
Chapter 5
Measurement Methods for Critical Current
Density

5.1 Four Terminal Method

The most general method for measuring the critical current density Jc, an important
parameter of superconductors, is the four terminal method, in which the voltage drop
V between the terminals is measured as a function of the transport current I . This
is also called the resistive method. The critical current Ic is defined as the transport
current at which the flow voltage clearly appears. The critical current density is
given by Ic divided by the cross-sectional area S of the superconducting region: Jc =
Ic/S. In multi-filamentary superconductors, the cross-sectional area may include a
metallic stabilizer and reinforcing materials.

In practice, the current-voltage curves of superconducting wires are not straight
lines as in Fig. 1.13 due to various causes such as inhomogeneity of the critical
current density or the effect of flux creep described in Sect. 3.8. Instead, voltage
gradually rises due to various causes, which will be described later. The measure-
ment is also subject to sensitivity limits. Hence, there is no clear point at which the
flow voltage appears. To define the critical current, the following criteria are used.

(1) Electric field criterion: This is the simplest method. The critical current is de-
fined by the current at which the electric field reaches a certain value (see
Fig. 5.1). A value of 100 µV m−1 or 10 µV m−1 is commonly used.

(2) Resistivity criterion: The critical current is defined by the current at which the
resistivity of the superconducting wire reaches a certain value (see Fig. 5.1). For
composite superconductors with stabilizer, 10−13 � m or 10−14 �m is com-
monly used.

(3) Off-set method: The critical current is determined by the current at which a
tangential line from part of the current-voltage curve crosses zero voltage (see
Fig. 5.1).

A large error results from the electric field criterion and the resistivity crite-
rion when flux creep is pronounced. Even in the case where the current-voltage
curve shows an ohmic characteristic as in (3.132), a nonzero critical current den-
sity is defined using the electric field criterion. Similar thing happens also when the
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Fig. 5.1 Current-voltage
curve and methods of
determination of critical
current density using
respective criteria

resistivity criterion is used. These methods are useful only for a strongly nonlin-
ear current-voltage curve, which rises abruptly at a nonzero current density. If the
current-voltage curve is expressed as

V ∝ In, (5.1)

the index, n, is called the n value. The n value is a supplementary parameter rep-
resenting the strength of the nonlinearity. The electric field range of 1 µV m−1 to
100 µV m−1 is generally used to determine the n value. A superconducting wire
with larger n is often better. Note that it is possible to reduce the induced voltage
drastically by reducing the current slightly when n is high. When n is low, on the
other hand, the induced voltage does not become small abruptly when the current is
decreased slightly. To avoid errors when n is small, it is practical to use the offset
method. Using the line tangent to the curve at the current density at the electric field
criterion J0, the critical current density determined by the offset method is

J ′
c =

(
1 − 1

n

)
J0. (5.2)

This gives the correct result J = 0 for n = 1.
Here the meaning of the n value is discussed. The current-voltage characteristics

deviate from (2.31), the relationship of which is shown in Fig. 1.13, and the volt-
age rises gradually near Jc. This voltage is due to both microscopic causes, such
as flux creep and the nonlinearity of flux motion around the pinning potential, and
macroscopic causes such as spatial nonuniformity of the critical current density and
sausaging of superconducting filaments. Sausaging is a nonuniformity of the fila-
ment diameter as a result of wire drawing. Therefore, it is difficult to derive an n

value directly as a physical quantity; the n value is merely a convenient parameter
for practical use.

If the dispersion of Jc originates from the dispersion of Tc, its value �Jc does not
vary appreciably even at high temperatures and high magnetic fields. Thus, �Jc/Jc
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Fig. 5.2 Current-voltage curves at (a) low temperatures and/or low magnetic fields and (b) high
temperatures and/or high magnetic fields. Arrows show ranges of distribution of critical current
density. At high temperatures and/or high magnetic fields, the deviation is relatively large in com-
parison with the mean value of the critical current density, and the n value is small

is larger at higher temperatures and at higher magnetic fields as shown in Fig. 5.2.
In addition, the effect of flux creep becomes pronounced under these circumstances.
Hence, the n value is a decreasing function of T and B .

Equation (5.1) insists that a true superconducting state with zero resistivity does
not exist. The flux creep theory predicts that the electric field abruptly decreases
exponentially in a region of ultra low electric field, far below the sensitivity of
present measuring techniques. However, the electric field is not zero even in this
case. This is associated with the fact that the state in which the flux lines are pinned
by pinning potentials is not at equilibrium. Hence, the process of relaxation to the
equilibrium state with zero current density cannot be avoided. Shortly after the dis-
covery of high-temperature superconductors, many researchers thought that these
superconductors could not be applied to the field of technology. Although the above
properties are true, it is not true that these superconductors cannot be applied.

Assume that (5.1) applies approximately within some range of current. When
the current is reduced by a factor p, the voltage can be reduced by a factor pn.
Hence, if the loss associated with the voltage drop can be reduced below that of
an equivalent nonsuperconducting metal by reducing the current by an appropriate
factor, practical application of the superconductor can be realized. For example,
consider a superconducting coil that is made of 1 km of wire with a critical current
of 200 A at the electric field criterion of 100 µV m−1. When this coil is driven at the
critical current, the voltage is 0.1 V and the loss power is 20 W. However, if the n

value of the wire is 50, the loss power is reduced to 0.5 W by reducing the current
to 0.93Ic. This power may be much less than the heat transmitted into a cryostat.
Thus, the coil can be applied as a superconducting device. As demonstrated by this
example, if the n value is sufficiently large, even a relatively weak electric field
criterion such as 100 µV m−1 can be used to define Ic. The n value in commercial
superconducting wires exceeds 50, and n = 21 has been reported [1] for a Bi-2223
tape at 77.3 K in the self field.
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5.2 DC Magnetization Method

The DC magnetization of a superconductor is hysteretic as mentioned in Sect. 2.5.
Consider a superconducting slab with thickness 2d . In low magnetic fields, the field
dependence of the pinning force density can be approximated by (2.46). Then, the
parameters αc and γ are determined such that (2.55a)–(2.55e) fits an observed mag-
netization curve, and the local critical current density can be obtained from αcB̂

γ−1

(see (2.50)).
If the magnetization contains a diamagnetic component as mentioned in Sect. 2.6,

this contribution should be eliminated. This is possible only when the diamagnetic
property is known. However, even if the property is unknown, the diamagnetic ef-
fect can be approximately canceled out in the hysteresis of magnetization between
increasing and decreasing fields. This is a good approximation for superconductors
with a large G-L parameter κ .

The hysteresis of magnetization of a superconducting slab in a parallel external
He is calculated from (2.55b) and (2.55d):

�M = 2 − γ

3 − γ
Hp

{[(
He

Hp

)2−γ

+ 1

](3−γ )/(2−γ )

+
[(

He

Hp

)2−γ

− 1

](3−γ )/(2−γ )

− 2

(
He

Hp

)3−γ }
. (5.3)

The parameters αc and γ can be estimated by fitting the observed hysteresis to
the above theoretical result. By contrast, the critical current density obtained by
the transport method is a spatial average of the local critical current density (see
Sect. 2.5).

The average magnetic critical current density is usually estimated from

Jc = �M

d
. (5.4)

This is correct only when the local critical current density is constant throughout the
sample, i.e., when the Bean-London model holds.

The average transport critical current density 〈Jc〉 at external magnetic field He

is given by (2.61). 〈Jc〉 can also be obtained from �M . The solid lines in Fig. 5.3
show the magnetic flux distributions in the processes of increasing and decreasing
the magnetic field, and the area of the diamond-shaped region is equal to 2μ0�Md .
The broken line in the figure is the flux distribution when the transport current
reaches the critical value in the external field He. When the external magnetic field
is sufficiently larger than the penetration field Hp, (5.3) reduces to

�M � Hp

2 − γ

(
Hp

He

)1−γ [
1 + (1 − γ )(3 − 2γ )

12(2 − γ )2

(
Hp

He

)4−2γ ]
. (5.5)
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Fig. 5.3 Magnetic flux
distributions in a
superconducting slab during a
magnetization measurement
(solid lines) and that in the
critical state during a
transport measurement
(broken line). HI represents
the self field of the current

Thus, in terms of �M , 〈Jc〉 is given by

〈Jc〉 � �M

d

[
1 + (1 − γ )(4γ − 3)

12

(�M

He

)2]
. (5.6)

The second term gives the correction to (5.4). This is very small when the external
field is large. In the case where γ = 0.5 and He = 2Hp, the second term gives a
correction of about 0.2 %.

5.3 Campbell’s Method

The shielding current density induced in the superconductor by an AC magnetic
field can be estimated by measuring the penetrating flux. One method is Campbell’s
method [2], explained in this section. By using this method, not only the current
density but also the relationship between the force on and the displacement of the
flux lines can be derived. The analysis of the force-displacement profile is useful
for investigating the reversible motion of flux lines described in Sect. 3.7 and the
flux pinning properties described in Chap. 7. Other AC inductive methods will be
introduced in Sect. 5.4.

Usually a DC magnetic field He and a small AC field h0 cos ωt are applied par-
allel to a superconducting cylinder or long slab, as shown in Fig. 5.4, to avoid the

Fig. 5.4 Application of
magnetic field commonly
used in Campbell’s method.
Arrows show the directions of
penetration of AC magnetic
flux
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Fig. 5.5 Variation in
penetration of AC magnetic
flux when the AC field
amplitude is slightly changed
from h0 to h0 + δh0. Current
density is assumed to be
constant

effect of demagnetization due to the specimen shape. The magnetic flux moving into
and out of the specimen is measured using a pick-up coil and a reference coil. The
amplitude of penetrating flux is denoted by Φ , and δΦ corresponds to the incremen-
tal flux change when h0 is slightly increased by δh0. The magnetic flux distribution
is expected to be like the one shown in Fig. 5.5. The shielding current density, which
is not necessarily equal to the critical value, is considered to be unchanged when the
AC field amplitude increases from h0 to h0 + δh0. Then, the depth of penetration of
the AC field is given by

λ′ = 1

2wμ0
· δΦ

δh0
(5.7)

when the width w of the slab specimen is much larger than the thickness 2d . In
a strict sense, 2w in the denominator of (5.7) is replaced by the perimeter of the
superconducting slab 2(w + 2d), when λ′ is sufficiently smaller than 2d . In the
limit of small δh0, δΦ/δh0 reduces to the derivative, ∂Φ/∂h0. Then, (5.7) leads to

λ′ = 1

2wμ0
· ∂Φ

∂h0
. (5.8)

In a cylindrical superconductor with radius R, a simple calculation gives

λ′ = R

[
1 −

(
1 − 1

πR2μ0
· ∂Φ

∂h0

)1/2]
. (5.9)

When λ′ � R, the right-hand side of (5.9) reduces to (2πRμ0)
−1∂Φ/∂h0. This re-

sult is understandable from the fact that the perimeter is equal to 2πR. The deriva-
tive of Φ with respect to h0 in (5.8) and (5.9) can be obtained by expressing Φ as a
polynomial of h0.

An example of λ′(h0) is shown in Fig. 5.6 [3]. Except for small h0, this λ′-h0

characteristic can be regarded as the flux distribution in the superconductor for in-
creasing field; the ordinate and abscissa represent the internal magnetic flux density
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Fig. 5.6 Example of
measurement of the λ′ vs. h0
characteristics using a
modified Campbell’s method
for Nb-50at%Ta at
μ0He = 0.336 T [3]. The
prediction of the
Bean-London model holds
except in the region of small
h0

and the depth of flux penetration, respectively. Hence, the slope of this distribution
gives μ0J :

J =
(

∂λ′

∂h0

)−1

. (5.10)

which is equal to Jc in the critical state. In Fig. 5.6 it is found that the prediction of
the Bean-London model is satisfied. Derivation of the magnetic flux distribution and
the critical current density is requested in Exercise 5.1 using (5.8) and (5.9) for the
Bean-London model. Note that the penetration depth λ′ is finite, λ′ = λ′

0, deviating
from the Bean-London model, when h0 is small. This value (λ′

0) is Campbell’s AC
penetration depth, given by (3.93). In this region the reversible motion of flux lines
mentioned in Sect. 3.7 is pronounced, and the apparent magnetic flux distribution
in Fig. 5.6 is different from the real one. That is, although (5.10) predicts a large
current density, this may not be correct. The real distribution is like the one shown
in Fig. 3.33(a), and the current density takes a reasonable value. In this region the
penetrating flux is approximately given by (3.92), and a replacement of b(0) by
μ0h0 gives

Φ � 2w

∫ ∞

0
μ0h0 exp

(
− x

λ′
0

)
dx = 2wμ0h0λ

′
0 (5.11)

for a superconducting slab sufficiently thicker than λ′
0. Substitution of this into (5.8)

leads to

λ′ = λ′
0, (5.12)

which coincides with experiment.
In Campbell’s method [2] the amplitude of penetrating AC flux Φ , i.e., half of the

difference between the magnetic flux at ωt = −π and that at ωt = 0 is measured.
There is also a similar method [4], in which a fundamental frequency component
of the AC flux Φ ′ is approximately measured instead of Φ ′, followed by the same
analysis. The resultant error due to this approximation is estimated in Exercise 5.2.
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Fig. 5.7 Example of
measurement of the λ′ vs. h0
characteristics using the
modified Campbell’s method
for Nb-50at%Ta, the same
specimen as that in Fig. 5.6,
but at μ0He = 0.123 T [6].
Extrapolation of the linear
part does not go through the
origin, and is thus different
from Fig. 5.6. This shows a
strong flux pinning near the
surface

In another method [5], instantaneous values of the external AC field and penetrating
AC flux, represented by h(t) and Φ(t), are measured. Since the relationship between
these quantities is the same as that between h0 and Φ , (∂Φ(t)/∂t)/(∂h(t)/∂t) is
equal to ∂Φ/∂h0. Thus, (5.8) can be rewritten as

λ′ = 1

2wμ0
· ∂Φ(t)/∂t

∂h(t)/∂t
. (5.13)

The denominator (μ0∂h(t)/∂t) and the numerator (∂Φ(t)/∂t) are the voltages mea-
sured directly by a field monitor coil and a pick-up coil, respectively. This is the
wave-form analysis method. A characteristic of this method is that differentiation as
in (5.8) is not necessary.

In such AC inductive methods, many more measurements and analyses are
needed to determine Jc than in the four terminal method and the DC magnetiza-
tion method. However, other important information can also be obtained. One of
them is the relationship between the pinning force and the displacement of flux
lines, which will be discussed later. Observation of an inhomogeneous current dis-
tribution is also possible, although applicable cases are limited. Figure 5.7 shows
an example of an observed flux distribution using a modified Campbell’s method
for a specimen with a surface irreversibility, [6] which is discussed in Sect. 3.5.
While the flux distribution is linear with a uniform critical current density in the in-
ner region, its extrapolation does not pass through the origin, suggesting that a large
magnetization is caused by a high density of shielding current flowing in the surface
region. This analysis will be described later. When the shielding current flows in
an inhomogeneous way, depending on a depth from the surface, as in the case of
surface irreversibility, such an inhomogeneous current distribution, which cannot be
obtained by the four terminal method and the DC magnetization method, can be ob-
tained by this method. However, observable quantities are those averaged along the
direction normal to the flux penetration, so any inhomogeneity along this direction
cannot be obtained. Another example is the simultaneous observation of intra-and
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inter-grain critical current densities in sintered Y-based oxide superconductors with
weakly coupled grains [7].

According to the analysis in [8], the relationship between the pinning force den-
sity F and the displacement of flux lines u is derived as follows. The equations used
for this analysis are (3.89), the continuity equation for flux lines:

du

dx
= − b

μ0He
(5.14)

and the force-balance equation between the Lorentz force FL and the pinning force
density F (see (3.90)):

−F = FL = −He
db

dx
+ const. (5.15)

Note that this gives the absolute Lorentz force density, being different from (3.90),
and the constant term on the right side is the value in the initial state (b = 0).
The displacement of flux lines at the superconductor surface is initially obtained
from (5.14). The AC field amplitude is denoted by h0. The displacement in the half
cycle from ωt = −π (the initial state) to ωt = 0 is positive, suggesting that flux
lines move along the direction of the positive x-axis. This can be expressed in terms
of the amplitude of observed magnetic flux Φ as

u(0) = − 1

μ0He

∫ 0

d

b(x)dx = Φ

μ0Hew
. (5.16)

Assume that the initial state is the critical state with FL = −μ0JcHe, as is satisfied
in many experiments. Then, the pinning force density on flux lines at the surface is
given by

−F = FL = −He

(
∂b

∂u
· ∂u

∂x

)
x=0

− μ0JcHe. (5.17)

From (5.14) and the relationship (∂b/∂u)x=0 = [∂b(0)/∂Φ] · [∂Φ/∂u(0)] =
μ0He/λ

′, the above equation reduces to

−F = 2μ0Heh0

λ′ − μ0JcHe. (5.18)

This quantity is also obtained from the observed result of λ′.
Thus, −F and u(0) are obtained from λ′ and Φ at each h0, respectively. The

force-displacement profile can be derived directly by plotting these results. Fig-
ure 5.8 shows the force-displacement profile for a Nb-Ta specimen [3], the mag-
netic flux distribution (the λ′ vs. h0 characteristics) of which was shown in Fig. 5.6.
While the pinning force density varies linearly with the displacement of flux lines
for a small displacement, it reaches a constant value asymptotically in the opposite
critical state when the displacement becomes large. The Jc obtained from the satu-
rated pinning force density is naturally equal to Jc obtained from the magnetic flux
distribution.
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Fig. 5.8 Pinning force
density vs. displacement of
flux lines [3], corresponding
to the λ′ vs. h0 characteristics
in Fig. 5.6

Fig. 5.9 Pinning force
density vs. displacement of
flux lines [6], corresponding
to the λ′ vs. h0 characteristics
in Fig. 5.7. A large peak of
the pinning force density
appears due to the strong
surface pinning. Jcs is the
critical current density in the
surface region

What will be the results of the same analysis in the case of significant surface
irreversibility? Figure 5.9 is the force-displacement profile [6] corresponding to the
magnetic flux distribution shown in Fig. 5.7, where the pinning force density ini-
tially increases with displacement, reaching a large peak, and then deceases gradu-
ally with increasing displacement. The peak of the pinning force density originates
from the strong surface pinning, and the critical current density in the surface re-
gion can be estimated from the peak value. That is, if the peak value of the pinning
force density measured from the initial state is denoted by Fm, the surface critical
current density is given by Jcs � Fm/2μ0He. The surface critical current density
shown in Fig. 3.26 was obtained by this method. When the displacement becomes
sufficiently large as in Fig. 5.9, the pinning force density asymptotically approaches
the bulk value.

Within the region of small displacement where the pinning force density varies
linearly with the displacement, the motion of flux lines is limited inside the pin-
ning potentials, and the phenomenon is almost reversible, as mentioned in Sect. 3.7.
This linear relationship is represented by (3.88), and the coefficient αL, called the
Labusch parameter, means the second spatial derivative of the averaged effective
pinning potential. Hence, the pinning potential energy of flux lines in a unit volume
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Fig. 5.10 Manner of
application of magnetic field
when measuring the critical
current density in a
longitudinal magnetic field
using the modified
Campbell’s method. Magnetic
flux moving into and out of
the specimen due to the AC
magnetic field is measured

is given by

Û0 = αLd2
i

2
. (5.19)

Equation (3.95) holds for αL, Jc and di, the interaction distance. Such information
on the pinning potential can be obtained by using Campbell’s methods. Thus, this
method is useful for investigating electromagnetic phenomena. For example, since
the pinning potential energy U0 discussed in Sect. 3.8 is equal to Û0 multiplied by
the flux bundle volume, this volume can be estimated from Û0 and U0 obtained by
an AC inductive method and by a measurement of irreversibility field, respectively.
In other areas, the flux pinning mechanism is usually investigated by measuring the
dependencies of the pinning force density on magnetic field and temperature (tem-
perature scaling law), and on pinning parameters such as the elementary pinning
force and the number density of defects (summation problem). Even in this case a
more precise investigation is possible by measuring the dependencies of αL or di on
these pinning parameters (see Sects. 7.5 and 8.2).

An evaluation of the critical current density in a longitudinal magnetic field, Jc‖,
is also possible [9] by measuring the response of a superconducting slab to a trans-
verse AC field superimposed on the longitudinal DC field as shown in Fig. 5.10. In
this case the shielding current induced by the AC field is perpendicular to the AC
field, and hence, parallel to the DC field. Figure 4.26 is an example of the distribu-
tion of the transverse magnetic flux obtained by this method.

An outline of the AC inductive methods such as Campbell’s method was briefly
given above. However, note that these methods are not always effective. For exam-
ple, the method based on the irreversible critical state model does not allow cor-
rect results to be derived for superconducting specimens of a size comparable to or
smaller than Campbell’s AC penetration depth λ′

0 in which the reversible flux mo-
tion is pronounced (see Sect. 3.7). Consider the reason (Exercise 5.3). However, if
the imaginary part of the complex susceptibility is measured over a wide range of
AC field amplitude, the critical current density can be approximately estimated, as
will be shown in the next section. On the other hand, one of the simple methods
used to estimate the critical current density in such small specimens is a calculation
from the hysteresis of a major DC magnetization curve.
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5.4 Other AC Inductive Methods

5.4.1 Third Harmonic Analysis

The critical current density of a superconducting specimen can also be estimated
by measuring the third harmonic voltage induced by an AC magnetic field [10].
For example, it is assumed that a DC field He and an AC field h0 cosωt are applied
parallel to a wide superconducting slab of thickness 2d (0 ≤ x ≤ 2d). If the magnetic
flux density averaged within the superconducting slab is expressed as

〈B〉 = h0

∞∑
n=0

μn cos(nωt + θn). (5.20)

μn (n ≥ 2) represents the harmonic components of the AC permeability. These com-
ponents (n ≥ 1) are given by

μn = (
μ′2

n + μ′′2
n

)1/2
, (5.21)

μ′
n = 1

πh0

∫ π

−π

〈B〉 cosnωtdωt, (5.22)

μ′′
n = 1

πh0

∫ π

−π

〈B〉 sinnωtdωt, (5.23)

where μ′
n and μ′′

n are the real and imaginary parts of the harmonic AC permeability,
respectively, and there is a relationship between them:

θn = tan−1
(

μ′′
n

μ′
n

)
. (5.24)

In the following μ3 will be calculated assuming the Bean-London model. When
h0 < Hp = Jcd , the magnetic flux distribution varies as shown in Fig. 5.11(a) and (b)
with phases of −π ≤ ωt < 0 and 0 ≤ ωt < π , respectively, and the spatial average
of the magnetic flux density is

〈B〉 = const. + μ0h
2
0

4Jcd
(1 + cosωt)2; −π ≤ ωt < 0,

= const. + μ0h
2
0

4Jcd

[
4 − (1 − cosωt)2]; 0 ≤ ωt < π, (5.25)

where const. = μ0(He − h0) + μ0Jcd/2. Substituting this into (5.22) and (5.23), a
simple calculation gives μ′

3 = 0 and

μ3 = −μ′′
3 = 2μ0h0

15πJcd
. (5.26)

Hence, Jc can be estimated from the measurement of μ3. However, note that the
above result is correct only when h0 is smaller than the penetration field Hp = Jcd .
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Fig. 5.11 Magnetic flux distribution in a superconducting slab of thickness 2d in a parallel AC
magnetic field during processes of (a) increasing and (b) decreasing field. The Bean-London model
is assumed

When h0 is larger than Hp, the expression of μ3 is complicated (see Exercise 5.4).
In addition, correct results can be obtained only when the critical state model holds.
Equation (5.26) does not hold when the effect of reversible flux motion dominates.

A method to estimate the critical current density of a superconducting thin film
involves measuring an induced third harmonic voltage in a coil placed near the film
surface which applies an AC magnetic field to the film [11]. In this case the coil axis
is perpendicular to the film surface. However, the magnetic field is almost parallel
to the film surface due to the shielding current flowing in the film. For a parallel
AC magnetic field applied to the surface of a wide superconducting thin film, the
third harmonic voltage induced in the coil can be simply calculated using the critical
state model. In some experiments a DC magnetic field is superimposed on the super-
conducting thin film. The DC field only influences the value of the critical current
density, but does not influence the third harmonic voltage, since a simple principle
of superposition holds in electromagnetism.

It is assumed that a wide superconducting thin film occupies 0 ≤ x ≤ d and an
AC magnetic field, h0 cosωt , due to an AC current is applied parallel to the surface
of x = 0. It is also assumed that the film thickness d is so small in comparison
with the coil size that the thickness can be neglected in a calculation of the induced
voltage in the coil.

In the case of h0 < Jcd , the magnetic field at the opposite surface, H(d), is
zero. Hence, the current induced in a unit length of thin film along the direction of
magnetic field is:

I ′(t) = H(0) − H(d) = h0 cosωt. (5.27)

The corresponding voltage induced in the coil is:

V (t) = −K
dI ′(t)

dt
= Kh0ω sinωt, (5.28)



202 5 Measurement Methods for Critical Current Density

where K is a coefficient determined by the coil. The third harmonic voltage is esti-
mated as

V3 = (
f 2

1 + f 2
2

)1/2
, (5.29)

where f1 and f2 are given by

f1 = 1

2π

∫ 2π

0
V (t) cos 3ωtdωt, (5.30)

f2 = 1

2π

∫ 2π

0
V (t) sin 3ωtdωt. (5.31)

In this case

V3 = 0 (5.32)

is easily derived.
In the case of h0 ≥ Jcd , we have

I ′(t) = Jcd − h0(1 − cosωt); 0 ≤ ωt < θ0

= −Jcd; θ0 ≤ ωt < π, (5.33)

where θ0 is given by

θ0 = cos−1
(

1 − 2Jcd

h0

)
. (5.34)

This leads to

V (t) = −Kh0ω sinωt; 0 ≤ ωt < θ0

= 0; θ0 ≤ ωt < π. (5.35)

Similar results are obtained for the latter half period, π ≤ ωt < 2π . After a simple
calculation we have

f1 = 2Kh0ω

∫ θ0

0
sinωt cos 3ωtdωt

= 4Kh0ωhp(1 − hp)
(
1 − 8hp + 8h2

p

)
(5.36)

and

f2 = 2Kh0ω

∫ θ0

0
sinωt sin 3ωtdωt

= 8Kh0ω sin θ0hp(1 − hp)(1 − 2hp) (5.37)

with

hp = Jcd

h0
(5.38)
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and

sin θ0 = 2
(
hp − h2

p

)1/2
. (5.39)

Thus, we obtain

V3 = 4KωJcd

(
1 − Jcd

h0

)
. (5.40)

Hence, if hc is the AC magnetic field amplitude at which the third harmonic voltage
starts to appear, the critical current density of the film is estimated as

Jc = hc

d
. (5.41)

It should be noted, however, that this estimation is not correct, unless the film
thickness is so much thicker than Campbell’s AC penetration depth, given by (3.93),
that the effect of reversible flux motion can be neglected. In practice, λ′

0 is estimated
as 0.8 µm for the case of Jc = 1.0 × 1010 A/m2 at B = 1 T, where (3.95) is used
for αL in (3.93) and the relationship di = 2πaf for point-like defects is assumed.
For ordinary thin films thinner than 1 µm, therefore, the measurement of the third
harmonic voltage may not give a correct estimation of Jc in a DC magnetic field
but may lead to an overestimation due to the effect of reversible flux motion [12],
similarly to other AC measurements. The factor of overestimation is of the order
of λ′

0/d , [12] and is smaller than those involved in Campbell’s method (see Ex-
ercise 5.3) and AC susceptibility measurements. In the absence of a DC magnetic
field, λ′

0 is expected to be significantly smaller than the above estimation, and this
method may be useful for the estimation of Jc even for fairly thin superconductors.

5.4.2 AC Susceptibility Measurement

The critical current density can also be estimated from a measurement of the AC
susceptibility. If the magnetization of a superconducting specimen in an AC mag-
netic field h0 cosωt is expressed as

M(t) = h0

∞∑
n=0

(
χ ′

n cosnωt + χ ′′
n sinnωt

)
, (5.42)

χ ′
n and χ ′′

n (n ≥ 1) are the real and imaginary parts of the n-th AC susceptibility. In
terms of M(t), these parts are given by

χ ′
n = 1

πh0

∫ π

−π

M cosnωtdωt, (5.43)

χ ′′
n = 1

πh0

∫ π

−π

M sinnωtdωt. (5.44)
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These quantities are related to the AC permeabilities given by (5.22) and (5.23) as

χ ′
1 = μ′

1

μ0
− 1, χ ′

n = μ′
n

μ0
(n ≥ 2) (5.45)

with

χ ′′
n = μ′′

n

μ0
(n ≥ 1). (5.46)

These relationships are easily derived from M = 〈B〉/μ0 − (He + h0 cosωt). Here,
assume again a wide superconducting slab of thickness 2d , in which the Bean-
London model holds. Then, χ ′

1 and χ ′′
1 can be calculated easily:

χ ′
1 = −1 + h0

2Hp
; h0 ≤ Hp, (5.47a)

= − 1

π

(
1 − h0

2Hp

)
cos−1

(
1 − 2Hp

h0

)

− 1

π

[
1 − 4Hp

3h0
+ 4

3

(
Hp

h0

)2](
h0

Hp
− 1

)1/2

; h0 > Hp, (5.47b)

χ ′′
1 = 2h0

3πHp
; h0 ≤ Hp, (5.48a)

= 2Hp

πh0

(
1 − 2Hp

3h0

)
; h0 > Hp. (5.48b)

The dependencies of χ ′
1 and χ ′′

1 on the AC field amplitude are shown in Fig. 5.12(a)
and (b), respectively. χ ′

1 changes from −1 with increasing h0, takes on a value
−1/2 at h0 = Hp, and then approaches 0 asymptotically. On the other hand, χ ′′

1
takes on a maximum value 3/4π at h0 = (4/3)Hp ≡ hm. Hence, if hm is obtained
from measurements, the critical current density can be estimated as

Jc = 3hm

4d
. (5.49)

In most experiments, χ ′′
1 is measured under a variation of temperature with a con-

stant amplitude h0. Even in this case, the critical current density is estimated from
Jc = 3h0/4d at the temperature at which χ ′′

1 takes on a peak value. More exactly
speaking, however, the quantity obtained is nothing else besides the temperature at
which Jc takes on some given value, since h0 and d are given in such experiments.
A common purpose is to know Jc under the desired condition of temperature and
magnetic field. In the latter case it is required to measure χ ′′

1 as a function of h0 at
the given temperature and magnetic field, as shown in (5.48a) and (5.48b).

χ ′′
1 is equal to μ′′

1/μ0 and is directly related to the energy loss density as shown in
(3.102). When the size of the superconducting specimen is comparable to or smaller
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Fig. 5.12 Prediction of the
Bean-London model on the
AC susceptibility of a
superconducting slab in a
parallel AC magnetic field:
(a) real part and (b)
imaginary part

than Campbell’s AC penetration depth λ′
0, the critical state model does not hold due

to the reversible flux motion, as discussed in Sect. 3.7. In this case the Campbell
model [8] is useful for analyzing the magnetic flux distribution, and the distribution
can be derived by solving (3.97) numerically. Then, the magnetization M is obtained
from the distribution, and χ ′

1 and χ ′′
1 are derived from (5.43) and (5.44). The results

obtained in this manner [13] are shown in Figs. 5.13 and 5.14. Figure 5.13 shows the
results for d/λ′

0 = 10, which corresponds to the case where the critical state model
describes the magnetic behavior correctly. In fact, this result can be approximately
explained by the critical state model.

By contrast, Fig. 5.14 shows the case of d/λ′
0 = 0.3 where the effect of reversible

flux motion is expected to be pronounced. In fact, χ ′
1 deviates significantly from the

predicted value of −1 of the critical state model in the region of small amplitude,
showing an extremely small shielding effect. The maximum value of χ ′′

1 is also
much smaller than predicted by the critical state model with a considerable shift of
the position of the maximum to a higher AC field amplitude. Thus, the value of the
critical current density obtained by substitution of the observed hm into (5.49) is
considerably overestimated. In Fig. 5.14, for example, the critical current density is
overestimated by a factor of about 30. Hence, it is required to judge correctly if the
analysis using (5.49) is suitable for a superconductor of a relatively small size. For
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Fig. 5.13 (a) Real and (b)
imaginary parts of the AC
susceptibility of a
superconducting slab for
d/λ′

0 = 10. The solid lines
show the results of the
numerical analysis of (3.97)
based on the Campbell
model, and the chained lines
show the results of the
Bean-London model. The
broken lines represent the
approximate formulae given
by (5.54) and (5.55). All give
similar results

this purpose, it is useful to compare the maximum value of χ ′′
1 , denoted by χ ′′

m, with
the theoretically predicted value 3/4π . That is, if χ ′′

m is comparable to the predicted
value, (5.49) is applicable, and if χ ′′

m is much smaller than the predicted value, the
use of (5.49) may lead to a serious overestimation. There have been many reports
on high-temperature superconductors indicating that χ ′′

m becomes smaller as the
temperature is raised to the critical temperature. This is believed to originate from
the reversible flux motion. Note that Campbell’s AC penetration depth λ′

0 takes on a
larger value for a superconductor with a weaker pinning force. In high-temperature
superconductors the pinning force is originally weak and becomes even weaker at
a higher temperature, resulting in very large λ′

0. Hence, this reversible behavior can
occur even in relatively large specimens.

To analyze the behavior under a reversible flux motion, it is required to solve nu-
merically (3.97), which is a nonlinear differential equation. However, this is not sim-
ple. Hence, approximate formulae for AC susceptibilities are proposed here, since
the dependencies of these formulae on the AC field amplitude are rather simple, as
shown in Figs. 5.13 and 5.14. One of the conditions to be satisfied is that the result
should approach the prediction of the critical state model, (5.47a), (5.47b), (5.48a)
and (5.48b), in the irreversible limit. Characteristic points for χ ′

1 are: χ ′
1 → −1 for

h0 � Hp, χ ′
1 = −1/2 at h0 = Hp and χ1 → 0 for h0 � Hp. Characteristic points for
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Fig. 5.14 (a) Real and (b)
imaginary parts of the AC
susceptibility of a
superconducting slab for
d/λ′

0 = 0.3. The solid,
chained and broken lines
show the results of the
numerical analysis of (3.97),
the results of the critical state
model and the approximate
formulae, respectively. The
results of the critical state
model deviate greatly from
the other two

χ ′′
1 are that it approaches (5.48a) for h0 � Hp and χ ′′

1 → 2Hp/πh0 for h0 � Hp.
Candidates which satisfy the above requirements are

χ ′
1 = − Hp

Hp + h0
, (5.50)

χ ′′
1 = 2

π
· Hph0

3H 2
p + h2

0

. (5.51)

hm = √
3Hp and χ ′′

m = 1/
√

3π � 0.184 are obtained from (5.51), while hm =
(4/3)Hp and χ ′′

m = 3/4π � 0.239 are obtained from (5.48b) based on the critical
state model. Thus, these results are not very different from each other.

In the limit of reversible flux motion, where d is sufficiently smaller than λ′
0 and

h0 is sufficiently small, a simple calculation shows that χ ′
1 approaches asymptoti-

cally

χl
1 = −1 + λ′

0

d
tanh

(
d

λ′
0

)
� −1

3

(
d

λ′
0

)2

. (5.52)
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On the other hand, χ ′′
1 approaches

χ ′′
1 = h0

6πHp

(
d

λ′
0

)4

. (5.53)

In the above equations (3.102), (3.110) and (5.46) were used with replacement of
df by 2d . When h0 is sufficiently larger than Hp given by (3.111), the behavior
becomes irreversible even if d is smaller than λ′

0, and χ ′
1 and χ ′′

1 approach 0 and
2Hp/πh0, respectively.

Here approximate formulae are proposed [13]:

χ ′
1 = − Hp

[1 + 3(λ′
0/d)2]Hp + h0

, (5.54)

χ ′′
1 = 2

π
· Hph0

3[1 + 2(λ′
0/d)2]2H 2

p + h2
0

. (5.55)

These satisfy the above requirements. Figures 5.13 and 5.14 show a comparison
between these formulae and the results of numerical calculation. It is found that a
fairly good agreement is obtained in both limits of d � λ′

0 and d � λ′
0. The im-

portant results of these formulae are as follows: firstly, χ ′
1 does not reach −1 even

at very low temperature, when the sample size is smaller than λ′
0. Hence, it is not

correct to evaluate a superconducting volume fraction from this value of χ ′
1. This is

similar to the incorrect estimation of the superconducting volume fraction from DC
susceptibility, as described in Sect. 3.6. Secondly, it is found from (5.55) that the
AC field amplitude at which χ ′′

1 peaks is

hm = √
3

[
1 + 2

(
λ′

0

d

)2]
Hp (5.56)

and the peak value is

χ ′′
m = 1√

3π [1 + 2(λ′
0/d)2] . (5.57)

Hence, Jc cannot be estimated only from hm. This is because the value of λ′
0 is

unknown. However, (5.56) and (5.57) allow us to derive

hmχ ′′
m = Hp

π
= Jcd

π
. (5.58)

Thus, the unknown quantity λ′
0 is eliminated and Jc can be obtained from the value

of the product. From this Jc value λ′
0 can be determined. The value of λ′

0 can also
be obtained by comparing the slope of the observed minor curve of the DC magne-
tization with (3.112) in which df is replaced by 2d .

When the size of the superconducting sample is much larger than λ′
0, the critical

state model holds. Even in this case (5.58) from which Jc can be determined still
holds. However, the further analysis to estimate λ′

0 may contain a large error.
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5.5 Exercises

5.1 Assume that an AC magnetic field of amplitude h0 is applied parallel to a su-
perconducting slab 2d in thickness and w in width (w � 2d). When the Bean-
London model holds in the superconducting slab, show that the penetration
depth of the AC field is given by λ′ = h0/Jc, and that the h0 vs. λ′ curve repre-
sents the magnetic flux distribution for h0 < Hp = Jcd , using the analysis based
on Campbell’s method. Show also that λ′ = d for h0 > Hp.

5.2 Estimate the error of the critical current density derived from the modified
Campbell’s method, when the amplitude Φ of the AC magnetic flux moving
into and out of the superconducting specimen is replaced by the amplitude of
the component of fundamental frequency Φ ′. Assume that the Bean-London
model holds for the magnetic flux distribution.

5.3 Calculate the apparent value of the penetration depth λ′ of an AC magnetic
field for a superconducting specimen of a size smaller than Campbell’s AC
penetration depth λ′

0, and discuss the reason why the critical current density
cannot be estimated correctly using the analysis based on Campbell’s method.

5.4 Calculate μ3 when the amplitude of the AC magnetic field h0 is larger than the
penetration field Hp = Jcd .

5.5 Derive (5.47a), (5.47b), (5.48a) and (5.48b).
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