a popula-
tion of at least four individuals denoted as P. These individuals are real-coded vectors 
with some size N. The initial population of individual vectors (the first generation 
denoted gen = 1) are randomly generated in appropriate search ranges. One principal 
parent denoted xp

i   and three auxiliary parents denoted xa
i is randomly selected from 

the population, P. In DE, every individual, I in the population, P would become a 
principle parent, xp

i  at one generation or the other and thus have a chance in mating 
with the auxiliary parents, xa

i. The three auxiliary parents then engage in ‘differential 
mutation’ to generate a mutated vector, Vi. 

 
Vi = xa

1 + F(xa
2 - x

a
3)         (1) 

 
where F is the real-valued mutation amplification factor which is usually between 0 
and 1. Next Vi is then recombined (or exponentially crossed-over) with xp

i to generate 
child trial vector, xchild

i. The probability of the cross-over, CR is an input parameter set 
by the user. In DE, the survival selection mechanism into the next generation is called 
‘knock-out competition’. This is defined as the direct competition between the  
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principle parent, xp
i  and the child trial vector, xchild

i to select the survivor of the next 
generation as follows: 
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Therefore, the knock-out competition mechanism also serves as the fitness evalua-

tion scheme for the DE algorithm. The parameter setting for the DE algorithm is giv-
en in Table 1:  The algorithm of the DE method is shown in Algorithm 1. 

Table 1. DE Parameter Setting 

Parameters Values 

Individual Size, N 6 

Population Size,  P 7 

Mutation amplification factor, F 0.3 

Cross-over Probabbility, CR 0.667 

 
 
Algorithm 1. Differential Evolution (DE) 
Step 1: Initialize  individual size N, P, CR and F 
Step 2: Randomly initialize the population vectors, xG

i. 
Step 3: Randomly select one principal parents, xp

i 
Step 4: Randomly select three auxilary parents, xa

i 
Step 5: Perform differential mutation & generate mutated vector, Vi 
Step 6: Recombine Vi with xp

i to generate child trial vector, xchild
i 

Step 7: Perform ‘knock-out’ competition for next generation survival selection 
Step 8: If the fitness criterion is satisfied and t= Tmax , halt and print solutions 
else proceed to step 3 

2.2 Gravitational Search Algorithm (GSA) 

The GSA algorithm is a meta-heuristic algorithm first developed in 2009 by 
E.Rashedi et al[23]. This technique was inspired by the law of gravity and the idea of 
interaction of masses. This algorithm uses the Newtonian gravitational laws where the 
search agents are the associated masses. Thus, the gravitational forces influence the 
motion of these masses, where lighter masses gravitate towards the heavier masses 
(which signify good solutions) during these interactions. The gravitational force hence 
acts as the communication mechanism for the masses (analogous to ‘pheromone de-
position’ for ant agents in ACO [32] and the ‘social component’ for the particle 
agents in PSO [25]). The position of the masses correlates to the solution space in the 
search domain while the masses characterize the fitness space. As the iterations  
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increase, and gravitational interactions occur, it is expected that the masses would 
conglomerate at its fittest position and provide an optimal solution to the problem. 

Initially the GSA algorithm randomly generates a distribution of masses, 
mi(t)(search agents) and also sets an initial position for these masses, xi

d. For a mini-
mization problem, the least fit mass, )(tmworst

i   and the fittest mass, )(tm best
i  at 

time t are calculated as follows: 
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For a maximization problem, its simply vice versa. The inertial mass,  )(tmi′  and 

gravitational masses, )(tM i  are then computed based on the fitness map developed 

previously. 
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such that,
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Then the gravitational constant, G(t+1) and the Euclidean distance Rij(t) is computed 
as the following:  
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where α is some arbitrary constant and Tmax  is the maximum number of iterations, 
xi(t) and xj(t) are the positions of particle i and j  at time t . The interaction forces at 
time t, Fij

d(t) for each of the masses are then computed:  
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where ε  is some small parameter. The total force acting on each mass i is given in a 
stochastic form as the following: 
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where  rand(wj) is a randomly assigned weight. Consequently, the acceleration of 
each of the masses, ai

d(t) is then as follows: 
 











=

)(

)(
)(

tM

tF
ta

ii

d
id

i
                           (12)

 

 
After the computation of the particle aceleration, the particle position and velocity is 
then calculated: 
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where rand(wj) is a randomly assigned weight. The iterations are then continued until 
the all mass agents are at their fittest positions in the fitness landscape and some stop-
ping criterion which is set by the user is met. The GSA algorithm is presented in  
Algorithm 2 and the parameter settings are given in Table 2. 
 
 

Table 2. GSA Parameter Setting 

Parameters Values 

Initial parameter (Go) 100 

Number of mass agents, n 6 

Constant parameter, α  20 

Constant parameter, ε  0.01 
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Algorithm 2. Gravitational Search Algorithm (GSA) 
Step 1: Initialize no of particles, mi and initial positions, xi(0) 
Step 2: Initialize algorithm parameters G (0), α . 
Step 3: Compute gravitational & inertial masses based on the fitness map 
Step 4: Compute the gravitational constant, G(t) 
Step 5: Compute distance between agents, Rij(t) 
Step 6: Compute total force, Fi

d(t) and the acceleration ai
d(t) of each agent.  

Step 7: Compute new velocity vi(t) and position xi(t) for each agent 
Step 8: If the fitness criterion is satisfied and t= Tmax , halt and print solutions 
   else proceed to step 3 

2.3 Chaotic Differential Evolution (CDE) 

Specific modifications were performed in the DE algorithm to enhance its diversifica-
tion capabilities by the addition of the chaotic component. First, the population of 
vectors, xG

i  was generated. The consequence steps are similar to the regular DE algo-
rithm where one principal parent, xp

i  and three auxiliary parents xa
i are randomly 

selected. Differential mutation is then performed and  the mutated vector, Vi  is gen-
erated.  The Vi is then recombined with xp

i to generate child trial vector, xchild
i. The 

obtained  xchild
i  is used as the input to the chaotic logistic map (Jakobson, 1981 

[33]). This chaotic logistic mapping is presented as follows:  
 

)()( txtN child
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where N(t) and R(t) are variables in the logistic chaotic map , λ′ and λ are relaxa-
tion constants specified by the user. Then the logistic mapping is contined until a 
specific number of iteration is satisfied. The final value at maximum number of itera-
tion of N(tmax) is incorporated into the child trial vector, xchild

i. Hence, the child trial 
vector, xchild

i undergoes another round of mutation by the chaotic map. Next, the 
‘knock-out’ competition for next generation survival selection is performed. The fit-
ness function for the child trial vector, xchild

i is evaluated. Thus, another variant of the 
DE algorithm with enhanced diversification capabilities was developed.  In this 
work, this algorithm is called the Chaotic DE (CDE). The execution steps for the 
CDE techniques is given in Algorithm 3. 
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Algorithm 3. Chaotic Differential Evolution (CDE) 
Step 1: Initialize population size. 
Step 2: Randomly initialize the population vectors, xG

i. 
Step 3: Randomly select one principal parents, xp

i 

Step 4: Randomly select three auxilary parents, xa
i 

Step 5: Perform differential mutation & generate mutated vector, Vi 
Step 6: Recombine Vi with xp

i to generate child trial vector, xchild
i 

Step 7: Iterate chaotic logistic map. 
Step 8: If  n > Nmax, proceed to next step 
   else go to Step 7. 
Step 9: Evaluate fitness of the new  xchild

i. 

Step 10: If the fitness criterion is satisfied halt and print solutions 
   else proceed to step 3 

 
The parameter settings specified in the CDE algorithm is as in Table 3: 

Table 3. CDE Parameter Setting 

Parameters Values 

Individual Size, N 6 

Population Size,  P 7 
Mutation amplification factor, F 0.15 

Max. No. of Evaluations , Tmax 3000 

Constant, λ , λ′ , Nmax 5,0.01, 400 

3 Hypervolume Indicator 

The Hypervolume Indicator (HVI) is the only strictly Pareto-compliant indicator that 
can be used to measure the quality of solution sets in MO optimization problems [13], 
[24]. Strictly Pareto-compliant can be defined such that if there exists two solution sets 
to a particular MO problem, then the solution set that dominates the other would a 
higher indicator value. The HVI measures the volume of the dominated section of the 
objective space and can be applied for multi-dimensional scenarios.  When using the 
HVI, a reference point needs to be defined. Relative to this point, the volume of the 

space of all dominated solutions can be measured. The HVI of a solution set xd ∈ X 
can be defined as follows: 
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where r1,…,rd  is the reference point and vol(.) being the usual Lebesgue measure. In 
this work the HVI is used to measure the quality of the approximation of the Pareto 
front by the GSA and the DE algorithms when used in conjunction with the weighted 
sum approach. 

4 Application Data 

In the green sand mould system, the response parameters of the mould heavily influ-
ence the quality of the final product. In Surekha et al [19], these parameters are se-
lected as the objective functions. The responses parameters are; green compression 
strength (f1), permeability (f2), hardness (f3) and bulk density (f4). These objectives on 
the other hand are influenced by on the process variables which are; the grain fineness 
number (A), percentage of clay content (B), percentage of water content (C) and num-
ber of strokes (D). The objective functions and the range of the decision variables are 
shown as follows: 

 

2.689CD) + 0.6378BD + 0.5516BC + 0.0451AD - 0.1215AC - 0.0468AB + 1.2079D -

 7.7857C - 0.0945B + 0.014A + 6.575D+ 32.3203C + 2.7463B - 1.7384A - 17.2527f
2

222=1     (20) 

 

3.1CD - 1.99BD + 1.19BC + 0.52AD + 0.2AC +0.11AB + 4.22D + 

4.13C - 0.45B + 0.07A + 105.66D - 9.51C + 35.66B - 15.98A - 1192.51f
2

222=2       (21) 

 

0.65CD + 0.1938BD - 0.075BC - 

0.0006AD - 0.0151AC  0.0015AB - 0.6556D - 1.6988C - 0.00389B -

0.001A + 7.774D +7.8434C + 2.4746B + 0.0494A - 38.2843f
222

2

+

=3

      (22) 

 

0.00186CD -0.00019BD - 0.00302BC -

 0.00029AD + 0.00018AC - 0.00004AB - 0.00107D - 0.0239C + 0.0009B +

0.00008A -0.0083D + 0.06845C - 0.00052B - 0.01316A + 1.02616f
222

2=4

      (23) 
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To obtain the size distributions of the silica sand and the grain fineness number, 

sieve analysis tests were carried out in Parappagoudar et al. [34]. Similarly, the au-
thors also conducted gelling index tests for the determination the strength of clay. 
Next, experiments were conducted by varying the combination of the parameters 
using the central composite design. The mathematical model of the green mould sys-
tem was developed where; the objective functions as given in equations (21)-(23) and 
the constraints as given in equation (24). The MO optimization problem statement for 
the green mould system problem is shown as follows: 
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The algorithms used in this work were programmed using the C++ programming 

language on a personal computer (PC) with an Intel dual core processor running at  
2 GHz.   

5 Results and Analysis 

In this work, the solution sets which are the approximations of the Pareto frontier 
were obtained using the DE and the GSA methods. The quality of these solutions was 
measured using the HVI. The nadir point (or the reference point) used in the HVI is a 
specific point where all the solutions sets produced by the algorithms dominate this 
point. The nadir point selected in this work is (r1, r2, r3, r4) = (15, 50, 40, 1).  

The individual solutions (for specific weights) of the GSA algorithm were gauged 
with the HVI and the best, median and worst solution was determined. The individual 
solutions for the GSA algorithm and their respective HVI values are shown in  
Table 4.  

Table 4. Individual Solutions Generated by the GSA Algorithm 

Description Best Median Worst 

Objective 
Function 

f1 34.6562 25.8028 25.5917 

f2 205.619 210.839 210.877 

f3 81.1777 78.8635 78.8113 

f4 1.46948 1.47897 1.47937 

Decision 
Variable 

x1 52.0015 52.0023 52.0009 

x2 8.00543 8.00205 8.0007 

x3 2.49446 1.51268 1.5 
x4 3.19889 3.00254 3 

HVI 59134.56 32342.82 31702.15 

 
The associated weights (w1, w2, w3, w4) for the best, median and worst solution are 

(0.2, 0.3, 0.4, 0.1), (0.1, 0.6, 0.2, 0.1) and (0.1, 0.2, 0.5, 0.2). The computational time 
for the best, median and worst solution is 0.52, 0.13 and 0.04 seconds respectively. 
For the approximation of the Pareto frontier, 21 solutions for various weights were 
obtained for both the algorithms. The approximate Pareto frontiers obtained using the 
GSA algorithm is shown in Figure 1:  
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Fig. 1. Pareto frontiers of the objectives obtained by the GSA method 

The individual solutions for the DE algorithm and their individual HVI values are 
given in Table 5. 

Table 5. Individual Solutions Generated by the DE Algorithm 

Description Best Median Worst 

Objective 
Function 

f1 50.2281 45.8468 39.4176 
f2 137.769 137.19 137.105 
f3 86.289 85.3638 83.7878 
f4 1.50073 1.50953 1.52143 

Decision 
Variable 

x1 53.0457 55.5626 59.4985 

x2 9.39392 9.13418 8.74959 

x3 2.99849 2.99044 2.99944 
x4 4.39392 4.13418 3.74959 

HVI    71665.77 62166.44 48561.85 

 
The associated weights (w1, w2, w3, w4) for the best, median and worst solutions 

produced by the DE algorithm are (0.4, 0.2, 0.3, 0.1), (0.4, 0.2, 0.1, 0.3) and (0.2, 0.2, 
0.1, 0.5). The computational time for the best, median and worst solution is 0.19, 0.42 
and 6.02 seconds respectively. The approximate Pareto frontiers obtained using the 
DE algorithm is shown in Figure 2: 
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Fig. 2. Pareto frontiers of the objectives obtained by the DE method 

The individual solutions for the CDE algorithm and their individual HVI values are 
given in Table 6. 

Table 6. Individual Solutions Generated by the CDE Algorithm 

Description Best Median Worst 

Objective 
Function 

f1 49.6548 42.1823 30.0356 

f2 147.743 171.331 93.44 

f3 86.0621 83.9258 81.5481 

f4 1.49053 1.48441 1.62126 

Decision 
Variable 

x1 52.0523 52.5328 53.3306 

x2 9.29142 8.73265 9.86615 

x3 2.84375 2.76542 1.62126 
x4 4.29142 3.73264 4.86615 

HVI 76534.697 70176.35 16859.13 
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The associated weights (w1, w2, w3, w4) for the best, median and worst solution are 
(0.2, 0.1, 0.2, 0.5), (0.3, 0.4, 0.1, 0.2) and (0.5, 0.1, 0.3, 0.1). The computational time 
for the best, median and worst solution is 2.94, 3.19 and 3.3 seconds respectively. The 
approximate Pareto frontiers obtained using the CDE algorithm is given in Figure 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 3. Pareto frontiers of the objectives obtained by the CDE method 

It can be observed using the HVI that the best solution obtained by CDE algorithm 
dominates the best solution produced by the DE and GSA algorithms by 6.79% and 
29.42%. The comparison of the best candidate solutions obtained by the methods 
employed in this work against the PSO method in Surekha et al [19] is shown in  
Table 7.  

In Table 7, it can be seen that the best solutions produces by CDE, DE and GSA 
algorithms are more dominant the PSO approach [19]. The HVI computed for the 
entire frontier of each solution set produced by an algorithm gives the true measure of 
dominance when compared with another algorithm. In this work, the HVI for the 
entire frontier was computed for each of the algorithm. The execution time for each 
algorithm to generate the entire frontier was also obtained. The HVI for the entire 
frontier for the solution sets produced by the PSO [19], DE, CDE as well as GSA and 
the associated execution time is shown in Table 8. 
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Table 7. The Comparison of the Best Solutions Obtained by the Algorithms 

Description PSO[19] DE GSA CDE 

Objective 
Function 

f1 55.411 50.228 34.656 49.655 

f2 107.894 137.77 205.62 147.74 

f3 84.794 86.289 81.178 86.062 

f4 1.508 1.501 1.4695 1.491 

Decision 
Variable 

x1 52. 53.046 52.002 52.052 

x2 11.999 9.394 8.005 9.291 

x3 2.845 2.998 2.494 2.844 
x4 4.999 4.394 3.199 4.291 

HVI 8876.72 71666 59134 76535 

 

Table 8. The HVI Obtained by the Algorithms And the Computational Time For The Entire 
Frontier 

PSO [19] DE GSA CDE 

HVI 130, 108.48 492, 5326.52 309, 5494.45 
529, 

1120.41 
Computational 

time (secs) 
0.013 39.08 21.20 

264.3 

 
In Table 8, the frontier produced by the CDE algorithm is more dominant than the 

one produced by the GSA, DE and PSO [19] algorithms by 7.43%, 70.93% and 
3966.7% respectively. The dominance ranking of the approximate Pareto frontiers 
produced by the algorithms is as follows: 

 
]19[PSOGSADECDE                  (26) 

 
where the symbol,  is denoted as ‘more dominant than’. A new optima is 

achieved by the CDE method (see Table 7) since it outperforms the DE, GSA and the 
PSO [19] methods. The individual best solution of the CDE method maximizes the 
objective f2  while maintaining the objectives f1 , f3 and f4 very effectively as com-
pared to the one obtained by using DE. Thus, it can be said that the CDE method in 
this work outweighs the overall optimization capabilities of DE, GSA and PSO [19] 
(see HVI value in Table 8).  In terms of computational time taken for the algorithm 
to produce the entire approximate Pareto frontier, the CDE method takes the longest 
time followed by the DE, GSA and the PSO [19] method respectively. Although the 
CDE algorithm produces the most dominant frontier, it sacrifices computational time 
as compared to the DE, GSA and PSO [19] methods. 

In Surekha et al [19], the GA and the PSO method was used in conjunction with 
the Weighted Sum method on an Intel Pentium IV processor (single core). As men-
tioned previously, the algorithms presented in this work (CDE, DE and GSA), were 
executed on an Intel dual-core processor which is more superior than the machine 
used in Surekha et al [19]. However, it can be seen that the computational time for 
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CDE, DE and GSA algorithms are far greater as compared to the GA and PSO in 
[19]. Although the algorithms; CDE, DE and GSA were executed on a superior ma-
chine, these algorithms seem to be computationally inferior as compared to the GA 
and PSO [19] algorithms. This can be mainly attributed to the high complexity of the 
CDE, DE and GSA algorithms presented in this work.  

In Surekha et al [19] as well as in this work the scalarization scheme adopted is the 
weighted sum method which produces a progression of the approximate Pareto-
efficient solutions. As can be seen in Figure 2 and Figure 3, the frontiers produced by 
the DE and CDE algorithms are more uniform and diversely spaced as compared to 
the GSA algorithm in Figure 1. The frontier produced by the GSA algorithm seems to 
be conglomerated and localized at certain portions of the objective space. This spac-
ing property as can be seen in this work heavily influences the ability of the algorithm 
to approximate the Pareto frontier. Localized solutions of the frontier such as the ones 
produced by the GSA algorithm miss out on certain solutions in the objective space. 
Therefore, this causes the GSA algorithm to have a lower HVI as compared to the 
CDE and DE algorithms. Hence, this causes the approximated Pareto frontier pro-
duced by the GSA algorithm to become less dominant as compared to the one pro-
duced by the DE and CDE algorithms. 

One of the setbacks of the weighted sum method is that it does not guarantee Pa-
reto optimality (only in the weak sense [35]). Besides, scalarization techniques (such 
as weighted sum as well Normal Boundary Intersection (NBI)) cannot approximate 
sections of the Pareto frontier that is concave [36]. Although the HVI metric is most 
effective in benchmarking the dominance of solution sets produced by algorithms, 
this metric is very dependent on the choice of the nadir point. The HVI metric’s 
only weakness is in this aspect. 

In this work, the CDE, DE and GSA algorithms performed stable computations 
during the program executions. All Pareto-efficient solutions produced by the algo-
rithms developed in this work were feasible and no constraints were compromised. 
One of the advantages of using the DE and CDE algorithms as compared to the other 
algorithms used in this work is that it produces highly effective results in terms of 
approximating the Pareto frontier. However, although the DE and CDE algorithms 
performs well relative to algorithms used in this work, it can be clearly seen that the 
execution time is much higher than the one obtained by Surekha et al [19] using the 
PSO method.  Since the DE and CDE methods are evolutionary-type algorithms, the 
diversification of the search space is high and thus resulting in high computational 
overhead as compared with the GSA and PSO methods (which are swarm-type algo-
rithms). The DE method can be said to be the second best optimizer as compared to 
the CDE method 

A new optima is achieved by the DE method (see Table 7) since it outperforms the 
GSA and the PSO [19] methods. Thus, it can be said that the DE method in this work 
outweighs the overall optimization capabilities of GSA and PSO [19] (see HVI value 
in Table 8).  In terms of computational time taken for the algorithm to produce the 
entire approximate Pareto frontier, the DE method takes the longest time followed by 
the GSA and the PSO [19] method respectively. Although the DE algorithm produces 
the most dominant frontier, it sacrifices computational time as compared to the GSA 
and PSO [19] methods. 
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In this work, the DE and GSA algorithms performed stable computations during 
the program executions. All Pareto-efficient solutions produced by the algorithms 
developed in this work were feasible and no constraints were compromised. Al-
though, the DE algorithm performs well relative to other algorithms used in this work, 
it can be clearly seen that the execution time is much higher than the one obtained by 
Surekha et al. [19] using the PSO method.  Since DE is an evolutionary-type algo-
rithm, the diversification of the search space is high and thus resulting in high compu-
tational time as compared with the GSA and PSO methods which are swarm-type 
algorithms. The GSA method can be said to be the second best optimizer as compared 
to the DE method. Besides, in comparison with the PSO algorithm the GSA method 
produces more superior results.  

6 Concluding Remarks 

In this work, a new local maximum and a more dominant approximation of the Pareto 
frontier was achieved using the CDE method. More Pareto-efficient solution options 
to the green mould system MO optimization problem were obtained. Besides, using 
the DE and CDE algorithms, the solution spread of the frontier was near-uniformly 
and diversely distributed. When gauged with the HVI metric, the DE and CDE algo-
rithms produced the most dominant approximate of the Pareto frontier as compared to 
the GSA and the PSO [19] methods.  

For future works, other meta-heuristic algorithms such as Genetic Programming 
(GP) [37], Analytical Programing (AP) [38], Hybrid Neuro-GP [39], MO evolutio-
nary algorithm [40], [41] and Hybrid Neuro-Swarm [42] should be applied to the 
green mould system.  

The solution sets obtained by these algorithms should be tested and evaluated using 
the HVI. The HVI metric should be tested using various nadir points for a better un-
derstanding of the effects of these points to the dominance measurements of solution 
sets.  

During these numerical experiments, the spacing metric should be measured and 
compared for the observation of the uniformity of the spreads with respect to the algo-
rithms. Besides, convergence and diversity metrics should also be utilized to compare 
the performance of the algorithms. More large-scale MO problems should be studied 
using the CDE, DE and GSA algorithms for a better understanding of the mentioned 
algorithm’s performance and efficiency.   
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Abstract. In the paper, real coded multi objective genetic algorithm based
K-clustering method has been studied, K represents the number of clusters. In
K-clustering algorithm value of K is known. The searching power of Genetic Al-
gorithm (GA) is exploited to search for suitable clusters and centers of clusters so
that intra-cluster distance (Homogeneity, H) and inter-cluster distances (Separa-
tion, S) are simultaneously optimized. It is achieved by measuring H and S using
Mod distance per feature metric, suitable for categorical features (attributes). We
have selected 3 benchmark data sets from UCI Machine Learning Repository
containing categorical features only.

The paper proposes two versions of MOGA based K-clustering algorithm. In
proposed MOGA(H,S), all features are taking part in building chromosomes and
calculation of H and S values. In MOGA Feature Selection(H,S), selected fea-
tures take part to build chromosomes, relevant for clusters. Here, K-modes is
hybridized with GA. We have used hybridized GA to combine global search-
ing capabilities of GA with local searching capabilities of K-modes. Considering
context sensitivity, we have used a special crossover operator called “pairwise
crossover” and “substitution”. The main contribution of this paper is simultane-
ous dimensionality reduction and optimization of objectives using MOGA.

Keywords: Clustering, homogeneity and separation, real coded multi objective
genetic algorithm, dimensionality reduction, Pareto optimal front.

1 Introduction

In course of machine learning, machine learns from training data using learning mecha-
nism that can be supervised, unsupervised or reinforced. In artificial intelligence, learn-
ing is “the improvement of performance in some environment through the acquisition of
knowledge resulting from experience in that environment” [62]. Clustering is an exam-
ple of unsupervised learning where class labels are not available at the training phase.

GA is “search algorithms based on the dynamics of natural selection and natural ge-
netics” [33]. Categories of GAs are - simple GA (SGA) and multi objective GA (MOGA).

M.L. Gavrilova et al. (Eds.): Trans. on Comput. Sci. XXI, LNCS 8160, pp. 164–189, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.dipankarduttas.yolasite.com


Categorical Feature Reduction Using Multi Objective Genetic Algorithm 165

When an optimization problem involves only one objective, the task of finding the best
solution is a single objective optimization problem. Integer programming, dynamic pro-
gramming, geometric programming, stochastic programming and various other meth-
ods can solve these types of problems. However, in the real world, life appears to be
quite complex. Most of the problems are consisting of more than one interdependent
objective, which are to be minimized or maximized simultaneously. These types of
problems are multi objective optimization problem [10]. The use of GAs in clustering
is an attempt to exploit effectively the large search space usually associated with cluster
analysis and better interactions among the features for forming chromosomes. Almost
all conventional methods start searching from a single point and through subsequent
iterations converge to the best solution. However, they are sensitive to the choice of
initial solution. GAs always works on a whole population of points (strings) and per-
form a nearly global search rather than performing a local, hill-climbing search. This
phenomena improves the chance of reaching to a global optima, vis-a-vis, reduces the
risk of being trapped in a local optima, thereby offering robustness.

Clustering is to identify of natural groups within a data set. Instances in the same
groups are more similar compared with instances in different groups [39,51,53,94].
From optimization viewpoint, clustering is a non-deterministic polynomial-time hard
(NP-hard) grouping problem [25]. Evolutionary algorithms like GAs are metaheuristics
widely believed to be effective on NP-hard problems, being able to provide near-optimal
solutions to such problems in reasonable time. Although GAs have been used in data
clustering problems [14,27,35,45,67,69,78,89], most of them optimized single objec-
tive, which is hardly equally applicable to all kinds of data sets. So to solve many real
world problems like clustering, it is necessary to optimize more than one objective si-
multaneously by MOGA. As the relative importance of different clustering criteria are
unknown, it is better to optimize (Homogeneity, H) and (Separation, S) separately rather
than combining them into a single measure to be optimized. Objects within the same
clusters are similar therefore, intra-cluster distances (H) are low and at the same time,
objects within the different clusters are dissimilar, so inter-cluster distances (S) are high.
In the paper, clustering is considered as an intrinsically multi objective optimization
problem [39] by involving homogeneity and separation. However, choosing optimiza-
tion criterion is one of the fundamental dilemmas in clustering [56]. All features are
not equally important from clustering viewpoint. So researchers select relevant features
by some feature selection techniques [64,86,92] and then did clustering with relevant
features only. Although some researchers have done clustering by MOGA or by other
multi objective evolutionary algorithms [4,13,24,31,40,61,63,68,75,76,81,82,83] none
of them indeed tried simultaneous feature selection. In [54,55,71,72,74] researchers
have done feather selection and clustering simultaneously. But our approach is different
from them (explain later). MOGA Feature Selection(H,S) automatically distinguish
between relevant and irrelevant features for clustering, without taking help of feature
selection techniques described in [64,86,92], which is the main contribution of this
work. In our earlier work [18,19,20,21,22] we have done clustering by MOGA. Among
these in [21,22] we have done simultaneous feature selection and clustering. This work
is an extension of work we have reported in [21].
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For ready reference meaning of acronyms used in this paper are listed in table 1.

Table 1. Acronyms and their meanings

Acronyms Meanings
# don’t care condition in chromosomes
ai j Element of ith row and jth column of matrix (M)
Ai ith attribute of data set
C Set of clusters
Cj jth cluster
CMj jth cluster mode
CCh Child chromosome
Ch j jth chromosome
CP Crossover point
d(CMi, t j) Mod distance per feature between CMi and t j
d(ti, t j) Mod distance per feature between ti and t j

dmod(CMi, t j) Modified Mod distance per feature between CMi and t j
dom(Ai) domain of Ai
GAs Genetic Algorithms
H Homogeneity
Hi Average intra cluster distance or Homogeneity of ith cluster
Hmod Modified homogeneity
ia invalid attributes
IP Initial population
IPS Initial population size
K Number of clusters
m Number of tuples in data set
Mm×2 Two dimensional matrix
MOGA Multi Objective Genetic Algorithm
Npch Number of parent chromosomes
Nsb Number of substitution
NCpre Chromosomes obtained from previous method
Nco Number of crossover
nva Number of valid attributes
Pco Crossover probability for GA
Psb Substitution probability for GA
PCpre Previous generation Pareto chromosomes
PCh Parent chromosome
PS Population Size
R Relation
rn random number
S Separation
Smod Modified separation
SGA Simple Genetic Algorithm
ti ith tuple
vt

i value of ith feature of tth tuple
va valid attributes
X Set of tuple
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This paper is organized as follows. Section 2 reports previous relevant works.
Section 3 defines the problem. Section 4 describes proposed approach for solving the
problem. In section 5 testing and comparison of five clustering algorithms are carried
out on some popular benchmark data sets. Finally section 6 summarizes the work with
concluding remarks.

2 Previous Work

Data mining is to extract knowledge from data [16,29,36,73,96]. Clustering is one of the
most studied areas of data mining research. Extensive surveys of the clustering prob-
lems and algorithms are presented in [30,36,46,51,80,94]. With the growing popularity
of soft computing methods, researchers of late extensively use intelligent approaches in
cluster analysis of data sets.

The methods are broadly categorized as (i) Partitioning methods, (ii) Hierarchical
methods, (iii) Density-based methods, (iv) Grid-based methods, (v) Model-based meth-
ods and (vi) Clustering by Genetic Algorithm (GA).

(i) Partitioning methods: Data sets are divided among K many partitions or clusters.
K ≤ m where m is the number of objects or tuples in data sets. In this category most
popular methods are K-means [65,66], fuzzy C-means (FCM) [5], K-modes [47,48],
fuzzy K-modes [49] and K-medoids [53]. Among these K-means and FCM cannot be
applied for categorical data, because mean does not work for categorical domains. K-
modes and fuzzy K-modes are popular one in this domain.

(ii) Hierarchical methods: Hierarchical tree of clusters is constructed in this method.
Such methods can be further classified into agglomerative or bottom up or merging
[9,53] and divisive or top down or splitting [53]. To improve the quality of cluster
formation, combination of hierarchical methods with other nonhierarchical methods are
reported in [34,97]. Hierarchical agglomerative clustering algorithms (single, average
and complete linkage) [51] are used for clustering categorical data.

(iii) Density-based methods: Arbitrary shaped clusters can be formed by density
based clustering methods like DBSCAN [23], DENCLUE [43] and OPT ICS [2].

(iv) Grid-based methods: In this approach a grid structure is formed from data sets
on which different clustering operations are performed. Few important algorithms are
STRING [95], WaveCluster used wavelet transform method [90] and CLIQUE , combi-
nation of grid and density based approaches [1].

(v) Model-based methods: These methods try to optimize the fit between the given
data and some mathematical model. Expectation-maximization [12] - an extension of
K-means partitioning algorithm, conceptual clustering [26,32,70], and artificial neural
network approaches falls under this category. Important studies on artificial neural net-
work [42] include self organizing map [58,59,60] and competitive learning rule [85].

(iv) Clustering by Genetic Algorithms: Initially GAs were used to deal with single
objective optimization problems such as minimizing or maximizing a variable of a func-
tion. Such GAs is simple GA (SGA). David Schaffer proposed vector evaluated genetic
algorithm [87,88], which was the first inspiration towards MOGA. Several improvements
on the vector evaluated genetic algorithm are proposed in [7,33,84,93]. Vector evalu-
ated genetic algorithm dealt with multivariate single objective optimization. V. Pareto
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suggested Pareto approach [79] to cope with multi objective optimization problems. In
this work chromosomes lying on the Pareto optimal front (dominant chromosomes) are
selected by MOGA, which are giving near optimal solutions for clustering. According
to the dominance relation between two candidate chromosomes, a candidate clustering
chromosome Ch1 dominates another candidate clustering chromosome Ch2 if and only
if: 1) Ch1 is strictly better than Ch2 in at least one of all the measures considered in the
fitness function and 2)Ch1 is not worse than Ch2 in any of the measures considered in the
fitness function. Researchers developed different implementation of MOGA e. g. NSGA
[91], NPGA [44], SPGA [98], PAES [57], NSGA− II [11], CEMOGA [3]. In this paper,
we have developed our own MOGA to find out near optimal clusters by optimizing H
and S values. From the viewpoint of the chromosome encoding scheme MOGA can be
categorized in binary coded MOGA and real coded MOGA. In order to keep the mapping
between the actual cluster modes and the encoded modes effective, real coded MOGA
has been implemented in the work.

Traditional clustering algorithms often fail to detect meaningful clusters because
most real-world data sets are characterized by a high-dimensional, inherently sparse
data space [38]. To overcome this difficulty, researchers consider attribute (or feature)
transformation and feature selection techniques [54,64,86,92]. By these approaches
either computational complexity increases or loss of information becomes a serious is-
sue that leads to misclassification of data. A trade off approach in clustering
analysis has been explored for feature selection that effectively reduces the dimen-
sionality of the data. However, most popular K-modes clustering algorithm [47,48]
applied on original data sets may converge to values that are not optimal. To find a
globally optimal clustering solution, GA has been used for clustering. Most of the
clustering approaches, single objective or multi-objective, are converted to a single
objective by weighed sum method [52] or by any other means. However, only a few
MOGA clustering approaches have been proposed so far and their experimental re-
sults have demonstrated that MOGA clustering approaches significantly outperform ex-
isting single objective GA clustering approaches [37,38]. Earlier work on clustering
by the single objective genetic algorithm are [14,28,35,67,69,78,89] and by MOGA
are [4,13,18,19,20,21,22,31,40,61,63,68,75,76,81,82,83]. We have implemented three
clustering algorithms - K-modes, MOGA(H,S) and MOGA Feature Selection(H,S).
DB Index [8] has been used to compare performance of clustering algorithms. It shows
the superiority of global optimization capability of GA over local search algorithm like
K-modes.

Nuovo et. al. [77], integrates NSGA− II [11] with FCM [5] to simultaneously reduce
the dimensionality and find the best partitioning. However, this method does not use
NSGA− II in the clustering step directly (where FCM is used in its traditional form).
NSGA− II is used on the upper level to determine the features to be selected as well as
the parameters of FCM. Moreover, this method is only applicable for continuous nu-
meric data sets, not for categorical data as they have used FCM. In [4] multi objective
fuzzy clustering using NSGA− II [11] has been done, but it is suitable for continuous
data and not doing simultaneous attribute selection. Multi objective fuzzy clustering
on categorical data has been done in [13,31,68,75,76], but none of them have made a
simultaneous feature selection. In [54,55,74] researchers proposed multi-objective
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optimization of feature sets and clustering schemes. They incorporate the number of
features as part of the multi-objective criteria. In [54,55] researchers used four criteria
of optimization and in [74] researchers used two criteria of optimization. Moreover,
it has already been shown in [71] that those approaches above have a serious flaw by
using the wrong optimization direction (information preservation). This paper theoret-
ically proves why the multi-objective approaches proposed so far will fail in certain
cases and give a solution by introducing the concept of information preservation into
multi-objective feature selection for clustering. In a follow-up paper, the authors even
extended this to feature construction instead of feature selection only [72]. In [54,55,74]
researches had minimize number of features for easier interpretably and scalability of
the solutions as well as better generalization. In [72] instead of minimize number of fea-
tures researchers have maximize that. It helps to find out more descriptive pattern, pre-
vents the algorithm from selecting trivial solutions and leads to more complete Pareto
sets of diversive natural clusterings. So from the above discussion it is very clear that
there are a lot of reasons for minimizing the number of features and as well as maxi-
mizing the number of features. So in our approach we are not considering number of
features as optimization criteria. Rather it will be evolved by MOGA.

In the proposed approach, MOGA Feature Selection(H,S) is selecting optimal fea-
tures and cluster modes. Chromosomes lengths are not varying because of don’t care
conditions (#) in chromosomes. Thus, we have avoided variable length chromosomes
and complexities associated with it. Experimental results prove the superiority of
MOGA Feature Selection(H,S) over MOGA(H,S).

3 Definitions

A relation R and a list of features A1,A2, ...An defines a relational schema R(A1,A2, ...An),
where n = total number of features including class label.

The domain of Ai is dom(Ai), where 1 ≤ i ≤ n.
X represents a data set, which is a set of tuples that is X = {t1, t2, ...tm}, where m =

total number of tuples or records.
Each tuple t is an n-dimensional attribute vector, which is an ordered list of n values

i.e. t = [vt
1,v

t
2, ...v

t
n], where vt

i ∈ dom(Ai), with 1 ≤ i ≤ n. vt
i is ith value in tuple t, which

corresponds to the feature Ai. Each tuple, t belongs to predefined class represented
by vt

n where vt
n ∈ dom(An). For clustering vt

n or class labels are not known, so t =
[vt

1,v
t
2, ...v

t
n−1]. Henceforth n− 1 = total number of features excluding class label.

Formally, the problem is stated as every ti of X (1 ≤ i ≤ m) is to be clustered into K
number of non-overlapping groups {C1,C2, ...CK}; where C1 ∪C2 ∪ ...CK = X , Ci 
= Ø,
and Ci ∩Cj = Ø for i 
= j and j ≤ K.

A solution is a set of Cluster Mode (CM) that is {CM1,CM2, ...CMK}. (n − 1)-
dimensional feature vector, that is [ci

1,c
i
2, ...c

i
n−1] represents CMi.

Calculating Mod distance between two points is most common way of measuring
dissimilarity between two points for categorical data. We have modified formula of Mod
distance calculation by dividing it with number of features (n−1) to calculate Mod dis-
tance per feature. Equations (1), (2) and (3) calculate Mod distance per feature between
one cluster center and one tuple, two cluster centers and two tuples respectively.
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d(CMi, t j) = [[
(n−1)

∑
l=1

MOD(ci
l ,v

j
l )]/(n− 1)]1/2 (1)

d(CMi,CMj) = [[
(n−1)

∑
l=1

MOD(ci
l ,c

j
l )]/(n− 1)]1/2 (2)

d(ti, i j) = [[
(n−1)

∑
l=1

MOD(vi
l ,v

j
l )]/(n− 1)]1/2 (3)

MOD(ci
l ,v

j
l ), MOD(ci

l ,c
j
l ) and MOD(vi

l ,v
j
l ) are equal to 0 if ci

l = v j
l , ci

l = c j
l and

vi
l = v j

l . Otherwise they are equal to 1.

4 Proposed Approaches

We have discussed MOGA(H,S) and MOGA Feature Selection(H,S) in details in this
section.

Original data sets are changed to label the last feature as class label. After this step
class label becomes nth feature. In clustering class labels are unknown so we are con-
sidering first (n− 1) features of data sets.

4.1 MOGA(H,S)

Flowchart of MOGA(H,S) is provided in figure 1 and described below.

Building Initial Population. In most of the literature on GA, fixed number of prospec-
tive solutions build initial population (IP). Here IP size is the nearest integer value of
10% of total number of tuples m in the data set. Although correlation between IP size
and the number of instances in the data set are not known, in our opinion IP size guides
searching power of GA and therefore its size should increase with the size of the data
set. Here IPS means IP size and Ch j represents the jth chromosome in the population,
where 1 ≤ j ≤ IPS. Algorithm 1 shows the steps of building initial population. Each
chromosome represent a solution, which is a set of Cluster Mode (CM) of K clusters.

As tuples of data set build cluster modes, it induces faster convergence of MOGA,
compared to building chromosomes by randomly choosing categorical feature values
from the same feature domain.

Reassign Cluster Modes. In every chromosome, a set of cluster modes (CMs) repre-
senting cluster modes i.e. {CM1,CM2, ...CMK} are randomly initialized. Every chromo-
some is the input of K-modes algorithm 7 (discussed later). One iteration of K-modes
algorithm produces new cluster modes denoted by {CM∗

1 ,CM∗
2 , ...CM∗

K}, which forms
new chromosomes to replace chromosomes used as input of K-modes algorithm.
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Fig. 1. Flowchart of MOGA(H,S)
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Algorithm 1. Algorithm for building initial population for MOGA(H,S)
m ← total number of tuples in the data set
K ← number of clusters
IPS ← �(1/10×m)�
for j = 1 to IPS do

for i = 1 to K do
rni ← GenerateRandomNumber(1,m)/* Generate integer random number between 1 to
m */

end for
Ch j ← vrn1

1 ,vrn1
2 , ...vrn1

n−1|vrn2
1 ,vrn2

2 , ...vrn2
n−1|...

|vrnK
1 ,vrnK

2 , ...vrnK
n−1| /* vrni

l represents value of lth feature of rnth
i tuple. ‘,’ separates dimen-

sions of CMi and ‘|’ separates CMi */
end for

Crossover. Chromosomes generated by K-modes algorithm are input to the crossover.
Context insensitivity is an important issue in a grouping task like clustering. Meaning
of context insensitivity is “the schemata defined on the genes of the simple chromo-
some do not convey useful information that could be exploited by the implicit sampling
process carried out by a clustering GA” [25]. In their survey paper Hruschka et. al. [46]
shows drawback of conventional single point crossover operators often described in
the literature considering context sensitivity. We have used a special crossover operator
called “Pairwise crossover” described by Fränti in [28] as “The clusters between the
two solutions can be paired by searching the “nearest” cluster (in the solution B) for ev-
ery cluster in the solution A. Crossover is then performed by taking one cluster centroid
(by random choice) from each pair of clusters. In this way we try to avoid selecting
similar cluster centroids from both parent solutions. The pairing is done in a greedy
manner by taking for each cluster in A the nearest available cluster in B. A cluster that
has been paired cannot be chosen again, thus the last cluster in A is paired with the only
one left in B.” This algorithm does not give the optimal pairing (2-assignment) but it
is a reasonably good heuristic for the crossover purpose. In [21] we have used 0.9 as
Crossover probability (Pco). Here Pco) is varying from 0.5 to 0.9. i. e. 50% to 90% chro-
mosomes are engage in crossover. At the beginning of GA, Pco is 0.5 because chances
of getting good chromosomes are less at the early stage of GA. With generation of GA,
chances of getting good chromosomes are increasing. So Pco is increasing linearly over
different generation and at the end it becomes 0.9.

Substitution. In [21] substitution probability (Psb) of MOGA was 0.1. At the beginning
of GA substitution probability (Psb) is 0.1, then decreases linearly with different run of
GA and at end it is 0.0. At early stage of GA, chances of getting good chromosomes
are less so Psb is high to introduce new information into chromosomes which may shift
chromosomes from local optima zone to global optima zone. Over generations of GA
chances of getting good chromosomes are increasing. Introducing random information
to good chromosomes may destroy good building blocks of chromosomes. So Psb is de-
creasing over generations of GA. Produced child chromosomes by crossover are parent
chromosomes of this step. Here dom(Ai) is categorical. In conventional mutation, any
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Algorithm 2. Algorithm for crossover of MOGA(H,S)
/* All Ch produced by K-modes described in 4.1 are PChs of crossover */
Pco ← (0.5+(0.9-0.5)*Generation/100); Npch ← Number of PChs in population; Nco ← �Npch ×Pco)�; K ← number of
clusters; n ← number of features;
for counter = 1 to Npch do

PChFlagcounter ← True/* To prevent repeated choosing of same PCh */
end for
counter ← 1
while counter < Nco/2 do

rn1 ←GenerateRandomNumber(1,Npch); rn2 ←GenerateRandomNumber(1,Npch)/* Generate integer random num-
bers between 1 to Npch */
if rn1 
= rn2 AND PChFlagrn1 = True AND PChFlagrn2 = True then

counter ← counter+1; PChFlagrn1 ← False; PChFlagrn2 ← False/* To prevent repeated choosing of same PCh
*/
/* ********************************Building distance matrix (M)******************************** */
for i = 1 to K do

for j = 1 to K do
CMi ← CMi of PChrn1; CMj ← CMj of PChrn2; ai j ← d(CMi,CMj) /* ai j is element of ith row and jth

column of distance matrix (M) and equation 2 is calculating d(CMi,CMj) */
end for

end for
/* ********************************Constructing CCh from PCh******************************** */
for counter1 = 1 to K do

f lag1counter1 ← True; f lag2counter1 ← True
end for
for counter1 = 1 to K do

minDistance ← 1000000; i1 ←−1; j1 ←−1
for i = 1 to K do

if f lag1i = True then
for j = 1 to K do

if f lag2 j = True then
if ai j < minDistance then

minDistance ← ai j

i1 ← i
j1 ← j

end if
end if

end for
end if

end for
rn3 ← GenerateRandomNumber(0,1)/* Generate random number between 0 to 1 */
if rn3 < 0.5 then

CMi1 of PChrn1 ∈CChrn1

CMj1 of PChrn2 ∈CChrn2

else
CMi1 of PChrn1 ∈CChrn2

CMj1 of PChrn2 ∈CChrn1

end if
f lag1i ← False; f lag2 j ← False/* To prevent repeated choosing of same CM of PChi or PChj */

end for
end if

end while
/* ************************For PChs not taking part in crossover operation****************************** */
for counter = 1 to Npch do

if PChFlagcounter = True then
CChcounter ← PChcounter

end if
end for
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Algorithm 3. Algorithm for substitution of MOGA(H,S)

K ← number of clusters
Npch ← Number of PChs in population
Psb ← (0.1− (0.1−0.0)∗Generation/100)/
for i = 1 to Npch do

for j = 1 to K do
rn1 ← GenerateRandomNumber(0,1)/* Generate random number between 0 to 1 */
if rn1 < Psb then

rn2 ← GenerateRandomNumber(1,m)/* Generate integer random number between 1
to m */
Substitute CMj of PChi with trn2

end if
end for

end for

random value from dom(Ai) can replace vi resulting many chromosomes. Considering
context sensitivity, instead of replacing any vi of chromosome, substitution is replacing
cluster modes by any tuples randomly. So unlike conventional mutation, substitution
is not producing many chromosomes. Approximately number of substitution (Nsb) =
�(Npch ×K ×Psb)�. Algorithm 3 explains substitution.

Combination. At the end of every generation of MOGA some chromosomes are lying
on the Pareto optimal front. These chromosomes have survived and these are known as
Pareto chromosomes. Chromosomes obtained from previous substitution method (algo-
rithm 3 of section 4.1), say NCpre and previous generation Pareto chromosomes (section
4.1) of MOGA, say PCpre are considered to perform in the next generation. For the first
generation of GA, PCpre is zero because of the nonexistence of previous generation.

In general, for ith generation of MOGA, if NCpre is m and PCpre at the end of (i−1)th

generation of MOGA is n then after combination, number of chromosomes are n+m or
PCpre +NCpre.

Eliminating Duplication. Survived chromosomes from previous generation may be
generated again in the present generation of MOGA, resulting multiple copies of the
same chromosome. So in this step system is selecting unique chromosomes from the
combined chromosome set. One may argue with the requirement of this step. But if we
remove this step then population size will be very high at the end of some iterations of
MOGA. Algorithm 4 is describing the process.

Fitness Computation. As stated earlier, intra-cluster distance (Homogeneity) (H) and
inter-cluster distances (Separation) (S) are two measures for optimization. Maximiza-
tion of 1/H and S are the twin objectives of MOGA. It converts the optimization prob-
lem befitting into max-max framework. System is computing the values of H and S by
using Mod distance per feature measures.
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Algorithm 4. Algorithm for removing duplication of MOGA(H,S)
n ← PCpre

m ← NCpre

NOC ← (n+m)
for j = 1 to NOC do

Flag j ← True
end for
i ← 1
for j = 1 to NOC do

if Flag j = True then
UniqueChromosomei = Chromosome j

i ← (i+1)
for l = 1 to NOC do

if Chromosomel = Chromosome j then
Flagl ← False

end if
end for

end if
end for

Equation (1) is calculating Mod distance per feature between one cluster center and
one tuple.

If dlowest(CMi, t j) is the lowest distance for any value of i (where 1 ≤ i ≤ K), then t j

is assigned to Ci. Equation (4) defines Hi (average intra-cluster distance or homogeneity
of ith cluster).

Hi = [
m

∑
j=1

dlowest(CMi, t j)]/mi (4)

where mi is the number of tuples belonging to ith cluster and t j is assigned to ith

cluster based on lowest distance.
Summation of Hi is H, defined in equation 5 as

H =
K

∑
i=1

Hi (5)

Say, t j and tp are two distinct tuples from a data set where t j is assigned to Cx and tp

is assigned to Cy. S is defined in equation 6 using dlowest(CMi, t j) as

S =
m

∑
j,p=1

d(t j, tp) (6)

where j 
= p and x 
= y.
For every chromosome in the population, algorithm 5 calculates 1/H and S.

Selection of Pareto Chromosomes. All chromosomes lying on the front of
max(1/H,S) are selected as Pareto chromosomes. In other words, maximizing 1/H
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Algorithm 5. Algorithm for calculating of H and S of MOGA(H,S)
m ← total number of tuples in the data set
K ← number of clusters
n ← number of features
/* *********Assign tuples into clusters********* */
for j = 1 to m do

AssingedClusterNumber j ←−1
end for
for j = 1 to m do

distance ← 1000000000
clusterNo ←−1
for i = 1 to K do

/* Equation (1) calculates d(CMi,t j) */
if distance > d(CMi ,t j) then

distance ← d(CMi,t j )
clusterNo ← i

end if
if distance = d(CMi ,t j) then

rn ← GenerateRandomNumber(0,1)/* Generate random number between 0 to 1 */
if rn > 0.5 then

distance ← d(CMi ,t j)
clusterNo ← i

end if
end if

end for
AssingedClusterNumber j ← clusterNo

end for
/* ***************Calculating H*************** */
H ← 0
for i = 1 to K do

Hi ← 0
mi ← 0

end for
for j = 1 to m do

for i = 1 to K do
if i = AssingedClusterNumber j then

Hi ← Hi +d(CMi,t j )
mi ← mi +1

end if
end for

end for
for i = 1 to K do

H ← H +Hi/mi

end for
/* ***************Calculating S*************** */
S ← 0
for j = 1 to m do

for i = j+1 to m do
if AssingedClusterNumberi 
= AssingedClusterNumber j then

S ← S+d(ti,t j)/* Equation (3) calculates d(ti ,t j) */
end if

end for
end for
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and S are two objectives of MOGA. As this process is applied after combination, elitism
[10,11] is adhered to.

Building Intermediate Population. From 2nd generation onwards for every even gen-
eration, selected Pareto chromosomes of previous generation build population. This
helps to build a population of chromosomes close to the Pareto optimal front resulting
fast convergence of MOGA. For every odd generation of MOGA or if for any genera-
tion previous generation of MOGA does not produce Pareto chromosomes greater than
2 then population are generated using algorithm 1. This introduces new chromosomes
in population and induces diversity in the population. Population size also varies from
generation to generation.

From the above discussion one may get wrong idea that we are destroying any search
we are doing during a generation and there is no solution evolution. In other words, there
is really no time for evolution. But notice that, we are preserving Pareto chromosomes
at every generation (ith generation of GA) and that is combined to present generation
chromosomes ((i+ 1)th generation of GA) during Combination (section 4.1). Selection
of Pareto chromosomes are done on combined population set (section 4.1). As pointed
out that at every odd generation we generate the population using the same procedure
we generate the initial population (section 4.1). But is these cases we are not loosing
Pareto chromosomes selected by previous even generation because we stores them in a
separate place.

4.2 MOGA Feature Selection (H, S)

In MOGA(H,S), all features except class labels are taking part to build chromo-
somes. But all features in the data sets are not equally important in clustering. So
MOGA Feature Selection(H,S) select only important/ relevant features for clustering.
This method provides three-way benefits.

i) Clustering performance improves significantly.
ii) Important features are easily identified.
iii) Due to the reduction of dimensionality in MOGA Feature Selection(H,S), faster

convergence than MOGA(H,S) is achieved.
As some features are forming chromosomes, equation 1, 2 and 3 can be modified as

7, 8 and 9 respectively.

dmod(CMi, t j) = [[
(n−1)

∑
l=1

MOD(ci
l ,v

j
l )]/nva]1/2 (7)

dmod(CMi,CMj) = [[
(n−1)

∑
l=1

MOD(ci
l ,c

j
l )]/nva]1/2 (8)

dmod(ti, i j) = [[
(n−1)

∑
l=1

MOD(vi
l ,v

j
l )]/nva]1/2 (9)

where nva = number of valid features in corresponding chromosome that is where
ci

l 
= #. If ci
l = # then MOD(ci

l ,v
j
l ) = 0 or MOD(ci

l ,c
j
l ) = 0 or MOD(vi

l ,v
j
l ) = 0.
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Algorithm 6. Algorithm for building initial population for
MOGA Feature Selection(H,S)

m ← total number of tuples in the data set
K ← number of clusters
n ← number of features
IPS ← �(1/10×m)�
rn ← GenerateRandomNumber(1,(n− 1))/* Generate integer random number between 1 to
(n−1) */
valid features (va) ←ChooseAttributes(rn,n−1) /* Choose rn number of features from (n−1)
features */
invalid features (ia)← NotChosenAttributes(va,n−1) /* Choose other (n−1− rn) number of
attributes from (n−1) features */
for j = 1 to IPS do

for i = 1 to K do
rni ← GenerateRandomNumber(1,m)/* Generate integer random number between 1 to
m */

end for
Ch j ← vrn1

1 /#,vrn1
2 /#, ...vrn1

n−1/#|
vrn2

1 /#,vrn2
2 /#, ...vrn2

n−1/#|
...|vrnK

1 /#,vrnK
2 /#, ...vrnK

n−1/#|
/* vrni

l represents value of lth feature of rnth
i tuple. ‘,’ separates dimensions of any CMi

and ‘|’ separates CMi.# represents don’t care condition. For va values of tuples are building
chromosomes and for ia # is building chromosome. */

end for

MOD(ci
l ,v

j
l ), MOD(ci

l ,c
j
l ) and MOD(vi

l ,v
j
l ) are equal to 0 if ci

l = v j
l , ci

l = c j
l and vi

l = v j
l

respectively. Otherwise they are equal to 1.
Note that when all attributes are taking part in chromosome building, equations 7, 8

and 9 will become same as equations 1, 2 and 3 respectively.
Different steps of MOGA Feature Selection(H,S) are described below. It is using

equation 7, 8 and 9.

Building Initial Population. Initial population size is the nearest integer value of 10%
of data set size. Random number of features build chromosomes. Algorithm 6 describes
the process of building initial population.

Reassign Cluster Modes. Every chromosome delivers a set of cluster modes (CMs)
that is {CM1,CM2, ...CMK}. However, in MOGA Feature Selection(H,S), all features
are not building cluster modes. For valid features only K-modes algorithm forms new
cluster modes (CMs) that is {CM∗

1 ,CM∗
2 , ...CM∗

K}.

Crossover. Crossover probability (Pco) for MOGA Feature Selection(H,S) is also
varying from 0.5 to 0.9. “Pairwise crossover” is used in this case too. Parent chro-
mosomes must have the same set of valid and invalid features to calculate distance be-
tween cluster modes. So we are using “repeated crossover”. At first, one chromosome
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is selected randomly from the population to consider a set of valid and invalid features
from population generated by reassign cluster modes method (section 4.2). As a second
step, population for crossover is built by selecting chromosomes having the same set of
valid and invalid features as the randomly selected chromosome. In this way a fraction
of population having same set of valid and invalid features underdone for Crossover.
Crossover is done and it changes some chromosomes. Child chromosomes replace par-
ent chromosomes in the original population formed by reassign cluster modes method
(section 4.2). Other chromosomes which are not participating in crossover are copied
as it is. This process is repeated unless all chromosomes are selected for crossover. This
process is particularly effective for high dimensional dataset. “Repeated crossover” is
not required for MOGA(H,S) as all features having valid values.

Substitution. Substitution probability (Psb) is varying from 0.1 to 0.0 in this case too.
Chromosomes formed by crossover become parent chromosomes to this. Substitution
is same as MOGA(H,S) (algorithm 3 of section 4.1) except in one place. Only valid
features of cluster modes are substituted by feature values of any randomly chosen tuple.

Fitness Computation. Modified intra-cluster distance (Homogeneity) (Hmod) and mod-
ified inter-cluster distances (Separation) (Smod) are two measures for calculating fit-
ness values of MOGA Feature Selection(H,S) clustering algorithm. Maximization of
1/Hmod and Smod are the objectives of MOGA. It converts optimization problem into
max-max framework.

Equations (4), (5) and (6) are modified into equations (10), (11) and (12) respectively.

Hmodi = [
m

∑
j=1

dmodlowest (CMi, t j)]/mi (10)

Hmod =
K

∑
i=1

Hmodi (11)

Smod =
m

∑
j,p=1

dmod(t j, tp) (12)

As we are using Mod distance per feature, 1/Hmod and Smod 1/Hmod and Smod values
of different chromosomes having different sets of valid features become comparable
with one another.

Note that when all features are taking part in chromosome building equations 10, 11
and 12 become same as equations 4, 5 and 6 respectively.

Algorithm 5 calculates 1/Hmod and Smod for every chromosome in the population. In
this case equations 7, 8 and 9 have been used in place of equations 1, 2 and 3 respectively.

Combination. This is same as used in MOGA(H,S) as described in section 4.1.

Eliminating Duplication. This is same as that used in MOGA(H,S) as described in
section 4.1.
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Selection of Pareto Chromosomes. All chromosomes lying on the front of max
(1/Hmod , Smod) are Pareto chromosomes. In other words maximizing 1/Hmod and Smod

are two objectives of MOGA. As this process is applied after combination, elitism is
adhered to.

Building Intermediate Population. From 2nd generation onwards for every even gen-
eration, selected Pareto chromosomes of previous generation build population. This
helps to build a population of chromosomes close to the Pareto optimal front, resulting
convergence of MOGA. For every odd generation of MOGA or if for any generation
previous generation of MOGA does not produce Pareto chromosomes greater than 2
then population are created using algorithm 6 of section 4.2. This introduces new chro-
mosomes in population and induces diversity in the population. Population size also
varies from one generation to another.

5 Testing and Comparison

For comparison purposes we have also implemented K-modes.
K-modes is most popular partition based traditional clustering method [47,48] for

categorical attributes. Algorithm 7 describes steps of the K-modes.

Algorithm 7. Algorithm for K-modes
1: Choose K initial cluster modes {CM1,CM2, ...CMK} randomly from m tuples {t1, t2, ...tm} of

X where t = [vt
1,v

t
2, ...,v

t
n−1].

2: Assign tuple t j , j = 1,2, ...m to cluster Ci, i ∈ {1,2, ...K} iff d(CMi, t j) < d(CMp, t j), p =
1,2, ...K, and i 
= p. /* Using equation 1 */
Resolve ties arbitrarily.

3: Compute new cluster modes {CM∗
1 ,CM∗

2 , ...CM∗
K} as follows:

CM∗
i =Mode of t j

where t j ∈Ci and j = 1,2, ...m.
4: If CM∗

i =CMi, i = 1,2, ...K then stop. Otherwise repeat from step 2.

Note that in case the process does not stop at step 4 normally, then it is carried out
for a maximum fixed number of iterations. We have taken a maximum fixed number
of iterations as 100 which is same as the number of generations of GA. It is observed
that in most of the cases it stops much before maximum fixed number of iterations. One
may argue that this comparison is not fair, because GA works on minimum number of
probable solutions and K-modes works on a single probable solution. But we don’t have
any option.

In literature different validity indices are available to measure the goodness of clus-
ters. We have used three popular validity indices - Davies-Bouldin (DB) Index [8],
C-Index [50] and Dunn Index [17]. Equation (13) is calculating DB Index.

DB Index = 1/K
K

∑
i=1,i
= j

max((Hi +Hj)/d(CCi,CCj)) (13)
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where K is the number of clusters, Hi is the average distance of all patterns in cluster
i to their cluster mode CMi, Hj is the average distance of all patterns in cluster j to their
cluster mode CMj and d(CMi,CMj) is the distance of cluster modes CMi and CMj.

The Dunn index defines the ratio between the minimal intra-cluster distance to max-
imal inter-cluster distance. Equation (14) calculates the index.

Dunn Index = dmin/dmax (14)

where dmin denote the smallest distance between two objects from different clusters,
and dmax the largest distance of two objects from the same cluster. The Dunn index
should be maximized.

The C-index is defined by equation (15)

C Index = (S− Smin)/(Smax − Smin) (15)

where S is the sum of distances over all pairs of objects form the same cluster, n is
the number of those pairs and Smin is the sum of the n smallest distances if all pairs of
objects are considered. Likewise Smax is the sum of the n largest distances out of all
pairs. The C-index is limited to the interval [0, 1] and should be minimized.

For K −modes and MOGA(H,S) equations (13), (14) and (15) are using equations
(1), (2) and (3) whereas for MOGA Feature Selection(H,S) equations (13), (14) and
(15) are using equations (7), (8) and (9).

As number of clusters (K) are equal to the number of classes in the datasets we
can also use classification accuracy as a measure to estimate the goodness of cluster
[18]. While testing, tuples of test set are provided with class labels. In a chromosome,
every cluster is assigned a class label based on majority voting method. Predicted class
label and actual class label are used to build a confusion matrix or matching matrix
[15] for each chromosome in Pareto population. Each tuple t j where 1 ≤ j ≤ m and m
= total number of tuples in test set are assigned to a cluster based on dlowest(CMi, t j)
where 1 ≤ i ≤ K and K = number of cluster to get predicted class label. From confusion
matrix, performance of classifying all t j is measured.

2 popular data sets from UCI Machine Learning Repository [41] compares the per-
formance of 3 clustering algorithms. Table 3 summarizes features of data sets.

Table 2. Features of data sets used in this article (Here, # indicates Number of)

Name #Tuples #Attributes #Classes
Soybean(Small) 47 35 4

Zoo 101 18 7

Table 4 compares H and S values of 3 algorithms. Tables 5, 6, 7 and 8 compares DB
Index, C Index, Dunn Index and Classification Accuracy of 3 algorithms. Column A1
showing Clustering Index/Classification Accuracy values of K−modes, Column B1 and
C1 showing Clustering Index/Classification Accuracy values for minimum H, Column
B2 and C2 showing Clustering Index/Classification Accuracy values for maximum S,
Column B3 and C3 showing average Clustering Index/Classification Accuracy values,
Column B4 and C4 showing best Clustering Index/Classification Accuracy values.
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Table 3. Features of data sets used in this article (Here, # indicates Number of)

Name #Tuples #Attributes #Classes
Soybean(Small) 47 35 4

Zoo 101 18 7

Table 4. Comparison of performance of clustering algorithms in terms of H and S

Methods K −modes MOGA(H,S) MOGA Feature Selection(H,S)
Data set H S H S H S

Soybean(Small) 1.37 469.87 1.09 484.01 0.47 567.73
Zoo 1.71 2782.24 1.36 2849.65 0.14 3105.25

Table 5. Comparison of performance of clustering algorithms in terms of DB Index

Methods K −modes MOGA(H,S) MOGA Feature Selection(H,S)
Data set A1 B1 B2 B3 B4 C1 C2 C3 C4

Soybean(Small) 1.38 1.28 1.35 1.31 1.17 0.72 1.34 0.95 0.65
Zoo 1.23 1.11 1.37 1.24 1.06 0.14 0.89 0.45 0.14

Table 6. Comparison of performance of clustering algorithms in terms of C Index

Methods K −modes MOGA(H,S) MOGA Feature Selection(H,S)
Data set A1 B1 B2 B3 B4 C1 C2 C3 C4

Soybean(Small) 0.11 0.07 0.05 0.09 0.02 0.08 0.08 0.08 0.01
Zoo 0.11 0.15 0.09 0.13 0.08 0.02 0.06 0.06 0.00

Table 7. Comparison of performance of clustering algorithms in terms of Dunn Index

Methods K −modes MOGA(H,S) MOGA Feature Selection(H,S)
Data set A1 B1 B2 B3 B4 C1 C2 C3 C4

Soybean(Small) 0.48 0.47 0.52 0.46 0.64 0.73 0.39 0.35 0.80
Zoo 0.24 0.16 0.25 0.21 0.37 Infinity 0.09 Infinity Infinity

Table 8. Comparison of performance of clustering algorithms in terms of Classification accuracy

Methods K −modes MOGA(H,S) MOGA Feature Selection(H,S)
Data set A1 B1 B2 B3 B4 C1 C2 C3 C4

Soybean(Small) 0.83 0.63 0.95 0.77 0.99 0.61 0.91 0.78 1
Zoo 0.65 0.59 0.66 0.63 0.73 0.54 0.56 0.55 0.76
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Fig. 2. H, S, DB Index, C Index, Dunn Index, Classification Accuracy Vs Number of Generation
of MOGA Feature Selection(H,S) of Soybean(Small) dataset

Fig. 3. H, S, DB Index, C Index, Dunn Index, Classification Accuracy Vs Number of Generation
of MOGA Feature Selection(H,S) of Zoo dataset
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Following important observations are summarized here, based on the analysis of ta-
ble 4, 6, 7 and 8. Result shows the superiority of MOGA(H,S) over K −modes as
K −modes is doing local optimization whereas MOGA(H,S) is doing global optimiza-
tion. K −modes is doing optimization of single objective whereas MOGA(H,S) is op-
timizing H and S. MOGA Feature Selection(H,S) is better than MOGA(H,S), which
shows the effectiveness of simultaneous feature selection. Figure 2 and 3 shows H, S,
DB Index, C Index, Dunn Index, Classification Accuracy Vs Number of Generation
of MOGA Feature Selection(H,S) of Soybean(Small) and Zoo datasets respectively.
Where S values are normalized in the range [0,1]. Others are showing original values.

6 Conclusions

In this work, we have implemented two versions of a novel real coded hybrid eli-
tist MOGA for K-clustering (MOGA(H,S) and MOGA Feature Selection(H,S)). It
is known that elitist model of GAs provides the optimal string as the number of it-
erations increases to infinity [6]. Due to the use of special population building pro-
cess, hybridization of K-modes with GA, special crossover and substitution operator
GAs are producing good clustering solution in a smaller number of iterations (100).
MOGA Feature Selection(H,S) is giving best results among 3 algorithms. It shows
the effectiveness of simultaneous feature selection.

We have achieved one important data mining task of clustering by finding cluster
modes. We have considered only categorical features in this work. Continuous features
need other type of encoding, as Mod distance per feature measures is not suitable for
those types of features. Dealing with missing features values and unseen data are other
problem areas. It may be interesting to adapt MOGA based K-clustering unknown num-
ber of clusters. Authors are working in these directions.
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Abstract. In complexity theory, scheduling problem is considered as a NP-
complete combinatorial optimization problem. Since Multi-Agent Systems 
manage complex, dynamic and unpredictable environments, in this work they 
are used to model a scheduling system subject to perturbations. Meta-heuristics 
proved to be very useful in the resolution of NP-complete problems. However, 
these techniques require extensive parameter tuning, which is a very hard and 
time-consuming task to perform. Based on Multi-Agent Learning concepts, this 
article propose a Case-based Reasoning module in order to solve the parameter-
tuning problem in a Multi-Agent Scheduling System. A computational study is 
performed in order to evaluate the proposed CBR module performance. 

Keywords: Case-based Reasoning, Learning, Metaheuristics, Parameter tuning, 
Scheduling. 

1 Introduction 

Recently, the interest in decentralized approaches for the resolution of complex real 
world problems, like Scheduling, is gaining much attention due to its wide applica-
tions. Several of these approaches belong to Distributed Systems research area, where 
a number of entities work together to solve problems in a cooperative way. In this 
area, it is possible to emphasize Multi-Agent Systems (MAS), concerning the coordi-
nation of agent’s behaviors in order to share knowledge, abilities, and objectives, in 
the resolution of complex problems. Due to the exponential growing of system's com-
plexity, it is important that MAS become more autonomous to deal with dynamism, 
overloads and failures recovery. 

Multi-Agent Systems typically operate in open, complex, dynamic, and unpredict-
able environments. Therefore, learning becomes crucial. Learning is a relevant area 
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from Artificial Intelligence (AI) as from human intelligence. Plaza et al. [1] defined 
learning as “the process of improving individual performance, precision (or quality) 
of solutions, efficiency (or speed) of finding solutions and scope of solvable prob-
lems”. Although this definition is very useful, it is a severe and constricted view of 
learning. In a more general way, it is possible to define learning as the acquisition of 
new knowledge or updating existing knowledge. 

As per Alonso et al. [2], intelligence implies a certain degree of autonomy, which 
requires the capacity of taking decisions autonomously. Thus, agents should have the 
appropriate tools to take such decisions. In dynamic domains it is not possible to pre-
dict every situation that an agent can find, so it is necessary that agents have the abili-
ty to adapt to new situations. This is especially true in MAS, where in many cases the 
global behavior emerges instead of being pre-defined. Consequently, learning is a 
crucial component of autonomy and pro-activeness, which must be a study target of 
agents and MAS [2]. 

The adaptation of ideas from different research areas, inspired from nature, led to 
the development of Meta-Heuristics (MH), which are techniques aiming to solve 
complex generic problems of combinatorial optimization, in which the scheduling 
problem is included.  

Meta-heuristics are very useful to achieve good solutions in reasonable execution 
times. Sometimes they even obtain optimal solutions. However, to achieve near-
optimal solutions, it is required the appropriate tuning of parameters. 

Parameter tuning of MH has a great influence in the effectiveness and efficiency of 
the search process. The definition of the parameters is not obvious because they de-
pend on the problem and the time that the user has to solve the problem [3]. There-
fore, this paper proposes the use of a learning mechanism in order to perform the  
MH parameter tuning in the resolution of the scheduling problem. Case-based Rea-
soning (CBR) was chosen since it assumes that similar problems may require similar 
solutions. 

As a MAS is used to model a dynamic scheduling system, with agents representing 
both tasks and resources, it is proposed that each resource agent have their own CBR 
module, allowing a multi-apprentice learning. With this type of learning, agents learn 
how to perform their own single-machine scheduling problem. 

The proposed system adopts and provides parameter tuning of MH through CBR, 
with the possibility that parameters can change in run-time. According to the current 
situation being treated, the system must be able to define which MH should be used 
and define the respective parameters. It is even possible to change from one MH to 
another, according to current state and previous information, through learning and 
experience.   

The paper is organized as follows: Section 2 describes the scheduling problem and 
Section 3 describes MH. Section 4 describes the Multi-Agent Learning and CBR is 
explained along section 5. In Section 6, the implemented MAS is explained with CBR 
integrated. A computational study is presented in Sections 7 and 8 and some conclu-
sions and future work are presented. 
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2 Scheduling Problem 

Scheduling problems are present in a large set of domains, from transports to manu-
facturing, computer environments, hospital settings, etc., most of them characterized 
by a vast amount of uncertainty leading to a considerable dynamism in the systems. 
Thereby, dynamic scheduling is getting an increased attention by researchers and 
practitioners [4][5]. 

The scheduling problem treated in this paper is named Extended Job-Shop Sche-
duling Problem (EJSSP), described by A. Madureira in 2003 [6], and has some major 
extensions and differences when compared to the classic JSSP, in order to better 
represent reality.  

JSSP has a set of tasks processing in a set of machines, with each task following an 
ordered list of operations, each one characterized by the respective processing time 
and machine where is processed.  

The main elements of JSSP problem are: 

• a set of multi-operation jobs J1,…,Jn to be scheduled on a set of machines 
M1,…,Mn 

• dj represents the due date of job Jj 
• tj represents the initial processing time of job Jj 
• rj represents the  release time of job Jj 

EJSSP problems consist in JSSP problems with additional restrictions, to better 
represent reality. Some of those restrictions are: 

• Different release and due dates for each task 
• Different priorities for each task 
• Possibility that not every machine is used for all tasks 
• A task can have more than one operation being processed in the same  
machine 

• Two or more operations of the same task can be processed simultaneously 
• Possibility of existence of alternatives machines, identical or not, for 
processing the operations 

In this work, we define a job as a manufacturing order for a final product that can 
be Simple or Complex. It may be Simple Product, like a part, requiring a set of opera-
tions to be processed. Complex Products, require processing of several operations on 
a number of parts followed by assembly operations at several stages. 

For a better understanding the EJSSP, the reader may consider the following ex-
ample: a certain company produces some complex products. During the production 
process, new orders may arrive, some orders can be canceled, and some orders may 
be changed (due dates priorities, etc.). With the EJSSP modeling, it is possible to 
specify different priorities for each order, change the due dates, etc. But the most 
important contribution of this modeling strategy is that it is possible to have: i) many 
machines producing the same pieces; ii) more than one piece of each job processed in 
the same machine; iii) two or more pieces of the same job being processed at the same 
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time. The three last aforementioned aspects are an important enhancement, not consi-
dered in the classic JSSP definition. 

Scheduling problems belongs to the NP-complete class [4]. Methods for their reso-
lution can be categorized in exact and approximation algorithms [5][6]. In the former, 
an exhaustive solutions space search is made and it is ensured the optimal solution, 
but on the other hand they are very time consuming. The latter includes heuristics and 
MH and do not guarantee the optimal solution since they have the objective to find a 
good solution in an acceptable amount of time. For this reason, they are used in this 
work integrated with MAS. 

3 Metaheuristics Parameter Tuning 

Meta-heuristics have gained popularity over the past two decades in the resolution of 
many types of real-life problems, including Scheduling, since they allow the resolu-
tion of large dimension problems by obtaining satisfactory solutions in satisfactory 
execution times. The term "meta-heuristic" was introduced by Fred W. Glover in 
1986 [7].  

These techniques have the objective of guiding and improving the search process 
in a way to overcome local optimal solutions, which represent a limitation of Local 
Search algorithm, and obtain solutions with satisfactory quality, very close to the 
optimal solution, in reasonable execution times [3][6]. 

Meta-heuristics consist on iterative or recursive methods with the objective of ob-
taining solutions the closest as possible to the global optimum for a given problem. 
Assuming that all solutions are interrelated, it is possible to obtain the set of solutions 
for a given problem.  

In this work some of the most well known MH are used [3][6][8]: Tabu Search, 
Genetic Algorithms, Simulated Annealing, Ant Colony Optimization, and Particle 
Swarm Optimization. 

Tabu Search (TS) was introduced by Fred Glover [7] and consists in a Local 
Search algorithm with the main objective to escape from local minimum. It uses a 
tabu list to memorize the last solutions trajectory, prohibiting the moves to solutions 
already visited in a short term memory. 

Simulated Annealing (SA) was proposed by Kirkpatrick et al. [9] and Cerny [10]. 
It has connections to thermodynamics and metallurgy [11], and the original motiva-
tion is based on the process in which molten metal is slowly cooled, with a tendency 
to solidify in a structure of minimum energy. This MH has a statistical basis and is 
based on allowing the movement to a worst solution, with the objective to escape 
from local optimum.  

In beginning of 1970, John Holland, together with his students and colleagues, de-
veloped research and studies based on natural selection of species, reaching a formal 
model designated by Genetic Algorithms (GA) [12]. In the 1980s, David Goldberg, 
Holland’s student, implemented and published the first well successful applications of 
these algorithms [13].  

Proposed by Dorigo et al. [14], Ant Colony Optimization (ACO) is based on a be-
havior that allows ants to find the shortest path between a food source and the respec-
tive colony [7] Ants deposit in the ground a substance named pheromone, and when 
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choosing a path, they opt, with greater probability, by the one that have more quantity 
of pheromone, which corresponds to the path followed by the higher number of ants.  

Particle Swarm Optimization (PSO) was developed by James Kennedy and Russell 
Eberhart [15] with the objective to simulate a simplified social system. The basic idea 
was to demonstrate the behavior that flocks of birds or schools of fishes assume in 
their random local trajectories, but globally determined. Flocks of birds or schools of 
fishes make coordinated and synchronized movements as a way of finding food or as 
a mechanism of self-defense.  

As mentioned, MH can be used for the resolution of many kinds of problems. 
However, to solve a specific problem it is necessary to choose a MH, which is consi-
dered a difficult task, requiring a study about the problem type and about the chosen 
technique. Furthermore it is also necessary to define the respective parameters. 

The parameter tuning of MH allows greater flexibility and robustness but requires 
a careful initialization, since parameters have a great influence on the efficiency and 
effectiveness of the search [3]. 

El-Ghazali Talbi [3] has identified two different approaches for MH parameter tun-
ing: offline and online (Fig. 1). In offline tuning, the values for the parameters are 
defined before the execution of MH. In online tuning the parameters are controlled 
and updated in a dynamic or adaptive way, throughout the execution of MH. 

Usually, when using MH, practitioners tune one parameter at a time and its optimal 
value is determined in an empiric way. However, this tuning strategy cannot guaran-
tee the optimal parameter configuration. 

To overcome this problem, design of experiments (DOE)  [16] is used. Neverthe-
less, before using DOE it is necessary to take into account diverse factors which 
represent the parameters variation and the different values for each parameter (that 
can be quantitative and qualitative). 

The greatest disadvantage about using DOE is the high computational cost when 
there is a large number of parameters, and when the domains of the respective values 
are also high since it is necessary to perform a large number of experiments [17]. To 
overcome this disadvantage, it is possible to use, e.g., racing algorithms [18][19]. 

On the other hand, in Meta-optimization, (meta) heuristics can be used to find the 
optimal parameters like in optimization problems. Meta-optimization consists in two 
levels: meta-level and base level. In the meta-level, solutions represent the parameters 
to optimize, such as the size of the tabu list in Tabu Search, the cooling rate in Simu-
lated Annealing, the crossover and mutation rates of a Genetic Algorithm, etc. At this 
level, the objective function of a solution is the best solution found (or another per-
formance indicator) by the MH with the specified parameters. Thus, for each solution 
in the meta-level there is an independent MH in the base level. 

The drawback of offline approaches is the high computational cost, especially if 
used for each instance of the problem. In fact, the optimum values for the parameters 
depend on the problem to solve and on the different instances (e.g. larger instances 
may require different parameter settings). Thus, to increase the effectiveness and ro-
bustness of offline approaches, these should be applied to all instances (or class of 
instances) of a given problem [3]. 
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Fig. 1. Parameter tuning [3] 

Online approaches arise in order to try to achieve better results and they can be di-
vided in dynamic and adaptive approaches [3]. In dynamic approaches, changes in 
parameter values are performed at random or deterministic ways, without taking into 
account the search process. In adaptive approaches, parameter values change accord-
ing to the search process through the use of memory. A subclass, often used in the 
evolutionary computation community, is identified as self-adaptive, consisting in 
parameters evolution during the search. Therefore, the parameters are encoded and are 
subject to change, such as solutions to the problem. 

This problem of finding the most suitable parameter configuration is related with 
the notion of hyper-heuristic [20][21][22]. Hyper-heuristic methods try to automate 
the process of selecting, combining or adapting several heuristics (or MH) in order to 
solve problems in an efficient manner.  

The term “hyper-heuristic” was introduced in 1997 [23] to describe a procedure 
combining different AI methods. This idea became pioneer in the 1960s with the 
combination of scheduling rules [24][25] and has been used to solve many optimiza-
tion problems [21]. The term “hyper-heuristic” was independently used in 2000 [26] 
to describe “heuristics that choose heuristics” in the context of combinatorial optimi-
zation. In this context, a hyper-heuristic is a high-level approach which, given a par-
ticular instance of the problem and a number of low-level heuristics, can choose and 
apply an appropriate low level heuristic at each decision point [27][28].  

In the literature it is possible to find a wide variety of hyper-heuristic approaches 
using high-level methodologies along with a set of low level heuristics applied to 
different optimization problems. However, there is no reason to limit the a high-level 
strategy to a heuristic. In fact, the sophisticated knowledge-based techniques such as 
CBR have been employed to this end with successful results for solving the university 
timetables problem [29]. This led to a more general definition for the term "hyper-
heuristic", whose goal is to capture the idea of a method to automate the design of 
heuristics and the selection process: “A hyper-heuristic is an automated methodology 
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for selecting or generating heuristics to solve hard computational search problems” 
[20]. 

The defining characteristic on hyper-heuristics research is that it investigates me-
thodologies operating within a search space of heuristics rather than directly on a 
search space of problem solutions. This feature provides the potential to increase the 
level of general research methods. Several approaches for hyper-heuristics have been 
proposed that incorporate different research paradigms and machine learning [20]. 

The research on hyper-heuristics in based on the compromise between search me-
thodologies and machine learning. Machine learning is a well established field of AI 
and its exploitation to automate the design of heuristics is still at the beginning, but it 
is expected big developments in the future [20]. 

4 Multi-agent Learning 

In AI, machine learning is a research area concerning the development of algorithms 
and techniques in order to provide computers with learning faculties. Commonly ac-
cepted in the literature, machine learning algorithms and techniques can be classified 
in three categories: 

• Supervised learning (where data have labels or classes); 
• Unsupervised learning (data have no labels); 
• Reinforcement learning (where the objective is to maximize a reward). 

Some authors refer another category, placed between Supervised and Unsupervised 
learning, named Semi-Supervised learning, that uses both labeled and not labeled 
data. It is also very common the reference to another category, known by Instance-
based Learning [30] or Non-Parametric Methods [31], where CBR can be included, 
described in the next section. 

It is possible to apply machine learning concepts to many research areas, including 
natural language processing, pattern recognition, market analysis, DNA sequences 
classification, speech and handwriting recognition, object recognition in computer 
vision, game playing and robot locomotion. 

Panait and Luke [32] have focused machine learning application to problems re-
lated with MAS. They use machine learning in order to explore ways to automate the 
inductive process, e.g., put a machine agent to find by itself how to solve a task or 
minimize error. They have referred that machine learning is a popular approach for 
the resolution of MAS problems because the complexity intrinsic to many of those 
problems can make solutions prohibitively hard to obtain.  

In the next subsections, it will be described four learning techniques used in MAS, 
namely Reactive learning, Social learning, Team learning and Concurrent learning. 

4.1 Reactive Learning 

In reactive systems, the cooperative behavior emerges from the interaction between 
agents. Instead of implementing coordination protocols or providing complex recognition 



 Tuning Meta-Heuristics Using Multi-agent Learning in a Scheduling System 197 

 

models, it is assumed that agents work with value-based information (e.g. the distance 
they should keep from neighbors) which produces the social behavior. Once internal 
processing is avoided, these techniques allow MAS reacting to changes in an efficient 
way [2].  

As a collateral effect, agents do not know the domain, which is crucial to take deci-
sions in complex and dynamic scenarios. In this view, it is not possible to simulate 
complex social interactions and, in order to have high-level behaviors, agents need to 
summarize experiences in concepts. An entity that can conceptualize can also trans-
form experience in knowledge and guide the vital resources until necessary [2]. 

4.2 Social Learning 

Social learning is composed by learning mechanisms arising from AI and Biology. 
In persistent MAS, where new agents enter a world already populated with expe-

rienced agents, a new agent starts with a blank state and has not had yet the opportuni-
ty to learn about the environment. However, a new agent does not need to discover 
everything about the environment since it can benefit from the accumulated learning 
from the experienced population of agents [2]. 

An important difference between artificial agents and animals is that, in the first, it 
is possible to simulate a completely cooperative scenario, where exists a common 
utility function. Even though cooperation occurs in many animal species, the possibil-
ity of conflicts emerging is always present, due to the competition in genes’ self-
replication of evolutionary process [2].  

There are several different ways to an agent learn from other agents behaviors. De-
spite the existence of imitation (direct copy from other agents behaviors), this has 
proved to be complex since it involves not only the behaviors’ understanding and 
reproducing but also the understanding of the changes in the environment caused by 
these behaviors [2]. 

4.3 Team Learning 

In Team Learning it only exists an apprentice. However, it has the objective to dis-
cover a subset of behaviors for a team of agents, instead for a unique agent. It is a 
simple approach to Multi-Agent learning because the apprentice can use machine 
learning techniques, which avoid the difficulties emerging from the co-adaptation of 
multiple agents in Concurrent Learning approaches. Another advantage in the using 
of a unique apprentice agent is that it only cares about the team performance, and not 
with itself. For this reason, Team learning approaches can ignore the inter-agent credit 
assignment that is usually hard to determine [32]. 

However, Panait and Luke [32] also pointed some disadvantages in the use of 
Team learning. The main problem refers to the large state space for the learning 
process, which can be devastating for learning methods that explore the utility state 
space (such as Reinforcement learning) but cannot affect so drastically techniques that 
explore the behaviors space (such as Evolutionary computing). A second disadvan-
tage refers to the learning algorithm centralization problem: every resource need to be 
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available in the same place where the program will be executed. This can be uncom-
fortable for domains where data are inherently distributed. 

Team learning can be divided in homogeneous and heterogeneous [32]. Homoge-
neous apprentices develop an unique identical behavior for each agent, even if agents 
are different. Heterogeneous apprentices must deal with a large search space, but with 
the guarantee to get better solutions through agents’ specialization. The choice be-
tween approaches depends if experts are necessary in the team. 

4.4 Concurrent Learning 

The most common alternative to Team learning is Concurrent learning, where mul-
tiple apprentices try to improve parts from the team. Typically, each agent has its own 
learning process to modify the behaviors [32].  

The main difficulty subjacent to Concurrent learning is to know in which domains 
it achieves better results when compared with Team learning. Jansen and Wiegand 
[33] argue that Concurrent learning can perform better in domains where decomposi-
tion is possible and helpful (such as Scheduling), and when it is useful to focus each 
sub-problem regardless others. This happens because Concurrent learning separates 
the search space into smaller ones. If the problem can be decomposed, such that 
agents’ individual behaviors are relatively disjoint, it can result in a significant reduc-
tion of the search space and computational complexity. Another advantage is that 
decomposing the learning process into smaller pieces allows a greater flexibility using 
computational resources in each process learning, since they can, at least partially, be 
learned regardless others. 

The main challenge of Concurrent learning consists in the adaption of each appren-
tice behaviors to the context of others, which its cannot control. In single agent scena-
rios, an apprentice explores his environment and improves his behavior. But things 
are quite different when using multiple apprentices: while agents learn, they change 
the behaviors, which can ruin the learned behaviors by other agents, making outdated 
assumptions [34][35]. A simple approach to deal with this co-adaptation is to treat 
other apprentices as part of the dynamic environment for which each apprentice must 
adapt [36]. 

In this research, we propose a concurrent learning approach, in which several 
agents learn about their internal behaviors and environment. 

5 Case-Based Reasoning 

Case-Based Reasoning (CBR) is an Artificial Intelligence technique that aims to solve 
new problems by using information about the resolution of previous similar problems 
[37]. As previously described, CBR represents a method of ML Instance-based Learn-
ing and uses the principle that similar problems may require similar solutions [38] on 
a direct analogy to learning based on past experience.  

CBR roots are found in the work of Roger Schank about dynamic memory and 
how the memory of previous situations can affect problems' resolution and learning 
processes [39]. There are also references about the study of analogical reasoning [40]. 
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Fig. 2. The CBR cycle [42] 

CYRUS system, developed by Janet Kolodner [37] was the first known CBR sys-
tem. It was based on Schank’s dynamic memory model [39] and, basically, consisted 
of a question-answer system with knowledge about the different travels and meetings 
of USA ex-Secretary of State Cyrus Vance. Another first system to use CBR was 
PROTOS, developed by Bruce Porter et al. [41], which dealt with ML classification 
problem. 

The CBR cycle is illustrated in Fig. 2 and consists of four main phases [38][42]: 

1. Retrieve the most similar case or cases 
2. Reuse the retrieved information and knowledge 
3. Revise the proposed solution 
4. Retain the revised solution for future use 

In CBR, previous solved cases and their solutions are memorized as cases in order 
to be reused in the future [38]. These cases are stored in a repository named casebase. 
Instead of defining a set of rules or general lines, a CBR system solves a new problem 
by reusing similar cases that were previously solved [43].  
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A new case of the problem to be solved is used to retrieve an old case from the ca-
sebase. In the Reusing phase, the retrieved case is analyzed in order to suggest a solu-
tion for the resolution of the new case. In the Revising phase, this suggested solution 
is tested, for example, by executing it in the system, and repaired if it fails. In the 
Retaining phase, the useful experience is retained for future use, and the casebase is 
updated with the new learned case (or by modifying some existing cases).  

In the Reusing phase, it is possible to reuse a solution or a method. In solution 
reuse, the past solution is not directly copied to the new case, but there is some know-
ledge allowing the previous solution to be transformed into the new case solution. In 
case of method reuse, it is observed how the problem was solved in the retrieved case, 
which has information about the method used for the problem resolution, including an 
explanation about the used operators, sub-objectives considered, generated alterna-
tives, failures, etc. The retrieved method is then reused to the new problem resolution, 
in the new context. 

The objective of Revising phase is to evaluate the retrieved solution. If this solu-
tion is well succeeded it is possible to learn about the success, otherwise the solution 
is repaired using some problem domain’s specific knowledge. The evaluating  
task applies the proposed solution in an execution environment and the result is eva-
luated. This is usually a step outside the CBR, once the problem may be executed in 
an application. 

Finally, the Retaining phase consists in the integration of the useful information 
about the new case resolution into the casebase. It is necessary to know which infor-
mation is important to retain, how to retain it, how to index the case for a future re-
trieve, and how to integrate the new case in the memory structure.  

Burke et al. [44] referred that CBR is an appropriate approach for scheduling  
systems with expertise knowledge, and highlighted a research potential in dynamic 
scheduling.  

Generally, CBR applications for scheduling domain can be classified in three  
categories [43]: 

• Algorithms reuse - assume that it is probable that an effective approach for a 
specific problem’s resolution will also be effective in the resolution of a similar 
problem. In these systems, a case consists in a representation of the problem and in 
a known effective algorithm for its resolution. Schmidt [45] designed a CBR struc-
ture to choose the most appropriate method for the resolution of scheduling  
problems in production scheduling. Schirmer [46] implemented a CBR system for 
selecting scheduling algorithms for the resolution of project scheduling problems. 
It was experimentally shown that some scheduling algorithms work better than 
others, in some instances of problems.  

• Operators reuse - reuse the operators for the resolution of the new problem 
[44]. A case describes a context in which a useful scheduling problem is used for 
repairing/adapting a scheduling plan to improve its quality, in terms of constraints 
satisfaction [38]. Burke et al. [44] have proposed a case-based hyper-heuristic to 
solve timetabling problems. Beddoe et al. [38] have developed a CBR system to 
solve nurse scheduling problems.  
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• Solutions reuse -  it is used the whole or part of previous problems' solutions 
to construct the solution of the new problem. A case contains the description of a 
problem and its solution, or part of solution. This method was used for the resolu-
tion of manufacturing scheduling problems [47][48] and university courses time-
tabling [44]. It was also used for constructing MH’ initial solutions, as Genetic Al-
gorithms [49] and Simulated Annealing [50]. 

6 Multi-agent Scheduling System 

The developed MAS for the resolution of Scheduling problem consists in a hybrid 
autonomous architecture [51]. As illustrated in Fig. 3, there are three kinds of agents.  

The proposed MAS have agents representing jobs/tasks and agents representing re-
sources/machines. The system is able to find optimal or near optimal solutions 
through the use of MH, dealing with dynamism (arriving of new jobs, cancelled jobs, 
changing jobs attributes, etc.), change/adapt the parameters of the algorithm according 
to the current situation, switch from one MH to another, and perform a coordination 
between agents through cooperation or negotiation mechanisms. 

Job agents process the necessary information about the respective job. They are re-
sponsible for the generation of the earliest and latest processing times on the respec-
tive job and automatically separate each job’s operation for the respective Resource 
Agent. 

Resource agents are responsible for scheduling the operations that require 
processing in the machine supervised by the agent. These agents implement MH in 
order to find the best possible single-machine schedules/plans of operations and 
communicate those solutions to the AgentUI for later feasibility check. 

Since it is impossible to predict each problem to treat, the system should be capa-
ble of learning about its experience during lifetime, as humans do. To perform this 
learning mechanism, it is proposed the use of CBR within Resource agents. 

 

 

Fig. 3. Multi-agent Scheduling System 
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6.1 CBR Module 

The proposed CBR approach [51] consists in retrieving the most similar case or cases 
to the new problem, regardless the MH to be used, as well as its parameters. It is im-
portant for the system to decide which technique and respective parameters may be 
used, because not every MH is suitable to all types of problems.  

The main objective of CBR module is to choose a MH to be used by the respective 
Resource Agent in which the CBR is included. The secondary objective is to perform 
the parameter tuning of MH, according to the problem to solve. Based on past expe-
rience, each case contains the MH and the respective parameters. If the parameters 
were effective and efficient in the resolution of a similar case, then they have a great 
probability to be effective and efficient in the resolution of the new problem. It is 
possible to describe our CBR module as a hyper-heuristic approach but since it per-
forms a self-parameterization of MH it is more appropriate to see it as a parameter 
tuning approach. 

It is important to notice that, like previously described in Fig. 2, every new prob-
lem or perturbations occurred leads to a new case in the system, with the previous 
most similar cases being retrieved from the casebase. After that, the better case is 
reused, becoming a suggested solution. After the solution revision, the case is ex-
ecuted in the MAS. This revision is performed to allow escaping from local optimal 
solutions and MH stagnation, since it is used some disturbance in the parameters of 
the proposed solution. After the conclusion of the MAS execution, the case is con-
firmed as a good solution, being retained on the database as a new learned case, for 
future use. 

Figure 4 illustrates the inclusion of CBR in the system. Each Resource Agent has 
its own CBR module. With this approach, different MH may be chosen in the resolu-
tion of the same Job-Shop problem. This can be considered as an advantage because 
the Resource Agents can have different number of operations to schedule. Some MH 
are more suitable to schedule problems with large number of operations than others. 

 

 

Fig. 4. CBR module within Resource agents 
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The most important part of a CBR module is its similarity measure because it de-
cides how much two cases are similar between each other. The similarity measure of 
the proposed CBR module is very simple and is defined in equation (1). 

   (1) 

As previously mentioned, each Resource Agent has a number of operations to 
schedule. This number of operations can be different, depending on the problem to 
treat, and is enough to define a problem. The MH and the respective parameters may 
be chosen according to the dimension of the problem to treat. So, with this similarity 
measure it is possible to have a ratio between two cases. The similarity is a value in 
the interval [0,1], whose limits correspond to non similar and completely similar cas-
es, respectively. If there are more than one case very similar to the problem to be 
solved, the most effective and efficient case is reused. 

If some perturbations occur in the problem, the MH and the parameters may 
change, because a different problem may be solved. For example, if new jobs arrive 
or if some jobs are canceled, the problem’s dimension is different and so other MH 
and/or other parameters may be used. This decision is autonomously performed by the 
CBR module in run time. 

7 Computational Results 

The main objective of this computational study is to analyze the integration of CBR in 
an effective and efficient way, comparing the system’s performance with CBR in-
cluded versus the system’s performance before the integration of CBR. Another  
objective is to obtain some conclusions about the usage of MH in the resolution of 
Job-Shop instances, after the integration of CBR. 

For the computational study, all instances from OR-Library Job-Shop Scheduling 
problems were used [52] (a total of 82 instances), proposed by Adams, Balas and 
Zawack [53], Fisher and Thompson [54], Lawrence [55], Applegate and Cook [56], 
Storer, Wu and Vaccari [57], and Yamada and Nakano [58]. These instances cover 
problems with 10, 20, 30, and 50 jobs and they were executed five times (before and 
after CBR integration).  

The machine used for the computational study is a HP Z400 Workstation, with the 
following main characteristics: Intel® Xeon® CPU W3565 @ 3.20 GHz, 6GB RAM, 
Samsung HD103SJ disk with 1TB, and Windows 7, 64-bit. 

To conclude about the effectiveness and efficiency of the proposed CBR module, 
the average makespan (Cmax - conclusion time) and execution time were analyzed 
(Fig. 5). About the effectiveness, the average makespan was improved in 15,85% of 
the cases. This is considered a good improvement that can be better with the lifetime 
of CBR module.  

Although a new module has been integrated into the MAS, the average execution 
times were improved in 2,44% of the cases when comparing to the previous obtained 
results (Fig. 5). It was not expected to improve this performance measure but it we 
can conclude that the parameters are becoming more efficient with the lifetime of 
CBR module. 
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Fig. 5. Improvement of obtained average results (%) 

 

Fig. 6. Improvement of obtained average Cmax results separated by instances dimension (%) 

Figure 6 presents a detailed view about the improvement of average Cmax. For 10 
jobs instances, 8,54% of the results were improved. For 20 jobs instances, 3,66% 
results were improved. For 15 and 30 instances the results were improved only by 
1,22% and 2,44% respectively. The obtained results for 50 jobs instances were not 
improved at all. 

In addition to the obtained conclusions about the effectiveness and efficiency of 
CBR it is also possible to analyze the usage of MH. With this it is possible to know 
which MH were used most. In a global perspective (Fig. 7), PSO was the most used 
MH, in 36,96%, and then GA with 17,98%. TS and SA were used in 15,73% of the 
instances. Finally, ACO was the less used with 14,61%. 
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Fig. 7. Global use of MH 

 

Fig. 8. MH use for 10 jobs instances 

 

Fig. 9. MH use for 15 jobs instances 
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Figure 8 presents the MH use for 10 jobs instances. TS and PSO were the most used 
techniques in the smallest dimension problems’ instances. ACO was not used at all. 

Figure 9 presents the MH used for 15 jobs instances. GA was the most used MH 
with 46,67%. TS and PSO were the other techniques used in 26,67% of the cases. SA 
and ACO were not used in the resolution of this class of instances. 

 

 

Fig. 10. MH use for 20 jobs instances 

 

Fig. 11. MH use for 30 jobs instances 

Only two MH were used in the resolution of 30 jobs instances, as shown in Fig. 11. 
SA was the most used technique in 71,43% of the cases. GA was the other used MH, in 
28,57%. 

Finally, for 50 jobs instances, ACO was the most used MH in 80% of the cases. The 
other used MH were SA and PSO in 10% of the cases each (Fig. 12). 

Concluding, for small instances (10 and 15 jobs) TS, GA and PSO revealed to be 
the most used, but ACO was not used at all. For 20 and 30 jobs instances PSO and SA 
were the most used respectively. For large dimension instances ACO was the most 
used. 
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Fig. 12. MH use for 50 jobs instances 

8 Conclusions 

In this paper the use of CBR was proposed in order to perform MH parameter tuning 
in the resolution of Job-Shop scheduling problem.  

The presented scheduling system consists in a MAS with different agents 
representing both jobs and resources. The proposed CBR module is included in re-
source agents with the objective to chose the best MH and perform the respective 
parameter tuning. The MH choice and parameters configuration is done based on past 
experience, since CBR assumes that similar cases may have similar solutions. 

From the computational study presented it is possible to conclude that the system 
became more effective in 15,85% of the cases and more efficient in 2,44%.  

It was also possible to conclude that, in the resolution of academic Job-Shop in-
stances, PSO was, globally, the most used technique, in a global perspective. Howev-
er, in the resolution of small dimension instances TS revealed to be the most used, and 
in the resolution of very large dimension instances ACO was the most used. 

For future work we intend to do more experiments with the CBR module. It is ex-
pected that the effectiveness and efficiency of CBR improves during the lifetime. 
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Abstract. In this paper is a solution to the School Bus Routing Problem by the 
application of a bio-inspired algorithm in the vertical transfer of genetic materi-
al to offspring or the inheritance of genes by subsequent generations. The ver-
tical transfer algorithm or Genetic algorithm uses the clusterization population 
pre-selection operator, tournament selection, crossover-k operator and an intel-
ligent mutation operator called mutation-S. The use of the bio-inspired  
algorithm to solve SBRP instances show good results about Total Bus Travel 
Distance and the Number of Buses with the Routes. 

Keywords: Transportation, Combinatorial Optimization, Algorithms, School 
Bus Routing Problem, SBRP, bio-inspired algorithm. 

1 Introduction 

The School Bus Routing Problem (SBRP) is a significant problem in the management 
of school bus fleet for the transportation of students, each student must be assigned to 
a particular bus which must be routed in a efficient manner so as to pick up (or return 
home) each of these students [29]. The SBRP consist of smaller sub-problems [14]: 
Bus Stop Selection seeks to select a set of bus stops and assign students to these stops, 
Bus Route Generation generate a bus route for a single school, School Bell Time  
Adjustment consider the starting and ending time of schools to maximize the number 
of routes by a bus and to reduce the number of busses used for a multi-school,  
Route Scheduling specifies the starting and ending time of each route of a bus for a 
multi-school. 

The characteristics of SBRP [31] are: Number of School (single or multiple), sur-
roundings of service (urban or rural), Problem scope (morning, afternoon, both), 
Mixed Load (allowed or no allowed), special-educations students (considered or not 
considered), Fleet mix (homogeneous fleet or heterogeneous fleet), Objectives (num-
ber of buses used, total bus travel distance or time, Total students riding distance or 
time, student walking distance, load balancing, maximum route length, Child´s time 
loss), Constraints (vehicle capacity, maximum riding time, school time windows, 
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maximum walking time or distance, earliest pick-up time, minimum student number 
to create a route).  

The mathematical model of SBRP [20] is formed by the equations1-8: 

0 0 1

min  
n n M

ij ijk
i j k

z C X
= = =

=  (1) 

1 0

1   1, 2,...,
M n

ijk
k j

X i n
= =

= =  (2) 

1 0

1   1, 2,...,
M n

ijk
k i

X j n
= =

= =  (3) 

0 0
1 0 1 0

M n M n

jk i k
k j k i

X X M
= = = =

= =   (4) 

0 0

; 1, 2,..., ;  1, 2,...,
n n

ijk jik
j j

X X i n k M
= =

= = =   (5) 

( ) ( )1 ;  

1 , , , 1, 2,...,

ik jk ijkU U n m X n M

i j n i j k M

+ + − + ≤ −

≤ ≤ ≠ =
 (6) 

0 0

;  1, 2,...,
n n

ijk i
i j

X q Q k M
= =

≤ =  (7) 

1 0

; 1, 2,...,
n n

ijk ij
i j

X t k Mτ
= =

≤ =  (8) 

 
Where: School buses are centrally located and have collect waiting students at n 

pick-up points and to drive them to school. The number of students that wait in pick-
up point i is qi, (qi > 0, i = 1, 2, …, n). The capacity of each bus is limited to Q stu-
dents (qi ≤ Q). The objective function to the School Bus Problem is composing of two 
costs: a) cost incurred by the number of buses used, b) driving cost (fuel, mainten-
ance, drivers salary, and others), subject to operational constraints, Cost a or b have to 
be minimized. 

Newton and Thomas [28] are pioneering in offering solution by considered restric-
tions of routing for a single school, one bus and 80 bus stops of the SBRP.  

Angel et al. [1] propose to group the bus stops by a clustering algorithm of 1500 
students and 5 schools in Indiana. 

Bennett and Gazis [3] used a modified version of the Savings Algorithm [10] to 
solve an instance from Toms River, NJ with 256 bus stops and 30 routes. 

Newton and Thomas [29] propose an algorithm to solution a problem for one dis-
trict, by the location of each school, the location of each student, the time period for 
use of transport by student and the availability of buses. 

Pickens and Tyler [32] propose a mathematical model of a school district network, 
and after defining stop locations, provide an initial set of near-optimal routes. 

Bodin and Berman [4] solves an instance from Long Island, NY with 13000 stu-
dents and 25 schools using a 3-OPT procedure to generate an initial traveling sales-
man tour with feasible routes.  
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Gavish and Shlifer [20] propose a Branch and Bound algorithm for solving a class 
of transportation scheduling problems such as: the Combining Truck Trip problem, 
the Delivery problem, the School Bus problem, the Assignment of Buses to Sche-
dules, and the Travelling Salesman problem. 

Dulac et al. [19] present a comprehensive study of the school bus routing problem 
in urban surroundings. 

Hargroves and Demetsky [23] show a case study of a suburban-rural county in 
Virginia. 

Lindenberg [26] develop a program for minimizing the total number of buses of a 
given bus fleet with different capacities needed for serving a school district.  

Swersey and Ballard [39] gave a set of routes that takes all students from their bus 
stop to their schools from New Haven, CT with 30-38 buses and 100 routes.  

Desrosiers et al. [15] solves the instance from Montréal, CA with 20000 students 
and 60 schools.  

Chen et al. [8] proposes an expert system approach to routing and scheduling 
school buses for a rural school system.  

Bookbinder and Edwards [5] developed a program scheduling problem with a set 
of student pick-ups and drop-offs for which school-to-school routes. Several problems 
from the Durham Board of Education are solved.  

Chen et al. [9] generates routes to reduce the number of buses required and the 
fleet traveling distance by an expert system approach. It also allows planner participa-
tion in the process. Application to a real-world rural school district is discussed.  

Thangiah and Nygard [40] use the GENROUTER system to route school buses for 
two school districts. The routes obtained by GENROUTER system were superior to 
those obtained by the CHOOSE school bus routing system and the current routes in 
use by the two school districts. 

Graham [21] describes how the state of North Carolina has been implementing a 
network of transportation information management systems (TIMS) at the local 
school district level to improve the efficiency and cost-effectiveness of route schedul-
ing for school buses. The program has contributed to a statewide reduction in mileage 
exceeding 2.6 million miles annually.  

Chou [11] presents the design and applications of a decision support system devel-
oped for bus routing, route sequence mapping, and passenger geocoding. The system, 
built on a geographic information system (GIS), is suitable for municipal transit plan-
ning and school bussing. 

Bowerman et al. [7] introduces a multi-objective approach to modeling the urban 
school bus routing problem and describes an algorithm for generating a solution to 
this problem. First groups students into clusters using a multi-objective districting 
algorithm and then generates a school bus route and the bus stops for each cluster 
using a combination of a set covering algorithm and a traveling salesman problem 
algorithm. Numerical results are reported using test data from Wellington County, 
Ontario.  
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Braca et al. [6] propose investigate various issues related to the development of a 
computerized system to help route and schedule school buses throughout the five 
boroughs of New York City. They analyze various aspects of the problem including 
the generation of routes in the Borough of Manhattan and provide a solution requiring 
far fewer buses than are currently in use. The computerized system, called CATS, 
incorporating many of the results obtained in this research, is currently being used to 
route Special Education students. 

Pacheco et al. [30] proposes the use of meta-heuristics method based on neighbor-
hood movements to solve the SBRP. Rhoulac et al. [33] show on-board mobile Global 
Positioning System equipment on School bus routing and scheduling in North Caroli-
na using the transportation information management system (TIMS).  

Li and Fu [25] describes a case study (test data from a kindergarten in Hong Kong) 
of the school bus routing problem, formulated a multi-objective combinatorial optimi-
sation problem (minimizing the total number of buses required, the total travel time 
spent by pupils at all pick-up points, which is what the school and parents are con-
cerned with most, and the total bus travel time. It also aims at balancing the loads and 
travel times between buses), and a heuristic algorithm for its solution. 

Corberán et al. [12] address the problem of routing school buses in a rural area. 
They develop a solution procedure that considers each objective separately and search 
for a set of efficient solutions instead of a single optimum. The solution procedure is 
based on constructing, improving and then combining solutions within the framework 
of the evolutionary approach known as scatter search.  

Spada et al. [38] propose a modeling framework where the focus is on optimizing 
the level of service for a given number of buses in the school bus routing and schedul-
ing problem.  

Ripplinger [34] show a rural routing heuristic of two parts: constructing the initial 
route and then improving it by using a fixed tenure Tabu search algorithm. The rural 
routing heuristic is applied to a randomly generated school district with rural charac-
teristics. 

Guo et al. [22] propose a new heuristic optimization algorithm for solving the 
school bus problem (to minimize the number of buses, to minimize total travel time of 
buses, to minimize total travel time spent by all children, to balance the loads among 
buses and to balance the travel time among buses).  

Iskander et al. [24] propose an algorithm to solve a school district that has 27 
schools, and showed significant improvement over existing schedules and schedules 
produced with a route first, cluster second algorithm. The algorithm clusters the stops, 
develops routes by solving modified traveling salesman problems, and assigns routes 
to buses to produce the final schedules. 

Schittekat et al. [36] propose a solution by the GRASP method. Schittekat et al. 
[37] develop an integer programming formulation for small instances of the school 
bus routing problem.  
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Bektaş and Elmastaş [2] propose an exact solution approach for solving a real-life 
school bus routing problem (SBRP) for transporting the students of an elementary 
school throughout central Ankara, Turkey. The problem is modeled as a capacitated 
and distance constrained open vehicle routing problem and an associated integer li-
near program is presented.  

Thangiah et al. [41] presents a heuristic to solve a complex rural school bus routing 
problem for student transportation in Pennsylvania using digitized road networks 
obtained from the U. S. Census Bureau that can lead to cost savings for both State and 
local governments. The rural school district between pickup points, depots and 
schools, consisting of 4200 road segments. Feasible solutions to the complex rural 
school bus routing problem consisting of 13 depots, 5 schools, 71 pickup points and 
583 students.  

Park and Kim [31] provide a comprehensive review of the school bus routing  
problem.  

Díaz-Parra et al. [18] propose a set of test instances of the School Bus Routing 
Problem, called SBRPLIB (School Bus Routing Problem Library). 

Ruiz-Vanoye and Díaz-Parra [43] show similarities between Meta-heuristics Algo-
rithms and the Science of Life (examines the structure, function, growth, origin, evo-
lution, distribution and classification of all living things): Meta-heuristics based on 
gene transfer, Meta-heuristics based on interactions among individual insects and 
Meta-heuristics based on biological aspects of alive beings. The Meta-heuristics based 
on gene transfer could be Vertical Transfer Algorithm or Genetic Algorithm (natural 
evolution of genes in an organic population or Vertical Gene Transfer) and Transgen-
ic Algorithm (transfers of genetic material to another cell that is not descending or 
Horizontal Gene Transefer) [43]. 

The transfer of genetic material to offspring or the inheritance of genes by subse-
quent generations is an essential basis of the evolutionary process. The most common 
form of gene transfer for higher organisms is sexual reproduction.  

In the case of higher plants, genetic information is passed along to the next genera-
tion by pollination; this is called Vertical Gene Transfer (VGT). Vertical Gene Trans-
fer (VGT) occurs when an organism receives genetic material from its ancestor, e.g., 
from its parent or a species from which it evolved [44]. This mechanism was used in 
computer science by Holland [45] to define Genetic Algorithms (GA). GAs are heu-
ristic adaptive that solve optimisation problems or NP-Complete problems by simulat-
ing the natural evolution of genes in an organic population.  

This paper proposes a Vertical Transfer Algorithm or Genetic Algorithm to solve 
the School Bus Routing Problem with the characteristics of Single School, urban ser-
vice, Problem scope (Morning), Mixed Load (not allowed), Special-educations stu-
dents (not considered), Homogeneous fleet, and the Objectives (Number of buses 
used and Total Bus travel distance). The paper is organized as follows. Firstly, it de-
scribes Vertical Transfer Algorithm to solve the School Bus Routing Problem and 
afterwards, presents the results, discussion and conclusions. 
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Table 1. Related Works of SBRP 

Research Description 
Newton and Tho-
mas [28] 

An algorithm to solution a problem for one district. 

Pickens and Tyler 
[32] 

A mathematically model of a school district network. 

Bodin and Berman 
[4] 

Solves an instance from Long Island, NY with 13000 students and 25 schools 
using a 3-OPT procedure. 

Gavish and Shlifer 
[20] 

A Branch and Bound algorithm for solving the School Bus problem. 

Hargroves and 
Demetsky [23] 

A case study of a suburban-rural county in Virginia. 

Lindenberg [26] A program for minimizing the total number of buses of a given bus fleet with 
different capacities needed for serving a school district. 

Swersey and Ba-
llard [39] 

A set of routes that takes all students from their bus stop to their schools from New 
Haven, CT with 30-38 buses and 100 routes. 

Desrosiers et al. 
[15] 

Solves the instance from Montréal, CA with 20000 students and 60 schools. 

Chen et al.[8] An expert system approach to routing and scheduling school buses for a rural 
school system.  

Bookbinder and 
Edwards [5] 

Several problems from the Durham Board of Education are solved. 

Chen et al. [9] Generates routes to reduce the number of buses required and the fleet traveling 
distance by an expert system approach. 

Thangiah and 
Nygard [40] 

The GENROUTER system to route school buses for two school districts. 

Graham  [21] Describes how the state of North Carolina has been implementing a network of 
transportation information management systems (TIMS) at the local school district 
level 

Chou [11] The design and applications of a decision support system developed for bus 
routing, route sequence mapping, and passenger geocoding. 

Bowerman et al. 
[7] 

A multi-objective approach to modeling the urban school bus routing problem and 
describes an algorithm for generating a solution to this problem.  

Braca et al. [6] The development of a computerized system to help route and schedule school 
buses throughout the five boroughs of New York City. 

Pacheco [30] Meta-heuristics method based on neighborhood movements to solve the SBRP.  
Rhoulac et al.[33] Show on-board mobile Global Positioning System equipment on School bus 

routing and scheduling in North Carolina using the transportation information 
management system (TIMS).  

Li and Fu [25] Describes a case study (test data from a kindergarten in Hong Kong) of the school 
bus routing problem 

Spada et al. [38] A modeling framework where the focus is on optimizing the level of service for a 
given number of buses in the school bus routing and scheduling problem. 

Iskander et al. [24] Propose an algorithm to solve a school district that has 27 schools, and showed 
significant improvement over existing schedules and schedules produced with a 
route first, cluster second algorithm. 

Bektaş and 
Elmastaş [2] 

Propose an exact solution approach for solving a real-life SBRP for transporting 
the students of an elementary school throughout central Ankara, Turkey. 

Thangiah et al. [41] Presents a heuristic to solve a complex rural SBRP for student transportation in 
Pennsylvania 

Park and Kim [31] Provide a comprehensive review of the school bus routing problem. 
Díaz-Parra et al. 
[18] 

Propose a set of test instances of the School Bus Routing Problem, called 
SBRPLIB (School Bus Routing Problem Library). 

Kim and Soh [46] They implement the simulation model through the template model in spread-sheet 
platform to find operational directions of school bus managing policy of a case for 
Wonkwang University 

Park et al. [47] A new mixed load improvement algorithm to solve  a  real world SBRP. 
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2 Vertical Transfer Algorithm for the School Bus Routing 
Problem  

The vertical transfer algorithm for solving the School Bus Routing Problem is a ge-
netic algorithm with a selection operator of tournament, crossover-k operator, and a 
mutation operator based on mutation-S operator. The Genetic Algorithm is considered 
as bio-inspired algorithm [35] because realizes the transfer of genetic material to 
offspring or the inheritance of genes by subsequent generations (called Vertical Gene 
Transfer or VGT).  

In the Figure 1 is the Vertical Transfer Algorithm for solving the SBRP. 
 
 

 

Fig. 1. Vertical Transfer Algorithm 
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The Code of the Vertical Transfer Algorithm or Genetic algorithm to solve  
SBRP is: 

Input: Vehicle Capacity, Bus Stop, X coord., Y Coord., Student Number (Demand), 
Bus Stop time window (earliest pick-up time, Due pick-up time, Maximum Riding 
Time, Maximum Walking Time). 

Output: Total Bus travel distance, Number of Buses and the routes. 
0. Begin 
1. Generate not-random initial population (one individual) of n chromosomes, suit-

able solution for the problem, by the use of the clusterisation population pre-selection 
operator. 

2. New population. Create a new population by repeating following steps until the 
new population is complete: 

a) Generate random population of n chromosomes based on the not-random initial 
population or the population of the new generation, interchanging of random way a 
pair of genes of the individuals. 

b) Fitness. Evaluate the fitness f(x) of each chromosome x in the population. 
c) Selection operator. Select two parent chromosomes from a population according 

to their fitness (tournament operator). 
d) Crossover operator. The crossover-k operator consists of finding two points ran-

domly in the individual (rand1 and rand2) and to search in the individual the corres-
ponding genes to make the crossover. 

e) Mutation operator. Mutation-S consists of detecting the genes with major  
distances in the matrix of Euclidean distances and to compare with the genes involved 
in the individual that minor generates distances to change, verifies the restriction of 
time and vehicle capacity.  

3. Accepting. Place new offspring in a new population. 
4. Replace. Use new generated population for a further run of algorithm. 
5. Test. If the end condition is satisfied, stop, and return the best solution in current 

population. 
6. Loop. Go to step 2. 
7. End 

2.1 Initialisation Phase 

Clusterisation population pre-selection operator [17] is used only for generating the 
initial population (an individual with n chromosomes, set of genes or vehicles) of an 
intelligent way for evolutionary and genetic algorithms; and for generating the new 
population (by repeating steps until the new population is complete, see next sec-
tions). The initial population and the new population are generating by a data-mining 
technique called by k-means algorithm [27], which classifies the groups of data with 
similar characteristics. We cluster the geographical location (X coord. and Y Coord.) 
of the School Bus Routing Problem. The initialization of the k-means algorithms was 
obtained of the characteristic instance called vehicles [17]. 
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2.2 Selection Operator 

The Tournament selection operator [13] consists of randomly taking two individuals 
from the population and to generate a random number r (between zero and one). If  
r < k, where k is a parameter, selects the best one of the individuals on the contrary 
selects worse, the both individual ones are given back to the initials so that they can 
be selected again. We use the Tournament Selection to take two individuals from the 
population of the School Bus Routing Problem. The figure 2 shows the use of the 
tournament selection operator on populations of individual of the School Bus Routing 
Problem. 
 
 

 

Fig. 2. Tournament Selection operator 

2.3 Crossover Operator 

The crossover-k operator [16] consists of finding two points randomly in the individ-
ual (rand1 and rand2) and to search in the individual (of the Vehicle Routing Problem 
with time windows) the corresponding genes to make the crossover. We use the cros-
sover-k operator to find two points randomly in the individual and to search in the 
individual of the School Bus Routing Problem: 

a) The crossover-k operator generates two individuals from two individuals.  
b) The operator takes two individuals randomly from the population and generates 

two random numbers, and then the search of the nodes corresponding to the random 
numbers is realized in individual 1.  

c) Once identified the nodes to cross, the operator search the nodes in the individu-
al 2.  

d) Since the positions of the corresponding nodes in both individual have been 
identified, the crossing is realized of nodes in individual 1 (the first individual), to 
generate the second individual, the crossover is realized in the individual 2.  

e) The crossover is realized as long as the nodes to cross are different.  
In the Figure 3 is the mechanism of operation of the crossover-k operator. 
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Fig. 3. Crossover-k operator 

2.4 Mutation Operator 

Díaz-Parra and Cruz-Chávez [16] propose a Genetic Algorithm to solve the Vehicle 
Routing Problem with Time Windows, using an intelligent mutation operator (muta-
tion-S) for local search. We use the intelligent mutation operator for the School Bus 
Routing Problem. 

Mutation-S consists of detecting what of all the genes that conform the individual 
is the one that involves major distances. On the basis of the gene of greater distance 
the one realizes a search in the matrix of Euclidean distances with each one of the 
genes involved in the individual that minor generates distances is the gene candidate 
to change, next to identify the gene candidate, verifies the reductions of area of time 
window and vehicle capacity, if the then restrictions are not violated comes to realize 
the mutation. 
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Fig. 4. Crossover-k operator 

The temporal complexity of the Vertical Transfer Algorithm for solves SBRP in-
stances are in the equations 9 to 12. 
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Where: n represents the size of the instance, C represents each operation of the al-

gorithm, for example: C1 represents the generation’s number and C2 represents the 
stop criteria of the neighborhood. The temporal complexity of the bio-inspired algo-
rithm for solve SBRP in the worst of the cases is: 3( ) ( )T n n∈ Ο  . 
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3 Experimentation and Results  

The experimentation was carried on HP TouchSmart 300-1020 with AMD Athlon II 
235e Dual-Core Processor and memory of 4 GB and the algorithm was development 
using Visual C++ v.6. The instances of SBRP were obtained from School Bus 
Routing Problem Library-SBRPLIB (a depository of test instances of the School Bus 
Routing Problem) [18]. We use the instance set S1 of the SBRPLIB. The instance set 
S1 contains 50 instances with Number of School: single, Surroundings of Service: 
Urban, Problem scope: Morning, Fleet mix: Homogeneous, vehicle capacity: 40, Bus 
Stop: 200. The urban means routes inside the city, morning means 7:00-9:00, homo-
geneous fleet is the vehicle capacity equal in all the fleet; and the instance set 
UAEM1, the instance set UAEM1 contains 1 instance with number of school: single, 
surrondings of service: Urban, Problem scope: Morning, fleet mix:  Homogeneous, 
vehicle capacity: 40, Bus Stop: 21. 

Experiments are repeated 30 times for each instance. In table 2 are the parameters 
or characterization of the SBRP instances. 

 

Table 2. SBRP Instances 

NS SS PS ML SEE F VN VC 
STWb STWdue       
BS XCO YCO SN EPT DPT MRT MWT 
0 x0 Y0 SN0 EPT0 DPT0 MRT0 MWT0

… … … … … … … … 
n xn Yn SNn EPTn DPTn MRTn MWTn

 
Where NS: Number of School (single or multiple), SS: Surroundings of Service 

(urban or rural), PS: Problem scope (morning, afternoon, both), ML: Mixed Load 
(allowed or no allowed), SEE: special-educations students (considered or not consi-
dered), F: Fleet mix (homogeneous fleet or heterogeneous fleet), VN: Vehicle Num-
ber, VC: Vehicle Capacity, STWb: School Time Windows Begin,  SWTdue: School 
Time Windows Due, BS: Bus Stop, XCO: X Coord., YCO: Y Coord., SN: Student 
Number, MRT: Maximum Riding time, EPT: earliest pick-up time, DPT: Due pick-up 
time, MWT: Maximum Walking Time or distance. 

In Table 3 are the results of the Vertical Transfer Algorithm. The input of the algo-
rithm is an initial population from which realized a clustering to obtain a list of indi-
viduals (where I: instances, TB: Total Bus Travel Distance, NB: Number of Buses, 
GA: Genetic Algorithm). The k-Means algorithm for clustering (data-mining tech-
niques), introduced by MacQueen [27], is one of the clustering algorithms more well-
known which classifies the groups of data with similar characteristics; these groups 
know themselves like clusters. The parameters provided to the k-means procedure in 
the genetic algorithm are: XCO = X Coordinate and YCO = Y Coordinate obtained 
from the S1 instance set of the SBRPLIB [18]. 
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Table 3. Results of the Vertical Transfer Algorithm 

I GA I GA 
 TB NB  TB NB 
SBRP-S1-1 10185.19 35 SBRP-S1-26 11018.24 35 
SBRP-S1-2 10965.97 36 SBRP-S1-27 11597.19 36 
SBRP-S1-3 11266.22 36 SBRP-S1-28 11515.74 38 
SBRP-S1-4 15214.01 35 SBRP-S1-29 11490.97 36 
SBRP-S1-5 12851.75 36 SBRP-S1-30 11365.43 33 
SBRP-S1-6 12582.34 36 SBRP-S1-31 11090.65 36 
SBRP-S1-7 12494.22 36 SBRP-S1-32 12272.99 35 
SBRP-S1-8 9818.49 36 SBRP-S1-33 11890.97 36 
SBRP-S1-9 9818.49 36 SBRP-S1-34 13112.94 38 
SBRP-S1-10 11280.01 36 SBRP-S1-35 11491.31 37 
SBRP-S1-11 10279.03 34 SBRP-S1-36 10138.13 31 
SBRP-S1-12 11428.98 33 SBRP-S1-37 10108.62 33 
SBRP-S1-13 14031.38 35 SBRP-S1-38 10006.01 36 
SBRP-S1-14 10035.33 34 SBRP-S1-39 11744.12 37 
SBRP-S1-15 10216.76 37 SBRP-S1-40 11200.10 34 
SBRP-S1-16 11165.36 36 SBRP-S1-41 11102.05 36 
SBRP-S1-17 10302.56 38 SBRP-S1-42 11381.58 36 
SBRP-S1-18 11005.69 34 SBRP-S1-43 12074.00 34 
SBRP-S1-19 10558.33 37 SBRP-S1-44 12513.76 36 
SBRP-S1-20 11542.48 36 SBRP-S1-45 11537.06 34 
SBRP-S1-21 10958.58 36 SBRP-S1-46 11565.18 36 
SBRP-S1-23 12692.01 34 SBRP-S1-47 11222.52 35 
SBRP-S1-24 11521.35 34 SBRP-S1-48 11080.48 35 
SBRP-S1-25 10025.53 37 SBRP-S1-49 10903.73 33 
SBRP-S1-26 11018.24 35 SBRP-S1-50 10342.50 33 

 
In the Figure 5 is the solution of the instance SBRP-S1-1.sbrp. 
 

 

Fig. 5. Instance SBRP-S1-1 
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In Table 4 are the results of the instance SBRP-S1-1 with the Vertical Transfer  
Algorithm. 

Table 4. Results of Instance SBRP-S1-1 

Total Bus Travel 
Distance 

Number  
of Buses 

10185.198323 35 
10198.961481 35 
10225.412947 35 
10298.665642 35 
10382.977067 35 
10533.203659 36 
10573.120426 36 
10674.057590 36 
10747.046257 36 
10818.807889 36 

 
We use the instance set UAEM-1 corresponding with one school (Autonomous 

University of Morelos State or UAEM) of the Cuernavaca city, Surroundings of Ser-
vice: Urban, Problem scope: Morning, Fleet mix: Homogeneous, vehicle capacity: 40, 
Bus Stop: 22. The urban means routes inside the city, morning means 7:00-9:00, ho-
mogeneous fleet is the vehicle capacity equal in all the fleet. Autonomous University 
of Morelos State is a public institution of higher education larger, coverage, and more 
important in the state Mexico’s Morelos, with headquarters in the capital, the city of 
Cuernavaca. The institution has 27 academic units, 5 centers and 2 research units 
located in 3 campuses campus installed in various municipalities in the state. A  
survey (30 surveys peer faculty or 660 surveys) to the students of the 22 university 
faculties in order to obtain real information of university transport and analyzing their 
behavior in order to make a proposal to transport college students benefit from the 
UAEM. The representative sample taken from the  student population is comprised of 
30% of students on north campus (Chamilpa) of the UAEM, the university has a total 
of 11,504 senior students spread over  three campuses, North Campus, east campus 
and south campus. The figure 7 contains the bus stations necessary to transport some 
students of the University. 

 

 

Fig. 6. University Transport of UAEM 



 Vertical Transfer Algorithm for the School Bus Routing Problem 225 

 

 

Fig. 7. Cuernavaca and Bus Stop locations of UAEM 

In the Figures 8 and 9 are the solutions of the instance UAEM-1.sbrp for 3 and 4 
vehicles. 

 

 

Fig. 8. Instance UAEM-1 with K = 3 
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Fig. 9. Instance UAEM-1 with K = 4 

In Table 5 are the total bus travel distance of the vertical transfer algorithm used to 
solve the SBRP-UAEM1, where the parameters are Individuals: 1000, Generations: 
20, and Neighbors: 10. And in the table 6 is the best route of UAEM-1. 

 

Table 5. Results of Instance UAEM-1 

Total Bus Travel 
Distance 

Number  
of Buses 

1717.639358 3 
1818.539493 3 
1818.556720 3 
1919.586404 3 
1919.631402 3 
1919.498600 4 
1919.6325360 4 
1919.6925580 4 
2020.549677 4 
2020.618819 4 
2020.782089 4 
2020.898991 4 
2741.742000 4 
2020.898991 4 
2741.742000 4 
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Table 6. Best Route for UAEM-1 Instance 

Vehicles Routes 
1 Guacamayas, Polvorin, Panteón, Jardín Borda, Glorieta Tlaltenango, 

Glorieta Zapata, Universidad Base. 
2 Burgos, Tabachines, Acapatzingo, Alta Tensión, Lomas de Teopanzol-

co, Lomas de Cortes, Chamilpa, Universidad Base. 
3 CIVAC, Chedraui, IMSS, Glorieta la Luna, Plaza Cuernavaca, Domin-

go Diez, Paloma de la Paz, Estadio Centenario, Universidad Base. 

4 Conclusions  

School bus scheduling is important because it reduces costs to the universities or 
schools and brings added value to the students to have a quality transport. The algo-
rithm contained in this article provides solutions to set of instances S1 and UAEM-1 
of SBRPLIB and is the first algorithm that solves this type of set of instances. Future 
work will use a new bio-inspired algorithm in aspects of biology to solve transporta-
tion problems. 
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Abstract. In this paper an improved version of Particle Swarm Optimization 
(PSO) called Craziness based PSO (CRPSO) is considered as an efficient 
optimization tool for designing digital Infinite Impulse Response (IIR) filters. 
Apart from gaining better control on cognitive and social components of 
conventional PSO, the CRPSO dictates better performance due to incorporation 
of craziness parameter in the velocity equation of PSO. This modification in the 
velocity equation not only ensures the faster searching in the multidimensional 
search space but also the solution produced is very close to the global optimal 
solution. The effectiveness of this algorithm is justified with a comparative 
study of some well established algorithms, namely, Real coded Genetic 
Algorithm (RGA) and conventional Particle Swarm Optimization (PSO) with a 
superior CRPSO based outcome for the designed 8th order IIR low pass (LP), 
high pass (HP), band pass (BP) and band stop (BS) filters. Simulation results 
affirm that the proposed CRPSO algorithm outperforms its counterparts not 
only in terms of quality output, i.e., sharpness at cut-off, pass band ripple and 
stop band attenuation but also in convergence speed with assured stability. 

1 Introduction 

Signal carries information, but this information is getting contaminated with noise 
which is picked up mostly by electro magnetic means. So, at the receiving end to 
extract the information signal processing is executed on noise corrupted signal. 
Depending on nature of signal and point of application signal processing may be 
analog, digital or mixed in practice. Application of digital signal processing (DSP) 
has increased many folds as the production of DSP in bulk is easier as the basic 
operation is confined into mainly addition, multiplication and recalling of previous 
data. In digital filter design minimum number of discrete components are required 
that immunes the performance of designed filter from thermal drift. 

Digital filters are broadly classified into two main categories namely; finite 
impulse response (FIR) filter and infinite impulse response (IIR) filter [1-2]. The 
output of FIR filter depends on present and past values of input, so the name non-
recursive is aptly suited to this filter. On the other hand, the output of IIR filter 
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depends not only on previous inputs, but also on previous outputs with impulse 
responses continuing forever in time at least theoretically, so the name ‘recursive’ is 
aptly suited to this filter; anyway, a large memory is required to store the previous 
outputs for the recursive IIR filter. 

Hence, due to these aspects FIR filter realization is easier with the requirement of 
less memory space and design complexity. Ensured stability and linear phase 
response over a wide frequency range are the additional advantages. On the other 
hand, IIR filter distinctly meets the supplied specifications of sharp transition width, 
lower pass band ripple and higher stop band attenuation with ensured lower order 
compared to FIR filter. As a consequence, a properly designed IIR filter can meet the 
magnitude response close to ideal and more finely as compared to a FIR filter. Due to 
these challenging features with wide field of applications, performances of IIR filters 
designed with various optimization algorithms are compared to find out the 
effectiveness of algorithms and the best optimal IIR filter with assured stability.  

In the conventional design approach, IIR filters of various types (Butterworth, 
Chebyshev and Elliptic etc.) can be implemented with two methods. In the first case, 
frequency sampling technique is adopted for Least Square Error [3] and Remez 
Exchange [4] process. In the second method, filter coefficients and minimum order 
are calculated for a prototype low pass filter in analog domain which is then 
transformed to digital domain with bilinear transformation. This frequency mapping 
works well at low frequency, but in high frequency domain this method is liable to 
frequency warping [5]. 

IIR filter design is a highly challenging optimization problem. So far, gradient 
based classical algorithms such as steepest descent and quasi Newton algorithms have 
been aptly used for the design of IIR filters [6-7]. In general, these algorithms are very 
fast and efficient to obtain the optimum solution of the objective function for a 
unimodal problem. But the error surface (typically the mean square error between the 
desired response and estimated filter output) of IIR filter is multimodal and hence 
superior evolutionary optimization techniques are required to find out better near 
global solution. 

The shortfalls of classical optimization techniques for handling the multimodal 
optimization problem are as follows:  

• Requirement of continuous and differentiable error fitness function (cost or 
objective function), 

• Usually converges to the local optimum solution or revisits the same sub-optimal 
solution,  

• Incapable to search the large problem space,  
• Requirement of the piecewise linear cost approximation (linear programming),  

Highly sensitive to starting points when the number of solution variables is increased 
and as a result the solution space is also increased. 

So, it can be concluded that classical search techniques are only suitable for 
handling differentiable unimodal objective function with constricted search space. But 
the error surface of IIR filter is usually multimodal and non-differentiable. So the 
various evolutionary heuristic search algorithms are applied for filter optimization 
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problems, which are as follows: Genetic Algorithm (GA) is developed with the 
inspiration of the Darwin’s “Survival of the Fittest” strategy [8-9]; Simulated 
Annealing (SA) is designed from the thermodynamic effects [10]; Artificial Immune 
Systems (AIS) mimics the biological immune systems [11]; Ant Colony Optimization 
(ACO) simulates the ants’ food searching behaviour [12]; Bee Colony Optimization 
mimics the honey collecting behaviour of the bee swarm [13]; Cats Swarm 
Optimization(CSO) is based upon the behaviour of cats for tracing and seeking of an 
object [14]; and PSO and its variants simulate the behaviour of bird flocking or fish 
schooling [15-21]. 

Ecology based Predator-prey model as an evolutionary optimization technique is 
discussed in [22], where each prey is considered as a possible solution in search space 
which is chased by a predator in predefined region; Searching behaviour of human 
being is mimicked for the development of Seeker Optimization Algorithm (SOA) 
[23]; In Bacteria Foraging Optimization (BFO) technique food searching behaviour of 
E. Coli bacteria is mimicked [24]. 

Naturally, it is a vast area of research continuously being explored. In this paper, 
the capability of global searching and near optimum result finding features of GA, 
PSO and CRPSO are investigated thoroughly for solving 8th order IIR filter design 
problems. GA is a probabilistic heuristic search optimization technique developed by 
Holland [25]. The features such as multi-objective, coded variable and natural 
selection made this technique distinct and suitable for finding the near global solution 
of filter coefficients. 

Particle Swarm Optimization (PSO) is swarm intelligence based algorithm 
developed by Eberhart et al. [26-27]. Several attempts have been taken to design 
digital filter with basic PSO and its modified versions [15-21], [28-29]. The main 
attraction of PSO is its simplicity in computation and a few steps are required in the 
algorithm. 

The limitations of the conventional PSO are premature convergence and stagnation 
problem [30-31]. To overcome these problems an improved version of PSO called 
CRPSO is suggested by the authors for the design of 8th order digital IIR low pass 
(LP), high pass (HP), band pass (BP) and band stop (BS) filters. 

The paper is organized as follows: Basic structure of IIR filter along with the error 
fitness function is described in section 2. Different evolutionary algorithms namely, 
RGA, PSO and CRPSO are discussed in section 3. In section 4, comprehensive and 
demonstrative sets of data and illustrations are analyzed to make a floor of 
comparative study of performances among different algorithms. Finally, section 5 
concludes the paper.  

2 IIR Filter Design Formulation 

This section discusses the design strategy of IIR filter based on all concerned 
algorithms. The input-output relation is governed by the following difference  
equation [2].  
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Let .Ω= jez  Then, the frequency response of the IIR filter becomes 
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where 







=Ω

sf

fπ2  in [0, π] is the digital frequency; f is the analog 

frequency and sf is the sampling frequency. Different fitness functions are used for 

IIR filter optimization problems [32-34]. The commonly used approach to IIR filter 
design is to represent the problem as an optimization problem with the mean square 
error (MSE) as the error fitness function [34] expressed in (5). 
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where sN  is the number of samples used for the computation of the error fitness 

function; )( pd and )( py are the filter’s desired and actual responses, respectively. 

The difference )()()( pypdpe −= is the error between the desired and the actual 

filter responses. The design goal is to minimize the MSE )(ωJ  with proper 

adjustment of coefficient vector ω  represented as: 
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                                           .]......[ 1010
T

mn bbbaaa=ω                                         (6) 

 
In this paper, a novel error fitness function given in (7) is adopted in order to 

achieve higher stop band attenuation and to have moderate control on the transition 
width. Using (7), it is found that the proposed filter design approach results in 
considerable improvement in stop band attenuation over other optimization 
techniques. 

 

    ( ) ( )( ) ( )( )1 1d p d sJ abs abs H abs H w
ω ω

ω ω δ δ   = − − + −        (7) 

 
For the first term of (7), ∈ω pass band including a portion of the transition band 

and for the second term of (7), ∈ω stop band including the rest portion of the 
transition band. The portions of the transition band chosen depend on pass band edge 
and stop band edge frequencies. 

The error fitness function given in (7) represents the generalized fitness function to 
be minimized using the evolutionary algorithms RGA, conventional PSO and the 

proposed CRPSO individually. Each algorithm tries to minimize this error fitness 1J  

and thus optimizes the filter performance. Unlike other error fitness functions as given 

in [32-34] which consider only the maximum errors, 1J involves summation of all 

absolute errors for the whole frequency band, and hence, minimization of 1J  yields 

much higher stop band attenuation and lesser pass band ripples. 

3 Evolutionary Algorithms Employed 

3.1 Real Coded Genetic Algorithm (RGA) 

Standard Genetic Algorithm (also known as real coded GA) is mainly a probabilistic 
search technique, based on the principles of natural selection and evolution built upon 
the Darwin’s “Survival of the Fittest” strategy [25]. Each encoded chromosome that 
constitutes the population is a solution to the filter designing optimization problem. 
These solutions may be good or bad, but are tested rigorously through the genetic 
operations such as crossover and mutation to evolve a global optimal or near global 
optimal solution of the problem at hand. Chromosomes are constructed over some 
particular alphabet {0, 1}, so that chromosomes’ values are uniquely mapped onto the 
real decision variable domain. Each chromosome is evaluated by a function known as 
fitness function, which is usually the fitness function or objective function of the 
corresponding optimization problem. Each chromosome has a probability of selection 
and has to take part in the genetic operation based upon the Roulette’s wheel strategy. 
In the genetic operations, crossover and mutation bring the variation in alleles of gene 
in the chromosome population along with the alleviation of trapping to local optimal 
solution. 
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Steps of RGA as implemented for the optimization of coefficient vector ω are as 
follows [35-36]: 

Step 1: Initialize the real coded chromosome strings (ω ) of pn = 120 population, 

each consisting of equal number of numerator and denominator filter coefficients 

kb and ka , respectively; total coefficients = (n+1)*2 for nth order filter to be 

designed; minimum and maximum values of filter coefficients, hmin = -2, hmax = 2; 

number of samples=128; =pδ 0.001, =sδ 0.0001; maximum iteration cycles= 400, 

n=8. 

Step 2: Decoding of the strings and evaluation of error fitness )(1 ωJ according  

to (7). 
Step 3: Selection of elite strings in order of increasing error fitness values from the 

minimum value. 
Step 4: Copying the elite strings over the non selected strings. 
Step 5: Crossover and mutation generate offspring. 
Step 6: Genetic cycle updating. 
Step 7: The iteration stops when maximum number of cycles is reached. The grand 

minimum error and its corresponding chromosome string or the desired solution 
having (n+1)*2 number of coefficients are finally obtained. 

3.2 Particle Swarm Optimization (PSO) 

PSO is flexible, robust, population based stochastic search algorithm with attractive 
features of simplicity in implementation and ability to quickly converge to a 
reasonably good solution. Additionally, it has the capability to handle larger search 
space and non-differential objective function, unlike traditional optimization methods. 
Eberhart et al. [26-27] developed PSO algorithm to simulate random movements of 
bird flocking or fish schooling. 

The algorithm starts with the random initialization of a swarm of individuals, 
which are known as particles within the multidimensional problem search space, in 
which each particle tries to move toward the optimum solution, where next movement 
is influenced by the previously acquired knowledge of particle best and global best 
positions once achieved by individual and the entire swarm, respectively. The features 
incorporated within this simulation are velocity matching of individuals with the 
nearest neighbour, elimination of ancillary variables and inclusion of 
multidimensional search and acceleration by distance. Instead of the presence of 
direct recombination operators, acceleration and position modification supplement the 
recombination process in PSO. Due to the aforementioned advantages and simplicity, 
PSO has been applied to different fields of practical optimization problems. 

To some extent, IIR filter design with PSO is already reported in [15-21], [28-29]. 

A brief idea about the algorithm for a D-dimensional search space with pn particles 

that constitutes the flock is presented here. Each thi particle is described by a position 
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vector as T
iDiii sssS ),...,,( 21= and velocity is expressed by 

T
iDiii vvvV ),...,,( 21= . 

The best position that the thi particle has reached previously                             
pbesti = (pi1, pi2,...,piD)T ,and group best is expressed as  gbest = (pg1, pg2,...,pgD)T. 

The maximum and minimum velocities are maxV , minV , respectively. 

T
DvvvV ),...,,( max2max1maxmax = and T

DvvvV ),...,,( min2min1minmin = . 

The positive constants ,1C 2C are related with accelerations and 21,randrand lie in 

the range [0, 1]. The inertia weight w is a constant chosen carefully to obtain fast 

convergence to optimum result. k denotes the iteration number. 

The basic steps of the PSO algorithm are as follows [19-21]: 

Step1: Initialize the real coded particles (ω ) of pn = 25 population, each consisting of 

equal number of numerator and denominator filter coefficients kb and ka , 

respectively; total coefficients D = (n+1)*2 for equal number numerator and 
denominator coefficients with nth order filter to be designed; minimum and maximum 
values of filter coefficients, hmin = -2, hmax = 2; number of samples=128; 

=pδ 0.001, =sδ 0.0001; maximum iteration cycles= 100 ; n= 8. 

Step 2: Compute the error fitness value for the current position iS of each particle 

Step 3: Each particle can remember its best position )( pbest which is known as 

cognitive information and that would be updated with each iteration. 

Step 4: Each particle can also remember the best position the swarm has ever 
attained )(gbest and is called social information and would be updated in each 

iteration. 

Step 5: Velocity and position of each particle are modified according to (8) and (9), 
respectively [26]. 

     ( 1) ( ) ( ) ( ) ( ) ( )
1 1 2 2{ } { }k k k k k k

i i i i i iV w V C rand pbest S C rand gbest S+ = ∗ + ∗ ∗ − + ∗ ∗ −  (8) 

where 
minmin

maxmax

VVforV

VVforVV

i

ii

<=
>=

 

  )1()()1( ++ += k
i

k
i

k
i VSS                                            (9) 

Step 6: The iteration stops when maximum number of cycles is reached. The grand 
minimum error fitness and its corresponding particle or the desired solution having 
(n+1)*2 number of coefficients are finally obtained. 



 An Efficient Craziness Based Particle Swarm Optimization Technique 237 

 

3.3 Craziness Based Particle Swarm Optimization (CRPSO) Technique 

The global search ability of above discussed conventional PSO is improved with the 
help of the following modifications. This modified PSO is termed as craziness based 
particle swarm optimization (CRPSO).  

The velocity in this case can be expressed as follows [37]: 
 

   
{ } { }

( 1)
2 3

( ) ( ) ( ) ( )
2 1 1 2 2 1

* ( )*

(1 )* * * (1 )* *(1 )*

k k
i i

k k k k
i i i

V r sign r V

r C r pbest S r C r gbest S

+ =

+ − − + − − −
(10) 

 

where 1r , 2r  and 3r are the random parameters uniformly taken from the interval    

[0, 1] and )( 3rsign  is a function defined as: 

 

                                      
( )
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r
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                                    (11) 

 

The two random parameters 1rand   and 2rand  of (8) are independent. If both 

are large, both the personal and social experiences are over used and the particle is 
driven too far away from the local optimum. If both are small, both the personal and 
social experiences are not used fully and the convergence speed of the technique is 

reduced. So, instead of taking independent 1rand and 2rand , one single random 

number 1r  is chosen so that when 1r   is large, )1( 1r−  is small and vice versa. 

Moreover, to control the balance between global and local searches, another random 

parameter 2r is introduced. For birds’ flocking for food, there could be some rare 

cases that after the position of the particle is changed according to (9), a bird may not, 
due to inertia, fly towards a region at which it thinks is most promising for food. 
Instead, it may be leading toward a region which is in opposite direction of what it 
should fly in order to reach the expected promising regions. So, in the step that 
follows, the direction of the bird’s velocity should be reversed in order for it to fly 
back to the promising region. )( 3rsign  is introduced for this purpose. In birds’ 

flocking or fish schooling, a bird or a fish often changes directions suddenly. This is 
described by using a ‘‘craziness’’ factor and is modelled in the technique by using a 
craziness variable. A craziness operator is introduced in the proposed technique to 
ensure that the particle would have a predefined craziness probability to maintain the 
diversity of the particles. Consequently, before updating its position the velocity of 
the particle is crazed by, 
 

                                    ( ) ( ) ( ) ( ) craziness
i

k
i

k
i vrsignrPVV ** 44

11 += ++                     (12) 
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where 4r  is a random parameter which is chosen uniformly within the interval      

[0, 1]; crazinessv is a random parameter which is uniformly chosen from the 
interval ],[ maxmin

ii vv ; and )( 4rp and )( 4rsign   are defined, respectively, as: 
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where crP  is a predefined probability of craziness. 

The steps of CRPSO algorithm are as follows: 
Step 1: Population is initialized for a swarm of np vectors, in which each vector 
represents a solution of filter coefficient values. 
Step 2: Computation of initial cost values of the total population, nP. 
Step 3: Computation of population based minimum cost value, i.e., the group best 
solution vector (gbest) and computation of the personal best solution vectors (pbest). 
Step 4: Updating the velocities as per (10) and (12); updating the particle vectors as 
per (9) and checking against the limits of the filter coefficients; finally, computation 
of the updated cost values of the particle vectors and population based minimum cost 
value. 
Step 5: Updating the pbest vectors, gbest vector; replace the updated particle vectors 
as initial particle vectors for step 4. 
Step 6: Iteration continues from step 4 till the maximum iteration cycles or the 
convergence of minimum cost values are reached; finally, gbest is the vector of 
optimal IIR filter coefficients. 
The justifications of choosing the value of different CRPSO parameters are as 
follows: 

Reversal of the direction of bird’s velocity should rarely occur; to achieve this, 

05.0r3 ≤  (a very low value) is chosen when ( )3rsign  will be -1 to reverse the 

direction. If crP  is chosen less or, equal to 0.3, the random number 4r  will have more 

probability to become more than crP , in that case, craziness factor ( )4rP  will be zero 

in most cases, which is actually desirable, otherwise heavy unnecessary oscillations 
will occur in the convergence curve near the end of the maximum iteration cycles as 

referred to (9). crazinessv  is chosen very small (=0.0001) as shown in Table 2. 
0.5r4 ≥  or, <0.5 is chosen to introduce equal probability of direction reversal of 

crazinessv as referred to (12). 
The design objective in this paper is to obtain the optimal combination of the IIR 

LP, HP, BP and BS filter coefficients, so as to acquire the maximum stop band 
attenuation with the least transition width. Here lies the author’s contribution that this 
design objective has been attained by the proposed CRPSO technique.  The values of 
the parameters used for RGA, PSO and CRPSO techniques are given in Table 2. 
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4 Simulation Results and Discussions 

Extensive simulation study has been performed for comparison of optimization 
performances of three algorithms namely, RGA, PSO, and CRPSO, respectively, for 
the 8th order IIR LP, HP, BP and BS filter optimization problems. The design 
specifications followed for all algorithms are given in Table 1. 

The values of the control parameters of RGA, PSO, and CRPSO are given in Table 
2. Each algorithm is run for several times to get the best solution and the best results 
are reported in this paper. All optimization programs are run in MATLAB 7.5 version 
on core (TM) 2 duo processor, 3.00 GHz with 2 GB RAM. 

Three aspects of the algorithms are investigated in this work namely, their 
accuracy, speed of convergence and stability. Figures 1, 4, 7 and 10 show the 
comparative gain plots in dB for the designed 8th order IIR LP, HP, BP and BS filters 
obtained for different algorithms. Normalized gain plots are shown in Figures 2, 5, 8 
and 11 for the comparative study of 8th order IIR LP, HP, BP and BS filters. The best 
optimized numerator coefficients )( kb and denominator coefficients )( ka obtained 

after completion of predefined iteration cycles are reported in Tables 3, 6, 9 and 12. 
The values of statistical parameters for stop band attenuation in dB for 8th order IIR 
LP, HP, BP and BS filters designed using RGA, PSO, and CRPSO, respectively, are 
presented in Tables 4, 7, 10 and 13. Tables 5, 8, 11 and 14 show the maximum pass 
band ripple (normalized), maximum, minimum, average stop band ripple 
(normalized), and the transition widths for 8th order IIR LP, HP, BP and BS filters 
designed using RGA, PSO and CRPSO, respectively. From the above tables and 
figures it can be explored that the proposed 8th order IIR filter designed with CRPSO 
attains the highest stop band attenuation in all cases with comparatively good figures 
for the rest of the parameters, such as stop band and pass band ripples, transition 
width etc. Figures 5, 8, 11 and 14 show the pole-zero plots for all 8th order IIR filters 
concerned with this paper for CRPSO based technique. These figures demonstrate the 
existence of poles within the unit circle which ensures the bounded input bounded 
output (BIBO) stability condition for the designed IIR filters. 
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Fig. 1. Gain plots in dB for 8th order IIR LP filter using RGA, PSO and CRPSO 



240 S.K. Saha et al. 

 

Table 1. Design Specifications of IIR LP, HP, BP and BS Filters 

Filter 

Type 

Pass band 

ripple (δp) 

Stop band 

ripple (δs) 

Pass band 

normalized 

edge frequency 

(ωp) 

Stop band 

normalized 

edge frequency 

(ωs) 
LP [19] 0.001 0.0001 0.35 0.40 

HP 0.1 0.01 0.35 0.30 
BP 0.1 0.01 0.35 and 0.65 0.3 and 0.7 
BS 0.1 0.01 0.25 and 0.75 0.3 and 0.7 

  

Table 2. Control Parameters of RGA, PSO and CRPSO 

Parameters RGA PSO CRPSO 
Population size 120 25 25 
Iteration cycles 400 100 100 
Crossover rate 1 - - 

Crossover Two Point Crossover - - 
Mutation rate 0.01 - - 

Mutation Gaussian Mutation - - 
Selection Roulette - - 

Selection probability 1/3 - - 
C1, C2 - 2.05, 2.05 2.05, 2.05 

min
iv

, 

max
iv

 

- 0.01, 1.0 0.01, 1.0 

wmax, wmin - 1.0, 0.4 - 

crp
 

- - 0.3 

crazinessv  
- - 0.0001 

 

Table 3. Optimized Coefficients and Performance Comparison of Concerned Algorithms for 
8th Order IIR LP Filter 

Algorithms Num. Coeff. 

(bk) 

Den. Coeff. 

(ak) 

Max.  Stop  

 Band Attenuation (dB) 

RGA 
0.0167 0.0059 0.0434 
0.0234 0.0451 0.0302 
0.0277 0.0120 0.0092 

0.9996 -3.5213 7.1631 
-9.4231 8.7904 -5.7905 
2.6429 -0.7583  0.1066 

20.000 

PSO 
0.0165  0.0060 0.0423 
0.0237 0.0454  0.0286 
0.0275  0.0122 0.0073 

0.9996 -3.5201 7.1638 
-9.4233 8.7894 -5.7906 
2.6430 -0.7593 0.1072 

21.5683 

CRPSO 
0.0169  0.0054 0.0424 
0.0228  0.0456  0.0285 
0.0275  0.0115  0.0092 

0.9990 -3.5209 7.1621 
-9.4221 8.7896 -5.7908 
2.6431 0.7587  0.1072 

33.1170 
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Table 4. Statistical Results for Stop Band Attenuation (dB) for 8th Order IIR LP Filter 

Algorithm Maximum Mean Variance Standard 

Deviation 
RGA 20.0000 42.9281 263.0129 16.2177 
PSO 21.5683 44.5499 264.6049 16.2667 

CRPSO 33.1170 48.3590 80.5940 8.9774 
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Fig. 2. Normalized gain plots for 8th order IIR LP filter using RGA, PSO and CRPSO 
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Fig. 3. Pole-zero plot of 8th order IIR LP filter using CRPSO 
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Table 5. Qualitatively Analyzed Results for 8th Order IIR LP Filter 

Algorithm Maximum  

Pass band ripple  

(normalized) 

Stop band ripple (normalized) Transition  

Width Maximum Minimum Average 

RGA 0.0214 0.1000 7.3286 ×10-4 5.0366×10-2 0.0341 
PSO 0.0500 0.0835 1.0000×10-3 4.2250×10-2 0.0216 

CRPSO 0.0086 0.0221 1.0000×10-4 1.1100×10-2 0.0370 

Table 6. Optimized Coefficients and Performance Comparison of Concerned Algorithms for 
8th order IIR HP filter 

Algorithms Num. Coeff. 

(bk) 

Den. Coeff. 

(ak) 

Max.  Stop   

Band Attenuation (dB) 

RGA 

0.1250 -0.7092 1.9588 

-3.3672 3.9090 -3.1264 

1.6821 -0.5585 0.0881 

0.9999 -2.1875 3.8221 

-3.6220 2.9095 -1.3332 

0.5678 -0.0861 0.0285 

46.2199 

PSO 

0.1252 -0.7091 1.9587 

-3.3671 3.9091 -3.1263 

1.6821 -0.5584 0.0881 

1.0001 -2.1874 3.8222 

-3.6220 2.9096 -1.3333 

0.5678 -0.0861 0.0285 

47.7018 

CRPSO 

0.1252 -0.7091 1.9587 

-3.3672 3.9090 -3.1263 

1.6820 -0.5584 0.0883 

1.0000 -2.1874 3.8223 

-3.6220 2.9094 -1.3334 

0.5679 -0.0861 0.0284 

49.9710 

Table 7. Statistical Results for Stop Band Attenuation (dB) for 8th Order IIR HP Filter 

Algorithm Maximum Mean Variance Standard 

Deviation 
RGA 46.2199 49.8589 13.2467 2.6391 
PSO 47.7018 50.7807 9.4796 3.0789 

CRPSO 49.9710 53.1421 3.8708 1.9674 
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Fig. 4. Gain plots in dB for 8th order IIR HP filter using RGA, PSO and CRPSO 
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Table 8. Qualitatively Analyzed Results for 8th Order IIR HP Filter 

Algorithm Maximum 

Pass Band Ripple 

(normalized) 

Stop Band Ripple (normalized) Transition 

Width Maximum Minimum Average 

RGA 0.0146 0.48863×10-2 0.39587×10-4 0.24629×10-2 0.0598 
PSO 0.0186 0.41201×10-2 0.47667×10-4 0.20839×10-2 0.0500 

CRPSO 0.0356 0.31726×10-2 6.2291×10-4 0.18978×10-2 0.0349 

Table 9. Optimized Coefficients and Performance Comparison of Concerned Algorithms for 
8th order IIR BP filter 

Algorithms Num. Coeff. 
(bk) 

Den. Coeff. 
(ak) 

Max. 
Stop Band 

Attenuation 
(dB) 

RGA 
0.1369 -0.0069 -0.0200 
-0.0043 0.1897 0.0069 
-0.0338 -0.0056 0.1253 

0.9971 -0.0075 1.5866 
-0.0094 1.7020 0.0000 
0.8246 -0.0025 0.2247 

18.2445 

PSO 
0.1274 0.0071 -0.0209 
0.008 0.1857 0.0001 

-0.0292 -0.0052 0.1299 

0.9927 -0.002 1.5940 
0.0029 1.6978 -0.0002 
0.8079 -0.0034 0.2058 

20.1389 

CRPSO 
0.1082 -0.0078 -0.0233 
0.0018 0.1561 -0.0033 
-0.0273 -0.0015 0.1037 

1.0001 -0.0062 1.6899 
0.0028 1.7556 -0.0023 
0.8516 -0.0078 0.2038 

22.7295 
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Fig. 5. Normalized gain plots for 8th order IIR HP filter using RGA, PSO and CRPSO 
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Fig. 6. Pole-zero plot of 8th order IIR HP filter using CRPSO 

Table 10. Statistical Results for Stop Band Attenuation (dB) for 8th Order IIR BP Filter 

Algorithm Maximum Mean Variance Standard Deviation 
RGA 18.2445 20.3032 4.2382 2.0587 
PSO 20.1389 21.4826 1.8054 1.3437 

CRPSO 22.7295 24.4450 1.1011 1.0493 
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Fig. 7. Gain plots in dB for 8th order IIR BP filter using RGA, PSO and CRPSO 
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Fig. 8. Normalized gain plots for 8th order IIR BP filter using RGA, PSO and CRPSO 
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Fig. 9. Pole-zero plot of 8th order IIR BP filter using CRPSO 

Table 11. Qualitatively Analyzed Results for 8th Order IIR BP Filter 

Algorithm Maximum 

Pass Band Ripple 

(normalized) 

Stop band ripple (normalized) Transition  

Width Maximum Minimum Average 

RGA 0.0134 12.24×10-2 12.0000×10-3 6.7200×10-2 0.0311 
PSO 0.0399 9.84×10-2 3.7771×10-3 5.1089×10-2 0.0277 

CRPSO 0.0578 7.30×10-2 1.4313×10-3 3.7200×10-2 0.0409 
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Table 12. Optimized Coefficients and Performance Comparison of Concerned Algorithms for 
8th order IIR BS filter 

Algorithms Num. Coeff.(bk) Den. Coeff. (ak) Max.  Stop  Band 

 Attenuation (dB) 

RGA 
0.2269 -0.0189 0.5039 
0.0170  0.6409 -0.0136 
0.4866  0.0093 0.2189 

1.0190 -0.0067 0.0968 
0.0109  0.8671  0.0180 
-0.0322  0.0177 0.1182 

17.4734 

PSO 
0.2142 -0.0058 0.4833 
-0.0008 0.6503 0.0097 
0.4976 0.0041 0.2091 

1.0073 -0.0069 0.0980 
-0.0077 0.8902 -0.0073 
-0.0198 -0.0048  0.1089 

21.9740 

CRPSO 
0.2144 -0.0083 0.4817 
-0.0055 0.6589  0.0001 
0.4841  0.0050 0.2162 

0.9959 -0.0061   0.0894 
0.0040  0.8909   0.0038 
-0.0273 -0.0003 0.1095 

23.8659 

Table 13. Statistical Results for Stop Band Attenuation (dB) for 8th Order IIR BS Filter 

Algorithm Maximum Mean Variance Standard 

Deviation 
RGA 17.4734 21.0867 13.0559 3.6133 
PSO 21.9740 24.1658 4.8038 2.1918 

CRPSO 23.8659 24.8641 0.5169 0.7190 
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Fig. 10. Gain plots in dB for 8th order IIR BS filter using RGA, PSO and CRPSO 
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Fig. 11. Normalized gain plots for 8th order IIR BS filter using RGA, PSO and CRPSO 
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Fig. 12. Pole-zero plot of 8th order IIR BS filter using CRPSO 

Table 14. Qualitatively Analyzed Results for 8th Order IIR BS Filter 

Algorithm Maximum 

Pass Band Ripple 

(normalized) 

Stop Band Ripple (normalized) Transition  

Width Maximum Minimum Average 

RGA 0.0268 13.38×10-2 30.6000×10-3 8.2200×10-2 0.0535 
PSO 0.0303 7.97×10-2 5.8373×10-3 4.2769×10-2 0.0377 

CRPSO 0.0344 6.41×10-2 1.4978×10-3 3.2799×10-2 0.0410 
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Table 15. Comparison of Performance Criteria among algorithms published in relevant 
literatures 

Reference Proposed 
Algorithm 

Filter  
Type 

Order Stop Band  
Attenuation (dB) 

Max. Pass  
Band Ripple 

Max. Stop  
Band Ripple 

Transition  
Width 

Luitel et al.
[32]

DE-PSO LP 9th 25 0.257 0.259 NR*

Luitel et al.
[33]

PSO-QI LP 9th 27 0.808 0.793 NR*

Karaboga
et al. [34]

GA LP 9th 14 NR* NR* NR*

LP 6th 29 NR* NR* NR*Gao et al.
[38]

DC
HP 6th 42 NR* NR* NR*

Xue et al.
[39]

GA LP 7th 15 NR* NR* NR*

LP 8th 33.1170 0.0086 0.00221 0.0370
HP 8th 49.9710 0.0356 0.31726 e-2 0.0349
BP 8th 22.7295 0.0578 7.30 e-2 0.0409

Present
paper

CRPSO

BS [21] 8th 23.8659 0.0344 6.41 e-2 0.0410
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Fig. 13. Convergence profiles for RGA for 8th order IIR BS filter 
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Fig. 14. Convergence profiles for PSO for 8th order IIR BS 
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Fig. 15. Convergence profiles for CRPSO for 8th order IIR BS 

 
Comparative study of results in terms of order, maximum attenuation, transition 

width, pass band and stop band ripples of IIR filters designed with different 
approaches adopted in different published literatures are reported in Table 15. Luitel 
et al. [32] proposed DE-PSO algorithm for the design of 9th order LP filter and 
maximum stop band attenuation, pass band and stop band ripples of approximately 25 
dB, 0.257 and 0.259, respectively. Again, in [33], Luitel et al. proposed PSO-QI 
algorithm for the design of 9th order LP filter with the values of maximum stop band 
attenuation, pass band and stop band ripples of 27 dB, 0.808 and 0.793, respectively. 
Karaboga et al. proposed GA for the design of 9th order LP filter and the maximum 
value of stop band attenuation as 14 dB was reported in [34]. Gao et al. proposed 
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differential cultural algorithm for the design of 6th order LP and HP filters in [38]. 
Maximum stop band attenuations of 29 dB and 42 dB for LP and HP filters, 
respectively, were reported there. Xue et al. also proposed GA for the design of 7th 
order LP filter and maximum stop band attenuation of 15 dB was reported in [39]. In 
the present paper CRPSO is proposed for the design of 8th order LP, HP, BP and BS 
filters. With this optimization technique, values of maximum stop band attenuation 
are 33.1170 dB, 49.9710 dB, 22.7295 dB and 23.8659 dB; maximum pass band ripple 
are 0.0086, 0.0356, 0.0578 and 0.0344; maximum stop band ripple are 0.221×102, 
0.31726×10-2, 7.30×10-2 and 6.41×10-2 and transition widths are 0.0370, 0.0349, 
0.0409 and 0.0410 are obtained for LP, HP, BP and BS filters, respectively. So, 
CRPSO yields consistently higher stop band attenuation, lower stop band ripples with 
moderate control on the transition width and pass band ripples.  

4.1 Comparison of Effectiveness and Convergence Profiles of RGA, PSO and 
CRPSO 

Figures 13-15 depict the convergences of error fitness values obtained by RGA, PSO, 
and CRPSO for the 8th order IIR BS filter. Similar plots can also be obtained for the 
rest of the filters, which are not shown here. 

As shown in Figures 13-15, RGA, PSO and CRPSO take 379, 85 and 79 iteration 
cycles to reach the error value of 4.043, 2.105 and 1.461, respectively, from which it 
can be concluded the CRPSO based approach finds the near sub-optimal solution of 
filter coefficients most fleetly among others with ensured grand minimum error value. 
With consideration of above facts and Figures 13-15, it can be easily inferred that the 
proposed CRPSO based optimization technique not only obtains the lowest error 
fitness value but also fast enough to achieve that. With a view to the above fact, it 
may finally be concluded that the performance of the CRPSO is the best among the 
three mentioned algorithms. All optimization programs are run in MATLAB 7.5 
version on core (TM) 2 duo processor, 3.00 GHz with 2 GB RAM.  

5 Conclusions 

In this paper, a stochastic optimization algorithm, CRPSO, is applied to the optimal 
design of 8th order low pass, high pass, band pass and band stop IIR digital filters. 
The proposed filter design algorithm, CRPSO, is based upon the PSO in which pitfalls 
of conventional PSO have been judiciously managed with the perspective of closely 
mimicking the behaviour of fish in a school. The optimal filters thus obtained meet 
the stability criterion and show the best attenuation characteristics with reasonably 
good transition widths. The CRPSO algorithm converges very fast to the best quality 
optimal solution and reaches the lowest minimum error fitness value in the shortest 
number of iteration cycles. Statistically analysed results obtained for the CRPSO also 
justify the potential of the proposed algorithm for the realization of digital IIR filters.  
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Abstract. The evolution of cooperation is an enduring conundrum in biology 
and the social sciences. The prisoner’s dilemma game has emerged as the most 
promising mathematical metaphors to study cooperation. Mechanisms promot-
ing the evolution of cooperation in two-player, two-strategy spatial iterated 
prisoner’s dilemma (IPD) games have been discussed in great detail over the 
past decades. Understanding the effects of repeated interactions in n-choice spa-
tial IPD game is a formidable challenge. In this paper, the simulations are con-
ducted with four different types of neighbourhood structures, and agents update 
their strategies by probabilistically imitating the strategies of better performing 
neighbours. During the evolution each agent can modify his own strategy 
and/or personal feature via a particle swarm optimization approach in order to 
improve his utility. The particle swarm optimization (PSO) approach is a bionic 
method which can simulate the interactions among agents in a realistic way. 
The results show that the evolutionary stability of cooperation does emerge in 
n-choice spatial IPD game, and the consideration of social cohesion in PSO ap-
proach promotes the evolution of cooperation. In addition, the neighbourhood 
structures and cost-to-benefit ratio increase the capability of cooperation and 
prevent the invading of defectors.   

Keywords: evolution of cooperation, N-choice spatial iterated prisoner’s  
dilemma (IPD), particle swarm optimization (PSO). 

1 Introduction 

Cooperation is a key force in evolution, exists in all scales of organization from un-
icellular organisms to complex modern human society [9, 27]. The emergence and 



254 X. Wang et al. 

 

stabilization of cooperative behavior has become a core problem in biology, econom-
ics, mathematics, computer science and sociology [20-22, 28]. Evolutionary game 
theory has proven to be one of the most fruitful approaches to investigate this prob-
lem, using evolutionary models based on so-called social dilemmas [29]. An enorm-
ous body of studies, however, has concentrated on the iterated prisoner’s dilemma 
(IPD) [7, 8], which was proposed by Axelrod in the early 1980s. Those works mainly 
focused on how to evolve cooperative behavior from a population of agents involved 
in this nonzero-sum game. Axelrod applied evolution in order to determine whether it 
was possible to obtain successful strategies of mutual cooperation. In his original 
human-centered competitions, the tit-for-tat (TFT) strategy, based on reciprocal coop-
eration and submitted by Rapport, proved to be the most successful strategy.  

Early studies of the IPD using the co-evolutionary approach consider only two 
choices, i.e., cooperation and defection for each player in the game. Over the years, 
various mechanisms have been proposed to help explain and understand cooperative 
phenomena. One of the possible mechanisms accounting for the promotion of cooper-
ation is the consideration of spatial structure (reciprocity) [24]. The presence of struc-
ture means that each individual does not interact with each other, but with a small 
subset of the population, which constitutes his/her neighborhood and is arranged ac-
cording to an underlying network of relationships. This idea was very successfully 
introduced by Nowak and May in their seminal paper [30], they considered a spatial 
version of the Prisoner’s Dilemma game and showed that spatial structure enables 
both cooperators and defectors to persist indefinitely (see [24] for a review).  

A key characteristic of spatial reciprocity is the fact that short-range interactions 
restrict the number of choices which can affect the behavior of a given player at a 
particular site. The spatial structure allows cooperators to form clusters, in which the 
benefits of mutual cooperation can out weight the losses against defectors. Therefore, 
the general understanding has been that cooperative behavior differs when the spatial 
structure is limited. However, several studies have shown that it is actually possible to 
evolve and sustain cooperation in IPD game with n-choice, i.e., multiple levels of 
cooperation. Darwen and Yao [10-12] were among the first who studied the n-choice 
IPD a co-evolutionary learning environment, and their model showed more realistic 
behavioral interactions between agents than conventional two-choice IPD game. They 
demonstrated approaches to improve classical co-evolutionary learning and increase 
higher generalization performance in n-choice IPD game. In addition to the co-
evolutionary algorithm, Chong [1-5] investigated the co-evolutionary learning of n-
choice IPD game with indirect reciprocity. Their investigation has extended the IPD 
to bridge the gap between model and real-world dilemmas and suggested why and 
how the indirect reciprocity can promote the cooperation. To date, the effect of spatial 
reciprocity on IPD game with multiple choices has received much less attention [31]. 
The importance of considering the n-choice IPD game should not be underestimated, 
as they may be essential in economic and biology applications. 

In this paper, we extend this line of research by studying the effects of spatial reci-
procity on the evolution of cooperation in the n-choice IPD game. Agents in the popu-
lation are mapped into four different types of two-dimensional lattice for comparison,  
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that is, the regular-connected network, the Moore network, the Von-Neumann net-
work and the small world network. At each time step, the focal agent participates in a 
game instance with other agents drawn from its local neighborhood. The number of 
choices and the payoff matrix defines an agent’s strategy, which is used to select an 
action. A bionic method, the PSO algorithm with synchronous updating is used to 
evolve the strategies over time. In this paper, the behavior performances of players 
with different environmental factors in regular-connected network are first examined, 
such as the number of choices, the size of population et al. Comprehensive numerical 
simulations across a range of parameter settings by using PSO algorithm is to check 
whether cooperation can still be maintained in a regular-connected network, and the 
results are used for the comparison of the cases when the agents move in complex 
spatial structures. Secondly, the effect of spatial structure on the evolution of coopera-
tion is evaluated in a well-mixed population, and examines the ability of cooperation 
promoting. Thirdly, the influence of the cost-to-benefit ratio is tested in this n-choice 
IPD game.  

The rest of this paper is organized as follows. An overview of the core IPD prob-
lem and relevant historic related work is presented in Section 2. A summary of the co-
evolutionary model is given in Section 3, along with a description of spatial structure 
used to evolve cooperation. Section 4 explains the experimental procedure followed 
for this study, and the results are analyzed. Section 5 concludes this paper by summa-
rizing some of the major experimental findings. 

2 Overview of the Iterated Prisoner’s Dilemma 

2.1 Conventional IPD Game  

In the conventional IPD game, each player has two choices: cooperation and defec-
tion. A player would receive payoffs as the payoff matrix set when his opponent 
makes his choice in IPD game [2]. A reward (R) is given when both players choose to 
cooperate, whereas punishment (P) will be given if both of them choose to defect. In 
the situation where one player defects and the other player cooperates, the one who 
defects is awarded a tempting reward (T) but the one who cooperates will be given the 
sucker’s punishment (S). Accordingly, a dilemma will always exist when given the 
rules T>R>P>S and 2R>T+S. 

Table 1 illustrates the game in terms of costs and benefits to the players. A cooper-
ative act results in a benefit b to the opposing player and a cost c to the cooperator, 
where b>c>0. Defector incurs neither costs nor benefits in some previous studies [26], 
which means k=0. However, in order to ensure there exists no negative payoffs in the 
matrix, let k=c in this paper. Under this situation, if the opponent cooperates, a player 
gets the reward R= k+(b-c) if he/she also cooperates, but can get T= k+b by defecting. 
If the opponent defects, a player gets the lowest payoff S=k-c for being cooperative 
and P=k for being defect. As the definition of prisoner’s dilemma game, the defection 
is the better choice regardless of what the opponent plays. 
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Table 1. Payoff matrix of prisoner’s dilemma game 

B  A Cooperate Defect 

Cooperate k+(b-c) k-c 

Defect k+b k 

2.2 N-Choice IPD Game 

In the studies of Chong and Yao[1,2], the n-choice model is based on a simple inter-
polation of the conventional IPD. Specifically, the n-choice IPD is linearly interpo-
lated from the 2-choice IPD using equation (1) [10, 11, 2-5]: 

 ,    1 , 1 (1) 

Where  is the payoff of player A, given that  and  are the cooperation le-
vels of the choices that agents A and B make respectively. Note that the payoff matrix 
must satisfy the following conditions in a multiple choices IPD game: 

1) for  and constant cB: ,  , ; 
2) for  and : ,  , ; 

3) for  and :  , , , . 

The above three conditions are similar to those for the conventional IPD game. The 
four corners are the same payoffs for the 2-choice IPD and that any 2×2 sub-matrix of 
the n×n matrix is itself a 2-choice IPD. The variables x, y and z in equation (1) can be 
calculated when the payoff matrix of 2-choice IPD game is fixed. Once given the payoff 
equation and the three conditions above, an n-choice IPD can be formulated [2, 4]. 
However, only the number of choices is fixed where the line between full cooperation 
and full defection is symmetrical distribution of the zero. For example, consider the case 
of an IPD game of 4 choices (Table 2 shows) which is based on the conventional IPD  
 

Table 2. Payoff matrix of four-choice IPD game 

     B 
A 

+1 13 
13 

-1 

+1 4 2 23 1 13 
0 13 4 13 

3 1 23 
13 13 4 23 3 13 

2 23 

-1 5 3 23 2 13 
1 
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game (Table 1 shows). If in Table 1, T=5, R=4, P=1, S=0, equation (2) is the matched 
equation for the four-choice IPD payoff matrix. 

 2.5 0.5 2 ,    1 , 1 (2) 

To normalize the range of cost and benefit, we define r=  (b, c are illustrated in 

2.1) as cost-to-benefit ratio. Payoffs of agents in four-choice IPD game can be calcu-
lated based on Table 1, Equation (1) and cost-to-benefit ratio. For example, in a four-

choice payoff matrix as Table 2 shows, where r= , c=k=1, b=4, x=2.5, y=0.5, z=2. If 

r= , c=k=1, we can calculate that b=2, x=1.5, y=0.5, z=1.  

3 The Model 

3.1 Strategy Update 

For strategy update, we use PSO algorithm to evolve the pool of agents’ strategies. 
The PSO technique was introduced by Kennedy and Eberhart [18]. Inspired by the 
flocking behaviour of birds, PSO has been applied successfully to function the opti-
mization, game learning, data clustering, and image analysis and neural networks 
training [14-17]. PSO involves “flying” a swarm (or population) of n-dimensional 
particles, and through a problem space, each possible solution to the optimization 
problem need to search a single optimum or multiple optima. Each particle has its 
own velocity, a memory of the best position it has obtained thus far (referred to as its 
personal best position), and knowledge of the best solution found by other particles 
(referred to as the global best solution). 

In the PSO algorithm, each particle adjusts its position in a direction toward its 
own personal best position in a direction toward its own personal best position and the 
global best position. The velocity of the particle is calculated using: 0,1 0,1            (3) 

where for particle i, the position vector can be represented by , , … , , 
 presents the velocity of the ith particle on the specific d-dimension.  is the iner-

tia weight,  and  are acceleration coefficients.  is the best position of particle 
i on dimension d at iteration k, and  is the dth dimensional best position in the 
whole particle swarm at iteration k. 

For particle i, its position  is changed according to: 

  (4) 

To prevent velocities from growing too fast, velocity clamping is usually used to 
restrict step sizes. That is, if then 

                                        (5) 
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Various studies [16]-[18] have shown that under certain conditions convergence is 
guaranteed to a stable equilibrium point. These conditions include  

 1 (6) 

 1 0 (7) 

The  and  are given by 

 ∑ ∑ ,,  (8) 

   (9) , 1,1 , , 1,2 … ,  

Where ,  are strategies in the payoff matrix, and are generated symmetrical of 
the zero once the level of choice is fixed. -1 means full defection while +1 means full 
cooperation. 

Combining with the prisoner’s dilemma framework, each particle in the swarm is 
associated with a behaviour (or “strategy”), and the purpose of the behaviours is to 
maximize the payoff of individual or the group. The strategy is used to compute its 
position in the next step. An interpretation of multiple levels of choice between coop-
eration and defection is employed to the PSO approach. 

3.2 The Spatial Environment for Strategy Co-evolution 

In spatial evolutionary environment, the players (or agents) of a population are distri-
buted on a regular grid and interact with other players in its neighbourhood. In our 
model, the players are mapped to network nodes (vertices) and the edges (or links) 
which dictate the interaction topology. Each agent participates in an interactive game 
with -1 other agent drawn from its local neighborhood. Figure 1 depicts the four 
examples of neighborhood structure for interaction, and single agent is located in the 
node (vertex) of the grid world. In Figure 1(a) and (b), the two examples show that 
agent can only interact with the agents in dotted box. The regular-network (Figure 1 
(d)) is two-dimensional and agents are connected by the edges. As for the small-world 
network, we use a version similar to the one introduced by Watts and Strogatz [25]. 
From the two-dimensional regular-network substrate we rewire each link with proba-
bility ρ (Figure 1 (c)). In this paper, we allow neither self or repeated links nor dis-
connected graphs to ensure that the individuals in the population are highly clustered 
and have relatively short path length. When ρ=0, it’s essentially a regular-network. As 
ρ=1, it is defined as full-connected network. 

The calculation of the neighborhood best particle depends on the spatial neighbor-
hood structure agents used. Various spatial neighborhood structures have been de-
fined [23], of which the four neighborhood structures of Figure 1 are used in this 
study. The neighborhood structures extend the 1-D lattice from the local best position  
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Fig. 1. Examples of neighborhood structures 

into a two-dimensional lattice in variable space, allowing more intricate information 
sharing behavior. Studies have shown that the neighborhood structure outperforms 
other network structures on several benchmark problems [13, 23, 26]. 

In general, the neighborhood best position is calculated as  | max ,                                  (10) 

with the neighbourhood defined as  , … , 1 , , 1 , … ,          (11) 

for neighbourhood size of . 
Every agent is initialized with a random strategy, represented by a real number. 

The individuals play the game over a fixed number of generations, each consisting of 
a number of repeated interactions. The utility (fitness) of each agent is determined by 
summing its payoffs in the game against the group numbers. At the end of each gen-
eration, all agents are presented with an opportunity to update their strategies accord-
ing to the payoffs received. 

3.3 Training Algorithm 

The biomimetic methods [5, 6, 21] have been widely used in the iterated prisoner’s 
dilemma game. The complete PSO based co-evolutionary algorithm is listed in Figure 
2. The algorithm in Figure 2 can be interpreted as follows: A player corresponds to a 
single particle in the swarm. The collections of player complete in the n-choice IPD 
game. Each player has its own “strategy” which is represented by the particle’s cur-
rent position. By recording the personal best positions, particles have to compete 
against previously located best solutions. The neighborhood best solutions are also 
recorded for particles to choose their strategies. 

4 Simulation Experiments and Results 

Extensive computational simulations have been carried out to investigate the popula-
tion dynamics of the games played. The experiments in the first part are conducted to 
analyse the general performance of strategy co-evolution. The second part of the  
experiments mainly examines the influence of spatial structure to the cooperation  
 

(c) Small-World (b) Moore (a) Von-Neumann (d) Regular-Network 
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Fig. 2. The PSO algorithm for multiple choices IPD game in spatial environment 

learning in the population. We compare the proportions of full cooperators (+1) and 
the average cooperation in both the spatial structures and regular network. The third 
part of the experiments is conducted to compare the proportions of full cooperators by 
varying the cost-to-benefit ratio r in all the spatial structures. 

4.1 General Performance of Strategy Co-evolution by Using PSO Approach in 
Regular Network  

The experiments of this part are testing the co-evolutionary process of behaviour per-
formances in n-choice IPD game with regular connected network. The following pa-
rameters are used in the PSO: PNum from 8 to 64, L from 4 to 32. In order to keep the 
uniform distribution of choices during the initialization process, each choice is set to 
players with the same probability. For example, if PNum=8 and L=4, then each player 
has 25% probability to get one of the four choices. Each iteration two players are 
chosen for the game, and the average payoff is calculated between two players. 

Figure 3 shows the average frequencies for the choices that are played at each gen-
eration of the PSO approach. Because of the limitation of the figure, if the number of 
choices is higher than four, some specific choices are shown in Figure 3. From Figure 
3, it can be found that the frequency of full cooperation (+1) is significantly higher 
than other choices, indicating that there are more full cooperative plays by the evolv-
ing strategies. If the PNum is fixed, comparing Figure 3(a) and (b), (c) and (d), (e) and 
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(f), as the number of choices increases, players choose several levels of choices in-
stead of full cooperation (+1). This is quite different from the classical IPD game with 
two choices [27], where the mutual cooperation runs quite consistently and quickly. It 
illustrates that more choices indeed made cooperation more difficult to evolve. 

 
 

 

Fig. 3. The probability of each choice is calculated during the iteration. The figure can’t show 
each choice in detail if L>4, however, some specific points are show in this figure. 

Figure 4 shows the plots of average payoff of each generation. The average payoffs 
in Figure 4 reflect the changes of the behaviour performances. As the increase of pop-
ulation and choice number, more middle levels of choice are chosen. This experimen-
tal finding is rather similar to some phenomena in our human society, first is full  
cooperation or full defection is easier to emerge in a group of people with small popu-
lation size than in a larger one; the second is more choices for people leads to more 
complex choosing diversity. 

Figure 3 and Figure 4 show the situation that each player has the same opportunity 
to get a choice during the initialization process. Figure 5 and Figure 6 show the situa-
tion that the chance is not uniformly for each player in the initialization process. In 
order to show the comparisons clearly, the behaviour performances of L=16 are 
shown in Figure 5, and the Figure 6 plots the average payoff. From Figure 5, it can be 
seen that no matter how the choices are distributed during the initialization process, 
mutual full cooperation is always the most popular choice. As the number of popula-
tion increases, players choose other choices instead of mutual cooperation. The results 
of cooperation evolution by using PSO approach can be clearly seen from the data in 
Table 3 and Table 4. The means of average payoff are above 2.5. 
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(a) PNum=8, L=4 (b) PNum=8, L=8 

 
(c)PNum=16,L=8 (d)PNum=16,L=16 

 
(e) PNum=32,L=16 (f)PNum=32,L=32 

 

Fig. 4. The average payoff of each player in the multiple choices IPD game 

Table 3. Comparison results from the experiments that used the n-choice IPD with 600 
iterations. “Mean” indicates the average payoff of each agent during the iteration. “Max” 
indicates the highest average payoff of agent during the iteration. “Min” indicates the lowest 
average payoff of agent during the iteration. 

Environment Mean±StdDev Max Min 
PNum=8, L=4 3.76±0.33 4 1 
PNum=8, L=8 3.50±0.76 4 1 
PNum=16,L=8 3.54±0.76 4 1 

PNum=16,L=16 3.51±0.80 4 1 
PNum=32,L=16 2.98±1.22 4 1 
PNum=32,L=32 2.68±1.62 4 1 

 

 

Fig. 5. The probability of each choice is calculated during the iteration. The figure can’t show 
16 choices in detail, so some specific points are show in this figure. 
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(a)PNum=16,L=16 (b) PNum=32,L=16 

 
(c)PNum=48,L=16 (d) PNum=64,L=16 

 

Fig. 6. The average payoff of each player in the IPD game with 16 levels of choice 

Table 4. Comparison results from the experiments that used in the n-choice IPD with 600 
iterations. “Mean” indicates the average payoff of each agent during the iteration. “Max” 
indicates the highest average payoff of agent during the iteration. “Min” indicates the lowest 
average payoff of agent during the iteration. 

Environment Mean±StdDev Max Min 
PNum=16,L=16 3.51±0.80 4 1 
PNum=32,L=16 2.98±1.22 4 1 
PNum=48,L=16 2.62±1.33 4 1 
PNum=64,L=16 2.68±1.32 4 1 

4.2 Evolution of Cooperation by Using PSO Approach in Spatial Structure 
Environment 

In this section, all experiments are performed on spatial network consisting 
10×10=100 agents, randomly initialised with 25% of each four choice at the start of 
the game. Every agent played iteratively against one another within its social groups 
for 700 generations. At the end of each generation, PSO algorithm will give each 
agent an opportunity to update the strategies. Agents interact with each other in the 
Von-Neumann and Moore network based on Figure 1(a) and (b). The small-world 
network is generated by setting the random rewire probability ρ=0.5. 

The main goal of experiments in this part is to test the co-evolutionary process of 
behaviour performances in four-choice IPD game by using PSO algorithm. The 
payoff matrix used in this part is shown in Table 2. Figure 7 shows the average fre-
quencies of the choices that are played at each generation in the regular network by 
using the PSO approach. From Figure 7, it can be found that the frequency of full 
cooperation (+1) is significantly higher than other choices, indicating that there are 
more full cooperative plays by the evolving strategies. The other choices are still exist 
with relatively low frequency. 
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Fig. 7. The probability of each choice in regular network during the iteration 

 

Fig. 8. Probability of each choice in different spatial environment during the iteration 

 
Figure 8 shows the average frequencies of the choices that are played at each gen-

eration in four kind of spatial structures by using the PSO approach. Compared with 
Figure 7, it can be found that full cooperation (+1) is the highly dominated choice and 
the spatial environment is conducive for cooperation to emerge. The result thus far 
suggest that the iterated interactions of population in spatial environment can indeed 
promote cooperation, however, the behavioral outcome is correlated with the struc-
tures of the neighborhood. To further ascertain this, Figure 9 shows the average fre-
quency of full cooperation in four spatial structures. From the figure, it is clear that 
the full-connected structure has increased more cooperation than others. Players in the 
random rewired network, such as the small-world and full-connected network are 
easier to cooperate than in the regular networks, such as Von-Neumann and Moore 
networks. 

 

0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

1 101 201 301 401 501 601 701

c=+1 c=+1/3 c=-1/3 c=-1



 Effect of Spatial Structure on the Evolution of Cooperation in the N-Choice IPD 265 

 

 

Fig. 9. The probability of full cooperation (+1) in each spatial structure 

4.3 Levels of Cooperation with Varying the Cost-to-Benefit Ratio 

In the previous sets of experiment, we compare the proportions of full cooperation 
with and without spatial environment by using PSO algorithm. In this part of experi-
ment, the cost-to-benefit ratios, r is observed to find the influence to the evolution of 
cooperation. Payoffs of agents are calculated based on Table 3, Equation (1) and the 
cost-to-benefit ratios.  

In order to see the proportion of full cooperation across different cost-to-benefit ra-
tios within the immediate neighborhood, a close examination of the frequency of full 
cooperation in Figure 10 with r from 0 to 1 and plots of the average cooperation ratio 
in Figure 11. A close observation of Figure 10 and Figure 11 reveals that agents in the 
four-choice IPD population can maintain high levels of cooperation only for small r 
that less than 0.5. As r increases, the proportion of full cooperators drops regardless of 
the spatial structures. When the value of r is sufficiently high, defectors would domi-
nate the agent population. For a four-choice IPD game with r >0.5, it is extremely 
challenging to evolve cooperative behavior. The average proportion of full coopera-
tors is under 50% and becomes very low especially in the spatial structure is Von-
Neumann and Moore network, as can be seen in Figure 10 and 11. On the other hand, 
when the value of r is small it would be worth to cooperate. For the values of r < 0.5, 
the population may settle into a mixed state where the cooperators resist the invasion 
of defectors as. 

 

 

Fig. 10. The probability of full cooperation (+1) of four-choice IPD game in each spatial 
structure 
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Fig. 11. The average cooperation of four-choice IPD game in each spatial structure 

In small-world network environment, cooperators can lead to isolated clusters to de-
fend the defectors. Even with a not very large re-wiring probability, it’s possible that 
an agent could have all its links re-wired resulting in random longer range interactions 
and thus more general clustering in the population than other spatial structures. In other 
words, minor re-wiring in the population may be beneficial when the game becomes 
more challenging. The simulation results suggest that a small re-wiring probability 
could be advantageous when the evolution of cooperation is difficult.  

5 Conclusion 

In this paper, a new interpretation for n-choice IPD game in spatial environment is 
proposed.  Detailed simulations across a range of spatial structures and cost-to-
benefit ratios clearly showed that cooperation can be maintained, or sometimes even 
enhanced. The findings are consistent with previous studies along this line of research 
(e.g., Refs. [19, 23]). Significantly, this research has taken the current understanding 
of spatial evolutionary in IPD game one step further by considering the multiple 
choices game. This work may be helpful in understanding cooperative phenomena in 
systems where efficient collective actions are required.  

Future work will include comparisons against existing game theory and IPD ap-
proaches, an investigation of the effects of using different payoff matrices to influence 
cooperative behaviour, competing against more neighbours of the spatial environ-
ment. As the theoretical study of the PSO techniques is extremely necessary and im-
portant, more detailed studies of the combination of evolved strategies and better PSO 
algorithms in the co-evolutionary training technique should be carried out. 
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Abstract. The paper proposes a method for extracting, identifying and 
visualisation of topics, code tiers, users and authors in software projects. In 
addition to standard information retrieval techniques, we use AST for source 
code and WordNet ontology to enrich document vectors extracted from parsed 
code, LSI to reduce its dimensionality and the swarm intelligence in the bee 
behaviour inspired algorithms to cluster documents contained in it. We extract 
topics from the identified clusters and visualise them in 3D graphs. Developers 
within and outside the teams can receive and utilize visualized information from 
the code and apply them to their projects. This new level of aggregated 3D 
visualization improves refactoring, source code reusing, implementing new 
features and exchanging knowledge. 

Keywords: Software Project, Visualisation, Source Code, WordNet Ontology, 
Topic Identification and Extraction, Latent Semantic Indexing, Bee Behaviour 
Inspired Algorithms, AST, Swarm Intelligence, Authorship. 

1 Introduction 

This paper describes our approach to information and knowledge mining, which aims to 
support collaborative programming and helps software developers in medium and large 
teams to understand complicated code structures and extensive content as well as to 
identify source code authors and concrete people working with existing modules. 
Accordingly newcomers as well as other colleagues can reference to real source code 
authors and users more efficiently. The goal of our research is to provide a new 
perspective on software projects for participants to find and reuse particular parts of the 
source code. Subsequently applied graphs demonstrate the structure of the software 
project and the main topics contained in the source code in a natural way for them. This 
can help newcomers to quickly adapt to the project, but also senior developers can 
benefit from these methods. Determination of the source code topics can be used for 
purposes of identifying domain expertise of developers. It is also possible to support 
program comprehension by identifying common topics in source code. The contribution 
of our method is to find new level of aggregated visualization for the identified and 
interconnected information from the source code for collaborative development. 
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2 Related Works 

Our approach is based on the combination of swarm intelligence, LSI (Latent 
Semantic Indexing) and the standard techniques of information retrieval for parsing 
software project.  

We were inspired by method proposed by Kuhn et al., (2007). The steps of 
mentioned method are creation of term-document matrix, using LSI to reduce its 
dimensionality and afterwards aggregating it with standard hierarchical average-
linkage clustering algorithm. LSI is used as inverted index to extract topics (top 
relevant terms) from identified clusters [1].  

The results are displayed with correlation matrix (Fig. 1). It has documents on 
sides. The similarity between two documents di and dj is a(i,j). 

 

Fig. 1. Correlation Matrix [1] 

In our work we try to evaluate the suitability of swarm intelligence bee inspired 
algorithms on text document clustering applied in many fields of research [2], [3], [4], 
[18]. We use Flower Pollination Algorithm (FPA) [5] and Artificial Bee Colony 
Algorithm (ABC) [6]. Main advantages of FPA in clustering are the inutility of input 
parameters such as number of clusters and initial cluster centers. 

3 Our Approach 

Based on the mentioned method [1] we created our own approach. We added term-
document matrix enrichment via identifying relations between documents and 
WordNet. Our idea is to improve the topic identification and replace clustering with 
the basic hierarchical average-linkage by clustering algorithms inspired by swarm 
intelligence bee behaviour which are intensively researched nowadays and were 
proven suitable for clustering [6]. Also, we proposed visualisation for identified 
clusters (topics) as a coloured structure in software project. 

Fig. 2 is the model of our approach, where simply all steps except parsing, 
clustering and visualising are optional and their purpose is to improve the results or 
speed of the process. The system is modular, so it is easy to replace either the 
clustering module or another one with a different component (using different 
algorithm) for further research. 
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Fig. 2. Method steps 
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First step of our method is parsing of the source code contained in software project. 
This can be done on three levels of granularity: 

1. Source files - one document is equal to one source file. It can contain more classes.  
2. Classes - one document is equal to one class or interface. 
3. Methods - one document is equal to one method. 

Currently, our prototype is able to work with projects created in .NET framework, 
C# language. We start by parsing the solution files (*.sln) which involves information 
about projects contained in solution. Afterwards, we parse individual project files 
(*.csproj) which contain information about individual files. 

3.1 Parsing and Indexing 

We index all extracted documents in the open source information retrieval software 
library Lucene. We use these pre-processing steps to reduce noise in the indexed 
documents: 

1. Splitting identifier names by camel case naming convention. (CamelCase -> Camel 
Case) 

2. Splitting identifier names by under score naming convention. (Under_Score -> 
Under Score) 

3. Words with less than three characters are removed. (is, &&, ||) 
4. All words are converted to lower case. 
5. Removal of stop words – words that do not contribute to semantic meaning. 

(English stop words – and etc., C# keywords – private, static, while, switch). 

These procedures contribute to better topic identification in particular phases of our 
method. Afterwards, we identify relations between indexed documents. We will use 
them in the second step of enriching the term-document matrix. For this task we use 
open source library NRefactory. Through it we are able to extract AST (Abstract 
Syntax Tree), from which we can identify relations between extracted documents. 

After identification of relations we create term vector for each document (source 
file, class, method etc.). Finally, we create term-document matrix containing term 
frequencies in a particular document. In Fig. 3 we can see a simple example. 

 

 

Fig. 3. Term-document matrix example 
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We normalize the matrix with standard tf*idf algorithm with formula: , ,  | |1  

where d is a document from a collection we are working on, t is a concrete term 
from this collection and tf(d,t) is the frequency of the term t in the document d. |D| is 
the number of documents in our collection and df(t) is the number of documents in the 
collection which contains the term t. 

3.2 Using Relations in Source Code to Enrich the Document Vectors 

We use relations identified in the previous step to enrich the document term vectors. 
The type of identified relations depends on the selected granularity level we are 
working with (source file, class, method). 

Source Files 
On this level, we are enriching the term vector of each document (source file) in our 
collection with terms extracted from name of solution, project and eventually the 
directory it belongs to. Enrichment is done by adding the extracted terms to each 
document’s term vector with particular weight.  

We have estimated the weighting coefficient for these enrichments (Table 1) where 
L is Label and EV is Estimated value. 

Table 1. Weighting coefficients 

L Description EV

 

Terms extracted from solution. 
Solution also contains project and files 
with different topics. Terms are usually 
very general.  Weight coefficient is 
very low.  

0,1 

 

Terms extracted from project names 
are usually very close to the topic 
contained in the project’s source files 
 we set the coefficient higher

0,5 

 

Directory names are very specific 
but they can also be general and from 
the topic contained in the files (e.g. 
Tools)  the coefficient is not as high 
as for the project.

0,2 

 
The adding is done after tf*idf weighting and it can enhance the identification of 

the topic contained in the documents and extend the vocabulary. 
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Classes and Interfaces 
On this level, we use relations identified through NRefactory in the previous step. We 
are able to identify aggregation, generalization, nested classes and partial classes. 

For partial classes we offer the possibility to work with them as one class. There is 
a switch in the prototype to turn this behaviour off. 

In case of generalization we add parent class terms into child class term vector with 
coefficient 0.5. But we are also adding term in reverse direction (child -> parent), but 
with lower coefficient (0.2). Terms in child class could broaden the topic in parent 
class. 

Furthermore, for aggregation we add terms from referenced class into a referring 
one. Terms contained in the name of referenced class could be not explanatory 
enough. We recommend very low coefficient (0.1). 

Methods 
We work with two types of relations on this level of granularity: 

• Override – hiding of method from parent class with our own implementation. 
• Overload – methods with the same name but with different parameters. 

We are not estimating the indexes. They will be specified by further testing or 
manually by domain expert. 

3.3 Using WordNet Ontology to Enrich the Term-Document Matrix 

One of the problems in the semantic clustering of source code identified by [1] is the 
size of present vocabulary. It is considerably smaller than in the common text 
documents. As a consequence of this feature the topic extraction was not adequate in 
some cases.  

The authors provide an example of false identification in the source file, in which 
the main topic was obviously ‘text editor’. However the extracted topic was out of the 
context because the vocabulary simply does not contain general terms ‘text’ and 
‘editor’. The authors propose a solution of using a general English ontology (e.g. 
WordNet) to improve the results. 

WordNet is the ontology (lexical database) containing English nouns, verbs, 
names, adjectives and adverbs organized in synsets. Synset is a group of semantically 
equivalent elements. The name used for synset in WordNet is concept. Concepts are 
interconnected by semantic relations (hypernyms, hyponyms, coordinated terms, 
holonyms, meronyms, etc.). 

We use WordNet to enrich the term-document matrix. Our method is designed on 
the basis of research performed by [8]. Authors identify three steps to enrich the term-
document matrix: 

1. Mapping of terms to concepts. 
2. Selecting a strategy how to join terms from matrix with identified concepts. 
3. Selecting a strategy of choosing the concept. 
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Only noun terms to concepts are mapped in the current prototype. As the strategy 
of joining terms with concept we choose adding the concepts to terms. We want to 
extend the vocabulary as much as possible because of the problems described in the 
preceding text. 

Currently we use functionality included in WordNet for selecting the concept. It is 
able to order the concepts found for particular term by internal ranking system which 
is mainly based on using frequency in English language. Concepts identified by this 
method can be completely out of context. Therefore we plan to implement the context 
based selection strategy. Steps involved in this strategy as described by [9]: 

1. Define the semantic vicinity of the concept  (all hypernyms and hyponyms up to 
level 1) as  {  |  is hypernym or hyponym of b} 

2. Determine all terms, which could be a concept from vicinity of c by    . 
3. Find most relevant concept on basis of context by ,   |   .  , . 
4. Set the term weights by ,  ,   | , . 

Additionally, the identified concepts could be out of the context due to the 
generality of the WordNet. We plan to use domain ontology to overcome this obstacle 
in our further research. 

3.4 Reducing Term-Document Matrix Dimensions 

The vocabulary of software project is sparse but the dimensionality of term-document 
matrix especially in large projects can be high. Therefore, LSI (Latent Semantic 
Indexing) is used for possible improvement in topic identification and extraction [1]. 
This method is able to dramatically reduce term dimension of term-document matrix 
preserving the similarity between documents. 

It is a huge advantage for clustering algorithm in the next step in terms of speed. 
Especially for bee inspired algorithms which we use and which are sensible to 
dimensionality of clustered data.  

LSI is based on a mathematical method SVD (Singular Value Decomposition) 
originally used in signal processing to reduce noise preserving the original signal. In 
our case the noise in term-document matrix is synonyms and polysemy. So this 
technique not only reduces the dimensionality of the matrix, but also removes the 
noise occurring in natural language. It transforms set of documents and occurrences of 
terms to vector space. (Fig. 4) 

The technique is really powerful. For example, during our testing we reduced the 
term dimensionality of matrix from 1580 to 77 keeping clustering results at almost the 
same quality. On the other hand, it is really resource consuming. In our testing it took 
almost 2 minutes to produce the reduced matrix for relatively small software project 
(180 classes - documents). Also, the matrix has to be recomputed every time any 
changes are done on the original matrix. 
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Fig. 4. LSI. [1] 

Therefore, we implement this feature as optional in our prototype. It is possible to 
work completely without it. 

3.5 Clustering the Term-Document Matrix with Bee Behaviour Inspired 
Algorithms 

In the next step of our method we cluster the reduced matrix to extract the documents 
containing similar topics. 

Originally, we started our research to explore the possible use of swarm 
intelligence bee behaviour inspired algorithms for source code or text document 
clustering in the area of software development. Consequently, we pick up two 
algorithms from this area and use them in our method. 

We chose FPA (Flower pollination) [5] (Fig. 5 shows visualisation of clustering 
progress in our laboratory tests) because it needs no input parameters such as number 
of expected clusters and initial centroids. Therefore we use it instead of the classical 
heuristic (m x n) / t used in text document clustering to identify the number of 
expected clusters. Also, it is able to cluster the dataset very well. But its results are not 
as good as some of the more advanced techniques for text clustering such as SVM or 
C4.5 (Fig. 21). 

We applied ABC (Artificial Bee Colony) algorithm [6] for optimization of 
clustering results. It needs initial inputs as a number of expected clusters and 
centroids and is very competitive in this domain. 

We used the output of FPA (number of clusters, cluster centers) as the input for 
ABC. We modified FPA algorithm by replacing the Euclidean distance with cosine 
similarity metric for better results. Also, we proposed a new feature called “grid 
shrinking”. As the number of identified clusters is decreasing, we decrease the size of 
the grid. So the movement of bees on it is more effective. This feature is switchable 
and parameterizable via GUI. 

3.6 Extracting Topics 

After clustering we need to label the identified clusters by contained topics - the set of 
most relevant terms for a particular cluster. 
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corner (Fig. 19). The user can comfortably click on the cluster and highlight only 
important classes (Fig. 19). Also the list of identified topics is present when no class 
is selected. Classes and interfaces for particular project are organized in distribution 
matrix. 

With granularity level of methods we use the graph with the code name Manhattan 
(Fig. 20). You can access it by double clicking on a particular class/interface in the 
Tent graph. It displays all methods contained in a class like skyscrapers. The methods 
from particular cluster are tinted with the same colour. The intensity of it represents 
the similarity between the particular document and the centroid of its cluster. The 
height of the skyscraper represents the length of a particular method. 

4 Additional Project Information 

Currently we are working on expanding the capabilities of our methods to provide 
more comprehensive knowledge about the source code and the projects. This chapter 
contains methods for supplemental information [17] we recognize together with topic 
identification. We will observe and analyze the synergy of this methods and their 
information about users, authors, tiers and topics (e.g., which author has knowledge 
about particular expert domain, which author use copy-paste technique, which author 
has better pattern/antipattern ratio, etc.). 

4.1 Tier Recognition 

Tier recognition is used to automatically identify domains in three-tier based systems. 
It allows, for example, to estimate developer’s orientation on a given tier or to 
simplify navigation in source code trough clustering. 

In our approach we determine tiers in two ways. 

Standard Types 
Standard types are types in well-known frameworks that represent building blocks of 
many source codes. The aim of this method is to search for places in given source 
codes where these types are used to determine their tier using knowledge of 
relationships between used standard types and code tiers. 

Table 2 presents a fragment of a lookup table that represents relationships of some 
standard .Net namespaces to three code tiers. The table is constructed manually in our 
work, but we are planning to use automated crawling techniques and clustering 
algorithms in the future. 

Fig. 7 shows steps to determine tier association for given type declarations. First, 
used standard types are extracted and their namespaces are identified. Using a 
predefined lookup table, tier ratios of the extracted namespaces are determined. 

If a namespace is not found in the lookup table, its parent namespace is searched 
for, and so on up to the root namespace. If not even the root namespace is found, the 
given namespace is ignored. 
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In our approach we calculate the arithmetic average of all extracted ratios for each 
tier separately to get the final ratio. Fig. 8 shows an example result of this method. 
Tiers were determined for a fragment of a system, where mostly the presentation tier 
is present. Empty rows represent types, which were not determined, as they can 
belong to any tier. 

 

Fig. 8. Example - final ratios of examined types 

Keywords 
It is common that the name of a type in object-oriented source code describes its 
purpose. A type with the name “DbCommand”, for example, suggests that it 
represents a database command. Our method uses this practice to identify known 
keywords in code identifiers to recognize the tier of a given type. Four identifiers are 
used for this purpose: type name, base type name, namespace and project name. 

Keyword dictionary, which represents a set of known keywords and their tier 
assignments, is used as an input. Each tier assignment of a keyword is perceived as a 
rate, which defines how much the keyword is specific for a given tier. An example of 
a simple manually constructed dictionary is presented in the following table. 

Table 3. Example keywords dictionary 

Keyword Data App Presentation 

Data 0,90 0,10 0,00 

Table 0,60 0,00 0,40 

Workflow 0,10 0,80 0,10 

Control 0,00 0,00 1,00 

… … … … 

 
Identifier must be separated into words that can be compared with keywords in the 

dictionary. For example in case of interface “IDBTable” its name will be divided into 
“DB” and “Table”, ignoring first letter “I” that is usually used to mark interface types. 
For this purpose, regular expressions that define the split points in the identifier’s 
name are used. 
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After extracting the words from the identifiers, the partial association rate of each 
identifier type is computed. Each partial rate is in the range of <0.0, 1.0>. Words, 
which haven’t been successfully matched with any keyword, are not included in the 
computation. Therefore they are not lowering the resulting rate. These partial rates are 
merged into final weighted rate. For this purpose for each identifier type a weight in 
the range of <0.0, 1.0> must be given. Example of these weights is presented in the 
following table. 

Table 4. Example identifier type weights 

Identifier Weight 

Name 1 

Base Type Name 0.7 

Namespace 0.6 

Project Name 0.6 

 
Pseudo code shown in the following figure represents computation of final 

weighted rate. 

 

Fig. 9. Pseudo code of final wighted rate computation 

Case Study 
In this part we are going to show an application of this method on a very small set 

of types (Table 5). 

Table 5. Example types 

Type BaseType Project Namespace 

IGetBlob 

Helper 

 Frm. 

DataInterfaces 

DataInterf. 

Blob 

Graph3d 

Control 

UserControl Graph3d. 

WinForm 

Graph3d. 

WinForm 
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Table 5. (Continued) 

IWorkflow 

Helper 

 Frm. 

DataInterfaces 

DataInterf. 

Workflow 

IWorkflow 

Entity 

 Frm. 

DataInterfaces 

DataInterf. 

Workflow 

WSFrmData 

Context 

DataContext Frm. 

DataClasses 

DataClasses 

IDBHistorical 

Table 

 Frm. 

DataInterfaces 

DataInterf. 

HistTable 

 
The following charts display computed partial rates for each keyword type. 

 

Fig. 10. Unit rate assignments (1-by name; 2-by base types; 3-by namespace; 4-by project) 

These rates are then composed into the final result shown in the following figure.  

 

Fig. 11. Weighted assignment rates 
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4.2 Source Code Users Recognition 

Our method collects information about users and their activities on code entities. Two 
methods, that gather and process different kinds of such information to increase 
collaboration in software development team is presented here. 

Code Entities Checkout 
In common revision control systems users are able to discover, which source code 
files are being modified by which users at the current time. This usually helps to 
avoid conflicting changes of multiple users in a single file. 

We go deeper into files and look for concrete entities the source code is composed 
of. This enables us to determine, which specific parts of source code are being 
modified and lock for modification only those parts rather than whole files. 

The following is the algorithm this method uses to determine currently edited 
source code entities: 

GetChangedCodeEntities(OUT:changedCodeEntitySet) 
   changedLocalFiles = GetChangedLocalFiles() 
   for localFile in changedLocalFiles 
       originalFile =  DownloadOriginalVersionFromRCS(localFile) 
       changedLineIndices = Compare(originalFile, localFile) 
       originalFileAst = ExtractAst(originalFile) 
           for lineIndex in changedLineIndices 
       changedCodeEntity= originalFileAst.GetCodeEntityAt(lineIndex) 
           changedCodeEntitySet.Add(changedCodeEntity) 

User Activity on Source Code Entities 
We monitor concrete activities that users perform on source code entities. Activities 
include modifying of a source code entity, pressing a mouse button over it, reaching it 
in the source code etc. 

We measure the intensity of activities performed by each user. Each activity is 
assigned a value in the closed interval <0.0, 1.0>. 1.0 means the user is performing 
the activity intensively, while 0.0 represents inactivity. 

Final Intensity of a Source Code Entity 
A single user can perform multiple activities on a single source code entity at the 
same time. This includes different activities as well as the same activity performed at 
different places (e.g. in different code editors). Fig. 12 shows, how the final intensity 
of multiple activities performed by a single user on a single source code entity is 
calculated. 

First, from all activities of the same type the one with the highest intensity is taken. 
This gives information, what different activities and how intense the user performs on 
the source code entity. By summing up all these partial activities the final intensity is 
calculated. 
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Fig. 12. The final intensity calculation of all activities performed by a single user on a single 
code entity 

Activity Initial Intensity and Cooling of Activities 
Each type of activity has a predefined maximum and minimum intensity. When an 
activity occurs, its intensity is maximal. When it is not performed for a period of time, 
its intensity starts to decrease down to the minimal value. We call this process cooling 
of activities and it expresses the decreasing interest of the user for the source code 
entity. 

Case Study 
Fig. 13 shows a prototype we implemented. Three activities are monitored for a single 
user: 

• In viewport – the code entity is reached in a code editor (scrolling etc.) 
• Mouse down – the user pressed the mouse over the code entity 
• Is typing – the user types into the code entity 

The figure also shows how activities are being cooled down. 

 

Fig. 13. Activities for a single user. Activities are being cooled down. 
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4.3 Source Code Authors Recognition 

Introduction 
To evaluate programmer’s coding skills and quality of his work, we usually review 
some set of functional units - code entities and apply selected metrics. In collaborative 
environment many authors participate in source code development, so we must 
distinguish particular author contributions on given code entities. Everyone, who 
changes the content of a source code file, can be an author of contained source code. 
In our approach, we divide authors into three basic groups: 

• real authors, who modify logical nature of source code (add, modify or delete code 
entities) 

• editors, who modify form of a source code, but not its logical meaning (they are 
refactoring, sorting entities, formatting code, …) 

• reviewers, who comment code or update code due the newer version of used 
libraries 

Authors, members of a development team, share and contribute to source code via 
Revision Control System (RCS). Author’s contribution is defined by a set of changes 
in one or more source code versions. Change information should cover: author, 
commit ID, date of change and type of change (add, edit, delete, move...).  

There are code entity authors, whose source code parts have persisted to latest or 
particular source code version and authors, whose source code parts were deleted or 
considerably modified by the time. In code evolution every version is based on 
previous versions to certain degree. Ideas represented in older versions are kept, 
transformed or reused in newer versions. Therefore, it is a matter of principle to 
assess source code in its whole history, not only in resultant form. For proper 
authorship metrics, we must consider both persisted and perished changes. 

Difference Built AST 
Our intention for proper authorship evaluation comes from the use of a Microsoft 
Team Foundation Server (TFS) Client extension for Visual Studio called Annotate 
[10]. Annotate downloads every version of a particular file and annotates the output 
with attributes showing the changeset, date, and user who last changed each line in 
the file. The implementation does not show deleted lines [11]. We can say it works on 
principle of overlapping author information for individual lines of code using line 
oriented changes from first to latest source code file version (Fig. 14). 

 

Fig. 14. Principle of Annotate function 
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Annotate is based on file and line representation of source code versions/changes 
in TFS. It is a fast method, but it takes into account only changes, which persisted to 
the latest version; therefore, it is inaccurate for our authorship metrics. Another 
disadvantage is the fact, that it ignores deleted lines. Furthermore, this solution does 
not solve similarity of source code parts, thus moving a part of code is interpreted as 
deleting lines in one place and adding lines in another place. This also deforms 
authorship information. 

To address the disadvantages of Annotate (or code line representation of changes 
in general), we created a solution, where, for every version of source code, line 
changes are projected to code entities. This information is joined to histories of code 
entity changes. This approach determines authorship of source code entities in object 
oriented paradigm, where syntax units can be represented as nodes in an Abstract 
Syntax Tree (AST). It is based on extraction of source code entity changes. The 
extraction can be divided into several phases (Fig. 15): 

1. Extraction of source code files from a software solution. Files can be added into, 
moved within or deleted from the software solution. It is important to identify all 
source code files contained in the solution throughout its history. 

2. Extraction of source code from all files valid for given versions. This is done 
repetitively for each two adjacent versions. 

3. Representation of each two adjacent versions as ASTs using appropriate software 
tools [12]. Transformation to AST representation is restricted to level of 
meaningful syntactical units (classes, functions, properties). Lower level content is 
represented as lines. 

4. Comparison of selected source code versions using Diff function based on solving 
the longest common subsequence problem [13]. Output of Diff function can be 
represented as a set of code changes, which can be of type Add, Delete or Modify. 
Each change holds information about the author and the range of affected lines – 
add in newer version of source code, delete in older and modify in both versions. 

5. Mapping of code differences to code entities and representation of source code 
entity changes. In this phase, we create source code entity changes, which are 
relations between source code elements and source code changes. Code change 
falls to code entity, if intersection of their ranges is not an empty set. One change 
can fall to: 

 

 

Fig. 15. Determination of authorship is based on extraction of source code entity changes, 
divided to several phases 
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Fig. 18. Authorship of source code entities presented in Tent graph 

Also this process has some drawbacks, which can affect the accuracy of metrics 
results. The most significant are: 

• Change in the order of code entities at one AST level. This change is represented 
by Diff as removed and added entities. We would need to compare the similarity to 
other entities, rather than just using only the information describing the change. 

• Renaming of entities. In this case, a relation between entities with different 
identifiers (name of entity and its placement in AST) is changed. Using only the 
extracted information, it is not possible to determine, whether the change 
represents a rename of an entity or it is caused by some other change overlapping 
neighbour entities. 

• Renaming of the identifier of a superior entity. This change is represented as a 
change of a superior entity. Child entities are not changed. In the process of history 
construction, entity versions cannot be mapped using their name and placement in 
the AST. This scenario is interpreted as extinction of the original entity and 
creation of a new entity. Information concerning the similarity of entities would 
also be needed. 

• A multiline change overlapping multiple entities at single AST level. For example, 
if two adjacent entities are affected by a single change, four change information 
units are created. Each change information unit relates to different combination of 
entities (two original and two new versions). An entity version graph is created in 
the process of entity history construction. Therefore, it is not clear, which graph 
path represents the entity history. Also here, the information concerning the 
similarity of entities would be required. 
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From previous, we can sum up, that the main problem in the authorship evaluation 
is the following. An author is defined by changes, that he made in some version and a 
part of source code. But if we want to evaluate authorship in whole history of code 
entity, we must match code entities between several versions of source code, which is 
not trivial due to change of identifiers of code entities and changes of entities 
positions in AST [14]. Identification of source code entities is given by their 
similarities or matching [15]. 

Conclusion and Future Work for Author Recognition 
Deficiencies in previous solutions led to design of a RCS based on the AST 
representation. AST RCS does not substitute RCS used to manage source code 
versions in daily collaborative development. AST RCS is a supplement of RCS. It 
imports file and line oriented data and transforms them to historical AST, containing 
linked code entity versions, using principles similar to [14] and [15], eliminating all 
deficiencies presented previously. This platform offers unified representation of data 
imported from several RCSs. 

AST RCS is also used for source code marking, where source code parts are 
labeled with metadata. These metadata – marks – can, among others, contain 
information about source code quality – effectivity of code, use of code patterns, 
occurrence of design patterns, smells, etc. This way, we can not only use quantitative, 
but also qualitative variables in authorship metrics to asses developer’s contributions 
and effects, these contributions have to source code quality. By code marking, we can 
also label concepts reused in source code development process, identified using 
methods as presented in [16]. Besides detection of identical source code reusing 
(copy), source code parts move or refactoring, provided by AST RCS platform, this 
allows to identify application of concepts or ideas of other authors. 

Application of authorship metrics in the context of source code entities by using 
this approach should be much more accurate and resistant then code line based 
metrics to specific, but frequently occurring source code changes presented in this 
paper. The creation of qualitative authorship metrics is matter of metadata type 
available and can contribute to construction of user profiles (developer profiles) in the 
wider context of our next research.  

5 Prototype MEAD.NET for Topics Recognition 

We implemented prototype in .NET framework, C# language and named it 
Mead.NET. It consists of four screens: 

1. Managing index – with adding and viewing indexed documents. 
2. Relations – with view of identified relations. 
3. Clustering screen – to adjust parameters and view the process of clustering. 
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Fig. 19. Tent graph with selected topics 

 

Fig. 20. Manhattan graph with selected topics 

4. Visualisation – to view the graph for a particular clustering (Fig. 6, Fig. 19  
and Fig. 20). 

6 Case Studies, Evaluation, Further Research 

The main problem with the testing of our approach is the non-existence of a sample 
dataset. We propose the creation of a dataset containing a project ideally clustered and 
labeled with topics. 

Our goal is to show that our changes and add-ons to proven and useful method [1] 
tend to better results. We have done it in two steps.  

First of all, one of the crucial parts of this method is clustering. So we tested used 
unsupervised clustering algorithm (FPA) together with LSI in comparison with some 
supervised algorithms (SVM and C4.5).  
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For daily use application we propose two approaches. First approach (Fig. 22) 
consists of the following steps: 

1. Use method presented in this paper to cluster software project and extract topics. 
Use of FPA algorithm. Number of iterations depends on size of the project.  

2. If the software developer adds new classes or methods, system can insert them 
randomly to the grid, which is the result from the first step. Then, it can cluster the 
set for a reasonable number of iterations. It will take only milliseconds and the user 
will not wait for the latest results. 

3. In the last step we apply optimization of existing clustering results through ABC in 
the next parallel thread until the next change in project. 

 

Fig. 22. Incremental clustering approach 

Second approach (Fig. 23) is designed with performance in mind. It consists of the 
following steps: 

1. Use FPA to cluster and extract topics as in the first approach. 
2. Add new classes or methods to existing clusters based on the similarity with cluster 

centers. It will take milliseconds and minimize the time consumption for 
clustering. 

3. Optimization via ABC until the next change in the project. 

 

Fig. 23. Update approach 
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7 Future Work 

Our primary goal is to create a dataset suitable for testing the extraction of topics from 
the source code. The idea is to manually label classes with topics in some open source 
project of sufficient size (cca. 300 classes). With this dataset we will be able to 
thoroughly test the contribution of term-document matrix enrichment in topic 
extraction.  

As we mentioned before WordNet is not ideal for our particular field. Therefore, 
our plan is to extract our own ontology from software projects, MSDN (Microsoft 
Developer Network) and SDN (Sun Developer Network) which could be a lot more 
suitable.  

Also, implementing time optimization (Incremental clustering and Update 
approaches) for daily use and another term extraction algorithms in our prototype can 
contribute to better results. Furthermore, we would like to add a module for parsing 
projects written in Java to test the suitability of our method in a different 
programming language. 

Table 6. Evaluation on real-world projects 

 

8 Conclusions 

We proposed a method based on previous research [1], and enhancement and 
combination of methods. We designed changes such as different clustering 
algorithms, optionality of LSI, more advanced parsing, and relation identification. 
Also, we proposed add-ons to this method such as WordNet term-document 
enrichment and new results visualisation tool. 

We implemented the prototype and tested usefulness of our contributions. Our 
future work is to optimize (Incremental clustering and Update approach) and prepare 

prj/srcFiles code lines classes interfaces methods Bee Count Cluster Cells indexing clustering
100 0:08 0:05 54 45%

1000 0:08 0:45 24 22%
10 000 0:08 8:05 11 10%

100 0:18 0:41 423 56%
1000 0:18 4:32 221 29%

10 000 0:18 41:00 101 13%

100 0:32 2:30 1507 78%
1000 0:32 24:10 830 43%

10 000 0:32 (4:00:00) (400 ?) (20%)
100 0:10 0:02 79 56%

1000 0:10 0:18 42 29%
10 000 0:10 2:30 22 15%

100 0:25 2:00 679 66%
1000 0:25 14:45 371 36%

10 000 0:25 1:40 151 14%
100 0:24 0:10 165 51%

1000 0:24 1:10 91 28%
10 000 0:24 9:20 35 10%

100 1:40 4:15 1213 63%
1000 1:40 35:36 673 35%

10 000 1:40 5:40 269 14%
100 4:00 13:40 2001 62%

1000 4:00 1:50:00 1098 36%
10 000 4:00 (18:20:00) (500?) (15%)

100 0:05 0:05 50 33%
1000 0:05 0:35 31 21%

10 000 0:05 1:50 13 8%

1923  (?) 7 072 138 19044 (138 x138)

1906 76 14 316 138 19044 (138 x 138)

GKO.RIMIS 7/87 19 000 141 6 255 37

1444 (38 x 38)

179

38

123

7 0

result 
shrink

1369 (37 x37)

Iron Python 4 14/952

7569 (87 x 87)

10000 (100x100)

3136 (56x56)

32041 (179 x179)

145

87

100

56

2 720

6 679

2 221

17 310

8 300

757 46

1021 158

323 46

3207

81 200

230 000

65 000

342 000

254 000

Robot Emil

45/466

17/705

4/299

41/2482

1/6

PerConIK

GKO 

Quartz.Net

ASP.Net MVC

PerConIK+WsFm 52/650 212 000

found 
clusters

Mead.Net 10/88 15 000 107 3 442 32 1024 (32x32)

summary counts
Project

optimal algorithm settings (*)
iterations

duration of



294 I. Polášek and M. Uhlár 

the method for daily use, advance ABC clustering algorithm, prepare our own 
ontology and new dataset for the testing of our approach. 
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Abstract. In this paper we present an approach, inspired by honey
bees, that allows us to take a glance at current events by exploring a
portion of the Web and extracting keywords, relevant to current news
stories. Not unlike the bees, that cooperate together to retrieve little bits
of food, our approach uses agents to select random keywords and carry
them from one article to another, landing only on the articles relevant to
the keyword. Keywords that best represent multiple articles are selected,
while keywords not relevant to articles are subsequently discarded and
not explored further. Our results show, that with this approach, it is
possible to extract keywords relevant to news stories, without utilizing
learning methods, or analysis of a data corpus.

1 Introduction

With the rising prominence of Web as a primary source of current news and
event coverage, the potential to attract a reader depends on the ability to con-
vey information quickly in a condensed form. This way, the reader can decide
whether he is interested in further reading by glancing at the title of an article.
When multiple articles deal with the same event, or are otherwise interconnected,
popular labels are used, that make it easier for the reader to identify the general
topic of the article. An example of such labels would be“Fukushima incident”
or “EU crisis”.

In this paper we refer to these popular labels as to “keywords”, however it is
important to note, that in addition to describing the content of the article itself,
the keyword in context of this paper also needs to imply relevance of the given
article to a set of articles, comprising a story. We use this expanded notion of
keywords relevant to a certain story, because we consider these keywords to be
crucial for the reader navigating the space of news articles on the Web, as they
direct the reader to the articles interesting to him.

Our main goal is to provide the means of automatic on-the-fly extraction of
these story relevant keywords from a set of articles without the need of pre-
processing or supervised learning. In order to achieve this, we are utilizing a
multi-agent system of web crawlers to download news articles from the Web and
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to identify the desired keywords, that represent news stories being covered in
the available set of articles.

Organization of our web crawler system is based on Beehive Metaphor [12],
which models the organization observed within colonies of honey bees when
foraging for food sources. Agents move between articles and look for suitable
keywords representing a news story, similarly to honey bees navigating their
surroundings in search for suitable food source. The keywords that best represent
the articles comprising a story are subsequently propagated and explored further,
while the keywords of local significance only are discarded over time.

2 Related Work

In this section we outline the related work in two fields. First we concentrate
on different approaches to keyword extraction, mostly focused on the domain of
news articles, as this is also the domain of our proposed approach. Secondly we
present related work on Beehive Metaphor, relevant to our research.

2.1 Keyword Extraction

Most of current keyword extraction techniques require either a data collection, or
a supervised learning approach, to determine the weights of candidate keywords
and select the best candidates to represent the document. Lee and Kim [6] pro-
pose an approach based on term frequency–inverse document frequency weighting
model to extract keywords from news articles. This approach is adapted to ex-
tract keywords for a pre-selected list of article domains, which is similar to our
goal of extracting keywords relevant to news stories. Kriz [4] attempted to base
keyword extraction on implicit feedback.

Toda et al. [19] present an approach to extraction of topical structure, but
instead of keywords, they utilize temporal information present in documents to
asses mutual relevance of documents. Other way of determining the topical struc-
ture of an article set is to use clustering algorithms [8,18]. All of these approaches
require the whole dataset to be available in order to determine the covered top-
ics. Vadrevu et. al [21] offer a solution by introducing a system with incremental
clustering ability. This incremental clustering requires an offline clustering to
be performed first. Subsequently it uses results of offline clustering as a ground
truth for construction of incremental classifier.

Wang and Kitsuregawa [22] propose a method of search results clustering
based on link analysis. The aim of this method is to cluster together results
from pages, that share common links. Bohne et al. [1] propose a method of au-
tomated keyword extraction by utilizing Helmholtz principle. Every document
is divided into smaller windows and the occurrence of terms is compared with
a random baseline. Keywords are chosen according to their deviations from the
baseline. This approach allows for keyword selection without supervised train-
ing, or general analysis of dataset. However, it requires individual terms to be
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statistically independent and as such is not well suited for use with news articles.
Clustering on social web was attempted by Kuzar [5].

Other way of approaching news topic recognition is to determine the topic
of articles by utilizing supervised learning. KEA algorithm [23] extracts key-
words from a set of documents by utilizing naive Bayes classifier. Training set is
composed from documents with already established keywords. A comprehensive
overview of supervised learning clustering algorithms is offered by [20].

2.2 Social Insect

The gathering of documents from the web and subsequent potential keyword
evaluation is performed by a group of agents, inspired by behaviour of honey
bees. The pattern of communication is described by the beehive metaphor model,
introduced in [12] as an enhancement of a previous work by Lorenzi [9]. Bee-
hive metaphor itself has been studied from various angles. Lemmens et al. [7]
or Memari et al.[10] approached it within the concept of multi-agent systems.
The idea of a collaborative foraging approach to web browsing was presented by
Schultze [16]. Rambharose and Nikov [15] applied a similar concept to person-
alization of interactive web systems. For excellent surveys, cf. e.g. Karaboga [3]
and Teodorovic[17]. Related Artificial Bee Colony (ABC ) model was proposed
by Karaboga in [2]. The ABC model was suited for numeric optimization, beehive
metaphor was utilized more for web search related tasks.

In our previous work, an approach was proposed in [14], utilizing beehive
metaphor as a basis for web search engine. Results have been retrieved by intel-
ligent agents cooperating as a bee swarm, communicating and propagating the
best sources by dancing. Further development of this idea was pursued in [13] by
elaborating on the web crawler part of the proposed search engine. In a follow up
research, further possibilities of BM deployment for function optimization and
hierarchical optimization are presented in [11].

3 Keyword Extraction Algorithm

When performing a keyword extraction on a number of news articles, our main
goal is to obtain information about current events and stories, that span multiple
articles and evolve over time. To achieve this, we take steps to extract only the
keywords that are relevant to a set of articles, by utilizing honey bee inspired
agents, that travel from article to article and look for keywords that suit more
than one article at a time. The analysis of news articles is performed by a set of
web crawling agents called bees. Every bee remembers a single article and a single
keyword, that may change over time. Bees act independently and there is no
central mechanism of coordination. Bees may however communicate individually
by dancing.

The algorithm starts by initialization phase, depicted in Fig. 1. Each bee is
assigned a random article from a pre-selected set of starting article and selects
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a candidate keyword from this article. We are currently selecting keyword can-
didates from nouns in articles titles. This approach is based on [18], which uses
named entities as terms for clustering. In addition to named entities, we are also
extracting other nouns, as they can also be significantly related to a news story.
It is important to note, that although we extract the starting keyword candidates
only from the titles of articles, this serves simply as a starting point and does
not limit the set of possible keywords of an article only to its title. In following
steps, more candidate keywords may be introduced by bees for evaluation, as
described later.

Require: Non-empty set of Bees.

1: for all n of Bees do
2: a(n)← random article
3: key(n)← random keyword from Article(n)
4: status(n)← “foraging”
5: end for

Fig. 1. Initialization of bees

After initialization, the main phase commences, during which the keywords are
being extracted and their weights determined. In accordance with BM model,
bees switch between three states during the main phase:

1. foraging
2. observing
3. dancing

3.1 Foraging

Foraging is the default state that bees assume after initialization. The algorithm
of foraging for a single bee is depicted in Fig. 2. When entering foraging phase
a bee always has an article ac and a keyword candidate key selected and is
trying to find another article, relevant to current keyword candidate. Bee starts
foraging by selecting a new article an and evaluating relevance of key, separately
for ac and an. Thus rc = relevance(key, ac) and rn = relevance(key, an).

The relevance of a given keyword to a given article may be established in two
ways. If key has already been identified as a possible keyword for the article ac,
weight of key is used as a relevance. If key is new to the article, the relevance
is based on the content of ac. The relevance based on content is determined by
calculating a score for key according to its occurrence in ac. The article is divided
into blocks of fixed length and number nc of blocks, that contain key is counted.
This number represents the base score of key, which is further increased, if key
occurs in the title or first paragraph of ac. Relevance rc = relevanc(key, ac)
based on the content of an article is then calculated as rc = nc/Nc, where Nc



300 P. Návrat and Š. Sabo

Require: current article ac, keyword key
1: new article an ← selectNewArticle()
2: rc ← relevance(key, ac)
3: rn ← relevance(key, an)
4: p = min(rc, rn)
5: Decide whether to leave using probability 1− p
6: if decided to leave then
7: status← “observing”
8: Leave the article and start observing
9: else
10: Decide whether to dance using probability p
11: if decided to dance then
12: newConnection(ac, an)
13: connectionKeyword ← key
14: connectionStrength← p
15: updateKeywords(ac, key)
16: updateKeywords(an, key)
17: status← “dancing”
18: Start dancing for the current article and keyword
19: else
20: Continue foraging
21: end if
22: end if

Fig. 2. Foraging phase of a single bee

is maximum possible score for ac. The obtained value serves only as a estimate
of the relevance and is used to establish probabilities of bees leaving the article
and dancing for it.

Alternative relevance functions may be used as well, however it is impor-
tant, that the returned values use the full interval of [0, 1]. The reason for
this being, that the returned value further serves to determine the probabil-
ity p = min(rc, rn), that the bee will keep on foraging from the same article.
Minimum of both relevance values is used, because our goal is to extract story
relevant keywords and as such, every keyword is relevant only up to its ability
to establish a connection between multiple articles. In other words, keywords
relevant only to a single page are not interesting for us. After completing the
keyword evaluation, a bee makes a decision, whether to abandon the article,
probability of it being 1 − p. If it decides to leave, both current keyword and
article are abandoned and the state of bee changes from foraging to observing.
If the decision of the bee is not to abandon the source, it makes further decision,
whether to propagate the article-keyword pair by dancing, probability of this be-
ing also p. If the bee decides to dance, a connection is established between both
articles, key serving as an attribute of this connection and p serving as a weight
of key. Value of p serves as a measure of confidence, that a connection based on
key exists between two articles. The weight of connection between two articles
thus depends on the relevance of key to both concerned articles. If relevance
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of key to at least one of both articles is low, the weight of mutual connection
between respective articles will be low as well. Also the weight of a connection
is not final and it may change over time, if relevance of key to one of concerned
articles is reviewed in following iterations of the algorithm.

After establishing a connection between two articles, individual sets of key-
words for both respective articles are also updated, adding key with weight of
max(rc, rn×d) to rc and max(rc×d, rn) to rn, effectively “trading” the keyword
between both articles. Constant d is a decay factor, that reduces the weight of
a keyword for an article in case, it has been adopted from an another article. In
our experiments we have used values of d ∈ [0.6, 0.9]. The described mechanism
of connecting articles via common keywords is illustrated by Fig. 3. The adopted
keyword is equivalent to keywords of an article selected from its own title and
may also be retrieved by other foraging bees. Note, that even if adopted from
an another article, a certain degree of relevance is guaranteed, otherwise the
p probability would be zero and a bee would abandon the article immediately,
never proceeding to dance for it. If a bee decides not to dance for the article-
keyword pair, the bee proceeds to forage from the article further, by selecting a
new article an.

Article A 

Article B Article C 

Greece 

crisis – 0.3 
bank – 0.8 

crisis – 0.8 
debt – 0.4 
Greece – 0.9 

unemployment – 0.3 

Article A 

Article B Article C 

Greece 

crisis – 0.3 
bank – 0.8 

crisis – 0.8 
debt – 0.4 
Greece – 0.9 

unemployment – 0.3 
Greece – 0.72 

Fig. 3. A bee has chosen keyword “Greece” from Article A and aims to explore pos-
sible connection with Article C (left). After having chosen to dance, bee establishes
connection between Article A and Article C and transfers keyword, its weight reduced
by decay factor of 0.8 (right)

3.2 Observing

If a bee decides to abandon its article during the foraging phase, an observing
phase commences. The algorithm of observation phase is depicted in Fig. 4. Ob-
serving lasts for a set number of iterations, during which a bee can decide to
adopt a keyword-article pair from the ones being currently propagated by danc-
ing bees. The probability pa of adopting a keyword-article pair is proportional
to the number of bees currently dancing, pa = dancingBees/allBees.
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Require: time to leave ttl
1: if ttl = 0 then
2: a← random article
3: key ← random keyword from a
4: status← “foraging”
5: End observing and start foraging from new source
6: else
7: pa = dancingBees/allBees
8: Decide whether to choose a new article using pa
9: if decided to choose new article then
10: bee to follow followBee← random dancing bee
11: article← article of followBee
12: key ← keyword of followBee
13: status← “foraging”
14: Start foraging the new article
15: else
16: ttl← ttl− 1
17: end if
18: end if

Fig. 4. Observing phase of a single bee

When a bee bc decides to choose a new article from the ones being currently
propagated, a random dancing bee bd is selected. Subsequently bc adopts the
article and keyword propagated by bd and proceeds to start foraging from its
newly chosen article. Otherwise the bee does nothing and proceeds to next it-
eration. If a bee fails to choose a new article in a set amount of iterations, it
returns back to foraging, choosing a random article and a keyword from it in the
same way as during the initialization phase.

3.3 Dancing

The notion of dancing bees is taken from real honey bees, that use the famous
waggle-dance to relay the position of a food source to other bees. With our
approach, the source of nutrition is represented by a keyword-article pair. If a
bee finds a suitable keyword-article pair, that is potentially related to a news
story, it may decide to propagate the pair and invite other bees to explore the
possible relationships with other articles.

A bee decides to propagate its keyword-article pair during the foraging phase.
In contrast to the strictly set duration of observation phase, the duration of
dancing phase is variable. The length of dance l is proportional to the probability
p of dancing (see Fig 2), l = �p×DT �, whereDT is a parameter of BMmodel that
represents the maximum possible length of a dance, measured in iterations [14].
After the dance ends, the bee returns to foraging, keeping the same article and
keywords, that it propagated.

The number of bees dancing at a given time is influenced by the overall rele-
vance of keywords currently examined by foraging bees. If the overall relevance
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of keywords is relatively high, the articles will generally be propagated more.
Thus the chance of an observing bee to pick a new article from the ones being
propagated will be higher, as the chance of choosing a propagated article is di-
rectly proportional to the number of dancing bees. If, on the other hand, the
relevance of currently found keywords is low, the number of dancing bees will
be low as well and observing bees will more often tend to forage from random
articles and try different keywords, increasing the chance of finding new relevant
keywords.

4 Keyword Extraction

To evaluate the proposed approach, we have conducted an experiment by de-
ploying a system implementing our approach on the Web and daily tracking the
changes in retrieved keywords. This experiment was performed on the Reuters
web-site 1 over a period of 9 days from August 4th to 12th, 2012. Each day an
independent keyword extraction was performed, running for 100 iterations with
parameters of BIOR = 0, BISB = 100, MDT = 4 and OT = 2. The choice of 100
bees and 100 iterations affects only the scope of search. Parameter of MDT af-
fects the rate of dancing and OT influences the rate of scouting for new articles.
Values of MDT and OT have been set empirically, based on previous unpub-
lished work, as they provide balance between dancing and scouting. For further
description of model parameters please refer to [14]. During the extraction a
portion of Reuters web site was indexed, focusing on the most recent articles.
We have extracted 298 unique keywords, 99 of which being proper nouns, ac-
counting for 33.22%. For every day i we have noted the number nk

i of articles for
which the keyword k was recognised, which we consider a measure of popularity
of keyword k. The overall most popular keywords are presented in Table 1, along
with nk =

∑
i n

k
i , the sum of recognised articles over all days for a given key-

word and a percentage of N =
∑

k n
k, total sum of all articles for all identified

keywords.

Table 1. Overall most popular keywords

keyword nk nk/N [%] keyword nk nk/N [%]

Syria 189 7.32 court 54 2.09

Euro 79 3.06 Samsung 50 1.94

Apple 74 2.86 ECB 49 1.90

Egypt 83 3.21 attack 47 1.82

Afghan 61 2.36 trial 38 1.47

shooting 64 2.48 murder 33 1.28

China 63 2.44 Libor 29 1.12

Colorado 55 2.13 Aleppo 26 1.01

1 http://www.reuters.com/

http://www.reuters.com/
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We can see that although proper noun keywords represent only 33.22% of all the
identified keywords, the proportion of proper nouns among the most popular
keywords is considerably higher, with 8 of 10 top keywords being proper nouns.
This corresponds to our intuitive assumption that proper nouns have a higher
potential of representing a news story than common nouns.

The popularity development for top eight keywords over the duration of ex-
periment is depicted in Fig. 5. We can observe keywords relevant to long term
stories, such as “Syria”, “Euro” and “Apple”, along with keywords “Colorado”
and “shooting”, representing events that have been recent in time of the ex-
periment, namely shootings in Colorado and Wisconsin Sikh temple. Although
Colorado shooting received broader media coverage just prior to our experiment,
the events in Wisconsin reopened the talks about the Colorado shooting and thus
“Colorado” was also identified as a currently interesting keyword. The keywords
of “Sikh” and “temple” have also been identified, however they have ranked
lower, as the number of articles covering these events had been considerably
smaller.
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Fig. 5. Development of keyword popularity over time, measured in number of articles
relevant to a keyword. Note the popularity increase of keywords “shooting” after Sikh
temple shootings from August 5th and “Apple” after developments in US trial of Apple-
Samsung from August 6th and 11th.

After further scrutiny of indexed articles, we have identified additional events
connected to the keywords. “Afghan” was mentioned in August 10th after attack
of Afghan policeman on U.S. soldiers, “China” witnessed a major trial versus Gu
Kailai, “Egypt” experienced an attack on border guard and “Apple” gained at-
tention in connection to Apple-Samsung trial. All of these news stories receiving
significant coverage on Reuters web site.
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4.1 Normalization of Results

Although the number of iterations performed every day was firmly set, the rate
of daily keyword extraction differed significantly, ranging from 124 keyword-
article pairs on 11th to 440 on 7th, with daily mean of 286.89 keyword-article
pairs. This is mostly attributed to the fact, that when presented by a smaller
variety of topics with highly relevant keywords, the rate of propagation will be
higher and observing bees will be more likely to select a new article from the
propagated set, decreasing their chance to explore and look for new articles. As
a result, various numbers of keyword-article pairs may be extracted every day,
depending on the article structure. Therefore the keywords extracted in days,
when less keyword-article pairs have been recognised, will seem less popular,
when compared to keywords extracted in other days.

To compensate for this, we have normalized the data by assigning every day i
a factor fi = Ni/N̄ , Ni being the total number of keyword-article pairs obtained
on the day i and N̄ being the mean value. Subsequently we have used fi as a
weight to adjust the numbers of identified articles. The Table 2 summarizes the
adjusted overall numbers of articles for the most popular keywords, preserving
the order of keywords from Table 1 for comparison. The development of adjusted
keyword popularity is presented in Fig. 6. From the presented data we can see,
that the presented approach is able to identify popular keywords related to news
stories in a set of articles. Most of the keywords are related to long term or general
stories, but keywords related to individual recent events are also present, due to
intensive coverage of the concerned events. Changes over time are also captured
and may be mapped to real events.

Table 2. Most popular keywords after normalization

keyword nk nk/N [%] keyword nk nk/N [%]

Syria 177.30 6.87 court 49.90 1.93

Euro 75.50 2.92 Samsung 55.71 2.16

Apple 92.65 3.59 ECB 49.85 1.93

Egypt 98.10 3.80 attack 49.41 1.91

Afghan 78.23 3.03 trial 28.90 1.12

shooting 56.32 2.18 murder 26.38 1.02

China 55.30 2.14 Libor 27.75 1.07

Colorado 41.79 1.62 Aleppo 25.31 0.98

4.2 Grouping of Keywords According to News Stories

In previous experiment we have outlined the results of our keyword extraction
mechanism by measuring the popularity of extracted keywords. The popularity
of a given keyword k was measured for each day i as a number of articles ni

k

for which k was evaluated as relevant. Overall popularity of k is then calculated
as nk =

∑
i n

k
i . Although this gives us some insight into what story related
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Fig. 6. Development of keyword popularity over time, adjusted for different daily rates
of keyword extraction. The significance of keywords from August 11th has increased
notably, as the least article-keyword pairs have been identified on this day.

keywords were popular during the testing period, the most popular keywords
listed in Table 2 only account for 38.27% of all identified article–keyword pairs.
Furthermore, the group of top 8 keywords tracked in Fig. 6 represents only
26.15% of all article–keyword pairs.

In order to assess the ability of our approach to track news stories, instead of
single most popular keywords, we increase the scope of the analysis to include
a broader range of less popular keywords, by generalizing the notion of single
keyword popularity to story popularity. Therefore instead of tracking popularity
nk of every keyword individually, we group the keywords according to their rele-
vance to news stories, that they represent. The grouping in outlined experiment
was performed manually, after thorough scrutiny of retrieved articles. We have
omitted ambiguous keywords with no clear reference to a particular news story,
such as “parliament” or “banks”. The following stories have been identified:

1. Syria uprising
2. China Bo Xilai trial
3. Egypt police clashes
4. Colorado shooting
5. Apple vs Samsung trial
6. Euro debt crisis
7. Libor manipulation scandal
8. Afghan conflict

Popularitym of an individual story s is evaluated asms =
∑

nk for all nk related
to s. No keyword is related to more than one story. Popularity of resulting news
stories is listed in Table 3. First column of the table shows the popularity ms of
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story s and second column expresses the popularity of the story as percentage of
all retrieved article–keyword pairs. The total number of article–keyword pairs for
all keywords included in all stories reached 1357, that is 52.55% of all retrieved
article–keyword pairs, compared to 994 article–keyword pairs related to top 16
keywords listed in Table 1, which represents 38.50% of all article–keyword pairs.

Table 3. Overall story popularity

story ms ms/N [%]

Syria uprising 303 11.74

China trial 197 7.63

Egypt clashes 188 7.28

Colorado shooting 177 6.86

Apple vs Samsung 163 6.31

Euro debt crisis 147 5.69

Libor scandal 99 3.83

Afghan conflict 83 3.21

Total 1357 52.55

A more detailed look at dynamics of story popularity is given in Fig. 7. The total
number of article–keyword pairs relevant to stories is higher than the number of
article–keyword pairs relevant to single keywords, as depicted in Fig. 5. However
the number of article–keyword pairs still differs significantly from day to day.
Therefore same normalization as with previous experiment is necessary, in order
to equalize for different daily article retrieval rates.

Normalized values of story popularity are presented in Table 4. The order of
stories is slightly changed, with respect to Table 3. Story of “Syria uprising”
retains first place, but second place is occupied by “Egypt clashes” and “Apple
vs Samsung” moves up from fifth place to third. Total number of article-keyword
pairs after normalization reached 1399.57, which is 54.21% of all retrieved article-
keyword pairs. This is attributed to the fact, that not all identified keywords can
be confidently related to a specific story.

Development of story popularity after normalization is given in Fig. 8. The
shape is similar to the one given in Fig. 6, as 7 out of 8 stories are strongly
represented by a single keyword from the set depicted in Fig. 6. However, multiple
other keywords have been included, along with the addition of a story labelled
“Libor scandal” that is not represented by any keyword from the group of top
8 keywords. The number of article-keyword pairs represented by tracked stories
has thus increases considerably, from 26.15% to 54.21%.

4.3 Agent Distribution

During the course of article retrieval, employed agents may take up three dif-
ferent tasks of foraging, observing and dancing, which serves as a propagation



308 P. Návrat and Š. Sabo
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Fig. 7. Popularity of stories over time, measured as a number of articles relevant to
keywords, summed over each keyword related to a given story. Most of top keywords
from Table 1 represent a distinct story, except “shooting”, which is grouped with “Col-
orado” in “Colorado shooting” story. Furthermore an additional story of “Libor scan-
dal” is included, which is not represented by any keyword from the group of most
popular keywords tracked in Fig. 5.

Table 4. Popularity of stories after normalization

story ms ms/N [%]

Syria uprising 313.64 12.15

China trial 169.57 6.57

Egypt clashes 216.30 8.38

Colorado shooting 164.25 6.36

Apple vs Samsung 197.15 7.64

Euro debt crisis 144.20 5.58

Libor scandal 91.32 3.54

Afghan conflict 103.14 3.99

Total 1399.57 54.21
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Fig. 8. Development of story popularity over time, adjusted for different daily rates of
keyword extraction. Although the number of articles has been normalized to account
for different daily rates of keyword extraction, the relative popularity of story related
keywords still fluctuates from day to day, when compared to total popularity of all
extracted keywords extracted on a given day.

mechanism for suitable article–keyword pairs. The distribution of agents among
these tasks determines the behaviour of the system as a whole.

The number of foraging agents determines the rate of keyword extraction.
Foraging agents carry a single keyword candidate and evaluate visited articles
in order to identify suitable article–keyword pairings. The number of dancing
agents influences the exploration rate of new, previously unexplored article–
keyword pairs, as the proportion of dancing agents in population determines
the chance of a propagated pair to be selected by an observing agent. A high
number of dancing agents therefore inhibits the exploration, as observing agents
will tend to select their new article–keyword pairs from the propagated pool,
thus rejecting the possibility of adopting a new, previously untested keyword.
On the other hand, high number of dancing agents reinforces the tendency of
agents to focus on exploration of article–keyword pairs with already popular
keywords. Therefore a suitable agent distribution is crucial in order to maintain
efficient exploration of article–keyword space.

Fig. 9 depicts the distribution of agents attained during the experimental
run outlined in this section. The initial distribution of agents is arbitrary and
subject to setting, however after a certain number of iterations, the distribution
of agents reaches an equilibrium. The precise equilibrium point is determined
by the parameters of the run. Generally a longer OT (observation time) shifts
the equilibrium towards higher number of observing agents, while longer MDT
(mean dance time) increases the number of agents dancing.

Fig. 10 documents a similar scenario as with Fig. 9, however the equilibrium
is reached earlier. This is standard behaviour and it is strongly dependent on the
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Fig. 9. Distribution of 50 agents among individual tasks over time. Only first 3000 iter-
ations from a 10 000 iteration run are shown for the sake of clarity. Initially the portion
of observing agents is high and drops gradually, as suitable keywords are established.
After first thousand iterations, the distribution among tasks reaches equilibrium and
from this point only minor fluctuations occur until the end of the run.

initial landscape of the articles. A faster reaching of equilibrium suggests that
a smaller number of articles with specific keywords have been retrieved in the
early stages of the run.

4.4 Discussion

The aim of the performed experiment was twofold: to demonstrate the ability of
the proposed approach to extract meaningful keywords representing news stories
and to determine, whether the system is able to react to dynamic environment
and pick up on new keywords, as news stories develop.

After empirical analysis of the results, we generally consider the retrieved
keywords to be relevant to news stories. The most popular keywords tend to be
more general and encompass broader range of events, such as “Syria”, or “Euro”.
However, less general keywords relevant to specific events are also present, such
as “Colorado”. Keywords not relevant to stories have been also recognised, due
to the fact, that some keywords generally appear in multiple related articles,
without pointing to a specific event, or story. An example of such keywords
would be “oil”, or “economy”. Fortunately, although these keyword also appear
frequently in news coverage and have been also extracted by our system, they
rank considerably lower than major story related keywords.

When comparing results obtained from different days, we observe, that the
system indeed reacts to different unwinding stories. The main problem is, that
while identified keywords are relevant to new stories, the most popular keywords
are too general and although they hint that new events took place in a certain
general storyline, we are currently unable to pinpoint these new events simply
by looking at retrieved keywords. To do so, we had needed to perform manual
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Fig. 10. Alternative run with the same settings, as in Fig. 9. The equilibrium is reached
considerably earlier and maintained afterwards. The sharp increase in the number of
observing agents towards the end is attributed to the retrieval of a large set of fresh
articles, which is subsequently gradually processed.

inspection of retrieved data. However, it is important to add, that the specific
keywords that narrow down the storyline, or pinpoint a single event, are also
extracted, although they rank lower than the best general keywords. An example
of such more specific keywords would be “Aleppo”, related to “Syria”, or “Gu”
and “Xilai” related to “China”.

One possible way of incorporating the less popular keywords into the overall
result is by generalizing the idea of keyword popularity through addition of
multiple keywords, related to a single news story, resulting in an overall measure
of story popularity. This way, we have been able to achieve a more complex
look at the current news story landscape, increasing the fraction of used article–
keyword pairs from 26.15% to 54.21%. Beyond that, the extracted keywords
have been too ambiguous, or general to confidently assign them to a specific
news story.

At this time, we are unable to precisely evaluate the reaction time of the
approach to any given event at a daily granularity of snapshots, based on the
data presented in Fig. 5 and Fig. 6. The snapshots have been taken every day at
22:00 GMT, by which time the most of the significant events have been already
broadly covered in news. Finer granularity of snapshots will have to be used in
order to achieve more significant results regarding the dynamic reaction of the
system to new events.

Due to the online nature of the proposed algorithm, it is difficult to compare
it directly with common keyword extracting approaches that use naive Bayes or
Support Vector Machine classifiers. The main difference lies in the fact, that our
approach processes news articles “on the fly” as they are discovered, without any
pre-processing steps or supervised learning. The algorithm can be deployed once
to rapidly analyse a number of articles, or continuously to retrieve keywords over
a period of time, reacting to changes and new articles dynamically. This is made



312 P. Návrat and Š. Sabo

possible by light-weight relevance function that evaluates only one keyword and
one article at a time. The fact that no single bee carries accurate information
about article keywords is countered by the multiplicity of bees. The best key-
words are allowed to gradually surface through propagation by the swarm, a
mechanism similar to the dancing observed with natural honey bees.

5 Conclusion

The approach presented in this paper aims to provide insight into currently on-
going news stories, by extracting keywords relevant to news stories from articles
on the Web. The approach is inspired by behaviour of honey bees. A set of agents
is used to determine the relevance of selected candidate keywords by comparing
them to the articles. The best keywords are propagated through the relevant ar-
ticles, similarly to pollen being carried by honey bees from one flower to another.
This way a keyword has a chance to be identified as relevant to an article, even if
it is not within the set of keyword candidates for the given article. Furthermore,
the most promising keywords may be explored in this way, by being compared
to multiple articles, while irrelevant keywords will be discarded and not explored
further.

The performed experiments have shown that the proposed approach is able
to retrieve keywords relevant to stories, without previous training, also being
able to react to current events. When measuring the popularity of keywords
in number of relevant articles, we observe the prominence of more general key-
words, that are related to long term general stories. The more specific keywords
are also retrieved, they are however ranked lower, as they are not mentioned
in many articles. One of the possible approaches to addressing this issue is the
grouping of articles according to their relevance to general news stories. This
way the popularity of a certain news story reflects both popularity of major,
often more general keywords and less popular, but more specific keywords as
well. The focus of our current work is aimed at providing a more structured rep-
resentation of a news story, that would allow us to retain relationships between
individual keywords and relevant articles within a news story and also to track
the development of a news story in time.
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Abstract. Variable Neighborhood Search (VNS) is one of the most re-
cently introduced metaheuristics. Although VNS is successfully applied
on various problem domains, there is still some room for it to get im-
proved. While VNS has an efficient exploitation strategy, it suffers from
its inefficient solution space exploration. To overcome this limitation,
VNS can be joined with explorative methods such as Evolutionary Al-
gorithms (EAs) which are global population-based search methods. Due
to its effective search space exploration, Differential Evolution (DE) is a
popular EA which is a great candidate to be joined with VNS. In this
article, two different DEs are proposed to be combined with VNS. The
first DE uses explorative evolutionary operators and the second one is a
Multi-Population Differential Evolution (MP-DE). Incorporating a num-
ber of sub-populations improves the population diversity and increases
the chance of reaching to unexplored regions. Both proposed hybrid
methods are evaluated on the classical Job Shop Scheduling Problems.
The experimental results reveal that the combination of VNS with more
explorative method is more reliable to find acceptable solutions. Further-
more, the proposed methods offer competitive solutions compared to the
state-of-the-art hybrid EAs proposed to solve JSSPs.

Keywords: Differential Evolution, Multiple Population, Variable
Neighborhood Search.

1 Introduction

Optimization is an area of research where the goal is to optimize a system based
on its input parameters. In general, an optimization problem is defined as find-
ing the best set of input parameters to make a system as effective as possible.
Optimization problems are categorized into two classes based on the type of
their input parameters. The problems with continuous parameters are classified
as global optimization problems, while the ones with discrete parameters are
considered as combinatorial optimization problems. The focus of this paper is
on a permutation problem which is a combinatorial optimization problem.
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Various types of algorithms are proposed to solve optimization problems. A
number of heuristics are presented to deal with very specific optimization prob-
lems. Although they perform well in their applicable domain, they cannot offer
the same performance for related problem domains. Local search, for instance, is
a heuristic which starts at an initial random solution, looks for a better solution
in the neighborhood of its current solution, and returns the best found solution
when it converges.

Due to the fact that heuristics are not successful in general, metaheuristics
are presented which are general procedures to design heuristics for optimization
problems. Metaheuristics are so-called complex heuristics. For example, there
are a number of extended versions of simple local search such as Repeated Local
Search (RLS) and Iterated Local Search (ILS). Since a local search might trap
into local optimal regions, its execution for a number of times increases the
chance of finding an acceptable solution. This strategy is known as RLS. ILS
is an extended version such that it incorporates the best solutions found in
previous executions. In fact, instead of starting from another random solution,
ILS perturbs the recently found best solution and continues.

Variable Neighborhood Search (VNS) is one of the most recently introduced
metaheuristics proposed by Mladenovic and Hansen [1]. VNS can also be consid-
ered as an extended version of ILS. The idea of VNS is to incorporate a number
of neighborhood structures and switch among them at the time of local search
execution. VNS starts with searching locally with respect to one neighborhood
structure and it switches to another one as soon as it converges. This strategy
decreases the chance of immature convergence dramatically.

Due to its generality, VNS is successfully applied in various areas such as
the Traveling Salesman Problem [2], the Open Vehicle Routing problem [3], the
p-Median problem [4], and the Graph problem [5].

The performance of VNS is highly dependent to the definition of its neighbor-
hood structures. Complement neighborhood structures provide VNS a powerful
exploitation strategy. However, since VNS is a local search approach, there is still
some chance of trapping into a local optimum by spinning in some previously
investigated regions. Although a number of different strategies such as Parallel
VNS [6], Multi-Start VNS [7], and Population-based VNS [8] are proposed to
overcome this limitation, VNS cannot perform well as a global approach to deal
with complex optimization problems; it suffers from its inefficient solution space
exploration.

A more effective way to enhance VNS is to join it with a highly explorative
method. In fact, the solution space exploration should be conducted by the joint
method to find promising regions and VNS should be responsible for exploiting
the promising regions. It is expected for this combination to have a great perfor-
mance. In our recently published article [9], we incorporated a Genetic Algorithm
(GA) [10] as the joint method. This combination which is a Memetic Algorithm
(MA) [11] benefits a global population-based approach for its exploration and
a powerful local search method as its exploitation strategy. The results of this
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combination show that the GA helps VNS to offer a better performance com-
pared to the single VNS as a global method.

In this article, two more approaches are presented to improve the performance
of a VNS. The first approach is to combine VNS with a Differential Evolution
(DE) [12]. DE is a popular evolutionary method due to its powerful solution
space exploration, and therefore it could be the best candidate to be combined
with VNS. Although this combination is one of the bests in terms of incorpo-
rating both powerful exploration and exploitation strategies, there is still some
chance of immature convergence. An approach to decrease this chance is to in-
corporate multiple populations for DE. Dividing the whole population into a
number of sub-populations decreases the chance of trapping into local optimal
regions. When a sub-population converges to a local optimum, it can recover
itself by incorporating the knowledge migrated from other sub-populations. In
other words, in this article two methods are proposed including the joint of DE
and VNS and combination of Multi-Population Differential Evolution (MP-DE)
and VNS.

The main contribution of this article is to represent the impact of different
population-based searches with different levels of exploration on the performance
of VNS. Since VNS is a powerful local search with a great exploitation strategy,
it is expected that its combination with more explorative methods offer better
performance. In order to evaluate the proposed methods, Job Shop Scheduling
Problem (JSSP) is considered as our test bed. JSSP is a well-known combina-
torial optimization problem which is considered as a complex problem based on
the dependency of its input parameters to each other.

The remainder of this article is organized as follows. Section 2 briefly intro-
duces VNS, followed by an introduction of DE and MP-DE in Sections 3 and 4,
respectively. The problem domain of JSSP is concisely defined in Section 5. The
proposed methods are described in details in Section 6, followed by represent-
ing the experimental results in Section 7. Finally the last section illustrates the
conclusion remarks.

2 Variable Neighborhood Search

A simple local search method determines a neighborhood area for each solution
which is defined based on a neighborhood structure. It starts with a feasible
solution which is usually selected randomly from the solution space. It then
searches for a better solution by applying some moves with respect to the neigh-
borhood structure. The main drawback of this simple structure is its immature
convergence. If a local search is trapped in a local optimum, it spins around the
local optimal region and never escape from that region. Therefore, instead of
converging to the global optimum, it converges to a local one. This issue is more
crucial in complex optimization problems, specially large ones, where the chance
of trapping into local optima is higher.

To defeat this issue, VNS is introduced which incorporates a number of neigh-
borhood structures. VNS starts searching with respect to the first neighborhood
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structure and as soon as it finds a local optimum it switches to the next neigh-
borhood structure. This routine continues until an optimum with respect to all
neighborhood structures is reached. Therefore, complement neighborhood struc-
tures provides a more powerful VNS.

It can be concluded that the idea of VNS comes from the following facts:

1. A local optimal solution in one neighborhood area is not necessarily a local
optimum in another neighborhood area.

2. A global optimal solution is a local optimal solution for all possible neigh-
borhood areas.

3. In general, local optimal solutions within one or more neighborhood struc-
tures are relatively close to each other.

Although the last one is not really a fact for all optimization problems, it
is an empirical observation implying that a local optimal solution may carry
some useful information about other local optimal solutions and even the global
optimum.

3 Differential Evolution

Evolutionary Algorithms (EAs) are a class of algorithms inspired by the nat-
ural selection. EAs are global population-based search methods incorporating
evolutionary operators including recombination, modification and selection. Dif-
ferential Evolution (DE) is the most recently introduced EA proposed by Storn
and Price [12] . DE which is designed to solve continuous optimization problems
shows remarkable performance on various continuous optimization problems such
as space trajectory optimization [13] and multi-area economic dispatch [14].

The key characteristic of DE which makes it a popular EA is its effective
solution space exploration. DE incorporates a number of mathematical equations
in order to highly explore the solution space. DE defines each solution as a d-
dimensional vector of real numbers and uses its mutation and crossover equations
to generate offspring. Although DE has a strong exploration strategy, due to its
inefficient exploitation mechanism it is not able to perform well on complex
optimization problems. Therefore, DE is a good candidate to be joined with a
local search method. Recently, a number of successful hybrid DEs are reported
in the literature such as the combination of a DE and an adaptive local search
published by Noman and Iba [15].

As mentioned before, DE was designed to deal with continuous optimiza-
tion problems. In order to apply it on combinatorial optimization problems, two
approaches have been introduced. The first approach is to incorporate a trans-
formation procedure such that each solution can be mapped from continuous
domain to discrete one and vice versa. It should be noted that the mapping from
continuous domain to discrete must be a many-to-one mapping (n → 1). Incor-
porating this strategy provides a continuous domain for DE to be applied on.
There are a number of successful applications of this approach on permutation
optimization problems such as the ones published by Onwubolu and Davendra
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[16], Qian et al. [17], and Zhang and Wu [18]. The second approach is to modify
DE’s operators to be applicable in a discrete domain. Modifying DE’s operators
makes it a specific algorithm for the problem domain and there is no guarantee
to obtain the same performance. Two successful modified DEs are published by
Pan et al. [19] and Wang et al. [20] to solve flow-shop scheduling. As presented
in details in Section 6, the former approach is incorporated in our proposed
methods.

All the components of DE are defined mathematically. The solution space S
is a d-dimensional domain of real numbers and each solution s is determined as
a d-dimensional vector:

S = D0 ×D1 × ...×Dd−1 (1)

s = [x0, x1, ..., xd−1] , xj ∈ Dj (2)

where xj represents the value of solution s for dimension j ranging from 0 to
d− 1.

DE starts with an initial population of randomly generated solutions. The
population is evolved over a number of generations. A solution within the popu-
lation so-called target vector is denoted by the generation number and an index.
For instance, target vector Xi,g represents the ith target vector of generation g:

Xi,g = [x0,i,g, x1,i,g, ..., xd−1,i,g] (3)

where xj,i,g represents the value of target vector Xi,g for dimension j ranging
from 0 to d− 1.

The recombination and modification operators of DE are also defined as math-
ematical formulae. The mutation operator applies on a target vector Xi,g and
generates a new vector which is called mutant vector denoted by Vi,g . The basic
mutation equation is presented in Equation 4:

Vi,g = Xr1,g + F × (Xr2,g −Xr3,g) (4)

where Xr1,g, Xr2,g, and Xr3,g are three different randomly selected target vec-
tors. Xr1,g is called the base vector and the other two are called perturbing
vectors. F is a scale factor to determine how much to perturb the base vector.

There are various mutation equation incorporated by different researchers.
Each equation is determined based on its base vector and the number of per-
turbations. The basic mutation equation illustrated in Equation 4, for instance,
is called DE/rand/1 which means that the base vector is a randomly selected
target vector and the perturbation is done only one time. Four more equations
are presented by Price et al. [21] which are presented as follows:

DE/rand/2 :

Vi,g = Xr1,g + F1 × (Xr2,g −Xr3,g) + F2 × (Xr4,g −Xr5,g) (5)

DE/best/1 :
Vi,g = Xbest,g + F × (Xr1,g −Xr2,g) (6)
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DE/best/2 :

Vi,g = Xbest,g + F1 × (Xr1,g −Xr2,g) + F2 × (Xr3,g −Xr4,g) (7)

DE/current− to− best/1 :

Vi,g = Xi,g + F1 × (Xbest,g −Xi,g) + F2 × (Xr1,g −Xr2,g) (8)

where Xr1,g, Xr2,g, Xr3,g, Xr4,g, and Xr5,g are randomly selected target vectors,
Xbest,g denotes the best found solution so far, and F , F1, and F2 are scale factors.

Equation 9 represents one more mutation equation which is introduced by
Wisittipanich and Kachitvichyanukul [22]:

DE/localbest/1 :

Vi,g = Xilbest,g + F × (Xr1,g −Xr2,g) (9)

where Xr1,g and Xr2,g are randomly selected target vector, Xilbest,g denotes the
local best solution of target vector Xi,g, and F is a scale factor.

These equations use different base vectors and different levels of perturbation.
The more important point is that although Equations 8 and 9 incorporates the
target vector Xi,g either explicitly or implicitly, other equations generate the mu-
tant vector Vi,g regardless of the target vector Xi,g. Nevertheless, the crossover
operator incorporates both the target vector Xi,g and the mutant vector Vi,g

to generate a trial vector Zi,g. The most popular crossover operator for DE is
binomial crossover which is illustrated in Equation 10:

zj,i,g =

{
vj,i,g if rj ≤ Cr or j = jrand
xj,i,g otherwise (10)

where rj is a random number uniformly distributed in interval [0, 1) selected for
the jth dimension, Cr is the crossover probability which could be either fixed
or dynamic, and jrand is a randomly selected dimension to ensure that the trial
vector Zi,g differs from target vector Xi,g at least in one dimension.

After generating trial vectors, a selection function is incorporated by DE to
select the better solutions for the next generation. Comparing the target vec-
tor Xi,g and the trial vector Zi,g, this function selects the one with the better
objective value as a target vector for the next generation denoted by Xi,g+1.

Xi,g+1 =

{
Zi,g if f(Zi,g) ≤ f(Xi,g)
Xi,g otherwise (11)

4 Multi-population Differential Evolution

In Multi-Population Differential Evolution (MP-DE), the whole population is
divided into a number of sub-populations and each sub-population is evolved by
a local DE. Local DEs may communicate with each other in order to exchange
knowledge. The main reason to incorporate a number of sub-populations instead
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of a single population is to decrease the chance of premature convergence. In
fact, this strategy helps the method to maintain the population diversity and
consequently it increases the chance of exploring unvisited regions.

There are various MP-DEs with different characteristics proposed in the lit-
erature. A parallel DE is proposed by Tasoulis et al. [23] in which the local DEs
communicate with each other by migrating their best found solutions in a ring
topology. The migrated solutions replace the randomly selected solutions in the
destination sub-populations. Tasgetiren and Suganthan [24] proposed a MP-DE
which incorporates a re-grouping strategy. The mutation strategy in this method
selects the random target vectors from the whole population instead of just the
corresponding sub-population.

In addition to the solution migration, there are a number of strategies for MP-
DE in which only the DE parameters are exchanged among the sub-populations.
Yu and Zhang [25] proposed a MP-DE in which in each generation the successful
local DEs send their own parameters to other local DE to adjust theirs. The
factor value in mutation equation and the crossover probability are considered
as the exchanging control parameters in this method.

Furthermore, there are a number of strategies where no exchange occurs at all.
The MP-DE proposed by Mendes and Mohais [26] which is called DynDE defines
an acceptable distance between the best solutions of different sub-populations
as a threshold. If such a distance gets smaller than the threshold, one of the
sub-populations will be re-initialized.

5 Job Shop Scheduling Problem

In order to evaluate our proposed methods, the Job Shop Scheduling Problem
(JSSP) is selected as our test bed. Being applicable in various research areas
makes JSSP a well-known class of combinatorial optimization problems. JSSP
is defined as the process of sequencing a number of jobs to be completed on a
number of machines in order to utilize the resources as efficient as possible. The
most popular objective in JSSP is to decrease the total time required to perform
all the existing jobs. Therefore, the goal is to minimize the maximum completion
time of all the jobs, called the makespan.

Garey et al. [27] proved that the JSSP problems including more than two
machines are NP-complete which implies that there is no exact algorithm capable
to find the optimal solution for all the sample problems in an acceptable time.
Since JSSP is a complex permutation optimization problem which is still an
open problem, it is a great case study to evaluate the new proposed methods.

Although there are various versions of JSSP represented in literature, in gen-
eral, JSSP is defined by Baker [28] as a task of scheduling N jobs denoted by Ji to
be processed on M machines denoted by mk, where i is the job index and k is the
machine index ranging from 1 to N and 1 to M , respectively. Each job consists
of a number of operations which have to be processed in a pre-defined sequence.
Each operation is denoted by Oij where i is the job index and j is the operation
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index in the ith job. In classical JSSP, there are a number of rules which may be
partially shared with other types of JSSP. These rules are presented as follows:

1. Jobs are independent to each other and are available at the beginning.
2. There is no due date for any jobs.
3. All the jobs have the same number of operations which is equal to the number

of applicable machines.
4. Each machine processes only one operation of a job which cannot be inter-

rupted.
5. There is only one applicable machine for each operation such that there is

no machine selection flexibility for operations.
6. The processing time of each operation on its applicable machine is known

and the machine set up time and the movement time between machines are
considered negligible.

A sample classical JSSP is illustrated in Table 1 in two different formats,
namely job-based and machine-based. The sample problem is a 3 × 3 problem
including 3 jobs to be processed on 3 machines. The table represents the ap-
plicable machine for each operation and its corresponding processing time. The
second operation of the first job (O12), for instance, has to be processed on the
first machine (m1) for 3 time units. A sample schedule for this problem is de-
picted in Fig. 1. The sample schedule has the makespan of 12 which is not the
minimum makespan for this sample problem.

Table 1. A sample 3× 3 classical JSSP

Jobs Operation Index
O1 O2 O3

J1 m3,3 m1,3 m2,2
J2 m1,2 m2,3 m3,2
J3 m1,2 m2,3 m3,2

Machines Jobs
J1 J2 J3

m1 O12,3 O21,2 O31,2
m2 O13,2 O22,3 O32,3
m3 O11,3 O23,2 O33,2

Fig. 1. A sample schedule for the sample problem

There are a number of important concepts in JSSP such that reaching the
optimal solution without considering these concepts is almost impossible. The
most important concepts are critical paths, critical blocks and critical operations.
A critical path is the longest path of consecutive operations in a schedule starting
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from time zero and ending at the makespan. A schedule has at least one critical
path. Critical paths are important because they determine the makespan and the
only way to decrease the makespan is to break all the critical paths. Therefore,
in order to define efficient neighborhood structures for local search heuristics,
breaking the critical paths should be considered as an approach to reach better
solutions.

The operations on the critical paths are called critical operations. In other
words, critical operations are such operations that any delay in their processing
increases the makespan of the whole schedule. A critical operation may belongs
to more than one critical paths. A sequence of adjacent critical operations on
the same machine is called a critical block.

In the sample schedule presented in Fig. 1, for example, there are two critical
paths including:

CriticalPaths :

{
O21 ≺ O31 ≺ O32 ≺ O22 ≺ O13

O21 ≺ O31 ≺ O32 ≺ O22 ≺ O23
(12)

Therefore, there are 6 critical operations in the sample schedule where 4 of
them are on two different critical paths. The critical blocks are as follows.

CriticalBlocks :

⎧⎨
⎩

m1 : O21 ≺ O31

m2 : O32 ≺ O22 ≺ O13

m3 : O23

(13)

In fact, there is only one critical operation on the third machine and there is
no sequence of critical operations. Therefore, considering it as a critical block
does not have any effect on the process of optimization. The first and the last
operations in a critical block are called block head and block rear, respectively,
and others are called internal operations.

In addition to the critical operations, there are a number of terms which
should be defined clearly. The following terms are used later to describe neigh-
borhood structures. There are two different kinds of operation sequence in a
schedule including job operation sequence and machine operation sequence. The
former determines the sequence of operations of a job which is predefined in
classical JSSP, while the latter one represents the sequence of operations which
have to be processed on a specific machine. The adjacent operations, namely the
previous operation and the next one, of an operation in a sequence are called
its predecessor and successor operations, respectively. In fact, in a job operation
sequence they are called Job-Predecessor operation and Job-Successor operation
of an operation Oi,j denoted by JP (Oi,j) and JS(Oi,j), respectively. MP (Oi,j)
and MS(Oi,j) also represent Machine-Predecessor and Machine-Successor oper-
ations of an operation Oi,j , respectively. Since the operation sequence for each
job is predefined, the following statements are always right, provided Oi,j+1 and
Oi,j−1 exist:

JS(Oi,j) = Oi,j+1

JP (Oi,j) = Oi,j−1



324 M.R. Raeesi N. and Z. Kobti

Another valuable concept in JSSP is active schedule which is very useful
to limit the solution space. An active schedule is defined by Croce et al. [29]
as a schedule which does not have any operation that can be started earlier
without delaying the process of another operation. Based on this definition,
an optimal solution is more likely an active solution and even if it is not, it
has an equivalent active schedule which is optimal as well. It should be noted
here that an equivalent schedule is a schedule with the same makespan and the
same critical paths which could have one or more different machine operation
sequences. Each active schedule may have many equivalent non-active schedules
and therefore the solution space of active schedules is much smaller than the
main solution space. Consequently, exploring the active solution space is more
efficient compared to searching in the whole solution space. Various strategies are
represented in order to incorporate the active schedule concept such as the gap
reduction rule proposed by Hasan et al. [30] and the priori knowledge introduced
by Becerra and Coello [31].

6 Proposed Methods

As mentioned before, VNS has a powerful exploitation strategy which suffers
from its inefficient search space exploration. In order to enhance VNS, we pub-
lished recently a combination of a GA and a VNS [9]. The results show that
incorporating a population-based global search improves the results of VNS ap-
plications. In this article, more explorative methods are joined with VNS in
order to illustrate their effects on the final results. It is expected that the results
should be improved more compared to ones recently published [9]. Two methods
are proposed in this article which are the combination of VNS with two different
DEs. The first proposed method incorporates a simple DE while the second one
benefits from a MP-DE which has a more explorative mechanism.

In our proposed methods, VNS is combined with EAs in order to improve its
performance. As defined by Moscato [11], these combinations are considered as
Memetic Algorithms (MAs). In general, a MA is defined as a combination of a
population-based global search and a local search heuristic to solve optimiza-
tion problems. The population-based global search provides an effective solution
space exploration for a MA and the local search highly exploits the promising
regions. Therefore, the performance of a MA should be higher than each of the
combined methods. Various successful applications of MAs have been reported in
the literature such as the MAs published by Gao et al. [32], Caumond et al. [33],
and Chiang et al. [34] to deal with scheduling problems. Since both proposed
methods in this article as well as the methods published previously [9] are in-
stances of MA, in order to differentiate them in this article they are called based
on their combination as VNS+DE, VNS+MPDE and VNS+GA, respectively.

The details of both proposed methods are represented in the following subsec-
tions starting with the description of solution representation in Subsection 6.1.
The neighborhood structures incorporated in our proposed VNS are described
in Subsection 6.2 followed by the definition of the genetic operators of the
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proposed DE and MPDE in Subsection 6.3. Finally, the frameworks of both
proposed methods are illustrated in Subsection 6.4.

6.1 Solution Representation

As mentioned before, in order to apply DE on combinatorial optimization prob-
lems, there are two approaches. In our proposed methods, the transformation
strategy is incorporated. Therefore, two different solution representations are
considered; one in discrete domain and one in continuous. The proposed DE and
MPDE deal with the representation in a continuous domain, while in order to
evaluate each solution it should be transformed to a permutation domain to be
considered as a JSSP solution.

Various representations with different characteristics are proposed for JSSP.
Permutation with repetition representation introduced by Bierwirth [35] is one
of the well-known representations. As an operation-based representation, this
representation encodes a schedule based on the sequence of the operations into a
string of digits. The length of the string equals to the total number of operations
in a scheduling problem and each operation is denoted by its job index in the
string. Therefore the operations of the same job are denoted by the same index.
Considering the operation dependency within a job operation sequence, the op-
erations with the same index are differentiated based on the occurrence number
of the corresponding index. For instance, the second occurrence of the third job’s
index denotes the second operation of the third job (O32). A sample solution for
the sample problem illustrated in Table 1 is represented in permutation with
repetition representation as follows:

{1, 2, 3, 1, 3, 2, 3, 2, 1}

The decoding of this sample solution results in the following operation
sequence:

O11 ≺ O21 ≺ O31 ≺ O12 ≺ O32 ≺ O22 ≺ O33 ≺ O23 ≺ O13

This operation sequence generates the following schedule which is depicted as
a Gantt chart in Fig. 1.

m1 : O21 ≺ O31 ≺ O12

m2 : O32 ≺ O22 ≺ O13

m3 : O11 ≺ O33 ≺ O23

The key advantage of permutation with repetition representation is that all
the possible permutations in this representation are feasible solutions. Therefore,
the decoding mechanism is straightforward such that no repair mechanism is re-
quired. The main drawback of this representation is its inefficient many-to-one
mapping (n → 1). In fact, there could be a huge number of different permutations
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which are decoded to the same schedule. The schedule illustrated in Fig. 1 might
be decoded from the following permutations (not limited to):

{1, 2, 3, 1, 3, 2, 3, 2, 1} {1, 2, 3, 3, 1, 2, 3, 2, 1}
{1, 2, 3, 3, 2, 1, 3, 2, 1} {1, 2, 3, 3, 2, 3, 1, 2, 1}
{1, 2, 3, 3, 2, 3, 2, 1, 1} {2, 1, 3, 3, 2, 3, 2, 1, 1}
{2, 3, 1, 3, 2, 3, 2, 1, 1} {2, 3, 3, 1, 2, 3, 2, 1, 1}
{2, 3, 3, 2, 1, 3, 2, 1, 1} {2, 1, 3, 1, 3, 2, 3, 2, 1}
{2, 3, 1, 1, 3, 2, 3, 2, 1} {2, 3, 1, 3, 1, 2, 3, 2, 1}
{2, 3, 1, 3, 2, 1, 3, 2, 1} {2, 3, 1, 3, 2, 3, 1, 2, 1}

However, due to its coding and decoding efficiency, permutation with rep-
etition representation is incorporated by various researchers. In our proposed
method, we also use this representation.

As a representation in continuous domain, random key representation is se-
lected for our proposed methods. In this representation, a solution is represented
as a vector of real numbers. Each dimension in this vector corresponds to one op-
eration. The following vector illustrates a sample solution for the sample problem
described in Table 1.

{0.49, 0.98, 0.38, 0.42, 0.73, 0.51, 0.48, 0.89, 0.63}
The corresponding value for each operation in this sample solution is presented

as follows. The minimum value, for instance, corresponds to O13 which means
that this operation should be started first. Due to the operation dependency
within a job operation sequence, O11 is processed first instead of O13.

Operation O11 O12 O13 O21 O22 O23 O31 O32 O33

Job Index 1 1 1 2 2 2 3 3 3
Random Key 0.49 0.98 0.38 0.42 0.73 0.51 0.48 0.89 0.63

In order to transform a solution from random key representation to permu-
tation with repetition representation, Smallest Position Value (SPV) rule [36]
is incorporated, in which the job indices should be sorted based on their corre-
sponding random key values ascendingly which is as follows:

Random Key 0.38 0.42 0.48 0.49 0.51 0.63 0.73 0.89 0.98
Job Index 1 2 3 1 2 3 2 3 1

The sorted string of job indices is the equivalent solution in the discrete do-
main which is

{1, 2, 3, 1, 2, 3, 2, 3, 1}
where its encoded operation sequence is presented as follows.
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O11 ≺ O21 ≺ O31 ≺ O12 ≺ O22 ≺ O32 ≺ O23 ≺ O33 ≺ O13

In addition to the fitness evaluation function, VNS works in the discrete do-
main as well. Therefore, the results of VNS should be transformable to the
continuous domain. In order to do so, each solution in discrete domain updates
its random key when a swapping or insertion occurs, accordingly.

6.2 Neighborhood Structures

In order to be able to compare the proposed methods with the published ones
[9], the same neighborhood structures are incorporated in this article. In our
recently published methods [9], two neighborhood structures N4 and N5 were
incorporated. These structures are two of the six popular neighborhood struc-
tures reviewed by Blazewicz et al. [37] which are denoted by N1 to N6 by the
authors. These neighborhood structures are described briefly as follows:

– Neighborhood Structure N1: This structure defines the largest neighborhood
area by considering the swapping of two adjacent critical operations as a valid
move [38].

– Neighborhood Structure N2: This neighborhood structure considers the
swapping of two critical operations p and q as a valid move if either p is
a block head or q is a block rear. In order to improved the neighbor solu-
tions two additional moves are also considered which include the swapping
of MP (JP (p)) and JP (p) and the swapping of JS(q) and MS(JS(q)) [39].

– Neighborhood Structure N3: Considering p and q are two adjacent critical
operations, this structure looks into all permutations of three operations
{MP (p), p, q} as well as three operations {p, q,MS(q)} in which p and q are
swapped [40]. Since the neighborhood area of this structure is very large,
a limited version is introduced which is called N3′ in which either p or q
should be a block end.

– Neighborhood Structure N4: Moving an internal operation to the very be-
ginning or to the very end of a block is considered as a valid move in this
structure [40].

– Neighborhood Structure N5: This structure only swaps the first two opera-
tions or the last two operations of a critical block which makes the smallest
neighborhood area [41].

– Neighborhood Structure N6: This structure is an extension of all previously
described neighborhood structures. The valid moves in this structure include
moving q right before p if JP (p) belongs to the critical path and moving p
right after q if JS(q) belongs to the critical path, given p and q as two critical
operations on a critical block [42].

As mentioned above, only two neighborhood structures N4 and N5 are con-
sidered in our proposed methods without any pre-processing or post-processing
procedures. The structure of the incorporated VNS is exactly the same as the one
recently published [9] which includes a Shake method followed by a LocalSearch
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method. The Shake method consists of four consecutive random moves with re-
spect to the following neighborhood structures.

Shake : N5 → N4 → N5 → N4

The LocalSearch method incorporates both the regular neighborhood search
and the nested neighborhood search. In regular one, both neighborhood struc-
tures N4 and N5 are considered while for the nested search only the smaller
neighborhood (N5) is incorporated. In terms of local search strategy, in order
to save the computational time, the first improvement strategy is incorporated
instead of the best improvement one [9].

6.3 Genetic Operators

As DE is incorporated in order to increase the exploration power, it should be
designed using more explorative evolutionary operators. The most explorative
mutation strategy is DE/rand/1 which is illustrated in Equation 4. Incorpo-
rating this strategy in our experiment declares that this strategy is not useful
for JSSP because it does not keep any information regarding previous genera-
tions. Other strategies presented in Equations 5 through 9 are more exploitative
than explorative. Therefore, a new mutation strategy is introduced in this article
which is called DE/current/1 presented as follows:

Vi,g = Xi,g + F × (Xr1,g −Xr2,g) (14)

where Xi,g is the current target vector, Xr1,g and Xr2,g are two different ran-
domly selected target vectors, and F is a scale factor.

Although this strategy incorporates the existing target vectors, it is more
explorative compared to other strategies while benefiting from the evolved solu-
tions instead of just random ones. The combination of both DE/current/1 and
DE/rand/1 is also evaluated on some JSSP benchmark problems. In this combi-
nation, for a top portion of a population DE/current/1 is incorporated while for
the rest of the population DE/rand/1 is used. It was expected to obtain good
performance for this combination, but it returns poor results. Therefore, only
DE/current/1 is incorporated as the mutation strategy in the proposed DE and
MP-DE with a small difference. In order to provide a more explorative mutation
strategy, a modification is considered for MP-DE which will be described later
in this section. To incorporate more information of the best found solution so far
in case of no improvement for a number of generations, the mutation strategy
switches to DE/current− to− best/1 illustrated in Equation 8.

For the crossover operator, the binomial crossover illustrated in Equation 10
is considered for both proposed methods exactly the same. Like for the crossover
operator, both proposed methods incorporate the same selection function which
is presented in Equation 11. It should be noted here that in order to consider
more information in selection procedure, instead of a simple evaluation function,
a Priority-Based Fitness Function (PBFF) [43] is incorporated. The idea of this
function comes from the fact that in simple evaluation functions when a tie
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happens the winner is selected arbitrarily while it could be selected based on a
comparison with respect to another factor. In PBFF, a number of factors are
defined with different priorities and then the comparison procedures considers
lower priority factors in case of ties in higher priority factors.

In our proposed methods, a PBFF is incorporated such that the first priority
factor is the makespan and the second one is the number of critical machines.
Based on this fitness function, if two schedules have the same makespan, the
selection function selects the one with the lower number of critical machines. If
they have the same number of critical machines, one of them will be selected
randomly.

6.4 Frameworks

The first proposed method is a combination of DE and VNS, so-called VNS+DE.
The framework of the proposed DE+VNS is illustrated in Fig. 2 which starts
with an initial population of random solutions (line 03). PopSize denotes the size
of the population which is fixed during the evolution. In each generation, first DE
evolves the population and then VNS applies on a top best portion of the evolved
population. DE incorporates its mutation, crossover and selection operators to
explore the solution space (lines 05 through 09). Then the exploitation of the
promising regions (the neighborhood of the top best solutions) is conducted by
VNS (lines 10 through 12). The top best solutions are determined using TopBest
parameter which is fixed for all generations. In our proposed method, in order to
find out the top best solutions the whole population is sorted in each generation.
After the application of VNS, its results combined with the rest of the population
provides the population for the next generation denoted by Pg+1 (line 13). This
routine continues until the criteria are met (line 15). A maximum number of
generations is considered as our termination criterion denoted by MaxGen.

The second proposed method is a combination of a VNS and a Multi-
Population Differential Evolution denoted by VNS+MPDE. Although this
method is similar to the proposed VNS+DE, it benefits from the concept of
multiple populations. In this method, first the whole population is divided into a
number of sub-populations denoted by SubPopsNo and then each sub-population
is evolved by a local DE.

As mentioned before, the local DEs incorporate both DE/current/1 and
DE/current − to − best/1 illustrated in Equations 14 and 8, respectively. The
point is that in order to enhance the solution space exploration the random tar-
get vectors in both mutation strategies for each sub-population is selected from
other sub-populations. This mechanism increases the population diversity and
improves the chance of reaching unexplored regions.

7 Results

Both proposed algorithms are implemented using the java programming lan-
guage version 1.6.0.18 and the experiments are conducted on a system with
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PROCEDURE: VNS+DE
INPUT: Algorithm Parameters and Problem Specification
OUTPUT: Optimal or Near-Optimal Solutions
01 BEGIN
02 g ← 0

03 Generate an initial population P0 with
PopSize random solutions

04 REPEAT
05 FOR ( Each Target Vector Xi,g of Pg)
06 Vi,g ←Mutate(Xi,g)
07 Zi,g ← Crossover(Xi,g, Vi,g)
08 Xi,g+1 ← Selection(Xi,g , Zi,g)
09 END FOR
10 FOR ( Each Top Target Vector Xi,g+1 )
11 Li,g+1 ← V NS(Xi,g+1)
12 END FOR
13 Construct population Pg+1

14 g ← g + 1
15 UNTIL (termination criteria are met)
16 Output The Best Found Solution
17 END

Fig. 2. The framework of the VNS+DE

Intel(R) Core(TM)2Quad 2.50GHz CPU and 8.00GB RAM . The algorithm
parameters presented in Table 2 are adjusted through extensive experiments. A
population of 1000 individuals with the top 100 best individuals are evolved for
200 generations.

Table 2. Parameters of the Proposed Methods

Parameter Value
MaxGen 200
PopSize 1000
TopBest 100
SubPopsNo 5
Mutate(Xi,g) Equations 14 and 8
Crossover(Xi,g, Vi,g) Equation 10
Selection(Xi,g , Zi,g) Equation 11 with a PBFF

In order to evaluate the performance of the both proposed methods, classical
JSSP is considered as the our test bed. The data set introduced by Lawrence [44]
is one of the well-known benchmark for classical JSSP which includes 40 different
problems with various sizes. Both proposed methods are applied on all the 40
test problems for 50 independent runs. Both proposed methods find the optimal
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solution for 28 test problems in every run. The results of the experiments on the
rest of the problems which are more challenging are presented in Table 3.

In order to have a fair comparison with the recently published methods [9],
these methods including the simple VNS and the combination of the VNS with
a GA are also re-applied on the benchmark problems for 50 independent runs.
The results of these experiments are also presented in Table 3 which is slightly
different than the ones presented in the previously published article. This small
difference is due to the fact that the published results are experimented for 10
independent runs while the new ones are averaged over 50 runs.

As presented in Table 3, the simple VNS can find the optimal solution for 5
challenging test problems out of 12, while the VNS+GA and the VNS+DE are
able to find the optimal solution for the same 6 problems, and the VNS+MPDE
is able to offer the optimal solution for 7 test problems. In total, the simple VNS,
the VNS+GA, the VNS+DE and the VNS+MPDE find the optimal solutions
for 33, 34, 34 and 35 test problems out of 40, respectively.

In addition to offering the optimal solution for more test problems, the
VNS+MPDE offers more acceptable solutions compared to the other methods.
In other words, not only the VNS+MPDE can find better solutions with a lower
makespan, but also the range of its results for 50 independent runs is smaller
compared to the result ranges of other methods. The average, median and worst
results presented in Table 3 which are calculated over the 50 runs proves this
claim. For test problem la38, for instance, not only the best solution is found by
the VNS+MPDE, but also the range of its obtained solutions in the 50 runs is
from 1202 to 1220 (19 time units wide) which is thinner compared to this range
for other methods specially the simple VNS which is from 1207 to 1265 (59 time
units wide).

In order to compare all the four method over all the 12 challenging test prob-
lem, the Error Rate (ER) parameter is incorporated which is defined as follows:

ER =
C − LB

LB
× 100%

where C is the makespan of a solution found by the methods and LB is the best-
known solution. The ER values for the best, average and worst solutions for each
methods are calculated and represented in Table 4. In this table, the zero errors
are emphasized with bold face and the average ERs over all the 12 test problems
are presented in the last three rows. Comparing all the ERs illustrates that the
proposed VNS+MPDE is the most reliable method to find acceptable solutions.
The next reliable method is the proposed VNS+DE, and the least reliable one is
the simple VNS. This statement is represented in a graph in Fig. 3 more clearly.

This comparison proves our hypothesis mentioning that combining a VNS
with more explorative methods offers better solutions. Explorative methods in-
creases the chance of finding the promising regions in a solution space which can
be exploited by the VNS. Exploiting more promising regions improves the final
results which increases the reliability of finding acceptable solutions.

In order to evaluate the performance of both proposed methods, they are
also compared with the state-of-the-art methods in this area. Three recently
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Table 3. Results on the challenging problems of LA Benchmark

Problem Method Best Average SD Median Worst Hit

LA20
VNS 902 906.72 1.13 907.0 907 2
VNS + GA 902 906.46 1.49 907.0 907 3

10× 10 VNS + DE 902 906.30 1.63 907.0 907 3
902 VNS + MPDE 902 905.98 1.95 907.0 907 7

LA21
VNS 1046 1058.18 7.96 1056.0 1077 4
VNS + GA 1046 1053.28 3.85 1054.0 1060 8

15× 10 VNS + DE 1046 1049.86 3.49 1049.0 1056 16
1046 VNS + MPDE 1046 1049.40 3.11 1048.0 1054 18

LA24
VNS 935 944.42 5.60 944.0 960 1
VNS + GA 935 943.00 3.52 943.0 949 1

15× 10 VNS + DE 935 941.16 2.44 941.0 945 2
935 VNS + MPDE 935 940.98 2.38 941.0 944 3

LA25
VNS 978 984.62 4.38 984.0 1000 2
VNS + GA 977 982.48 2.22 983.0 987 2

15× 10 VNS + DE 977 981.18 2.21 982.0 984 3
977 VNS + MPDE 977 979.50 1.88 979.0 983 7

LA27
VNS 1238 1251.44 8.66 1251.0 1265 3
VNS + GA 1238 1251.60 6.58 1252.0 1263 4

20× 10 VNS + DE 1236 1248.58 6.74 1250.0 1262 1
1235 VNS + MPDE 1235 1248.12 6.78 1250.0 1256 3

LA28
VNS 1216 1219.76 6.49 1216.0 1234 29
VNS + GA 1216 1218.72 3.61 1217.0 1228 23

20× 10 VNS + DE 1216 1216.68 1.56 1216.0 1223 37
1216 VNS + MPDE 1216 1216.26 0.60 1216.0 1218 41

LA29
VNS 1169 1188.26 10.96 1190.5 1210 1
VNS + GA 1163 1180.88 7.29 1180.5 1194 1

20× 10 VNS + DE 1163 1177.12 6.47 1177.5 1190 2
1152 VNS + MPDE 1163 1176.86 6.69 1178.0 1187 2

LA36
VNS 1281 1291.88 5.77 1291.0 1309 7
VNS + GA 1277 1289.48 6.35 1291.0 1302 4

15× 15 VNS + DE 1274 1287.78 6.12 1291.0 1298 1
1268 VNS + MPDE 1271 1284.70 5.94 1286.0 1291 1

LA37
VNS 1397 1420.22 11.08 1420.0 1442 1
VNS + GA 1397 1403.40 8.07 1401.0 1433 2

15× 15 VNS + DE 1397 1409.46 6.99 1408.5 1421 5
1397 VNS + MPDE 1397 1408.74 6.08 1408.0 1418 5

LA38
VNS 1207 1229.34 16.72 1229.5 1265 1
VNS + GA 1207 1220.52 5.76 1219.0 1237 1

15× 15 VNS + DE 1206 1215.88 3.62 1216.0 1225 1
1196 VNS + MPDE 1202 1215.38 3.76 1216.0 1220 1

LA39
VNS 1240 1246.76 4.11 1248.0 1256 4
VNS + GA 1240 1248.40 3.17 1249.0 1253 5

15× 15 VNS + DE 1238 1247.52 2.60 1249.0 1249 2
1233 VNS + MPDE 1238 1246.80 3.25 1248.0 1249 3

LA40
VNS 1231 1240.98 4.83 1242.0 1249 1
VNS + GA 1230 1238.94 5.40 1239.0 1252 2

15× 15 VNS + DE 1228 1235.62 3.49 1234.5 1242 1
1222 VNS + MPDE 1228 1235.26 3.99 1234.0 1242 2
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Table 4. Comparison of the best, average and worst results of the proposed methods

Problem VNS VNS+GA VNS+DE VNS+MPDE

LA20
Best 0.00% 0.00% 0.00% 0.00%
Average 0.52% 0.49% 0.48% 0.44%
Worst 0.55% 0.55% 0.55% 0.55%

LA21
Best 0.00% 0.00% 0.00% 0.00%
Average 1.16% 0.70% 0.37% 0.33%
Worst 2.96% 1.34% 0.96% 0.76%

LA24
Best 0.00% 0.00% 0.00% 0.00%
Average 1.01% 0.86% 0.66% 0.64%
Worst 2.67% 1.50% 1.07% 0.96%

LA25
Best 0.10% 0.00% 0.00% 0.00%
Average 0.78% 0.56% 0.43% 0.26%
Worst 2.35% 1.02% 0.72% 0.61%

LA27
Best 0.24% 0.24% 0.08% 0.00%
Average 1.33% 1.34% 1.10% 1.06%
Worst 2.43% 2.27% 2.19% 1.70%

LA28
Best 0.00% 0.00% 0.00% 0.00%
Average 0.31% 0.22% 0.06% 0.02%
Worst 1.48% 0.99% 0.58% 0.16%

LA29
Best 1.48% 0.95% 0.95% 0.95%
Average 3.15% 2.51% 2.18% 2.16%
Worst 5.03% 3.65% 3.30% 3.04%

LA36
Best 1.03% 0.71% 0.47% 0.24%
Average 1.88% 1.69% 1.56% 1.32%
Worst 3.23% 2.68% 2.37% 1.81%

LA37
Best 0.00% 0.00% 0.00% 0.00%
Average 1.66% 0.46% 0.89% 0.84%
Worst 3.22% 2.58% 1.72% 1.50%

LA38
Best 0.92% 0.92% 0.84% 0.50%
Average 2.79% 2.05% 1.66% 1.62%
Worst 5.77% 3.43% 2.42% 2.01%

LA39
Best 0.57% 0.57% 0.41% 0.41%
Average 1.12% 1.25% 1.18% 1.12%
Worst 1.87% 1.62% 1.30% 1.30%

LA40
Best 0.74% 0.65% 0.49% 0.49%
Average 1.55% 1.39% 1.11% 1.09%
Worst 2.21% 2.45% 1.64% 1.64%

Avgerage ER
Best 0.42% 0.34% 0.27% 0.22%
Average 1.44% 1.13% 0.97% 0.91%
Worst 2.82% 2.01% 1.57% 1.34%
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Fig. 3. Comparison of the best, average and worst results of the proposed methods

published methods are considered for this comparison including a hybrid EA
proposed by Zobolas et al. [45], our published MA [43] and a hybrid GA pro-
posed by Qing-dao-er-ji and Wang [46]. The hybrid EA incorporates VNS as its
local search method and uses DE to generate a valuable initial population. Our
recently published MA incorporates a GA combined with a local search heuris-
tic. The hybrid GA introduces new genetic operators and incorporates a new
local search method specifically designed for JSSP.

The results of this comparison are presented in Table 5 which illustrates the
ER values in brackets, the optimal solutions in bold face, and the best solutions
with an asterisk (*). Since the hybrid GA [46] cannot find the optimal solution
for test problem LA22, this problem should be added to the 12 challenging test
problems. Therefore for this comparison, 13 test problems are considered and
the last row in the table illustrates the average ERs over the 13 test problems. It
should be noted here that in the hybrid EA [45] the result for the test problem
LA20 is not reported. Therefore, excluding this test problem the average ER
equals to 0.27%, while considering that it may find the optimal solution for
this test problem decreases its average ER to 0.25%. However, our proposed
VNS+MPDE offers the best average ER.

The proposed VNS+MPDE can find the optimal solution for 8 test problems
out of 13 which is the highest number compared to the other methods. Further-
more, this method offers the best solution for two more test problems. The results
of the proposed VNS+MPDE is not better than the others just for 3 test problems
LA29, LA36 and LA39. Among these five methods, only three methods can find
solutions with ER less than 1 for all test problems which include the hybrid EA
[45] and the both proposed methods. Although there is not a significant difference
between the proposed methods and the hybrid EA, our proposed VNS+MPDE
slightly outperforms all the mentioned state-of-the-art methods.
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Table 5. Comparison with different hybrid EAs proposed recently to solve JSSP

Prob. BK hEA (2009) MA (2012) hGA (2012) Proposed Proposed
[45] [43] [46] VNS+DE VNS+MPDE

LA20 902 - 907 (0.55%) 907 (0.55%) 902 (0.00%) 902 (0.00%)
LA21 1046 1046 (0.00%) 1053 (0.67%) 1046 (0.00%) 1046 (0.00%) 1046 (0.00%)
LA22 927 927 (0.00%) 927 (0.00%) 935 (0.86%) 927 (0.00%) 927 (0.00%)
LA24 935 935 (0.00%) 941 (0.64%) 953 (1.93%) 935 (0.00%) 935 (0.00%)
LA25 977 977 (0.00%) 984 (0.72%) 981 (0.41%) 977 (0.00%) 977 (0.00%)
LA27 1235 1236 (0.08%) 1256 (1.70%) 1236 (0.08%) 1236 (0.08%) 1235 (0.00%)
LA28 1216 1224 (0.66%) 1223 (0.58%) 1216 (0.00%) 1216 (0.00%) 1216 (0.00%)
LA29 1152 1160* (0.69%) 1187 (3.04%) 1160* (0.69%) 1163 (0.95%) 1163 (0.95%)
LA36 1268 1268 (0.00%) 1276 (0.63%) 1287 (1.50%) 1274 (0.47%) 1271 (0.24%)
LA37 1397 1408 (0.79%) 1401 (0.29%) 1407 (0.72%) 1397 (0.00%) 1397 (0.00%)
LA38 1196 1202* (0.50%) 1208 (1.00%) 1196 (0.00%) 1206 (0.84%) 1202* (0.50%)
LA39 1233 1233 (0.00%) 1240 (0.57%) 1233 (0.00%) 1238 (0.41%) 1238 (0.41%)
LA40 1222 1229 (0.57%) 1233 (0.90%) 1229 (0.57%) 1228* (0.49%) 1228* (0.49%)
Avg. ER 0.27% (0.25%) 0.87% 0.56% 0.27% 0.22%

8 Conclusions

VNS is one of the most recent metaheuristics proposed to deal with optimization
problems. Although it has been successfully applied in various research areas, its
mechanism is highly exploitative and it lacks an efficient search space exploration
strategy. Recently, we published an article claiming that VNS is highly a local
search metaheuristic and in order to have a great performance as a global search
it should be combined with an explorative method [9]. In the published article,
VNS is combined with a GA and results show that this combination outperforms
the simple VNS. In this article, two more explorative methods are combined
with VNS in order to improve the final results. The first combined method
is DE which is more explorative compared to GA. The second one is a more
explorative method which is a DE incorporating multiple populations. Dividing
the whole population into a number of sub-populations decreases the chance of
premature convergence and encourages the method to look into different regions.

Both proposed combinations are evaluated on the same benchmark. The ex-
periments show that the proposed VNS+MPDE outperforms all the other com-
binations by offering highly acceptable solutions in every run. While the incor-
porated VNS is the same for all the combinations, as expected more explorative
methods offer better solutions. Compared to the single VNS which returns so-
lutions with different qualities, the joined VNS with more explorative methods
show higher reliability in terms of finding acceptable solutions. Although the
proposed methods are just introduced to show the effects of combining explo-
rative methods with VNS in its performance, they offer competitive solutions
compared to the state-of-the-art methods.
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Abstract. The collaborative emergency call-taking information system
in the Czech Republic forms a network of cooperating emergency call cen-
ters processing emergency calls to the European 112 emergency number.
Large amounts of various incident records are stored in the databases.
The data can be used for mining spatial and temporal anomalies, as well
as for the monitoring and analysis of the performance of the emergency
call- taking system. In this paper, we describe a method for knowledge
discovery and visualization targeted at the performance analysis of the
system with respect to the organization of the emergency call-taking in-
formation system and its data characteristics. The method is based on
the Kohonen Self-Organising Map (SOM) algorithm and its extension,
the Growing Grid algorithm. To handle the massive data, the growing
grid algorithm is implemented in a parallel environment using compute
unified device architecture. Experimental results illustrate that the pro-
posed method is very efficient.

Keywords: Emergency Call, Self-Organising Map, Growing Grid,
Knowledge Discovery in Databases.

1 Introduction

Emergency call taking in the Czech Republic, is supported by a distributed
collaborative information system operated at fourteen regional emergency call
centres, or PSAPs (Public Safety Answering Points). Each of these PSAPs serves
emergency calls from its home region primarily. If the home PSAP is occupied
or out of order, the system automatically reroutes emergency calls to another
PSAP, where the call is processed in the same way as it would be processed
by the PSAP of the home region. Every single operator knows the actual op-
erational status and language skills of all the other operators logged into the
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system. Thanks to the cooperative functionality based on an instant messaging
subsystem, which is transparent to the user, operators can ask for help or offer
their free capacity and skills in conference mode to the other operators. As all
the descriptive and operational data are shared or replicated between system
nodes in the background, any operator can receive an emergency call from any
region, regardless of his/her position with respect to the location of the incident.

Experience from the operation of the emergency call-taking system suggests
that in a normal situation calls are smoothly processed by operators in the
region where the incident originated, without any special demands on the system
settings. In highly critical situations, when many incidents happen in a short
period of time (e.g. during storms or floods), or many people are announcing the
same incident (e.g. a plane crash, gas explosion, or large fire), the system could be
locally overloaded. In this case some intelligent reconfiguring scheme would help
to balance the system load with respect to the resources available. By means
of routing schemes via which calls are distributed, the quality of the service
affecting the network throughput and the prioritisation of critical services, as
well as postponing the replication of less important data to lower network traffic
in overloaded regions, can be managed dynamically, with the goal of improving
system responses in critical situations.

In order to be able to apply proper and timely management actions, the system
must first recognise the critical or anomaly situation. There is a central database,
containing records of emergencies, or incidents, from the whole territory of the
Czech Republic. This database can be used for the monitoring and analysis of
the current situation with respect to the system and operators’ performance, as
well as for learning from historical incidents and mining spatial and temporal
anomalies.

This paper presents an enhancement of the previous work described in [14,15].
Building on their experience with the detection of anomalies, the authors focused
on the cooperative characteristics of the emergency call-taking system in order to
show a non-traditional approach to the monitoring and analysis of the system’s
performance. The authors describe the detection of an anomaly situation from
emergency data by unsupervised machine learning, namely the application of
the Kohonen Self - Organising Map (SOM) algorithm. Measures taken after the
critical situation is detected are supposed to be applied outside this analytic
process and are not discussed here.

This article is organized as follows. In Section 2, we compare our approach
with other related works. Section 3 describes the principles of the SOM algorithm
used for clustering and Section 4 deals with features of the software tools. Section
5 illustrates the basic experimental results with data transformations applied to
the training set to form a suitable search space and achieve satisfactory outputs.
This experiment is focused on the nature of the incident in order to search for
similarities in the type and place of the incident, bearing in mind the proof of
concept in general. Section 6 depicts a set of experiments with the classical and
Growing Grid SOM applied to the incident report attributes, describing rather
the architecture and technology in the system background. In this way we can
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reveal global or temporal weaknesses in the emergency call-taking system as a
whole to improve its performance. In Section 8 we discuss the results followed
by conclusions in Section 9.

2 Related Works

Anomaly detection methods for various professional domains have been designed
and well described. SOM has been used for network intrusion detection [18,22],
fraud detection [3], mechanical fault detection [26], and anomaly detection in
the generic time series data [9] etc. A common approach in using SOM for
anomaly detection is to build a classifier distinguishing between anomalous and
non-anomalous classes of data. The non-anomalous data are used to create a
model of the correct situation. After that, a single input vector is presented to
the trained SOM and the winner neuron closest to the input vector is found. If
the distance from the winner’s representative is below a certain limit, the input
is classified as belonging to the winner’s cluster of non- anomalous data. Oth-
erwise, the input is considered anomalous. These classification methods assume
that either a non-anomalous subspace is known before the learning starts [22]
or the resulting clusters are compared with an expert classification [3]. Generat-
ing artificial anomalous cases with a Negative Selection Algorithm inspired by
the human immune system [2,5] in combination with a back-propagation neu-
ral network [9] falls into this category. Thus the detection of anomalies in this
traditional view is based on supervised learning.

Our approach is based on two facts. First, distinguishing between anomalous
and non- anomalous cases within emergency calls is disputable. Second, if an
emergency situation exceeded the “normal” scale, it would probably be reported
by a set of single emergency cases having certain attributes in common. We
are therefore interested in revealing certain patterns in the emergency call data,
rather than deciding whether a fresh new case is somehow strange compared
to the previous experience. After the patterns are recognised automatically, the
resulting map is always presented to a person for them to analyse the situation.

To enhance this concept, providing that the algorithm is being run periodi-
cally, the new map is shown to the supervisor or to the network management
module if the composition of the patterns found in the recent run is different
from the composition formed in the previous run. SOM quality measures in-
clude an index of the map’s disorder [20] or the goodness of the map based on
the distances between the winner and the second-best match node [13]. While the
SOM algorithm has been widely used for classification tasks, using it for cluster-
ing data analysis has been relatively outside the focus of the research community
[25]. This paper describes another application of SOM in cluster analysis. Some
authors analysed [21] the performance of a business-oriented call centre with re-
spect to its operator’s activity, efficiency, and ability to meet client and business
needs. In this paper, we focus on the performance of the Emergency Call Centre
(ECC) mainly from the technological point of view, although we also attempted
to address the operator’s activity analysis.
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3 Clustering and Self-organizing Maps

Cluster analysis groups objects (data records) into classes (clusters) in such a way
that objects in the same cluster are very similar, while objects in different classes
are quite distinct. One of the possible clustering methods is using competitive
learning [8]. Given the training set of objects, competitive learning finds an
artificial object (representative) most similar to the objects of a certain cluster.

A commonly used application of competitive learning is the Kohonen Self-
Organising Map [16], or SOM, described by Teuvo Kohonen in 1982. SOM is
inspired by the cortex of the human brain, where information is represented
in structures of 2D or 3D grids. Formally, SOM is a type of artificial neural
network [11] with two fully interconnected layers of neurons, the input layer and
the output or Kohonen layer.

The first step of Kohonen learning is competition. Given the training vector
on the network’s input and weight vector for each neuron of the Kohonen layer,
the neuron with the minimal (usually Euclidean) distance between the weight
and input vectors is excited or selected as the winner of the competition [11].

The second step is adaptation. The neurons of the Kohonen layer are organ-
ised in a one-, two-, or three- dimensional lattice, reflecting its biological in-
spiration. A topological neighbour-affecting function is defined on the Kohonen
layer, assigning a degree of participation in the learning process to the neurons
neighbouring the winning neuron. In every learning step the weight vectors of
the winning neuron and its neighbours are adjusted to move closer to the input
training vector.

In the batch version of the SOM algorithm, equivalent to Lloyd’s vector quan-
tisation [19], the winning neuron weights are not adapted immediately after the
competition step. When all the training set is consumed, the weight vector of
the output neuron Ni, i = 1, . . . , n, where n is the number of neurons in the net-
work, is replaced by the weighted mean value of the training cases assigned to the
clusters represented by the neuron Ni and its neighbours, using the neighbour-
affecting function as the weight function for the mean calculation.

The trained network finally sets its weights in such a way that the topolog-
ically near neurons represent similar training cases, while distant ones reflect
different cases. This is analogous with the cortex of the human brain, where
similar knowledge is represented by adjacent parts of the cortex. The topology
of a trained SOM forms an inherently useful base for clustering.

SOM realises the transformation of the relations of the objects from the m-
dimensional input space in a two-dimensional map of nodes (neurons) of the
resulting Kohonen network. The complexity of the input space is reduced sig-
nificantly and, in conjunction with colouring the nodes of the resulting network,
data clusters can be effectively visualised.

4 Characteristics of the Software Tools

The authors developed a SOM learning module and a corresponding SOM ex-
plorer. The tools were also used in the framework of another project [1]. In the
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course of this work the SOM explorer has been enhanced by the capability of
revealing nodes according to the values of the selected attribute and a Growing
Grid has been implemented in the SOM learning algorithm. The learning mod-
ule exploits a classical SOM learning algorithm, with the neighbourhood radius
initially set to 50% of the largest SOM dimension and the exponential radius
shrinking.

Some of the commercially available products have the capability to build clus-
ters automatically from the trained SOM, using, for example, the agglomerative
clustering over the SOM-Ward distance [24]. Our learning module, however,
generates a SOM density map, which shows for every node the mean distance
to its neighbouring nodes. The lines formed by nodes having relatively distant
neighbours can be taken as cluster borders.

The Growing Grid algorithm [7], compared to the classical fixed-grid SOM,
allows the input data to influence the size and shape of the resulting SOM grid.
When the entropy of the input data set is low, the growing SOM needs fewer
nodes to approximate the input space, the algorithm is much faster, and the
resulting SOM is more consistent in terms of having fewer empty nodes. Another
advantage of the growing SOM lies in its capability to partially adapt its shape.
When the input data have dominant variance in a certain direction, one of the
dimensions of the resulting maps extends along this direction. This feature can
be amplified by setting the weights of the initial SOM nodes to values evenly
distributed between the maximal and minimal values of the attributes with the
k-largest variances (for k-dimensional SOM), identifying them after the k-largest
eigenvalues of the input data set covariance matrix [12]. Even if this adaptability
is not as powerful as in the growing neural gas [6], for example, we consider it
useful with respect to emergency data containing spatial information. In our
experiments incidents belonging to adjacent geographic areas proved to occupy
nodes in neighbouring clusters, thus contributing to the logical composition of
the map.

The Growing Grid algorithm starts with an initial size of 2 × 2 nodes. After
every learning phase, the node N with the highest number of input records
assigned [7] or with the largest quantisation error [4] is found. Within the closest
neighbours of the node N the node D is selected in such a way that the distance
d(N,D) is maximal with respect to the distance metric used in the algorithm.
In our experiments the commonly used Euclidean distance [8] was exploited.
Between nodes N and D, depending on the mutual position of the nodes, either
a row or column of new nodes is added. The new nodes are initialised with
the mean values of the weight vectors of the adjacent original nodes and the
new learning phase starts on the enlarged SOM. The original nodes keep their
weights from the previous iteration, and thus the weights of the new nodes fit in
between them smoothly. In this way the training vectors are distributed roughly
between a few nodes in the first learning phases and the distribution is further
refined in the following phases on the maps, which grow in the direction where
the probability of refinement is high, and the relationship between the records
distributed in the previous iterations is preserved.
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The iterative growth-and-learning process can be finished either after a fixed
number of iterations or a predefined number of nodes is reached, or when a
condition characterising the precision of the map learning is met. We calculated
the vector x̄ of the training set’s attributes means and a training set variance δ
as the sum of the distances of the training vectors xk from the vector x̄:

δ =

n∑
k=1

||xk − x̄|| (1)

where n is the number of input vectors in the training set. We evaluated the
absolute quantisation error q of the whole map after every learning phase:

δ =

m∑
i=1

1

ci

( ci∑
j=1

||xj − wi||
)

(2)

where m is the number of nodes in the current iteration map, ci is the number
of vectors assigned to the node i in the previous training phase, xj , j = 1, . . . , ci
are the vectors assigned to the node i in the previous training phase, and wi is
the weight vector of the node i. The process stops when the expression (3) is
encountered.

q <
δ

ϕ
(3)

where ϕ was the input parameter defining how many times lower than the initial
training set variance the learning precision had to be to stop the algorithm. In
expression (3) we compare the factor of inaccuracy in the trained map defined
by the quantisation error q of the expression (2) with the initial variance of data
defined by the expression (3). The algorithm stops when the learning inaccuracy
factor is satisfactorily lower than a certain fraction of the initial variance of data,
defined by the parameter ϕ. For ϕ we used values between 10 and 100, the lower
ones resulting in a shorter run time but a final map of poorer quality, consisting
of fewer nodes and vice versa with the higher ϕ values. In comparison with the
fixed number of iterations [4] or the maximum number of nodes [7] the stopping
criterion (3) used in our algorithm adapts to the original data distribution, and
allows better tuning of the algorithm with respect to the run time and accuracy
of the final map.

To be able to experiment with the algorithm speed, we implemented a heuris-
tic consisting of the count of variable epochs per learning phase. We increased
the epoch count in each new learning phase, according to:

εt = εmax
1− qt−1

q1 (4)

where εt is the epoch count in a learning phase t, εmax is the input parameter
defining the maximal epoch count, qt−1 is the map quantisation error after the
learning phase t − 1 , and q1 is the quantisation error after the first learning
phase. In this way the initial iterations, when the data were roughly separated,
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had a lower epoch count, while the final iterations, when the SOM was to be
fine-tuned, reached the maximal epoch count.

Expression (4) is a natural mathematical formulation of the intention of having
a lower epoch count at the beginning of the learning of the map and reaching
the maximal epoch count towards the end of the learning process to fine-tune
the map.

As the weight vectors of the nodes of the map are quite distant from the
training vectors and the number of nodes is small at the beginning of the training,
fewer learning epochs are needed to roughly organize the input space before the
map grows and the next iteration starts. At the end of the training process,
when the quality of the map learning becomes high (quantisation error gets low
values) and the map growing is no more needed, the epoch count should reach
its maximal value to find the best data distribution with respect to the actual
topology of the map.

Although the epoch count, thanks to the stochastic nature of the SOM learn-
ing and corresponding quantisation error calculation, does not change monoton-
ically, the function converges in both increasing and decreasing modes, speeding
up the learning.

We used the absolute quantisation error in evaluating the learning quality as
it implied better results with the variable epoch count heuristic, compared to
the mean quantisation error proposed in the literature [4].

5 General Test of SOM Emergency Data

We aim to show that the SOM can be successfully used to reveal anomalies in
the emergency incidents database in general. Incident records from the period
February 1st March 31st 2008 were used for the experiments. On March 1st

2008 the territory of the Czech Republic was affected by Hurricane Emma.
The input data set consisted of about 25,000 records. The SOM-based proce-

dure was supposed to find records related to Hurricane Emma (Emma records),
depicting the Emma cluster formed by nodes representing the Emma records
characterised by:

– specific types in the incident classification (storm, danger status removal,
obstacle removal);

– a higher frequency of incidents, namely of the above-stated types, in the time
period in question;

– a higher frequency of incidents in certain regions (districts).

The training vectors presented to the SOM algorithm consisted of the at-
tributes “time of the incident beginning”, “incident classification”, “region of
origin of the incident”, and artificial attributes derived from these primary ones.

As the incident classification and region are attributes of a categorical type,
they are not suitable for the conventional SOM learning algorithm [14,15].

Therefore we were looking for a transformation of the categorical attributes
into the real numbers domain, which would have preserved the distribution
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characteristics of the original attribute values. We introduced frequency char-
acteristics in a time quantum, the hour of the incident origin, as the basis for
transformation.

The categorical attributes Classification and District were used as the source
for artificial numeric attributes produced by a function of relevance, combining
the classification or district frequency within the time quantum of origin of
the current incident and the occurrence of the same classification or district in
the remaining quanta (adopted from the text classification TF-IDF weighing
model [23]).

IMP CL = FREQ CL H log
Nh

CL HRS
(5)

IMP DS = FREQ DS H log
Nh

DS HRS
(6)

where Nh means the number of hours in the period analysed, FREQ CL H is
the frequency of the current incident classification within the subset of incidents
related to the hour of origin of the current incident, FREQ DS H denotes the
frequency of the current incident district within the subset of incidents related
to the hour of origin of the current incident, and CL HRS or DS HRS denote
the number of hours in which the classification or district emerged.

Another attribute that was transformed was the district relevance.

IMP CL DS = FREQ CL DS log
Nd

CL DS
(7)

where Nd means the number of districts in the Czech Republic, FREQCLDS is
the frequency of the current incident classification in the current incident district
during the whole period analysed, and CL DS denotes the number of districts
where the current incident classification occurred.

The training set with transformed artificial attributes was presented to a static
SOM network of 40×40 nodes. Figure 1 shows the final output after 100 training
cycles.

Using the node analysis functionality of the SOM explorer, we were able to
derive some knowledge from the trained map, as shown in Figure 2.

The results of this basic experiment illustrate that the SOM technique suc-
ceeds with anomaly detection in the emergency call-taking system database. In
the following section we will further elaborate on this conclusion with respect to
the monitoring of the performance of the emergency call-taking system.

6 Performance Monitoring of the Emergency Call-Taking
System

The performance monitoring relies on attributes describing the architecture and
technology in the system background, rather than the nature of the incident
as seen in the previous experiment. A brief overview of the architecture of the
emergency call-taking system is provided in Figure 3.
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Fig. 1. Shadowed nodes contain Emma records; the Emma cluster is well bordered by
the wavy line in the bottom left-hand corner of the SOM density map (bottom middle).
The rainbow-like stripes within the Emma cluster, visible in the IMP DS map (top
right), point to the movement of Emma across the territory of particular districts. The
anomalies not related to Emma are concentrated in the upper right-hand corner of the
IMP CL DS map (bottom left), collecting specific incidents assisted by the Prague
Municipal Police, pointing to a higher rate of car thefts in Prague and system tests
being performed regularly at the particular PSAP.
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Fig. 2. The output of the analysis of the nodes in one of the rainbow-like stripes from
Figure 1 states that on March 1st, from 11 to 12 a.m., 90 Emma-related incidents
of types 3331 (windstorm), 3501 (removing dangerous objects) and 3526 (removing
obstacles) were reported from two districts in the central part of the Czech Republic
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Fig. 3. Example of the architecture of the emergency call-taking system reduced to
two communicating Emergency Call Centres (ECC) with related emergency response
agencies’ proxy services and the central database service
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In a normal situation emergency calls are processed by operators in the region,
where the related incident originated, e.g. in Region A. Once the call is processed
by an operator-agent of the Emergency Call Centre (ECC), the incident report
is stored in the database, which is a remote service to most of the centres,
accessible through a Wide Area Network (WAN). A delay in the operation of
the database may suggest a network overload or a DB service capacity problem.
In parallel with the incident report being inserted into the DB, it is passed to the
Emergency Response Agencies (ERA) via the respective proxy service. Fire and
Medical Rescue services are accessible in the local network with respect to the
receiving ECC, while the police provide one central proxy accessible via WAN
for all but one ECC. The proxy services, after passing the incident report to the
ERA, expect a confirmation message. Delays in receiving this confirmation may
give evidence of the ERA systems being overloaded. In the telephone subsystem
we can measure the ringing time, i.e. the time interval between the moment when
the call arrives at the agent and the moment when the operator picked up their
phone. As picking up the phone is automatic (auto-answer mode is preset in the
whole system), stretching of the ringing interval may suggest congestion in the
telephone system. Moreover, two values characterising the operator’s working
style are measured, the length of the call and the time interval between the start
of the call and the insertion of the incident report into the DB.

In critical situations, when many incidents happen in a short period of time,
or many people are announcing the same incident and the operators of ECC A
are busy, calls are routed to and processed at the ECC of another region (say B).
In the course of processing the calls the DB and telephone call measures have
the same meaning as in the previous case. But after the call is processed by ECC
B, the reports to the ERA are communicated via the WAN to the ECC of the
original region, A. The further incident report flow is identical to the previous
case. The time it takes to transfer the incident report between ECC B and the
proxy services of ECC A is measured and evaluated.

For the performance monitoring experiments we used data from a special
testing of the emergency call- taking system under peak load. In an hour the
system in its full capacity (14 ECC, 70 operators) received 3400 emergency calls
and produced around 10,000 incident reports. As there was only one incident type
reported, the “system test”, it made no sense to take the incident classification
into account. Table 1 shows the attributes used in our experiments.

6.1 Comparison of SOM Alternatives

At the beginning we show the results of the traditional fixed SOM algorithm com-
pared to its Growing Grid modification with the heuristic of a variable epoch
count. We used a fixed epoch count, as well as increasing the epoch count accord-
ing to the formula (4). The epoch count, node count, and the grid size produced
by the growing SOM algorithm were used as input parameters for the fixed SOM
which was to be compared. The results are shown in Table 2.

Empirical results illustrate that the Growing Grid SOM is faster than the
respective fixed SOM algorithm, achieving a slightly worse learning quality.
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Table 1. Description of attributes used in the performance monitoring. The categorical
attributes were replaced by natural numbers to suit the SOM algorithm.

Name Type Description

ID ECC REC Categorical ID of the receiving ECC (natural num-
ber)

X ECC REC, Y ECC REC Numeric Geo coordinates of centroid of the region
which the reported incident belongs to

OFFHOOK DLY Numeric Off-hook interval, time delay between
the ringing and call start moments

CALL LENGTH Numeric Call length

ID ERA Categorical ID of the Emergency Response Agency
(ERA) which is to be alerted (natural
number)

ID WS REC Categorical ID of the agent responding to the call
(natural number)

ID SRV CENTRE Categorical ID of the proxy service responsible for
communication with the particular ERA
(natural number)

MINING TIME Numeric Time from the start of the call to the
moment of saving the incident record

INSERT DLY Numeric Database service response time

DELAY ECC Numeric Time delay of the transfer of the incident
in the ECC technology

DELAY CAD Numeric ERA technology response time

ID ECC RESP Categorical ID of the target ECC which the incident
is transferred to (natural number)

Table 2. Comparison of the fixed and growing SOM alternatives. The “Epochs mode”
denotes an increasing (Inc) or constant (Const) epoch count, and the “Candidate se-
lection” denotes the way the central node for growing is selected, using either the
quantisation error (Qerr) or the number of mapped input records (Match) of the node.
The Euclidean distance was used in all the cases presented here. The tests were run on
a PC with a 3-GHz Pentium 4 CPU and 2 GB of RAM.

ID SOM Epochs ϕ εmax Candidate Epoch Node Grid Run Final Map
type mode selection count count size time MQE

1 Growing Inc 10 50 Qerr 571 595 17× 35 0:08:51 0.0482
2 Fixed - - - - 571 595 17× 35 0:13:28 0.0333
3 Growing Const 10 50 Qerr 1850 384 16× 24 0:09:33 0.0548
4 Fixed - - - - 1850 384 16× 24 0:31:30 0.0446
5 Growing Inc 10 50 Match 320 468 26× 18 0:05:02 0.0522
6 Fixed - - - - 320 468 26× 18 0:08:20 0.0397
7 Growing Const 10 50 Match 1750 352 16× 22 0:08:33 0.057
8 Fixed - - - - 1750 352 16× 22 0:23:03 0.0482
9 Growing Inc 25 20 Qerr 797 1517 37× 41 0:31:21 0.0256
10 Fixed - - - - 797 1517 37× 41 1:13:46 0.0145
11 Growing Const 25 20 Qerr 1640 1764 36× 49 0:50:04 0.0254
12 Fixed - - - - 1640 1764 36× 49 2:21:29 0.0112
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The differences between the mean quantisation errors of the respective grow-
ing and fixed SOM represent a max. 3% of the initial variance of the training
vectors. The selection of the central node for map growth according to the max-
imal number of mapped input records produces smaller maps, resulting again in
faster and slightly less precise learning. The higher the ϕ parameter in (3), the
larger and more precise, but also more time-consuming, the maps produced are.
Figure 4 displays comparable maps produced by Tests 9 and 10 from Table 2.

Fig. 4. Maps produced by the fixed SOM (Test 10 in Table 2) in the upper row, and
growing SOM (Test 9 of Table 2) in the lower row. The growing SOM maps appear
to be more coherent: emergency centres separated by the ID ECC REC attribute are
close to each other according to the geographical adjacency of their regions; workplaces
inside emergency centres are pointed out in the ID WS REC growing SOM map;
the ID ERA growing SOM map clearly separates incidents attended by the medical
rescue service in the western regions from those in the eastern regions, supporting the
geographical dependencies in the maps.

The visual quality of the Growing Grid SOM output in this example is even
better that that of the more accurate fixed SOM, which takes double the time.
The following experiments exploit the growing SOM algorithm.
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6.2 Technology Performance Analysis

In the test of the emergency call taking system the aim was to show the system
with a heavy load in unrealistic conditions in order to reveal its hidden flaws.
Figure 5 (below) shows the anomalies shown in the system technology.

Fig. 5. Maps showing delays in the telephone subsystem (OFFHOOK DLY ),
database operations (INSERT DLY ), incident transfer in the emergency cen-
tres’ technology (DELAY ECC) and in the responding agencies’ technology
(DELAY CAD)

Interesting values reported by the analytical module for the maps in Figure 5
are shown in Table 3.

Table 3. An example of the records related to the highlighted nodes from Figure 5.
Time intervals characterising delays are in seconds.

ID ID ECC REC RINGING TIME INSERT DLY OFFHOOK DLY DELAY ECC DELAY CAD ID ECC RESP

1 30 20:03 3 1 1 1 40
2 110 20:05 199 15 8 1 40
3 110 20:05 199 15 8 4 40
4 80 20:11 26 1 128 219 20
5 20 20:12 146 5 500 500 20
6 20 20:12 157 2 500 500 20
7 20 20:13 214 19 500 500 20
8 90 20:13 1 1 228 500 20

Row 1 stands for an example of the normal situation, when emergency centre
30’ received an incident for centre 40’. The database response is 3 seconds, which
is within acceptable limits. The delay in the telephone subsystem is 1 second,
as is the incident transfer time in the emergency centres’ network and in the
emergency response agencies’ technology.

Rows 2 to 8 represent records mined out from the red and blue spots of the
four maps in Figure 5. Rows 2 and 3 point to problems with the database and
telephone subsystem for centre 110’. The communication with the target centre
40’ and its related emergency agencies is alive, even if the slightly higher values
may suggest incoming problems. On the contrary, row 4 shows that centre 80’,
when receiving for centre 20’, encounters long database responses, as well as
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significant delays in communicating the incident report to the target centre.
A minute later, records 5-7 show deadlock at centre 20’. With unacceptable
database responses the centre cannot even communicate with the other centres
and with its own emergency agencies (here the value 500 stands for unknown
information). The last row, row 8, shows that another centre, centre 90’, handles
incidents properly, but cannot propagate incident reports to target centre 20’ and
its emergency response agencies, definitely because of the problems of centre 20’
reported above.

6.3 Obseravtion of Operators’ Behaviour

This experiment concentrated on a few attributes which we hoped to use in
exploring differences in operators’ behaviour under a heavy load. The respective
maps are shown in Figure 6.

If there was an anomaly in the time the operator needed to collect basic in-
formation from the person calling, it correlated with the length of the call and
was caused by the technical problems discussed above. See the correspondence
of the red points in the CALL LENGTH and MINING TIME maps. The
ones closest to the centre of the map and its left-hand margin have their coun-
terparts in the OFFHOOK DLY and INSERT DLY maps from the previous
paragraph. These anomalous calls took from 70 to 240 seconds.

The operators of the emergency centres, which did not have technical problems
took the emergency calls one after another without any pause and tended to a
shorter speaking time, typically 15 to 40 seconds. This is clearly shown by the
green areas in the top third of the CALL LENGTH and MINING TIME
maps, while the corresponding continuous area at the top of the ID WS REC
map indicates that these operators were occupying workplaces in Prague.

Fig. 6. Maps characterising operators and their activity: ID WS REC defines the
operator’s workplace at the emergency centre, CALL LENGTH shows the time the
operator is speaking to the caller, and MINING TIME measures the time interval
from the start of the call to the moment the incident record was saved or the time
which the operator needs to get the basic information from the caller.
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7 System Performance and Its Improvement

As mentioned earlier, the system response represents the crucial element of the
Emergency Call-Taking System and the same holds for all utilized software com-
ponents. The Table 2 (see the column named Run time) shows that the com-
putation of the SOM algorithm itself can take a lot of time with respect to the
individual settings. This times can differ with respect to hardware platform as
well. An alternative hardware platform and software modifications, which bring
significant improvements, are described in the following text.

7.1 nVIDIA CUDA

Modern graphics hardware play an important role in the area of parallel com-
puting. Graphics cards have been used to accelerate gaming and 3D graph-
ics applications, and now, they are also used to accelerate computations with
relatively distant topics, e.g. remote sensing, environmental monitoring, busi-
ness forecasting, medical applications or physical simulations etc. Architecture
of GPUs (Graphics Processing Unit) is suitable for vector and matrix algebra
operations. That leads to the wide usage of GPUs in the area of information
retrieval, data mining, image processing, data compression, etc. [27]. Nowadays,
one does not need to be an expert on graphics hardware because of existence
of various APIs (Application Programming Interface), which help programmers
to implement their software faster. Nevertheless, it will be always necessary to
keep basic rules of GPU programming to write required code more effective.

Andrecut [29] described computing based on CUDA on two variants of Prin-
cipal Component Analysis (PCA). The usage of parallel computing on GPU im-
proved efficiency of the algorithm more than 12 times in comparison with CPU.
Preis et al. [30] applied GPU on methods of fluctuation analysis, which includes
determination of scaling behavior of a particular stochastic process and equi-
librium autocorrelation function in financial markets. The speed up was more
than 80 times than the previous version running on CPU. Patnaik et al. [31]
used GPU in the area of temporal data mining in neuroscience. They analyzed
spike train data with the aid of a novel frequent episode discovery algorithm.
Achievement of more than 430 speed up is described in the mentioned paper.

7.2 GPU Parallelism

Several different implementations of parallel SOM have already been presented
in [33], [34], [35] and [36] and there are also studies on how the computer architec-
ture could be modified in order to support highly parallel calculations especially
for SOM training [37]. These approaches focus mainly on time efficiency issues
and how the mathematical operations can be distributed on different machines
to speed up the self-organization process. Different approach was presented by I.
Valova [38], [39], where the amount of parallelism is not determined by the num-
ber of available hardware resources but rather by the size of the input pattern.



356 V. Snášel et al.

More convenient approach for a completely parallel SOM has been presented by
Weigang [40].

All cited approaches have to solve some kind of vector or matrix operations
which are more or less time consuming. The power of GPU is shown on a basic
concept of self organizing maps, although proposed improvements can be applied
on any kind of SOM.

7.3 Basic Notation

The following notation is used to better describe the process of parallel com-
putation of SOM. All experiments and examples in this subsection follow the

specification of SOM presented below(see also the Figure ?? ):

– The SOM is initialized as a network of fixed topology. The variables dimX
and dimY are dimensions of such 2-dimensional topology.

– V m represents an m-dimensional input vector.
– Wm represents an m-dimensional weight vector.
– The number of neurons is defined as N = dimX ∗ dimY and every neuron

n ∈< 0, N − 1 > has its weight vector Wm
n

– The neighborhood radius r is initialized to the value min(dimX, dimY )/2
and will be systematically reduced to a unit distance.

– All weights vectors are updated after particular input vector is processed.
– The number of epochs e is know at the beginning.

7.4 Kernel Functions

Well designed CUDA kernel functions enable us to get better performance dur-
ing runtime. Kernels functions, when called, are executed N times in parallel
by N different CUDA threads, as opposed to only once like regular functions.
Thus it is necessary to design a kernel function so that every thread access dif-
ferent memory block. We refer to [45] for more information on CUDA memory
management.

A kernel function is defined using the global declaration specifier and the
number of CUDA threads for each call is specified using a new <<< . . . >>>
syntax. The brackets <<< and >>> hold grid size, block size, amount of shared
memory and stream index. The setting of these parameters affect the distribution
of threads over GPU. We refer to [27] for more information.

The principle of PR (Parallel Reduction) brings a significant time savings. A
modified version of PR was used in a phase of computation of vector differences
and Euclidean distances. The Figure 7 shows an illustrative example of settings
of grid, blocks and threads which were applied on SOM, where the number of
neurons N = 9 and vector dimension m = 8. The GPU grid contains 3 blocks.
Every block has 32 threads, therefore it can cover at most four weights vectors.
The setting of kernel function itself play an important role in CUDA. It depends
on GPU hardware parameters as well. The parallel reduction is shown in the
middle part of the Figure 7 and has following steps:
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A: The differences between all elements of a given input vector and an appropri-
ate weight vector are computed and stored in the shared memory on GPU.
The elements can be powered by 2 in case of Euclidean distance.

B: A half of previously used threads computes partial sums of elements of dif-
ference vector.

C: Last thread computes square root of the final sum and stores the result
output into distance vector, which is stored in global GPU memory.
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Fig. 7. Processing of a single input vector by parallel GPU threads

when all the blocks finish, the process of parallel reduction is used to find a
minimum value in the distance vector. An index of the minimal element repre-
sents BMU (Best Matching Unit).

7.5 Parallel SOM Update

Some fix data is precomputed in our application. Such data is stored in the global
memory and then partially copied into shared memory by all thread blocks to
reduce computational time [45] during SOM update. First, it is a distance matrix
which holds the distances among neurons in a SOM. In the figure 8 on the left,
there is an example of the SOM with rectangular topology of dimension 7×7. The
maximum distance in this topology is maxDist = (dimX − 1) + (dimY − 1) =
(7−1)+(7−1) = 12. Just for illustration, the black node in the middle represents
BMU and all nodes with the same gray scale have the same distance to the BMU
with respect to the rectangular topology.

A vector of learning factors F makes the second fix data. In the illustrative
figure 8 on the right, there are curves of learning functions for all epochs (e = 4).
The vector F has a dimension equal to (maxDist + 1) ∗ e = (12 + 1) ∗ 4 = 48
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in our example and represents a set of values fi(d), where fi(d) is the evaluated
learning function (learning factors) for a given epoch i, and a distance d, where
d ∈< 0,maxDist > and i ∈< 0, e >.

Fig. 8. Neuron distances in the SOM for a given BMU in the center of the SOM (on
the left) and curves of learning functions for all epochs

The process of updating of SOM runs in a few steps:

1. The GPU kernel function, that is responsible for updating, is set so that one
neuron is processed by m threads, where m is a dimension of weight vector.

2. Fixed distance vector and learning factors for a given epoch are copied into
GPU shared memory to ensure better performance.

3. Every thread updates a part of its weight vector with respect to the learning
factor and the distance to BMU.

7.6 Kernel Example

Although there is no place to show the whole code of GPU implementation of
SOM because it contains hundreds of lines, following part of the code illustrates
the philosophy of parallel programming with CUDA. The kernel function update-
CompleteSOM is called from the main program when BMU is already known.

We refer to [27] for more information on GPU programming and to [ ?? ] for
detailed description of implementation of SOM on GPU.

7.7 Experiments on GPU

All experiments include comparison between GPU and CPU implementation of
SOM. The Table 4 includes detailed specifications named GPU, CPU-A and
CPU-B witch respect different hardware configuration used for experiments.
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1 g l o b a l void updateCompleteSOM(
2 f loat ∗ weightVectors ,
3 const unsigned int wSize ,
4 const unsigned int∗ d i s tanceMatr ix ,
5 const unsigned int∗ BMUindex ,
6 const f loat ∗ d i s t anc e s ,
7 const f loat ∗ l e a r i n gFa c to r s )
8 {
9 unsigned int t i d = threadIdx . x ;

10 sh a r e d unsigned int sBMUindex ;
11
12 i f ( t i d == 0) sBMUindex = ∗bmuIndex ;
13 sync th r e ad s ( ) ;
14
15 unsigned int wid = blockDim . x ∗ blockIdx . x + t id ;
16 i f ( wid >= wSize ) return ;
17 unsigned int nid = (wid / vectorDim) ∗ dimX ∗ dimY + sBMUindex ;
18 we ightVectors [ wid ] += l e a r i n gFa c t o r s [ d i s tanceMatr ix [ n id ] ]
19 ∗ d i s t anc e s [ wid ] ;
20 }

Table 4. Hardware specification

GPU CPU-A / CPU-B

CPU Intel Core 2 Duo 3,0Ghz 4 x AMD Opteron 1,8 GHz
RAM 4 GB 32 GB
GPU GeForce 280 GTX, 1 GB -

Threads depends of GPU 2 (CPU-A), 8(CPU-B)

A SOMwith a fix network size is computed in the first experiment. Dimensions
of input vectors are fix as well and they are set to 4 in this case. This experiment
reveals hidden disadvantages of GPU utilization, as can be seen in the Figure
9 or in the corresponding table. The computation time increases near linear,
however, GPU time is approximately 2 times greater in comparison with CPU-A
multi-threaded implementation. This is due to additional time costs associated
with transactions between RAM and GPU memory. Next, calling kernels (GPU
functions) and inner thread indexing take some time. These costs make GPU
implementation not suitable for SOM in case of small data.

In the Figure 10, there are results of the second experiment which deals with
increasing dimension of input and weight vectors. Again, GPU implementation
seems to be not effective until dimension 32 because of the same reasons as in
the first experiment. However, the trends of graphs predict future computation
times and it is clear, that GPU time increases very slowly in comparison with
CPU-A.

The third experiment and its results in the Figure 11 show the power of
parallelism on neurons (we refer to the section 7.5), whereas the previous two
experiments illustrate parallelism on particular vectors (we refer to the section
7.4). The contribution of GPU implementation is perceptible in higher dimension
of SOM network.
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Fig. 9. Variable number of inputs
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Fig. 10. Variable dimension of input vectors

Previous demonstrations confirm, that the power of GPU utilization increases
with the size of neural network and with the dimensions of input and weights
vectors, respectively. The last two experiments (see the Figure 12 and 13) show
the computation times in such cases.
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Fig. 11. Variable dimension of SOM network

Although the massive parallelism is not the main goal in case of Monitoring of
the Emergency Call-Taking System, it brings additional benefits in the area of
data analysis. In case of GPU utilization, the shorter computation time enables
us to retrieve more accurate results because more input data can be processed
and the size of neural network can be larger in comparison with CPU version.
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Fig. 13. Variable dimension of SOM network

8 Discussions

The emergency call system could be locally overloaded in major crisis situations,
natural disasters, or big accidents. As the system is distributed over the whole
territory of the state, operators in the regions not affected by a crisis can receive
calls from the affected regions. An intelligent system reconfiguration could help in
setting up routing policies, optimising network traffic, and balancing the system
load with respect to the available system resources.

In the first part of our work, we proposed transformations of categorical at-
tributes, the discrete values of which are not suitable for the SOM algorithm,
into the real numbers domain and showed that after this transformation the
SOM is generally able to detect anomalies in the emergency data. The transfor-
mations are built on the frequencies of incidents in time and place, expressing
the relevance of the incident with respect to the time and place of origin of
the incident. The learning proceeds on the values of the transformed attributes,
which are nevertheless bound to the original records. In this context, the values
of the original understandable attributes could be used for explaining the result,
as well as for further processing.

In the second part of the paper, we presented the dynamic SOM alternative,
the Growing Grid [7], enhanced with a variable learning epoch counter heuristic.
It has been shown that the growing SOM with the above- mentioned heuristic
produced satisfactory results in a significantly shorter time. We programmed a
corresponding software tool and used it in experiments with data collected in the
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period of a specific emergency system test to simulate performance monitoring
of the emergency call centres network and analyse performance issues related
to the technology, as well as the human factor the operators of the centres.
The proposed SOM modification is well suited to the emergency data domain,
which is characterised by relationships of a geographical, organisational, and
technological nature. As some of the relationships in the emergency data are
inherently hierarchical, we consider the application of the hierarchical SOM [4]
in the SW tool developed in the course of this work.

While the first part of the paper was to show the justification of the SOM usage
in detecting and visualizing anomalies in the emergency data, in the second part
we exploited this partial result in the simulation and performance monitoring of
the emergency call centres network under a heavy load. The load was simulated
by the system tests which were lasting for one hour. In the tests 80 emergency call
operators over the whole country took part together with about 200 of callers who
were simulating emergency calls. The data which were describing the behaviour
of the system as well as of the operators were collected and processed by the
modified growing SOM algorithm. In this way the anomalies in the whole system
or in behaviour of all the operators could be seen in the resulting SOM picture.

As one could see and comprehend the status of the whole system at a glance,
this holistic visualization of the system performance tends to be much more
transparent and intuitive comparing to the traditional monitoring techniques
based on trapping and displaying particular events. Moreover, the proposed
method inherently includes monitoring of non-technical components of the sys-
tem, particularly the behaviour of the emergency call operators, which is not cov-
ered by traditional trap-based monitoring. From this point of view the method
described in this paper could be passed as a contribution to the socio-technical
system performance monitoring field.

Traditional anomaly detection methods [9,22,26] use SOM for modelling the
anomaly-free space from a set of data approved as correct (bearing signs of
supervised learning) and then classify a new case as anomalous if it falls outside
the modelled non-anomalous space. As hardly any emergency situation can be
considered anomalous, or all of them are anomalous on the other hand, we could
not use the two-class classifier approach with supervised learning. Therefore we
searched for certain patterns in the data. After the patterns were recognised by
unsupervised learning, the composition was always presented to a human for
them to analyse the situation.

This concept can be enhanced in such a way that, provided that the algorithm
is run periodically, the new composition would be further processed only if the
composition in the current run is different from the composition in the previous
run. SOM quality measures [20,13] could help in achieving good results here.
We expect that the monitoring of the performance of the emergency call-taking
system and analysis technique presented in this paper can be effectively combined
with a model of resilient incident report transfer between call centres inspired
by [10,17]. Such a model could be created and the Growing Grid SOM tool
used for its output monitoring and performance analysis, provided that detailed
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information regarding the underlying technology of the ECC network (the WAN
topology, technology and parameters) were available.

9 Conclusion

This paper presented the monitoring and analysis of the performance of the
emergency call system, using a novel approach of exploring anomalies in the
emergency call system databases. We reused our experience with the detection
of anomalies, as described in [14], concentrating on the technology and cooper-
ative characteristics of the emergency call-taking system to show the system’s
performance issues. Both the technological and personal points of view were
included as our method discovered database problems and spotted operators’
behaviour in the course of testing a specific system under a heavy load.

We devised a novel method for unsupervised knowledge discovery in the emer-
gency call data, based on the Self-Organising Map (SOM) algorithm and pro-
grammed respective software tools: the fixed and Growing Grid SOM learning
module and the SOM explorer module. We compared various configurations of
SOM learning and showed that the Growing Grid, combined with the variable
learning epoch count heuristic, produces the best results in terms of the speed
and quality of the output.

The algorithm consumed the training set of records describing the creation
and transfer of incident reports, identified a subset of records containing certain
common information, and built and visualised clusters over these records. The
method devised here proved its ability to discover anomalies hidden in emergency
data, visualising them in an effective user-friendly manner and indicating a way
towards the further development of the intelligent management of the emergency
call information system.

The experiments presented here focused on revealing clusters of incident
records which pointed to abnormal situations in time and place and formed
a sound basis for the performance monitoring and analysis of the emergency call
system.
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