
Research on SPH Parallel Acceleration

Strategies for Multi-GPU Platform

Lei Hu, Xukun Shen, and Xiang Long

Beihang University, Beijing 100191, PRC
hu lei 1989@163.com,

{xkshen,long}@buaa.edu.cn

Abstract. This paper proposes an acceleration strategy for SPH on
single-node multi-GPU platform. First the acceleration strategy for SPH
on single-GPU is studied in conjunction with the characteristics of archi-
tecture. Then the changing pattern of SPH’s computation time has been
discussed. Based on the fact that the changing pattern is rather slow,
using a simple dynamic load balancing algorithm an acceptable load
balance is obtained on multi-GPU. Finally, an almost linear speedup is
achieved on multi-GPU by further optimizing dynamic load balancing
algorithm and communication strategy among multiple GPUs

Keywords: SPH, multi-GPU, dynamic load balancing, communication
optimization.

1 Introduction

Smoothed Particle Hydrodynamics(SPH) is a mesh-free Lagrangian method
based on particles. Due to its self-adaptivity, SPH can handle the problem of
large deformation in simulation in a natural way and is free of several flaws that
a grid-based method usually has, when they are used independently to deal with
the same problems. In recent years, SPH has made much headway; its accuracy,
stability and adaptability have already met the requirements of a great variety
of engineering applications. However, the huge computation cost is a bottleneck
to its use in many real-time situations. Therefore, nowadays great efforts have
been made to explore its acceleration strategies.

In this paper, an appropriate neighbour list algorithm for SPH is selected
according to the architectural characteristics of GPU. Then two optimization
methods are proposed to solve code divergence problem and reduce potential
neighbour particles. After observing the behavior of SPH computing process, a
simple yet acceptable dynamic load balancing algorithm is given. Finally, opti-
mization strategies of inter-GPU communication are illustrated.

2 SPH Method

SPH, developed by Monaghan[1] and Lucy[2] initially for astrophysical problems,
has been studied and extended extensively; it has been applied to solving the

C. Wu and A. Cohen (Eds.): APPT 2013, LNCS 8299, pp. 104–118, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

SPH 105

problem of dynamic response of material strength and hydrodynamics with large
deformations. The objects to be simulated are divided into a set of discrete
elements called particles, which can move freely in space. The physical quantities
of particles are updated according to their neighbours in each time step. Two
particles are called neighbours only if the distance between them is less than
a special value, which is called smooth radius. The physical quantity A of a
particle is given by

As(ri) =
∑

j

mj
Aj

ρj
W (ri − rj , h) (1)

where mj is the mass of neighbour particle j; Aj is the physical quantity of
neighbour particle j; ρj is the density of neighbour particle j; W is a kernel
function governing the contribution of neighbour particle j according to the
distance between particles i and j, and the smooth length h. As particles move
freely in a scenario without spatial relationship, we need to search for their
neighbours in each time step.

3 Related Work

Currently, most researches on the acceleration for SPH focus on two aspects:
how to speed up neighbour search and how to utilize the computation power of
parallel architecture.

SPH implements the interaction between particles, and so how to create the
neighbour list is one of the key points to improve SPH’s performance. To speed up
neighbour search, the simulation space is divided into cubical cells, called uniform
grid. The size of a cell is usually equal to smooth radius. Before neighbour search,
each particle is assigned to only one cell according to its center point to create a
particle list of each cell. To find the neighbours of a certain particle, 27(3 ∗ 3 ∗ 3)
cells need to be searched(including the cell itself resident in and 26 adjacent cells).
Denote by c the number of particles residing in each cell, then the complexity of
this method is O(cN) where N is the total number of particles in the simulation.
Dominguez et al.[3] have compared the time cost and memory consumption
between 4 gridding algorithms to create the particle list of each cell. Taking time
cost and memory consumption both into consideration, the algorithm in which
particles are sorted according to the cells performs the best. In this method,
each cell’s particle list only needs to store the start position of sorted particles
in the particle array. By comparing the start position of continuous cells, we
can find all particles in each cell. Dominguez et al. also compare time cost and
memory consumptions between VL(Verlet List) algorithm and CLL(Cell Linked
List) algorithm which are both used for the creation of each particle’s neighbour
list. The main difference between these two algorithm lies in the fact that VL
keeps neighbour list and reuses it in several time steps while CLL does not.

Fleissner et al.[4] use CPU cluster to accelerate SPH. They select ORB (or-
thogonal recursive bisection) domain decomposition algorithm to split simulation

106 L. Hu, X. Shen, and X. Long

space from the perspective of optimizing communication between nodes. Each
CPU is assigned a subspace. Dynamic load balance is achieved by moving the
boundary of subspace with a PI controller. The main advantage of this method
is the decreased amount of communication between CPUs, but it has a drawback
that the communication pattern gets more sophisticated.

With the rapid development of GPU technology in recent years, the perfor-
mance and programmability of GPU have been promoted significantly. GPU,
which is used in computer graphics traditionally, has been extended to high per-
formance computing field. GPU has higher floating-point performance and bet-
ter power-efficiency than CPU. Many computation-intensive applications have
migrated from CPU to GPU and a speedup of two orders of magnitudes has
been achieved. Because of its natural parallelism, SPH is remarkably suitable
for parallel architectures such as GPU. In fact, even before the advent of specific
languages like CUDA and OpenCL, researchers had started to use GPU to speed
up SPH with graphic API. Amada et al.[5] implement SPH method partially on
GPU. They create neighbour list of each particle on CPU, and then transport
it to GPU to calculate force between particles. Harada et al.[6] implement SPH
on GPU entirely. After CUDA, Herault et al.[7] implement SPH with CUDA
for the first time. The neighbour search algorithm they use is same with that of
Simon Green’s[8].

As it is hard to meet the speed requirement of real-time simulation in a
scale of millions of particles on a single GPU, it is extremely necessary to utilize
multi-GPU in single computing node or even GPU cluster. Rustico et al.[10] and
Dominguez et al.[11] have proposed multi-GPU SPH implementation indepen-
dently. They both use the one-dimensional decomposition to divide simulation
space into subspaces, whose number is equal to that of GPUs. The boundary of
subspace is aligned at the boundary of cell. Dynamic load balance is achieved
by passing the outmost cell slices of a subspace, whose corresponding GPU is
overloaded, to others. The difference between Rustico et al.’s and Dominguez
et al.’s dynamic load balancing algorithm is only in implementing details. As
for communication strategy, both implementations divide subspace further into
two boundary areas and an inner area, and cover the overhead of data exchange
cost by exchanging boundary particles’ data in parallel with the computation of
inner area. Dominguez et al. further point out that the main factor influencing
the performance of GPU is synchronization between GPUs.

4 Accelerating SPH On Single-GPU

First an appropriate neighbour list algorithm for GPU is chosen from existing
ones in terms of time cost and memory consumptions. Then SPH’s code di-
vergence problem in traditional CUDA implementation is analyzed in conjunc-
tion with characteristics of SIMT architecture of CUDA-enabled GPU. Finally,
Smaller Cell optimization is presented from the viewpoint of reducing the quan-
tity of potential neighbour particles in the neighbour search.

SPH 107

4.1 Choosing Appropriate Neighbour List Algorithm

For SPH in which all particles have the same smooth radius, there exists two
popular methods to create neighbour list, named CLL(Cell Linked List) and
VL(Verlet List), respectively. Both algorithms use the same method mentioned
in Section 3 to create a particle list of each cell. The difference between the
two algorithms is whether to keep the neighbour list or not. Over CLL algo-
rithm, the main advantage of VL algorithm is that it keeps neighbour list in
several time steps and reduces the time cost in neighbour search. In contrast,
VL algorithm requires much more memory because of storing the neighbour list.
According to Dominguez et al., under the condition of searching for neighbours
only once in each time step, VL algorithm is 6% faster than CLL algorithm
while its memory consumption is 30 times larger. As GPU has a relatively small
size of memory(GTX480 has about 1.5 GB), VL algorithm brings minor perfor-
mance promotion along with excessive memory consumption, thus limiting the
simulation scale fatally. Rustico et al. keep neighbour list in several time steps in
their multi-GPU SPH implementation and find that each particle needs nearly
1KB memory, and that a scale of only 1.8 million particles can be simulated on
a GTX480 graphic card. Considering storage and performance comprehensively,
CLL algorithm is more suitable for GPU.

4.2 Code Divergence Optimization

In SIMT architecture of CUDA-enabled GPU, threads are scheduled and exe-
cuted in warp. A warp is composed by 32 threads which execute same instruction
at the same time in parallel. Due to conditional control flow instructions, some-
times the threads in a same warp may need to execute instructions in different
code paths. In that case, the threads of a warp will execute instructions in each
path serially, thereby bringing huge negative influence on performance. In tradi-
tional implementation, a thread only computes one particle’s force. Each thread
traverses all 27 cells with a triple loop and traverses all particles in each cell in
the innermost loop(shown in figure 1).

After traversing all particles in cell, as all threads in a same warp have to
execute the same instruction, those threads must be synchronized implicitly be-
fore traversing the next cell. As the relationship between CUDA threads and
particles is one-to-one and the number of particles in most cells is not equal to
the number of threads in a warp, different threads in a same warp may process
particles in different cells. So each thread in a warp is likely to traverse cells
with different particle quantities at the same time, causing imbalance workload
between two synchronization points. Obviously, reducing the frequency of syn-
chronization can lower down the negative influence of imbalance workload on
performance. The frequency of synchronization is equal to the number of cells
to be searched. In CLL algorithm, particles are reordered according to the cells
and cells following the order of Z, Y and X axis. The particles in continuous
cells in Z axis will be continuous in particle array. As each cell only stores the
range(start index and end index in our implementation) of particles contained in

108 L. Hu, X. Shen, and X. Long

Fig. 1. Code snippets of neighbour search in traditional SPH implementation

itself in particle array, the range of 3 continuous cells in Z axis can be replaced
by a larger cuboid with the same range. As a result, to find the neighbours of
each particle, only 9 nearby cuboids should be searched and branch instructions
reduce in number, consequently greatly improving the negative influence of code
divergence, and meanwhile reducing global memory access of cell information.
This optimization is called Cell Merging.

4.3 Reduce Potential Neighbours

The size of cell determines the volume of the neighbour search space. When the
cell size is equal to smooth radius h, each particle has to traverse 27 cells with a
volume of 27h3. However, for each given particle i, it is only affected by particles
in a sphere of radius h whose centre is i, and volume is 4π∗h3/3. Smaller cell size
can make the volume of neighbour search space of each particle get much closer
to the volume of sphere to reduce potential neighbour particles. Supposing cell
size is h/n, in order to ensure that all neighbor particles can be found for a given
particle, the volume being searched should completely cover the volume of the
sphere with radius h. So we have to search n cells with cell size h/n on both sides
of the cell where the particle stays in each dimension of neighbour search space.
Thus the side length of the cubic searched is 2∗n∗(1/n)h+1∗(1/n)h= (2+1/n)h
and the volume of neighbour search space is reduced to (2 + 1/n)3h3. However
two drawbacks occur when n is too large. First, the total memory consumption
of cells increases rapidly with the decreasing cell size:

memn = n3 ∗mem1 (2)

SPH 109

where memn represents the total memory consumption of cells when the cell
size is reduced to h/n. Second, larger n makes neighbour search more sophisti-
cated and increases code divergence and global memory access of cell informa-
tion. As mentioned in section 4.2, more neighbour cells which need to search
to find neighbour particles lead to more implicit synchronization points. When
n becomes larger, the amount of neighbour cells need to be searched increases
rapidly, thus leading to the increasing of implicit synchronization points and code
divergence. Besides, more neighbour cells means more global memory access, as
the cell information is resident in the GPU’s global memory. Taking all this into
consideration synthetically, n=2 is the best choice in our implementation and
the volume of the neighbour search space shrinks to 15.625h3. Smaller Cell is
the name we give to this optimization.

4.4 Speedup on Single-GPU

For a better understanding of the experiment results shown in this paper, a
brief description of our experimental environment is given first. The hardware
platform is a dual quad-core Intel Xeon processor E5520 (2.27GHz, 8MB cache)
Server with 4 GTX480 GPU cards, and each GTX480 has 480 CUDA cores with
1.5GB global memory. The operating system is Ubuntu 11.04 x86 64, CUDA
runtime 4.1. Each experiment includes 1000 computing time steps for a certain
scenario. Two scenarios, one of which has different scales, are used as testing
cases in this paper, named armadillo and bunny respectively(shown in figure 2).

(a) armadillo (b) bunny

Fig. 2. Snapshot of scenario armadillo(a) and bunny(b) in 1st(upper-left),
300th(upper-right), 500th(lower-left), 1000th(lower-right) time step

Figure 3 shows the performance improvements with the two optimizations
mentioned above. Only the time cost of updating particles’ physical quantity
is compared. As Smaller Cell will significantly increase code divergence(When
n=2 and only Smaller Cell is applied, the time cost of updating particles’ phys-
ical quantity increases by about 80%), it should be applied with Cell Merging
optimization to get the best performance. In that case, each cuboid covers 5
continuous cells in Z axis.

110 L. Hu, X. Shen, and X. Long

Fig. 3. Speedup on single-GPU with two optimization methods

5 Multi-GPU

In this section, we extend SPH implementation from single-GPU to multi-GPU.
In multi-GPU implementation, the Cell Merging optimization is applied to ac-
celerate the execution. Different from prior work on multi-GPU SPH, the feature
of SPH which can be utilized to design a simple yet acceptable dynamic load
balancing algorithm is mainly discussed instead of proposing a dynamic load
balancing algorithm directly. Communication optimizations focus on additional
steps introduced in multi-GPU SPH. For a better understanding of the problems
faced in multi-GPU SPH, a brief description of the basic frame of multi-GPU
SPH based on CLL algorithm is given first.

5.1 Basic Design

In our design, the same domain decomposition algorithm described in [9,11] is
used to divide particles among multiple GPUs. Simulation space is divided into
subspaces along X-axis whose number is same as the number of GPUs. The
interface of subspaces is aligned at cells’ boundary. The smallest unit of division
is n cell slices, as each cell has a cell size of h/m in Y-Z plane. For convenience,
we assume that the size of cell is equal to smooth radius below (the method
is similar when cell size is different). For the reason that particle’s physical
quantity is influenced by all its neighbour particles, each GPU contains not only
the particles in corresponding subspace, but also those near the interface within
a distance of smooth radius but on the neighbour GPU’s side. These particles
are called ghost particles below. The ghost particles exist in both neighbour
GPUs simultaneously but are updated by only one of them. After any physical
quantity of particles is updated, each GPU needs to exchange the new physical
quantity of ghost particles.

SPH 111

Multi-GPU algorithm should include 4 main steps as follows:

1. Create Neighbour List
2. Dynamic Load Balancing

if (load imbalance)

{

divide the simulation space anew

each GPU exchanges boundary particles

}

3. Update Particles’ Physical Quantity

3.1 force calculation

3.2 integration in time

4. Particle Migration

4.1 gather particles needed by other GPU, called migrating

particles.

4.2 exchange migrating particles

Step 1 and step 3 are the basic steps of single-GPU SPH. The reason why we
put Dynamic Load Balancing step after Create Neighbour List is that CLL
algorithm can make particles in same cell slice continuous in particle array,
thereby simplifying the data exchange after the subspaces are repartitioned.

5.2 Dynamic Load Balancing

The key idea to obtain dynamic load balance between multiple GPUs is moving
boundaries of each subspace to change the number of particles on each GPU. The
key point of a good dynamic load balancing algorithm is how and when to move
the boundaries. Before a new dynamic load balancing algorithm is proposed, the
feature of SPH which can be utilized to design a simple yet acceptable dynamic
load balancing algorithm is discussed first.

To ensure the accuracy of simulation in SPH, the moving length of any par-
ticle is usually set not longer than the smooth radius h in each time step, and
consequently the spatial distribution of particles will not change a lot in two
contiguous time steps. The relative stability of distribution keeps the two main
factors that influence performance—the quantity of potential neighbours and
neighbour particles—all stay stable. So in two continuous time steps, computa-
tion time changes slightly. We have used the scenario of armadillo with a scale
of 2980K particles and scenario of bunny with 3049K to test changing range of
each time step’s time cost of updating particles’ physical quantity in comparison
with the previous one in the first 1000 time steps. Figure 4 shows the result.

From 300 to 480 time steps, the fluid in armadillo is compressed because of the
initial collapse and then it becomes sparser gradually. So not only the number
of potential neighbours but also the number of neighbours change severely; as a

112 L. Hu, X. Shen, and X. Long

Fig. 4. Comparison of each time steps’ time cost(the time cost of updating particles’
physical quantity) with previous one tested with scenario armadillo and bunny

consequence, the time cost of updating particles’ physical quantity also changes
substantially. However, even in that case, the changing range remains within
3%. For bunny scenario that is affected less by collapse, its changing range stays
within 1% all along. Because of the slow changing pattern of SPH’s computation
time, simple dynamic load balancing algorithm described below can get satisfying
results:

for(each pair of neighbour GPUs A and B)

{

if(time_A > time_B)

{

A gives one cell slice to B

}else{

B gives one cell slice to A

}

}

Figure 5 shows a comparison of real wall time(longest time cost of updating
particles’ physical quantity among multiple GPUs) with an ideal one(average
time cost of all GPUs), demonstrating that simple dynamic load balancing al-
gorithm has acceptable effect. Figure 6 shows the speedup of multi-GPU in the
same situation. As particle scale goes up, the effect of the simple dynamic load
balancing algorithm improves.

The main disadvantage of simple dynamic load balancing algorithm is that
it is hyper-sensitive to load imbalance among GPUs. As the whole boundary
cell slice is the smallest unit of data exchanging, the alternation between the
overload and underload on a GPU in continuous time steps is unnecessarily
frequent, which leads to an unnecessary communication overhead in the step
of Dynamic Load Balancing. There are two ways to reduce the frequency. One
is to balance workload every k time steps. The other is to give a threshold
to dynamic load balancing algorithm. Simulation space is repartitioned if and

SPH 113

Fig. 5. Comparison of real wall time with ideal one when simple dynamic load balancing
algorithm is applied

Fig. 6. Speedup with simple dynamic load balancing algorithm

only if the difference of computation overhead between two neighbour GPUs is
bigger than this threshold. Dynamic load balancing algorithm should discover
the imbalance among GPUs timely and gives response. So the second way is our
choice.

new time diffleft = fabs(t1 ∗ ncleft1 − t2 ∗ ncleft2) (3)

new time diffright = fabs(t1 ∗ ncright1 − t2 ∗ ncright2) (4)

nc = nnew/noriginal (5)

threshold = min{new time diffleft, new time diffright} (6)

where t1 and t2 represent the time GPU1 and GPU2(GPU1 and GPU2 are a
certain pair of neighbour GPUs, GPU1 is in the left of GPU2) used to update
particles’ physical quantity respectively; nc stands for the changing rate of the
number of particles updated by GPU after boundary moves in left or right
direction; ncleft indicates the boundary moves to the left and ncright on the
opposite side; nnew stands for the number of particles in GPU’s subspace after

114 L. Hu, X. Shen, and X. Long

boundary moves; noriginal stands for the number of particles in GPU’s subspace
before boundary moves. Figure 7 shows the speedup after adding the threshold.
Figure 8 exhibits a comparison of real wall time with ideal one.

Fig. 7. Speedup of optimized dynamic load balancing algorithm compared to the simple
one

Fig. 8. Comparison of real wall time with ideal one. Optimized dynamic load balancing
algorithm is applied.

Figure 9 demonstrates the ideal speedup(the performance of multi-GPU is
only affected by dynamic load balancing algorithm without any other negative
influences such as communication overhead) and the real speedup. Ideal speedup
is calculated as (on homogeneous multi-GPU platform)

speedupideal n = n ∗ walltimeideal n/walltimereal n (7)

where speedupideal n represents ideal speedup when the number of GPU is equal
to n, n represents the number of GPUs used in simulation, and walltime repre-
sents the longest time cost of updating particles’ physical quantity in each time
step. The real speedup is achieved without any optimization in the Dynamic
Load Balancing and Particle Migration steps. Both steps are relative with com-
munication among multiple GPUs.

SPH 115

Fig. 9. Real speedup and ideal speedup of 4GPUs. Tested with: scenario armadillo
with 1034K, 1940K, 2980K particles and bunny with 3049K particles.

5.3 Communication Optimization

An often used method in CUDA applications to hide communication overhead
is to parallelize computation and communication. Communication among GPUs
goes in the following steps:

1. Particle Migration
After sub-step integration in time in the step Updating Particles’ Physical

Quantity, particles may migrate from one subspace to another subspace. At the
end of each time step, GPU needs to identify and exchange those particles(called
migrating particle below), so there exists data transfer overhead. As the distribu-
tion of migrating particles in memory space is irregular, GPU needs extra com-
putation to gather those particles into continuous memory space before sending
them to neighbour GPU.

2. Updating Particles’ Physical Quantity
As described before, it is necessary to exchange the information of boundary

particles among GPUs.
3. Dynamic Load Balancing
Each GPU needs to wait for new space division and exchanges boundary cell

slices according to new division of simulation space. As a result, there exist
synchronization overhead and data transfer overhead.

The same method described in Rustico for covering the overhead is used in
the Updating Particles’ Physical Quantity step. We focus on the optimizations
in Particle Migration and Dynamic Load Balancing steps. Here we give a brief
description of how to hide communication overhead in those two steps.

The first sub-step of Particle Migration is gathering migrating particles in
irregular distribution into continuous memory space. One way is to use a com-
press function to gather migrating particles, but non-negligible computation cost
has to be added. For SPH, the time of updating particles’ physical quantity is
more than 10 times longer than the time of data exchange of boundary parti-
cles in general cases. The other way is to send migrating particles to neighbour

116 L. Hu, X. Shen, and X. Long

GPU(s) without gathering them. Migrating particles reside in two cell slices in
the vicinity of GPU’s boundary because the migration distance is shorter than
smooth radius (the size of cell is smooth radius). Instead of gathering migrating
particles, we send all particles in the two cell slices(called potential migrating
particles below) to neighbour GPU(s), but it will unfortunately increase the cost
of data exchange. If we can hide the communication overhead, the second way is
clearly a better choice. To hide the time cost of exchanging potential migrating
particles, the subspace of each GPU is divided into two boundary areas(consist
of two cell slices) and an inner area. First, the kernel which is used to update
boundary particles’ physical quantity is launched. Then, the update of inner area
works in parallel with the exchange of potential migrating particles. In this way,
the time cost of exchange of potential migrating particles is hidden. In the next
time step, when neighbour GPU(s) creates neighbour list with CLL algorithm,
it is feasible to extract those particles that are not needed from others at a cost
of a slight increase in the overhead only by giving them a sufficiently large cell
value.

The space repartition in the Load Balancing step can be delayed to the time
GPU starts to update particles’ physical quantity. In this way, it can be paral-
lelized with Updating Particles’ Physical Quantity to hide the synchronization
overhead. The data exchange of boundary cell slices after space repartition can
be done together with particle migration at the end of each time step. As a
result, all overheads in Dynamic Load Balancing step can be hidden through
parallelization with Updating Particle’s Physical Quantity.

6 Final Result

Figure 10 shows the final speedup of multi-GPU SPH implementation via com-
munication optimization using optimized dynamic load balancing algorithm. Cor-
responding to the speedup presented in figure 6, the performance of multi-GPU
increases by about 10%. Multi-GPU’s speedups all exhibit the trend of linear ac-
celeration when different numbers of GPUs simulate millions scale scenario.

Fig. 10. The final speed up

SPH 117

7 Conclusions

An acceleration strategy for SPH method on single-node multi-GPU platform
has been proposed in this paper. For single-GPU, we first choose an appropriate
neighbour search algorithm CLL combined with architectural characteristics.
Subsequently, two optimizations are made. To solve code divergence problem
we merge continuous cells into a huge cell to reduce synchronization point in
traditional implementation. By decreasing the cell size, less potential particles
are searched in neighbour search. For multi-GPU, we focus on the changing
patterns of SPH’s computational time. Simple dynamic load balancing algorithm
works well because the computational time of each time step changes slowly
compared to previous time step. By further optimizing dynamic load balancing
algorithm and the communication strategy among GPUs, a nearly linear speedup
is achieved in different scenarios with a scale of millions particles.

8 Future Work

We will study the specific acceleration strategy for SPH on GPU cluster. The
main difference between GPU cluster and single-node multi-GPU is that the
bandwidth among nodes is far narrower than PCI-E 2.0(infiniband has not been
taken into consideration yet), which may have significant effect on SPH’s perfor-
mance on GPU cluster. Therefore, its communication strategy may be different
with what we addressed in this paper. This deserves further research.

References

1. Gingold, R.A., Monaghan, J.J.: Smoothed particle hydrodynamics: theory and ap-
plication to non-spherical stars. Mon. Not. R. Astron. Soc. 181, 375–389 (1977)

2. Lucy, L.B.: A numerical approach to the testing of the fission hypothesis. Astron.
J. 82, 1013–1024 (1977)

3. Dominguez, J.M., Crespo, A.J.C., et al.: Neighbour lists in smoothed particle
hydrodynamics. International Journal for Numerical Methods in Fluids 67(12),
2026–2042 (2011)

4. Fleissner, F., Eberhard, P.: Parallel load-balanced simulation for short-range in-
teraction particle methods with hierarchical particle grouping based on orthogo-
nal recursive bisection. International Journal for Numerical Methods in Engineer-
ing 74(4), 531–553 (2011)

5. Amada, T., Imura, M., et al.: Partilce-based fluid simulation on GPU. In: ACM
Workshop on General-Purpose Computing on Graphics Processors and SIG-
GRAPH (2004)

6. Harada, T., Koshizuka, S., et al.: Smoothed particle hydrodynamics on GPUs. In:
Proceedings of Computer Graphics International (2007)

7. Herault, A., Bilotta, G., et al.: SPH on GPU with CUDA. Journal of Hydraulic
Research 48(1, suppl. 1) (2010)

8. Simon Green: Particle Simulation using CUDA,
http://www.dps.uibk.ac.at/~cosenza/teaching/gpu/nv_particles.pdf

http://www.dps.uibk.ac.at/~cosenza/teaching/gpu/nv_particles.pdf

118 L. Hu, X. Shen, and X. Long

9. Rustico, E., Bilotta, G., et al.: Smoothed particle hydrodynamics simulations on
multi-GPU systems. In: 20th Euromicro International Conference on Parallel, Dis-
tributed and Network-Based Processing, PDP 2012, February 15-17 (2012)

10. Rustico, E., Bilotta, G., et al.: A journey from single-GPU to optimized multi-GPU
SPH with CUDA. In: 7th SPHERIC Workshop (2012)

11. Dominguez, J.M., Crespo, A.J.C., et al.: New multi-GPU implementation for
smoothed particle hydrodynamics on heterogeneous clusters. Computer Physics
Communications (2013)

	Research on SPH Parallel Acceleration
Strategies for Multi-GPU Platform

	1 Introduction
	2 SPHMethod
	3 Related Work
	4 Accelerating SPH On Single-GPU
	4.1 Choosing Appropriate Neighbour List Algorithm
	4.2 Code Divergence Optimization
	4.3 Reduce Potential Neighbours
	4.4 Speedup on Single-GPU

	5 Multi-GPU
	5.1 Basic Design
	5.2 Dynamic Load Balancing
	5.3 Communication Optimization

	6 Final Result
	7 Conclusions
	8 Future Work
	References

