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Abstract. The implementation of human detection in the embedded domain can 
be a challenging issue. In this paper, a real-time, low-power human detection 
method with high detection accuracy is implemented on a low-cost field-
programmable gate array (FPGA) platform. For the histogram of oriented 
gradients feature and linear support vector machine classifier, the binarization 
process is employed instead of normalization, as the original algorithm is  
unsuitable for compact implementation. Furthermore, pipeline architecture is 
introduced to accelerate the processing rate. The initial experimental results 
demonstrate that the proposed implementation achieved 293 fps by using a  
low-end Xilinx Spartan-3e FPGA. The detection accuracy attained a miss  
rate of 1.97% and false positive rate of 1%. For further demonstration, a 
prototype is developed using an OV7670 camera device. With the speed of the 
camera device, 30 fps can be achieved, which satisfies most real-time 
applications. Considering the energy restriction of the battery-based system at a 
speed of 30 fps, the implementation can work with a power consumption of less 
than 353mW.  

Keywords: HOG+SVM, Binarization Process, FPGA Implementation, Low 
Power Consumption. 

1 Introduction 

Real-time image-based human detection is an important implementation for vision 
systems, particularly for embedded environments. Apart from the vision domain, this 
implementation also has a wide range application prospects in areas such as 
entertainment, surveillance, robotics, and security. For embedded human-detection 
applications, real time, detection accuracy, hardware resource requirement, and power 
consumption are four primary considerations. In many applications, external memory 
is usually needed. Moreover, a tradeoff must exist between performance and power 
consumption is trade-off by owing to the limited resources of a field-programmable 
gate array (FPGA). 
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The human detection process primarily contains two significant steps: feature 
description and classification. During feature description, important information is 
extracted from the image. The classifier algorithm is used to determine whether a 
person is present in an image. Various methods for feature description have been 
proposed, such as Haar wavelets [1], Haar-like features [2], Gabor filers [3], and 
SHIF descriptors [4]. Likewise, many classifier algorithms are available, such as the 
support vector machine (SVM) [5] and Adaboost [6]. Nevertheless, these algorithms 
cannot satisfy the requirements for detection accuracy. 

In 2005, the famous histogram of oriented gradients (HOG) feature [7] was 
proposed, which subsequently became the most widely used algorithm for object 
detection. This algorithm significantly enhanced the detection accuracy of human 
detection. However, its high computational complexity has made the HOG algorithm 
impossible to run on a desktop computer in real time. Numerous hardware 
implementations of human detection based on HOG algorithm that could work in real 
time have recently been made. Nevertheless, such methods have always had lower 
detection accuracy and poor power consumption or required a high-end FPGA for its 
implementation. 

To achieve a good balance of the four considerations mentioned in the first 
paragraph and to address the concern of having limited resources in embedded 
implementations such as wireless sensor networks (WSNs), we proposed a simplified 
human detection algorithm based on the HOG feature and linear support vector 
machine (SVM) targeting low-end FPGA devices. Binarization is adopted and 
optimized to replace the normalization process. Additionally, pipeline architecture is 
introduced to increase the detection speed. Furthermore, few other simplifications and 
optimizations are introduced during hardware implementation. Finally, our 
implementation can be mapped on a low-end Xilinx Spartan-3e FPGA and can work 
in real time, with slightly less detection accuracy and low power consumption. 

The remainder of this paper is organized as follows: Section2 reviews related 
studies on human detection; Section3 provides the architecture of the proposed human 
detection process; Section4 explains the FPGA implementation details; Section5 
recounts the implementation results and evaluation; and Section 6 presents a summary 
of the work.  

2 Related Work 

With the extensive literature on human detection, this section mentions only a few 
relevant papers on the acceleration or hardware implementation of human detection. 
Our algorithm is primarily based on the original HOG feature algorithm proposed by 
Dalal et al [7]. However, the original HOG algorithm has a very slow detection rate. 
In 2006, Zhu et al. [8] proposed a modified human detection algorithm based on a 
multi-scale HOG feature and a boosted cascade of the Adaboost classifier, which was 
first proposed in [9]. In this study, the researchers achieved nearly the same detection 
accuracy as Dalal’s implementation that worked in real time, although this algorithm 
was unsuitable for the hardware used. In 2007, Kerhetet al. [10] proposed a human 
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detection implementation that had minimal power consumption through the FPGA 
development board. Although this work was not based on the HOG algorithm, it was 
implemented well on FPGA with good detection speed and low power consumption. 
In 2009, Kadotaet al. [11] introduced a hardware implementation of HOG feature 
extraction. The researchers proposed some ideals of simplification or modification for 
FPGA implementation and achieved a process speed of 30fps. To reduce the HOG 
feature size, [12] proposed an effective binarization scheme for the HOG feature. In 
2011, Negi et al. [13] employed a deep pipelined architecture for the hardware 
implementation of human detection. With this architecture, external memory was no 
longer necessary, and less hardware resources were used. In 2012, Komorkiewicz et 
al. [14] implemented the original HOG algorithm by using single precision, 32-bit 
floating point values. Their implementation achieved high detection accuracy, 
although the use of a high-end Virtex6 FPGA resulted in very high resource 
utilization.  

In the present study, we modified the algorithm used by Negi et al. and further 
optimized it for hardware implementation, thus achieving significantly improved 
performance. 

3 Human Detection Algorithm 

The HOG feature uses the local histograms of oriented gradients of each pixel to 
characterize the image. This feature expresses the contour of humans and avoids the 
interference of light and action to a certain extent. The detection process is achieved 
through the linear SVM classifier. In this study, some modifications were made on 
these algorithms to suit hardware implementation on FPGA.  

The original HOG and SVM algorithms have four steps: 

1) Gradient and direction calculation;  
2) Histogram generation;  
3) Normalization;  
4) Classification. 

This algorithm is unsuitable for hardware implementation as the dense of square, 
square root, multiplication, anti-trigonometric, and division operations are calculated 
during the detection process, and an external memory is always required for the 
storage of intermediate data. Thus, the binarization process was adopted and 
optimized to replace the normalization process, resulting in a series of modifications 
that will be discussed in detail in Sections 3.2 and 3.3. Likewise, other optimizations 
and simplifications are discussed below.  

3.1 Gradient and Direction Calculation 

The parameters of the cell and block used for the HOG extraction are 8×8 and 16×16 
pixels, respectively. Based on Dalal’s work, sample mask (-1,0,1) showed the best 
performance. Using this mask, the following equation was obtained:  



122 S. Xie et al. 

 

                                    ൜ ௫݂ሺݔ௬݂ሺݔ
where f(x,y) represents th
performance, the square roo
or fy ranges from 0 to 15. T
and (3). For the color ima
separately, and the largest m
of the pixel. m

Fi

To compute for the grad
into nine bins, as shown in
calculated for the nearest bi
is based on the gradient ma
the direction θ. This proces

,ݔ ሻݕ ൌ ݂ሺݔ ൅ 1, ሻݕ െ ݂ሺݔ െ 1, ,ݔሻݕ ሻݕ ൌ ݂ሺݔ, ݕ ൅ 1ሻ െ ݂ሺݔ, ݕ െ 1ሻ                                 

he luminance value at coordinate (x,y). For enhan
ot of each channel was obtained, such that each value fo
The magnitude m and direction θ are calculated by Eqs
age, the gradients of each color channel were calcula
m(x,y) was considered, as this value is the gradient vec

mሺx, yሻ ൌ ඥ ௫݂ሺݔ, ሻଶݕ ൅ ௬݂ሺݔ, ,ሻଶ                                     θሺxݕ yሻ ൌ tanିଵ ௙ೣ ሺ௫,௬ሻ௙೤ሺ௫,௬ሻ                                           

 

ig. 1. Quantized gradient directions θ 

 

Fig. 2. Nine bins 

dient of the orientation histogram, the orientation is divi
n Fig.1. For each pixel in a cell, two weighted votes 
in and the bin to which the pixel belongs (Fig. 2). The v
agnitude m, whereas the weight is calculated according
s is calculated using the following equations: 

 (1) 

nced 
or fx 
.(2) 
ated 
ctor 

 (2) 

 (3) 

ided 
are 

vote 
g to 



 Binarization-Based Human Detection for Compact FPGA Implementation 123 

 

                                                      ݉௡ ൌ ሺ1 െ aሻmሺx, yሻ                                   (4) 

                                                       m୬ୣୟ୰ୣୱ୲ ൌ amሺx, yሻ                        (5) a ൌ ௕஘ሺ୶,୷ሻగ െ ሺn ൅ 0.5ሻ                                    (6) 

In the proposed implementation, a standard RGB-565 image was used. Only the 
highest four bits from every channel were used for the calculation, which means that 
only 512 different values are available for gradient m and direction θ. Thus, the 
weight vote of each pixel can be calculated in advance and then pre-stored in a look-
up-table with 1 kb BRAM.  

Subsequently, the votes of a cell are grouped and summed according to their 
direction. Finally, the histogram is generated for each cell. 

In this implementation, each block contains four histograms, which is a nine-
dimension vector. 

3.2 Histogram Normalization 

Using steps 1, we obtained serve histograms, each of which is a nine-dimension 
vector in the hardware, given by:  

Fi,j=[f0
i,j, f

1
i,j, f

2
i,j, f

3
i,j, f

4
i,j, f

5
i,j, f

6
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7
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8
i,j] 

Each element fn of Fi,j represents the value of bin n in each histogram. This element 
is called a feature vector. For each cell, we obtained a feature vector, whereas for each 
block, we obtained a large feature vector consisting of all the feature vectors from the 
cells that belong to the block. For example, the cell is 8×8 pixels, whereas each block 
consists of 2×2 cells. Thus, the feature vector of the block is a 36-dimension vector 
formed by the nine-dimension vectors of the four cells.  

To weaken the effect of light and the slight movement of the human body on the 
feature vector, the feature vector should be normalized. As stated in Dalal’s paper, the 
L2-norm has the best performance, which is given by v ൌ ௏ೖඥԡ௏ೖԡమାகమ  (7) 

where Vk is the feature vector of block k, ε is a constant to avoid division by zero, and 
v is the final feature vector. 

Although this step also has a square root operation, it cannot be realized using a 
look-up table. The square root operation can be performed using a Cordic IP CORE 
with a delay of 20 clocks. However, such action would make hardware realization 
impossible, and a large memory would be necessary to store the feature vector.  

In [12], the researchers proposed a binarization process, a method used by [13] 
with a constant threshold. Although this process degrades performance because of the 
loss of accuracy of the HOG features, the memory cost is considerably reduced. After 
normalization, the HOG features of a block become specific values. With this process, 
the HOG features of each block would have the same weight on the classifier training 
and detection processes, although the rate of each HOG feature would not be changed 
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as before. With a constant threshold, the effective features of a block can be 
highlighted. Moreover, with a threshold that represents the average value of all the 
features in a block, the same result can be obtained, along with other benefits.  

As shown in Fig.3, the red line represents the average value of the 36 HOG 
features in one block. The final HOG feature is set to 1 if it is greater than the average 
value and is set to 0 otherwise. This process has two advantages. First, the rate of the 
HOG features for each block are unchanged with or without the normalization process 
because this process is no longer required given the selection of an average value as 
the threshold. Second, the features obtained after the binarization process take the 
value of either 1 or 0, which will further optimize the detection process with a SVM 
classifier. This optimization will be discussed in Section 3.3. Additionally, with an 
average value as the threshold, the same benefit can be obtained as with having a 
constant threshold.  

During the HOG feature generation step, the normalization process costs the most 
calculation resources given the need to calculate the dense of square, square root, 
division, and multiplication operations for each block. Assigning average values as 
the threshold will reduce the resource cost of both the hardware and software. 

 

Fig. 3. Binarization process 

After the two steps, the HOG feature of the image was obtained. 

3.3 SVM Classification 

SVM is a machine learning method used for classification and regression analysis. 
Given a set of training examples, each example is classified under two categories, and 
an SVM training algorithm builds a model that assigns new examples for each 
corresponding category.  

For the proposed realization, the training data comprised the feature vector of each 
image, which is a 3780-dimension vector. To simplify the calculation, linear SVM 
classifier was employed. The SVM classifier was trained offline, and the final SVM 
classifier was a 3781-dimension vector. 

The detection process using a linear SVM classifier involved multiplying the SVM 
vector by its corresponding HOG features. After the binarization process, the HOG 
features used to train the SVM classifier took the value of either 1 or 0, and the 
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multiplication operation was replaced by addition. Statistically, 40% of the HOG 
features take the value of 1. Finally, in each detection process, 1512addition 
operations would be calculated, instead of 3780 multiplication and 3780 addition 
operations. This modification saves hardware resources. 

4 FPGA Implementation 

An OV7670CMOS video camera was used as the input device. By changing the 
initial parameters, the input image was fixed at 320×240 pixels, and the frame rate 
was set as 30fps. Finally, the detection parameters used are shown in Table 1. 

Table 1. Parameters 

Input image 320x240 pixel 

Detection windows 64x128 pixel 

Cell 8x8 pixel 

Block 2x2 cell 

Step stride 8x8 pixel 

Number of bins 9 

4.1 Gradient Computation 

To accelerate the classification process, the pipeline architecture was adopted. As 
shown in Fig. 4, three lines of three-stage shift registers were used to store four 
adjacent data during gradient and direction calculation. Two-line BRAM was used to 
store the other 317 values. As previously mentioned, the calculation of mn and mnearest 

was performed using a look-up-table. 

 

Fig. 4. Hardware structure for the calculation of gradient and bin 
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4.2 Histogram Generation 

For the histogram generation process, pipeline architecture was also used. After the 
previous process, the weighted votes of each pixel were obtained. The histogram of 
each cell was generated by summing up the votes of one cell. As illustrated in Fig. 5, 
a partial histogram was calculated for every eight pixels and then stored in a 
temporary register. Subsequently, the stream of partial histograms was loaded into the 
BRAM, such that the partial histograms for eight lines are added up. Thus, the 
histogram for each cell was generated. 

 

Fig. 5. Hardware structure for the histogram generation 

4.3 Histogram Normalization  

In our implementation, we adopted optimized binarization instead of the 
normalization process. The hardware structure and data stream are shown in Fig. 4. 
This process requires the adjacent feature vectors of four cells. Therefore, two lines of 
two-stage shift registers and one-line of BRAM buffers were used to store the feature 
vectors. The average value of the feature vector of each cell was calculated and 
cached in the temporary register, along with its feature vector. Every time a new 
feature vector was input, the average value of each block was calculated. Each feature 
value was then coded in binarization mode. 

 

Fig. 6. Hardware structure for binarization 
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4.4 SVM Classification 

With the binarization process, the classification process could be performed by adding 
the elements of the classifier to a corresponding HOG feature of 1. To accelerate the 
prediction process, a 3780-dimension filter was built, as shown in Fig.7. The HOG 
features were stored in the 15×7×(4×9) bit shift registers and the 14×32×(4×9) block 
ram. The whole HOG feature of a detection window was stored in the shift register 
and then loaded into the filter. Consequently, the detection results were calculated by 
adding the SVM elements, which have a corresponding HOG feature of 1. The 
hardware architecture of this process is shown in Fig.8. 

 

Fig. 7. SVM Filter 

 

Fig. 8. Hardware structure for the human detection process 
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Negi’s implementation achieved112fps at a maximum frequency. Therefore, the 
current implementation is 139.5 times faster than the software implementation, and 
2.6 times faster than Negi et al.’s implementation.  

Subsequently, the authors re-implemented Negi et al.’s work on software. In this 
work, eight features are treated as one 8-bit-wide feature during the classifier training 
process. In contrast, in the current implementation, each HOG feature is used 
independently. The test results are summarized as a detection error trade-off (DET) 
curve in Fig. 10.Negi et al.’s work attained a 3.4% miss rate and a 20.7% FFPW. 
Alternatively, the current implementation attained a1.97% miss rate and 1% FFPW. 
In comparison with Negi et al.’s work, the detection accuracy of the current 
implementation was also evaluated by treating every 4 and 2 HOG features as one 
feature during the classifier training and detecting processes, as shown in 
Fig.10.Theresults show that this simplification method harmed the detection accuracy. 
Nevertheless, although the performance of the current implementation is worse than 
that of the original algorithm, it is still much better than that of Negi et al. 

 

Fig. 10. DET curve for detection accuracy 

Table 3. The power evaluation results  

Realization Quiescent Power Dynamic Power Total 

Ours on Spartan-3e 83mW 270mW 353mW 

Ours on Virtex5 444mW 120mW 564mW 

Negi’s on Virtex5 450mW 438mW 888mW 

 
Finally, we compared the energy consumption of the current implementation and 

that of Negi et al. The results are summarized using the Xilinx XPower Estimator 
(Table 3). The current implementation that works on a Spartan-3e has a power 
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consumption of 353mW, which is extremely low and can satisfy the extreme 
limitation on a WSN node. Furthermore, using a Virtex5 FPGA, the current 
implementation achieved 564mW power consumption, whereas that of Negi et al.’s 
implementation reached 888mW. The quiescent power was almost the same, whereas 
the dynamic power is nearly a quarter of that of Negi et al. 

6 Conclusion 

In this paper, a real-time, low power consumption implementation of human detection 
using the HOG feature and linear SVM was presented. After an experimental 
implementation on FPGA and an evaluation of the algorithm’s detection accuracy 
through software implementation, the current work achieved a detection rate of 30 
fps, with relatively less hardware resources and lower power consumption. Although 
some simplifications have been made, the detection accuracy is acceptable and 
relatively higher than that of other implementations. With a high-speed camera, the 
maximum frequency of 293 fps can be achieved. The current implementation is 
suitable for the extreme limitation of an embedded platform, such as a WSN node. 
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