

C. Wu and A. Cohen (Eds.): APPT 2013, LNCS 8299, pp. 119–131, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Binarization-Based Human Detection for Compact FPGA
Implementation

Shuai Xie, Yibin Li*, Zhiping Jia, and Lei Ju

School of Computer Science and Technology, Shandong University, Jinan, China, 250101
xieshuai1210@mail.sdu.edu.cn,
{liyibing,jzp,leiju}@sdu.edu.cn

Abstract. The implementation of human detection in the embedded domain can
be a challenging issue. In this paper, a real-time, low-power human detection
method with high detection accuracy is implemented on a low-cost field-
programmable gate array (FPGA) platform. For the histogram of oriented
gradients feature and linear support vector machine classifier, the binarization
process is employed instead of normalization, as the original algorithm is
unsuitable for compact implementation. Furthermore, pipeline architecture is
introduced to accelerate the processing rate. The initial experimental results
demonstrate that the proposed implementation achieved 293 fps by using a
low-end Xilinx Spartan-3e FPGA. The detection accuracy attained a miss
rate of 1.97% and false positive rate of 1%. For further demonstration, a
prototype is developed using an OV7670 camera device. With the speed of the
camera device, 30 fps can be achieved, which satisfies most real-time
applications. Considering the energy restriction of the battery-based system at a
speed of 30 fps, the implementation can work with a power consumption of less
than 353mW.

Keywords: HOG+SVM, Binarization Process, FPGA Implementation, Low
Power Consumption.

1 Introduction

Real-time image-based human detection is an important implementation for vision
systems, particularly for embedded environments. Apart from the vision domain, this
implementation also has a wide range application prospects in areas such as
entertainment, surveillance, robotics, and security. For embedded human-detection
applications, real time, detection accuracy, hardware resource requirement, and power
consumption are four primary considerations. In many applications, external memory
is usually needed. Moreover, a tradeoff must exist between performance and power
consumption is trade-off by owing to the limited resources of a field-programmable
gate array (FPGA).

* Corresponding author.

120 S. Xie et al.

The human detection process primarily contains two significant steps: feature
description and classification. During feature description, important information is
extracted from the image. The classifier algorithm is used to determine whether a
person is present in an image. Various methods for feature description have been
proposed, such as Haar wavelets [1], Haar-like features [2], Gabor filers [3], and
SHIF descriptors [4]. Likewise, many classifier algorithms are available, such as the
support vector machine (SVM) [5] and Adaboost [6]. Nevertheless, these algorithms
cannot satisfy the requirements for detection accuracy.

In 2005, the famous histogram of oriented gradients (HOG) feature [7] was
proposed, which subsequently became the most widely used algorithm for object
detection. This algorithm significantly enhanced the detection accuracy of human
detection. However, its high computational complexity has made the HOG algorithm
impossible to run on a desktop computer in real time. Numerous hardware
implementations of human detection based on HOG algorithm that could work in real
time have recently been made. Nevertheless, such methods have always had lower
detection accuracy and poor power consumption or required a high-end FPGA for its
implementation.

To achieve a good balance of the four considerations mentioned in the first
paragraph and to address the concern of having limited resources in embedded
implementations such as wireless sensor networks (WSNs), we proposed a simplified
human detection algorithm based on the HOG feature and linear support vector
machine (SVM) targeting low-end FPGA devices. Binarization is adopted and
optimized to replace the normalization process. Additionally, pipeline architecture is
introduced to increase the detection speed. Furthermore, few other simplifications and
optimizations are introduced during hardware implementation. Finally, our
implementation can be mapped on a low-end Xilinx Spartan-3e FPGA and can work
in real time, with slightly less detection accuracy and low power consumption.

The remainder of this paper is organized as follows: Section2 reviews related
studies on human detection; Section3 provides the architecture of the proposed human
detection process; Section4 explains the FPGA implementation details; Section5
recounts the implementation results and evaluation; and Section 6 presents a summary
of the work.

2 Related Work

With the extensive literature on human detection, this section mentions only a few
relevant papers on the acceleration or hardware implementation of human detection.
Our algorithm is primarily based on the original HOG feature algorithm proposed by
Dalal et al [7]. However, the original HOG algorithm has a very slow detection rate.
In 2006, Zhu et al. [8] proposed a modified human detection algorithm based on a
multi-scale HOG feature and a boosted cascade of the Adaboost classifier, which was
first proposed in [9]. In this study, the researchers achieved nearly the same detection
accuracy as Dalal’s implementation that worked in real time, although this algorithm
was unsuitable for the hardware used. In 2007, Kerhetet al. [10] proposed a human

 Binarization-Based Human Detection for Compact FPGA Implementation 121

detection implementation that had minimal power consumption through the FPGA
development board. Although this work was not based on the HOG algorithm, it was
implemented well on FPGA with good detection speed and low power consumption.
In 2009, Kadotaet al. [11] introduced a hardware implementation of HOG feature
extraction. The researchers proposed some ideals of simplification or modification for
FPGA implementation and achieved a process speed of 30fps. To reduce the HOG
feature size, [12] proposed an effective binarization scheme for the HOG feature. In
2011, Negi et al. [13] employed a deep pipelined architecture for the hardware
implementation of human detection. With this architecture, external memory was no
longer necessary, and less hardware resources were used. In 2012, Komorkiewicz et
al. [14] implemented the original HOG algorithm by using single precision, 32-bit
floating point values. Their implementation achieved high detection accuracy,
although the use of a high-end Virtex6 FPGA resulted in very high resource
utilization.

In the present study, we modified the algorithm used by Negi et al. and further
optimized it for hardware implementation, thus achieving significantly improved
performance.

3 Human Detection Algorithm

The HOG feature uses the local histograms of oriented gradients of each pixel to
characterize the image. This feature expresses the contour of humans and avoids the
interference of light and action to a certain extent. The detection process is achieved
through the linear SVM classifier. In this study, some modifications were made on
these algorithms to suit hardware implementation on FPGA.

The original HOG and SVM algorithms have four steps:

1) Gradient and direction calculation;
2) Histogram generation;
3) Normalization;
4) Classification.

This algorithm is unsuitable for hardware implementation as the dense of square,
square root, multiplication, anti-trigonometric, and division operations are calculated
during the detection process, and an external memory is always required for the
storage of intermediate data. Thus, the binarization process was adopted and
optimized to replace the normalization process, resulting in a series of modifications
that will be discussed in detail in Sections 3.2 and 3.3. Likewise, other optimizations
and simplifications are discussed below.

3.1 Gradient and Direction Calculation

The parameters of the cell and block used for the HOG extraction are 8×8 and 16×16
pixels, respectively. Based on Dalal’s work, sample mask (-1,0,1) showed the best
performance. Using this mask, the following equation was obtained:

122 S. Xie et al.

 ൜ ௫݂ሺݔ௬݂ሺݔ
where f(x,y) represents th
performance, the square roo
or fy ranges from 0 to 15. T
and (3). For the color ima
separately, and the largest m
of the pixel. m

Fi

To compute for the grad
into nine bins, as shown in
calculated for the nearest bi
is based on the gradient ma
the direction θ. This proces

,ݔ ሻݕ ൌ ݂ሺݔ ൅ 1, ሻݕ െ ݂ሺݔ െ 1, ,ݔሻݕ ሻݕ ൌ ݂ሺݔ, ݕ ൅ 1ሻ െ ݂ሺݔ, ݕ െ 1ሻ

he luminance value at coordinate (x,y). For enhan
ot of each channel was obtained, such that each value fo
The magnitude m and direction θ are calculated by Eqs
age, the gradients of each color channel were calcula
m(x,y) was considered, as this value is the gradient vec

mሺx, yሻ ൌ ඥ ௫݂ሺݔ, ሻଶݕ ൅ ௬݂ሺݔ, ,ሻଶ θሺxݕ yሻ ൌ tanିଵ ௙ೣ ሺ௫,௬ሻ௙೤ሺ௫,௬ሻ

ig. 1. Quantized gradient directions θ

Fig. 2. Nine bins

dient of the orientation histogram, the orientation is divi
n Fig.1. For each pixel in a cell, two weighted votes
in and the bin to which the pixel belongs (Fig. 2). The v
agnitude m, whereas the weight is calculated according
s is calculated using the following equations:

 (1)

nced
or fx
.(2)
ated
ctor

 (2)

 (3)

ided
are

vote
g to

 Binarization-Based Human Detection for Compact FPGA Implementation 123

 ݉௡ ൌ ሺ1 െ aሻmሺx, yሻ (4)

 m୬ୣୟ୰ୣୱ୲ ൌ amሺx, yሻ (5) a ൌ ௕஘ሺ୶,୷ሻగ െ ሺn ൅ 0.5ሻ (6)

In the proposed implementation, a standard RGB-565 image was used. Only the
highest four bits from every channel were used for the calculation, which means that
only 512 different values are available for gradient m and direction θ. Thus, the
weight vote of each pixel can be calculated in advance and then pre-stored in a look-
up-table with 1 kb BRAM.

Subsequently, the votes of a cell are grouped and summed according to their
direction. Finally, the histogram is generated for each cell.

In this implementation, each block contains four histograms, which is a nine-
dimension vector.

3.2 Histogram Normalization

Using steps 1, we obtained serve histograms, each of which is a nine-dimension
vector in the hardware, given by:

Fi,j=[f0
i,j, f

1
i,j, f

2
i,j, f

3
i,j, f

4
i,j, f

5
i,j, f

6
i,j, f

7
i,j, f

8
i,j]

Each element fn of Fi,j represents the value of bin n in each histogram. This element
is called a feature vector. For each cell, we obtained a feature vector, whereas for each
block, we obtained a large feature vector consisting of all the feature vectors from the
cells that belong to the block. For example, the cell is 8×8 pixels, whereas each block
consists of 2×2 cells. Thus, the feature vector of the block is a 36-dimension vector
formed by the nine-dimension vectors of the four cells.

To weaken the effect of light and the slight movement of the human body on the
feature vector, the feature vector should be normalized. As stated in Dalal’s paper, the
L2-norm has the best performance, which is given by v ൌ ௏ೖඥԡ௏ೖԡమାகమ (7)

where Vk is the feature vector of block k, ε is a constant to avoid division by zero, and
v is the final feature vector.

Although this step also has a square root operation, it cannot be realized using a
look-up table. The square root operation can be performed using a Cordic IP CORE
with a delay of 20 clocks. However, such action would make hardware realization
impossible, and a large memory would be necessary to store the feature vector.

In [12], the researchers proposed a binarization process, a method used by [13]
with a constant threshold. Although this process degrades performance because of the
loss of accuracy of the HOG features, the memory cost is considerably reduced. After
normalization, the HOG features of a block become specific values. With this process,
the HOG features of each block would have the same weight on the classifier training
and detection processes, although the rate of each HOG feature would not be changed

124 S. Xie et al.

as before. With a constant threshold, the effective features of a block can be
highlighted. Moreover, with a threshold that represents the average value of all the
features in a block, the same result can be obtained, along with other benefits.

As shown in Fig.3, the red line represents the average value of the 36 HOG
features in one block. The final HOG feature is set to 1 if it is greater than the average
value and is set to 0 otherwise. This process has two advantages. First, the rate of the
HOG features for each block are unchanged with or without the normalization process
because this process is no longer required given the selection of an average value as
the threshold. Second, the features obtained after the binarization process take the
value of either 1 or 0, which will further optimize the detection process with a SVM
classifier. This optimization will be discussed in Section 3.3. Additionally, with an
average value as the threshold, the same benefit can be obtained as with having a
constant threshold.

During the HOG feature generation step, the normalization process costs the most
calculation resources given the need to calculate the dense of square, square root,
division, and multiplication operations for each block. Assigning average values as
the threshold will reduce the resource cost of both the hardware and software.

Fig. 3. Binarization process

After the two steps, the HOG feature of the image was obtained.

3.3 SVM Classification

SVM is a machine learning method used for classification and regression analysis.
Given a set of training examples, each example is classified under two categories, and
an SVM training algorithm builds a model that assigns new examples for each
corresponding category.

For the proposed realization, the training data comprised the feature vector of each
image, which is a 3780-dimension vector. To simplify the calculation, linear SVM
classifier was employed. The SVM classifier was trained offline, and the final SVM
classifier was a 3781-dimension vector.

The detection process using a linear SVM classifier involved multiplying the SVM
vector by its corresponding HOG features. After the binarization process, the HOG
features used to train the SVM classifier took the value of either 1 or 0, and the

0

0.05

0.1

0.15

0.2

0.25

1 5 9 13 17 21 25 29 33

 Binarization-Based Human Detection for Compact FPGA Implementation 125

multiplication operation was replaced by addition. Statistically, 40% of the HOG
features take the value of 1. Finally, in each detection process, 1512addition
operations would be calculated, instead of 3780 multiplication and 3780 addition
operations. This modification saves hardware resources.

4 FPGA Implementation

An OV7670CMOS video camera was used as the input device. By changing the
initial parameters, the input image was fixed at 320×240 pixels, and the frame rate
was set as 30fps. Finally, the detection parameters used are shown in Table 1.

Table 1. Parameters

Input image 320x240 pixel

Detection windows 64x128 pixel

Cell 8x8 pixel

Block 2x2 cell

Step stride 8x8 pixel

Number of bins 9

4.1 Gradient Computation

To accelerate the classification process, the pipeline architecture was adopted. As
shown in Fig. 4, three lines of three-stage shift registers were used to store four
adjacent data during gradient and direction calculation. Two-line BRAM was used to
store the other 317 values. As previously mentioned, the calculation of mn and mnearest

was performed using a look-up-table.

Fig. 4. Hardware structure for the calculation of gradient and bin

126 S. Xie et al.

4.2 Histogram Generation

For the histogram generation process, pipeline architecture was also used. After the
previous process, the weighted votes of each pixel were obtained. The histogram of
each cell was generated by summing up the votes of one cell. As illustrated in Fig. 5,
a partial histogram was calculated for every eight pixels and then stored in a
temporary register. Subsequently, the stream of partial histograms was loaded into the
BRAM, such that the partial histograms for eight lines are added up. Thus, the
histogram for each cell was generated.

Fig. 5. Hardware structure for the histogram generation

4.3 Histogram Normalization

In our implementation, we adopted optimized binarization instead of the
normalization process. The hardware structure and data stream are shown in Fig. 4.
This process requires the adjacent feature vectors of four cells. Therefore, two lines of
two-stage shift registers and one-line of BRAM buffers were used to store the feature
vectors. The average value of the feature vector of each cell was calculated and
cached in the temporary register, along with its feature vector. Every time a new
feature vector was input, the average value of each block was calculated. Each feature
value was then coded in binarization mode.

Fig. 6. Hardware structure for binarization

 Binarization-Based Human Detection for Compact FPGA Implementation 127

4.4 SVM Classification

With the binarization process, the classification process could be performed by adding
the elements of the classifier to a corresponding HOG feature of 1. To accelerate the
prediction process, a 3780-dimension filter was built, as shown in Fig.7. The HOG
features were stored in the 15×7×(4×9) bit shift registers and the 14×32×(4×9) block
ram. The whole HOG feature of a detection window was stored in the shift register
and then loaded into the filter. Consequently, the detection results were calculated by
adding the SVM elements, which have a corresponding HOG feature of 1. The
hardware architecture of this process is shown in Fig.8.

Fig. 7. SVM Filter

Fig. 8. Hardware structure for the human detection process

Block
1

Block
2

Block
3

Block
4

Block
5

Block
6

Block
7

Block
8

Block
9

Block
10

Block
11

Block
12

Block
13

Block
14

Block
92

Block
93

Block
94

Block
95

Block
96

Block
97

Block
98

Block
99

Block
100

Block
101

Block
102

Block
103

Block
104

Block
105

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

SVM Filter

128 S. Xie et al.

5 Implementation

The human detection projec
made by the authors wit
microcontroller was placed
data to the FPGA at the
2.4GHz RF24L01B.

Fig

Table 2 lists the implem
present work showed a red
Therefore, the present reali
with very limited programm

Tabl

 Our
Spa

SLICE

LUT 3

FF 2

BRAM

To capture a stable im

implementation works on 2
images per second, alth
implementation. In spite of
detect images at293 fps, w
the FPGA implementation
opencv3.1 using a PC wi
operated by Windows7. T

n Result and Evaluation

ct was implemented in a wireless video development br
th a Spartan-3e XC3S500E FPGA (Fig. 9). Anstm

d in the board to control the camera and transmit the im
correct time. The detection result was transmitted b

g. 9. Wireless video development board

mentation results of the current study and of Negi et al. T
duced resource usage compared with that by Negi et
zation could be mapped on this low-end Spartan-3e FP

mable resources.

le 2. Results oftheFPGA implementation

r work on
artan-3e

Negi’s work
on Virtex-5

Komorkiewicz’s
work on Virtex-6

2041 2,181 32,428

3,379 17,383 113,359

2,602 2,070 75,071

6 36 119

mage data according to the camera device, the pres
24MHz. At this clock rate, the authors detected 30 in

hough this value is far from the limitation of
f the restricted rate of the camera, our implementation

with maximum frequency of 67.75MHz. The throughpu
was compared to a software implementation generated

ith 2.33GHz Intel Core2 E6550 CPU and 4GB DD
The software implementation achieved about 2.1fps,

road
m32

mage
by a

The
t al.

PGA

sent
nput

the
can

ut of
d by

DR2,
and

 Binarization-Based Human Detection for Compact FPGA Implementation 129

Negi’s implementation achieved112fps at a maximum frequency. Therefore, the
current implementation is 139.5 times faster than the software implementation, and
2.6 times faster than Negi et al.’s implementation.

Subsequently, the authors re-implemented Negi et al.’s work on software. In this
work, eight features are treated as one 8-bit-wide feature during the classifier training
process. In contrast, in the current implementation, each HOG feature is used
independently. The test results are summarized as a detection error trade-off (DET)
curve in Fig. 10.Negi et al.’s work attained a 3.4% miss rate and a 20.7% FFPW.
Alternatively, the current implementation attained a1.97% miss rate and 1% FFPW.
In comparison with Negi et al.’s work, the detection accuracy of the current
implementation was also evaluated by treating every 4 and 2 HOG features as one
feature during the classifier training and detecting processes, as shown in
Fig.10.Theresults show that this simplification method harmed the detection accuracy.
Nevertheless, although the performance of the current implementation is worse than
that of the original algorithm, it is still much better than that of Negi et al.

Fig. 10. DET curve for detection accuracy

Table 3. The power evaluation results

Realization Quiescent Power Dynamic Power Total

Ours on Spartan-3e 83mW 270mW 353mW

Ours on Virtex5 444mW 120mW 564mW

Negi’s on Virtex5 450mW 438mW 888mW

Finally, we compared the energy consumption of the current implementation and

that of Negi et al. The results are summarized using the Xilinx XPower Estimator
(Table 3). The current implementation that works on a Spartan-3e has a power

130 S. Xie et al.

consumption of 353mW, which is extremely low and can satisfy the extreme
limitation on a WSN node. Furthermore, using a Virtex5 FPGA, the current
implementation achieved 564mW power consumption, whereas that of Negi et al.’s
implementation reached 888mW. The quiescent power was almost the same, whereas
the dynamic power is nearly a quarter of that of Negi et al.

6 Conclusion

In this paper, a real-time, low power consumption implementation of human detection
using the HOG feature and linear SVM was presented. After an experimental
implementation on FPGA and an evaluation of the algorithm’s detection accuracy
through software implementation, the current work achieved a detection rate of 30
fps, with relatively less hardware resources and lower power consumption. Although
some simplifications have been made, the detection accuracy is acceptable and
relatively higher than that of other implementations. With a high-speed camera, the
maximum frequency of 293 fps can be achieved. The current implementation is
suitable for the extreme limitation of an embedded platform, such as a WSN node.

References

1. Oren, M., Papageorgiou, C., Sinha, P., Osuna, E., Poggio, T.: Pedestrian detection using
wavelet templates. In: IEEE Conference on Computer Vision and Pattern Recognition, pp.
193–199 (1997)

2. Viola, P., Jones, M.J., Snow, D.: Detecting pedestrians using patterns of motion and
appearance. International Journal of Computer Vision 63(2), 153–161 (2005)

3. Cheng, H., Zheng, N., Qin, J.: Pedestrian detection using sparse gabor filter and support
vector machine. In: IEEE Intelligent Vehicles Symposium, pp. 583–587 (2005)

4. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International
Journal of Computer Vision 60(2), 91–110 (2004)

5. Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines. ACM
Transactions on Intelligent Systems and Technology (TIST) 2(3), 27 (2011)

6. Freund, Y., Schapire, R.E.: A desicion-theoretic generalization of on-line learning and an
application to boosting. In: The 2nd European Conference on Computational Learning
Theory, London, UK, pp. 23–37 (1995)

7. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: The 2005
International Conference on Computer Vision and Pattern Recognition, Washington, DC,
USA, vol. 2, pp. 886–893 (2005)

8. Zhu, Q., Yeh, M.-C., Cheng, K.-T., Avidan, S.: Fast human detection using a cascade of
histograms of oriented gradients. In: Computer Vision and Pattern Recognition (CVPR),
pp. 1491–1498 (2006)

9. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In:
Computer Vision and Pattern Recognition (CVPR), pp. 511–518 (2001)

10. Kerhet, A., Leonardi, F., Boni, A., Lombardo, P., Magno, M., Benini, L.: Distributed video
surveillance using hardware-friendly sparse large margin classifiers. In: Advanced Video
and Signal Based Surveillance (AVSS), pp. 87–92 (2007)

 Binarization-Based Human Detection for Compact FPGA Implementation 131

11. Kadota, R., Sugano, H., Hiromoto, M., Ochi, H., Miyamoto, R., Nakamura, Y.: Hardware
architecture for HOG feature extraction. In: Intelligent Information Hiding and Multimedia
Signal Processing, pp. 1330–1333 (2009)

12. Sun, W., Kise, K.: Speeding up the detection of line drawings using a hash table. In:
Pattern Recognition (CCPR), pp. 1–5 (2009)

13. Negi, K., Dohi, K., Shibata, Y., Oguri, K.: Deep pipelined one-chip FPGA implementation
of a real-time image-based human detection algorithm. In: Field-Programmable
Technology (FPT), pp. 1–8 (2011)

14. Komorkiewicz, M., Kluczewski, M., Gorgon, M.: Floating point HOG implementation for
real-time multiple object detection. In: Field Programmable Logic and Applications (FPL),
pp. 711–714 (2012)

	Binarization-Based Human Detection for Compact FPGA
Implementation

	1 Introduction
	2 Related Work
	3 Human Detection Algorithm
	3.1 Gradient and Direction Calculation
	3.2 Histogram Normalization
	3.3 SVM Classification

	4 FPGA Implementation
	4.1 Gradient Computation
	4.2 Histogram Generation
	4.3 Histogram Normalization
	4.4 SVM Classification

	5 Implementation n Result and Evaluation
	6 Conclusion
	References

