
 123

Transactions on
Large-Scale
Data- and Knowledge-
Centered Systems XIILN

CS
 8

32
0

Abdelkader Hameurlain • Josef Küng • Roland Wagner
Editors-in-Chief

Jo
ur

na
l S

ub
lin

e

Lecture Notes in Computer Science 8320
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Abdelkader Hameurlain Josef Küng
Roland Wagner (Eds.)

Transactions on
Large-Scale
Data- and Knowledge-
Centered Systems XII

13

Editors-in-Chief

Abdelkader Hameurlain
Paul Sabatier University, IRIT, Toulouse, France
E-mail: hameur@irit.fr

Josef Küng
Roland Wagner
University of Linz, FAW, Austria
E-mail: {jkueng, rrwagner}@faw.at

ISSN 0302-9743 (LNCS) e-ISSN 1611-3349 (LNCS)
ISSN 1869-1994 (TLDKS)
ISBN 978-3-642-45314-4 e-ISBN 978-3-642-45315-1
DOI 10.1007/978-3-642-45315-1
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013955032

CR Subject Classification (1998): H.2.8, H.2, I.2, H.3, F.2, J.1

© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in its current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The LNCS journal TLDKS (Transactions on Large-Scale Data- and Knowledge-
Centered Systems) is now an established journal on data management in large-
scale environments. These environments are mainly characterized by high het-
erogeneity (in terms of models, infrastructures, and software) and large-scale
distributed resources (i.e., computing resources and data sources).

This volume contains five revised selected regular papers. Its content covers
a wide range of different and hot topics in the field of data and knowledge man-
agement, mainly: schema matching and schema mapping, update propagation in
decision support systems, routing methods in peer-to-peer systems, distributed
stream analytics, and dynamic data partitioning.

We would like to express our thanks to the external reviewers and Editorial
Board for thoroughly refereeing the submitted papers and ensuring the high
quality of this volume. Special thanks go to Gabriela Wagner for her availability
and her valuable work in the realization of this TLDKS volume.

October 2013 Abdelkader Hameurlain
Josef Küng

Roland Wagner

Editorial Board

Reza Akbarinia INRIA, France
Stéphane Bressan National University of Singapore, Singapore
Francesco Buccafurri Università Mediterranea di Reggio Calabria,

Italy
Yuhan Cai A9.com, USA
Qiming Chen HP-Lab, USA
Tommaso Di Noia Politecnico di Bari, Italy
Dirk Draheim University of Innsbruck, Austria
Johann Eder Alpen Adria University Klagenfurt, Austria
Stefan Fenz Vienna University of Technology, Austria
Georg Gottlob Oxford University, UK
Anastasios Gounaris Aristotle University of Thessaloniki, Greece
Theo Härder Technical University of Kaiserslautern,

Germany
Dieter Kranzlmüller Ludwig-Maximilians-Universität München,

Germany
Philippe Lamarre University of Nantes, France
Lenka Lhotská Technical University of Prague, Czech Republic
Vladimir Marik Technical University of Prague, Czech Republic
Mukesh Mohania IBM India, India
Tetsuya Murai Hokkaido University, Japan
Gultekin Ozsoyoglu Case Western Reserve University, USA
Torben Bach Pedersen Aalborg University, Denmark
Günther Pernul University of Regensburg, Germany
Klaus-Dieter Schewe University of Linz, Austria
Makoto Takizawa Seikei University Tokyo, Japan
David Taniar Monash University, Australia
A Min Tjoa Vienna University of Technology, Austria
Chao Wang Oak Ridge National Laboratory, USA

External Reviewers

Roberto De Virgilio Roma Tre University, Rome, Italy
Philippe Joly Paul Sabatier University, Toulouse, France
Franck Morvan Paul Sabatier University, Toulouse, France
Marina Mongiello Politecnico di Bari, Italy
Shaoi Yin Paul Sabatier University, Toulouse, France

Table of Contents

EvoMatch: An Evolutionary Algorithm for Inferring Schematic
Correspondences . 1

Chenjuan Guo, Cornelia Hedeler, Norman W. Paton, and
Alvaro A.A. Fernandes

Update Management in Decision Support Systems 27
Haitang Feng, Nicolas Lumineau, Mohand-Säıd Hacid, and
Richard Domps

LRS: A Novel Learning Routing Scheme for Query Routing on
Unstructured P2P Systems . 54

Taoufik Yeferny, Khedija Arour, and Amel Bouzeghoub

Open Streaming Operation Patterns . 83
Qiming Chen and Meichun Hsu

Dynamic Workload-Based Partitioning Algorithms for Continuously
Growing Databases . 105

Miguel Liroz-Gistau, Reza Akbarinia, Esther Pacitti,
Fabio Porto, and Patrick Valduriez

Author Index . 129

EvoMatch: An Evolutionary Algorithm

for Inferring Schematic Correspondences

Chenjuan Guo, Cornelia Hedeler, Norman W. Paton,
and Alvaro A.A. Fernandes

School of Computer Science, University of Manchester, M13 9PL, UK
{cguo,chedeler,norm,alvaro}@cs.man.ac.uk

Abstract. Schema matching provides an important foundation for both
manual and semi-automatic derivation of mappings between sources.
However, schema matchers typically return large numbers of potentially
inconsistent matches that are neither conducive to automatic mapping
generation nor readily digested by mapping developers. This paper pre-
sents a method, EvoMatch, for automatically inferring schematic cor-
respondences, from which mappings can be generated directly. It aims
to offer a more expressive characterization of the relationships between
sources than matches identified by existing schema matching methods.
In particular, the paper contributes: i) an evolutionary search method
for inferring schematic correspondences; ii) an objective function for cal-
culating the fitness value of a solution within the search space; and iii) an
empirical evaluation assessing the effectiveness of EvoMatch for inferring
schematic correspondences in comparison with well established existing
techniques. In doing so, EvoMatch automatically identifies correspon-
dences that can be used directly to bootstrap information integration
systems, or to inform the manual refinement of mappings.

1 Introduction

The requirement to manage and query interrelated but heterogeneous data
sources is widespread. Traditional data integration systems provide high-quality
services but at a high cost [1], because, prior to offering services that build on the
integration to users, precise mappings are required to describe the relationships
between data sources, which tends to be a hard problem and needs upfront
effort. The process for specifying mappings consists of schema matching, e.g.,
[2][3][4], and schema mapping (view generation), e.g., [5][6][7]. Schema match-
ing methods identify matches, which relate elements of two data sources that
show similar properties (e.g., names, instances and structures). Matches are then
semi-automatically refined using schema mapping tools into declarative but ex-
ecutable mappings (e.g., in SQL or XSLT) to specify the relationships between
the data sources. Most schema mapping techniques tend to include significant
redundancy in their resulting mappings and require users to visually select or
refine the mappings [8], and therefore human intervention is typically part of the
process.

A. Hameurlain et al. (Eds.): TLDKS XII, LNCS 8320, pp. 1–26, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

2 C. Guo et al.

The vision of dataspaces [9] was proposed to reduce the high upfront cost of
traditional data integration following a pay-as-you-go approach, and to provide
integration services to a diverse type of heterogeneous data sources (e.g., rela-
tional and XML databases, web services and text files). A possible solution could
be achieved by automatically bootstrapping a data integration system to release
experts from the time-consuming process of mapping specification. At a later
stage, ordinary users may incrementally provide feedback on query results, thus
helping to improve the quality of specified mappings (e.g., [10][11][12]). This idea
motivates the results presented in the paper.

In this paper, we propose a method, called EvoMatch, for automatically re-
fining matches between elements of two schemas into a type of correspondences,
which represents relationships between elements more explicitly. By doing this,
we provide more information about the relationships between the two schemas
than matches, in order to inform the automatic generation of mappings [13].
Specifically, the type of correspondences inferred by EvoMatch, called schematic
correspondences, is based on the classification of Kim et al. [14]. Note that
the schematic correspondences are not mappings that specify relationships be-
tween elements using explicit expressions, but tend to offer more information
than matches to serve as input to potential (semi-)automatic schema mapping
methods.

Assume we have source and target data sources whose schemas S and T are
shown in Fig. 1. EvoMatch takes as input source and target schemas S and T
and matches M between them identified by some match system, e.g., COMA++
[2], as shown in Fig. 2(a).

home_cust

 id

 name

 birth

 phone

overseas_cust

 id

 name

 birth

 phone

account

 id

 name

 balance

 tax

customer

 key

 c_fname

cust_phone

 key

 c_phone

cust_account

 key

 account_name

 account_balance

Source Schema S Target Schema T

 c_lname

 c_birth

Fig. 1. Example Source and Target Schemas S and T

We do not dwell on the method for identifying the matches, as many schema
matching approaches have been proposed [15], and we assume they are avail-
able. Note that matches only relate elements between S and T that show cer-
tain similarity, and thus sometimes associate elements that represent different
real world information, e.g., the match between overseas cust.name in S and
cust account.account name in T (see Fig. 2(a)).

In contrast with the numerous, fine-grained matches, we can observe some
coarser-grained relationships that explicitly indicate equivalence between ele-
ments of S and T , as classified by the schematic correspondences of Kim et al.
[14], which are shown in Fig. 2(b) and will be produced by EvoMatch.

EvoMatch 3

home_cust

overseas_cust

account

customer

cust_phone

cust_account

id

name

balance

tax

key

account_name

account_balance

HP:VP

DNSA

DNSA

DNSE

DNSA

missing attribute

home_cust
 id
 name
 ...
overseas_cust
 id
 name
 ...
account
 id
 name
 balance
 tax

customer
 key
 c_fame

cust_phone
 key
 c_phone
cust_account
 key
 account_name
 account_balance

Source Schema S Target Schema T

0.7
0.98

0.6

......
0.89

0.9

0.98

0.5
......

0.98......
0.67

Source Schema S Target Schema T

(a) Input: schemas S and T and matches M (b) Output: schematic correspondences

Fig. 2. Input and output of EvoMatch

In particular, entity types account in S and cust account in T represent equiv-
alent information about customer accounts, though using different names. Their
relationship is characterized as Different Names for the Same Entity (DNSE).
Similarly, at the attribute level between account and cust account, equivalent at-
tributes, e.g., account.id and cust account.key, may have different names, whose
relationship is characterized as Different Names for the Same Attribute (DNSA).
An attribute that does not have an equivalent attribute is called a missing at-
tribute, such as account.tax.

The original information about customers is Horizontally Partitioned (HP) at
the instance level in S, thus giving rise to two tables home cust and overseas cust,
each of which keeps the original schema information; whereas in T , this infor-
mation is Vertically Partitioned (VP) at the schema level into tables customer
and cust phone, each of which keeps a subset of attributes of the original infor-
mation about customers. Entity types home cust and overseas cust in S together
represent equivalent customers’ information to tables customer and cust phone
in T , and their explicit relationship is called HP:VP. Attribute-level schematic
correspondences between {home cust, overseas cust} and {customer, cust phone}
are omitted in Fig. 2(b) for simplicity.

Principally, EvoMatch is expected: i) to require no user involvement, and
thus users are not required to select or refine schematic correspondences from
potential candidate correspondences; ii) not to need context-specific parameters,
e.g., thresholds, because setting such parameters usually needs training data,
which may be hard for users to obtain; iii) not to assume that external resources,
e.g., domain specific ontologies, are available; and iv) not to assume that schemas
contain referential constraints, as they may be missing in real applications, e.g.,
web tables [16]. Note that EvoMatch is designed as a fully automatic method,
but of course it builds on input matches of variable dependability. Thus, there
are cases where the results will be less sound or complete than those informed by
expert manual input. However, the set of schematic correspondences returned as
the EvoMatch result could be used as input to a semi-automatic or pay-as-you-go
approach.

4 C. Guo et al.

This paper makes the following contributions:

– An evolutionary search method, specifically a genetic algorithm, for inferring
schematic correspondences, which allows potential sets of correspondences
between two schemas to compete with each other to derive the resulting
correspondences.

– An objective function used by the search that models the desirability of
candidate entity-level schematic correspondences.

– An experimental analysis that evaluates the effectiveness of our approach
for inferring schematic correspondences by comparing it with COMA++ [2],
Similarity Flooding [3] and Harmony [17].

The remainder of the paper is structured as follows. Section 2 reviews re-
lated work. Section 3 defines the schematic correspondences of Kim et al. [14].
Section 4 overviews the EvoMatch method that utilizes the evolutionary search
framework to infer entity-level schematic correspondences, followed by the objec-
tive function that models the requirements for inferring such correspondences in
Section 5. Section 6 presents the method for inferring attribute-level schematic
correspondences. Section 7 describes the experimental evaluation of our method.
Section 8 concludes the paper.

2 Related Work

This section reviews work related to the proposed method, on classifications of
correspondences, on methods for inferring complex correspondences, on using
evolutionary algorithms for schema matching, and on methods for generating
mappings automatically.

A classification of correspondences is presented in Table 1, including sim-
ple correspondences (Types1 to Types4) and complex correspondences (Typec1 to
Typec4).

Table 1. A classification of correspondences

simple complex

1-to-1 entity-level Types1 Typec1
1-to-1 attribute-level Types2 Typec2
n-to-m entity-level Types3 Typec3
n-to-m attribute-level Types4 Typec4

The simple correspondences refer to equivalence associations between two
(sets of) elements of schemas, while the complex correspondences refine such
equivalence associations with additional information. Most existing schema

EvoMatch 5

matching approaches (e.g., [2][3][18][19]) consider Types1 and Types2 correspon-
dences and relate 1-to-1 equivalent elements. A few methods (e.g., [20][21][22])
address Typec1 and Typec2 correspondences and identify relationships, such as,
Is-a [20] or subsumption [22], between 1-to-1 elements. Types3 and Types4 corre-
spondences refer to the equivalence associations between two sets of elements.
Typec3 and Typec4 correspondences not only indicate that the associated element
sets are equivalent, but also specify an internal element association within each
set (e.g., [23][4][24][25]). EvoMatch contributes to the inference of all types of
complex correspondences, i.e., Typec1 to Typec4 in Table 1.

In terms of inferring complex correspondences, SeMap [20] identifies rich se-
mantic relationships between 1-to-1 elements of different data models, i.e., Typec1
and Typec2 in Table 1. Both EvoMatch and SeMap infer 1-to-1 complex relation-
ships using matches, but differ on the specific relationships. Particularly, SeMap
infers Has-a, Is-a, Associates and Equivalent relationships, and EvoMatch infers
DNSE and DNSA relationships. Thus, the two methods can be seen as being
complementary to each other in inferring 1-to-1 complex correspondences. In ad-
dition, EvoMatch infers n-to-m relationships, thus handling a more challenging
problem.

The methods proposed by Rizopoulos [22] and Giunchiglia et al. [21] identify
complex 1-to-1 relationships between elements of schemas, such as equivalence,
subsumption, intersection, incompatibility [22], and more general, less general,
disjointness [21], referred to as Typec1 and Typec2 in Table 1. Rizopoulos com-
pares the instance containment of elements to derive the relationships, while
Giunchiglia et al. infer such relationships by determining the element name con-
tainment using WordNet [26]. Their work could be seen as complementary to our
approach, or used to improve the quality of the input matches used by EvoMatch.

Xu et al. [23] propose a semi-automatic approach for inferring 1-to-1 and n-to-
m complex relationships between schema elements, specifically, Typec1 to Typec4
in Table 1. In addition to identifying that two (sets of) elements are equivalent,
Xu et al. apply operators over elements in the source (or target) set that specify
their associations further, thus expressing an n-to-m relationship in the form of
an algebra. Xu et al. make significant use of domain specific ontologies, which
are not always available in real world scenarios, whereas EvoMatch does not
rely on such external resources or human effort. Xu et al. utilize certain specific
constraints of the employed schema model (i.e., the conceptual model) to infer
the element associations in the source (or target) set; in contrast, we do not
make use of any constraints of the relational model (e.g., primary and foreign
key information) to identify the n-to-m relationships, and thus EvoMatch can be
applied to contexts where schema constraints are not available. Furthermore, a
single element may be a member of several complex relationships in the approach
presented by Xu et al., thus requiring the user to choose the desired relationships,
whilst EvoMatch only associates an element with a single correspondence.

iMAP [4], Dai et al. [24] and Warren et al. [25] specialize in discovering com-
plex n-to-m relationships at the attribute-level using instance data (i.e., Typec4
in Table 1). iMAP [4] detects various complex attribute matches using different

6 C. Guo et al.

preset formulae that transform instances between the source and target at-
tributes. Dai et al. [24] contribute to the identification of n-to-1 attribute matches
where the concatenation of the n attributes is equivalent to the single attribute,
and can handle the case that the n attributes have disjoint instances with the
single attribute. The approach proposed by Warren et al. [25] also identifies n-
to-1 matches for string attributes, and creates a transformation formula that
concatenates the n attributes whose cardinality is unknown in advance into the
single attribute. EvoMatch contributes more to the inference of complex relation-
ships at the entity-level (Typec3), although we also implement a simple method
for inferring n-to-m attribute relationships. Thus, iMAP [4], and methods pro-
posed by Dai et al. [24] and Warren et al. [25] are seen as complementary to
EvoMatch.

In terms of using evolutionary algorithms for schema matching, EvoMatch is
not the first work that casts the schema matching problem as an evolutionary
search problem. The method proposed by Elmeleegy et al. [27] also approaches
the problem from this angle, but only contributes to the identification of 1-to-
1 attribute-level relationships (Types2). The method uses information extracted
from query logs, and adapts the scoring functions proposed by Madhavan et
al. [28] to calculate the similarity of attributes. It then employs a genetic algo-
rithm to search for a particular set of 1-to-1 attribute matches. Although both
Elmeleegy et al. and EvoMatch use genetic algorithms to infer correspondences,
we design a novel objective function to complete a more complicated task (i.e.,
inferring Typec1 and Typec3). We infer equivalent 1-to-1 and n-to-m entities and
discover particular entity associations within the source and target sets, i.e.,
horizontal or vertical partitioning, which, to the best of our knowledge, has not
been done before.

In terms of specifying mappings automatically, the context of such work is
relevant to the discussion. Established practice in schema mapping development
involves designers in the use of a visual tool to select a subset of matches from
which a collection of alternative mappings can be generated, for example as in
Clio [29]. However, even where there is a small collection of user-selected matches,
many alternative schema mappings may be able to be generated. This has led
to additional research, for example in ++Spicy [8], which seeks to refine the
collection of mappings generated by existing mapping tools. Another approach
to mapping generation makes use of data instances to guide mapping generation
(e.g. [30]). In this research, which complements mapping generation based on
matchings alone, mapping designers provide data instances for source and target
schemas and a search takes place for mappings, which can be further refined by
users. The research on EvoMatch can be considered to complement the work on
mapping generation, in that the correspondences identified by EvoMatch could
be used as an input to schema mapping development. Experience with automatic
mapping generation, both with and without data instances, suggests that going
straight to expressive mappings from syntactic matches may be impractical.

EvoMatch 7

3 Schematic Correspondences

We adopt the definitions of schematic correspondences of Kim et al. [14], which
relate different symbolic representations of data that represent the same real
world information. We do not claim that such relationships are uniquely suit-
able in some applications, but the following properties motivated their use in the
proposed method: (i) the relationships between schema elements are character-
ized in a data model-independent manner; (ii) they include different cardinalities
of correspondences at both the entity and attribute levels; (iii) and they identify
cases that are common in practice, and that can be resolved using views whether
constructed manually [14].

In this section, we follow mostly the schematic correspondence definitions
of Kim et al., and refine the definition of n-to-m entity correspondences into
horizontal and vertical partitioning. In particular, we classify schematic corre-
spondences using complex correspondences Typec1 to Typec4 in Table 1.

– Typec1 refers to correspondences that associate 1-to-1 equivalent entities,
which carry additional information about their names. Equivalent entities
whose names are different are called Different Names for the Same Entity
(DNSE), such as account in S and cust account in T . Equivalent entities that
have the same name are called the Same Name for the Same Entity (SNSE).

– Typec2 refers to correspondences of 1-to-1 attributes that represent the equiv-
alent properties of equivalent entities, which carry additional information
about their names. Equivalent attributes that have different names are called
Different Names for the Same Attribute (DNSA), such as account.name in S
and cust account.account name in T . Equivalent attributes whose names are
also the same are called the Same Name for the Same Attribute (SNSA).

– Typec3 refers to correspondences of two entity sets whose structures may be
different but represent equivalent underlying information, e.g., {home cust,
overseas cust} and {customer, cust phone}. Inheriting terms from distributed
database systems [31], we define the entity structure within a set as:
• horizontal partitioning (HP), where an original entity is partitioned
along its instances into new entities. As such, all attributes of the orig-
inal entity are present in each of the new entities (e.g., home cust and
oversea cust in S).

• vertical partitioning (VP), where an original entity is partitioned into
new entities whose attributes are subsets of the original entity. As such,
some attributes are present in each new entity, i.e., key attributes,
whereas other attributes of the original entity are present only once
across all the new entities (e.g., customer and cust phone in T).

– Typec4 refers to correspondences of two equivalent attribute sets. For exam-
ple, home cust.name in S represents the same information as the concatena-
tion of customer.c fname and customer.c lname in T .

8 C. Guo et al.

4 Evolutionary Search

EvoMatch takes as input source and target schemas S and T and their matches
M, and infers schematic correspondences between S and T . In Section 4.1,
we present the overview of EvoMatch, which mostly utilizes an evolutionary
search method, specifically a genetic algorithm [32], to complete the task; In
Section 4.2, we introduce the important concepts used in the genetic algorithm,
i.e., phenotype and genotype; and in Section 4.3, we describe the framework of
the genetic algorithm.

4.1 Overview of EvoMatch

EvoMatch takes as input source and target schemas S and T and their matches
M, and infers schematic correspondences between S and T as output via two
phases. A schema is defined in Definition 1, referring to both S and T .

Definition 1 Schema. A schema S={S1, ..., Sμ} is a set of entities (e.g., re-
lational tables), where each Si ∈ S contains attributes Si.A1, ..., Si.Aα. An entity
or an attribute is also called a construct of S.

As shown in Fig. 3, EvoMatch follows two phases to infer schematic correspon-
dences. First, in the entity-level phase, EvoMatch searches for a set of entity-level
schematic correspondences, i.e., Typec1 and Typec3 in Section 3, from candidate
correspondences for which there is evidence from the input matches. Second,
for each pair of entity sets in a resulting entity-level schematic correspondences,
EvoMatch infers a set of attribute-level schematic correspondences, i.e., Typec2
and Typec4 in Section 3, in the attribute-level phase.

A set of Entity-Level
Schematic

Correspondences

A set of Attribute-Level
Schematic

Correspondences

Entity-level Inferring

Attribute-level Inferring

OutputEvoMatch

Schemas S and T
+ Matches M

Input

Operation

Operation flow

 Data flow

Legends

Fig. 3. Overview of EvoMatch

4.2 Phenotype and Genotype Representations of a Solution

The genetic algorithm uses the input matchesM as evidence to explore the space
of entity-level schematic correspondences between S and T . Thus, the search
space is a collection of candidate entity-level schematic correspondences. In the
genetic algorithm, a solution has phenotype and genotype representations, where

EvoMatch 9

the former provides the context for evaluating the fitness of a solution, and the
latter supports the generation of alternative candidate solutions. A phenotype
representation of a solution is defined in Definition 2.

Definition 2 Phenotype. Given schemas S and T and matches M, the phe-
notype P of a solution is a set of Entity-Level Relationships (ELRs). An
ELRi=〈ESS

i , EST
i 〉 ∈ P, where ESS

i ⊆ S and EST
i ⊆ T are two entity sets

with cardinality � 1, satisfies the following conditions: 1) there exists either an
entity-level match or an attribute-level match m ∈ M between each entity in
ESS

i and each entity in EST
i ; and 2) for each ELRi′=〈ESS

i′ , EST
i′ 〉 ∈ P, i′ �= i,

ESS
i ∩ ESS

i′ = ∅ and EST
i ∩ EST

i′ = ∅. Specifically, entity set ESS
i (or EST

i)
is called an associated entity set of ELRi. Each entity Sj ∈ S (or ∈ T) that
satisfies Sj /∈ ∪ESS

i (or /∈ ∪EST
i) is called an unassociated entity.

home_cust

overseas_cust

account

customer

cust_phone

cust_account

Source Schema S Target Schema T

Fig. 4. Matches M

We continue with the running example
from Fig. 1 to illustrate phenotypes. Fig.
4 illustrates some example matches M be-
tween schemas S and T . Specifically, a set
of matches between two entities and between
their attributes is represented by a single
line in 4. Example phenotypes of candidate
solutions are:

P1={ELR1, ELR2}={〈{home cust, overseas cust}, {customer, cust phone}〉,
〈{account}, {cust account}〉}

P2={ELR3}={〈{overseas cust}, {cust account}〉}

The entity sets in ELR1 ∈ P1 can be associated, as there is a match between
each pair of entities in the two sets (Condition 1), as shown in Fig. 4. In P1, ELR1

and ELR2 are disjoint (Condition 2), indicating that each source or target entity
only participates in a single entity-level schematic correspondence in a solution.

In P2, {overseas cust} and {cust account} are associated entity sets; the re-
maining entities, e.g., home cust and customer, which are not contained in the
entity sets of ELR3 are called unassociated entities.

In the evolutionary search, a solution also has a genotype representation to
facilitate the search process. The genotype is the encoding of the phenotype in
the search space and is chosen as a binary string for simplicity, as presented in
Definition 3.

Definition 3 Genotype. Given source and target schemas S and T , and match
evidence M, the genotype of a solution is a sequence of binary values G =
[x1, x2, ..., xm], where xi ∈ {0, 1} (i = 1, ...,m). Each xi represents a pair of
entities < Sp, Tq >, Sp ∈ S, Tq ∈ T , such that every pairing supported by match
evidence in M is represented. In particular, xi = 1 (resp. 0) represents that the
ith pair of entities in G is (resp. is not) associated.

10 C. Guo et al.

Following on with the example, G1 = [1, 1, 1, 1, 0, 1] and G2 = [0, 0, 0, 0, 1, 0]
are the genotypes for phenotypes P1 and P2, respectively. Transformations be-
tween genotypes and phenotypes are referred to as encoding and decoding. The
algorithms are straightforward, and thus are omitted here.

For a genotype consisting of m binary values, the size of the search space is
2m, where m is the number of matched entities,

count({< s, t > |s ∈ S, t ∈ T ,matched(s, t)}),

where matched is true iff there exists a match between s and t. For example,
if both schemas have 4 entities, where we assume there is at least one match
between each pair of entities, the size of the search space is 216 (i.e., the genotype
is of size 4×4), and if both schemas have 10 entities each with at least one match
to the other, the size of the search space is 2100.

4.3 Search Framework

Fig. 5 presents a framework for the evolutionary search process [32], where a
generation forms the basic unit of the search and holds a set of solutions, known
as a population. The population size represents the number of solutions in a
population or generation, and is fixed to a chosen size during the search. A parent
is a member of a population, that has been chosen to go through mutation and
crossover operators so as to produce new solutions (i.e., offspring). The objective
function models requirements of the proposed search problem, and assigns a
fitness value to a solution to evaluate its quality among all solutions with respect
to the requirements, as presented in Section 5.

The evolutionary search starts from a set of random solutions called the initial
generation, which are evaluated using the objective function. The following steps
are then repeated until a termination condition (e.g., the elapsed CPU time or
the number of fitness evaluations [32]) is satisfied:

Start
Initialization

Terminate?
N

Y
Output: top solution

Evaluation

Parent
Selection

Mutation/
Crossover

Evaluation
Survivor
Selection

A generation Offspring solutions

Parents
solutions

Offspring
solutions

Operation

Decision

Operation flow
and Data

Legends

....

Initial
generation

Fig. 5. The evolutionary search framework

EvoMatch 11

– Parent selection selects from the current generation those that should be
used as parents for the next generation with the aim of improving the qual-
ity of subsequent generations over time. We apply roulette-wheel selection,
which maps the solutions from the current generation to segments in the
wheel, such that solutions whose fitness values are greater occupy larger seg-
ments. This technique is applied so that solutions whose fitness values are
comparatively high in the generation have a higher chance of being chosen.

– Mutation is a unary variation operator that manipulates a single parent
genotype (a binary string) and is used to improve the diversity of a popula-
tion [33]. It inverts each chosen bit in the binary string, with a probability
called the mutation rate pm, from 0 to 1 or from 1 to 0.

– Crossover is a binary variation operator on two parent genotypes and ex-
plicitly tries to combine “good” parts of the parents [33]. The one-point
crossover is used for its simplicity. It splits both parents at the xth bit (x <
the genotype length) and exchanges their tails starting from the xth bit. The
crossover is applied with a probability, called the crossover rate pc.

– Survivor selection determines the next generation by choosing μ (i.e.,
population size) survivors that have the highest fitness values from μ par-
ent solutions in the last generation and λ offspring produced from the last
generation using mutation and crossover operators.

We chose to employ an evolutionary algorithm, specifically a genetic algorithm
[32], because: (i) the search space is extremely large, precluding the use of an
exhaustive search; (ii) several alternative search strategies, e.g., hill climbing,
local search and simulated annealing, explore the search space based on a single
solution, and thus the quality of the initial solution can influence the resulting
solution significantly [34]; (iii) a genetic algorithm is a population-based search
and thus can produce a collection of solutions rather than a single solution
for further investigation (which is potentially useful both in pay-as-you-go and
manual integration scenarios); and (iv) a genetic algorithm often uses less time
to complete a task than other search methods [34].

5 Objective Function

The objective function acts on schematic correspondences at the entity-level,
i.e., Typec1 and Typec3, and evaluates candidate solutions in their phenotype
representation; we call such a candidate solution a candidate phenotype.

From Definition 2, each candidate phenotype P consists of a set of ELRs,
P = {ELR1, ..., ELRn}, where each ELRi is a pair of associated entity sets
< ESS

i , EST
i >. The objective function builds on the vector space model from

information retrieval [35] to estimate the similarity of the two entity sets in
an ELR. The associated entity sets ESS

i and EST
i of ELRi give rise to sets

of terms, TSS
i = {tS0 , ...tSq } and TST

i = {tT0 , ...tTr }, that represent entity and
attribute names (as described in Section 5.1). In turn, each of these terms is
associated with a weight computed using the widely used tf × idf function [35]
(as described in Section 5.2).

12 C. Guo et al.

The sets of terms TSS
i and TST

i of ELRi are represented as vectors vS
i =

(wS
0 , ...w

S
q) and vT

i = (wT
0 , ...wT

r), respectively (as described in Section 5.3),

where each wS
j and wT

k is a weight, and the weights at position p, wS
p and wT

p ,
in each of the vectors represent matched terms. The similarity score si of an
ELRi can then be computed as the cosine of the angle between the pair of
vectors vS

i and vT
i (as described in Section 5.4).

Finally, the objective function aggregates ELR similarities s1, . . . , sn into the
fitness the phenotype (as described in Section 5.5).

5.1 Representing Entity Sets Using Terms

Recall that an ELR is a pair of associated entity sets < ESS
i , EST

i >; for ex-
ample, the candidate phenotype P2 ={〈{overseas cust}, {cust account}〉} from
Section 4.2 contains a single ELR. Thus each entity set represents a collection
of one or more entity types, and we need a more detailed description that not
only contains the names of potentially related entity types, but also includes
attribute information. This more detailed description of an entity set is a set of
terms, TSi = {t0, ...tm}, where each tj is a set of values that represent entity
and attribute names, as described below.

Basic Entity Set. An entity set is called a basic entity set if it mod-
els an associated entity set with cardinality=1. An entity type Si, con-
taining attributes Si.A1, ..., Si.Aα, is modelled by the set of terms TSi =
{{Si}, {Si.A1}, ..., {Si.Aα}}. For example, using P2, the associated entity set
{cust account} is modeled by the set of terms:

{{cust account}, {cust account.key}, {cust account.account name},
{cust account.account balance}}.

Equivalent attributes. To inform the creation of vectors that represent hori-
zontally and vertically partitioned entity sets, we define equivalent attributes
in Definition 4. The equivalent attributes make explicit different entities in a
schema that have similar features (i.e., attributes that have similarity in their
names or instances). For example, the three entities home cust, overseas cust and
account in Figure 2 all have an attribute name.

Definition 4 Equivalent Attributes. Given a schema S containing entities
S1, . . . , Sμ, a set of attributes A={A1, . . . , Am} in S is defined as a set of equiv-
alent attributes if attributes in A satisfy the following conditions: 1) each at-
tribute Ai ∈ A belongs to a distinct entity in S; 2) each entity Sj ∈ S contains
only a single attribute in A; and 3) all attributes in A share similar features,
e.g., names and instances.

For example, the sets of equivalent attributes in schema S in Figure 2 are:

A1={home cust.id, overseas cust.id, account.id}
A2={home cust.name, overseas cust.name, account.name}

EvoMatch 13

A3={home cust.birth, overseas cust.birth}
A4={home cust.phone, overseas cust.phone}

The only set of equivalent attributes in schema T is:

A4={customer.key, cust phone.key, cust account.key}
In the implementation of EvoMatch, we use matches between S and T to

obtain equivalent attributes. The basic idea is that if some attributes that belong
to different entities in S are matched to the same attribute in T , we identify
these attributes as equivalent attributes.

Horizontally Partitioned Entity Set. The basic idea of horizontal partitioning is
that an original entity is partitioned along its instances into new entities, and as
such all attributes of the original entity are present in each of the new entities.

Given an associated entity set with cardinality greater than 1, it is possible
that this entity set represents a single entity type that has been horizontally
partitioned. To capture this notion, an entity set in schema S, ESS

i = {S1, ..., S�}
is represented by the set of terms TSS,H = {tS0 , ...tSm}, where each tSi is a set of
values that represent entity and attribute names, as described below.

If all entities S1, . . . , S� have an equivalent attribute Ac, the term tc that
represents Ac is defined as {S1.Ac, . . . , S�.Ac}. If a subset of the entities, e.g.,
S1 and S2, have an equivalent attribute Ad, td is {S1.Ad, S2.Ad, S3.ψ, . . . , S�.ψ},
where Sj .ψ (j = 3, . . . , �) means that the entity Sj does not contain an attribute
equivalent to attribute Ad.

For example, in P1, the entity set ESS
1 ={home cust, overseas cust} can be

represented as:

TSS,H
1 ={{home cust, overseas cust}, {home cust.id, overseas cust.id},

{home cust.name, overseas cust.name},
{home cust.birth, overseas cust.birth},
{home cust.phone, overseas cust.phone}};

Equivalent attributes shared by all entities in the source set are represented
as a single term (e.g., {home cust.name, overseas cust. name}). In the case of

TSS,H
1 , interpreting the entity set as horizontally partitioned seems promising,

as every attribute in one entity has an equivalent counterpart in the other.
As another example, in P1, the entity set EST

1 = {customer, cust phone}, can
be represented as:
TST ,H

1 ={{customer, cust phone}, {customer.key, cust phone.key},
{customer.c fname, cust phone.ψ},
{customer.c lname, cust phone.ψ},
{customer.c birth, cust phone.ψ},
{customer.ψ, cust phone.c phone}};

In this case, there are several attributes that are not shared by all entities
(e.g., customer.c fname), as indicated by the ψ attribute, which suggests that
this entity set may not be horizontally partitioned.

Vertically Partitioned Entity Sets. The basic idea of vertical partitioning is that
an original entity is partitioned into new entities such that the original entity

14 C. Guo et al.

is reconstructed by joining its partitions. Thus, some attributes are present in
each of the partitions, referred to as key attributes, whereas other attributes of
the original entity are present only once across all the partitions.

Given an associated entity set with cardinality greater than 1, it is possible
that this entity set represents a single entity type that has been vertically par-
titioned. To capture this notion, an entity set in schema S, ESS

i = {S1, ..., S�}
is represented by the set of terms TSS,V

i = {tS0 , ...tSm}, where each tSi is a set of
values that represent entity and attribute names, as described below.

If all entities S1, . . . , S� share an equivalent attribute Ac, term tc that rep-
resents Ac is defined as {S1.Ac, . . . , S�.Ac}, representing a key attributes of all
the entities. If an attribute Si.Ad is not shared by all entities, then td is defined
as {Si.Ad}, indicating that it does not meet the condition to be a key attribute
in vertical partitioning.

For example, in P1, the entity set EST
1 = {customer, cust phone}, can be

represented as:

TST ,V
1 ={{customer, cust phone}, {customer.key, cust phone.key},

{customer.c fname}, {customer.c lname},
{customer.c birth}, {cust phone.c phone}}.

Equivalent attributes shared by all the entities are represented as a single term
(i.e., {customer.key, cust phone.key}), and are identified as key attributes. There
are also attributes (e.g., customer.c fname) that are not shared by all the entities,
and each of them is represented as a term (e.g., {customer.c fname}). In this case,
there is a single term that meets the requirement for a key term, and thus the
entity set may be considered to be a strong candidate as a vertical partition.

5.2 Weight Calculation

The objective function utilizes the well-known tf × idf function [35] to calculate
term weights. Assume that the entity set ESS

j in the schema S is represented by

the set of terms TSS
j , which contains the term tSi . The weight wS

i representing

tSi is defined as wS
i = tf × idf with tf =

|tSi |
|TSS

j | and idf = log N
ni
, where

– |tSi | is the cardinality of tSi , which essentially represents the frequency of
occurrence of an entity or attribute name in an entity set.

– |TSS
j | denotes the total number of terms in ESS

j .
– N is the total number of entity sets in the schema S.
– ni denotes the number of entity sets in the schema S that contain terms that

are equivalent to tSi .

For example, assume we have the associated entity sets ESS
1 ={home cust,

overseas cust} and ESS
2 ={account} in P1 for which the following sets of terms

have been derived:

TSS,H
1 ={{home cust, overseas cust}, {home cust.id, overseas cust.id},

{home cust.name, overseas cust.name},

EvoMatch 15

{home cust.birth, overseas cust.birth},
{home cust.phone, overseas cust.phone}};

TSS
2 ={{account}, {account.id}, {account.name}, {account.balance},

{account.tax}}.

The term weight wS
i for term {home cust.id, overseas cust.id} in TSS,H

1 can be
calculated as: |tS1 |=2 for the two attributes in the term; |TSS

1 | = 10 for the total

number of constructs (i.e., entities and attributes) in TSS,H
1 ; N=2 as there are

2 entity sets {home cust, overseas cust} and {account}; ni=2 as both entity sets
contain terms that have id attributes.

5.3 Aligning Entity Sets

Recall that an ELR is a pair of associated entity sets < ESS
i , EST

i >, for which
we need to derive a similarity measure using the vector space model. Section 5.1
has described how sets of terms can be derived from entity sets. In essence, if an
entity set represents a single entity type, it is represented as a set of terms the
members of which correspond to the name of the entity type and the names of its
attributes. If an entity set represents several entity types, then two alternative
sets of terms are generated, representing the alternative interpretations that the
entity set is horizontally or vertically partitioned. In all cases, we need to align
the sets of terms representing ESS

i and EST
i , so that their similarities can be

measured.

Definition 5 Matched Terms. Assume there are two sets of terms TSS =
{tS0 , ..., tSq } and TST = {tT0 , ..., tTr }. For any two terms tSi and tTj , the term

similarity ts(tSi , t
T
j) is defined as the (average) match similarity of the two (sets

of) constructs that tSi and tTj represent. tSi and tTj are called matched terms if

they satisfy the following conditions: 1) ts(tSi , t
T
j) > 0; 2) ts(tSi , t

T
j) >ts(tSi , t

T
j′)

(0 � j′ � n and j �= j′); and 3) tSi′ (0 � i′ � m and i′ �= i) and tTj are not
matched terms.

For example, let TSS,H
1 represent the terms for the candidate horizontal par-

titioning of the entity set {home cust, overseas cust} in P1, and let TST ,V
1 repre-

sent the terms for the candidate vertical partitioning of the entity set {customer,

cust phone} in P1. The matched terms (denoted by ⇔ below) between TSS,H
1

and TST ,V
1 are presented in Table 2.

Assume that there are m + 1 matched terms between TSS
i and TST

i . We
reorder terms in TSS

i and TST
i , so that the matched terms occupy the first

m + 1 positions, and assign the first m + 1 positions of the vectors vS
i and vT

i

with the tf/idf weights of the corresponding terms. Then for the a unmatched
terms in vS

i we insert the tf/idf weights of the terms to the next a positions in
vS
i and 0 into the next a positions in vT

i . Then for the b unmatched terms in
vT
i we insert the tf/idf weights of the terms to the next b posititions in vT

i and
0 into the next b positions in vS , to give:

16 C. Guo et al.

Table 2. Matched terms between TSS,H
1 and TST ,V

1

TSS,H
1

{home cust, overseas cust}

{home cust.id, overseas cust.id}

{home cust.name, overseas cust.name}

{home cust.birth, overseas cust.birth}

{home cust.phone, overseas cust.phone}

⇐⇒

⇐⇒

⇐⇒

⇐⇒

⇐⇒

TST ,V
1

{customer, cust phone}

{customer.key, cust phone.key}

{customer.c fname}

{customer.c lname}

{customer.c birth}

{cust phone.c phone}

vS = (wS
0 , ..., w

S
m, wS

m+1, ..., w
S
m+a, w

S
m+a+1, ...w

S
m+a+b)

where wS
m+a+1 to wS

m+a+b all have the value 0, indicating that there is no term

in TSS
i associated with those positions in the vector, and

vT = (wT
0 , ..., wT

m, wT
m+1, ..., w

T
m+a, w

T
m+a+1, ...w

T
m+a+b)

where wT
m+1 to wT

m+a all have the value 0 indicating that there is no term in
TST

i associated with those positions in the vector.

5.4 Vector Similarity

The cosine of the angle between vectors is widely used as a similarity function
in information retrieval [35]. Building on this approach, the similarity of vectors
vS and vT is computed using Function 1.

sim(vS ,vT) =

∑k
i=0 ts(t

S
i , t

T
i)× wS

i × wT
i√∑

k
i=0(w

S
i)

2 ×
√∑

k
i=0(w

T
i)2

(1)

where k is the length of the vectors vS and vT , tSi (resp., tTi) are the terms
corresponding to the weights wS

i (resp., wT
i), and ts is a function that derives

the similarity of the terms from match evidence. The introduction of the term
similarity measure into the standard cosine function is to allow for the fact that
matched terms may have been matched with different scores.

Function 1 can be used to infer the partitioning type of an ELR. For ex-
ample, ELR1=〈{home cust, overseas cust},{customer, cust phone}〉 ∈ P1 is rep-

resented as a pair of source vectors (i.e, vS,H
1 and vS,V

1) and a pair of target

vectors (i.e, vT ,H
1 and vT ,V

1). We calculate sH:H = sim(vS,H
1 ,vT ,H

1), sH:V =

sim(vS,H
1 ,vT ,V

1), sV :H = sim(vS,V
1 ,vT ,H

1) and sV :V = sim(vS,V
1 ,vT ,V

1) to de-
note the fitness of ELR1 that are HP and HP, HP and VP, VP and HP, and VP
and VP, respectively. We consider the similarity of ELR1 as the maximum value

EvoMatch 17

of sH:H , sH:V , sV :H , and sV :V , and report the corresponding partitioning type.
The vector similarity function alone doesn’t capture all the properties of the
partitioning types; where different partitioning strategies give rise to the same
vector similarity, heuristics can be used to establish the most suitable type.

5.5 Aggregation

Given a candidate phenotype P = {ELR1, ..., ELRn}, each ELRi ∈ P is as-
signed a similarity, denoted as si, as presented in Section 5.4. In this section, we
describe the last step of the objective function that calculates the fitness value
for the phenotype P by aggregating the ELR similarities. We expect the aggre-
gation function (Function 2) to assign a higher value to a phenotype if more
ELRs with comparatively high similarities are contained in the phenotype. Note
that we do not define a similarity threshold that arbitrarily denotes whether
the pair of entity sets associated by an ELR is similar or not, and that we do
not assume in advance that we know how many ELRs should be contained in a
solution.

sum(si × ci)× average(si × ci)

= [
n∑

i=1

(si × ci)]×
∑n

i=1(si × ci)∑n
i=1 ci

=
(
∑n

i=1 si × ci)
2∑n

i=1 ci
(2)

where si is the similarity of ELRi =<ESS
i , EST

i >, and ci = avg(|ESS
i |, |EST

i |)
is its coverage, where |ESS

i | and |EST
i | represent the number of entities in the

sets ESS
i and EST

i , respectively.

6 Attribute-Level Schematic Correspondences

As presented in Sections 4 and 5, a phenotype P = {ELR1, ..., ELRn} that has
the highest fitness value is returned. Each ELRi ∈ P maps to an entity-level
schematic correspondence. Inferring attribute-level schematic correspondences is
a post-processing step after the evolutionary search.

Similar to the entity level, we use a set of Attribute-Level Relationships
(ALRs) to model the set of attribute-level schematic correspondences, and re-
quire that each two ALRs identified between the pair of entity sets in ELRi ∈ P
are disjoint, as indicated in Definition 6.

Definition 6 Attribute-Level Relationships. Given schemas S and T and
an ELR = 〈ESS , EST 〉, a set of Attribute-Level Relationships (ALRs), i.e.,
{ALR1, ..., ALRn}, indicates a set of attribute-level schematic correspondences
between the entity sets ESS and EST . ALRi=〈ASS

i , AS
T
i 〉, i = 1, ..., n, where

ASS
i and AST

i are source and target attribute sets with cardinalities greater than
or equal to 1, satisfy both: i) any attribute ∈ ASS

i is also an attribute of an entity
∈ ESS , and any attribute ∈ AST

i is also an attribute of an entity ∈ EST ; and
ii) for each ALRi′=〈ASS

i′ , AS
T
i′ 〉, i′ = 1, ..., n such that i′ �= i, ASS

i ∩ ASS
i′ = ∅

and AST
i ∩AST

i′ = ∅.

18 C. Guo et al.

The method for inferring ALRs is quite straightforward. Assume P1 is the phe-
notype returned from the evolutionary search. Let us use ELR1 ∈ P1=〈{home
cust, overseas cust},{customer, cust phone}〉 as an example. Recall Table 2, which
illustrates an HP:VP entity correspondence. The matched terms identified be-
tween TSS,H

1 and TST ,V
1 are shown below.

ALR1=〈{home cust.id, overseas cust.id}, {customer.key, cust phone.key}〉,
ALR2=〈{home cust.name, overseas cust.name}, {customer.c fname}〉,
ALR3=〈{home cust.birth, overseas cust.birth}, {customer.c birth}〉,
ALR4=〈{home cust.phone, overseas cust.phone}, {cust phone.c phone}〉.

EvoMatch also includes a simple algorithm for identifying complex attribute
n-to-1 correspondences for each ELRi ∈ P (i.e., Typec4). Similar to previous
methods, e.g., iMAP [4], EvoMatch uses formulae to transform instances of a set
of attributes into instances of a single attribute, thus inferring the complex n-
to-1 attribute correspondences. The method currently covers common formulae
enumerated by Kim et al. [14], such as concat (first name, last name) = name
and concat (day/month/year) = date, which are extendable. Thus, a new ALR=

〈{home cust.name, overseas cust.name}, {customer.c fname, customer.c lname}〉
is identified to replace ALR2 above.

7 Experimental Evaluation

This section presents experimental studies of the evolutionary search method,
which evaluate its effectiveness for inferring schematic correspondences using the
collection of MatchBench scenarios1 and a pair of real world relational databases
provided by the Amalgam benchmark [36]. In particular, our method is compared
with COMA++ [2], Similarity Flooding [3] and Harmony [17] matchers.

7.1 Experimental Setting

MatchBench is a benchmark for evaluating the effectiveness of schema matching
systems for inferring the schematic correspondences of Kim et al. [14]. To gen-
erate the scenarios, it starts from source and target relational databases where
a pair of entities (i.e., tables) are exactly the same, and systematically injects
different types of schematic correspondences into the equivalent entities.

In this paper, we show the results of EvoMatch for three collections of sce-
narios. In collection C1, called 1-to-1 equivalent entities scenarios, the 1-to-1
entities are equivalent, but entity (attribute) names are changed or some at-
tributes are removed, combined with changes at the instance-level. In collection
C2, called n-to-m equivalent entities scenarios, the equivalent 1-to-1 entities are
horizontally or vertically partitioned into equivalent entity sets, combined with
renaming attributes. Collection C3, called n-to-1 equivalent attributes scenarios,
offers scenarios where a set of attributes and a single attribute represent the

1 Available from http://code.google.com/p/matchbench/

http://code.google.com/p/matchbench/

EvoMatch 19

same real world information. The numbers of ground truth correspondences of
Typec1 to Typec4 in collections C1 to C3 are presented in Table 3.

The Amalgam benchmark [36] contains real world relational databases from
the bibliographic domain devised by different designers. We asked three experts
who have a good understanding of the bibliographic domain and schematic het-
erogeneities to manually identify ground truth schematic correspondences be-
tween pairs of Amalgam databases. We chose to evaluate our method on a pair
that represents most types of schematic heterogeneities defined in Section 3.
The numbers of Typec1 to Typec4 correspondences in Amalgam are presented in
Table 3 as well.

The effectiveness of different systems is measured by comparing their results
with the ground truth (correct correspondences), thus determining the true pos-
itives (TP), i.e., correspondences correctly identified; the false positives (FP),
i.e., correspondences incorrectly identified; and the false negatives (FN), corre-
spondences incorrectly missed. Given cardinalities of the above sets, we follow
the standard definitions to evaluate the effectiveness:

– Precision = |TP|
|TP|+|FP| specifies the fraction of correct correspondences among

all detected correspondences;

– Recall = |TP|
|TP|+|FN| specifies the fraction of correct correspondences among

all detectable correspondences;
– F-measure = 2∗ Precision∗Recall

Precision+Recall is the harmonic mean of Precision and Recall.

7.2 Settings of Systems

Our method for inferring schematic correspondences takes as input two schemas
and different sets of matches denoting various types of element similarity, e.g.,
names, instances or data types, between the two schemas. In particular, we
chose the Name and Content-based matchers of COMA++ [2], which have been
demonstrated to be effective [2][37] and are publicly available, to compute the
name similarities and the instance similarities of elements, because these two
types of similarities mostly represent the commonalities and differences between
the elements. Note that other types of similarity evidence, e.g., data type or
synonym similarity, can easily be added for further support, although they are
not applied in this paper.

By investigating the two matchers, we have noticed that they match almost
all pairs of elements of the schemas even though some elements have no com-
monalities. We did a sensitivity analysis and decided to apply a threshold of
0.3 for both Name and Content-based matchers. This is not because our method
requires them but because the two matchers provided by COMA++ associate
attributes that have no commonalities with low similarity scores, which results
in a large number of input matches, and therefore a large search space. The
threshold of 0.3 for the matchers remains the same for all scenario contexts.

20 C. Guo et al.

Running an evolutionary search (specifically, using a genetic algorithm) re-
quires parameters (Section 4). We follow suggestions from literature (e.g., [32]),
and thus set population size as 30, offspring size as 30, mutation rate pm as
1/n (n represents the length of the genotype), and crossover rate pc as 0.9. We
have also carried out a sensitivity analysis and concluded that results are not
highly sensitive to these values, or to the specific (random) initial generation
used. Usually, if the search goes through more generations, it is more likely to
obtain the global optimal solution. Therefore, for the small and medium scale
schemas, we terminate the search when 500 generations have been produced.

To evaluate the effectiveness of EvoMatch, we compare it with three well-
known and publicly available matching systems. We mainly follow the advice of
authors to configure the systems and do what we can to help them perform well.

For COMA++ [2], we applied AllContext as the matching strategy, selected
matchersName, NamePath, Leaves and Parents at the schema-level and Content-
based at the instance-level, and employed Average for aggregation, Both for di-
rection, Threshold+MaxDelta for selection and Average for combination, as they
are demonstrated to be effective in published experimental evaluations [2]. As
experience with COMA++ has not given rise to consistent recommendations
for Threshold and Delta [38][2], we decided to employ the default settings of
Threshold and Delta (i.e., 0.1 + 0.01) that are provided with the COMA++
tool.

Initial matches of Similarity Flooding (SF) [3] are produced by combining re-
sults of its own matcher (i.e., the NGram matcher) and an instance matcher (i.e.,
the Content-based matcher of COMA++), rather than using its own matcher
alone, which acts only on schema level data. This approach enables Similarity
Flooding to make use of instance-level information for the initial matches, which
turns out to be important for identifying schematic correspondences.

Harmony [17] is a schema matching tool provided in OpenII, whose EditDis-
tance, Documentation and Exact matchers are chosen for the evaluation. Given
candidate matches, we select the top matches associated with each element as
result matches while not restricting the number of matches associated with an
element, as recommended by the authors. As Harmony only works at the schema
level, we combine it with the Content-based matcher of COMA++, to provide
the same basis in terms of instance-based matches as COMA++, Similarity
Flooding and EvoMatch.

These matching systems are principally designed for identifying Types1 and
Types2 correspondences, but are chosen to compare with EvoMatch because they
are the publicly available systems for identifying correspondences. Thus, we did
an extra step on top of the 1-to-1 matches identified by these systems to derive
Typec1 to Typec4 correspondences.

A pair of n-to-m elements is derived as a simple n-to-m correspondence (i.e.,
Types3 or Types4), if it satisfies conditions: i) there exists a match between all
pairs of elements; and ii) there does not exist an additional element, so that
the pair of (n+1)-to-m or n-to-(m+1) elements satisfies condition i). Thus, as
these systems provide no mechanisms for establishing the horizontal or vertical

EvoMatch 21

partitioning, we simply consider the derived Types3 and Types4 correspondences
as Typec3 and Typec4 correspondences, and assume that any correspondence of
the correct size is of the correct type. In experiments, EvoMatch is set the more
challenging task of also identifying the correct type. The remaining Types1 and
Types2 correspondences not used for deriving Typec3 and Typec4 correspondence
are considered as Typec1 and Typec2 correspondences, because identifying whether
equivalent entities or attributes have the same name is an easy task for them.

7.3 Experimental Results

Table 3 presents the number of ground truth values for each type of schematic
correspondence (i.e., Typec1 to Typec4) in MatchBench scenario collections C1 to
C3 and in an Amalgam scenario, respectively. Table 3 also lists the number of cor-
respondences correctly identified, i.e., true positives, by EvoMatch, COMA++,
Similarity Flooding (SF) and Harmony.

Table 3. The number of ground truth and the number of true positives in each type
of schematic correspondence

Types Ground Truth EvoMatch COMA++ SF Harmony

M
a
tc
h
B
e
n
c
h

C1
Typec1 207 162 147 183 87

Typec2 1479 1366 1267 1213 542

C2
Typec3 96 72 15 0 18

Typec2 992 838 703 389 355

C3 Typec4 9 2 0 0 4

A
m
a
lg
a
m Typec1 1 1 1 1 0

Typec2 10 10 2 2 0

Typec3 1 1 0 0 0

Typec4 0 0 0 0 0

The F-measures of the four systems for inferring schematic correspondences in
MatchBench scenario collections C1 and C2 are presented in Fig. 6 and 7. In Fig.
6(a) and (b), the 1-to-1 equivalent entity scenarios in collection C1 are catego-
rized into scenario sets 1 to 8; in Fig. 7(a) and (b), the n-to-m equivalent entity
scenarios in collection C2 are in sets 19 and 20, whose particular partitioning
types, i.e., horizontal partitioning (HP) and vertical partitioning (VP), are fur-
ther specified. In the Amalgam scenario, the F-measure of entity-level schematic
correspondences (Typec1 and Typec3) for EvoMatch, COMA++, SF and Har-
mony is 0.667, 0.5, 0.39 and 0.0, respectively; the F-measure of attribute-level
schematic correspondences (Typec2) is 0.93, 0.17, 0.16 and 0.0, respectively.

In terms of the expressiveness of the correspondences, EvoMatch has advan-
tages in relation to the other three systems in that it provides direct support for
n-to-m correspondences. As shown in Table 3, EvoMatch has identified a larger
number of true positives than COMA++, SF and Harmony in most scenarios.

22 C. Guo et al.

(a) Inferring Typec1 (b) Inferring Typec2

Fig. 6. F-measure in MatchBench C1 scenarios

(a) Inferring Typec3 (b) Inferring Typec2

Fig. 7. F-measure in MatchBench C2 scenarios

This is because EvoMatch is designed for inferring more expressive correspon-
dences, i.e., schematic correspondences, than the three systems, whereas the
other systems associate 1-to-1 elements whose features, e.g., names or instances,
are same or similar and typically support a greater range of correspondence
types.

The other three systems are generally designed for identifying 1-to-1 matches,
especially SF that only identifies the 1-to-1 top match for each element, and
therefore have been reasonably successful in Typec1 and Typec2. However, Evo-
Match has still been able to identify more Typec1 and Typec2 true positives than
them, because EvoMatch assigns distinguishable similarity scores between pair-
wise equivalent entities and pairwise different entities that coincidentally have
similar attributes using the vector space model (VSM), and uses an aggregation
function to select equivalent entities.

In contrast, COMA++ chooses limited top matches above a threshold for
each element, and thus removes a few true positives. Harmony does not restrict
the number of matches associated with an element and keeps a candidate match
as long as it is the top match for either of its associated elements, and therefore

EvoMatch 23

more matches are inferred as n-to-m correspondences rather than 1-to-1. Evo-
Match has performed satisfactorily in inferring Typec3, thus indicating that the
evolutionary algorithm is effective at fulfilling its purpose. Again, as the three
systems compared are not designed for inferring Typec3, their performance is
rather patchy in identifying these correspondences; SF fails completely because
it only identifies 1-to-1 correspondences.

EvoMatch has not performed well in Typec4 correspondences because the input
match evidence used for the inference is not sufficient, whereas Harmony has
identified a few Typec4 when the n attributes and the 1 attribute have similar
names, because their matches are usually the top matches for the n attributes,
thus being selected. However, this result does not indicate that Harmony has
been able to identify Typec4 correspondences, as the match evidence that OpenII
uses comes from attribute names rather than instances.

In terms of overall effectiveness, higher F-measures are reported for EvoMatch
(Fig. 6 and 7). In addition to identifying more true positives, EvoMatch has also
been able to effectively remove entity-level false positives without using thresh-
olds. This is because: (i) following the intuition of VSM the objective function
assigns rather low similarities for false positives between different (sets of) enti-
ties; (ii) when the similarity between equivalent entities is high, the aggregation
function is able to assign a lower fitness value to a solution that contains both
false positives and the true positive than to the solution that only contains the
true positive, thus helping to remove false positives.

COMA++ relies on a threshold to remove false positives, and thus those with
similarity scores above the threshold are kept. SF tries to associate each element
with a 1-to-1 match, even for elements that do not have equivalent elements.
As stated above, Harmony keeps top matches of an element, thus resulting in a
large number of false positives.

EvoMatch has also outperformed the other systems in inferring attribute-level
correspondences (Typec2). It follows a top-down process, and identifies equiva-
lent attributes only between entities that have been identified as being equiv-
alent, therefore, once equivalent entities are correctly associated, the chances
that equivalent attributes can be matched are high. This approach also helps to
exclude false positives that associate attributes in unassociated entities.

8 Conclusions

This paper has presented a method, EvoMatch, for inferring schematic corre-
spondences between source and target schemas using an evolutionary search,
specifically a genetic algorithm. EvoMatch utilizes matches denoting similarity
of schema elements and searches for a particular set of entity-level relationships
(ELRs) as entity-level schematic correspondences. For each derived ELR, Evo-
Match further identifies a set of attribute-level relationships (ALRs) as attribute-
level correspondences.

24 C. Guo et al.

The paper contributes to: i) an evolutionary search method for inferring
entity-level schematic correspondences, ii) an objective function for modeling
the requirement of entity-level schematic correspondences, and iii) an experi-
mental evaluation that demonstrates the effectiveness of EvoMatch. To the best
of our knowledge, this is the first work for inferring complex n-to-m entity-
level correspondences without using specific schema information (e.g., integrity
constraints), external resources (e.g., ontology) and context-sensitive rules (e.g.,
thresholds) and without requiring user engagement. In contrast, existing meth-
ods typically identify 1-to-1 complex correspondences (e.g., SeMap [20]) or re-
quire specific schema information to identify n-to-m complex correspondences
(e.g., Xu et al. [23])

EvoMatch differs from the three evaluated schema matching systems in the
focus of EvoMatch on the inference of mutually consistent higher-level corre-
spondences from lower-level matches. In support of this higher-level perspective,
the objective function is able to select collections of matches that together repre-
sent coherent correspondences, rather than using more primitive match selection
methods that act more independently (in COMA++ or Harmony) or less pur-
posefully (as in Similarity Flooding). The objective function incorporates several
features that resulted from empirical evaluation with real and synthetic data
sets: the use of tf/idf was important for keeping apart entity types that have
commonly recurring attributes (such as name or address), and the aggregation
technique in Section 5.5 judiciously trades-off coverage and similarity.

EvoMatch and schema mapping tools, e.g., Clio [5], are similar in using matches
as evidence to infer expressive relationships of schemas. However, such tools re-
quire user participation and schema constraints to compensate for the limitations
of the matchings. Although EvoMatch does not specify declarative expressions at
the same level as such tools, by inferring more information than the underlying
matches it provides a richer foundation on which mapping tools can build. As
an interesting future work, EvoMatch can be extended to on the large scale data
using MapReduce techniques [39][40][41][42].

References

1. Halevy, A.Y., Rajaraman, A., Ordille, J.J.: Data integration: The teenage years.
In: VLDB, pp. 9–16 (2006)

2. Do, H., Rahm, E.: Matching large schemas: Approaches and evaluation. Informa-
tion Systems 32(6), 857–885 (2007)

3. Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity flooding: a versatile
graph matching algorithm and itsapplication to schema matching. In: ICDE,
pp. 117–128 (2002)

4. Dhamankar, R., Lee, Y., Doan, A., Halevy, A.Y., Domingos, P.: imap: Discov-
ering complex mappings between database schemas. In: SIGMOD Conference,
pp. 383–394 (2004)

5. Fagin, R., Haas, L.M., Hernández, M., Miller, R.J., Popa, L., Velegrakis, Y.: Clio:
Schema mapping creation and data exchange. In: Borgida, A.T., Chaudhri, V.K.,
Giorgini, P., Yu, E.S. (eds.) Conceptual Modeling: Foundations and Applications.
LNCS, vol. 5600, pp. 198–236. Springer, Heidelberg (2009)

EvoMatch 25

6. Bonifati, A., Chang, E.Q., Ho, T., Lakshmanan, L.V.S., Pottinger, R., Chung,
Y.: Schema mapping and query translation in heterogeneous p2p xml databases.
VLDB J. 19(2), 231–256 (2010)

7. Bonifati, A., Mecca, G., Pappalardo, A., Raunich, S., Summa, G.: Schema mapping
verification: the spicy way. In: EDBT, pp. 85–96 (2008)

8. Marnette, B., Mecca, G., Papotti, P., Raunich, S., Santoro, D.: ++spicy: an
opensource tool for second-generation schema mapping and data exchange.
PVLDB 4(12), 1438–1441 (2011)

9. Franklin, M., Halevy, A., Maier, D.: From databases to dataspaces: a new abstrac-
tion for information management. SIGMOD Record 34(4), 27–33 (2005)

10. Belhajjame, K., Paton, N.W., Embury, S.M., Fernandes, A.A.A., Hedeler, C.:
Feedback-based annotation, selection and refinement of schema mappings for datas-
paces. In: EDBT, pp. 573–584 (2010)

11. Salles, M.A.V., Dittrich, J.-P., Karakashian, S.K., Girard, O.R., Blunschi,
L.: itrails: Pay-as-you-go information integration in dataspaces. In: VLDB,
pp. 663–674 (2007)

12. Sarma, A.D., Dong, X., Halevy, A.Y.: Bootstrapping pay-as-you-go data integra-
tion systems. In: SIGMOD Conference, pp. 861–874 (2008)

13. Mao, L., Belhajjame, K., Paton, N.W., Fernandes, A.A.A.: Defining and using
schematic correspondences for automatically generating schema mappings. In: van
Eck, P., Gordijn, J., Wieringa, R. (eds.) CAiSE 2009. LNCS, vol. 5565, pp. 79–93.
Springer, Heidelberg (2009)

14. Kim, W., Seo, J.: Classifying schematic and data heterogeneity in multidatabase
systems. IEEE Computer 24(12), 12–18 (1991)

15. Bernstein, P.A., Madhavan, J., Rahm, E.: Generic schema matching, ten years
later. PVLDB 4(11), 695–701 (2011)

16. Cafarella, M.J., Halevy, A.Y., Wang, D.Z., Wu, E., Zhang, Y.: Webtables: exploring
the power of tables on the web. PVLDB 1(1), 538–549 (2008)

17. Smith, K., Morse, M., Mork, P., Li, M.H., Rosenthal, A., Allen, D., Seligman, L.:
The role of schema matching in large enterprises. In: CIDR (2009)

18. Kang, J., Naughton, J.F.: Schema matching using interattribute dependencies.
IEEE Trans. Knowl. Data Eng. 20(10), 1393–1407 (2008)

19. Bilke, A., Naumann, F.: Schema matching using duplicates. In: ICDE, pp. 69–80
(2005)

20. Wang, T., Pottinger, R.: Semap: a generic mapping construction system. In: EDBT,
pp. 97–108 (2008)

21. Giunchiglia, F., Yatskevich, M., Shvaiko, P.: Semantic matching: Algorithms and
implementation. J. Data Semantics 9, 1–38 (2007)

22. Rizopoulos, N.: Automatic discovery of semantic relationships between schema
elements. In: ICEIS, vol. (1), pp. 3–8 (2004)

23. Xu, L., Embley, D.W.: A composite approach to automating direct and indirect
schema mappings. Inf. Syst. 31(8), 697–732 (2006)

24. Dai, B.T., Koudas, N., Srivastava, D., Tung, A.K.H., Venkatasubramanian, S.:
Validating multi-column schema matchings by type. In: ICDE, pp. 120–129 (2008)

25. Warren, R.H., Tompa, F.W.: Multi-column substring matching for database
schema translation. In: VLDB, pp. 331–342 (2006)

26. Miller, G.A.: Wordnet: A lexical database for english, Commun. ACM 38(11),
39–41 (1995)

27. Elmeleegy, H., Ouzzani, M., Elmagarmid, A.K.: Usage-based schema matching. In:
ICDE, pp. 20–29 (2008)

26 C. Guo et al.

28. Madhavan, J., Bernstein, P.A., Doan, A., Halevy, A.Y.: Corpus-based schema
matching. In: ICDE, pp. 57–68 (2005)

29. Haas, L., Hernández, M., Ho, H., Popa, L., Roth, M.: Clio grows up: from research
prototype to industrial tool. In: ACM SIGMOD, pp. 805–810 (2005)

30. Alexe, B., Chiticariu, L., Miller, R.J., Tan, W.C.: Muse: Mapping understanding
and design by example. In: ICDE, pp. 10–19 (2008)

31. Ozsu, M.T., Valduriez, P.: Principles of distributed database systems. Addison-
Wesley, Reading (1989)

32. Eiben, A., Smith, J.: Introduction to evolutionary computing. Springer (2003)
33. Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: Overview and

conceptual comparison. ACM Comput. Surv. 35(3), 268–308 (2003)
34. Michalewicz, Z., Fogel, D.: How to solve it: modern heuristics. Springer-Verlag New

York Inc. (2004)
35. Baeza-Yates, R., Ribeiro-Neto, B., et al.: Modern information retrieval. ACMPress,

New York (1999)
36. Miller, R.J., Fisla, D., Huang, M., Kymlicka, D., Ku, F., Lee, V.: The Amalgam

Schema and Data Integration Test Suite (2001),
http://www.cs.toronto.edu/~miller/amalgam

37. Engmann, D., Maßmann, S.: Instance matching with coma++. In: BTW Work-
shops, pp. 28–37 (2007)

38. Massmann, S., Engmann, D., Rahm, E.: Coma++: Results for the ontology align-
ment contest oaei, Ontology Matching (2006)

39. Low, Y., Bickson, D., Gonzalez, J., Guestrin, C., Kyrola, A., Hellerstein, J.M.:
Distributed graphlab: A framework for machine learning and data mining in the
cloud. Proceedings of the VLDB Endowment 5(8), 716–727 (2012)

40. Yuan, P., Sha, C., Wang, X., Yang, B., Zhou, A., Yang, S.: Xml structural similarity
search using mapreduce. In: Chen, L., Tang, C., Yang, J., Gao, Y. (eds.) WAIM
2010. LNCS, vol. 6184, pp. 169–181. Springer, Heidelberg (2010)

41. Kolb, L., Thor, A., Rahm, E.: Load balancing for mapreduce-based entity resolu-
tion. In: 2012 IEEE 28th International Conference on Data Engineering (ICDE),
pp. 618–629. IEEE (2012)

42. Ma, Q., Yang, B., Qian, W., Zhou, A.: Query processing of massive trajectory data
based on mapreduce. In: CloudDb, pp. 9–16 (2009)

http://www.cs.toronto.edu/~miller/amalgam

Update Management in Decision

Support Systems�

Haitang Feng1,2, Nicolas Lumineau1, Mohand-Säıd Hacid1,
and Richard Domps2

1 Université de Lyon, CNRS
Université Lyon 1, LIRIS, UMR5205, F-69622, France

firstname.lastname@liris.cnrs.fr
2 Anticipeo, 4 bis impasse Courteline, 94800, Villejuif, France

firstname.lastname@anticipeo.com

Abstract. Forecasting is the process of making statements about events
whose actual outcomes have not yet been observed. It is used for decades
in different fields like climate, crime, health, business... Although the
purpose of different forecasting systems is not the same, in general, they
help decision-makers to make appropriate plans for future likely events.
As the nature of forecasting methods and measures are often quanti-
tative, these predictive analytics systems usually use a data warehouse
to store data and OLAP tools to visualize query/simulation results. A
specific feature of forecasting systems regarding predictions analysis is
backward propagation of updates, which is the computation of the
impact, on raw data, of modifications performed on summaries.
In data warehouses, some methods propagate updates over hierarchies
when modifications are performed on data sources. However, so far, very
few works have been devoted to update propagation from summaries to
raw data. This paper proposes an algorithm called PAM (Propagation
of Aggregate-based Modification), to efficiently propagate modifications
performed on summaries to raw data, and then to other summaries.
Experiments have been conducted on an operational application1.

Keywords: OLAP, Forecasting applications, Update propagation,
Materialized views, Decision support systems.

1 Introduction

A forecasting system is a set of techniques or tools that are used for analysis of
historical data, selection of most appropriate modeling structure for the compu-
tation of forecasts, model validation, development of forecasts, and monitoring
and adjustment of forecasts2.

� Research partially supported by the French Agency ANRT (www.anrt.asso.fr) and
Anticipeo (www.anticipeo.com)

1 A sales forecasting system called Anticipeo (http://www.anticipeo.com)
2 See http://www.businessdictionary.com/definition/forecasting-system.html

A. Hameurlain et al. (Eds.): TLDKS XII, LNCS 8320, pp. 27–53, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

28 H. Feng et al.

In daily life, various forecasting systems are used in many areas. We introduce
some important forecasting systems in the following paragraphs.

Environmental forecasting is one of the most frequently and earliest used fore-
casting application. Many countries and trans-boundary agencies achieve predic-
tions with derived statistical models specific to their domains. For instance, the
European Center for Medium-Range Weather Forecasts [5] provides operational
medium- and extended-range forecasts and a state-of-the-art super-computing
facility for scientific research. The National Centers for Environmental Prediction
[24] of the United States provides national and global weather, water, climate
and space weather guidance, forecasts, warnings and analyses to their partners
and external user communities. Environmental forecasting systems respond to
user needs to protect life and property, enhance the nation’s economy and sup-
port the nation’s growing need for environmental information.

Another well-known forecasting system is used for the traffic estimation and
prediction to improve traffic conditions and reduce travel delays by facilitat-
ing the utilization of available transportation facilities. Singapore is the first
country in the world that implemented the practical application of congestion
pricing that is currently based on [22]. The objective is to be able to predict the
levels of congestion over preset durations (from ten minutes up to an hour) in
advance [14].

Other forecasting systems appeared more recently to respond to new demands.
Tourism forecasting systems provide forecasts of tourism demand, which are
prerequisites to the decision-making process in the organizations of the private
or public sector, involved in the tourism industry, helping decision-makers to
plan more effectively and efficiently [27]. Stock forecasting systems [30] and sales
forecasting systems are among useful financial forecasting systems for investors
and enterprise managers to reduce logistics and stock cost and to improve the
income of enterprises.

The field of forecasting is concerned with approaches to determining what the
future holds. It is also concerned with the proper presentation and use of fore-
casts. The terms “forecast”, “prediction”, “projection”, “plan”, and “prognosis”
are typically used interchangeably. The field of forecasting includes the study
and application of judgment as well as of quantitative (statistical) methods[1].

The basic functionalities a forecasting system supports are: computation,
visualization and modification. The first functionality, computation of fore-
casts, uses specific methods (typically statistical models) to derive forecasts.
The second functionality, visualization of computed forecasts, uses OLAP (on-
line analytical processing) tools to visualize and interact with data stored in
warehouses. However, the third functionality, modification of computed forecasts
during visualization, is a specific problem which is not well investigated in the
data warehousing environment. In forecasting systems, raw data are composed
of historical data and predictive data. Unlike historical data which represent
achieved facts and do not evolve over time, predictive data can be dynamic
and can be updated. Experts of the domain could make some modifications to
adjust computed forecasts to some specific situations. They could also make

Update Management in Decision Support Systems 29

some simulations in order to visualize an objective. These modifications occur
on summarized data and should be propagated to raw data (computed fore-
casts) and then to other summarized data. This process implies two directions
of modifications. However, the work in the data warehouse domain focuses only
on propagating source data modification to summarized data.

Related Work. The focus of our work is on how to efficiently propagate an
update performed on a summary to all data, including raw data and other sum-
maries computed from the update summary. More precisely, the problem that
we deal is about the modification of raw data, the modification of aggregated
data and the visualization of new aggregated data in a forecasting system.

Forecasting Methods. Forecasting methods can be classified as either subjective
or objective [1]. Objective methods include extrapolation (such as moving av-
erages [34], linear regression against time, or exponential smoothing [31]) and
econometric methods [18] (typically using regression techniques [13] to estimate
the effects of causal variables). Our work focuses on the presentation layer of
forecasting results and does not consider the way to calculate forecasts. We as-
sume it is done by a relevant component that includes required methods and
that we consider as a “black-box”.

OLAP (Online Analytical Processing) and BI (Business Intelligence). Visualiza-
tion and data analysis tools represent the dataset in an N-dimensional space.
OLAP and BI tools perform “dimensionality reduction”, often by summarizing
data along dimensions of interest. Along with summarization and dimension-
ality reduction, data analysis applications extensively use constructs such as
histogram, cross-tabulation, subtotals, roll-up and drill-down [11, 12, 28, 33].
In our context, the aggregated data are calculated and stored before the visu-
alization in order to provide an immediate access. When a modification of an
aggregate occurs, recomputing is necessary. However, as the modifications are
frequent and require an immediate recalculation, the solutions consisting in the
recomputing of all aggregated data could be not satisfactory.

Materialized Views. The aggregated data we consider are stored as materialized
views in a data warehouse. Change impact management can then be considered
as the issue of (materialized) view maintenance. The materialized view mainte-
nance problem has been widely discussed in data warehouse architectures. Solu-
tions about how to efficiently update materialized views in relational databases
are adapted for this area. The combination of ”materialized view log“ and ”fast
refresh“ applied in Oracle [26] shows a good performance in certain contexts.
Approaches to view maintenance in data warehouses are concerned with differ-
ent directions. In [36], the authors propose “lazy” maintenance of materialized
views. In order to reduce the view maintenance cost, this paper suggests to
postpone maintenance of a view until the system has free cycles or the view is
referenced by a query rather than update materialized views when source data

30 H. Feng et al.

change. [20, 23] propose solutions of incremental view maintenance. These so-
lutions create differential files, which keep the differences of the relevant tuples
and calculate new views based on these differential files instead of calculating
complete materialized views. [2, 25] discuss multi-view maintenance and their
consistency problems over distributed data sources. There exist many others (see
the research-oriented bibliography on Data Warehouse and OLAP3 and Jacob
Hammer’s web bibliography4).

Other works focus on the optimization of OLAP operators such as pivot and
unpivot [3]. They propose rewriting rules, combination rules and propagation
rules for such operators and also design a novel view maintenance framework for
applying these rules to obtain an efficient maintenance plan.

Note that the main context of these approaches is the propagation of updates
occurring on sources to materialized views. In our context, the updates take place
on summarized data, in other words, directly on materialized views. We need to
propagate the modification to raw data and also to other materialized views.

The problem of updating summaries and computing the effect on raw data has
been recently investigated by [16, 17]. A formal solution composed of five steps
is suggested. Firstly, a copy phase involves to copy data stemming from previous
years on which the future calculation will be based. Then a deleting phase al-
lows to clean irrelevant data according to potentially data evolution observed by
decision makers. A reevaluation phase applies the necessary transformation to
move from last year data to current data. A disaggregation phase distributes the
data updates from aggregated level to individual fact level. Finally, a forecast
computation phase allows to produce forecast raw data based on the transfor-
mation functions previously applied. This solution is not able to use complex
model to provide users with accurate forecasts.

What-if Analysis/Simulation. What-if analysis is simulation analysis in which
key quantitative assumptions and computations (underlying a decision, estimate,
or project) are systematically changed to assess their effect on the final outcome.
Used most of the time in evaluation of overall risk or in identification of crit-
ical factors, it attempts to predict alternative outcomes of the same course of
action [10, 29]. In comparison with our work, what-if analysis changes variables’
values to inspect the impacts. When variables’ values are changed, a new cal-
culation is required using the simulation model to evaluate the impact. In our
work, decision makers perform changes in the forecasting results produced by
simulation models. Nevertheless, propagating the modification does not require
a new calculation with simulation models. The impact is directly evaluated at
different levels of hierarchies in different dimensions regarding some predefined
rules. As the forecasting results are stored as materialized views, our issue is data
consistency, in other words, maintenance of materialized views. The approach
considered in the “Back-write” functionality on the MS Analysis Services OLAP
server and MS Excel[21] is not relevant.

3 http://lemire.me/OLAP/
4 http://www.cise.ufl.edu/~jhammer/online-bib.htm

Update Management in Decision Support Systems 31

Contribution. In this paper, we propose an algorithm, PAM (Propagation of
Aggregate-based Modification) to propagate modifications performed on aggre-
gates. Given a modification of an aggregate, this algorithm identifies the exact
sets of impacted raw tuples and summaries to update. It performs the update by
creating a temporary table of raw data impacted by the aggregate modification.
We also describe an optimized version of PAM that achieves better performance
when the use of additional semantics (e.g., dependencies) is possible.

This paper is a consolidation and extension of material presented in [6–8].
In this paper, we extended the PAM algorithm in such way it accommodates
semantic dependencies. This extension leads to a better performance. Also, we
conducted extensive experiments on real data sets (see Section 6).

Paper Organization. The rest of this paper is organized as follows : Section
2 defines the problem and states the motivations. Section 3 introduces some
notations and definitions. Section 4 discusses the current and ad-hoc solutions
for aggregate-based update propagation. In Section 5, we describe the algo-
rithm (and its extension) which rests on a convenient exploitation of dimension-
hierarchies. Section 6 shows the evaluation and the experimental results of both
the existing approach and our algorithms. We conclude in Section 7.

2 Problem Statement and Motivations

Our research motivations come from a typical predictive analytics system, a sales
forecasting system. A sales forecasting system, also called a business forecast-
ing system, is a forecasting system allowing achievable sales revenue, based on
historical sales data, analysis of market surveys and trends, and salespersons’
estimates5. The goal is to predict the forthcoming stages of sales of some com-
pany or organization. The sales forecasting is one of the most difficult areas of
management, where a lot of experience and knowledge is required for accurate
prediction. It is done through detailed analysis of all the available information
regarding the different aspects of sales. This future prediction will help the com-
pany to calculate profits, to make decisions on investments, and to launch new
products and services. The implementation of sales forecasting systems will help
the company to improve the methods in targeting new customers, thereby giving
greater sales output, and supreme customer service. Also, it will help to reach
maximum efficiency through proper scheduling of its various activities. An ef-
fective sales forecast can have a positive impact on: financing and valuation,
inventory management, order management, sales headcount capacity planning,
sales revenue, visibility into sales activities [9]. The sales forecasting process is
managed by a key person who can be: a sales or financial analyst; a sales op-
erations manager; a sales finance manager or similar other positions. The other
intended users of the forecast can be staff of other departments than sales or
marketing as discussed above.

5 See http://www.businessdictionary.com/definition/sales-forecast.html

32 H. Feng et al.

To clearly define our problem, we first review how dimensions, hierarchies
and the basic data schema are used by visualization tools of OLAP systems
[4, 15, 19].

OLAP systems employ multidimensional data models to structure raw data
into multidimensional structures in which each data entry is shaped into a fact
with associated measure(s) and descriptive dimensions that characterize the fact.
The values within a dimension can be further organized in a containment type
hierarchy to support multiple granularities.

In the example shown in Figure 1, we present the model to describe the di-
mensions together with their alternative hierarchies used in a sales forecasting
system. This dimension-hierarchy data model is based on one fact table and three
different dimensions. The fact table contains four measures: turnover, quantity,
price, and profit. We would like to mention that in the fact table of a forecasting
system, there are not only “facts”, which are achieved results, but also predic-
tions. The three dimensions refer to customer, product and time. Each dimension
has its hierarchies to describe the organization of data. The customer dimension,
the product dimension and the time dimension have 4 hierarchies, 4 hierarchies,
3 hierarchies, respectively. For instance, the second hierarchy, “Hierarchy Geog-
raphy”, of customer dimension is a geographical hierarchy for analyzing sales by
area of sales. Customers are grouped by city for level 1, by department for level
2 and by country for level 3. Sales are aggregated at each level according to this
geographical organization when they are analyzed through this hierarchy.

Regarding the visualization, OLAP systems employ materialized views to
store derived information in order to avoid extra response time. In the example
of sales, derived instances for customers and products are added to represent
elements in superior hierarchy levels, such as the creation of a derived customer
instance for the city of Lyon, a second one for the Rhône department and a
third one for the country France. Thus, the system has three new entries in
the customer dimension and accordingly some aggregated sales in the fact table

Fig. 1. Example of a fact table with different hierarchies of three dimensions which are
used to analyze raw data

Update Management in Decision Support Systems 33

corresponding to these newly created derived instances. Finally, all the elements
of every hierarchy level from every dimension are aggregated and added to the
dimension and fact tables. This pre-calculation guarantees an immediate access
to any direct aggregated information, while users perform visualization demands.

However, the visualization in a forecasting system is not the last operation as
in other OLAP systems. The systems only produce an initial version of the sales
forecasts, which are then reviewed by experienced salespersons. Salespersons
check these mathematically generated sales forecasts, take into account some
issues not considered by the system and perform some necessary adjustments.
For example, promotional offers can lead to higher turnover during the concerned
period, but can also cause a decrease in turnover for the next few days because
of the carried inventory. Salespersons should make some modifications for these
two periods. In other cases, sales managers can also perform some modifications
in order to simulate a new marketing objective. They make an estimation on a
level of one hierarchy and analyze the modification impacts on other levels, e.g.,
the detailed customer level, to decide whether the target is achievable. The fact
that this update takes place on an aggregated level constitutes the major specific
feature of sales forecasting systems. Compared to traditional OLAP systems in
which source data are considered to be static, data in sales forecasting systems
could be modified many times to obtain a final result.

Hence, sales forecasting systems need to have the ability to quickly react to
data modification on an aggregated level. The problem we need to deal with
can be generalized to include how to efficiently update aggregated data
through a dimension-hierarchy structure.

The motivating case study we consider is a real operational sales forecasting
system called Anticipeo. In all cases, the current solution calculates new results
for raw data and reconstructs all the summaries from scratch. This solution
clearly leads to serious optimization issues.

3 Notations and Definitions

In the presentation of the algorithms, we use some notations and predicates. In
this section, we introduce some definitions. In the following sections:

– T stands for all raw tuples
– A stands for all the aggregates in the materialized view
– α is a distributive aggregate function (e.g., SUM)
– A=αT is an aggregate of A that employs the aggregate function α on a set
of tuples T ⊆ T

Definitions
Definition 1 (tuple dependency). Given an aggregate A=αT and a set of raw
tuples T’, A is said to depend on T’ iff T ∩ T ′ �= ∅.

34 H. Feng et al.

Definition 2 (tuple dependency predicate). dep(A, T’) returns true if the
aggregate A depends on the set of raw tuples T’, false otherwise.

Definition 3 (impacted tuple). A tuple t is said to be impacted by the modifi-
cation performed on the aggregate A=αT iff A depends on the tuple t.

Definition 4 (aggregate dependency). An aggregate A=αT is said to depend
on the aggregate A’=αT ′ iff A depends on T’.

Definition 5 (impacted aggregate). An aggregate A=αT is said to be impacted
by the modification on the aggregate A’=αT ′ iff A depends on A’.

Definition 6 (aggregate impact predicate). imp(A, A’) returns true iff the
aggregate A is impacted by the modification of the aggregate A’, false otherwise.

Let us show on an example how an aggregation-level modification can impact
other data by using these definitions and predicates (see Figure 2).

Fig. 2. Example of data modification on an aggregated level in a dimension-hierarchy
structure and the impact of the modification

In this example and for the sake of simplicity, we consider only two hierar-
chies for the customer dimension and the product dimension respectively. In the
fact table, we consider only 10 raw tuples: named from a to j. Aggregates at
superior hierarchy levels are presented by rectangles including the raw tuples
which generate corresponding aggregates. For instance, the circled rectangle of
level 2 of hierarchy 2 in the customer dimension represents the aggregate α{a,i,j}.
This presentation denotes that the aggregate α{a,i,j} depends on the set of raw

Update Management in Decision Support Systems 35

tuples {a,i,j}. In the specific case of a sales forecasting system, the result of the
aggregate α{a,i,j} is the sum of the base sales a, i and j. Other aggregates are
presented in the same manner. The root rectangles of every hierarchy stand for
all the sales, therefore, they have the same results in spite of different hierarchies.

Figure 2 depicts the underlying data structure when the system presents the
prediction result to sales managers. Sales managers analyze the sales and then
decide to modify the value of an aggregate, for example the aggregate α{a,i,j}
(i.e., to evaluate beforehand the impact of a strategical or tactical move). As the
aggregate α{a,i,j} is generated from a, i and j, if its value is modified, the results
of the three tuples should be updated afterwards. Meanwhile, these three tuples
are also the raw tuples that are involved in the calculation of other aggregates
in hierarchies of some other dimensions, e.g., the aggregate α{a,c,d} of level 1
of hierarchy 1 in the customer dimension and the aggregate α{b,e,h,j} of level 2
of hierarchy 2 in the product dimension. Hence, all the aggregates containing
any of these three tuples in their composition should be updated as well. These
aggregates impacted by the modification on the aggregate α{a,i,j} in this example
are darkened in Figure 2.

4 Current Solution: Principles and Limitations

A current solution consists in identifying approaches to similar problems and
building on the implemented solutions. In this system, methods to calculate the
aggregates are already well defined. The current solution uses these methods
to calculate new results. The steps of the current solution which consists in
recomputing everything are the following:

1. calculate the raw tuples wrt the modification and the decomposition rules,
2. recompute all the aggregates.

To illustrate this process, consider the example shown in Figure 2. We assume
the actual result of the aggregate α{a,i,j} is 500 000 euros. The sales manager
has a new marketing plan, estimated to achieve 600 000 euros sales. The result of
α{a,i,j} is updated, and the sales manager needs to evaluate the impact on other
aggregates in order to determine whether this new plan is achievable in different
angles. This example introduces two different values of the aggregate α{a,i,j}.
We denote by val(α{a,i,j}) the value before the modification and by val’(α{a,i,j})
the value after the modification. In this example, val(α{a,i,j}) = 500 000 and
val’(α{a,i,j}) = 600 000. Assume that the distribution of sales on raw tuples a, i
and j is 100 000 euros, 200 000 euros and 200 000 euros, respectively. We then
denote by val(t) the value of the attribute considered in the computation for a
tuple. We have, in this example, val(a) = 100 000, val(i) = 200 000 and val(j) =
200 000. Here, we note that each of the raw tuples does not contribute equally
to the result of the aggregate. We should consider the contribution of each raw
tuple while calculating their new results.

Definition 7 (tuple weight). A tuple weight is a measure to evaluate the contri-
bution of a tuple to the calculation of an aggregate. It does not depend neither

36 H. Feng et al.

on the value of the raw tuple nor on the value of the aggregate. A tuple weight
could be defined as a constant or as a variable relating to some criteria. In this
case, where the result of an aggregate is the simple sum of raw tuples, the tuple
weight is defined as a variable and it can be determined as follows:

weight(t, A) = val(t)
val(A) ,

where t is a tuple and A is an aggregate depending on t.
By considering our example, we have:

weight(a, α{a,i,j}) =
val(a)

val(α{a,i,j})
= 100 000

500 000 = 0.2

weight(i, α{a,i,j}) =
val(i)

val(α{a,i,j})
= 200 000

500 000 = 0.4

weight(j, α{a,i,j}) =
val(j)

val(α{a,i,j})
= 200 000

500 000 = 0.4

Please note that the total weight of all the raw tuples composing an aggregate
should be equal to 1. Then, the propagation of the modification using the current
solution is processed as follows:

Step 1: calculation of new values of raw tuples
We aim to compute new values of each raw tuple impacted by the modification
of the aggregate. Then, the formula to calculate the new result for a tuple t is:

∀t ∈ T : val′(t) = val(t) + (val′(αT)− val(αT)) ∗weight(t, αT)
In our example, the new values for T={a,i,j} are:

val′(a) = 100 000 + (600 000− 500 000) ∗ 0.2 = 120 000

val′(i) = 200 000 + (600 000− 500 000) ∗ 0.4 = 240 000

val′(j) = 200 000 + (600 000− 500 000) ∗ 0.4 = 240 000

Step 2: recalculation of aggregated information
The second step consists in recomputing the aggregates of all levels for all hi-
erarchies of all dimensions. We follow the same process as when the aggregates
were previously created for the hierarchies, i.e., a new execution of the query
associated with the materialized views. For instance, the aggregate α{a,c,d} is an
aggregate of the raw tuples a, c and d ; so its new result is calculated by summing
the sales of a, c and d with their updated values.

Following this straightforward solution, we can regenerate all the hierarchies
of the whole schema with updated data.

5 Proposed Algorithms

The current solution advocates the calculation of all the aggregates of all the
hierarchies. However, this solution performs some useless work. If we look closely
at the recomputed aggregates in Figure 2, only the dark ones are concerned with
the modification and need to be updated, that is, 19 aggregates out of 33. Hence,
the current solution leads to the calculation of 14 aggregates in vain. The key

Update Management in Decision Support Systems 37

idea is thus to be able to identify and recompute only the concerned elements.
By considering the dependencies between aggregates and raw tuples, we can
identify the exact aggregates to modify and hence avoid useless work.

Another drawback of the current solution is its heavy recomputing proce-
dure. Operations of removing and adding aggregates ask for heavy maintenance
of index tables and physical storage. Nevertheless, our approach can keep the
aggregates at their logical and physical location and avoid extra effort.

Moreover, it is worth underlining that the solution proposed by [16] is quite
different from our solution. Our solution integrates a complex forecasting engine
which is able to plan future results with satisfactory precision. It helps decision
makers not to make their own plans, but only to adjust these autocalculated
results. That is the reason why we need to use an interactive adjustment solution
with almost no latency.

5.1 PAM Algorithm

In this section, we explain how the PAM algorithm (Propagation of Aggregate-
based Modification) [8] identifies and updates the relevant sets of aggregates.
We also present its utilization in more complex data schema with multiple hier-
archies. The time complexity is also calculated to show its scalability.

Description of the Algorithm. A coarse-grained description of our algorithm
is composed of the following steps:

1. retrieval of participating raw tuples to the modified aggregate;
creation of a temporary table for the raw tuples to be updated;
and calculation of the differences for raw tuples resulting from the old values
and the new ones;

2. update of impacted raw tuples;
3. identification of impacted aggregates;

and update of impacted aggregates based on previously calculated differences
of raw tuples.

In the following, δ for a tuple or an aggregate stands for the difference of the
value of a tuple or the result of an aggregate before and after the modification.

The algorithm for the update propagation through a dimension-hierarchy ar-
chitecture is shown in Table 1. The description of this algorithm uses the nota-
tions defined in Section 3. Line 1 to line 4 identify the raw tuples involved in the
modification and calculate their differences. Line 5 allows to update these raw
tuples. Line 6 to line 10 identify impacted aggregates and perform the update.

Let us take the previous example (Section 4) to illustrate the approach. A
sales manager changes the sales of the aggregate α{a,i,j} from 500 000 euros to
600 000 euros. Once the modification is confirmed, the system will proceed using
the algorithm in Table 1.

38 H. Feng et al.

Table 1. Algorithm PAM for the update propagation of an aggregate modification

Algorithm PAM (Propagation of Aggregate-based Modification)
Input: Schema S, aggregate A=αT , the current result CR of T

and the updated result UR of A
Output: An updated schema S’ of all hierarchies
Algorithm:
1: Calculate the modification of the aggregate A:

δ = UR− CR
2: Retrieve participating raw tuples of A :

T = {x1, x2, ..., xn}
3: Create a temporary table ΔX for T containing:

element identifier, keys of the dimensions and delta δi.
4: Calculate the difference for every raw tuple:

∀xi ∈ T : δi = δ ∗ weight(xi)
Add update attribute δi of table ΔX for each tuple xi

5: Update all the impacted raw tuples:
∀bti ∈ T : val′(bti) = val(bti) + δbti

6: For each level of each hierarchy of each dimension
7: Identify impacted aggregates A’ in all aggregates A:

A′ = {Ai ∈ A|imp(A,Ai)}
8: Calculate the difference for every aggregate:

∀Ai ∈ A′: δAi =
∑

xi∈{t∈T |dep(Ai,t)} (δxi)

9: Update the impacted aggregates:
∀Ai ∈ A′: val′(Ai) = val(Ai) + δAi

10: End for

Step 1: retrieval of the participating tuples to the aggregate, creation
of a temporary table and calculation of differences
Retrieve the composition of the aggregate α{a,i,j}: sales of the aggregate α{a,i,j}
is the sum of a, i and j. Hence, the composing tuples are a, i and j.

Create a temporary table ΔX for the raw tuples that are identified.
Calculate the δ for the aggregate α{a,i,j}: δ = 600 000 - 500 000 = 100 000.
Calculate the difference for every tuple using the tuple weight.
δa = δ ∗ weight(a) = 100 000 ∗ 100 000

500 000 = 20 000

δi = δ ∗ weight(i) = 100 000 ∗ 200 000
500 000 = 40 000

δj = δ ∗weight(j) = 100 000 ∗ 200 000
500 000 = 40 000

The resulting differences of raw tuples are added to the temporary table. This ta-
ble also contains the dependency information to higher hierarchical levels (shown
in Table 2).

Step 2: update of raw tuples
Update the raw tuples impacted by the aggregate modification.

The new values of these raw tuples are computed by their actual values and
the differences calculated in step 1.

Update Management in Decision Support Systems 39

Table 2. Temporary table ΔX created to store impacted raw tuples

element customer product
delta δxidentifier key key

a customer keya product keya 20 000
i customer keyi product keyi 40 000
j customer keyj product keyj 40 000

val′(t) = val(t) + δt
In this case, the three impacted raw tuples are updated to:

val′(a) = val(a) + δa = 100000+ 20000 = 120000
val′(i) = val(i) + δi = 200000 + 40000 = 240000
val′(j) = val(j) + δj = 200000 + 40000 = 240000

Step 3: identification of impacted aggregates and update of impacted
aggregates
Identify level by level all the aggregates impacted by the modification of the
result of the aggregate α{a,i,j} by using the dependencies between aggregates
and registered raw tuples in the temporary table ΔX. In this case, we identify
all the dark rectangles in Figure 2.

Propagate the changes to every impacted aggregate. Let us illustrate this issue
with the customer dimension hierarchy 1. We loop for every level of the hierar-
chy. For level 1, two aggregates to be updated are identified: α{a,c,d} and α{i,j}
because they have at least one of the registered raw tuples in their composition.
The aggregate α{a,c,d} depends on a, c and d and among these raw tuples, only
one is registered in the table ΔX, namely, the raw tuple a. Hence, the value of
α{a,c,d} is changed only by adding δa (here 20 000).

val′(α{a,c,d}) = val(α{a,c,d}) + δa
val′(α{a,c,d}) = val(α{a,c,d}) + 20 000

The new value of the other aggregate α{i,j} at level 1 is then
val′(α{i,j}) = val(α{i,j}) + δi + δj
val′(α{i,j}) = val(α{i,j}) + 40 000 + 40 000

The root aggregate α{a,b,c,d,e,f,g,h,i,j} at level 2 of the same hierarchy can be
calculated in a similar way with only the differences of depending raw tuples
which are registered in ΔX, a, i and j :

val′(α, {a, b, c, d, e, f, g, h, i, j})
val′(α{i,j}) = val(α{a,b,c,d,e,f,g,h,i,j}) + δa + δi + δj
val′(α{i,j}) = val(α{a,b,c,d,e,f,g,h,i,j}) + 20 000 + 40 000 + 40 000

Doing this way, we update only the aggregates impacted by the modification for
hierarchy 1 of the customer dimension. The propagation to other hierarchies are
processed in the same manner. Finally, we obtain updated data over the entire
schema.

40 H. Feng et al.

PAM in the case of multiple hierarchies
In the example that illustrates the PAM algorithm, the aggregate, subject to
a modification, results from only one hierarchy. Meanwhile, a modification can
take place on an aggregate resulting from multiple hierarchies, for example, the
sales of the product category “office furniture” for the city of “Lyon”. The PAM
algorithm can also be used in these cases, i.e., aggregates resulting from multi-
ple hierarchies are subject to a modification. Compared with the cases in which
one hierarchy is involved, only the queries in the identification of raw tuples
are different. There are more restrictions when retrieving participating tuples.
With one hierarchy, we select raw tuples whose hierarchical classification is the
modified aggregate regarding the hierarchy. With multiple hierarchies, we select
raw tuples whose every hierarchical classification corresponds to the modified
aggregate. In the example of the sales of the product category “office furniture”
for the city of “Lyon”, the impacted raw tuples are the intersection of raw tuples
belonging to the product category “office furniture” and the ones corresponding
to the city of “Lyon”.

Main differences with the Jaecksch’s approach
The solution proposed by Jaecksch [16] is composed of 5 steps. In step 1, the
copy phase involves to copy data stemming from previous years on which the
future calculation will be based. In our approach, data are straightly produced
by a statistical model based on sales over three last years. In step 2, the deleting
phase allows to clean irrelevant data. In step 3, the reevaluation phase allows to
apply the necessary transformation to move from last year data to current data.
These transformation functions are not modeled in our solution because these
transformations are implicitly produced by a statistical model. That is why we
do not have equivalent functions in our solution. In step 4, the disaggregation
phase distributes the data updates from aggregated customer level to individual
fact level. This point is the core of our solution and we propose an additional
optimization phase to efficiently improve the update of all impacted aggregates.
In step 5, the forecast computation phase allows to produce forecast raw data
based on the transformation functions previously applied. The forecasting data
generation is a time-consuming process. In our context, we need to provide users
with updated results within nearly no delay. It is not relevant to run the fore-
casting data generation after each modification of forecasting data. Therefore, in
our approach, we consider this “forecast generator” as a black-box and we do not
concern the production process of forecast data. We focus on the efficient prop-
agation of updates. Our entire solution allows to straightly produce forecasts by
a technically advanced statistical model, to manually modify an aggregate based
on forecast raw data for specific needs and to efficiently update all impacted
forecast raw data and related aggregates.

Time Complexity. In order to estimate the scalability of the PAM algorithm,
we evaluate its performance.

Update Management in Decision Support Systems 41

Let n be the number of raw tuples impacted by the aggregate modification,
k be the total number of levels for all hierarchies and m be the average number
of aggregates to be updated in a given level. Let ti be the time unit consumed
by the actions carried out in line i of the algorithm given in Table 1, then line 1
is considered to consume time t1, line 2 uses n ∗ t2 and so forth. The total time
required to run this algorithm can be estimated as:

T = t1 + n ∗ t2 + n ∗ t3 + n ∗ t4 + n ∗ t5 + k ∗ (n ∗ t7 + n ∗ t8 +m ∗ t9)
Subsequently the time complexity of the PAM algorithm is estimated. In prac-
tical cases, as the value of n is much larger than m, the time complexity can be
approximated by Ω(k*n). We see that Ω(k*n) is polynomial in k and n, hence
the PAM algorithm is polynomial (in time).

5.2 PAM II Algorithm

In a second stage, we propose the PAM II algorithm, which is an extended
version of PAM algorithm. The main difference between PAM and PAMII is the
extra data we need to store in order to efficiently propagate the updates. The
PAM II algorithm uses additional semantics (e.g., dependencies between raw
tuples and aggregates) in order to improve the performance when propagating
the aggregate modification. In the following paragraphs, we will describe the
PAM II algorithm and show the difference with the PAM algorithm. In the
PAM algorithm, we perform a loop on each level of each hierarchy to identify
the aggregates to update. This means that we have to execute one SQL query
per level per hierarchy. For the example of hierarchies shown in Figure 1, we have
to execute 17 queries for customer dimension, 12 queries for product dimension
and 7 queries for time dimension. If these similar queries can be grouped into a
single query, the execution time will be reduced.

The dependencies between aggregates and raw tuples are already fixed when
the dimensional schema is determined. The idea of this derivative is to pro-
vide direct access from all aggregates to raw tuples by employing meta-tables
which contain their dependency information. In addition, the temporary table
ΔX (Table 2) contains the keys of the dimensions (one key per dimension). If
the identification of aggregates through dependency information by providing
informations on raw tuples is possible, we can reduce the size of this temporary
table by not storing the keys of the dimensions.

The meta-tables are persistent tables and are created when the dimension
schema is determined. They need to be maintained up-to-date afterwards when
the schema is modified. One meta-table is created for one materialized view to
limit the size of the meta-table for the sake of further efficient search. There are
two attributes in these tables: keys of aggregates and keys of their depending
raw tuples. Figure 3 depicts the database schema where the meta-table “depen-
dency info” links materialized views and the fact table sales in a sales forecasting
system.

The general approach of the PAM II algorithm remains the same as the PAM
algorithm. We first identify and update involved raw tuples and then identify and

42 H. Feng et al.

Fig. 3. The database schema for meta-table storing dependency information

update impacted aggregates by an intermediate temporary table. Nonetheless,
the detailed processing of the creation of temporary table and the identifica-
tion of aggregates is not the same. Since the dependency information already
exists in the database, we do not need to store the keys of the dimensions in
the temporary table. The temporary table has now only two attributes: the ele-
ment identifier and the delta for this element. The size of this temporary table
is reduced. Regarding the identification of the impacted aggregates, instead of
running through the dimension tables to identify impacted aggregates level by
level, we can identify them directly through the dependency meta-table at one
time.

Compared to the original algorithm PAM described in Table 1, the changes of
the derived algorithmPAM IImainly concern the lines 3, 6 and 10. The instruction
given in line 3 creates a temporary table with less attributes than the one created
by the original algorithm. For the update part of the aggregate, it is not necessary
to loop through the dimensions and levels to perform the aggregate updates be-
cause we can identify all the aggregates at one time by dependency information in
the meta-table. Line 6 and line 10 which intended to loop on levels of hierarchies
are removed. The PAM II algorithm is shown in Table 3.

There are some further advantages with the meta-tables. These tables give di-
rect dependency information between aggregates and raw tuples. This can serve
not only the aggregates, which can be directly deduced from raw tuples via
dimension hierarchy structure, but also the aggregates satisfying some specific
conditions, e.g., the sum of sales for retail stores whose turnover is more than
100 000 euros. Hence, the PAM II algorithm can be applied more widely to any
similar domain that needs to update raw tuples and other materialized views
from an aggregate modification.

Time Complexity. The performance of the PAM II algorithm is also calculated
to determine its scalability.

Consider n to be the number of raw tuples that are impacted by the aggregate
modification, k to be the total number of levels for all hierarchies and m to be
the total number of aggregates that are influenced by the modification in the
entire schema. As for PAM algorithm, we use the same method to estimate the

Update Management in Decision Support Systems 43

Table 3. Algorithm PAM II for the update propagation of a modification

Algorithm PAM II (Propagation of Aggregate Modification - II)
Input: Schema S, aggregate A=αT , the current result CR of T,

dependency meta-table D and the updated result UR of A
Output: An updated schema S’ of all hierarchies
Algorithm:
1: Calculate the modification of the aggregate A:

δ = UR− CR
2: Retrieve participating raw tuples of A :

T = {x1, x2, ..., xn}
3: Create a temporary table ΔX for T containing:

element identifier and delta δi.
4: Calculate the difference for every raw tuple:

∀xi ∈ T : δi = δ ∗weight(xi)
Add update attribute δi of table ΔX for each tuple xi

5: Update all the impacted raw tuples:
∀bti ∈ T : val′(bti) = val(bti) + δbti

6: Identify impacted aggregates A’ in all aggregates A:
A′ = {Ai ∈ A|imp(A,Ai)}

7: Calculate the difference for every aggregate:
∀Ai ∈ A′: δAi =

∑
xi∈{t∈T |dep(Ai,t)} (δxi)

8: Update the impacted aggregates:
∀Ai ∈ A′: val′(Ai) = val(Ai) + δAi

time complexity of the PAM II algorithm. The total time required to run this
algorithm is:

T = t1 + n ∗ t2 + n ∗ t3 + n ∗ t4 + n ∗ t5 + n ∗ t6 + k ∗ n ∗ t7 +m ∗ t8
In practice, as the value of n is much larger than m, the time complexity can be
approximated by O(k*n). We see that O(k*n) is polynomial in k and n, hence
the PAM II algorithm is polynomial (in time).

5.3 Other Aggregate Functions

The aggregate functions are generally divided into three classes [11]: distribu-
tive, algebraic and holistic. Distributive aggregate functions can be computed by
partitioning their input into disjoint sets, aggregating each set individually and
obtaining the final result by further aggregating the partial results. Among the
aggregate functions, COUNT, SUM, MIN and MAX found in standard SQL,
belong to this category. For example, COUNT can be computed by summing
partial counts. Algebraic aggregate functions can be expressed as a scalar func-
tion of distributive aggregate functions. AVERAGE, for example, is an algebraic
function since it can be expressed as SUM / COUNT. Holistic aggregate func-
tions (e.g., MEDIAN) cannot be computed by dividing the input into parts.

44 H. Feng et al.

We have introduced the PAM algorithm and its extension PAM II by using
the aggregate function SUM. These algorithms are also applicable with other
aggregate functions, except that in this work, we do not consider the holistic
aggregate functions.

COUNT. Actually, the result of COUNT for higher hierarchical levels is the
sum of the partial results corresponding to lower hierarchical levels. The PAM
and PAM II algorithms for the COUNT aggregate function are similar to the
algorithms used for the SUM function. We identify raw tuples involved in the
calculation of the modified aggregate, which is the result of COUNT. We calcu-
late the delta for each of those raw tuples and update them. Then, we identify
aggregates impacted by this modification and update those aggregates. The only
difference is the calculation of the delta δ for each raw tuple. The numbers used
in SUM can be decimal numbers, but the result of COUNT should only contain
natural numbers. We slightly modify the calculation mechanism in step 1, the
calculation of delta, of the PAM and PAM II algorithms by adding a prune phase
to the temporary table ΔX. Once the delta δ of each raw tuple is calculated by
their contribution weight of the result, it will be rounded to integer if necessary.
The rules are the following:

– if δ is an integer, it will be recorded as such.
– if δ is a decimal, the sum of fractional part of all decimal δ is 1, so

• the raw tuple having the biggest fractional part will get 1.
• in the case of equality for fractional part, the raw tuple having the biggest
integer part will get 1.

• in the case of equality for both integer and fractional parts, the first raw
tuple registered in the table ΔX will get 1.

AVG. We assume that if a view contains the AVG aggregate function, the mate-
rialized view will contain instead the SUM and COUNT functions.
The PAM and PAM II algorithms for AVG aggregate function are then re-
duced to the combination of algorithms for SUM and COUNT functions. The
only difference is that, for the function AVG, we slightly modify the structure
of the temporary table ΔX. Instead of storing one column for the delta (δ), two
columns are created: one for storing the delta of SUM (δsum), and the other one
for storing the delta of COUNT (δcount). The propagation of the aggregate mod-
ification, i.e. update of raw tuples involved and update of impacted aggregates,
is processed with the modification of results of SUM and COUNT functions. The
algorithms roughly remain the same.

MAX and MIN. The above functions, SUM, COUNT, AVG, generate new
tuples. However, the aggregate functions MAX and MIN do not generate new
tuples. Their results correspond to selected raw tuples. When the result of MAX
or MIN is modified, it is the value of the raw tuple (or raw tuples in the case
of equality) that is modified. We do not need to identify raw tuples involved in
the modification, because they are already known. We assume that we store the
MAX/MIN raw tuple(s) and their followers in the materialized views. The PAM

Update Management in Decision Support Systems 45

and PAM II algorithms only need to identify the impacted aggregates, whose
underlying modified raw tuple(s) are the same as those of MAX/MIN or as their
followers. When the value of a MAX or a MIN raw tuple is modified, we compare
directly the follower with the new value. If the result after modification is bigger
than its follower in the case of MAX or smaller than the follower in the case of
MIN, the aggregate result does not need to be updated. If not, we replace the
MAX/MIN tuple by its follower. The followers’ information needs to be updated
consequently.

6 Experiments

The main technical features of the server on which we conducted the evaluation
are: two Intel Quad core Xeon-based 2.4 GHz, 16 GB RAM and one SAS disk
of 500 GB, 15000 rotations per second. The operating system is a 64-bit Linux
Debian system using the EXT3 file system. Our evaluation has been performed
on real data (copy of Anticipeo database) implemented on MySQL. The total size
of the database is 50 GB, out of which 50% is used in the computation engine,
45% for result visualization and 5% for the web framework. The problem we
deal with is concerned with the result visualization. Our test only focuses on the
data used by the update: one fact table and dimension tables.

6.1 Evaluation of Different Methods with Two Dimensions

In this first data schema, there are only two dimensions: customer and product.
The fact table containing the keys of the dimensions and forecasts measures has
about 300 MB, with 257.8 MB of data and 40.1 MB of indexes. There are 688 419
raw tuples in this fact table. As we know, materializing all aggregates of a data
cube is not applicable in a real application. In this experiment, we materialized
aggregates resulting from one hierarchy of one dimension, that represents 6 861
aggregates. The customer dimension table contains 5240 real customers and
1319 derived customer instances (6559 in total) and the product dimension table
contains 8256 real products and 404 derived product instances (8660 in total)
(ref. see Section 2 for the definition of derived customer and product instances).

Each of these dimension tables is composed of 4 hierarchies. It presents a sim-
ilar structure to the one depicted in Figure 1 with different numbers of levels in
each hierarchy (from 2 to 4 levels). Note that the time dimension is investigated
within the fact table for some performance issues [6, 7]. Hence, only two explicit
dimensions are materialized in dimension tables.

In this section, we will show the evaluation results of different methods in
a two-dimensional environment The objective of the evaluation is to show the
time of updating the whole schema using the current solution and our PAM and
PAM II algorithms. We also validate the estimation of their complexity. Different
tests are performed by considering various modifications. This refers to aggregate

46 H. Feng et al.

modifications which take place on each level of 3 hierarchies, which have 2, 3
and 4 levels, respectively. In our evaluation, we modify one aggregate from each
level of each of these 3 hierarchies to compare the evaluation time resulting
from the current solution and from our approaches. The number of raw tuples
involved in the aggregate modification is shown in Table 4. In other words, this
is the number of tuples stored in the temporary table for the PAM and PAM II
algorithms.

Table 4. Number of raw tuples involved by the aggregate modification on the appro-
priate level of hierarchies in the two-dimensional schema

Hierarchy H1 Hierarchy H2 Hierarchy H3
level 1 level 2 level 1 level 2 level 3 level 1 level 2 level 3 level 4

Number 64 308 688 419 61 567 61 580 688 419 4 739 50 071 262 771 688 419

We first perform tests with the current solution. The result is shown in Table 5.
In this table, we see that when the modification occurs at level 1 of the Hierarchy
H1, it takes 0.9 second to perform the step 1, to update raw tuples and 179.5
seconds to perform step 2, to delete and reconstruct all the aggregates. The
total time spent for the update of the entire schema caused by this modification
is 180.4 seconds. This table shows time spent for updates of the whole schema
when modifications occur at different level of different hierarchies. We note that
the time devoted to step 2 stays almost the same for different hierarchies. That
is because it is concerned with the destruction and the recomputation of the
whole schema each time. This operation is also the source of the latency of the
current solution.

Table 5. Evaluation time of updating the whole schema following an aggregate modi-
fication by using the current solution in a two-dimensional data warehouse

Hierarchy H1 Hierarchy H2 Hierarchy H3
(seconds) level 1 level 2 level 1 level 2 level 3 level 1 level 2 level 3 level 4
Step 1* 0.9 7.9 0.9 1.0 7.5 0.08 0.8 2.9 7.8
Step 2* 179.5 182.1 185.7 181.4 188.4 181.1 179.6 179.9 176.6
Total 180.4 190.0 186.6 182.4 195.9 181.2 180.4 182.8 184.4
* Step 1: updating raw tuples;
* Step 2: deleting outdated aggregates and constructing updated aggregates

The same tests are performed with our PAM algorithm. The result is shown in
Table 6. We take the same example introduced within the current solution. When
we modify an aggregate at level 1 of the Hierarchy H1, it takes 0.3 second to
perform stage 1, to create a temporary table containing raw tuples information;
1.0 second to perform stage 2, to update raw tuples and 4.4 seconds to perform

Update Management in Decision Support Systems 47

Table 6. Evaluation time of updating the whole schema following an aggregate modi-
fication by using our PAM algorithm in a two-dimensional data warehouse

Hierarchy H1 Hierarchy H2 Hierarchy H3
(seconds) level 1 level 2 level 1 level 2 level 3 level 1 level 2 level 3 level 4
Step 1* 0.3 3.0 0.3 0.3 2.6 0.05 0.3 1.4 3.0
Step 2* 1.0 8.1 0.9 0.9 7.9 0.1 0.8 3.3 8.3
Step 3* 4.4 47.2 4.4 4.4 49.4 0.5 3.5 17.9 47.4
Total 5.8 58.3 5.6 5.6 59.8 0.7 4.5 22.6 58.7
* Step 1: creating a temporary table of four attributes;
* Step 2: updating raw tuples;
* Step 3: propagating modifications to impacted aggregates.

stage 3, to propagate modifications to all impacted aggregates. In total, we spend
5.8 seconds to update the entire schema.

If we analyze the results of different levels of one hierarchy, we can see that
they roughly correspond to our estimation of first time complexity criterion, i.e.,
number of raw tuples involved in a modification. When a modification occurs
in a high level, the number of raw tuples involved in the modification could
be large. Then, the execution of the algorithm takes more time. In contrast, a
modification on a low level impacts less raw tuples and thus less time is required
to update the whole schema. That is why in this table, we note that the time
spent to deal with a higher level is greater than the time required to deal with
lower levels of the same hierarchy.

To validate the PAM II algorithm, we perform the same tests as we did with
the current solution and the PAM algorithm. The result is shown in Table 7. We
consider the same example introduced within the current solution and the PAM
algorithm. When we modify an aggregate at level 1 of the Hierarchy H1, it takes
0.3 second to perform stage 1, to create a temporary table containing raw tuples

Table 7. Evaluation time of updating the whole schema following an aggregate modi-
fication by using our derived PAM II algorithm in a two-dimensional data warehouse

Hierarchy H1 Hierarchy H2 Hierarchy H3
(seconds) level 1 level 2 level 1 level 2 level 3 level 1 level 2 level 3 level 4
Stage 1* 0.3 2.7 0.3 0.3 2.5 0.05 0.3 1.2 2.7
Stage 2* 1.0 3.9 0.9 0.9 3.5 0.1 0.7 2.6 3.5
Stage 3* 5.9 29.2 3.3 3.4 28.8 0.3 2.4 11.2 29.6
Total 7.2 35.7 4.5 4.6 34.8 0.4 3.4 15.1 35.9
* Stage 1: creating a temporary table of two attributes;
* Stage 2: updating raw tuples;
* Stage 3: propagating modifications to impacted aggregates.

48 H. Feng et al.

information; 1.0 second to perform stage 2, to update raw tuples and 5.9 seconds
to perform stage 3, to propagate modifications to all impacted aggregates. In
total, we spent 7.2 seconds to update the entire schema. Compared to 5.8 seconds
using the PAM algorithm, this extended version does not show much effect of
performance improvement for low level modifications. High level modifications
show that the PAM II algorithm is better when compared to the other solutions.
For example, only 35.7 seconds are needed to propagate a modification occurring
on level 2 of the hierarchy H1. Using the PAM algorithm, we should spend 58.3
seconds for the same operation.

The results of different levels of one hierarchy also confirm our estimation of
first time complexity criterion, i.e., number of raw tuples involved in a modi-
fication. High level modification takes more time as the number of raw tuples
involved in the modification might be large. In contrast, a modification on a low
level impacts less raw tuples and requires less time to update the whole schema.
That is why in this table, the time devoted to a higher level is more important
than the time required for a lower level of the same hierarchy.

6.2 Comparison of the Three Methods

We compare the total evaluation time using the three solutions in one chart
shown in Figure 4.

Fig. 4. Comparison of evaluation time using the current solution, the PAM and PAM
II algorithms

Roughly speaking, the new algorithms display much better performance than
the current solution. In most cases, the evaluation time is significantly reduced.
For example, for the modification at level 1 of hierarchy H3, the propagation
time is only 0.7 second using the PAM algorithm and 0.4 second using the PAM
II algorithm. Compared to 181.2 seconds spent by the current solution, the PAM

Update Management in Decision Support Systems 49

and PAM II algorithms are 257 times faster and 452 times faster respectively.
Even in the worst case where the root aggregate (the single aggregate at top
level of every hierarchy) is subject to modifications, we get a nearly 220% and
437% better performance using the PAM and PAM II algorithms. The result
confirms that, instead of recalculating all the aggregates as the current solution
does, our solutions are more efficient by identifying and updating the exact set
of aggregates impacted by the modification.

Regarding the comparison between our algorithms, PAM and PAM II, PAM II
shows an average of 40% better performance. In particular, higher levels benefit
more from the existence of the meta-tables by avoiding complex joins. Never-
theless, we need more space. In this test, one meta-table is created to contain
dependencies between raw tuples and hierarchical aggregates. There are 688 419
raw tuples and 6 861 aggregates in this test database. Even if the number of
tuples in the meta-table is not the Cartesian product of raw tuples and aggre-
gates, more precisely 688 419 * 6 861, there are still 17 711 504 tuples created
in this meta-table. This represents 630 MB of data and 627 MB of indexes
in terms of physical storage. For a database of 50 GB, the meta-table of 1.23
GB is relatively large. In addition, if other materialized views need to be up-
dated in the same way, additional meta-tables should be created. Hence, when
the physical storage is not a constraint, we recommend the PAM II algorithm.
Otherwise, the PAM algorithm is a good candidate.

6.3 Evaluation of Different Methods with Three Dimensions

In the second data schema, we investigate the performance with three dimen-
sions: customer, product and time. In Section 6.1, we introduce the fact that the
time dimension of this application is merged into the fact table. In this section,
we make the time dimension explicit to create an environment of three dimen-
sions with real data. The customer dimension table and the product dimension
table are the same as the ones used in the schema with two dimensions. The time
dimension table has 60 basic lines for 60 months and 13 derived time instances
for corresponding different hierarchical years. The customer dimension and the
product dimension are both composed of 4 hierarchies and the time dimension is
composed of 2 hierarchies. The fact table containing the keys of the dimensions
and forecasts measures has about 985.5 MB with 453 MB of data and 532.5
MB of indexes. There are 6 995 465 raw tuples in this fact table. Like in the
experiment with two dimensions, we only materialized aggregates resulting from
one hierarchy of one dimension, which represents 6 897 aggregates.

Similar tests are performed. The number of raw tuples involved in the modi-
fication is shown in Table 8.

We compare the total evaluation time using the three solutions in a three-
dimensional environment in one chart shown in Figure 5.

50 H. Feng et al.

Table 8. Number of raw tuples involved in the modification of each test

Hierarchy H1 Hierarchy H2 Hierarchy H3
level 1 level 2 level 1 level 2 level 3 level 1 level 2 level 3 level 4

Number 1 245 321 6 995 465 825 955 826 106 6 995 465 98 190 498 173 2 647 289 6 995 465

Fig. 5. Comparison of evaluation time using the current solution, the PAM and PAM
II algorithms in a three-dimensional schema

In most cases, proposed algorithms present a better performance than the cur-
rent solution. We take the example of the level 1 of hierarchy H1, time spending
to update the whole schema is reduced from 220.1 seconds using current solution
to 56.4 seconds using PAM algorithm and 30.4 seconds using PAM II algorithm,
which is a gain of 290% and 625% respectively for PAM and PAM II. In the case
of modifying an aggregate, which impacts less raw tuples, the gain of PAM and
PAM II is more important. As for the example of the level 1 of hierarchy H3,
the PAM and PAM II algorithms get fifty times and hundredfold improvement
respectively.

However, we notice that in the worst case where the root aggregate (the sin-
gle aggregate at top level of every hierarchy) is subject to modifications, the
current solution of reconstructing all the aggregates is more efficient than the
PAM algorithm. Applying the PAM algorithm on this data is not always op-
timal. Hence, when implementing the PAM algorithm in the real application,
we propose an alternative. As mentioned previously, the PAM algorithm is lin-
ear to the number of raw tuples involved in an aggregate modification. We can
compute the average time spent on a single raw tuple by dividing the total time
by the number of raw tuples involved. In the case where the PAM algorithm is
less efficient in time than the current solution, we switch to the current solution.
The threshold is easy to determine. The execution time of the current solution
is known, the average time spent on a single raw tuple by PAM is also known.

Update Management in Decision Support Systems 51

Their division is the threshold under which PAM is more efficient. Therefore,
when propagating an aggregate modification to the whole schema, we estimate
the number of raw tuples that should be updated and make the decision of which
solution to adopt.

In this schema, the meta-table of PAM II, which contains the dependencies
between aggregates and raw tuples has 191 279 805 tuples. This represents 15
GB including 9.7 GB of data and 5.3 GB of indexes. In the case where the
physical storage is not a constraint, the PAM II is the optimal solution.

7 Conclusion

In this paper, we discussed the problem of efficiently propagating the impact
of modifications performed on aggregates through dimension hierarchies. A cur-
rent solution naively recomputes all the aggregates of all the hierarchies, which
is time-consuming and does not fulfill the performance needs. We proposed the
PAM algorithm and its extension to reduce the propagation cost. Our algorithm
is based on the dependencies that may exist between aggregates and raw data. It
identifies the exact sets of aggregates to be updated and calculates the delta for
each aggregate. We conducted experiments that show that with our approach,
the update propagation time can be significantly reduced compared to the cur-
rent solution implemented in a real application.

As further work, we will take into consideration the scalability of the algo-
rithms. We have shown in this paper that the algorithms are polynomial in time.
We will be facing performance issues when databases reach a certain size. Our
idea is to potentially create groups over similar raw data, identify dependencies
between aggregates and groups and then adapt the algorithms to be able to
manipulate groups instead of raw data. Another future way to optimize our al-
gorithm is to identify how some solutions like Star-Cubing [35] may improve our
performance. Doing this way, we expect to reduce the time complexity so as to
reach a better performance on large datasets. Another direction of research is to
evaluate the performance of the propagation of the aggregate-based modification
in a column-storage database [32].

References

1. Armstrong, S., Collopy, F., Graefe, A., Green, K.C.: Answers to frequently asked
questions (FAQ) in forecasting (2004),
http://repository.upenn.edu/marketing_papers/156/ (last updated November
24, 2004)

2. Chen, S., Liu, B., Rundensteiner, E.A.: Multiversion-based view maintenance over
distributed data sources. ACM Trans. Database Syst. 29(4), 675–709 (2004)

3. Chen, S., Rundensteiner, E.A.: Gpivot: Efficient incremental maintenance of com-
plex rolap views. In: ICDE 2005: Proceedings of the 21st International Conference
on Data Engineering, pp. 552–563 (2005)

4. Codd, E.F., Codd, S.B., Salley, C.T.: Providing OLAP (on-line analytical process-
ing) to user-analysis: An it mandate. Codd and Date 32, 31 (1993)

http://repository.upenn.edu/marketing_papers/156/

52 H. Feng et al.

5. European Centre for Medium-Range Weather Forecasts: European centre for
medium-range weather forecasts (2012), http://www.ecmwf.int/ (accessed Jan-
uary 18, 2012)

6. Feng, H.: Performance problems of forecasting systems. In: ADBIS 2011: Pro-
ceedings II of the 15th International Conference on Advances in Databases and
Information Systems (PhD Symposium), pp. 254–261 (2011)

7. Feng, H., Lumineau, N., Hacid, M.S., Domps, R.: Data management in forecasting
systems: Case study - performance problems and preliminary results. In: BDA 2011:
Actes of the 27èmes Journées Bases de Données Avancées - Informal Proceedings
(2011)

8. Feng, H., Lumineau, N., Hacid, M.S., Domps, R.: Hierarchy-based update propa-
gation in decision support systems. In: Lee, S.-G., Peng, Z., Zhou, X., Moon, Y.-S.,
Unland, R., Yoo, J. (eds.) DASFAA 2012, Part II. LNCS, vol. 7239, pp. 261–271.
Springer, Heidelberg (2012)

9. Gilmore Lewis LLC.: How to Develop an Effective Sales Forecast. White paper,
Gilmore Lewis LLC, 9 pages (July 2006),
http://www.gilmorelewis.com/storage/salesforecast.pdf

10. Golfarelli, M., Rizzi, S., Proli, A.: Designing what-if analysis: towards a method-
ology. In: DOLAP 2006: Proceedings of the ACM 9th International Workshop on
Data Warehousing and OLAP, pp. 51–58 (2006)

11. Gray, J., Chaudhuri, S., Bosworth, A., Layman, A., Reichart, D., Venkatrao, M.,
Pellow, F., Pirahesh, H.: Data cube: A relational aggregation operator generalizing
group-by, cross-tab, and sub totals. Data Min. Knowl. Discov. 1(1), 29–53 (1997)

12. Gupta, H.: Selection of views to materialize in a data warehouse. In: Afrati, F.N.,
Kolaitis, P.G. (eds.) ICDT 1997. LNCS, vol. 1186, pp. 98–112. Springer, Heidelberg
(1996)

13. Hoffman, M.S.: The world almanac and book of facts 1993, 125th Annv. edn.
Pharos Books (1993)

14. IBM Press release: IBM and singapore’s land transport authority pilot innovative
traffic prediction tool (2007),
http://www-03.ibm.com/press/us/en/pressrelease/21971.wss (accessed Jan-
uary 18, 2012)

15. Inmon, W.H.: Building the Data Warehouse, 4th edn. John Wiley & Sons, Inc.,
New York (2005)

16. Jaecksch, B., Lehner, W.: The planning olap model - a multidimensional model with
planning support. In: Hameurlain, A., Küng, J., Wagner, R., Cuzzocrea, A., Dayal,
U. (eds.) TLDKS VIII. LNCS, vol. 7790, pp. 32–52. Springer, Heidelberg (2013)

17. Jaecksch, B., Lehner, W.: The planning olap model - a multidimensional model
with planning support. T. Large-Scale Data- and Knowledge-Centered Systems 8,
32–52 (2013)

18. Johnston, J., Dinardo, J.E.: Econometric Methodes, 4th edn. McGraw-Hill, New
York (2007)

19. Kimball, R., Ross, M.: The Data Warehouse Toolkit: The Complete Guide to
Dimensional Modeling, 2nd edn. John Wiley & Sons, Inc. (2002)

20. Leung, C.K.-S., Lee, W.: Efficient update of data warehouse views with generalised
referential integrity differential files. In: Bell, D.A., Hong, J. (eds.) BNCOD 2006.
LNCS, vol. 4042, pp. 199–211. Springer, Heidelberg (2006)

21. Microsoft: Enabling write-back to an olap cube at cell level in excel 2010 (2010),
http://msdn.microsoft.com/en-us/library/

office/gg521158(v=office.14).aspx

(accessed June 1, 2013)

http://www.ecmwf.int/
http://www.gilmorelewis.com/storage/salesforecast.pdf
http://www-03.ibm.com/press/us/en/pressrelease/21971.wss
http://msdn.microsoft.com/en-us/library/office/gg521158(v=office.14).aspx
http://msdn.microsoft.com/en-us/library/office/gg521158(v=office.14).aspx

Update Management in Decision Support Systems 53

22. Ministry of Transport, Singapore Government: Electronic road pricing (2012),
http://app.mot.gov.sg/Land Transport/

Managing Road Use/Electronic Road Pricing.aspx

(accessed January 18, 2012)
23. Mumick, I.S., Quass, D., Mumick, B.S.: Maintenance of data cubes and summary

tables in a warehouse. In: Special Interest Group on Management of Data (SIG-
MOD), pp. 100–111 (1997)

24. National Oceanic and Atmospheric Administration, US Government: National cen-
ters for environmental prediction (2012), http://www.ncep.noaa.gov/ (accessed
January 18, 2012)

25. Nica, A., Lee, A.J., Rundensteiner, E.A.: The cvs algorithm for view synchro-
nization in evolvable large-scale information systems. In: Schek, H.-J., Saltor, F.,
Ramos, I., Alonso, G. (eds.) EDBT 1998. LNCS, vol. 1377, pp. 359–373. Springer,
Heidelberg (1998)

26. Oracle: Materialized view concepts and architecture (2012),
http://docs.oracle.com/cd/B10501_01/server.920/a96567/repmview.htm (ac-
cessed June 1, 2012)

27. Petropoulos, C., Metaxiotis, K., Nikolopoulos, K., Assimakopoulos, V., Patelis, A.:
Sftis: a decision support system for tourism demand forecasting. J. of Comput. Inf.
Syst. 44(1), 21–32 (2003)

28. Ross, K.A., Srivastava, D., Chatziantoniou, D.: Complex aggregation at multiple
granularities. In: Schek, H.-J., Saltor, F., Ramos, I., Alonso, G. (eds.) EDBT 1998.
LNCS, vol. 1377, pp. 263–277. Springer, Heidelberg (1998)

29. Saltelli, A.: Global sensitivity analysis: the primer. John Wiley & Sons, Inc. (2008)
30. Schumaker, R.P., Chen, H.: A quantitative stock prediction system based on fi-

nancial news. Inf. Process. and Manag. 45, 571–583 (2009)
31. of Standards, N.I., of America, T.N.: NIST/SEMATECH e-Handbook of Sta-

tistical Methods (2011), http://www.itl.nist.gov/div898/handbook/index.htm
(last updated April 1, 2011)

32. Stonebraker, M., Abadi, D.J., Batkin, A., Chen, X., Cherniack, M., Ferreira, M.,
Lau, E., Lin, A., Madden, S., O’Neil, E., O’Neil, P., Rasin, A., Tran, N., Zdonik, S.:
C-store: a column-oriented dbms. In: Very Large Data Bases (VLDB), pp. 553–564
(2005)

33. Theodoratos, D.: Exploiting hierarchical clustering in evaluating multidimensional
aggregation queries. In: DOLAP 2003: Proceedings of the ACM 6th International
Workshop on Data Warehousing and OLAP, pp. 63–70 (2003)

34. Wikipedia: Moving average (2012),
http://en.wikipedia.org/wiki/Moving_average (accessed June 6, 2012)

35. Xin, D., Han, J., Li, X., Wah, B.W.: Star-cubing: computing iceberg cubes by
top-down and bottom-up integration. In: Proceedings of the 29th International
Conference on Very Large Data Bases, VLDB 2003, vol. 29, pp. 476–487. VLDB
Endowment (2003), http://dl.acm.org/citation.cfm?id=1315451.1315493

36. Zhou, J., Larson, P.Å., Elmongui, H.G.: Lazy maintenance of materialized views.
In: VLDB 2007: Proceedings of the 33rd International Conference on Very Large
Data Bases, pp. 231–242 (2007)

http://app.mot.gov.sg/Land_Transport/Managing_Road_Use/Electronic_Road_Pricing.aspx
http://app.mot.gov.sg/Land_Transport/Managing_Road_Use/Electronic_Road_Pricing.aspx
http://www.ncep.noaa.gov/
http://docs.oracle.com/cd/B10501_01/server.920/a96567/repmview.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://en.wikipedia.org/wiki/Moving_average
http://dl.acm.org/citation.cfm?id=1315451.1315493

LRS: A Novel Learning Routing Scheme

for Query Routing on Unstructured P2P Systems

Taoufik Yeferny1,3, Khedija Arour2, and Amel Bouzeghoub3

1 Dept. of Computer Science, Faculty of Sciences of Tunis,
Tunisia LISI Research Group

Taoufik.Yeferny@it-sudparis.eu
2 Dept. of Computer Science, National Institute of Applied Sciences

and Technology of Tunis, Tunisia URPAH Research Group
Khedija.arour@issatm.rnu.tn

3 Dept. of Computer Science, TELECOM Sudparis, France
SAMOVAR Research Group

Amel.Bouzeghoub@it-sudparis.eu

Abstract. Query routing is a fundamental problem in unstructured
Peer-to-Peer systems. Recently, researches in this area have focused on
methods based on query-oriented routing indices. These methods use
the historical information of past queries and query hits to build a local
knowledge base per peer, which represents the user’s interests or profile.
Existing approaches represent the user’s profile only by some statistics
about past queries and they have not addressed two difficult challeng-
ing problems: (i) the bootstraping (ii) the unsuccessful relevant peers
search. Indeed, when a peer selects an insufficient number of relevant
peers from its local knowledge base, it floods the query through the
network, which badly affects the routing efficiency and effectiveness. To
tackle these problems, we introduce a novel Learning Routing Scheme
(LRS). We implemented the proposed scheme and compared its routing
efficiency and retrieval effectiveness with a broadcasting scheme (without
learning) and a learning scheme taken from the literature. Experimental
results show that our scheme carries out better than other ones with
respect to accuracy.

Keywords: P2P, Learning routing methods, Clustering.

1 Introduction

Peer-to-peer systems have emerged as platforms for users to search and share
information over the Internet. In fact, thanks to these systems, each user can
share various resources (e.g. documents, music, etc.), send queries to search and
locate resources shared by other users. There are different kinds of P2P system
architectures that can be classified into structured, unstructured and hybrid ar-
chitectures [13, 7]. Nowadays, unstructured P2P systems are the most frequently
used on the Internet since there is no fixed topology for peers. Each peer is ran-
domly connected to a set of peers named neighbors and self-maintains links with

A. Hameurlain et al. (Eds.): TLDKS XII, LNCS 8320, pp. 54–82, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Learning Query Routing Scheme for P2P Systems 55

them. It also imposes no constraints on data placement. In these systems, if a
peer wants to find a desired resource in the network, it floods a query through
the network to find as many peers as possible that share the pertinent resources.
Query flooding strategy does not guarantee that the queries will always be re-
solved. In addition, this strategy generates a very large number of messages and
cannot quickly locate the requested resources. In unstructured P2P systems, re-
searches’ efficiency and effectiveness can be improved by making smart decisions
for query routing: selecting the best peers to which a given query should be
forwarded in order to retrieve the best search results. In the literature, several
approaches have attempted to improve query routing in unstructured P2P sys-
tems by adding some semantic aspects. The semantic routing methods can be
classified into content-oriented routing indices methods [15, 5, 19, 18], cluster-
based routing [30, 11, 2, 22, 10] methods and query-oriented routing indices
methods [14, 3, 23, 4]. Content-oriented routing indices methods are based on
peers shared contents. Each peer maintains routing indices (or peer-content syn-
opses) that describe the shared content of other peers in the network. When a
peer routes a given query, it uses its routing indices to select the best process-
ing peers to forward the query to. Such methods improve the search efficiency
and effectiveness. However, they incur a higher storage cost since more indices
need to be stored at a peer and a higher update cost for these indices, which
badly affect the system scalability. Furthermore, due to the network dynamicity,
these indices may be obsolete or inconsistent. Cluster-based routing methods
organize the P2P network into clusters of peers sharing similar preferences (se-
mantic overlay). The preferences of the user can be deduced from his shared
documents, past queries, etc. In semantic overlay network, each peer makes con-
nections with peers having closer interests (i.e., friend peers). In those methods,
a query is first routed directly to a related cluster and then to the peers in that
cluster. The existing methods differ from each other in the way they build the
clusters. Those methods improve the search effectiveness and efficiency when a
node issues queries similar to its semantic (i.e., shared content). Nevertheless,
when issuing queries irrelevant with their semantic, those methods work poorly
since each node knows only a few long semantic links. Query-oriented routing
indices methods use information about past queries and query hits to route fu-
ture queries. Indeed, the observation of the past information is used to create a
knowledge base per peer that represents the user’s interests or profile. When a
peer propagates a given query among computing peers, it evaluates it against
its local knowledge base in order to select a set of relevant peers to whom the
query will be routed. If the number of relevant peers is below a certain threshold,
a random set of peers will be added from the neighbors table. These methods
are more advantageous than content-oriented and cluster-based routing meth-
ods, since no excessive network overhead is necessary for the construction of the
routing indices. Few query-oriented routing indices methods has been proposed
in the literature. They improve the search efficiency and effectiveness [23, 4] of
traditional routing approach. However, they suffer from three main limits:

56 T. Yeferny, K. Arour, and A. Bouzeghoub

1. User profile representation : The user profile is represented by some
statistics about past queries (e.g. query keywords, hits number per peer,
etc.) but it does not exploit repetition rate for keywords seen in sent queries
and relationships between them as well [14, 3, 23, 4].

2. Unsuccessful relevant peers search : The existing approaches have not
addressed the unsuccessful relevant peers search problem [14, 3, 23, 4, 26].
Indeed, when a peer selects an insufficient number of relevant peers from its
local knowledge base, it floods the query through the network which badly
affect the routing efficiency and effectiveness.

3. bootstrapping problem : Upon joining the P2P network, a peer has no prior
knowledge; therefore, it is impossible to make smart routing decisions [27].
For this reason, the newly joined peer has to flood a given number of queries
and records the returned responses in order to build the initial knowledge
base. This phase is called training phase. Indeed, methods based on queries
history achieve slow improvement in routing efficiency and effectiveness es-
pecially during the training phase [14, 3, 23, 4, 26].

To avoid these drawbacks, we introduce a new hybrid scheme Learning Routing
Scheme (LRS) that combines the query-oriented and cluster-based approaches. In
our scheme LRS, each peer maintains a local knowledge base that contains a set
of user interests deduced from the past queries and query hits. In addition, the
P2P network is organized into clusters of peers sharing similar knowledge bases
(semantic overlay). Hence, each peer makes connections with peers having closer
interests, named friend peers.

The main contributions of this paper are the following: First, LRS exploits
repetition rate for keywords seen in sent queries and relationships between them
as well in order to build a knowledge base per peer that represents the user’s
profile. In LRS, the user’s profile is a correlation between sent queries and pos-
itive peers or sent queries and query terms. Second, to palliate the unsuccessful
relevant peers search problem, we propose a new search mechanism avoiding the
random selection based upon semantic overlay network.We propose a community
construction method that establishes connections between peers sharing similar
knowledge bases, named friend peers. Indeed, the proposed network topology al-
lows each peer which selects from its local knowledge base an insufficient number
of relevant peers to forward the query according to its content to the best friend
peers, rather than random neighbors. Third, to tackle the bootstrapping prob-
lem, we propose a proactive initial knowledge base building method to improve
the efficiency and effectiveness of query routing in the training phase. Indeed,
LRS predicts the user’s profile based on shared documents and builds an initial
knowledge base before a peer sends its first query.

The remainder of this paper is organized as follows: Section 2 presents the
requirements of our approach. In Section 3, we present a critical overview of query
routing methods in P2P systems. Section 4 discusses LRS approach. In Section
5, we report the results of our experimental evaluation. Section 6 concludes with
some proposed direction for further works.

Learning Query Routing Scheme for P2P Systems 57

2 Query Routing in P2P Systems: An Overview

Before we examine the various existing routing methods, we shall look at some of
the main requirements that our proposed scheme must satisfy. We describe these
requirements in the following. Then, we compare the existing methods based on
these requirements:

– R1. (Search efficiency). A routing method is efficient whenever it requires
a small number of messages to be routed in order to locate information. For
method that requires a huge amount of messages, the bandwidth consump-
tion will be high, hampering by the way the system scalability.

– R2. (Search effectiveness). A routing method is effective whenever it can
locate more pertinent resources.

– R3. (Cost of building routing indices). Semantic routing methods main-
tain at each peer routing indices, which are used in directing the search
space. If an excessive network overhead is necessary for the construction of
the routing indices, the routing method is not scalable. Our goal is to de-
sign a scalable routing scheme that requires a low cost for building routing
indices.

Efficient query routing in unstructured P2P requires intelligent decisions: se-
lecting the best peers to which a given query should be forwarded for retrieving
related resources. The first query routing method is based on query flooding as
in Gnutella system [7]. In order to find pertinent resources, a peer sends a query
to all its neighbors on the overlay, which, in turn, forward the query to all of
their neighbors and so on, until the query Time-To-Live (TTL) expires. Although
this solution is straightforward and robust, it generates a very large number of
messages and it cannot quickly locate the requested resources. Researchers have
mainly focused on improving this naive method by using controlled flooding
such as expanded ring search with random walks [25], iterative deepening [25],
directed BFS [7] and random breadth first search RBFS [14]. The flaw in these
methods is that efficiency of their routing is very low because they do not take
into account the query string. Hence, a large number of irrelative nodes have to
be visited during the search process.

Several works have attempted to improve these traditional query routing
methods in unstructured systems by introducing semantics in the process of
query propagation [3]. The existing semantic methods can be classified into
content-oriented routing indices methods [15, 5, 19, 18], cluster-based rout-
ing methods [30, 11, 2, 22, 10] and query-oriented routing indices methods
[14, 3, 23, 4]. In the following, we briefly summarize main works for each category.

2.1 Content-Oriented Routing Indices Methods

Content-oriented routing indices methods are based on the shared contents of
peers. Each peer maintains routing indices (or peer-content synopses) that de-
scribe the shared content of other peers in the networks. Hence, the peers to

58 T. Yeferny, K. Arour, and A. Bouzeghoub

which a query is forwarded are chosen based on the content similarity between
the query and the data held by the target candidate peers (or the correspond-
ing peer synopses), rather than random selection. In CORI (Collection Retrieval
Inference Network) [1] and GLOSS (generalized Glossary-of-Servers Server) [16]
the collection of each neighbor is represented by a superdocument. The set of all
superdocuments forms a special purpose collection that is used to identify the
most promising collections for a given query. In RI (Routing indices for peer-to-
peer systems) [5], the contents are classified under “topics” and peers index the
number of documents under each topic reachable through each neighbor (path)
and the number of documents along each path. To forward a given query, the
forwarder peer computes the “goodness” of each node for a query then, propa-
gates the query to the peers having the highest “goodness”. GLOSS and CORI
assume that we are selecting among a set of collections, whereas RI assumes
that we are selecting among a set of “paths” that lead to a set of collections.
The information retrieval system PlanetP [19] represents the content of each
peer in the network in a compactly Bloom filter [21]. These Bloom filters are
distributed across the network using a Gossiping algorithm. The set of all Bloom
filters forms a global index to give the peer a partial and approximate view of
the network content. When receiving a query, a peer searches at first in its local
index. If it is not possible to answer this query, it calculates a score of peers from
the global index and propagates the query to the peers which have the greatest
score. PlanetP may yield better results than CORI, GLOSS and RI. However,
the storage space necessary for the global index is very important and a huge
amount of messages need to be exchanged in order to build and update this
index. In Sunrise [18] each peer exposes the data it wants to share with other
peers according to a local ontology in order to make a rich representation of the
shared data. Each peer Pj that peer P is connected to, peer P builds a semantic
mapping MP [Pj], which defines how to represent the schema (MySchema) of
P in terms of Pj ’s schema (MySchemaj) vocabulary. Then, it associates each
concept in MySchema to a corresponding concept in MySchemaj according to
a score that denotes the semantic similarity grade between the two concepts.
Based on the similarity between the concepts in its schema and the concepts
in the schema of each of its neighbors, peer P builds a semantic routing index
(SRI) that suggests the relevance of the data that can be reached in each direc-
tion starting from P . When a peer receives a query, it exploits its SRI scores to
rank its neighborhood, thus, it identifies the most promising direction to follow
in the network. To accomplish the forwarding step, each peer reformulates the
received query over the destination peers schema according to the corresponding
mapping. Sunrise uses more semantics than the previous presented approaches
[1, 16, 5, 19]. It offers new potentialities for query formulation and, consequently,
new challenges for query routing.

The existing content-oriented routing indices methods improve the search ef-
fectiveness and efficiency. However, they incur either a higher storage cost since
more indices need to be stored at a peer. In addition, a huge amount number of
messages need to be exchanged to build and refresh these indices, which badly

Learning Query Routing Scheme for P2P Systems 59

affect the system scalability. Furthermore, due to the network dynamicity, the
indices may be obsolete or inconsistent. Hence, content-oriented routing indices
methods do not satisfy requirement R3.

2.2 Cluster-Based Routing Methods

Cluster-based routing methods organize the P2P network into clusters of peers
sharing similar preferences (semantic overlay). The preferences of the user can be
deduced from his shared documents, past queries, etc. In semantic overlay net-
work, each peer makes connections with peers having closer interests (i.e., friend
peers). Several schemes have been proposed to reduce the querying overhead
through clustering of peers. In those schemes, a query is first routed directly to
a related cluster and then to the peers in that cluster. The schemes differ from
each other in the way they build the clusters. GES [30] and CSS [11] summarize
all the documents in each node into an average term vector (named node vector)
based on VSM (vector space model). By introducing VSM, GES forms semantic
clusters (i.e., nodes are organized into clusters according to their node vectors).
A query is first routed directly to a related group, and then flooded inside that
group. To make searching more efficient, CSS extends GES by clustering all doc-
uments on a node into different classes. The drawback in both GES and CSS is
the flooding protocol through semantic groups, whose search cost is very high.
Carchiolo et al [2] propose a model for the growth and evolution of a peer-to-peer
network inspired by the social networks dynamics and behaviors, called PROSA
(P2P Resource Organisation by Social Acquaintances). In PROSA, nodes may
establish “Fully Semantic Link” (FSL) or “Temporary Semantic Link” (TSL) or
“Acquaintance Link” (AL) according to the degree of knowing each other. Each
link in PROSA is associated with a compact representation of target peer’s
knowledge, when available: in the case of ALs, no such information is available
(modeled with an empty set ∅). To forward a given query, the forwarder peer
computes the relevance between the query and its neighbors with TSL or FSL
links. Thereafter, it selects the peer that is connected with the link having the
highest relevance value.If the forwarder peer has only ALs links, the next peer
is selected at random, which badly affect the search efficiency and effectiveness.
SKIP [22] uses vector space model (VSM) and relevance ranking algorithms to
construct an overlay network. The key idea of SKIP is to reorder the seman-
tic neighbors of nodes according to relevant scores. The search mechanism re-
places flooding protocol in GES with K-iteration preference. Hung-Chang et al.
[10] present a clustering method that organizes the P2P network as a semantic
small-world random graph. Here, semantic small-world networks refer to the fact
that probability of peer j being the neighbor of peer i increases if j shares more
common interests with i. The goal of the proposed clustering methods is to re-
structure the P2P network to satisfy the following properties: 1) High clustering,
2) Low diameter and 3) Progressive. The first property, assumes that each peer
connects the most similar peers in the networks. The second property, imposes
that should exist at least one overlay path connecting two peers u and v. The
hop count of the path should be as small as possible, enabling a query message

60 T. Yeferny, K. Arour, and A. Bouzeghoub

to be rapidly propagated from u to v. The third property, imposes that should
exist an overlay path P connecting a peer that issues a query s and the peer
that can resolve the query d such that for any two neighboring peers u and v
on P , upon receiving a query message, u forwards the message to v that is more
similar to d than u. The proposed network formation algorithm performs very
well with rigorously mathematical guarantees. However, to satisfy these three
properties, the clustering algorithms need a very large number of messages.

Cluster-based routing methods establish links among most semantic similar
nodes. Query routing is first done by global routing through long links which
are established between semantic dissimilar nodes, and then, perform flooding
by local routing through short links which are established between semantic
similar nodes (peers in the same cluster). Those methods improve the search
effectiveness and efficiency when a node issues queries similar to its semantic (i.e.,
shared content). However, when issuing queries irrelevant with their semantic,
those methods work poorly since each node knows only few peers belonging to
other clusters. Hence, cluster-based routing methods do not usually satisfy the
search effectiveness requirement R2.

2.3 Query-Oriented Routing Indices Methods

Query-oriented routing indices methods exploit the historical information of past
queries and query hits to route future queries. In directed BFS [14], each node
maintains some statistics of its neighbors such as the number of times previous
queries can be answered through a neighbor node, the number of results ob-
tained for the queries and the latency in receiving the results. The authors of
this method developed a number of heuristics that are based on these statistics
to select the best Pmax neighbors to send the query (Pmax is a specified user
threshold). The main drawback of this technique is that statistics maintained
by each peer about its neighborhood is not wealthy enough. These statistics do
not contain the information related to the query content. Kalogeraki et al. [14]
propose a similar method to BFS called intelligent search (IS). In this method,
each peer builds a profile of its neighbors and uses the profile to find peers,
which are likely to answer a forthcoming query. The profile contains the list
of the most recent past queries and peers that supplied answers. The authors
represent each profile by a single queries table. Each entry is a couple (Q,N),
where N is the node that supplied answers to query Q. The node accumulates
the list of past queries by two different mechanisms. In the first mechanism, the
peer is continuously monitoring and recording the query and the correspond-
ing query-hit messages it receives. In the second, each peer, when replying to a
query message, broadcasts this information to its neighbor peers. This operation
increases the accuracy of the system, at the expense of O(d) extra messages
(where d is the average degree of the network) per answering node. To decide
to which peers a query will be sent, a peer p ranks all its neighbors with re-
spect to the given query; then, it forwards it to the first Pmax peers. Indeed, the
peer p compares the query to previously seen queries and finds the most similar
ones in the repository. The query is then forwarded to the nodes that supplied

Learning Query Routing Scheme for P2P Systems 61

answers to the closest queries. Unlike directed BFS, IS takes into account the
query terms to select the best neighbors to forward the query to. However, in IS,
each node exports its profile to its neighbors, which implies a high bandwidth
consumption. REMINDIN [3] scheme exploits social metaphors to define a
strategy of query routing. In this scheme, each peer maintains a set of RDF
statements in a local peer repository (ontology). It stores metadata about these
statements in order to memorize where the statement cames from and how much
resource-specific confidence have. Overall confidence is put into these statements
and peers. To select promising peers for a given query, a peer evaluates the query
against the local node repository in order to select a set of statements matching
the query. For each statement, REMINDIN retrieves its metadata and specific
confidence. Thereafter, promising peers are sorted according to their strength.
Up to Pmax best peers are returned as targets for the query. A major problem
for REMINDIN is the selection of pertinent information to store. Indeed, the
user manually determines which information to store in the local peer reposi-
tory. However, the system must provide an automatic mechanism to select the
pertinent information. In LBQR [23], every peer assigns for its connections a
set of weights. Then, it uses these weights to choose the neighbors to route the
query. Indeed, every peer maintains routing indices, which contain two main pa-
rameters, weight and visit, per neighbor. Weight, depicts the estimation of the
number of returned contents when a query is forwarded to the neighbor. Visit,
records the statistical information of query forwarding. When the query hits ar-
rive, they are combined to form the feedback and are used to update the weight.
The peer will choose Pmax connection having the highest forwarding probability.
In LBQR, routing indices are updated online (when a peer receives query hits),
which generates an important computational load. In addition, LBQR does not
take into account multi-keywords queries. Learning Query Routing Method [26]
builds a knowledge base per peer by learning the implicit behavior of users that
is deducted from query history. The knowledge base contains a set of user profiles
that represent the past query terms and peers whose provided answers. When a
peer forwards a given query it exploits the local knowledge base to select Pmax

relevant peers to forward the query to. In Route Learning [4], a peer tries to
assess the neighbors that will most likely reply to queries. Peers compute this
estimation based on the knowledge that accumulates gradually from query and
query hit messages sent to and received from neighbors. In Route Learning,
every peer in the network maintains a feature space that is created for each
neighbor. Each point k of the feature space is mapped to keywords seen in sent
queries and it has two numbers. The first one (answer-count) is the number of
answers returned through that neighbor for keywords mapping to point k, and
the second one (query-count) is the number of queries made to point k. When
a peer forwards a given query, it tries to select Pmax neighbors by applying
the Parzen Windows estimation which is used to solve classification problem.
Indeed, Route Learning is an adaptation of a classification problem to routing,
in unstructured P2P systems, each peer having n neighbors corresponding to n
classes. In a classification problem, the classifier tries to classify an object using

62 T. Yeferny, K. Arour, and A. Bouzeghoub

the feature of each class. By analogy, for a given query, Route Learning selects
Pmax neighbors according to their futures spaces and the Parzen Windows esti-
mation. This scheme requires more memory space at a peer; thus, it should be
used in platforms where memory capacity is not very low.

The idea underlying all the existing query-oriented routing indices methods is
to replace the classical routing method (spread by flooding) used for example in
Gnutella [7], by a semantic routing method based on the historical information
about past queries. The historical information are used to build a knowledge
base per peer in order to guide the process of peers’ selection. These methods
are more advantageous than content-oriented and cluster-based methods since
no excessive network overhead is necessary for the construction of the routing
indices. However, they suffer from the unsuccessful relevant peers search and
cold-start problems. The first problem appears when a peer selects an insufficient
number of relevant peers (i.e., below a certain threshold Pmax) from its local
knowledge base. It floods the query through the network which badly affect the
search efficiency and effectiveness. In [28] we proposed a generic solution for this
problem which can be adapted for any query-oriented routing indices method.
The second problem appears when a new peer joins the P2P network. It has
no prior knowledge. Therefore it is impossible to make smart routing decisions
[27]. The newly joined peer has to flood a given number of queries and to record
the returned responses in order to build the initial knowledge base. This phase
is called training phase. Indeed, query-oriented routing indices methods achieve
slow improvement in search efficiency and effectiveness especially during the
training phase.

After this review of existing query-oriented routing indices methods, we con-
clude that they do not satisfy the search efficiency (R1) and effectiveness (R2)
requirements during the training phase or when a peer selects an insufficient
number of relevant peers, from its local knowledge base, for a given query.

2.4 Synthesis on Query Routing Methods

Table 1 summarizes the surveyed routing approaches and compares them against
the predefined requirements. In the previous section, we showed that none of the
existing routing approaches supports the three predefined requirements R1, R2
and R3. Indeed, content-oriented routing indices methods need an unavoidable
excessive network overhead for the construction of the routing indices. Thus,
they do not support the requirement (R3). Cluster-based routing methods do
not satisfy the search effectiveness (R2) requirements, when a peer issues queries
dissimilar to its semantic. Query-oriented routing indices methods do not satisfy
the search efficiency (R1) and effectiveness (R2) requirements during the training
phase or when a peer selects an insufficient number of relevant peers, from its
local knowledge base, for a given query.

Learning Query Routing Scheme for P2P Systems 63

In this paper, we propose a new hybrid scheme LRS that combines the query-
oriented and cluster-based approaches in order to support the three predefined
requirements. We aim to take advantage of the surveyed query-oriented and
cluster-based approaches and improve their weaknesses. In LRS, each peer main-
tains a local knowledge base that contains a set of user interests deduced from
the past queries and query hits. We exploit repetition rate for keywords seen in
past queries and the relationships between them. Hence, the user profile repre-
sents a correlation between past queries, their terms and the peers who provided
answers. LRS stores less routing indices and updates them offline periodically
in order to reduce the cost of the updating operation. To tackle the unsuccess-
ful peer selection problem in query-oriented methods, we propose a new search
mechanism avoiding the random selection based upon semantic overlay network
construction. Our method organizes the P2P overlay network into semantic clus-
ters of peers sharing similar knowledge bases. Indeed, each peer pi in the network
makes new connections to link friend peers. Consequently, if a peer pi selects from
its local knowledge base an insufficient number of relevant peers, it forwards the
query according to its content to the best friend peers, rather than random
chosen peers. The chosen friend peers are able to find in their knowledge bases
relevant peers. We based our idea on the following social networks assumption:
it is common that two of your friends would have a greater probability of know-
ing each other than two people randomly chosen from the population, on account
of their common acquaintance with you. To address the cold-start problem of
query-oriented routing indices methods, our scheme predicts the user profile us-
ing the shared documents and builds an initial knowledge base before the peer
sends its first query.

3 LRS Approach

Our scheme LRS is designed for unstructured P2P networks like Gnutella.
The idea underlying our proposal is to replace flooding routing method used
in Gnutella [7] by a semantic routing method based on the user’s profile. The
key contribution is the observation of the past queries, which are used to create
for each peer pi a knowledge base Bi to guide the process of peers’ selection.
Moreover, to alleviate the unsuccessful peer selection problem, LRS organizes
the P2P overlay network into semantic clusters of peers sharing similar knowl-
edge bases. Indeed, in our proposal, each peer pi makes new connections to link
friend peers Fri. Consequently, if a peer pi selects from its local knowledge base
an insufficient number of relevant peers, it forwards the query according to its
content, to the best friend peers rather than randomly chosen peers like in the
existing query-oriented routing indices approaches. Friend peers are able to find
in their knowledge bases relevant peers.

64 T. Yeferny, K. Arour, and A. Bouzeghoub

Table 1. Comparative study of existing routing methods

Content-
oriented rout-
ing indices
methods:

Cluster-based rout-
ing methods:

Query-oriented routing in-
dices methods:

Our hybrid ap-
proach:

CORI, GLOSS,
PlanetP, Sun-
rise, etc.

GES, CSS, PROSA,
SKIP, etc

BFS, IS, REMINDIN,
LBQR, Route Learning,
etc.

LRS

R1 Efficient search Efficient search Poor search efficiency during
training phase or when a peer
selects an insufficient number
of relevant peers, from its local
knowledge base.

Efficient search

R2 Effective search Poor search effectiveness
when a peer issues
queries dissimilar to its
semantic.

Poor search effectiveness dur-
ing training phase or when a
peer selects an insufficient num-
ber of relevant peers, from its lo-
cal knowledge base.

Effective search

R3 An unavoidable
excessive network
overhead for
the construction
of the routing
indices

Acceptable network
overhead for the con-
struction of the routing
indices

No network overhead for the
construction of the routing in-
dices

Acceptable net-
work overhead for
the construction
of the routing
indices

The global architecture of LRS is composed of the five following layers:

1. Log file management layer that runs when receiving responses. It manages
the log file of peer.

2. User profile management layer that runs periodically. It builds the knowl-
edge base from a log file.

3. Clustering layer that runs when a peer updates its knowledge base. It or-
ganizes the P2P network into clusters of peers sharing similar knowledge.
Indeed, each peer in the network makes new connections to link friend peers
that share similar knowledge. Hence, peers are dynamically organized in new
semantic clusters.

4. Bootstrapping layer that runs one time when a new peer joins the P2P
network. It builds an initial knowledge base before that the peer sends its
first query.

5. Semantic query spreading layer : that runs when a peer forwards a given
query. It uses the local knowledge base and the semantic links (i.e., links
with friend peers) in order to route the query to promising peers.

Learning Query Routing Scheme for P2P Systems 65

3.1 Log File Management Layer

Each peer stores information about past queries in a local log file. This file
contains raw data collected from the answered queries. When a peer receives
responses for a query, this layer updates the log file by adding information related
to this query like the identifier of the query, its terms, the downloaded documents
and associated peers (peers who have answered the query).

3.2 User Profile Management Layer

This layer aims to build a knowledge base per peer that will be used by the se-
mantic query propagation layer in order to select relevant peers. In our scheme,
the knowledge base contains a set of interests that represents the user’s pro-
file. Our goal is to generate a set of interests that define semantic relation-
ships between sent queries, their terms and positive peers. Otherwise, each
interest Ii must represents a group of closest past queries having a set of com-
mon terms and answered by a set of positive peers. In LRS, each interest is a
triplet Ii(Ei, Fi, Gi), that expresses a correlation between a subset of queries Ei,
their common terms Fi and the set of associated peers Gi. Indeed, to generate
any user profile, the first step clusters queries which have common terms into a
single set Ei. The second step builds the set Gi, which contains positive peers
that answered to all queries in Ei. In most cases Gi is empty; so to alleviate
this case, we propose to build a set Gi containing peers that answered to the
majority of queries in the set Ei. The question that arises is how to find these
correlations?

In our case, we adapted a formal approach based on Formal Concepts Analysis
[6] in order to generate these correlations. In fact, due to the huge quantity of
available information, it is necessary to eliminate the redundant data and find
the interesting correlations. In this context, a method for data correlations based
on the formal concept analysis is proposed. In what follows, we present a brief
description of Formal Concepts Analysis.

Formal Concepts Analysis (FCA). Formal Concept Analysis is a branch
of applied mathematics. Based on a mathematization of concept and concept
hierarchy, it activates mathematical methods for conceptual data analysis and
knowledge processing [6].

Definition 1. A formal context K = (G,M, I) consists of two sets G, M
and a relation I between G and M . The elements of G are referred to as objects
and the elements of M as attributes and we assume that G ∩M = ∅. A context
may be depicted as a |G| × |M | binary matrix, where the objects of G form row
labels and the objects M form column labels. Let mat(K) denotes the matrix
representation of K ; then, we may fully specify the entries of this matrix as:

mat(K)ij =

⎧⎨
⎩

1 if giImj

0 otherwise
(1)

66 T. Yeferny, K. Arour, and A. Bouzeghoub

For a set A ⊆ G, called an object-set, we define

A
′
= {m ∈ M |gIm, ∀ g ∈ A} (2)

For a set B ⊆ M , called an attribute-set we have :

B
′
= {g ∈ G |gIm ∀ m ∈ B} (3)

Definition 2. A Concept of the context (G,M, I) is a pair C = (A,B) with
A ⊆ G, B ⊆ M , such that A

′
= B and B

′
= A. We call A = Ext(C) the extent

and B = Int(C) the intent of the concept C = (A,B).

Log File

R1;T1-T2-T3-T4;P2-P3-P5
R2;T1-T2-T4;P1-P2-P3
R3;T1-T2-T5-T6-T7;P1-P2-P4

Godin Algorithm
⇓

(1)
⇒
(2)
⇐

Context K1

T1T2T3T4T5T6T7

R11 1 1 1 0 0 0

R21 1 0 1 0 0 0

R31 1 0 0 1 1 1

Context K2

P1 P2 P3 P4 P5

R1 0 1 1 0 1

R2 1 1 1 0 0

R3 1 1 0 1 0

Set E1

({R1,R2,R3},{T1,T2})
({R1,R2},{T4})
({R2},{T1,T2,T4})
({R1},{T1,T2,T3,T4})
({R3},{T1,T2,T5,T6,T7})
Set E2

({R1,R2},{P2,P3})
({R1,R3},{P2})
({R2,R3},{P1,P2})
({R1,R2,R3},{P2})
({R1},{P2,P3,P5})
({R2},{P1,P2,P3})
({R3},{P1,P2,P4})

User Profile
(3)
⇒

Knowledge Base

I1({R1,R2,R3},{T1,T2},{P2})
I2({R1,R2},{T4},{P2,P3})
I4({R1},{T1,T2,T3,T4},{P2,P3,P5})
I3({R2},{T1,T2,T4},{P1,P2,P3})
I5({R3},{T1,T2,T5,T6,T7},{P1,P2,P4})

Fig. 1. The different steps for building a knowledge base

FCA Approach for Knowledge Base Building. To apply FCA approach,
we used a context K1 = (QIds, T, I) that represents the semantic relationship
between sent queries and their terms. The objects of K1 are the queries identi-
fiers and the attributes are the queries terms. Thereafter, an algorithm of formal
concepts generation (i.e., Godin algorithm [8]) is applied to generate a set of con-
cepts, noted E1. The concepts of E1 will be under the following form c1(o1, p1),
where o1 denotes a subset of sent queries and p1 is a set of common terms
of queries in o1. Hence, o1 is the Extent and p1 is the Intent of the concept
c1(o1, p1).

Moreover, to represent the semantic relationship between sent queries and
positive peers, we used a second context K2(QIds, P, I). The objects of K2 are
the queries identifiers and the attributes are the positive peers. We applied the
same algorithm in order to generate a set of concepts E2 that represents the
semantic relationship between sent queries and positive peers. The concepts of
E2, will be under the following form c2(o2, p2), where o2 is a subset of sent
queries and p2 is a set of peers which answered to all queries in o2.

Learning Query Routing Scheme for P2P Systems 67

Finally, we applied User Profile algorithm (see Algorithm 1) to generate a set
of interests. The inputs of this algorithm are the sets E1 and E2. It generates a
knowledge base B that contains a set of interests. The getCloseConcept(c1, E2)
function in Algorithm 1 (see line 3 of Algorithm 1) returns the closest concept
to c1 (i.e., concept having the highest similarity value) from the concepts set
E2. The similarity value between a concept ci ∈ E1 and a concept cj ∈ E2 is
evaluated as follows:

Sim(ci, cj) =
|Ext(ci) ∩ Ext(cj)|
|Ext(ci) ∪ Ext(cj)|

(4)

Where Ext(c) represents the extent of the concept c. Figure 1 represents the
different steps for building a knowledge base from a log file.

Figure 1 represents the different steps for building the knowledge base. The
first step of this figure represents context generation. The step consists of apply-
ing any formal concept generator to obtain the concept sets E1 and E2. Finally,
the third step consists in applying User Profile algorithm (see Algorithm 1) to
generate the knowledge base.

Algorithm 1. User Profile

Input:
E1 : Set of concepts
E2 : Set of concepts

Output:
B : Knowledge base containing a set of interests

begin1

for each c1 ∈ E1 do2

c2 = getCloseConcept(c1, E2)3

B = B ∪ {I(Ext(c1), Int(c1), Int(c2))}4

return (B)5

end6

The knowledge bases are periodically updated with information about the
new queries. We have defined an incremental strategy to maintain the knowledge
bases. It consists in generating a set of interests B

′
from the history of queries

issued after the last update operation. Thereafter, we add this set of interests to
the old knowledge base.

3.3 Clustering Layer

The goal of this layer is to organize the P2P network into clusters of peers shar-
ing similar knowledge bases or interests. Each peer pi in the network establishes

68 T. Yeferny, K. Arour, and A. Bouzeghoub

connections with a set of friend peers Fri that share similar knowledge bases.
The underlying idea of our approach is to represent the knowledge base Bi of
a given peer pi by a set of representative vectors Ri to describe its interests.
Thereafter, peers that share similar interests (knowledge bases) make a friend-
ship relation between them. To illustrate this idea, consider Figure 2 which shows
a P2P network before applying our clustering method. In this example, peers are
connected randomly and each of them has a knowledge base described by two
representative vectors. Each representative vector is represented by a shape (i.e.,
triangle, square,...). After running our clustering method, each peer establishes
connections with peers sharing similar knowledge (see Figure 3). By this way,
we build a semantic overlay network, wherein peers sharing similar knowledge
are “clustered” together.

P3

P13

P12

P10

P5

P1

P8

P4

P2
P9

P7

p14

P11

B1

B2 B9

B10

B11

B12
B13

B14

B7

B6

B4
B3

B5

Fig. 2. Random overlay network (P2P network before clustering)

Before describing our peers clustering method, we present the following
definitions:

Definition 3. Representative Vectors Ri Each peer pi ∈ P selects a representa-
tive vectors set Ri to describe its knowledge base content. We define, the cluster
centroid of a specific past queries set belonging to the pi’ knowledge base as a
representative vector rij ∈ Ri.

Definition 4. Distance(rik , rjv) is the distance measure between rik ∈ Ri and
rjv ∈ Rj ; in other words, it is the similarity between two particular clusters
belonging to two different knowledge bases Bi and Bj . We use the Euclidean
distance between the centroid of two clusters represented by rik and rjv . Let
rik and rjv be two representative vectors, the Euclidean distance is defined as
follows:

Distance(rik , rjv) =
√∑

(xi − yi)
2

where xi , yi are respectively the ith components of rik and rjv . Notice that each
ith component is the weight of the ith term in the vector.

Learning Query Routing Scheme for P2P Systems 69

P3

P13

P12

P10

P5

P1

P8

P4

P2
P9

P7

p14

P11

B1

B2 B9

B10

B11

B12
B13

B14

B7

B6

B4B3

B5

P9

P8

P10

P

P9

3

B1

p14

B14

13

p14

P12P

P1

1222

BB
P

B
P7

2B1B1

pp

B6

P55

B6

P1

P4

B4

Fig. 3. Semantic overlay network (P2P network after clustering)

Based on the above definitions, we introduce our peer clustering algorithm. It
involves two phases (i) Computing representative vectors and (ii) Community
Construction.

Computing Representative Vectors. In our case, each representative vector
rik ∈ Ri is a cluster centroid of past queries set belonging to the knowledge
base Bi. Each vector can be used to indicate a user’s interest. This task is
executed when a peer builds or updates its knowledge base in order to update
the representative vectors accordingly.

Community Construction. After computing the set Ri of its representative
vectors, the peer pi must search its friend peers in the network. The friends of
pi form a set Fri. We define formally this set as follows:

Fri = {pj ∈ P /∃rik ∈ Ri, rjv ∈ Rj

such that i �= j and Distance(rik , rjv) < θ}

Where θ denotes a specified user threshold. To build the set Fri, the peer pi
floods a search query containing its representative vectors set Ri within a cer-
tain Time To Live (TTL). It sends a query, named search Friends(Ri, TTL),
similar to that of ping-pong messages in Gnutella. When a peer pj receives this
query, it computes the distance between each of their representative vectors (see
ComputeSimilarity from Algorithm 2); then, pj answers the query by sending

70 T. Yeferny, K. Arour, and A. Bouzeghoub

Algorithm 2. ComputeSimilarity

Input:
Ri : Representative vector of peer pi.
Rj : Representative vector of peer pj .
θ : A specific user threshold.

Output:
< r, d >: Couple, where r is the representative vector and d is a

distance.
begin1

< r, d >=< null,+∞ >2

for each r1 ∈ Ri do3

for each r2 ∈ Rj do4

s = Distance(r1, r2)5

if s < θ and s < d then6

r = r27

d = s8

end9

both its closest representative vector, if it exists, and the distance value. When
pi receives the representative vectors of the closest peers, it selects the best k
peers having minimum distance.

Each peer in the network periodically runs this community construction al-
gorithm. Hence, peers are organized dynamically in new semantic clusters. This
task is periodically executed offline.

3.4 Bootstrapping Layer

The goal of this layer is to build an initial knowledge for each peer in the network,
before the user sends his first search query through the network. Thus, the
training phase is implicitly executed. To build an initial knowledge base Bi0 for
a peer pi, we need to flood some queries that have a semantic relationship with
user’s intended queries. To generate queries that have a semantic relationship
with user’s intended queries (user intention), we exploit the shared documents
collection to extract few representative queries. In real world, there is a snugness
connection between search queries and shared documents. For example, a user
who shares documents related to mathematics probably looks for documents in
the same domain.

Query Extraction. The idea underlying our proposal is to extract a query
Q from any shared document d. The document d and the query Q must have
the highest similarity value. In addition, query terms must be representative of
the document d. Therefore, we aim to maximize the similarity value document
query Sim(Q, d), where Sim is the similarity function between a query Q and a
document d. In our case, we chose the Cosine similarity function [17]. Indeed, for

Learning Query Routing Scheme for P2P Systems 71

Algorithm 3. Query Extraction

Input:
C : Documents collection;
tmax : Length each query;

Output:
queriesList : List of selected queries

begin1

d: document2

t: term3

wt: weight of the term t4

Q: query5

index : list containing tuples with this form < t,wt >6

queriesList = ∅7

for each d ∈ C do8

index =<>9

for each t ∈ d do10

wt = computeWeight(t, d, C)11

index.add(< t,wt >)12

Q = generateQuery(index,tmax)13

queriesList = queriesList+Q14

return (queriesList)15

end16

a given document d from a collection C of shared documents, we compute the
weight wt of each term t ∈ d using the computeWeight(t, d, C) function called
in Algorithm 3. The weight of each term is computed according to the tf-idf
measure [17]. Thereafter, the first tmax terms having the highest weight form a
query Q (see line 13 of Algorithm 3).

Building the Initial Knowledge Base. After applying the Query Extraction
algorithm, each peer in the network randomly chooses K queries from the gener-
ated queries. The value of K will be proportional to the number of shared docu-
ments. Thereafter, chosen queries are sent implicitly using the classical flooding
techniques [7]. Finally, each peer builds its initial knowledge base from the re-
turned results.

3.5 Semantic Query Spreading Layer

This layer firstly exploits local knowledge base to select relevant peers which
are most likely to provide an answer for a forthcoming query. Thereafter, if
the number of relevant peers is below a given threshold Pmax, it adds the best
friend peers, where we are sure that they are able to select promising peers from
their knowledge bases. Hence, the peer selection process is totally semantic.
Indeed, when a peer receives a query Q, it performs QueryRouting algorithm

72 T. Yeferny, K. Arour, and A. Bouzeghoub

(see Algorithm 4) for selecting a set of relevant peers to forward the query.
Firstly, this algorithm calls the (PeerSelection) algorithm for selecting a set
of relevant peers from the local knowledge base (see line 2 of Algorithm 4).
Thereafter, if the number of selected peers is below a threshold Pmax, it calls
addSemantic() algorithm (see line 5 of Algorithm 4) that adds a list of the best
friend peers.

Algorithm 4. Query Routing Algorithm

Input:
B : Knowledge base.
Q: Query to forward.
Fr : Friend list.
Pmax : The maximum number of peers to be selected.

begin1

finalList = PeerSelection(B,Q,Pmax)2

if (|finalList| < Pmax) then3

N = Pmax − |finalList|4

addSemantic(finalList,N, Fr, Q)5

Forward(Q,finalList)6

end7

PeerSelection Algorithm. To choose the relevant peers, PeerSelection is
based on a knowledge base B generated by the management user profile layer.
Indeed, for a given query Q, our algorithm extracts from B the closest user
interest I(E,F,G) to Q using the following similarity function (see line 4 of
Algorithm 5).

Sim(I(E,F,G), Q) =
F
⋂
Q

F
⋃
Q

Thereafter, from the set G we determine the list of promising peers (see line 6
of Algorithm 5). If the number of selected peers is lower than a threshold Pmax,
we extract the closest user interest to Q from B \ {I(E,F,G)} (see lines 7 and
8 of Algorithm 5) and we repeat the same steps.

addSemantic Algorithm. This algorithm involves three steps:

1. Similarity computing : in this step we compute the similarity between the
representative vector of each friend peers and the query Q;

2. Sorting step: this step sorts the list Fr of friend peers according to the
similarity value;

3. Adding: this step adds to finalList the best N friends having the highest
similarity values.

Learning Query Routing Scheme for P2P Systems 73

Algorithm 5. Peer selection algorithm

Input:
B : Knowledge base (Set of interests)
Q : Query
Pmax : The maximum number of peers to be selected for query

Output:
peers : List of selected peers

begin1

I : Interest2

peers =<>3

I = getClosetInterst(Q,B)4

while I and |peers| < Pmax do5

peers = peers+ I.getPeers()6

B = B \ {I}7

I = getClosetInterst(Q,B)8

Return (peers)9

end10

4 Experiments

Our experimental study aims to validate the following challenges, discussed in
this paper:

1. Starting with an initial knowledge base, instead of cold-startup, to achieve
better results during the training phase. To validate this proposal, we studied
the retrieval effectiveness and the routing efficiency of our scheme LRS when
it starts with or without an initial knowledge base. In the later case, LRS is
denoted LRS′;

2. Exploiting correlations between past queries and positive peers to represent
the user profile, instead of a flat representation based on some statistics about
past queries. To validate this proposal, we compared the effectiveness and the
efficiency of LRS to an existing query-oriented routing method “Intelligent
Search” (IS) and a classical routing method Gnutella. We point out again
that, IS represents the user profile by past query keywords and associate
peers, without taking into account the relationships between them;

3. Avoiding the fail search problem for better retrieval effectiveness and routing
efficiency. To validate this proposal, we compared LRS to IS, which does
not address the fail search problem.

Several parameters can be considered to simulate the different routing methods.
In our case, we simulated the queries and documents distribution models, the
knowledge evolution and the overlay size. Indeed, various test scenarios can be
performed to detect the impact of these different parameters:

74 T. Yeferny, K. Arour, and A. Bouzeghoub

S1. Impact of the initial knowledge base on the routing efficiency and the re-
trieval effectiveness of LRS;

S2. Impact of the knowledge evolution on the routing efficiency and the retrieval
effectiveness of IS and LRS;

S3. Impact of the queries and the documents distribution models on the routing
efficiency and the retrieval effectiveness of Gnutella, IS and LRS;

S4. Impact of overlay size on the routing efficiency and the retrieval effective-
ness of Gnutella, IS and LRS;

S5. Impact of the maintenance cost of routing indices on the routing efficiency
of LRS and IS.

4.1 Environment

To simulate our approach, we have chosen the PeerSim simulator [12], which is
an open source Java tool. The simulation is based on the following parameters:

– TTL: The maximum number of hops that a query is allowed to travel (the
horizon of the query), initialized to 4.

– Pmax: The maximum number of peers to be selected for a query, initialized
to 4.

– Overlay size: For the three first scenarios (S1, S2 and S3), we initialised
the overlay size to 810 peers. However, we varied the number of peers from
500 to 2300 in order to study the fourth scenario (S4).

In addition, as a data source, we used the “Big Dataset” collection devel-
oped under the RARE project [20]. This collection is obtained from a statistical
analysis on Gnutella system data [9] and the TREC collection [24], which al-
low us to simulate our algorithm in real conditions. Big Dataset is composed of
25000 documents and 5000 queries. To distribute documents and queries among
the set of peers, we used the Benchmarking Framework for P2PIR [29]. This
framework is configurable and allows the user to define some parameters (e.g.
number of peers, distribution method of documents and queries, replication rate
of queries and documents, etc.) and provides XML files describing the peers, the
associated documents and the queries to be issued. To consider the performance
of our approach in the worst case, we have chosen a query replication rate equal
to 7 (i.e., the total number of issued queries is 35000) and without documents
replication. Furthermore, we have chosen the following distribution models:

– Uniform: this method distributes documents according to the uniform law
among the peers set. The obtained dataset is named uniform benchmark
(UB).

– Random: this method distributes randomly documents among the peers set.
The obtained dataset is named random benchmark (RB).

– Clustering: this method clusters similar documents together according to
their common terms. Hence, each document’s cluster will be affected to one
peer. The obtained dataset is named clustering benchmark (CB).

Learning Query Routing Scheme for P2P Systems 75

To evaluate the retrieval effectiveness of our approach, we are used the Recall
(R) and Precision (P) metrics defined as follows for a given query q [17]:

R(q) =
RRD

RLD
(5)

P (q)@k =
RRD@k

RTD
(6)

Where, RRD denotes the number of relevant retrieved documents, RLD the
number of relevant documents, RRD@K is the number of relevant retrieved
documents in the first K rank positions (in our case we fixed K to 3) and RTD
denotes the number of retrieved documents.

Besides, we are interested in assessing the routing efficiency of our approach
by computing the number of visited peers (V P) and the number of messages
(MT) per query.

4.2 Results

In this section, we report the results of the five test scenarios presented above.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

1000
B0

9000
B1

18000
B2

27000
B3

R
E

C
A

L
L

#QUERIES

LRS with CB
IS with CB

GNUTELLA with CB
LRS’ with CB

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

1000
B0

9000
B1

18000
B2

27000
B3

P
R

E
C

IS
IO

N

#QUERIES

LRS with CB
IS with CB

GNUTELLA with CB
LRS’ with CB

Recall per query (a) Precision per query (b)

Fig. 4. Average recall and precision per query of Gnutella, IS, LRS′ and LRS

S1. Impact of the Initial Knowledge Base on the Routing Efficiency
and the Retrieval Effectiveness of LRS. To study the impact of the initial
knowledge base, we compared the retrieval effectiveness and the routing efficiency
of LRS and LRS′. We note that, LRS starts with an initial knowledge base
B0 generated by the bootstrapping layer. However, LRS′ starts with an empty
knowledge base. During the simulation task, the knowledge bases have been
updated three times for building B1, B2 and B3 per peer.

To compare the retrieval effectiveness and the routing efficiency of LRS and
LRS′, we computed the average recall and precision, (respectively the average
number of messages and visited peers), by intervals of 9000 queries sent from
different peers in the P2P network. The simulation of the two methods is based
on the “Clustering Benchmark” (CB).

76 T. Yeferny, K. Arour, and A. Bouzeghoub

 150

 200

 250

 300

 350

1000
B0

9000
B1

18000
B2

27000
B3

#
M

E
S

S
A

G
E

S

#QUERIES

LRS with CB

IS with CB

GNUTELLA with CB

LRS’ with CB

 100

 150

 200

 250

 300

1000
B0

9000
B1

18000
B2

27000
B3

#
P

E
E

R
S

#QUERIES

LRS with CB

IS with CB

GNUTELLA with CB

LRS’ with CB

Messages per query (a) Visited peers per query (b)

Fig. 5. Average number of messages and visited peers per query of Gnutella, IS, LRS′

and LRS

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

CB RB UB

R
E

C
A

L
L

DATASETS

LRS IS GNUTELLA

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

CB RB UB

P
R

E
C

IS
IO

N

DATASETS

LRS IS GNUTELLA

Recall (a) Precision (b)

Fig. 6. Average recall and precision according to CB, RB and UB datasets

Retrieval effectiveness of LRS′ and LRS: Figures 4 (a) and 4 (b) show that
LRS gives better results than LRS′ in terms of recall and precision. Indeed, at
the system startup, the average recall and precision for LRS are respectively
around 0.68 and 0.7, while they are respectively around 0.32 and 0.37 for LRS′.
Hence, we deduce that with an initial knowledge base we increase the recall and
precision by 112% during the training phase, which proves the effectiveness of
our solution to the cold-start problem. These results are very encouraging in that
they give users good appreciation about the system. Most significantly, users are
not obliged to wait for the system until it builds the initial knowledge base.

Routing efficiency of LRS′ and LRS: Figures 5 (a) and 5 (b) show that at
the system startup, LRS carries out better than LRS′ in terms of the average
number of messages and visited peers. Hence, the average number of messages
and visited peers for LRS are respectively around 227 and 164, while they are
respectively around 323 and 273 for LRS′. Indeed, by starting with an initial
knowledge base we decrease significantly the number of messages (around 30%)
and the number of visited peers (around 40%), which demonstrates the routing
efficiency of our solution for the cold-start problem.

Learning Query Routing Scheme for P2P Systems 77

 0

 50

 100

 150

 200

 250

 300

 350

CB RB UB

M
E

S
S

A
G

E
S

DATASETS

LRS IS GNUTELLA

 0

 50

 100

 150

 200

 250

 300

CB RB UB

P
E

E
R

S

DATASETS

LRS IS GNUTELLA

Number of messages (a) Number of visited peers(b)

Fig. 7. Average number of messages and visited peers according to CB, RB and UB
datasets

 0

 0.2

 0.4

 0.6

 0.8

 1

500 810 1300 1800 2300

R
E

C
A

L
L

#PEERS

GNUTELLA LRS IS

 0

 0.2

 0.4

 0.6

 0.8

 1

500 810 1300 1800 2300

P
R

E
C

IS
IO

N

#PEERS

GNUTELLA LRS IS

Recall (a) Precision (b)

Fig. 8. Average recall and precision under various numbers of peers

S2. Impact of the Knowledge Evolution on the Routing Efficiency and
the Retrieval Effectiveness of IS and LRS. To study the impact of the
knowledge evolution on the retrieval effectiveness and the routing efficiency of
IS and LRS, we compared the average recall and precision, (respectively the
average number of messages and visited peers) by intervals of 9000 queries sent
from different peers in the P2P network. The tests are carried out with the CB
dataset.

Retrieval effectiveness of IS and LRS: At the beginning, LRS starts with
an initial knowledge base prepared by the bootstrapping layer. However, IS
starts with a flooding technique since the profiles are not yet learned. Hence,
our scheme gives better results than IS in terms of recall and precision during
the training phase. Indeed, Figures 4 (a) and 4 (b) show that at the system
startup the average recall and precision of LRS are respectively around 0.68
and 0.7, while they are respectively around 0.32 and 0.37 for IS. In addition, we
observe that the recall and precision of IS improve over time, as peer profiles
are learned. They are increased from 0.30 to 0.46, and respectively from 0.37 to
0.53 after sending 9000 queries. Thereafter, they remain stable respectively at
0.46 and 0.53 because the profiles table of each peers have reached the maximum
size. Furthermore, we show that recall and precision of LRS increase after each

78 T. Yeferny, K. Arour, and A. Bouzeghoub

 150

 200

 250

 300

 350

500 810 1300 1800 2300

#
M

E
S

S
A

G
E

S

#PEERS

GNUTELLA LRS IS

 100

 150

 200

 250

 300

500 810 1300 1800 2300

#
P

E
E

R
S

#PEERS

GNUTELLA LRS IS

Number of messages (a) Number of visited peers(b)

Fig. 9. Average number of messages and visited peers under various numbers of peers

update operation of knowledge bases. Figure 4 (a) shows that the recall of LRS
increases from 0.68 to 0.76. Similarly, figure 4 (b) shows that the precision of
LRS increases from 0.7 to 0.78. Indeed, throughout the simulation task, our
scheme is more effective than IS.

Routing efficiency of IS and LRS: Figures 5 (a) and 5 (b) show that the num-
ber of messages and the number of visited peers of IS decreased from 323 to 318,
respectively from 273 to 255 after sending 9000 queries. We observe as well that
the number of messages and the number of visited peers of LRS decrease after the
two first updates operations of the knowledge base. Figure 5 (a) shows that the
number of messages of LRS decreases from 227 to 182, by using B1, to 162, by
using B2. Similarly, figure 5 (a) shows that the number of visited peers of LRS
decreases from 164 to 120 by using B1, to 102 by using B2. Hence, we deduce that
our scheme is more efficient than IS throughout the simulation task.

S3. Impact of the Queries and the Documents Distribution Models on
the Routing Efficiency and the Retrieval Effectiveness of Gnutella, IS
and LRS. To study the impact of the queries and the documents distribution
models on the routing efficiency and the retrieval effectiveness of Gnutella, IS
and LRS, we compared their average recall and precision, (respectively their
average number of messages and visited peers), according to the CB, UB and
RB datasets.

Retrieval effectiveness of Gnutella, IS and LRS: Figure 6 (a) shows that
the average recall and precision of Gnutella are respectively around 0.32 and
0.37 according to the different datasets. In addition, we observe that the aver-
age recall and precision of IS are respectively around 0.43 and 0.5 according
to the different datasets. Indeed, IS improves the results of Gnutella and the
three distribution models do not have an impact on their retrieval effective-
ness. Furthermore, Figure 6 (a) shows that LRS increases the recall of IS by
83%, 64% and 64% respectively according the CB, RB and UB datasets. Sim-
ilarly, Figure 6 (b) shows that LRS increases the precision of IS by 55%, 40%
and 49% respectively according the CB, RB and UB datasets. These results
confirm that LRS is more effective than IS according to the three datasets.

Learning Query Routing Scheme for P2P Systems 79

In addition, we remark that the recall and precision of LRS are close with UB
and RB datasets. However, we observe a slight increase (around 5%) of the re-
call and precision with CB dataset. This increase is due to the nature of the
CB dataset (each peer shares a set of similar documents). Hence, when LRS
routes a given query to a pertinent peer, this peer can provide more relevant
documents, which contributes to the increase of the recall and the precision.

Routing efficiencyofGnutella, IS andLRS: Figure 7 (a) shows that IS slightly
decreases the number of messages and the number of visited peers of Gnutella.
Furthermore, we observe that LRS decreases the number of messages of IS by
45%, 30% and 33%, respectively according the CB, RB and UB datasets. Simi-
larly, Figure 7 (b) shows that LRS decreases the number of visited peers of IS by
56%, 41% and 44%, respectively according the CB, RB and UB datasets. These
results prove that LRS is more efficient than IS according to the three datasets.
In addition, like the recall and precision, we observe that the number of messages
and the number of visited peers ofLRS are near with a statistical datasetsRB and
UB. However, there is an important decrease (around 24%) of messages and vis-
ited peers, withCB dataset. Indeed, inCB dataset the local collection of each peer
is homogeneous. Consequently, LRS swiftly identifies relevant peers for a given
query. These peers process once time the same query, which contributes to the
decrease of the number of messages and visited peers.

Synthesis: Figures 6 and 7 prove that by (i) exploiting the correlations between
past queries and positive peers to represent the user profile, (ii) avoiding the
cold-start problem and (iii) avoiding the fail search problem, our hybrid routing
scheme LRS improves the retrieval effectiveness and the routing efficiency of the
query-oriented routing method IS. Indeed, LRS achieves 83% recall rate while
using less than 45% of the number of messages of the IS, with CB dataset.
Furthermore, it achieves 64% recall rate while using less than 30% of the number
of messages of the IS algorithm, with UB and RB datasets.

S4. Impact of Overlay Size on the Routing Efficiency and the Retrieval
Effectiveness of Gnutella, IS and LRS. To evaluate the scalability of
Gnutella, IS and LRS, we compared their routing efficiency and their retrieval
effectiveness by varying the overlay size. The simulation of the different methods
is based on the UB dataset.

Routing effectiveness of Gnutella, IS and LRS: Figures 8 (a) and 8 (b) show
that the recall and the precision of the three methods decreased by increasing the
number of peers in the network. This is logical, since by increasing the number
of peers in the network the likelihood to find relevant peers decreases, which neg-
atively affects the recall and precision. Furthermore, Figure 8 shows that the re-
call, (respectively the precision), ofGnutella significantly decreased (around 68%)
from 0.44 with 500 peers to 0.14 with 2300 peers (respectively from 0.49 to 0.18),
which confirms that this classic method is not scalable. Similarly, we observe a de-
crease (around 52%) of recall and precision of IS from 0.57 to 0.27, (respectively
from 0.62 to 0.31). Indeed, with 2300 peers IS is not effective.

80 T. Yeferny, K. Arour, and A. Bouzeghoub

In addition, we observe that the recall, (respectively the precision), of LRS
decreases from 0.88 to 0.61, (respectively from 0.89 to 0.59). Although this de-
crease is around 30%, recall and precision of LRS remain high (around 0.60).
We point out again that, in our tests we chose the worst case, since in the UB
dataset the documents are not replicated. These results are very encouraging
and prove that our scheme LRS is scalable.

Retrieval efficiency of Gnutella, IS and LRS: Figure 8 shows that the
number of messages, (respectively the number of visited peers), of Gnutella
increases from 302 with 500 peers to 320 with 2300 peers, (respectively from
216 to 298). Similarly, we observe that the number of messages (respectively
the number of visited peers), of IS increases from 297 with 500 peers to 315
with 2300 peers, (respectively from 209 to 291). We deduce that the number
of messages and the number of visited peers with a small network are lower
than those with a larger network. Indeed, in a small network there is a high
probability that peers receive several times the same queries. In this case, they
stop the propagation, which reduces the number of messages and the number
of visited peers. In addition, Figure 8 shows that the number of messages and
the number of visited peers of LRS remain acceptable even if the overlay size
increases (respectively around 241 and 237), which prove the scalability of LRS.

S5. Impact of the Maintenance Cost of Routing Indices on the Rout-
ing Efficiency of the LRS and IS. In our experimental study, LRS uses
a single representative vector to represent the knowledge base of each peer. In-
deed, during the simulation task, each peer flooded 2 representative vectors for
searching and maintaining its list of friend peers. The cost of flooding of the 2
representative vectors is 646 (i.e., 2×323) messages per peer. Thus, the cost of the
clustering algorithm (i.e., maintenance cost of routing indices) of LRS is 523260
messages (i.e., number of messages per peers × number of peers = 646×810).
However, IS does not require a communication cost to maintain peers routing
indices. Indeed, in our experimental study, we have chosen the first mechanism
that IS propose to build the routing indices.

Figure 7 shows that the average number of messages per query of IS and LRS
are respectively 319 and 173. Hence, LRS decreases the number of messages per
query of IS by 146 messages. Knowing that the number of queries issued by
all peers is 35000, we deduce that LRS forwards 5110000 (i.e., 146 × 35000)
less messages than IS. By considering the cost of building and maintenance
of the routing routing indices, LRS uses 4586740 (i.e., 5110000− 523260) less
messages than IS (i.e., less than 131 message per query). These results show
that the maintenance cost of routing indices of LRS does not affect its routing
efficiency.

5 Conclusion and Future Works

In this paper we presented a new learning query routing scheme LRS for un-
structured P2P systems. The proposed scheme is fully distributed and scales

Learning Query Routing Scheme for P2P Systems 81

well with the size of the network. To route more efficiently future queries, LRS
selects pertinent peers based on the user’s profile (user interests), which is gener-
ated from the past queries. Unlike the proposed schemes in the literature, firstly
LRS exploits repetition rate for either keywords seen in sent queries or rela-
tionships between them to represent the user interests. Secondly, it addresses
the bootstrapping problem by building an initial knowledge base founded on
the shared documents. Finally, to palliate the unsuccessful relevant peers search
problem, our scheme organizes the P2P network into clusters of peers sharing
similar knowledge. The experimental results highlights the retrieval effectiveness
and the routing efficiency of our scheme. Obvious pointers for future work in-
clude the proposition of a learning routing scheme that take into account other
dimensions of the user context like location, time and device.

References

[1] Callan, J.P., Lu, Z., Croft, W.B.: Searching distributed collections with inference
networks. In: The 18th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, pp. 21–28 (1995)

[2] Carchiolo, V., Malgeri, M., Mangioni, G., Nicosia, V.: Emerging structures of
p2p networks induced by social relationships. Comput. Commun. 31(3), 620–628
(2008)

[3] Christoph, T., Steffen, S., Adrian, W.: Semantic query routing in peer-to-peer
networks based on social metaphors. In: 13th International World Wide Web Con-
ference (WWW 2004), New York City, USA, pp. 55–68 (2004)

[4] Ciraci, S., Körpeoglu, I., Ulusoy, O.: Reducing query overhead through route learn-
ing in unstructured peer-to-peer network. J. Netw. Comput. Appl. 32(3), 550–567
(2009)

[5] Crespo, A., Garcia-Molina, H.: Routing indices for peer-to-peer systems. In: Pro-
ceedings of the 22nd International Conference on Distributed Computing Systems
(ICDCS 2002), Vienna, Austria, pp. 23–30 (2002)

[6] Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.
Springer, New York (1997)

[7] Gnutella: Gnutella Web site (March 2009), http://www.gnutella.com

[8] Godin, R., Missaoui, R., Alaoui, H.: Incremental concept formation algorithms
based on galois (concept) lattices. Computational Intelligence 11(2), 246–267
(1995)

[9] Goh, S.-T., Kalnis, P., Bakiras, S., Tan, K.-L.: Real datasets for file-sharing peer-
to-peer systems. In: Zhou, L.-Z., Ooi, B.-C., Meng, X. (eds.) DASFAA 2005. LNCS,
vol. 3453, pp. 201–213. Springer, Heidelberg (2005)

[10] Hsiao, H.C., Su, H.W.: On optimizing overlay topologies for search in unstructured
peer-to-peer networks. IEEE Transactions on Parallel and Distributed Systems 23,
924–935 (2012)

[11] Huang, J., Li, X., Wu, J.: A class-based search system in unstructured p2p net-
works. In: Proceedings of the 21st International Conference on Advanced Net-
working and Applications (AINA 2007), pp. 76–83 (2007)

[12] Jelasity, M., Montresor, A., Jesi, G.P., Voulgaris, S.: The peersim simulator (March
2010), http://peersim.sf.net

http://www.gnutella.com
http://peersim.sf.net

82 T. Yeferny, K. Arour, and A. Bouzeghoub

[13] Jin, H., Ning, X., Chen, H., Yin, Z.: Efficient query routing for information re-
trieval in semantic overlays. In: Proceedings of the 21st Annual ACM Symposium
on Applied Computing (SAC 2006), Dijon, France, pp. 23–27 (2006)

[14] Kalogeraki Vana, G.D., Zeinalipour-Yazti, D.: A local search mechanism for peer-
to-peer networks. In: Proceedings of the Eleventh International Conference on
Information and Knowledge Management (CIKM 2002), McLean, Virginia, USA,
pp. 300–307 (2002)

[15] Kumar, A., Xu, J., Zegura, E.W.: Efficient and scalable query routing for unstruc-
tured peer-to-peer networks. In: (INFOCOM 2005), Miami, USA, pp. 1162–1173
(2005)

[16] Luis, G., Hector, G., Anthony, T.: The effectiveness of gloss for the text database
discovery problem. In: Proceedings of the 1994 ACM SIGMOD International Con-
ference on Management of Data (1994)

[17] Makhoul, J., Kubala, F., Schwartz, R., Weischedel, R.: Performance measures for
information extraction. In: Proceedings of DARPA Broadcast News Workshop
(DARPA 1999), Herndon, VA, pp. 249–252 (1999)

[18] Mandreoli, F., Martoglia, R., Penzo, W., Sassatelli, S.: Data-sharing p2p networks
with semantic approximation capabilities. IEEE Internet Computing 13, 60–70
(2009)

[19] Raja, C., Bruno, D., Georges, H.: Définition et diffusion de signatures sémantiques
dans les systèmes pair-à-pair. In: Extraction et gestion des connaissances (EGC
2006), Lille, France, pp. 463–468 (2006)

[20] RARE: Rare project. (March 2010), http://www-inf.it-sudparis.eu
[21] Sergio, A.P., Carlos, B., Nuno, P., David, H.: Scalable bloom filters. Inf. Process.

Lett. 101
[22] Shen, W.W., Su, S., Shuang, K., Yang, F.C.: Skip: an efficient search mechanism

in unstructured p2p networks. The Journal of China Universities of Posts and
Telecommunications 17(5), 64–71 (2011)

[23] Shi, C., Han, D., Liu, Y., Meng, S., Yu, Y.: A dynamic routing protocol for keyword
search in unstructured peer-to-peer networks. Computer Communications 31(2),
318–331 (2008)

[24] TREC: Text REtrival Conference (March 2010), http://trec.nist.gov
[25] Yang, B., Garcia-Molina, H.: Improving search in peer-to-peer networks. In: The

22nd International Conference on Distributed Computing Systems (ICDCS 2002),
Vienna, Austria, pp. 5–14 (2002)

[26] Yeferny, T., Arour, K.: Learningpeerselection: A query routing approach for infor-
mation retrieval in p2p systems. In: International Conference on Internet and Web
Applications and Services (ICIW 2010), Barcelona, Spain, pp. 235–241 (2010)

[27] Yeferny, T., Arour, K.: Efficient routing method in p2p systems based upon train-
ing knowledge. In: The Eighth International Symposium on Frontiers of Infor-
mation Systems and Network Applications, in Conjunction with AINA (WAINA
2012), Fukuoka, Japan, pp. 300–305 (2012)

[28] Yeferny, T., Bouzeghoub, A., Arour, K.: A query learning routing approach based
on semantic clusters. International Journal of Advanced Information Technology
(IJAIT) 1(6) (2011)

[29] Zammali, S., Arour, K.: P2PIRB: Benchmarking framework for P2PIR. In:
Hameurlain, A., Morvan, F., Tjoa, A.M. (eds.) Globe 2010. LNCS, vol. 6265,
pp. 100–111. Springer, Heidelberg (2010)

[30] Zhu, Y., Yang, X., Hu, Y.: Making search efficient on gnutella-like p2p systems. In:
Proceedings of the 19th IEEE International Parallel and Distributed Processing
Symposium (IPDPS 2005), Washington, DC, USA, pp. 1–56 (2005)

http://www-inf.it-sudparis.eu
http://trec.nist.gov

A. Hameurlain et al. (Eds.): TLDKS XII, LNCS 8320, pp. 83–104, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Open Streaming Operation Patterns

Qiming Chen and Meichun Hsu

HP Labs Palo Alto, California, USA
Hewlett Packard Co.

{qiming.chen,meichun.hsu}@hp.com

Abstract. We describe our canonical dataflow operator framework for
distributed stream analytics. This framework is characterized by the notion of
open-executors. A dataflow process is composed by chained operators which
form a graph-structured topology, with each logical operator executed by
multiple physical instances running in parallel over distributed server nodes. An
open executor supports the streaming operations with specific characteristics
and running pattern, but is open for the application logic to be plugged-in. This
framework allows us to provide automated and systematic support for
executing, parallelizing and granulizing the continuous operations.

We illustrate the power of this approach by solving the following problems:
first, how to categorize the meta-properties of stream operators such as the I/O,
blocking, data grouping characteristics, for providing unified and automated
system support; next, how to elastically and correctly parallelize a stateful
operator that is history-sensitive, relying on the prior state and data processing
results; how to analyze unbounded stream granularly to ensure sound semantics
(e.g. aggregation); and further, how to deal with parallel sliding window based
stream processing systematically. These capabilities are not systematically
supported in the current generation of stream processing systems, but left to
user programs which can result in fragile code, disappointing performance and
incorrect results. Instead, solving these problems using open-executors benefits
many applications with system guaranteed semantics and reliability.

In general, with the proposed canonical dataflow operator framework we can
standardize the operator execution patterns, and to support these patterns
systematically and automatically. The value of our approach in real-time,
continuous, elastic data-parallel and topological stream analytics has been
revealed by the experiment results.

1 Introduction

Real-time stream analytics has increasingly gained popularity since enterprises need
to capture and update business information just-in-time, analyze continuously
generated “moving data” from sensors, mobile devices, social media of all types, and
gain live business intelligence.

We have built a stream analytics platform with code name Fontainebleau for
dealing with continuous, real-time data-flow with graph-structured topology. This
platform is parallel and distributed with each logical operator executed by multiple

84 Q. Chen and M. Hsu

physical instances running in parallel over distributed server nodes. The stream
analysis operators are defined by users flexibly. From stream abstraction point of
view, our stream analytics cluster is positioned in the same space of System S(IBM),
Dryad(MS), Storm(Tweeter), etc. However, this work aims to advance the state of art
by providing canonical execution support for stream analysis operators.

1.1 The Challenges

A stream analytics process is composed by multiple operators and pipes connecting
these operators. The operators for stream analysis have certain meta-properties
representing their I/O characteristics, blocking characteristics, data grouping
characteristics, etc, as well as the functionalities common to various types of
applications, which can be categorized for introducing unified system support.
Categorizing stream operators and their running patterns to provide automatic support
accordingly, can ensure the operators to be executed optimally and consistently, as
well as ease user’s effort for dealing with these properties manually which is often
tedious and risky. Unfortunately, this issue has been missed by the existing stream
processing systems.

There exist several key requirements in stream processing which demand
automated and systematic support. First, to scale out, the data-parallel execution of
operators must be taken into account, where how to ensure the correctness of data-
parallelism is the key issue which requires the appropriate system protocol to
guarantee; particularly in parallelizing stateful stream operators where the stream data
partitioning and data buffering must be consistent. Next, stream processing is often
made in granule. For example, to provide sound aggregation semantics (e.g. sum), the
infinite input data stream must be processed chunk by chunk where each operator may
punctuate data based on different chunking criteria such as in 1-minute or 1-hour time
windows (certain constraints apply, e.g. the frame of a downstream operator must be
the same as, or some integral number of, the frame of its upstream operator).
Granulizing dataflow analytics represents another kind of common behavior of stream
operators which also need to be supported systematically.

Current large-scale data processing tools, such as Map-Reduce, Dryad, Storm, etc,
do not address these issues in a canonical way. As a result, the programmers have to
deal with them on their own, which can lead to fragile code, disappointing
performance and incorrect results.

1.2 The Proposed Solution

The operators on a parallel and distributed dataflow infrastructure are performed by
both the infrastructure and the user programs, which we refer to as their template
behavior and dynamic behavior. The template behavior of a stream operator
depends on its meta-properties and its running pattern. For example, a map-reduce
application is performed by the Hadoop infrastructure as well as the user-coded map

 Open Streaming Operation Patterns 85

function and reduce function. Our streaming platform is more flexible and elastic than
Hadoop in handling dynamically parallelized operations in a general graph structured
dataflow topology, and our focus is placed on supporting the template behavior, or
operation patterns, automatically and systematically.

Unlike applying an operator to data, stream processing is characterized by the
flowing of data through a stationed operator. We introduce the notion of open-station
as the container of a stream operator. The stream operators with certain common
meta-properties can be executed by the class of open-stations specific to these
operators. Open-stations are classified into a station hierarchy. Each class provides an
open-executor as well as related system utilities. In the OO programming context, the
open-executor is coded by invoking certain abstract functions (methods) to be
implemented by users based on their application logic. In this way the station
provides designated system support, while open for the application logic to be
plugged-in. In this work we use the proposed architecture to solve several typical
stream processing problems.

The key to ensure safe parallelization is to handle data flow group-wise - for each
vertex representing a logical operator in the dataflow graph; the operation
parallelization with multiple instances comes with input data partition (grouping)
which is consistent with the data buffering at each operation instance. This ensures
that in the presence of multiple execution instances of an operator, O, every stream
tuple is processed once and only once by one of the execution instances of O; the
historical data processing states of every group of the partitioned data are buffered
with one and only one execution instance of O. Our solution to this problem is based
on the open station architecture.

The key to ensure the granule semantics is to handle dataflow chunk wise by
punctuating and buffering data consistently. Our solution to this problem is also based
on the open station architecture.

As a generalization of these solutions, we show how to use the open station
architecture to provide system support for handling parallel sliding window based
stream processing.

In general, the proposed canonical operation framework allows us to standardize
various operational patterns of stream operators, and have these patterns supported
systematically and automatically. Our experience shows its power in real-time,
continuous, elastic data-parallel and topological stream analytics.

The rest of this paper is organized as follows: section 2 describes the notions of
open-station and open-executor; then based on these notions section 3 discusses how
to guarantee the correctness of data-parallel execution of stateful operations, and how
to deal with the granular execution of stream operations; in section 4 we further show
how to use the open station architecture to provide system support for handling
parallel sliding window based stream processing; some experimental results are
illustrated in section 5; finally section 6 compares with related work and concludes
the paper.

86 Q. Chen and M. Hsu

2 Open Station and Open Executor of Stream Operator

2.1 Continuous, Parallel and Elastic Stream Analytics Platform

Fontainebleau is a real-time, continuous, parallel and elastic stream analytics
platform. There are two kinds of nodes on the cluster: the coordinator node and the
agent nodes with each running a corresponding daemon. A dataflow process is
handled by the coordinator and the agents spread across multiple machine nodes. The
coordinator is responsible for distributing code around the cluster, assigning tasks to
machines, and monitoring for failures, in the way similar to Hadoop’s job-tracker.
Each agent interacts with the coordinator and executes some operator instances (as
threads) of the dataflow process. The Fontainebleau platform is built using several
open-source tools, including ZooKeeper[12], ØMQ[11], Kryo[13], Storm[14], etc.
ZooKeeper coordinates distributed applications on multiple nodes elastically. ØMQ
supports efficient and reliable messaging. Kryo deals with object serialization. Storm
provides the basic dataflow topology support.

A stream is an unbounded sequence of tuples. A stream operator transforms a
stream into a new stream based on its application-specific logic. The stream
transformations are packaged into a graph-structured "topology" which is the top-
level dataflow process. When an operator emits a tuple to a stream, it sends the tuple
to every successor operators subscribing to that stream. A stream grouping specifies
how to group and partition the tuples input to an operator. There exist a few different
kinds of stream groupings such as hash-partition, replication, random-partition, etc.

To support elastic parallelism, we allow a logical operator to be executed by
multiple physical instances, as threads, in parallel across the cluster; they pass
messages to each other in a distributed way. Using the ØMQ library [11], message
delivery is reliable; messages never pass through any sort of central router, and there
are no intermediate queues.

To provide an overview, we use a simplified as well as extended Linear-Road (LR)
benchmark to illustrate the notion of stream process. The LR benchmark models the
traffic on 10 express ways; each express way has two directions and 100 segments.
Cars may enter and exit any segment. The position of each car is read every 30
seconds and each reading constitutes an event, or stream element, for the system. A
car position report has attributes vehicle_id, time (in seconds), speed (mph), xway
(express way), dir (direction), seg (segment), etc. With the simplified benchmark, the
traffic statistics for each highway segment, i.e. the number of active cars, their
average speed per minute, and the past 5-minute moving average of vehicle speed, are
computed. Based on these per-minute per-segment statistics, the application computes
the tolls to be charged to a vehicle entering a segment any time during the next
minute. As an extension to the LR application, the traffic statuses analyzed and
reported every hour. The logical stream process for this example is given in Fig. 1.

 Open Streaming Operation Patterns 87

by minute,xway,dir,seg

minute, vid,
xway, dir, seg,
speed, …

Data Feeder

Socket,

File,

PostgreSQL,

 LR
Data

by hour, xway, dir

minute, xway, dir,
seg, volume,
avg_speed

minute, xway, dir,
seg, volume, 5-min-
mv_avg

Agg 5-min
mv-avg

 Toll

hourly
analysis

Block by group second, vid, xway, dir,
seg, speed, …

Fig. 1. The extended LR logical dataflow process with operators linked in a topology

This stream analytics process is specified by the Java program illustrated below.

 public class LR_Process {

…

public static void main(String[] args) throws Exception {

 ProcessBuilder builder = new ProcessBuilder();

 builder.setFeederStation(“feeder”, new LR_Feeder(args[0]), 1);

 builder.setStation("agg", new LR_AggStation(0, 1), 6) .hashPartition(“feeder”,

new Fields("xway", "dir", "seg"));

 builder.setStation("mv", new LR_MvWindowStation(5), 4).hashPartition("agg",

new Fields("xway", "dir", "seg"));

 builder.setStation("toll", new LR_TollStation(), 4).hashPartition("mv",

new Fields("xway", "dir", "seg"));

 builder.setStation("hourly", new LR_BlockStation(0, 7), 2).hashPartition("agg",

new Fields("xway", "dir"));

 Process process = builder.createProcess();

 Config conf = new Config(); conf.setXXX(…); …

 Cluster cluster = new Cluster();

 cluster.launchProcess("linear-road", conf, process);

 …

}

In the above topology specification, the hints for parallelization are given to the
operators “agg” (6 instances), “mv” (5 instances), “toll” (4 instances) and “hourly” (2
instances), the platform may make adjustment based on the resource availability.
Then the physical instances of these operators for data-parallel execution are
illustrated in Fig 2.

88 Q. Chen and M. Hsu

Partition by
xway, dir, seg

Data
Feeder

 Agg

 5-min mv-
avg

 Toll

 hourly
analysis

 Agg

 Agg

 Agg

 5-min
mv-avg

 5-min
mv-avg

 5-min
mv-avg

 Agg

 Agg

 Toll

 Toll

 Toll

 hourly
analysis

Block by group

Partition by
xway, dir, seg

Partition by
xway, dir, seg

Partition by
xway, dir

Fig. 2. The LR dataflow process instance with elastically parallelized operator instances

2.2 Meta Characteristics of Operators

Stream operators have certain characteristics in several dimensions, such as the
provisioning of initial data, the granularity of event processing, memory context,
invocation patterns, results grouping and shuffling, etc, which may be considered as
the meta-data, or the design pattern of operators. Further, the operators for supporting
a kind of applications also have certain common characteristics. Below we briefly list
some characteristics.

I/O Characteristics specifies the number of input tuples and the output tuples the
stream operator is designed to handle the stream data chunk-wise. Examples are 1:1
(one input/one output), 1:N (one input/multiple outputs), M:1(multiple inputs/ one
output) and M:N (multiple inputs/ multiple outputs). Accordingly we can classify the
operators into Scalar (1:1); Table Valued (TV) (1:N); Aggregate (N:1), etc, for each
chunk of the input. Currently we support the following chunking criteria for
punctuating the input tuples: (a) by cardinality, i.e. number of tuples; and (b) by
granule as a function applied to an attribute value, e.g. get_minute (timestamp in
second).

Blocking Characteristics tells that in the multiple input case, the operator applies
to the input tuple one by one incrementally (e.g. per-chunk aggregation), or first pools
the input tuples and then apply the function to all the pooled tuples. Accordingly the
block mode can be per-tuple or blocking. Specifying the blocking characteristics tells
the system to invoke the operator in the designated way, and save the user’s effort to
handle them in the application program.

 Open Streaming Operation Patterns 89

Caching Characteristics is related to the 4 levels potential cache states:

• per-process state that covers the whole dataflow process with certain initial data
objects;

• Per-chunk state that covers the processing of a chunk of input tuples with certain
initial data objects;

• Per-input state that covers the processing of an input tuple possibly with certain
initial data objects for multiple returns;

• Per-return state that covers the processing of a returned tuple.

Grouping Characteristics tells a topology how to send tuples between two
operators. There's a few different kinds of stream groupings. The simplest kind of
grouping is called a "random grouping" which sends the tuple to a random task. It has
the effect of evenly distributing the work of processing the tuples across all of the
consecutive downstream tasks. The hash grouping is to ensure the tuples with the
same value of a given field go to the same task. Hash groupings are implemented
using consistent hashing. There are a few other kinds of groupings.

Function Characteristics underlies the common feature of a kind of stream
processing applications. Support those features systematically can ease the effort and
improve the quality of application development.

2.3 Stationed Streaming Operators

Ensuring the characteristics of stream operators by user programs is often tedious and
not system guaranteed. Instead, categorizing the common classes of operation
characteristics and supporting them automatically and systematically can simplify
user’s effort and enhance the quality of streaming application development. This
has motivated us to introduce open-stations for holding stream operators
and encapsulating their characteristics – towards the open station class hierarchy
(Fig 3).

Each open-station class is provided with an “open executor” as well as related
system utilities for executing the corresponding kind of operators; that “open”
executor invokes the abstract methods, which are defined in the station class but
implemented by users with the application logic. In this way a station provides the
designated system support, while open for the application logic to be plugged-in. A
user defined operator captures the designated characteristics by subclass the
appropriate station, and captures the application logic by implementing the abstract
methods accordingly.

90 Q. Chen and M. Hsu

 Basic

Station

 Stateful

Station
 BasicTV

Station

 BasicBlock

Station

 BasicScalar

Station

 Window

Station

 Window

Station

 BasicAgg

Station

non-history sensitive history sensitive

block incremental

 CommonWindow

Station

Fig. 3. Station Hierarchy Example

2.4 Open Executor

Specified in a station class, there are two kinds of pre-prepared methods: the system
defined ones and the user defined ones.

• The system defined methods include the open-executor and other utilities which
is open to plugging-in application logic, in the sense that they invoke the abstract
methods to be implemented by users according to the application logic.

• The abstract methods to be implemented by the user based on the application
logic.

For example, the WindowStation that extends BasicBlockStation, is used to
support chunk-wise stream processing, where the framework provided functions,
hidden from user programs, include

 public boolean nextChunk(Tuple, tuple) {// group specific …}

 public void execute(Tuple tuple, BasicOutputCollector collector) {

 boolean new_chunk = nextChunk(tuple);

 String grp = getGroupKey(tuple);

 GroupMeasures gm = null;

 if (new_chunk) {

 gm = getGKV().dump(grp);

 }

 updateState(getGKV(), tuple, grp);

 if (new_chunk) { //emit last chunk

 processChunkByGroup(gm, collector);

 }

 }

 Open Streaming Operation Patterns 91

The three functions marked Station are to be implemented based on the application
logic; the others are system defined for encapsulating the chunk-wise stream
processing semantics.

In addition to offering the dataflow operation “executor” abstraction, introducing
open station also aims to provide canonical mechanisms to parallelize stateful and
granule dataflow process. The core is to handle data flow chunk-wise and group-
wise - for each vertex representing a logical operator in the dataflow graph; the
operation parallelization (launching multiple instances) comes with input data
partition (grouping) which is consistent with the data buffering at each operation
instance. These are discussed in the following sections.

3 Support Parallelized and Granulized Stream Processing
Patterns

3.1 Data-Parallel Execution of Operators

Under our approach, logically, the dataflow elements, i.e. tuples, either originated
from a data-source or derived by a logical operator, say A, are sent to one or more
receiving logical operators, say B. Since each logical operator may have multiple
execution instances, the dataflows from A to B actually form multi-to-multi
messaging channels.

To handle data-parallel operations, an operator property: parallelism hint, can be
specified, that is the number (default to 1) of station threads for running the operator.
The number of actual threads will be judged by the infrastructure and load-balanced
over multiple available machines.

For the sake of correct parallelism, the stream from A’s instances to B’s instances
are sent in a partitioned way (e.g. hash-partition) such that the data sent from any
instance of A to the instances of B are partitioned in the same way. This is similar to
the data shuffling from a Map node to a Reduce node, but in more general dataflow
topology.

Although our platform offers the flexibility of dataflow grouping with options
hash-partition, random-partition, range-partition, replicate, etc, the platform enforces
the use of hash partition for the parallelized operators. In case an operator is specified
to have parallel instances in the user’s dataflow process specification, the input stream
to that operator must be defined as hash-partitioned; otherwise the process
specification would be invalidated.

Further, there can be multiple logical operators, B1, B2, …, Bn, for receiving the
output stream of A, but each with different data partition criterion, called inflow-
grouping-attributes (a la SQL group by). The tuples falling in the same partition, i.e.
grouped together, have the same “inflow-group-keys”. For example, the tuples
representing the traffic status of an express way (xway), direction (dir) and segment
(seg), are partitioned, thus grouped by attributes <xway, dir, seg>; tuples of each
group has the same inflow-group-key derived from the values of xway, dir and seg.
An operation instance may receive multiple groups of data. The abstract method,
getGroupKey(tuple), must be implemented, which is invoked by the corresponding
open-executor.

92 Q. Chen and M. Hsu

3.2 Parallelize Stateful Streaming Operators Group-Wise

A stateful operator caches its state for future computation, and therefore is history
sensitive. When a logical stateful operator has multiple instances, their input data
must be partitioned, and the data partition must be consistent with the data buffering.

For example, given the logical operation, O, for calculating moving-average and
with the input stream data partitioned by <xway, dir, seg>, the data buffers of its
execution instances are also partitioned by <xway, dir, seg>, which is prepared and
enforced by the system.

For history-sensitive data-parallel computation, an operation instance keeps a state
computed from its input tuples (other static states may be incorporated but not the
focus of this discussion). We generally provide this state as a KV store where keys,
referred to as cachhing-group-keys, are Objects (e.g. String) extracted from the input
tuples, and values are Objects derived from the past and present tuples such as
numerical objects (e.g. sum, count), list objects (certain values derived from each
tuple), etc. the multiple instances of a logical operation can run in data-parallel
provided that the inflow-group-keys are used as the caching group-keys. In this sense
we refer to the KV store as Group-wise KV store (GKV). APIs for accessing the
GKV are provided as well. As illustrated in the last section, an important abstract
method, updateState(), is defined and to be implemented by users.

With the above mechanisms, in the presence of multiple execution instances of an
operator, every stream tuple is processed once and only once by one of the execution
instances; the data processing states of every group of the partitioned input data (e.g.
the tuples belonging to the same segment of the an express-way in a direction) are
buffered in the function closure of one and only one execution instance of that
operator. These properties are common to a class of tasks thus we support them in the
corresponding station class, that, substantially, is subclassifiable.

3.3 Window Based Stream Analytics

Although a data stream is unbounded, very often applications require those infinite
data to be analyzed granularly. Particularly, when the stream operation involves the
aggregation of multiple events, for semantic reason the input data must be punctuated
into bounded chunks. This has motivated us to execute such operation window by
window to process the stream data chunk by chunk.

For example, in the previous car traffic example, the operation “agg” aims to
deliver the average speed in each express-way’s segment per minute. Then the
execution of this operation on an infinite stream is made in a sequence of windows,
one on each stream chunks. To allow this operation to apply to the stream data one
chunk at a time, and to return a sequence of chunk-wise aggregation results, the input
stream, is cut into 1 minute (60 seconds) based chunks, say S0, S1, …Si, … such that
the execution semantics of “agg” is defined as a sequence of one-time aggregate
operation on the data stream input minute by minute.

In general, given an operator, O, over an infinite stream of relation tuples S with a
criterion ϑ for cutting S into an unbounded sequence of chunks, e.g. by every

 Open Streaming Operation Patterns 93

1-minute time window, <S0, S1, …, Si, …> where Si denotes the i-th “chunk” of the
stream according to the chunking-criterion ϑ. The semantics of applying O to the
unbounded stream S lies in

Q (S) < Q (S0), … Q (Si), ... >

which continuously generates an unbounded sequence of results, one on each chunk
of the stream data.

Punctuating input stream into chunks and applying operation window by window to
process the stream data chunk by chunk, is a template behavior common to many
stream operations, thus we consider it as a kind of meta-property of a class of stream
operations and support it automatically and systematically by our operation
framework. In general, we host such operations on the window station (or the ones
subclassing it) and provide system support in the following aspects (please refer to the
window station example given previously).

• A window station hosts a stateful operation that is data-parallelizable, and
therefore the input stream must be hash-partitioned which is consistent with the
buffering of data chunks as described in the last section.

• Several types of stream punctuation criteria are specifiable, including punctuation
by cardinality, by time-stamps and by system-time period, which are covered by
the system function

public boolean nextChunk(Tuple, tuple)

 to determine whether the current tuple belongs to the next chunk or not.
• If the current tuple belongs to the new chunk, the present data chunk is dumped

from the chunk buffer for aggregation/group-by in terms of the user-implemented
abstract method processChunkByGroup().

• Every input tuple (or derivation) is buffered, either into the present or the new
chunk.

By specifying additional meta properties and by subclassing the window station,
more concrete system support can be introduced. For example, an aggregate of a
chunk of stream data can be made once by end of the chunk, or tupe-wise
incrementally. In the latter case an abstract method for per-tuple updating the partial
aggregate is provided and implemented by the user.

The paces of dataflow wrt timestamps can be different at different operators; for
instance, the “agg” operator is applied to the input data minute by minute, so are some
downstream operators of it; however the “hourly analysis” operator is applied to the
input stream minute by minute, but generates output stream elements hour by hour.

The combination of group-wise and chunk-wise stream analytics provides a
generalized abstraction for parallelizing and granulizing the continuous and
incremental dataflow analytics.

94 Q. Chen and M. Hsu

4 Support Parallel Sliding Window Stream Processing Patterns

In this section we extend our discussion to Parallel Sliding Window (PSW) based
stream analysis and illustrate the benefits of open stations in dealing with PSW. PSW
based stream processing has certain meta-properties in punctuating and grouping
input data, in retaining and shifting intermediate results, and in synchronizing parallel
chunking. Generalizing and categorizing these operators and their running patterns
allows us to provide automatic support accordingly, to ensure the operators to be
executed optimally and consistently, as well as ease user’s effort for dealing with
them.

We build abstract stations to support the common PSW related features such as
handling punctuation and parallelism where having the application specific semantics
left as abstract methods for users to implement. The abstract stations form a
hierarchy; they provide the mechanisms for managing the data granules, the slide and
window boundaries, for punctuating input data stream for switching slides and
windows, as well as for retaining and intermediate results. In general, they provide
system support for synchronizing the slide and window switching wrt multiple,
parallel input streams.

4.1 Sliding Window Based Stream Analytics

In stream processing, the tuples transferred between tasks can be granule based on
timestamps or so; and we introduce three levels of boundaries for grouping data in the
context of PSW: granule, slide and window; a granule is the basic unit for grouping
data, it could be, for example, a chunk of N tuples or the tuples with timestamps
falling in one minute; a slide is defined as a given number or range of granules, for
example a slide of 10 minute is composed by 10 one-minute granules; a window is
also defined as a given number or range of granules, but the size of a window is at
least the size of a slide.

A sliding window based operation keeps the following variables for dealing with
sliding window semantics.

• window_size – the number of granules per window;
• slide_size, or delta - the number of granules per slide;
• current – the current granule number;
• ceiling – the ceiling of the current slide by granule number, after the

window_size is reached, it is the ceiling of current window;
• window – the number (ID) of the current window.

As usual, for each operation we provide two major system abstract methods:
initialize() and execute(). The initialize() method is invoked before the per-tuple
processing for instantiating the settings and gathering the topology information, e.g.
the input channels. The execute() method is invoked upon receipt each input tuple
which provides the functions of processing a tuple, or, if a slide or window boundary
is reached, calculating the slide or window based summaries and outputing the data
mining results.

 Open Streaming Operation Patterns 95

For example, a sliding window based stream analytics operation with window
based summarization but without slide based stepwise summarization, has the
following operation logic.

1. current = resolveGranule(tuple);

2. if (current >= ceiling) {

3. if (current >= window_size) {

4. summarize_window();

5. window++;

6. }

7. ceiling = (current/delta + 1)*delta;

8. process_held_tuples(ceiling);

9. }

10. if (getGranule(tuple) >= ceiling) {

11. held_tuples.add(tuple);

12. } else {

13. process_tuple(tuple);

14. }

The above logic can be described as below.

1. resolve the least granule# from all input channels;
2. if the next slide has been reached (this tuple belong to the next slide according to

its granule#);
3. if the window boundary also reached (the usual case after completing the first

window, if the sliding is defined as the shift of one slide);
4. make window based data mining and output the results;
5. advance the window#;
6. .
7. update the ceiling to the upper bound of the next slide;
8. process the held tuples falling in the next slide;
9. .
10. if the overall slide operation does not advance even if this tuple is beyond the

boundary of the current slide
11. hold this tuple
12. .
13. otherwise
14. process this tuple

In general, upon receipt of a tuple, the system first resolve the current granule by

taking into account all input channels; if the input tuple belongs to the current slide or
window it gets processed, otherwise it is held to be processed in the next or even
further windows where it fits in.

The window based data mining takes place at the boundary of two consecutive
windows. Since we deal with sliding window, the partial results must be retained and
shift – i.e. sliding.

96 Q. Chen and M. Hsu

4.2 Parallelize Sliding Window Based Stream Analytic Operation

When a sliding window based stream analytics task has multiple parallel input
channels, their punctuation must be synchronized. For example, assume a task T has 4
input channels and currently working in window #3, after T receives a tuple belonging
to window #4 it may or may not be able to “conclude” window #3 depending on
whether all the input channels have started to supply tuples belonging to window #4
or beyond; if not, concluding window #3 would yield inaccurate result.

We assume for each input channel the tuples are delivered in the order of granules.
The granule boundary of data processing by the current task is determined by taking
into account all the input channels based on the following mechanism.

• The current granule number of each input channel if maintained in the
granuleTable.

• Upon receipt a new input, the granuleTable is updated, and the current granule
number is resolved as the minimal granule number of all input channels.

• If the granule number of the current input is larger than the resolved one, this
tuple is to be held without processing; it will be processed later in the next or a
future window instead.

• Once a window boundary is reached by referring to all the input channels, the
data analytics results for the current window is generated and finalized, and the
data analytics process enters the next window boundary, starting with processing
those held tuples that fall into the new window boundary; the tuples falling in
future windows will continue being held.

4.3 The Generalized Framework

We provide generalized algorithms to support PSW based incremental stream analysis
performed on the per-granule, per-slide and per-window basis. We coded these
algorithms as open-executors held by open-stations.

The Top Level Abstract Station. This station provides the generalized algorithm for
sliding window based incremental stream analysis which covers he per-granule, per-
slide and per-window based incremental stream processing. The flowchart is shown
in Fig 4, where several abstract methods are provided which are to be implemented by
user based on their application logic.

public void execute(Tuple tuple) {

 //resolve the granule the task is working on

long resolved = resolveGranule(tuple);

// If granule is advanced,

// summarize the current granule

// sliding the list of partial results and

// process the held tuples in the next granule boundary

 if (this.scope == SumScope.GRANULE) {

 if (resolved > current) {

 partialResult = partial_summarize();

 Open Streaming Operation Patterns 97

 this.partialResultList.add(partialResult);

 if (partialResultList.size() > window_size) {

 this.partialResultList.removeFirst();

 }

 process_held_tuples(resolved+1);

 }

 }

 current = resolved;

 // if slide is advanced

// summarize the current slide

// if window is advanced, get window summarization results

// sliding the list of partial results and

// process the held tuples in the next granule boundary

 if (current >= ceiling) {

 if (this.scope == SumScope.SLIDE) {

 partialResult = partial_summarize();

 this.partialResultList.add(partialResult);

 if (partialResultList.size() > window_size / delta) {

 this.partialResultList.removeFirst();

 }

 }

 if (current >= window_size) {

 summarize_window();

 window++;

 }

 //handle next slide

 ceiling = (current/delta + 1)*delta;

 if (this.scope == SumScope.WINDOW || this.scope == SumScope.SLIDE) {

 process_held_tuples(ceiling);

 }

}

// if tuple falls in the current scope, process it, if beyond the current scope, hold it

 long upper = (this.scope == SumScope.GRANULE)? current:ceiling;

 if (getGranule(tuple) >= upper) {

 held_tuples.add(tuple);

 else {

 //normal call

 process_tuple(tuple);

 }

}

public abstract long getGranule(Tuple tuple);

public abstract void summarize_window();

public abstract Object partial_summarize();

public abstract void process_tuple(Tuple tuple);

98 Q. Chen and M. Hsu

Beyond current
granule

Summarize
granule result

Shift granule
result buffer

Process
held tuples

check
granule

boundary

execution

Resolve
granule

Y Scope
GRANULE

N

Beyond current
window

Summarize
window result

check
window

boundary

Process
held tuples

Shift slide
result buffer

Beyond current
slide

Summarize
slide result

check
slide

boundary

Y Scope
SLIDE

N

Y
Scope

SLIDE/WIN
N

Process or hold
this tuple

Fig. 4. Generalized PSW Framework

Abstract Station Supporting Window Oriented Summarization. This abstract
station subclass the above generalized abstract PSW station; it provides the abstract
algorithm with window oriented summarization as illustrated in Fig 5. It subclasses
the above generalized PSW station simply by making the unrelated functions (those
not highlighted) as dummy functions. In fact, this abstract station class is
implemented by only one method:

 public Object partial_summarize() {

 return null;

 }

The rest methods are inherited.

 Open Streaming Operation Patterns 99

Beyond current
granule

Summarize
granule result

Shift granule
result buffer

Process
held tuples

check
granule

boundary

execution

Resolve
granule

Y Scope
GRANULE

N

Beyond current
window

Summarize
window result

check
window

boundary

Process
held tuples

Shift slide
result buffer

Beyond current
slide

Summarize
slide result

check
slide

boundary

Y Scope
SLIDE

N

Y
Scope

SLIDE/WIN
N

Process or hold
this tuple

Fig. 5. Abstract Execution Framework for Window Oriented Summarization

Abstract Station Supporting Slide Oriented Summarization. The flow-chat for the
abstract algorithm with slide oriented summarization is illustrated in Fig 6. The
station supporting the corresponding execution pattern subclasses the above
generalized PSW station simply by making the unrelated functions (those not
highlighted) as dummy functions.

100 Q. Chen and M. Hsu

Beyond current
granule

Summarize
granule result

Shift granule
result buffer

Process
held tuples

check
granule

boundary

execution

Resolve
granule

Y Scope
GRANULE

N

Beyond current
window

Summarize
window result

check
window

boundary

Process
held tuples

Shift slide
result buffer

Beyond current
slide

Summarize
slide result

check
slide

boundary

Y Scope
SLIDE

N

Y
Scope

SLIDE/WIN
N

Process or hold
this tuple

Fig. 6. Abstract Execution Framework for Slide Oriented Summarization

Abstract Station Supporting Granule Oriented Summarization. The flow-chat for
the abstract algorithm with granule oriented summarization is illustrated in Fig. 7. The
station supporting the corresponding operation pattern subclasses the above
generalized PSW station simply by making the unrelated functions (those not
highlighted) as dummy functions.

 Open Streaming Operation Patterns 101

execution

Beyond current
granule

Summarize
granule result

Shift granule
result buffer

Process
held tuples

check
granule

boundary

Resolve
granule

Y Scope
GRANULE

N

Beyond current
window

Summarize
window result

check
window

boundary

Process
held tuples

Shift slide
result buffer

Beyond current
slide

Summarize
slide result

check
slide

boundary

Y Scope
SLIDE

N

Y
Scope

SLIDE/WIN
N

Process or hold
this tuple

Fig. 7. Abstract Execution Framework for Granule Oriented Summarization

4.4 A PSW Stream Process Topology Example

Below we show a stream processing topology example for frequent pattern mining,
we do not discuss the application here, only illustrate the role of parallel sliding
window operation oriented stations in a stream analytics dataflow process.
The topology specification is illustrated below

 TopologyBuilder builder=new TopologyBuilder();

 builder.setSpout("spout",

new FileChunkItemsetSpout(filename, chunk_size));

 builder.setStation("pre",

102 Q. Chen and M. Hsu

new FPItemsetSortStation(ItemSequence), N).shuffleGrouping("spout");

 builder.setStation("mining",

new FPSlidingWindowStation(window_size, slide_size, chunk_size,

ItemSequence), N).fieldsGrouping("pre", new Fields("leader"));

 builder.setStation("combine",

new FPWindowCombineStation(1, threshold), 1)

 .fieldsGrouping("mining", new Fields("itemset"));

 builder.setStation("output",

new FPPrintStation(), 1)

 .fieldsGrouping("combine", new Fields("itemset"));

The process contains the following sequential building blocks (operations) but each
of them can have multiple instances, and the data partition between them is defined to
make the parallel processing correct. These operations are

• spout: generates stream tuples with fields "granule", plus other fields.
• pre: pre-processing the input data on the per-tuple basis, such as filtering or

sorting, these tasks are not necessarily sliding window based.
• mining: the major operator for playing data mining, that is coded using the

parallel sliding window framework.
• combine: combining the output of multiple mining tasks, that also follows

the parallel sliding window framework.
• output: send out the combined data mining results, these tasks are not

necessarily sliding window based as far as their upstream tasks are.

5 Experiments

We have built the Fontainebleau prototype based on architecture and policies
explained in the previous sections. In this section we briefly overview our
experimental results. Our testing environment include 16 Linux servers with gcc
version 4.1.2 20080704 (Red Hat 4.1.2-50), 32G RAM, 400G disk and 8 Quad-Core
AMD Opteron Processor 2354 (2200.082 MHz, 512 KB cache). One server holds the
coordinator daemon, 15 other servers hold the agent daemons, each agent supervises
several worker processes, and each worker process handles one or more task
instances. Based on the topology and the parallelism hint of each logical task, one or
more instances of that task will be instantiated by the framework to process the data
streams.

Below we present the experiment results of running the example topology that is
similar to the Linear Road scenario; our topology modifies that scenario but we use
the same test data under the stress test mode - the data are read from a file
continuously without following the real-time intervals, leading to a fairly high
throughput.

 Open Streaming Operation Patterns 103

The performance show in Fig. 8 is based on the event rate of 1.33 million per
minute with approximate 12 million (11,928,635) input events. Most of the tasks have
28 parallel instances except one having 14 parallel instances. There is no load-
shedding (dropping events) observed.

End-to-End Performance (sec)

0

200

400

600

800

0M 2M 4M 6M 8M 10M 12M

events

el
p

se
 t

im
e

(s
ec

)

Fig. 8. The performance of data-parallel stream analytics with the LR topology

6 Related Work and Conclusions

In this paper we described our parallel and distributed stream analysis system capable
of executing the real-time, continuous streaming process with general graph-
structured topology. We focused on the canonical operation framework for
standardizing the operational patterns of stream operators, and providing a set of open
execution engines for supporting these operational patterns. We examined the power
of the proposed framework by supporting the combination of group-wise and chunk-
wise stream analytics which provides a generalized abstraction for parallelizing and
granulizing continuous dataflow analytics, and further, the generalized support for
handling parallel sliding window based stream processing..

Compared with the notable data-intensive computation systems such as DISC [3],
Dryad [8], etc, our platform supports more scalable and elastic parallel computation.
We share the spirit with Pig Latin [10], etc, in using multiple operations to express
complex dataflows. However, unlike Pig Lain, we model the graph structured
dataflow by composing multiple operations rather than decomposing a query into
multiple operations; our data sources are dynamic data streams rather than static files;
we partitioning stream data on the fly dynamically, rather than prepare partitioned
files statically to Map-Reduce them. This work also extends the underlying tools such
as Storm by elaborating it from a computation infrastructure to a state conscious
computation/caching infrastructure, and from the user task oriented system to the
execution engine oriented system.

Supporting truly continuous operations distinguish our platform from the current
generation of stream processing systems, such as System S (IBM), STREAM
(Stanford) [1], Aurora, Borealis[2], TruSQL[9], etc.

Envisaging the importance of standardizing the operational patterns of dataflow
operators, we are providing a rich set of open execution engines and linking stations
with existing data processors such as DBMS and Hadoop, towards the integrated
dataflow cloud service.

104 Q. Chen and M. Hsu

References

[1] Arasu, A., Babu, S., Widom, J., The, C.Q.L.: Continuous Query Language: Semantic
Foundations and Query Execution. VLDB Journal 15(2) (June 2006)

[2] Abadi, D.J., et al.: The Design of the Borealis Stream Processing Engine. In: CIDR
(2005)

[3] Bryant, R.E.: Data-Intensive Supercomputing: The case for DISC. CMU-CS-07-128
(2007)

[4] Chen, Q., Hsu, M., Zeller, H.: Experience in Continuous analytics as a Service (CaaaS).
In: EDBT 2011 (2011)

[5] Chen, Q., Hsu, M.: Experience in Extending Query Engine for Continuous Analytics. In:
Bach Pedersen, T., Mohania, M.K., Tjoa, A.M. (eds.) DAWAK 2010. LNCS, vol. 6263,
pp. 190–202. Springer, Heidelberg (2010)

[6] Chen, Q., Hsu, M.: Continuous mapReduce for in-DB stream analytics. In: Meersman,
R., Dillon, T., Herrero, P. (eds.) OTM 2010. LNCS, vol. 6428, pp. 16–34. Springer,
Heidelberg (2010)

[7] Dean, J.: Experiences with MapReduce, an abstraction for large-scale computation. In:
Int. Conf. on Parallel Architecture and Compilation Techniques. ACM (2006)

[8] Isard, M., Budiu, M., Yu, Y., Birrell, A., Fetterly, D.: Dryad: Distributed data-parallel
programs from sequential building blocks. In: EuroSys 2007 (March 2007)

[9] Franklin, M.J., et al.: Continuous Analytics: Rethinking Query Processing in a Network-
Effect World. In: CIDR 2009 (2009)

[10] Olston, C., Reed, B., Srivastava, U., Kumar, R., Tomkins, A.: Pig Latin: A Not-So-
Foreign Language for Data Processing. In: ACM SIGMOD 2008 (2008)

[11] ØMQ Lightweight Messaging Kernel, http://www.zeromq.org/
[12] Apache ZooKeeper, http://zookeeper.apache.org/
[13] Kryo - Fast, efficient Java serialization, http://code.google.com/p/kryo/
[14] Twitter’s Open Source Storm Finally Hits,

http://siliconangle.com/blog/2011/09/20/
twitter-storm-finally-hits/

Dynamic Workload-Based Partitioning

Algorithms for Continuously
Growing Databases�

Miguel Liroz-Gistau1, Reza Akbarinia1, Esther Pacitti2, Fabio Porto3,
and Patrick Valduriez1

1 INRIA & LIRMM, Montpellier, France
{Miguel.Liroz Gistau,Reza.Akbarinia,Patrick.Valduriez}@inria.fr

2 University Montpellier 2, INRIA & LIRMM, Montpellier, France
Esther.Pacitti@lirmm.fr
3 LNCC, Petropolis, Brazil

fporto@lncc.br

Abstract. Applications with very large databases, where data items are
continuously appended, are becoming more and more common. Thus, the
development of efficient data partitioning is one of the main requirements
to yield good performance. In the case of applications that have complex
access patterns, e.g. scientific applications, workload-based partitioning
could be exploited. However, existing workload-based approaches, which
work in a static way, cannot be applied to very large databases. In this
paper, we propose DynPart and DynPartGroup, two dynamic partition-
ing algorithms for continuously growing databases. These algorithms effi-
ciently adapt the data partitioning to the arrival of new data elements by
taking into account the affinity of new data with queries and fragments.
In contrast to existing static approaches, our approach offers constant
execution time, no matter the size of the database, while obtaining very
good partitioning efficiency. We validated our solution through experi-
mentation over real-world data; the results show its effectiveness.

1 Introduction

We are witnessing the proliferation of applications that have to deal with huge
amounts of data. The major software companies, such as Google, Amazon, Mi-
crosoft or Facebook have adapted their architectures in order to support the
enormous quantity of information that they have to manage. Scientific applica-
tions are also struggling with those kinds of scenarios and significant research
efforts are directed to deal with it [4]. An example of these applications is the
management of astronomical catalogs; for instance those generated by the Dark
Energy Survey (DES) [1] project with which we are collaborating. In this project,
huge tables with billions of tuples and hundreds of attributes (corresponding to
dimensions, mainly double precision real numbers) store the collected sky data.

� Work partially funded by the CNPq-INRIA HOSCAR project.

A. Hameurlain et al. (Eds.): TLDKS XII, LNCS 8320, pp. 105–128, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

106 M. Liroz-Gistau et al.

Data are appended to the catalog database as new observations are performed
and the resulting database size is estimated to reach 100TB very soon. Scien-
tists around the globe can access the database with queries that may contain a
considerable number of attributes.

The volume of data that such applications hold poses important challenges for
data management. In particular, efficient solutions are needed to partition and
distribute the data in multiple servers, e.g., in a cluster. An efficient partitioning
scheme would try to minimize the number of fragments that are accessed in the
execution of a query, thus minimizing the overhead of the distributed execution.
Vertical partitioning solutions, such as column-oriented databases [18], may be
useful for physical design on each node, but fail to provide an efficient distributed
partitioning, in particular for applications with high dimensional queries, where
joins would have to be executed by transferring data between nodes. Traditional
horizontal partitioning approaches, such as hashing or range-based partitioning,
are unable to capture the complex access patterns present in scientific computing
applications, especially because these applications usually make use of compli-
cated relations, including mathematical operations, over a big set of columns,
and are difficult to be predefined a priori.

One solution is to use partitioning techniques based on the workload. Graph-
based partitioning is an effective approach for that purpose [8]. A graph (or
hypergraph) that represents the relations between queries and data elements is
built and the problem is reduced to that of minimum k-way cut problem, for
which several libraries are available. However, this method requires to process
the entire graph in order to obtain the partitioning. This strategy works well for
static applications, but scenarios where new data are inserted to the database
continuously, which is the most common case for scientific computing, introduce
an important problem. Each time a new set of data is appended, the partition-
ing should be redone from scratch, and as the size of the database grows, the
execution time of such operation may become prohibitive.

In this paper, we are interested in dynamic partitioning of large databases that
grow continuously. After modeling the problem of data partitioning in dynamic
datasets, we propose two dynamic workload-based algorithms, called DynPart
and DynPartGroup, that efficiently adapt the partitioning to the arrival of new
data elements. Our algorithms are designed based on a heuristic that we devel-
oped by taking into account the affinity of new data with queries and fragments.
In contrast to the static workload-based algorithms, the execution time of our al-
gorithms do not depend on the total size of the database, but only on that of the
new data and this makes them appropriate for continuously growing databases.

We validated our solutions through experimentation over real-world data sets.
The results show that they obtain high performance gains in terms of partition-
ing execution time compared to one of the most efficient static partitioning
algorithms. We also compared both algorithms and concluded that the grouping
strategy of DynPartGroup obtains better partitioning efficiencies and performs
better, specially in scenarios with high correlation between new data items and
strict imbalance constraints.

Dynamic Workload-Based Partitioning Algorithms 107

This paper is a major extension of [12], which only presented the DynPart al-
gorithm. Here, we propose a variation, DynPartGroup, which groups data items
before calculating fragment affinities. This strategy adapts better for the situa-
tions where there is high correlation on the new data items and the imbalance
constraints (maximum allowed imbalance) are strict, and offers an improved
performance. We also extend the imbalance constraint by adding the possibil-
ity of considering the load imbalance between fragments in addition to the size
imbalance. Moreover, we deal with data deletions and updates in addition to
insertions. Finally, we include an extended set of experimental results for the
new contributions.

The remainder of this paper is organized as follows. In Section 2, we describe
our assumptions and define formally the problem we address. In Section 3, we
propose our basic solution for dynamic data partitioning, that we extend in
Section 4 by grouping similar data items. Section 5 reports on the results of
our experimental validation. Section 6 discusses related work, and Section 7
concludes.

2 Problem Definition

In this section, we state the problem we are addressing and specify our assump-
tions. We start by defining the problem of static partitioning, and then extend
it for a dynamic situation where the database can evolve over time.

2.1 Static Partitioning

The static partitioning is done over a set of data items and for a workload. Let
D = {d1, ..., dn} be the set of data items. The workload consists of a set of queries
W = {q1, ..., qm}. We use q(D) ⊆ D to denote the set of data items that a query
q accesses when applied to the data set D. Given a data item d ∈ D, we say that
it is compatible with a query q, denoted as comp(q, d), if d ∈ q(D). Queries are
associated with a relative frequency f : W → [0, 1], such that

∑
q∈W f(q) = 1.

Partitioning of a data set is defined as follows.

Definition 1. Partitioning of a data set D consists of dividing the data of D
into a set of fragments, π(D) = {F1, ..., Fp}, such that there is no intersection
between the fragments, ∀i �= j : Fi ∩ Fj = ∅, and the union of all fragments is
equal to D, i.e.,

⋃p
i=1 Fi = D.

Let q(F) denote the set of data items in fragment F that are compatible with
q. Given a partitioning π(D), the set of relevant fragments of a query q, denoted
as rel(q, π(D)), is the set of fragments that contain some data accessed by q, i.e.,
rel(q, π(D)) = {F ∈ π(D) : q(F) �= ∅}.

To avoid a high imbalance on the size of the fragments, we use an imbalance
factor, denoted by εs. The size of the fragments at each time should satisfy the

following condition: |F | ≤
⌈

|D|
|π(D)| (1 + εs)

⌉
.

108 M. Liroz-Gistau et al.

In this paper, we are interested in minimizing the number of query accesses to
fragments. Note that the minimum number of relevant fragments of a query q is

minfr(q, π(D)) =
⌈

|q(D)|
(|D| / |π(D)|)(1+εs)

⌉
. We define the efficiency of a partitioning

for a workload based on its efficiency for queries. Intuitively, the efficiency of a
partitioning for a query represents the ratio between the minimum number of
relevant fragments of q and the number of fragments that are actually accessed
under the given partitioning:

Definition 2. Given a query q, then the efficiency of a partitioning π(D) for q,
denoted as eff (q, π(D)) is computed as:

eff (q, π(D)) =
minfr(q, π(D))

|rel(q, π(D))| (1)

When the number of accessed fragments is equal to the minimum possible,
i.e., minfr(q, π(D)), the efficiency is 1.

Using eff (q, π(D)), we define the efficiency of a partitioning π(D) for a work-
load W as follows.

Definition 3. The efficiency of a partitioning π(D) for a workload W , denoted
as eff (W,π(D)), is equal to the sum of the efficiencies of partitioning π(D) for
all queries in W multiplied by their relative frequencies. In other words,

eff (W,π(D)) =
∑
q∈W

f(q)× eff (q, π(D)) (2)

Given a set of data items D and a workload W , the goal of static partitioning
is to find a partitioning π(D) such that eff (W,π(D)) is maximized.

2.2 Dynamic Partitioning

Let us assume now that the data set D grows over time. For a given time t, we
denote the set of data items of D at t as D(t)1.

During the application execution, there are some events, namely data inser-
tions, by which new data items are inserted into D. These events in the model
correspond to the appending of the tuples corresponding to new observations in
the DES catalog. No changes in the schema are involved. Let Tev = (t1, . . . , tm)
be the sequence of time points corresponding to those events. Note that between
two consecutive time points ti, ti+1, D remains constant. In this paper, we as-
sume that the workload is stable and neither the queries nor their frequencies
change. However, the queries may access new data items as the data set grows.

Let us now define the problem of dynamic partitioning as follows. Let Tev =
(t1, . . . , tm) be the sequence of time points corresponding to data insertion
events; D(t1), . . . , D(tm) be the set of data items at t1, . . . , tm respectively; and

1 We confine this formulation to this subsection for the sake of simplicity, so that, in
the next sections, when we use D we mean D(ti).

Dynamic Workload-Based Partitioning Algorithms 109

W be a given workload. Note that, as we only consider data insertions, if ti < tj
then D(ti) ⊂ D(tj) ∀ti, tj ∈ Tev.

The goal is to find a set of partitionings π(D(t1)), ..., π(D(tm)) for data sets
D(t1), . . . , D(tm) respectively, such that the sum of the efficiencies of the parti-
tionings for W are maximized. In other words, our objective is as follows:

Objective: Maximize
(∑

q∈W (f(q)× eff (q, π(D(t))))
)
∀t ∈ Tev.

3 Affinity Based Dynamic Partitioning

In this section, we propose an algorithm, called DynPart, that deals with dy-
namic partitioning of data sets. It is based on a principle that we developed
using the partitioning efficiency measure described in the previous section.

3.1 System Overview

In this paper, our proposal mainly focuses on how the data is partitioned in
fragments. Here, we provide an overview of a system architecture taking advan-
tage of our partitioning approach. The components of this architecture are as
following (see Figure 1):

User

Query
Processor

PartitionerMetadata and
Index Manager

Physical
Manager

New data

Partitioned new data

MetadataMetadata

Results

Query

Results

Query plan

Data

F1 F2
...

Fn

Fig. 1. System architecture

– Query processor: It parses the user queries, accesses the metadata and
index manager, prepares an optimized execution plan and sends it to the
physical manager to retrieve the data from fragments.

110 M. Liroz-Gistau et al.

– Metadata and Index Manager: Stores metadata about the partitioning,
and also indexes the location of the data items in the fragments.

– Physical Manager: It is in charge of storing/retrieving data to/from
fragments.

– Partitioner: It holds the data items until a given number of items is in-
serted. Then, it obtains the necessary metadata and executes the partitioning
algorithm. Finally, it transfers the data items to the corresponding fragments
and informs the metadata and index manager about the modifications in the
fragments. This component may also be contacted to include in the query
results the corresponding data items in new added data.

We assume a shared nothing architecture composed of data nodes containing
a physical data manager that stores one or several fragments at each node, and
dedicated nodes for other components. We used a shared nothing architecture
as it is the most common one since it is cheaper and can be scaled easily when
required. The query processor and the metadata and index manager are preferred
to be executed in the same node (nodes) to avoid communication overhead, as
the query processor always has to access the index.

3.2 Principle

Let d be a new inserted data item. We can express the efficiency of the new
dataset as:

eff (W,π(D ∪ {d})) = eff (W,π(D)) +Δ (3)

Let assume that F is the fragment selected to insert d. The efficiency will
remain the same for all queries but those which now have to access F in order
to retrieve d but did not before. Hence, we can calculate Δ as2:

Δ ≈
∑

q:q(F)=∅∧comp(q,d)

f(q) (eff (q, π(D ∪ {d}))− eff (q, π(D))) (4)

=
∑

q:q(F)=∅∧comp(q,d)

f(q)

(
minfr (q, π(D))

|rel(q, π(D))| + 1
− minfr(q, π(D))

|rel(q, π(D))|

)
(5)

= −
∑

q:q(F)=∅∧comp(q,d)

f(q)
minfr (q, π(D))

|rel(q, π(D))| (|rel(q, π(D))| + 1)
(6)

where q : q(F) = ∅∧comp(q, d) is the set of queries that will read d but no other
data items in F .

Based on this idea, we define the affinity between the data d and fragment F :

aff (d, F) = −
∑

q:q(F)=∅∧comp(q,d)

f(q)
minfr(q, π(D))

|rel(q, π(D))| (|rel(q, π(D))| + 1)
(7)

2 Note that this approximation is an equality in all cases except when the increment
in |q(D)| makes minfr(q, π(D)) to be increased by 1, which happens very rarely.

Dynamic Workload-Based Partitioning Algorithms 111

Using (7), we develop a heuristic algorithm that places the new data items in
the fragments based on the maximization of the affinity between the data items
and the fragments.

3.3 Algorithm

Our DynPart algorithm takes a set of new data items D′ as input and selects
the best fragments to place them. For each new data item d ∈ D′, it proceeds
as follows (see the pseudo-code in Algorithm 1). First, it finds the set of queries
that are compatible with the data item. This can be done by executing the
queries of W on D′ or by comparing their predicates with every new data item.
Then, for each compatible query q, DynPart finds the relevant fragments of q,
and increases the fragments affinity by using the expression in (7). Initially the
affinity of fragments is set to zero.

Algorithm 1. Algorithm DynPart

procedure DynPart(D’)
for each d ∈ D ′ do

for each q : comp(q, d) do
for each F /∈ rel(q, π(D)) do

if feasible(F) then
//aff (F) is initialized to 0

aff (F) ← aff (F)− f(q) minfr(q,π(D))
|rel(q,π(D))|(|rel(q,π(D))|+1)

end if
end for

end for
if ∃F ∈ π(D) : aff (F) > 0 then

dests ← argmaxF∈π(D) aff (F)
else

dests ← {F ∈ π(D) : feasible(F)}
end if
Fdest ← select from argminF∈dests |F |
move d to Fdest

update metadata
end for

end procedure

After computing the affinity of the relevant fragments, DynPart has to choose
the best fragment for d. Not all of the fragments satisfy the imbalance con-
straints, thus we must only consider those that do meet the restrictions. We
define the function feasible(F) to determine whether a fragment can hold more
data items or not. Accordingly, DynPart selects from the set of feasible frag-
ments the one with the highest affinity. If there are multiple fragments that have
the highest affinity, then the smallest fragment is selected, in order to keep the
partitioning as balanced as possible.

112 M. Liroz-Gistau et al.

DynPart works over a set of new data items D ′, instead of a single data
item. This allows the system to perform bulk operations over a set of n data
items instead of executing n times the same operations, which is in general more
costly. Moreover, it gives the algorithm more flexibility in the application of the
imbalance constraints and groups data insertions in each of the fragments.

Let compavg be the average number of compatible queries per data item, and
relavg be the average number of relevant fragments per query. Then, the average
execution time of the algorithm is O(compavg × relavg × |D′|), where |D′| is the
number of new data items to be appended to the fragments. The complexity can
be O(|W |× |π(D)|× |D′|) in the worst case, e.g. when all queries are compatible
to all new data and the partitioning has not been done well. However, in practice,
the averages are usually much smaller than the worst case values. The reason
is that the queries usually access a small portion of the data (not the whole
set), thus the average number of compatible queries per data item is low. In any
case, in order to reduce the number of queries, we may use a threshold on the
frequency, so that only queries above that threshold are considered. In addition,
the partitioning efficiency of our approach is good (see experimental results in
the next section), so the average number of relevant fragments per query is low.

3.4 Example

Figure 2 illustrates the execution of the DynPart algorithm. Before its execution,
the system is partitioned into 4 fragments, whose sizes are shown in the figure.
The workload consists of 5 queries, which are represented inside the fragments
they access. There are 16 new data items, d1, ..., d16, that should be distributed
over the fragments. The imbalance factor is εs = 0.05, so resulting maximum
size (taking into account new data items) is 42. We show the execution of the
algorithm for some of the steps.

In Step 1 we show the insertion of data item d1. The set of compatible queries
is indicated in comp(d1). For each of these queries, the affinity of the relevant
fragments is increased by the corresponding expression. As a consequence, F1

has a total affinity of −0.1, resulting from the affinity expression applied to q1
and q5; and F1, F2 and F3 have an affinity of −0.05, resulting from the expression
applied to q1 for F2 and q5 for F3 and F4. The three fragments have the highest
affinity, but F4 is selected since it is the smallest fragment.

In Step 2, the processing for data item d2 is depicted. Note that the informa-
tion has been updated as a consequence of last move: the size of F4 has been
incremented by 1 and the accessing queries now include q5, provided that d1 is
accessed by it. In this case, the highest affinity is that of fragment F4, so it is
selected and d2 is moved to it.

The algorithm continues to execute as before until Step 14. In that case, the
fragment with the highest affinity is F4, but it can not be selected, as it would
violate the imbalance constraint. As a consequence, the next fragment in terms
of affinity is selected and data item d14 is placed in fragment F3.

Dynamic Workload-Based Partitioning Algorithms 113

D = {d1, ..., d16}, εs = 0.05, W = {q1, q2, q3, q4, q5},

f(q1) = 0.3, q1(D) = {d1, d2, d3, d4, d11, d12, d13, d14, d15, d16}
f(q2) = 0.2, q2(D) = {d2, d9, d10, d11, d12, d13, d14, d15, d16}
f(q3) = 0.3, q3(D) = {d2, d11, d12, d13, d14, d15, d16}
f(q4) = 0.1, q4(D) = {d9, d10}
f(q5) = 0.1, q5(D) = {d1, d3, d4}

|F1| = 38

q2, q4

|F2| = 37

q3, q5

|F3| = 35

q1, q4

|F4| = 34

q1, q2,
q3

comp(d1) = {q1, q5}
– aff (F1) = −0.1
– aff (F2) = −0.05, |F3| = 37
– aff (F3) = −0.05, |F3| = 35
– aff (F4) = −0.05, |F4| = 34�

d1 d2

d3 ...

Step 1

|F1| = 38

q2, q4

|F2| = 37

q3, q5

|F3| = 35

q1, q4

|F4| = 35

q1, q2,
q3, q5

comp(d2) = {q1, q2, q3}
– aff (F1) = −0.1
– aff (F2) = −0.08
– aff (F3) = −0.08
– aff (F4) = 0�

d2 d3

d4 ...

Step 2

. . .

|F1| = 40

q2, q4

|F2| = 40

q3, q5

|F3| = 35

q1, q4

|F4| = 42

q1, q2,
q3, q5

comp(d14) = {q1, q2, q3}
– aff (F1) = −0.1
– aff (F2) = −0.08, |F2| = 40
– aff (F3) = −0.08, |F3| = 35�
– aff (F4) = 0

d14 d15

d16

Step 14

Fig. 2. Example of operation of the DynPart algorithm

114 M. Liroz-Gistau et al.

3.5 Data Structures

Our algorithm needs to maintain information about the relevant fragments of
each query, so that we can compute the affinity efficiently. Queries are assigned
a unique identifier and stored on a hash table for efficient access. For each of
them, we store the set of relevant fragments as a list, as they are always accessed
sequentially, i.e., no random access. Space complexity is O(|W | × |π(D)|) in the
worst case, but, as we have pointed out, the average number of relevant fragments
stays low even when the number of fragments increases. For example, in our
experiments, for 1024 fragments, the average number of relevant fragments do
not exceed 18 in any scenario. We also need to store the set of queries for each
of the new data items. Again, as this set is accessed sequentially, we keep a list
of query identifiers.

Our algorithm needs to create a data structure for each new data item to
store the affinity of the possible destination fragments. For this, there are several
alternatives. One option is to keep an array of size |π(D)| initialized to zero. Note
that, as the actual number of possible destinations is much lower than the total
number of fragments, we would waste a lot of space with zero-affinity entries.
Therefore, we keep a hash table of fragments and only compute those for which
the affinity is non-zero. By using this method, access time will be maintained,
while space requirements will be significantly reduced.

3.6 Dealing with Deletes and Updates

So far, we have only considered the case where data items are appended to the
database. However, we could easily extend our approach to deal with deletions
and updates. For a deletion, we only need to consider metadata maintenance.
Whenever a data item d is deleted, the size of the fragment where it was placed
should be reduced by one. We would also have to check for all queries compatible
with d whether they still have to access that fragment or not, and update their
set of relevant fragments if necessary. An efficient way to do this is to keep the
number of data items accessed by each query on every of its relevant fragments,
i.e., |q(F)| ∀F ∈ rel(q, π(D)). Then, whenever d is deleted from a fragment F ,
|q(F)| would be reduced by 1. If the size reaches 0, then F should be deleted
from the set of relevant fragments.

The case of updating a data item can be considered as a deletion followed
by an insertion. However, we can benefit from previous information, and only
recalculate the compatibility of queries that are affected by the changes.

4 Dealing with Imbalance

In the algorithm presented in the previous section, new data items are treated
individually even if they are highly correlated. As a consequence, the destination
chosen for them may differ if at a given point the selected fragment reaches
the maximum size constrained by the imbalance factor. The problem might be

Dynamic Workload-Based Partitioning Algorithms 115

specially important when there are big groups of similar elements and/or the
imbalance constraints are too restrictive. In this section we present a variation
of the previous algorithm which tries to avoid such a situation by grouping
similar elements together and taking a common decision for all the elements.

4.1 Algorithm

The extended version of our algorithm, which we call DynPartGroup, starts by
dividing the buffer of new data items D′ into a set of groups G such that all
members of each group are accessed exactly by the same set of queries. Thus, the
members of each group share exactly the same affinity for each given fragment.
If they are allocated to different fragments, the partitioning efficiency of each
of the incident queries is likely to decrease. The construction of the groups is
included in Algorithm 2. A list of groups is built, where each group stores the
set of composing tuples and the set of accessing queries. All items in a group are
treated in the same way.

Algorithm 2. Function CreateGroups

function CreateGroups(D’)
G ← emptyList()
for each d ∈ D ′ do

qs = {q : comp(q, d)}
if ∃g ∈ G : g.qs = qs then

g.ts ← g.ts ∪ {d}
else

gnew .ts ← {d}
gnew .qs ← qs
G ← insert(G, gnew)

end if
end for
return G

end function

The algorithm (the pseudo-code is shown on Algorithm 3) first creates the
groups and orders them by size in descending order, i.e., the biggest groups are
considered before the smallest ones. The rationale is that, if we consider first the
biggest groups, there is more free space on the fragments and the probability
that all members of these groups fit on the same fragment is higher.

Once groups are ordered, an affinity value is calculated for each group, exactly
in the same way it was done for individual data items in the basic algorithm. In
this case, function feasible(F, g) will return true if F plus the data items of the
group g does not violate the imbalance factor, i,e:

feasible(F, g) = |F ∪ g.ts| ≤
⌈

|D|
|π(D)| (1 + εs)

⌉
(8)

116 M. Liroz-Gistau et al.

Algorithm 3. Algorithm DynPartGroup

procedure DynPartGroup(D’)
G ← createGroups(D′)
order G by |g.ts | in descending order
while G �= ∅ do

g ← first(G)
G ← G− {g}
for each q ∈ g.qs do

for each F /∈ rel(q, π(D)) do
if feasible(F) then

//aff (F) is initialized to 0

aff (F) ← aff (F)− f(q) minfr(q,π(D))
|rel(q,π(D))|(|rel(q,π(D))|+1)

end if
end for

end for
if ∃F ∈ π(D) : aff (F) > 0 then

dests ← argmaxF∈π(D) aff (F)
else

dests ← {F ∈ π(D) : feasible(F)}
end if
if dests �= ∅ then

Fdest ← select from argminF∈dests |F |
move d to Fdest

update metadata
else

split g into two equal sets g1 and g2
insert g1 and g2 in G maintaining G’s order

end if
end while

end procedure

If there is no feasible destination for F , the group is split into two equal
halves and the resulting groups are inserted back in the list in the corresponding
positions so that the order is maintained. At some point, those groups would
be considered again but, in this case, individually. Note that other splitting
strategies may be envisioned, e.g., assigning only the elements that fit in the
fragment with the highest affinity and considering the rest as a new group.
However, this will be in detriment of other big groups that might have to be
subsequently split, and they will not offer any gain regarding the partitioning
efficiency, as the group would be split anyway.

Let us now analyze the complexity of the algorithm. We divide the analysis
in two parts; first we analyze the group creation and ordering part, and then
the rest of the algorithm. Function createGroups(D′) has to go over all the
elements in D′. Each of them has to be compared with existing groups to check
if accessing queries match, which can be done by defining a hash function over
the query sets. This function has a complexity of O(|W |). As a result, the total

Dynamic Workload-Based Partitioning Algorithms 117

complexity of group creation is O(|D′| × |W |). Let |G| be the number of groups,
then the complexity of group sorting is O(|G| × log |G|). In the worst case,
|G| = |D′|, but as we will see in the experimental section, the number of groups
is usually much lower than that value.

The complexity of the rest of the algorithm is calculated in a similar way than
in the basic algorithm. The main difference is the number of times the outer loop
has to be executed. The worst case is the situation where there is a single group,
the imbalance factor is near 0 and |π(D)| ≥ |D′|. In that case, only one data item
can be inserted on each fragment, and the group would have been split in |D′|
groups of size 1. This would cause |D′| − 1 splits and require 2× |D′| ∈ O(|D′|)
executions of the outer loop, which would imply O(|W | × |π(D)| × |D′|) affinity
calculations, as in the basic algorithm.

The size of |G| can vary throughout the execution, as each split increases its
size by one. In the worst scenario explained above, its size will increase until
reaching |D′|, point from which it will be consumed, as all groups would be
of size 1. Assume that the ordered insertion on G is executed on O(log |G|).
Then, all the sequence of insertions would need O(log 1) + O(log 2) + ... +
O(log |D′|) = O(log |D′|!) = O(|D′| log |D′|). Hence, the worst case complexity
is O(|W | × |π(D)| × |D′|+ |D′| log |D′|)

However, that worst case is very rare as usually there are a higher number of
groups, and the splits are uncommon. Thus, we can say that in the average case
execution complexity of this part of the algorithm is O(compavg × relavg × |G|).

4.2 Example

Figure 3 compares the assignments performed by the basic version of the algo-
rithm (DynPart), and the algorithm we described above (DynPartGroup), in the
same scenario as in the previous section. Compatible queries for all data items
are shown in previous example but can also be inferred from the groupings shown
in the top of the figure, i.e., all the data items in a group have the corresponding
set of compatible queries. In the basic algorithm, data items are assumed to
be processed in the order indicated in the subindex, i.e., first d1, then d2, etc.
Finally, recall that an imbalance factor of 0.05 for a fragment of size 40 means
that the maximum size of the fragment at the end of the execution is 42.

Figure 3(a) shows the final assignment performed by the extended algorithm.
All the groups are assigned to a single fragment and the chosen fragments have
always one of the highest affinities, so the allocations are optimal. In figure 3(b)
the assignments resulting from the execution of the basic algorithm are depicted.
Note that, in this case, groups g1 and g2 have to be split into different fragments.
As a consequence, q1, q3 and q5 increment the number of accessed fragments by
1 and q2 by 2, thus decreasing partitioning efficiency. This is the consequence
of fragment F4 being at its maximum size in step 14, which prevents it to be
selected in further phases of the algorithm.

118 M. Liroz-Gistau et al.

g1.ts = {d2, d11, d12, d13, d14, d15, d16} g1.qs = {q1, q2, q3}
g2.ts = {d5, d6, d7, d8} g2.qs = {q5}
g3.ts = {d1, d3, d4} g3.qs = {q1, q5}
g4.ts = {d9, d10} g4.qs = {q2, q4}

d9, d10

d1, d3, d4

|F1| = 40

q2, q4

|F2| = 41

q3, q5

|F3| = 38

q1, q4,
q5

|F4| = 41

q1, q2,
q3

d5, d6, d7, d8

d2, d11, d12, d13,
d14, d15, d16

(a)

d9, d10

d14, d15, d16

|F1| = 40

q2, q4

|F2| = 42

q3, q5,
q1, q2

|F3| = 36

q1, q4,
q2, q3

|F4| = 42

q1, q2,
q3, q5

d5, d6, d8

d1, d2, d3, d4,
d7, d11, d12, d13

(b)

Fig. 3. Example of execution of the distribution algorithms: a) algorithm DynPart-
Group, b) algorithm DynPart

4.3 Balancing Fragments Based on Load

In Section 2, we modeled the problem of data partitioning by using a size bal-
ancing constraint. Nonetheless, the problem may also be formalized if a load
balancing constraint is required. Intuitively, with load we mean the number of
accesses to the fragments.

Let us first define formally the load of a dataset as follows.

Definition 4. The load of a data set D, denoted L(D) is defined as the sum of
the frequencies of the queries accessing its data items:

L(D) =
∑
q∈W

f(q)× |q(D)| (9)

Given this definition, we can reformulate the imbalance constraint in the fol-

lowing way: L(F) ≤ L(D)
|π(D)|(1 + εl). As a result, the formula for the minimum

Dynamic Workload-Based Partitioning Algorithms 119

number of fragments that should be accessed for a given query should be modi-
fied accordingly:

minfr (q, π(D)) =

⌈
L(q(D))

(L(D) / |π(D)|)(1 + εl)

⌉
(10)

Note that in the numerator we use L(q(D)) instead of |q(D)| because we
should take into account that items accessed by q are also accessed by other
queries that we have to consider.

To use this new imbalance constraint, our algorithms only need some minor
modifications as follows. In Algorithm 1, in case of ties in the affinity measure, the
least loaded fragment should be selected instead of the smallest one. Moreover, in
Algorithm 3, groups should be ordered by load instead of by size. Furthermore,
function feasible should be redefined as follows:

feasible(F, g) = L(F ∪ g.ts) ≤
⌈
L(D)

|π(D)| (1 + εl)

⌉
(11)

5 Experimental Evaluation

To validate our dynamic partitioning algorithms, we conducted a thorough ex-
perimental evaluation over real-world data. In Section 5.1, we describe our exper-
imental setup. In Section 5.2, we report on the execution time of our algorithms
and compare them with a well known static workload-based algorithm. In Sec-
tion 5.3, we study the effect of the heuristic, which we used in our algorithms,
on partitioning efficiency. Finally, Section 5.4 studies how the imbalance factor
and the correlation of new data affect the partitioning efficiency.

5.1 Set-Up

For our experimental evaluation we used the data from the Sloan Digital Sky
Survey catalog, Data Release 8 (DR8) [2], as it is being used in LIneA in Brazil3.
It consists of a relational database with several observations for both stars and
galaxies. We obtained a workload sample from the SDSS SkyServer SQL query
log data, which stores the information about the real accesses performed by
users. In total, the database comprises almost 350 million tuples, that take 1.2
TB of space. The query log consists of a total of 27000 queries, some of which
are similar in the SQL form but produce different results, as they use different
parameters.

All queries were executed on the database and the tuple ids accessed by each of
them were recorded. Only tuples accessed by at least one query were considered.
We simulated the insertions on the database by selecting a subset of the tuples
as the initial state and appending the rest of the tuples in groups. We varied

3 Data from the DES project is still unavailable, so we have used data from SDSS,
which is a similar, previous project.

120 M. Liroz-Gistau et al.

0.1

1

10

100

1000

2M 4M 6M 8M 10M 12M 14M 16M 18M 20M

P
a
r
t
it
io

n
in

g
t
im

e
(
s
)

DB size (# of tuples)

SPSP

��

��

��

��
��

��
��

��

��
��

�� ��

��
��

��

��

��

�� ��
��

��

��

�� �� �� ��
��

��

��

�� ��

��

��
��

��

��

DP, |D′| = 0.5M
DP, |D′| = 1M
DPG, |D′| = 0.5M
DPG, |D′| = 1M

(a)

0.1

1

10

100

1000

2M 4M 6M 8M 10M 12M 14M 16M 18M 20M

P
a
r
t
it
io

n
in

g
t
im

e
(
s
)

DB size (# of tuples)

SP

��

��
��

��

��

��

��

��

��
��

��
��

��
��

��

��

�� ��
��

��

��

�� ��
�� �� �� ��

��

��

�� ��
��

�� ��
��

��

DP, |D′| = 0.5M
DP, |D′| = 1M
DPG, |D′| = 0.5M
DPG, |D′| = 1M

(b)

Fig. 4. Comparison of partitioning times of the dynamic and graph-based partitioning
algorithms as the DB size increases (|π(D)| = 16) for a) data size balancing (εs = 0.15)
and b) load balancing (εl = 0.15)

the following parameters: 1) the number of tuples inserted to the database on
each execution of our algorithm, |D′|; 2) the number of fragments in which the
database is partitioned, |π(D)|; 3) the imbalance factors, εs and εl; and 4) the
order of data items, so as to produce datasets with higher correlation between
consecutive data items. On each of the experiments, the specific numbers are
detailed.

All experiments were executed in a 3.0 GHz Intel Core 2 Duo E8400, running
Ubuntu 11.10 64-bit with 4GB of memory.

5.2 Partitioning Time

In this section, we study the execution time of the dynamic algorithms DynPart
(DP in the figure) and DynPartGroup (DPG) and compare them with a static
graph partitioning algorithm (SP). For the later, we use PaToH4, an hyper-
graph partitioner. Figure 4 shows the comparison of the partitioning time for 16
fragments and for data size balancing (εs = 0.15) and load balancing (εl = 0.15).
We executed the dynamic algorithms with two values for |D′|: 500000 and 1
million tuples. Similar results are obtained for different values of |π(D)|. As the
difference between execution times of the static and the dynamic algorithms is
significant, we use a logarithmic scale for the y-axis in order to show the results.
The results are only depicted until a database size of 20 million tuples, as the
memory requirements for the static partitioning are bigger than the memory
of our servers. The dynamic algorithms, on the other hand, do not cause any
problem as the memory footprint depends on |D′|, which is constant throughout
the experiment.

As it can be seen, partitioning time increases for the graph partitioning algo-
rithm as the size of the database increases, provided that the size of the graph
increases accordingly. For the dynamic algorithms, on the other hand, the exe-
cution time stays at the same level, as it is always executed for the same number

4 http://bmi.osu.edu/~umit/software.html

http://bmi.osu.edu/~umit/software.html

Dynamic Workload-Based Partitioning Algorithms 121

of data items. Some variation is observed since the features of the new items
adapt differently to the partitioning. However the trend is constant.

In the figure, we can also observe that the execution times of the DynPart-
Group algorithm are better that those of the basic algorithm. This is caused by
the reduced number of affinity calculations, as we will show later.

0

5

10

15

20

25

2M 4M 6M 8M 10M

P
a
r
t
it
io

n
in

g
t
im

e
(
s
)

Buffer size (# of tuples)

DP, |π(D)| = 4
DP, |π(D)| = 16
DP, |π(D)| = 256
DP, |π(D)| = 1024

(a)

0

5

10

15

20

25

2M 4M 6M 8M 10M

P
a
r
t
it
io

n
in

g
t
im

e
(
s
)

Buffer size (# of tuples)

DPG, |π(D)| = 4
DPG, |π(D)| = 16
DPG, |π(D)| = 256
DPG, |π(D)| = 1024

(b)

0

5

10

15

20

25

2M 4M 6M 8M 10M

P
a
r
t
it
io

n
in

g
t
im

e
(
s
)

Buffer size (# of tuples)

DP, |π(D)| = 4
DP, |π(D)| = 16
DP, |π(D)| = 256
DP, |π(D)| = 1024

(c)

0

5

10

15

20

25

2M 4M 6M 8M 10M

P
a
r
t
it
io

n
in

g
t
im

e
(
s
)

Buffer size (# of tuples)

DPG, |π(D)| = 4
DPG, |π(D)| = 16
DPG, |π(D)| = 256
DPG, |π(D)| = 1024

(d)

Fig. 5. Partitioning time vs. |D′| for a) DynPart and data size balancing (εs = 0.15),
b) DynPartGroup and data size balancing (εs = 0.15), c) DynPart and load balancing
(εl = 0.15) and d) DynPartGroup and load balancing (εl = 0.15)

We compared the execution of our algorithms for different sizes of D′. Fig-
ure 5 shows the average execution time of the DynPart and the DynPartGroup
algorithms as |D′| increases for different number of fragments and for both bal-
ancing strategies. As expected, the execution time is linearly related to the buffer
size. Also, the higher number of fragments, the higher the execution time. This
increase is not linear since the number of relevant fragments does not increase
at the same pace. In fact, the number of relevant fragments does not exceed 8
for |π(D)| = 256 and 16 for |π(D)| = 1024. The difference on the execution time
between the DynPart and the DynPartGroup algorithms is also noticeable.

In Figure 6, we represent the average execution times for the different stages of
the dynamic algorithms corresponding to the same scenario of Figure 4. Both al-
gorithms contain the following stages: calculate affinities, select max affinity and
update metadata. The extended algorithm also contains two additional stages,
namely create groups and sort groups. Finally, another phase is depicted, which
represents the rest of the operations executed during the distribution but not
linked to a particular algorithm.

122 M. Liroz-Gistau et al.

Other
Update
Max aff
Obtain affs
Sort groups
Create groups

Algorithm

P
a
rt
it
io
n
in

g
ti
m

e
(m

s)

DP,1MDPG,1MDP,500kDPG,500k

1200

1000

800

600

400

200

0

Fig. 6. Comparison of dynamic algorithms’ execution times (data size balancing with
εs = 0.15)

As we can observe in the figure, the distribution of execution times is com-
pletely different for both algorithms. The DynPart algorithm spends most of the
time in the calculation of the affinities, although the time spent in the rest of the
phases is also significant. On the other hand, DynPartGroup spends almost all
the time in the creation of the groups, whereas the time spent in the rest of the
stages is negligible. This can be explained by considering the number of groups
created in average, 664 for |D′| = 500k and 1360 for |D′| = 1M , which represent
around 0.13% of the number of tuples. As a consequence, with DynPartGroup
the time for computing affinities, selecting the best fragment, and updating the
corresponding metadata is significantly reduced.

5.3 Partitioning Efficiency

One of the important issues to consider for the dynamic algorithms is how they
affect the partitioning efficiency.

We executed the algorithms as the database is fed with new data after an ini-
tial partitioning using the graph-based partitioning approach. With |D′| = 1M,
Figure 7 shows how the partitioning efficiency evolves as the database grows
for different number of fragments, |π(D)|. Similar results were obtained for
other configurations of |D′|. The efficiency decreases as the database grows,
as expected, but this reduction is very small. For example, in the worst case,
|π(D)| = 1024 and data size balancing, the partitioning efficiency decreases
2.82 × 10−3 in average for each 10 million new tuples. The difference between
DynPart and DynPartGroup is very small for small values of |π(D)|, but in-
creases for higher values. In any case, it is below 5% for the worst case.

To evaluate the quality of our partitioning approach, in addition to the par-
titioning efficiency metrics, as in [8,16] we studied the percentage of single-node
queries, which means the percentage of the queries that can be executed by us-
ing the data of only one fragment. Figure 8 shows the results. As seen, when
the number of fragments is small, the results are similar to what we reported for
partitioning efficiency metrics. However, for higher number of nodes, the number

Dynamic Workload-Based Partitioning Algorithms 123

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

10M 20M 30M 40M 50M 60M 70M 80M 90M

P
a
r
t
it
io

n
in

g
e
ff
ic

ie
n
c
y

DB size (# of tuples)

DP, |π(D)| = 16
DP, |π(D)| = 1024
DPG, |π(D)| = 16
DPG, |π(D)| = 1024

(a)

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

10M 20M 30M 40M 50M 60M 70M 80M 90M

P
a
r
t
it
io

n
in

g
e
ff
ic

ie
n
c
y

DB size (# of tuples)

DP, |π(D)| = 16
DP, |π(D)| = 1024
DPG, |π(D)| = 16
DPG, |π(D)| = 1024

(b)

Fig. 7. Comparison of partitioning efficiency as the size of the DB grows (|D′| = 1M)
for a) data imbalance and b) load imbalance

of single-node queries is lower. The reason is that in these cases the partitions
are smaller, so it is more difficult to confine all the results of a query in a single
fragment

5.4 Effect of Imbalance Factor and Data Correlation

The imbalance factor (εs or εl) may affect the efficiency as it constraints the
flexibility of the algorithm in allocating new data items. The lower the imbalance
factor, the less flexibility, which may imply that some data items are not placed
in the optimal fragments because they are full. Figures 9(a) and 9(c) show the
average partitioning efficiency for different values of εs and εl, respectively. The
efficiency decreases as the imbalance factor decreases, as expected, but it is much
more noticeable for the DynPart algorithm.

To enrich our study, we have considered other scenarios by reordering the data
so that correlated data items arrive together. In order to do that, we executed
the DynPart algorithm over the initial data set and created the corresponding
partitions. Then we reordered the data by placing on defined intervals data of
only one of the fragments at a time. That way, we increase the correlation of
new data (D′) on each execution of the algorithm.

Figures 9(b) and 9(d) show the same configuration as before but with a new
ordering created by producing 8 fragments on the original data and placing
items of one of those fragment in intervals of 10M5. As we see, in the case of
correlated data, the impact of the imbalance factor is higher than in the previous
scenario. Nevertheless, the DynPartGroup algorithm still shows good behavior
for different values of εs and εl.

Finally, in Figure 10 we show the evolution of the partitioning efficiency as
the database grows for imbalance factors of 0.001 and 0.5, which represent both
extremes on the studied values of εs and εl. This confirms that higher correlations
on the inserted data affect the resulting partitioning efficiency. At the beginning
the efficiency is low, since all the inserted data is highly correlated and data
items that should be allocated together have to be split because of imbalance

5 We have produced different reorderings and the experiments show similar results.

124 M. Liroz-Gistau et al.

0.5

0.6

0.7

0.8

0.9

1

10M 20M 30M 40M 50M 60M 70M 80M 90M

%
S
in

g
le

-n
o
d
e

q
u
e
r
ie

s

DB size (# of tuples)

DP, |π(D)| = 16
DP, |π(D)| = 1024
DPG, |π(D)| = 16
DPG, |π(D)| = 1024

(a)

0.5

0.6

0.7

0.8

0.9

1

10M 20M 30M 40M 50M 60M 70M 80M 90M

%
S
in

g
le

-n
o
d
e

q
u
e
r
ie

s

DB size (# tuples)

DP, |π(D)| = 16
DP, |π(D)| = 1024
DPG, |π(D)| = 16
DPG, |π(D)| = 1024

(b)

Fig. 8. Comparison of percentage of single-node queries as the size of the DB grows
(|D′| = 1M) for a) data imbalance and b) load imbalance

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5

P
a
r
t
it
io

n
in

g
e
ff
ic

ie
n
c
y

Imbalance factor (εs)

DP, |π(D)| = 16
DP, |π(D)| = 256
DPG, |π(D)| = 16
DPG, |π(D)| = 256

(a)

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5

P
a
r
t
it
io

n
in

g
e
ff
ic

ie
n
c
y

Imbalance factor (εs)

DP, |π(D)| = 16
DP, |π(D)| = 256
DPG, |π(D)| = 16
DPG, |π(D)| = 256

(b)

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5

P
a
r
t
it
io

n
in

g
e
ff
ic

ie
n
c
y

Imbalance factor (εl)

DP, |π(D)| = 16
DP, |π(D)| = 256
DPG, |π(D)| = 16
DPG, |π(D)| = 256

(c)

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5

P
a
r
t
it
io

n
in

g
e
ff
ic

ie
n
c
y

Imbalance factor (εl)

DP, |π(D)| = 16
DP, |π(D)| = 256
DPG, |π(D)| = 16
DPG, |π(D)| = 256

(d)

Fig. 9. Partitioning efficiency vs. imbalance factor for a) original data set and data
size balancing, b) reordered data set and data size balancing, c) original data set and
load balancing and d) reordered data set and load balancing

constraints. However, as new data items with different affinities are included and
the imbalance is more flexible, the efficiency increases.

By comparing the behavior of both dynamic algorithms we can state that
the DynPartGroup algorithm obtains better partitioning efficiencies consistently.
The DynPart algorithm approaches DynPartGroup when the imbalance factor
is high, but degrades as the imbalance constraints are stricter. This difference
between the partitioning efficiency of the two algorithms is even higher for con-
figurations with more number of fragments.

Dynamic Workload-Based Partitioning Algorithms 125

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

10M 20M 30M 40M 50M 60M 70M 80M 90M

P
a
r
t
it
io

n
in

g
e
ff
ic

ie
n
c
y

DB size (# of tuples)

DP, εs = 0.001
DP, εs = 0.5
DPG, εs = 0.001
DPG, εs = 0.5

(a)

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

10M 20M 30M 40M 50M 60M 70M 80M 90M

P
a
r
t
it
io

n
in

g
e
ff
ic

ie
n
c
y

DB size (# of tuples)

DP, εl = 0.001
DP, εl = 0.5
DPG, εl = 0.001
DPG, εl = 0.5

(b)

Fig. 10. Partitioning efficiency for the reordered data (|π(D)| = 16) for a) data size
balancing and b) load balancing

6 Related Work

Partitioning has been used both for declustering (whose goal is to maximize
parallelism) and clustering (to minimize the fragment accesses). In this paper,
we are interested in the later, as we are trying to reduce the number of query
accesses to the fragments.

The most popular approaches for database partitioning [10] are 1) round-
robin, which consists on assigning each tuple to a different fragment; 2) hash-
partitioning, which applies a hash function of a predefined set of attributes;
and 3) range-based partitioning, which splits data on ranges on a given set
of attributes. Recently, distributed key-value stores have been applying them.
Dynamo [9] uses a modified version of hash-partitioning on the key and, as a
consequence, only obtain single-site query executions when the query contains
equality predicates on the key. In general, hash-based partitions are good for
clustering only when the queries contain equality predicates on the partitioning
attributes, which is not the case of our workload. BigTable [5] and PNUTS [7] use
range-based partitioning on the keys; which still is too simple for our reference
queries. In general, the complexity of scientific workloads makes it hard to design
a good partitioning strategy manually, so automatic partitioning is preferred [15].

Automatic database partitioning have received significant attention from re-
searchers and applied by some database vendors, notably Microsofts SQL Server
AutoAdmin [6,3] and IBMs DB2 Database Advisor [17,19]. Many of these works
have focused on partitioning (both vertical and horizontally) as an element of
physical design for a single-node, along with indexing and materialized views.
For instance, in [3] a set of physical design alternatives (that includes partition-
ing) is generated. Then, in order to limit the search space they prune the set of
candidates. Similar procedures are used in other works, such as AutoPart [15],
which is focused on scientific workloads. In this case only vertical and categorical
partitioning are considered. After generating a set of fragment candidates from
the predicates in the workload, composition of fragments is evaluated to reduce
the overhead of joins. The resulting partitionings are also used for physical design
in a single-node.

126 M. Liroz-Gistau et al.

Some other proposals use analogous techniques to automatically generate par-
titions in distributed systems. The solution proposed in [17] uses a similar ap-
proach but with the goal of distributing the queries over all the nodes (data
declustering). For the queries in the workload model a set of candidate parti-
tions, which consist of applying a hash partitioning over a subset of columns, is
generated. Then, they use the optimizer to estimate the costs under the new par-
titioning and eventually recommend some of the candidates. Automatic database
partitioning for distributed databases has recently received further attention. In
[14], data is partitioned automatically to optimize the execution of MPP sys-
tems. As a possible alternative they only consider hash-based partitioning over
a single column. In [16], both hash and range-based partitioning on the most
accessed attributes are considered for partitioning in OLTP systems. To find a
near optimal solution, their approach explores a solution space by adapting the
large-neighborhood search technique. However, this approach and most of the
approaches mentioned above are not well suited for our underlying scientific ap-
plications that are characterized by complex workload predicates involving many
attributes; and this significantly degrades the efficiency of those approaches

Graph-based approaches have been used to capture more complex relations
between the workload and the data both for partitioning with the objective of
declustering [13,11] and clustering [8]. They use two different models to represent
data and queries: simple graph and hypergraph. In the hypergraph model [11],
each query is modeled as a hyperedge (a set of vertices). In the simple graph
model [13,8], queries are modeled as cliques of simple edges. Schism [8] is a recent
system that partitions the data by building a graph containing the relations
between queries and tuples. Data items are retrieved using an index or by means
of predicate-based explanations, depending on the scenario. However, like other
existing graph-based approaches, it is static and needs to redo the partitioning
from scratch when the data changes. As we showed in the paper, this approach
does not perform well for growing databases, and a dynamic approach is hence
required. Furthermore, as new produced partitionings are not aware of previous
ones, large amounts of data transfers may have to take place in order to apply
the new data placements.

7 Conclusions

In this paper, we proposed a pair of dynamic algorithms for partitioning continu-
ously growing large databases. We modeled the partitioning problem for dynamic
datasets and proposed a new heuristic to efficiently distribute new arriving data,
based on the affinity it has with the different fragments in the application. We
designed two alternatives, DynPart, the basic algorithm, and DynPartGroup,
which deals better with strict imbalance constraints.

We validated our approach through implementation, and compared its execu-
tion time with that of a static graph-based partitioning approach. The results
show that as the size of the database grows, the execution time of the static algo-
rithm increases significantly, but that of our algorithms remains stable. They also

Dynamic Workload-Based Partitioning Algorithms 127

show that, for the given dataset, our algorithms, although based on a heuristic
approach, do not degrade partition efficiency considerably.

The results show that in the case of datasets in which there is a high corre-
lation between new data items, the DynPartGroup algorithm maintains a very
good behavior. The also show that this algorithm is not highly affected by the
imbalance of fragments’ sizes.

On the whole, our experiments show that our dynamic partitioning strategy
is able to efficiently deal with the data of our astronomic application. But, we
believe that its utilization is not limited to this application, and it can be used
for data partitioning in many other applications in which the data items are
appended continuously. We leave for a possible future work the scenarios with
even higher data correlation where a simple eager approach, like ours, does not
work and some form of data reorganization is needed.

References

1. The dark energy survey, http://www.darkenergysurvey.org/

2. Sloan digital sky survey, http://www.sdss3.org

3. Agrawal, S., Narasayya, V.R., Yang, B.: Integrating vertical and horizontal par-
titioning into automated physical database design. In: Weikum, G., König, A.C.,
Deßloch, S. (eds.) SIGMOD Conference, pp. 359–370. ACM (2004)

4. Ailamaki, A., Kantere, V., Dash, D.: Managing scientific data. Communications of
the ACM 53(6), 68–78 (2009)

5. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M.,
Chandra, T., Fikes, A., Gruber, R.E.: Bigtable: a distributed storage system for
structured data. ACM Transactions on Computer Systems 26(2), 1–26 (2008)

6. Chaudhuri, S., Narasayya, V.R.: Autoadmin ‘what-if’ index analysis utility. In:
Haas, L.M., Tiwary, A. (eds.) SIGMOD Conference, pp. 367–378. ACM Press
(1998)

7. Cooper, B.F., Ramakrishnan, R., Srivastava, U., Silberstein, A., Bohannon, P.,
Jacobsen, H.A., Puz, N., Weaver, D., Yerneni, R.: PNUTS: Yahoo!’s hosted data
serving platform. Proceedings of the VLDB Endowment 1(2), 1277–1288 (2008)

8. Curino, C., Jones, E., Zhang, Y., Madden, S.: Schism: a workload-driven ap-
proach to database replication and partitioning. Proceedings of the VLDB En-
dowment 3(1), 48–57 (2010)

9. DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin,
A., Sivasubramanian, S., Vosshall, P., Vogels, W.: Dynamo: amazon’s highly avail-
able key-value store. In: Proceedings of Twenty-First ACM SIGOPS Symposium
on Operating Systems Principles, SOSP 2007, vol. 41, pp. 205–220. ACM (2007)

10. DeWitt, D.J., Gray, J.: Parallel database systems: the future of high performance
database systems. Communications of the ACM 35(6), 85–98 (1992)

11. Koyutürk, M., Aykanat, C.: Iterative-improvement-based declustering heuristics
for multi-disk databases. Information Systems 30, 47–70 (2005)

12. Liroz-Gistau, M., Akbarinia, R., Pacitti, E., Porto, F., Valduriez, P.: Dynamic
workload based partitioning for large-scale databases. In: Liddle, S.W., Schewe,
K.-D., Tjoa, A.M., Zhou, X. (eds.) DEXA 2012, Part II. LNCS, vol. 7447,
pp. 183–190. Springer, Heidelberg (2012)

http://www.darkenergysurvey.org/
http://www.sdss3.org

128 M. Liroz-Gistau et al.

13. Liu, D.R., Shekhar, S.: Partitioning similarity graphs: a framework for declustering
problems. Information Systems 21(6), 475–496 (1996)

14. Nehme, R.V., Bruno, N.: Automated partitioning design in parallel database sys-
tems. In: Proceedings of the ACM SIGMOD International Conference on Manage-
ment of Data, pp. 1137–1148 (2011)

15. Papadomanolakis, S., Ailamaki, A.: Autopart: Automating schema design for large
scientific databases using data partitioning. In: SSDBM, pp. 383–392. IEEE Com-
puter Society (2004)

16. Pavlo, A., Curino, C., Zdonik, S.B.: Skew-aware automatic database partitioning
in shared-nothing, parallel oltp systems. In: Proceedings of the ACM SIGMOD
International Conference on Management of Data, pp. 61–72 (2012)

17. Rao, J., Zhang, C., Megiddo, N., Lohman, G.M.: Automating physical database
design in a parallel database. In: Franklin, M.J., Moon, B., Ailamaki, A. (eds.)
SIGMOD Conference, pp. 558–569. ACM (2002)

18. Stonebraker, M., Abadi, D.J., Batkin, A., Chen, X., Cherniack, M., Ferreira, M.,
Lau, E., Lin, A., Madden, S., O’Neil, E., O’Neil, P., Rasin, A., Tran, N., Zdonik,
S.: C-store: a column-oriented DBMS. In: Proceedings of the 31st international
conference on Very Large Data Basesm, VLDB 2005, pp. 553–564 (2005)

19. Zilio, D.C., Rao, J., Lightstone, S., Lohman, G.M., Storm, A.J., Garcia-Arellano,
C., Fadden, S.: Db2 design advisor: Integrated automatic physical database design.
In: Nascimento, M.A., Özsu, M.T., Kossmann, D., Miller, R.J., Blakeley, J.A.,
Schiefer, K.B. (eds.) VLDB, pp. 1087–1097. Morgan Kaufmann (2004)

Author Index

Akbarinia, Reza 105
Arour, Khedija 54

Bouzeghoub, Amel 54

Chen, Qiming 83

Domps, Richard 27

Feng, Haitang 27
Fernandes, Alvaro A.A. 1

Guo, Chenjuan 1

Hacid, Mohand-Säıd 27
Hedeler, Cornelia 1
Hsu, Meichun 83

Liroz-Gistau, Miguel 105
Lumineau, Nicolas 27

Pacitti, Esther 105
Paton, Norman W. 1
Porto, Fabio 105

Valduriez, Patrick 105

Yeferny, Taoufik 54

	Preface
	Editorial Board
	Table of Contents
	EvoMatch: An Evolutionary Algorithmfor Inferring Schematic Correspondences
	1 Introduction
	2 Related Work
	3 Schematic Correspondences
	4 EvolutionarySearch
	4.1 Overview of EvoMatch
	4.2 Phenotype and Genotype Representations of a Solution
	4.3 Search Framework

	5 Objective Function
	5.1 Representing Entity Sets Using Terms
	5.2 Weight Calculation
	5.3 Aligning Entity Sets
	5.4 Vector Similarity
	5.5 Aggregation

	6 Attribute-Level Schematic Correspondences
	7 Experimental Evaluation
	7.1 Experimental Setting
	7.2 Settings of Systems
	7.3 Experimental Results

	8 Conclusions
	References

	Update Management in DecisionSupport Systems
	1 Introduction
	2 Problem Statement and Motivations
	3 Notations and Definitions
	4 Current Solution: Principles and Limitations
	5 Proposed Algorithms
	5.1 PAM Algorithm
	5.2 PAM II Algorithm
	5.3 Other Aggregate Functions

	6 Experiments
	6.1 Evaluation of Different Methods with Two Dimensions
	6.2 Comparison of the Three Methods
	6.3 Evaluation of Different Methods with Three Dimensions

	7 Conclusion
	References

	LRS: A Novel Learning Routing Schemefor Query Routing on Unstructured P2P Systems
	1 Introduction
	2 Query Routing in P2P Systems: An Overview
	2.1 Content-Oriented Routing Indices Methods
	2.2 Cluster-Based Routing Methods
	2.3 Query-Oriented Routing Indices Methods
	2.4 Synthesis on Query Routing Methods

	3 LRSApproach
	3.1 Log File Management Layer
	3.2 User Profile Management Layer
	3.3 Clustering Layer
	3.4 Bootstrapping Layer
	3.5 Semantic Query Spreading Layer

	4 Experiments
	4.1 Environment
	4.2 Results

	5 Conclusion and Future Works
	References

	Open Streaming Operation Patterns
	1 Introduction
	1.1 The Challenges
	1.2 The Proposed Solution

	2 Open Station and Open Executor of Stream Operator
	2.1 Continuous, Parallel and Elastic Stream Analytics Platform
	2.2 Meta Characteristics of Operators
	2.3 Stationed Streaming Operators
	2.4 Open Executor

	3 Support Parallelized and Granulized Stream Processing Patterns
	3.1 Data-Parallel Execution of Operators
	3.2 Parallelize Stateful Streaming Operators Group-Wise
	3.3 Window Based Stream Analytics

	4 Support Parallel Sliding Window Stream Processing Patterns
	4.1 Sliding Window Based Stream Analytics
	4.2 Parallelize Sliding Window Based Stream Analytic Operation
	4.3 The Generalized Framework
	4.4 A PSW Stream Process Topology Example

	5 Experiments
	6 Related Work and Conclusions
	References

	Dynamic Workload-Based PartitioningAlgorithms for ContinuouslyGrowing Databases
	1 Introduction
	2 Problem Definition
	2.1 Static Partitioning
	2.2 Dynamic Partitioning

	3 Affinity Based Dynamic Partitioning
	3.1 System Overview
	3.2 Principle
	3.3 Algorithm
	3.4 Example
	3.5 Data Structures
	3.6 Dealing with Deletes and Updates

	4 Dealing with Imbalance
	4.1 Algorithm
	4.2 Example
	4.3 Balancing Fragments Based on Load

	5 Experimental Evaluation
	5.1 Set-Up
	5.2 Partitioning Time
	5.3 Partitioning Efficiency
	5.4 Effect of Imbalance Factor and Data Correlation

	6 Related Work
	7 Conclusions
	References

	Author Index

