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Abstract. We describe our canonical dataflow operator framework for 
distributed stream analytics. This framework is characterized by the notion of 
open-executors. A dataflow process is composed by chained operators which 
form a graph-structured topology, with each logical operator executed by 
multiple physical instances running in parallel over distributed server nodes. An 
open executor supports the streaming operations with specific characteristics 
and running pattern, but is open for the application logic to be plugged-in. This 
framework allows us to provide automated and systematic support for 
executing, parallelizing and granulizing the continuous operations.  

We illustrate the power of this approach by solving the following problems: 
first, how to categorize the meta-properties of stream operators such as the I/O, 
blocking, data grouping characteristics, for providing unified and automated 
system support; next, how to elastically and correctly parallelize a stateful 
operator that is history-sensitive, relying on the prior state and data processing 
results; how to analyze unbounded stream granularly to ensure sound semantics 
(e.g. aggregation); and further, how to deal with parallel sliding window based 
stream processing systematically. These capabilities are not systematically 
supported in the current generation of stream processing systems, but left to 
user programs which can result in fragile code, disappointing performance and 
incorrect results. Instead, solving these problems using open-executors benefits 
many applications with system guaranteed semantics and reliability.  

In general, with the proposed canonical dataflow operator framework we can 
standardize the operator execution patterns, and to support these patterns 
systematically and automatically. The value of our approach in real-time, 
continuous, elastic data-parallel and topological stream analytics has been 
revealed by the experiment results. 

1 Introduction 

Real-time stream analytics has increasingly gained popularity since enterprises need 
to capture and update business information just-in-time, analyze continuously 
generated “moving data” from sensors, mobile devices, social media of all types, and 
gain live business intelligence. 

We have built a stream analytics platform with code name Fontainebleau for 
dealing with continuous, real-time data-flow with graph-structured topology. This 
platform is parallel and distributed with each logical operator executed by multiple 
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physical instances running in parallel over distributed server nodes. The stream 
analysis operators are defined by users flexibly. From stream abstraction point of 
view, our stream analytics cluster is positioned in the same space of System S(IBM), 
Dryad(MS), Storm(Tweeter), etc.  However, this work aims to advance the state of art 
by providing canonical execution support for stream analysis operators. 

1.1 The Challenges 

A stream analytics process is composed by multiple operators and pipes connecting 
these operators. The operators for stream analysis have certain meta-properties 
representing their I/O characteristics, blocking characteristics, data grouping 
characteristics, etc, as well as the functionalities common to various types of 
applications, which can be categorized for introducing unified system support. 
Categorizing stream operators and their running patterns to provide automatic support 
accordingly, can ensure the operators to be executed optimally and consistently, as 
well as ease user’s effort for dealing with these properties manually which is often 
tedious and risky. Unfortunately, this issue has been missed by the existing stream 
processing systems. 

There exist several key requirements in stream processing which demand 
automated and systematic support. First, to scale out, the data-parallel execution of 
operators must be taken into account, where how to ensure the correctness of data-
parallelism is the key issue which requires  the appropriate system protocol to 
guarantee; particularly in parallelizing stateful stream operators where the stream data 
partitioning and data buffering must be consistent. Next, stream processing is often 
made in granule. For example, to provide sound aggregation semantics (e.g. sum), the 
infinite input data stream must be processed chunk by chunk where each operator may 
punctuate data based on different chunking criteria such as in 1-minute or 1-hour time 
windows (certain constraints apply, e.g. the frame of a downstream operator must be 
the same as, or some integral number of, the frame of its upstream operator). 
Granulizing dataflow analytics represents another kind of common behavior of stream 
operators which also need to be supported systematically.  

Current large-scale data processing tools, such as Map-Reduce, Dryad, Storm, etc, 
do not address these issues in a canonical way. As a result, the programmers have to 
deal with them on their own, which can lead to fragile code, disappointing 
performance and incorrect results.  

1.2 The Proposed Solution 

The operators on a parallel and distributed dataflow infrastructure are performed by 
both the infrastructure and the user programs, which we refer to as their template 
behavior and dynamic behavior. The template behavior of a stream operator 
depends on its meta-properties and its running pattern. For example, a map-reduce 
application is performed by the Hadoop infrastructure as well as the user-coded map  
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function and reduce function. Our streaming platform is more flexible and elastic than 
Hadoop in handling dynamically parallelized operations in a general graph structured 
dataflow topology, and our focus is placed on supporting the template behavior, or 
operation patterns, automatically and systematically. 

Unlike applying an operator to data, stream processing is characterized by the 
flowing of data through a stationed operator. We introduce the notion of open-station 
as the container of a stream operator. The stream operators with certain common 
meta-properties can be executed by the class of open-stations specific to these 
operators. Open-stations are classified into a station hierarchy. Each class provides an 
open-executor as well as related system utilities. In the OO programming context, the 
open-executor is coded by invoking certain abstract functions (methods) to be 
implemented by users based on their application logic. In this way the station 
provides designated system support, while open for the application logic to be 
plugged-in. In this work we use the proposed architecture to solve several typical 
stream processing problems. 

The key to ensure safe parallelization is to handle data flow group-wise - for each 
vertex representing a logical operator in the dataflow graph; the operation 
parallelization with multiple instances comes with input data partition (grouping) 
which is consistent with the data buffering at each operation instance. This ensures 
that in the presence of multiple execution instances of an operator, O, every stream 
tuple is processed once and only once by one of the execution instances of O; the 
historical data processing states of every group of the partitioned data are buffered 
with one and only one execution instance of O.  Our solution to this problem is based 
on the open station architecture.  

The key to ensure the granule semantics is to handle dataflow chunk wise by 
punctuating and buffering data consistently. Our solution to this problem is also based 
on the open station architecture.   

As a generalization of these solutions, we show how to use the open station 
architecture to provide system support for handling parallel sliding window based 
stream processing. 

In general, the proposed canonical operation framework allows us to standardize 
various operational patterns of stream operators, and have these patterns supported 
systematically and automatically. Our experience shows its power in real-time, 
continuous, elastic data-parallel and topological stream analytics.  

The rest of this paper is organized as follows: section 2 describes the notions of 
open-station and open-executor; then based on these notions section 3 discusses how 
to guarantee the correctness of data-parallel execution of stateful operations, and how 
to deal with the granular execution of stream operations; in section 4 we further show 
how to use the open station architecture to provide system support for handling 
parallel sliding window based stream processing; some experimental results are 
illustrated in section 5; finally section 6 compares with related work and concludes 
the paper.   
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2 Open Station and Open Executor of Stream Operator 

2.1 Continuous, Parallel and Elastic Stream Analytics Platform 

Fontainebleau is a real-time, continuous, parallel and elastic stream analytics 
platform. There are two kinds of nodes on the cluster: the coordinator node and the 
agent nodes with each running a corresponding daemon. A dataflow process is 
handled by the coordinator and the agents spread across multiple machine nodes. The 
coordinator is responsible for distributing code around the cluster, assigning tasks to 
machines, and monitoring for failures, in the way similar to Hadoop’s job-tracker. 
Each agent interacts with the coordinator and executes some operator instances (as 
threads) of the dataflow process. The Fontainebleau platform is built using several 
open-source tools, including ZooKeeper[12], ØMQ[11], Kryo[13], Storm[14], etc. 
ZooKeeper coordinates distributed applications on multiple nodes elastically. ØMQ 
supports efficient and reliable messaging. Kryo deals with object serialization. Storm 
provides the basic dataflow topology support.  

A stream is an unbounded sequence of tuples. A stream operator transforms a 
stream into a new stream based on its application-specific logic. The stream 
transformations are packaged into a graph-structured "topology" which is the top-
level dataflow process. When an operator emits a tuple to a stream, it sends the tuple 
to every successor operators subscribing to that stream. A stream grouping specifies 
how to group and partition the tuples input to an operator. There exist a few different 
kinds of stream groupings such as hash-partition, replication, random-partition, etc.  

To support elastic parallelism, we allow a logical operator to be executed by 
multiple physical instances, as threads, in parallel across the cluster; they pass 
messages to each other in a distributed way. Using the ØMQ library [11], message 
delivery is reliable; messages never pass through any sort of central router, and there 
are no intermediate queues.  

To provide an overview, we use a simplified as well as extended Linear-Road (LR) 
benchmark to illustrate the notion of stream process. The LR benchmark models the 
traffic on 10 express ways; each express way has two directions and 100 segments. 
Cars may enter and exit any segment. The position of each car is read every 30 
seconds and each reading constitutes an event, or stream element, for the system. A 
car position report has attributes vehicle_id, time (in seconds), speed (mph), xway 
(express way), dir (direction), seg (segment), etc. With the simplified benchmark, the 
traffic statistics for each highway segment, i.e. the number of active cars, their 
average speed per minute, and the past 5-minute moving average of vehicle speed, are 
computed. Based on these per-minute per-segment statistics, the application computes 
the tolls to be charged to a vehicle entering a segment any time during the next 
minute.  As an extension to the LR application, the traffic statuses analyzed and 
reported every hour. The logical stream process for this example is given in Fig. 1.  
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Fig. 1. The extended LR logical dataflow process with operators linked in a topology 

This stream analytics process is specified by the Java program illustrated below.  

  public class LR_Process { 

… 

public static void main(String[] args) throws Exception { 

        ProcessBuilder builder = new ProcessBuilder(); 

        builder.setFeederStation(“feeder”, new LR_Feeder(args[0]), 1);   

        builder.setStation("agg", new LR_AggStation(0, 1), 6) .hashPartition(“feeder”,  

new Fields("xway", "dir", "seg")); 

        builder.setStation("mv", new LR_MvWindowStation(5), 4).hashPartition("agg",  

new Fields("xway", "dir", "seg")); 

        builder.setStation("toll", new LR_TollStation(), 4).hashPartition("mv",  

new Fields("xway", "dir", "seg")); 

        builder.setStation("hourly", new LR_BlockStation(0, 7), 2).hashPartition("agg",  

new Fields("xway", "dir")); 

        Process process = builder.createProcess(); 

        Config conf = new Config();   conf.setXXX(…);  … 

        Cluster cluster = new Cluster(); 

        cluster.launchProcess("linear-road", conf, process); 

        … 

} 

In the above topology specification, the hints for parallelization are given to the 
operators “agg” (6 instances), “mv” (5 instances), “toll” (4 instances) and “hourly” (2 
instances), the platform may make adjustment based on the resource availability. 
Then the physical instances of these operators for data-parallel execution are 
illustrated in Fig 2. 
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Fig. 2. The LR dataflow process instance with elastically parallelized operator instances 

2.2 Meta Characteristics of Operators 

Stream operators have certain characteristics in several dimensions, such as the 
provisioning of initial data, the granularity of event processing, memory context, 
invocation patterns, results grouping and shuffling, etc, which may be considered as 
the meta-data, or the design pattern of operators. Further, the operators for supporting 
a kind of applications also have certain common characteristics. Below we briefly list 
some characteristics. 

I/O Characteristics specifies the number of input tuples and the output tuples the 
stream operator is designed to handle the stream data chunk-wise. Examples are 1:1 
(one input/one output), 1:N (one input/multiple outputs), M:1(multiple inputs/ one 
output)  and M:N (multiple inputs/ multiple outputs). Accordingly we can classify the 
operators into Scalar (1:1); Table Valued (TV) (1:N); Aggregate (N:1), etc, for each 
chunk of the input. Currently we support the following chunking criteria for 
punctuating the input tuples: (a) by cardinality, i.e. number of tuples; and (b) by 
granule as a function applied to an attribute value, e.g. get_minute (timestamp in 
second).  

Blocking Characteristics tells that in the multiple input case, the operator applies 
to the input tuple one by one incrementally (e.g. per-chunk aggregation), or first pools 
the input tuples and then apply the function to all the pooled tuples. Accordingly the 
block mode can be per-tuple or blocking. Specifying the blocking characteristics tells 
the system to invoke the operator in the designated way, and save the user’s effort to 
handle them in the application program.  
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Caching Characteristics is related to the 4 levels potential cache states:  

• per-process state that covers the whole dataflow process with certain initial data 
objects; 

• Per-chunk state that covers the processing of a chunk of input tuples with certain 
initial data objects; 

• Per-input state that covers the processing of an input tuple possibly with certain 
initial data objects for multiple returns; 

• Per-return state that covers the processing of a returned tuple. 

Grouping Characteristics tells a topology how to send tuples between two 
operators. There's a few different kinds of stream groupings. The simplest kind of 
grouping is called a "random grouping" which sends the tuple to a random task. It has 
the effect of evenly distributing the work of processing the tuples across all of the 
consecutive downstream tasks. The hash grouping is to ensure the tuples with the 
same value of a given field go to the same task. Hash groupings are implemented 
using consistent hashing. There are a few other kinds of groupings. 

Function Characteristics underlies the common feature of a kind of stream 
processing applications. Support those features systematically can ease the effort and 
improve the quality of application development. 

2.3 Stationed Streaming Operators 

Ensuring the characteristics of stream operators by user programs is often tedious and 
not system guaranteed. Instead, categorizing the common classes of operation 
characteristics and supporting them automatically and systematically can simplify 
user’s effort and enhance the quality of streaming application development. This  
has motivated us to introduce open-stations for holding stream operators  
and encapsulating their characteristics – towards the open station class hierarchy 
(Fig 3). 

Each open-station class is provided with an “open executor” as well as related 
system utilities for executing the corresponding kind of operators; that “open” 
executor invokes the abstract methods, which are defined in the station class but 
implemented by users with the application logic. In this way a station provides the 
designated system support, while open for the application logic to be plugged-in. A 
user defined operator captures the designated characteristics by subclass the 
appropriate station, and captures the application logic by implementing the abstract 
methods accordingly.  
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Fig. 3. Station Hierarchy Example 

2.4 Open Executor 

Specified in a station class, there are two kinds of pre-prepared methods: the system 
defined ones and the user defined ones.  

• The system defined methods include the open-executor and other utilities which 
is open to plugging-in application logic, in the sense that they invoke the abstract 
methods to be implemented by users according to the application logic.  

• The abstract methods to be implemented by the user based on the application 
logic.  

For example, the WindowStation that extends BasicBlockStation, is used to 
support chunk-wise stream processing, where the framework provided functions, 
hidden from user programs, include 

    public boolean nextChunk(Tuple, tuple) {// group specific …}  

     public void execute(Tuple tuple, BasicOutputCollector collector) { 

      boolean new_chunk = nextChunk(tuple); 

        String grp = getGroupKey(tuple); 

        GroupMeasures gm = null;   

       if (new_chunk) { 

            gm = getGKV().dump(grp); 

        } 

        updateState(getGKV(), tuple, grp); 

        if (new_chunk) { //emit last chunk 

            processChunkByGroup(gm, collector); 

        } 

      }  
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The three functions marked Station are to be implemented based on the application 
logic; the others are system defined for encapsulating the chunk-wise stream 
processing semantics.   

In addition to offering the dataflow operation “executor” abstraction, introducing 
open station also aims to provide canonical mechanisms to parallelize stateful and 
granule dataflow process. The core is to handle data flow chunk-wise and group-
wise - for each vertex representing a logical operator in the dataflow graph; the 
operation parallelization (launching multiple instances) comes with input data 
partition (grouping) which is consistent with the data buffering at each operation 
instance. These are discussed in the following sections. 

3 Support Parallelized and Granulized Stream Processing 
Patterns 

3.1 Data-Parallel Execution of Operators 

Under our approach, logically, the dataflow elements, i.e. tuples, either originated 
from a data-source or derived by a logical operator, say A, are sent to one or more 
receiving logical operators, say B.  Since each logical operator may have multiple 
execution instances, the dataflows from A to B actually form multi-to-multi 
messaging channels.  

To handle data-parallel operations, an operator property: parallelism hint, can be 
specified, that is the number (default to 1) of station threads for running the operator. 
The number of actual threads will be judged by the infrastructure and load-balanced 
over multiple available machines. 

For the sake of correct parallelism, the stream from A’s instances to B’s instances 
are sent in a partitioned way (e.g. hash-partition) such that the data sent from any 
instance of A to the instances of B are partitioned in the same way. This is similar to 
the data shuffling from a Map node to a Reduce node, but in more general dataflow 
topology.  

Although our platform offers the flexibility of dataflow grouping with options 
hash-partition, random-partition, range-partition, replicate, etc, the platform enforces 
the use of hash partition for the parallelized operators. In case an operator is specified 
to have parallel instances in the user’s dataflow process specification, the input stream 
to that operator must be defined as hash-partitioned; otherwise the process 
specification would be invalidated.    

Further, there can be multiple logical operators, B1, B2, …, Bn, for receiving the 
output stream of A, but each with different data partition criterion, called inflow-
grouping-attributes (a la SQL group by). The tuples falling in the same partition, i.e. 
grouped together, have the same “inflow-group-keys”. For example, the tuples 
representing the traffic status of an express way (xway), direction (dir) and segment 
(seg), are partitioned, thus grouped by attributes <xway, dir, seg>; tuples of each 
group has the same inflow-group-key derived from the values of xway, dir and seg. 
An operation instance may receive multiple groups of data. The abstract method, 
getGroupKey(tuple), must be implemented, which is invoked by the corresponding 
open-executor.  



92 Q. Chen and M. Hsu 

 

3.2 Parallelize Stateful Streaming Operators Group-Wise 

A stateful operator caches its state for future computation, and therefore is history 
sensitive. When a logical stateful operator has multiple instances, their input data 
must be partitioned, and the data partition must be consistent with the data buffering.  

For example, given the logical operation, O, for calculating moving-average and 
with the input stream data partitioned by <xway, dir, seg>, the data buffers of its 
execution instances are also partitioned by <xway, dir, seg>, which is prepared and 
enforced by the system.  

For history-sensitive data-parallel computation, an operation instance keeps a state 
computed from its input tuples (other static states may be incorporated but not the 
focus of this discussion). We generally provide this state as a KV store where keys, 
referred to as cachhing-group-keys, are Objects (e.g. String) extracted from the input 
tuples, and values are Objects derived from the past and present tuples such as 
numerical objects (e.g. sum, count), list objects (certain values derived from each 
tuple), etc. the multiple instances of a logical operation can run in data-parallel 
provided that the inflow-group-keys are used as the caching group-keys. In this sense 
we refer to the KV store as Group-wise KV store (GKV). APIs for accessing the 
GKV are provided as well. As illustrated in the last section, an important abstract 
method, updateState(), is defined and to be implemented by users.  

With the above mechanisms, in the presence of multiple execution instances of an 
operator, every stream tuple is processed once and only once by one of the execution 
instances; the data processing states of every group of the partitioned input data (e.g. 
the tuples belonging to the same segment of the an express-way in a direction) are 
buffered in the function closure of one and only one execution instance of that 
operator.  These properties are common to a class of tasks thus we support them in the 
corresponding station class, that, substantially, is subclassifiable.  

3.3 Window Based Stream Analytics 

Although a data stream is unbounded, very often applications require those infinite 
data to be analyzed granularly. Particularly, when the stream operation involves the 
aggregation of multiple events, for semantic reason the input data must be punctuated 
into bounded chunks. This has motivated us to execute such operation window by 
window to process the stream data chunk by chunk.   

For example, in the previous car traffic example, the operation “agg” aims to 
deliver the average speed in each express-way’s segment per minute. Then the 
execution of this operation on an infinite stream is made in a sequence of windows, 
one on each stream chunks. To allow this operation to apply to the stream data one 
chunk at a time, and to return a sequence of chunk-wise aggregation results, the input 
stream, is cut into 1 minute (60 seconds) based chunks, say S0, S1, …Si, … such that 
the execution semantics of “agg” is defined as a sequence of one-time aggregate 
operation on the data stream input minute by minute. 

In general, given an operator, O, over an infinite stream of relation tuples S with a 
criterion  ϑ for cutting S into an unbounded sequence of chunks, e.g. by every  
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1-minute time window,  <S0, S1, …, Si, …> where Si denotes the i-th “chunk” of the 
stream according to the chunking-criterion ϑ. The semantics of applying O to the 
unbounded stream S lies in 

Q (S)  < Q (S0), … Q (Si), ... > 

which continuously generates an unbounded sequence of results, one on each chunk 
of the stream data.  

Punctuating input stream into chunks and applying operation window by window to 
process the stream data chunk by chunk, is a template behavior common to many 
stream operations, thus we consider it as a kind of meta-property of a class of stream 
operations and support it automatically and systematically by our operation 
framework. In general, we host such operations on the window station (or the ones 
subclassing it) and provide system support in the following aspects (please refer to the 
window station example given previously).  

• A window station hosts a stateful operation that is data-parallelizable, and 
therefore the input stream must be hash-partitioned which is consistent with the 
buffering of data chunks as described in the last section. 

• Several types of stream punctuation criteria are specifiable, including punctuation 
by cardinality, by time-stamps and by system-time period, which are covered by 
the system function    

public boolean nextChunk(Tuple, tuple) 

         to determine whether the current tuple belongs to the next chunk or not.  
• If the current tuple belongs to the new chunk, the present data chunk is dumped 

from the chunk buffer for aggregation/group-by in terms of the user-implemented 
abstract method processChunkByGroup().  

• Every input tuple (or derivation) is buffered, either into the present or the new 
chunk. 

By specifying additional meta properties and by subclassing the window station, 
more concrete system support can be introduced. For example, an aggregate of a 
chunk of stream data can be made once by end of the chunk, or tupe-wise 
incrementally. In the latter case an abstract method for per-tuple updating the partial 
aggregate is provided and implemented by the user. 

The paces of dataflow wrt timestamps can be different at different operators; for 
instance, the “agg” operator is applied to the input data minute by minute, so are some 
downstream operators of it; however the “hourly analysis” operator is applied to the 
input stream minute by minute, but generates output stream elements hour by hour. 

The combination of group-wise and chunk-wise stream analytics provides a 
generalized abstraction for parallelizing and granulizing the continuous and 
incremental dataflow analytics.  
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4 Support Parallel Sliding Window Stream Processing Patterns  

In this section we extend our discussion to Parallel Sliding Window (PSW) based 
stream analysis and illustrate the benefits of open stations in dealing with PSW. PSW 
based stream processing has certain meta-properties in punctuating and grouping 
input data, in retaining and shifting intermediate results, and in synchronizing parallel 
chunking. Generalizing and categorizing these operators and their running patterns 
allows us to provide automatic support accordingly, to ensure the operators to be 
executed optimally and consistently, as well as ease user’s effort for dealing with 
them.  

We build abstract stations to support the common PSW related features such as 
handling punctuation and parallelism where having the application specific semantics 
left as abstract methods for users to implement. The abstract stations form a 
hierarchy; they provide the mechanisms for managing the data granules, the slide and 
window boundaries, for punctuating input data stream for switching slides and 
windows, as well as for retaining and intermediate results. In general, they provide 
system support for synchronizing the slide and window switching wrt multiple, 
parallel input streams.  

4.1 Sliding Window Based Stream Analytics 

In stream processing, the tuples transferred between tasks can be granule based on 
timestamps or so; and we introduce three levels of boundaries for grouping data in the 
context of PSW: granule, slide and window; a granule is the basic unit for grouping 
data, it could be, for example, a chunk of N tuples or the tuples with timestamps 
falling in one minute; a slide is defined as a given number or range of granules, for 
example a slide of 10 minute is composed by 10 one-minute granules; a window is 
also defined as a given number or range of granules, but the size of a window is at 
least the size of a slide.  

A sliding window based operation keeps the following variables for dealing with 
sliding window semantics. 

• window_size – the number of granules per window; 
• slide_size, or delta - the number of granules per slide; 
• current – the current granule number; 
• ceiling – the ceiling of the current slide by granule number, after the 

window_size is reached, it is the ceiling of current window; 
• window – the number (ID) of the current window.  

As usual, for each operation we provide two major system abstract methods: 
initialize() and execute(). The initialize() method is invoked before the per-tuple 
processing for instantiating the settings and gathering the topology information, e.g. 
the input channels. The execute() method is invoked upon receipt each input tuple 
which provides the functions of processing a tuple, or, if a slide or window boundary 
is reached, calculating the slide or window based summaries and outputing the data 
mining results.  



 Open Streaming Operation Patterns 95 

 

For example, a sliding window based stream analytics operation with window 
based summarization but without slide based stepwise summarization, has the 
following operation logic.  

1.     current = resolveGranule(tuple);  

2.     if (current >= ceiling) {  

3.         if (current >= window_size) {  

4.             summarize_window();   

5.             window++; 

6.         } 

7.         ceiling = (current/delta + 1)*delta; 

8.         process_held_tuples(ceiling);  

9.     } 

10.  if (getGranule(tuple) >= ceiling) {  

11.      held_tuples.add(tuple); 

12.  } else { 

13.     process_tuple(tuple); 

14.  } 

    
The above logic can be described as below. 

1. resolve the least granule# from all input channels; 
2. if the next slide has been reached (this tuple belong to the next slide according to 

its granule#); 
3. if the window boundary also reached (the usual case after completing the first 

window, if the sliding is defined as the shift of one slide); 
4. make window based data mining and output the results; 
5. advance the window#; 
6. . 
7. update the ceiling to the upper bound of the next slide; 
8. process the held tuples falling in the next slide; 
9. . 
10. if the overall slide operation does not advance even if this tuple is beyond the 

boundary of the current slide 
11. hold this tuple 
12. . 
13. otherwise 
14. process this tuple 

 
In general, upon receipt of a tuple, the system first resolve the current granule by 

taking into account all input channels; if the input tuple belongs to the current slide or 
window it gets processed, otherwise it is held to be processed in the next or even 
further windows where it fits in. 

The window based data mining takes place at the boundary of two consecutive 
windows. Since we deal with sliding window, the partial results must be retained and 
shift – i.e. sliding. 
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4.2 Parallelize Sliding Window Based Stream Analytic Operation 

When a sliding window based stream analytics task has multiple parallel input 
channels, their punctuation must be synchronized. For example, assume a task T has 4 
input channels and currently working in window #3, after T receives a tuple belonging 
to window #4 it may or may not be able to “conclude” window #3 depending on 
whether all the input channels have started to supply tuples belonging to window #4 
or beyond; if not, concluding window #3 would yield inaccurate result.    

We assume for each input channel the tuples are delivered in the order of granules. 
The granule boundary of data processing by the current task is determined by taking 
into account all the input channels based on the following mechanism. 

• The current granule number of each input channel if maintained in the 
granuleTable. 

• Upon receipt a new input, the granuleTable is updated, and the current granule 
number is resolved as the minimal granule number of all input channels. 

• If the granule number of the current input is larger than the resolved one, this 
tuple is to be held without processing; it will be processed later in the next or a 
future window instead. 

• Once a window boundary is reached by referring to all the input channels, the 
data analytics results for the current window is generated and finalized, and the 
data analytics process enters the next window boundary, starting with processing 
those held tuples that fall into the new window boundary; the tuples falling in 
future windows will continue being held. 

4.3 The Generalized Framework 

We provide generalized algorithms to support PSW based incremental stream analysis 
performed on the per-granule, per-slide and per-window basis. We coded these 
algorithms as open-executors held by open-stations.   

The Top Level Abstract Station. This station provides the generalized algorithm for 
sliding window based incremental stream analysis which covers he per-granule, per-
slide and per-window based incremental stream processing.  The flowchart is shown 
in Fig 4, where several abstract methods are provided which are to be implemented by 
user based on their application logic. 

public void execute(Tuple tuple) { 

    //resolve the granule the task is working on 

long resolved = resolveGranule(tuple);  

// If granule is advanced,  

//   summarize the current granule  

//   sliding the list of partial results and 

//   process the held tuples in the next granule boundary 

    if (this.scope == SumScope.GRANULE) {  

        if (resolved > current) { 

            partialResult = partial_summarize(); 
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            this.partialResultList.add(partialResult); 

            if (partialResultList.size() > window_size) { 

                this.partialResultList.removeFirst(); 

            } 

            process_held_tuples(resolved+1);             

        } 

    } 

    current = resolved; 

     

    // if slide is advanced 

//   summarize the current slide  

//   if window is advanced, get window summarization results 

//   sliding the list of partial results and 

//   process the held tuples in the next granule boundary 

    if (current >= ceiling) {     

        if (this.scope == SumScope.SLIDE) {  

            partialResult = partial_summarize(); 

            this.partialResultList.add(partialResult); 

            if (partialResultList.size() > window_size / delta) {   

                this.partialResultList.removeFirst(); 

            }     

        } 

        if (current >= window_size) {  

            summarize_window();         

            window++; 

        } 

        //handle next slide 

        ceiling = (current/delta + 1)*delta; 

        if (this.scope == SumScope.WINDOW || this.scope == SumScope.SLIDE) {  

            process_held_tuples(ceiling);     

        } 

} 

// if tuple falls in the current scope, process it, if beyond the current scope, hold it 

    long upper = (this.scope == SumScope.GRANULE)? current:ceiling; 

       if (getGranule(tuple) >= upper) {     

            held_tuples.add(tuple); 

       else { 

            //normal call 

            process_tuple(tuple); 

        } 

} 

public abstract long getGranule(Tuple tuple); 

public abstract void summarize_window(); 

public abstract Object partial_summarize(); 

public abstract void process_tuple(Tuple tuple); 
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Fig. 4. Generalized PSW Framework  

Abstract Station Supporting Window Oriented Summarization. This abstract 
station subclass the above generalized abstract PSW station; it provides the abstract 
algorithm with window oriented summarization as illustrated in Fig 5. It subclasses 
the above generalized PSW station simply by making the unrelated functions (those 
not highlighted) as dummy functions. In fact, this abstract station class is 
implemented by only one method: 

 public Object partial_summarize() { 

  return null; 

 } 

The rest methods are inherited. 
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Fig. 5. Abstract Execution Framework for Window Oriented Summarization 

Abstract Station Supporting Slide Oriented Summarization. The flow-chat for the 
abstract algorithm with slide oriented summarization is illustrated in Fig 6. The 
station supporting the corresponding execution pattern subclasses the above 
generalized PSW station simply by making the unrelated functions (those not 
highlighted) as dummy functions.  
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Fig. 6. Abstract Execution Framework for Slide Oriented Summarization 

Abstract Station Supporting Granule Oriented Summarization. The flow-chat for 
the abstract algorithm with granule oriented summarization is illustrated in Fig. 7. The 
station supporting the corresponding operation pattern subclasses the above 
generalized PSW station simply by making the unrelated functions (those not 
highlighted) as dummy functions. 
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Fig. 7. Abstract Execution Framework for Granule Oriented Summarization 

4.4 A PSW Stream Process Topology Example 

Below we show a stream processing topology example for frequent pattern mining, 
we do not discuss the application here, only illustrate the role of parallel sliding 
window operation oriented stations in a stream analytics dataflow process.  
The topology specification is illustrated below 

 TopologyBuilder builder=new TopologyBuilder(); 

  builder.setSpout("spout",  

new FileChunkItemsetSpout(filename, chunk_size)); 

  builder.setStation("pre",  
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new FPItemsetSortStation(ItemSequence), N).shuffleGrouping("spout"); 

  builder.setStation("mining",  

new FPSlidingWindowStation(window_size, slide_size, chunk_size,  

ItemSequence), N).fieldsGrouping("pre", new Fields("leader")); 

  builder.setStation("combine",  

new FPWindowCombineStation(1, threshold), 1) 

 .fieldsGrouping("mining", new Fields("itemset")); 

  builder.setStation("output",  

new FPPrintStation(), 1) 

 .fieldsGrouping("combine", new Fields("itemset")); 

The process contains the following sequential building blocks (operations) but each 
of them can have multiple instances, and the data partition between them is defined to 
make the parallel processing correct. These operations are 

• spout: generates stream tuples with fields "granule", plus other fields. 
• pre: pre-processing the input data on the per-tuple basis, such as filtering or 

sorting, these tasks are not necessarily sliding window based. 
• mining: the major operator for playing data mining, that is coded using the 

parallel sliding window framework.  
• combine: combining the output of multiple mining tasks, that also follows 

the parallel sliding window framework. 
• output: send out the combined data mining results, these tasks are not 

necessarily sliding window based as far as their upstream tasks are. 

5 Experiments 

We have built the Fontainebleau prototype based on architecture and policies 
explained in the previous sections. In this section we briefly overview our 
experimental results. Our testing environment include 16 Linux servers with gcc 
version 4.1.2 20080704 (Red Hat 4.1.2-50), 32G RAM, 400G disk and 8 Quad-Core 
AMD Opteron Processor 2354 (2200.082 MHz, 512 KB cache). One server holds the 
coordinator daemon, 15 other servers hold the agent daemons, each agent supervises 
several worker processes, and each worker process handles one or more task 
instances. Based on the topology and the parallelism hint of each logical task, one or 
more instances of that task will be instantiated by the framework to process the data 
streams.  

Below we present the experiment results of running the example topology that is 
similar to the Linear Road scenario; our topology modifies that scenario but we use 
the same test data under the stress test mode - the data are read from a file 
continuously without following the real-time intervals, leading to a fairly high 
throughput.  
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The performance show in Fig. 8 is based on the event rate of 1.33 million per 
minute with approximate 12 million (11,928,635) input events. Most of the tasks have 
28 parallel instances except one having 14 parallel instances. There is no load-
shedding (dropping events) observed. 
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Fig. 8. The performance of data-parallel stream analytics with the LR topology 

6 Related Work and Conclusions 

In this paper we described our parallel and distributed stream analysis system capable 
of executing the real-time, continuous streaming process with general graph-
structured topology. We focused on the canonical operation framework for 
standardizing the operational patterns of stream operators, and providing a set of open 
execution engines for supporting these operational patterns. We examined the power 
of the proposed framework by supporting the combination of group-wise and chunk-
wise stream analytics which provides a generalized abstraction for parallelizing and 
granulizing continuous dataflow analytics, and further, the generalized support for 
handling parallel sliding window based stream processing..  

Compared with the notable data-intensive computation systems such as DISC [3], 
Dryad [8], etc, our platform supports more scalable and elastic parallel computation. 
We share the spirit with Pig Latin [10], etc, in using multiple operations to express 
complex dataflows. However, unlike Pig Lain, we model the graph structured 
dataflow by composing multiple operations rather than decomposing a query into 
multiple operations; our data sources are dynamic data streams rather than static files; 
we partitioning stream data on the fly dynamically, rather than prepare partitioned 
files statically to Map-Reduce them. This work also extends the underlying tools such 
as Storm by elaborating it from a computation infrastructure to a state conscious 
computation/caching infrastructure, and from the user task oriented system to the 
execution engine oriented system. 

Supporting truly continuous operations distinguish our platform from the current 
generation of stream processing systems, such as System S (IBM), STREAM 
(Stanford) [1], Aurora, Borealis[2], TruSQL[9], etc.  

Envisaging the importance of standardizing the operational patterns of dataflow 
operators, we are providing a rich set of open execution engines and linking stations 
with existing data processors such as DBMS and Hadoop, towards the integrated 
dataflow cloud service.      
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