

A. Hameurlain et al. (Eds.): TLDKS XII, LNCS 8320, pp. 83–104, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Open Streaming Operation Patterns

Qiming Chen and Meichun Hsu

HP Labs Palo Alto, California, USA
Hewlett Packard Co.

{qiming.chen,meichun.hsu}@hp.com

Abstract. We describe our canonical dataflow operator framework for
distributed stream analytics. This framework is characterized by the notion of
open-executors. A dataflow process is composed by chained operators which
form a graph-structured topology, with each logical operator executed by
multiple physical instances running in parallel over distributed server nodes. An
open executor supports the streaming operations with specific characteristics
and running pattern, but is open for the application logic to be plugged-in. This
framework allows us to provide automated and systematic support for
executing, parallelizing and granulizing the continuous operations.

We illustrate the power of this approach by solving the following problems:
first, how to categorize the meta-properties of stream operators such as the I/O,
blocking, data grouping characteristics, for providing unified and automated
system support; next, how to elastically and correctly parallelize a stateful
operator that is history-sensitive, relying on the prior state and data processing
results; how to analyze unbounded stream granularly to ensure sound semantics
(e.g. aggregation); and further, how to deal with parallel sliding window based
stream processing systematically. These capabilities are not systematically
supported in the current generation of stream processing systems, but left to
user programs which can result in fragile code, disappointing performance and
incorrect results. Instead, solving these problems using open-executors benefits
many applications with system guaranteed semantics and reliability.

In general, with the proposed canonical dataflow operator framework we can
standardize the operator execution patterns, and to support these patterns
systematically and automatically. The value of our approach in real-time,
continuous, elastic data-parallel and topological stream analytics has been
revealed by the experiment results.

1 Introduction

Real-time stream analytics has increasingly gained popularity since enterprises need
to capture and update business information just-in-time, analyze continuously
generated “moving data” from sensors, mobile devices, social media of all types, and
gain live business intelligence.

We have built a stream analytics platform with code name Fontainebleau for
dealing with continuous, real-time data-flow with graph-structured topology. This
platform is parallel and distributed with each logical operator executed by multiple

84 Q. Chen and M. Hsu

physical instances running in parallel over distributed server nodes. The stream
analysis operators are defined by users flexibly. From stream abstraction point of
view, our stream analytics cluster is positioned in the same space of System S(IBM),
Dryad(MS), Storm(Tweeter), etc. However, this work aims to advance the state of art
by providing canonical execution support for stream analysis operators.

1.1 The Challenges

A stream analytics process is composed by multiple operators and pipes connecting
these operators. The operators for stream analysis have certain meta-properties
representing their I/O characteristics, blocking characteristics, data grouping
characteristics, etc, as well as the functionalities common to various types of
applications, which can be categorized for introducing unified system support.
Categorizing stream operators and their running patterns to provide automatic support
accordingly, can ensure the operators to be executed optimally and consistently, as
well as ease user’s effort for dealing with these properties manually which is often
tedious and risky. Unfortunately, this issue has been missed by the existing stream
processing systems.

There exist several key requirements in stream processing which demand
automated and systematic support. First, to scale out, the data-parallel execution of
operators must be taken into account, where how to ensure the correctness of data-
parallelism is the key issue which requires the appropriate system protocol to
guarantee; particularly in parallelizing stateful stream operators where the stream data
partitioning and data buffering must be consistent. Next, stream processing is often
made in granule. For example, to provide sound aggregation semantics (e.g. sum), the
infinite input data stream must be processed chunk by chunk where each operator may
punctuate data based on different chunking criteria such as in 1-minute or 1-hour time
windows (certain constraints apply, e.g. the frame of a downstream operator must be
the same as, or some integral number of, the frame of its upstream operator).
Granulizing dataflow analytics represents another kind of common behavior of stream
operators which also need to be supported systematically.

Current large-scale data processing tools, such as Map-Reduce, Dryad, Storm, etc,
do not address these issues in a canonical way. As a result, the programmers have to
deal with them on their own, which can lead to fragile code, disappointing
performance and incorrect results.

1.2 The Proposed Solution

The operators on a parallel and distributed dataflow infrastructure are performed by
both the infrastructure and the user programs, which we refer to as their template
behavior and dynamic behavior. The template behavior of a stream operator
depends on its meta-properties and its running pattern. For example, a map-reduce
application is performed by the Hadoop infrastructure as well as the user-coded map

 Open Streaming Operation Patterns 85

function and reduce function. Our streaming platform is more flexible and elastic than
Hadoop in handling dynamically parallelized operations in a general graph structured
dataflow topology, and our focus is placed on supporting the template behavior, or
operation patterns, automatically and systematically.

Unlike applying an operator to data, stream processing is characterized by the
flowing of data through a stationed operator. We introduce the notion of open-station
as the container of a stream operator. The stream operators with certain common
meta-properties can be executed by the class of open-stations specific to these
operators. Open-stations are classified into a station hierarchy. Each class provides an
open-executor as well as related system utilities. In the OO programming context, the
open-executor is coded by invoking certain abstract functions (methods) to be
implemented by users based on their application logic. In this way the station
provides designated system support, while open for the application logic to be
plugged-in. In this work we use the proposed architecture to solve several typical
stream processing problems.

The key to ensure safe parallelization is to handle data flow group-wise - for each
vertex representing a logical operator in the dataflow graph; the operation
parallelization with multiple instances comes with input data partition (grouping)
which is consistent with the data buffering at each operation instance. This ensures
that in the presence of multiple execution instances of an operator, O, every stream
tuple is processed once and only once by one of the execution instances of O; the
historical data processing states of every group of the partitioned data are buffered
with one and only one execution instance of O. Our solution to this problem is based
on the open station architecture.

The key to ensure the granule semantics is to handle dataflow chunk wise by
punctuating and buffering data consistently. Our solution to this problem is also based
on the open station architecture.

As a generalization of these solutions, we show how to use the open station
architecture to provide system support for handling parallel sliding window based
stream processing.

In general, the proposed canonical operation framework allows us to standardize
various operational patterns of stream operators, and have these patterns supported
systematically and automatically. Our experience shows its power in real-time,
continuous, elastic data-parallel and topological stream analytics.

The rest of this paper is organized as follows: section 2 describes the notions of
open-station and open-executor; then based on these notions section 3 discusses how
to guarantee the correctness of data-parallel execution of stateful operations, and how
to deal with the granular execution of stream operations; in section 4 we further show
how to use the open station architecture to provide system support for handling
parallel sliding window based stream processing; some experimental results are
illustrated in section 5; finally section 6 compares with related work and concludes
the paper.

86 Q. Chen and M. Hsu

2 Open Station and Open Executor of Stream Operator

2.1 Continuous, Parallel and Elastic Stream Analytics Platform

Fontainebleau is a real-time, continuous, parallel and elastic stream analytics
platform. There are two kinds of nodes on the cluster: the coordinator node and the
agent nodes with each running a corresponding daemon. A dataflow process is
handled by the coordinator and the agents spread across multiple machine nodes. The
coordinator is responsible for distributing code around the cluster, assigning tasks to
machines, and monitoring for failures, in the way similar to Hadoop’s job-tracker.
Each agent interacts with the coordinator and executes some operator instances (as
threads) of the dataflow process. The Fontainebleau platform is built using several
open-source tools, including ZooKeeper[12], ØMQ[11], Kryo[13], Storm[14], etc.
ZooKeeper coordinates distributed applications on multiple nodes elastically. ØMQ
supports efficient and reliable messaging. Kryo deals with object serialization. Storm
provides the basic dataflow topology support.

A stream is an unbounded sequence of tuples. A stream operator transforms a
stream into a new stream based on its application-specific logic. The stream
transformations are packaged into a graph-structured "topology" which is the top-
level dataflow process. When an operator emits a tuple to a stream, it sends the tuple
to every successor operators subscribing to that stream. A stream grouping specifies
how to group and partition the tuples input to an operator. There exist a few different
kinds of stream groupings such as hash-partition, replication, random-partition, etc.

To support elastic parallelism, we allow a logical operator to be executed by
multiple physical instances, as threads, in parallel across the cluster; they pass
messages to each other in a distributed way. Using the ØMQ library [11], message
delivery is reliable; messages never pass through any sort of central router, and there
are no intermediate queues.

To provide an overview, we use a simplified as well as extended Linear-Road (LR)
benchmark to illustrate the notion of stream process. The LR benchmark models the
traffic on 10 express ways; each express way has two directions and 100 segments.
Cars may enter and exit any segment. The position of each car is read every 30
seconds and each reading constitutes an event, or stream element, for the system. A
car position report has attributes vehicle_id, time (in seconds), speed (mph), xway
(express way), dir (direction), seg (segment), etc. With the simplified benchmark, the
traffic statistics for each highway segment, i.e. the number of active cars, their
average speed per minute, and the past 5-minute moving average of vehicle speed, are
computed. Based on these per-minute per-segment statistics, the application computes
the tolls to be charged to a vehicle entering a segment any time during the next
minute. As an extension to the LR application, the traffic statuses analyzed and
reported every hour. The logical stream process for this example is given in Fig. 1.

 Open Streaming Operation Patterns 87

by minute,xway,dir,seg

minute, vid,
xway, dir, seg,
speed, …

Data Feeder

Socket,

File,

PostgreSQL,

 LR
Data

by hour, xway, dir

minute, xway, dir,
seg, volume,
avg_speed

minute, xway, dir,
seg, volume, 5-min-
mv_avg

Agg 5-min
mv-avg

 Toll

hourly
analysis

Block by group second, vid, xway, dir,
seg, speed, …

Fig. 1. The extended LR logical dataflow process with operators linked in a topology

This stream analytics process is specified by the Java program illustrated below.

 public class LR_Process {

…

public static void main(String[] args) throws Exception {

 ProcessBuilder builder = new ProcessBuilder();

 builder.setFeederStation(“feeder”, new LR_Feeder(args[0]), 1);

 builder.setStation("agg", new LR_AggStation(0, 1), 6) .hashPartition(“feeder”,

new Fields("xway", "dir", "seg"));

 builder.setStation("mv", new LR_MvWindowStation(5), 4).hashPartition("agg",

new Fields("xway", "dir", "seg"));

 builder.setStation("toll", new LR_TollStation(), 4).hashPartition("mv",

new Fields("xway", "dir", "seg"));

 builder.setStation("hourly", new LR_BlockStation(0, 7), 2).hashPartition("agg",

new Fields("xway", "dir"));

 Process process = builder.createProcess();

 Config conf = new Config(); conf.setXXX(…); …

 Cluster cluster = new Cluster();

 cluster.launchProcess("linear-road", conf, process);

 …

}

In the above topology specification, the hints for parallelization are given to the
operators “agg” (6 instances), “mv” (5 instances), “toll” (4 instances) and “hourly” (2
instances), the platform may make adjustment based on the resource availability.
Then the physical instances of these operators for data-parallel execution are
illustrated in Fig 2.

88 Q. Chen and M. Hsu

Partition by
xway, dir, seg

Data
Feeder

 Agg

 5-min mv-
avg

 Toll

 hourly
analysis

 Agg

 Agg

 Agg

 5-min
mv-avg

 5-min
mv-avg

 5-min
mv-avg

 Agg

 Agg

 Toll

 Toll

 Toll

 hourly
analysis

Block by group

Partition by
xway, dir, seg

Partition by
xway, dir, seg

Partition by
xway, dir

Fig. 2. The LR dataflow process instance with elastically parallelized operator instances

2.2 Meta Characteristics of Operators

Stream operators have certain characteristics in several dimensions, such as the
provisioning of initial data, the granularity of event processing, memory context,
invocation patterns, results grouping and shuffling, etc, which may be considered as
the meta-data, or the design pattern of operators. Further, the operators for supporting
a kind of applications also have certain common characteristics. Below we briefly list
some characteristics.

I/O Characteristics specifies the number of input tuples and the output tuples the
stream operator is designed to handle the stream data chunk-wise. Examples are 1:1
(one input/one output), 1:N (one input/multiple outputs), M:1(multiple inputs/ one
output) and M:N (multiple inputs/ multiple outputs). Accordingly we can classify the
operators into Scalar (1:1); Table Valued (TV) (1:N); Aggregate (N:1), etc, for each
chunk of the input. Currently we support the following chunking criteria for
punctuating the input tuples: (a) by cardinality, i.e. number of tuples; and (b) by
granule as a function applied to an attribute value, e.g. get_minute (timestamp in
second).

Blocking Characteristics tells that in the multiple input case, the operator applies
to the input tuple one by one incrementally (e.g. per-chunk aggregation), or first pools
the input tuples and then apply the function to all the pooled tuples. Accordingly the
block mode can be per-tuple or blocking. Specifying the blocking characteristics tells
the system to invoke the operator in the designated way, and save the user’s effort to
handle them in the application program.

 Open Streaming Operation Patterns 89

Caching Characteristics is related to the 4 levels potential cache states:

• per-process state that covers the whole dataflow process with certain initial data
objects;

• Per-chunk state that covers the processing of a chunk of input tuples with certain
initial data objects;

• Per-input state that covers the processing of an input tuple possibly with certain
initial data objects for multiple returns;

• Per-return state that covers the processing of a returned tuple.

Grouping Characteristics tells a topology how to send tuples between two
operators. There's a few different kinds of stream groupings. The simplest kind of
grouping is called a "random grouping" which sends the tuple to a random task. It has
the effect of evenly distributing the work of processing the tuples across all of the
consecutive downstream tasks. The hash grouping is to ensure the tuples with the
same value of a given field go to the same task. Hash groupings are implemented
using consistent hashing. There are a few other kinds of groupings.

Function Characteristics underlies the common feature of a kind of stream
processing applications. Support those features systematically can ease the effort and
improve the quality of application development.

2.3 Stationed Streaming Operators

Ensuring the characteristics of stream operators by user programs is often tedious and
not system guaranteed. Instead, categorizing the common classes of operation
characteristics and supporting them automatically and systematically can simplify
user’s effort and enhance the quality of streaming application development. This
has motivated us to introduce open-stations for holding stream operators
and encapsulating their characteristics – towards the open station class hierarchy
(Fig 3).

Each open-station class is provided with an “open executor” as well as related
system utilities for executing the corresponding kind of operators; that “open”
executor invokes the abstract methods, which are defined in the station class but
implemented by users with the application logic. In this way a station provides the
designated system support, while open for the application logic to be plugged-in. A
user defined operator captures the designated characteristics by subclass the
appropriate station, and captures the application logic by implementing the abstract
methods accordingly.

90 Q. Chen and M. Hsu

 Basic

Station

 Stateful

Station
 BasicTV

Station

 BasicBlock

Station

 BasicScalar

Station

 Window

Station

 Window

Station

 BasicAgg

Station

non-history sensitive history sensitive

block incremental

 CommonWindow

Station

Fig. 3. Station Hierarchy Example

2.4 Open Executor

Specified in a station class, there are two kinds of pre-prepared methods: the system
defined ones and the user defined ones.

• The system defined methods include the open-executor and other utilities which
is open to plugging-in application logic, in the sense that they invoke the abstract
methods to be implemented by users according to the application logic.

• The abstract methods to be implemented by the user based on the application
logic.

For example, the WindowStation that extends BasicBlockStation, is used to
support chunk-wise stream processing, where the framework provided functions,
hidden from user programs, include

 public boolean nextChunk(Tuple, tuple) {// group specific …}

 public void execute(Tuple tuple, BasicOutputCollector collector) {

 boolean new_chunk = nextChunk(tuple);

 String grp = getGroupKey(tuple);

 GroupMeasures gm = null;

 if (new_chunk) {

 gm = getGKV().dump(grp);

 }

 updateState(getGKV(), tuple, grp);

 if (new_chunk) { //emit last chunk

 processChunkByGroup(gm, collector);

 }

 }

 Open Streaming Operation Patterns 91

The three functions marked Station are to be implemented based on the application
logic; the others are system defined for encapsulating the chunk-wise stream
processing semantics.

In addition to offering the dataflow operation “executor” abstraction, introducing
open station also aims to provide canonical mechanisms to parallelize stateful and
granule dataflow process. The core is to handle data flow chunk-wise and group-
wise - for each vertex representing a logical operator in the dataflow graph; the
operation parallelization (launching multiple instances) comes with input data
partition (grouping) which is consistent with the data buffering at each operation
instance. These are discussed in the following sections.

3 Support Parallelized and Granulized Stream Processing
Patterns

3.1 Data-Parallel Execution of Operators

Under our approach, logically, the dataflow elements, i.e. tuples, either originated
from a data-source or derived by a logical operator, say A, are sent to one or more
receiving logical operators, say B. Since each logical operator may have multiple
execution instances, the dataflows from A to B actually form multi-to-multi
messaging channels.

To handle data-parallel operations, an operator property: parallelism hint, can be
specified, that is the number (default to 1) of station threads for running the operator.
The number of actual threads will be judged by the infrastructure and load-balanced
over multiple available machines.

For the sake of correct parallelism, the stream from A’s instances to B’s instances
are sent in a partitioned way (e.g. hash-partition) such that the data sent from any
instance of A to the instances of B are partitioned in the same way. This is similar to
the data shuffling from a Map node to a Reduce node, but in more general dataflow
topology.

Although our platform offers the flexibility of dataflow grouping with options
hash-partition, random-partition, range-partition, replicate, etc, the platform enforces
the use of hash partition for the parallelized operators. In case an operator is specified
to have parallel instances in the user’s dataflow process specification, the input stream
to that operator must be defined as hash-partitioned; otherwise the process
specification would be invalidated.

Further, there can be multiple logical operators, B1, B2, …, Bn, for receiving the
output stream of A, but each with different data partition criterion, called inflow-
grouping-attributes (a la SQL group by). The tuples falling in the same partition, i.e.
grouped together, have the same “inflow-group-keys”. For example, the tuples
representing the traffic status of an express way (xway), direction (dir) and segment
(seg), are partitioned, thus grouped by attributes <xway, dir, seg>; tuples of each
group has the same inflow-group-key derived from the values of xway, dir and seg.
An operation instance may receive multiple groups of data. The abstract method,
getGroupKey(tuple), must be implemented, which is invoked by the corresponding
open-executor.

92 Q. Chen and M. Hsu

3.2 Parallelize Stateful Streaming Operators Group-Wise

A stateful operator caches its state for future computation, and therefore is history
sensitive. When a logical stateful operator has multiple instances, their input data
must be partitioned, and the data partition must be consistent with the data buffering.

For example, given the logical operation, O, for calculating moving-average and
with the input stream data partitioned by <xway, dir, seg>, the data buffers of its
execution instances are also partitioned by <xway, dir, seg>, which is prepared and
enforced by the system.

For history-sensitive data-parallel computation, an operation instance keeps a state
computed from its input tuples (other static states may be incorporated but not the
focus of this discussion). We generally provide this state as a KV store where keys,
referred to as cachhing-group-keys, are Objects (e.g. String) extracted from the input
tuples, and values are Objects derived from the past and present tuples such as
numerical objects (e.g. sum, count), list objects (certain values derived from each
tuple), etc. the multiple instances of a logical operation can run in data-parallel
provided that the inflow-group-keys are used as the caching group-keys. In this sense
we refer to the KV store as Group-wise KV store (GKV). APIs for accessing the
GKV are provided as well. As illustrated in the last section, an important abstract
method, updateState(), is defined and to be implemented by users.

With the above mechanisms, in the presence of multiple execution instances of an
operator, every stream tuple is processed once and only once by one of the execution
instances; the data processing states of every group of the partitioned input data (e.g.
the tuples belonging to the same segment of the an express-way in a direction) are
buffered in the function closure of one and only one execution instance of that
operator. These properties are common to a class of tasks thus we support them in the
corresponding station class, that, substantially, is subclassifiable.

3.3 Window Based Stream Analytics

Although a data stream is unbounded, very often applications require those infinite
data to be analyzed granularly. Particularly, when the stream operation involves the
aggregation of multiple events, for semantic reason the input data must be punctuated
into bounded chunks. This has motivated us to execute such operation window by
window to process the stream data chunk by chunk.

For example, in the previous car traffic example, the operation “agg” aims to
deliver the average speed in each express-way’s segment per minute. Then the
execution of this operation on an infinite stream is made in a sequence of windows,
one on each stream chunks. To allow this operation to apply to the stream data one
chunk at a time, and to return a sequence of chunk-wise aggregation results, the input
stream, is cut into 1 minute (60 seconds) based chunks, say S0, S1, …Si, … such that
the execution semantics of “agg” is defined as a sequence of one-time aggregate
operation on the data stream input minute by minute.

In general, given an operator, O, over an infinite stream of relation tuples S with a
criterion ϑ for cutting S into an unbounded sequence of chunks, e.g. by every

 Open Streaming Operation Patterns 93

1-minute time window, <S0, S1, …, Si, …> where Si denotes the i-th “chunk” of the
stream according to the chunking-criterion ϑ. The semantics of applying O to the
unbounded stream S lies in

Q (S) < Q (S0), … Q (Si), ... >

which continuously generates an unbounded sequence of results, one on each chunk
of the stream data.

Punctuating input stream into chunks and applying operation window by window to
process the stream data chunk by chunk, is a template behavior common to many
stream operations, thus we consider it as a kind of meta-property of a class of stream
operations and support it automatically and systematically by our operation
framework. In general, we host such operations on the window station (or the ones
subclassing it) and provide system support in the following aspects (please refer to the
window station example given previously).

• A window station hosts a stateful operation that is data-parallelizable, and
therefore the input stream must be hash-partitioned which is consistent with the
buffering of data chunks as described in the last section.

• Several types of stream punctuation criteria are specifiable, including punctuation
by cardinality, by time-stamps and by system-time period, which are covered by
the system function

public boolean nextChunk(Tuple, tuple)

 to determine whether the current tuple belongs to the next chunk or not.
• If the current tuple belongs to the new chunk, the present data chunk is dumped

from the chunk buffer for aggregation/group-by in terms of the user-implemented
abstract method processChunkByGroup().

• Every input tuple (or derivation) is buffered, either into the present or the new
chunk.

By specifying additional meta properties and by subclassing the window station,
more concrete system support can be introduced. For example, an aggregate of a
chunk of stream data can be made once by end of the chunk, or tupe-wise
incrementally. In the latter case an abstract method for per-tuple updating the partial
aggregate is provided and implemented by the user.

The paces of dataflow wrt timestamps can be different at different operators; for
instance, the “agg” operator is applied to the input data minute by minute, so are some
downstream operators of it; however the “hourly analysis” operator is applied to the
input stream minute by minute, but generates output stream elements hour by hour.

The combination of group-wise and chunk-wise stream analytics provides a
generalized abstraction for parallelizing and granulizing the continuous and
incremental dataflow analytics.

94 Q. Chen and M. Hsu

4 Support Parallel Sliding Window Stream Processing Patterns

In this section we extend our discussion to Parallel Sliding Window (PSW) based
stream analysis and illustrate the benefits of open stations in dealing with PSW. PSW
based stream processing has certain meta-properties in punctuating and grouping
input data, in retaining and shifting intermediate results, and in synchronizing parallel
chunking. Generalizing and categorizing these operators and their running patterns
allows us to provide automatic support accordingly, to ensure the operators to be
executed optimally and consistently, as well as ease user’s effort for dealing with
them.

We build abstract stations to support the common PSW related features such as
handling punctuation and parallelism where having the application specific semantics
left as abstract methods for users to implement. The abstract stations form a
hierarchy; they provide the mechanisms for managing the data granules, the slide and
window boundaries, for punctuating input data stream for switching slides and
windows, as well as for retaining and intermediate results. In general, they provide
system support for synchronizing the slide and window switching wrt multiple,
parallel input streams.

4.1 Sliding Window Based Stream Analytics

In stream processing, the tuples transferred between tasks can be granule based on
timestamps or so; and we introduce three levels of boundaries for grouping data in the
context of PSW: granule, slide and window; a granule is the basic unit for grouping
data, it could be, for example, a chunk of N tuples or the tuples with timestamps
falling in one minute; a slide is defined as a given number or range of granules, for
example a slide of 10 minute is composed by 10 one-minute granules; a window is
also defined as a given number or range of granules, but the size of a window is at
least the size of a slide.

A sliding window based operation keeps the following variables for dealing with
sliding window semantics.

• window_size – the number of granules per window;
• slide_size, or delta - the number of granules per slide;
• current – the current granule number;
• ceiling – the ceiling of the current slide by granule number, after the

window_size is reached, it is the ceiling of current window;
• window – the number (ID) of the current window.

As usual, for each operation we provide two major system abstract methods:
initialize() and execute(). The initialize() method is invoked before the per-tuple
processing for instantiating the settings and gathering the topology information, e.g.
the input channels. The execute() method is invoked upon receipt each input tuple
which provides the functions of processing a tuple, or, if a slide or window boundary
is reached, calculating the slide or window based summaries and outputing the data
mining results.

 Open Streaming Operation Patterns 95

For example, a sliding window based stream analytics operation with window
based summarization but without slide based stepwise summarization, has the
following operation logic.

1. current = resolveGranule(tuple);

2. if (current >= ceiling) {

3. if (current >= window_size) {

4. summarize_window();

5. window++;

6. }

7. ceiling = (current/delta + 1)*delta;

8. process_held_tuples(ceiling);

9. }

10. if (getGranule(tuple) >= ceiling) {

11. held_tuples.add(tuple);

12. } else {

13. process_tuple(tuple);

14. }

The above logic can be described as below.

1. resolve the least granule# from all input channels;
2. if the next slide has been reached (this tuple belong to the next slide according to

its granule#);
3. if the window boundary also reached (the usual case after completing the first

window, if the sliding is defined as the shift of one slide);
4. make window based data mining and output the results;
5. advance the window#;
6. .
7. update the ceiling to the upper bound of the next slide;
8. process the held tuples falling in the next slide;
9. .
10. if the overall slide operation does not advance even if this tuple is beyond the

boundary of the current slide
11. hold this tuple
12. .
13. otherwise
14. process this tuple

In general, upon receipt of a tuple, the system first resolve the current granule by

taking into account all input channels; if the input tuple belongs to the current slide or
window it gets processed, otherwise it is held to be processed in the next or even
further windows where it fits in.

The window based data mining takes place at the boundary of two consecutive
windows. Since we deal with sliding window, the partial results must be retained and
shift – i.e. sliding.

96 Q. Chen and M. Hsu

4.2 Parallelize Sliding Window Based Stream Analytic Operation

When a sliding window based stream analytics task has multiple parallel input
channels, their punctuation must be synchronized. For example, assume a task T has 4
input channels and currently working in window #3, after T receives a tuple belonging
to window #4 it may or may not be able to “conclude” window #3 depending on
whether all the input channels have started to supply tuples belonging to window #4
or beyond; if not, concluding window #3 would yield inaccurate result.

We assume for each input channel the tuples are delivered in the order of granules.
The granule boundary of data processing by the current task is determined by taking
into account all the input channels based on the following mechanism.

• The current granule number of each input channel if maintained in the
granuleTable.

• Upon receipt a new input, the granuleTable is updated, and the current granule
number is resolved as the minimal granule number of all input channels.

• If the granule number of the current input is larger than the resolved one, this
tuple is to be held without processing; it will be processed later in the next or a
future window instead.

• Once a window boundary is reached by referring to all the input channels, the
data analytics results for the current window is generated and finalized, and the
data analytics process enters the next window boundary, starting with processing
those held tuples that fall into the new window boundary; the tuples falling in
future windows will continue being held.

4.3 The Generalized Framework

We provide generalized algorithms to support PSW based incremental stream analysis
performed on the per-granule, per-slide and per-window basis. We coded these
algorithms as open-executors held by open-stations.

The Top Level Abstract Station. This station provides the generalized algorithm for
sliding window based incremental stream analysis which covers he per-granule, per-
slide and per-window based incremental stream processing. The flowchart is shown
in Fig 4, where several abstract methods are provided which are to be implemented by
user based on their application logic.

public void execute(Tuple tuple) {

 //resolve the granule the task is working on

long resolved = resolveGranule(tuple);

// If granule is advanced,

// summarize the current granule

// sliding the list of partial results and

// process the held tuples in the next granule boundary

 if (this.scope == SumScope.GRANULE) {

 if (resolved > current) {

 partialResult = partial_summarize();

 Open Streaming Operation Patterns 97

 this.partialResultList.add(partialResult);

 if (partialResultList.size() > window_size) {

 this.partialResultList.removeFirst();

 }

 process_held_tuples(resolved+1);

 }

 }

 current = resolved;

 // if slide is advanced

// summarize the current slide

// if window is advanced, get window summarization results

// sliding the list of partial results and

// process the held tuples in the next granule boundary

 if (current >= ceiling) {

 if (this.scope == SumScope.SLIDE) {

 partialResult = partial_summarize();

 this.partialResultList.add(partialResult);

 if (partialResultList.size() > window_size / delta) {

 this.partialResultList.removeFirst();

 }

 }

 if (current >= window_size) {

 summarize_window();

 window++;

 }

 //handle next slide

 ceiling = (current/delta + 1)*delta;

 if (this.scope == SumScope.WINDOW || this.scope == SumScope.SLIDE) {

 process_held_tuples(ceiling);

 }

}

// if tuple falls in the current scope, process it, if beyond the current scope, hold it

 long upper = (this.scope == SumScope.GRANULE)? current:ceiling;

 if (getGranule(tuple) >= upper) {

 held_tuples.add(tuple);

 else {

 //normal call

 process_tuple(tuple);

 }

}

public abstract long getGranule(Tuple tuple);

public abstract void summarize_window();

public abstract Object partial_summarize();

public abstract void process_tuple(Tuple tuple);

98 Q. Chen and M. Hsu

Beyond current
granule

Summarize
granule result

Shift granule
result buffer

Process
held tuples

check
granule

boundary

execution

Resolve
granule

Y Scope
GRANULE

N

Beyond current
window

Summarize
window result

check
window

boundary

Process
held tuples

Shift slide
result buffer

Beyond current
slide

Summarize
slide result

check
slide

boundary

Y Scope
SLIDE

N

Y
Scope

SLIDE/WIN
N

Process or hold
this tuple

Fig. 4. Generalized PSW Framework

Abstract Station Supporting Window Oriented Summarization. This abstract
station subclass the above generalized abstract PSW station; it provides the abstract
algorithm with window oriented summarization as illustrated in Fig 5. It subclasses
the above generalized PSW station simply by making the unrelated functions (those
not highlighted) as dummy functions. In fact, this abstract station class is
implemented by only one method:

 public Object partial_summarize() {

 return null;

 }

The rest methods are inherited.

 Open Streaming Operation Patterns 99

Beyond current
granule

Summarize
granule result

Shift granule
result buffer

Process
held tuples

check
granule

boundary

execution

Resolve
granule

Y Scope
GRANULE

N

Beyond current
window

Summarize
window result

check
window

boundary

Process
held tuples

Shift slide
result buffer

Beyond current
slide

Summarize
slide result

check
slide

boundary

Y Scope
SLIDE

N

Y
Scope

SLIDE/WIN
N

Process or hold
this tuple

Fig. 5. Abstract Execution Framework for Window Oriented Summarization

Abstract Station Supporting Slide Oriented Summarization. The flow-chat for the
abstract algorithm with slide oriented summarization is illustrated in Fig 6. The
station supporting the corresponding execution pattern subclasses the above
generalized PSW station simply by making the unrelated functions (those not
highlighted) as dummy functions.

100 Q. Chen and M. Hsu

Beyond current
granule

Summarize
granule result

Shift granule
result buffer

Process
held tuples

check
granule

boundary

execution

Resolve
granule

Y Scope
GRANULE

N

Beyond current
window

Summarize
window result

check
window

boundary

Process
held tuples

Shift slide
result buffer

Beyond current
slide

Summarize
slide result

check
slide

boundary

Y Scope
SLIDE

N

Y
Scope

SLIDE/WIN
N

Process or hold
this tuple

Fig. 6. Abstract Execution Framework for Slide Oriented Summarization

Abstract Station Supporting Granule Oriented Summarization. The flow-chat for
the abstract algorithm with granule oriented summarization is illustrated in Fig. 7. The
station supporting the corresponding operation pattern subclasses the above
generalized PSW station simply by making the unrelated functions (those not
highlighted) as dummy functions.

 Open Streaming Operation Patterns 101

execution

Beyond current
granule

Summarize
granule result

Shift granule
result buffer

Process
held tuples

check
granule

boundary

Resolve
granule

Y Scope
GRANULE

N

Beyond current
window

Summarize
window result

check
window

boundary

Process
held tuples

Shift slide
result buffer

Beyond current
slide

Summarize
slide result

check
slide

boundary

Y Scope
SLIDE

N

Y
Scope

SLIDE/WIN
N

Process or hold
this tuple

Fig. 7. Abstract Execution Framework for Granule Oriented Summarization

4.4 A PSW Stream Process Topology Example

Below we show a stream processing topology example for frequent pattern mining,
we do not discuss the application here, only illustrate the role of parallel sliding
window operation oriented stations in a stream analytics dataflow process.
The topology specification is illustrated below

 TopologyBuilder builder=new TopologyBuilder();

 builder.setSpout("spout",

new FileChunkItemsetSpout(filename, chunk_size));

 builder.setStation("pre",

102 Q. Chen and M. Hsu

new FPItemsetSortStation(ItemSequence), N).shuffleGrouping("spout");

 builder.setStation("mining",

new FPSlidingWindowStation(window_size, slide_size, chunk_size,

ItemSequence), N).fieldsGrouping("pre", new Fields("leader"));

 builder.setStation("combine",

new FPWindowCombineStation(1, threshold), 1)

 .fieldsGrouping("mining", new Fields("itemset"));

 builder.setStation("output",

new FPPrintStation(), 1)

 .fieldsGrouping("combine", new Fields("itemset"));

The process contains the following sequential building blocks (operations) but each
of them can have multiple instances, and the data partition between them is defined to
make the parallel processing correct. These operations are

• spout: generates stream tuples with fields "granule", plus other fields.
• pre: pre-processing the input data on the per-tuple basis, such as filtering or

sorting, these tasks are not necessarily sliding window based.
• mining: the major operator for playing data mining, that is coded using the

parallel sliding window framework.
• combine: combining the output of multiple mining tasks, that also follows

the parallel sliding window framework.
• output: send out the combined data mining results, these tasks are not

necessarily sliding window based as far as their upstream tasks are.

5 Experiments

We have built the Fontainebleau prototype based on architecture and policies
explained in the previous sections. In this section we briefly overview our
experimental results. Our testing environment include 16 Linux servers with gcc
version 4.1.2 20080704 (Red Hat 4.1.2-50), 32G RAM, 400G disk and 8 Quad-Core
AMD Opteron Processor 2354 (2200.082 MHz, 512 KB cache). One server holds the
coordinator daemon, 15 other servers hold the agent daemons, each agent supervises
several worker processes, and each worker process handles one or more task
instances. Based on the topology and the parallelism hint of each logical task, one or
more instances of that task will be instantiated by the framework to process the data
streams.

Below we present the experiment results of running the example topology that is
similar to the Linear Road scenario; our topology modifies that scenario but we use
the same test data under the stress test mode - the data are read from a file
continuously without following the real-time intervals, leading to a fairly high
throughput.

 Open Streaming Operation Patterns 103

The performance show in Fig. 8 is based on the event rate of 1.33 million per
minute with approximate 12 million (11,928,635) input events. Most of the tasks have
28 parallel instances except one having 14 parallel instances. There is no load-
shedding (dropping events) observed.

End-to-End Performance (sec)

0

200

400

600

800

0M 2M 4M 6M 8M 10M 12M

events

el
p

se
 t

im
e

(s
ec

)

Fig. 8. The performance of data-parallel stream analytics with the LR topology

6 Related Work and Conclusions

In this paper we described our parallel and distributed stream analysis system capable
of executing the real-time, continuous streaming process with general graph-
structured topology. We focused on the canonical operation framework for
standardizing the operational patterns of stream operators, and providing a set of open
execution engines for supporting these operational patterns. We examined the power
of the proposed framework by supporting the combination of group-wise and chunk-
wise stream analytics which provides a generalized abstraction for parallelizing and
granulizing continuous dataflow analytics, and further, the generalized support for
handling parallel sliding window based stream processing..

Compared with the notable data-intensive computation systems such as DISC [3],
Dryad [8], etc, our platform supports more scalable and elastic parallel computation.
We share the spirit with Pig Latin [10], etc, in using multiple operations to express
complex dataflows. However, unlike Pig Lain, we model the graph structured
dataflow by composing multiple operations rather than decomposing a query into
multiple operations; our data sources are dynamic data streams rather than static files;
we partitioning stream data on the fly dynamically, rather than prepare partitioned
files statically to Map-Reduce them. This work also extends the underlying tools such
as Storm by elaborating it from a computation infrastructure to a state conscious
computation/caching infrastructure, and from the user task oriented system to the
execution engine oriented system.

Supporting truly continuous operations distinguish our platform from the current
generation of stream processing systems, such as System S (IBM), STREAM
(Stanford) [1], Aurora, Borealis[2], TruSQL[9], etc.

Envisaging the importance of standardizing the operational patterns of dataflow
operators, we are providing a rich set of open execution engines and linking stations
with existing data processors such as DBMS and Hadoop, towards the integrated
dataflow cloud service.

104 Q. Chen and M. Hsu

References

[1] Arasu, A., Babu, S., Widom, J., The, C.Q.L.: Continuous Query Language: Semantic
Foundations and Query Execution. VLDB Journal 15(2) (June 2006)

[2] Abadi, D.J., et al.: The Design of the Borealis Stream Processing Engine. In: CIDR
(2005)

[3] Bryant, R.E.: Data-Intensive Supercomputing: The case for DISC. CMU-CS-07-128
(2007)

[4] Chen, Q., Hsu, M., Zeller, H.: Experience in Continuous analytics as a Service (CaaaS).
In: EDBT 2011 (2011)

[5] Chen, Q., Hsu, M.: Experience in Extending Query Engine for Continuous Analytics. In:
Bach Pedersen, T., Mohania, M.K., Tjoa, A.M. (eds.) DAWAK 2010. LNCS, vol. 6263,
pp. 190–202. Springer, Heidelberg (2010)

[6] Chen, Q., Hsu, M.: Continuous mapReduce for in-DB stream analytics. In: Meersman,
R., Dillon, T., Herrero, P. (eds.) OTM 2010. LNCS, vol. 6428, pp. 16–34. Springer,
Heidelberg (2010)

[7] Dean, J.: Experiences with MapReduce, an abstraction for large-scale computation. In:
Int. Conf. on Parallel Architecture and Compilation Techniques. ACM (2006)

[8] Isard, M., Budiu, M., Yu, Y., Birrell, A., Fetterly, D.: Dryad: Distributed data-parallel
programs from sequential building blocks. In: EuroSys 2007 (March 2007)

[9] Franklin, M.J., et al.: Continuous Analytics: Rethinking Query Processing in a Network-
Effect World. In: CIDR 2009 (2009)

[10] Olston, C., Reed, B., Srivastava, U., Kumar, R., Tomkins, A.: Pig Latin: A Not-So-
Foreign Language for Data Processing. In: ACM SIGMOD 2008 (2008)

[11] ØMQ Lightweight Messaging Kernel, http://www.zeromq.org/
[12] Apache ZooKeeper, http://zookeeper.apache.org/
[13] Kryo - Fast, efficient Java serialization, http://code.google.com/p/kryo/
[14] Twitter’s Open Source Storm Finally Hits,

http://siliconangle.com/blog/2011/09/20/
twitter-storm-finally-hits/

	Open Streaming Operation Patterns
	1 Introduction
	1.1 The Challenges
	1.2 The Proposed Solution

	2 Open Station and Open Executor of Stream Operator
	2.1 Continuous, Parallel and Elastic Stream Analytics Platform
	2.2 Meta Characteristics of Operators
	2.3 Stationed Streaming Operators
	2.4 Open Executor

	3 Support Parallelized and Granulized Stream Processing Patterns
	3.1 Data-Parallel Execution of Operators
	3.2 Parallelize Stateful Streaming Operators Group-Wise
	3.3 Window Based Stream Analytics

	4 Support Parallel Sliding Window Stream Processing Patterns
	4.1 Sliding Window Based Stream Analytics
	4.2 Parallelize Sliding Window Based Stream Analytic Operation
	4.3 The Generalized Framework
	4.4 A PSW Stream Process Topology Example

	5 Experiments
	6 Related Work and Conclusions
	References

