
Chapter 3
Various Electromagnetic Phenomena

3.1 Geometrical Effect

In the last chapter the magnetization and AC loss in a wide superconducting slab
were calculated. In this section we discuss the electromagnetic phenomena in a su-
perconductor with other geometries. The cases are treated where the current, the
transverse AC field or the transverse rotating field is applied to a cylindrical super-
conductor.

3.1.1 Loss in Superconducting Wire due to AC Current

We assume that AC current is applied to a straight superconducting cylinder of ra-
dius R without external magnetic field. In this case only the self field in the az-
imuthal direction exists. If the magnitude of the AC current is denoted by I (t), the
value of the self field at the surface, r = R, is given by

HI = I

2πR
. (3.1)

The penetration of the azimuthal flux lines due to the self field is also described by
the critical state model as in Sect. 2.5. We assume again the Irie-Yamafuji model [1]
given by (2.46) for the magnetic field dependence of the pinning force density. The
azimuthal magnetic flux density and its magnitude are represented by B and ̂B ,
respectively. The force balance equation in the quasistatic process is described as

− ̂B

μ0r
· d

dr
(r̂B) = δαĉB

γ , (3.2)

where δ is a sign factor indicating the direction of the flux motion, e.g. δ = 1 indi-
cates that flux lines move in the radial direction. Equation (3.2) can be easily solved
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Fig. 3.1 Distribution of
azimuthal magnetic flux in a
superconducting cylinder
while the self field due to the
AC current changes from Hm
to −Hm. (a) and (b)
correspond to cases where the
current flows in the positive
and negative z-axis
directions, respectively

yielding for the magnetic flux distribution:

δ(r̂B)2−γ = δR(Rμ0 ̂HI)
2−γ + 2 − γ

3 − γ
αcμ0

(

R3−γ − r3−γ
)

, (3.3)

where ̂HI = |HI|, and δR is the value of δ at the surface (r = R), and the boundary
condition

B(r = R) = μ0HI (3.4)

was used.
The energy loss can be calculated from (2.74) as was done previously. But we

calculate it more easily in terms of Poynting’s vector. Since the induced electric
field E and the magnetic flux density B are expressed as (0,0,E) and (0,B,0)

from symmetry, Poynting’s vector, (E × B)/μ0, at the surface is directed negative
radially, and hence, towards the inside of the superconductor. Then, the energy loss
density per cycle of the AC current is written as

W = 2

Rμ0

∫

dtE(R, t)B(R, t)

= 2

Rμ0

∫

dtB(R, t)

∫ R

0

∂

∂t
B(r, t)dr, (3.5)

where the integral with respect to time is carried out for the period of one cycle.
From symmetry we have only to double the contribution from the period in which
the current varies from the maximum value, Im, to −Im. If the maximum self field
is denoted by Hm = Im/2πR, this half cycle is divided into the periods (i) and (ii)
in which HI changes from Hm to 0 and from 0 to −Hm as shown in Fig. 3.1(a)
and 3.1(b), respectively. In period (i), B > 0 and δ = 1(δR = 1) in the entire area,
rb1 ≤ r ≤ R, in which the magnetic flux distribution changes. On the other hand, in
period (ii), we have δR = −1 and B > 0 and δ = 1 for rb2 ≤ r ≤ r0, while B < 0
and δ = −1 for r0 < r ≤ R. From (3.3) the critical current is given by
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Ic = 2π

(

2 − γ

3 − γ
αcμ

γ−1
0 R3−γ

)1/(2−γ )

. (3.6)

If the corresponding self field is denoted by

HIp = Ic

2πR
, (3.7)

rb1, rb2 and r0 are respectively given by

1 −
(

rb1

R

)3−γ

= 1

2H
2−γ
Ip

(

H
2−γ
m − ̂H

2−γ
I

)

, (3.8a)

1 −
(

rb2

R

)3−γ

= 1

2H
2−γ
Ip

(

H
2−γ
m + ̂H

2−γ
I

)

, (3.8b)

1 −
(

r0

R

)3−γ

=
(

̂HI

HIp

)2−γ

. (3.8c)

Since the variation in the magnetic flux distribution with respect to time comes only
from the variation in HI, (3.5) reduces to

W = 4μ0H
2
Ip

∫ hm

0
dhIh

2−γ
I

[

−
∫ 1

x1

dx

x

(

1 + h
2−γ
I − x3−γ

)(γ−1)/(2−γ )

+
∫ x0

x2

dx

x

(

1 − h
2−γ
I − x3−γ

)(γ−1)/(2−γ )

+
∫ 1

x0

dx

x

(

x3−γ − 1 + h
2−γ
I

)(γ−1)/(2−γ )
]

, (3.9)

where

hm = Hm

HIp
, hI = ̂HI

HIp
, (3.10)

x0 = r0

R
, x1 = rb1

R
, x2 = rb2

R
. (3.11)

An analytic calculation can be carried out only for γ = 1, yielding [2]

W = 4μ0H
2
Ip

[

hm

(

1 − hm

2

)

+ (1 − hm) log(1 − hm)

]

. (3.12)

This value reduces to W � 4μ0H
3
m/αcR for hm � 1 and amounts to double that

value for the superconducting slab, i.e., the value given by (2.80) with γ = 1, where
d is approximately replaced by R. This comes from the fact that the surface region
where the energy dissipation occurs is relatively wider for the case of superconduct-
ing cylinder. The energy loss density is expressed as [3]
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Fig. 3.2 Function g(hm, γ )

W = 4

3
(2 − γ )μ0g(hm, γ )

H
4−γ
m

H
2−γ
Ip

(3.13)

analogously to (2.80), where g is given by a double integral and is a function of hm

and γ as shown in Fig. 3.2. When γ is a rational number, g can be expressed in the
form of a single integral.

3.1.2 Loss in Superconducting Wire of Ellipsoidal Cross Section
and Thin Strip due to AC Current

Norris [4] calculated the loss in a superconducting wire with an ellipsoidal cross
section and a thin superconducting strip due to AC current using the Bean-London
model (γ = 1) [5, 6]. According to the calculated result, the loss in the ellipsoidal
wire of the cross sectional area S is essentially the same as that in a cylindrical wire
given by (3.12). In terms of the current, it leads to

W = μ0I
2
c

πS

[

im

(

1 − im

2

)

+ (1 − im) log(1 − im)

]

(3.14)
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Fig. 3.3 Calculated AC
current loss in
superconducting ellipsoidal
wire and thin strip [4] for the
case of γ = 1. The broken
line shows the loss in a
superconducting slab

with the normalized current amplitude:

im = Im

Ic
. (3.15)

In the case of a thin superconducting strip of the cross sectional area S, the loss is
given by

W = μ0I
2
c

πS

[

(1 − im) log(1 − im) + (1 + im) log(1 + im) − i2
m

]

. (3.16)

The AC losses in the superconducting ellipsoidal wire and the thin strip are
shown in Fig. 3.3. The loss in the ellipsoidal wire approaches that of the equiv-
alent slab at small current amplitudes, while the current amplitude dependence is
significantly different for the thin strip with a small loss at small current amplitudes.

3.1.3 Transverse Magnetic Field

We have treated the cases where the physical quantities depend only on one coordi-
nate axis without being influenced by the geometrical factor such as a demagnetiza-
tion factor of superconductor. In this subsection we treat the case where a transverse
magnetic field is applied to a cylindrical superconductor. Because of the break in
symmetry the physical quantities depend on two coordinate axes and we have to
solve a two-dimensional problem.

A very small transverse magnetic field is supposed to be applied to a cylindrical
superconductor. The initial state is assumed and the diamagnetism at the surface
is disregarded for simplicity. The inner part of the superconductor is completely
shielded and the magnetic flux density there is zero. The shielding current flows only
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Fig. 3.4 Surface layer of
shielding current in a
superconducting cylinder in a
small transverse magnetic
field

in the vicinity of the surface. If the thickness of the region in which the shielding
current flows is sufficiently small, an approximate solution can be obtained. We
define the cylindrical coordinates as shown in Fig. 3.4, where He is the uniform
external magnetic field and R is the radius of the superconductor. After applying a
method well known in electromagnetism we obtain the solution:

Br = μ0He

(

1 − R2

r2

)

cos θ

Bθ = −μ0He

(

1 + R2

r2

)

sin θ

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

; r > R (3.17)

and

Br = Bθ = 0; 0 < r < R. (3.18)

The azimuthal magnetic flux density Bθ is not continuous at r = R and the current
corresponding to the difference flows along the z-axis on the surface of the super-
conductor. If we represent this surface current density by J̃ (A m−1), we have

J̃ (θ) = −2He sin θ. (3.19)

In practice the critical current density originating from flux pinning is finite and the
thickness of the shielding-current region is also finite. If we use the Bean-London
model [5, 6] in which the critical current density is independent of the magnetic
field, the thickness is (2He/Jc)|sin θ |.

When the magnetic field becomes much larger, the shielding-current region be-
comes wider and the completely shielded region becomes narrower as shown in
Fig. 3.5. According to the critical state concept the distribution of the shielding
current shown in Fig. 3.5(a) is determined so as to minimize the variation in the
magnetic flux distribution inside the superconductor, i.e., to minimize the invasion
of the magnetic flux. However, the analytic exact solution has not yet been obtained
even for the simple Bean-London model. The detailed discussion on the magnetic
flux distribution is given in [7–9]. Now the approximate schemes are used in which
the region of shielding current is assumed to be of simple shape and determined
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Fig. 3.5 (a) Magnetic
structure and (b) shielding
current distribution in a
superconducting cylinder in
large AC transverse magnetic
field. Circular current layer
shown by the broken line is
sometimes assumed simply.
M denotes the magnetization
due to the shielding current

by the condition that B = 0 is satisfied at some special points within the shielded
region. In the simplest case a shielding-current region of a circular shape is as-
sumed as shown by the broken line in Fig. 3.5(b) and its radius is determined by
the condition that B = 0 at the center of the cylindrical superconductor. Even such a
simplified approximation [10] with the Bean-London model leads to magnetization
and loss due to the transverse AC magnetic field which are rather close to the results
[9] of numerical analysis. In [11] the magnetization and the loss are analyzed using
the Irie-Yamafuji model [1] for the magnetic field dependence of the pinning force
density, and the magnetic flux distribution is determined on the assumption that the
magnitude of the shielding current density is a function only of the distance from
the center of the cylinder. These calculated results are compared with experimental
results in detail. According to the calculated result the AC loss in the range of small
field amplitude is four times as large as (2.80) for a superconducting slab in a paral-
lel field. This is caused by the fact that the amount of shielding current is enhanced
due to the effect of demagnetization. That is, from an approximate estimate as in
(2.82) the enhancement factor is calculated as the average of (2 sin θ)3 in the angu-
lar region 0 ≤ θ ≤ π , which is equal to 32/3π � 3.4. This is close to the analytical
result, 4.

When the transverse AC magnetic field becomes larger than the penetration field
given by

Hp⊥ = 1

μ 0

[

2

π
(2 − γ )μ0αcR

]1/(2−γ )

, (3.20)

the shielding current extends to the entire region of the cylinder and currents of the
opposite directions flow in the upper and lower halves. In this case the exact solution
has not yet been obtained except for γ = 1 where the magnetic flux distribution is
uniquely determined. In case γ �= 1 an approximate solution is obtained assuming
that the magnitude of the shielding current depends only on the distance from the
center of cylinder. The error in the hysteresis loss obtained from this result in com-
parison with the numerically calculated loss is within 10 % [11] even in the vicinity
of the penetration field where the error is largest. The losses obtained for various γ

values are shown in Fig. 3.6.
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Fig. 3.6 Energy loss density
in a superconducting cylinder
due to AC transverse
magnetic field [11]

3.1.4 Rotating Magnetic Field

We shall next consider the case where a transverse magnetic field is applied to
a cylindrical superconductor and then rotated. Provided that the rotating angle is
small, the rotation is almost identical to a superposition of a small magnetic field in
the direction normal to the initial field. Hence, a new shielding current is induced
by the superposed field. The net current distribution is obtained by superposition
of the newly induced distribution upon the initial one. When the rotating angle be-
comes much larger, the current distribution must be obtained in a different way.
Extrapolating from the distribution under the small rotating angle, the current dis-
tribution inside the superconductor in the steady state is deduced to be that shown
in Fig. 3.7. Although this distribution is to be determined under the condition that
B = 0 is satisfied throughout the entire shielded region, it cannot be generally deter-
mined correctly. In case γ = 1 where the magnitude of shielding current density is
constant, a solution which satisfies B = 0 approximately in the shielded region can
be obtained [12] only when the magnetic field is so small that the thickness of the
shielding current layer is small. In case γ �= 1 an approximate solution is obtained
[12] from the requirement that B = 0 at the center of cylinder with the assump-
tion that the shielding current density depends only on the distance from the center.
From the shielding current distribution the magnetic flux distribution is obtained.
The induced electric field E can be calculated from the variation in the magnetic
flux distribution and the loss is estimated from J · E. The energy loss density [12]
so obtained is 8/π times as large as the loss due to the transverse AC magnetic field
with the same amplitude discussed in Sect. 3.1.3, and hence, 32/π times as large as
the value given by (2.80).

On the other hand, the current distribution in the steady state is shown in Fig. 3.8
where the magnetic flux penetrates up to the center in a transverse field greater than



3.1 Geometrical Effect 85

Fig. 3.7 Steady distribution
of shielding current in a
superconducting cylinder in a
small rotating transverse
magnetic field

Fig. 3.8 Steady distribution
of shielding current in a
superconducting cylinder in a
rotating transverse magnetic
field of magnitude larger than
the penetration field

the penetration field Hp⊥. In this case there is no region where the magnetic flux is
completely shielded and the current distribution is determined using the condition
that the electric field E is zero on the boundary of the two regions where the current
flows are opposite to each other. This condition is based on the irreversibility in the
critical state model which requires that the current and the electric field are in the
same direction, i.e., J · E > 0. The current distribution and the loss are calculated
using the above-mentioned assumption that the current density depends only on the
distance from the center [12].

In the intermediate region where the magnetic field is comparable to the pen-
etration field, the approximate expression of the energy loss density is derived by
interpolating the result in each region [12]. Agreement between this expression and
the numerically calculated result [9] is obtained for case γ = 1.

3.1.5 AC Loss in a Thin Superconducting Strip in Normal
Magnetic Field

The AC energy loss in a thin superconducting strip in a normal AC magnetic field
was theoretically calculated by Brandt et al. [13]. They assumed that the super-
conducting strip is so thin that the current distribution within the thickness can be
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Fig. 3.9 AC energy loss
density in a unit length of
superconducting strip vs.
normal AC magnetic field
amplitude [13]

disregarded. The critical current density was assumed to be independent of the mag-
netic field. It is assumed that the shielding current with the critical current density
penetrates from the edges of the superconductor as the magnetic field increases, sim-
ilarly to the prediction of the critical state model. It is also assumed that the current
flows with a smaller density, even in the interior region, to shield it from the normal
magnetic field, which is different from the prediction of the critical state model for
a bulk superconductor. It should be noted that there is no distinction between the
surface and the interior region, since the thin limit is assumed.

Although the details of the theoretical calculation are omitted, the AC energy loss
density in a unit length of the strip in one period of the normal AC magnetic field of
amplitude Hm is given by

̂W = μ0I
2
c

π

(

2 log cosh
Hm

Hb
− Hm

Hb
tanh

Hm

Hb

)

, (3.21)

where Hb = Ic/(2πa) is the characteristic field, with 2a and Ic denoting the strip
width and critical current, respectively. Thus, we have ̂W � 2πμ0a

2H 4
m/(3H 2

b ) for
Hm � Hb and ̂W � 4πμ0a

2HbHm for Hm � Hb. Hence, the AC energy loss den-
sity for small AC field amplitudes is close to the value when an AC current is ap-
plied, and that for large AC field amplitudes is close to the value when a parallel
magnetic field is applied. The AC field amplitude dependence of the AC energy loss
density in a unit length of the strip is shown in Fig. 3.9.

3.2 Dynamic Phenomena

We have treated only the quasistatic process in which the variation in the magnetic
flux distribution is very slow. This process is not the one used in thermodynamics
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but the one in which the variation in the inner magnetic flux distribution with time
depends only on the time variation of the external sources such as the magnetic field.
In this case the viscous force can be neglected and the magnetic flux distribution is
determined from the balance between the Lorentz force and the pinning force. In
this section we shall discuss the case where the external variable varies so quickly
that the viscous force cannot be neglected.

For simplicity the one-dimensional problem is again treated where the external
magnetic field is applied along the z-axis of a semi-infinite superconductor occupy-
ing x ≥ 0. Since the force balance equation obtained by substitution of (2.46) into
(2.13) is nonlinear, an analytic solution is not easily obtained [1]. We suppose that a
small varying field is superposed on a large external magnetic field, He. The internal
magnetic flux density is expressed as

B(x, t) = μ0He + b(x, t) (3.22)

In the above b(x, t) is considered to be much smaller than μ0He. If we assume that
He is positive, B is also positive. The continuity equation for flux lines (2.15) is
approximately rewritten as

∂b

∂t
= −μ0He

∂v

∂x
. (3.23)

The force balance equation (2.13) approximately reduces to

He
∂b

∂t
+ δFp(μ0He) + η

μ0He

φ0
v = 0, (3.24)

where v = δv̂ is used. Derivation of this equation with respect to x and elimination
of v lead to a diffusion equation for b. The breaking point, xb, is used as one of
the boundary conditions to determine the magnetic flux distribution. However, this
equation cannot be easily solved, since this boundary inside the superconductor
varies with time.

In this section we treat the case where the viscous force is sufficiently small
that the magnetic flux distribution can be approximately obtained by an iterative
calculation from a quasistatic one. For example we assume that a slowly varying
sinusoidal AC magnetic field of amplitude h0 and frequency ω/2π is superposed
on the DC field He. The condition required for the frequency will be discussed later.
The boundary condition at the surface is given by

b(0, t) = μ0h0 cosωt. (3.25)

When the viscous force can be neglected, the magnetic flux distribution is obtained
from (3.24) as

b(x, t) = μ0(h0 cosωt − δJcx)

≡ b0(x, t); 0 < x < xb0, (3.26)
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where Fp(μ0He) = μ0HeJc with Jc denoting the constant critical current density,
δ = − sign(sinωt) and

xb0 = h0

2Jc
(1 + δ cosωt). (3.27)

From (3.23) and (3.26) we have

v = − 1

μ0He

∫ x

xb0

∂b0

∂t
dx = h0

He
ω sinωt(x − xb0). (3.28)

Substitution of (3.28) into the third term in (3.24) leads to

b(x, t) = b0(x, t) − ημ0h0ω

2φ0He
sinωt

(

x2 − 2xb0x
)

. (3.29)

This solution holds in the region from the surface to the breaking point of the mag-
netic flux distribution xb, which is slightly different from xb0 in (3.27). The new
breaking point is obtained as a crossing point between the distribution given by
(3.29) and the “previous” distribution. Since the distribution given by (3.29) agrees
with the quasistatic distribution at ωt = nπ , with n denoting an integer at which the
sign factor δ changes, the “previous” distribution is the quasistatic one. Hence, after
a simple calculation we have approximately

xb = xb0 − ηh0ω

4φ0HeJc
|sinωt |x2

b0 (3.30)

up to the first order in ω. The second term in (3.30) should be smaller than the first
so that the iterative approximation holds true. Since xb0 becomes as large as h0/Jc,
the condition for the frequency is written as

ω � 4φ0HeJ
2
c

ηh2
0

≡ ω0. (3.31)

The AC component of the magnetic flux density averaged over the superconduc-
tor in the period 0 ≤ ωt ≤ π is to first order in ω given by

〈b〉 = μ0h
2
0

4Jcd

[

sin2 ωt + 2 cosωt + 2ω

3ω0
sinωt(1 − cosωt)3

]

. (3.32)

From symmetry the energy loss density per cycle of the AC field is

W = 2
∫ h0

−h0

〈b〉d(h0 cosωt) = 2μ0h
3
0

3Jcd

(

1 + 7πω

16ω0

)

. (3.33)

The first term is the pinning energy loss density in the quasistatic process; it agrees
with the result of (2.80) after substituting γ = 1. The second term is the viscous
energy loss density. The reason why the pinning energy loss density is not different
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from that in the quasistatic case is that the magnetic flux distributions at ωt = 0 and
π are the same as those in the quasistatic case, i.e., the amount of magnetic flux
which contributes to the pinning loss during one cycle is unchanged. The second
term in (3.33) can also be calculated directly from the second term in (2.73) as the
viscous energy loss density (see Exercise 3.2).

When the frequency of the AC magnetic field becomes higher, it is necessary to
take into account terms to higher order in ω. In this case the “previous” distribution
in the region where xb < x varies with time, and hence, the calculation becomes
extremely complicated. According to the theoretical analysis of Kawashima et al.
[14] the energy loss density in this case is predicted to be

W = 2μ0h
3
0

3Jcd

[

1 + 7πω

16ω0
− 512

105

(

ω

ω0

)2]

. (3.34)

The decrease in the energy loss density at high frequencies is caused by the fact
that the amount of moving flux decreases due to the stronger shielding action of the
viscous force.

3.3 Superposition of AC Magnetic Field

3.3.1 Rectifying Effect

When a small AC magnetic field is applied to a current-carrying superconducting
wire or tape in a transverse DC field, the current-voltage characteristics vary with a
decrease in the critical current density [15, 16] as shown in Fig. 3.10. Sometimes the
critical current density reduces to zero. This is commonly observed independently
of whether the AC field is parallel or normal to the DC field. Here we shall first
argue the case of parallel AC field. The current-voltage characteristics in this case
can also be analyzed in terms of a magnetic flux distribution in the superconductor
as predicted by the critical state model. The magnetic flux distribution is predicted
to vary with the surface field during one cycle of AC field as shown in Fig. 3.11.
The arrows in the figure represent the direction of flux motion. It is seen that the
flux motion is not symmetric. That is, the amount of flux that moves from the left
to the right is larger than that in the opposite direction and a DC component of
electric field appears due to the rectifying effect of flux flow [15]. Strictly speaking,
(2.13) should be used, since a resistive state is being treated. But here, for simplicity
the viscous force is disregarded. When the pinning force is strong as in a commercial
superconductor, this approximation is valid within the practical range of the electric
field.

We assume a superconducting slab of width 2d carrying a transport current of
density Jt smaller than Jc. The Bean-London model (γ = 1 and Jc = const.) is used
for the pinning force density. The net magnetic flux Φ that flows from the left to the
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Fig. 3.10 Current-voltage
characteristics in a
superconducting Pb-Bi foil
with (solid line) and without
(broken line) superposed
small AC magnetic field
perpendicular to both the
normal DC magnetic field
and the current [16]

Fig. 3.11 Explanation of
rectifying effect by the Kaiho
model [15] in case where DC
and AC magnetic fields are
parallel to a superconducting
slab. (a) and (b) show
magnetic flux distributions in
the phases of increasing and
decreasing AC magnetic field,
respectively

Fig. 3.12 Shadowed region
corresponds to the magnetic
flux passing through the
superconducting slab during
one cycle of AC magnetic
field

right during one cycle of the AC field of amplitude h0 corresponds to the area of
hatched region in Fig. 3.12 and can be calculated as

Φ = 4μ0j
[

h0 − Hp(1 − j)
]

d, (3.35)



3.3 Superposition of AC Magnetic Field 91

where Hp = Jcd is the penetration field and j = Jt/Jc. Hence, the average value of
the electric field is given by

E = Φf, (3.36)

where f is the frequency of the AC field. The apparent critical current density J ∗
c is

obtained from the condition E = 0 as

J ∗
c = Jc

(

1 − h0

Hp

)

. (3.37)

Hence, J ∗
c = 0 for h0 > Hp.

Now we shall estimate the energy loss in the resistive state. One part of the dis-
sipated energy is supplied by the DC current source and is given by Wc = JtE/f =
JtΦ per unit volume. The other part is supplied by the AC magnet and its value per
unit volume is given by

Wf =
∫

〈B〉dH(t), (3.38)

where 〈B〉 is the magnetic flux density averaged over the superconducting slab and
H(t) is the instantaneous value of the AC magnetic field. After a simple calculation
we have [17]

Wf = 2μ0Hph0
(

1 − j2) − 4

3
μ0H

2
p

(

1 − 3j2 + 2j3). (3.39)

Thus, the total energy loss density is

W = Wc + Wf = 2μ0Hph0
(

1 + j2) − 4

3
μ0H

2
p

(

1 − j3). (3.40)

This result can also be directly obtained from the method shown in (2.74) (verify
that the two methods derive the same result, Exercise 3.3).

Secondly we shall discuss the case where the AC and DC magnetic fields are
perpendicular to each other. For example, we assume that the wide superconducting
slab parallel to the y-z plane carries a DC transport current along the y-axis in a DC
magnetic field along the x-axis and an AC field along the z-axis. In this case the
assumption that ∂/∂y = ∂/∂z = 0 seems to be allowed. The magnetic flux density
has only the x- and z-components, Bx and Bz. The condition of ∇ · B = 0 leads to
a Bx that is uniform and equal to μ0He with He denoting the DC magnetic field.
Hence, only the component Bz varies along the x-axis and the current density along
the y-axis is given by

J = − 1

μ0
· ∂Bz

∂x
. (3.41)

Hence, the mathematical expression is similar to the case of parallel DC and AC
fields discussed above and hence the same analysis can be repeated. Thus, a similar
rectifying effect and reduction of the apparent critical current density can be ex-
plained. From the viewpoint of the flux motion, since the electric field, E = B × v,
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is along the y-axis and the magnetic flux density B is almost parallel to the x-axis,
the velocity of flux lines is approximately directed along the negative z-axis. That
is, the flux lines flow in the negative z-axis direction with an oscillating motion in
the x-z plane. The details of this flux motion are described in [16]. In this refer-
ence the more general theoretical analysis of the force balance equation including
the viscous force was carried out and an approximate solution expressed in a power
series in frequency was obtained as in the last section. The obtained current-voltage
characteristics were compared with experimental results.

3.3.2 Reversible Magnetization

Even for a superconductor with a hysteretic magnetization due to flux pinning, it
is known [18] that the superposition of small parallel AC and DC magnetic fields
results in a reduction of the hysteresis of the DC magnetization or sometimes even
in reversible magnetization (see Fig. 3.13). Figure 3.14(a) shows the variation of the
magnetic flux distribution in a superconductor during one cycle of the AC field in the
presence of an increasing DC field. For simplicity the diamagnetism is disregarded
and the Bean-London model is assumed for the pinning force density. The magnetic
flux distribution averaged over one cycle is shown in Fig. 3.14(b); it is flatter than
that in the absence of the AC field itself (represented by the broken line). Thus,
the reduction in magnetization hysteresis can be explained. The magnitude of the
hysteresis is predicted to be

�M = �M0

(

1 − h0

Hp

)2

, (3.42)

where �M0 is the hysteretic magnetization in the absence of the AC field. Hence,
when the AC field amplitude h0 exceeds the penetration field Hp, the hysteresis
disappears and the magnetization becomes reversible. This method is useful for in-
vestigation of the diamagnetism in superconductors.

Fig. 3.13 Magnetization of a
superconducting
Pb-1.92at%Tl cylinder [18].
Broken and solid lines
correspond to the cases with
and without the superposition
of small AC magnetic field,
respectively
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Fig. 3.14 (a) Maximum flux density (upper line) and minimum one (lower line) during one period
of AC magnetic field of amplitude h0 in an increasing DC magnetic field He. (b) The solid line
shows averaged magnetic flux density in one period and the broken line corresponds to the case
without the AC magnetic field

3.3.3 Abnormal Transverse Magnetic Field Effect

When the AC magnetic field is superposed normal to the transverse DC field applied
to a superconducting cylinder or tape as shown in Fig. 3.15, the magnetization due
to the transverse DC field decreases gradually. Such a phenomenon is called the “ab-
normal transverse magnetic field effect” [19–21]. An example is shown in Fig. 3.16
where the AC field is applied parallel to a superconducting cylinder: (a) and (c) cor-
respond to the processes of increasing and decreasing DC field, respectively. (b) de-
picts field cooled process wherein the DC field is applied at a temperature higher
than the critical value Tc, and then the temperature is decreased below Tc. The ini-
tial magnetic flux distribution due to the application of the DC field in each case is
shown in the right side of the figure. The magnetization decreases with application
of the AC field and reduces approximately to zero in the steady state.

When the AC field is superposed in a different direction from the DC field as
above-mentioned, it is necessary to obtain the distribution of the shielding current. If
we assume that the current flows so as to shield the penetration of AC field as much
as possible, the current that has shielded the DC field now has to change completely
to shield the AC field, resulting in a complete penetration of the DC field. In this

Fig. 3.15 Application of
transverse magnetic field Ht
and normal small AC
magnetic field h0 to a
superconducting cylinder
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Fig. 3.16 Relaxation of
longitudinal magnetization
[19] due to superposition of
AC magnetic field shown in
Fig. 3.15(a) in the processes
of (a) increasing field, (b)
field cooling and (c)
decreasing field. Right figures
show the initial distributions
of DC magnetic flux in each
process

case the total amount of penetrating flux seems to be very large. Hence, the shielding
current is predicted to flow in such a way that the total amount of penetrating DC and
AC flux is minimum. Then, a part of the current that has shielded only the DC field
changes so as to shield the AC field. In other words, a flowing pattern of the current
changes gradually from one that shields the DC field to one that shields the AC field
during each successive half-cycle of the AC field. Figure 3.17 represents the varying
states of distribution of the shielding current when the AC field is applied normal
to the superconducting cylinder. Therefore, the DC field penetrates gradually one
cycle after another until complete penetration is finally reached. In this final state

Fig. 3.17 Variation of the
distribution of shielding
current in the order from (a)
to (d) due to the superposition
of AC magnetic field shown
in Fig. 3.15(b)



3.4 Flux Jump 95

the current shields only the AC field. The abnormal transverse magnetic field effect
is a kind of relaxation process in which the direction of the magnetic moment due
to the shielding current changes gradually. In the field cooled process shown in
Fig. 3.16(b) the DC field has already penetrated hence the current flows so as to
fully shield the AC field.

3.4 Flux Jump

The magnetization in a superconductor sometimes varies discontinuously during
the sweeping of a magnetic field as shown in Fig. 3.18. This phenomenon is called
the flux jump. An example of the observed magnetic flux distribution inside a flux-
jumping superconductor [22] is shown in Fig. 3.19. It is seen from this observation
that the disappearance of shielding current in the superconductor at the moment of
the flux jump is accompanied by a sudden invasion of the magnetic flux. Such an
instability originates from the irreversible nature of flux pinning. For instance, we
assume that a local flux motion occurs for some reason. This will lead to some en-
ergy dissipation and a slight temperature rise. This temperature rise will reduce the
pinning force that prevents the flux motion and more flux lines than the initial group
will move. This will cause a further energy dissipation and temperature rise. The
phenomenon will continue until such positive feedback destroys the superconduc-
tivity and the flux motion is completely stopped. This is an outline of the mechanism
of flux jumping.

In metallic superconductors the diffusion velocity of the heat is usually much
faster than that of the flux lines. Hence, the isothermal approximation is adequate
for a superconductor. Thus we assume that the temperature T is uniform throughout
the superconductor. The heat produced in the superconductor by the flux motion is
absorbed into a coolant such as liquid helium; the equation of heat flow is

P = C
dT

dt
+ Φh, (3.43)

Fig. 3.18 Discontinuous
variation of the magnetization
due to flux jumping
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Fig. 3.19 Variation of the
magnetic flux distribution in a
Nb-Ti measured by scanning
a Hall probe in a gap between
two pieces of specimen [22]

where P is the power loss density in the superconductor, C is the heat capac-
ity of a unit volume of the superconductor and Φh is the heat flux absorbed by
the coolant. When the temperature of the superconductor is not much higher than
the temperature of the coolant T0, the heat flux to the coolant is given by Φh =
K(T − T0), where K is the heat transfer coefficient per unit volume of the super-
conductor. Viscous loss and related quantities are disregarded. P contains not only
the pinning power loss density P0 at constant temperature but also an additional
component, Cp(dT/dt), due to the temperature rise. The temperature rise causes a
variation in the parameter αc, the flux pinning strength. The resultant variation in
the magnetic flux distribution is obtained from (2.47) as

δ̂B1−γ ∂̂B

∂T
= −μ0

dαc

dT
x. (3.44)

From (2.75) the additional power loss density is

P1 = −αĉB
γ−1 dT

dt

∫ x

xb

δ
∂̂B

∂T
dx. (3.45)

Equations (2.47) and (3.44) are substituted into (3.45) and after some calculation
we obtain the mean power loss density:

〈P1〉 = 1

d

∫ xb

0
P1dx ≡ Cp

dT

dt
. (3.46)

Here we assume the Bean-London model (γ = 1). In case the magnetic flux pen-
etrates to the center of a superconducting slab of thickness 2d as in Fig. 3.20, we
have δ0 = δb = 1 in the region 0 ≤ x ≤ d and xb = d , and Cp is given by

Cp = 1

3
μ0Hp

(

−dHp

dT

)

. (3.47)
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Fig. 3.20 Variation of the
magnetic flux distribution in a
superconducting slab when
the temperature is changed
by �T

Because of this term (3.43) is rewritten as

(C − Cp)
dT

dt
= P0 − Φh. (3.48)

According to this equation the rate of temperature rise, dT/dt , diverges when

C − Cp = 0 (3.49)

is satisfied. This is the condition of the rapid temperature rise, i.e., the flux jump.
Yamafuji et al. [23] discussed the temperature rise in detail, taking account a

higher order term (dT/dt)2 which originated from the viscous loss. According to
their argument the condition that dT/dt becomes indefinite must be satisfied for a
flux jump to occur. This means that the condition

P0 − Φh = 0 (3.50)

must be satisfied simultaneously with the heat-capacity condition of (3.49). How-
ever, the validity of (3.50) has not yet been clarified. Anyhow (3.49) is the condition
for the flux jump.

Since flux jumping reduces the critical current density to zero, it must be avoided
in practical superconducting wires. Hence, the inequality that C > Cp is required so
that (3.49) cannot be satisfied. Since Hp = Jcd , this inequality is equivalent to

d <

[

μ0

3C

(

−dJc

dT

)

Jc

]−1/2

≡ dc. (3.51)

This implies that the thickness of superconductor 2d should be less than 2dc. This is
the principle of stabilization of superconducting wire by reduction of the supercon-
ducting filament diameter. In practical superconducting wires, many fine supercon-
ducting filaments are embedded in matrix materials such as copper and are stabilized
by the above principle. At the same time the high thermal conductivity of the matrix
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material ensures rapid dissipation of generated heat. In the case of Nb3Sn for exam-
ple, if we assume that Jc = 1 × 1010 A m−2, −dJc/dT = 7 × 108 A m−2 K−1 and
C = 6×103 J m−3 K−1, we have 2d < 90 µm from (3.51). In practical multifilamen-
tary Nb3Sn wires the diameter of superconducting filaments is smaller than several
10 µm. The filament diameter in multifilamentary wires for AC use is sometimes
reduced below 1 µm to reduce the hysteresis loss drastically.

The condition of stabilization (3.51) can also be derived from the following sim-
ple argument. Again consider the magnetic flux distribution shown in Fig. 3.20 and
assume that the temperature in the superconductor rises from T to T + �T within
a short period of time, �t . The resultant change in critical current density is then
�Jc = (dJc/dT )�T , where of course �Jc < 0. Hence, the magnetic flux distribu-
tion changes as shown in Fig. 3.20 and the induced electric field due to this change
is

E(x) =
∫ x

d

μ0
�Jc

�t
xdx = μ0

2

(

−�Jc

�t

)

(

d2 − x2). (3.52)

The resultant energy loss density is given by

W = 1

d

∫ �t

0
dt

∫ d

0
JcE(x)dx = μ0

3

(

−dJc

dT

)

Jcd
2�T. (3.53)

If �t is sufficiently small, the above variation is supposed to occur adiabatically.
In this case the additional temperature rise in the superconductor is estimated to
be �T ′ = W/C. Provided that this temperature rise �T ′ is smaller than the initial
temperature rise �T , the initial disturbance will not develop into a flux jump by
positive feedback. This condition agrees with (3.51).

3.5 Surface Irreversibility

During measurement of the DC magnetization of a superconductor, when the sweep
of the external magnetic field changes from increasing to decreasing, the magnetiza-
tion curve is sometimes linear with slope −1 over a certain range of field variation
denoted by �H , as shown in Fig. 3.21. This is similar to the variation of magnetiza-
tion in the Meissner state. That is, the magnetic flux distribution is macroscopically
unchanged during the variation of the external field. If the external field is increased
again within this range, the magnetization reverses. It should be noted, however,
that, although in the usual magnetization measurement the magnetization seems to
behave reversible as in Fig. 3.21, sensitive B-He measurements in fact reveal it to
be irreversible. Such behavior is also observed when the sweep of external field
changes from decreasing to increasing. This phenomenon insists that an irreversible
current with a very high density flows in the surface region and shields the variation
of the external field. The magnitude of the magnetization �H due to the surface cur-
rent is sample dependent and varies with the magnetic field; �H usually decreases
with increasing field.
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Fig. 3.21 Macroscopic
magnetization due to the
surface irreversibility

Three mechanisms, viz. surface sheath, surface barrier, and surface pinning have
been proposed to explain the irreversible surface current.

The surface superconductivity treated in Sect. 1.6 is associated with a special
property of the surface which permits the superconducting order parameter to take
on a nonzero value even when the applied magnetic field is above Hc2. Fink [24]
speculated that a similar two-dimensional surface superconductivity exists even be-
low Hc2 independently of the three-dimensional flux line structure inside the super-
conductor. This surface superconductivity is called the surface sheath and consid-
ered to cause an irreversible surface current.

The idea of a “surface barrier” was proposed by Bean and Livingston [25] who
suggested that the surface itself provided a barrier against the invasion and elimina-
tion of flux lines. The surface barrier was originally proposed during investigations
of the first entry field of flux lines into a practical superconductor in comparison
with Hc1, the theoretical result of Abrikosov for an infinitely large superconductor.
We begin by assuming that a flux line has entered the superconductor from the sur-
face. In addition to the external field that decays within a characteristic distance of λ

from the surface we consider the flux line, and a postulated image flux line directed
opposite to it as in Fig. 3.22. The image is necessary to fulfill the boundary condi-
tion that the current around the flux line should not flow across to the surface. The
total magnetic flux of the flux line (the component of b in Fig. 3.22) is smaller than
the flux quantum φ0 and hence, flux quantization is not fulfilled. This is because the
current is not zero on the surface, which is a part of the loop enclosing the magnetic
flux.

Bean and Livingston treated the case where the G-L parameter κ is large, in
which case the modified London equation is valid and the magnetic flux density of
the flux line penetrating sufficiently deeply from the surface is given by (1.61). We
assume that the superconductor occupies x ≥ 0 and the external magnetic field He
is applied parallel to the z-axis. The position of the flux line in the x-y plane is
represented as (x0,0), where x0 > 0. Its image is located at (−x0,0) and the total
magnetic flux density in the superconductor is given by

b = μ0He exp

(

−x

λ

)

+ φ0

2πλ2

[

K0

(
√

(x − x0)2 + y2

λ

)
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Fig. 3.22 Surface barrier
model by Bean and
Livingston [25].
‘a’ represents the penetrating
magnetic flux from the
surface given by (1.14) and
‘b’ is the sum of the
penetrating flux line and its
image

− K0

(
√

(x + x0)2 + y2

λ

)]

(3.54)

except the region of the normal core. The Gibbs free energy is given by

G =
∫ {

1

2μ0

[

b2 + λ2(∇ × b)2] − H e · b
}

dV, (3.55)

where the volume integral is over the superconductor (x ≥ 0). The first term in (3.54)
may be symbolized by b0 and the sum of the second and third terms which represent
the penetrating flux line and its image may be symbolized by b1. After substituting
these into (3.55), partially integrating and using the modified London equation, the
Gibbs free energy becomes

G = λ2
∫

S
(∇ × b1) × H e · dS

+ λ2

2μ0

∫

Sc

[

b1 × (∇ × b1) + 2b1 × (∇ × b0) + 2μ0(∇ × b1) × H e
] · dS

+ 1

2μ0

∫

�V

[

b2
1 + λ2(∇ × b1)

2 + 2b0 · b1 + 2λ2(∇ × b0) · (∇ × b1)

− 2μ0b1 · H e
]

dV. (3.56)

In the above the first integral is carried out on the surface of superconductor,
S(x = 0), the second one on the surface of normal core of the flux line, Sc (dS is
directed inward the surface), and the third one inside the normal core. The constant
terms which are functions only of b0 are omitted. In the first integral in (3.56), since
H e is equal to b0/μ0 on the surface, it can be replaced by b0/μ0. If we replace the
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integral on S to an integral on S and Sc minus an integral on Sc, we have

λ2

μ0

∫

S+Sc

(∇ × b1) × b0 · dS = λ2

μ0

∫

S+Sc

(∇ × b0) × b1 · dS

− λ2

μ0

∫

Sc

(∇ × b0) × b1 · dS, (3.57)

where partial integration is done and the modified London equation and the bound-
ary condition of b1 = 0 on the superconductor surface are used. Thus, (3.56) reduces
to

G = λ2

2μ0

∫

Sc

[

b1 × (∇ × b1) − 2μ0H e × (∇ × b1) + 2b0 × (∇ × b1)
] · dS

+ 1

2μ0

∫

�v

[

b2
1 + λ2(∇ × b1)

2 + 2b0 · b1 + 2λ2(∇ × b0) · (∇ × b1)

− 2μ0b1 · H e
]

dV. (3.58)

Now we write b1 = bf + bi to indicate the sum of the flux line and its image,
where the full expressions for these components are just the second and third terms
in (3.54). After a simple calculation we have

G = λ2

2μ0

∫

Sc

[

bf × (∇ × bf) + bi × (∇ × bf) − bf × (∇ × bi)

− 2μ0H e × (∇ × bf) + 2b0 × (∇ × bf) − 2bf × (∇ × b0)
] · dS

+ 1

2μ0

∫

�v

[

b2
f + λ2(∇ × bf)

2 − 2μ0bf · H e
]

dV. (3.59)

With the aid of (1.78) it turns out that the sum of the first term in the first integral
and the first and second terms in the second integral gives the self energy of the flux
line, ε = φ0Hc1, and the sum of the fourth term in the first integral and the third term
in the second integral gives a constant term, −φ0He. The fifth and second terms in
the first integral represent the interactions of the flux line with the Lorentz force
due to the surface current and with the image, respectively. It can be easily shown
that the third and sixth terms in the first integral are sufficiently small and can be
disregarded. Thus, we have

G = φ0

[

He exp

(

−x0

λ

)

− φ0

4πμ0λ2
K0

(

2x0

λ

)

+ Hc1 − He

]

(3.60)

(per unit length of the flux line), which is identical with the result obtained by Bean
and Livingston [25] and by de Gennes [26]. This equation is valid for the case where
the normal core completely penetrates the superconductor, i.e., x0 > ξ . Since the
constant term that depends only on b0 is omitted, we have G = 0 when the flux line
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Fig. 3.23 Variation of the
energy G vs. the position, x0,
of the flux line in case
κ = 10 [25]. The ordinate is
normalized by the self energy,
ε, of flux line per unit length

does not penetrate the superconductor, i.e., x0 = 0. When He = Hc1, G goes to zero
in the limit x0 → ∞. That is, the condition of a bulk superconductor is naturally
satisfied.

Figure 3.23 shows the variation in the free energy G with the position of the
flux line x0. It means that the energy barrier exists even when He exceeds Hc1
and the flux line cannot penetrate the superconductor. Hence, the magnetization re-
mains perfectly diamagnetic until the external magnetic field reaches Hs sufficiently
greater than Hc1, and then the flux line first penetrates. Conversely, the surface bar-
rier prevents the flux lines from exiting the superconductor as the field decreases.
The flux lines are predicted to be trapped in the superconductor until the external
field is reduced to zero. Also in this case the magnetization curve is a line parallel
to the Meissner line, suggesting that the internal magnetic flux distribution remains
unchanged even under variation of the external field. Such feature agrees qualita-
tively with the surface irreversibility phenomenon observed experimentally. For this
reason the surface barrier model seems to be applicable not only to the estimation
of the first penetration field, its initial purpose, but also to the general phenomena of
surface irreversibility.

Here, we shall estimate the first penetration field Hs of the flux line from the
above result of the Bean-Livingston model. We treat the case in which the flux
line exists near the surface (x0 ∼ ξ ). The corresponding magnetic flux density is
approximately given by (1.62a). Thus, the Gibbs free energy reduces to

G = φ0

[

He exp

(

−x0

λ

)

+ φ0

4πμ0λ2
log 2x0

]

+ const. (3.61)
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Since the penetration of flux line occurs when ∂G/∂x0 = 0 is attained at x0 ∼ ξ , we
have

Hs � φ0

4πμ0λξ
= Hc√

2
. (3.62)

The calculation in terms of the modified London equation in the above is not
exact when x0 is close to ξ . Then, de Gennes [27] argued the first penetration field
Hs using the G-L equations. We assume again that the superconductor occupies
x ≥ 0. de Gennes treated this problem as an extrapolation of the Meissner state
above Hc1, i.e., the superheated state and assumed that the order parameter and
the vector potential vary one-dimensionally only along the x-axis. In this case, the
order parameter can be chosen as a real number as known well. If we normalize Ψ

by |Ψ∞| as in (1.38) and the vector potential A and the coordinate x as

a = A√
2μ0Hcλ

, (3.63)

x̃ = x

λ
, (3.64)

the G-L equations (1.30) and (1.31) reduce to

1

κ2
· d2ψ

dx̃2
= ψ

(−1 + ψ2 + a2), (3.65)

d2a

dx̃2
= ψ2a. (3.66)

In the above, a is the y-component of a, if the magnetic field is applied along the
z-axis. As will be shown later, ψ and a vary gradually with the distance of the
order of 1 in the x̃-coordinate (λ in real space). Hence, the left-hand side of (3.65)
can be approximately replaced by zero for a superconductor with the large G-L
parameter κ . Then, (3.65) reduces to

ψ2 = 1 − a2. (3.67)

Substitution of this into (3.66) leads to

d2a

dx̃2
= a − a3. (3.68)

Multiplying both sides by da/dx̃ and integrating, we have

(

da

dx̃

)2

− a2 + a4

2
= const. (3.69)
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Since a and da/dx̃ are expected to drop to zero at deep inside the superconductor,
x̃ → ∞, the constant term on the right-hand side of (3.69) must be zero. Thus,

a = −
√

2

cosh(x̃ + c)
, (3.70)

where c is a constant determined by the boundary condition at the surface, x̃ = 0.
This solution satisfies the above-mentioned requirement that the physical quantities
vary gradually with the distance of the order of λ in real space. From (3.70) the
magnetic flux density is

B = √
2μ0Hc

da

dx̃
= 2μ0Hc sinh(x̃ + c)

cosh2(x̃ + c)
. (3.71)

From the boundary condition that the magnetic flux density is μ0He at x̃ = 0, c can
be evaluated from

Hc

He
= 2 sinh c

cosh2 c
. (3.72)

The maximum value of He, i.e., the first penetration field, Hs, corresponds to c =
sinh−1 1, and hence [27]

Hs = Hc. (3.73)

If we neglect the term proportional to (dψ/dx̃)2, the free energy density is given by

F = μ0H
2
c

[

−ψ2 + 1

2
ψ4 +

(

da

dx̃

)2

+ a2ψ2
]

= μ0H
2
c

[

−1

2
+ 4 sinh2(x̃ + c)

cosh4(x̃ + c)

]

(3.74)

or

F = −1

2
μ0H

2
c + B2

μ0
= Fn − 1

2
μ0H

2
c + B2

2μ0
, (3.75)

where Fn = B2/2μ0 is the energy density of magnetic field, i.e., the free energy
density in the normal state. Figure 3.24 shows the magnetic flux density, the nor-
malized order parameter and the free energy density in the critical state at He = Hc.
At the surface where the magnetic flux density reaches μ0Hc, the order parameter
ψ is zero and the free energy density F is equal to Fn, its normal-state value.

As shown above the first penetration fields, as obtained by Bean and Livingston
and by de Gennes, are of the order of Hc, although these differ by a factor of

√
2. In

the case of high-κ superconductors, which is the required condition for the approxi-
mations, the predicted values are much greater than the bulk value, Hc1. Such large
penetration fields have not yet been observed.
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Fig. 3.24 (a) Magnetic flux
density, (b) normalized order
parameter and (c) free energy
density in the vicinity of the
surface of a superconductor
in the critical superheated
state (He = Hc)

Here the relationship between the two theories will be discussed. As mentioned
above the superheated state has been treated by de Gennes. In this case, the assump-
tion that the order parameter gradually varies one-dimensionally does not hold any
more as the field decreases after the penetration of flux lines, and hence, the su-
perheated state cannot be re-established. It follows that the magnetization curve is
predicted to be reversible after the penetration of flux lines, as shown in Fig. 3.25.
Hence, in oder to discuss the surface irreversibility, the interaction between the flux
line and the surface should be treated as it was done in the surface barrier model. It is
also important to investigate the effect of surface roughness. If the surface roughness
is of the order of ξ , it is accompanied by a steep spatial variation of Ψ , in which
case the assumption of a gradual one-dimensional variation is no longer valid. In
high κ superconductors, ξ is small and it seems to be quite difficult to make the
surface roughness of bulk specimens smaller than ξ . Hence, it seems unphysical to
image that the superheated state could be maintained up to high fields. On the other
hand, the penetration of flux line results in a two-dimensional spatial variation of Ψ

and the surface barrier appears. In this case the image of flux line is considered to
become dim due to the surface roughness resulting in a weakening of the interaction
between the flux line and its image. However, the surface barrier should remain.
Thus, it can be seen that there is a difference between the surface barrier mechanism
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Fig. 3.25 Magnetization
after the superheated state is
destroyed

and the superheating mechanisms proposed by de Gennes, and furthermore that the
former provides a more practical explanation of surface irreversibility.

When the surface is roughened, it is speculated that the effects of surface sheath
and surface barrier are reduced. However, the surface irreversibility is enhanced
in most cases. It has been shown that neither bulk irreversibility nor surface irre-
versibility is observed in materials with few defects and clean surfaces [28], indicat-
ing that the surface sheath and the surface barrier are not the main causes of surface
irreversibility. On the other hand, Hart and Swartz [29] speculated that the pinning
by surface roughness and defects near the surface causes the surface irreversibility
based on the correlation between the surface roughness and the irreversibility. This
mechanism is called “surface pinning.”

Experimentally it has been shown that surface pinning is a dominant mechanism.
Matsushita et al. [30]1 showed that residual pinning centers could be removed from
several Nb-50at%Ta tape specimens by heat treatment at very high temperatures un-
der very high vacuum. After this heat treatment, dislocations with different densities
were introduced to the specimens by different rates of rolling deformation. The ini-
tial thickness of each specimen was changed so that the final thicknesses of all the
specimens were the same. Since the superconducting properties such as Tc and Hc
and the condition of the surface were almost the same in each one, �H should have
been approximately the same, if either the surface sheath or the surface barrier was
the origin of the surface irreversibility. Figure 3.26 shows the bulk critical current
density Jc and the one near the surface Jcs estimated using Campbell’s method de-
scribed in Sect. 5.3, where Jcs is approximately proportional to �H . This result
shows that not only the bulk critical current density, Jc, but also the surface one Jcs
increases significantly with increasing density of pinning dislocations and that the
two critical current densities are saturated to almost the same value in the strong pin-
ning limit. From the fact that the surface irreversibility is enhanced by two orders
of magnitude by introduction of dislocations, it can be concluded that the domi-
nant cause of the surface irreversibility is surface pinning and that the effects of a

1As to the magnetic field dependence of surface critical current density, see [31].
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Fig. 3.26 Bulk critical
current density Jc and surface
one Jcs vs. deformation by
the cold rolling in Nb-Ta
specimens [30]. These critical
current densities increase
with increasing density of
pinning dislocations. The
deformation is defined as
1 − (A0/A) and we have
εp = log(A/A0), where A

and A0 represent the surface
area of superconductor before
and after the rolling,
respectively

surface barrier etc. can be neglected. In addition, a saturation behavior of critical
current density in the strong pinning regime and its special magnetic field depen-
dence [30, 31] are known to be characteristic features of the saturation phenomenon
for the bulk flux pinning, which will be described in Sect. 7.5.

It has been concluded that since with rolling deformation the defects are nucle-
ated with the higher density in the surface region, the surface critical current density
Jcs increases faster than the bulk value.

It follows that the surface irreversibility is not an intrinsic surface effect as such
but rather a secondary phenomenon caused by defects that are likely to be concen-
trated in the surface region. It is generally known [30, 31] that the magnitude of
surface irreversibility �H decreases with increasing magnetic field and disappears
at high fields. This is caused by the nonlocal nature of the flux pinning. That is,
the critical current density is a value averaged over the range of the pinning cor-
relation length of the flux line lattice (Campbell’s AC penetration depth that will
be described in the next section). At high fields, this correlation length increases,
and the region of the average is no longer limited to the surface region with strong
pinning forces but extends into the inner region. Thus, the surface irreversibility is
diluted quickly with increasing magnetic field strength.

As discussed above, surface pinning rather than the surface barrier effect is the
dominant mechanism of surface irreversibility. As indicated in Fig. 3.23 the energy
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Fig. 3.27 Magnetization of V specimen at 4.2 K [33]. Solid and broken lines show results on the
specimen before and after the oxygenation, respectively

barrier itself is not particularly large, and in any case its effectiveness reduces in
the presence of the usual surface roughness which by dimming the image of flux
line weakens the attraction between the flux line and the image. In addition, the
penetration of flux lines through the surface barrier can be facilitated by flux creep,
to be discussed in Sect. 3.8.

The surface pinning force itself can be reduced by various kinds of surface treat-
ments such as metallic coating [32] or oxidation [33] (see Fig. 3.27). In the former
case, a proximity effect between the normal metal coating and the superconductor
reduces the order parameter at the surface and hence the strength of surface pinning.

3.6 DC Susceptibility

Measurement of DC susceptibility in the field cooled process was carried out for
evaluating the superconducting volume fraction of a specimen just after the discov-
ery of high-temperature superconductors. A constant susceptibility at sufficiently
low temperatures was regarded as related to the volume fraction of a supercon-
ducting phase. However, this is correct only for pin-free superconductors. As the
temperature decreases, the superconductor becomes diamagnetic and the flux lines
are expelled from the superconductor, resulting in a negative susceptibility. If the
pinning interactions in the superconductor become effective as the temperature de-
creases, flux lines will be prevented from leaving the superconductor, and the sus-
ceptibility will be influenced by the pinning. That is, the susceptibility is proposed
to be small for a strongly pinned superconductor. Thus, the result does not reflect
correctly the volume fraction of superconducting material.

For a description by the critical state model, it is assumed that a magnetic field
He is applied parallel to a very wide superconducting slab (0 ≤ x ≤ 2d). From sym-
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Fig. 3.28 Magnetic flux distribution in a superconductor in the field cooled process (a) for
T1 ≤ T ≤ T ′

c , (b) when the temperature is decreased slightly by �T from T1, (c) when the temper-
ature is further decreased and (d) at sufficiently low temperatures

metry we need to treat only half of the slab, 0 ≤ x ≤ d . The critical temperature in
the magnetic field He is denoted by T ′

c . When the temperature T is higher than T ′
c ,

the magnetic flux density in the superconductor is uniform and given by B = μ0He.
When the temperature is slightly decreased from T ′

c to T1 = T ′
c − �T , the super-

conductor becomes diamagnetic. If T1 is higher than the irreversibility temperature,
Ti(He), the pinning does not yet work, and the internal magnetic flux distribution is
as schematically shown in Fig. 3.28(a), where M(< 0) is the magnetization. When
the temperature is further reduced to Tn = Ti(He) − �T , the pinning interaction
becomes effective. If the critical current density at this stage is denoted by �Jc, the
magnetic flux distribution inside the superconducting slab is expected to be like the
one shown in Fig. 3.28(b), where the slope of the magnetic flux distribution near the
surface is equal to μ0�Jc. When the temperature is further decreased, the diamag-
netism of the superconductor becomes stronger and the flux lines near the surface
are driven to the outside of the superconductor. At the same time the pinning also
becomes stronger, and the flux distribution shown in Fig. 3.28(c) results. Thus, the
magnetic flux distribution at a sufficiently low temperature is expected to be like
that in Fig. 3.28(d).

Here the magnetic flux distribution is calculated analytically. For simplicity the
diamagnetic property of the superconductor is approximated as shown in Fig. 3.29.
That is, if the temperature at which He is equal to the lower critical field Hc1 is
denoted by Tc1, the magnetization is given by

M(T ) = −ε
[

Hc2(T ) − He
]

(3.76)
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Fig. 3.29 Approximate
diamagnetism of a
superconductor

for temperatures higher than Tc1 and by

M(T ) = −He (3.77)

for temperatures lower than Tc1. In the above the parameter ε is given by

ε = Hc1

Hc2 − Hc1
. (3.78)

If the temperature dependence of κ is neglected, this parameter does not de-
pend on the temperature. Correctly speaking, this parameter should be given by
ε = 1/1.16(2κ2 − 1) in the vicinity of Hc2, but the above approximation is used to
simplify the analysis. The temperature dependence of Hc2 is also approximated by

Hc2(T ) = Hc2(0)

(

1 − T

Tc

)

. (3.79)

In addition, the critical current density is assumed to be a function only of the tem-
perature as

Jc(T ) = A

(

1 − T

Ti

)m′

(3.80)

for sufficiently low He. If the irreversibility temperature Ti is approximately given
by the critical temperature T ′

c , we have

Ti = (1 − δ)Tc (3.81)

with δ = He/Hc2(0).
The magnetic flux distribution near the surface of the superconductor is deter-

mined only by M and Jc at a given temperature as

B(x) = μ0He + μ0M(T ) + μ0Jc(T )x. (3.82)

In general m′ is larger than 1. Thus, the history of magnetic flux distribution
at higher temperatures remains in the superconductor as shown in Fig. 3.28(d).
Namely, the internal flux distribution is equal to the envelope of (3.82) at higher
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temperatures in the past. If the region in which the magnetic flux distribution is
expressed by (3.82) is 0 ≤ x ≤ x0, x0 is obtained from

∂B(x0)

∂T
= 0 (3.83)

at temperatures above Tc1. Under the assumptions of (3.76) and (3.79)–(3.81) we
have

x0 = ε[Hc2(0) − He]
Am′

[

1 − T

(1 − δ)Tc

]1−m′

. (3.84)

This depth is x0 = ∞ at T = T1 and decreases with decreasing temperature. The
envelope of the flux distribution in the internal region can be derived by substituting
the obtained x0 into (3.82). We have only to eliminate T in (3.82) in terms of x0(T )

in (3.84). Then, replacing x0 by x, the flux distribution in the envelope region is
given by

B(x) = μ0He − (

m′ − 1
)

μ0

[

εHc2(0)(1 − δ)

m′

]m′/(m′−1)

(Ax)−1/(m′−1). (3.85)

This holds within the region x0 ≤ x ≤ d .
If the external magnetic field He is sufficiently small, the temperature Tc1 at

which Hc1 is equal to He exists. Below this temperature M is given by (3.77), and
B just inside the surface is zero. Hence, the magnetic flux distribution at tempera-
tures lower than this remains unchanged. Strictly speaking, the flux lines near the
surface are continuously expelled from the superconductor with the strengthened
diamagnetism from decreasing temperature as discussed in Sect. 2.6, and hence,
the flux distribution does not remain completely unchanged. However, the remain-
ing flux distribution is the “heritage” of distributions at higher temperatures, and
hence, its gradient is small and the resultant driving force to expel flux lines from
the superconductor is relatively smaller than the pinning force at the ambient tem-
perature. Thus, although this effect increases the diamagnetism slightly, its influence
is considered not to be large. The effect of the reversible motion of flux lines, to be
discussed in Sect. 3.7, is rather larger than this, since it is considered that the flux
lines are likely to be nucleated in the bottom of pinning potentials where the energy
is lowest in the field cooled process.

The magnetic flux density and the DC susceptibility can be calculated from the
above results. The temperature T0, at which x0 is equal to d , is given by

T0 = Tc(1 − δ)

{

1 −
[

εHc2(0)(1 − δ)

Am′d

]1/(m′−1)}

. (3.86)

After a simple but long calculation we have [34]

χ = ε − ε

δ

(

1 − T

Tc

)

+ Ad

2He

[

1 − T

(1 − δ)Tc

]m′

; Ti ≥ T > T0, (3.87a)
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= − [εHc2(0)(1 − δ)]2

2m′(2 − m′)dAHe

[

1 − T

(1 − δ)Tc

]2−m′

+ (m′ − 1)2

(2 − m′)(Ad)1/(m′−1)He

[

εHc2(0)(1 − δ)

m′

]m′/(m′−1)

; T0 ≥ T > Tc1,

(3.87b)

= − [εHc2(0)(1 − δ)]m′

2m′(2 − m′)dAHm′−1
e

+ (m′ − 1)2

(2 − m′)(Ad)1/(m′−1)He

[

εHc2(0)(1 − δ)

m′

]m′/(m′−1)

≡ χs; Tc1 ≥ T ,

(3.87c)

where χs is the saturated susceptibility at sufficiently low temperatures. The above
results are useful for m′ �= 2. Calculate the susceptibility also for the case of m′ = 2
(Exercise 3.5).

Calculated results [34] of DC susceptibility in the field cooled process for vari-
ous values of A are shown in Fig. 3.30. The DC susceptibility when the temperature
is increased in a fixed magnetic field is also shown for comparison. With increas-
ing A, i.e., strengthening pinning force, the susceptibility in the field cooled process
takes a smaller negative value, but a larger negative value in the process of increas-
ing temperature in a fixed magnetic field. This can be understood, since the motion
of flux lines is more restricted by the stronger pinning force. Figure 3.31 shows
the relation between the saturated susceptibility and the size of the superconducting
specimen [34]. It turns out that the diamagnetism becomes stronger with decreas-

Fig. 3.30 Results of
calculated DC susceptibilities
for various values of A

representing the flux pinning
strength in the field cooled
process (• •) and when the
temperature is increased in a
constant magnetic field
(��) [34]. Assumed
parameters are Tc = 93 K,
μ0Hc2(0) = 100 T,
ε = 5.13 × 10−4, m = 1.8,
d = 1 mm and μ0He = 1 mT
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ing specimen size. This is because the internal flux lines can more easily leave the
superconductor when the superconductor is smaller.

The above various results can be qualitatively explained from the magnetic flux
distribution in Fig. 3.28. Figure 3.32 shows the dependence of the saturated sus-
ceptibility on the external magnetic field for a single crystal specimen of La-based
superconductor [34], and the experimental results agree with the above theoretical
predictions of the critical state model.

It is assumed here that the superconducting volume fraction is 100 %. However,
the obtained saturated susceptibility differs greatly depending on the conditions as

Fig. 3.31 Dependence of
saturated DC susceptibility
on external magnetic field for
various sizes of
superconductor [34].
Assumed parameters are
A = 1.0 × 1010 A m−2 and
the same values of Tc,
μ0Hc2(0), ε and m′ as in
Fig. 3.30

Fig. 3.32 Magnetic field
dependence of saturated DC
susceptibility of a La-based
superconducting
specimen [34]. The solid line
is the theoretical result for
Tc = 35 K,
μ0Hc2(0) = 27.3 T,
ε = 5.1 × 10−4,
A = 8.0 × 1010 A m−2 and
m′ = 1.8
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shown in Figs. 3.30 and 3.31. Hence, this measurement technique is not suitable for
evaluation of the superconducting volume fraction.

3.7 Reversible Flux Motion

Most electromagnetic properties of superconductors are irreversible and can be well
described in terms of the critical state model. The irreversibility stems from the
interaction of flux lines and the pins, i.e., the instability of flux lines as they drop
into and jump out of the pinning potential, as discussed in Sect. 2.3. However, if
the displacement of flux lines is so small that the flux motion is restricted to the
interior of the pinning potential, the corresponding electromagnetic phenomena are
expected to become reversible and hence deviate from the critical state description.

Here we assume that the flux lines in some region are in an equilibrium state
inside an averaged pinning potential. When the flux lines are displaced by a distance
u from the equilibrium position in response to a change of the external magnetic
field etc., the pinning potential felt by the flux lines within a unit volume is of the
form αLu2/2, where αL, a constant, is called the Labusch parameter. Hence, the
force on the flux lines per unit volume is

F = −αLu, (3.88)

which depends only on the position of flux lines u and is reversible. Note the dif-
ference between this force and that based on the critical state model according to
which the force takes on only one of two values, ±JcB , depending on the direction
of the flux motion. If now b represents the variation in the magnetic flux density due
to the movement of flux lines from their equilibrium positions (we assume that the
flux movement occurs along the x-axis), using the continuity (2.15) we have

du

dx
= − b

B
, (3.89)

where B is an equilibrium value of the magnetic flux density. The Lorentz force that
arises from this variation is

FL = − B

μ0
· db

dx
. (3.90)

Solutions for u and b can be obtained from the balance between the Lorentz
force and the pinning force given by (3.88), FL + F = 0, under given boundary
conditions. That is, eliminating u from (3.88)–(3.90), we have

d2b

dx2
= μ0αL

B2
b (3.91)

and hence,

b(x) = b(0) exp

(

− x

λ′
0

)

. (3.92)
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Fig. 3.33 Variations in the magnetic flux distribution in a superconductor when the external mag-
netic field is increased from the critical state in a decreasing field: (a) the case of noticeable re-
versible motion of flux lines and (b) the prediction of the critical state model

In the above the superconductor is assumed to occupy x ≥ 0, b(0) is a value of b at
the surface, x = 0, and

λ′
0 = B

(μ0αL)1/2
. (3.93)

λ′
0 is a length called Campbell’s AC penetration depth [35]. A solution of the same

form can also be obtained for the displacement, u(x). The variation in the magnetic
flux density given by (3.92) is similar to (1.14) representing the Meissner effect.
This is the reason for referring to λ′

0 as a “penetration depth.” According to the
above solution, the depth to which the variation penetrates is given by λ′

0 and is
independent of the variation in the magnetic flux density at the surface b(0), for
b(0) below some value.

The reversible phenomenon appears for example when the applied field changes
from decreasing to increasing. Hence, the initial condition just before the appear-
ance of the reversible phenomenon is mostly the critical state. The variation in the
magnetic flux distribution after the field changes from decreasing to increasing is
schematically shown in Fig. 3.33(a). On the other hand, based on the critical state
model, the distribution would change according to b(x) = b(0) − 2μ0Jcx. In this
case the depth to which the variation penetrates is b(0)/2μ0Jc and increases in
proportion to b(0) (see Fig. 3.33(b)). Thus, the variation in the magnetic flux distri-
bution is different between the reversible and completely irreversible states.

According to experiments, the pinning force density changes from JcB to −JcB

or inversely (see Fig. 3.34), as the magnetic flux distribution changes as shown in
Fig. 3.33(a). That is, the pinning force density varies linearly with u and the phe-
nomenon is reversible as described above, while the displacement u from the ini-
tial condition is small. As the mean displacement of the flux lines increases, some
flux lines jump out of individual pinning potentials locally and the characteristics
of pinning force density vs. displacement vary gradually from reversible to irre-
versible. When the displacement increases further, the pinning force density ap-
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Fig. 3.34 Variation of the
pinning force density vs. the
displacement of flux lines.
Origin is the critical state and
the figure shows the
characteristics when the flux
lines are displaced reversely

proaches asymptotically −JcB and the phenomenon becomes describable by the
irreversible critical state model. Measurements of AC penetration depth λ′

0 and the
characteristics of pinning force density vs. displacement shown in Fig. 3.34 may be
carried out using Campbell’s method described in Sect. 5.3.

In practice (see Figs. 3.33(a) and 3.34), the absolute value of the pinning force
density is actually given by F = −αLu + JcB rather than (3.88) in the reversible
region where u is sufficiently small. On the other hand, b is a variation of the mag-
netic flux density from the initial condition, and hence the Lorentz force is given
by FL = −(B/μ0)(db/dx) − JcB . From the balance between the two forces the
solution of (3.92) is again obtained.

Here we shall estimate the AC loss in the vicinity of the reversible region. We
assume that a DC magnetic field He and an AC one of amplitude h0 are applied
parallel to an infinite superconducting slab of thickness 2D (0 ≤ x ≤ 2D). From
symmetry we treat only the half-region, 0 ≤ x ≤ D. If h0 is sufficiently small, the
critical current density Jc can be regarded as a constant. We assume that the initial
magnetic flux distribution at the surface field of He − h0 is in the critical state and
that the variation from this distribution is as shown in Fig. 3.35. The variation in the
magnetic flux density from the initial state is again denoted by b(x). Campbell [35]
expressed the variation of pinning force density with displacement in Fig. 3.34 as

F = −JcB

[

1 − 2 exp

(

− u

2di

)]

(3.94)

and we go on to make the approximation as B � μ0He. di is half of the displacement
when the linear extrapolation of the pinning force density in the reversible regime
reaches JcB in the opposite critical state. That is, di represents a radius of the aver-
aged pinning potential and for this reason is referred as the “interaction distance.”
From the relation

JcB = αLdi (3.95)

with (3.93) we have

di = μ0Jcλ
′2
0

B
. (3.96)
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Fig. 3.35 Variation of the
magnetic flux distribution in a
superconductor when the
surface field is increased from
He − h0 in the critical state

Elimination of u from the force balance equation using (3.89) leads to

d2b

dx2
− b

λ′2
0

(

1 + 1

2μ0Jc
· db

dx

)

= 0. (3.97)

From symmetry the condition u(D) = 0 should be satisfied. This is written as
F(D) = JcB or

db

dx

∣

∣

∣

∣

x=D

= 0. (3.98)

Equation (3.97) is only numerically solved under this condition and the boundary
condition of b(0) at the surface. When the external magnetic field is increased to
He + h0 and then decreased to He − h0, the magnetic flux distribution does not go
back to the initial condition. Hence, strictly speaking, it is necessary to obtain the
distribution in the steady state after many periods of AC field to estimate the AC
loss observed usually. However, this is not easily done and we shall approximate
for simplicity that the curve of averaged magnetic flux density vs. external field is
symmetric between the increasing and decreasing field processes. In which case,
after one period, the last point of the 〈B〉-H curve meets the initial point and the
loop closes. In this way, the AC loss can be estimated approximately. Here it should
be noted that the AC loss can be obtained not only from the area of the 〈B〉-H curve
but also from the area of the closed F -u curve as shown in Fig. 3.36. In the latter
case, the F -u curve is believed to be approximately symmetric between O → A and
A → O [35].

Figure 3.37 shows the AC losses observed for a bulk Nb-Ta specimen [36], along
with the result of theoretical analysis using the Campbell model and with a criti-
cal state prediction based on (2.80) and the assumption γ = 1. According to these
results, the difference between the Campbell model and the critical state model is
small even when the AC field amplitude is small and hence when the flux motion
should be almost reversible; hence it is not clear which model better explains the
experimental result. It is, however, possible to distinguish between the two models
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Fig. 3.36 Hysteresis loop of
the pinning force density vs.
displacement of the flux lines
in one cycle of the AC
magnetic field

Fig. 3.37 AC energy loss
density in a bulk Nb-Ta
specimen [36] in a DC bias
field μ0He = 0.357 T. The
solid and broken lines
represent the theoretical
predictions of the Campbell
model and the critical state
model, respectively

in terms of the “power factor,” which is generally given by

ηp =
[

1 +
(

μ′

μ′′

)2]−1/2

, (3.99)

where μ′ and μ′′ are the real and imaginary parts of the fundamental AC perme-
ability, respectively. If we express the time variation of external magnetic field as
h0 cosωt , these are written as

μ′ = 1

πh0

∫ π

−π

〈B〉 cosωtdωt, (3.100)
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Fig. 3.38 Power factor of
AC energy loss density in a
bulk Nb-Ta specimen [36]
shown in Fig. 3.37. The solid
and broken lines represent the
theoretical predictions of the
Campbell model and the
critical state model,
respectively

μ′′ = 1

πh0

∫ π

−π

〈B〉 sinωtdωt. (3.101)

The AC energy loss density, W , is related to the imaginary AC permeability μ′′
through

W = πμ′′h2
0. (3.102)

According to the critical state model with γ = 1 (the Bean-London model) (3.99)
reduces to

ηp =
[

1 +
(

3π

4

)2]−1/2

� 0.391, (3.103)

which is independent of h0. The observed power factor for the Nb-Ta specimen
and the predictions of the two models are compared in Fig. 3.38. It is found from
this figure that the phenomenon is well explained by the Campbell model in which
the effect of reversible flux motion is taken into account, while the prediction of
the critical state model deviates from the experiment. ηp is proportional to h0 in
the region of small h0. The derivation of ηp predicted by the Campbell model is
Exercise 3.8.

As is seen from Fig. 3.37, the AC loss itself in a bulk superconductor is close to
the prediction of the critical state model. This is the reason why the reversible effect
has not been noticed. Why is the AC loss close to the prediction of the irreversible
critical state model? In the regime of almost reversible flux motion, the displacement
u is sufficiently small and the pinning force density in (3.94) can be approximately
expanded in a power series in u:

F = JcB

[

1 − u

di
+

(

u

2di

)2]

. (3.104)
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Here F increases with increasing u as in the upper curve of Fig. 3.36 and the area of
the hatched region gives a half of the energy loss density in one period of AC field.
Hence, the irreversible component in F is a deviation from the linear line connecting
the origin O and the point A. After a simple calculation we have

Firr = −JcB

4d2
i

(

umu − u2), (3.105)

where um(x) is the maximum displacement. Here we shall estimate the displace-
ment. Since the flux motion is almost reversible, the penetration of the AC flux can
be approximated by (3.92). From (3.89) we have

u(x) = b(0)λ′
0

B
exp

(

− x

λ′
0

)

, (3.106)

where b(0) is the variation in the magnetic flux density at the surface from the initial
condition. um(x) is given by this equation with a replacement of b(0) by 2μ0h0.
Hence, the energy loss density during the variation in b(0) by db(0) is given by
−Firrdu with du denoting the variation in u in this period and is written as

dw = Jcλ
′3
0

4d2
i B2

exp

(

−3x

λ′
0

)

[

2μ0h0b(0) − b2(0)
]

db(0). (3.107)

Since b(0) varies from 0 to 2μ0h0 in a half period, the energy loss density is calcu-
lated to be

W = 2

D

∫ 2μ0h0

0
db(0)

∫ D

0
dx · dw

db(0)
= 2μ0h

3
0

9JcD
. (3.108)

In the above we assumed that D � λ′
0. This value is 1/3 of the prediction of the crit-

ical state model. The reason for the relatively small difference is that the displace-
ment and the region in which the loss occurs are enhanced, while the irreversible
force density |−Firr| is decreased, resulting in an approximate offset.

The reversible phenomenon does not affect the electromagnetic property appre-
ciably for a bulk superconductor sufficiently thicker than λ′

0. However, it is consid-
ered from a comparison between (a) and (b) in Fig. 3.33 that reversibility will be-
come noticeable for a superconductor with the size comparable to or smaller than λ′

0.
λ′

0 is of the order of 0.5 µm at 1 T in a superconductor with the flux pinning strength
comparable to a commercial Nb-Ti wire; accordingly the reversible phenomenon is
really noticeable [37] in multifilamentary wires for AC use which have supercon-
ducting filaments thinner than the above value. As a result the dependence of the
AC loss on the filament diameter shows a departure from the critical state predic-
tion. That is, the critical state model predicts that the breaking point of the loss curve
should shift to smaller AC field amplitudes accompanied by increasing loss in the
lower amplitude region with decreasing filament diameter (see inset of Fig. 3.39)
in complete conflict with the experimental result. On the other hand, in the region
of large AC field amplitudes, the loss agrees with the prediction of the critical state
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Fig. 3.39 AC energy loss
density in a multifilamentary
Nb-Ti wires with very fine
filaments [37]. Hm is an AC
magnetic field amplitude and
a DC bias field is not applied.
The broken line shows the
prediction of the critical state
model with the observed
critical current density for
filament diameter 0.51 µm.
Inset represents the prediction
of the critical state model on
the variation of AC energy
loss density with the filament
diameter

Fig. 3.40 Magnetization
curve for a Nb-Ti
multifilamentary wire [37] of
filament diameter 0.51 µm

model. Another result is that the slope of the minor magnetization curve when the
sweep of magnetic field is changed from increasing to decreasing takes on a much
smaller value than theoretically predicted, i.e., it is 1 for a large slab in a parallel
field and 2 for a cylinder in a perpendicular field, as shown in Fig. 3.40 (note a dif-
ference in scales between the ordinate and the abscissa). This slope becomes smaller
with increasing magnetic field.

Such an abnormal phenomenon originates from the reversible flux motion. Usu-
ally the filament diameter df is not sufficiently greater than the flux line spacing af.
For instance, at B = 1 T af is 49 nm and hence only ten rows of flux lines exist
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in a filament of diameter 0.5 µm. Hence, the applicability of the semimacroscopic
Campbell model to the macroscopic description of the spatial variation of magnetic
flux distribution is in doubt. However, in the usual specimens the number of fila-
ments is very large and the dimension along the length of the filament is also large.
The magnetic quantity usually observed is the average within a large number of
long filaments and hence the semimacroscopic description is considered to be pos-
sible only as an averaged flux distribution. The local flux distribution is expected
to be different from such an averaged one. This is also the case in a bulk super-
conductor and even in the critical state. That is, it is not correct to postulate that
the local flux distribution is of uniform slope equal to μ0Jc in the critical state of a
bulk superconductor. In fact, the slope may take on various values locally and μ0Jc

is nothing other than the average value. The fact that the critical state model holds
for multifilamentary wires with many filaments and sufficient length has been vali-
dated by many experiments. This does not contradict the above speculation that the
semimacroscopic description is possible for the averaged distribution. Hence, the
Campbell model is considered to be applicable to multifilamentary superconducting
wires even with very fine filaments.

Takács and Campbell [38] calculated the AC loss in a wire with very fine super-
conducting filaments in a small AC magnetic field of amplitude h0 superposed to
DC field. They assumed that the magnetic flux penetrates uniformly the very fine su-
perconducting filaments. The filament of diameter df was approximated by a slab of
thickness df. Here we shall calculate the AC loss using (3.104) in a different manner
from [38]. Only the half, the region 0 ≤ x ≤ df/2 is considered. The displacement
of flux lines in this region is obtained from (3.89) as

u(x) = b(0)

B

(

df

2
− x

)

, (3.109)

where the symmetry condition, u = 0 at the center, x = df/2, was used. The loss in
this case can also be estimated by substituting (3.109) into (3.105) as done previ-
ously; um is again given by (3.109) with b(0) replaced by 2μ0h0. D is replaced by
df/2 in (3.108), and after some calculation we have

W = μ0h
3
0

3Jcdf

(

df

2λ′
0

)4

. (3.110)

This agrees with the result of Takács and Campbell [38] and is (df/2λ′
0)

4/4 times as
large as the prediction of the Bean-London model. Thus, the loss decreases rapidly
with decreasing filament diameter. It is concluded that the reversible effect is very
large in small superconductors for the following reason. Because of symmetry, the
flux lines in the center of the filament do not move and are restrained around the
origin of the pinning force vs. displacement curve shown in Fig. 3.34. The average
displacement of flux lines is approximately proportional to the filament diameter,
and hence, most of the flux lines in the filament are in the reversible regime.
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When the AC field amplitude becomes large, the loss approaches asymptotically
2μ0Hph0, where Hp = Jcdf/2 is the penetration field (see (2.84)). From the inter-
secting point between this relationship and the extrapolation of (3.110), the breaking
point of the loss curve shown in Fig. 3.39 is

˜Hp = 2
√

3

(

2λ′
0

df

)2

Hp = 4
√

3
Jcλ

′2
0

df
. (3.111)

Hence, the breaking point shifts to higher AC field amplitudes with decreasing fila-
ment diameter. Thus, the dependence of the loss on the filament diameter obeys the
Campbell description of reversible phenomenon. In the irreversible Bean-London
model ˜Hp = √

3Hp.
Suppose we extrapolate the tangent to the minor magnetization curve in Fig. 3.40,

then the magnetic field variation needed to reach the opposite major curve is rep-
resented by ̂Hp, which is called the apparent penetration field. According to the
Campbell model the slope of the minor magnetization curve, Hp/ ̂Hp, is a function
only of df/2λ′

0 and given by [37]

Hp

̂Hp
= 1 − 2λ′

0

df
tanh

(

df

2λ′
0

)

, (3.112)

where the slab approximation is used. In the extreme reversible case in which
df/2λ′

0 � 1 is satisfied, we have ̂Hp = (
√

3/2) ˜Hp = 3(2λ′
0/df)

2Hp. On the other
hand, in the case where the Bean-London model holds and df/2λ′

0 � 1, ̂Hp coin-
cides with Hp. Because of demagnetization the slope of the minor magnetization
curve takes on double the value given by (3.112) for multifilamentary wires in the
transverse magnetic field. Figure 3.41 shows the dependences of Hp and ̂Hp on fila-

Fig. 3.41 Dependences of
the characteristic fields, Hp

and ̂Hp, on the filament
diameter for Nb-Ti
multifilamentary wires [37].
Triangular and square
symbols show the values of
the characteristic fields for
μ0He = 0.40 T and 0.55 T,
respectively. The solid lines
are ̂Hp estimated from
(3.112) with Hp shown by the
broken lines and the
assumptions of λ′

0 = 0.56 µm
(0.40 T) and 0.54 µm (0.55 T)
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ment diameter df for Nb-Ti multifilamentary wires and it is found that these are well
described by the Campbell model.

Numerically calculated results of the energy loss density [36] for various fila-
ment diameters are shown in Fig. 3.42. In the case of very fine filaments in (a) the
result is close to the analytic expression of (3.110) represented by the straight bro-
ken lines. The chained lines are the results of the irreversible Bean-London model.
The numerical result tends to approach the prediction of this model as the filament
diameter increases.

The AC energy loss density shown in Fig. 3.39 was observed in the absence of a
large DC bias field, which is different from the above condition. In this case (3.89),
the approximate formula based on the continuity equation for flux lines does not
hold. In addition, not only Jc but also λ′

0 depends on the magnetic field strength.
Therefore, a rigorous analysis is necessary. However, (3.110) is expected to be qual-
itatively correct. In practice the observed AC loss in recent multifilamentary wires
with ultra fine filaments under small AC field amplitudes is even much smaller than

Fig. 3.42 AC energy loss
density estimated using the
Campbell model for various
filament diameters [36]. The
broken and chained lines
show the results of (3.110)
and the Bean-London model,
respectively. Assumed
parameters are
Jc = 1.0 × 1010 A m−2 and
λ′

0 = 0.63 µm
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the prediction of (3.110). In such wires the diameter of superconducting filaments
is comparable to, or smaller than, the London penetration depth and the first pene-
tration field is significantly enhanced as discussed in Appendix A.3. For example,
if df is not much smaller than the London penetration depth λ, the effective lower
critical field is predicted to be

H ∗
c1 �

[

1 − 2λ

df
tanh

(

df

2λ

)]−1

Hc1. (3.113)

From the result of Exercise 2.10, the corresponding energy loss density is given by

W = μ0

3Jcdf

(

df

2λ′
0

)4
(

Hm − H ∗
c1

)2
(

Hm + H ∗
c1

2

)

, (3.114)

where h0 is rewritten as Hm.
The AC penetration depth λ′

0 defined by Campbell is an important quantity re-
lated to the AC loss in multifilamentary wires with very fine filaments. However, this
length cannot be measured using Campbell’s method in case the filament diameters
are smaller than λ′

0 (see Exercise 5.3). There are two methods for estimating λ′
0 in

this case; one is to compare the slope of minor magnetization curve with (3.112) and
the other is to analyze the imaginary part of AC susceptibility as will be mentioned
in Sect. 5.4.

3.8 Flux Creep

The superconducting current originated from the flux pinning mechanism has been
assumed to be persistent in time so long as the external conditions are unchanged.
However, if the DC magnetization of a superconducting specimen is measured for a
long period, it is found to decrease slightly as shown in Fig. 3.43. That is, the super-
conducting current supported by the flux pinning is not a true persistent current but
decreases with time. This results from the fact that the state in which the flux lines
are restrained by the pinning potentials is only a quasistable one corresponding to a
local minimum of the free energy in the state space and is not an actual equilibrium
state. Therefore, a relaxation to the real equilibrium state, i.e., a decay of the shield-
ing current takes place; it does so logarithmically with time as indicated in Fig. 3.43.
The decay of the persistent current is accompanied by a decrease of the slope of the
magnetic flux distribution caused by the motion of flux lines. Such flux motion is
called “flux creep” which according to Anderson and Kim [39] is caused by thermal
activation. It is supposed that thermally activated flux motion is not a macroscopic
and continuous phenomenon like flux flow, but a partial and discontinuous one. The
group of flux lines that move collectively is called the flux bundle.

We imagine one flux bundle to move under the influence of the transport current.
When the flux bundle is virtually displaced in the direction of the Lorentz force,
the variation in the energy of the flux bundle will be as shown schematically in
Fig. 3.44(a). Point A corresponds to the state in which the flux bundle is pinned,
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Fig. 3.43 Relaxation of
magnetization due to flux
creep

Fig. 3.44 Energy of flux
bundle vs. its position: (a) the
case of transport current less
than the virtual critical value.
The flux bundle must
overcome the barrier U so as
to be depinned from the
potential. (b) the virtual
critical state and (c) the flux
flow state

and the gradual decrease of energy that takes place when the flux bundle moves to
the right represents the work done by the Lorentz force. It is necessary for the flux
bundle to overcome the energy barrier at point B so as to be depinned. If there is
no thermal activation, the state indicated in this figure is stable and the flux bundle
does not move. In this virtual case, it is considered that the critical state is attained
when the current density is increased until the peak and the bottom of the energy
curve coincide with each other as shown in Fig. 3.44(b). At a higher current density
continuous flux motion i.e., flux flow is expected to occur as in (c).

At a finite temperature T , thermal activation enables the flux bundle to overcome
the energy barrier even in the state represented by Fig. 3.44(a). If the thermal energy,
kBT , is sufficiently small compared to the energy barrier, U , where kB is the Boltz-
mann constant, the probability for the flux bundle to overcome the barrier for each
attempt is given by the Arrhenius expression, exp(−U/kBT ). Hence, if the attempt
frequency of the flux bundle is ν0 and the distance by which the flux bundle moves
during one hopping is a, the mean velocity of the flux lines to the right-hand side is
given by aν0 exp(−U/kBT ). The oscillation frequency ν0 is expressed in terms of
the Labusch parameter αL and the viscous coefficient η as [40]

ν0 = φ0αL

2πBη
. (3.115)

This is the frequency of damped oscillation within the averaged pinning potential.
This is seen from the following argument: the relaxation time in the pinning poten-
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tial is given as τ ∼ η∗/kp from (2.41), where kp, the Labusch parameter per unit
pinning center, is given by kp = αL/Np where Np is the pin concentration; thus,
ν0 � 1/2πτ . In Sect. 2.3 the number of flux lines in the flux bundle is assumed to
be 1.

When the flux bundle is displaced by the flux line spacing af, its condition is
expected to be approximately the same as before the displacement. In other words,
the hopping distance a is supposed to be comparable to af. In general flux motion
towards the left-hand side is also considered, hence the induced electric field ac-
cording to (2.17) is given by

E = Bafν0

[

exp

(

− U

kBT

)

− exp

(

− U ′

kBT

)]

, (3.116)

where U ′ is the energy barrier for the flux motion opposite to the Lorentz force (see
Fig. 3.44(a)). Thus, the electric field is generated by the motion of flux lines due to
the flux creep. The mechanism responsible for the appearance of the electric field
is essentially the same as that for flux flow in spite of the quantitative difference,
and hence, a distinction in experiments between flux creep and flow is difficult.
According to analysis of experimental results, most of the observed electric field at
which the critical current density is determined by the usual four-terminal method
comes from the mechanism of flux creep, as will be shown in Chap. 8. Hence, it is
necessary to take account of the mechanisms of both flux creep and flow to analyze
the practical E-J characteristics. The theoretical model of flux creep and flow used
for the analysis of the E-J curves is described in Sect. 8.5.2. The electromagnetic
phenomena in high-temperature superconductors will be analyzed using this model,
and the results will be discussed in Sect. 8.5.3.

Here we treat for simplicity the magnetic relaxation of a large superconducting
slab (0 ≤ x ≤ 2d) in a magnetic field along the z-axis. From symmetry we need
to treat only the half, 0 ≤ x ≤ d . In an increasing field, the current flows along the
positive y-axis and the motion of flux lines due to the flux creep occurs along the
positive x-axis. If the average current density is denoted by J , the magnetic flux
density is B = μ0(He − Jx). In terms of its average value 〈B〉, the electric field at
the surface, x = 0, is given by the Maxwell equation (2.2) as

E = ∂d〈B〉
∂t

= −μ0d
2

2
· ∂J

∂t
. (3.117)

The relaxation of the superconducting current density with time can be obtained by
substituting this equation into the left-hand side of (3.116) with U and U ′ expressed
as functions of J .

Here we shall treat the case where the relaxation of the superconducting current is
small in the vicinity of the virtual critical state. In this case U � U ′ and the second
term in (3.116) can be neglected. It is clear from Fig. 3.44(a) that U increases with
decreasing J . Hence, it is reasonable to express U by expanding it in the form U =
U∗

0 − sJ , where U∗
0 is the apparent pinning potential energy in the limit J → 0 and

s is a constant. As shown in Fig. 3.44(b) U = 0 is attained in the virtual critical state
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and the current density in this state is denoted by Jc0. Then, we have approximately
s = U∗

0 /Jc0 and

U = U∗
0

(

1 − J

Jc0

)

. (3.118)

Hence, the equation describing the time variation of the current density is given by

∂J

∂t
= −2Bafν0

μ0d2
exp

[

− U∗
0

kBT

(

1 − J

Jc0

)]

. (3.119)

This equation is easily solved and under the initial condition that J = Jc0 at t = 0
we obtain

J

Jc0
= 1 − kBT

U∗
0

log

(

2Bafν0U
∗
0 t

μ0d2Jc0kBT
+ 1

)

. (3.120)

After a sufficient time, the 1 in the argument of the logarithm can be neglected
and the time variation of the current density shown in Fig. 3.43 can be derived.
The apparent pinning potential energy U∗

0 can be estimated from the logarithmic
relaxation rate:

− d

d log t

(

J

Jc0

)

= kBT

U∗
0

. (3.121)

The energy barrier U is not generally a linear function of J , as in (3.118), over a
wide range of J . The relaxation of the current for such a case will be discussed be-
low: we simply approximate the relationship between the energy of the flux bundle
and its central position, x, shown in Fig. 3.44(a) as

F(x) = U0

2
sinkx − f x, (3.122)

where k = 2π/af and f = JBV with V denoting the volume of the flux bundle.
Differentiating (3.122) with respect to x, the quasiequilibrium position of the flux
bundle is obtained:

x = −x0 = −1

k
cos−1

(

2f

U0k

)

. (3.123)

On the other hand, F(x) is locally maximum at x = x0. Hence, the energy barrier is
obtained as U = F(x0) − F(−x0). That is,

U

U0
=

[

1 −
(

2f

U0k

)2]1/2

− 2f

U0k
cos−1

(

2f

U0k

)

. (3.124)

If there is no thermal activation, the virtual critical state with U = 0 will be attained.
In this case x0 = 0 will be reached, and hence, 2f/U0k = 1 will be satisfied. Since
J in this case is equal to Jc0, the general relation

2f

U0k
= J

Jc0
≡ j (3.125)
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Fig. 3.45 Relationship
between the energy barrier U

and the normalized current
density j . Extending the
tangent at a given value of
current density to j = 0, the
intercept gives the apparent
pinning potential energy U∗

0

is derived. In terms of the normalized current density j , (3.124) can be written as

U

U0
= (

1 − j2)1/2 − j cos−1 j. (3.126)

In case j is very close to 1 so that 1 − j � 1, (3.126) reduces to U/U0 �
(2

√
2/3)(1 − j)3/2. In this case j is described by

∂j

∂t
= −c exp

[

−U(j)

kBT

]

, (3.127)

where c = 2Bafν0/μ0Jc0d
2. U(j) is strictly a nonlinear function. If we expand

U(j) as in (3.118) within a narrow region, the variation of j as in (3.120) will be
obtained. However, the value of U∗

0 estimated from the relaxation is different from
the real pinning potential energy, U0. That is, U∗

0 is usually smaller than U0 as
shown in Fig. 3.45. Hence, the measurement of magnetization relaxation leads to an
underestimate of the pinning potential energy.

Here we shall show an example of the numerical analysis. We assume the temper-
ature dependence of the virtual critical current density to be Jc0 = A[1− (T /Tc)

2]2.
In case of strong pinning, the pinning potential energy U0 is proportional to J

1/2
c0 as

will be shown in Sect. 7.7. Hence, the temperature dependence of U0 is given by

U0 = kBβ

[

1 −
(

T

Tc

)2]

, (3.128)

where β is a constant dependent on the flux pinning strength. Here we assume
an Y-based high-temperature superconductor with Tc = 92 K and other param-
eters: B = 0.1 T (af = 0.15 µm), ν0 = 1.0 × 106 Hz, d = 1.0 × 10−4 m and
A = 3.0 × 109 A m−2. The results of numerical calculation [41] on the time de-
pendence of j at various temperatures for β = 3000 K are shown in Fig. 3.46. Fig-
ure 3.47(a) shows the apparent pinning potential energy U∗

0 obtained from the av-

erage logarithmic relaxation rate in the range of 1 ≤ t ≤ 104 s according to (3.121).
In addition, (b) represents the relationship between U0 and U∗

0 for β = 10000 K.



130 3 Various Electromagnetic Phenomena

Fig. 3.46 Relaxation of
normalized current density
[41] obtained from (3.127) in
case β = 3000 K

Fig. 3.47 Calculated
apparent pinning potential
energy U∗

0 for given values
of U0 [41] for (a) β = 3000 K
and (b) β = 10000 K
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Fig. 3.48 (a) Relationship between the energy of flux bundle and its position at measurement
of magnetization at low temperatures. Since the relaxation from the virtual critical state is not
large, the energy barrier U is small. (b) Condition at measurement at high temperatures. Since the
relaxation has already taken place to a considerable extent, U is large

It turns out that the U∗
0 obtained is much smaller than the given U0 and the dif-

ference becomes larger at lower temperatures, especially in the limit T → 0, U∗
0

approaches 0. Furthermore U∗
0 /U0 decreases as U0 increases. In practice, accord-

ing to the numerical calculation by Welch [42], if the current dependence of the
activation energy is given by U/U0 ∝ (1 − j)N , the apparent pinning potential is
expressed as (see Exercise 3.11)

U∗
0 = cN

[

(kBT )N−1U0
]1/N

. (3.129)

In the case of sinusoidal washboard potential discussed above, N = 3/2 and
c3/2 = 1.65. This result explains the above behavior exactly.

How can we understand this result? Assume that the initial state at t = 0 is the
virtual critical state shown in Fig. 3.44(b).2 The measurement of magnetic relaxation
starts some time after the establishment of the initial state, at which time the varia-
tion in the energy of the flux bundle vs. its position is shown in Fig. 3.48 for (a) low
temperatures and (b) high temperatures. That is, at the low temperature in (a) little
relaxation has taken place, and the energy barrier U is small; hence, the flux creep
takes place easily, and the apparent pinning potential energy U∗

0 is small. On the
other hand, in (b) where the temperature is higher, the relaxation has already taken
place revealing a large U ; in this case, the flux creep is suppressed and the resultant
U∗

0 is large. This result can also be explained from Fig. 3.45. At low temperatures
j at the time of measurement is close to 1 and U∗

0 obtained from extrapolating the

2In practice, even if we try to instantaneously establish an ideal external condition such as magnetic
field before the flux creep starts, the relaxation due to the viscosity shown in Sect. 3.2 is added.
Hence, the condition in Fig. 3.44(b) is not realized in a strict sense. However, the results after a
sufficient long time do not seem to depend sensitively on the initial condition as usually observed,
and the above assumption will be admitted.
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Fig. 3.49 Temperature
dependence of apparent
pinning potential energy U∗

0
obtained from the magnetic
relaxation for a
melt-processed Y-B-C-O [42]

tangential line is much smaller than U0. On the other hand, at high temperatures j is
small and U∗

0 is close to U0. Furthermore the dependence of U∗
0 on U0 at a constant

temperature has a similar explanation. The cases of large and small U0 correspond
qualitatively to Fig. 3.48(a) and (b), respectively.

Figure 3.49 shows some experimental U∗
0 data for Y-B-C-O [42]: U∗

0 takes on a
small value at low temperatures and its temperature dependence agrees qualitatively
with the theoretical prediction as in Fig. 3.47. The observed flux creep phenom-
ena can be approximately explained by the model assuming a simple sinusoidal
variation in the energy given by (3.122). Flux creep in response to such a spatial
variation in the potential was first pointed out by Beasley et al. [43] and later in-
vestigated in detail by Welch [42]. It should be noted that the shape of potential
around the inflection point has a significant influence on the magnetic relaxation.
However, any discussion has not yet been given on this problem in literature. Other
mechanisms have also been proposed to explain the temperature dependence of U∗

0
shown in Fig. 3.49, such as; the statistical distribution of the pinning potential en-
ergy [44], the nonlinear dependence of the energy barrier U on J [45] due to an
enlargement of the pinning correlation length, that gives the flux bundle size, with
decreasing J , etc. However, the width of distributed pinning potential energy nec-
essary to explain the temperature dependence of U∗

0 seems to be much larger than
the observed distribution width of the critical current density. As for pinning cor-
relation length enhancement, Campbell’s AC penetration depth, as measured using
Campbell’s method described in Sect. 5.3, is not enhanced in the vicinity of J = 0.
From these observations and from the fact that the shape of the pinning potential is
necessarily involved when the flux bundle overcomes the barrier, it seems natural
that the temperature dependence of U∗

0 originates mainly from the shape of the pin-
ning potential. However, it is difficult to explain the temperature dependence of U∗

0
at low temperature from only the simple effects of the pinning potential shape. This
problem will be discussed in Appendix A.9.
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Fig. 3.50 Phase boundary
Hc2(T ) and irreversibility
line Hi(T ) on the
temperature-magnetic field
plane

It should be noted that, from the measurement of magnetic relaxation, the actual
pinning potential energy that is important to the physics of flux pinning cannot be
obtained, while the relaxation rate that is concerned with the lifetime of the persis-
tent current and is an important engineering quantity can be obtained. In principle it
is possible to obtain a value closer to the true pinning potential energy by inducing
a current at slightly higher temperature and then measuring the relaxation of that
current at some chosen lower temperature. However, if we wish to get a more exact
value, an astronomically long time will be needed for the measurements.

When flux creep becomes pronounced at high temperatures, the flux motion oc-
curs frequently, resulting in a steady electric field even for a small transport current.
That is, the critical current density Jc is zero. In this regime magnetic hysteresis
does not appear under a quasistatic variation of the applied field; i.e., the magneti-
zation is reversible. The boundary between the reversible region with Jc = 0 and the
irreversible one with Jc �= 0 on the temperature vs. magnetic field plane is called the
irreversibility line (see Fig. 3.50). Figure 3.51 is a set of magnetization curves for
Pb-In [46]. It can be seen that the magnetization becomes reversible at high magnetic
fields in specimens with weak pinning forces, and that the reversible region shrinks
with increasing pinning strength. This shows that the irreversibility line depends on
the pinning strength. At higher temperatures flux creep is stronger and hence, the
above features are more noticeable in high-temperature superconductors. The melt-
ing of flux line lattice, the vortex glass-liquid transition, etc., were also proposed as
for the origin of the irreversibility line. In this book we follow the mechanism of the
flux creep. The detailed discussion on this point for high-temperature superconduc-
tors will be given in Sect. 8.2.

The irreversibility line at a given temperature T is defined as the magnetic field,
Hi(T ), at which the critical current density determined in terms of the electric field
criterion, E = Ec, for example, reduces to zero. That is, neglecting the second term
in (3.116) again, from the requirement that U = U0 in the limit J = Jc = 0 we have

U0(Hi) = kBT log

(

μ0Hiafν0

Ec

)

. (3.130)
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Fig. 3.51 Magnetization curves for Pb-8.23wt%In specimens with various flux pinning
strengths [46]. ‘A’ is a specimen after cold working and ‘B’, ‘C’, ‘D’ and ‘E’ are specimens an-
nealed at room temperature for 30 min., 1 day, 18 days and 46 days, respectively

As expected, U0 depends on the flux pinning strength and is a function of mag-
netic field and temperature. Hence, the irreversibility line, Hi(T ), can be obtained
from (3.130). The estimation of U0 will take place in Sect. 7.7, and examples of the
irreversibility line for high-temperature superconductors will be shown in Sect. 8.5.
It was mentioned above that only the apparent pinning potential energy U∗

0 can be
obtained from the measurement of magnetic relaxation. On the other hand, the irre-
versibility line is directly related to the true pinning potential energy U0. Hence, U0

can be estimated from a measured value of the irreversibility field.
At higher temperatures and/or higher magnetic fields the flux lines tend to creep

in the direction of the Lorentz force and a voltage appears. This mechanism is identi-
cal with that of flux flow. Based on this concept the voltage states in Fig. 3.44(a) and
(c) are the creep state and the flow state, respectively. However, these are not easily
discerned experimentally. In the regime of flux creep, we make the approximation

U ′ � U + f af = U + πU0
J

Jc0
(3.131)

for use in (3.116). If the second term is sufficiently less than kBT , the

E � πBafν0U0J

Jc0kBT
exp

(

− U0

kBT

)

. (3.132)

This is an ohmic current-voltage characteristic, which takes into consideration the
fact that U approaches U0 in the range of sufficiently small J . This is called Ther-
mally Assisted Flux Flow (TAFF). The corresponding electric resistivity is obtained
as

ρ = ρ0 exp

(

− U0

kBT

)

, (3.133)
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where ρ0 = πBafν0U0/Jc0kBT can be approximately regarded as a constant within
a narrow temperature range. This suggests that U0 may be estimated from the slope
of the log ρ vs. 1/T . However, as pointed out by Yeshurun and Malozemoff [47],
such an attempt would lead to error, since U0 varies with temperature. If we write
U0 = K(1 − T/Tc)

p , for instance, at high temperatures, it is easy to derive

∂ logρ

∂(1/T )
= −U0

kB

(

1 + pT

Tc − T

)

. (3.134)

This suggests that a simple plot of logρ vs. 1/T would lead to an overestimate
of U0, especially so in the vicinity of Tc. Generally the value of p is unknown
and U0 cannot be obtained. This is due to the fact that (3.133) is correct in a fixed
magnetic field only within a very narrow temperature range. It is possible to observe
an electric resistivity similar to that of (3.133) in the presence of a large transport
current. In this case the condition of Fig. 3.48(a) holds and what is obtained is none
other than U∗

0 . The apparent pinning potential energy obtained in this method agrees
well with that obtained from magnetic relaxation [48].

A very wide reversible region exists between the irreversibility line, Hi(T ), and
the phase boundary, Hc2(T ), as shown in Fig. 3.50 for a superconductor with a
weak pinning force; this leads to a wide resistive transition. Hence, it is claimed
that the width of the resistive transition is determined by the pinning strength. When

Fig. 3.52 (a) Resistance vs.
magnetic field at 4.2 K for a
Nb-Ta specimen with weak
pinning force [28].
(b) Theoretically calculated
resistance vs. magnetic field
assuming a flux flow with
observed critical current
density and flux flow
resistivity [49]
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the temperature is lowered slightly below the irreversibility line, Jc recovers sud-
denly. On the other hand, if the temperature is slightly increased, a variation from
the flux creep state to the flux flow state takes place. Hence, the flux lines are con-
sidered to be in the flow state throughout most of the wide resistive transition. Fig-
ure 3.52(a) shows the broad magnetic field range of the resistive transition that has
been measured for a Nb-Ta alloy [28] under various current densities; (b) shows the
corresponding theoretical results [49] constructed from the observed critical cur-
rent density and flux flow resistivity. These agree well with each other in the range
where a small resistivity due to the flux creep can be disregarded. This supports
the speculation that the dominant component of the usually observed resistive tran-
sition comes from flux flow. Such a broad resistive transition is also observed for
high-temperature superconductors and the same discussion can be repeated in prin-
ciple. However, the effect of flux creep is then much more noticeable and the region
of low resistivity will be further widened. In addition the effect of the superconduct-
ing fluctuations is considered to be large around the phase boundary and the shape
of the resistive transition itself seems to be strongly influenced by the fluctuations.

3.9 Exercises

3.1. Derive (3.18), (3.19) and (3.20).
3.2. Derive the viscous energy loss density given by the second term of (3.33)

directly from the second term of (2.73). (Hint: Since the viscous energy loss
density is small, (3.28), the quasistatic value for the velocity of flux lines, can
be used.)

3.3. Using the method of (2.74), derive (3.40), the energy loss density when an
AC magnetic field is applied to a current-carrying superconductor.

3.4. Derive (3.60) from (3.59).
3.5. Calculate the DC susceptibility in the field cooled process when the parameter

m′ in (3.80), representing the temperature dependence of Jc, is equal to 2.
3.6. Calculate the DC susceptibility when a constant magnetic field is applied and

then, the temperature is elevated after cooling down at zero field.
3.7. From the area of the 〈B〉-H loop, derive (3.110), the AC energy loss density in

a superconducting slab thinner than the AC penetration depth λ′
0, in a parallel

AC magnetic field.
3.8. Derive ηp in Fig. 3.38 for a bulk superconductor for a sufficiently small AC

field amplitude h0 using the Campbell model.
3.9. Derive (3.112), where the superconductor is a slab of thickness df.

3.10. Prove that the half size of a superconductor must be smaller than the AC
penetration depth, λ′

0, for the effect of reversible flux motion to be significant.
For simplicity it is assumed that the AC magnetic field is applied parallel to a
wide superconducting slab of thickness 2d . (Hint: Use the condition that the
maximum displacement of flux lines in the superconductor in one period is
less than the diameter of the pinning potential, 2di.)
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3.11. The current density dependence of the energy barrier, U , is assumed as
U(J ) = U0(1 − J/Jc0)

N , where N > 1. Discuss the dependences of the ap-
parent pinning potential energy, U∗

0 , on the temperature, T , and U0, using
Fig. 3.45.

3.12. When the resistivity criterion, ρ = ρc, is used for the definition of the criti-
cal current density, how is the expression of the irreversibility line different
from (3.130)? (Hint: Use (3.132)).
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